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Abstract

Traditional real options analysis addresses investment under uncer-

tainty assuming a risk-neutral decision maker and complete markets.

In reality, however, decision makers are often risk averse and mar-

kets are incomplete. Additionally, capital projects are seldom now-

or-never investments and can be abandoned, suspended, and resumed

at any time.

In this thesis, we develop a utility-based framework in order to ex-

amine the impact of operational flexibility, via suspension and re-

sumption options, on optimal investment policies and option values.

Assuming a risk-averse decision maker with perpetual options to sus-

pend and resume a project costlessly, we confirm that risk aversion

lowers the probability of investment and demonstrate how this effect

can be mitigated by incorporating operational flexibility. Also, we il-

lustrate how increased risk aversion may facilitate the abandonment of

a project while delaying its temporary suspension prior to permanent

resumption.

Besides timing, a firm may have the freedom to scale the investment’s

installed capacity. We extend the traditional real options approach to

investment under uncertainty with discretion over capacity by allow-

ing for a constant relative risk aversion utility function and operational

flexibility in the form of suspension and resumption options. We find

that, with the option to delay investment, increased risk aversion fa-

cilitates investment and decreases the required investment threshold

price by reducing the amount of installed capacity.

We explore strategic aspects of decision making under uncertainty

by examining how duopolistic competition affects the entry decisions
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of risk-averse investors. Depending on the discrepancy between the

market share of the leader and the follower, greater uncertainty may

increase or decrease the discrepancy in the non-pre-emptive leader’s

relative value. Furthermore, risk aversion does not affect the loss in

the value of the leader for the pre-emptive duopoly setting, but it

makes the loss in value relatively less for the leader in a non-pre-

emptive duopoly setting.
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Chapter 1

Introduction

Managing the investment and operational risk of capital projects is crucial to the

economic viability of many industries. Given the deregulation of many sectors

of the economy, including infrastructure, and the recent volatility in financial

markets, decision rules for managing capital projects should consider discretion

over timing and uncertainty in underlying variables. Indeed, accounting for these

features often yields significantly different expected project values and optimal

investment and operational policies than those from the traditional net present

value (NPV) approach, which has been a mainstay for industry and policymakers

alike.

Further complicating the use of the expected NPV approach is that capital

projects are more complex than simple now-or-never investments since they en-

tail embedded options to make additional decisions at arbitrary points in time

in response to the values of realised state variables. Such managerial discretion

implies the right, but not the obligation, to undertake decisions in the future;

thus, capital projects may be considered as packages of compound financial op-

tions. Ever since simple financial call options were valued analytically (Black and

Scholes, 1973 and Merton, 1973), they have been amenable to supporting deci-

sion making in non-financial settings. Consequently, the field of real options has

sought to exploit this application potential in decision making under uncertainty

by analysing capital projects as a series of options. The theory of real options

indicates that uncertainty and irreversibility create a value of waiting with under-

taking capital investments. This happens because the information that becomes
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available over time allows for uncertainty to be resolved, thereby enabling the

decision maker to take better investment decisions at a later time.

Examples of analytical real options theory include McDonald and Siegel (1985,

1986) who explore the optimal timing of investment in an irreversible project with

revenues that follow a continuous-time stochastic process. Brennan and Schwartz

(1985) show how to value assets whose cash flows depend on highly variable out-

put prices and exploit the property of replicating self-financing portfolios in order

to derive optimal policies from managing these assets. Majd and Pindyck (1987)

use the contingent claims approach to analyse the flexibility that lies within the

time it takes to build an investment project. Bar-Ilan and Strange (1996) present

an analytical solution to the investment problem with lags and show that conven-

tional results regarding the effect of price uncertainty on investment are weakened

or reversed when there are lags. Deng et al. (2001) present a methodology for

valuing electricity derivatives by constructing replicating portfolios from electric-

ity futures and the risk-free asset. Gollier et al. (2005) examine how a producer

faced with a change in the competitive price of electricity will be able to com-

pare a sequence of investments in medium-capacity nuclear power plants with

an investment in a high-capacity unit. In other words, they examine how to

choose between the flexibility of the modular investment and the efficiency of the

high-capacity unit due to increase in economy of scale. Lund (2005) analyses

the relationship between investment and uncertainty in real options models and,

in addition to the positive effect of uncertainty on the trigger level for revenue

relative to cost, identifies an opposing effect on the probability of investment that

yields a total effect with ambiguous sign. Malchow-Møller and Thorsen (2005) ex-

tend the traditional investment under uncertainty setup with a single investment

option to the case of infinite repeated options.

One gap in the real options framework is that it assumes that financial markets

are complete, and, therefore, that the investor is risk neutral. This is at odds

with how operational research has traditionally tackled decision making under

uncertainty, viz., under the premise of a risk-averse agent whose preferences for

wealth are summarised by a utility function. Especially for projects that involve

undiversifiable risks, such as research and development (R&D) of new products,

risk aversion on part of investors should be considered. A recent working paper

16



1.1 Optimal Investment under Operational Flexibility, Risk Aversion,

and Uncertainty

uses a constant relative risk aversion (CRRA) utility function to illustrate that

investment under uncertainty with risk aversion results not only in a further

delay in investment but also reduces the probability of investment (Hugonnier

and Morellec, 2007). This working paper applies the analytical framework of

Karatzas and Shreve (1999), in which the strong Markov property of the geometric

Brownian motion (GBM) describing the project’s value is exploited to cast the

investment timing problem as an optimal stopping one. In order to facilitate the

analysis, the expected project value is expressed as the product of the stochastic

discount factor and the expected present value of the cash flows from an active

project. Subsequently, the value of the investment opportunity may be maximised

by selecting the first passage time of the project value to a certain threshold.

However, it remains an open question how strong this interaction between risk

aversion and uncertainty would be if the project included embedded options,

such as operational flexibility, the right to scale the capacity size, or the impact

of competition. Through this thesis, we aim to bridge the gaps in real options

theory so that it may be more suitable not only for decision making but also for

risk assessment.

1.1 Optimal Investment under Operational Flex-

ibility, Risk Aversion, and Uncertainty

Dixit and Pindyck (1994) and McDonald and Siegel (1985, 1986) address the prob-

lem of optimal entry to and exit from a project assuming a risk-neutral decision

maker with a perpetual option to invest. This canonical real options problem can

be solved via either the contingent claims approach, assuming that either mar-

kets are complete or the project’s unique risk can be diversified, or via dynamic

programming, using a subjective discount rate. Contingent claims analysis, how-

ever, cannot be used in cases where the project’s risk is not diversifiable. This

occurs, for example, in R&D projects with technical risk that is idiosyncratic, or

in nascent markets that may not have sufficiently developed financial instruments.

Furthermore, the decision maker may be inherently risk averse due to the firm’s

ownership structure, e.g., in the case of a municipal authority or due to costs
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1.1 Optimal Investment under Operational Flexibility, Risk Aversion,

and Uncertainty

of financial distress. Dynamic programming can then be used to maximise the

expected discounted utility of the lifetime profits of a risk-averse decision maker.

In the real options literature, different types of operational flexibility have

been studied mainly under the assumption of a risk-neutral decision maker. For

example, Majd and Pindyck (1987) analyse the flexibility that lies within the time

it takes to build an investment project. Their analysis is based on the fact that

the rate at which the construction of an investment project proceeds is flexible

and can, therefore, be adjusted as new information becomes available. Apply-

ing contingent claims analysis, they show how traditional discounted cash flow

methods understate the value of the project by ignoring this flexibility. How-

ever, their analysis is restricted by the assumptions of market completeness and

a risk-neutral decision maker. Malchow-Møller and Thorsen (2005) consider the

case of repeated investment options, thereby extending the single-option model

that was first developed by McDonald and Siegel (1986) in which the option is

killed when investment is undertaken. Their analysis shows that when invest-

ment options are repeated, the value of waiting is reduced significantly compared

to the single-option case and that the simple NPV rule is a better indicator of

optimal investment. Also, sensitivity analysis reveals that the effects of param-

eter changes are very different under the repeated-options approach than in the

single-option model. Nevertheless, each of these papers assumes a risk-neutral

decision maker.

Since the assumptions of risk neutrality and market completeness are not par-

ticularly relevant to most real-life situations, it is important to examine the impli-

cations that arise when these assumptions are relaxed. A utility-based framework

has been adopted, for example, by Henderson and Hobson (2002), who extend

the real options approach to pricing and hedging assets by taking the perspec-

tive of a risk-averse decision maker facing incomplete markets. Their analysis

is based on Merton (1969) who studies a decision maker facing complete mar-

kets seeking to maximise the expected utility of terminal wealth over a fixed and

continuous time horizon using a CRRA utility function. Henderson and Hobson

(2002) extend Merton’s analysis by introducing a second risky asset on which no

trading is allowed. In that case, the decision maker has a claim on units of the
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non-traded asset, and the question is how to price and hedge this random pay-

off. Furthermore, Henderson (2007) investigates the impact of risk aversion and

incompleteness on investment timing and option value by a risk-averse decision

maker with an exponential utility function who can choose at any time to under-

take an irreversible investment project and receive a risky payoff. To offset some

of the risk associated with the unknown investment payoff, the decision maker also

trades in a risk-free bond and a risky asset that is correlated with the investment

payoff. Results indicate that the higher the decision maker’s risk aversion or the

lower the correlation between the project value and hedging asset, the lower will

the investment threshold and option value be. In particular, there is a parameter

region within which the assumptions of complete and incomplete markets yield

different results. In this region, and under the assumption of complete markets,

the option is never exercised (and investment never occurs), whereas the decision

maker exercises the option in the incomplete setting.

More pertinent to our analysis is the working paper by Hugonnier and Morel-

lec (2007), who extend the work of Dixit and Pindyck (1994) and McDonald

and Siegel (1986) by illustrating how risk aversion affects investment under un-

certainty when the decision maker faces incomplete markets. Instead of using

contingent claims, they use an optimal stopping time approach to allow for the

decision maker’s risk aversion to be incorporated via a CRRA utility function.

Their framework is based on a closed-form expression for the expected discounted

utility of stochastic cash flows derived by Karatzas and Shreve (1999). The re-

sults indicate that risk aversion lowers the likelihood of investment and erodes

the value of investment projects. In Chapter 2, we extend Hugonnier and Morel-

lec (2007) by incorporating operational flexibility in the form of suspension and

resumption options that can be exercised at any time at no cost. We will show

how this flexibility can mitigate the effect of risk aversion and offer insights on

how to exercise optimally such suspension and resumption options.
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1.2 The Value of Capacity Sizing under Risk

Aversion and Operational Flexibility

Although investment in a project with discretion over capacity is a real options

problem, the majority of real options models, including the ones that account for

competition, either consider only the problem of optimal investment timing (Dixit

and Pindyck, 1994 and McDonald and Siegel, 1985, 1986) or address the problem

under risk neutrality. In the area of capacity sizing, Dangl (1999) addresses the

problem of a risk-neutral firm that invests in a project with continuously scalable

capacity using the dynamic programming approach. He finds that uncertainty

in future demand leads to an increase in optimal installed capacity and causes

investment to be delayed to an extent that even low uncertainty makes waiting

and accumulation of further information the optimal decision for large ranges of

demand. Following the same approach, Huisman and Kort (2009) examine the

same problem in monopoly and duopoly settings and compare their results with

the standard model where the firm has no discretion over capacity. They con-

firm that, compared to the model without capacity choice, increased uncertainty

delays investment and leads to higher installed capacity both for the monopolist

and the follower, thereby illustrating how the leader invests later in lower ca-

pacity for low uncertainty and earlier at higher capacity for higher uncertainty.

