
 

 

 

 

EVALUATION OF DIGITAL X-RAY DETECTORS FOR 

MEDICAL IMAGING APPLICATIONS 

 

 

 

 

By 

ANASTASIOS C. KONSTANTINIDIS 

 

 

 
 

A THESIS SUBMITTED TO THE UNIVERSITY COLLEGE LONDON 

 FOR THE DEGREE OF DOCTOR OF PHILOSOPHY 

 DEPARTMENT OF MEDICAL PHYSICS AND BIOENGINEERING 

UNIVERSITY COLLEGE LONDON 

 

 

London 2011



 2

 

I, Anastasios Konstantinidis confirm that the work presented in this thesis is my own. 

Where information has been derived from other sources, I confirm that this has been 

indicated in the thesis. 

 

 

 

Signature………………………………..



 3

Abstract 
Digital x-ray detectors are now the detector of choice in many X-ray 

examinations. They have been accepted into clinical practice over the past decade but 

there are still ongoing developments in the technology. Complementary metal oxide 

semiconductor (CMOS) active pixel sensors (APS) are a novel digital technology that 

offers advantages compared to some of the more established approaches (charge-

coupled devices (CCD), thin film transistor arrays (TFT) and CMOS passive pixel 

sensors (PPS)). This thesis looks at the performance of these new sensors and 

attempts to identify their role in future medical imaging applications. 

Standard electro-optical and x-ray performance evaluations of two novel CMOS 

APS, namely the Large Area Sensor (LAS) and Dexela CMOS x-ray detector, are 

presented. The evaluation was made in terms of the photon transfer curve (PTC), the 

modulation transfer function (MTF), the normalized noise power spectrum (NNPS) 

and the resultant detective quantum efficiency (DQE). Modifications were introduced 

to extend the standard methods to overcome technical limitations. The performance of 

these detectors was compared to three commercial systems (Remote RadEye HR 

(CMOS APS), Hamamatsu C9732DK (CMOS PPS) and Anrad SMAM (a-Se TFT)) 

at beam qualities (28 kV for mammography and 52 kV and 74 kV for general 

radiography) based on the IEC standards. Both the LAS and Dexela CMOS detectors 

demonstrate enhanced performance. The effect of the CMOS APS inherent 

nonlinearity on the x-ray performance was also evaluated.  

Finally, the measured performance parameters were used to simulate images for 

different mammographic imaging tasks in order to establish possible areas of 

application for the new sensors. Two software phantoms (one representing a 3-D 

breast and the other the CDMAM test tool) were used to simulate a range of 

mammographic conditions. The results show that both novel CMOS APS detectors 

offer high image quality compared to the commercial detector systems. 
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Chapter 1 

1 Medical x-ray imaging using digital 

detectors 

1.1 Overview of chapter  

In this chapter the basic concepts of medical image quality and digital detectors are 

described. Furthermore, the physical aspects of the investigated x-ray detectors are 

presented. For clarity reasons, the detector itself will be referred to as a digital sensor 

and the system as a digital detector. This separation is common in the literature and it is 

based on “the sensitivity to optical photons” and “the detection of x-ray photons”. 

1.2 Background and motivation of the current work 

The purpose of medical x-ray imaging is to provide information about specific 

aspects of body structure or function. The quality of a medical image needs to be 

sufficient enough to provide the required information for each task. The image quality 

depends on the properties of the object imaged, the imaging system (i.e. the hardware) 

and the x-ray imaging technique used (Bourne, 2010). The parts of the human body that 

are usually imaged are breast, chest, teeth and extremities. The hardware aspects that 

affect the image quality are the x-ray anode and filtration, tube voltage, radiation dose, 

scatter and the x-ray detector (Yaffe et al., 2008 and Uffmann and Schaefer-Prokop, 

2009). Finally, the imaging technique can be either a well established one, such as 

mammography, general radiography, computed tomography (CT) and fluoroscopy, or 

an advanced one such as tomosynthesis, contrast enhanced dual energy or temporal 

subtraction, cone beam (CB) CT, etc. 

The most important factors that affect the image quality are contrast, spatial 

resolution and noise. They are related factors and affect each other in complex ways. All 

of them need to reach sufficient levels for each task to get meaningful images. The 

contrast represents the magnitude of the measured signal differences between the object 
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of interest and the surrounding background and contains the diagnostic information in 

medical imaging. It depends on the inherent contrast and the detector contrast. The 

spatial resolution describes the ability of a detector to represent distinct anatomic 

features within the imaged object. It is affected by the geometry of the system and the 

blurring and sampling (or pixel) pitch of the x-ray detector. The noise expresses 

systematic and random variations superimposed on the “true” measured signal, arising 

from the x-ray photons which are information carriers and the x-ray detector (Lança and 

Silva, 2009 and Bourne, 2010). These three factors and the relationship between them 

are quantitatively described by the contrast-to-noise ratio (CNR), signal-to-noise ratio 

(SNR), dynamic range, modulation transfer function (MTF), noise power spectrum 

(NPS) and detective quantum efficiency (DQE) parameters. The CNR represents the 

relationship between contrast and noise in an image for large scale objects (Lança and 

Silva, 2009). Correspondingly, SNR expresses the ratio between signal and noise in 

large scale objects. The dynamic range represents the range of incident dose which the 

detector can accommodate and convert to imaged signal. It is defined by the ratio of the 

maximum and minimum detector signal and is an indicator of the contrast limits 

(Cowen et al., 2008). The MTF shows the ability of the detector to reproduce image 

contrast from subject contrast at various spatial frequencies, i.e. it represents the 

relationship between contrast and spatial resolution (Dainty and Shaw, 1974, 

Cunningham, 2000 and Cowen et al., 2008). The NPS expresses the distribution of the 

image noise, which is defined in terms of variance, at the various spatial frequency 

components of the image (Dainty and Shaw, 1974 and Cunningham, 2000). The 

combination of SNR, MTF and NPS determines the DQE which represents the ability to 

visualize object details of a certain size and contrast (contrast-detail resolution). In other 

words, DQE provides a measure of the SNR transfer from the input to the output of a 

detector as a function of frequency (Dainty and Shaw, 1974, Cunningham, 2000, Bick 

and Diekmann, 2007 and Veldkamp et al., 2009). By definition, the DQE of a digital 

detector should be dose independent, i.e. demonstrate a quantum limited behaviour. 

However, the actual DQE performance is sometimes dose dependent in the presence of 

detector noise (electronic noise) or nonlinearity. Further details about this are given in 

section 2.4.5. The first two parameters (CNR and SNR) can be calculated from imaged 

objects, while the dynamic range, MTF, NPS and DQE comprise the physical 
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parameters of the detector and are calculated using electro-optical and x-ray 

performance evaluation methods.  

In this study the performance of two novel digital x-ray detectors, based upon 

complementary metal oxide semiconductor (CMOS) active pixel sensor (APS) 

technology, was investigated. The performance of these detectors was compared to 

three commercial systems in terms of physical characteristics and evaluation of the 

image quality. The physical performance is better described by the DQE than the MTF 

parameter, because the former takes into account the SNR, contrast and noise of the 

detector (Shaw et al., 2004). A system with a higher DQE will reach the same contrast-

detail resolution at a lower dose or higher contrast-detail resolution at the same dose 

level compared to another system with a lower DQE (Dainty and Shaw, 1974, 

Cunningham, 2000, Samei et al., 2004, Bick and Diekmann, 2007). On the other hand, 

CNR is a more useful measure of image quality than SNR because the actual 

information content of a medical image depends on contrast (Bourne, 2010). Since the 

x-ray photons are information carriers, the noise effect is expected to decrease with the 

increase of the dose level (Cunningham, 2000). However, because ionizing radiation is 

carcinogenic it is desirable to keep the radiation dose to patients as low as reasonably 

achievable (ALARA), with the required image quality to provide an accurate diagnosis 

(Huda et al., 2003, Schaefer-Prokop et al., 2008, Yaffe et al., 2008 and Uffmann and 

Schaefer-Prokop, 2009). Therefore, DQE and CNR parameters need to be relatively 

high at low dose levels. 

As mentioned above, extracting information by the observer is the most important 

task in x-ray imaging. Objective x-ray performance evaluation of an x-ray detector 

(MTF, NNPS and DQE) allows a quantitative comparison between different 

radiographic systems. However, it does not involve the radiologists, the technicians or 

the patients, i.e. the subjective evaluation. Since the image quality is task dependent 

(ICRU Report No. 54, 1996) we cannot easily predict whether it is more strongly 

affected by the spatial resolution (MTF) or the noise (NPS) parameters. In particular, a 

study demonstrated that the MTF had a stronger effect on the detectability of lung 

nodules than the NPS (Saunders et al., 2004). On the other hand, other studies showed 

that the NPS had stronger effect on the visual grading analysis (VGA) of anatomic 

structures (Tingberg et al., 2002) or the detectability of microcalcifications in digital 

mammography (Saunders et al., 2007). Furthermore, even when a system has superior 
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signal and noise transfer characteristics compared to another, the quantitative difference 

in terms of image quality is unknown (Saunders and Samei, 2003). For this reason, the 

experimentally measured performance parameters (MTF, NPS and SNR) were used 

with software phantoms to simulate images in mammographic conditions. More 

specifically, two software phantoms (one representing a 3-D breast and the other the 

CDMAM test tool) were employed for the simulation. The first one was used at four 

different thickness/glandularity combinations to compare the image quality performance 

of the detectors at different parenchymal densities. The comparison was made in terms 

of CNR between simulated microcalcifications and the adjacent background. However, 

CNR does not give sufficient information on the perceptibility of details of different 

size and contrast. Therefore, the second phantom (CDMAM 3.4 test tool) was used for a 

contrast-detail analysis of small thickness and low contrast objects. The second analysis 

was made using an automated scoring software tool (CDCOM) and published data were 

used (Young et al., 2008 and van Engen et al., 2010) to predict the respective human 

readings. Although all the above methods cannot be used to directly predict the clinical 

image quality, they provide useful information for the performance comparison of 

digital detectors. The current study focuses on image quality in mammography. 

However, the observed relationship between the physical parameters and the 

corresponding image quality allows us to predict the performance of the detectors for a 

broader range of x-ray imaging applications.  

1.3 Digital detectors for medical x-ray imaging 

X-ray photons were discovered by Wilhelm Conrad Roentgen in 1895. Shortly after 

this discovery radiographic films were developed to detect x-rays based on the screen–

film (SF) combination (Weil, 1938 and Kim et al., 2008). It consists of a phosphor 

screen (or scintillator) which converts the x-ray photons to visible light (optical) 

photons and a radiographic emulsion. The film grains in the emulsion layers of the film 

absorb the energy of the optical photons during the exposure and using chemical 

processing an analog image is created (Williams et al., 2007). When a high amount of 

x-ray photons is absorbed in the scintillator, a respective high amount of optical photons 

exposes the film grains, leading to higher optical density of the exposed grains which 

corresponds to a dark analog image after film processing. The relationship between the 

optical density and the number of absorbed x-rays is not linear over the range of the 
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created signal (Johns and Cunningham, 1983). The main limitation of the SF 

radiography is that the acquisition, display and storage of the analog image are not 

separable. Other drawbacks of this technology are the small exposure latitude (dynamic 

range), the need of chemical exposure to create the analog image, inefficient mechanical 

handling, no instantaneous access to the analog images, the film is fragile and it cannot 

be duplicated without quality loss and high costs for film materials and work. Also, 

there is a compromise between the spatial resolution and the detection efficiency of the 

x-ray image, because the scintillator needs to be thin to reduce the blurring from the 

lateral diffusion of optical photons created inside the scintillating material. However, 

the thin scintillator results in low detection of x-ray photons and requires increased 

amount of x-rays (radiation dose) to achieve the desired image quality. There is another 

trade-off between the dynamic range and the contrast resolution, because to have a high 

contrast resolution the dynamic range has to be small (Muller, 1999 and Williams et al., 

2007). Nevertheless, SF radiography has been used for many years mainly due to high 

spatial resolution, consistency of image appearance and the experience of radiologists, 

medical physicists and technologists in utilizing this technology in an optimal way 

(Williams et al., 2007). 

To overcome the limitations of analog imagers, digital detectors have been 

developed over the past 40 years. They are constructed to offer independent acquisition, 

display and storage of the images allowing for separate optimization of each of the three 

steps. Therefore, better image quality in terms of increased dynamic range, increased 

display contrast, higher detection efficiency and lower noise compared to SF technology 

has been achieved over the years. The increased image quality permits lower doses to 

patients. Another advantage is the acceleration of the patient throughput in terms of less 

data typing, no need for chemical processing, shorter time from the acquisition to the 

radiographic image and no cassette manipulation in some cases. Finally, digital images 

can be easily transmitted to and from remote places for consultation, review or 

interpretation (Muller, 1999, Kotter and Langer 2002 and Williams et al., 2007). The 

main limitations of digital detectors are higher initial cost, the fact that a number of 

radiologists, medical physicists and technologists are not familiar with electronic image 

display and with online softcopy reading and the lack of consistent feedback from 

radiologists to radiographers about the use of optimal acquisition parameters (Williams 

et al., 2007). Also, another parameter that can limit the acceptance of digital detectors is 
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the sampling in both the spatial and intensity dimensions. In the spatial dimension, the 

analog signal is averaged over picture elements (pixels) which are spaced at equal 

intervals over the area of the image. In the intensity dimension, the analog signal is 

binned into one of a finite number of discrete digital levels. The number of these levels 

is usually a power of 2 and it depends on the bit-depth of the analog-to-digital converter 

(ADC) used to digitize the analog image. In other words, if the bit-depth of the ADC is 

12, there are 212 (0-4095) discrete digital values over the analog signal amplitude range. 

Digital x-ray detectors typically employ 12 to 14 bits ADCs. Therefore, information can 

be lost if the dimensions of a fine detail in the image (such as microcalcifications) are 

smaller than the pixel area (or pitch) and from intermediate intensities and variations on 

a sub pixel scale lost in the digitization process (quantization error) (Yaffe and 

Rowlands, 1997 and Bruijns et al., 2000). 

All digital detectors produce an output signal in the form of a digital number (DN) 

which represents the integrated amount of x-ray photons or energy absorbed in a given 

pixel over a specific exposure time. There are two main categories of digital detectors, 

the computed radiography (CR) and the digital radiography (DR) systems.  The CR or 

storage phosphor radiography (SPR) system is the first digital radiography system 

introduced to the market by Fuji in the early 1980s (Sonoda et al., 1983). It uses a 

photostimulable (or storage) phosphor that stores the image information from the 

absorbed x-rays as a latent image. The latent image is a distribution of electron charges 

trapped in meta-stable energy level (f-centres). Then the phosphor is exposed to the 

light (photon energy) of a red or near infrared laser beam, which causes the electrons to 

fall back to their original energy state with subsequent light (blue-green or ultraviolet) 

emission. Finally, the photostimulated luminescence pattern is collected by a 

photomultiplier tube (PMT) or from an array of photodiodes. This luminescence pattern 

is proportional to the absorbed intensity. However, it is logarithmically (or square root) 

amplified in order to compress the dynamic range of the analog signal to preserve 

digitisation accuracy over the finite number of discrete digital levels resulted from 12 to 

14-bit ADCs used in digital radiography (Kotter and Langer, 2002, Williams et al., 

2007, Kim et al., 2008 and Doyle, 2008). CR technology is typically a cassette-based 

system analogous to that used in SF radiography. Therefore, it normally requires human 

intervention to transfer the storage phosphor cassette from behind the patient to the laser 

scanning beam. This two step process may reduce both image quality and system 
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efficiency due to the introduction of noise. However, recent commercial products of CR 

technology do not need human intervention because they are constructed in such a way 

to automatically move the phosphor plate to the laser scanner or that the laser scanning 

occurs with the phosphor plate in the imaging location (Yorkston, 2007). The main 

advantages of CR technology are that they are well-established, robust, relatively 

inexpensive and have good reproducibility (Kotter and Langer, 2002, Schaefer-Prokop, 

2003, Williams et al., 2007 and Kim et al., 2008). Also, the photostimulated phosphor 

plates are reusable, have linear response over a wide range of x-ray intensities and are 

completely erased by exposure to a uniform stimulating laser beam. Finally, CR 

detectors can be combined with existing x-ray systems (modality), while DR units are 

often sold as complete systems (i.e. x-ray source and detector together). However, a 

problem of the CR system is the loss of the spatial resolution due to the scatter of the 

stimulating beam from the phosphor material. A second possible limitation of this 

technology is the reduction of the DQE at higher spatial frequencies due to secondary 

quantum sink introduced from the mechanically complex readout system. Secondary 

quantum sink arise from a lack of gain at a given conversion stage. A mechanically 

complex system may not transfer sufficient information carriers (e.g. light photons 

coupled via a lens) and hence generate a secondary sink (Yaffe and Rowlands, 1997). 

The newer DR technology was developed to improve the image quality, leading to the 

potential for dose reduction. DR systems demonstrate higher DQE and this can be used 

either to reduce the acquisition dose or to increase the SNR at the same dose (Schaefer-

Prokop, 2003). The term DR is used to describe digital x-ray imaging system that 

converts the absorbed x-ray energy to digital images directly, without the need of 

further processing as in SF and typical CR technologies. They do not require any 

mechanical motion to achieve the output digital image. Both DR and CR are digital 

radiographic systems and the different names are given to separate the two technologies. 

However, some new CR systems are automated (cassetteless), while some DR systems 

are integrated to a cassette-based x-ray system. Therefore, a distinction based on 

cassette versus cassetteless operation would be more accurate. The current DR and CR 

terms are kept for historical nomenclature reasons (Kotter and Langer, 2002, Williams 

et al., 2007 and Kim et al., 2008).  

The DR systems are further separated to direct and indirect conversion detectors. 

The terms direct and indirect refer to the technology used to convert the input x-rays to 
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the output electron charge created in each pixel. Direct refers to the conversion of x-rays 

to electron-hole pairs directly and the subsequent charge collection from individual 

pixel electrodes. Indirect refers to the conversion of x-rays to secondary information 

carriers, such as light photons from the scintillator, before conversion of these 

secondary carriers to charge (Yaffe and Rowlands, 1997, Kotter and Langer, 2002, 

Williams et al., 2007 and Yorkston, 2007). The direct conversion detectors usually 

consist of amorphous selenium (a-Se) photoconductors and thin film transistor (TFT) 

technology to read the charge signal. The TFT detectors are also used as active matrix 

flat panel imagers (AMFPI) or flat panel detectors. The a-Se TFT detectors offer high 

spatial resolution and high x-ray absorption efficiency at low energies. However, the 

increased resolution of the photoconductor can introduce signal and noise aliasing 

which affects the high spatial frequency contents of the clinical image (Yaffe and 

Rowlands, 1997, Kotter and Langer, 2002 and Yorkston, 2007). The indirect conversion 

detectors usually combine scintillators (such as CsI:Tl or Gd2O2S:Tb) coupled to 

secondary quantum detectors comprised of hydrogenated amorphous silicon (a-Si:H) 

TFT, charge-coupled devices (CCD) or complementary metal oxide semiconductors 

(CMOS) sensors. The indirect conversion detectors present poorer resolution due to the 

light diffusion inside the scintillator. However, they offer higher detection efficiency at 

higher frequencies (higher DQE) because the aliasing noise is smaller (Samei, 2003b 

and Marshall, 2000a). Direct a-Se detectors are mainly used in mammography due to 

the relatively low Z (34) and the K-absorption edge at 12.7 keV. On the other hand, the 

indirect detectors can be used in both mammography and higher energy applications 

such as general radiography, due to the increased Z and absorption edge of the 

scintillating elements (55 and 36.0 keV for Cs, 53 and 33.2 keV for I and 64 and 50.2 

keV for Gd) (Yaffe and Rowlands, 1997 and Yorkston, 2007). Finally, the a-Se detector 

at low exposures (less than 30 µGy) demonstrates low DQE values. This happens 

because a) Se makes less efficient use of the absorbed x-rays (i.e. to produce an 

electron-hole pair using a 27 kV Mo/Mo spectrum, 64 eV are required for Se operated at 

10 V/µm, while less than 25 eV are needed for the CsI/Si combination) and b) the effect 

of electronic noise is higher on smaller pixel sizes (Shaw et al., 2004). 

 The a-Si:H TFT detectors include a P-I-N junction a-Si:H photodiode inside each 

pixel which converts the optical photons from the scintillator to electron charge and 

stores that charge on the photodiode capacitance. Then, the TFT transistor inside each 
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pixel allows the charge to be read out for each row of the active area. Therefore, an 

entire row of the detector array is read out simultaneously and the signal is read on lines 

for each column via a charge amplifier. Then the amplified column signals are 

multiplexed and digitized. This method allows fast detector readout (Yaffe and 

Rowlands, 1997). Also, the flat panel detectors are radiation hard and can consist of 

very large areas of up to 43x43 cm2 for general radiography applications (Kotter and 

Langer, 2002). However, flat panel detectors have low DQE at low exposure levels 

(Zhao and Rowlands, 1997, Siewerdsen et al., 1997 and Antonuk et al., 2000), caused 

by high read noise due to the use of passive pixels (Busse et al., 2002, Jee et al. 2003 

and Scheffer, 2007). Finally, the flat panel detectors at high frame rates show an excess 

of image lag, ghosting and baseline drifts (Siewerdsen and Jaffray, 1999, Bloomquist et 

al., 2006 and Korthout et al., 2009). On the other hand, the CCD detector was 

developed in 1970 with a completely different readout method (Boyle and Smith, 1970). 

It consists of an array of metal-oxide-semiconductor (MOS) capacitors, which are 

formed from the deposition of a series of electrodes (“gates”) on a semiconductor 

substrate. By applying voltages to the gates, the material below the gates is depleted and 

forms charge storage “wells”. Each well corresponds to the pixel. The storage charge is 

created from photoelectric absorption of optical photons. When proper voltage 

differences are applied on the gates the charge is transferred from well to well under the 

gates. The charge is shifted out of the array via vertical and horizontal charge coupling, 

converted to voltage via a simple follower amplifier and then serially read out and 

converted to DN via an ADC. (Yaffe and Rowlands, 1997 and El Gamal and Eltoukhy, 

2005). The CCD technology was the most prevalent in the market of digital imaging for 

more than 25 years due to its high performance. It has high sensitivity due to high fill 

factor (the ratio of the light sensitive area to the total area of a pixel) and quantum 

efficiency (i.e. number of photon-generated electrons per impinging optical photons), 

thus leading to very small pixels (down to 15 µm for video applications). The fill factor 

of the interframe transfer CCDs is 100% because their operation does not require extra 

electronics per pixel. The respective fill factor of the interline transfer CCDs is slightly 

lower. Also, CCDs illustrate very low noise because the charge transfer is passive and it 

does not introduce temporal noise. The read noise of commercial CCDs is around 10-20 

e- r.m.s. Additionally, they do not suffer from pixel-to-pixel and column-to-column 

fixed pattern noise (FPN). Finally, they appear to have high dynamic range and image 
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quality in terms of SNR (Fish and Yadid-Pecht, 2004, Bigas et al., 2005 and El Gamal 

and Eltoukhy, 2005). CCDs were introduced in digital radiography in 1987 (Nelson, 

1987) due to the high spatial resolution capability, wide dynamic range and linear 

response. For medical applications the pixel pitch of the CCD is in the range of 25-100 

µm to get the desired full well capacity (Yaffe and Rowlands, 1997). A main 

disadvantage of the CCDs is that the production cost is high, which limits their active 

area to 2-5 cm2. Therefore, it is often necessary to demagnify the image from the 

scintillator to allow coverage of the required x-ray field size in the patient. There are 

three ways to demagnifying the light signal: using optical lens coupling or fibre optic 

coupling or electron-optic coupling (Yaffe and Rowlands, 1997).  However, this 

demagnification stage increases the chance of a quantum sink occurring by imposing 

stricter requirements on light propagation in order to keep image quality within 

acceptable levels. Furthermore, CCDs are serial devices, which means that the entire 

signal has to pass through the same sense node before being read out, leading to high 

read noise at high frame rates. This limits the use of CCDs to applications requiring a 

high frame rate such as tomosynthesis, CT and fluoroscopy (Janesick, 2002). 

Additionally, they require high power due to the need for high-rate and high-voltage 

clocks to transfer the charge efficiently (El Gamal and Eltoukhy, 2005).  Finally, CCDs 

are susceptible to radiation damage (Janesick, 2001). 

CMOS image sensors first appeared in 1967 having the architecture of passive pixel 

sensors (PPS) (Weckler, 1967 and Dyck and Weckler, 1968). However, in the middle 

1990s CMOS sensors re-emerged in the market as an alternative to CCDs due to the 

development of active pixel sensors (APS) and their consequent advantages and high 

performance (Mendis et al., 1994). By adding a buffer per pixel as a source follower, 

the signal is transferred onto a common readout bus as a voltage rather than as a charge. 

This modification, known as APS technology, improves the sensor’s SNR and readout 

speed. The main advantages of CMOS sensors over CCD and TFT technology are the 

low cost with low power consumption, radiation tolerance (Said et al., 2001 and 

Bogaerts et al., 2003), very fast image acquisition due to random pixel addressing 

capability (Fossum, 1997 and Krymski, 2003) and low read noise at high frame rates 

due to column parallel read out (Janesick, 2002). Also, stitching and tiling technologies 

can be used to obtain large area sensors suitable for x-ray applications (Scheffer, 2007, 

Korthout et al. 2009 and Reshef et al., 2009). Finally, the CMOS APS features lower 
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read noise than PPS (Bohndiek et al., 2008b and Elbakri et al., 2009). In the following 

sections the pixel architecture and readout methods of CMOS APS, CMOS PPS and a-

Se TFT technologies are described as they are employed in the current study.  

1.4 CMOS Sensors 

1.4.1 CMOS Active Pixel Sensors (APS) 

The simplest (three transistor (3T)) APS pixel usually contains one photodiode and 

at least 3 MOSFETs: a) a reset (R), b) a source follower (SF) and c) a row select (RS) 

MOSFET (Fossum, 1997, Janesick et al., 2003b, El Gamal and Eltoukhy, 2005, 

Hoffman et al., 2005). Figure 1.1 shows a schematic of a 3T APS incorporating a 

silicon photodiode for optical photons detection (El Gamal and Eltoukhy, 2005). 

 
Figure 1.1: A schematic of a 3T APS pixel and readout architecture 

Each pixel behaves as an individual sensor element, the operation of which is 

separated into three phases: reset, integration and readout. 

During the reset phase, a positive voltage, VReset, is applied at the reset gate, 

allowing the supplied reference voltage, VDD, to pass through and recharge the 

photodiode to a fixed reference level. There are two main types of reset, depending on 

the voltages applied at the drain and the gate of the reset transistor: ‘soft’ and ‘hard’ 

reset (Pain et al., 2003a, Janesick and Putnam, 2003a). The ‘soft’ reset corresponds to 

the condition where the gate-to-drain voltage of the reset transistor is less than the 
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threshold voltage of the transistor. In this state, charge from the sense node can 

thermally cross the reset gate barrier to the VDD drain region. As charge escapes, the 

sense-node voltage increases and results in a signal variation with time at the output of 

the source follower. On the other hand, the reset is termed ‘hard’ when the gate-to-drain 

voltage on the reset transistor exceeds its threshold voltage, yielding steady state 

operation. In other words, the ‘hard’ reset eliminates the field that would cause electrons 

to leave the sense node. ‘Soft’ reset results in a high saturation level and low read noise 

at the cost of image lag and low-illumination nonlinearity, while ‘hard’ reset shows no 

image lag and greater linearity, at the expense of increased noise and reduced saturation 

level. 

The integration phase is the period in which the signal is measured. VReset drops 

from a positive voltage and the reset MOSFET stops conducting. The silicon 

photodiode is sensitive to light in the spectral range of 200-1200 nm, which extends 

from UV through the visible to near IR. Usually, it consists of a P-N junction, i.e. a N+ 

well and a P- epitaxial layer, which is reversed biased. Therefore, a depletion region is 

created and the photodiode acts as a semiconductor. An additional P+ substrate layer 

exists for mechanical support. When an optical photon interacts with the photodiode it 

creates an electron-hole pair inside the epitaxial layer. Electrons diffuse until they 

experience the electric field of the P-N junction and are collected from the N+ well (or 

‘sense node’). An electron charge is created between the sense node and the P- epitaxial 

layer, related to the number of interacting photons. During the integration time (Tint) the 

photodiode behaves as a capacitor and the variation of the sense node capacitance SNC  

with charge level is described as (Janesick, 2007): 

( )( )SN SN
SN

dS eC V q
dV

−

=  

(1.1) 

where ( )S e−  is the sense node charge (number of accumulated electrons), SNV  is the 

sense node voltage and q  is the electron charge (1.6 x 10-19 C). Integrating Eq. (1.1) 

with respect to SNV  yields: 

1( ) ( )REF

SN

V
SN SN SNV

S e C V dV
q

− = ∫  

(1.2) 
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where REFV  is the reference voltage on the sense node after its reset. The integration 

results in a signal charge ( )S e−  and the respective voltage ( )SNS V  which is negatively 

related to REFV  because the photodiode is reverse biased. Therefore, the sense node 

voltage discharges as: 

( )SN REF SNV V S V= −  
 (1.3).                      

After the integration period’s completion, signal S is measured at the input of the 

source follower as a decrease of either the electron charge or the REFV . Figure 1.2 shows 

the variation of the signal voltage ( )SNS V  during a given integration time. The source 

follower acts as a buffer, allowing only the input voltage ISFV  to pass through. 

Therefore, the signal passes to the next stage, the readout column bus, as a voltage only. 

 
Figure 1.2: Signal voltage measurement within the integration time (Magnan, 2003) 

Readout phase follows the integration phase. The row select MOSFET switches on, 

enabling the buffered signal voltage to be presented to the column bus in order to be 

measured from the imager. Progressive scan readout mode is the most common readout 

mechanism in CMOS APS. This mode incorporates the rolling shutter method (Fish and 

Yadid-Pecht, 2004, Turchetta R. et al., 2004, Hoffman et al., 2005). The rows of pixels 

in the image sensor are reset in a sequence, starting at the top of the image and 

proceeding row by row until the bottom. When this reset process has moved down in 

the image for a given number of lines, the readout process begins. The number of lines 

defines the integration time. The read out process occurs in exactly the same mode and 

at the same speed as the reset process.  Figure 1.3 represents the rolling shutter 
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principle. Finally, from the column bus, the signal voltage passes through column 

parallel amplifiers and ADC, where it is converted to DN and passes off chip (Fossum, 

1997).  

 
Figure 1.3: Rolling readout method of the photodiode APS (Fish and Yadid-Pecht, 

2004). 

CMOS APS sensors offer low noise and fast readout of the signal at the cost of 

adding more transistors in the pixel which leads to smaller fill factor, smaller quantum 

efficiency and decreased sensitivity. These parameters prevent the construction of very 

small pixels (i.e. smaller than 25-50 µm).  

1.4.2 CMOS Passive Pixels Sensors (PPS) 

The typical PPS pixel consists of a photodiode and just one transistor (RS). 

Therefore, it has very high fill factor and quantum efficiency leading to high sensitivity 

and the ability to construct small pixels, similar to a CCD. The current structure of the 

PPS has not been further developed since its first conception in 1967 (Weckler, 1967 

and Dyck and Weckler, 1968). A reference voltage REFV  is used to reset the photodiode 

to reverse bias. After the reset the RS MOSFET transistor, which acts as a switch, is 

opened for the period of integration time. During the integration time, the photodiode 

discharges at a rate proportional to the intensity of the input optical photons 

(photosignal). Then the RS switch closes to reset the photodiode once more and 

proportional current flows via the resistance and capacitance of the vertical column bus. 

As discussed in the previous section, this current is created due to the voltage difference 
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between REFV  and the photodiode (sense node) voltage SNV . The total charge that flows 

to reset the photodiode is equal to the charge created during the integration time (Fish 

and Yadid-Pecht, 2004 and El Gamal and Eltoukhy, 2005). Figure 1.4 shows the 

architecture of a 1T PPS (El Gamal and Eltoukhy, 2005).  

 
Figure 1.4: A schematic of a 1T PPS pixel and readout architecture 

However, the pixel architecture of the PPS results in major problems due to its large 

capacitance loads. The column bus is directly connected to the photodiode during 

readout, therefore the RC time constant is very high and the readout is slow. Also, the 

PPS readout noise is relatively high, i.e. around 250 e- r.m.s.. Therefore CMOS PPS 

appear to have limited scalability, i.e. they do not scale well to larger array sizes or 

faster pixel readout rates. Also, column-wise fixed pattern noise (FPN) appears due to 

different gains of the amplifiers on the bottom of each different readout column (Fish 

and Yadid-Pecht, 2004, El Gamal and Eltoukhy, 2005 and Fossum, 1997). 

1.5 Direct conversion TFT detectors 

Direct conversion detectors consist of photoconductors and TFT transistors for the 

readout of the signal. The photoconductor absorbs the x-ray photons, generates free 

electron-hole pairs proportional to the intensity of the incident x-rays and collects them 

at the electrodes. The most developed photoconductor for x-ray applications is 

amorphous selenium (a-Se). It offers high x-ray absorption at low energies (K-

absorption edge at 12.7 keV) and a very high spatial resolution. The amorphous state 

makes possible the preservation of uniform imaging characteristics over large areas 
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(Yaffe and Rowlands, 1997, Kotter and Langer, 2002, Que and Rowlands, 1995). The 

first medical application of a-Se was in 1973 (Boag, 1973) where a toner read out the 

latent charge image created on the surface of an a-Se plate. During the following years 

several developers used a-Se based detectors for analog and digital radiography. In 1992 

Zhao and Rowlands introduced the a-Se TFT combination for radiography and 

fluoroscopy (Zhao and Rowlands, 1992, Zhao and Rowlands, 1995). In the following 

years Lee et al. (1996) studied the performance parameters (resolution, dynamic range 

and sensitivity) of a-Se TFT detectors for radiography. The potential advantages of this 

technology are high image quality, real-time readout and compact size.  

The structure and readout technology of a-Se TFT detectors is shown in Figure 1.5. 

When x-ray photons hit the detector, their energy is absorbed by the a-Se layer and 

electron-hole pairs are created respectively. This created charge is drawn by the electric 

field applied between the top and charge collection electrodes. The latter is constructed 

inside each pixel, collects the created charge and leads it to the pixel capacitance (i.e. 

self-capacitance and integrated storage capacitance). Both charge collection electrode 

and storage capacitor are connected to the TFT switch inside each pixel. The TFT 

switch is controlled from the gate row line and for specific integration time allows the 

transfer of the charge from the pixel capacitors to the readout columns. Then the charge 

is collected and amplified by an amplifier on each column and the data for an entire row 

is multiplexed out and digitized. The sequence is repeated row by row (Yaffe and 

Rowlands, 1997).  
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Figure 1.5: Layered structure and readout architecture for a direct-conversion (a-Se) 

TFT detector 

The thickness of the a-Se layer must be adequate to achieve high x-ray detection 

efficiency. However the overall detection efficiency of the system may be decreased for 

very high a-Se thicknesses, because the charge carriers (i.e. the electron-hole pairs) may 

recombine or be absorbed by the a-Se layer itself. In this case the number of charges 

arriving at the charge collection electrode decreases. Therefore, for general radiography 

applications the typical thickness of the a-Se layer is around 500 µm, while for lower x-

ray energy applications such as mammography the thickness is around 250 µm. It is 

observed that the thickness of the a-Se layer can be increased without sacrificing the 

spatial resolution which is the usual case in scintillators. General radiography a-Se flat 

panel detectors usually employ 140 µm square pixels, while the full-field digital 

mammography detectors are constructed with ~ 70 µm square pixel pitch (Yaffe and 

Rowlands, 1997, Lee et al., 1996, Kim et al., 2008).  

1.6 Digital detectors under investigation 

Five digital detectors are investigated in this thesis. Three of them are CMOS APS 

(LAS, Dexela CMOS x-ray detector and Remote RadEye HR), one is CMOS PPS 

(Hamamatsu C9732DK) and one is direct conversion (a-Se) TFT (Anrad SMAM). A 

complete electro-optical and x-ray performance characterization of the novel detectors 
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(LAS and Dexela CMOS x-ray detector) is carried out in this study. The x-ray 

performance of these two detectors was compared with that of the three commercial 

detectors (Hamamatsu C9732DK, Anrad SMAM, Remote RadEye HR) developed for 

medical x-ray imaging applications.  

1.6.1 Large Area Sensor (LAS) 

The LAS CMOS APS was designed and manufactured for scientific applications 

and in particular under x-ray conditions by the MI-3 consortium (Allinson et al., 2009, 

Multidimensional Integrated Intelligent Imaging, 2008). This collaboration was created 

in 2004 under the RC-UK Basic Technology Programme and involved 11 research 

centres (including UCL) all over the UK. The aim of this consortium was to develop 

CMOS APS for a broad range of scientific applications (Cabello et al., 2007, Olivo et 

al., 2007, Bohndiek et al., 2008b, Osmond et al., 2008). LAS sensor contains 1350 x 

1350 pixels at 40 µm pitch, resulting in a photodiode area of 5.4 x 5.4 cm2. A standard 

CMOS reticle or photomask, which is the glass mask containing the design patterns, is 

limited in size to approximately 2 x 2 cm2. Therefore, stitching technology (Hoffman et 

al., 2005, Scheffer, 2007, Korthout et al., 2009, Reshef et al., 2009) is used to combine 

5 x 5 sub-stitched areas, each one containing 270 x 270 pixels. A dedicated differential 

analogue output for every section of 135 columns exists to connect to a 14-bit ADC. 

ADCs are incorporated into an additional stack board on which LAS is connected. A 

preliminary investigation (Bohndiek et al., 2009) resulted in read noise (r.m.s.) of 62 e-, 

full well capacity equal to 61.3 x 103 e- and dynamic range of 60.3 dB. However, these 

results are affected by the presence of electromagnetic interference (EMI) in the readout 

electronics. Studies presented in section 3.2.1 of this thesis, isolated the effect of the 

EMI on the above performance parameters (Konstantinidis et al., 2010 and Zin et al. 

2010).  

It may be seen from Figure 1.6 that each pixel contains 9 MOSFETs (9T APS), i.e. 6 

extra transistors are included in order to define 'regions of reset' (RORs) with the ability 

for three different integration times. It was found that this method can increase the 

dynamic range (i.e. avoid saturation) within the RORs, which is one of the main 

demands in x-ray diffraction applications.  



Chapter 1 
 

 36

 
Figure 1.6: LAS pixel layout incorporating 9T. RST0, RST1 and RST2 refer to the three 

different reset levels that may be applied to each pixel. (Bohndiek, 2008c) 

By default, RST0 level (high gate voltage for given number of delay lines) is 

applied to all pixels in a row, when the rolling shutter first passes. Sel 1 and Sel 2 act as 

switches for a given window (both rows and columns can be addressed). If one of them 

(or both) is enabled, the respective gate voltage (RST1 and/or RST2), which is high for 

extra lines of delay, increases the reset time of each pixel within the given ROI. 

Therefore, as the reset time increases, the integration time decreases. The maximum 

frame rate of the whole area is 20.7 fps. Using a given frame rate, the integration time of 

each ROR can be defined. The maximum integration time of the whole area is 2.4s. The 

minimum integration time within the ROR, which can be used in combination with this, 

is 37.4 sμ . These extremes define a nominal dynamic range of at least 96 dB. The pixel 

fill factor for LAS is 73 % (Bohndiek et al., 2009). 

1.6.2 Hamamatsu C9732DK 

Hamamatsu C9732DK is a PPS CMOS x-ray detector designed for mammography. 

It consists of 2400 x 2400 pixels at 50 µm pitch, corresponding to an active 

(photodiode) area of 12 x 12 cm2. The vertical dimension consists of 15 stitched 

periphery blocks, each one containing 2400 x 160 pixels. Each block is connected to a 

dedicated 14-bit ADC. The number of active pixels is 2368 x 2400. The nominal read 

noise (r.m.s.) is 1250 e- and the saturation charge is 6.4 x 106 e-, leading to 74 dB 

dynamic range. The minimum frame rate of the whole area is 0.95 fps while the 

maximum one is 1 fps (Hamamatsu, 2008a). At slow read out rates the electronic noise 

(i.e. read noise and dark current) “fills up” the pixels array. Therefore, it determines the 
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minimum frame rate. The pixel fill factor for this detector is 79 % (Hamamatsu, 2008b), 

due to the absence of the extra transistors used in APS technology.  

1.6.3 Dexela CMOS x-ray detector 

The Dexela flat panel CMOS x-ray detector is an APS based on a 3T-pixel 

architecture. Each pixel contains 3 transistors (reset, source follower and row select), 

and a pinned photodiode to increase the photo-responsitivity (and thus the quantum 

efficiency) and decrease dark current and read noise (Fossum, 1997 and El Gamal and 

Eltoukhy, 2005). Each pixel contains an option for switching the full well capacity 

between two separate levels, high full well (HFW) and low full well (LFW) modes 

(Figure 1.7). The typical fill factor of this detector is around 84 %. 

 
Figure 1.7: Pixel architecture of Dexela’s x-ray detector. 

The full well capacity switch is operated globally across the whole active area. The 

LFW mode allows achieving low noise during binned mode read-out and increasing the 

sensitivity of the detector at low Air Kerma (Ka) levels. This mode trades off full well 

capacity with sensitivity. The expected nominal read noise (r.m.s.) is around 309 e- and 

106 e- for HFW and LFW modes respectively. The nominal saturation charge (or full 

well capacity) is 1.4 x 106 e- and 0.4 x 106 e-, leading to 73.1 dB and 70.1 dB for HFW 

and LFW modes respectively (Dexela, 2011). The typical photodiode area of a single 

detector module at full resolution (pixel pitch equal to 74.8 µm) is 1944 x 1536 pixels, 

i.e. 14.5 x 11.5 cm2. The respective number of active pixels is 1934 x 1536 pixels. The 

vertical dimension consists of 6 stitched periphery blocks (Hoffman et al., 2005, 

Scheffer, 2007, Korthout et al., 2009, Reshef et al., 2009). Each block is connected to a 

dedicated 14-bit ADC. A detector with reduced dimensions (11.5 x 6.5 cm2) is also 
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available for small field mammography and cone beam computed tomography (CB-CT) 

applications. The tiling technology allows a combination of the above detectors 

modules to obtain fields of view suitable for a variety of medical applications. The 

largest detector currently available is obtained by tiling 2x2 modules for an overall area 

of 29 x 23 cm2, and is intended for use in mammography, breast tomosynthesis, breast 

CT, CB-CT and fluoroscopy. The binning mode capability allows a trade-off between 

spatial and temporal resolutions. The 75 µm pixel resolution allows a frame rate of 26 

fps, while the 300 um resolution (4x4 binning mode) corresponds to a maximum rate of 

86 fps, enabling dynamic applications. 

1.6.4 Anrad SMAM 

The Anrad SMAM is a direct conversion a-Se flat panel imager designed for 

screening mammography. The thickness of the a-Se is 200 µm. The total area of the 

detector is 17.3 x 24 cm2 (2032 x 2817 pixels) with a pixel pitch of 85 µm. The number 

of active pixels is 2016 x 2816 (Tousignant et al., 2007). The maximum frame rate is 

around 0.7 fps (Anrad, 2004). Another digital detector is developed from Anrad 

(LMAM detector) with similar properties compared to the SMAM. The main difference 

between the two detectors is that LMAM is designed mainly for breast tomosynthesis 

and dual energy, so it has slightly higher active area (24 x 30 cm2), higher maximum fps 

(0.8 fps in screening mode and 2.5 fps in tomosynthesis mode) and higher SNR 

performance at low Ka levels. However, as the pixel pitch of both detectors is the same, 

identical presampling MTF  (pMTF) curves are expected. This direct conversion 

detector is expected to present high resolution, limited mainly from the pixel size 

(Bissonnette et al., 2005 and Tousignant et al., 2007). The read noise of this detector is 

around 5200 e- r.m.s., the full well capacity is around 15 x 106 e- and the resulted 

dynamic range is 69.2 dB. The geometric fill factor of this detector is 70 %. Finally, the 

total ADC bit-depth is 16 bits but 13 bits are used due to limitations of the chip in the 

screening mode (Boissonneault, 2010). 

1.6.5 Remote RadEye HR 

The Remote RadEye HR sensor manufactured by Rad-icon Imaging Corp. (USA) is 

a 1200 x 1600 pixel CMOS photodiode array with an active area of 2.7 x 3.6 cm2 and a 

pixel pitch of 22.5 µm. It is designed for high-resolution radiation imaging in the energy 
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range from 10 to 90 kV (Rad-icon Imaging Corp., 2005a). The nominal conversion gain 

of the detector is 60 e-/DN with a high gain option (2x) available. The nominal read 

noise (r.m.s.) is less than 120 e- and the dynamic range is 72 dB. Therefore, the 

calculated saturation charge is less than 480 x 103 e-. The maximum frame rate is around 

0.5 fps and the nominal average dark current is 3000 e-/s (i.e. 7 pA/cm2) at 23 ͦ C (Rad-

icon Imaging Corp., 2005b). A one meter shielded cable is included to connect the 

sensor head to the electronics module, where the analog video signal is processed, 

digitized using 12-bit ADCs and transferred to a PC.  

1.7 Scintillators 

Scintillators or phosphor screens are used to convert x-rays to photons within the 

visible wavelength (400-700 nm). They are coupled to indirect conversion sensors. The 

most important parameters of a scintillator are the ability to detect the x-ray photons and 

their energy, the number of created optical photons per unit of absorbed energy (light 

yield) and the spectral matching between the emitted optical photons and the light 

sensitivity of the digital sensor. The first parameter is described by the quantum 

detection efficiency (QDE) and the energy absorption efficiency (EAE). The QDE ( qη ) 

corresponds to the ratio of the absorbed over the incident x-ray photons. It depends on 

the attenuation coefficient and the thickness of the scintillating material. For 

polyenergetic spectra used in x-ray imaging applications the QDE is given by the 

following formula (Boone, 2000): 
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where 0 ( )EΦ is the x-ray spectrum or photon fluence (x-rays/mm2), incident on the 

scintillator, , ( )tot t Eμ  is the x-ray total linear attenuation coefficient of the scintillator (in 

cm-1) (Hubbel and Seltzer, 1995) and w0 is the thickness of the scintillator (in cm). The 

term , 0( )(1 )tot t E we μ−− expresses the monoenergetic QDE and is weighted at each energy 

by the x-ray spectrum shape. However, scintillators are energy integrating detectors, 

therefore the EAE parameter is used to describe the fraction of incident energy absorbed 

locally at the points of x-ray interaction within the scintillator. It depends on the amount 
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of energy absorbed in the scintillator per absorbed x-ray, the photons attenuated in the 

scintillator and the amount of incident energy. It is given by the following formula 

(Boone, 2000): 
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where , ( )tot en Eμ  is the total linear energy absorption coefficient of the scintillator. It 

includes all mechanisms of energy deposition locally at the point of x-ray interaction 

within the scintillator. The dependence of EAE on the amount of energy absorbed in the 

scintillator per attenuated x-ray photon is expressed by the ratio of the linear energy 

absorption coefficient to the linear attenuation coefficient ( ), ,( ) / ( )tot en tot tE Eμ μ . The 

former describes the probability per cm of matter that the energy deposited per incident 

x-ray photon is absorbed in the scintillator, while the latter represents the probability 

that the incident photon interacts with the material. For energies above the K-edges, 

, ( )tot en Eμ  considers that the energy of any K-fluorescence photon generated escapes the 

scintillator (or photoconductor), while , ( )tot t Eμ  represents the increased probability that 

both the incident and K-fluorescence x-ray photons will be attenuated. Therefore, their 

ratio drops at the K-absorption edges. In truth, an amount of energy from K-

fluorescence photons is re-absorbed within the scintillator (or photoconductor), but 

despite this EAE is considered to provide a suitable representation of the signal 

detection efficiency in energy integrating detectors (Boone, 2000). In other words, the 

EAE is expected to give an upper limit to the DQE (i.e. the DQE(0)) of energy 

integrating detectors. This is true for energies up to the K-edge of the x-ray detecting 

material. For higher energies the assumption that all the K-fluorescence photons escape 

the x-ray detecting material severely underestimates the EAE values. This can be 

observed in Table 3.7 where for low energies the EAE results are slightly lower than the 

QDE (i.e. in the range of 0.06-0.08). However, in the case that the average energy of the 

spectrum is above the K-edge the EAE values much lower compared to the QDE (in the 

range of 0.35-0.40 for energies slightly higher than the K-edge). A similar behaviour is 

observed in Marshall (2009b) study where the difference between the EAE and QDE is 

around 0.06 at low energies and 0.32 at higher ones. A Monte Carlo study can give a 
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more precise representation of the signal detection efficiency by calculating the actual 

ratio of the reabsorbed K-fluorescence x-ray photons (Liaparinos et al., 2007). For a 

quick estimation of the expected DQE(0) one can probably use the EAE values at lower 

energies and the QDE values at higher ones. 

The light yield is expressed in photons per MeV of absorbed radiation energy and is 

of the order of magnitude of 104 photons per MeV for most scintillators (van Eijk, 

2003). Scintillators with high light yield may result in higher detector’s output signal (in 

DN), which makes them suitable for low exposure applications such as breast 

tomosynthesis, CT, fluoroscopy, etc. Finally, the spectral matching is expressed from 

the matching factor (Giakoumakis, 1991) which shows the ratio of the emitted light 

spectrum which overlaps with the spectral sensitivity (or interacting quantum 

efficiency) of the digital sensor. The interacting quantum efficiency of the sensor 

represents the fraction of the visible photons interacting with the sensor with respect to 

the number of visible photons incident on the sensor. Most scintillators used in medical 

x-ray imaging emit light spectra with maximum peak in the range 450-550 nm (green 

light), therefore the sensitivity of the sensor needs to be high within this range. 

