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Extrapolating Monte Carlo Simulations to Infinite Volume: Finite-Size Scaling at g/L )) 1
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We present a simple and powerful method for extrapolating finite-volume Monte Carlo data to infinite
volume, based on finite-size-scaling theory. We discuss carefully its systematic and statistical errors,
and we illustrate it using three examples: the two-dimensional three-state Potts antiferromagnet on the
square lattice, and the two-dimensional O(3) and O(~) cr models. In favorable cases it is possible to
obtain reliable extrapolations (errors of a few percent) even when the correlation length is 1000 times
larger than the lattice.
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No matter how powerful computers become, physicists
will always want to study problems that are too difficult
for the computers at hand. For example, in statistical
mechanics and quantum field theory, physicists want to
push to ever larger correlation lengths g. But Monte
Carlo simulations must perforce be carried out on lattices
of finite linear size L (limited by computer memory and
speed); the data are then extrapolated to the infinite-
volume limit L = ~. Obviously this extrapolation—
which is based on the theory of finite-size scaling (FSS)
[1]—is feasible in practice only if g/L is not too large.
But how larger

In this Letter we present a simple and powerful method
for performing the extrapolation to L = ~, and discuss
carefully its systematic and statistical errors. We illustrate
the method using three examples: the two-dimensional
three-state Potts antiferromagnet on the square lattice [2],
and the two-dimensional O(3) and O(~) o. models [3,4].
We found —much to our surprise —that in favorable
cases it is possible to obtain reliable extrapolations (errors
of a few percent) at g/L as large as 10—1000.

Consider, for a start, a model controlled by a
renormalization-group (RG) fixed point having one rele-
vant operator. Let us work on a periodic lattice of linear
size L Let se(P, L) be a suit. ably defined finite-volume
correlation length [5], and let 6 be any long-distance ob-
servable (e.g. , the correlation length or the susceptibility).
Then finite-size-scaling theory [1]predicts that [7]6,I.

6(P, )
= f (F(P, )/L) + O(6, L "),

where fthm is a universal function and co is a correction-
to-scaling exponent. It follows that if s is any fixed scale

factor (usually we take s = 2) then

6(P, L)
= Fr (g(P, L)/L) + O(g ",I. "),

where F@ can be expressed in terms of f@ and f~
Our method proceeds as follows [8]. Make Monte

Carlo runs at numerous pairs (P, L) and (P, sL). Plot
6(p, sL)/6(P, L) versus $(P, L)/L, using those points
satisfying both s (P, L) ~ some value g;„and L ~ some
value L;„. If all these points fall with good accuracy on a
single curve —thus verifying the ansatz (2) for P ~ $;„,
L ~ L;„—choose a smooth fitting function Fg. Then,
using the functions Ft and Fto, extrapolate the pair (g, 6)
successively from L ~ sL ~ s2L, ~ . .

We have chosen to use functions Fg of the form

(2)

Fg(x) = I +a~e 't +a2e '+ . . +a e "'. (3)

This form is partially motivated by theory, which tells us
that F(x) I exponentially fast as x ~ 0 [11]. Typically
a fit of order 3 ~ n ~ 12 is sufficient; we increase n

until the y of the fit becomes essentially constant. The
resulting y value provides a check on the systematic
errors arising from corrections to scaling and/or from the
inadequacies of the form (3).

The statistical error on the extrapolated value of
6 (P) —= 6(P, ~) comes from three sources: (i) error
on 6(P, L), which gets multiplicatively propagated to
6; (ii) error on se(P, L), which affects the argument
x = $(P, L)/L of the scaling functions Fe and F@., and
(iii) statistical error in our estimate of the coefficients
a~, . . . , a„ in Fe and F@. The errors of types (i) and
(ii) depend on the statistics available at the single point
(P, L), while the error of type (iii) depends on the
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statistics in the whole set of runs. Errors (i) + (ii) [(i)
+ (ii) + (iii)] can be quantified by performing a Monte
Carlo experiment in which the input data at (P, L) [the
whole set of input data] are varied randomly within their
error bars and then extrapolated [12—14].