They also find that when uncertainty is low, the leader invests in lower capacity

than the follower in order to deter temporarily the follower’s entry and in higher

capacity when uncertainty increases. The flexibility to choose between two al-

ternative investment projects of different scales under output price uncertainty

has been studied by Décamps, Mariotti, and Villeneuve (2006). Their analysis

extends the results of Dixit (1993) where the irreversible choice among mutually

exclusive projects under output price uncertainty is considered. Hagspiel et al.

(2010) also account for the production decision, apart from the optimal invest-

ment timing and sizing decisions, by comparing the flexible scenario, where a firm

can costlessly adjust production over time with the capacity level as the upper

bound, to the inflexible scenario, where a firm fixes production at capacity level

from the moment of investment onward. Among other results, they find that

the flexible firm invests in higher capacity than the inflexible firm and that the
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capacity difference increases with uncertainty. Although the flexible firm has an

incentive to invest earlier (because flexibility raises the project value), it also has

an incentive to invest later (because costs are higher due to the larger capacity

level). The latter effect dominates in highly uncertain economic environments.

We contribute to this line of work by analysing the impact of risk aversion on

the optimal investment and sizing decisions of a firm. Using an optimal stopping

time approach, we allow for risk aversion to be incorporated via a CRRA utility

function. We assume that the risk-averse firm is a price taker, that it can suspend

and resume operations costlessly depending on the fluctuations of the output

price, and that its option to adjust the capacity of the project expires upon

investment. This framework is based on a closed-form expression for the expected

discounted utility of stochastic cash flows derived by Karatzas and Shreve (1999).

We begin by analysing the case of now-or-never investment and find that

increased risk aversion reduces the expected utility of the investment’s payoff,

thereby creating an incentive to reduce the amount of installed capacity. Further-

more, we find that, without operational flexibility, increased uncertainty leaves

the optimal capacity of the project unaffected under risk neutrality and decreases

it under risk aversion, while the presence of embedded options to suspend and re-

sume operations increases the value of the now-or-never investment opportunity,

thereby motivating the installation of greater capacity.

Next, we account for the option to invest and find that in contrast to Hugonnier

and Morellec (2007) who, using the same framework, show that increased risk

aversion erodes option value and increases the required investment threshold, in-

creased risk aversion facilitates investment by reducing the amount of installed

capacity. We show that with higher risk aversion, the incentive to avoid exposure

to unfavourable market conditions by decreasing the amount of installed capacity

is more profound than the incentive to delay investment due to the decrease of

the project’s expected utility.
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1.3 Duopolistic Competition under Risk Aver-

sion and Uncertainty

The majority of real options models account for the problem of optimal invest-

ment timing without considering competition (McDonald and Siegel 1985, 1986),

while the ones that do, assume risk neutrality (Dixit and Pindyck, 1994). In

the area of competition, Smets (1993) first combined real options valuation tech-

niques with game theory concepts, thus developing a continuous-time model of

strategic real option exercise under product market competition, assuming that

entry is irreversible, demand is stochastic and simultaneous investment occurs

only when the role of the leader is defined exogenously. Williams (1993) provides

the first rigorous derivation of a Nash-equilibrium in a real options framework.

Following Smets (1993), Grenadier (1996) develops an equilibrium framework

for option exercise strategies and particularly focuses on the behaviour of real-

estate markets in order to emphasise on the applicability of the model. Through

this framework, he proposes a potential explanation for certain market phenom-

ena such as why some real estate markets have been prone to pronounced bursts

of development activity, while others have been characterised by smooth patterns

of development over time.

Weeds (2002) considers irreversible investment in competing research projects

with uncertain returns under a winner-takes-all patent system. The technological

success of the project is probabilistic, while the economic value of the patent

to be won evolves stochastically over time. Her results indicate that in a pre-

emptive leader-follower equilibrium firms invest sequentially and option values

are reduced by competition. However, a symmetric outcome may also occur in

which investment is more delayed than the single-firm counterpart. Comparing

this with the optimal cooperative investment pattern, investment is found to be

more delayed when firms act non-cooperatively as each holds back from investing

in the fear of starting a patent race.

Grenadier (2002) provides a general and tractable solution approach for deriv-

ing the equilibrium investment strategies of firms in a Cournot-Nash framework

with more than two competitors. Each firm faces a sequence of investment oppor-

tunities and must determine an exercise strategy for its path of investment. The
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resulting equilibrium has potentially wide applications. For example, a real es-

tate developer contemplating the construction of an office building will choose his

optimal time at which to begin construction, contingent upon his beliefs about

the decisions of other developers in the market. The model permits a rather

simple solution approach to the derivation of equilibrium exercise strategies in a

continuous-time stochastic setting.

Thijssen et al. (2002) consider the problem of investment timing under un-

certainty in a duopoly framework and propose a method in order to deal with the

problem of coordination, that arises when both firms want to enter the market

first, involving the use of symmetric mixed strategies. They study first-mover ad-

vantage and war of attrition (second-mover advantage) games, thereby extending

the strategy spaces and equilibrium concepts introduced in Fudenberg and Tirole

(1985).

Shackleton et al. (2004) analyse the entry decisions of competing firms in a

two-player stochastic real option game, when rivals earn different but correlated

uncertain profitabilities from operating. They determine an explicit measure for

the expected time of each firm being active in the market and the probability of

both rivals entering within a finite time. In the presence of entry costs, decision

thresholds exhibit hysteresis, the range of which is decreasing in the correlation

between competing firms. A measure of the expected time of each firm being

active in the market and the probability of both rivals entering within a finite

time are explicitly calculated. The former (latter) is found to decrease (increase)

with the volatility of relative firm profitabilities implying that market leadership

is shorter-lived the more uncertain the industry environment.

Smit and Trigeorgis (2006) illustrate the use of real options valuation and

game theory principles to analyse prototypical investment opportunities involv-

ing important competitive and strategic decisions under uncertainty. They use

examples from innovation cases, alliances and acquisitions to discuss strategic

and competitive aspects, relevant in a range of industries like consumer electron-

ics and telecoms. Particularly, they focus on whether it is optimal to compete

independently or coordinate via strategic alliances.

Grzegorz and Kort (2006) analyse the situation where two firms have an op-

portunity to invest in a profit-enhancing investment project and face different (ef-
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fective) investment costs. They relax the assumption that the duopolistic rivals

are identical, is motivated by the existence of many sources of potential cost asym-

metry. Investment cost asymmetries may be due to either liquidity constraints,

that increase the investment cost for a firm that faces capital market imperfec-

tions, or due to different degree of organisational flexibility at implementing a

new production technology. Their results indicate that within a certain range of

asymmetry level, a marginal increase in the investment cost of the firm with the

cost disadvantage can enhance its own value and reduce its rival’s value.

Huisman and Kort (1999) examine how the deterministic duopoly framework

of Fudenberg and Tirole (1985) is affected when uncertainty is introduced. Ac-

cording to Fudenberg and Tirole (1985), under large first-mover advantages, a

pre-emption equilibrium occurs with dispersed adoption timings since it is es-

sential for each firm to move quickly and pre-empt investment by its rivals. The

introduction of uncertainty creates an opposing force since now there is a positive

option value of waiting that becomes larger with higher uncertainty, thereby de-

laying investment. In the simultaneous investment and pre-emptive equilibrium

cases, the results of Huisman and Kort (1999) agree with those of Fudenberg

and Tirole (1985); however, in the stochastic case, uncertainty raises the required

entry threshold for both firms as it increases the value of waiting. Finally, if

first-mover advantages are lower but sufficiently large for the pre-emptive equi-

librium to result in the deterministic model, then Huisman and Kort (1999) show

that sufficiently high uncertainty results in simultaneous investment equilibrium,

thereby reducing the number of scenarios where the pre-emptive equilibrium is

optimal.

Paxson and Pinto (2005) extend the traditional real options approach that

treats the number of units sold and the price per unit as an aggregate variable

by presenting a rivalry model in which the profits per unit and the number of

units sold are both stochastic variables. They examine a pre-emptive setting

(where both firms fight for the leader’s position) and a non-pre-emptive setting

(where the role of the leader is defined exogenously). Their results indicate that

the triggers of both the leader and the follower increase in both settings as the

correlation between the profits per unit and the quantity of units increases since

then the aggregate volatility involving the number of units and the profits per
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unit also increases. Furthermore, they illustrate how the value of the active leader

increases by more than the value of her investment opportunity when the number

of units sold while being alone in the market increases. This, in turn, increases

the non-pre-emptive leader’s incentive to invest, thereby reducing the discrepancy

between the pre-emptive leader’s and non-pre-emptive leader’s entry thresholds.

Finally, they illustrate how increasing first-mover advantages create an incentive

for the pre-emptive leader to enter the market sooner since then the entry of the

follower is less damaging.

Unlike earlier studies concerning investment strategies in the electricity mar-

ket, Takashima et al. (2008) show the effect of competition on market entry and

the strategies of firms with different types of power plants. They analyse the

entry strategies into the electricity market of two firms that have power plants

under price uncertainty and competition and consider firms with either a thermal

power plant or a nuclear power plant. Among other results, they show that for

a nuclear power plant the entry threshold of the leader is higher compared to a

liquified natural gas thermal power plant, since the latter has mothballing options

that facilitate investment. Also, compared to the firm with a coal power plant

or an oil thermal power plant, a firm with a nuclear power plant tends to be the

leader because variable and construction costs for a nuclear power plant are lower

compared to those of a coal power plant, while the oil thermal power plant may

have lower construction cost but has variable cost that is twice as much as that

of the nuclear power plant.

Huisman and Kort (2009) model not only the timing but also the size of the

investment. They consider a monopoly setting as well as a duopoly setting and

compare the results with the standard models in which the firms do not have

capacity choice. They identify the region of demand where the leader can choose

either to deter temporarily or to accommodate the entry of the follower and find

that the leader can choose the deterrence strategy only up to a certain high level of

demand. If the demand is higher than that level, then it is optimal for the follower

to enter at the same time as the leader. Similarly, if the demand is low, then it is

not optimal for the leader to choose the deterrence strategy as this would result

in negative profits. Also, at high levels of demand, the leader’s optimal strategy is

either to deter or to accommodate the entry of the follower. However, the region
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in which the leader can choose either one of the two strategies decreases with

uncertainty, thereby increasing the range of demand where the leader chooses the

deterrence strategy.