In this thesis two scintillating materials were coupled to the indirect detection digital 

sensors to constitute x-ray detectors. A structured Thallium-activated Cesium Iodide 

(CsI:Tl) scintillator was coupled to LAS, Hamamatsu C9732DK and Dexela CMOS x-

ray detector and a Terbium-doped Gadolinium Oxysulfide (Gd2O2S:Tb) granular 

scintillator was coupled to Remote RadEye HR. The term structured CsI:Tl refers to 

high-density fibres of this scintillator with a structure resulting from growth on a 

specially designed substrate (Nagarkar, 1995). This scintillating material is grown in 

preferential microstructured columns (5-10 µm diameter), which reduces the width of 

the point spread function (PSF), resulting in superior spatial resolution compared to 

bulk or polycrystalline (granular) scintillators. Therefore, it preserves good spatial 

resolution also at the increased layer thickness required to have sufficient x-ray stopping 

power (Nagarkar et al., 1998). Both scintillators present a very high light yield (around 

66000 optical photons/MeV for CsI:Tl and almost 60000 optical photons/MeV for 

Gd2O2S:Tb) and similar light spectra (emission maximum at 550 nm for CsI:Tl and 545 

nm for Gd2O2S:Tb) (van Eijk, 2002). 

LAS was coupled to structured CsI:Tl scintillator 150 µm thick grown on a 3 mm 

thick etched fibre optic plate (FOP). The FOP between the scintillator and the sensor’s 
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surface is used to eliminate the direct absorption of x-rays in the Si layer of solid states 

detectors. According to Flynn et al. (1996) a directly detected x-ray produces large 

charge, in the order of 4,700 e- for a 17 keV x-ray absorbed in Si. Hence, about 200 x-

rays can saturate an imager with a 1 million e- full well capacity and result in significant 

quantum noise. A silicone coupling gel (Gruner et al., 2002) was used to match the 

refractive indices of the FOP and the detector surface preventing losses that would 

occur at an air gap. The thickness of this coupling layer is crucial: too thin and air 

bubbles will exist; too thick and optical spreading between adjacent pixels will be high 

(Arvanitis et al., 2007a). A syringe was used to apply Visilox V-711 silicone grease to 

the detector surface ensuring even coverage. Hamamatsu C9732DK was coupled to a 

structured CsI:Tl 160 µm thick (Hamamatsu, 2010). The manufacturers did not provide 

any further information about the coupling. However, Elbakri et al. (2009) mentioned 

that structured CsI:Tl scintillators were directly deposited onto two similar Hamamatsu 

sensors. This implies no use of FOP or coupling gel. In the case of the Dexela and 

RadEye detectors, the scintillator was directly deposited on a FOP which was attached 

to the sensor. Hence, no information about the coupling gel was available.  The Dexela 

CMOS sensor was optically coupled to two different structured CsI:Tl scintillators to 

test the effect of the scintillator on the output SNR of the detector. A thinner (150 µm) 

scintillator resulted in better performance in mammographic conditions, while a thicker 

one (600 µm) showed best results at higher energies (sections 3.3.8 and 3.3.9). The 

scintillator was mechanically supported by using a thin polyurethane foam layer for 

compression from the graphite cover. Finally, a Gd2O2S:Tb granular scintillator 85 µm 

thick (Min-R 2190)  was directly deposited on a FOP attached to the Remote RadEye 

HR sensor (Cho et al., 2008). Again, a thin polyurethane foam layer was used to 

mechanically support the scintillator. 

1.8 Image simulation 

To simulate the detector’s effect on ideal input images, signal and noise 

modification routines were developed based on Saunders and Samei (2003) study. To 

apply the former routine, two-dimensional (2-D) pMTF matrix is extracted from the 

experimentally measured 1-D pMTF values. This matrix is multiplied with the 2-D 

Fourier transform of the input image to simulate the blurring. Then the restored image is 

sampled to form the pixels of the digital image. Therefore, the signal modification 
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routine results in blurred and sampled image. To implement the noise modification 

routine, the square root of the measured 2-D NNPS matrix is multiplied with the Fourier 

transform of a white Gaussian noise image. The restored image contains the noise 

correlation described by the NNPS. Then it is scaled based on the experimentally 

measured mean-variance relationship and added on the blurred and sampled image to 

form the final simulated image. In this thesis the signal modification routine was 

slightly adapted to simulate anisotropic signal transfer behaviour. Furthermore, a 

different sampling method was used in order to avoid the sinc correction. Finally, the 

sampling method was modified in Anrad and Dexela detectors to get a ratio equal to a 

full integer number and a half, because the “analog” pitch of the ideal image was 10 µm 

and the pixel pitches of the detectors were 75 and 85 µm respectively. Further details 

about the simulation algorithm are given in Chapter 4. Each detector modifies in a 

different way the same input data and the simulation was used to predict the resultant 

image quality of the investigated detectors. Furthermore, the simulation allowed the 

examination of two combinations of the spatial resolution of one detector with the noise 

characteristics of another detector in terms of contrast-detail analysis. Two types of 

ideal software phantoms were used to compare the response of the detectors in a range 

of mammographic conditions. The first category of phantoms represented 3-D breasts of 

different thicknesses and glandularity. Each breast phantom contained 6 

microcalcifications in order to evaluate their visibility in terms of the contrast to noise 

ratio. The second phantom was a CDMAM test tool, i.e. it contained gold disks at 

different thickness and diameter in order to define the effect of the detector on the 

threshold contrast. Further details about the digital phantoms are given in Chapter 5. 

1.9 Image quality evaluation 

1.9.1 Rose theory and signal detectability 

According to the theory developed by Rose the detectability of a flat-topped and 

sharp-edge object of area A against a uniform background is given by the following 

equation (Rose, 1948 and Burgess, 1999): 

Rose bSNR C A n=  

(1.6) 
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where C is the signal contrast, i.e. the difference in signal between the object and the 

background divided by the signal of the background, and bn  represents the x-ray 

photons per unit area for the background. For linear (or linearized) and quantum limited 

x-ray detectors, Marshall (2009a) demonstrated that the above equation can be 

expressed as follows: 

o bb
Rose

m mmSNR C
σ σ

−
= =  

(1.7) 

where m is the mean pixel value (or digital number - DN), σ is the noise of the image 

and the subscripts b and o correspond to background and object respectively. In x-ray 

imaging applications the parameters contrast-to-noise ratio (CNR) or signal-difference-

to-noise ratio (SDNR) are used to quantify the detectability of certain objects against the 

background. For instance, in mammography the object often corresponds to 

microcalcifications (µCs), while the background is the adipose/glandular tissue. 

However, the definition of the noise is different in several studies. In particular, Huda et 

al. (2003), Bernhardt et al. (2006), Bertolini et al. (2010), Desai et al. (2010) and Singh 

et al. (2010) took into account only the background noise. On the other hand, van Engen 

et al. (2006), Toroi et al. (2007), Gennaro et al. (2008), Alsager et al. (2008) and 

Marshall (2009a) used the combined object-background noise. Since there is not a 

formal separation between CNR and SDNR in the literature and the interpretation of 

noise depends solely on the researcher’s definition, the parameters CNR and SDNR 

were calculated as follows in this study:  

o b
2 2
o b

m mCNR

2
σ σ

−
=

+
 

(1.8) 
o b

b

m mSDNR
σ
−

=  

(1.9). 

In other words, the parameter CNR was used to express the ratio of the signal 

contrast to the combined noise and the SDNR to take into account only the background 

noise. Both parameters were employed to quantitatively compare the performance 

detectability of the investigated digital detectors on digital mammograms (see section 

5.2.2). 
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1.9.2 Contrast-detail analysis 

According to the European Guidelines for quality control in digital mammography, 

mammographic image quality is expressed in terms of threshold contrast visibility using 

clinical exposure settings (van Engen et al., 2006, Young et al., 2006a, Young et al., 

2006b and Young et al., 2008). The threshold contrast is defined as the lowest contrast 

value for which the objects are visible (Wagner and Frey, 1995). The contrast-detail 

mammography (CDMAM) phantom is commonly used for the contrast-detail analysis 

(Thomas et al., 2005). In this study a slightly modified version of the Artinis CDMAM 

3.4 Phantom (Bijkerk et al., 2000) is used to compare the ability of the investigated 

digital systems to detect very low contrast and very small details. Figure 1.8 shows a 

photograph of the CDMAM 3.4 phantom. The phantom consists of a 16 cm x 24 cm x 

0.5 mm aluminum plate with 205 square cells that are arranged in 16 rows and 16 

columns. Each cell contains two identical gold disks of given thickness and diameter. 

One is placed at the centre and the other is located in a randomly chosen corner 

(eccentric disk). Both disk diameter and thickness decrease logarithmically to cover a 

range of object diameters from 2.00 to 0.06 mm in each column and thicknesses 

between 2.00 and 0.03 mm in each row respectively. Both ranges are selected to 

simulate the respective size and contrast ranges for microcalcifications. The CDMAM 

phantom is used to determine the contrast limit (threshold contrast) or threshold gold 

thickness for a given disk diameter that corresponds to successful observation of the 

eccentric disk location. The Al base is attached to a polymethyl methacralate (PMMA or 

plexiglas) cover 5 mm thick. To simulate the detectability of microcalcifications, the 

details have to be imaged on a background object with a thickness close (in terms of 

attenuation) to a typical compressed breast. Hence, the CDMAM phantom is usually 

inserted between two PMMA plates of 20 mm thickness each (Grosjean and Muller, 

2006, Segui and Zhao, 2006, Young et al., 2006a and van Engen et al., 2010). This 

combination under a 28 kV Mo/Mo radiation beam corresponds to a total attenuation 

approximately equal to 50 mm PMMA, which has been shown to be equivalent to 

breasts of typical composition with a compressed thickness of 6 cm (Dance et al., 2000 

and Dance et al., 2009) 



Chapter 1 
 

 46

 
Figure 1.8: Image of a CDMAM 3.4 phantom from Artinis Medical Systems, 

Netherlands 

The evaluation of the CDMAM test object is usually based on reading of CDMAM 

radiographs by human observers. To implement this, contrast-detail measurements rely 

on a large number of observer readings. However, this procedure suffers from three 

main drawbacks: a) the presence of significant inter-observer error decreases the 

reliability and confidence in the measurements, b) the evaluation may be biased from 

memory effects in the human observer because it is practically focused to a specific 

number of cells and c) it is time consuming (Young et al., 2006a, Young et al., 2006b, 

Young et al., 2008, Prieto et al., 2009 and Singh et al., 2010). A couple of studies 

suggested solutions to eliminate the memory effect by rotating the eccentric disc inside 

each cell (Rivetti et al., 2006 and Prieto et al., 2008). However, the other two 

limitations still exist. Hence, automatic scoring softwares for the evaluation of the 

CDMAM phantom were developed by Karssemeijer and Thijssen (1996), Yip et al. 

(2009) and Prieto et al. (2009) to provide a reliable and less time consuming alternative 

to human readout. The first software was further developed by Veldkamp et al. (2003) 

and Visser and Karssemeijer (2008) to create the CDCOM software tool. CDCOM is 

widely accepted by researchers and the scientific community and is supported by the 

European Reference Organisation for Quality Assured Breast Screening and Diagnostic 

Services (EUREF). In this study the freeware CDCOM v1.5.2 software tool was used 

for automated readout of CDMAM 3.4 images and was downloaded from the EUREF 

website (Visser and Karssemeijer, 2008). 
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Briefly, the CDCOM determines the position, orientation and scale of the phantom 

and it constructs templates of the disk objects in each of the four corners of each cell. 

Then, it selects the cell corners in which the disks are most likely to be located using the 

ideal observer model. Finally, it checks if it has selected the corner where a disk is 

actually present. By applying the program to a number of CDMAM phantom images 

and calculating the probability of detection for each cell, contrast-detail curves can be 

calculated (Karssemeijer and Thijssen, 1996). While any number of CDMAM images 

can be used for the extraction of the contrast-detail curves the CDCOM manual suggests 

the use of at least eight images (Visser and Karssemeijer, 2008). However, the CDCOM 

program does not combine the data from more than one image or determine the 

threshold contrast. Instead, it provides two output files, one with results for the eccentric 

disks and the other with results for the centre disks. The data is in a form of a 16x16 

matrix, where 1 is a correctly located disk, 2 is an incorrectly located disk and -1 is a 

cell that is not in the phantom. Further analysis needs to be done from the user. The 

manual suggests the combination of the two output files and refers to the procedure 

described by Karssemeijer and Thijssen (1996) and Veldkamp et al. (2003). In each of 

the resulted 16 matrices the incorrectly located disk is set equal to zero in order to allow 

the calculation of an average matrix that shows the proportion of correctly identified 

discs for each detail diameter and thickness. The following figure shows an example of 

the average detection matrix showing the proportion of correctly detected disks created 

from eight CDMAM images using LAS at 59 µGy DAK (Air Kerma at detector input 

plane). 

 
Figure 1.9: Example of the original average detection matrix over 16 CDCOM matrices 
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From the above matrix it can be seen that the maximum probability of detection p(t) 

equals to 1, while the minimum p(t) (i.e. 0.19) is close to the theoretical value of 0.25 

which corresponds to a random guessing of the eccentric disk corner. The small 

deviations from the minimum theoretical value are probably introduced from the 

CDCOM software. Therefore, a detection rate of p(t)=0.625 represents the mid-point 

between these two extremes and defines the threshold between correct and wrong 

indications. The disc thickness and the associated contrast that correspond to this value 

are called threshold thickness (tT) and threshold contrast (CT) respectively. The 

relationship between contrast and thickness is given by C(t)=100·(1-e-µt) (%), where µ 

is the linear attenuation coefficient of gold (µ=0.145 µm-1 in this study). This 

relationship is extracted from the contrast equation ΔI/I=loge(ψo/ψb) where ψo is the 

target energy flux and ψb is the background energy flux (Wagner and Frey, 1995). To 

determine the threshold gold thickness for a given disk diameter a psychometric curve is 

fitted to the data (Karssemeijer and Thijssen, 1996 and Veldkamp et al., 2003): 

Tf ( C( t ) C )
0.75p( t ) 0.25

1 e− −= +
+

 

(1.10) 

where C(t) is the logarithm of signal contrast according to Webers law (i.e. the 

relationship between stimulus and perception is logarithmic; Falmagne, 1987) and f is a 

free parameter to be fitted. According to Verbrugge (2007) the above formula can be 

simplified to a more practical function: 

T

tf ( )
t

0.75p( t ) 0.25

1 e
−

= +

+

 

(1.11). 

In this study the latter equation was fitted by means of nonlinear least mean squares 

procedure using custom built software written in MATLAB version 7.10 (The 

MathWorks, Natick, MA, USA) to define the threshold thickness and its uncertainty 

(expressed by the 95 % confidence level). The calculated threshold contrast can be 

further fitted using a third order polynomial function to obtain a contrast-detail curve 

(Young et al., 2006b and Young et al., 2008): 

1 2 3
TC a b x c x c x− − −= + ⋅ + ⋅ + ⋅  

(1.12) 
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where x is the disc diameter (mm) and a, b, c and d are coefficients adjusted to achieve a 

least squares fit. Young et al. (2006b) compared four methods to extract the contrast-

detail curve from the  CDCOM results matrix. Briefly, method A uses a simple 

thresholding technique by applying a nearest neighbour correction (NNC) on each 

individual matrix prior the calculation of the average matrix with proportion correctly 

detected disks (Figure 1.9). This method is similar to the human observer scoring. 

Method B is the already described one, i.e. it fits the psychometric curve to the original 

data of the average detection matrix. Method C applies a simple smoothing algorithm on 

the average detection matrix and then a linear interpolation to determine the threshold 

contrast. Finally, method D which is the combination of the above two methods, applies 

the psychometric curve fit on the smoothed data of the average detection matrix. It was 

found that the most reproducible method of all was method D. Hence, the average 

detection matrix is smoothed by convolving each cell with the following smoothing 

mask (SM):  

1 2 1
1SM 1 4 1

16
1 2 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

(1.13) 

Figure 1.10 shows the smoothed version of the original detection matrix presented 

in Figure 1.9. 

 
Figure 1.10: Example of the smoothed average detection matrix over 16 CDCOM 

matrices 

In this study the contrast-detail curves were calculated between details of size 0.1 

and 1.0 mm based on Young et al. (2006) observations. They found out that CDCOM 
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could not effectively locate the discs for detail diameters of less than 0.1 mm, while it 

can easily locate almost all the discs for large diameters. 

It is known that the results of the CDCOM software are different compared to the 

results from human observers (Visser and Karssemeijer, 2008). For this reason, Young 

et al. (2008) investigated the relationship between human and computer readouts. More 

specifically, they compared the threshold contrast results extracted from observers from 

three diagnostic centres (Guildford, Nijmegen and Leuven) to the respective ones 

calculated using CDCOM. Furthermore, they applied four different detection methods 

by smoothing or not the detection matrix data before fitting the psychometric curve and 

by using or not the contrast-detail curve fitted values (Eq. (1.12)) instead of raw values. 

They found out that the correlation between the results of the automated process and the 

human readings follows a power function of the following form: 

( )n
human CDCOMTC a TC=  

(1.14) 

where a and n are coefficients to be fitted using the least squares approximation. They 

applied this type of function to minimize confusions by differences between the readers 

at the three centres. However, they found out that the studied correlations were slightly 

different for different diagnostic centres and the detection methods applied on the 

CDCOM results. Van Engen et al. (2010) combined all the data from the three 

diagnostic centres and they provided average factors equal to a=1.17 and n=0.888 using 

the aforementioned detection method D (i.e. smoothing the original data and then 

applying the psychometric curve fit to determine the threshold contrast for each detail 

diameter). Finally, they suggested that the resulting predicted human readout threshold 

contrast should be fitted using Eq. (1.12) and checked against the limiting values for 

human readout as published in the European Guidelines (van Engen et al., 2006). 

Finally, an overall image quality index of a detector can be extracted from the 

contrast-detail analysis by means of the image quality figure (IQF). It is the sum of the 

products of the diameters of each of the smallest scored objects and their respective 

threshold thickness (Zoetelief et al., 1993 and Thomas et al., 2005). Oberhofer et al. 

(2008 and 2010) introduced the inverse IQF (IQFinv) as follows: 
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inv 16

i T ,i
i 1

100IQF
D t

=

=
⋅∑

 

(1.15) 

where Di is the disk diameter,  tT,i  is the threshold thickness and i the diameter. In our 

case i varied from 1 to 11 due to the selected range of disk diameters, i.e. 0.1-10 mm. 

They found a linear correlation between this parameter and CNR over a wide range of 

exposures. They described this parameter as an objective and absolute measure of image 

quality, suitable for comparing different digital detectors. Hence, in this thesis the 

overall contrast-detail performance of the detectors was compared using the IQFinv 

parameter. 

1.10 Summary and structure of the rest of this thesis 

This chapter presents the aim of the thesis and the technology of the digital detectors 

commonly used in medical x-ray imaging. Also, it introduces the role of the scintillators 

in the detection of x-rays. Furthermore, it describes in detail the image quality metrics 

used to evaluate the simulated images. Further details about the performance evaluation 

of the detectors, simulation process and software phantoms are presented in the 

following chapters. Figure 1.11 shows photographs of the used sensors/detectors. 

 
 Figure 1.11: Photographs of a) LAS sensor, b) Hamamatsu C9732DK detector, c) 

Anrad SMAM detector, d) Dexela CB 2923 detector and e) Remote RadEye HR 

detector   
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Table 1.1 shows the design specifications of the five digital x-ray detectors which 

are evaluated in this study, i.e. their expected performance based on their design. In this 

table some of the differences between the imaging technologies are observed. For 

instance, the flat panel and CMOS PPS technologies demonstrate higher read noise and 

lower achievable frame rate compared to the CMOS APS technology. The actual 

performance of any sensor inevitably depends on the conditions under which it is 

operated and the data acquisition system used to retrieve data from it. Finally, the 

calculation of the performance parameters of LAS was affected by the EMI (Bohndiek 

et al., 2009). 

Table 1.1: Nominal design specifications of the digital detectors under investigation 

Parameter LAS Hamamatsu 
C9732DK 

Dexela CMOS 
x-ray detector 

Anrad 
SMAM 

Remote 
RadEye HR 

Technology CMOS APS CMOS PPS CMOS APS a-Se TFT CMOS APS 
Pixel size (µm) 40 50 74.8 85 22.5 

Photodiode area 
(cm2) 5.4 x 5.4 12 x 12 14.5 x 11.5 17.3 x 24 2.7 x 3.6 

Number of pixels 1350 x 1350 2400 x 2400 1944 x 1536 2032 x 2817 1200 x 1600 
Number of active 

pixels 1350 x 1350 2368 x 2340 1934 x 1536 2016 x 2816 1200 x 1600 

ADC bit depth 
(bit) 14 14 14 13 12 

Read noise 
(r.m.s.) (e-) 62 1250 309 (HFW) 

126 (LFW) 5200 < 120 

Full well capacity 
(e-) 61.3 x 103 6.4 x 106 

1.4 x 106 
(HFW) 

0.4 x 106 
(LFW) 

15 x 106 < 0.48 x 106 

Dynamic range 
(dB) 60.3 74 73.1 (HFW) 

 70.1 (LFW) 69.2 72 

Resolution 
(lp/mm) 12.5 10 6.7 5.9 22.2 

Max frame rate 
(fps) 20.7 1 26 0.7 0.5 

Fill factor (%) 73 79 84 70 80 
x-ray detecting 

material / 
thickness (µm) 

CsI:Tl / 150 CsI:Tl / 150 CsI:Tl / 150 
and 600 a-Se / 200 Gd2O2S:Tb / 

85 
 

The remainder of the thesis is organized as follows: 

• Chapter 2 describes the methodology used to apply the electro-optical and x-ray 

performance evaluation of digital x-ray detectors. 

• Chapter 3 presents the experimental results of the performance evaluation. 

• Chapter 4 describes the aim and methodology used for the image simulation based 

on the experimentally measured physical performance parameters. 
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• Chapter 5 compares the resultant image quality of the simulated images. 

• Chapter 6 summarizes the finding of this work and suggests suitable x-ray 

applications for the investigated detectors. 
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Chapter 2 

2 Objective performance evaluation of the x-

ray detectors 

2.1 Overview of chapter 

In this chapter the theory of the electro-optical and x-ray performance evaluations is 

described. Both of them depend on the relationship between the signal and the noise, i.e. 

the SNR. Additionally, the origin of the noise sources and their effect on the input 

signal are studied. The performance parameters of the sensor are extracted using 

electro-optical evaluation by employing the photon transfer curve (PTC), the mean-

variance (MV) or the nonlinear compensation (NLC) methods. The x-ray performance 

evaluation of the x-ray detector is made by calculating the presampling modulation 

transfer function (pMTF), the noise power spectrum (NPS) and the resultant detective 

quantum efficiency (DQE). 

2.2 Parameters that affect the signal 

During the creation of the digital image, from the detection of the optical or x-ray 

photons to the formation of the respective DN, there are several parameters that cause 

either overestimation or underestimation of the signal level. These parameters are noise 

from the x-ray photons to the readout electronics, electromagnetic interference from 

external sources and the nonlinearity of the CMOS APS. For a proper evaluation of the 

detector performance the effect of these parameters has to be assessed. A brief 

description of each of them is given in the following subsections. 

2.2.1 Detector noise sources 

The detector noise sources are primary quantum noise, excess Poisson noise, 

secondary quantum noise, structure noise, aliasing and additive electronic noise which 
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includes the read noise and the dark current (Granfors and Aufrichtig, 2000, Evans et 

al., 2002 and Mackenzie and Honey, 2007).  

The primary quantum noise ( Qσ ) source is related to the Poisson distribution of the 

number of x-ray photons absorbed by the x-ray detecting material (i.e. either the 

scintillator or the photoconductor). Due to the Poisson statistics this noise is given by 

Q Nσ = where N is the input signal represented by the number of x-ray photons 

incident (per unit area) on the detector. In the electro-optical evaluation literature the 

primary quantum noise is referred to as shot noise (Janesick, 2007). In this case, it arises 

from the Poisson variation in the rate of optical photon arrival at the sensor. Knowing 

that one visible photon creates one electron-hole pair and assuming a unity quantum 

yield (the number of electrons generated, collected and transferred per interacting 

photon), the uncertainty in the collected charge in any pixel becomes  

( ) ( )Shot e S eσ − −=  
(2.1)   

where S(e-) is the signal in electrons. This formula is fundamental for the electro-optical 

performance evaluation of the linear sensors (see sections 2.3.3 and 2.3.4).  

The Poisson excess noise is a result of variations in the number of secondary quanta 

detected per primary quanta absorption. Therefore, this is the ratio between excess noise 

( exσ ) and the primary quantum noise. These variations are described by the Swank 

factor and the Lubberts effect (Granfors and Aufrichtig, 2000, Lubberts, 1968 and 

Swank, 1973). The Swank factor is related to the fact that different absorbed x-ray 

photons produce different amounts of signal. It includes effects due to the 

polychromatic x-ray spectra used for imaging and due to the statistical variation in the 

signal produced by different x-rays of the same energy. Similarly to the Swank factor, 

the Lubberts effect describes the noise caused by different photons producing signals 

with different PSF. However, the Lubberts effect is smaller in structured CsI scintillator 

compared to a conventional one with similar x-ray absorption due to the light guidance.  

The secondary quantum noise ( SQσ ) is also Poisson noise and occurs at each stage 

of the imaging chain where the secondary quanta (e.g., light photons, electrical charge) 

are converted.  The level of this noise depends on the conversion efficiency of the 

scintillator (i.e. number of optical photons per absorbed energy), the fraction of light 
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escaping from the scintillator, the coupling efficiency of the optical arrangement 

between the scintillator and the digital sensor and the quantum efficiency of the digital 

sensor for the emitted light spectrum. According to Cunningham (2000) this noise is 

negligible when the equivalent number of quanta at each spatial frequency for each 

stage is greater than ten, i.e. an effective system gain of greater than 100 at all stages is 

necessary. The term quantum sink describes the stage that this criterion is not met and 

where significant secondary quantum noise will occur. 

The structure ( Sσ ) or fixed pattern noise (FPN) describes the spatially fixed 

variations in the gain across the detector, i.e. variations in the amount of output signal 

for a given input quantity. The sources of structure noise in the detector include 

phosphor screen granularity, variations in FOP transmission and variation in sensitivity 

between the digital sensor pixel elements. Part of the normal clinical imaging procedure 

with these units is the use of flat-field image correction to remove the effects of 

structure noise. It has a fixed spatial pattern from frame to frame. The FPN of the sensor 

is related to pixel-to-pixel and column-to-column non uniformities, due to differences in 

sensitivity and the transistor’s gain inside each pixel and differences in the gain of 

columns amplifiers, respectively. The magnitude of the FPN is assumed to be 

proportional to the signal level. In normal clinical imaging procedure with digital 

detector the FPN noise is removed by flat-field image correction methods, either by 

normalizing with the flat-field image or by logarithmic subtraction of the flat-field 

image (Evans et al., 2002). In the electro-optical performance evaluation of the sensor 

the FPN is removed by subtracting two consecutive frames at the same illumination 

level, because the read and shot noises are temporal while FPN is spatial (see section 

2.3.3). Finally, in the x-ray performance evaluation of the detector the FPN is usually 

removed by normalizing with the flat-field image (see section 3.3.3). 

According to the sampling theory when the image contains frequencies higher than 

the Nyquist frequency aliasing occurs. The Nyquist frequency ( NyqF ) is defined as 

1/(2 )NyqF x= ⋅Δ  where xΔ  is the pixel pitch in mm. In the case of aliasing, the 

frequency spectrum of the image beyond Nyquist Frequency is mirrored (folded) about 

this value, added to the spectrum of their counterpart frequencies below the Nyquist 

frequency and becoming indistinguishable from them (Dobbins III, 1995, Rowlands et 

al., 2000a, Evans et al., 2003, Mackenzie and Honey, 2007 and Monnin et al., 2007). 
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The aliasing noise may affect both the signal and noise transfer (MTF and NPS 

respectively; section 2.4). It has a strong effect on direct conversion flat panel detectors 

(a-Se TFT) and is almost negligible on scintillator-based detectors because the blur of 

the scintillator acts as a filter which reduces the MTF and NPS above the Nyquist 

frequency. 

Additive electronic noise ( elσ ) is introduced by electronic components in the 

system, such as the read noise and dark current, that are present even in the complete 

absence of external signal. Read noise is mainly due to on-chip transistors and amplifier 

noises, but can also include any other noise sources independent of the signal level. The 

dark current corresponds to thermally generated charge carriers inside the photodiode. 

The additive electronic noise affects the signal at low exposure levels used in 

applications such as fluoroscopy. At higher signal levels it has almost negligible effect. 

Summarizing, the electro-optical performance evaluation decomposes the main 

noise sources of the sensor: shot, read and fixed pattern noise, while the x-ray 

performance evaluation takes into account the total noise of the digital detector which 

can be described as follows (Evans et al., 2002, Mackenzie and Honey, 2007): 

2 2 2 2 2 2
total Q ex SQ S elσ σ σ σ σ σ= + + + +  

(2.2) 

The total noise of the digital detector is further described in section 2.4.4 that 

analyses the NPS. 

2.2.2 Electromagnetic Interference 

A periodic noise pattern may occur if the imaging system (the acquisition or 

networking hardware) is subject to electromagnetic interference (EMI) of a periodic 

nature. EMI is disturbance that affects an electrical circuit due to either conduction or 

radiation emitted from an external electrical source or magnetic induction between two 

circuits (Carr, 2000). This noise results in one or more sinusoidal patterns superimposed 

on the image, having specific period and phase relationships (Al Hudhud and Turner, 

2005, Ji et al., 2007b, Russ, 2007 and Aizenberg and Butakoff, 2008). The origin of the 

noise may be internal (the digital sensor itself or the DAQ) or external (any other 

electric circuit beyond the acquisition system, e.g. x-ray tubes, power supplies, 

computers, etc.). In the case of LAS, periodic noise was found when a specific version 
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(namely 2nd generation) of the electronics stack board was used. The periodic noise is 

concealed by FPN on a single frame and therefore it is not directly visible. However, the 

periodic noise affected the evaluation of the performance parameters of this sensor, 

because according to the photon transfer method two consecutive frames are subtracted 

to remove the FPN (see section 2.3.3). Therefore, the periodic noise appears and is 

amplified by a factor 2  because it is uncorrelated. Further details about the extraction 

of this factor are given in section 3.3.3. This combination both amplifies and reveals the 

periodic pattern on a difference image.  

Several hardware methods for reducing periodic noise were tested during this thesis, 

including a) the use of a common power supply and/or ground between the sensor and 

the FPGA which connects the sensor to the PC, b) the use of a Faraday cage to 

electrically isolate various parts of the imaging system, and c) testing the imaging 

system in various places to see if it is affected by external electrical sources. None of 

these solutions reduced or changed the periodic noise pattern. This is an indication that 

the noise had an internal origin. According to the manufacturers of the sensor’s readout 

electronics (Aspect Systems GmbH, Dresden, Germany), this periodic pattern is likely 

to be due to unfiltered EMI noise arising from the switch mode voltage regulator within 

the DAQ system (it generates a -5V supply for the output amplifiers). In this case, 

software solutions can be used to reduce the noise off line. Periodic noise can be 

reduced by filtering either in the spatial (Ji et al., 2004, Ji et al., 2006, Ji et al., 2007a 

and Ji et al., 2007b) or in the frequency domain (Parker, 1997, Aizenberg and Butakoff, 

2002, Gonzalez et al., 2004, Al Hudhud and Turner, 2005, Russ, 2007, Sonka et al., 

2007, Gonzalez and Woods, 2008 and Aizenberg and Butakoff, 2008).  The former has 

been achieved using a soft morphological filter (SMF) which is an extension of standard 

morphological operators, i.e. it uses the “substitution” strategy that replaces the value of 

the central pixel by a value calculated from the pixels within a local window according 

to a certain rule. This type of filtration is less computationally time-consuming because 

it does not require the transformation between the spatial and frequency domains and 

the noise peak detection and filtering procedure. However, it appears to be less effective 

in the elimination of low frequency periodic noise, as it was found to be the case in the 

current work. Moreover, it entails poor detail preservation according to a comparison 

made in terms of peak signal-to-noise ratio (PSNR) (Ji et al., 2006, Ji et al., 2007a and 
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Ji et al., 2007b). Therefore, a more effective approach in this case is to eliminate the 

periodic noise in the frequency domain. 

The periodic noise pattern appears as one or more cross-shaped spikes in the 

frequency domain. These crosses result from the convolution of a frequency spike due 

to periodic noise with the Fourier transform of the windowing function representing the 

finite size of the difference image. There are three main categories of frequency domain 

filters suggested in the literature: band-reject (Gonzalez and Woods, 2008), notch-reject 

(Gonzalez et al., 2004, Al Hudhud and Turner, 2005, Russ, 2007, Sonka et al., 2007, 

Gonzalez and Woods, 2008, Aizenberg and Butakoff, 2008) and frequency median 

filters (Aizenberg and Butakoff, 2002, Al Hudhud and Turner, 2005). In two 

dimensions, band-reject filters attenuate a frequency band which is circularly symmetric 

around the origin (zero frequency or DC component) in the frequency domain. Notch-

reject filters attenuate a small region of frequencies around a central frequency. Finally, 

median filters replace the value of either the central pixel (Aizenberg and Butakoff, 

2002) or to the neighbourhood of peaks (Al Hudhud and Turner, 2005) by the median 

value calculated from the pixels within a local window. Band-reject filters are not 

appropriate for filtering specific spikes, as their effect would extend to a broader 

frequency range, therefore having a more significant impact on the signal. The 

suggested median filters would only remove the central points in the cross-shaped spike, 

and would therefore either leave adjacent excessive values unaffected, thus resulting in 

insufficient removal of the EMI noise (Aizenberg and Butakoff, 2002), or smear the 

entire area around it, thus affecting a wider part of the useful signal (Al Hudhud and 

Turner, 2005). On this basis, cross-shaped notch-reject filters can be considered the 

most appropriate to remove the specific spikes, since they precisely target the artifact 

while causing a minimum modification of the useful frequencies. 

A novel study was made to remove the periodic noise during the electro-optical 

evaluation of LAS (Konstantinidis et al., 2010). This method is described in detail in 

section 3.2.1. Briefly, it applies and compares three different cross-shaped notch-reject 

filters on the frequency domain to remove the spikes that correspond to the periodic 

pattern. The selection of the shape of filters was made to precisely target the artifact 

while causing a minimum modification of the useful frequencies. The filtering was 

applied to a central ROI of LAS assuming that it corresponds to the average 

performance of the sensor. Another study applied the filtration algorithm on different 
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ROIs over the sensor to compare the effect of the stitching on the performance of LAS 

(Zin et al., 2010). 

2.2.3  Inherent nonlinearity of CMOS sensors 

Digital sensors and mainly CMOS APS suffer from inherent nonlinearity. As it is 

discussed in section 2.3.4, nonlinearity may affect the measurement of the sensor’s 

conversion gain and therefore the calculation of the sensor performance parameters. 

Also, it may affect the calculation of the x-ray performance parameters (section 3.3.11). 

This problem arises from two sources (Janesick et al., 2006 and Janesick, 2007): 

1) Sensitivity (V/e-) nonlinearity: takes place at the charge-to-voltage conversion. 

This is expressed from the term inside the brackets. In the CMOS sensors case, 

this drawback occurs because the sensor photodiode is an element of the sense 

node and the capacitance inside each pixel changes during charge integration. 

The variation of the sense node capacitance with charge level is described in Eq. 

(1.1). It may be observed that the photodiode capacitance increases and 

consequently the sense node sensitivity (V/e-) decreases as a function of the 

signal level ( )S e− (Janesick, 2002).  

2) Gain (V/V) nonlinearity: arises from any amplifier in the readout chain, i.e. it 

affects the voltage that corresponds to the input signal. In the case of CMOS 

APS, this parameter is more prominent due to the additive nonlinearity of the 

source follower inside each pixel.  

 V/V nonlinearity can be well controlled to less than 1% over a sensor’s dynamic 

range. Therefore, it is usually ignored. V/e- nonlinearity for CCD is usually negligible 

(< 0.2 %) because charge-to-voltage conversion takes place at a common sense node for 

which a good linearity is achieved. On the other hand, V/e- nonlinearity may be 

significant for CMOS sensors, exceeding 200 % in some cases, because the capacitance 

varies with the number of accumulated electrons inside each pixel (Janesick, 2007). The 

V/e- nonlinearity results in reduction of both the signal and the noise at high 

illumination levels. However, the signal to noise ratio (SNR) improves because the 

reduction on the noise is higher. This happens because the signal voltage is inversely 

proportional to SNC , while the r.m.s. noise voltage is inversely proportional to 2
SNC  

(Tian et al., 2001). 
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2.3 Sensor performance evaluation 

The performance parameters of the sensor itself are measured through optical 

characterisation, i.e. using light photons in the visible wavelength. The parameters 

commonly referred to the literature are the conversion gain, decomposition of the three 

main noise sources (read, shot and fixed pattern noise), linearity, full well capacity, 

dynamic range and quantum efficiency of the sensor at a given wavelength.  

2.3.1 Methods used for the calculation of the conversion gain 

Digital sensors with various specifications are manufactured by many different 

industries. In order to compare the performance of different sensors, their properties 

should be expressed in absolute units of electrons, rather than in relative DN, which is 

the output of an ADC. Sensor conversion gain connects the above two quantities. It is 

defined as the number of electrons per digital number K (e-/DN) or G (DN/e-) = K-1 

depending on the application. Janesick in the 1980s developed the ‘photon transfer’ 

technique for CCDs, incorporating the ‘photon transfer curve’ (PTC) (Janesick et al., 

1987). This early approximation of photon transfer removes the fixed pattern noise from 

the read & shot noise and calculates the gain as a constant from the medium signal 

level, where the read noise is considered negligible. Using the photon transfer 

technique, one can extract, in addition to the camera gain, a number of fundamental 

parameters of a digital sensor, such as linearity, read & shot noise decomposition from 

FPN, signal to noise ratio, full well capacity, dynamic range, dark current and quantum 

efficiency at specific wavelengths (Janesick, 2001).  Also, in the 1980s the ‘mean-

variance’ technique, using the same origin and assumptions, was developed for CCD’s 

gain constant calculation (Mortara and Fowler, 1981 and Sims and Denton, 1987). 

Using this method, it is possible to extract all the above parameters, except noise 

decomposition as a function of the signal. Holdsworth et al. (1990) described the full 

derivation of the mean-variance technique using statistical analysis of the observed 

signal. They observed nonlinearity at lower signal level, which they attributed to V/V 

nonlinearity. However, they ignored this nonlinearity by calculating the gain from zero 

signal level until near saturation point. Stark et al. (1992) assumed that Janesick’s early 

technique was not accurate because read noise may still exist at medium signal level 

until early saturation. Instead, they presented a new approximation on the calculation of 

the already known mean-variance method and they were able to calculate the gain from 
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lower signal levels, where shot noise is not dominant. This calculation method is 

complicated and it is evident from the literature that it has not been adopted by CCD 

researchers. After the broad development of CMOS APS in the early 1990s (Mendis et 

al., 1994), researchers started characterizing these digital imagers. Beecken and Fossum 

(1996) determined the accuracy of the conversion gain using the mean-variance 

technique for both CCD and APS imagers. However, CCD technology was still 

dominant and Janesick republished the gain calculation of CCD using the early defined 

photon transfer method (Janesick, 1997 and Janesick, 2001). This method does not take 

into consideration the very small (<0.1%) V/V nonlinearity of CCD. However, it is 

considered the standard method used to characterise and optimize scientific CCD 

imagers. Additionally, EMVA Standard 1288 (2005) recommends this method for 

digital cameras, i.e. for both CCD and CMOS. In 2002 Janesick published a 

performance comparison between CCD and CMOS APS (Janesick, 2002). Due to the 

high V/e- nonlinearity of APS at higher signal levels, Janesick redefined the gain 

extraction from the PTC for this particular type of sensor. He decomposed the read from 

the shot noise, and calculated the gain constant from lower signal levels. Due to the 

decreased sense node sensitivity (V/e-), he calculated a higher gain constant from signal 

levels prior saturation. He used the lower gain constant for read noise calculation and 

the higher one for the full well capacity. Nevertheless, this approximation leads to 

overestimation of the sensor’s performance. Also, he presented for the first time a 

nonlinearity corrected PTC. However, he did not extract any performance parameter 

from this curve.  In the following year, Reibel et al. (2003) made an extended approach 

to Janesick’s early photon transfer method. They calculated the contribution of the 

pattern noise (FPN and photon response non uniformity) and the observed nonlinearities 

(V/V nonlinearity and nonlinearity due to saturation) into the CCD’s overall noise. They 

also came to the conclusion that this method could be applied to CMOS imagers. 

However, this was not the case because they had not taken into account APS’s V/e- 

nonlinearity. Helmers and Schellenberg (2003) adopted the standard photon transfer 

method for CCDs, while for CMOS they developed a power function which 

approximates the characteristic curve. Therefore, they calculated the gain from the non-

linear fitting of this curve. The accuracy of this method depends on how precisely their 

function describes the PTC. Pain and Hancock (2003b) developed the ‘nonlinear 

estimation’ method (NLE) in order to accurately estimate the quantum efficiency, 
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conversion gain and noise in CMOS imagers. NLE method takes into account both V/V 

and V/e- nonlinearities. They compared NLE with the standard mean-variance method 

by means of the conversion gain and quantum efficiency of the sensor. In contrast to 

mean-variance, the NLE method provides illumination invariant quantum efficiency 

which is the case on a digital imager. Recently, Janesick (Janesick et al., 2006 and 

Janesick, 2007) developed the ‘nonlinear compensation’ (NLC) method in order to cope 

with both APS nonlinearity sources. NLC method is an extension of the photon transfer 

method. It decomposes the constant gain obtained from PTC into a signal and a noise 

gains which are related to the signal level. This method is more precise than photon 

transfer and mean-variance methods at higher signal levels. In 2008, Bohndiek 

(Bohndiek et al., 2008a and Bohndiek, 2008c) compared the mean-variance, photon 

transfer, NLE and NLC methods by means of the performance parameters of Vanilla 

APS. The gain from the first two methods was extracted from low signal level, where 

V/e- nonlinearity is not obvious. However, these two methods did not correctly calculate 

read noise and full well capacity. Both NLE and NLC methods were found to solve this 

problem, thus they can be performed for APSs. Additionally, Bohndiek calculated the 

performance parameters of LAS, using photon transfer and NLC methods (Bohndiek, 

2008c). Table 2.1 illustrates a synopsis of the above optical characterisation studies 

listed in chronological order. 
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Table 2.1: Studies related to optical characterisation of digital sensors. MV: mean-variance, 

PTC: photon transfer curve, NLC: nonlinear compensation, NLE: nonlinear estimation, QE: 

quantum efficiency, FW: full well capacity and FPN: fixed pattern noise 

Reference Method Sensor Nonlinearity 
referred  Parameters calculated Comments 

Mortara and 
Fowler (1981) MV CCD No conversion gain, read 

noise, SNR Introduction of MV method 

Janesick et al. 
(1987) 

early 
PTC CCD No conversion gain, read 

noise, QE Early PTC for CCD only 

Sims and 
Denton 
(1987) 

MV CCD No conversion gain, read 
noise, QE 

MV for CCD based on 
Mortara (1981) 

Holdsworth et 
al. (1990) MV CCD V/V 

(ignored) 
conversion gain, noise 
(various sources), QE 

Analytical derivation of MV 
formula 

Stark et al. 
(1992) 

MV  
(PTC) CCD No conversion gain, read 

noise, SNR 
Complicated MV extraction 
in order to correct early PTC 

Beecken and 
Fossum 
(1996) 

MV CCD & 
CMOS No conversion gain and its 

accuracy 
Standard statistical theory is 

used 

Janesick 
(1997) 

early 
PTC CCD V/V 

(ignored) 

conversion gain, read 
noise, FPN, QE, FW, 

dynamic range, 
linearity, SNR 

Application of early PTC to 
extract more parameters of 

CCD 

Janesick 
(2001) 

early 
PTC CCD V/V 

(ignored) 

conversion gain and its 
accuracy, read noise, 

FPN, QE, FW, dynamic 
range, linearity, SNR, 

node sensitivity 

Synopsis and description of 
early PTC method 

Janesick 
(2002) PTC CMOS 

(CCD) V/e- 

conversion gain, read 
noise, FPN, QE, FW, 

dynamic range, 
linearity, SNR, sense 

node sensitivity 

Redefinition of PTC method 
to be applied for CMOS 

Reibel et al. 
(2003) 

Extended 
PTC 

CCD 
(CMOS) V/V 

conversion gain, read 
noise, pattern noises, 
linearity, nonlinearity 

contribution 

This method cannot be 
applied for CMOS sensors 

Helmers and 
Schellenberg 

(2003) 

Modified 
PTC (for 
CMOS) 

CCD & 
CMOS V/e- 

conversion gain, FPN, 
SNR, sensitivity, dark 

current 

The accuracy of this method 
is not well defined 

Pain and 
Hancock 
(2003b) 

MV, 
NLE CMOS 

V/V & V/e- 
depending on 
the method 

conversion gain, 
quantum efficiency, 
reset & downstream 

noises 

NLE can be applied for 
CMOS sensors instead of 

MV 

EMVA 
Standard 

1288 (2005) 
PTC CCD & 

CMOS V/V & V/e-  

describes how to 
calculate all parameters 

referred on Janesick 
(2001)  

They preferred a well 
defined and widespread 

method 

Janesick et al. 
(2006) NLC CMOS V/V & V/e- 

conversion gain, signal 
and noise gains, read 

noise, linearity 

Introduction of NLC to take 
into account CMOS 

nonlinearity 

Janesick 
(2007) 

MV, 
PTC, 
NLC 

CCD & 
CMOS 

V/V & V/e- 
depending on 
the method 

conversion gain and its 
accuracy, signal and 

noise gains, read noise, 
FPN, QE, FW, dynamic 

range, linearity, dark 
current 

Synopsis of NLC and 
comparison with PTC 

Bohndiek et 
al. (2008) 

MV, 
PTC,  
NLC, 
NLE 

CMOS 
APS 

V/V & V/e- 
depending on 
the method 

conversion gain, signal 
and noise gains, read 
noise, FPN, QE, FW, 

dynamic range, 
linearity, dark current 

Comparison between the 4 
methods: NLC and NLE can 

be applied for CMOS 



Chapter 2 
 

 65

It can be observed that all the above optical characterization methods are applied to 

CCD or CMOS sensors. To the best of my knowledge they are not used for the 

performance evaluation of the flat panel detectors. First of all, they cannot be applied on 

direct conversion flat panel imagers (such as a-Se TFT) because they are sensitive to 

visible photons of short wavelength only (Cowen et al., 2008). However, they are not 

applied to indirect conversion detectors (such as a-Si:H TFT) as well. This happens 

probably due to the fact that the number of the created electrons depends on the electric 

field applied on the photodiode. As mentioned in the following sections (2.3.2 to 2.3.4) 

both PTC and MV methods are applied assuming unity quantum yield, i.e. the number 

of created electrons is equal to the number of impinging optical photons. Instead, in an 

a-Se TFT study (Zhao and Rowlands, 1995) the shot noise was calculated based on the 

square root of the number of x-rays attenuated by the a-Se layer, assuming quantum 

limited behaviour. On the other hand, the read noise in many studies was calculated 

based on the nominal characteristics of the electronics (Zhao and Rowlands, 1995, 

Antonuk et al., 2000, Hunt et al., 2002, Zhao et al., 2005 and Sultana et al., 2008). 

2.3.2 Linear sensor response – Mean-Variance analysis (MV) 

Mean-variance analysis has been used for many years for CCDs’ conversion gain 

calculation (Mortara and Fowler, 1981, Sims and Denton, 1987 and Holdsworh et al., 

1990). According to the detailed description of Holdsworh et al. (1990), for a linear 

sensor with constant conversion gain, an input signal of IP  interacting optical photons 

produce an output signal S  given by 

( ) ( / )
( / )

I
I

PS DN G DN e P
K e DN

−
−= =  

(2.3)  

where -G(DN/e )  is the sensor conversion gain. Assuming unity quantum yield, a 

similar formula can be applied related to the number of signal electrons (Bohndiek et 

al., 2008a). Applying the Burgess’s variance theorem (van der Ziel, 1976) on Eq. (2.3) 

the variance in the mean output signal is 

2 2 2 2
IS P I GG Pσ σ σ= +  

(2.4)                   
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where G  and IP  are the mean values of gain and signal electrons correspondingly, 2
Gσ  

and 2
IPσ  are their respective variances. The interacting optical photons, IP , are assumed 

to be governed by Poisson statistics ( 2
IP IPσ = ), therefore 

2 2 2
S I I GG P Pσ σ= +  

(2.5). 

Eq. (2.3) shows /IP S G= , and substitution into Eq. (2.5) gives 

2
2 [1 ]G
S GS

G
σσ ⎛ ⎞= + ⎜ ⎟
⎝ ⎠

                                               

(2.6). 

If the variance in gain is very small in relation to the mean gain, the above equation 

may be simplified to 2
S GSσ = . In a real system, signal independent read noise is 

present, thus the total noise variance is given by 

2 2
S RGSσ σ= +  

(2.7) 

where 2
Rσ  represents the read noise. 

Plotting 2
Sσ  vs ( )S DN corresponds to a mean-variance graph. Figure 2.1 shows the 

theoretical mean-variance expression for a linear sensor on a linear plot because the 

variance scales linearly with the average DN. The slope of this graph provides 
-G(DN/e ) , while the intercept 2

Rσ . Therefore, the sensor conversion gain -K(e /DN)  can 

be extracted from this curve. 

The data for the mean-variance graph are determined from N frames measured at a 

number of illumination levels between dark and saturation. Pain and Hancock (2003b) 

describe the required formulas: 

, ,
,

l m nn
l m

S
S

N
= ∑     ;     ,, l ml m

S
S

LM
=
∑

 

(2.8) 

, ,

2
22

, ,
l m nn

l m l m

S
S

N
σ ⎡ ⎤= − ⎣ ⎦

∑
   ;    

2
,,2 l ml m

S LM

σ
σ =

∑
                                                 

(2.9) 
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where S  represents the average temporal mean signal and 2
Sσ  represents the average 

temporal noise. The temporal average (over N frames) accounts for pixel variations in 

time, while the spatial average (over L rows times M columns) accounts for variations 

across the array. The dark offset level, DS , should be calculated by applying Eq. (2.8) to 

a set of N frames recorded without illumination. 