The discrepancies between the extrapolated values from
different lattice sizes at the same P —to the extent that
these exceed the estimated statistical errors —indicate the
presence of systematic errors and thus the necessity of
increasing L;„and/or g;„and/or n

A figure of (de)merit of the method is the relative
variance on the extrapolated value 6 (P), multiplied by
the computer time needed to obtain it [15]. We expect
this relative variance time -product (RVTP) [for errors (i)
+ (ii) only] to scale as

RVTP(P, L) = 6-(/3)"""' GG(r-(p)/L), (4)

2.0

0, 0 0.2

I I I I I I I

0.8
where d is the spatial dimension and z;„,@ is the dy-
namic critical exponent of the Monte Carlo algorithm be-
ing used; here Gg is a combination of several static and
dynamic finite-size-scaling functions, and depends both
on the observable 6 and on the algorithm but not on
the scale factor s. As g /L tends to zero, we expect
Go to diverge as (g /L) " (it is wasteful to use a lat-
tice L &) g ). As $ /L tends to infinity, we expect
Gg —(g /L)" [16], but the power p can be either posi
tive or negative. If p ) 0, there is an optimum value of
g /L; this determines the best lattice size at which to per-
form runs for a given p. If p ( 0, it is most efficient
to use the smallest lattice size for which the corrections
to scaling are negligible compared to the statistical errors.
(This neglects errors of type (iii) [17]; the optimization
becomes much more complicated if they are included. )

Our first example [2] is the two-dimensional three-
state Potts antiferromagnet on the square lattice, which
is believed to have a critical point at P = ~ [18].
We used the Wang-Swendsen-Kotecky cluster algorithm
[19], which appears to have no critical slowing down( 5 uniformly in P and L) [2]. We ran on lat-
tices L = 32, 64, 128, 256, 512, 1024,1536 at 153 different
pairs (P, L) in the range 5 ( g ( 20000. Each run was
between 2 X 10 and 2.2 ~ 10 iterations, and the total
CPU time was modest by our standards (about 2 yr on an
IBM RS-6000/370). We took g;„= 10 and L;„=128
and used a quintic fit in (3); the result for Ft is shown in
Fig. 1 [y = 75.41, 66 DF (No. of degrees of freedom),
level = 20%]. The extrapolated values from different lat-
tice sizes at the same p agree within the estimated statisti-
cal errors (g2 = 43.03, 75 DF, level ) 99%); see Table I
for an example. The result for G~ is shown in Fig. 2; the
errors are roughly constant for $o/L ) 0.4 but rise sharply
for smaller g /L. The theoretical exponent p computed
[16] from the fitted Ft is equal to p = —0.10 ~ 0.06; the
curve suggests that p = 0. In practice we were able to
obtain $ to an accuracy of about 1% (2%,3%,5%) at

= 1000 (2000,5000, 10000).

FIG. 1. $(p, 2L)/$(p, L) vs $(p, L)/L for the two-
dimensional three-state Potts antiferromagnet. Symbols
indicate L = 32 (+), 64 (X), 128 ( ), 256 (C), and 512 (Q).
Error bars are 1 standard deviation. Curve is a quintic fit in
(3), with $;„=10 and L;„=128.

TABLE I. Raw and extrapolated correlation lengths for the
two-dimensional three-state Potts antiferromagnet at p = 3.5.
Extrapolation based on g;„= 10 and L;„=128 and a quintic
fit. For each extrapolated value we reported the standard
deviation of the estimate, including errors of all three types.
The mean value and the g2 have been computed, taking into
account the full covariance matrix [14].

32
64
128
256
512
1024

mean
(L. ~ 128)

Iterations

2.2 X 10'
106
106
106

5 x 10'
2 X 10'

Extrapolated
F(p, )

90.68 (1.03)
92.47 (0.81)
93.01 (0.44)
93.01 (0.31)
92.85 (0.39)
93.78 (1.17)

93.01 (0.29)
~' = 0.68 (3 DF, level = 88%)

Raw Data
a(p, L)

19.02 (0.01)
35.52 (0.04)
60.61 (0.09)
84.69 (0.15)
92.48 (0.33)
93.78 (1.17)