Extending the traditional approach that considers only two competing firms,

Bouis et al. (2009) analyse investments in new markets where more than two

identical competitors are present. In the setting including three firms, they find

that if entry of the third firm is delayed, then the second firm has an incentive

to invest earlier because this firm can enjoy the duopoly market structure for

a longer time. This reduces the investment incentive for the first firm, which

now faces a shorter period in which it can enjoy monopoly profits, and, thus, it

invests later. This effect is denoted as the accordion effect and is also observed

when the number of competing firms is greater. Indeed, with more than three

firms competing, exogenous demand changes affect the timing of entry of the

first, third, fifth, etc., investor in the same qualitative way, while the entry of the

second, fourth, sixth, etc., investor is affected in exactly the opposite qualitative

way. In other words, if a delay is observed for the “odd” investors, then the

“even” investors will invest sooner.

Each of these papers assumes a risk-neutral decision maker, and, as a result,

the implications of risk aversion are not addressed. We contribute to this line

of work by developing a utility-based framework in order to examine how opti-

mal investment decisions under uncertainty are affected by competition and risk

aversion. This is relevant to a knowledge-based sector in which firms compete

to launch a new product while simultaneously facing costs of financial distress

or shareholder pressure. In order to describe the preferences of the two firms,

we apply a CRRA utility function and determine the optimal strategies that

maximise the expected utility of their future profits in both pre-emptive and

non-pre-emptive settings.

We confirm the results of Hugonnier and Morellec (2007) by showing that risk

aversion lowers the expected utility of the project, thereby delaying the entry of

the leader and the follower in both pre-emtpive and non-pre-emptive settings.

We also find that, relative to the monopolist, the non-pre-emptive leader is hurt

less from the follower’s entry than the pre-emptive leader since the former has

the flexibility to delay entry into the market. Interestingly, risk aversion does not
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impact the relative loss in the pre-emptive leader’s value due to the follower’s

entry, but makes the non-pre-emptive leader relatively better off. Furthermore,

we show that higher uncertainty reduces the loss in value of the pre-emptive leader

relative to the monopolist by delaying the entry of the follower, thereby allowing

the pre-emptive leader to enjoy monopoly profits for longer time. In the non-

pre-emptive duopoly setting, we show that if the discrepancy between the market

share of the leader and the follower is small, then the impact of uncertainty on

the leader’s option value is more profound and offsets the loss in value due to

the follower’s entry. By contrast, a large discrepancy in market share makes the

increase in option value less profound as it increases the first-mover advantage

and, at the same time, increases the impact of the follower’s entry, thereby making

the non-pre-emptive leader worse off.

1.4 Structure of the Thesis

The remainder of the thesis is structured as follows. In Chapter 2, we incorporate

the concept of risk in the real options framework by constructing a utility-based

framework in order to examine the impact of risk aversion and uncertainty on

the optimal investment timing decisions of a risk-averse decision maker. We for-

mulate the problem using a nested optimal stopping time approach and a CRRA

utility function to determine the optimal time of investment that maximises the

decision maker’s expected utility of future profits and examine the impact of

operational flexibility in terms of having the ability to suspend and resume op-

erations at any time. Also, numerical examples that illustrate the interaction

among risk aversion, uncertainty, and operational flexibility are provided for each

case. In Chapter 3, we assess how the flexibility to adjust capacity impacts the

value of an option to invest. We extend the traditional real options approach

to investment under uncertainty with discretion over capacity by allowing for

risk aversion, through a CRRA utility function, and operational flexibility in

the form of suspension and resumption options. In Chapter 4, we examine how

duopolistic competition affects the entry decisions of risk-averse investors. We

also explore how the impact of competition on the value of a firm under two dif-

ferent oligopolistic frameworks varies with risk aversion and uncertainty. Chapter
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5 concludes with a discussion about the findings and limitations of the current

approaches. Future research recommendations in these areas are also provided.
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Chapter 2

Optimal Investment under

Operational Flexibility, Risk

Aversion, and Uncertainty

Fluctuating global economic conditions require responsive strategies in order to

ensure the effectiveness of investment decisions. The withdrawal of Honda in 2008

from Formula One (Financial Times, 2008), for instance, was made in light of the

rapidly deteriorating conditions facing the global auto industry and reflects the

impact of the global financial and economic crisis. Indeed, when market uncer-

tainty increases and decision makers are risk averse, the discretion to abandon,

modify, or suspend existing projects becomes of greater importance. Here, we ex-

amine the impact of such operational flexibility, in terms of being able to suspend

and resume the project at any time, on optimal investment policies and option

values. We analyse the case where the decision maker exhibits risk aversion and

has perpetual options to suspend and resume a project at no cost. Under these

conditions, we address the question of how investment decisions are affected by

risk aversion, operational flexibility, and uncertainty. First, we develop a theo-

retical framework for investment under uncertainty with risk aversion and opera-

tional flexibility in order to derive optimal investment and operational thresholds.

Second, we show how risk aversion interacts with operational flexibility to affect

optimal investment policy. Third, we provide managerial insights for operational

decisions based on analytical and numerical results.
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We proceed in Section 2.1 by formulating the problem using the nested op-

timal stopping time approach and a CRRA utility function to determine the

optimal time of investment that maximises the decision maker’s expected utility

of future profits. The impact of operational flexibility, in terms of having the

ability to suspend and resume operations, is examined in Section 2.2. We first

analyse the case where the investment is irreversible (2.2.1) and then introduce

operational flexibility in the form of a single abandonment option (2.2.2), a com-

bined suspension-resumption option (2.2.3), and finally complete flexibility where

the decision maker has an infinite number of perpetual options to suspend and

resume operations (2.2.4). Section 2.3 provides numerical examples for each case

and examines the effects of volatility and risk aversion on the optimal investment,

suspension, and resumption thresholds. We illustrate the interaction among risk

aversion, uncertainty, and operational flexibility and present managerial insights

to enable more informed investment and operational decisions. Section 2.4 con-

cludes and offers directions for future research.

2.1 Problem Formulation and Assumptions

We assume that a risk-averse decision maker holds the perpetual option to invest

in a project that yields stochastic revenues and produces a single unit of output

per annum over an infinite lifetime. Prior to investment, the decision maker’s

initial wealth is invested in a risk-free asset with rate of return r > 0. Let K

be the amount of wealth the decision maker gives up in order to cover the fixed

and irrecoverable cost of investment and c be the deterministic variable operating

cost of the project. As the operating cost, c, is incurred in perpetuity, the present

value of these costs at the time of investment equals K+ c
r
, which we assume is the

decision maker’s initial wealth. Also, time is continuous and denoted by t ≥ 0,

and the value of the project’s exogenous output price, Pt, follows a geometric

Brownian motion (GBM) :

dPt = Ptdt+ PtdZt, P0 > 0 (2.1)
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Here,  is the growth rate,  is the proportional variance, Zt is the standard

Brownian motion, and P0 is the initial value of the project’s output price. All

values and rates are expressed in real terms. The decision maker’s preferences are

described by an increasing and concave utility function, U(⋅). Hence, our analysis

can accommodate hyperbolic absolute risk aversion (HARA), constant absolute

risk aversion (CARA), and CRRA utility functions. To enable comparisons with

Hugonnier and Morellec (2007), we apply the same utility function, i.e., a CRRA

utility function:

U(Pt) =

(
P
1−
t

1−
if  ≥ 0 &  ∕= 1

ln(Pt) if  = 1
(2.2)

We follow the framework of Hugonnier and Morellec (2007) for decomposing

cash flows into disjoint time intervals. We denote by P
(i)
j the output price at

time j, j = 1, 2, 3..., at which we exercise an investment (j = 1), suspension (j =

2, 4, 6, ...), or resumption option (j = 3, 5, 7, ...) when i = 0, 1, 2, 3... subsequent

embedded options exist. For example, P
(0)
1 is the price at which we exercise an

investment option without operational flexibility, P
(0)
2 is the price at which we

exercise an abandonment option, and P
(1)
2 is the price at which we exercise a

suspension option with a resumption option still available, etc. Suppose now

that we have a perpetually operating project that we start at random time 1.

Thus, up to time 1, we earn an instantaneous cash flow of c+ rK per time unit

with utility U(c+rK) discounted at our subjective rate of time preference,  > .

Once we invest in the project, we swap this certain cash flow for a risky one, Pt

per time unit, with utility U(Pt), as shown in Figure 2.1.

P0


R 1
0
e−tU(c+ rK)dt -

R∞
1
e−tU(Pt)dt -

P
(0)
1

-

1

∙∙
0 t

Figure 2.1: Irreversible investment under risk aversion

Using the law of iterated expectations and the strong Markov property of the
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GBM, which states that price values after time 1 are independent of the val-

ues before 1 and depend only on the value of the process at 1, the time-zero

discounted expected utility of the cash flows is:

EP0

Z 1

0

e−tU(c + rK)dt+

Z ∞

1

e−tU(Pt)dt


=

Z ∞

0

e−tU(c + rK)dt

+ EP0


e−1


V1

P (0)
1


(2.3)

where

V1

P (0)
1


= E

P
(0)
1

Z ∞

0

e−t [U (Pt)− U (c + rK)] dt


(2.4)

is the expected utility of the project’s cash flows, discounted to 1. Here, EP0

denotes the expectation operator, which is conditional on the initial value, P0, of

the price process and reflects the randomness of both 1 and Pt in 2.3.

Now, we extend this framework by allowing for an abandonment option at

random time 2 > 1. The value of the output price at which the option to

abandon the project is exercised is denoted by P
(0)
2 , as shown in Figure 2.2.

P0


R 1
0
e−tU(c + rK)dt -

R 2
1
e−tU(Pt)dt -

P
(1)
1

-

1
∙

P
(0)
2


R∞
2
e−tU(c)dt -

2
∙∙

0 t

Figure 2.2: Investment under risk aversion with a single abandonment option

In this case, the expected discounted utility of all future cash flows equals:Z ∞

0

e−tU(c+ rK)dt+ EP0


e−1

 h
V1

P (1)
1


+ E

P
(1)
1


e−(2−1)


V2

P (0)
2

i
(2.5)

where

V2

P (0)
2


= E

P
(0)
2

Z ∞

0

e−t [U (c)− U (Pt)] dt


(2.6)
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is the expected utility of the cash flows from abandonment, discounted to 2.

Finally, we allow for a subsequent resumption option at random time 3 > 2.

The output price at which the resumption option is exercised is denoted by P
(0)
3

as shown in Figure 2.3.