 
Figure 2.1: Mean-variance graph showing the theoretical expression for a linear sensor.  

The noise increases linearly with signal up to a saturation point. (Bohndiek, 2008a) 

2.3.3 Linear sensor response – Photon Transfer Curve (PTC) 

The conversion gain of the sensor may also be calculated from the photon transfer 

technique (Janesick, 2001 and Janesick, 2007). Considering uncorrelated noise sources, 

the standard propagation of errors formula can be applied on Eq.(2.3) to determine the 

variance of the signal 

2 2
2 2 2 2 2 2 2( ) ( )( ) (( / ) ) ( )

( / )Is P K R
I

S DN S DNDN e DN DN
P K e DN

σ σ σ σ−
−

⎡ ⎤ ⎡ ⎤∂ ∂
= + +⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦⎣ ⎦

 

(2.10). 

Read noise is added in quadrature because, as mentioned above, it exists in real 

systems. Performing the differentiation yields 
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2 2
2 2 2 2 2 2 2

2
1( ) (( / ) ) ( )

( / ) ( / )I
I

s P K R
PDN e DN DN

K e DN K e DN
σ σ σ σ−

− −

⎡ ⎤ ⎡ ⎤−
= + +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

(2.11). 

In the case that a sufficient number of pixels are sampled, the variance of the gain is 

assumed negligible, i.e. 2 2(( / ) ) 0K e DNσ − = . As mentioned above (section 2.2.1), the 

interacting optical photons are considered to have Poisson distribution, i.e. 2
IP IPσ = . 

Therefore, Eq. (2.11) reduces to 

( ) ( )
( / )

2
2 2 2 2
s I R

1DN P DN
K e DN

σ σ−

⎡ ⎤
= +⎢ ⎥
⎣ ⎦

 

(2.12). 
Substituting Eq. (2.3) into Eq. (2.12) and solving for ( / )K e DN−  gives 

2 2 2 2
( )( / )

( ) ( )S R

S DNK e DN
DN DNσ σ

− =
−

 

(2.13) 
where 2

Rσ  is the signal-independent read noise, 2
Sσ  is the signal dependent noise of an 

image at signal level  ( )S DN . The difference 2 2
S Rσ σ−  defines the signal shot noise, 

2
Shotσ . Therefore, the gain may be calculated from the slope of the PTC, which is the 

logarithmic (in order to cover the large dynamic range of the CMOS APS) plot of the 

r.m.s. signal noise of the sensor, Sσ , against the average sensor signal, ( )S DN .  

An ideal PTC response from a sensor is illustrated in Figure 2.2. This response 

contains the three main noise sources of a digital sensor: the read, shot and fixed pattern 

noise (see section 2.2.1). It can be observed that each noise is dominant at different 

signal levels. In order to obtain this curve, the sensor needs to be uniformly illuminated 

at different levels of light, i.e. to capture flat images. 
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Figure 2.2: Ideal total noise Photon Transfer Curve. The three  

noise regimes prior saturation are indicated (Janesick, 2007). 

The first regime, read noise, is constant because it is signal-independent. It is 

dominant at low signal levels because it represents the random noise measured under 

totally dark conditions. As the illumination increases, shot noise of the signal becomes 

dominant. According to Eq. (2.1) the r.m.s. shot noise is related to the square root of the 

signal. In a logarithmic plot, this yields a line of slope 0.5. The third regime is 

associated with FPN. At this level, a gradient of 1 is observed because signal and FPN 

scale together. Finally, saturation occurs when the area of pixels enters the full well 

regime. At this level any additional signal spills over into surrounding pixels resulting 

in noise averaging.  

All noise sources apart from shot noise (i.e. read and fixed pattern noise) have to be 

removed to get data available for the extraction of the gain ( / )K e DN− . The FPN is 

removed by subtracting two consecutive frames at the same illumination level. In order 

to calculate this, the frame mean KS  for k=A and k=B (where A and B are the 

consecutive frames), the corrected mean S  of the frame difference (by subtracting the 

background level) and the temporal signal noise, 2
Sσ , are calculated using the following 

formulas (Bohndiek et al., 2008a and Bohndiek, 2008c): 

,
,

1 k
K l m

l m
S S

LM
= ∑  

(2.14), 
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1
2 A B DS S S S⎡ ⎤= + −⎣ ⎦  

(2.15), 

( ) ( ) 22
, ,

,

1
2( 1)

A B
S l m A l m B

l m
S S S S

N
σ ⎡ ⎤= − − −⎣ ⎦− ∑  

(2.16). 

Read noise is subtracted from the outcome of Eq. (2.16) to define the shot noise at each 

illumination level. The division by a factor of 2 in Eq. (2.16) is used to compensate for 

the additive uncorrelated noise arising from the subtraction. Further details about this 

are given in section 3.3.3. After the removal of read and FPN noise, PTC is defined by 

plotting the r.m.s. shot noise, Shotσ , against the average signal, S , at each illumination 

level. 

In order to extract the gain from the PTC, linear regression fit is applied on the 

linear part of the sensor’s response. This fit has the form of y mx c= +  on a logarithmic 

scale. In order to calculate the gain ( / )K e DN−  on a decimal scale, the following 

calculation is done (Bohndiek et al., 2008a and Bohndiek, 2008c) 

10
c
mK

−
=  

(2.17). 

The uncertainty on the conversion gain is calculated from the uncertainties on the 

slope m and intercept c using propagation of errors. 

2.3.4 Nonlinear sensor response – Nonlinear Compensation method (NLC)  

Mean-variance and photon transfer methods have been applied under a number of 

assumptions (Bohndiek, 2008c): 

1. The sensor output signal is linear with illumination, therefore both V/V and V/e- 

nonlinearities are ignored. 

2. Fluctuations in the number of interacting photons are described by a Poisson 

distribution. 

3. Interacting photons are converted to signal electrons in the pixel with quantum 

yield equal to unity.  

4. The variance in the conversion gain 2
Kσ  is negligible. 
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5. In order to extract the photon transfer formula, the noise sources in the sensor 

are uncorrelated. 

The above assumptions often hold in CCD and CMOS PPS sensors, however the 

linearity assumption cannot hold for the CMOS APS, due to the V/e- nonlinearity. 

Therefore, the conversion gain derived by the above two methods can be in severe error. 

In order to cope with nonlinearity, the above linear methods are applied to the ‘linear 

region’ of the APS sensor. Mean-variance method is applied to data having a very small 

fraction of nonlinearity (< 5 %), while photon transfer method is applied to ‘linearized’ 

(logarithmically transformed) data having a slope very close to 0.5 inside the shot noise 

region. However, this slope may deviate significantly from 0.5 if any nonlinearity 

exists. The V/e- nonlinearity results in a slope less than 0.5 as the illumination increases 

because it improves the SNR (see section 2.2.3). 

In order to cope with both nonlinearities, Janesick (Janesick et al., 2006 and 

Janesick, 2007) instead of using a single and constant gain ( / )K e DN− , decomposed it 

into a signal gain ( / )S e DN−  and a noise gain ( / )N e DN− , which are related to the 

signal level. Signal gain is employed to determine signal related performance 

parameters, such as charge capacity (signal e-), dark current, full well capacity, quantum 

efficiency, nonlinearity, etc. On the other hand, noise gain is used for the calculation of 

sense node capacitance and noise related parameters, such as read noise, shot noise, 

FPN, etc. 

At low illumination levels, V/e- nonlinearity is not significant (because SNC  

variation is not appreciable) therefore ( / ) ( / ) ( / )K e DN S e DN N e DN− − −= = . Thus, 

using the signal conversion gain at low illumination levels the signal in absolute units, 

1( )S e− , is calculated for the first illumination level. Based on accurate knowledge of the 

illumination level at specific integration time or the integration time at specific 

illumination level, ‘n’ and assuming that the signal is proportional to this level, ( )nS e−  

can be calculated in proportion to 1( )S e− . At each level ‘n’ the signal ( )nS e−  can be 

divided by the respective sensor output ( )nS DN . Therefore, signal gain ( / )S e DN−  is 

determined as a function of illumination.  



Chapter 2 
 

 72

Correspondingly, noise conversion gain ( / )N e DN−  is extracted from the shot noise 

relation 

( )
( / )

( )Shot

S e
N e DN

DNσ

−
− =  

(2.18). 

Figure 2.3 shows an example of the NLC method outcome. The representation of 

signal and noise gains is useful in terms of separating V/V and V/e- nonlinearities. V/V 

nonlinearity is present when both signal and noise gains change simultaneously at low 

signal levels. V/e- nonlinearity exists when the two gains increase and diverge at higher 

signal levels. This divergence occurs because the calculation of signal gain takes the 

sense node capacitance change more into consideration. 

 
Figure 2.3: Comparison between the ‘linear’ conversion gain K(e-/DN) and  signal S(e-

/DN) and noise N(e-/DN) gains extracted from NLC (Janesick, 2007). 

2.3.5 Performance parameters extracted from optical evaluation 

After the gain determination from the above methods, the performance parameters 

of the digital sensor can be calculated in absolute values. This study presents some of 

the LAS and Dexela sensors performance parameters measured through optical 

characterisation. These parameters are the decomposition of the three main noise 

sources (read, shot and fixed pattern noise), full well capacity, dynamic range and dark 

current. The full well capacity shows the maximum electron charge that the 

photodiode’s sense node inside each pixel can hold. After this charge level saturation 

occurs. It is calculated from the product of the signal level at which the maximum 
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variance occurs (without subtracting the dark level) times the conversion gain, i.e. 

max( ) ( / ) ( )FW e S e DN S DN− −= . The dynamic range of a sensor is defined by the largest 

possible signal divided by the smallest possible signal it can generate.  The largest 

possible signal corresponds to the full well capacity of the pixel. The lowest signal is 

the noise level when the sensor is not exposed to any light, i.e. the read noise. The 

dynamic range is expressed in decibels (dB) by ( )RDR( e ) 20 log FW( e ) / ( e )σ− − −= . 

Finally, the dark current is calculated from the slope of the graph of the output signal in 

e- versus the integration time, expressed in units of current per area (pA/cm2). 

2.4 Physical characteristics of the x-ray detector 

The performance parameters of an x-ray detector are described in both spatial and 

frequency domain. Usually the signal transfer property (STP), the presampling 

modulation transfer function (pMTF), the normalized noise power spectrum (NNPS) 

and detective quantum efficiency (DQE) are sufficient to describe the signal and noise 

properties of the x-ray detector. The STP shows the response of the detector to the input 

signal. The MTF describes the contrast reduction of different spatial frequencies that 

compose the image and the NPS describes the frequency components of the noise. 

Finally, the DQE shows the ability of the detector to transfer the squared SNR from the 

input stage to the output stage.  

2.4.1 Signal and noise transfer 

The analysis of digital detectors is based on the linear systems theory to describe the 

signal and noise transfer from the input to the output. This theory assumes that the 

digital detector is linear and shift invariant. A linear detector transfers the input signal 

linearly, i.e. the output is proportional to the input throughout the dynamic range of the 

detector. Most DR systems are considered linear. The CR detectors are non linear due to 

the logarithmic or square-root output but they are linearisable through the use of 

mathematical transformations. The response of a digital detector is tested for linearity 

from the STP curve which is the representation of the output DN as a function of the 

input DAK. Also, the slope of the STP gives useful information about the sensitivity of 

the digital detector. It is a combination of the x-ray detection efficiency (QDE or EAE), 

the light yield of the scintillator, the quantum efficiency and the conversion gain, i.e. the 
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relationship between the created e- and the output DN. For each detector the average 

output signal was calculated from 5 flat frames for each DAK level over the array used 

for the NPS calculation. A digital system is considered shift invariant when its response 

to an input signal is the same at all locations relative to the pixel matrix. The output of a 

linear and shift invariant detector in response to any input signal is the convolution of 

the input with the PSF of the system which corresponds to the 2-D resolution. However, 

no digital system is completely linear and shift invariant because of the aliasing arising 

from the discrete nature of the pixels. Therefore, the output of an undersampled system 

will depend at the same degree on the position of the input signal (Dobbins III, 1995, 

Cunningham and Shaw, 1999 and Cunningham, 2000). 

Since both the signal and noise transfer are spatially correlated to some degree (i.e. 

are not the same at all frequencies) a frequency domain response characterisation is 

more useful than a spatial one. The Fourier transform provides the way to move 

between spatial and frequency domains, giving the same information in two different 

ways. The Fourier transform of an image shows the composition of its content at each 

spatial frequency. Also, the convolution in one domain corresponds to multiplication in 

the other. Therefore, using the Fourier transform the same information can be easier 

interpreted in one or the other domain. The STP is calculated in spatial domain, while 

the MTF, NPS and DQE are calculated in frequency domain.  

2.4.2 Presampling Modulation Transfer Function (pMTF)  

The modulation transfer function describes the contrast reduction of different spatial 

frequencies that compose the image and it is used to quantify the resolution of an 

imaging system. It shows how well an input signal is transferred to the output at each 

spatial frequency. Two methods are developed to measure the MTF of an x-ray imager: 

the slit method to calculate the line spread function (LSF) and the edge method to 

calculate the edge spread function (ESF) which is the integral of the LSF. Both methods 

were first developed to evaluate analog x-ray detectors (Tatian, 1965, Rossmann and 

Sanderson, 1968, Lubberts, 1969 and Smith, 1972) and then applied to digital 

radiography (Judy, 1976, Giger and Doi, 1984a, Fujita et al., 1992, Boone and Seibert, 

1994, Samei et al., 1998 and Buhr et al., 2003). The LSF is the response of the imager 

to a test device with a very narrow slit. Then the modulus of the Fourier transform of 

the LSF (normalized to one at zero frequency) corresponds to the MTF. On the other 
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hand, the ESF is the response of the detector to a straight edge test device. 

Correspondingly, the ESF is differentiated to calculate the LSF which results in the 

MTF. According to the literature, the edge method is cost-effective and not very 

sensitive to physical defects, scattered radiation and misalignments of the test device 

(Samei et al., 1998 and Samei et al., 2006). Also, it provides accurate results even at 

low frequencies (below the Nyquist) which are of interest in determination of the DQE 

and the NPS (Cunningham and Reid, 1992, Samei et al., 1998 and Samei et al., 2006). 

The resolution of two digital detectors can be compared only in terms of the pMTF 

which describes the system’s response up to, but not including, the stage of sampling by 

the pixel matrix. However, the total MTF of a digital detector includes both the 

“presampling” and the “digital” component. The pMTF includes the image blurring 

from geometric considerations (focal spot blurring), the scintillator blurring in case of 

indirect conversion detectors and the aperture function of the detector which 

corresponds to the shape and size of the active response area of the pixel. The geometric 

blur from the focal spot has to be eliminated because it depends on the geometry of 

image acquisition rather than an intrinsic property of the detector itself. This is done by 

placing the test object directly on the detector’s surface to eliminate any magnification 

which introduces the geometric blurring. The digital MTF includes both the blurring 

described from the pMTF and the sampling function. It is given from the convolution 

between the pMTF and the Fourier transform of the sampling function (i.e. the comb 

function). It shows the response of the system to a delta function comprising equal 

amounts of all frequencies. It is calculated from the Fourier transform of the output of a 

system which has a delta function in input normalized to unity at zero frequency. On the 

other hand, the pMTF is the response of a system at all frequencies to a sinusoidal 

signal s with frequency value (u, v). It is expressed from the following formula 

(Dobbins III, 2000): 

( , )
( , )

( , )
out

in

FT u v
pMTF u v

FT u v
=  

(2.19) 

where FT is the Fourier transform of the input signal s. In analog imagers there is only 

pMTF due to the absence of sampling. In digital systems with no aliasing due to 

oversampling the digital MTF and the pMTF are the same. However, if there is any 

aliasing due to undersampling, the two MTFs are different at frequencies affected from 
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the overlap of adjacent FT replications. The digital MTF is higher at these frequencies 

because it contains the response of the system at these frequencies plus the overlapping 

aliased information from frequencies higher than the Nyquist frequency. On the other 

hand, the pMTF of an undersampled digital detector contains replicated but not 

overlapped values. The digital MTF cannot be used for the comparison of two digital 

detectors because 1) it does not describe the amplitude of a sinusoidal signal passed by 

the system and 2) it is phase dependent due to the overlapping aliased frequency 

components which introduces spatial invariance. The latter violates the linear-systems 

approach which describes the detector as linear and shift invariant (Dobbins III, 1995 

and Dobbins III, 2000).  

As mentioned before, the pMTF includes the image blurring from geometric 

considerations, the scintillator blurring in case of indirect conversion detectors and the 

aperture function of the detector which expresses the effect of the pixel pitch xΔ . In the 

case that the focal spot and the scintillator blurring are insignificant the pMTF is limited 

only by the nominal pixel area. For an ideal square pixel detector that collects all of the 

charge created from x-ray absorptions occurring in the nominal pixel area (i.e. fill factor 

= 100%) the ideal maximum pMTF equals to the modulus of the sinc function which is 

the Fourier transform of the aperture function (Yaffe and Rowlands, 1997 and Samei 

and Flynn, 2003c). The sinc function is expressed as 

sin( xf )sinc( xf )
xf

πΔπΔ
πΔ

=  

(2.20) 

and is around 0.64 at FNyq and its first zero appears at the sampling frequency (i.e. the 

double of FNyq). The pMTF of the indirect conversion detectors is much lower than the 

respective sinc function due to the scintillator blurring. On the other hand, the direct 

conversion detectors pMTF appear very close to the sinc function. However, the sinc 

function performance implies strong aliasing. 

In practice, most of the digital detectors (including the indirect conversion ones) 

allow some aliasing due to design compromises. Therefore, the MTF of these detectors 

is not zero after the Nyquist frequency. All frequencies beyond the Nyquist frequency 

are aliased in the output image, i.e. the amplitude of the aliased frequency components 

of the MTF is folded back to their counterpart frequencies prior to Nyquist frequency. 

Therefore, the frequencies of interest for the determination of the pMTF are from zero 
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up to the Nyquist frequency. To define precisely the pMTF without aliasing in this 

frequency range, a finer sampling (oversampling) has to be used. This oversampling is 

achieved by using slightly tilted slit (Fujita et al., 1992) or edge test object (Samei et al., 

1998) with respect to the pixel array. This angulated orientation results in an increase in 

the sampling interval proportional to the reciprocal of the tangent of the angle. 

However, there is a trade-off between high sampling frequency and low statistical 

uncertainty. If the angle is very small the oversampling frequency will be very high. On 

the other hand, relatively large angle results in a larger number of ESFs / LSFs that can 

be averaged, resulting in lower uncertainty. Usually both requirements are fulfilled by 

choosing an angle that ensures a sampling distance at least five times smaller than the 

original sampling of the detector (pixel pitch) (Båth, 2003a). The following section 

describes the oversampled ESF method used in this thesis to calculate the pMTF. 

2.4.3 Oversampled Edge Spread Function (ESF) to calculate the pMTF 

For the determination of the MTF, the edge technique (Samei and Flynn, 2002) was 

used according to the IEC standard (IEC 62220-1, 2003 and IEC 62220-1-2, 2007) 

based on the Buhr et al. (2003) algorithm. An opaque, polished edge test object (W foil, 

1 mm thick, 99.95 % pure (Alfa Aesar)) was placed at a shallow angle α (1.5º-3º) with 

respect to the detector pixel rows and columns. The position and angulation of the edge 

within each image was estimated using the linear regression technique (Greer and van 

Doorn, 2000 and Price et al., 2008).  Then a standard gain and offset correction formula 

(i.e. normalization with the flat-field image) was applied to remove the structure noise: 

( )1
( , ) ( , )( , ) ( , ) ( , )

( , ) ( , )
raw D

cor F D
F D

I x y I x yI x y I x y I x y
I x y I x y

−
= ⋅ −

−
 

 (2.21) 

where ( , )rawI x y  is the average raw edge image, ( , )FI x y  is the average flat image at 

the same irradiation conditions and integration time and ( , )DI x y is the average dark 

image at the same integration time. All images are averaged over 10 frames to reduce 

the random noise components. A second order polynomial fit correction was applied on 

the gain and offset corrected edge test images to remove low frequency (background) 

trends arising from the x-ray field’s non-uniformity (e.g. from the heel effect, etc.) that 
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could increase the MTF at low frequencies (IEC 62220-1, 2003 and IEC 62220-1-2, 

2007). The background removal was applied from the following formula: 

{ }1
2

( , )( , ) ( , )
( , )

cor
cor

I x yI x y Avg S x y
S x y

= ⋅  

(2.22) 

where ( , )S x y is the second order polynomial fit of the average flat image ( , )FI x y . 

Figure 2.4 shows a created ( , )S x y  image in 3-D (a) and 2-D (b) representation 

respectively.  

 
Figure 2.4: Representation of a created  ( , )S x y  image in 3-D (a) and 2-D (b) 

The pixel values of the corrected data of seven consecutive lines (i.e. rows or 

columns depending on the edge’s orientation) across the edge were then used to 

generate seven oversampled edge profiles (or ESF). More than one ESFs have been 

generated to reduce the statistical noise. An ESF was selected as the reference one, and 

the remaining six shifted laterally until the position overlapping most closely to the 

reference one was reached. Two methods can be applied to optimize this lateral shift. 

The first one is to compare the correlation coefficient between each shifted ESF at each 

line and the reference one, and select the line where the maximum correlation is 

achieved. However, this method can be affected by defective pixels or lines leading to 

erroneous shifts. The second method uses the formula N round(1 / tan )α=  to 

calculate the number N of lines necessary for the edge to shift laterally by 1 pixel (Buhr 

et al., 2003, IEC 62220-1, 2003 and IEC 62220-1-2, 2007). Both methods were tested in 

each case, and the one providing the highest correlation between the shifted ESF curves 

was used to calculate the average oversampled ESF. The sampling distance in the 
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oversampled ESF is assumed to be constant, and is given by the pixel pitch Δx divided 

by N, i.e. ESF(xn) with xn = Δx/N. The oversampled ESF was then differentiated to get 

the oversampled LSF.  Figure 2.5 shows an example of the various steps of the MTF 

calculation for the Dexela detector from the oversampled ESFs to the presampling 

MTF. 

 
Figure 2.5: A representation of the MTF calculation process - a) oversampled ESFs, b) 

average oversampled ESF, c) oversampled LSF and 4) presampling MTF 

The MTF was obtained from the modulus of the fast Fourier transform (FFT) of the 

oversampled LSF. The MTF was normalized to one at zero frequency, and then 

calculated until the Nyquist frequency (FNyq) to avoid noise aliasing effects, leading to 

presampling MTF (pMTF). In accordance with the IEC standard, the horizontal and 

vertical pMTFs have been calculated by binning the data points in a frequency interval 

fint (f -fint ≤ f ≤ f+fint) around the spatial frequencies from 0.5 to FNyq with an interval of 
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0.5 lp/mm. fint is obtained as 0.01/ Δx(mm). Finally, the average (over the edge’s 

orientation) pMTF was calculated.  

It should be noted that the extracted length of the ESF used for the pMTF 

calculation was different for each detector due to the different pixel area. It was 3.2 cm 

for LAS, 3.5 cm for the Hamamatsu detector, 6 cm for the Dexela detector, 6.8 cm for 

the Anrad detector and 2.3 cm for the RadEye detector. The length of the ESF affects 

the pMTF. Small ESFs correspond to overestimation of the pMTF at low frequencies 

and underestimation at high frequencies. The presence of low frequency (background) 

trends reduces the pMTF at frequencies lower than 0.5 lp/mm causing a low frequency 

drop in the pMTF. However, at higher frequencies the pMTF is not affected. It was 

found that the pMTF of the Anrad detector changed by 1 % within one month. Also, the 

pMTF of the RadEye detector change by 2.5 % within a period of four months. The 

pMTF values were calculated at around half of the saturation level on the open field. 

This corresponds to a range of 30 (for LAS and Dexela in the LFW mode detectors) to 

180 µGy DAK (for the Hamamatsu detector) at 28 kV, 7 to 15 µGy DAK at 52 kV and 

9 to 24 µGy DAK at 74 kV respectively. 

2.4.4 Noise Power Spectrum (NPS) 

The noise power spectrum (NPS) describes the spectral decomposition of the noise 

variance in an image as a function of spatial frequency. The aliasing problems that exist 

in the interpretation of the MTF in a digital system also apply in the interpretation of the 

NPS. Unfortunately, we cannot measure directly the presampling NPS using fine 

sampling techniques as we can do for the presampling MTF calculation, so the noise is 

undersampled in almost every digital system. Therefore, according to the sampling 

theorem if the image contains frequencies higher than the Nyquist frequency then 

aliasing occurs. In practice, it is not possible to measure the presampling NPS because 

the analog image contains all noise frequencies simultaneously, including those above 

the Nyquist frequency. So, for any system the digital NPS consisting of the full 

complement of input frequencies is the only NPS that we can measure (Dobbins III, 

1995). 

As mentioned in section 2.2.1 the noise of a digital x-ray detector consists of 

quantum, excess, secondary quantum, structure, additive electronic and aliasing 
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components. Therefore Eq. (2.2) can be rewritten in terms of the total presampling 

normalized NPS (NNPS) as follows (Mackenzie and Honey, 2007): 

( ) ( ) ( ) ( ) ( ) ( )pre Q ex SQ S elNNPS f NNPS f NNPS f NNPS f NNPS f NNPS f= + + + +  

(2.23) 

The NNPS is normalized to the NPS at zero frequency. Further details about this are 

given later in this section. Evans et al. (2002) presented a similar formula assuming that 

the structure and additive electronic noise components are independent of the spatial 

frequency f. However, Mackenzie and Honey (2007) showed that both noise sources 

depend on the spatial frequency. Both studies, based on Giger et al. (1984b) analysis, 

relate the presampling NNPS to the analog NNPS ( aNNPS ( f )) by multiplying with 

the sinc function which is the Fourier transform of the aperture function that 

corresponds to the pixel pitch xΔ : 

2
pre aNNPS ( f ) NNPS ( f ) sinc( xf )πΔ=  

(2.24) 
Therefore, Eq (2.23) can be rewritten as follows: 
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(2.25) 

where η  is the fraction of x-rays absorbed in the scintillator/photoconductor (also 

known as QDE), Q is the number of x-ray photons impinging on the detector per unit 

area, nex is the Poisson excess noise, g  is the average system gain, i.e. the produced e- 

in the photodiode per absorbed x-rays, Ns is structure noise (or FPN) and Nel is the 

additive electronic noise. Next, according to Giger et al. (1984b) and Dobbins III (1995) 

studies the digital sampling corresponds to the multiplication of the noise data by a 

sampling comb function, xΔ III(x; xΔ ) in the spatial domain. Both studies are based on 

the sampling theory described in Bracewell (1978). The above product in frequency 

space corresponds to the convolution of the preNNPS  with the Fourier transform of the 

comb function. Therefore, the digital NNPS is given by the following formula (Evans et 

al., 2002) 
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1
dig preNNPS ( f ) NNPS ( f ) III( f ; )

xΔ
= ∗  

(2.26). 

This convolution produces replications of the noise spectrum in the frequency 

domain, at interval of 1/ xΔ  which is double the Nyquist frequency (FNyq; see section 

2.2.1). Hence, preNNPS ( f )  which extend to frequencies beyond the Nyquist 

frequency will be aliased to lower frequencies as follows: 

2dig pre pre NyqNNPS ( f ) NNPS ( f ) NNPS ( F f )= + −  
(2.27) 

for frequencies in the range 0 to FNyq. This short description of the NNPS explains about 

the aliasing of the noise due to sampling. Further details about the sampling and the 

comb function are given in section 4.3. 

The noise is calculated from flat field images. A novel gain and offset correction 

algorithm was applied to the flat images to remove the dark offset and minimize gain 

variations between different pixels (structure noise). The structure (or FPN) noise is 

correlated noise and needs to be removed to improve the SNR of the detector. The 

suggested correction algorithm is described in detail in section 3.3.3 after the full 

explanation of the NPS and DQE calculations and their physical meaning. After the 

removal of the structure noise and assuming that the electronic noise is small compared 

to the quantum noise, the NNPS is an inverse function of the Qη  product (see Eq. 

(2.25)). 

Following the correction of the raw flat images, the NPS was calculated by applying 

a 2-D algorithm to a corrected flat field image according to the IEC standard. First, 

overlapping regions of interest (ROI) of 256 × 256 pixels were taken from a central area 

of the image. At least four million independent image pixels are required for an 

accuracy of the 2-D NPS of 5 % (IEC 62220-1, 2003 and IEC 62220-1-2, 2007), and 

therefore a number of flat field images sufficient to meet this criterion was used. Each 

captured image was corrected for the presence of background trends (such as heel 

effect) by fitting a second order polynomial and subtracting the fitted 2-D function S(x, 

y) from the flat field image I(x, y). This second order polynomial de-trending corrected 

the NPS at frequencies lower than 1 lp/mm. The average 2-D NPS has been calculated 
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by applying the following formula [Dobbins III, 2000, IEC 62220-1, 2003 and IEC 

62220-1-2, 2007]: 

{ }
M 2

i i i i
x y m 1

x yNPS( u,v ) FFT I( x , y ) S( x , y )
M N N
Δ Δ

=

⋅
= −

⋅ ⋅ ∑  

(2.28) 

where u and v are the spatial frequencies corresponding to x and y, Δx and Δy are the x 

and y pixel pitches, Nx and Ny express the ROI size in pixels in the x and y directions 

(256 according to the IEC), M is the number of ROIs used in the ensemble average. 

Figure 2.6 shows an example of 2-D NPS extracted from Hamamatsu detector at 120.5 

µGy DAK, on a logarithmic greyscale to enhance the visibility of low contrast-details 

(Gonzalez and Woods, 2008). Also, in this figure the 1-D thick slices to calculate the 

horizontal and vertical 1-D NPS are shown. 

 
Figure 2.6: An example of 2-D NPS with 1-D cuts for the horizontal and vertical 1-D 

NPS 

In order to use the NPS for the DQE calculation, 1-D profiles were extracted from 

the 2-D NPS. Data from seven rows or columns on both sides of the corresponding axis 

(a total of 14), omitting the axis itself, were averaged, resulting in the horizontal and 

vertical 1-D NPS. The axes were omitted because they are susceptible to any remnant 

column- or row-wise FPN on the flat field images. In other words, in the presence of 

horizontal or vertical structure noise, the NPS has an unusually large value along the u 

and v axes which is not representative of stochastic noise. Therefore, it is not 

representative of the 1-D NPS (or NNPS) to include the artificially high noise of the 
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axes themselves, because those values are not reflective of the NPS in the great majority 

of frequency space (Dobbins III, 2000). Each data point was associated with a specific 

spatial frequency by means of the formula 2 2f u v= + . As done when calculating 

the pMTF, smoothing was obtained by averaging the data points within the 14 rows and 

columns that fall in a frequency interval of fint around the spatial frequencies from 0.5 to 

FNyq with an interval of 0.5 lp/mm (IEC 62220-1, 2003 and IEC 62220-1-2, 2007). The 

horizontal and vertical NPS(f) were then divided by the (large area signal)2 to obtain 

the normalized NPS (NNPS), expressed in terms of relative input exposure fluctuation 

(Dainty and Shaw, 1974 and Dobbins III, 2000). The term “large area signal” 

corresponds to the mean DN in the image for each particular dose and can be obtained 

from the STP (after offset and gain corrections). The mean DN corresponds to the NPS 

at zero frequency, i.e. NPS(0). This normalization is made in accordance to the 

normalization of the pMTF at zero frequency, because the DQE shows the difference in 

the efficiency of the signal (pMTF) and noise (NNPS) transfers. Finally, the horizontal 

and vertical 1-D NNPS were combined to calculate the average 1-D NNPS. Figure 2.7 

shows an example of horizontal and vertical 1-D NNPS cuts extracted from the 2-D 

matrix.  

 
Figure 2.7: Horizontal and vertical NNPS extracted from the 2-D NPS 

According to Saunders et. al (2005)  the relationship between the image r.m.s. 

variance in spatial domain and the 2-D NNPS is given by the following formula: 

2

,2
( , )

u v

x y

I NNPS u v

N N x y
σ

⋅
=

⋅Δ Δ

∑
 

(2.29) 
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where u and v are the spatial frequencies corresponding to the x and y directions, Δx and 

Δy are the x and y pixel pitches (in mm), Nx and Ny express the respective ROI size in 

pixels and I  corresponds to the average pixel value of the image (in DN). 

2.4.5 Detective Quantum Efficiency (DQE) 

The DQE shows the ability of the detector to transfer the SNR from its input to the 

output. It expresses the fraction of input x-ray quanta used to create an image at each 

spatial frequency and describes the ability of a particular system to effectively use the 

available input quanta. Practically, it is calculated from the following formula 

(Cunningham, 2000, IEC 62220-1, 2003 and IEC 62220-1-2, 2007): 

2 2
out
2
in

a
a

SNR MTF ( f )DQE( f )
SNR K NNPS( f )

K
Φ= =

⋅ ⋅
 

(2.30) 

The IEC standard assumes that an ideal detector behaves as an ideal photon counter 

(Samei and Flynn, 2002). Therefore, the fluence per exposure ratio Φ/Ka for each beam 

quality was calculated according to the following formula (Johns and Cunningham, 

1983, Boone, 1998, Cunningham, 2000 and Samei and M. Flynn, 2002):  

kV

norm0 8ena
air

W Q( E ) dE( E )K ( ) E e 10

Φ Φ μ
ρ

⋅
= ⋅

⋅ ⋅ ⋅
∫  

(2.31) 

where norm( E )Φ  is the normalized spectrum, W is the work function of air (33.97 

keV), Q is the charge liberated in air by one R (2.58 x 10-4 C/kg/R) and e is the electron 

charge (1.6022 x 10-19 C). The current system consists of an energy integrating detector, 

so an energy-weighted calculation of the Φ/Ka would be more realistic. However, Samei 

and Flynn (2002) showed that for 70 kV (W/Al anode/filtration combination) with 

additional 19 mm Al, which is close to the radiation beam quality RQA5 (70 kV (W/Al) 

with additional 21 mm Al (IEC 62220-1, 2003)), the difference between the energy-

weighed and photon-counting approximations is less than 3%. This difference is even 

smaller for lower kV spectra. 

The product a a( /K ) KΦ ⋅  corresponds to the SNR2 input due to the Poisson 

distribution of the input quanta. Therefore, the SNR2 output is calculated from the ratio 
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between MTF2 and NNPS.  An ideal imaging system would be characterized by a DQE 

equal to one at all spatial frequencies. In practice, there is always a departure from this 

behavior and the DQE decreases gradually with increasing spatial frequencies. This 

occurs due to the increased effect of the noise as a function of spatial frequency 

(Williams et al., 2007).  As done when calculating the pMTF and NNPS, the DQE is 

presented at spatial frequencies from 0.5 to FNyq with an interval of 0.5 lp/mm according 

to the IEC standard (IEC 62220-1, 2003 and IEC 62220-1-2, 2007).  Note that the 

average of the pMTF and NNPS data into 0.5 lp/mm spatial frequency bins allows 

easier visualization of the DQE results because it smoothes  the pMTF curve and 

reduces the influence of the spikes frequently seen in the NNPS. Also, the DQE at zero 

frequency is excluded because low-frequency artifacts (such as the background trends, 

etc.) result in unusually high NNPS at zero frequency which leads to underestimation of 

DQE. Therefore, it is hard to distinguish between low-frequency artifacts and low-

frequency stochastic noise. As mentioned in section 2.4.4 detrending may be used to 

reduce the low-frequency trends. However, it does not change the mean value, i.e. the 

central point on the 2-D NNPS array and it does not completely remove the excessively 

large values along the u and v axes (Dobbins III, 2000). 

At low DAK levels the electronic noise (read noise and dark current) is comparable 

to the signal produced from the x-ray quanta, and may therefore have a strong effect on 

the overall noise (NNPS) decreasing the DQE. At this signal level the system is defined 

as electronic noise limited. As the DAK level increases, this effect decreases and the 

DQE increases. Finally, at high signal levels this effect is negligible and the DQE 

reaches a maximum. At this level the system is quantum limited, as only the quantum 

noise affects its performance. According to Saunders et al. (2005), for a linear and 

quantum limited detector the product of NNPS and DAK should remain constant. Eq. 

(2.20) shows that this results in constant DQE. One of the few cases in which the DQE 

may decrease at high signal levels is when there is a substantial level of FPN, the 

amplitude of which increases linearly with the signal, and therefore becomes 

predominant at high dose (Monnin et al., 2007). However, appropriate gain and offset 

correction algorithm is normally sufficient to eliminate this effect.  The combination of 

Eq. (2.25) and (2.30) result to the following equation (Evans et al., 2002): 
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(2.32) 

which shows the dependency of the DQE on the various parameters. Each parameter 

presented in this formula is described in Eq. (2.25). According to Evans et al. (2002) the 

zero frequency DQE of a linear and quantum limited detector can be approximated by 

1ex

DQE(0)=
1+n ( / g )+

η
 

(2.33) 

which shows that when exn  and the 1( / g )  are very small, the difference of the DQE 

can be estimated from the variation of the η  (QDE). The QDE depends on the beam 

quality which is a function of the anode material, the maximum energy of the spectrum 

which is defined by the tube voltage (kV) and the additional filtration. Several 

investigators studied the relationship between the beam quality and the DQE 

(Tapiovaara and Wagner, 1985, Cahn et al., 1999, Fetterly and Hangiandreou, 2001 and 

Suryanarayanan et al., 2003). Marshall (2009b) based on the aforementioned studies 

(Fetterly and Hangiandreou, 2001, Evans et al., 2002, Suryanarayanan et al., 2003 and 

Mackenzie and Honey, 2007) demonstrated experimentally that 11% and 27% 

reductions in the QDE resulted in subsequent reductions of 8% and 22% in the DQE of 

a-Se TFT and CsI-based a-Si:H TFT detectors respectively.  

Finally, the presence of V/e- nonlinearity on the CMOS sensors may increase the 

DQE at high signal levels even if the sensor is quantum limited. This happens because 

the nonlinearity has a stronger effect on the noise rather than on the signal which results 

in improved SNR (see section 2.2.3; Tian et al., 2001). 

2.5 Summary 

In this chapter the theoretical framework of signal and noise transfer of digital x-ray 

detectors has been presented. Within this framework a complete x-ray and electro-

optical performance evaluation of the detectors can be performed. The PTC and MV 

methods are presented for the electro-optical performance evaluation of a linear sensor. 

On the other hand, the NLC method is presented in the case of a nonlinear sensor, such 
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as CMOS APS. The standard x-ray performance evaluation parameters of a digital 

detector (i.e. MTF, NPS and DQE) are also presented. 
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Chapter 3 

3 Empirical performance evaluation of the 

imagers 

3.1 Overview of chapter 

In this chapter the electro-optical performance evaluation of the two novel CMOS 

APS employed in this study is presented. The electro-optical performance of the sensors 

has been measured in terms of read noise, shot noise, full well capacity, dynamic range 

and dark current. A novel method is suggested to reduce the periodic pattern that affects 

the evaluation of the performance parameters in the presence of the EMI noise. Also, 

the x-ray performance parameters (MTF, NNPS and DQE) of the five available digital 

x-ray detectors are presented using four beam qualities, two for mammography and two 

for general radiography. Furthermore, a preliminary study on the performance of 

Dexela’s detector under dynamic imaging conditions is carried out. This chapter also 

includes a suggested method that requires a minimum number of reference frames for 

the calculation of the NNPS. Finally, the effect of the digital detector’s inherent 

nonlinearity on the DQE is presented as well.  

3.2 Electro-optical evaluation of the sensors 

Due to technical difficulties (the Hamamatsu detector was sealed, the Anrad a-Se is 

insensitive to light and the RadEye appeared to have nonlinear behaviour at low signal 

levels) it was decided to focus the electro-optical evaluation on the LAS and Dexela 

detectors only instead of trying to find time-consuming solutions for the well 

established commercial ones. LAS suffered from EMI noise when a specific version 

(namely 2nd generation) of electronics stack board was employed for the electro-optical 

performance characterization. However, this version was the only one available at the 

time and a software solution was developed to facilitate this. A novel solution was 
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applied to remove the periodic noise related to the EMI during the electro-optical 

evaluation of LAS (Konstantinidis et al., 2010). This method was applied first on a 

central ROI of LAS assuming that it corresponds to the average performance of the 

sensor. Another study applied the filtration algorithm on different ROIs over the sensor 

to compare the effect of the stitching on the performance of LAS (Zin et al., 2010). 

3.2.1 LAS sensor – EMI noise reduction algorithm 

The difference image between 2 flat images used for the electro-optical evaluation 

of LAS is affected by the EMI noise. Figure 3.1a shows a difference image of a central 

ROI (250x125 pixels) of LAS. The periodic pattern from the EMI noise emerged 

because the FPN is removed. The standard deviation of this pattern corresponds to the 

read and shot noise combination of the sensor at a particular signal level. Therefore, the 

periodic pattern needs to be removed in order to calculate the real performance 

parameters of the sensor. Figure 3.1b shows the modulus of the Fourier transform of the 

difference image shown in Figure 3.1a, where three pairs of spikes can be seen. 

Analyzing this specific spectrum it is found that the main spike (the one with the highest 

spectral magnitude, i.e. the higher contribution on the periodic pattern–located at the top 

left and bottom right areas) corresponds to 7.4 lp/mm at 20º orientation, while the other 

two spikes correspond to 4.1 lp/mm at 15º and 12.3 lp/mm at 115º. It was observed that 

the main spike is usually located within a specific frequency and phase range. However, 

the number and the location of the other spikes were found to change. In addition to the 

spikes, the central three columns have a high magnitude, which corresponds to a 

combination of row-wise sinusoidal patterns in the difference image. This pattern is 

believed to be quasi-periodic noise, which is the combination of more than one periodic 

patterns (Aizenberg and Butakoff, 2008). The spectrum is displayed on a logarithmic 

greyscale to enhance the visibility of low contrast-details (Gonzalez, 2008). 
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Figure 3.1 a) High magnitude periodic pattern, superimposed on a difference image, b) 

the respective Fourier spectrum represented on logarithmic scale (log(1+׀Ĩ׀)), where ׀Ĩ׀ 

is the magnitude of the Fourier transform). 

As mentioned in section 2.2.2 cross-shaped notch-reject filters were applied to 

reduce the periodic pattern and at the same time cause the minimum modification of the 

useful frequencies. However, before the application of the notch-reject filter the noise 

spikes must be located because it was observed that the position, number and intensity 

of these spikes is not constant in the case of LAS. Therefore, the location of the noise 

spikes was performed using the so called “top-hat” filter (Russ, 2007), defined by a 

mask comprised of two regions of pixels as depicted in Figure 3.2 (which shows the 

specific mask employed in this work). The mask may take various shapes, however it 

usually has a central, simply connected region called the crown, and a surrounding 

region of pixels called the brim. For reasons of brevity, the crown and brim are denoted 

as sets of pixels C={(i,j)}  and B={(i,j)}  respectively.  

 

Figure 3.2: Topology of top-hat filter demonstrating the crown (shaded) and brim 

regions 

For each pixel (i,j) in the Fourier spectrum Ĩ(i,j) the filter is applied by first 

evaluating one of the metrics f1 and f2 defined as 
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In the case where the above functions refer to pixels located outside the Fourier 

spectrum, these are omitted from the calculation. A peak is detected when one of the 

chosen metrics exceeds a threshold. After a series of preliminary tests were carried out, 

it was observed that a threshold value of 30000 DN effectively detects the spikes.  

 
Figure 3.3: Topology used to define masks for the brick wall (a), Gaussian (b)  

and interpolation (c) type filters. The mask origins are depicted by a solid black pixel 

Three types of notch-reject filters were considered: “brick wall”, “Gaussian” and 

“interpolation”. When applying the brick wall filter, the mask shown in Figure 3.3a is 

positioned with its origin in the pixel corresponding to the peak. Then all pixels in the 

spectrum covered by the brick wall mask are set to zero. In Figure 3.3a, Nc is the half 

width of the mask with the central shaded square region excluded. The value of Nc is 

chosen to be 0, 8 or 16 depending upon the position of the peak and the boundary of the 

frequency domain and taking into account that the maximum width of crosses due to 

EMI found in our case was 30 pixels. When applying a Gaussian type filter, the mask 

shown in Figure 3.3b is positioned with its origin covering the pixel where the peak is 

detected. Then each pixel in the spectrum covered by the mask is multiplied by the 

value 

( , ) exp
2 2

0 0i i j jH i j 1
σ σ

⎛ ⎞− −⎛ ⎞ ⎛ ⎞= − − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 

(3.3) 

where (i0,j0) is the pixel where the peak is detected and σ controls the width of the 

Gaussian profile. Sigma was calculated such that 0 G 0H(i +N +1,j )  took the value 0.7 
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which was judged to be adequate to reduce the values at the edges of the cross shape. 

For this filter, NG is the half width of the mask cross section with the central 3x3 pixel 

region excluded. NG took a value of 9 or 14 pixels correspondingly to Nc. Note that 

although other filter profiles, for example Butterworth (Gonzalez, 2008), could be used 

here, it was found that their use yielded no significant difference from the simpler 

Gaussian profile. 

The third type of filter was an interpolation filter which is similar to the brick wall 

filter. This filter employs the mask depicted in Figure 3.3c. Instead of replacing covered 

pixels of the Fourier spectrum with 0, it replaces the central shaded region with a fifth 

of the average of all pixels covered by the brim of the top-hat mask. Pixels covered by 

the cross section of the mask in Figure 3.3a are replaced by a value equal to one third 

that of their adjacent pixel in the Fourier spectrum. It was found that these parameters 

were sufficient for the reduction of the noise spikes. The aforementioned threshold used 

for the identification of the spikes was the same for all filters. The widths of the filtering 

masks have been chosen on the basis of the ROI dimensions (250 x 125 pixels). This 

happens because the Fourier transform of the windowing function, which results in the 

cross shape of the spikes, represents the size of the used ROI (section 2.2.2). Therefore, 

the detection and proposed filtering methods used can be considered as semi-automatic. 

The three notch-reject filters were used to reduce the detected spikes in the Fourier 

spectrum. Correspondingly, they reduced the periodic noise in the restored image, 

obtained via the inverse Fourier transform. Figure 3.4 shows an example of the way 

each filter modified the above difference image. The application of cross shaped notch-

reject filters to remove pure periodic noise in the frequency domain is the novel aspect 

of this work. Doing this reduces the amount of information discarded through filtering 

compared with using circularly symmetric filters used in Russ (2007), Sonka et al. 

(2007) and Aizenberg and Butakoff (2008). As mentioned above, this is due to the 

similarity between the shape of the artifact that we want to remove and the shape of the 

filter itself (in the Fourier space).  
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Figure 3.4: Images 1A, 2A and 3A show the effect of the brick wall, Gaussian and 

interpolation notch-reject filters on the Fourier transform of the images. Images 1B, 2B 

and 3B show the effect of the same filters on the direct space images following inverse 

Fourier transformation. The corresponding uncorrected image is shown in Figure 3.1. 

The central three columns of the Fourier spectrum have been replaced with an 

interpolation of the adjacent columns in order to eliminate the row-wise pattern. 

However, a central region of 4x4 pixels was kept the same in order to preserve the 

origin (i.e. the zero frequency) of the Fourier spectrum. These low-frequency spectral 

coefficients make a significant contribution to the signal energy, and their change may 

lead to an undesirable distortion of the image (Aizenberg and Butakoff, 2008). In order 

to save computational time, the top-hat filter was scanned only on half of the spectrum. 

When a spike was detected, the filter was applied also to the symmetric (conjugate) 

point of the spectrum (Al Hudhud and Turner, 2005). The above 3 filters have been 

applied to the difference image to reduce the effect of periodic noise on the performance 

parameters extracted through photon transfer and nonlinear compensation methods. It 

has been found that reducing the periodic noise does not affect the average value of the 

difference image, since the spikes were filtered away from the origin of the Fourier 
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spectrum. However, the standard deviation of the difference image decreases, indicating 

a reduced overall noise level. 

3.2.2 LAS sensor – experimental setup 

The experimental procedure that was used is described in Bohndiek et al. (2008a).  

Two white diffusion sheets with 25 % and 87 % attenuation (Lee filters, white 129 ¼ 

and 129), were coupled to a narrowband light emitting diode (LED) with an emission 

spectrum centred around 520 nm. The LED was connected to a DC power supply 

(Agilent E3646A) to provide constant illumination at a given voltage. The light 

intensity was varied by changing the voltage applied to the LED. The total distance 

between the LED and the sensor was 67.8 cm, yielding a light non-uniformity of less 

than 4 % across the region of analysis. The light non-uniformity has been measured 

using a calibrated photodiode (Hamamatsu S1336-5BQ) placed in the position of the 

sensor prior to data acquisition and read out via a high voltage source-measure unit 

(Keithley 237) connected to a PC. The setup used for the electro-optical evaluation of 

LAS sensor is shown in Figure 3.5. The LAS stack board was attached to a plastic 

support box. 

 
Figure 3.5: Experimental setup for the electro-optical evaluation of LAS sensor 

The LAS sensor was warmed up for half an hour before the measurements in order 

to have stable response. During the measurements, hard reset was used for the LAS 

sensor because it shows a greater linearity than soft reset (see section 1.4.1). The whole 

frame was read out having an integration time of 0.1 sec., which enabled 

accommodating almost the entire intensity range of the LED as input signal. The LAS 

sensor and its stack board, which incorporates 10 ADCs and readout electronics, were 
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placed inside an aluminum light tight box in order to eliminate additional background 

signal. Furthermore, the measurements took place inside a dark room. The stack board 

was connected to a dedicated P160 expansion board, via a high performance 120 way 

Samtec cable. The expansion board was connected to a Xilinx FPGA board. An external 

power supply (TTi / Dual Output) provided the required voltage input to the stack 

board, while a 12 V DC power supply was connected to the FPGA and to a fan which 

attached to the back side of the stack board for cooling. The FPGA was connected to a 

Windows desktop PC via a fibre optic cable, transferring a 14-bit digitized image. 