Next let us consider [3,4] the two-dimensional O(3) o.
model. We used the Wolff embedding algorithm with
standard Swendsen-Wang updates [6,20,21]; again critical
slowing down appears to be completely eliminated. We
ran on lattices L = 32, 48, 64, 96, 128, 192, 256, 384,512 at
180 different pairs (p, L) in the range 20 ( $ ( 10~.
Each run was between 10 and 5 && 10 iterations, and the
total CPU time was 7 yr on an IBM RS-6000/370. We
took $;„=20 and used a tenth-order fit. There appear
to be weak corrections to scaling (of order (1.5%) in
the region 0.3 ~ (I /L ( 0.7 for lattices with L ( 64—
96. We therefore chose L;„=128 for $L/L ( 0.7, and
L;„=64 for $1 /L ) 0.7. The result for Ft is shown in
Fig. 3 (~ = 72.91, 73 DF, level = 48%). The result for
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FIG. 2. Relative variance-time product [for errors (i) +
(ii) only] divided by g„(P)~, plotted vs g„(P)/L, for the
two-dimensional three-state Potts antiferromagnet. Symbols
indicate L = 128 ( ), 256 (0), 512 (Q), 1024 (+), and
1536 (+).

FIG. 4. Relative variance-time product [for errors (i) + (ii)
only] divided by $„(P)2, plotted vs g (P)/L, for the two-
dimensional O(3) o. model. Symbols indicate L = 64 (X), 96
(+), 128 ( ), 192 (&), 256 (0), 384 (+), and 512 (Q). For
comparison, the line shows the theoretical limiting slope —2.

G~ is shown in Fig. 4; at large g /L it decreases sharply,
with a power p = —2, in agreement with theory [16]. In
practice we obtained g to an accuracy of about 0.2%
(0.7%,1.1%,1.6%) at g = 10 (10,10,10').

We also carried out a "simulated Monte Carlo" experi-
ment for the O(N) rr model at N = ~, by generating data

I I I I I I I I I I I I I I I I I I
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FIG. 3. $(P, 2L)/s(P, I ) vs g(P, L)/L for the two-
dimensional 0 (3) o. model. Symbols indicate L = 32
(+), 48 (+), 64 (x), 96 (X), 128 ( ), 192 (&), and 256 (0).
Error bars are 1 standard deviation. Curve is a tenth-order fit
in (3), with g;„= 20 and L;„=128 (64) for g(L)/L ~ 0.7
(~ 0.7).

from the exact finite-volume solution plus random noise
of 0.1% for I. = 64,96,128, 0.2% for I = 192,256, and
0.5% for L = 384,512 [which is the order of magnitude
we attain in practice for O(3)]. We considered 35 values
of P in the range 20 ~ s ~ 10 . We used s,„=20 and
L;„=64 (in fact much smaller values could have been
used, as corrections to scaling are very small here) and a
tenth-order fit; for two different data sets we obtain g~ =
159.18 and 179.39 with 165 DF. In practice we obtain

with an accuracy of 0.6% (1.2%,2%,3%) at g = 10'
(10,10,10 ). Here we can also compare the extrapolated
values $'""(P) with the exact values g'""'(P). Defin-
ing R = gp[g"'"(P) —g'""'(P)]2/o. 2(P), we find for
the two data sets R = 28.05 (32.53) with 35 DF. Only
13 (10) points differ from the exact value by more than 1

standard deviation, and only 1 (1) by more than 2. Details
on all of these models will be reported separately [2,4].

The method is easily generalized to a model controlled
by a RG fixed point having k relevant operators. It
suffices to choose k —1 dimensionless ratios of long-
distance observables, call them R = (RI, . . . , Rk I), then
the function F@ will depend parametrically on R(P, L). In
practice one can divide R space into "slices" within which
F@ is empirically constant within error bars, and perform
the fit (3) within each slice. We used this approach to
study the mixed isovector-isotensor o- model, taking R to
be the ratio of isovector to isotensor correlation length
[3,4].

The method can also be applied to extrapolate the
exponential correlation length (inverse mass gap). For
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this purpose one must work in a system of size I" ' X T
with T )) $,„~(P,L) (compare [9]).
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