P0

R 1
0 e

−t
U(c+ rK)dt-R 2

1
e
−t

U(Pt)dt-

P
(2)
1

-

1

∙

P
(1)
2

R 3
2
e
−t

U(c)dt-

2

∙
3

∙

P
(0)
3

 -

∙

R∞
3
e
−t

U(Pt)dt

0 t

Figure 2.3: Investment under risk aversion with one suspension and one resump-
tion option

Here, the expected discounted utility of all future cash flows is:Z ∞

0

e−tU(c+ rK)dt+ EP0


e−1

 h
V1

P (2)
1


+ E

P
(2)
1


e−(2−1)

 h
V2

P (1)
2


+ E

P
(1)
2


e−(3−2)


V3

P (0)
3

 ii
(2.7)

where

V3

P (0)
3


= E

P
(0)
3

Z ∞

0

e−t [U (Pt)− U (c)] dt


(2.8)

is the expected utility of the cash flows from resumption, discounted to 3. Follow-

ing the same reasoning, we can extend the model to include complete operational

flexibility, i.e., infinitely many suspension and resumption options.

2.2 Analytical Results

2.2.1 Investment without Operational Flexibility

Since this problem has already been examined by Hugonnier and Morellec (2007),

we summarise the results for ease of reference, to allow for comparisons, and to
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provide further insights. Let F
(i)
j (⋅) denote the value of an option that is exercised

at time j, j = 1, 2, 3, ..., with i = 0, 1, 2, 3, ... subsequent embedded options

remaining. F
(0)
1 (⋅) refers to an investment option without operational flexibility,

F
(0)
2 (⋅) refers to an abandonment option, while F

(1)
2 (⋅) refers to a suspension

with one resumption option, and so on. We define the value of the incremental

investment opportunity, F
(0)
1 (P0), as follows:

F (0)
1
(P0) = sup

1∈S

EP0


e−1


V1

P (0)
1


(2.9)

By S, we denote the set of stopping times of the filtration generated by the price

process.

Using Theorem 9.18 of Karatzas and Shreve (1999) for the CRRA utility

function in (2.2), we obtain Proposition 2.2.1. All proofs can be found in the

appendix.

Proposition 2.2.1 Under a CRRA utility-of-wealth function, the expected utility

of a perpetual GBM discounted to P0 is given by 2.10:

EP0

Z ∞

0

e−tU(Pt)dt = AU(P0) (2.10)

where A = 12
(1−1−)(1−2−)

> 0 and 1 > 1, 2 < 0 are the solutions to the

following quadratic equation:

1

2
2x(x− 1) + x−  = 0 (2.11)

Since the expected discount factor is EP0 [e
−1 ] =


P0

P
(0)
1

1

(Dixit and Pindyck,

1994, p.315), (2.9) can be written as follows:

F (0)
1
(P0) = max

P
(0)
1

≥P0

 
P0

P
(0)
1

!1 
AU


P (0)
1


−
U(c + rK)




(2.12)

Applying first-order necessary condition (FONC) for this unconstrained maximi-

sation problem we obtain Proposition 2.2.2.
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Proposition 2.2.2 Under a CRRA utility-of-wealth function, the optimal in-

vestment threshold is:

P (0)∗

1
= (c+ rK)


2 +  − 1

2

 1
1−

(2.13)

The second-order sufficiency condition (SOSC) requires the objective function to

be concave at P
(0)∗

1 , which we show in Proposition 2.2.3.

Proposition 2.2.3 The objective function (2.9) is strictly concave at P
(0)∗

1 iff

 < 1.

Clearly, as
h
2+−1

2

i 1
1−

> 1, this implies that P
(0)∗

1 > c + rK. Thus, (2.13)

implies that the option to invest should be exercised only when the critical value,

P
(0)∗

1 , exceeds the amortised investment cost, c + rK, by a positive quantity.

This, in turn, implies that uncertainty and risk aversion drive a wedge between

the optimal investment threshold and the amortised investment cost. The size

of this wedge, as we will show later, depends on the levels of uncertainty, risk

aversion, and operational flexibility.

Another way of expressing (2.13) is to relate the marginal benefit (MB) of

waiting to invest with its marginal cost (MC): 
P0

P
(0)∗
1

!1
"
AP (0)∗

1

−
+

1

P
(0)∗
1

U(c + rK)



#
=

 
P0

P
(0)∗
1

!1
1A

P
(0)∗
1

U

P (0)∗

1


(2.14)

The first term on the left-hand side of (2.14) is positive and represents the in-

cremental project value created by waiting until the price is higher. Multiplied

by the discount factor, it is a positive, decreasing function of the output price,

as waiting longer enables the project to start at a higher initial price; however,

the rate at which this benefit accrues diminishes due to the effect of discounting.

The second term is positive and represents the reduction in the MC of waiting to

invest due to saved investment and operating costs. Together, these two terms

constitute the MB of delaying investment. The MC of waiting to invest on the

right-hand side of (2.14) is positive and reflects the opportunity cost of forgone

cash flows discounted appropriately. For low price values, it is worthwhile to
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postpone investment since the MB is greater than the MC according to Corollary

2.2.1.

Corollary 2.2.1 The MB curve is steeper than the MC curve at P
(0)∗

1 .

As risk aversion increases, the MC of waiting to invest decreases relatively more

than the MB. This happens because the MC consists entirely of risky cash flows

and, therefore, is affected more by risk aversion. As a result, the marginal utility

of the investment’s payoff increases, thereby increasing the incentive to postpone

investment. This leads to Proposition 2.2.4.

Proposition 2.2.4 The optimal investment threshold is increasing with risk aver-

sion.

Finally, for a fixed level of risk aversion, the optimal investment threshold in-

creases as the economic environment becomes more uncertain. This happens

because greater uncertainty causes the value of waiting to increase, which in

turn increases the opportunity cost of investing. Proposition 2.2.5 verifies this

intuition.

Proposition 2.2.5 The optimal investment threshold is increasing with volatil-

ity.

2.2.2 Investment with a Single Abandonment Option

Here, the value of the investment opportunity is:

F (1)
1
(P0) ≡ sup

1∈S

EP0

Z ∞

1

e−t [U(Pt)− U(c + rK)] dt

+ sup
2≥1

E
P
(1)
1

Z ∞

2

e−t [U(c)− U(Pt)] dt


= sup

1∈S

EP0


e−1


V1

P (1)
1


+ sup

2≥1

E
P
(1)
1


e−(2−1)V2


P (0)
2



= max
P
(1)
1

≥P0

 
P0

P
(1)
1

!1 
V1

P (1)
1


+ F (0)

2


P (1)
1


(2.15)
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The value of the output price at which we exercise the abandonment option is

P
(0)
2 , and the maximised value of the option to abandon a just-activated project

is denoted by F
(0)
2


P
(1)
1


, i.e:

F
(0)
2


P
(1)
1


= max

P
(0)
2

≤P
(1)
1

 
P
(1)
1

P
(0)
2

!2

V2

P (0)
2


⇒ F

(0)
2


P
(1)
1


= max

P
(0)
2

≤P
(1)
1

 
P
(1)
1

P
(0)
2

!2 
U(c)


−AU


P (0)
2


(2.16)

We solve this compound real options problem backward by first determining

the optimal abandonment threshold price, P
(0)∗

2 . The FONC for this uncon-

strained maximisation problem is expressed as:

1

1− 1 − 
P (0)∗

2

1−
+ c1− = 0 (2.17)

Solving (2.17) with respect to P
(0)∗

2 , we obtain the following expression for the

optimal abandonment threshold:

P
(0)∗

2 = c


1 +  − 1

1

 1
1−

(2.18)

To ensure the existence of a local maximum at P
(0)∗

2 , the SOSC has to be verified.

Proposition 2.2.6 The objective function (2.16) is strictly concave at P
(0)∗

2 iff

 < 1.

Since
h
1+−1

1

i 1
1−

< 1, (2.18) implies that P
(0)∗

2 < c, i.e., the option to abandon

operations permanently should be exercised when the operating cost, c, exceeds

the critical value, P
(0)∗

2 , by a positive quantity. Hence, uncertainty and risk aver-

sion again drive a wedge between the critical value, P
(0)∗

2 , and the operating cost,

c. The size of this wedge is affected by volatility, risk aversion, and operational

flexibility.
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In contrast to the previous section, we now express (2.17) by relating the MB

from accelerating abandonment of the project with the MC. Note that unlike in

the investment stage, an incremental increase in the threshold value implies that

abandonment is accelerated:

−

 
P
(1)
1

P
(0)∗
2

!2
2

P
(0)∗
2

U(c)


=

 
P
(1)
1

P
(0)∗
2

!2
"
AP (0)∗

2

−
−

2A

P
(0)∗
2

U

P (0)∗

2

#
(2.19)

The left-hand side of (2.19) is the MB of accelerating abandonment and represents

the recovery of the operating cost from shutting down the project. This term is

positive, indicating that abandoning operations at a higher price level (i.e., more

quickly) increases the expected utility of the salvageable operating cost. The

right-hand side of (2.19) is the MC of accelerating abandonment. The first term

corresponds to killing the revenues of the project at a higher price level, while

the second term is also positive and corresponds to the increase in the MC from

speeding up abandonment. This term represents the increase in the opportunity

cost from waiting less, thereby forgoing information. As risk aversion increases,

the decision maker appears more willing to terminate operations and, thus, avoid

potential losses as Proposition 2.2.7 states.

Proposition 2.2.7 The optimal abandonment threshold is increasing with risk

aversion.

The behaviour of the optimal abandonment threshold when the level of un-

certainty changes can be determined using the FONC with respect to 2. This

leads to the following proposition.

Proposition 2.2.8 The optimal abandonment threshold is decreasing with volatil-

ity.

Proposition 2.2.8 implies that the greater the uncertainty, the more reluctant the

decision maker is to abandon an active project. Intuitively, this happens because

she would not want to abandon the project due to a temporary downturn, which

is more likely when volatility is higher.
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By moving back to the investment stage, we now solve the decision maker’s

investment timing problem given the solution to the optimal exercise of the aban-

donment option:

F (1)
1
(P0) = max

P
(1)
1

≥P0

 
P0

P
(1)
1

!1
"
AU


P (1)
1


−
U(c + rK)



+

 
P
(1)
1

P
(0)∗
2

!2 
U(c)


−AU


P (0)∗

2

#
(2.20)

Substituting in P
(0)∗

2 and applying the FONC to (2.20) leads to the following

non-linear equation that gives the optimal investment threshold:

2

1− 2 − 
P (1)∗

1

1−
+ (c+ rK)1− −

(1 − 2)

1
(1− )F (0)

2


P (1)∗

1


= 0 (2.21)

By comparing (2.21) and (2.13), we can show that the optimal investment thresh-

old decreases due to the embedded abandonment option as follows:

Proposition 2.2.9 The optimal investment threshold when an abandonment op-

tion is available is lower compared to an irreversible investment opportunity, ce-

teris paribus.