LabVIEW software was used to capture images and simultaneously drive the 

illumination levels via the Agilent E3646A power supply. 110 illumination levels were 

used and for each level 90 frames were captured for analysis.  

A central ROI of 250x125 pixels was analyzed from the captured frames per each 

illumination level. The dimensions of the ROI have been chosen in order to fit within 

one of the 50 different areas of the sensor, and simultaneously provide a sufficient 

accuracy on the results. These frames have been analysed using custom built software 

written in MATLAB version 7.6 (The MathWorks, Natick, MA, USA) which extracts 

the photon transfer curve and reduces the periodic noise. For the NLC method, the mean 

and gain extracted from the photon transfer method have been combined with the 

illumination input, in order to calculate signal and noise gains separately. The 

illumination input has been measured using the aforementioned photodiode, placed in 

the position of the central ROI prior to data acquisition. 

3.2.3 LAS sensor – results and discussion 

The PTC resulting from the data suffering from EMI noise is shown in Figure 3.6. 

This figure shows both read & shot noise and shot noise curves as a function of the 

signal. Only the latter is used for extracting the gain. The shot noise curve shows a high 

amount of fluctuations at lower illumination levels, due to the periodic noise. This curve 

is useful for the extraction of the signal and noise gains obtained with the NLC method. 

The data points used for this extraction were within a signal range of 240 to 740 DN, 

because in this region shot noise is dominant and the V/e- nonlinearity may be 

neglected. The slope of these points, after logarithmic transformation, is compatible 

with the theoretical value of 0.5 (0.49 ± 0.01). 
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Figure 3.6: Read and shot noise photon transfer curve of the data suffering from EMI. 

Figure 3.7 shows the photon transfer curve extracted from the data after removal of 

EMI by means of the brick wall filter. It is observed that the fluctuations on the lower 

signal levels are less prominent compared to the unfiltered data. For these filtered data, 

the slope of the logarithmically transformed curve used for the gains extraction had a 

value of 0.474 ± 0.003, over the aforementioned signal range. 
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Figure 3.7: Read and shot noise PTC of the reduced EMI noise data (brick wall notch 

reject filter). 

A comparison between PTCs before and after EMI suppression with the different 

filters is shown in Figure 3.8. To better demonstrate the agreement between results 

obtained with the three different filters, the correlation coefficients between the three 
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possible couples of curves (i.e. 1 with 2, 2 with 3 and 1 with 3) were calculated and they 

were all found to be equal to 1. On the other hand, the correlation coefficient between 

the curve obtained through filtering with the first (brick wall) filter and the unfiltered 

one was 0.986 for the points used for the gain extraction, and 0.997 for the higher signal 

points. This demonstrates that the EMI noise has a stronger effect on lower signal 

levels, because it has fixed amplitude. 
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Figure 3.8: EMI noise suffering PTC compared to EMI noise reduced PTCs using all 

three filters. Numbers 1,2 and 3 are referring to the brick wall, Gaussian and 

interpolation notch-reject filters. It can be seen that all filters reduce in a similar way 

response’s fluctuations caused from EMI noise. 

Figure 3.9 shows the NLC method applied to data suffering from EMI noise. It can 

be seen that both signal and noise gains change as a function of the signal, rather than 

being a constant (as the photon transfer method would assume). Both V/V and V/e- 

nonlinearities were found to be present for the LAS sensor. Signal and noise gains are 

decreasing at lower levels, indicating the presence of V/V nonlinearity. After 8500 e-, 

signal and noise gains start to diverge significantly, showing V/e- nonlinearity. 
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Figure 3.9: NLC method applied on data suffering from EMI noise. A large amount of 

fluctuations is seen, mainly on lower signal levels. 

For reasons of brevity, Figure 3.10 shows the respective NLC results applied to data 

processed with the third filter only. It can be observed that the fluctuations on the lower 

signal gains are less obvious, because of the reduced effect of EMI noise. 
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Figure 3.10: NLC method applied on reduced EMI noise data using the Gaussian notch-

reject filter 

The performance parameters, extracted from both filtered and unfiltered data, are 

shown in Table 3.1. Signal gain was used for the full well capacity calculation, i.e. 

max( ) ( / ) ( )FW e S e DN S DN− −=  where max ( )S DN  is the signal level corresponding to 

the maximum variance. Noise gain was used for the read noise extraction. Therefore, 
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the following table shows the values of the signal gain at full well capacity level and the 

respective noise gain at dark level. The signal gain can be used to characterise the 

sensor. Using this method, the difference on the signal gain between unfiltered and 

filtered data was relatively small (approximately 5 %). Correspondingly, the difference 

on the noise gain was found to be almost 13 %. The filtered data result in a low read 

noise (42 % difference compared to unfiltered data), due to the low temporal r.m.s. of 

the dark image. A full well capacity of around 52x103 electrons was found for the 

filtered data, which is close to the value extracted from unfiltered data (7 % difference). 

Finally, the dynamic range of the filtered data is approximately 4 dB higher. 

Table 3.1: Comparison of the NLC method extracted performance parameters obtained 

by EMI noise suffering data and the respective using the three EMI noise reduction 

filters 

Performance 

Parameter 
EMI suffering 

EMI Free 

(brick wall) 

EMI Free 

(Gaussian) 

EMI Free 

(interpolation)

Conversion gain 

(e-/DN) 

4.26 ± 0.10 (S) 

4.53 ± 0.06 (N)

4.49 ± 0.04 (S) 

5.10 ± 0.02 (N) 

4.48 ± 0.04 (S) 

5.09 ± 0.02 (N) 

4.47 ± 0.04 (S) 

5.09 ± 0.02 (N)

Read Noise (e-) 51.7 ± 0.6 (N) 36.4 ± 0.2 (N) 36.7 ± 0.2 (N) 36.4 ± 0.2 (N) 

Full Well 

Capacity (e-) 

(48.9 ± 1.2)  

x103 (S) 

(52.5 ± 0.4)  

x103 (S) 

(52.5 ± 0.5)    

x103 (S) 

(52.4 ± 0.4) 

x103 (S) 

Dynamic Range 

(dB) 
59.5 ± 0.6 63.2 ± 0.2 63.1 ± 0.2 63.2 ± 0.2 

 

Table 3.1 shows that the filtered results have a greater precision, as expected, 

because the filtration removes the fluctuations on the gain curves caused by the EMI 

noise consequently smoothing the data. The noise gain ( / )N e DN−  has a higher precision 

compared to the signal gain ( / )S e DN−  because it is related to the square root of the 

signal, thus error propagation results in a smaller uncertainty. 

After the demonstration of the EMI noise reduction algorithm functionality on a 

single ROI, the same algorithm (using Gaussian cross-shaped notch-reject filter) was 

applied on 50 ROIs (250x125) of LAS detector. This number arises from the fact that 

LAS consists of 1350 x 1350 pixels, using combination of 5 x 5 stitched arrays (5 chips 

column-wise and 5 chips row-wise) and 10 column analog-to-digital converters 
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(ADCs). Therefore, this combination leads to the formation of 50 different areas (270 x 

135 pixels each). The overall performance evaluation of two LAS sensors is described 

in detail elsewhere (Zin et al., 2010). Briefly, the effect of stitching on the performance 

parameters of LAS 1 and LAS 2 was studied. It was found that the stitching process 

adds non-uniformity variations as a function of the signal level (1.5-3.5 % at dark 

signal, rising to 3-8 % at high signal levels). However, this non-uniformity can be 

removed using standard calibration (gain correction) methods. Finally, Table 3.2 shows 

the overall performance parameters of LAS 1 by implementing the suggested EMI 

reduction algorithm (Gaussian notch-reject filter). 

Table 3.2: Overall performance parameters of LAS using the EMI reduction algorithm  

Performance 

Parameter 

Conversion 

gain (e-/DN) 

Read Noise 

(e-) 

Full Well 

Capacity (e-)

Dynamic 

Range (dB) 

Dark current 

(pA/cm2) 

Value of each 

parameter 

4.9 ± 0.50 (S) 

5.4 ± 0.50 (N) 

39.8 ± 3.7 

(N) 

(59.1 ± 6.8)    

x103 (S) 
63.4 ± 0.5 7 ±  2 (K) 

A comparison between these values and the nominal ones presented in Table 1.1 

shows 3 dB difference on the dynamic range. This happens due to the overestimation of 

the read noise by around 35 %, which is affected by the presence of the EMI noise. The 

respective difference between the full well capacity levels is 3.5 %. Finally, LAS 

appears to have a relatively small dark current (7 pA/cm2). The constant conversion gain 

K(e-/DN) was used for the calculation of the dark current, because it was extracted 

mainly from lower signal levels where the effect of nonlinearity is small. 

3.2.4 Dexela CMOS sensor – experimental setup 

The experimental setup for the electro-optical evaluation of Dexela’s CMOS sensor 

is similar to the one followed in the case of LAS. To obtain the images used for the PTC 

calculation the sensor was uniformly illuminated with a pulsed LED with a peak 

wavelength at 530 nm (green light) and full width at half maximum (FWHM) 20 nm. 

This set of measurements was made at Dexela. To achieve different illumination levels, 

the pulse times of the LED were varied (between 0.1-19.6 ms and 0.1-6.4 ms for the 

HFW and LFW modes, respectively). For each illumination level 30 frames operated at 

1x1 binning mode were captured. Again, the data analysis for the electro-optical 
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performance evaluation of Dexela sensor was made using custom built software written 

in MATLAB version 7.6 (The MathWorks, Natick, MA, USA). 

3.2.5 The Dexela CMOS sensor – results and discussion 

Figure 3.11 shows the PTC curves for Dexela’s sensor for HFW and LFW mode, 

respectively. It can be seen that the LFW mode results in higher shot noise at a given 

signal level, which according to Eq. (2.13) corresponds to lower conversion gain K(e-

/DN). An analysis of the figures shows that the full well capacity of the photodiode (i.e. 

the point corresponding to the maximum shot noise) is found at about 13100 DN for the 

HFW and 12000 DN for the LFW. 
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Figure 3.11: Representative PTC curves for a) HFW and b) LFW modes 

Table 3.3 provides the main detector parameters in terms of the electro-optical 

characterization. The performance parameters were extracted from the PTC curves for 
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both HFW and LFW modes. The conversion gain can be changed at the pixel level by 

switching from one full well mode to another. In particular, switching from LFW to 

HFW mode corresponds to a 3-fold gain increase. This option enables a choice between 

low read noise at a lower dynamic range, or higher dynamic range with a reduced noise 

performance (Naday et al., 2010a). In other words, LFW mode is suitable for low DAK 

levels, where the electronic noise dominates, while HFW is best for higher exposure 

levels.  

Table 3.3: Summary of the performance parameters of the Dexela sensor using the PTC 

method 

Parameter (1x1 mode) HFW mode LFW mode Units 

Conversion Gain 101.1 ± 14.4 33.7 ± 3.0 e-/DN 

Read Noise 354.7 ± 50.4 157.4 ± 14.0 e- 

Full Well capacity (1.3 ± 0.2) x 106 (4.2 ± 0.4) x 105 e- 

Dynamic Range 71.4 ± 4.0 68.5 ± 2.5 dB 

Dark current at around 

30 ºC 
6 ± 1 3 ± 1 pA/cm2 

The following table shows the respective optical evaluation results using the mean-

variance method. This method is similar to the PTC and it can be used to crosscheck the 

results (Bohndiek et al., 2008a). Similar results are demonstrated compared to the 

previous ones but with higher accuracy due to the smaller uncertainty on the conversion 

gain. However, the PTC is necessary to extract the NLC method. Both methods were 

applied over a limited range of the sensor assuming linear behaviour. The linear range 

used was around 22 % of the dynamic range for the HFW mode and 33 % for the LFW 

mode respectively. 

Table 3.4: Summary of the Dexela sensor’s performance parameters using the mean-

variance method 

Parameter (1x1 mode) HFW mode LFW mode Units 

Conversion Gain 104.6 ± 1.6 34.8 ± 0.4 e-/DN 

Read Noise 361.8 ± 5.6 159.8 ± 2.0 e- 

Full Well capacity (1.42 ± 0.02) x 106 (4.31 ± 0.05) x 105 e- 

Dynamic Range 71.5 ± 0.4 68.6 ± 0.4 dB 
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A nonlinear analysis was also applied to the Dexela sensor to take into account its 

inherent nonlinearity. The following figure shows the conversion K(e-/DN), signal S(e-

/DN) and noise N(e-/DN) gains extracted from the NLC method for both full well 

modes. All three gains are shown for signal levels up to the full well capacity. All of 

them are equal at lower signal levels due to the absence of the V/e- nonlinearity. 

However, at higher signal levels they diverge significantly due to the presence of 

nonlinearity. From these figures it is estimated that the V/e- nonlinearity starts at around 

500 x 103 e- which corresponds to around 42 % of the dynamic range for the HFW 

mode. For the LFW mode the nonlinearity begins at higher signal levels in respect to 

the dynamic range. In other words, the nonlinearity becomes obvious from around 

200·103 e- which corresponds to 51 % of the dynamic range. This indicates that the 

Dexela sensor demonstrates linear behaviour in a wider range when operated in the 

LFW mode. 
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Figure 3.12: Representative gain curves from NLC method for a) HFW and b) LFW 
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The performance parameters extracted from the NLC method are shown in Table 

3.5. The signal gain at full well level is higher than the constant conversion gain 

extracted from the linear (PTC and MV) methods. This leads to higher full well capacity 

and dynamic range. In particular, the PTC method underestimates the full well capacity 

by around 18.8 % and 4.5 % and the dynamic range by 1.4 dB and 0.4 dB for the HFW 

and LFW modes respectively. The respective underestimation of the MV method on the 

full well capacity is around 12.5 % and 2.3 % for the HFW and LFW modes 

respectively. These values lead to a subsequent underestimation of the dynamic range 

by 1.3 dB and 0.3 dB for the respective FW modes. A smaller difference between the 

linear and nonlinear methods is observed when the sensor is operated in the LFW mode. 

This happens due to the higher linearity demonstrated in this mode. Also, the MV 

method results in values closer to the NLC method ones. On the other hand, the noise 

gain is comparable to the constant conversion gain K(e-/DN) leading to similar read 

noise values, up to 1.1 % absolute difference. The underestimation of the full well 

capacity and the dynamic range from the linear methods is already mentioned in the 

literature (Janesick et al., 2006, Janesick, 2007 and Bohndiek et al., 2008a). On the 

other hand, the use of the conversion gain Khigh(e-/DN) at full well level would lead to 

significant overestimation of the full well capacity and the dynamic range due to the 

presence of V/e- nonlinearity. 

Table 3.5: Summary of the performance parameters of the Dexela sensor using the NLC 

method 

Parameter (1x1 mode) HFW mode LFW mode Units 

Signal Gain 120.6 ± 1.3 35.7 ± 0.2 e-/DN 

Noise Gain 102.0 ± 0.5 33.9 ± 0.1 e-/DN 

Read Noise 357.9 ± 1.9 158.4 ± 0.4 e- 

Full Well capacity (1.57 ± 0.02) x 106 (4.42 ± 0.02) x 105 e- 

Dynamic Range 72.8 ± 0.2 68.9 ± 0.1 dB 

A comparison between the performance parameters extracted from the NLC method 

and the nominal design specifications of the Dexela sensor (see Table 1.1) shows that 

the actual read noise is higher by 15.8 % and 25.7 % for the HFW and LFW modes 

respectively, compared to the expected values. Again, the nominal specifications 

underestimate the full well capacity by around 14.3 % and 10 % for the HFW and LFW 

modes respectively. The underestimation of the nominal read noise leads to 
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overestimation of the dynamic range by around 0.3 dB for the HFW mode and 1.2 dB 

for the LFW mode. In conclusion, the experimental results are in agreement with the 

nominal ones. 

3.3 X-ray performance evaluation of the detectors 

The x-ray performance evaluation of the five x-ray detectors was made at UCL 

using a W/Al (anode / filtration) combination. Three different beam qualities were used 

at 28, 52 and 74 kV to investigate the performance of the detectors in a range of 

different x-ray medical imaging applications. The Dexela CMOS x-ray detector was 

further investigated at Dexela using W/Rh combination at 25 kV. The following section 

(3.3.1) describes in detail the selection of the beam qualities. 

3.3.1 Radiation beam qualities used in this thesis 

The x-ray performance evaluation of the four digital x-ray detectors (LAS, 

Hamamatsu, Dexela and RadEye) was carried out using a Tungsten anode (W) x-ray 

tube at UCL (20º anode angle). The nominal focal spot size of this detector is from 0.4 x 

0.4 mm up to 3.0 x 3.0 mm depending on the tube load, i.e. from 160 kV and 4 mA up 

to 160 kV and 19 mA. Three beam qualities were used to cover a range of different 

medical applications: 28 kV for mammography, 52 kV (RQA3) and 74 kV (RQA5) for 

general radiography according to the IEC standard (IEC 62220-1, 2003 and IEC 62220-

1-2, 2007). The selection of the specific tube voltages was assessed using the nominal 

values of 28, 50 and 70 kV and adjusting the tube voltages to reach the required half 

value layers (HVL) within 3 % accuracy. The measurements of the HVLs were made 

using thin Al foils with 99% purity (Goodfellow Corp.) and a calibrated ion chamber 

(KEITHLEY 35050A Dosimeter). The inherent filtration of the x-ray tube was 

estimated to be 1.4 mm Al using the Total Filtration Calculator software (Reilly, 1999). 

Therefore, 1.1 mm Al (99.999 % pure (Goodfellow Corp.)), 10.6 mm and 20.2 mm 

dural were taped on the output of the x-ray tube to simulate the breast and parts of the 

human body respectively according to the specified beam qualities. Figure 3.13 is a 

diagram giving the geometry used for the detectors measurements under mammographic 

conditions. In this case the source to detector surface distance (SDD) was 65 ± 1 cm in 

all cases. This distance was set to meet the mammographic IEC standard requirements 

which set a range between 60 and 70 cm (IEC 62220-1-2, 2007). On the other hand, the 



Chapter 3 
 

 107

SDD for higher energies was 153 ± 1 cm in all cases to meet the limit of at least 150 cm 

according to the general radiography IEC standard (IEC 62220-1, 2003).  

 
Figure 3.13: The geometry used for the DQE measurements under mammographic 

conditions 

Figure 3.14 shows a photograph of the experimental set up using LAS detector to 

capture flat images for the NNPS calculation.  

 
Figure 3.14: Photograph of the set up using LAS detector under mammographic 

conditions 

According to Samei (2003a) RQA3 is suitable in neonatal and paediatric extremities 

imaging, while RQA5 is commonly used to image extremities, head and shoulder in 

adults. Inserting the kV/HVL combinations into a spectrum simulator software (Spektr) 

the fluence per exposure (Φ/Ka) ratio (or ideal SNR2 input per Ka) was enabled (Johns 
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and Cunningham, 1983, Boone, 1998, Cunningham, 2000 and Samei and M. Flynn, 

2002). This parameter is required for the DQE calculation. Spektr is a MATLAB based 

graphical user interface (GUI) (Siewerdsen et al., 2004) which adapts the Tungsten 

Anode Spectral Model using Interpolating Polynomials (TASMIP) algorithm of Boone 

and Seibert (1997). The Anrad SMAM detector was evaluated using a different W/Al 

combination at UCL (25º anode angle). The nominal focal spot size of this W anode 

tube is from 25 up to 50 µm depending on the tube voltage. Both the tube voltage and 

the additional filtration were adjusted to get an HVL value very close to the required 

one. Therefore, 27.5 kV and 1.1 mm Al (as external filtration) were used to get an HVL 

equal to 0.84. This beam quality corresponds to an estimated Φ/Ka value equal to 6951 

x-rays per µGy per unit area. Finally, the Dexela CMOS x-ray detector was further 

investigated at Dexela using W/Rh combination (16º anode angle) at 25 kV. In this case 

0.05 mm Rh added on the W anode and then the additional mm Al and the tube voltage 

were adjusted to reach an HVL very close to the IEC standard requirements (less than 

1% difference). Table 3.6 shows the required, measured and estimated values of the 

beams used. 

Table 3.6: Values related to the used beam qualities for the x-ray evaluation of the 

digital detectors 

Parameter Beam Qual. 
1a (Mammo) 

Beam Qual. 
1b (Mammo) 

Beam Qual. 2 
(RQA3) 

Beam Qual. 3 
(RQA5) Units 

Anode/filtration 
combination W/Rh W/Al W/Al W/Al  

IEC nominal tube 
voltage 28 28 50 70 kV 

Indicated Tube 
voltage 25 28 52 74 kV 

IEC total filtration 
(inherent + added) 

0.05 + 2.0 
(Rh + Al) 

0.5 + 2.0 
(Al + Al) 

2.5 + 10.0 
(Al + Al) 

2.5 + 21.0 
(Al + Al) 

mm 

Total filtration 
(inherent + added) 

0.05 + 1.7  
(Rh + Al) 

1.4 + 1.1  
(Al + Al) 

1.4 + 10.6  
(Al + Dural) 

1.4 + 20.2 
(Al + Dural) 

mm 

IEC HVL 0.75 0.83 4.0 7.1 mm Al 

Measured HVL 0.75 0.83 3.9 6.9 mm Al 

IEC Φ/Ka  5975 6575 21759 30174 x-rays/µGy/mm2 

SPEKTR Φ/Ka 6138 7009 22469 30401 x-rays/µGy/mm2 
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3.3.2 Signal detection 

The type and thickness of the scintillator affect the absorption efficiency of the 

conversion layer. As mentioned in section 1.7, structured CsI:Tl was coupled to LAS, 

Hamamatsu and Dexela sensors at three different thicknesses (150, 160 and 600 µm 

respectively) and Gd2O2S:Tb 85 µm thick was coupled to RadEye sensor. On the other 

hand, Anrad SMAM detector used 200 µm a-Se to detect the x-rays. The absorption 

efficiency is quantified from the EAE and QDE parameters, i.e. the absorption 

efficiency of the x-ray photons and the absorption efficiency of their energy 

respectively. Since scintillators produce light photons as a function of the absorbed x-

ray energy (energy integrating detectors), the EAE parameter is considered to describe 

more precisely the absorption efficiency. Both parameters are explained in section 1.7 

based on the Eq. (1.4) and (1.5) respectively. Figure 3.15 shows the comparison 

between the monoenergetic QDE(E) of all detecting setups excluding the one of 160 µm 

CsI and the normalized incident amounts of x-ray photons (photon fluence) for the four 

beam qualities used. It can be seen that the effect of the K-absorption edges of Se (at 

12.7 keV), Cs (at 36.0 keV), I (at 33.2 keV) and Gd (at 50.2 keV) elements on the 

absorption efficiency of the x-rays. Also, it is observed that the thickness of the 

scintillator has a very strong absorbing effect, especially at energies higher the K edge. 

The QDE(E) of CsI at 160 µm thickness was not included because it is almost identical 

to the one at 150 µm. The QDE(E) of Gd2O2S at 85 µm is slightly higher than that of 

CsI at 160 µm at low energies (less than 33.2 keV) and at energies higher the K edge of 

Gd (i.e. 50.2 keV). Therefore, it can be considered suitable either for low energies used 

in mammography or for energies higher than 50.2 keV. Finally, the QDE(E) of a-Se at 

200 µm is high at low energies but lower than CsI and Gd2O2S at energies higher than 

the k-edges of their heavy elements. The required values for the total attenuation and the 

total energy absorption coefficients of the a-Se, CsI and Gd2O2S materials were 

calculated from tabulated data on energy absorption and attenuation coefficients of their 

respective elements (Hubbel and Seltzer, 1995). 
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Figure 3.15: QDE(E) of the used detecting materials compared to the normalized photon 

fluencies (a) for 25 and 28 kV data and b) for 52 and 74 kV data) 

Figure 3.16 compares the monoenergetic EAE(E) of the four scintillating setups to 

the normalized incident quantity of x-ray energies (energy fluence) for the four beam 

qualities used. However, the EAE shows a strange pattern, i.e. decrease at the K edge, 

slight increase at the subsequent energies and then decrease with the increase of energy) 

after the K edge. This pattern occurs because the EAE(E) by definition includes the 

ratio , ( )tot en Eμ / , ( )tot t Eμ  (Eq. (1.5)), which drops at the K-absorption edges, as 

mentioned in section 1.7. 
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Figure 3.16: EAE(E) of the used detecting materials compared to the normalized energy 

fluencies (a) for 25 and 28 kV data and b) for 52 and 74 kV data) 

Finally, Table 3.7 quantifies the above two figures by presenting the total QDE and 

EAE for the detecting material/thickness combination and beam quality combinations 

used. These parameters affect the DQE since the x-ray photons are information carriers 

and their increased absorption efficiency increases the SNR (Cunningham, 2000). It 

may be observed that thin CsI and Gd2O2S scintillators (150, 160 and 85 µm 

respectively) appear high EAE (> 0.68) at low energies (28 kV). On the other hand, the 

thick CsI scintillator (600 µm) appears to have acceptable EAE (>0.47) at high energies. 

It is observed that the EAE at 74 kV is slightly higher than at 52 kV (0.49 in comparison 

to 0.47). This happens because the effective energy for the RQA3 beam quality was 

43.2 keV, while the one for RQA5 was 52.2 keV. The EAE(E) of the scintillator is 

affected strongly at 43.2 keV by the K-edge, which explains the smaller detectability of 
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the x-ray signal at RQA3. This comparison predicts slightly higher DQE values for the 

74 kV and 600 µm combination. Finally, the a-Se material appears to have high x-ray 

detection efficiency at low energy (28 kV) and relatively low efficiency at higher 

energies. This happens because Se is not a heavy element and its K-edge is at low 

energies.  

Table 3.7: Total QDE and EAE values for various x-ray detecting materials at different 

beam qualities 

X-ray detecting  
material, thickness 

QDE at 
25 kV 

EAE at 
25 kV

QDE at 
28 kV 

EAE at 
28 kV 

QDE at 
52 kV 

EAE at 
52 kV 

QDE at 
74 kV 

EAE at 
74 kV 

CsI, 150 µm 0.808 0.743 0.754 0.683 0.695 0.323 0.528 0.264 

CsI, 160 µm - - 0.774 0.703 0.717 0.334 0.549 0.275 

CsI, 600 µm - - 0.992 0.914 0.978 0.472 0.922 0.490 

Gd2O2S, 85 µm - - 0.822 0.737 0.335 0.272 0.396 0.193 

a-Se, 200 µm - - 0.949 0.679 0.491 0.378 0.277 0.208 

3.3.3 Suggested gain and offset correction algorithm 

As in the aforementioned theory in section 2.2.1 the main noise sources that affect 

the signal on the x-ray detectors are the quantum (or shot), the electronic (or read) and 

the structure (or fixed pattern) noise. The first two are uncorrelated noises because they 

consist of the stochastic variations of the signal in the spatial domain, which differ for 

individual images taken with the same detector. On the other hand, FPN is correlated 

noise because its pattern remains the same in repeated images taken with the same 

detector (Illers et al., 2004). Therefore, the FPN is not a stochastic noise process and it 

needs to be removed to improve the SNR of the digital x-ray detector. This process, 

known as “flat field correction”, is applied either by normalizing with the flat-field 

image or by subtraction of the flat-field image (Evans et al., 2002). As mentioned in 

section 2.3.3, in the electro-optical performance evaluation (based on the PTC 

algorithm) of a digital sensor the FPN is removed by subtracting two consecutive 

frames at the same illumination level (Janesick et al., 1987, Janesick, 2002, EMVA 

Standard 1288, 2005 and Bohndiek et al., 2008). On the other hand, in the x-ray 

performance evaluation of the detector the FPN is usually removed by normalizing with 

the flat-field image. The most common flat field correction method for a given linear 

detector is the gain and offset correction formula based on normalization (Moy and 

Bosset, 1999):  
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−
 

(3.4) 

where ( , )rawFlat x y  is the raw flat image, ( , )rawFlat x y  is the average over nf reference 

flat frames at the same irradiation conditions (i.e. beam quality (kV/filtration 

combination) and DAK) and integration time compared to ( , )rawFlat x y and ( , )Dark x y  

is the average over nd reference dark frames at the same integration time. To eliminate 

offset variations due to the temperature effect all the images need to be captured after 

warming up sufficiently the detector. In the current thesis all the detectors were warmed 

up for at least half an hour before the measurements. Finally, K is a scaling factor equal 

to ( , ) ( , )rawFlat x y Dark x y−   (Vedantham et al., 1999, Samei, 2003d, Hunt et al., 2004, 

Medic and Soltani, 2005, Greer, 2005, Arvanitis, 2007b and Tortajada et al., 2008) or to 

( , )rawFlat x y  (Moy and Bosset, 1999, Kwan et al., 2006, Schmidgunst et al., 2007 and 

Tortajada et al., 2008) or to ( )max ( , ) ( , )rawFlat x y Dark x y−  (Elbakri et al., 2007 and 

Elbakri et al., 2009). Usually, the scaling factor K equals to the average value of the 

offset corrected average reference flat image (first case). 

However, it is known that the number of frames nf used in the average reference flat 

image affects the SNR in the corrected image, due to the noise propagation. 

Consequently it affects the DQE, which expresses the ability of the detector to transfer 

the SNR from its input to the output (Cunningham, 2000). Moy and Bosset (1999) 

mentioned that it is desirable to average a high number of reference flat images to 

improve accuracy. They also mention that, if averaging is performed over nf identical 

frames, the noise power is divided by nf. The decrease in NPS when reference flat 

images are averaged follows the classic statistics: if nf is 1 the noise on the corrected 

image will be 2x that of the uncorrected image, if nf is 2 the respective increase of the 

noise will be 1.5x and in the case that nf is 8 this increase will be 1.125x. The effect of 

the dark image noise can be neglected when compared to the NPS of a flat image, 

because the latter is generally larger due to the photon noise. However, their study just 

quantifies the effect of nf frames on the NPS based on the statistics principle, which 

intrinsically implies that a relatively large number of reference frames is required to 

reduce it. More specifically, they suggest using 8-16 reference flat frames and 4-10 dark 
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frames. Other x-ray performance characterization studies combined 15 (Vedantham et 

al., 2000), 24 (Cunningham et al., 2007) or 48 flat frames (Hunt et al., 2004) to obtain 

the average reference flat image. In this thesis the effect of nf on the NPS and DQE 

values has been studied in detail, and an alternative method allowing the use of a 

minimum number of frames and simultaneously eliminating the effect of the propagated 

noise is suggested. 

Figure 3.17 shows the effect of the number of frames nf used for the average 

reference flat image on the DQE of the Hamamatsu C9732DK detector at 120.5 µGy 

and 28 kV with the W/Al combination recommended by the mammographic IEC 

standard (IEC 62220-1-2, 2007). It can be noted that the DQE is low when a single 

reference image is used and it increases as a function of the number of frames nf. On 

first inspection, this figure does not give precise information about the number of 

frames required to completely eliminate the effect of the propagated noise on the DQE 

values. 
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Figure 3.17: The effect of nf frames on the DQE of the Hamamatsu detector at 28 kV 

and 120.5 µGy 

However, useful information can be extracted from the combination of Eq. (2.29) 

and (2.30), i.e. the DQE is inversely proportional to the NPS which expresses the 

distribution of the variance over the spatial frequencies. Therefore, the 1/DQE 

parameter is proportional to the NPS. This parameter is calculated for three different 

spatial frequencies (2, 4 and 6 lp/mm) and normalized to 1. The normalization is 

achieved by dividing the 1/DQE values by the respective ones calculated using a single 
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reference flat image. Figure 3.18 shows that this normalized parameter follows a 

specific pattern as all three spatial frequencies. Also, this figure demonstrates that the 

normalized propagated noise in terms of variance follows exactly the same pattern. This 

parameter is simply calculated from the sum 1+1/nf  normalized to 1. 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5 6 7 8 9

Number of frames

N
or

m
 p

ro
pa

g 
no

is
e 

(v
ar

)

1/DQE at 2 lp/mm

1/DQE at 4 lp/mm

1/DQE at 6 lp/mm

propagated noise(var)

 
Figure 3.18: Normalized propagated noise (in terms of variance) and 1/DQE ratio at 

specific frequencies as a function of the number of frames nf used for the average 

reference flat image 

Our starting point is the simple error propagation formula for two independent (or 

uncorrelated) values A and B multiplied or divided. In this case the fractional 

uncertainty is propagated as follows (Taylor, 1997): 

2 2 2
C A B

C A B
δ δ δ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
 

(3.5). 

where δ expresses the uncertainty of the values. In our case the signal is expressed from 

the average DN value and the noise from the r.m.s. standard deviation (in DN). 

Assuming that A corresponds to the raw flat image on the nominator of Eq. (3.4) and B 

corresponds to the reference flat image the above equation becomes:  
2 2 2
c A Bσ σ σ= +  

(3.6). 

The denominator of Eq. (3.5) is excluded because it is assumed that A≅ B≅ C. The 

standard error propagation analysis is followed because A and B are uncorrelated values 

due to the fact that the reference average flat image does not include the frame A itself. 

It may be observed that Eq. (3.6) is equivalent to the one which describes the 
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propagation of noise for two uncorrelated values which are added or subtracted. If nf 

equals 1, the noise in the reference image is almost equal to the noise of the raw flat 

image, so the previous equation becomes:  

2 22c Aσ σ=  
(3.7). 

In this case, the noise in the corrected flat image is twice as much that of the raw flat 

image, as mentioned by Moy and Bosset (1999). If nf is higher than 1, the noise of the 

reference image is divided by this value. Following the same principle, for nf frames we 

can write: 

2
2 A
B

fn
σσ ≅  

(3.8). 

Therefore, Eq. (3.6) can be written as: 

2
2 2 2 1(1 )A
c A A

f fn n
σσ σ σ= + = +  

(3.9) 

which expresses the total noise in the corrected image (in terms of variance) for nf 

frames. If nf is very high, the propagated noise is negligible and 2 2
c Aσ σ= . Practically, 

this happens when the curves in Figure 3.18 reach the value 0.5, which corresponds to 

double DQE values compared to those calculated using a single reference flat image. 

Table 3.8 shows the effect of the number of frames nf on the r.m.s. standard deviation 

and the variance. Both parameters are shown because the former is directly related to 

the noise of the output digital image, and the latter affects the DQE. 

Table 3.8: The effect of nf frames used in the reference image on the noise of the 

corrected image 

Number of frames nf % prop. noise (Std) % prop. noise (Var) 

10 4.9 9.9 

15 3.3 6.6 

20 2.4 4.9 

25 2.0 3.9 

30 1.6 3.3 

50 1.0 1.9 

100 0.5 0.9 
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It can be seen that 10 reference frames affect the DQE by around 10 %, 15 reference 

frames by 6.6 % and 25 reference frames by around 4 %. The effect of the noise on the 

DQE of the corrected image is less than 1 % when 100 or more frames are used. To get 

a practically noise free image, e.g. <0.1 % noise in terms of variance, around 1000 

frames are required. However, Eq. (3.9) can be used to compensate for the number of 

frames nf used. This compensation can be applied using the following formula 

(Konstantinidis et al., 2011b): 

cor cor
cor,free cor

f f

Flat (x, y) Flat (x, y)Flat (x, y) (Flat (x, y) ( ))
1 11 1
n n

= + −
+ +

 

(3.10) 
where Flatcor(x,y) is the gain and offset corrected flat image defined in Eq. (3.4), and the 

second term of the equation is a constant value used to rescale the suppressed average 

value of the image (in DN). The rescaling is required because the DQE depends on the 

average value of the digital image (which is the aforementioned “large area signal” 

parameter in the NNPS calculation). Eq. (3.9) is suggested to compensate for any 

number of frames nf used for the average reference flat image.  

Figure 3.19 demonstrates the validity of Eq. (3.10) in four cases where different 

number of frames nf are used for the average reference flat image (1, 4, 6 and 9 frames 

respectively). They all result in identical DQE values, which are twice as high those 

obtained by using a single reference flat image (Figure 3.17).  To quantify the above, 

the ratio between the DQE calculated using nf=1and the ones using compensation for 

the propagated uncorrelated noise was found to be 0.501 ± 0.007 over all four cases. 
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Figure 3.19:  DQE of the Hamamatsu detector with reduced propagated noise 
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To further validate the suggested algorithm, the results of this method were 

compared to those obtained using the subtraction-based FPN reduction algorithm. The 

latter method is mainly used in the electro-optical evaluation, and can be found in a 

small number of x-ray performance characterization studies (Evans et al., 2002, Yorker 

et al., 2002, Suryanarayanan et al., 2003, Burgess, 2004, Illers et al., 2004, Li and 

Dobbins III, 2007 and Yun et al., 2009). For clarity reasons, the latter method is 

referred to as “PTC algorithm” (see section 2.3.3). To implement the PTC algorithm in 

this study, two consecutive raw flat frames are subtracted to exclude the FPN. The 

difference flat image is divided by the square root of 2 to compensate for the propagated 

uncorrelated noise in terms of standard deviation (Eq. (3.7)). To rescale the difference 

image, the average DN over the 2 raw flat frames is calculated, and then the average DN 

of the average dark image is subtracted from this value (offset correction). This constant 

value is added to the modified (propagated noise corrected) difference image to get the 

signal (mean DN) and the noise (variance DN2) required for the NPS and DQE 

calculation. Another study (Suryanarayanan et al. (2003)) subtracted a raw flat frame 

from an average over 16 frames reference flat image at the same acquisition conditions. 

They did this in order to eliminate the FPN and simultaneously reduce the introduced 

propagated noise. Figure 3.19 shows that both methods result in identical DQE results. 

Both of them require a minimum number of flat frames. The suggested algorithm 

requires at least 2 frames, 1 raw flat frame and 1 reference frame. The same happens 

using the PTC algorithm. 

The validity of the suggested method was tested on the Dexela detector as well 

(Figure 3.20). In this specific case, the DQE was examined at 74 kV and 3.1 µGy. 

Again, 3 different numbers of frames nf (1, 6 and 9 frames) were used for the reference 

flat image and compensated for the respective additive uncorrelated noise. The ratio 

between the DQE calculated using nf=1 and the ones using compensation for the 

additive uncorrelated noise is 0.500 ± 0.005 in all 3 cases.  
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Figure 3.20: DQE of the Dexela detector using algorithms to reduce the prop. noise 

The suggested gain and offset correction algorithm compensates for any number of 

nf flat frames used. It requires a minimum number of reference frames, down to a single 

frame. In practical terms, this means smaller memory (capacity) size and reduced time 

to capture the reference frames. Also, the effect of reference frames on the NPS and 

DQE is precisely quantified in the case that the gold standard gain and offset correction 

algorithm (Eq. (3.4)) is employed. The validity of the suggested algorithm was further 

tested by comparison with the gain correction method mainly used in the electro-optical 

evaluation (PTC) of digital sensors. Both methods resulted in identical results. Hence, 

the suggested correction method can be employed in the x-ray performance evaluation 

of digital detectors, independently of the number of flat frames nf. 

3.3.4 Detection and removal of defective pixels (outliers) 

Almost all digital detectors contain a certain proportion of pixels that are defective 

and are usually referred to as “bad” pixels. These pixels do not behave as expected due 

to defects in design of the semiconductor chip or manufacturing errors. Furthermore, 

they may appear when the operating conditions are harsh and the detectors are operated 

for long integration time. According to Ghosh et al. (2008) there are five common types 

of defective pixels: a) dead pixels, b) stuck pixels, c) hot pixels, d) abnormally sensitive 

pixels and e) column defects. Dead pixels are completely insensitive to the input signal 

and their value is always zero, i.e. they appear as black spots in the images. They exist 

due to defects in the hardware, i.e. the pixel’s photodiode may not integrate charge or 

the readout amplifier may have malfunctioned. Stuck pixels demonstrate constantly the 
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maximum value of the ADC and they appear as white spots in the image. They are 

caused by fabrication errors that result in odd pixels getting saturated or due to failure of 

the output transistor. Hot pixels are pixels with unusually large dark current due to 

higher leakage of charge. They appear at fixed spatial locations in a detector. The dark 

current increases as a function of the temperature. Therefore, shorter integration time 

and detector cooling can be used to eliminate the number of hot pixels. Abnormally 

sensitive pixels are the pixels that exhibit abnormally greater (hypersensitive) or lower 

(hyposensitive) sensitivity compared to the average intensity. They can also manifest 

due to the nonuniformity in the readout and digitization electronics of individual pixels. 

Finally, specific single or multiple columns of the detector can be bad due to fabrication 

faults during the manufacturing stage. Stitched detectors may contain one to three 

columns with limited (or zero) sensitivity in every stitched peripheral block because 

they contain a high number of readout electronics inside each pixel.  

A number of defective pixels is removed through the gain and offset correction. 

However, some of them remain unaffected because they do not behave as expected. 

Therefore, their presence in the corrected flat images may decrease the calculated DQE 

due to the increase of the standard deviation (which expresses the noise). To eliminate 

their effect on the DQE calculation a custom built software was developed in MATLAB 

version 7.10 (The MathWorks, Natick, MA, USA). The developed algorithm detected 

the defective pixels based on a simple statistical analysis and then removed them using 

adaptive median filtering. Two ways to locate the defective pixels (outliers) were 

examined in this thesis. The first one used the interquartile range methodology to locate 

the outliers (NIST/SEMATECH, 2011). Briefly, the lower and upper quartiles (defined 

as the 25th and 75th percentiles) of the image histogram are defined as Q1 and Q2 

respectively. Therefore, the difference (Q2 - Q1) is called the interquartile range (IQ). If 

the pixel value is lower than Q1-K IQ⋅  or higher than Q2+K IQ⋅  is considered an 

outlier. The parameter K is a constant number used to define the lower and upper limit 

(fence). In this thesis it was found that K equal to 5 sufficiently detected the outliers. 

The second detection method defined as outliers the pixels that their values were at least 

4.5 times higher or lower compared to the standard deviation of the image. It resulted in 

similar output results compared to the first method. Both of them are based on arbitrary 

limits which sufficiently detect the defective pixels. For simplicity, the second detection 

method was applied on the gain and offset corrected flat images used for the NNPS 
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calculation. In order to remove the detected outliers a modified version of the adaptive 

median filter was used. The adaptive median filter is commonly used in image 

processing to selectively detect and remove the salt and pepper noise (i.e. extremely low 

or high pixel values) in the image (Gonzalez and Woods, 2008). Briefly, a median filter 

mask of small dimensions (i.e. 3x3 in the current thesis) scans the image by comparing 

the median pixel value with the minimum and maximum value of the mask. If the 

median pixel value is within the limits of the mask then the algorithm compares the 

central pixel of the mask with the current limits. If the central pixel is an outlier then the 

algorithm outputs the median pixel value of the mask. Otherwise, it retains the original 

value. If the median pixel value is an outlier the size of the filter mask increases until 

either the median value is not an outlier or a maximum window size (i.e. 15x15 in the 

current thesis) is reached. The advantages of the adaptive median filter compared to the 

“traditional” one (i.e. 3x3 median filter) are that it seeks to preserve detail while 

smoothing nonimpulse noise and reduces distortion, such as excessive thinning or 

thickening of object boundaries. A disadvantage of the specific filter is that it may not 

locate and remove sufficiently all the outliers in a uniform (flat) image. For instance, a 

hot pixel may exist in a uniform area. Therefore, the median value of this area is equal 

to the minimum one. In this case the algorithm increases the size of the filter as 

mentioned before. If it reaches the maximum allowed size and the median value is still 

equal to the minimum one the central value (which can be an outlier) of the mask 

remains the same. This is an extreme case but it may happen if the maximum allowed 

size of the mask is not selected properly. For the same reason, the adaptive median filter 

does not detect column defects with exactly the same number in all pixels. 

To enhance the detection of the outliers in the flat images it was decided to use the 

statistical analysis method based on the standard deviation of the image to create a pixel 

correction map (i.e. zeros in the location of the outliers and ones elsewhere). Then, this 

map was multiplied to the original image and the adaptive median filtering was applied 

to substitute only the outliers. Another advantage of the pixel correction map is that it 

easily allows the calculation of the total number of defective pixels in the array and their 

proportion (%) compared to the whole array. It was found that the defective pixels were 

0.1 % of the Anrad detector’s array, less than 0.1 % in Dexela, LAS and RadEye 

detectors and almost 0 % in the Hamamatsu detector.  
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Figure 3.21 shows an example of the automatic detection and removal of column 

defects present on the Dexela detector. It can be observed that the values of the 

defective pixels are more than ten times smaller compared to the others. However, for 

representation purpose the original image has got the same imaging scale as the 

corrected one. The corrected pixel values are within the limits of the normal pixels. 

 
Figure 3.21: a) original image with column defects and b) the corrected one using an 

algorithm to automatically detect and correct the outliers. 

In conclusion, the adaptive median filter is able to detect and remove individual 

(salt and pepper noise) or small clusters of defective pixels in an image. It does not 

work properly in flat images and column defects with the same pixel value. Also, it is 

time consuming because it scans the whole image pixel by pixel and once it finds a 

spike it increases the size of the mask and repeats the process. On the other hand, the 

suggested modification of the adaptive median filter is faster and can be used only in 

flat images or low contrast phantom images with homogeneous background because it 

detects the outliers based on the histogram of the whole image. It was able to 

sufficiently detect and remove the individual spikes and column defects in the flat 

images.   

3.3.5 Validation of the x-ray performance evaluation algorithm 

There are several commercial and scientific software packages available to calculate 

the MTF, NPS and DQE of digital x-ray detectors. A commercial available software 

package is JDQE (Elbakri, 2010) which is an ImageJ (Rasband, 1997-2011) plugin 

based on Elbakri’s work on x-ray characterization of digital detectors (Elbakri et al., 

2006, Elbakri et al., 2007 and Elbakri et al., 2009). Two available software packages 
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distributed to researchers and members of the scientific community are MIQuaELa 

(Ayala et al., 2009) which is a MATLAB-based GUI and OBJ_JQ_reduced (Marshall, 

2009c) which is an IDL-based GUI based on Marshall’s work (Marshall, 2006a, 

Marshall, 2006b, Marshall, 2007, Marshall, 2009a and Marshall, 2009b). The last two 

software packages were available throughout this study. However, it was decided to 

develop a customised piece of software written in MATLAB version 7.10 (The 

MathWorks, Natick, MA, USA) in order to have the flexibility in adjusting every step in 

the process of the x-ray performance evaluation according to the IEC standard (IEC 

62220-1, 2003 and IEC 62220-1-2, 2007). OBJ_JQ_reduced is the most common x-ray 

performance evaluation software in the UK, supported by the Institute of Physics and 

Engineering in Medicine (IPEM, 2010). Therefore, a comparison between the custom 

built MATLAB software and the OBJ_JQ_reduced results was made in order to 

validate the developed software.  

The comparison was made on the Dexela’s x-ray detector at 74 kV and 3.1 µGy. 

The same set of gain and offset corrected edge and flat images was analysed from the 

two sets of code in order to compare the results. The standard parameters were selected 

in OBJ_JQ_reduced software without extra filtering on the LSF, according to the IEC 

standard. Figure 3.22 shows the average pMTF values calculated using the custom built 

MATLAB software in comparison to the respective values calculated using the 

OBJ_JQ_reduced software. Both curves are almost identical with average absolute 

difference equal to 1.7 %. 
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Figure 3.22: Average pMTF values calculated in this study in comparison to the 

respective values calculated using the OBJ_JQ_reduced software 
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Figure 3.23 compares the average NNPS values extracted from the two software 

packages. Again, both curves are almost identical (4.4 % average difference). 
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Figure 3.23: Average NNPS values calculated in this study in comparison to the 

respective values calculated using the OBJ_JQ_reduced software 

Figure 3.24 shows the average DQE values calculated using the custom built 

MATLAB software in comparison to the respective values calculated using the 

OBJ_JQ_reduced software. Both DQE curves are similar with a slight difference. The 

absolute difference between the two curves is 4.6 %, probably due to different treatment 

of the statistical variations. However, according to the IEC standard an uncertainty of 

the MTF in the range of 1-5 % and a resultant uncertainty of the DQE in the range of 2-

10 % is acceptable (IEC 62220-1, 2003, Samei et al., 2005 and IEC 62220-1-2, 2007). 

0
0.1
0.2

0.3
0.4
0.5
0.6

0.7
0.8

0 1 2 3 4 5 6 7

Spatial frequency (lp/mm)

D
Q

E 
A

ve
ra

ge

DQE Konstantinidis
DQE Marshall

 
Figure 3.24: Average DQE values calculated in this study in comparison to the 

respective values calculated using the OBJ_JQ_reduced software 



Chapter 3 
 

 125

3.3.6 Evaluation using Beam Quality 1a (W/Rh at 25 kV; Mammography) 

Figure 3.25 illustrates the signal transfer of the Dexela detector in both HFW and 

LFW modes at 25 kV using W/Rh combination. The signal transfer of the detector is 

linear with coefficients of determination (R2) greater than 0.9996 in both cases. It can be 

seen that the sensitivity of the detector is very high in the LFW mode due to the higher 

conversion gain G (DN/e-; see section 3.2.5). 
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Figure 3.25: STP curves with fitting function equations displayed at 25 kV using 150 

µm CsI:Tl 

The mammographic DAK range used for the x-ray characterisation of the detector 

was from 26.4 to 211.3 µGy in the HFW mode. Average ranges normally found in the 

literature are of 100-120 µGy (Moy, 2000a, Rowlands and Yorkston, 2000b, Jee et al., 

2003 and Ghetti et al., 2008). The IEC standard for mammography (IEC 62220-1-2, 

2007) recommends that for a complete characterization of an x-ray digital detector the 

exposure range should be at least between half and double the “reference” level. The 

wide range used in this case was chosen to meet this condition. The respective exposure 

level for the LFW mode was from 8.3 to 66.0 µGy. The minimum DAK level was 

reached to study the performance of some detectors under breast tomosynthesis 

conditions, where around 15 views are combined and the average detector DAK per 

view is of the order of 7 µGy. 

Figure 3.26 shows the horizontal, vertical and average pMTF of the Dexela CMOS 

x-ray detector at 25 kV. The thin CsI:Tl scintillator was used because it demonstrates 

high x-ray detection efficiency at low energy (QDE=0.808 and EAE=0.743; Table 3.7). 

The sinc function is also presented for comparison. A slight anisotropic behaviour is 
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observed on the pMTF curves. In particular, the vertical pMTF is around 14 % higher at 

FNyq. It should be noted that the vertical dimension corresponds to the column readout 

bus. The “chest wall” direction corresponds to the left side of the detector. There is a 

possibility that this happens due to different focal spot dimensions in different 

directions. Also, there is a suspicion that the thin polyurethane foam layer used at the 

time for compression between the scintillator and the graphite cover was slightly folded 

at one end. In this case a different pressure was applied on the scintillator at different 

areas leading to different spatial resolution between horizontal and vertical orientations. 

However, the Dexela detector showed higher isotropic behaviour when investigated at 

UCL (see Figure 3.31a). Therefore, the observed anisotropy is possibly due to external 

conditions. The average pMTF has a moderate residual value (around 0.15) at FNyq. 

Thus, an amount of high frequency signal beyond the Nyquist frequency may be aliased 

by the detector. The measured pMTF set of data was used for the calculation of the 

DQE in both HFW and LFW modes because the full well capacity switch does not 

modify the resolution of the detector. The spatial frequencies at 50 % and 10 % pMTF 

levels are sometimes mentioned in the literature to compare different x-ray imaging 

systems and define the resolution limit of the detector respectively. The Dexela detector 

at 25 kV appears horizontal and vertical pMTF values equal to 0.5 at 2.6 and 2.7 lp/mm. 

The horizontal, vertical and average pMTFs are 0.1 at 7.5, 7.9 and 7.7 lp/mm 

respectively.  
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Figure 3.26: pMTF of the Dexela CMOS x-ray detector at 25 kV using 150 µm CsI:Tl 

As in the calculation of the pMTF and NNPS, the DQE is presented in spatial 

frequencies from 0.5 to FNyq with an interval of 0.5 lp/mm according to the IEC 
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standard (IEC 62220-1, 2003 and IEC 62220-1-2, 2007).  As mentioned in section 2.4.5, 

the DQE at zero frequency is excluded because low-frequency artifacts lead to 

underestimation of DQE. Marshall estimated the DQE(0) values by applying either 

first-order linear extrapolation (Marshall, 2006a) or second-order polynomial 

extrapolation (Marshall, 2009a and Marshall, 2009b) to the measured DQE(f) curves. 

However, in the current study there is not a particular need to estimate the DQE(0). 

Therefore the minimum spatial frequency is 0.5 lp/mm according to the IEC standard. 

Figure 3.27 presents the average DQE curves of the Dexela detector in the HFW 

mode using W/Rh combination at 25 kV in the exposure range 26.4-211.3 µGy. As 

illustrated in this figure the DQE at 0.5 lp/mm ranges from 0.54 at 26.4 µGy to 0.63 at 

211.3 µGy.  
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Figure 3.27: Average DQE of the Dexela detector in the HFW mode and 25 kV 

Figure 3.28 illustrates the respective average DQE of the same detector in the LFW 

mode. The DAK range is smaller (8.3 to 66.0 µGy) due to the higher sensitivity of the 

detector which leads to quicker saturation. The DQE(0.5) at 8.3 µGy is 0.57 which 

demonstrates the ability of the detector to be used in breast tomosynthesis conditions. 

Finally, the DQE(0.5) at 66.0 µGy is 0.62, i.e. the SNR performance of the detector 

reaches the same levels at three times less exposure compared to the HFW mode. This 

occurs due to the increase on the conversion gain G(DN/e-) by a factor of three (see 

Table 3.3 in section 3.2.5). The deviation of the DQE curves is smaller due to the 

increased linearity when the detector is operated in the LFW mode (see sections 3.2.5 

and 3.3.11). 



Chapter 3 
 

 128

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6 7

Spatial frequency (lp/mm)

D
Q

E

8.3 uGy
16.5 uGy
24.8 uGy
33.0 uGy
41.3 uGy
49.5 uGy
57.8 uGy
66.0 uGy

 
Figure 3.28: Average DQE of the Dexela detector in the LFW mode and 25 kV 

3.3.7 Evaluation using Beam Quality 1b (W/Al at 28 kV; Mammography) 

As mentioned in section 2.4.1, the STP curve gives information about the sensitivity 

and linearity of the signal transfer of x-ray detectors. Figure 3.29 shows the STP curves 

with linear fitting function equations for LAS, Dexela at both HFW and LFW modes 

and Hamamatsu detectors at 28 kV. These detectors show relatively high sensitivity to 

the incident x-ray photons. All of them show sufficient linearity in the signal transfer 

with R2 greater than 0.999. It was found that the coefficient of variation (COV) did not 

exceed 4 % on the STP curves of all beam qualities. Hence, for clarity error bars on the 

data were not included on the STP curves.  
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Figure 3.29: STP curves with fitting function equations for the high sensitivity detectors 

at 28 kV 
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Figure 3.30 demonstrates the respective STP curves for Anrad and RadEye detectors 

which present lower x-ray sensitivity. They are presented separately so that they can be 

shown in a clearer fashion. It is observed that they do not have as high a linearity as the 

previous detectors. The nonlinearity of RadEye detector is already mentioned in 

previous studies and some solutions are suggested in the literature (Rad-icon Imaging 

Corp., 2003 and Cao and Peter, 2008). Further details about this are given in section 

3.3.11. However, both detectors meet one of the linearity criteria set by the IEC 

standard, i.e. R2≥0.99 (IEC 62220-1, 2003 and IEC 62220-1-2, 2007). The exposure 

range of all mentioned STP curves is from 7.1 to 398.3 µGy. The reason for this overall 

broad range is to reach exposures which are at least half and double the “reference” 

level (~ 100-120 µGy DAK) according to the mammographic IEC standard (IEC 

62220-1-2, 2007). Furthermore, very high DAK levels were reached (> 300 µGy) for 

the evaluation of Hamamatsu detector to study the observed quantum limited 

performance of the detector according to Saunders et al. (2005) over a wide exposure 

range. 
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Figure 3.30: STP curves with fitting function equations for the low sensitivity detectors  

Figure 3.31 shows the pMTF values of the investigated detectors. It is observed that 

the pMTF of LAS is quite low with its first zero before the FNyq (at around 9.5 lp/mm). 

This happens due to unoptimized usage of the optical coupling gel between the FOP and 

the detector surface (see section 1.7). This behaviour implies insignificant aliasing 

because the signal is already zero at FNyq. The vertical pMTF is slightly higher 

compared to the horizontal one (5.6 % average relative difference). A similar behaviour 

was observed for the other three digital detectors evaluated using the same x-ray source. 
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In particular, the vertical pMTF curve is higher by 2.2% for Hamamatsu, 3.9 % for 

Dexela and 0.9 % for RadEye detectors (average relative difference). All detectors were 

placed at the same orientation, i.e. the vertical direction corresponds to the column 

readout bus. Probably the reason for the small anisotropic behaviour is the asymmetry 

of the focal spot. Preliminary measurements showed that the focal spot is 12 % higher 

in the horizontal direction. The “chest wall” direction corresponds to the left side of 

Dexela and Hamamatsu detectors. Both LAS and RadEye detectors do not have a “chest 

wall” direction. The edge test object was put directly on the top of each detector’s 

shielding box to minimize the effect of the focal spot blurring (or geometric MTF) on 

the measurements. Nevertheless, from the observed behaviour possibly the focal spot 

introduces a blurring to a small extent. Therefore, the intrinsic behaviour of LAS, 

Hamamatsu, Dexela and RadEye detectors can be considered isotropic.   

On the other hand, the Anrad SMAM detector demonstrates higher anisotropic 

behaviour, i.e. the horizontal pMTF is higher by 17 % compared to the vertical one at 

FNyq. However, both MTF curves reach the first zero value at around 12 lp/mm, which 

demonstrates that the pixel pitch is the same in both directions. As mentioned in section 

3.3.1 a different W anode x-ray tube was used for the evaluation of this detector. The 

focal spot size of this anode for the particular tube load was not measured. However, an 

anisotropic behaviour was observed as well in Bissonnette et al. (2005) where they 

examine the x-ray performance evaluation of the Anrad LMAM detector. As stated in 

section 1.6.4 the Anrad LMAM detector has similar properties compared to the SMAM 

and the same pixel pitch. Therefore, identical pMTF curves are expected. In this study 

the pMTF of LMAM detector is 9 % higher in one direction at FNyq (the authors do not 

provide any explanation for this effect). A comparison between the average pMTF of 

LMAM detector and the current one resulted in an average difference equal to 0.9 %. A 

second comparison between the current results and the average pMTF of LMAM 

detector made by Tousignant et al. (2007) resulted in an average difference of 1.2 % 

between the curves. Both separate comparisons confirm the validity of the current 

pMTF measurements. The Hamamatsu detector demonstrates higher pMTF values than 

LAS. Its average pMTF value is around 0.09 at FNyq which corresponds to a small 

aliasing contribution. Concerning the Dexela detector, the thin CsI:Tl scintillator was 

used because it demonstrates high x-ray detection efficiency at low energy (QDE=0.754 

and EAE=0.683, see Table 3.7) and simultaneously retains the spatial resolution which 
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is an important task in mammography. The average pMTF at FNyq is higher than the 

respective ones for LAS and Hamamatsu detectors at this specific limit (i.e. it is around 

0.21). The pMTF curves of the Dexela detector at 28 kV are higher compared to the 

respective at 25 kV (Figure 3.26). A similar behaviour is observed on the NNPS values. 

Probably the scintillator was not optimally coupled at the time. The pMTF of RadEye 

detector is zero before the FNyq (at around 17.5 lp/mm), despite the fact that a thin (85 

µm thick) scintillator was used. The reason for this is the use of a Gd2O2S:Tb granular 

scintillator instead of a columnar structure CsI:Tl.  

 
Figure 3.31: pMTF values of a) LAS, b) Hamamatsu, c) Dexela, d) Anrad and e) 

RadEye detectors. 
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Anrad SMAM detector does not suffer from scintillator blurring because is a direct 

conversion detector. Hence, it demonstrates high pMTF values, which are close to the 

ideal ones (sinc function). More specifically, the ratio between the measured average 

pMTF and the sinc function drops from 1 to 0.78 in the frequency range from zero to 

FNyq. Probably this happens due to the focal spot blurring and the relatively low pixel 

fill factor (70 %).  Also, according to Yorker et al. (2002) the secondary K-fluorescence 

x-ray photons created in the Se layer decrease the pMTF. The K-edge of Se is 12.7 keV, 

while the x-ray photon spectrum used in mammography contains higher energies. 

Therefore, a high number of secondary K-fluorescence x-ray photons can travel some 

distance in the layer and be absorbed away from the original incidence point. 

Furthermore, backscattering of x-rays from the glass substrate underneath the Se layer 

(see Figure 1.5) may decrease the pMTF to some extent. Also, two studies mention that 

the use of a specific glass substrate material is responsible for generation of additional 

secondary K-fluorescence x-ray photons (Yorkston et al., 1998 and Samei and Flynn, 

2003). The high average pMTF value (around 0.53) at FNyq suggests significant aliasing 

contribution from higher frequencies, which is a common effect on direct conversion 

detectors. 

All the average pMTF curves are compared with one another in Figure 3.32 and 

Table 3.9. It is observed that Anrad SMAM detector demonstrates the highest average 

pMTF values and LAS the lowest ones. RadEye detector presents the second highest 

pMTF values due to the combination of thin scintillator (85 µm) and very small pixel 

pitch (22.5 µm). Hamamatsu and Dexela detectors show almost the same average pMTF 

values due to similar scintillator thickness and pixel pitch combinations (160 µm and 85 

µm the former and 150 µm and 74.8 µm the later). 
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Figure 3.32: Average pMTF curves of the investigated digital x-ray detectors at 28 kV 

Table 3.9: Spatial frequency values corresponding to two pMTF levels (10 and 50 %) 

Detector pMTF 10% 
(x;y-lp/mm) 

pMTF 50% 
(x;y-lp/mm) 

LAS 4.5 1.5 

Hamamatsu 9.4 3.3 

Dexela 8.8 3.3 

Anrad 10.5; 10 6.1; 5.3 

RadEye 10.6 4.3 

Figure 3.33 shows a representative 2-D NNPS matrix which corresponds to LAS 

detector at 60.3 µGy DAK. A number of spikes is observed close to the vertical v axis, 

which indicate the presence of periodic noise despite the fact that a different set of read 

out electronics (namely the 3rd generation of stack board) is used in this case compared 

to the electro-optical evaluation. Nevertheless, it was found that using this specific set 

of electronics the magnitude of the periodic noise is smaller. Hence, it was decided not 

to apply the aforementioned EMI noise reduction algorithm on the x-ray performance 

evaluation of the detectors.  
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Figure 3.33: 2-D NNPS matrix of LAS detector at 60.3 µGy DAK level 

Figure 3.34 shows a set of representative 1-D NNPS curves for all detectors at 28 

kV (W/Al). The NNPS curves of LAS detector demonstrate a spike at 7.5 lp/mm due to 

the presence of the periodic noise. It is observed that the NNPS curves of Anrad 

detector are almost independent of the spatial frequency. This occurs because it is a 

direct conversion detector and the effect of aliasing is very strong. All detectors expect 

the RadEye present NNPS curves independent of the DAK level. Finally, the NNPS of 

RadEye detector at specific DAK levels demonstrate slightly higher values at 0.5 lp/mm 

compared to the expected ones. Probably this happens due to unoptimized detrending. 
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Figure 3.34: Average NNPS curves at 28 kV (W/Al) for a) LAS, b) Hamamatsu, c) 

Dexela HFW, d) Dexela LFW, e) Anrad SMAM and f) RadEye detectors. The x axis 

shows the spatial frequency (lp/mm) while the y axis represents the NNPS (mm2). 

It is observed from Figure 3.35a) that the DQE of LAS increases as a function of the 

DAK level (e.g. the DQE(0.5) is in the range 0.61-0.73). It demonstrates high DQE 

values at low spatial frequencies, and lower ones at medium frequencies (>4.5 lp/mm). 

Therefore, it is attractive for fine detail anatomic structures such as microcalcifications 

with diameter greater than 300 µm. Furthermore, the performance of the detector at 7.2 
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µGy shows that it can be used for breast tomosynthesis. LAS DQE curves do not 

present quantum limited behaviour, i.e. they do not overlap at high DAK levels, 

probably due to the inherent V/e- nonlinearity of CMOS APS sensors (see section 

3.3.11). On the other hand, Hamamatsu detector presents a quantum limited 

performance according to Saunders et al. (2005) over a broad exposure range (e.g. the 

DQE(1) is in the range 0.45-0.47). This is related to the linear SNR transfer of 

Hamamatsu detector. A small drop of DQE curves is observed at 0.5 lp/mm, probably 

due to remnant low-frequency trends that affect the NNPS calculation. The DQE curve 

of the lowest DAK level (28.7 µGy) is slightly lower, probably due to the high read 

noise (1250 e- r.m.s. nominal level) of the detector. The Dexela detector in the HFW 

mode presents higher DQE values compared to Hamamatsu detector. As in the case of 

LAS, the Dexela detector in the HFW mode does not present quantum limited 

behaviour (e.g. the DQE(0.5) is in the range 0.49-0.57). At the same exposure level, 

DQE values are higher in the LFW mode due to the decreased electronic noise (section 

3.2.5). This is more evident at 7.1 µGy, where the average relative difference between 

the two modes is about 3 %. However, at high exposures the HFW DQE curves reach 

higher values than the LFW DQE curves, due to the lower effect of nonlinearity when 

the detector is operated in the LFW mode (see sections 3.2.5  and 3.3.11). The high 

DQE values at 7.1 µGy (in both full well modes) promise high detectability in breast 

tomosynthesis applications.  
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Figure 3.35: Average DQE curves at 28 kV (W/Al) for a) LAS, b) Hamamatsu, c) 

Dexela HFW, d) Dexela LFW, e) Anrad SMAM and f) RadEye detectors. The x axis 

corresponds to spatial frequency (lp/mm) while the y axis represents the DQE values.  

Anrad SMAM detector demonstrates lower DQE values at low DAK levels (20.7 

and 38.0 µGy), probably due to the strong effect of the read noise (5200 e- r.m.s; Table 

1.1). However, at high DAK levels (84.1-162.1 µGy) the DQE curves are overlapped, 

demonstrating a quantum limited behaviour. The DQE curves of RadEye HR detector 

demonstrate a strange behaviour. The DQE of the lowest DAK level (28.7 µGy) appears 
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the highest values at low frequencies and simultaneously the lowest ones at frequencies 

higher than 10 lp/mm. The DQE curves of the two subsequent DAK levels follow a 

similar pattern, while the DQE curves at higher DAK levels are almost overlapped. 

Probably this happens due to the observed nonlinearity of RadEye detectors at low 

signal levels (Rad-icon Imaging Corp., 2003 and Cao and Peter, 2008; see section 

3.3.11). Also, most of the DQE curves show a drop at 0.5 lp/mm which indicates 

residual low-frequency trends (probably an unoptimized detrending matrix was applied 

in this case). The moderate DQE values (0.3-0.4 at low frequencies) of this detector 

indicate a medium SNR transfer. 

A performance comparison between the five detectors at two DAK levels (around 

60 and 120 µGy) is presented in Figure 3.36. The DQE curves of LAS and Dexela (in 

the LFW mode) detectors were calculated at around 60 µGy DAK level. This happens 

because both detectors demonstrate high x-ray sensitivity which leads to limited 

exposure range. On the other hand, Hamamatsu, Dexela in the HFW mode, Anrad and 

RadEye detectors appear to have lower sensitivity. Hence, their DQE curves at around 

120 µGy are presented. LAS detector presents the highest DQE values at low 

frequencies (less than 4 lp/mm) and the lowest ones at higher frequencies (more than 5 

lp/mm) due to its limited pMTF. Anrad SMAM detector appears the second highest 

detectability at low frequencies, less than 2.5 lp/mm. At this frequency range it appears 

moderate DQE values, i.e. more than 0.5.  However, at higher frequencies the detector’s 

detectability is limited, probably due to the aliasing noise. On the other hand, Dexela 

detector in the HFW mode presents DQE values between 0.5 and 0.55 in a broad 

frequency range (up to 4 lp/mm). This detector demonstrate the highest DQE values at 

higher frequencies, resulting to a reliable solution up to almost 6 lp/mm. This behaviour 

indicates that the noise does not degrade significantly the detector’s detectability. It is 

observed that the DQE curve of the Dexela detector in the LFW mode (60 µGy) is 

almost the same to the respective one in the HFW mode (120 µGy), due to the lower 

read noise and higher sensitivity. Hence, the LFW mode can be used to achieve the 

same image quality in mammography at half dose. Hamamatsu detector appears 

moderate DQE values, less than 0.5 at low frequencies. Finally, RadEye detector 

presents limited and almost consistent DQE values in a broad frequency range, probably 

due to its high pMTF values.  
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Figure 3.36: Average DQE curves of the investigated detectors at specific DAK levels 

and 28 kV 

Table 3.10 compares the x-ray performance of the detectors in this study to others 

found in the literature. In particular, Fujifilm Amulet (Rivetti et al., 2009), Sectra 

MicroDose (Honey et al., 2006), Fischer Senoscan and General Electric Senographe 

2000D (Lazzari et al., 2007) and Hologic Lorad Selenia (Blake et al., 2006) were 

evaluated using similar beam qualities according to the mammographic IEC standard 

(IEC 62220-1-2, 2007). However, there are some differences in the beam quality 

(anode/filtration combination and energy), experimental conditions, type and thickness 

of the x-ray detecting material (scintillator or semiconducting material) and data 

processing which may affect the results. In order to eliminate these differences, the x-

ray performances of commercial detectors using W/Al or W/Rh combinations at 28 kV 

are presented in this thesis, with the exception of GE Senographe 200D and Hologic 

Lorad Selenia systems (Mo/Mo at 28 kV), which are broadly used in mammography. To 

the best of my knowledge, no one has characterized these detectors using W/Al or 

W/Rh combination for mammographic conditions. The comparison shows that the 

Anrad SMAM and Remote RadEye HR detectors have competitive pMTF values (at 50 

% level) compared to other detectors. On the other hand, LAS, Dexela and Anrad 

detectors demonstrate high DQE peak values, due to the increased relationship between 

the pMTF and NNPS parameters.  

 

 

 



Chapter 3 
 

 140

Table 3.10: Comparison of the x-ray performance of different detectors used in 

mammography 

Detector Detector 
technology 

X-ray 
absorber 
material 

Radiation 
quality 

pMTF 50%  
(x;y – lp/mm) 

DQE peak (x;y) at 
specific DAK level 

FUJIFILM 
AMULET a-Se TFT 200 µm a-Se  W/Rh (28 kV) 4.4 0.75 at 103 µGy 

Sectra 
MicroDose 

Direct photon 
counting 

Crystalline Si 
wafer  W/Al (28 kV) 6.2; 3.3 0.63; 0.61  

at 113 µGy 

Fischer 
Senoscan CCD 180 µm CsI:Tl W/Al (28 kV) 5.5 0.24 at 131 µGy 

GE 
Senographe 

2000D 
a-Si:H TFT 100 µm CsI:Tl  Mo/Mo (28 kV) 

(RQA-M 2) 4 0.53 at 131 µGy 

Hologic 
Lorad 

Selenia 
a-Se TFT 200 µm a-Se Mo/Mo (28 kV) 

(RQA-M 2) 5.8 0.59 at 92.5 µGy 

LAS CMOS APS 150 µm CsI:Tl W/Al (28 kV) 1.5 0.73 at 60.3 µGy 

Hamamatsu 
C9732DK CMOS PPS 160 µm CsI:Tl W/Al (28 kV) 3.3 0.48 at 120.5 µGy 

Dexela 2932 CMOS APS 150 µm CsI:Tl W/Rh (25 kV) 2.7 0.59 at 105.7 µGy 
(HFW mode) 

Dexela 2932 CMOS APS 150 µm CsI:Tl W/Rh (25 kV) 2.7 0.61 at 57.8 µGy 
(LFW mode) 

Dexela 2932 CMOS APS 150 µm CsI:Tl W/Al (28 kV) 3.3 0.55 at 121.6 µGy 
(HFW mode) 

Dexela 2932 CMOS APS 150 µm CsI:Tl W/Al (28 kV) 3.3 0.55 at 59.7 µGy 
(LFW mode) 

Anrad 
SMAM a-Se TFT 200 µm a-Se W/Al (28 kV) 6.1; 5.3 0.67; 0.66 at 108.6 

µGy 

Remote 
RadEye HR CMOS APS 85 µm 

Gd2O2S:Tb W/Al (28 kV) 4.3 0.33 at 120.5 µGy 

3.3.8 Evaluation using Beam Quality 2 (W/Al at 52 kV; RQA3) 

Figure 3.37 shows the STP curves of the higher x-ray sensitivity detectors (LAS and 

Dexela sensor coupled to 150 and 600 µm CsI:Tl) at RQA3 beam quality (52 kV). Both 

detectors demonstrate high linearity for signal transfer with R2≥0.9996. The highest 

sensitivity corresponds to the Dexela detector when the thick scintillator is used and 

operated in the LFW mode. This combination leads to high x-ray detectability (high 

QDE and EAE) with simultaneous high conversion gain G(DN/e-). 
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Figure 3.37: STP curves with fitting function equations for the higher sensitivity 

detectors at 52 kV 

Figure 3.38 shows the STP curves for the lower sensitivity detectors (Hamamatsu 

and RadEye) at the same beam quality. A high linearity for signal transfer (R2≥0.9997) 

is also observed. However, the sensitivity of RadEye detector is very low due to the 

limited x-ray detectability of Gd2O2S:Tb detector at the used energy (QDE=0.335 and 

EAE=0.272; Table 3.7).   

The average detector DAK for general radiography is around 2.5 µGy (Moy, 2000a, 

Rowlands and Yorkston, 2000b, Jee et al., 2003 and Ghetti et al., 2008). The 

corresponding IEC standard (IEC 62220-1, 2003) recommends that the exposure range 

should be at least between 1/3.2 and 3.2 times the normal level (i.e. from 0.8 to 8 µGy). 

A wide exposure range was used in this thesis (0.3 to 32.7 µGy), which is close to the 

one used in neonatal and paediatric imaging (0.3 to 26.8 µGy; Rowlands and Yorkston, 

2000b). 
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Figure 3.38: STP curves with fitting function equations for the lower sensitivity 

detectors at 52 kV 

The average pMTF curves of the detectors at 52 kV are presented in Figure 3.39. As 

mentioned in section 3.3.7, Anrad SMAM detector is the only one that demonstrates 

significant inherent anisotropic behaviour. Since the Anrad is excluded from high 

energy evaluation (it should not be used for energies greater than 35 kV) there is no 

need to present both horizontal and vertical pMTF curves for each detector. RadEye HR 

detector presents the highest pMTF values due to the combination of the thin scintillator 

and very small pixel pitch. The detectors with the second pMTF highest values are 

Hamamatsu and Dexela coupled to 150 µm CsI:Tl. Both of them show similar pMTF 

values as observed in the mammographic study (Figure 3.32). Finally, the Dexela sensor 

coupled to the thick scintillator demonstrates similar pMTF values compared to LAS.  
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Figure 3.39: Average pMTF curves of the investigated digital x-ray detectors at 52 kV 
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A quantitative comparison of the above pMTF curves is presented in Table 3.11, 

using the 10 and 50 % pMTF levels.  

Table 3.11: Spatial frequency values corresponding to 10 and 50 % pMTF levels 

Detector pMTF 10% 
(lp/mm) 

pMTF 50% 
(lp/mm) 

LAS 4.1 1.3 

Hamamatsu 8.4 2.6 

Dexela (coupled 
to 150 µm CsI) 7.7 2.6 

Dexela (coupled 
to 600 µm CsI) 4.3 1.3 

RadEye 11.4 4.2 
 

Figure 3.40a) shows that LAS detector has moderate DQE values at low frequencies 

(e.g. the DQE(0.5) is in the range 0.44-0.54). This is due to the mediocre detectability of 

x-rays at the specific energy (QDE=0.695 and EAE=0.323; Table 3.7). A strange 

behaviour is observed at low frequencies (i.e. up to 4 lp/mm). This is due to spikes in 

the NNPS which indicate the presence of low magnitude periodic noise (the 

aforementioned EMI noise reduction algorithm was not applied on the x-ray 

performance evaluation of the detectors). The DQE of Hamamatsu detector is relatively 

low due to decreased x-ray detectability as well (e.g. the DQE(0.5) is in the range 0.37-

0.40). The DQE curves of Hamamatsu detector are overlapped in the DAK range 9.9-

32.7 µGy, which indicates quantum limited behaviour. The Dexela sensor coupled to 

150 µm CsI scintillator demonstrates comparative DQE results to LAS and Hamamatsu 

detectors. For the reasons mentioned in section 3.3.7, the Dexela detector presents lower 

deviation from the quantum limited behaviour when is operated in the LFW mode. The 

Dexela detector demonstrates high performance when coupled to 600 µm CsI 

scintillator, due to the increased x-ray detectability (QDE=0.978 and EAE=0.472; Table 

3.7). The exposure range is limited compared to the previous cases due to saturation 

constrains arising from the increased sensitivity. Its DQE values are high in a range of 

frequencies (up to 4.5 lp/mm). Hence, upon coupling with the appropriate scintillator, 

the Dexela detector maintains high performance levels at higher energies. The DQE 

curves of the Dexela detector using the thick scintillator show the trade-off between the 

x-ray sensitivity and resolution compared to the thin scintillator. The DQE curves of 

RadEye detector are very low (<0.16) even at low spatial frequencies. This happens due 
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to the aforementioned limited x-ray detectability of the used Gd2O2S scintillator, which 

results in very low signal levels (see Figure 3.38). 

 
Figure 3.40: Average DQE curves at 52 kV for a) LAS, b) Hamamatsu, c) Dexela HFW, 

d) Dexela LFW (coupled to 150 µm CsI), e) Dexela HFW, f) Dexela LFW (coupled to 

600 µm CsI) and g) RadEye detectors  
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Figure 3.41 compares the performance of the detectors at 52 kV and two DAK 

levels. The DQE curves of LAS and Dexela coupled to 600 µm CsI:Tl and operated in 

the LFW mode were calculated at 3.5 µGy. The DQE curves of the other imaging 

systems correspond to approximately 4.8 µGy. The Dexela sensor coupled to 600 µm 

CsI:Tl has the highest DQE values in both full well modes. It presents high x-ray 

performance (higher than 0.6) at low frequencies. LAS and Hamamatsu detectors 

illustrate moderate detectability at lower frequencies. The Dexela sensor coupled to 150 

µm CsI:Tl presents similar DQE values compared to LAS and Hamamatsu detectors at 

low frequencies. However, at higher frequencies it shows higher detectability due to the 

lower effect of the noise at this frequency range. Finally, RadEye detector appears very 

low detectability compared to the other detectors. 
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Figure 3.41: Average DQE curves of the investigated detectors at specific DAK levels 

and 52 kV 

3.3.9 Evaluation using Beam Quality 3 (W/Al at 74 kV; RQA5) 

The RQA5 is the commonly used beam quality for the x-ray performance evaluation 

in general radiography according to the respective IEC standard (IEC 62220-1, 2003). 

The STP curves are shown in two separate figures depending on the sensitivity. Figure 

3.42 shows the STP curves for the higher sensitivity detectors, i.e. LAS and Dexela. 

Both detectors show high linearity on the signal transfer (R2≥0.9994). 
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Figure 3.42: STP curves with fitting function equations for the higher sensitivity 

detectors at 74 kV 

Figure 3.43 demonstrates the STP curves of the lower sensitivity detectors 

(Hamamatsu and RadEye). Both detectors demonstrate high linearity on the signal 

transfer (R2≥0.9993). For the highest sensitivity systems (i.e. LAS, Dexela in the HFW 

mode coupled to the thick scintillator and Dexela in the LFW mode coupled to both 

scintillators) the maximum DAK was 13.8 µGy. The maximum DAK level reached for 

the Dexela detector using the thin scintillator and operated in the HFW mode and 

RadEye detector was 30.5 µGy. Finally, a high exposure level (44.5 µGy) was reached 

for Hamamatsu detector to investigate its observed quantum limited performance over a 

broad exposure range.  

A comparison between the STP curves of the detectors over the three energies (28, 

52 and 74 kV) shows that the slope increases as a function of energy. This implies an 

increase of the output signal (in DN) per unit DAK as the mean x-ray energy increases. 

According to Marshall (2009b), this happens mainly due to three reasons. First, the 

number of x-rays per unit DAK per unit area (i.e. the Φ/Ka parameter) increases as the 

mean x-ray energy increases (see Eq. (2.31)). Therefore more x-rays which are signal 

carriers are impinging the scintillator per unit DAK. Secondly, more secondary quanta 

(light photons for scintillators and electronic charge for photoconductors) are generated 

assuming a fixed conversion efficiency (i.e. light yield for scintillator). Finally, there is 

a depth effect. As the mean energy increases the beam becomes more penetrating, so the 

interacting x-rays are absorbed at deeper points within the scintillator, closer to the 
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digital sensor. Hence, the created optical photons are reabsorbed less from the 

scintillator. This increases their collection efficiency from the digital sensor. 
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Figure 3.43: STP curves with fitting function equations for the lower sensitivity 

detectors at 74 kV 

Figure 3.44 presents the average pMTF values of all digital detectors investigated 

under RQA5 beam quality. As in the RQA3 case, the RadEye detector presents the 

highest results. The Hamamatsu and Dexela sensor coupled to the thin scintillator 

demonstrate similar pMTF values. On the other hand, when the Dexela sensor is 

coupled to the thick scintillator it demonstrates similar pMTF values compared to LAS. 

The measured pMTF values at this energy are similar to the respective ones captured at 

52 kV. For the CsI-based detectors (i.e. LAS, Hamamatsu and Dexela) the pMTF at 74 

kV was slightly higher than the one at 52 kV due to higher absorption depth of the x-

rays inside the scintillator. This results in limited spread of the secondary optical 

photons. In this case, the average absolute difference (%) between the pMTFs of the two 

energies was up to 7.7 % (for Hamamatsu detector). On the other hand, it is observed 

that the pMTF of RadEye detector is lower by 7.9 % on average for the high energy 

beam. This behaviour can not be explained from the depth effect. 
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Figure 3.44: Average pMTF of the investigated digital x-ray detectors at 74 kV 

A quantitative comparison of the above pMTF curves is presented in Table 3.12, by 

presenting the spatial frequencies of each detector that correspond to the 10 and 50 % 

pMTF levels.  

Table 3.12: Spatial frequency values corresponding to 10 and 50 % pMTF levels 

Detector pMTF 10% 
(lp/mm) 

pMTF 50% 
(lp/mm) 

LAS 4.1 1.3 

Hamamatsu 9 2.7 

Dexela (coupled 
to 150 µm CsI) 7.7 2.7 

Dexela (coupled 
to 600 µm CsI) 4.4 1.3 

RadEye 10.9 3.8 

Figure 3.45 shows the DQE results of the investigated detectors at 74 kV. It is 

observed that when thin scintillators are used (cases a, b, c, d and g) the DQE values at 

this energy are lower than those at 52 kV. The x-rays are more penetrating at this 

energy, leading to decreased detectability from the scintillator (Table 3.7). On the other 

hand, the thick scintillator results in higher DQE values (cases e and f) due to the 

increased x-ray detectability. This happens because the average EAE at 74 kV (0.491) is 

slightly higher compared to the respective one at 52 kV (0.480) for the reasons 

mentioned in section 3.3.2. At this energy, Hamamatsu, Dexela in the LFW mode and 

RadEye detectors demonstrate a quantum limited behaviour. However, the DQE values 

of the RadEye detector are very low (<0.12) due to the limited average EAE of Gd2O2S 
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scintillator (0.193) at 74 kV. LAS detector demonstrates the higher x-ray performance 

among the detectors coupled to thin scintillators. The use of the thick scintillator results 

in high DQE values (e.g. the DQE(0.5) values are in the ranges 0.58-0.68 and 0.57-0.62 

for HFW and LFW modes respectively) and limited exposure range due to the higher x-

ray sensitivity.  

 
Figure 3.45: DQE curves at 74 kV for a) LAS, b) Hamamatsu, c) Dexela HFW and d) 
LFW (coupled to 150 µm CsI), e) Dexela HFW and f) LFW (coupled to 600 µm CsI) 

and g) RadEye detectors  
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Figure 3.46 presents the average DQE curves of the detectors using 74 kV. The 

Dexela detector using the thick scintillator appears the highest DQE values and the rest 

of the DQE curves are low (less than 0.4) due to the limited x-ray detectability of the 

thinner scintillators. LAS demonstrates moderate DQE values at low frequencies. At 

low spatial frequencies (less than 2.5 lp/mm), the DQE values of the Dexela detector 

using the thin scintillator are similar to the respective of Hamamatsu detector. RadEye 

detector shows very low DQE values, less than 0.12 at low frequencies. 
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Figure 3.46: Average DQE curves of the investigated detectors at specific DAK levels 

and 74 kV 

The x-ray performance of the Dexela detector using the thick scintillator is 

compared to five general radiography systems found in the literature (Lawinski et al., 

2005). The comparison is made under the same beam quality (RQA5) and presented in 

Table 3.13. Compared to other systems, the Dexela detector shows competitive spatial 

resolution and the highest DQE peak values. These results indicate high potential for 

use of this detector under general radiography conditions.  
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Table 3.13: Comparison of the x-ray performance of different detectors used in general 

radiography 

System Delft 
ThoraScan 

GE 
Revolution 

Hologic 
DirectRay 

SwissRa 
dOd 

Trixell 
Pixium4600 

Dexela 
2923 

Detector Technology CCD a-Si:H TFT a-Se TFT CCD CCD CMOS APS 

X-ray absorber 
material CsI:Tl CsI:Tl  a-Se CsI:Tl CsI:Tl CsI:Tl 

Thickness of material 
(µm) 500 Undisclosed 500 600 550 600 

Beam quality RQA5 
(70kV) 

RQA5 
(70kV) 

RQA5 
(70kV) 

RQA5 
(70kV) 

RQA5 
(70kV) 

RQA5 
(74kV) 

MTF at 50% (lp/mm) 1.3 1.4 4.2 1.4 1.4 1.3 

DQE peak 
at specific DAK level 

0.43  
at 4 µGy 

0.61 
at 4 µGy 

0.39 
at 4 µGy 

0.39 
at 4 µGy 

0.63 
at 4 µGy 

0.66 (HFW) 
at 3.9 µGy 

3.3.10 Additional study on dynamic imaging conditions (Dexela at RQA5 

quality) 

The capability of the Dexela detector to dynamically configure on-chip binning to 

be used in clinical applications requiring dynamic acquisitions, such as fluoroscopy or 

angiography, was investigated. Pixel binning leads to an increase in the acquisition 

speed from 26 fps to 86 fps for 4x4 binning mode.  This comes at the price of reduced 

spatial resolution. To evaluate the performance of the detector at such low DAK levels, 

the tube current was kept constant in continuous operation mode (1mA) and the 

integration time was modified from 40 to 250 ms. 

The following figure shows the STP curve for Dexela detector using 600 µm CsI 

and operated in the HFW mode for different binning modes. These data were acquired 

with beam type RQA5 for 1x1, 2x2 and 4x4 binning combinations. There was no 

significant difference in the detector gain: differences remained generally lower than 

6% between full resolution (1x1) and 4x4 binning modes. The origin of the slight gain 

increase which is actually observed can be attributed to the increase of the dark current, 

which is linearly proportional to both pixel area and integration time. Pixel binning thus 

slightly affects the dark current mainly because the physical pixel size is increased 

(Miyata et al., 2005). The R2 in all three cases was equal to 1. 
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Figure 3.47: STP curves displayed at 74 kV for three binning modes in the HFW mode 

Figure 3.48 presents the respective STP curve of Dexela detector operated in the 

LFW mode. In this case the sensitivity is almost 3 times higher due to the change of the 

conversion gain G(DN/e-). Again, a slight gain increase (<6%) is observed due to the 

increase of the dark current. The R2 of all STP curves was equal to 1 indicating perfect 

linearity on the signal transfer. 
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Figure 3.48: STP curves displayed at 74 kV for three binning modes in the LFW mode 

Figure 3.49 demonstrates the average pMTF of Dexela detector for three binning 

modes, i.e. 1x1, 2x2 and 4x4. It is observed that the pMTF decreases as the pixel 

binning increases, i.e. the pMTF at a specific spatial frequency is higher at 1x1 binning 

mode. This decrease follows the sinc function. In other words, the ratio between the 

pMTF at 2x2 mode and the respective at 1x1 equals to the sinc function of the 2x2 

binned pixel. The same effect is observed in the 4x4 binning mode case. Furthermore, a 
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study on the x-ray performance evaluation of an a-Si TFT detector for angiographic, 

radiographic and fluoroscopic imaging applications refers to this effect (Granfors et al., 

2003). This happens because the pixel binning averages the signal over a certain area of 

pixels, which corresponds to the convolution of the signal with the aperture function 

that represents the pixel. According the sampling theory this convolution in the spatial 

domain corresponds to multiplication with the sinc function in the frequency domain. 

Further details about this are given in section 4.3. On the other hand, the dependence of 

the NPS on the binning mode is more complicated due to the effect of aliasing. The 

presampling NPS is affected from the sinc function of the binned pixel. However, the 

measured digital NPS is the sum of the presampling NPS over aliases (Granfors et al., 

2003). 
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Figure 3.49: Average pMTF at 74 kV for three binning modes using 600 µm CsI:Tl 

Figure 3.50 shows the DQE values of Dexela detector at low exposure levels (below 

460 nGy) operated in both full well modes and two binning modes (1x1 and 2x2). The 

exposure range investigated in this case was between 70 to 460 nGy, which corresponds 

to the typical fluoroscopic range found in the literature (Rowlands and Yorkston, 2000b 

and Benítez et al., 2009). When the detector is operated in the HFW mode and 1x1 

binning mode (Figure 3.50a), the DQE at low frequencies is within a narrow range (e.g. 

the DQE(0.5) is in the range 0.56-0.59). However, it can be seen that at higher spatial 

frequencies the DQE increases as a function of the DAK level. This indicates that the 

shape of the DQE changes at higher frequencies as a function of the integration time 

used to get the required DAK levels. Probably this happens because the electronic noise 

(read noise and dark current) has a stronger effect at high frequencies in the HFW mode 
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operation. On the other hand, when the detector is operated in the LFW mode (Figure 

3.50b) the DQE curves are different at low frequencies (e.g. the DQE(0.5) is in the 

range 0.59-0.64) and become almost identical above middle range frequencies (3 

lp/mm). Probably in this case the electronic noise has a stronger effect at low 

frequencies. The same behaviour is observed when the detector is operated at 2x2 

binning mode. In this case (Figure 3.50 c and d), the DQE values at 0.5 lp/mm are 

almost the same compared to the respective in 1x1 binning mode (Figure 3.50 a and b). 

This happens because the effect of the sinc function is insignificant at low frequencies. 

However, this effect is significant at higher frequencies. This is one of the reasons why 

the DQE values at 3 lp/mm are decreased when operated at 2x2 binning mode.  

 
 
Figure 3.50: Average DQE values in the a) HFW mode and 1x1 binning mode b) LFW 

mode and 1x1 binning mode c) HFW mode and 2x2 binning mode and d) LFW mode 

and 2x2 binning mode 

The DQE at 4x4 binning mode is not presented in this thesis as a function of the 

DAK level. Instead, the DQE response at this binning mode is compared to the other 

two binning modes at a specific DAK level (0.07 µGy). This level is the average 

exposure per frame in fluoroscopy and CB-CT. Figure 3.51 shows that the DQE curve 
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decreases as the binning of the pixels increases due to the decreased pMTF and the 

increased dark current.  
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Figure 3.51: Average DQE in the HFW mode and 0.07 µGy (all binning modes) 

Figure 3.52 presents the comparison between the three binning modes in the LFW 

operation mode and the same DAK level (0.07 µGy). It is observed that the DQE curves 

are slightly higher compared to the respective ones in the HFW mode due to the lower 

electronic noise that corresponds to the LFW mode. 
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Figure 3.52: Average DQE in the LFW mode and 0.07 µGy (all binning modes) 

Table 3.14 provides a comparison between the performance of the evaluated sensor 

and those of two commercial fluoroscopy and CB-CT systems available on the market 

(Benítez et al., 2009). The 4x4 binning mode results in lower DQE values at specific 

frequencies compared to the other two binning modes. However high acquisition speed 
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(86 fps) and high DQE at low exposures (as well as possibly the lower data transfer 

rate) makes the 4x4 binning suitable for clinical application requiring high frame rate 

and high performance at low exposures while allowing some compromise in terms of 

resolution.  

Table 3.14: Comparison of the x-ray performance of three detectors used in fluoroscopy 

System Varian PaxScan 
2520 

Varian PaxScan 
4030CB Dexela 2923 

Detector 
technology a-Si:H TFT a-Si:H TFT CMOS APS 

X-ray absorber 
material CsI:Tl CsI:Tl CsI:Tl 

Pixel Size (2x2 
binning) 254 μm 388 μm 300 μm 

Beam quality RQA5 (70 kV) RQA5 (70 kV) RQA5 (74 kV) 

DQE peak at 
low exposure 

level 

0.37 
at 70 nGy 

0.62 
at 79 nGy 

0.59; 0.65 (H; L) 
at 70 nGy 

Detailed measurements on image lag (charge carry over into subsequent frames) 

were not performed due to the type of the current x-ray tube at UCL. Image lag would 

reduce the measured noise due to averaging of the uncorrelated noise between frames 

and hence increase the DQE. However, the analysis carried out on the flat images used 

for the DQE analysis allowed us to observe that the average DN fluctuated randomly 

over consecutive frames. This can be an indication of negligible additive image lag, as 

this would increase the average DN over consecutive frames (Granfors and Aufrichtig, 

2000). Furthermore, the image lag of Dexela detector is expected to be small (less than 

0.1 %) due to the crystalline Silicon of the used CMOS sensor. In conclusion, the 

Dexela detector is expected to show high performance in some advanced dynamic 

imaging techniques such as CB-CT, tomosynthesis and fluoroscopy, due to the high 

DQE results at low exposure levels under both full well modes. 

3.3.11 The effect of nonlinearity on the DQE 

According to the signal transfer theory (Cunningham, 2000), the x-ray detector 

needs to be linear and shift invariant in order to calculate the DQE (section 2.4.1). 

Based on this theory, the IEC standard (IEC 62220-1, 2003 and IEC 62220-1-2, 2007) 

recommends the linearization of gain and offset corrected images prior MTF and NPS 

calculation. This is mainly required for CR systems that have logarithmic response. In 
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particular, the IEC standard suggests the application of the inverse conversion function 

to the output data (in DN) on an individual pixel basis. The conversion function is the 

plot of the output signal (DN) of the x-ray detector versus the input exposure quanta per 

unit area Φ (x-rays/mm2) at the detector surface. The latter parameter is given by the 

product a a( /K ) KΦ ⋅  as mentioned in section 2.4.5. The IEC standard for linear detectors 

such as DR systems, recommends the application of a linear regression model to fit the 

data and determine the conversion function. According to the standard a detector may 

be considered linear if a) the final R2≥0.99 and b) the absolute difference (%) between 

the experimental data and the fitted ones is less than 2 % in all cases. Two x-ray 

performance characterization studies converted the original output images to input 

photons per unit area images, based on the IEC standard (Illers et al., 2005 and 

Marshall, 2006b). However, since Φ is just the product of the fluence per exposure 

times exposure, a number of relative studies converted the output DN images to Ka 

images based on the STP curve which is the plot of the output DN versus the input 

DAK level. In particular, they used linear regression model to fit the experimental data 

for DR systems (Ranger et al., 2007, Ghetti et al., 2008, Samei et al., 2008, Michail et 

al., 2010 and Michail et al., 2011) or both linear and logarithmic regression models for 

DR and CR systems respectively (Monnin et al., 2005, Mackenzie and Honey, 2007, 

Marshall, 2007 and Monnin et al., 2007). All these studies applied simple regression 

models without taking into account weighting factors or uncertainties on the 

measurements.  

However, the DQE results may be affected by the presence of nonzero offset (i.e. 

interval) with significant magnitude on the linear regression model on the STP data. In 

particular, when the IEC linearization method was applied to the x-ray detectors in this 

study, we observed significant overestimation or underestimation of the DQE curves 

especially at low signal levels. Figure 3.53 shows the average DQE curves of RadEye 

detector at 28 kV after the IEC linearization of the original data. It can be seen that the 

DQE curve at the lowest DAK level (28.7 µGy) is very high (DQE(1)=0.95) and 

decreases as the DAK level increases. As mentioned in section 2.4.5, this behaviour is 

expected only in the presence of high magnitude FPN. However, this is not the case 

because gain correction was applied on the data prior linearization. Hence, since the x-

ray photons are information carriers the increase of the DAK level is expected to lead to 

increased SNR and better image quality (Cunningham, 2000). A comparison between 
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the DQE curves at specific DAK levels that correspond to the linearized and the original 

data showed that the overestimation is independent of the spatial frequency and 

decreases as the signal level increases. In particular, the linearized DQE curves are 

overestimated by 158.6 % at 28.7 µGy and 9.2 % at 306.0 µGy. A similar behaviour is 

observed in Michail et al. (2010 and 2011) studies which examined the same chip under 

RQA-M2 (Mo/Mo at 28 kV) and RQA5 (W/Al at 70 kV) beam qualities. They applied 

the IEC linearization on the original data based on the linear regression model extracted 

from the STP data. They found DQE(1) values equal to around 0.90 at 20.29 µGy and 

0.72 at 40.07 µGy using the RQA-M2 beam quality. For the RQA5 quality they found 

the respective DQE(1) values to be around 0.78 at 11.1 µGy, 0.65 at 34.3 µGy and 0.43 

at 87.41 µGy. This behaviour verifies the suspicion that an unoptimized IEC 

linearization may overestimate or underestimate the noise compared to the signal. 
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Figure 3.53: Average DQE of the RadEye detector at 28 kV using the IEC linearization 

method 

In this case, probably the overestimation occurs due to the fact that the intercept of 

RadEye detector’s STP curve is negative with significant magnitude compared to low 

signal levels (see Figure 3.30). During the linearization process, the intercept of the STP 

curve is subtracted from the original image and the result is divided by the slope of the 

STP curve. The division by a constant does not modify the ratio between the signal and 

the standard deviation compared to the original respective ratio. However, a high 

intercept compared to the slope adds (or subtracts if it is positive) a constant value on 

the already converted image with the same SNR ratio as before. This leads to higher 

signal compared to noise, i.e. higher SNR in spatial domain or DQE in frequency 

domain. This constant number is comparable to the low signal levels, leading to higher 
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overestimation of the SNR as the signal decreases. A high intercept may arise from 

unoptimized gain and offset correction method or from the presence of nonlinearity. A 

specific kind of nonlinearity with “sigmoid-like” shape is observed on RadEye 

detectors, which results in nonlinear behaviour at very low and very high signal levels. 

A couple of studies recommend a simple (Rad-icon Imaging Corp., 2003) or a 

piecewise (Cao and Peter, 2008) second order polynomial gain correction to linearize 

the signal transfer of RadEye detectors. The simple polynomial gain correction was 

tested during this study and it was found to improve the R2 from 0.9982 to 0.9999. 

However, it resulted in unexpected DQE results as a function of the DAK levels 

because it modified the SNR at each signal level. Therefore, this method was not 

applied to the x-ray performance evaluation analysis. 

Figure 3.54 shows that the IEC linearization method considerably underestimates 

the low signal DQE curves of the Dexela detector in the HFW mode and 28 kV. This 

happens due to the high magnitude of the positive intercept of the STP curve (see Figure 

3.29) which leads to underestimation of the SNR for the reasons mentioned above. 