In order to illustrate Proposition 2.2.9, we express (2.21) by relating the MB

of waiting to invest to the MC as shown in (2.22). 
P0

P
(1)∗
1

!1
"
AP (1)∗

1

−
+

1

P
(1)∗
1

U(c+ rK)



−(2 − 1)

 
P
(1)∗
1

P
(0)∗
2

!2
A

P
(1)∗
1

U

P (0)∗

2

⎤⎦ =
 

P0

P
(1)∗
1

!1
1

P
(1)∗
1

⎡⎣1AU P (1)∗

1


− (2 − 1)

 
P
(1)∗

1

P
(0)∗
2

!2
U(c)



⎤⎦ (2.22)

Compared to the case of investment without operational flexibility (2.14), the

MB and MC of delaying investment have now increased due to the additional
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terms on each side of (2.22). These terms are positive and correspond to the MB

and MC from the embedded abandonment option. In fact, the MC increases by

more than the MB since, at abandonment, the expected utility of the salvageable

operating cost is greater than the expected utility of the forgone cash flows. Thus,

the marginal utility of the payoff from delaying investment decreases, thereby

increasing the incentive to invest. Intuitively, the abandonment option reduces

the decision maker’s insecurity since she can now terminate her investment in

case the output price drops significantly.

2.2.3 Investment with a Single Suspension and Resump-

tion Option

With a single suspension and resumption option, the value of the investment

opportunity is:

F (2)
1
(P0) ≡ sup

1∈S

EP0

Z ∞

1

e−t [U(Pt)− U(c + rK)] dt

+ sup
2≥1

E
P
(2)
1

Z ∞

2

e−t [U(c)− U(Pt)] dt

+ sup
3≥2

E
P
(1)
2

Z ∞

3

e−t [U(Pt)− U(c)] dt


= sup

1∈S

EP0


e−1


V1

P (2)
1


+ sup

2≥1

E
P
(2)
1


e−(2−1)


V2

P (1)
2


+ sup

3≥2

E
P
(1)
2


e−(3−2)V3


P (0)
3



= max
P
(2)
1

≥P0

 
P0

P
(2)
1

!1 
V1

P (2)
1


+ F (1)

2


P (2)
1


(2.23)

Here, P
(1)
2 is the threshold price at which we suspend the investment project.

The last term, F
(1)
2


P
(2)
1


, is the maximised value of the option to suspend a

just-activated project with a subsequent resumption option and is defined as:
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F (1)
2


P (2)
1


≡ max

P
(1)
2

≤P 2
1

 
P
(2)
1

P
(1)
2

!2

E
P
(1)
2

Z ∞

0

e−t [U(c)− U(Pt)] dt

+ max
P
(0)
3

≥P
(1)
2

 
P
(1)
2

P
(0)
3

!1

E
P
(0)
3

Z ∞

0

e−t [U(Pt)− U(c)]


dt

⎤⎦
= max

P
(1)
2

≤P
(2)
1

 
P
(2)
1

P
(1)
2

!2 
U(c)


−AU


P (1)
2


+ F (0)

3


P (1)
2


(2.24)

Analogously, we define F
(0)
3


P
(1)
2


to be the maximised value of the option to

resume forever a just-suspended project, and P
(0)
3 the threshold price at which

we exercise the option to resume the investment project:

F (0)
3


P (1)
2


= max

P
(0)
3

≥P
(1)
2

 
P
(1)
2

P
(0)
3

!1

V3

P (0)
3


= max

P
(0)
3

≥P
(1)
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P
(1)
2

P
(0)
3

!1

E
P
(0)
3

Z ∞

0

e−t (U(Pt)− U(c)) dt



= max
P
(0)
3

≥P
(1)
2

 
P
(1)
2

P
(0)
3

!1 
AU


P (0)
3


−
U(c)




(2.25)

We solve this compound real options problem backward by first determining

the optimal resumption threshold price. The FONC yields:

P
(0)∗

3 = c


2 +  − 1

2

 1
1−

(2.26)

Differentiating (2.26) with respect to , we obtain the following proposition:

Proposition 2.2.10 The optimal resumption threshold is increasing with risk

aversion.

Next, we step back to when the investment project is active in order to de-

cide when to suspend operations, i.e., sub-problem (2.24). Applying the FONC,

we obtain the following non-linear equation that gives the optimal suspension

threshold:
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1

1− 1 − 
P (1)∗

2

1−
+ c1− −

(1 − 2)

2
(1− )F (0)

3


P (1)∗

2


= 0 (2.27)

Proposition 2.2.11 The optimal suspension threshold is higher than the optimal

abandonment one.

To illustrate Proposition 2.2.11, we will examine the relationship between the

MB from accelerating suspension and its MC, which is described in the following

equation:

−

 
P
(2)∗

1

P
(1)∗
2

!2
1

P
(1)∗
2

⎡⎣2U(c)


− (1 − 2)
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P
(0)∗
3
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AU

P (0)∗

3

⎤⎦ =

 
P
(2)∗

1

P
(1)∗
2

!2
"
AP (1)∗

2

−
−

2

P
(1)∗
2

AU

P (1)∗

2


+(1 − 2)

 
P
(1)∗

2

P
(0)∗
3

!1
1

P
(1)∗
2

U(c)



⎤⎦ (2.28)

The left-hand side of (2.28) is the MB of accelerating suspension. The first term

is the MB of accelerating abandonment, while the second term represents the

MB from the embedded resumption option. Since the latter term is positive,

the MB of suspension has increased compared to the case of abandonment in

(2.19). The right-hand side of (2.28) is the MC of accelerating suspension. The

first two terms correspond to the MC of accelerating abandonment, while the

third term represents the MC from the embedded option to resume operations.

Since this term is always positive, it causes the MC of abandonment to increase.

Although both the MB and MC increase due to the embedded resumption option,

the former increases relatively more since at resumption, the expected utility of

the risky cash flows is greater than the expected utility of the operating cost.

Thus, the marginal utility of the payoff from suspending operations increases,

which in turn increases the incentive to suspend operations. As a result, MB and

MC curves intersect at a higher level of the output price, thereby indicating that
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the embedded resumption option facilitates suspension. Intuitively, the decision

maker is more willing to suspend operations since now, unlike in the case of

permanent abandonment, she can recover the lost cash flows by exercising her

resumption option.

Finally, we move to the investment stage to solve the complete problem taking

P
(0)∗

3 and P
(1)∗

2 as fixed:

F (2)
1
(P0) = max

P
(2)
1

≥P0
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P
(2)
1

!1
"
AU


P (2)
1


−
U(c+ rK)



+

 
P
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1

P
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!2 
U(c)


−AU


P (1)∗

2


+ F (0)

3


P (1)∗

2

#
(2.29)

The optimal investment threshold is obtained numerically by solving the following

non-linear equation resulting from the FONC:

2

1− 2 − 
P (2)∗

1

1−
+ (c+ rK)1− −

(1 − 2)

1
(1− )F (1)

2


P (2)∗

1


= 0 (2.30)

Proposition 2.2.12 The optimal investment threshold when a single suspension

and a single resumption option are available is lower than for an investment

opportunity with a single abandonment option.

Intuitively, the suspension and resumption options facilitate investment because

they provide the decision maker the subsequent option to halt the project in

case of a downturn and then to resume it. Propositions 2.2.11 and 2.2.12 lead

to the insight that additional flexibility facilitates investment and operational

decisions, thereby resulting in an increase of the optimal suspension threshold

and a decrease of the optimal investment threshold.

2.2.4 Investment with Complete Operational Flexibility

Following the methodology of McDonald (2006), suppose that we are now oper-

ating an investment project with infinitely many perpetual options to suspend

and resume operations. The symmetry of the problem suggests that the optimal
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2.2 Analytical Results

values of the output prices at which these options are exercised will not be af-

fected by additional flexibility, i.e., each time we suspend or resume operations,

we still have infinitely many options left. Therefore, each resumption and suspen-

sion threshold will be affected equally by flexibility. We let P
(∞)
e , where e stands

for even (i.e., 2,4,6,...), denote the common threshold at which all suspension

options are exercised, and P
(∞)
o , where o stands for odd (i.e., 3,5,7,...), denote

the common threshold at which all resumption options are exercised. Hence, the

value of an operating project activated at P
(∞)
o can be written as follows:

V3

P (∞)
o


+

 
P
(∞)
o
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Since
P∞

i=0


P
(∞)
o
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is a geometric series with
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1 , we know that:
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Therefore, the decision maker’s problem in an active state is:

F (∞)
e

(P∞
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) = max
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It follows that the option to resume a currently suspended project with infinitely

many resumption and suspension options, given that the current value of the

output price is P
(∞)
e , is:

F (∞)
o


P (∞)
e


= max

P
(∞)
o ≥P

(∞)
e
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(∞)
o

!1

F (∞)
e


P (∞)
o


(2.34)
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In order to solve for P
(∞)∗

1 , P
(∞)∗

o , and P
(∞)∗

e , we first substitute (2.33) into

(2.34) and use as an initial guess for P
(∞)
e the price at which the option to aban-

don the investment project is exercised, i.e., P
(∞)
e = P

(0)∗

2 . Thus, we obtain an

equation that we then maximise with respect to P
(∞)
o . The estimate of P

(∞)
o

we obtain this way is then substituted into (2.33), which we maximise with re-

spect to P
(∞)
e . This procedure is iterated until each solution converges. As we will

demonstrate numerically in Section 2.3.4, the optimal suspension and resumption

thresholds converge toward the operating cost, c. Intuitively, each time that ad-

ditional flexibility becomes available, the optimal suspension threshold increases

and the optimal resumption threshold decreases. Assuming that P
(i)
2j < c and

P
(i)
2j+1 > c, ∀ i < ∞ and ∀ j = 1, 2, 3, ..., this implies that limi→∞ P

(i)
2j = c and

limi→∞ P
(i)
2j+1 = c, ∀j.

Finally, we take P
(∞)∗

o , P
(∞)∗

e , F
(∞)
o


P
(∞)∗

e


, and F

(∞)
e


P
(∞)∗

o


as given and

solve the investment problem for investment threshold, P
(∞)
1 , assuming invest-

ment cost, K:

F (∞)
1

(P0) ≡ max
P
(∞)
1

≥P0
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P
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1

!1
"
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
P (∞)∗

e

 #
(2.35)

2.3 Numerical Results

2.3.1 Investment without Operational Flexibility

Suppose we have a project with K = $100, c = $10,  ∈ [0, 0.2], and P0 = $13.6.

We set r =  = 0.05 and  = 0.01. Figure 2.4 shows that the investment thresh-

old, P
(0)∗

1 , increases in risk aversion, , for a fixed volatility, . This happens

because the underlying expected utility of the project decreases with , thereby

raising the required threshold for investment. Hence, increased risk aversion re-

duces the incentive to invest. Second, P
(0)∗

1 increases in  for fixed  because

greater uncertainty increases the value of waiting and, thus, the opportunity cost

of investing.
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Figure 2.4: Optimal investment threshold versus  for  = 0.1, 0.15, 0.2 (left),
and optimal investment threshold versus  for  = 0, 0.25, 0.5 (right).

Figure 2.5 illustrates the MB and MC of waiting to invest, for  = 0.2 and

 = 0, 0.25. For low prices, it is worthwhile to postpone investment as the MB is

greater than the MC. As risk aversion increases, the MC, which consists entirely

of risky cash flows and, hence, gets affected more by risk aversion, decreases by

more than the MB. As a result, the marginal utility of the payoff when investment

is delayed increases, which, in turn, decreases the incentive to invest and causes

the optimal investment threshold to increase with risk aversion.
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Figure 2.5: Marginal benefit versus marginal cost under risk neutrality (left) and
risk aversion,  = 0.25, (right) for an irreversible investment opportunity
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Figure 2.6 illustrates the impact of volatility, , and risk aversion, , on the

value of the option to invest and the value of the project. In the graph on the left,

we plot the value of the project as well as the option value for  = 0.1, 0.15, 0.2

holding  = 0.25. As uncertainty increases, the project value decreases, but the

value of the option to invest, evaluated at the initial level of the output price,

increases due to greater waiting value. Consequently, the value of the option to

wait also increases, thereby increasing the investment threshold. In the graph on

the right, we plot the value of the project and the option value for  = 0, 0.25, 0.5

holding  = 0.2. The graph indicates that as risk aversion increases, the decision

maker requires a higher price before exercising the option to invest. This is due

to the decreased expected utility of the project, which decreases the value of the

option to invest and increases the investment threshold.
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Figure 2.6: Option value and project value versus Pt for  = 0.25 and  =
0.1, 0.15, 0.2 (left), and option value and project value versus Pt for  = 0.2 and
 = 0, 0.25, 0.5 (right)

2.3.2 Investment with a Single Abandonment Option

Increasing flexibility by adding an abandonment option decreases the optimal

investment threshold. The proportional increase in option value due to the sub-

sequent abandonment option is larger for higher levels of uncertainty and risk
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2.3 Numerical Results

aversion. Both of these results are illustrated in Figure 2.7. In the graph on the

left, we compare the case of investment without operational flexibility to that of

investment with a single abandonment option. We plot the value of the project

and the value of the investment opportunity for  = 0.25 and  = 0.2. The graph

on the right illustrates how the proportional increase in option value due to the

subsequent abandonment option fluctuates with risk aversion for three levels of

volatility.
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Figure 2.7: Effect of the abandonment option on optimal investment threshold
and option value

Although both risk aversion and uncertainty increase the option value of aban-

donment, the impact of each factor on P
(0)∗

2 is different. While risk aversion in-

creases the abandonment threshold due to a decrease in project value, uncertainty

lowers the abandonment threshold because it increases its opportunity cost. In

particular, Figure 2.8 indicates that as risk aversion increases, for a fixed level

of volatility, the decision maker becomes more willing to abandon the project in

order to avoid potential losses. An increase in uncertainty, however, leads to a

decrease in the optimal abandonment threshold.

48



2.3 Numerical Results

0 0.2 0.4 0.6 0.8 1
4.5

5

5.5

6

6.5

7

7.5

γ

O
p
ti
m
a
l
A
b
a
n
d
o
n
m
en
t
T
h
re
sh
o
ld
,
P
(0
)∗

τ
2

σ = 0.1

σ = 0.2

σ = 0.15

0 0.05 0.1 0.15 0.2
4

5

6

7

8

9

10

σ
O
p
ti
m
a
l
A
b
a
n
d
o
n
m
en
t
T
h
re
sh
o
ld
,
P
(0
)∗

τ
2

γ = 0.25

γ = 0.5

γ = 0
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For large price values, the MB of accelerating abandonment is less than the

MC, and, therefore, it is optimal to continue, as Figure 2.9 illustrates. As risk

aversion increases, both the MB and MC of accelerating abandonment decrease.

However, the MC, which consists entirely of risky cash flows and, therefore, gets

affected more by risk aversion, decreases relatively more. As a result, the marginal

utility of the payoff from accelerating abandonment increases, which, in turn,

increases the incentive to abandon the project and results in an increased optimal

abandonment threshold.
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Figure 2.9: Marginal benefit versus marginal cost under risk neutrality (left) and
risk aversion,  = 0.25, (right) for an irreversible abandonment opportunity
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Using the same parameter values as in Section 2.3.1, we plot the MB and

MC of waiting to invest versus Pt. The embedded abandonment option causes

the marginal utility of the payoff from delaying investment to decrease, which, in

turn, increases the incentive to invest. This happens because the MC increases

relatively more than the MB, and as a result, the MB and MC curves intersect

at a lower level of P
(1)∗

1 , as Figure 2.10 illustrates.
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Figure 2.10: Marginal benefit versus marginal cost under risk neutrality (left) and
risk aversion,  = 0.25 (right) for an investment opportunity with an embedded
abandonment option

2.3.3 Investment with a Single Suspension and a Single

Resumption Option

Having the option to suspend operations combined with an option to resume

them permanently increases the value of the investment opportunity further and

decreases the optimal investment threshold as the left panel in Figure 2.11 illus-

trates. Moreover, the percentage increase in option value due to the subsequent

resumption option is greater compared to the case of investment with a single

abandonment option, i.e.,

F
(1)
1 (P0)− F

(0)
1 (P0)

F
(0)
1 (P0)

<
F
(2)
1 (P0)− F

(0)
1 (P0)

F
(0)
1 (P0)

(2.36)
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Figure 2.11: Effect of the resumption option on optimal investment threshold and
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In Figure 2.12, we illustrate the impact of the additional resumption option on

the MB and MC of waiting to invest. The embedded resumption option increases

the MC relatively more than the MB, and, as a result, the marginal utility of

the payoff decreases further, thereby increasing the incentive to invest. Thus, the

MB and MC curves intersect at a lower level of the output price compared to the

case of investment with abandonment.
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Figure 2.12: Marginal benefit versus marginal cost under risk neutrality (left) and
risk aversion,  = 0.25, (right) for an investment opportunity with a suspension
and resumption option
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Interestingly, the results also indicate that the decision maker is less willing

to suspend operations as the level of risk aversion increases. This outcome may

seem counterintuitive, but it can be explained by the fact that as risk aversion

increases, the following two opposing effects take place. First, the marginal utility

of accelerating suspension increases with risk aversion, thereby increasing the like-

lihood of suspension. This happens because the MC of the abandonment option

decreases faster with risk aversion than the MB. Second, the marginal utility of

delaying resumption from a suspended state increases with risk aversion, thereby

decreasing the likelihood of resumption. Here, the MC of the embedded resump-

tion option decreases faster than the MB. Thus, higher risk aversion reduces the

marginal value of the payoff from the resumption option, which makes suspen-

sion less attractive. Under the assumption of costless suspension and resumption

and for the values of the parameters used here, we observe that the impact of

risk aversion on the embedded resumption option dominates and postpones the

suspension of the project. Figure 2.13 illustrates the impact of risk aversion and

uncertainty on the optimal suspension threshold. The graph on the left indicates

that as risk aversion increases, the wedge between the MB of suspension and

the MB of abandonment decreases, thereby indicating that the impact of risk

aversion on the embedded resumption option is more profound and results in the

decreased likelihood of suspension. On the other hand, as in the previous section,

the suspension threshold decreases with uncertainty since the decision maker is

inclined to wait for uncertainty to be resolved before exercising the suspension

option.
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Also interesting is that by allowing a further abandonment option after re-

sumption, the aforementioned counterintuitive result is no longer observed. Due

to the additional abandonment option, the marginal utility of the payoff from the

option to suspend operations increases faster with risk aversion than in the case

of suspension with a subsequent option of permanent resumption. In particular,

the rate of this increase is greater than the rate at which the marginal utility of

the payoff from the embedded call option increases. Hence, the impact of risk

aversion on the embedded suspension and abandonment options is now greater

than that on the single resumption option and, thus, causes the likelihood of

suspension to increase with risk aversion. In fact, we observe that the impact of

risk aversion on an optimal suspension threshold dominates when the number of

subsequent options to suspend operations exceeds the number of the options to

resume them.

Figure 2.14 summarises the impact of operational flexibility and risk aversion

on the optimal decision thresholds. The direction of the arrows indicates greater

operational flexibility. Here, additional flexibility facilitates all operational deci-

sions and causes the optimal investment and resumption thresholds to decrease

and the optimal suspension threshold to increase. Meanwhile, the impact of

risk aversion on the optimal investment and operational thresholds diminishes as

additional flexibility becomes available.
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Figure 2.14: Impact of operational flexibility and risk aversion on optimal decision
thresholds
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2.3.4 Investment with Complete Operational Flexibility

In Figure 2.15, the left figure compares the case of investment with complete

flexibility to that of investment with a single suspension and a single resumption

option for  = 0.2 and  = 0.25. Now, the ability to suspend and resume opera-

tions at any time increases the value of the investment opportunity, which reduces

further the investment threshold price. Also, the proportional increase in option

value is greater than that in the case of investment with a single suspension and a

single resumption option as the figure on the right illustrates. Finally, according

to the numerical results, the optimal suspension and optimal resumption thresh-

olds under complete flexibility are equal to the operating cost, c. Intuitively,

additional flexibility facilitates the suspension and resumption of the investment

project and, as a result, causes the optimal suspension threshold to increase and

the optimal resumption threshold to decrease. Assuming that no rational decision

maker would exercise a suspension option at P
(i)
2j > c and a resumption option

at P
(i)
2j+1 < c, we can expect both of these thresholds to converge toward the

operating cost as additional flexibility becomes available. Thus, as i → ∞, we

expect that P
(i)
2j → c and P

(i)
2j+1 → c. Hence, the ability to suspend and resume

operations costlessly at any time completely mitigates the impact of risk aversion

and volatility on the optimal operational thresholds and drives them to the same

level as in the risk-neutral case.
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2.4 Conclusions

In a world of increasing economic uncertainty, the need to examine the interaction

between risk aversion and operational flexibility, so as to provide optimal invest-

ment and operational decisions, is of great essence. In this chapter, an effort is

made to extend the results of McDonald and Siegel (1985, 1986) and Hugonnier

and Morellec (2007) to examine how investment and operational decisions are

affected by situations of uncertainty encountered by risk-averse decision makers.

Although the impact of risk aversion has already been demonstrated in Hugonnier

and Morellec (2007), its implications when combined with operational flexibility

have not been thoroughly examined yet. Here, we develop the results regarding

the problem of optimal investment under the assumption of risk aversion and op-

erational flexibility assuming that the decision maker faces incomplete markets.