More specifically, the maximum underestimation (59.4 %) is observed at 7.1 µGy and 

the minimum (2.6 %) at 215.1 µGy. An attempt was made to linearize the signal 

transfer of the Dexela detector by applying a sectional linear approximation method 

(Naday, 2010b). As in the case of RadEye detector, this method linearized the signal 

transfer (R2=1) at the expense of unexpected DQE results as a function of the DAK 

levels due to SNR modification.  
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Figure 3.54: Average DQE of the Dexela in HFW and 28 kV using the IEC linearization 

method 
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On the other hand, the IEC linearization process does not significantly affect the 

DQE curves of the Hamamatsu detector at 28 kV (Figure 3.55). Figure 3.29 

demonstrates the linear signal transfer behaviour (R2=1) and relatively small intercept 

compared to the slope. However, it slightly overestimates the DQE curves due to the 

negative intercept, as in RadEye case. In particular, the maximum underestimation (4.8 

%) is observed at 28.7 µGy and the minimum (0.3 %) at 398.3 µGy. 
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Figure 3.55: Average DQE of the Hamamatsu detector at 28 kV using the IEC 

linearization method 

The above results demonstrate that any linearization method needs to be applied 

carefully on the raw data (especially at low signal levels) prior the DQE or SNR 

evaluation in order to minimize the linearization errors. For example, a polynomial or 

weighted fit could be used on the STP curve to convert the data instead of the simple 

linear regression one. Another solution is to ignore the data that present non linear 

behaviour. Finally, one can put a slope of one and intercept of zero on the linear fit to 

keep the original data. A non optimized method can easily modify the real SNR 

relationship leading to erroneous DQE results. 

Additionally, it is observed that only the Hamamatsu and Anrad detectors show a 

quantum limited behaviour as a function of the input DAK level (Figure 3.35 b and e). 

More specifically, their DQE values increase as a function of DAK up to a particular 

level due to the effect of read noise. At higher signal levels they are independent of the 

DAK level, showing a quantum limited behaviour. On the other hand, LAS, Dexela and 

RadEye detectors show slightly different behaviour (Figure 3.35 a, c, d and f 

respectively). The former detector presents unusual DQE curves as a function of DAK 
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(decreasing at low frequencies and increasing up to a point at higher ones) probably due 

to the “sigmoid-like” nonlinearity. The DQE curves of the other two detectors continue 

to increase as a function of DAK level even at very high signal levels. LAS does not 

present a quantum limited behaviour, while the Dexela detector shows an almost 

quantum limited behaviour at signals higher than 75 % of dynamic range. Figure 3.56 

shows the mean-variance relationship extracted from the flat images used for the DQE 

calculation of the Dexela detector at 28 kV and in the HFW mode. It can be seen that 

the relationship between variance and mean signal decreases as the signal level 

increases. The dashed curve corresponds to extrapolated variance values based on the 

linear regression fit of the first three experimental points. A comparison between the 

extrapolated and the actual points results in a difference of up to 19.1 %. Since the 

variance is directly related to the NPS (Eq. (2.29)), the DQE is expected to increase as 

the signal level increases. On the other hand, the relative difference between the 

extrapolated and the actual mean-variance points for the Hamamatsu detector is less 

than 1.9 %. 
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Figure 3.56: Mean-Variance relationship of the Dexela detector in HFW and 28 kV 

This performance is expected in some extend in CMOS APS sensors. Tian et al. 

(2001) mention that the V/e- nonlinearity decreases both signal and noise in CMOS APS 

as the illumination (signal) level increases. However, it improves the SNR at higher 

signal levels because it has a stronger effect on the noise. They described 

mathematically how the varying capacitance of the photodiode affects both the signal 

and noise and they proved it experimentally. This behaviour is also mentioned in studies 

related to the optical evaluation of CMOS APS sensors, where they observed that the 
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slopes of the PTC curves were less than 0.5 at higher signals (Janesick et al., 2006, 

Janesick, 2007, Arvanitis, 2007 and Bohndiek et al., 2008a; see section 2.3.4). To 

confirm the above, the slope of the standard deviation versus the mean signal plot 

(which is practically equal to the PTC) on logarithmic scale was compared for 

Hamamatsu, Dexela and LAS detectors. This slope for the Hamamatsu detector was 

0.483 ± 0.001, indicating a slight deviation from linearity. The slope for LAS was 0.370 

± 0.009, indicating strong deviation from linearity. Finally, this slope for the Dexela 

detector was 0.451 ± 0.004 in the HFW mode and 0.476 ± 0.004 in the LFW mode 

respectively. This indicates that the effect of nonlinearity is lower when the detector is 

operated in the LFW mode and justifies the lower discrepancy of the DQE curves as a 

function the DAK observed at this mode. The same behaviour was extracted from the 

electro-optical evaluation of the Dexela sensor (section 3.2.5). 

Finally, image simulation was performed to further demonstrate the effect of 

nonlinearity on the DQE curves of the Dexela detector at 74 kV using the thick 

scintillator and operated in 1x1 binning mode. To implement this simulation, synthetic 

flat images were constructed with perfect SNR transfer based on the methodology 

described in the following chapter. Briefly, for both HFW and LFW modes the NNPS 

was calculated at the lowest DAK level (0.4 uGy in both cases) assuming that the 

effects of V/e- nonlinearity and read noise are negligible. The mean and the standard 

deviation of the experimentally captured flat images at this level were calculated and 

assuming zero intercept the mean was extrapolated at higher DAK levels based on the 

mean-DAK relationship at 0.4 µGy. To get a slope of 0.5 between standard deviation 

and mean (on logarithmic scale) the measured standard deviation (std) was extracted 

with a ratio equal to the square root of the ratio of the means, i.e. 

std(DAK2)=sqrt(mean(DAK2)/mean(DAK1))·std(DAK1) where the numbers 1 and 2 

correspond to two different signal and DAK levels. Next, the standard deviation-to-

mean ratio at different DAK levels was calculated and used to create simulated flat 

images at different DAK levels. This was based on Saunders and Samei (2003) 

methodology, assuming that the spectral distribution of the NNPS is independent of the 

DAK level. The following figure shows the DQE curves of the Dexela detector 

extracted from the synthetic flat images at a) HFW and b) LFW respectively. Perfect 

overlapping of the curves can be seen. Also, there is a small deviation of the spectral 

shapes between the two full well modes. 
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Figure 3.57: DQE curves of synthetic flat images with linear SNR transfer for a) HFW 

and b) LFW  

Next, the experimentally measured SNR relationship as a function of DAK was 

combined with the measured NNPS at 0.4 uGy (lowest DAK level) in order to check if 

the nonlinearity is the only origin of the DQE curves’ spread. Figure 3.58 shows the 

respective DQE curves at a) HFW and b) LFW modes. These curves are slightly 

different compared to the original ones (Figure 3.45 c and d) probably due to the fact 

that the spectral distribution actually depends on the DAK level. However, the same 

amount of spread is observed compared to the experimentally measured curves. 
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Figure 3.58: DQE curves of synthetic flat images with measured SNR transfer for a) 

HFW and b) LFW modes 

3.4 Summary 

This chapter presents the experimentally measured results from the electro-optical 

and x-ray performance evaluation of the investigated detectors. In particular, the PTC, 

MV and NLC methods have been used for the electro-optical evaluation of LAS and 

Dexela sensors. Both of them demonstrate low read noise. It is found that the EMI noise 

overestimated the calculated read noise by 42 %. The dynamic range of LAS is 

relatively low (around 63 dB), whilst that of the Dexela in the HFW mode is 

comparative to other detectors (almost 73 dB). The x-ray performance of all 

investigated x-ray detectors has been made in 28, 52 and 74 kV using W/Al 

combination. Both LAS and Dexela detectors demonstrate high DQE results at low 
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DAK levels, which is an important requirement for adequate image quality. The Dexela 

CMOS x-ray detector has been further evaluated for W/Rh at 25 kV and under 

fluoroscopic conditions at 74 kV. In both cases it demonstrates high DQE values.  A 

novel gain and offset correction method that requires a minimum number of reference 

flat frames has been used. A single reference flat frame can be used for the x-ray 

performance evaluation. Finally, the effect of the CMOS APS detectors inherent 

nonlinearity on the DQE values has been investigated. In particular, Hamamatsu 

detector demonstrates quantum limited behaviour due to its marginal nonlinearity. The 

inherent nonlinearity of LAS, Dexela and RadEye CMOS APS affect their DQE values 

as a function of the DAK level. 
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Chapter 4 

4 Image simulation based on the empirical 

x-ray performance evaluation 

4.1 Overview of chapter 

Image simulation based on the measured x-ray performance parameters was 

performed in order to investigate the effect of the signal and noise transfer (pMTF and 

NNPS respectively) on the associated radiographs. This chapter presents the image 

simulation methodology and validates the simulated signal and noise transfer. Finally, 

the software phantoms used as input data in the simulation algorithm are presented.   

4.2 Motivation and implementation of the image simulation method 

The objective x-ray performance evaluation of an x-ray detector (pMTF, NNPS and 

DQE) allows a quantitative comparison between different radiographic systems. 

However, this method does not involve the radiologists, the technicians or the patients. 

There is a significant debate on whether a decreased spatial resolution (pMTF) presents 

a lower effect on extracted diagnostic information than increased noise (NNPS) and vice 

versa (Tingberg et al. 2002, Saunders et al. 2004 and Saunders et al. 2007). A detector 

may be superior in one metric while being inferior in another. In this case it is unclear 

which metric has got a higher impact on specific clinical tasks, because the diagnostic 

information depends on the x-ray (beam quality and DAK level), object (size of the 

investigated object, the effect of the background, etc.) and conditions (Saunders and 

Samei, 2003 and Saunders et al. 2007). Furthermore, even when a system has superior 

signal and noise transfer compared to another, the quantitative difference in terms of 

image quality is unknown (Saunders and Samei, 2003). 

An image simulation study based on the empirical x-ray performance evaluation 

quantifies the impact of the x-ray performance parameters on the appearance of the 



Chapter 4 
 

 167

radiographic images. Also, it gives the ability to predict the image quality of the digital 

x-ray detectors at different x-ray conditions and various combinations of spatial 

resolution and noise characteristics (Tingberg et al., 2002). This prediction gives the 

ability to optimize the conditions in order to get high image quality parameters and at 

simultaneously reduce the required time and cost. More specifically, simulation of the 

x-ray detector’s signal and noise transfer (pMTF and NNPS) at specific x-ray conditions 

is used to produce synthetic radiographic images. Image quality parameters, such as 

contrast-to-noise ratio (CNR), signal-difference-to-noise-ratio (SDNR), SNR and 

contrast-detail (CD), can be extracted from these synthetic images. In this case objective 

x-ray measurements are used to predict the subsequent subjective image quality 

measurements.  

A first attempt to create synthetic radiographic images based on the empirical x-ray 

performance parameters of a digital x-ray detector was made in 1999 (Bochud et al., 

1999a). In this study they inserted the measured power spectrum from mammograms 

and angiograms captured from digital x-ray units. Then they modified the power and 

phase spectra to investigate the role of stationarity on the detection performance in 

patient structured images. The response of a stationary (or shift invariant) system to an 

input signal is the same at all locations relative to the pixel array (see section 2.4.1). 

Another study was made in the next year to investigate the influence of the various 

system noise components on the image quality (Bruijns et al., 2000). In this study they 

inserted the empirically measured MTF of a digital system (a-Si:H TFT) and they 

simulated the main noise components (read, shot, FPN and quantization noise) based on 

the nominal design specifications of the digital detector. Furthermore, Moy (2000b) 

combined the experimentally measured MTF with a white noise image consisted of 

quantum noise with Gaussian fluctuation and electronic noise. This study was made to 

demonstrate that the spatial resolution of a digital detector can be reliably described by 

the DQE parameter instead of the MTF, in the presence of noise, parallax and blurring. 

However, this study did not take into account the NNPS noise correlation. The first 

study that creates synthetic radiographic images based solely on the measured signal 

and noise transfer was made by Tingberg et al. (2002). In this study they created for 

each patient synthetic radiographic images with different combinations of MTF and 

NPS to simulate various screen-film systems which were not necessarily available on 

the market. The main object of the study was to investigate the relative importance of 
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the spatial resolution and noise on the image quality from the observer point of view. 

However, they do not give any kind of detail about the simulation algorithm. Saunders 

and Samei (2003) wrote a paper based on the previous studies (Bochud et al., 1999a and 

Tingberg et al., 2002) where they describe in detail the simulation algorithm to create 

synthetic radiographic images based on the measured pMTF and NPS of digital 

detectors. The aim of this study was to present a methodology that allows independent 

modification of the spatial resolution and noise characteristics for a given image based 

on the MTF and NPS. These modifications allow someone to quickly model the effect 

of various configurations of these parameters on the appearance of a radiographic 

image. 

Many studies were based on the Saunders and Samei (2003) work to create synthetic 

radiographic images. In particular, Chawla et al. (2006, 2007, 2008a, 2008b and 2009) 

applied a noise modification routine to add synthetic radiographic noise to clinically 

acquired mammograms and breast tomosynthesis images in order to predict the noise 

appearance on radiographic images that correspond to reduced dose levels. Zhou et al. 

(2007) created synthetic tomosynthesis images to predict the imaging performance of a 

breast tomosynthesis system (Anrad LMAM a-Se TFT detector) with different detector 

properties and imaging geometry (such as focal spot blur (FSB) which depends on the 

x-ray tube motion, source-detector movement speed, view angle, exposure time, pixel 

binning, etc.) to optimize these parameters before building the system. Also, they 

investigated the effect of two image reconstruction algorithms (namely expectation 

maximization (EM) and filtered back projection (FBM)) on the synthetic tomosynthesis 

images. In this study they used empirically measured pMTF and NPS values described 

in Zhao et al. (2003). Then they modified the pMTF with an optional FSB function and 

they used the resultant values to blur super-sampled “analog” synthetic images. After 

that they modified three detector properties (i.e. the x-ray conversion of a-Se, the 

thickness of the blocking layers and the electronic noise) using a cascaded linear system 

model (Cunningham, 1998, Cunningham and Shaw, 1999, Cunningham, 2000 and Zhao 

et al. (2003)) until the calculated and measured DQE at different exposure levels agree. 

After the determination of the above three detector properties they used the cascaded 

linear system model for the detector to produce NPS for a given x-ray dose. Then they 

used the predicted NPS at various DAK levels to introduce the noise on the 

synthetically blurred tomosynthesis images. They did not use the experimentally 
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measured SNR relationship (given from the average signal intensity and the noise 

variance) to rescale the NPS at different DAK levels as Saunders and Samei (2003) 

suggest. They do not explain the reasons for this. On the other hand, Yip et al. (2007, 

2008, 2009 and 2010a) combined the Saunders and Samei (2003) methodology with 

experimentally measured pMTF and NPS in order to assess the effect of the x-ray 

performance parameters on the clinical outcomes. To implement this they created a 

super-sampled synthetic CDMAM phantom image and they applied to this different 

signal and noise transfer of various digital detectors in a range of DAK levels. CDMAM 

phantoms are used to assess the contrast-detail performance of mammography systems 

utilizing small size and low contrast disc details (see section 1.9.2).  

Alternative image simulation studies based on the signal and noise transfer 

characteristics were made by Carton et al. (2005), Workman (2005), Båth et al. (2005) 

and Li and Dobbins III (2007). In particular, Carton et al. (2005) inserted noise, scatter 

and flat-field nonuniformities on ideal synthetic edge images with a known MTF. The 

aim of this study was to quantify the effect of the nonuniformities on the accuracy of the 

MTF. They inserted experimentally measured NNPS on the ideal synthetic edge images 

and they rescaled the noise level based on the experimentally determined SNR 

relationship at different DAK levels. They refer to the work of Bochud et al. (1999b) 

and therefore used a similar NNPS simulation methodology compared to the one 

described in Saunders and Samei (2003) study. Their novel work in terms of the noise 

simulation was the NNPS rescaling methodology which again is similar to the one 

presented in Saunders and Samei (2003). Workman (2005) presents a simulation 

methodology similar to the ones presented in Saunders and Samei (2003) and Carton et 

al. (2005). However, this study does not refer to any of the aforementioned studies 

probably because it was made almost simultaneously to the Saunders and Samei (2003) 

and Carton et al. (2005) studies. A disadvantage of this study is that it does not describe 

in detail the simulation algorithm. Båth et al. (2005) presented a novel simulation 

algorithm. They mention that Saunders and Samei (2003) method requires ideal original 

images that are noise free and that it assumes to have radially symmetric (isotropic) 

imaging properties. Their method can be applied to images already containing noise, 

making it suitable for clinically collected images. Also, it takes into account the full 2-D 

imaging properties of the system, based on 2-D pMTF (Båth et al., 2001 and Fetterly et 

al., 2002) and DQE (Båth et al., 2003b) characterization studies. The suggested method 
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by Båth et al. (2005) was suitably modified for breast tomosynthesis conditions to 

simulate dose reduction in noisy clinical tomosynthesis projection images collected at 

different angles (Svalkvist and Båth, 2010). Finally, Li and Dobbins III (2007) present 

another method to rescale the noise of clinically acquired images at different dose 

levels. Their aim was the simulation of the dose reduction in chest tomosynthesis. 

Nevertheless, they assume isotropic imaging properties. 

Recent studies have been based on the aforementioned image simulation algorithms. 

For instance, the Saunders et al. (2007) study is based on Saunders and Samei (2003) 

method to thoroughly examine the effects of spatial resolution and noise on the 

detectability of microcalcifications and discrimination of benign and malignant masses. 

Richard and Samei (2010a and 2010b) studies are based on Saunders and Samei (2003) 

method to provide a methodology for predicting the performance of quantitative 

imaging systems from the basic x-ray performance parameters (MTF and NPS). Smans 

et al. (2010) combined their Monte Carlo simulated CDRAD images to the signal and 

noise transfer of digital x-ray detectors based on both Saunders and Samei (2003) and 

Carton et al. (2005) methods. Their aim was the development of a computer model to 

simulate the image acquisition for two CR detectors used for neonatal chest imaging. 

Finally, Mackenzie et al. (2010) study is based on Båth et al. (2005) method to 

introduce a methodology to convert an image acquired from an a-Se TFT detector (DR) 

to appear as a generic CR image. Their ultimate aim is to apply their suggested 

methodology to a set of clinical images captured using DR technology to compare the 

performance of DR and CR systems for the detection of cancers at several dose levels.  

In this thesis a modified version of Saunders and Samei (2003) method was used in 

order to compare the performance of the investigated detectors in digital mammography 

using ideal software phantoms (see section 4.6). Once the feasibility of the combined 

methodology is demonstrated, the simulation algorithm can be used for different x-ray 

imaging applications. Figure 4.1 shows the flowchart of the implementation of the 

signal and noise transfer on ideal images to get the synthetic radiographic images. 

Briefly, the 2-D pMTF matrix of a digital x-ray detector is multiplied with an ideal 

input image in the frequency domain in order to insert blurring. Then an inverse Fourier 

transform is applied on the product and the blurred image is sampled to form the pixels 

of the digital image. The measured NNPS distribution is used to create a flat image with 

noise. This noise image is rescaled at specific DAK level and added to the blurred and 
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sampled object image. In this study three modifications were made on the signal 

transfer simulation (or modification routine; Konstantinidis et al., 2011a). Further 

details about the signal and noise modification routines are given in sections 4.3 and 

4.4. All image simulation algorithms were developed using custom built software 

written in MATLAB version 7.10 (The MathWorks, Natick, MA, USA). 

 
Figure 4.1: Flowchart of the image simulation algorithm 

4.3 Simulation of the signal transfer (pMTF) 

To apply the spatial resolution of a digital x-ray detector to an ideal input image, the 

pMTF of the detector is required. Figure 4.2 shows the horizontal, vertical and average 

pMTF of the Dexela CMOS x-ray detector (using 150 µm CsI:Tl at 28 kV) up to 70.7 

lp/mm frequency. This frequency value is calculated from the pitch of the ideal 

“analog” image, prior to the detector’s digital sampling. In this thesis the “analog” pitch 

of the ideal input image equals to 10 µm, which corresponds to NyqF  equal to 50 lp/mm. 

This particular input pitch was used in all image simulations in this study to avoid 

aliasing effects. Furthermore, it results in a sufficient number of pixels to avoid system 

crashes from excessive RAM memory use during the simulation process. All the 

simulations were carried out using a desktop pc with 16 GB RAM memory. According 

to the trigonometric theory the maximum frequency in a diagonal orientation (i.e. 45º) 

equals to 2 NyqF⋅ , i.e. 70.7 lp/mm in this case.  
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Figure 4.2: pMTF of the Dexela CMOS x-ray detector used in the simulation algorithm 

Next, a high (at least 9th) order polynomial fit is applied on the original average 

pMTF values in order to expand the 1-D pMTF to a 2-D matrix. In this thesis a 22nd 

order polynomial fit was used to preserve the high frequency pMTF values. However, 

someone could probably use a lower order polynomial fit and force the pMTF values to 

be zero above 20 lp/mm because at higher frequencies there is not deterministic signal 

but only noise. Figure 4.3 compares the two pMTF curves up to 70.7 lp/mm frequency.  

A slight discrepancy between the two curves is observed at higher frequencies, i.e. 

higher than 10 lp/mm in the Dexela detector’s case. However, a comparison between 

the original pMTF and the respective calculated from synthetic edge images shows that 

it does not introduce a significant error in any case (see section 4.5). Afterwards, the 

coefficients of this polynomial fit were evaluated at the 2-D frequency matrix in order to 

reconstruct a 2-D pMTF matrix.  

 
Figure 4.3: Fitted pMTF in comparison to the respective original average pMTF 
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Figure 4.4 shows the resultant 2-D pMTF matrix of the Dexela detector assuming 

isotropic  symmetry. This matrix is multiplied with the Fourier transform of the ideal 

input image in order to apply the blurring which corresponds to the pMTF of the 

detector. The centre of the matrix corresponds to zero spatial frequency, while the 

maximum frequency in the horizontal and vertical orientations corresponds to the NyqF , 

i.e. 50 lp/mm in the case of 10 µm “analog” pitch.  

 
Figure 4.4: 2-D pMTF matrix of the Dexela CMOS x-ray detector assuming isotropic 

symmetry 

However, the Anrad SMAM detector demonstrates anisotropic behaviour (see 

section 3.3.7). In this case a method to introduce the anisotropic symmetry on the 2-D 

pMTF matrix was developed. This method is based on the use of two 2-D matrices with 

circular symmetry to weight differently the vertical and horizontal pMTFs (see Figure 

4.5). It can be seen that in the vertical case the 2-D weighting matrix is one in the 

vertical orientation and zero in the horizontal one. On the other hand, the horizontal 2-D 

weighting matrix is one in the horizontal orientation and zero in the vertical one. Both 

matrices are 0.5 in diagonal orientations (i.e. 45º). The vertical 2-D weighting matrix 

was constructed by the cosine square of the phase angle. The respective horizontal 

matrix corresponds to the sine square of the phase angle. Therefore, according to the 

Pythagorean theorem their summation at a specific point equals to one. Each weighting 

matrix was multiplied by the respective 2-D pMTF matrix and the summation of the 

two products results in the anisotropic 2-D pMTF matrix (Konstantinidis et al., 2011a).  
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Figure 4.5: Suggested 2-D weighting matrices to take into account the measured a) 

vertical and b) horizontal pMTF 

Figure 4.6a shows the resultant 2-D pMTF of Anrad SMAM detector. Figure 4.6b 

demonstrates good agreement between the original pMTFs and the extracted ones in the 

two directions. 

 
Figure 4.6 a) 2-D pMTF of Anrad SMAM detector assuming anisotropic behaviour and 

b) the extracted 1-D vertical and horizontal cuts in comparison to the respective original 

pMTFs 

Finally, the blurred image is reduced to the desired pixel size by applying sampling 

methods. Saunders and Samei (2003) suggest the use of a moving ROI that locally 

averages the pixel values to form the pixels of the final image. However, this method 

requires the input pMTF to be divided by the sinc function of the final sampling 

aperture. The explanation for this is based on the applied linear-systems theory 



Chapter 4 
 

 175

(Cunningham, 2000). According to this theory, an input sample distribution of x-ray 

quanta q(x) on a linear and shift invariant system {}S is the convolution of the q(x) with 

the impulse-response function (IRF) which is the response of the system to a delta (or 

impulse) function (see section 2.4.2). The IRF is equal to the PSF when used to describe 

a 2-D imaging system. The Fourier transform of the PSF is the 2-D pMTF. Therefore in 

the previous blurring step the PSF of the detector has been convolved with the input 

signal because convolution in one domain corresponds to multiplication in the other 

domain (as mentioned in section 2.4.1). According to the same theory when the pixel 

sampling is applied on the blurred signal { ( )}S g x , the digital signal dn from the nth 

element centred at x=xn0 is given as: 

0{ ( )}n
x

x xnd k S g x dx
a

∞

−∞

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
∏∫  

(4.1) 

where k is a constant relating the number of interacting quanta to the detector output as 

a DN and 
x

x
a

⎛ ⎞
⎜ ⎟
⎝ ⎠

∏  is the rectangular function which is 1 for x within the pixel pitch ax 

or 0 otherwise. The above equation denotes convolution in order to simulate the way 

that the pixel works, i.e. it averages the analog signal with pitch x over the pixel pitch 

ax. However, the blurred signal { ( )}S g x already contains convolution between the input 

signal and the IRF. The extra convolution with the rectangular function corresponds to 

multiplication with the sinc function in the frequency domain. This multiplication 

affects the product of the 2-D pMTF times the Fourier transform of the input image, so 

the input pMTF needs to be divided by the sinc function to compensate for this. 

In this thesis a different sampling method was used. This method was implemented 

in 2-D matrices in the Giger et al. (1984b) and Dobbins III (1995) studies based on the 

theory described in Bracewell (1978) for 1-D signals. It uses the comb function 

xΔ III(x; xΔ ) which is a string of delta functions separated by the pixel pitch xΔ . 

According to the theory, multiplication of a signal with the comb function equals to the 

convolution of the signal with the delta function at any position: 

0 0( ) ( ; ) ( ) ( ) ( )n
n n

d x xIII x x d x x nx d x nx
∞ ∞

=−∞ =−∞

Δ Δ = δ − = δ −∑ ∑  

(4.2) 
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Also, the Fourier transform of III(x; xΔ ) is xΔ -1III(f; xΔ -1). Therefore, this method 

samples the data using the following equation: 

( )( ) { ( )} ;d x kS g x xIII x x= Δ Δ  
(4.3) 

which, according to the above, does not affect the corresponding spectra in the 

frequency domain. In order to sample 2-D arrays in practice, instead of calculating the 

local average signal over the area corresponding to the pixel pitch and applying the sinc 

correction, the “analog” pixels were extracted based on the ratio xΔ /x. For instance, in 

the case that x=10 µm and xΔ =80 µm the 1st, 9th, 17th, 25th, etc. pixels were selected. 

However, the pixel pitches of the Dexela and Anrad detectors are 74.8 µm (~ 75 

µm) and 85 µm respectively. Therefore, the above ratio is not an integer number in the 

case that x=10 µm. As mentioned above, this specific “analog” pitch offers a reliable 

compromise between the sampling criterion and pc memory constraints. A suggested 

sampling method was employed in the case of the above two detectors (Konstantinidis 

et al., 2011a). This method is based on the combination of two sampling series (inner 

and outer) with different steps. Figure 4.7 shows the sampling method for the Dexela 

detector. The inner sampling series is represented by the red pixels, while the outer 

sampling series by the light blue ones. For each sampling increment the average of the 

two sampling series is calculated to get a step of 7.5. To achieve this both sampling 

series have got variable increments. The inner sampling series have got a sampling 

increment of 7, 8, 7, 8, etc. “analog” pixels, while the outer ones have a respective 

increment of 8, 7, 8, 7, etc. The feasibility of this sampling method is evaluated in the 

section 4.5. Furthermore, to compare the difference between the sampling method 

suggested by Saunders and Samei (2000) and the one used in the current thesis, the 

method was applied to the local averaging method for both the Dexela and Anrad 

detectors. In this case, the inner sampling series averaged the blurred image over an ROI 

of 7x7 pixels, while the outer ones were the average of 8x8 pixels. However, to get a 

step of 7.5x7.5 pixels the sampling increment of both sampling series was variable as 

well. To explain the above, the inner sampling series in both dimensions averaged the 1-

7, 9-15, 16-22, 24-30, etc. pixels, while the outer sampling series averaged the 1-8, 8-

15, 16-23, 23-30, etc. pixels respectively. Again, the two sampling series were 

combined by averaging. 
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Figure 4.7: Suggested sampling method for the Dexela CMOS x-ray detector 

Figure 4.8 shows an example of the effect of a) blurring and b) sampling processes 

on an ideal circle of 1 mm diameter and 30 % attenuation using the Dexela detector. 

Both images show the effect of signal transfer only, so they do not contain any kind of 

noise. The noise observed in the radiographic images is added to the blurred and 

sampled images after the simulation of the noise transfer (see the following section). 

 
Figure 4.8 a) blurred and b) blurred and sampled synthetic circle of 1 mm diameter 

using the Dexela CMOS x-ray detector 
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4.4 Simulation of the noise transfer (NNPS) 

To simulate the noise transfer the experimentally measured 2-D NNPS at different 

DAK levels were used. First, an uncorrelated (white) Gaussian noise array with zero 

mean and unit variance was created. The dimensions of this array are given from the 

blurred and sampled input image. This array corresponds to constant magnitude and 

random phase in the frequency domain, which randomizes the appearance of the noise. 

Then, the FFT of this array is multiplied by the square root of the input NNPS in order 

to introduce the noise correlation described by the NNPS. This is made because the 

NNPS is calculated from the squared modulus of the FFT of ROIs sampled from the flat 

images (see Eq. (2.28)). To apply the multiplication to any arbitrary point, a cubic 

spline interpolation is applied to the NNPS. Figure 4.9 shows that this interpolation 

method is sufficient to retain the input information. It is observed that the original 2-D 

NNPS matrix of 256x256 pixels is sufficiently applied to an 160x160 matrix. 

 
Figure 4.9 a) Experimentally measured NNPS compared to b) the interpolated NNPS 

used to insert noise on the synthetic images at 120 µGy using the Dexela CMOS x-ray 

detector in the HFW mode 

Afterwards, an inverse FFT is used to transform the results into the spatial domain. 

The real part of the restored image is used because the Fourier spectrum is Hermitian 

and consequently its conjugate image is real. Then, the restored image is normalized to 

reach zero mean and unity variance. Therefore, the only difference between the restored 

image and the input white Gaussian noise one is the noise correlation inserted by the 

NNPS. Next, the noise is scaled following the empirically measured mean-variance 

relationship over the DAK level range. Saunders and Samei (2003) assumed that the 
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spectral distribution of the NNPS is independent of the DAK level so only the scale of 

the NNPS is affected by the DAK level changes. However, it was found that this is not 

true in some cases and the spectral shape is slightly modified as a function of the DAK 

level. To achieve a realistic simulation at any arbitrary DAK level the closest DAK 

level was found that corresponded to experimentally measured NNPS. Then, the 

magnitude of the experimentally measured NNPS was re-scaled based on the ratio 

between the two DAK levels. Figure 4.10a shows a flat synthetic image with zero mean 

at a specific DAK level (120 µGy) using the Dexela detector in the HFW mode.  

Finally, the scaled noise array is added to the blurred and sampled input image in 

spatial domain. To properly scale the noise array a two-tier moving ROI method is 

incorporated. In this method, a 3x3 ROI scans the image to calculate local averages. 

Then the noise is scaled accordingly based on the empirically measured mean-variance 

relationship and applied at the central pixel of the 3x3 ROI. This method is used to 

simulate the different magnitude of the noise in a radiographic image based on the 

intensity level within the image. Figure 4.10b demonstrates the local scaling of the noise 

in a synthetic image of a 1mm diameter circle using the Dexela detector in the HFW 

mode (see Figure 4.8b). In particular, it shows a difference noise image (flat noise 

minus scaled noise synthetic image). The noise in the background remains the same 

resulting in zero difference. However, the scale of the noise inside the circle is different 

compared to the background noise so the rescaled noise has a circular shape.  

 
Figure 4.10 a) Flat synthetic image with zero mean at 120 µGy using the Dexela 

detector in the HFW mode,  b) difference noise image (flat noise minus scaled noise 

synthetic image) to demonstrate the effect of the local scaling of the noise 
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Figure 4.11 shows an example of radiographic images of an ideal input circle of 1 

mm diameter and 30% attenuation obtained using different detectors at two DAK levels 

and demonstrates the effect of the signal and noise transfer on the radiographic images. 

A detailed comparison is made in chapter 5, in terms of image quality metrics. The 

Remote RadEye HR detector was completely excluded from the simulation process 

because the suggested sampling method could not be used for the particular “analog” 

(10 µm) and pixel (22.5 µm) pitch combination. 

 
Figure 4.11: a) Ideal input circle of 1 mm diameter and synthetic  radiographic images 

using b) LAS  and c) Dexela LFW at 59.7 µGy and d) Hamamatsu, e) Dexela HFW and 

f) Anrad at 120 µGy 

4.5 Validation of the simulation method 

To validate the signal transfer simulation algorithm a vertical synthetic edge of 100 

% attenuation was developed. Then this edge was rotated by 2º to extract the 

oversampled ESF which leads to the calculation of the pMTF according to the IEC 

standard (IEC 62220-1, 2003 and IEC 62220-1-2, 2007). A bicubic interpolation was 

used to implement the rotation. Since the synthetic edge image is noise free, a single 

oversampled ESF was used for the pMTF calculation. Figure 4.12  compares the 

original vertical pMTF of Anrad detector to pMTFs of synthetic edge images applying 

both the comb and rectangular functions. This figure validates the applied modifications 
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on both the blurring and sampling steps. It can be observed that without a sinc 

correction the used sampling method (i.e. comb function) leads to a pMTF almost 

identical to the original one. The average absolute difference (%) between the two 

curves is 0.9 %. On the other hand, the average absolute difference (%) between the 

pMTF curve extracted using the rectangular function and the original one is 13.1%. 

When a sinc correction is applied to the latter synthetic pMTF curve the average 

absolute difference (%) between the two curves is 0.9 %.  The average absolute 

difference (%) between the original horizontal pMTF and the simulated one using the 

comb function is 0.7 %. This comparison demonstrates the validity of using the comb 

function without a sinc correction. The respective average absolute difference (%) 

between the synthetic and the original pMTF curves for the other detectors is 4.4 % for 

LAS, 0.9 % for Hamamatsu and 0.7 % for Dexela detectors. The origin of these small 

differences is probably due to the application of the 22nd polynomial fit (see Figure 4.3) 

and the interpolation method (bicubic) used to rotate the synthetic edge. It was found 

that a 2º rotation based on bilinear interpolation method resulted in respective average 

absolute relative differences (%) of 0.5% for Dexela, 3.0 % for LAS, 1.0 % for 

Hamamatsu and 0.8 % for Anrad detectors. However, both rotation methods result in 

insignificant differences.  
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Figure 4.12: pMTF curve of synthetic edge images applying the comb and rectangular 

functions in comparison to the original vertical pMTF curve of Anrad detector 

Figure 4.13 compares the average NNPS of the synthetic flat images to the 

experimentally measured average NNPS of the Dexela detector in the LFW mode and 

specific DAK level (29.0 µGy). The average absolute difference (%) between the two 
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curves is 0.8 %. Therefore, the simulation algorithm results in signal and noise transfer 

very close (less than 5% average difference) to the original ones.   
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Figure 4.13: Average NNPS curve of the synthetic flat images in comparison to the 

original average NNPS curve of the Dexela detector (LFW mode and 29.0 µGy) 

4.6 Software phantoms 

Two software phantoms were used. One simulates the true anatomy of the breast 

and the other a mammographic test tool. 

4.6.1 Breast software phantom 

Breast software phantoms were used as ideal input images based on Bliznakova et 

al. (2003 and 2010) studies. In particular, the Bliznakova et al. (2003) study presented a 

3-D non-compressed breast modelling that takes into account the full composition of the 

breast, i.e. the breast external shape, mammary duct system, breast abnormalities, 

mammographic texture, Cooper’s ligaments and pectoralis muscle. They introduced a 

methodology for the generation of breast models of different size, shape and 

composition. Then, simulation of the x-ray beam transport through the models can 

generate 2-D x-ray projection images (Bliznakova et al., 2006) or can be used in 3-D 

mammography, such as breast tomosynthesis (Ma et al., 2009) or breast CT (Glick, 

2007). The methodology was improved in a second study (Bliznakova et al., 2010), by 

introducing a new algorithm for the generation of the 3-D breast models. Also, this 

study introduced new features such as lymphs, blood vessels and skin. Bliznakova and 



Chapter 4 
 

 183

Pallikarakis developed a user friendly GUI (Breast Simulator) that allows the 

composition and visualization of software breast models and the respective 

mammographic simulations using a monoenergetic (19 keV) x-ray beam. The following 

figure shows an example of a simple uncompressed breast software model, consisting of 

the breast shape and the duct system only. 

 
Figure 4.14: Representation of a simple 3-D breast software phantom using the Breast 

Simulator 

In this thesis, four breast software phantoms were used at different composition and 

thickness. In particular, the glandularity percentage was 20, 45, 47 and 73 %. 

Simulation of breast compression was applied to the breast models for the purposes of 

mammography simulation, resulting in 5 and 6 cm thickness. The advantages of breast 

compression are a) the reduced superposition of adjacent tissues which allows an 

increased visualization of the boundaries of lesions, b) reduced scattered radiation, c) 

higher contrast, d) less absorbed dose and e) reduced effect of geometric magnification 

of tissues within the breast, since all anatomical parts are closer to the detector (Yaffe et 

al., 2008). The simulation algorithm for soft tissue compression (SASTC) was 

introduced by Zyganitidis et al. (2007). Briefly, this algorithm uses the concept of a 

simple spring, i.e. during compression the volume remains constant due to the concept 

of spring variable equilibrium lengths. The mechanical properties of the tissues are 

assumed to be linear and isotropic and the attenuation coefficients corresponding to 

each tissue in the uncompressed breast phantom are mapped to their corresponding 

modulus of elasticity (Wellman et al., 1999). All the breast models contained CaCO3 
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spheres with different diameter (from 0.6 mm to 1.35 mm) to simulate 

microcalcifications (µCs). The 3-D breast models were reconstructed as 2-D projection 

images at a given angle θ to generate a set of line integrals with 10 µm “analog” pitch. 

Each line integral represents the total attenuation of the x-ray beam as it travels in a 

straight line through the 3-D breast object. It expresses the integral of the products of 

the linear attenuation coefficient of each breast component and the respective thickness 

of the breast along the specific line.  

Then, the input spectral shape was estimated by applying the Beer–Lambert law on 

the output spectrum used in the x-ray performance evaluation of the digital detectors at 

28 kV. Therefore, 2 mm of Al were used as breast-equivalent filtration. A specific 

number of input x-rays was used at each energy interval to get certain ESAK (entrance 

surface Air Kerma) level used in mammography. The ESAK levels resulted in DAK 

levels within the dynamic ranges of the digital detectors. The simulation of the x-ray 

beam transport through the line integrals was made using the simple Beer–Lambert law. 

Hence, the effect of the scattering is ignored. Finally, the measured conversion function 

(i.e. signal transfer as a function of the input x-rays per unit area) of each detector was 

used to rescale the experimentally measured SNR relationship at a given DAK level. All 

the synthetic ideal breast images are compressed at craniocaudal (CC) orientation and 

the projections correspond to CC view. Figure 4.15 shows an example of a compressed 

ideal software breast phantom at 10 µm pitch. A cluster of 6 microcalcifications is 

included inside the breast. 
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Figure 4.15:  A compressed ideal software breast phantom at CC view 

4.6.2 CDMAM software phantom 

In this study a software CDMAM 3.4 phantom, provided by Yip (2010b), was used 

for the comparison of the digital detectors in terms of contrast-detail evaluation. The Al 

thickness of the software phantom was 0.3 mm instead of 0.5 mm, in order to simulate 

50 mm PMMA in total (i.e. when combined with the additional 45 mm PMMA) at the 

current beam quality used for the x-ray performance characterization of the detectors 

(W/Al at 28 kV). Figure 4.16 shows the normalized ideal software CDMAM 3.4 

phantom at 10 µm pitch. The term ideal implies that the phantom is not degraded by the 

digital detector’s transfer. Therefore, it corresponds to the x-ray distribution at the 

detector’s surface. Furthermore, the effects of geometric magnification and scattered 

radiation are added on the input phantom (see section 5.3.1). 
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Figure 4.16: An ideal software CDMAM 3.4 phantom normalized to unity 

As mentioned in section 1.9.2 at least eight CDMAM images are required for the 

contrast-detail analysis of a detector using the CDCOM software. Hence, eight noise 

images were generated and adapted with the NNPS of each detector at specific DAK. 

This was made to get the same input noise for a given CDMAM image using a specific 

detector. 

4.7 Summary 

In this chapter the simulation algorithm and its modifications have been described. 

In particular, it has been shown that the sinc correction can be avoided when comb 

sampling is applied. Also, the simulation of anisotropic signal transfer and sampling 

using weighting adjacent pixels were presented. The simulation method was validated 

by measuring the pMTF and NNPS parameters on the simulated images. The average 

difference between the results extracted from the simulated images and the original ones 

was less than 5 %. Finally, the synthetic breast phantoms and the CDMAM 3.4 test tool, 

which represent the ideal input data, were described. 
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Chapter 5 

5 Image quality analysis of the simulated 

images 

5.1 Overview of chapter 

In this chapter the simulated images are evaluated in order to compare the 

performance of the different detectors. In particular, CNR analysis is applied on the 

synthetic mammograms and contrast-detail evaluation on the synthetic CDMAM 3.4 

test tool. The latter is made using the software tool CDCOM to automatically score the 

images, followed by a human observer performance model. Finally, two combinations 

of spatial resolution and noise characteristics were examined in terms of contrast-detail 

analysis.  

5.2 Analysis using the synthetic mammograms 

5.2.1 Simulation conditions 

As mentioned in section 4.6.1 the Beer–Lambert exponential law was applied to 

simulate the x-ray beam transport along line integrals through the breast. Hence, the 

effect of scatter was not included in the simulation. Figure 5.1 shows the normalized 

photon fluencies after the phantoms, compared to the transmitted fluence after 0.2 cm 

Al. The Al filtration was used for the x-ray performance evaluation of the detectors at 

28 kV. It can be seen that all the breasts result in harder x-ray beams compared to that 

used for the evaluation of detectors. This happens because the thickness of Al used 

corresponds to around 4 cm breast thickness with a composition of 50% adipose and 

50% glandular tissues by weight (i.e. 50% glandularity). The selection of this thickness 

was made based on the mammographic IEC standard (IEC 62220-1-2, 2007) to simulate 

the effect of a typical compressed breast, which is approximately 4.2 cm in the United 
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States (Boone, 1999). In this particular case, Breasts 1 and 4 are 6 cm thick, while 

Breasts 2 and 3 are 5 cm thick respectively. Table 5.1 provides further details about the 

composition, thickness and the effect of each software breast phantom on the beam 

quality. The relative values that are used to compare beam qualities are the average 

energy (Emean) expressed in keV, the HVL (in mm Al) and the fluence per exposure ratio 

(Φ/Ka) expressed in x-rays per unit area per unit exposure (x-rays/mm2/µGy). The latter 

was calculated from Eq. (2.31) and was also used for the calculation of the HVL and the 

DAK. Concerning the HVL calculation, once the photon fluence is converted to 

exposure it is straightforward to calculate the required thickness of Al to reduce the 

exposure by half. The DAK is given by the ratio of the Φ/Ka to the total number of x-

rays per unit area, Φ. 
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Figure 5.1: Normalized photon fluencies on the output of the phantoms 

Table 5.1 also presents the absolute values of mean glandular dose (MGD) and the 

resultant DAK for each software breast phantom when 2 mGy ESAK was used. When 

an anti-scatter grid is employed in digital mammography, the ESAK is usually in the 

range 6-9 mGy (Chevalier et al., 2004 and Gennaro and di Maggio, 2006). In the case 

where no anti-scatter grid is used, the ESAK is usually about half. In this study 2 mGy 

ESAK was selected to reach a DAK within the dynamic range of the high sensitivity 

detectors (i.e. LAS and Dexela in the LFW mode). The selected ESAK results in less 

than 60 µGy DAK. The MGD was calculated to estimate the absorbed dose in the “at-

risk” glandular component of the breast, because it is the most sensitive organ within 

the breast to radiation induced carcinogenesis. The concept of MGD was first 

introduced by Hammerstein et al. (1979) and its calculation is made based on the fact 



Chapter 5 
 

 189

that it expresses the absorbed energy per unit mass of the glandular tissue. Many 

investigators estimate the MGD for various breasts based on conversion factors 

extracted from the Monte Carlo studies made by Dance et al. (Dance, 1990, Dance et 

al., 2000, Dance et al., 2009 and Dance et al., 2011) or Boone (2002). In this study the 

MGD was calculated using the following formula extracted from the studies of Johns 

and Yaffe (1985), Boone (1999) and Thacker and Glick (2004): 

max B B
13 E ( E ,t )T dt en,B

00
g B B B

( E )1.602 10MGD( Gy ) EN (1 e ) ( x( E )) G( E )dE
f V ( E )

μ μ
ρ μ

−
−⋅ ∫= − ⋅ + ⋅∫   

(5.1) 

where gf is the glandular fraction of the breast tissue, BV  is the volume of the breast (in 

cm3) and Bρ  is the density of the breast (in g/cm3). The product of these quantities 

results in the mass of the glandular tissue (in kg). The constant 1.602·10-13 is used to 

convert the MeV to J in order to present the MGD values in Gy (1 Gy= 1 J/kg). E is the 

energy of the incident photons (in MeV) and N0 corresponds to the incident x-ray 

photons per unit area (mm2), B( E )μ  is the total linear attenuation coefficient of the 

breast, TB is the breast thickness and en,B( E )μ  is the total linear energy absorption 

coefficient of the breast. The integral B B( E,t )T dtμ∫  corresponds to the line integral. 

The ratio en,B B( E ) / ( E )μ μ  is the fraction of the energy removed from the primary 

beam which is deposited in the initial interaction. In other words, it takes into account 

the energy lost due to the K-fluorescence radiation. Finally, the quantity x(E) is the 

fraction of the energy removed from the primary beam which is scattered initially but 

then absorbed on a subsequent interaction. In this study x(E) was considered equal to 

0.23 based on values extracted from the Monte Carlo study of Dance (1980). Finally, 

the factor G(E) rescales the normalized dose calculation to the glandular component of 

the breast tissue in a heterogeneous tissue matrix. It is calculated from the following 

formula: 

en
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(5.2) 
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where (µen(E)/ρ) is the mass energy absorption coefficient and “a” and “g” are the 

subscripts for adipose and glandular tissue respectively.  

Table 5.1: Parameters related to the effect of the synthetic breast phantoms on the beam 

quality 

Parameter Breast 1 Breast 2 Breast 3 Breast 4 Al 

Thickness (cm) 6 5 5 6 0.2 

Glandularity (%) 20 47 73 45 - 

µCs diameter (mm) 0.6 1.35 0.6 0.6  

Equivalent PMMA 
thickness (cm) 5.1 4.5 4.8 5.4  

Emean (keV) 22.6 22.5 22.6 22.8 22.2 

HVL (mm Al) 0.93 0.90 0.94 0.96 0.83 

Φ/Ka                
(x-rays/mm2/µGy) 7334 7241 7302 7463 7009 

MGD (mGy) using 2 
mGy ESAK 0.81 0.9 0.83 0.74 - 

DAK (µGy) using 2 
mGy ESAK 41.8 56.5 46.7 32.5 194.9 

 

From the data in Table 5.1 it can be seen that 0.2 cm Al results in DAK levels which 

are 4-5 times higher than those corresponding to the breasts. This happens because the 

specific thickness of Al was suggested by the mammographic IEC standard (IEC 

62220-1-2, 2007) in order to simulate the beam quality in relative values (i.e. Emean, 

HVL and Φ/Ka) instead of the absolute ones (i.e. total number of output x-rays and the 

resulted DAK).  

Concerning the response of the x-ray detectors, Marshall (2009b) demonstrated 

experimentally that the DQE of a linear and quantum limited detector changes as a 

function of the QDE which depends on the beam quality. He also showed that the slope 

of the STP depends on the Φ/Ka ratio and the NNPS, which corresponds to the SNR 

ratio, is inversely proportional to the product (Φ/Ka)·QDE at specific DAK levels. In the 

current study the inherent nonlinearity of CMOS APS detectors does not allow the 

precise estimation of the signal and noise transfer change. To avoid erroneous SNR 

transfers it was decided to use the experimentally measured ratio for the simulations. It 

was calculated that the beam qualities used modified the (Φ/Ka) and QDE parameters by 

less than 3 and 4 % respectively.  



Chapter 5 
 

 191

Finally, in these specific simulations it was assumed that all detectors (including 

Anrad SMAM) present isotropic behaviour. This is based on the fact that the relative 

difference between horizontal and vertical pMTF at 1.7 lp/mm is less than 3 % in all 

cases.  

5.2.2 Analysis results 

The following five figures show a specific region of synthetic mammograms of 

Breast 4 using four of the investigated detectors (LAS, Hamamatsu, Dexela in both full 

well modes and Anrad detectors). All of them correspond to 32.5 µGy DAK. The 

effects of the spatial resolution, noise and sensitivity of each detector on the same array 

of input data can be observed. The extracted information from the synthetic 

mammograms is quantitatively described by the CNR and SDNR by calculating the 

mean and standard deviation from the CaCO3 spheres (microcalcifications) and the 

background. To implement this analysis, circular ROIs were extracted from the centre 

of each 2-D CaCO3 disk image. The size of the ROI was taken in order to be in the 

central area of the disk (i.e. the diameters of the ROIs were in the range 0.4 to 0.5 µm). 

Then, four circular ROIs were selected from adjacent background areas with diameter 

three times larger than that of the disk ROI (i.e. in the range 1.2 to 1.5 µm). Both the 

number and size of the background ROIs was made to take into account the variations 

of the background. The whole process was made in ImageJ (Rasband, 1997-2011 and 

Abràmoff et al., 2004). Figure 5.2 shows the simulated mammograms of the 

investigated x-ray detectors at a specific DAK level. Visually the simulated 

mammogram of LAS is blurred compared to the one using Hamamatsu detector. This is 

due to the decreased resolution of LAS compared to other detectors (Figure 3.32). 