We demonstrate how operational flexibility facilitates investment and operational

decisions by increasing the likelihood of investment, suspension, and resumption

of the investment project. We show that risk aversion provides an incentive for

decision makers to delay the investment and resumption of the investment project

and speed up their decision to abandon it. Moreover, we describe how an envi-

ronment of increasing uncertainty may affect the optimal investment policy and

lead to hysteresis. Also, we provide insights regarding the behaviour of the op-

timal suspension threshold when the level of risk aversion changes. Finally, we

demonstrate how operational flexibility becomes more valuable as risk aversion

increases and the economic environment becomes more volatile.

In order to test the robustness of the model, we can either apply a differ-

ent stochastic process, such as arithmetic Brownian motion or a mean-reverting

process, or an alternative utility function. Other aspects of the real options liter-

ature, e.g., dealing with endogenous capacity (Dangl, 1999) and the time-to-build

problem, may also be investigated under the framework outlined in this chapter.

In Chapter 3, we assume that apart from the option to choose the optimal time

of investment, a firm also has the freedom to scale the capacity of the project.

Incorporating the same utility-based framework as in Chapter 2, we analyse how

investment and sizing decisions are affected by risk aversion and uncertainty.

55



Chapter 3

The Value of Capacity Sizing

under Risk Aversion and

Operational Flexibility

Apart from discretion over the timing of investments, a firm typically also has

the freedom to determine the scale of the investment in the form of installed

capacity. Additionally, capital projects are seldom now-or-never investments and

can be abandoned, suspended, and resumed at any time. Examples of such real

options problems can be found in the area of infrastructure projects. For instance,

in the area of American railways, investment in freight railway capacity will be

needed as capacity will have to increase by 90% in order to meet forecast demand

of 2035. Among other reasons, this is also due to the change in the pattern of

trade as the Panama canal opens a second lane, thereby doubling its capacity

and allowing it to carry bigger container vessels and bulk ships. Coming through

to Gulf of Mexico and East Coast ports, these vessels will increase the need for

better rail links inland (The Economist, 2010).

Although the traditional real options approach addresses the value of flexibil-

ity and capacity sizing in capital budgeting decisions, the interaction between an

investor’s risk tolerance and the optimal capacity to be installed remains an open

question. In this chapter, we analyse the impact of uncertainty, risk aversion, and

operational flexibility on the optimal investment timing and sizing decisions of a

firm in order to assess the degree to which discretion over capacity impacts the
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3.1 Setup

value of the option to invest. Thus, the contribution of Chapter 3 is threefold.

First, we develop a theoretical framework for investment with capacity sizing

under uncertainty with risk aversion and operational flexibility, and we derive

closed-form expressions for the optimal investment and operational thresholds

as well as the project’s optimal capacity. Second, we illustrate how the opti-

mal investment timing and sizing decisions are affected by the interaction among

risk aversion, volatility, and operational flexibility. Third, we provide managerial

insights for sizing and operational decisions based on analytical and numerical

results.

We proceed by setting up the problem in Section 3.1. In Section 3.2, we anal-

yse the impact of uncertainty and risk aversion on the optimal investment timing

and sizing decisions when investment is irreversible, and assess how the option

value changes due to discretion over capacity. We use a nested optimal stopping-

time approach to examine the impact of embedded abandonment, suspension, and

resumption options. In Section 3.3, we provide numerical examples for each case

in order to quantify the impact of capacity flexibility and to illustrate the effects

of volatility and risk aversion on the optimal investment threshold and optimal

capacity. Finally, Section 3.4 concludes the chapter, discusses its limitations, and

offers directions for future research.

3.1 Setup

3.1.1 Problem Formulation and Notation

Assume that a firm holds a perpetual option to invest in a project with an infinite

lifetime that yields stochastic revenues. Time is continuous and denoted by t ≥ 0,

and the output price at time t, Pt ($/unit), follows a GBM:

dPt = Ptdt+ PtdZt, P0 > 0 (3.1)

Here,  is the annual growth rate,  is the proportional standard deviation, dZt

is an increment of the standard Brownian motion process, and P0 is the initial
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value of the output price. Initially, the capital required for the realisation of the

project is invested in a bond with a risk-free rate r > 0.

We denote by P
(i)
j the output price at time j, j = 1, 2, 3, ..., at which we

exercise an investment (j = 1), suspension (j = 2, 4, 6, ...), or resumption option

(j = 3, 5, 7, ...) when i = 0, 1, 2, 3, ..., subsequent embedded options exist. For

example, P
(0)
1 is the price at which we exercise an investment option without

operational flexibility, P
(0)
2 is the price at which we exercise an abandonment

option, and P
(1)
2 is the price at which we exercise a suspension option with a

resumption option still available, etc. Depending on the level of operational flex-

ibility and the output price at investment, we denote by m̃(i)(⋅) (units/annum),

the annual output corresponding to a now-or-never investment opportunity, and

by m(i)(⋅) the annual output of the project when the option to defer investment

is available. The value of an opportunity that is exercised at time j, with i

subsequent embedded options remaining, is denoted by F
(i)
j (⋅), while F̃

(i) (⋅) de-

notes the maximised value of a now-or-never investment opportunity. Exercising

this investment opportunity implies knowledge of the output price at investment

and, for this reason, the only variable is the capacity corresponding to the initial

output price.

Finally, the deterministic variable operating cost of the project is denoted by

c ($/unit), and the deterministic cost of investment by K

m(i)


or K


m̃(i)


($),

which we assume behaves as follows:

K

m(i)


= bm(i) (3.2)

The parameters b and  are constants such that b > 0 and  > 1, i.e., K (⋅) is a

convex function of m(i) or m̃(i). The particular choice of  implies an increasing

average cost and, as a result, this model is more suitable for describing project

that exhibit diseconomies of scale, e.g., renewable-energy power plants. All values

and rates are expressed in real terms. The present value of the investment’s total

cost, i.e., investment and operating cost, at investment equals K

m(i)


+ cm(i)

r
.

Depending on the project’s operational flexibility, the firm can determine the

optimal investment threshold as well as the corresponding output of the project
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ex ante, and, thus, determine the amount of wealth that should be invested

initially in the risk-free asset.

The firm’s preferences are described by an increasing and concave utility func-

tion, U(⋅). Thus, we can accommodate a wide range of utility functions such as

HARA, CARA, and CRRA utility functions. In our analysis, we apply a CRRA

utility function defined as follows:

U(Pt) =

(
P
1−
t

1−
if  ≥ 0 &  ∕= 1

ln(Pt) if  = 1
(3.3)

3.1.2 Irreversible Investment

We begin by decomposing the cash flows into disjoint time intervals. Suppose that

we have a perpetually operating project that we start at a random time, 1. As

the capacity of the project is fixed at investment, it depends on the output price

at 1, i.e., m
(0) ≡ m(0)


P
(0)
1


. Up to time 1, the firm earns an instantaneous

cash flow of cm(0) + rK

m(0)


per time unit with utility U


cm(0) + rK


m(0)


discounted at its subjective rate of time preference,  > . At 1, when the

output price is P
(0)
1 , the firm swaps this risk-free cash flow for a risky one, m(0)Pt,

with utility U

m(0)Pt


as illustrated in Figure 3.1.

P0


R 1
0
e−tU


cm(0) + rK


m(0)


dt- R∞

1
e−tU


m(0)Pt


dt -

P
(0)
1 , m

(0)

-

1

∙
0
∙

t

Figure 3.1: Irreversible investment under risk aversion

The time-zero discounted expected utility of the cash flows is:

EP0

Z 1

0

e−tU

cm(0) + rK


m(0)


dt+

Z ∞

1

e−tU

m(0)Pt


dt


=Z ∞

0

e−tU

cm0 + rK


m(0)


dt+ EP0


e−1


V1

P (0)
1
, m(0)


(3.4)
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where,

V1

P (0)
1
, m(0)


= E

P
(0)
1

Z ∞

0

e−t

U

m(0)Pt


− U


cm(0) + rK


m(0)


dt


(3.5)

is the expected utility of the project’s cash flows, discounted to 1, given a capacity

of m(0). Here, EP0 denotes the expectation operator, which is conditional on the

initial value of the price process.

3.1.3 Investment with a Single Abandonment Option

Now, we extend the previous framework and incorporate operational flexibility

by allowing for an abandonment option at a random time, 2 > 1. Again,

the capacity of the project is fixed at investment and, thus, depends on P
(1)
1 , i.e.,

m(1) ≡ m(1)

P
(1)
1


. The value of the output price at which the option to abandon

the project is exercised is denoted by P
(0)
2 as shown in Figure 3.2. In this case,

the time-zero expected discounted utility of all future cash flows equals:Z ∞

0

e−tU

cm(1) + rK


m(1)


dt+ EP0


e−1

 h
V1

P (1)
1
, m(1)


+ E

P
(1)
1


e−(2−1)


V2

P (0)
2
, m(1)

 i
(3.6)

where

V2

P (0)
2
, m(1)


= E

P
(0)
2

Z ∞

0

e−t

U

cm(1)


− U


m(1)Pt


dt


(3.7)

is the expected utility of the project’s cash flows discounted to 2. Notice that

the operating cost of the project is recovered upon abandonment.

P0

R 1
0 e

−t
U

cm

(1) + rK

m

(1)

dt-

R 2
1
e
−t

U

m

(1)
Pt


dt-

P
(1)
1 , m

(1)

-

1

∙

P
(0)
2

R∞
2
e
−t

U

cm

(1)

dt-

2

∙
0
∙

t

Figure 3.2: Investment under risk aversion with a single abandonment option
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3.1.4 Investment with a Single Suspension and a Single

Resumption Option

Finally, we allow for a subsequent resumption option at random time, 3 > 2.

The capacity of the project now depends on P
(2)
1 , i.e., m

(2) ≡ m(2)

P
(2)
1


, where

the output price at which the resumption option is exercised is denoted by P
(0)
3

as shown in Figure 3.3.

Figure 3.3: Investment under risk aversion with one suspension and one resump-
tion option

Here, the time-zero expected discounted utility of all future cash flows is:Z ∞

0

e−tU

cm(2) + rK


m(2)


dt+ EP0


e−1

 h
V1

P (2)
1
, m(2)


+ E

P
(2)
1


e−(2−1)

 h
V2

P (1)
2
, m(2)


+ E

P
(1)
2


e−(3−2)


V3

P (0)
3
, m(2)

i i
(3.8)

where

V3

P (0)
3
, m(2)


= E

P
(0)
3

Z ∞

0

e−t

U

m(2)Pt


− U


cm(2)


dt


(3.9)

is the expected utility of the project’s cash flows discounted to 3. Following

the same reasoning, we can extend the model to include complete operational

flexibility, i.e., infinite suspension and resumption options.

3.1.5 Methodology

Our methodology to determine the optimal investment threshold and capacity of

the project is described in Figure 3.4. Initially, we assume that investment oc-

curs immediately, which implies knowledge of the output price at investment and
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enables the calculation of the corresponding optimal capacity by maximising the

value of the now-or-never investment opportunity. At the optimal capacity choice,

the marginal benefit of increasing capacity, gMB, equals the marginal cost, gMC.