However, LAS demonstrates higher SNR transfer as a function of the exposure and 

higher sensitivity. As mentioned in section 3.3.7 the Dexela detector in the LFW mode 

has higher sensitivity compared to the HFW mode. Hence, the pixel values in the 

simulated images are higher. The DQE of this detector in the LFW mode is slightly 

higher at a given DAK (Figure 3.36) and this translates into a higher SNR value. The 

same spatial resolution was used for both modes. Finally, the pixel values that 

correspond to Anrad detector’s mammogram are very low due to the decreased 

sensitivity of the detector (Figure 3.30). For representation the position of the central 

and background ROIs around a disk is shown for Hamamatsu detector (Figure 5.2b). 
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Figure 5.2: Region of synthetic mammogram at 32.5 µGy DAK using a) LAS, b) 

Hamamatsu, c) Dexela (HFW), d) Dexela (LFW) and e) Anrad detectors 
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Both the CNR and SDNR parameters are presented for the simulated mammograms 

of the four breasts in Figure 5.3. The precision (expressed as error bars) of the results 

was calculated by applying error propagation. It can be seen that in most cases the CNR 

is slightly higher than SDNR. This happens because by definition the CNR combines 

the noise of the area inside and outside the disk (Eq. (1.8)), while the SDNR considers 

only the noise of the background area (Eq. (1.9)). For thick and fatty breasts such as 

Breast 1, both LAS and Dexela detectors present higher visibility of microcalcifications 

with 600 µm diameter. On the other hand, both Hamamatsu and Anrad detectors 

demonstrate relatively low visibility. For Breast 2 (glandular composition equal to 47 

%) LAS presents higher visibility of microcalcifications. Both CNR and SDNR 

parameters are almost equal for the rest of the detectors. For high glandularity (73 %) 

breast (Breast 3) the SDNR is high for both LAS and Dexela detectors. The comparison 

of the detectors in terms of CNR shows that LAS appears the highest visibility. 

Hamamatsu detector demonstrates similar CNR values compared to Dexela’s ones. 

Finally, for Breast 4 both LAS and Dexela detectors demonstrate higher CNR and 

SDNR values compared to the other two investigated detectors.  

 
 

Figure 5.3: CNR and SDNR at 32.5 µGy for a) Breast 1, b) Breast 2, c) Breast 3 and d) 

Breast 4 
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Overall, both LAS and Dexela detectors present higher CNR and SDNR values 

compared to the other two detectors. All detectors demonstrate higher visibility of the 

details inside thinner breasts (Breasts 2 and 3), indicating that in our case the breast 

thickness has a higher impact on the visibility of the microcalcifications than the 

glandularity. On the other hand, the combination of fatty and average glandularity breast 

(Breast 4) results in the lowest CNR and SDNR values for all detectors. This happens 

because this combination corresponds to higher absorption of x-rays from the 

background tissue, which limits the contrast. This behaviour is in agreement with the 

values presented in Table 5.1 where it is observed that Breast 4 results in the hardest 

beam quality. The CNR and SDNR values are relatively high due to the absence of the 

scattered radiation. According to Marshall (2009a) the effect of contrast and noise on 

the CNR (or SDNR) can be further investigated. In particular, Eq. (1.6) shows that the 

CNR is the product of contrast times the relative noise (i.e. average signal of the 

background divided by the noise). Figure 5.4 shows the individual contrast results used 

to extract the CNR and SDNR data at a given DAK level (32.5 µGy). It may be 

observed that LAS demonstrates slightly lower contrast compared to the other detectors. 

On the other hand, Hamamatsu, Dexela and Anrad detectors present similar contrast. 

 
 

Figure 5.4: Contrast results at 32.5 µGy for a) Breast 1, b) Breast 2, c) Breast 3 and d) 
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Figure 5.5 shows the relative noise results used to extract the CNR and SDNR data 

at the same DAK level (32.5 µGy). It can be observed that the noise is different between 

the different detectors. The LAS detector demonstrates the highest relative noise which 

explains why its CNR and SDNR values are high. Probably this happens due to the 

combination of the low quantum noise with the relatively poor spatial resolution. The 

Dexela detector presents higher relative noise values compared to Hamamatsu and 

Anrad detectors.  

 
 

Figure 5.5: Relative noise (both combined and background) results at 32.5 µGy for a) 

Breast 1, b) Breast 2, c) Breast 3 and d) Breast 4 
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the simulated microcalcifications. It does not fully examine the effect of the detector’s 

signal transfer at different frequencies. For the above reasons the performance of the 

detectors was also compared using the CDMAM 3.4 test tool (see the following 

section). 

5.3 Analysis using the synthetic CDMAM 3.4 test tool 

5.3.1 Simulation conditions 

As mentioned before (section 4.6.2) the effect of scattered radiation was added using 

the ideal software CDMAM phantom by applying the following formula (Dobbins III, 

2000, Bushberg et al., 2002 and Marshall, 2006a): 

PCC
(1 S / P )

=
+

 

(5.3) 

where CP is the generated radiation contrast, C is the degraded radiation contrast and 

S/P is the ratio of the scattered to primary radiation. The S/P ratio for 6 cm breast 

thickness was calculated to be equal to 0.62 (Dance and Day, 1984) for the beam quality 

used (W/Al at 28 kV). 

Furthermore, it was found that the geometric unsharpness due to the finite size of 

the focal spot (i.e. the geometric MTF) affects the scoring of the CDMAM (Yip et al., 

2008). To simulate this, the size of the ideal software phantom was magnified by a 

magnification factor (m) equal to 1.08, which represents the ratio of the source to 

detector (SDD) to the source to object (SOD) distance (SDD/SOD), since the CDMAM 

phantom is not usually placed directly on the detector. Assuming that the focal spot 

emission profile follows a Gaussian distribution, the width of the focal spot, f0, 

corresponds to the full width at half maximum (FWHM) of the distribution. In this 

study f0 was equal to 300 µm which represents a typical screening mammographic x-ray 

source. The FWHM and the standard deviation of the distribution, σ, are related by 

FWHM=2.35σ. In the Gaussian distribution case, the geometric MTF is given by 

(Prasad et al., 1976, Sandborg et al., 1999 and Sandborg et al., 2003): 

2 2 2 2
geoMTF exp( 2 f ( m 1) )π σ= − ⋅ ⋅ ⋅ −  

(5.4) 
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where f is the spatial frequency. The geometric MTF was expanded into a 2-D array and 

multiplied by the 2-D pMTF of each detector. Then, the combined MTF was used to 

simulate the bluring of the system. 

The CDCOM v1.5.2 reads images in DICOM (Digital Imaging and Communications 

in Medicine) format. A single DICOM image contains both the header (which stores 

information about the patient's name, the type of scan, image dimensions, pixel spacing, 

etc.) and the image data (which can contains the pixel values in two or three 

dimensions). CDCOM v1.5.2 extracts information from the DICOM header related to 

the pixel spacing (pitch), image dimensions, bits allocated, bits stored and pixel 

intensity relationship sign which is related to the location of the significant bit. In this 

study the synthetic CDMAM images were converted in DICOM format and then the 

pixel spacing information was modified for each digital detector. All the processing was 

made using a custom built software written in MATLAB version 7.10 (The MathWorks, 

Natick, MA, USA). 

5.3.2 Analysis results 

Figure 5.6 presents an example of a simulated image of CDMAM 3.4 test tool using 

the Dexela detector in the LFW mode and 59 µGy DAK. The window width of the 

image was adjusted for display purposes. Both the central and eccentric disks on each 

cell can be easily observed at the upper part of the image. However, the visibility is 

lower as the diameter and the thickness of the gold disks decrease.  
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Figure 5.6: A simulated image of CDMAM 3.4 using the Dexela detector at 28 kV and 

59 µGy 

Figure 5.7 presents the threshold contrast curves for four detectors as a function of 

disk diameter for low (59 µGy) DAK level. All of them were extracted using CDCOM 

v1.5.2 software tool by combination of 8 CDMAM 3.4 images. For clarity a 10 % error 

bar is presented only on the Hamamatsu data points to indicate typical uncertainty for 

the results. The uncertainty is expressed by the 95 % confidence level on the nonlinear 

least mean squares fit using custom built software written in MATLAB version 7.10 

(The MathWorks, Natick, MA, USA) to define the threshold thickness (see section 

1.9.2). It was found that it did not exceed 10 % in all cases. As the study covered the 

performance of the detectors in the range 0.1-1.0 mm, the anisotropic behaviour of 

Anrad SMAM detector was simulated. It is observed that Hamamatsu detector has the 

highest threshold contrast values at almost all disc diameters, which corresponds to a 

lower performance compared to the other three detectors. On the other hand, LAS, 

Anrad and Dexela detector in the LFW mode demonstrate similar performance at almost 

all disk diameters except 0.1 mm. The lower performance of LAS at high frequency 

objects is due to its limited pMTF.  

 



Chapter 5 
 

 199

0.1

1

10

100

0.1 1
Disc diameter (mm)

Th
re

sh
ol

d 
co

nt
ra

st
 (%

)

LAS
Hamamatsu
Dexela LFW
Anrad aniso

 
Figure 5.7: Threshold contrast versus the disk diameter for three detectors at low DAK  

Figure 5.8 shows the threshold contrast curves of the lower sensitivity detectors 

(Hamamatsu, Dexela in the HFW mode and Anrad) at higher DAK level (120 µGy). 

The threshold contrast values in this case are lower compared to the respective ones at 

low DAK because the SNR increases as a function of exposure. It is observed that 

Hamamatsu detector demonstrates lower performance in the diameter range 0.1-0.4 

mm. On the other hand, Dexela detector in the HFW mode presents a similar 

performance compared to Anrad SMAM detector in almost the whole range of disk 

diameter. Hence, the increased noise transfer of the Dexela detector in the HFW mode 

has got the same effect as the increased pMTF of Anrad detector (see section 3.3.7) on 

the detectability of low contrast-details. 
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Figure 5.8: Threshold contrast versus the disk diameter for three detectors at high DAK 
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Figure 5.9 and 5.8 demonstrate the predicted threshold contrast curves of the four 

detectors at both DAK levels. The original threshold contrast data points were converted 

to predicted human readings using Eq. (1.14) and the converted values were fitted from 

the curve described using Eq. (1.12) (van Engen et al., 2010). It can be seen that the 

Hamamatsu detector demonstrates the lowest detectability in almost the whole diameter 

range, while LAS presents the highest ones in the diameter range 0.16-0.40 mm. 
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Figure 5.9: Predicted threshold contrast for four detectors at 59 µGy DAK 

Figure 5.10 shows the predicted threshold contrast values at higher DAK level (120 

µGy). Again it is observed that Hamamatsu detector demonstrates the lower 

performance in almost the whole diameter range. On the other hand, the Dexela detector 

in the HFW mode presents a similar performance compared to Anrad detector in 

medium disk diameter range (0.16-0.5 mm). Finally, it is observed that Anrad has lower 

performance than Dexela at low disk diameters (i.e. 0.1 and 0.13 mm) despite its high 

pMTF values. This happens due to the aliasing effect that increases the NNPS and 

consequently decreases the DQE at high spatial frequencies (see Figure 3.35e). 



Chapter 5 
 

 201

0.1

1

10

100

0.1 1
Disc diameter (mm)

Th
re

sh
ol

d 
co

nt
ra

st
 (%

)

Hamamatsu
Dexela HFW
Anrad aniso

 
Figure 5.10: Predicted threshold contrast for three detectors at 120 µGy DAK 

The overall performance of the detectors is described by the inverse IQF parameter. 

The following table compares the IQFinv results of all detectors at both DAK levels. At 

59 µGy LAS, Dexela at both FW modes and Anrad detectors demonstrate similar 

values. The IQFinv values increase as a function of the DAK level due to the increased 

SNR transfer ratio. The performance of the Dexela detector in the HFW mode is similar 

to the Anrad SMAM detector. 

Table 5.2: IQFinv of the investigated detectors at two DAK levels 

DAK  
(µGy) LAS Hamamatsu Dexela LFW Dexela 

HFW Anrad 

59 126 ± 14 98 ± 10 130 ± 9 129 ± 11 128 ± 14 

120 - 145 ± 12 - 178 ± 17 176 ± 17 

 

Since the followed methodology allows an independent modification of the spatial 

resolution and noise characteristics for a given image (see section 4.2) two hypothetical 

cases were simulated by combining the signal and noise transfer of different detectors 

(Tingberg et al., 2002). In particular, the performance of a detector was simulated by 

combining the spatial resolution of Hamamatsu with the noise characteristics of LAS. 

This was made in order to evaluate the effect of a better scintillator coupling on the LAS 

detector which could result in Hamamatsu’s pMTF. Also, the spatial resolution of 

Hamamatsu was combined with the noise transfer of the Dexela detector in the LFW 

mode. Both detectors demonstrate similar pMTF values up to 6.5 lp/mm frequency 
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which corresponds to the Nyquist limit of the Dexela detector (see Figure 3.32). 

However, the Hamamatsu detector, due to its smaller pixel spacing, can detect objects 

up to 10 lp/mm without aliasing. Hence, this combination allows us to examine the case 

where the pixel spacing of the Dexela detector is 50 µm and simultaneously maintain 

the same SNR performance. Figure 5.11 shows that both combinations would result in 

better performance in terms of threshold detectability. In particular, the Hamamatsu-

LAS combination would result in high performance mainly at low disk diameters, while 

the Hamamatsu-Dexela in the LFW mode combination at higher disk diameters. At 59 

µGy DAK the IQFinv value for Hamamatsu-LAS combination would be equal to 168 ± 

13, while the respective one for Hamamatsu-Dexela (LFW) combination would be 150 

± 11.  
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Figure 5.11: Threshold contrast for combined detectors at 59 µGy DAK 

It should be noted that the above combinations are somewhat idealized because the 

pMTF, pixel pitch (noise aliasing) and NNPS are interlinked (see Eq. (2.25)). Hence, it 

is doubtful that pMTF, pixel pitch and NNPS can be selected independently. This 

discussion is made to estimate the performance of the detectors under optimized signal 

and noise transfer conditions. 

5.4 Summary 

In this chapter the synthetic mammographic images have been evaluated to compare 

the performance of the detectors in terms of image analysis. Both LAS and Dexela 

detectors demonstrate high CNR values compared to Hamamatsu and Anrad SMAM 
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detectors at the same conditions. Therefore, the increased SNR transfer of LAS plays 

the most crucial role on the detectability of microcalcifications with diameter down to 

600 µm. The contrast-detail evaluation is made at a range of contrasts and diameters. 

Both LAS and Dexela detectors demonstrate high performance at mammographic 

conditions. Finally, the spatial resolution of Hamamatsu has been combined with the 

noise characteristics of LAS and Dexela detectors. Both combinations resulted in higher 

image quality.   
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Chapter 6 

6 Concluding remarks and future potential 

6.1 Potential x-ray applications for LAS and Dexela detectors 

In this chapter suitable x-ray imaging applications for LAS and Dexela detectors are 

suggested, based on the experimental and simulation findings. LAS detector presents 

low read noise (40 e-) and relatively low dynamic range (63 dB). However, it 

demonstrates high DQE values at low DAK levels due to its increased SNR transfer. 

The CNR analysis presents that LAS detector has high visibility of object details larger 

than 600 µm. From the contrast-detail evaluation it is observed that LAS demonstrates 

similar high performance compared to Dexela and Anrad detectors. Hence, it can be 

used in mammography to detect low contrast tumours in soft tissue and relatively large 

(> 600 µm) clusters of microcalcifications (Moy, 2000a).  The hypothetical combination 

of LAS noise with Hamamatsu spatial resolution resulted in 33 % improved 

performance. This finding allows an estimation of the improvement in low contrast and 

small size details visibility in the case of an optimum scintillator coupling which would 

result in MTF values similar to Hamamatsu detector. At 52 kV LAS presents average 

DQE values at low frequency (less than 2 lp/mm). Hence, the current LAS detector (i.e. 

coupled with 150 µm thick CsI:Tl scintillator) can be used in general radiography to 

detect and identify cracks or fractures in extremities (Moy, 2000a). The combination of 

LAS high sensitivity, high DQE values at low DAK level (DQE(0.5)>0.6 at 7.2 µGy) 

and the achievable maximum frame rate (20 fps) means it could find applications in 

advanced imaging techniques, such as breast tomosynthesis and contrast enhanced (dual 

energy or digital subtraction mammography) digital mammography (Rafferty, 2007). In 

particular, dual energy or temporal subtraction applications in mammography aim to 

depict vessels down to 3 mm diameter (Skarpathiotakis, 2002 and Diekmann and 

Diekmann, 2008), and LAS is expected to reach high performance in this case. 

Unfortunately, LAS was not coupled with a thicker scintillator to investigate its 

performance at higher energies (>80 kV).  
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The Dexela CMOS x-ray detector presents low read noise (158 e-) and average 

dynamic range (69 dB) when it is operated in the LFW mode. On the other hand, the 

same detector in the HFW mode demonstrates higher read noise (358 e-) and dynamic 

range (73 dB). From both CNR and contrast-detail analyses the performance of the 

Dexela detector is high compared to the other detectors. This performance was 

predicted from both the signal and noise transfer characteristics. Hence, the Dexela 

detector using the thin scintillator can be used in mammography. The combination of 

LFW mode performance (i.e. high sensitivity, low read noise and high DQE at low 

DAK levels) with the achievable maximum frame rate in 1x1 binning mode (26 fps) 

allows the detector’s use in breast tomosynthesis. Furthermore, the pixel binning (such 

as 2x2 or 4x4) results in higher achievable frame rate (up to 86 fps) and improved SNR 

performance. Therefore, the detector could find applications in breast CT (Wu et al., 

2003 and Glick, 2007) and contrast enhanced digital mammography, where the spatial 

resolution is not the most important task. The combination of the Dexela sensor and 150 

µm CsI:Tl scintillator demonstrates high DQE values at higher energies (52 and 74 kV) 

compared to the other detectors. Additionally, the coupling of the Dexela sensor with a 

600 µm thick CsI:Tl scintillator results in excellent DQE performance compared to 

commercially available detectors for general radiography. Hence, the Dexela detector 

can be used in general radiography in a range of energies. Due to its high dynamic range 

in the HFW mode it can be used in chest radiography to check for lung abnormalities, 

diseases, thorax bones and heart failure (Schaefer-Prokop et al., 2008). Furthermore, the 

Dexela detector demonstrates high DQE performance under fluoroscopic conditions, 

compared to other commercially available detectors. A possible suitable application is 

CB-CT for dental imaging, where 80-120 kV are commonly used and the main 

requirements are 20-30 fps and 200-300 µm pixel pitch (Hashimoto et al., 2003, Baba et 

al., 2004 and Vannier, 2009). The Dexela detector can meet the requirements when is 

operated in the binning mode and further measurements need to be done to evaluate its 

suitability for dental imaging. Means to evaluate the effect of the image ghost and lag 

on the measurements were not available. However, lag on consecutive frames was not 

observed.  According to the manufacturers (Dexela, 2011) the image lag is expected to 

be small (less than 0.1 %) due to the crystalline Silicon of the CMOS sensor used in the 

Dexela detectors. In other words, the structure of the Silicon allows the electrons to pass 

through easily and eliminates the electrons traps, which is typical of amorphous Silicon 
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TFT technologies (Cowen et al., 2008 and Kim et al., 2008). Finally, the hypothetical 

combination of the noise of the Dexela detector in the LFW mode with the spatial 

resolution of Hamamatsu detector resulted in 16 % improved performance. The 

selection of the particular MTF was made based on the fact that the MTF values of 

Dexela and Hamamatsu detectors are similar up to the Nyquist limit of the former. 

Hence, this combination investigates the case where the pixel pitch is 33 % smaller and 

the detector retains its high SNR transfer. 

6.2 Future work  

This thesis compares the digital detectors in terms of primary physical 

characteristics (MTF, NPS and SNR) and overall system performance (DQE, CNR and 

contrast-detail resolution). According to Lança and Silva (2009) the latter investigation 

offers higher level of ambition compared to the former. The highest level of ambition is 

extracted from analysis related to the images of patients (i.e. receiver operated 

characteristics (ROC), ROC related methods, visual grading analysis (VGA) and image 

criteria (IC)). Therefore, the suitability of the detectors for various imaging applications 

needs to be further validated through clinical trials. 

The performance comparison of the x-ray detectors in terms of image quality 

evaluation can be made for advanced mammographic applications such as breast 

tomosynthesis using synthetic 3-D phantoms (Ma et al., 2009 and Bliznakova et al., 

2010). Furthermore, it can be applied at higher energies using either anthropomorphic 

software phantoms (Sandborg et al., 2001, McVey et al., 2003 and Demarco et al., 

2007) or software CDRAD test tool (Smans et al., 2010). The performance of the 

investigated detectors can be compared to commercially available ones using clinical 

radiographs. In particular, the known signal and noise transfers of a commercial detector 

at specific DAK level can be used to remove the spatial resolution (deblurring) and the 

noise (denoise) from a captured radiograph. The resultant ideal image can be inserted in 

the input of the presented simulation algorithm to evaluate the performance of the 

investigated detectors in real radiographs. Detailed image lag measurements can be 

made by synchronizing the x-ray source and the digital detectors (Mail et al., 2007 and 

Zhao and Zhao, 2008). A detailed x-ray performance evaluation of the detectors can be 

made for breast tomosynthesis and CT applications by calculating the coronal and axial 



Chapter 6 
 

 207

MTF and NPS as a function of the acquisition angle (Zhao, 2007, Richard and Samei, 

2010a and Richard and Samei, 2010b).  

As aforementioned, advanced x-ray imaging techniques can be used (dual energy, 

breast tomosynthesis etc.) in the case of dense and thick breasts. Furthermore, 

combination of the temporal and spatial resolution of x-ray imaging with data from 

other imaging modalities could allow more precise characterization of breast lesions and 

result in enhanced diagnostic accuracy (Rafferty, 2007). In other words, the 

development of a hybrid imaging system can improve the sensitivity and specificity of 

the diagnostic process. According to Fass (2008) the development of a positron 

emission tomography (PET)/CT hybrid system promises high diagnostic quality due to 

the combination of the metabolic sensitivity of PET and the temporal and spatial 

resolution of CT. This combination is commonly used to guide biopsy by highlighting 

the metabolically active region. Another alternative hybrid system is the x-

ray/ultrasound (US) combination (Fass, 2008 and Karellas and Vedantham, 2008). The 

screening US increases the detection of small cancers and depicts more cancers at a 

smaller size and lower stage compared to a physical examination. The US imaging 

technology demonstrates higher sensitivity than x-ray imaging, due to the investigation 

of the perfusion. Furthermore, magnetic resonance imaging (MRI) appears to be 

superior to x-ray imaging and US for assessing pathological response and a low rate of 

re-operation for positive margins (Fass, 2008). Therefore, a combined x-ray/MRI 

system could allow more precise characterization of breast lesions and result in 

enhanced diagnostic accuracy (Rafferty, 2007). Both US and MRI techniques are non-

ionizing which is an important advantage in the case of high radiation-risk patients. 

However, the high cost and the limited access to MRI machines are important 

limitations for its widespread availability. In addition, a compromise between spatial 

and temporal resolution is inevitable in MRI technique, potentially increasing the 

number of repeated examinations (Diekmann and Diekmann, 2008). The Dexela 

detector demonstrates large area, low noise and wide dynamic range, which probably 

enables simultaneous collection of the transmitted beam and scattered radiation. 

Therefore, the suitability of this detector for x-ray diffraction imaging needs to be 

examined.  X-ray diffraction is used to obtain biologically relevant scatter signatures 

from breast cancer (Bohndiek, 2008b and Fass, 2008). Both detectors can be examined 

for phase contrast imaging methods, which are based on observing variations of the 
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transmitted intensity behind the object, due to interference or change in propagation 

direction. This technique results in enhanced contrast which allows improvement of 

spatial resolution with reduced radiation dose (Keyriläinen et al., 2010). 

Recently, combinations of the advanced techniques are suggested in the literature. 

Graser et al. (2009) studied dual energy CT in the abdomen. They defined that using 

this technique a temporal resolution of 83 ms is possible. This limit is reached from the 

Dexela detector, because its minimum integration time at 1x1 binning mode is 38 ms. 

The other important requirement is high SNR at low signal levels. The Dexela detector 

is expected to meet this limit as well when is operated in the LFW mode. Another study 

(MacMahon et al., 2008) focused on the combination of dual energy subtraction and 

temporal subtraction chest radiography to reduce misregistration artifacts and improve 

the computed-aided detection (CAD) of lung nodules and pulmonary lesions. The main 

requirements of this combination are high frame rate and high SNR at low DAK levels, 

which are met by the Dexela detector. Another combined application with similar 

requirements (i.e. high frame rate and SNR) is the dual energy contrast enhanced digital 

breast tomosynthesis (Carton et al., 2010), which is an alternative to the contrast 

enhanced MRI. Further experimental analysis needs to be performed to evaluate the 

suitability of the detector on the above combined applications. 



References 
 

 209

References 

Abràmoff, M.D., Magelhaes, P.J., Ram, S.J. (2004), “Image Processing with ImageJ”, 

Biophot. Intern. 11 (7), pp. 36–42. 

Aizenberg, I. N. and Butakoff, C. (2002), “Frequency domain medianlike filter for 

periodic and quasi-periodic noise removal”, Proc. of SPIE 4667, pp. 181–191. 

Aizenberg, I. N. and Butakoff, C. (2008), “A windowed Gaussian notch filter for quasi-

periodic noise removal”, Im. Vis. Comp. 26 (10), pp. 1347–1353. 

Al Hudhud, G. A. and Turner, M. J. (2005), “Digital removal of power frequency 

artifacts using a Fourier space median filter”, IEEE Sign. Proc. Let. 12 (8), pp. 573–

576. 

Alfa Aesar - A Jonhson Matthey Company, available at www.alfa.com. 

Allinson, N., Anaxagoras, T., Aveyard, J., Arvanitis, C., Bates, R., Blue, A., Bohndiek, 

S., Cabello, J., Chen, L., Chen, S., Clark, A., Clayton, C., Cook, E., Cossins, A., 

Crooks, J., El-Gomati, M., Evans, P. M., Faruqi, W., French, M., Gow, J., 

Greenshaw, T., Greig, T., Guerrini, N., Harris, E. J., Henderson, R., Holland, A., 

Jeyasundra, G., Karadaglic, D., Konstantinidis, A., Liang, H. X., Maini, K. M. S., 

McMullen, G., Olivo, A., O'Shea, V., Osmond, J., Ott, R. J., Prydderch, M., Qiang, 

L., Riley, G., Royle, G., Segneri, G., Speller, R., Symonds-Tayler, J. R. N., Triger, 

S., Turchetta, R., Venanzi, C., Wells, K., Zha, X. and Zin, H. (2009), “The 

Multidimensional Integrated Intelligent Imaging project (MI-3)”, Nucl. Inst. Meth. 

A 604 (1-2), pp. 196–198. 

Alsager, A., Young, K. C. and Oduko, J. M. (2008), “Impact of heel effect and ROI size 

on the determination of contrast-to-noise ratio for digital mammography systems”, 

Proc. of SPIE Pts 1-3 6913, pp. 69134I-1–69134I-11. 

Anrad (2004), “The SMAM digital detector, digital mammography applications – 

product information”. 

Antonuk, L. E., Jee, K. W., El-Mohri, Y., Maolinbay, M., Nassif, S., Rong, X., Zhao, 

Q., Siewerdsen, J. H., Street, R. A. and Shah, K. S. (2000), “Strategies to improve 



References 
 

 210

the signal and noise performance of active matrix, flat-panel imagers for diagnostic 

x-ray applications”, Med. Phys. 27 (2), pp. 289–306. 

Arvanitis, C. D., Bohndiek, S. E., Royle, G., Blue, A., Liang, H. X., Clark, A., 

Prydderch, M., Turchetta, R. and Speller, R. (2007a), “Empirical electro-optical and 

x-ray performance evaluation of CMOS active pixels sensor for low dose, high 

resolution x-ray medical imaging”, Med. Phys. 34 (12), pp. 4612–4625. 

Arvanitis, C. D. (2007b), Quantitative contrast enhanced mammography and evaluation 

of scientific CMOS active pixels sensors for medical imaging, Ph.D. thesis, 

University College London. 

Ayala, R., Linares, R. and García-Mollá, R. (2009), “MIQuaELa, software for DQE 

measuring in DIGITAL radiography/mammography”, Proc. of IFMBE, WC 2009 25 

(II), pp. 825–828.  

Baba, R., Ueda, K. and Okabe, M. (2004), “Using a flat-panel detector in high 

resolution cone beam CT for dental imaging”, Dent. Rad. 33 (5), pp. 285–290. 

Båth, M., Sund, P. and Månsson, L. G. (2001), “Method for determining the two-

dimensional presampling modulation transfer function in digital radiography”, Proc. 

of SPIE 4320, pp. 268–279.  

Båth, M. (2003a), Imaging properties of digital radiographic systems: development, 

application and assessment of evaluation methods based on linear-systems theory, 

Ph.D. thesis, Göteborg University. 

Båth, M., Håkansson, M. and Månsson, L. G. (2003b), “Determination of the two-

dimensional detective quantum efficiency of a computed radiography system”, Med. 

Phys. 30 (12), pp. 3172–3182. 

Båth, M., Håkansson, M., Tingberg, A. and Månsson, L. G. (2005), “Method of 

simulating dose reduction for digital radiographic systems”, Rad. Prot. Dosim. 114 

(1-3), pp. 253–259. 

Beecken, B. P. and Fossum, E. R. (1996), “Determination of the conversion gain and 

the accuracy of its measurement for detector elements and arrays”, Appl. Opt. 35 

(19), pp. 3471–3477. 

Benítez, R. B., Ning, R. L., Conover, D. and Liu, S. H. (2009), “Measurements of the 

Modulation Transfer Function, Normalized Noise Power Spectrum and Detective 



References 
 

 211

Quantum Efficiency for two flat panel detectors: A Fluoroscopic and a Cone Beam 

Computer Tomography Flat Panel Detectors”, J. X-Ray Sc. Tech. 17 (4), pp. 279–

293. 

Bernhardt, P., Mertelmeier, T. and Hoheisel, M. (2006), “X-ray spectrum optimization 

of full-field digital mammography: Simulation and phantom study”, Med. Phys. 33 

(11), pp. 4337–4349. 

Bertolini, M., Nitrosi, A., Borasi, G., Botti, A., Tassoni, D., Sghedoni, R. and Zuccoli, 

G. (2011), “ontrast Detail Phantom Comparison on a Commercially Available Unit. 

Digital Breast Tomosynthesis (DBT) versus Full-Field Digital Mammography 

(FFDM)”, J. Dig. Im. 24 (1), pp. 58–65. 

Bick, U. and Diekmann, F. (2007), “Digital mammography: what do we and what don't 

we know?”, Eur. Radiol. 17 (8), pp. 1931–1942. 

Bigas, M., Cabruja, E., Forest, J. and Salvi, J. (2006), “Review of CMOS image 

sensors”, Microel. J. 37 (5), pp. 433–451. 

Bijkerk, K., Thijssen, M. and Arnoldussen, Th. (2000), Manual CDMAM-phantom type 

3.4, University Medical Centre, Nijmegen, The Netherlands. 

Bissonnette, M., Hansroul, M., Masson, E., Savard, S., Cadieux, S., Warmoes, P., 

Gravel, D., Agopyan, J., Polischuk, B., Haerer, W., Mertelmeier, T., Lo, J. Y., Chen, 

Y., Dobbins, J. T., Jesneck, J. L. and Singh, S. (2005), “Digital breast tomosynthesis 

using an amorphous selenium flat panel detector”, Proc. of SPIE, 5745, pp. 529–

540. 

Blake, P., Lawinski, C., Mackenzie, A., Honey, I., Cole, H., Emerton D. (2006), 

“Report 05084: Full Field Digital Mammography Systems Hologic Selenia - A 

technical report”, Centre for Evidence-based Purchasing (CEP). 

Bliznakova, K., Bliznakov, Z., Bravou, V., Kolitsi, Z. and Pallikarakis, N. (2003), “A 

three-dimensional breast software phantom for mammography simulation”, Phys. 

Med. Biol. 48 (22), pp. 3699–3719. 

Bliznakova, K., Kolitsi, Z. and Pallikarakis, N. (2006), “Dual-energy mammography: 

simulation studies”, Phys. Med. Biol. 51 (18), pp. 4497–4515. 



References 
 

 212

Bliznakova, K., Suryanarayanan, S., Karellas, A. and Pallikarakis, N. (2010), 

“Evaluation of an improved algorithm for producing realistic 3D breast software 

phantoms: Application for mammography”, Med. Phys. 37 (11), pp. 5604–5617. 

Bloomquist, A. K., Yaffe, M. J., Mawdsley, G. E., Hunter, D. M. and Beideck, D. J. 

(2006), “Lag and ghosting in a clinical flat-panel selenium digital mammography 

system”, Med. Phys. 33 (8), pp. 2998–3005. 

Boag, J. W. (1973), “Xeroradiography”, Phys. Med. Biol. 18 (1), pp. 3–37. 

Bochud, F. O., Abbey, C. K. and Eckstein, M. P. (1999a), “Further investigation of the 

effect of phase spectrum on visual detection in structured backgrounds”, Proc. of 

SPIE 3663, pp. 273–281. 

Bochud, F. O., Valley, J. F., Verdun, F. R., Hessler, C. and Schnyder, P. (1999b), 

“Estimation of the noisy component of anatomical backgrounds”, Med. Phys. 26 (7), 

pp. 1365–1370. 

Bogaerts, J., Dierickx, B., Meynants, G. and Uwaerts, D. (2003), “Total dose and 

displacement damage effects in a radiation-hardened CMOS APS”, IEEE Trans. El. 

Dev. 50 (1), pp. 84–90. 

Bohndiek, S. E., Blue, A., Clark, A. T., Prydderch, M. L., Turchetta, R., Royle, G. J. 

and Speller, R. D. (2008a), “Comparison of Methods for Estimating the Conversion 

Gain of CMOS Active Pixel Sensors”, IEEE Sensors J. 8 (9-10), pp. 1734–1744. 

Bohndiek, S. E., Cook, E. J., Arvanitis, C. D., Olivo, A., Royle, G. J., Clark, A. T., 

Prydderch, M. L., Turchetta, R. and Speller, R. D. (2008b), “A CMOS active pixel 

sensor system for laboratory-based x-ray diffraction studies of biological tissue”, 

Phys. Med. Biol. 53 (3), pp. 655–672. 

Bohndiek S. E. (2008c), Active Pixel Sensors for breast biopsy analysis using X-ray 

Diffraction, Ph.D. thesis, University College London. 

Bohndiek, S. E., Blue, A., Cabello, J., Clark, A. T., Guerrini, N., Evans, P. M., Harris, 

E. J., Konstantinidis, A., Maneuski, D., Osmond, J., O'Shea, V., Speller, R. D., 

Turchetta, R., Wells, K., Zin, H. and Allinson, N. M. (2009), “Characterization and 

testing of LAS: A prototype ‘Large Area Sensor’ with performance characteristics 

suitable for medical imaging applications”, IEEE Trans. Nucl. Sc. 56 (5), pp. 2938–

2946. 



References 
 

 213

Boissonneault, S. (2010), Private Communication. 

Boone, J. M. and Seibert, J. A. (1994), “An analytical edge spread function model for 

computer fitting and subsequent calculation of the LSF and MTF”, Med. Phys. 21 

(10), pp. 1541–1545. 

Boone, J. M. and Seibert, J. A. (1997), “An accurate method for computer-generating 

tungsten anode x-ray spectra from 30 to 140 kV”, Med. Phys. 24 (11), pp. 1661–

1670. 

Boone, J. M. (1998), “Spectral modeling and compilation of quantum fluence in 

radiography and mammography”, Proc. of SPIE 3336, pp. 592–601. 

Boone, J. M. (1999), “Glandular breast dose for monoenergetic and high-energy X-ray 

beams: Monte Carlo assessment”, Radiol. 213 (1), pp. 23–37. 

Boone, J. M. (2000), “X-ray production, interaction, and detection in diagnostic 

imaging”, in Handbook of medical imaging, vol. 1: Physics and psychophysics, 

SPIE Press, Bellingham, Washington, pp. 1–78. 

Boone, J. M. (2001), “Determination of the presampled MTF in computed 

tomography”, Med. Phys. 28 (3), pp. 356–360. 

Boone, J. M. (2002), “Normalized glandular dose (DgN) coefficients for arbitrary x-ray 

spectra in mammography: Computer-fit values of Monte Carlo derived data”, Med. 

Phys. 29 (5), pp. 869–875. 

Bourne, R. (2010), Fundamentals of Digital Imaging in Medicine, Springler-Verlag 

London Limited. 

Bouwman, R., Young, K., Lazzari, B., Ravaglia, V., Broeders, M. and van Engen, R. 

(2009), “An alternative method for noise analysis using pixel variance as part of 

quality control procedures on digital mammography systems”, Phys. Med. Biol. 54 

(22), pp. 6809–6822. 

Boyle, W. S. and Smith, G. E. (1970), “Charge-coupled semiconductor devices”, Bell 

Syst. Tech. J. 49, pp. 587–593. 

Bracewell, R. N. (1978), The Fourier Transform and its Applications, 2nd ed. McGraw-

Hill, New York 



References 
 

 214

Bruijns, T. J. C., Adriaansz, T., Cowen, A. R., Davies, A. G., Kengyelics, S. M., Kiani, 

K., Kroon, H. and Luijendijk, H. (2000), “Simulation of the image quality of an a-Si 

flat X-ray detector system in low dose fluoroscopic applications”, Proc. of SPIE 1 

(22), pp. 117–127. 

Buhr, E., Gunther-Kohfahl, S. and Neitzel, U. (2003), “Accuracy of a simple method for 

deriving the presampled modulation transfer function of a digital radiographic 

system from an edge image”, Med. Phys. 30 (9), pp. 2323–2331. 

Bushberg, J. T., Seibert, J. A., Leidholdt Jr., E. M. and Boone, J. M. (2002), The 

essential physics of medical imaging, Lippincott Williams & Wilkings, 

Philadelphia. 

Busse, F., Rutten, W., Sandkamp, B., Alving, P. L., Bastiaens, R. J. M. and Ducourant, 

T. (2002), “Design and performance of a high-quality cardiac flat detector”, Proc. of 

SPIE 4682, pp. 819–827. 

Burgess, A. E. (1999), “The Rose model, revisited”, J. Opt. Soc. Am. A 16 (3), pp. 633–

646. 

Burgess, A. (2004), “On the noise variance of a digital mammography system”, Med. 

Phys. 31 (7), pp. 1987–1995. 

Cabello, J., Bailey, A., Kitchen, I., Prydderch, M., Clark, A., Turchetta, R. and Wells, 

K. (2007), “Digital autoradiography using room temperature CCD and CMOS 

imaging technology”, Phys. Med. Biol. 52 (16), pp. 4993–5011. 

Cao, L. and Peter, J. (2008), “A Practical Non-linear Gain Correction Method for High-

resolution CMOS Imaging Detectors”, Proc. of DGMP Tagung 2008, pp. 1–2. 

Carr, J. J. (2000), The technician's EMI handbook: Clues and solutions, Newnes, 

Boston. 

Carton, A. K., Vandenbroucke, D., Struye, L., Maidment, A. D. A., Kao, Y. H., Albert, 

M., Bosmans, H. and Marchal, G. (2005), “Validation of MTF measurement for 

digital mammography quality control”, Med. Phys. 32 (6), pp. 1684–1695. 

Carton, A. K., Gavenonis, S. C., Currivan, J. A., Conant, E. F., Schnall, M. D. and 

Maidment, A. D. A. (2010), “Dual-energy contrast-enhanced digital breast 

tomosynthesis - a feasibility study”, Brit. J. Rad. 83 (988), pp. 344–350. 



References 
 

 215

Cahn, R. N., Cederstrom, B., Danielsson, M., Hall, A., Lundqvist, M. and Nygren, D. 

(1999), “Detective quantum efficiency dependence on x-ray energy weighting in 

mammography”, Med. Phys. 26 (12), pp. 2680–2683. 

Chawla, A. S., Saunders, R., Abbey, C., Delong, D. and Samei, E. (2006), “Analyzing 

the effect of dose reduction on the detection of mammographic lesions using 

mathematical observer models”, Proc. of SPIE 6146, pp. 141-152. 

Chawla, A. S., Sarnei, E., Saunders, R., Abbey, C. and Delong, D. (2007), “Effect of 

dose reduction on the detection of mammographic lesions: A mathematical observer 

model analysis”, Med. Phys. 34 (8), pp. 3385–3398. 

Chawla, A. S., Samei, E., Saunders, R. S., Lo, J. Y. and Baker, J. A. (2008a), “A 

mathematical model platform for optimizing a multiprojection breast imaging 

system”, Med. Phys. 35 (4), pp. 1337–1345. 

Chawla, A. S., Samei, E., Lo, J. Y. and Mertelmeier, T. (2008b), “Multi-projection 

correlation imaging as a new diagnostic tool for improved breast cancer detection”, 

Proc. of IWDM 2008, Lect. Not. Comp. Sci. 5116, pp. 635–642. 

Chawla, A. S., Lo, J. Y., Baker, J. A. and Samei, E. (2009), “Optimized image 

acquisition for breast tomosynthesis in projection and reconstruction space”, Med. 

Phys. 36 (11), pp. 4859–4869. 

Chevalier, M., Moran, P., Ten, J. I., Soto, J. M. F., Cepeda, T. and Vano, E. (2004), 

“Patient dose in digital mammography”, Med. Phys. 31 (9), pp. 2471–2479. 

Cho, M. K., Kim, H. K., Graeve, T., Yum, S. M., Lim, C. H., Cho, H. and Kim, J. M. 

(2008), “Measurements of X-ray imaging performance of granular phosphors with 

direct-coupled CMOS sensors”, IEEE Trans. Nucl. Sc. 55 (3), pp. 1338–1343. 

Cowen, A. R., Kengyelics, S. M. and Davies, A. G. (2008), “Solid-state, flat-panel, 

digital radiography detectors and their physical imaging characteristics”, Clin. 

Radiol. 63 (5), pp. 487–498. 

Cunningham, I. A. and Reid, B. K. (1992), “Signal and noise in modulation transfer 

function determinations using the slit, wire, and edge techniques”, Med. Phys. 19 

(4), pp. 1037–1044. 



References 
 

 216

Cunningham, I. A. (1998), “Linear-systems modeling of parallel cascaded stochastic 

processes: The NPS of radiographic screens with reabsorption of characteristic x 

radiation”, Proc. of SPIE 3336, pp. 220–230. 

Cunningham, I. A. and Shaw, R. (1999), “Signal-to-noise optimization of medical 

imaging systems”, J. Opt. Soc. Am. A 16 (3), pp. 621–632. 

Cunningham, I. A. (2000), “Applied linear-systems theory”, in Handbook of medical 

imaging, vol. 1: Physics and psychophysics, SPIE Press, Bellingham, Washington, 

pp. 79–159.  

Cunningham, I. A., Lazarev, S., Sattarivand, M. and Jankovic, N. D. (2007), 

“Development of a portable instrument for automated measurements of the detective 

quantum efficiency of X-ray detectors”, Proc. of SPIE 6510, pp. U426–U433. 

Dainty, J. C. and Shaw R., (1974), Image science: principles, analysis and evaluation of 

photographic-type imaging processes, Academic Press Inc., London. 

Dance, D. R. (1980), “The Monte Carlo calculation of integral radiation dose in 

xerommamography”, Phys. Med. Biol. 25 (1), pp. 25–37. 

Dance, D. R. and Day, G. J.  (1984), “The computation of scatter in mammography by 

Monte Carlo methods”, Phys. Med. Biol. 29 (3), pp. 237–247. 

Dance, D. R. (1990), “Monte Carlo calculation of conversion factors for the estimation 

of mean glandular breast dose”, Phys. Med. Biol. 35 (9), pp. 1211–1219. 

Dance, D. R., Skinner, C. L., Young, K. C., Beckett, J. R. and Kotre, C. J. (2000), 

“Additional factors for the estimation of mean glandular breast dose using the UK 

mammography dosimetry protocol”, Phys. Med. Biol. 45 (11), pp. 3225–3240. 

Dance, D. R., Young, K. C. and van Engen, R. E. (2009), “Further factors for the 

estimation of mean glandular dose using the United Kingdom, European and IAEA 

breast dosimetry protocols”, Phys. Med. Biol. 54 (14), pp. 4361–4372. 

Dance, D. R., Young, K. C. and van Engen, R. E. (2011), “Estimation of mean 

glandular dose for breast tomosynthesis: factors to use with the UK, European and 

IAEA breast dosimetry protocols”, Phys. Med. Biol. 56 (2), pp. 453–471. 

Demarco, J. J., Cagnon, C. H., Cody, D. D., Stevens, D. M.,  McCollough, C. H. Zankl, 

M., Angel, E. and McNitt-Gray, M. F. (2007) “Estimating radiation doses from 



References 
 

 217

multidetector CT using Monte Carlo simulations: Effects of different size voxelized 

patient models on magnitudes of organ and effective dose”, Phys. Med. Biol. 52 (9), 

pp. 2583–2597. 

Desai, N., Singh, A. and Valentino, D. J. (2010), “Practical Evaluation of Image Quality 

in Computed Radiographic (CR) Imaging Systems”, Proc. of SPIE 7622, 76224Q-

1–76224Q-10. 

Dexela Ltd (a PerkinElmer company) – 3D Digital Mammography - Digital Breast 

Tomosynthesis (2011), available at www.dexela.com. 

Diekmann, F. and Diekmann, S. (2008), “The Future of Breast Cancer Diagnostics”, Br. 

Care 3 (6), pp. 384–387. 

Dobbins III, J. T. (1995), “Effects of undersampling on the proper interpretation of 

modulation transfer function, noise power spectra, and noise equivalent quanta 

of digital imaging systems”, Med. Phys. 22 (2), pp. 171–181. 

Dobbins III, J. T. (2000), “Image Quality Metrics for digital systems”, in Handbook of 

medical imaging, vol. 1: Physics and psychophysics, SPIE Press, Bellingham, 

Washington, pp. 161–222. 

Doyle, P. (2008), Assessment and Optimization of Digital Radiography Systems for 

Clinical Use, Ph.D. thesis, University of Glasgow. 

Dyck, R. H. and Weckler, G. P. (1968), “Integrated arrays of silicon photodetectors for 

image sensing”, IEEE Trans. El. Dev. ED15 (4), pp. 196–201. 

EMVA Standard 1288 (2005): Standard for Characterization and presentation of 

Specification Data for Image Sensors and Cameras, Technical report, European 

Machine Vision Association (EMVA). 

El Gamal, A. and Eltoukhy, H. (2005), “CMOS image sensors”, IEEE Circ. & Dev. 21 

(3), pp. 6–20. 

Elbakri, I. A., Tesic, M. M. and Xiong, Q. (2006), “Physical characterization of a high-

resolution 16-bit CCD detector for mammography”, Med. Phys. 33 (7), pp. 2670–

2670. 



References 
 

 218

Elbakri, I. A., Tesic, M. M. and Xiong, Q. R. (2007), “Physical characterization of a 

high-resolution CCD detector for mammography”, Phys. Med. Biol. 52 (8), pp. 

2171–2183. 

Elbakri, I. A., McIntosh, B. J. and Rickey, D. W. (2009), “Physical characterization and 

performance comparison of active- and passive-pixel CMOS detectors for 

mammography”, Phys. Med. Biol. 54 (6), pp. 1743–1755. 

Elbakri, I. (2010), “JDQE: A User-friendly ImageJ Plugin for DQE Calculation”, poster 

in 52nd AAPM Annual Meeting. 

Evans, D. S., Workman, A. and Payne, M. (2002), “A comparison of the imaging 

properties of CCD-based devices used for small field digital mammography”, Phys. 

Med. Biol. 47 (1), pp. 117–135. 

Falmagne, J. C.  (1987), “Psychophysical measurement and theory”, in Handbook of 

Perception and Human Performance, Wiley, New York. 

Fass, L. (2008), “Imaging and cancer: A review”, Mol. Onc. 2 (2), pp. 115–152. 

Fish A. and Yadid-Pecht O. (2004), “Active Pixel Sensor Design: From Pixels to 

Systems” in CMOS Imagers: From Phototransduction to Image Processing, Kluwer 

Academic Publishers, Dordrecht, pp. 99–139. 

Fetterly, K. A. and Hangiandreou, N. J. (2001), “Effects of x-ray spectra on the DQE of 

a computed radiography system”, Med. Phys. 28 (2), pp. 241–249. 

Fetterly, K. A., Hangiandreou, N. J., Schueler, B. A. and Ritenour, E. R. (2002), 

“Measurement of the presampled two-dimensional modulation transfer function of 

digital imaging systems”, Med. Phys. 29 (5), pp. 913–921. 

Flynn, M. J., Hames, S. M., Wilderman, S. J. and Ciarelli, J. J. (1996), “Quantum noise 

in digital X-ray image detectors with optically coupled scintillators”, IEEE Trans. 

Nucl. Sc. 43 (4), pp. 2320–2325. 

Fossum, E. R. (1997), “CMOS image sensors: Electronic camera-on-a-chip”, IEEE 

Trans. El. Dev. 44 (10), pp. 1689–1698. 

Fujita, H., Tsai, D. Y., Itoh, T., Doi, K., Morishita, J., Ueda, K. and Ohtsuka, A. (1992), 

“A simple method for determining the modulation transfer function in digital 

radiography”, IEEE Trans. Med. Im. 11 (1), pp. 34–39.  



References 
 

 219

Gennaro, G. and di Maggio, C. (2006), “Dose comparison between screen/film and full-

field digital mammography”, Europ. Radiol. 16 (11), pp. 2559–2566. 

Gennaro, G., Golinelli, P., Bellan, E., Colombo, P., D'Ercole, L., Di Nallo, A., Gallo, L., 

Giordano, C., Meliado, G., Morri, B., Nassivera, E., Oberhofer, N., Origgi, D., 

Paolucci, M., Paruccini, N., Piergentili, M., Rizzi, E. and Rossi, R. (2008), 

“Automatic exposure control in digital mammography: Contrast-to-noise ratio 

versus average glandular dose”, Proc. of IDWM, LNCS 5116, pp. 711–715. 

Giakoumakis, E. (1991), “Matching factors for various light-source photodetector 

combinations”, Appl. Phys. A: Sol. Surf. 52 (1), pp. 7–9. 

Ghetti, C., Borrini, A., Ortenzia, O., Rossi, R. and Ordóñez, P. L. (2008), “Physical 

characteristics of GE senographe essential and DS digital mammography detectors”, 

Med. Phys. 35 (2), pp. 456–463. 

Ghosh, S., Froebrich, D. and Freitas, A. (2008), “Robust autonomous detection of the 

defective pixels in detectors using a probabilistic technique”, Appl. Opt. 47 (36), pp. 

6904–6924. 

Glick, S. J. (2007), “Breast CT”, Annu. Rev. Biomed. Eng.9, pp. 501–526. 

Giger, M. L. and Doi, K. (1984a), “Investigation of basic imaging properties in digital 

radiography. I. Modulation transfer function”, Med. Phys. 11 (3), pp. 287–295. 

Giger, M. L., Doi, K. and Metz, C. E. (1984b), “Investigation of basic imaging 

properties in digital radiography. II. Noise wiener spectrum”, Med. Phys. 11 (6), pp. 

797-805. 

Gonzalez, R. C., Woods, R. E. and Eddins, S. L. (2004), Digital Image Processing 

using MATLAB, fifth ed., Prentice Hall, Upper Saddle River. 

Gonzalez, R. C. and Woods, R. E. (2008), Digital Image Processing, third ed., Prentice 

Hall, Upper Saddle River. 

Goodfellow Corporation, Devon PA, available at www.goodfellow.com. 

Graeve, T. and Weckler, G. P. (2001), “High-resolution CMOS imaging detector”, 

Proc. of SPIE 2 (25), pp. 68–76. 



References 
 

 220

Granfors, P. R. and Aufrichtig, R. (2000), “DQE(f) of an amorphous silicon flat panel 

x-ray detector: Detector parameter influences and measurement methodology”, 

Proc. of SPIE 1 (22), pp. 2–13. 

Granfors, P. R., Aufrichtig, R., Possin, G. E., Giambattista, B. W., Huang, Z. S., Liu, J. 

Q. and Ma, B. (2003), “Performance of a 41X41 cm2 amorphous silicon flat panel x-

ray detector designed for angiographic and R&F imaging applications”, Med. Phys. 

30 (10), pp. 2715–2726. 

Graser, A., Johnson, T. R. C., Chandarana, H. and Macari, M. (2009), “Dual energy CT: 

preliminary observations and potential clinical applications in the abdomen”, Eur. 

Radiol. 19 (1), pp. 13–23. 

Greer, P. B. and van Doorn, T. (2000), “Evaluation of an algorithm for the assessment 

of the MTF using an edge method”, Med. Phys. 27 (9), pp. 2048–2059. 

Greer, P. B. (2005), “Correction of pixel sensitivity variation and off-axis response for 

amorphous silicon EPID dosimetry”, Med. Phys. 32 (12), pp. 3558–3568. 

Grosjean, B. and Muller, S. (2006), “Impact of textured background on scoring of 

simulated CDMAM phantom”, Proc. of IWDM 4046, pp. 460–467. 

Gruner, S. M., Tate, M. W. and Eikenberry, E. F. (2002), “Charge-coupled device area 

x-ray detectors”, Rev. Scient. Inst. 73 (8), pp. 2815–2842. 

Hamamatsu, (2008a), Flat panel sensor C9732DK: For soft X-ray imaging, cassette 

type with USB 2.0 interface. Large photodiode area: 120 x 120 mm. 

Hamamatsu, (2008b), X-ray flat panel sensor application manual, Revision 4.3. 

Hamamatsu, (2010), Private Communication. 

Hammerstein, G. R., Miller, D. W., White, D. R., Masterson, M. E., Woodard, H. Q. 

and Laughlin, J. S. (1979), “Absorbed radiation dose in mammography”, Radiol. 

130 (2), pp. 485–491. 

Hashimoto, K., Arai, Y., Iwai, K., Araki, M., Kawashima, S. and Terakado, M. (2003), 

“A comparison of a new limited cone beam computed tomography machine for 

dental use with a multidetector row helical CT machine”, Oral Surg. Oral Med. 

Oral Path. Oral Rad. and Endodont. 95 (3), pp. 371–377. 



References 
 

 221

Helmers, H. and Schellenberg, M. (2003), “CMOS vs. CCD sensors in speckle 

interferometry”, Optics and Laser Technology 35 (8), pp. 587–595. 

Hoffman, A., Loose, M. and Suntharalingam, V. (2005), “CMOS detector technology”, 

Exper. Astr. 19 (1-3), pp. 111–134. 

Holdsworth, D. W., Gerson, R. K. and Fenster, A. (1990), “A time-delay integration 

charge-coupled device camera for slot-scanned digital radiography”, Med. Phys. 17 

(5), pp. 876–886. 

Honey, I., Lawinski, C., Blake, P., Mackenzie, A., Cole, H., Emerton D. (2006), 

“Report 06045: Full Field Digital Mammography Systems Sectra MicroDose - A 

technical report”, Centre for Evidence-based Purchasing (CEP). 

Hubbel, J. H. and Seltzer, S. M. (1995), Tables of X-ray mass attenuation coefficients 

and mass energy absorption coefficients 1 keV to 20MeV for elements Z=1 to 92 

and 48 additional substances of dosimetric interest, U.S. Department of commerce, 

NISTIR Report No. 5632. 

Huda, W., Sajewicz, A. M. and Ogden, K. M. (2003), “Experimental investigation of 

the dose and image quality characteristics of a digital mammography imaging 

system”, Med. Phys. 30 (3), pp. 442–448. 

Hunt, D. C., Kirby, S. S. and Rowlands, J. A. (2002), “X-ray imaging with amorphous 

selenium: X-ray to charge conversion gain and avalanche multiplication gain”, Med. 

Phys. 29 (11), pp. 2464–2471. 

Hunt, D. C., Tousignant, O. and Rowlands, J. A. (2004), “Evaluation of the imaging 

properties of an amorphous selenium-based flat panel detector for digital 

fluoroscopy”, Med. Phys. 31 (5), pp. 1166–1175. 

IEC 62220-1 (2003), Medical electrical equipment - Characteristics of digital x-ray 

imaging devices - Part 1: Determination of the detective quantum efficiency, 

International Electrotechnical Commission (IEC), Geneva, Switzerland.  

IEC 62220-1-2 (2007), Medical electrical equipment - characteristics of digital x-ray 

imaging devices: Part 1–2. Determination of the detective quantum efficiency - 

detectors used in mammography, International Electrotechnical Commission (IEC), 

Geneva, Switzerland. 



References 
 

 222

ICRU Report No. 54 (1996), Medical imaging - The assessment of image quality, 

International Commission on Radiation Units and Measurements (ICRU), Bethesda, 

MD, USA. 

Illers, H., Vandenbroucke, D. and Buhr, E. (2004), “Measurement of correlated noise in 

images of computed radiography systems and its influence on the detective quantum 

efficiency”, Proc. of SPIE 5368, pp. 639–647. 

Illers, H., Buhr, E. and Hoeschen, C. (2005), “Measurement of the detective quantum 

efficiency (DQE) of digital X-ray detectors according to the novel standard IEC 

62220-1”, Rad. Prot. Dos. 114 (1-3), pp. 39–44. 

Institute of Physics and Engineering in Medicine–IPEM (2010), available at 

www.ipem.ac.uk 

Janesick, J. R., Klaasen, K. P. and Elliott, T. (1987), “Charge-coupled-device charge-

collection efficiency and the photon-transfer technique”, Opt. Engin. 26 (10), pp. 

972–980. 

Janesick, J. (1997), “CCD transfer method - Standard for absolute performance of 

CCDs and digital CCD camera systems”, Proc. of SPIE 3019, pp. 70–102. 

Janesick, J. R. (2001), Scientific charge-coupled devices, SPIE Press, Bellingham, 

Washington. 

Janesick, J. R. (2002), “Lux transfer: Complementary metal oxide semiconductors 

versus charge-coupled devices”, Opt. Engin. 41 (6), pp. 1203–1215. 

Janesick, J. R. and Putnam, G. (2003a), “Developments and applications of high-

performance CCD and CMOS imaging arrays”, Annu. Rev. Nucl. Part. Sci. 53, pp. 

263–300. 

Janesick, J. R., Gunawan, F., Dosluoglu, T., Tower, J. and McCaffrey, N. (2003b), 

“Scientific CMOS Pixels”, Exper. Astr. 14 (1), pp. 33–43. 

Janesick, J. R., Andrews, J. T. and Elliott, T. (2006), “Fundamental performance 

differences between CMOS and CCD imagers; Part I”, Proc. of SPIE 6276, pp. 

62760M– (1–19). 

Janesick, J. R. (2007), Photon transfer: DN  λ, SPIE Press, Bellingham, Washington. 



References 
 

 223

Jee, K. W., Antonuk, L. E., El-Mohri, Y. and Zhao, Q. H. (2003), “System performance 

of a prototype flat-panel imager operated under mammographic conditions”, Med. 

Phys. 30 (7), pp. 1874–1890. 

Ji, Z. (2004), “Reducing periodic noise using soft morphology filter”, Chin. J. Electr. 21 

(2), pp. 159. 

Ji, Z., Liao, H. L., Zhang, X. J. and Wu, Q. H. (2006), “Simple and efficient soft 

morphological filter in periodic noise reduction”, Proc. of Tencon 2006 - 2006 IEEE 

Region 10 Conference 1-4, pp. 1099-1102. 

Ji, T. Y., Lu, Z. and Wu, Q. H. (2007a), “A particle swarm optimizer applied to soft 

morphological filters for periodic noise reduction”, Proc. of Appl. Evol. Comp. 

4448, pp. 367–374. 

Ji, T. Y., Lu, Z. and Wu, Q. H. (2007b), “Optimal soft morphological filter for periodic 

noise removal using a particle swarm optimiser with passive congregation”, Sign. 

Process. 87 (11), pp. 2799–2809. 

Johns, H. E. and Cunningham, I. A. (1983), The physics of radiology, Springfield, Ill. 

Johns, P. C. and Yaffe, M. J. (1985), “Theoretical optimization of dual-energy x-ray 

imaging with application to mammography”, Med. Phys. 12 (3), pp. 289–296. 

Judy, P. F. (1976), “The line spread function and modulation transfer function of a 

computed tomographic scanner”, Med. Phys. 3 (4), pp. 233–236. 

Karellas, A. and Vedantham, S. (2008), “Breast cancer imaging: A perspective for the 

next decade”, Med. Phys. 35 (11), pp. 4878–4897. 

Karssemeijer, N. and Thijssen, M. A. O. (1996), “Determination of contrast-detail 

curves of mammography systems by automated image analysis”, Proc. of IWDM 

1119, pp. 155–160. 

Keyriläinen, J., Bravin, A., Fernández, M., Tenhunen, M., Virkkunen, P. and Suortti, P. 

(2010), “Phase-contrast X-ray imaging of breast”, Acta Radiol. 51 (8), pp. 866–884. 

Kim, H. K., Cunningham, I. A., Yin, Z. and Cho, G. (2008), “On the Development of 

Digital Radiography Detectors: A Review”, Intern. J. Prec. Eng. & Man. 9 (4), pp. 

86–100. 



References 
 

 224

Konstantinidis, A. C., Olivo, A., Munro, P. R. T., Bohndiek, S. E. and Speller, R. D. 

(2010), “Optical characterisation of a CMOS active pixel sensor using periodic 

noise reduction techniques”, Nucl. Inst. Meth. A 620 (2–3), pp. 549-556. 

Konstantinidis, A. C., Olivo, A. and Speller, R. D. (2011a), “Technical Note: Further 

development of a resolution modification routine for the simulation of the 

modulation transfer function (MTF) of digital x-ray detectors”, Med. Phys. 

(accepted). 

Konstantinidis, A. C., Olivo, A. and Speller, R. D. (2011b), “An alternative gain 

correction algorithm to compensate for the number of used reference flat frames in 

detector performance studies”, Phys. Med. Biol. (submitted). 

Korthout, L., Verbugt, D., Timpert, J., Mierop, A., de Haan, W., Maes, W., de 

Meulmeester, J., Muhammad, W., Dillen, B., Stoldt, H., Peters, I. and Fox, E. 

(2009), “A wafer-scale CMOS APS imager for medical X-ray applications”, DALSA 

Prof. Im. 

Kotter, E. and Langer, M. (2002), “Digital radiography with large-area flat-panel 

detectors”, Eur. Radiol. 12 (10), pp. 2562–2570. 

Krymski, A. I. (2003), “A high-speed, 240-frames/s, 4.1-Mpixel CMOS sensor”, IEEE 

Trans. El. Dev. 50 (1), pp. 130–134. 

Kwan, A. L. C., Seibert, J. A. and Boone, J. M. (2006), “An improved method for flat-

field correction of flat panel x-ray detector”, Med. Phys. 33 (2), pp. 391–393. 

Lança, L. and Silva, A. (2009), “Digital radiography detectors-A technical overview: 

Part 2”, Rad. 15 (2), pp. 134–138. 

Lawinski, C., Mackenzie, A., Cole, H., Blake, P. and Honey I. (2005), “Report 05078: 

Digital imaging systems for general radiography - A comparative technical report”, 

Centre for Evidence-based Purchasing (CEP). 

Lazzari, B., Belli, G., Gori, C. and Del Turco, M. R. (2007), “Physical characteristics of 

five clinical systems for digital mammography”, Med. Phys. 34 (7), pp. 2730–2743. 

Lee, D. L., Cheung, L. K., Palecki, E. F. and Jeromin, L. S. (1996), “A discussion on 

resolution and dynamic range of Se-TFT direct digital radiographic detector”, Proc. 

of SPIE 2708, pp. 511–522. 



References 
 

 225

Li, C. M. and Dobbins III, J. T. (2007), “Methodology for determining dose reduction 

for chest tomosynthesis”, Proc. of SPIE 6510, pp. U1165–U1174. 

Liaparinos, P. F., Kandarakis, I. S., Cavouras, D. A., Delis, H. B. and Panayiotakis, G. 

S. (2007), “Monte Carlo study on the imaging performance of powder Lu2SiO5:Ce 

phosphor screens under x-ray excitation: Comparison with Gd2O2S:Tb screens”, 

Med. Phys. 34 (5), pp. 1724–1733. 

Lubberts, G. (1968), “Random noise produced by x-ray fluorescent screens”, J. Opt. 

Soc. Am. 58 (11), pp. 1475–1483. 

Lubberts, G. (1969), “The line spread-function and the modulation transfer function of 

x-ray fluorescent screen-film systems-problems with double-coated films”, Am. J. 

Roent. 105 (4), pp. 909–917. 

Ma, A. K. W., Gunn, S. and Darambara, D. G. (2009), “Introducing DeBRa: a detailed 

breast model for radiological studies”, Phys. Med. Biol. 54 (14), pp. 4533–4545. 

Mackenzie, A. and Honey, I. D. (2007), “Characterization of noise sources for two 

generations of computed radiography systems using powder and crystalline 

photostimulable phosphors”, Med. Phys. 34 (8), pp. 3345–3357. 

Mackenzie, A., Workman, A., Dance, D. R., Yip, M., Wells, K. and Young, K. C. 

(2010), “Adapting Clinical Images to Appear with Different Noise and Sharpness to 

Model a Different Detector”, Proc. of IWDM 2010, Lect. Not. Comp. Sci.  6136, pp. 

319–326. 

MacMahon, H., Li, F., Engelmann, R., Roberts, R. and Armato, S. (2008), “Dual energy 

subtraction and temporal subtraction chest radiography”, J. Thor. Im. 23 (2), pp. 77–

85. 

Magnan, P. (2003), “Detection of Visible Photons in CCD and CMOS: A Comparative 

View”, Nucl. Inst. Meth. A 504, pp. 199–212.  

Mail, N., O'Brien, P. and Pang, G. (2007), “Lag correction model and ghosting analysis 

for an indirect-conversion flat-panel imager”, J. Appl. Clin. Med. Phys. 8 (3), pp. 

137–146. 

Marshall, N. W. (2006a), “A comparison between objective and subjective image 

quality measurements for a full field digital mammography system”, Phys. Med. 

Biol. 51 (10), pp. 2441–2463. 



References 
 

 226

Marshall, N. W. (2006b), “Retrospective analysis of a detector fault for a full field 

digital mammography system”, Phys. Med. Biol. 51 (21), pp. 5655–5673. 

Marshall, N. W. (2007), “Early experience in the use of quantitative image quality 

measurements for the quality assurance of full field digital mammography x-ray 

systems”, Phys. Med. Biol. 52, pp. 5545–5568. 

Marshall, N. W. (2009a), “An examination of automatic exposure control regimes for 

two digital radiography systems”, Phys. Med. Biol. 54 (15), pp. 4645–4670. 

Marshall, N. W. (2009b), “Detective quantum efficiency measured as a function of 

energy for two full-field digital mammography systems”, Phys. Med. Biol. 54 (9), 

pp. 2845–2861.  

Marshall, N. W. (2009c), “Calculation of quantitative image quality parameters - notes 

describing the use of OBJ_IQ_reduced”, NHSBSP equipment report 0902. 

McVey, G., Sandborg, M., Dance, D. R. and Carlsson, G. A. (2003), “A study and 

optimization of lumbar spine X-ray imaging systems”, Brit. J. Radiol. 76 (903), pp. 

177–188. 

Medic, E. and Soltani, M. (2005), “Methods for characterization of digital, image-

producing detectors within medical X-ray diagnostics”, BEE 4 (14), pp. 1–34. 

Mendis, S., Kemeny, S. E. and Fossum, E. R. (1994), “CMOS Active Pixel Image 

Sensor”, IEEE Trans. El. Dev. 41 (3), pp. 452–453. 

Michail, C. M., Spyropoulou, V. B., Fountos, G. P., Kalyvas, N. I., Mytafidis, A. K., 

Valais, I. G., Kandarakis, I. S. and Panayiotakis, G. S. (2010), “Imaging 

performance of a high resolution CMOS sensor under Mammographic and 

Radiographic conditions”, Proc. of IEEE IST 2010, pp. 152–155. 

Michail, C. M., Spyropoulou, V. A., Fountos, G. P., Kalyvas, N. I., Valais, I. G., 

Kandarakis, I. S. and Panayiotakis, G. S. (2011), “Experimental and Theoretical 

Evaluation of a High Resolution CMOS Based Detector Under X-Ray Imaging 

Conditions”, IEEE Trans. Nucl. Sc. 58 (1), pp. 314–322. 

Miyata, E., Miki, M., Tawa, N. and Miyaguchi, K. (2005), “X-ray responsivities of 

direct-scintillator-deposited charge-coupled device”, Japan. J. Appl. Phys. 44 (3), 

pp. 1476–1484. 



References 
 

 227

Monnin, P., Gutierrez, D., Bulling, S., Lepori, D., Valley, J. F. and Verdun, F. R. 

(2005), “Performance comparison of an active matrix flat panel imager, computed 

radiography system, and a screen-film system at four standard radiation qualities”, 

Med. Phys. 32 (2), pp. 343–350. 

Monnin, P., Gutierrez, D., Bulling, S., Guntern, D. and Verdun, F. R. (2007), “A 

comparison of the performance of digital mammography systems”, Med. Phys. 34 

(3), pp. 906–914. 

Mortara, L. and Fowler, A. (1981), “Evaluations of Charge-Coupled 

Device/CCD/Performance for Astronomical Use”, Proc. of SPIE 290, pp. 28–33. 

Moy, J. P. and Bosset, B. (1999), “How does real offset and gain correction affect the 

DQE in images from X-ray Flat detectors?”, Proc. of SPIE, 3659, pp. 90–97. 

Moy, J. P. (2000a), “Recent developments in X-ray imaging detectors”, Nucl. Inst. 

Meth. A 442 (1-3), pp. 26–7. 

Moy, J. P. (2000b), “Signal-to-noise ratio and spatial resolution in x-ray electronic 

imagers: Is the MTF a relevant parameter?”, Med. Phys. 27 (1), pp. 86–93.  

Muller, S. (1999), “Full-field digital mammography designed as a complete system”, 

Eur. J. Radiol. 31 (1), pp. 25–34. 

Multidimensional Integrated Intelligent Imaging – M-I3 (2008), available at 

http://mi3.shef.ac.uk/. 

Naday, S., Bullard, E. F., Gunn, S., Brodrick, J. E., O’Tuairisg, E. O., McArthur, A., 

Amin, H., Williams, M. B., Judy, P. G., and Konstantinidis, A. (2010a), “Optimised 

Breast Tomosynthesis with a Novel CMOS Flat Panel Detector”, Springer LNCS 

6136, pp. 428–435. 

Naday, S. (2010b), Private Communication. 

Nagarkar, V. V., Gordon, J. S., Vasile, S., Xie, J. and Phillips, W. C. (1995), “Improved 

X-ray converters for CCD-based crystallography detectors”, Proc. of SPIE 2519, pp. 

2–11. 

Nagarkar, V. V. (1998), “Structured CsI (Tl) scintillators for x-ray imaging 

applications”, IEEE transactions on nuclear science 45 (3), pp. 492–496. 



References 
 

 228

Nelson, R. S. (1987), “Digital slot scan mammography using CCDs”, Proc. of SPIE 

767, pp. 102–108. 

Nikl, M. (2006), “Scintillation detectors for x-rays”, Meas. Sc. & Techn. 17 (4), pp. 

R37–R54. 

NIST / SEMATECH e-Handbook of Statistical Methods (2011), available at 

http://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm. 

Olivo, A., Arvanitis, C. D., Bohndiek, S. E., Clark, A. T., Prydderch, M., Turchetta, R. 

and Speller, R. D. (2007), “First evidence of phase-contrast imaging with laboratory 

sources and active pixel sensors”, Nucl. Inst. Meth. A 581 (3), pp. 776–782. 

Oberhofer, N., Paruccini, N. and Moroder, E. (2008), “Image quality assessment and 

equipment optimization with automated phantom evaluation in full field digital 

mammography (FFDM)”, Proc. of IWDM 5116, pp. 235–242. 

Oberhofer, N., Fracchetti, A., Springeth, M. and Moroder, E. (2010), “Digital 

mammography: DQE versus optimized image quality in clinical environment-an on 

site study”, Proc. of SPIE 7622, pp. 76220J-1–76220J-11. 

Osmond, J. P. F., Harris, E. J., Clark, A. T., Ott, R. J., Holland, A. D. and Evans, P. M. 

(2008), “An investigation into the use of CMOS active pixel technology in image-

guided radiotherapy”, Phys. Med. Biol. 53 (12), pp. 3159–3174. 

Pain, B., Yang, G., Cunningham, T. J., Wrigley, C. and Hancock, B. (2003b), “An 

Enhanced-Performance CMOS Imager With a Flushed-Reset Photodiode pixel”, 

IEEE Trans. El. Dev. 50 (1), pp. 48–56. 

Pain, B. and Hancock, B. (2003b), “Accurate estimation of conversion gain and 

quantum efficiency in CMOS imagers”, Proc. of SPIE 5017, pp. 94–103. 

Parker, J. R. (1996), Algorithms for image processing and computer vision, 1st ed., John 

Wiley & Sons Inc, Hoboken, NJ.  

Prasad, S. C., Hendee, W. R. and Carson, P. L. (1976), “Intensity distribution, 

modulation transfer function, and the effective dimension of a line-focus x-ray focal 

spot”, Med. Phys. 3 (4), pp. 217–223. 

Price, B. D., Esbrand, C. J., Olivo, A., Gibson, A. P., Hebden, J. C., Speller, R. D. and 

Royle, G. J. (2008), “Assessing the validity of modulation transfer function 



References 
 

 229

evaluation techniques with application to small area and scanned digital detectors”, 

Rev. Sc. Instr. 79 (11), pp. 113103– (1–6). 

Prieto, G., Chevalier, M. and Guibelalde, E. (2008), “A CDMAM image phantom 

software improvement for human observer assessment”, Proc. of IWDM, LNCS  

5116, pp. 181–187. 

Prieto, G., Chevalier, M., Guibelalde, E. and Ieee (2009), “Automatic scoring of 

CDMAM using a model of the recognition threshold of the human visual system: 

R*”, Proc. of IEEE IC on Im. Proces. 1-6, pp. 2461–2464. 

Que, W. and Rowlands, J. A. (1995), “X-ray imaging using amorphous selenium: 

Inherent spatial resolution”, Med. Phys. 22 (4), pp. 365–374. 

Rad-icon Imaging Corp. (2003), AN08: Polynomial Gain Correction for RadEye 

Sensors. 

Rad-icon Imaging Corp. (2005a), Remote RadEye HR: High-Resolution Detachable X-

ray Sensor – Preliminary Datasheet. 

Rad-icon Imaging Corp. (2005b), Remote RadEye X-ray Camera Datasheet. 

Rafferty, E. A. (2007), “Digital mammography: Novel applications”, Rad. Clin. North 

Am. 45, pp. 831-843. 

Rasband, W.S. (1997-2011), ImageJ, U. S. National Institutes of Health, Bethesda, 

Maryland, USA, available at http://imagej.nih.gov/ij/. 

Ranger, N. T., Samei, E., Dobbins, J. T. and Ravin, C. E. (2007), “Assessment of 

detective quantum efficiency: Intercomparison of a recently introduced international 

standard with prior methods”, Radiol. 243 (3), pp. 785–795. 

Reibel, Y., Jung, M., Bouhifd, M., Cunin, B. and Draman, C. (2003), “CCD or CMOS 

camera noise characterisation”, Europ. Phys. J. Appl. Phys. 21 (1), pp. 75–80. 

Reilly, A. (1999), Total Filtration Calculator, based on Cranley, K., Gilmore, B. J., 

Fogarty, G. W. A. and Desponds, L. (1997), IPEM Report 78: Catalogue of 

diagnostic X-ray spectra and other data, available at 

www.dundee.ac.uk/medphys/RadTools/FiltrationCalc.html. 

Reshef, R., Leitner, T., Alfassi, S., Sarig, E., Golan, N., Berman, O., Fenigstein, A., 

Wolf, H., Hevel, G., Vilan, S. and Lahav, A. (2009), “Large-Format Medical X-Ray 



References 
 

 230

CMOS Image Sensor for High Resolution High Frame Rate Applications”, Tower 

Semic. LTD. 

Richard, S. and Samei, E. (2010a), “Quantitative imaging in breast tomosynthesis and 

CT: Comparison of detection and estimation task performance”, Med. Phys. 37 (6), 

pp. 2627–2637. 

Richard, S. and Samei, E. (2010b), “Quantitative breast tomosynthesis: From 

detectability to estimability”, Med. Phys. 37 (12), pp. 6157–6165. 

Rivetti, S., Lanconelli, N., Campanini, R., Bertolini, M., Borasi, G., Nitrosi, A., 

Danielli, C., Angelini, L. and Maggi, S. (2006), “Comparison of different 

commercial FFDM units by means of physical characterization and contrast-detail 

analysis”, Med. Phys. 33 (11), pp. 4198–4209. 

Rivetti, S., Lanconelli, N., Bertolini, M., Borasi, G., Golinelli, P., Acchiappati, D. and 

Gallo, E. (2009), “Physical and psychophysical characterization of a novel clinical 

system for digital mammography”, Med. Phys. 36 (11), pp. 5139–5148. 

Rose, A. (1948), “The sensitivity performance of the human eye on an absolute scale”, 

J. Opt. Soc. Am. 38 (2), pp. 196–208. 

Rossmann, K. and Sanderson G. (1968), “Validity of the Modulation Transfer Function 

of Radiographic Screen-Film Systems Measured by the Slit Method”, Phys. Med. 

Biol. 13 (2), pp. 259–268. 

Rowlands, J. A., Ji, W. G., Zhao, W. and Lee, D. L. (2000a), “Direct conversion flat 

panel x-ray imaging: reduction of noise by presampling filtration”, Proc. of SPIE 1 

(22), pp. 446–455. 

Rowlands, J. A. and Yorkston, J. (2000b), “Flat panel detectors for digital radiography”, 

in Handbook of medical imaging, vol. 1: Physics and psychophysics, SPIE Press, 

Bellingham, Washington, pp. 223–328. 

Russ, J. C. (2007), The Image Processing Handbook, 5th ed., CRC Press, Boca Raton, 

FL. 

Said, E. S., Chan, T. Y., Fossum, E. R., Tsai, R. H., Spagnuolo, R.,  Deily, J.,  Byers Jr., 

W. B. and Peden, J. C. (2001), “Design and characterization of ionizing radiation-

tolerant CMOS APS image sensors up to 30 Mrd (Si) total dose: Part 1”, IEEE 

Trans. Nucl. Sci. 48 (6), pp. 1796–1806. 



References 
 

 231

Samei, E., Flynn, M. J. and Reimann, D. A. (1998), “A method for measuring the 

presampled MTF of digital radiographic systems using an edge test device”, Med. 

Phys. 25 (1), pp. 102–113. 

Samei, E. and Flynn, M. J. (2002), “An experimental comparison of detector 

performance for computed radiography systems”, Med. Phys. 29 (4), pp. 447–459. 

Samei, E. (2003a) “Performance of digital radiographic detectors: quantification and 

assessment methods”, in Advances in Digital Radiography, RSNA Publication, Oak 

Brook, IL, pp. 37–47. 

Samei, E. (2003b), “Performance of digital radiography detectors: factors affecting 

sharpness and noise”, in Advances in Digital Radiography, RSNA Publication, Oak 

Brook, IL, pp. 49–61.  

Samei, E. and Flynn, M. J. (2003c), “An experimental comparison of detector 

performance for direct and indirect digital radiography systems”, Med. Phys. 30 (4), 

pp. 608–622. 

Samei, E. (2003d), “Image quality in two phosphor-based flat panel digital radiographic 

detectors”, Med, Phys. 30 (7), pp. 1747–1757. 

Samei, E., Seibert, J. A., Andriole, K., Badano, A., Crawford, J., Reiner, B., Flynn, M. 

J. and Chang, P. (2004), “AAPM/RSNA tutorial on equipment selection: PACS 

equipment overview - General guidelines for purchasing and acceptance testing of 

PACS equipment”, Radiogr. 24 (1), pp. 313–334. 

Samei, E., Buhr, E., Granfors, P., Vandenbroucke, D. and Wang, X. H. (2005), 

“Comparison of edge analysis techniques for the determination of the MTF of 

digital radiographic systems”, Phys. Med. Biol. 50 (15), pp. 3613–3625. 

Samei, E., Ranger, N. T., Dobbins, J. T. and Chen, Y. (2006), “Intercomparison of 

methods for image quality characterization. I. Modulation transfer function”, Med. 

Phys. 33 (5), pp. 1454–1465. 

Samei, E., Ranger, N. T., MacKenzie, A., Honey, I. D., Dobbins, J. T. and Ravin, C. E. 

(2008), “Detector or System? Extending the Concept of Detective Quantum 

Efficiency to Characterize the Performance of Digital Radiographic Imaging 

Systems”, Radiol. 249 (3), pp. 926–937. 



References 
 

 232

Sandborg, M., Dance, D.R., Alm Carlsson, G. (1999), “Implementation of unsharpness 

and noise into the model of the imaging system: Applications to chest and lumbar 

spine screen-film radiography”, Report 90, pp. 1–49. 

Sandborg, M., McVey, G., Dance, D. R. and Carlsson, G. A. (2001), “Schemes for the 

optimization of chest radiography using a computer model of the patient and x-ray 

imaging system”, Med. Phys. 28 (10), pp. 2007–2019. 

Sandborg, M., Dance, D.R., Alm Carlsson, G. (2003), “Calculation of contrast and 

signal to-noise degradation factors for digital detectors in chest and breast imaging”, 

Report 93, pp. 1–21. 

Saunders, R. S. and Samei, E. (2003), “A method for modifying the image quality 

parameters of digital radiographic images”, Med. Phys. 30 (11), pp. 3006–3017. 

Saunders, R. S., Samei, E. and Hoeschen, C. (2004), “Impact of resolution and noise 

characteristics of digital radiographic detectors on the detectability of lung nodules”, 

Med. Phys. 31 (6), pp. 1603–1613. 

Saunders, R. S., Samei, E., Jesneck, J. L. and Lo, J. Y. (2005), “Physical 

characterization of a prototype selenium-based full field digital mammography 

detector”, Med. Phys. 32 (2), pp. 588–599. 

Saunders, R. S., Baker, J. A., Delong, D. M., Johnson, J. P. and Samei, E. (2007), “Does 

image quality matter? Impact of resolution and noise on mammographic task 

performance”, Med. Phys. 34, pp. 3971–3981. 

Schaefer-Prokop, C. (2003), “Digital radiography of the chest: detector techniques and 

performance parameters”, J. Thor. Im. 18 (3), pp. 124–137. 

Schaefer-Prokop, C., Neitzel, U., Venema, H. W., Uffmann, M. and Prokop, M. (2008), 

“Digital chest radiography: an update on modern technology, dose containment and 

control of image quality”, Eur. Radiol. 18 (9), pp. 1818–1830. 

Scheffer, D. (2007), “A wafer scale active pixel CMOS image sensor for generic X-ray 

radiology”, Proc. of SPIE 6510, pp. U233–U241. 

Schmidgunst, C., Ritter, D. and Lang, E. (2007), “Calibration model of a dual gain flat 

panel detector for 2D and 3D x-ray imaging”, Med. Phys. 34, pp. 3649–3664. 



References 
 

 233

Segui, J. A. and Zhao, W. (2006), “Amorphous selenium flat panel detectors for digital 

mammography: Validation of a NPWE model observer with CDMAM observer 

performance experiments”, Med. Phys. 33 (10), pp. 3711–3722. 

Shaw, J., Albagli, D., Wei, C. Y. and Granfors, P. (2004), “Enhanced a-Si/CsI-based 

flat panel X-ray detector for mammography”, Proc. of SPIE 5368, pp. 37–378. 

Siewerdsen, J. H., Antonuk, L. E., ElMohri, Y., Yorkston, J., Huang, W., Boudry, J. M. 

and Cunningham, I. A. (1997), “Empirical and theoretical investigation of the noise 

performance of indirect detection, active matrix flat-panel imagers (AMFPIs) for 

diagnostic radiology”, Med. Phys. 24 (1), pp. 71–89. 

Siewerdsen, J. H. and Jaffray, D. A. (1999), “A ghost story: Spatio-temporal response 

characteristics of an indirect-detection flat-panel imager”. Med. Phys. 26 (8), pp. 

1624–1641. 

Siewerdsen, J. H., Waese, A. M., Richard, S. and Jaffray, D. (2004), “Spektr: A 

computational tool for x-ray spectral analysis and imaging system optimization”, 

Med. Phys. 31 (11), pp. 3057–3067. 

Sims, G. R. and Denton, M. B. (1987), “Characterization of a charge-injection-device 

camera system as a multichannel spectroscopic detector”, Opt. Eng. 26 (10), pp. 

1008–1019. 

Singh, A., Desai, N. and Valentino, D. J. (2010), “Performance Characterization of 

Computed Radiography based Mammography Systems”, Proc. of SPIE 7622, pp. 

76224A-1–76224A-8. 

Skarpathiotakis, M. (2002), Contrast digital mammography, M.Sc. thesis, University of 

Toronto. 

Smans, K., Vandenbroucke, D., Pauwels, H., Struelens, L., Vanhavere, F. and Bosmans, 

H. (2010), “Validation of an image simulation technique for two computed 

radiography systems: An application to neonatal imaging”, Med. Phys. 37 (5), pp. 

2092–2100. 

Smith, P. L. (1972), “New technique for estimating the MTF of an imaging system from 

its edge response”, Appl. Opt. 11 (6), pp. 1424–1425. 

Sonka, M. (2007), Image processing, analysis, and machine vision, 3rd ed., Nelson 

Engineering. 



References 
 

 234

Sonoda, M., Takano, M., Miyahara, J. and Kato, H. (1983), “Computed radiography 

utilizing scanning laser stimulated luminescence”, Rad. 148 (3), pp. 833–838. 

Stark, B., Nolting, B., Jahn, H. and Andert, K. (1992), “Method for determining the 

electron number in charge-coupled measurement devices”, Opt. Eng. 31 (4), pp. 

852–856. 

Sultana, A., Reznik, A., Karim, K. S. and Rowlands, J. A. (2008), “Design and 

feasibility of active matrix flat panel detector using avalanche amorphous selenium 

for protein crystallography”, Med. Phys. 35 (10), pp. 4324–4332. 

Suryanarayanan, S., Karellas, A., Vedantham, S., Ved, H. and D'Orsi, C. J. (2003), 

“Theoretical and empirical characterization of the physical characteristics of a 

clinical digital mammography system”, Proc. of SPIE 5030, pp. 929–938. 

Svalkvist, A. and Båth, M. (2010), “Simulation of dose reduction in tomosynthesis”, 

Med. Phys. 37 (1), pp. 258–269. 

Swank, R. K. (1973), “Absorption and noise in x-ray phosphors”, J. Appl. Phys. 44 (9), 

pp. 4199–4203. 

Tapiovaara, M. J. and Wagner, R. F. (1985), “SNR and DQE analysis of broad spectrum  

x-ray imaging”, Phys. Med. Biol. 30 (6), pp. 519–529. 

Tatian, B. (1965), “Method for obtaining the transfer function from the edge response 

function”. J. Opt. Soc. Am. 55 (8), pp. 1014–1019. 

Taylor, J. R. (1997), An introduction to error analysis: the study of uncertainties in 

physical measurements, University Science Books, Herndon, VA. 

Thacker, S. C. and Glick, S. J. (2004), “Normalized glandular dose (DgN) coefficients 

for flat-panel CT breast imaging”, Phys. Med. Biol. 49 (24), pp. 5433–5444. 

Thomas, J. A., Chakrabarti, K., Kaczmarek, R. and Romanyukha, A. (2005), “Contrast-

detail phantom scoring methodology”, Med. Phys. 32 (3), pp. 807–814. 

Tian, H., Fowler, B. and El Gamal, A. (2001), “Analysis of temporal noise in CMOS 

photodiode active pixel sensor”, IEEE J. Sol. St. Circ. 36 (1), pp. 92–101. 

Tingberg, A., Herrmann, C., Besjakov, J., Almen, A., Sund, P., Adliene, D., Mattsson, 

S., Mansson, L. G. and Panzer, W. (2002), “What is worse: Decreased spatial 

resolution or increased noise?”, Proc. of SPIE 4686, pp. 338–346. 



References 
 

 235

Toroi, P., Zanca, F., Young, K. C., van Ongeval, C., Marchal, G. and Bosmans, H. 

(2007), “Experimental investigation on the choice of the tungsten/rhodium 

anode/filter combination for an amorphous selenium-based digital mammography 

system”, Europ. Radiol. 17 (9), pp. 2368–2375. 

Tortajada, M. Martí, R., Freixenet, J., Fernández, J. and Sentís, M. (2008), “Image 

correction and reconstruction for breast biopsy”, Lect. Not. Comp. Sci. in Proc. of 

IWDM 2008, 5116, pp.  545–552. 

Tousignant, O., Demers, Y., Laperriere, L. and Marcovici, S. (2007), “A-Se Flat Panel 

Detectors for Medical Applications”, Proc. of IEEE Sens. Appl. Symp., San Diego, 

California, pp. 1–5. 

Turchetta, R., Spring, K. R. and Davidson, M. W. (2004) “Introduction to CMOS Image 

Sensors” in Optical Microscopy Primer: Digital Imaging in Optical Microscopy, 

Molecular Expressions, available at 

http://www.microscopy.fsu.edu/primer/digitalimaging/cmosimagesensors.html.  

Uffmann, M. and Schaefer-Prokop, C. (2009), “Digital radiography: The balance 

between image quality and required radiation dose”, Eur.. J. Rad. 72 (2), pp. 202–

208. 

van der Ziel, A. (1976), Noise in measurements, John Wiley & Sons Inc, Hoboken, NJ. 

van Eijk, C. W. E. (2003), “Inorganic scintillators in medical imaging detectors”, Nucl. 

Inst. Meth. A 509 (1-3), pp. 17–25. 

van Engen, R. E., Young, K. C., Bosmans H. and Thijssen, M. A. O. (2006), “European 

protocol for the quality control of the physical and technical aspects of 

mammography screening. Part B: Digital mammography” in European guidelines 

for quality assurance in breast cancer screening and diagnosis, 4th Edition, 

European Commission, Luxembourg, pp. 105–165. 

van Engen, R. E., Young, K. C., Bosmans, H., Lazzari, B., Schopphoven, S., Heid, P. 

and Thijssen, M. A. (2010), “A supplement to the European Guidelines for Quality 

Assurance in Breast Cancer Screening and Diagnosis”, Proc. of IWDM 6136, pp. 

643–650. 

Vannier, M. W. (2009), “CT Clinical Perspective: Challenges and the Impact of Future 

Technology Developments”, 31st An. IC of the IEEE EMBS, 1-20, pp. 1909–1912. 



References 
 

 236

Vedantham, S., Karellas, A., Suryanarayanan, S., Albagli, D., Han, S., Tkaczyk, E. J., 

Landberg, C. E., Opsahl-Ong, B., Granfors, P. R., Levis, I., D’Orsi, C. J. and 

Hendrick, R. E. (2000), “Full breast digital mammography with an amorphous 

silicon-based flat panel detector: Physical characteristics of a clinical prototype”, 

Med. Phys. 27 (3), pp. 558–567. 

Veldkamp, W. J. H., Thijssen, M. A. O. and Karssemeijer, N. (2003), “The value of 

scatter removal by a grid in full field digital mammography”, Med. Phys. 30 (7), pp. 

1712–1718. 

Veldkamp, W. J. H., Kroft, L. J. M. and Geleijns, J. (2009), “Dose and perceived image 

quality in chest radiography”, Eur. J. Radiol. 72 (2), pp. 209–217. 

Verbrugge, B. (2007), Validation of analysis methods for automated CDMAM reading, 

B.A. thesis, Katholieke Universiteit Leuven. 

Visser, R. and Karssemeijer, N. (2008), Manual CDCOM version 1.5.2: software for 

automated readout of CDMAM 3.4 images, available at www.euref.org.  

Wagner, A. J. and Frey, G. D. (1995), “Quantitative mammography contrast threshold 

test tool”, Med. Phys. 22 (2), pp. 127–132. 

Weckler, G. P. (1967), “Operation of p-n junction photodetectors in a photon flux 

integrating mode”, IEEE J. Sol. St. Circ. 2 (3), pp. 65–73. 

Weil, E. (1938), “Some Bibliographical Notes on the First Publication on the Roentgen 

Rays”, Isis 29 (2), pp. 362–365. 

Wellman, S. P., Howe, R. D., Dalton, E. and Kern, K. A. (1999), “Breast tissue stiffness 

in compression is correlated to histological diagnosis”, Technical Report, Harvard 

Biorobotics Laboratory, pp. 1–15. 

Williams, M. B., Krupinski, E. A., Strauss, K. J., Breeden, W. K., 3rd, Rzeszotarski, M. 

S., Applegate, K., Wyatt, M., Bjork, S. and Seibert, J. A. (2007), “Digital 

radiography image quality: image acquisition”, J. Am. Coll. Radiol. 4 (6), pp. 371–

388. 

Workman, A. (2005), “Simulation of digital mammography images”, Proc. of SPIE 

5745, pp. 933–942. 



References 
 

 237

Wu, T., Stewart, A., Stanton, M., McCauley, T., Phillips, W., Kopans, D. B., Moore, R. 

H., Eberhard, J. W., Opsahl-Ong, B., Niklason, L. and Williams, M. B. (2003), 

“Tomographic mammography using a limited number of low-dose cone-beam 

projection images”, Med. Phys. 30 (3), pp. 365–380. 

Yaffe, M. J. and Rowlands, J. A. (1997), “X-ray detectors for digital radiography”, 

Phys. Med. Biol. 42 (1), pp. 1–39. 

Yaffe, M. J., Mainprize, J. G. and Jong, R. A. (2008), “Technical developments in 

mammography”, Health Phys. 95 (5), pp. 599–611. 

Yip, M., Rodriguez, D., Lewis, E., Wells, K. and Young, K. C. (2007), “A simulation 

framework for the comparison of digital mammography imaging technology”, Proc. 

of 2007 IEEE Nucl. Sci. 1-11, pp. 3635–3639. 

Yip, M., Alsager, A., Lewis, E., Wells, K. and Young, K. C. (2008), “Validation of a 

digital mammography image simulation chain with automated scoring of CDMAM 

images”, Proc. of IWDM 2008, Lect. Not. Comp. Sci. 5116, pp. 409–416. 

Yip, M., Chukwu, W., Kottis, E., Lewis, E., Oduko, J., Gundogdu, O., Young, K. C. 

and Wells, K. (2009), “Automated scoring method for the CDMAM phantom”, 

Proc. of SPIE 7263, 72631A. 

Yip, M., Zanca, F., Mackenzie, A., Workman, A., Young, K. C., Dance, D. R., 

Bosmans, I. H., Lewis, E. and Wells, K. (2010a), “Validation of a Simulated Dose 

Reduction Methodology Using Digital Mammography CDMAM Images and 

Mastectomy Images”, Proc. of IWDM 2010, Lect. Not. Comp. Sci. 6136, pp. 78–85. 

Yip, M., (2010b), Private Communication. 

Yorker, J. G., Jeromin, L. S., Lee, D. L. Y., Palecki, E. F., Golden, K. P. and Jing, Z. X. 

(2002), “Characterization of a full field digital mammography detector based on 

direct x-ray conversion in selenium”, Proc. of SPIE, 4682, pp. 21–29. 

Yorkston, J., Antonuk, L. E., El-Mohri, Y., Jee, K. W., Huang, W. D., Maolinbay, M., 

Rong, X. J., Siewerdsen, J. H. and Trauernicht, D. P. (1998), “Improved spatial 

resolution in flat-panel imaging systems”, Proc. of SPIE, 3336, pp. 556–563.  

Yorkston, J. (2007), “Recent developments in digital radiography detectors”, Nucl. Inst. 

Meth. A 580 (2), pp. 974–985. 



References 
 

 238

Young, K. C., Cook, J. J. H. and Oduko, J. M. (2006a), “Automated and human 

determination of threshold contrast for digital mammography systems”, Proc. of 

IWDM  4046, pp. 266–272. 

Young, K. C., Cook, J. J. H., Oduko, J. M. and Bosmans, H. (2006b), “Comparison of 

software and human observers in reading images of the CDMAM test object to 

assess digital mammography systems”, Proc. of SPIE Pts 1-3 6142, pp. 14206–

14206. 

Young, K. C., Alsager, A., Oduko, J. M., Bosmans, H., Verbrugge, B., Geertse, T. and 

van Engene, R. (2008), “Evaluation of software for reading images of the CDMAM 

test object to assess digital mammography systems”, Proc. of SPIE Pts 1-3 6913, pp. 

C9131–C9131. 

Yun, S., Kim, H. K., Lim, C. H., Cho, M. K., Achterkirchen, T. and Cunningham, I. 

(2009), “Signal and noise characteristics induced by unattenuated x rays from a 

scintillator in indirect-conversion CMOS photodiode array detectors”, IEEE Trans. 

Nucl. Sci. 56 (3), pp. 1121–1128. 

Zhao, W. and Rowlands, J. A. (1992), “Large-area solid state detector for radiology 

using amorphous selenium”, Proc. of SPIE 1651, pp. 134–143. 

Zhao, W. and Rowlands, J. A. (1995), “X-ray imaging using amorphous selenium: 

Feasibility of a flat panel self-scanned detector for digital radiology”, Med. Phys. 22 

(10), pp. 1595–1604. 

Zhao, W. and Rowlands, J. A. (1997), “Digital radiology using active matrix readout of 

amorphous selenium: Theoretical analysis of detective quantum efficiency”, Med. 

Phys. 24 (12), pp. 1819–1833. 

Zhao, W., Ji, W. G., Debrie, A. and Rowlands, J. A. (2003), “Imaging performance of 

amorphous selenium based flat-panel detectors for digital mammography: 

Characterization of a small area prototype detector”, Med. Phys. 30 (2), pp. 254–

263. 

Zhao, W., Li, D., Reznik, A., Lui, B. J. M., Hunt, D. C., Rowlands, J. A., Ohkawa, Y. 

and Tanioka, K. (2005), “Indirect flat-panel detector with avalanche gain: 

Fundamental feasibility investigation for SHARP-AMFPI (scintillator HARP active 

matrix flat panel imager)”, Med. Phys. 32 (9), pp. 2954–2966. 



References 
 

 239

Zhao, B. (2007), Breast Tomosynthesis with Amorphous Selenium Digital Flat Panel 

Detector, Ph.D. thesis, Stony Brook University. 

Zhao, B. and Zhao, W. (2008), “Imaging performance of an amorphous selenium digital 

mammography detector in a breast tomosynthesis system”, Med. Phys. 35 (5), pp. 

1978–1987. 

Zhou, J., Zhao, B. and Zhao, W. (2007), “A computer simulation platform for the 

optimization of a breast tomosynthesis system”, Med. Phys. 34 (3), pp. 1098–1109. 

Zin, H. M., Konstantinidis, A. C., Harris, E. J., Osmond, J. P. F., Olivo, A., Bohndiek, 

S. E., Clark, A. T., Turchetta, R., Guerrini, N., Crooks, J., Allinson, N. M., Speller, 

R. and Evans, P. M. (2010), “Characterisation of regional variations in a stitched 

CMOS active pixel sensor”, Nucl. Inst. Meth. A 620 (2-3), pp. 540–548. 

Zoetelief, J., Jansen, J. T. M. and Dewit, N. J. P. (1993), “Determination of image 

quality in relation to absorbed dose in mammography”, Rad. Prot. Dosim. 49 (1-3), 

pp. 157–161. 

Zyganitidis, C., Bliznakova, K. and Pallikarakis, N. (2007), “A novel simulation 

algorithm for soft tissue compression”, Med. Biol. Eng. Comput. 45 (7), pp. 661–

669. 

 

 