This yields the expression relating the initial output price, P0, to the correspond-

ing optimal capacity, i.e., m̃(i)∗ ≡ m̃(i) (P0). We then account for the option to

defer investment and maximise the value of the investment opportunity by deter-

mining the optimal investment threshold taking into account the inner extremum

of optimal capacity choice at investment. The solution to this optimisation prob-

lem is obtained by equating the marginal benefit of delaying investment, MB, to

the marginal cost, MC. Thus, we obtain the expression relating the optimal in-

vestment threshold with the optimal capacity, i.e., P
(i)∗

1 ≡ P
(i)
1


m(i)∗


. Inserting

this expression into the condition of optimal capacity choice at 1, we obtain the

optimal capacity of the project, i.e., m(i)∗ ≡ m(i)

P
(i)∗

1


. Finally, using m(i)∗ ,

we can determine the corresponding optimal investment threshold price, P
(i)∗

1 . If

P0 exceeds P
(i)∗

1 , then we invest immediately and install capacity of size m̃(i)∗ .

Otherwise, we wait for the threshold price, P
(i)∗

1 , to be reached before investing

in a project of size m(i)∗

3.2 Analytical Results

3.2.1 Capacity Choice for an Irreversible Investment Op-

portunity

3.2.1.1 Now-or-Never Investment

Initially, we assume that the firm ignores the option to wait for more informa-

tion and invests in the project immediately at the initial output price. This

assumption implies that, at investment, the output price, P0, is known, and, for

this reason, the firm needs to determine only the corresponding optimal capac-

ity, m̃(0)∗ . Hence, the decision-making problem the firm faces when exercising a

now-or-never investment opportunity is described by (3.10):

F̃ (0) (P0) ≡ max
m̃(0)

V1

P0, m̃

(0)


(3.10)
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Figure 3.4: Summary of methodology

Using Theorem 9.18 of Karatzas and Shreve (1999) for the CRRA utility

function in (3.3), we find that:

EP0

Z ∞

0

e−tU

m̃(i)Pt


dt = AU


m̃(i)P0


(3.11)

where A = 12
(1−1−)(1−2−)

> 0 and 1 > 1, 2 < 0 are the solutions to the

following quadratic equation for x:

1

2
2x(x− 1) + x−  = 0 (3.12)
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Consequently, (3.10) can be written as follows:

F̃ (0) (P0) = max
m̃(0)

(
AU


m̃(0)P0


−
U

cm̃(0) + rK


m̃(0)




)
(3.13)

At the optimal capacity level, m̃(0)∗, the marginal benefit of a unit increase in

the project’s capacity evaluated at P0, gMB, has to be equal to the marginal cost,gMC, which yields (3.14):

AP0
1−

m̃(0)∗
=

c+ rbm̃(0)∗−1


h
cm̃(0)∗ + rbm̃(0)∗

i (3.14)

The left-hand side of (3.14) is the gMB of increasing capacity, which, due to the

property of diminishing marginal utility of the CRRA utility function, is positive

and constant in m̃(0) under risk neutrality but decreasing under risk aversion. The

right-hand side of (3.14) represents the gMC of increasing capacity. Notice that,

under risk neutrality, the cost function, i.e., cm̃(0) + rbm̃(0) , is strictly convex in

capacity; however, as risk aversion increases, the concavity of the utility function

offsets the convexity of the cost function, which implies that, under risk neutrality,

the gMC is strictly increasing in m̃(0), while as risk aversion increases it decreases

initially and then increases. To ensure the existence of the optimal solution to

(3.13), the cost function must be strictly convex since, according to Proposition

3.2.1, for  ↓ 1 the gMC curve is steeper than the gMB curve. This implies

that a marginal increase in capacity reduces the marginal cost by more than the

marginal benefit and, as a result, it is always optimal to install greater capacity.

This result reflects an additional limitation of this model since, although it may

be optimal to install very large capacity as  ↓ 1, nevertheless, the output price

is not affected by such an investment decision as it is assumed to be exogenous.

All proofs can be found in the appendix.

Proposition 3.2.1 For all  > 1 the optimisation problem (3.13) has a solution,

while for  ↓ 1the solution diverges.

Although both the gMB and gMC curves shift downward with risk aversion, the

former decreases by more since it consists of the risky cash flows. As a result,
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the marginal utility of the investment’s payoff decreases, thereby motivating the

installation of smaller capacity. Finally, under risk aversion, increased volatility

decreases the gMB by decreasing the expected utility of risky cash flows but leaves

the gMC unaffected since the cost is deterministic. Consequently, the marginal

utility of the investment’s payoff decreases, thereby increasing the incentive to

install smaller capacity.

Proposition 3.2.2 For a now-or-never investment opportunity, the optimal ca-

pacity decreases with uncertainty under risk aversion.

If a firm were to install a capacity level, m̃(0), such that m̃(0) < m̃(0)∗ , then the

expected utility of the investment’s payoff will be reduced. As we will illustrate

numerically, the relative loss in project value due to fixed capacity diminishes

with risk aversion and uncertainty for m̃(0) < m̃(0)∗ and increases for m̃(0) > m̃(0)∗ .

This implies that discretion over capacity becomes relatively less valuable as risk

aversion and uncertainty increase when the capacity installed is less than the

optimal and more valuable when the capacity installed is greater than the optimal.

Intuitively, risk aversion and uncertainty lower the expected utility of the project,

thereby diminishing the relative loss in the value of the project when the capacity

installed is suboptimal. By contrast, both of these attributes increase the firm’s

exposure to unfavourable market conditions when the capacity installed exceeds

the optimal level.

3.2.1.2 With a Deferral Option

Now, the firm has the option to defer investment, and the value of the investment

opportunity is defined as follows:

F (0)
1

(P0) ≡ sup
1∈S

EP0

h
e−1F̃ (0)


P (0)
1

i
(3.15)

where S denotes the collection of admissible stopping times of the filtration gen-

erated by the price process. Notice that now investment is assumed to take place

at 1; therefore, the optimal capacity depends on the investment threshold price

at 1. Since the expected discount factor is EP0 [e
−1 ] =


P0

P
(0)
1

1

(Karatzas and
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Shreve, 1999), the firm’s optimisation problem can be written as follows:

F (0)
1

(P0) = max
P
(0)
1

≥P0

 
P0

P
(0)
1

!1
⎡⎣AU m(0)∗P (0)

1


−
U

cm(0)∗ + rbm(0)∗




⎤⎦(3.16)
Notice that the optimisation problem described by (3.16) considers the inner

extremum over capacity choice. Solving this constrained optimisation problem,

we obtain the optimal investment threshold price as expressed by (3.17).

Proposition 3.2.3 For an irreversible investment opportunity, the optimal in-

vestment threshold is:

P (0)∗

1
=

c+ rbm(0)∗−1

2 +  − 1

2

 1
1−

(3.17)

An equivalent way of expressing (3.17) is by equating the marginal benefit of

delaying investment (MB) to the marginal cost (MC):

 
P0

P
(0)∗
1

!1
⎡⎣Am(0)∗1−

P
(0)∗
1

 +
1

P
(0)∗
1

U

cm(0)∗ + rbm(0)∗




⎤⎦ =

1A

P
(0)∗
1

 
P0

P
(0)∗
1

!1

U

m(0)∗P (0)∗

1


(3.18)

As we will illustrate numerically, a marginal change in capacity impacts the left-

hand side of (3.18), which reflects the benefit from allowing the project to start

at a higher output price and the benefit from saving on investment and operating

cost from waiting longer, by more than the right-hand side, which reflects the

opportunity cost of forgone cash flows. As a result, the marginal utility of the

investment’s payoff when investment is delayed increases with greater capacity,

thereby increasing the incentive to postpone investment. According to Corollary

3.2.1, for a low output price, it is worthwhile to postpone investment as the MB

is greater than the MC.

Corollary 3.2.1 The MB curve is steeper than the MC curve at P
(0)∗

1 .
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Notice that (3.17) describes the dependence of the optimal output price on the

optimal capacity. Since (3.14) yields the optimal capacity installed at the initial

output price, by setting P0 = P
(0)∗

1 in (3.14) and inserting the expression of P
(0)∗

1

from (3.17), we can solve with respect to m(0)∗ and, thus, obtain the expression

of the optimal capacity. Finally, inserting the resulting expression for m(0)∗ into

(3.17), we obtain the optimal investment threshold, P
(0)∗

1 . Unlike the case of

now-or-never investment, it is now possible to derive closed-form expressions for

both the optimal capacity and the optimal investment threshold price.

Proposition 3.2.4 For an irreversible investment opportunity, the optimal ca-

pacity is:

m(0)∗ =


c

rb

1− 

 (1 +  − 1)− 1

 1
−1

,  >
1

1 +  − 1
(3.19)

According to (3.19), the cost function has to be strictly convex for the solutions to

the optimisation problems (3.13) and (3.15) to exist. Notice that with discretion

over capacity, risk aversion and volatility influence the optimal sizing and, in turn,

the investment timing decisions of the firm. Indeed, we can show that greater

risk aversion increases the incentive to install a project with smaller capacity in

order to reduce the long-run average cost of investment, i.e., c+ rbm(0)−1.

Proposition 3.2.5 The optimal capacity is decreasing in risk aversion.

While increased risk aversion creates an incentive to install a project with smaller

capacity, thereby resulting in a lower investment threshold, it simultaneously

creates an incentive to delay investment by lowering the expected utility of the

project. According to Proposition 3.2.6, the incentive to reduce the amount of

installed capacity in order to decrease the long-run average cost of investment is

more profound, thus resulting in the decrease of the optimal investment threshold.

Proposition 3.2.6 The optimal investment threshold price is decreasing in risk

aversion.

As (3.17) indicates, the optimal investment threshold price is equal to the prod-

uct of the long-run average cost of investment and a factor that represents the
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value of waiting to invest. This factor is greater than one, thereby implying that

the minimum output price triggering investment is strictly greater than the Mar-

shallian threshold, i.e., c + rbm(0)−1. Since uncertainty increases the value of

waiting, the firm is more willing to postpone investment, and, as a result, the re-

quired investment threshold increases, thereby raising the corresponding optimal

capacity of the project and, in turn, the long-run average cost of investment.

Proposition 3.2.7 The optimal capacity is increasing in volatility.

Proposition 3.2.8 The optimal investment threshold price is increasing in volatil-

ity.

The greater the restrictions the firm faces regarding its flexibility to adjust the

capacity of the project, the greater the loss in the value of the investment oppor-

tunity. Like in the now-or-never investment case, risk aversion lowers the optimal

capacity of the project, thereby diminishing the relative loss in option value when

the capacity installed is suboptimal. However, uncertainty has the opposite effect

as it increases the investment threshold and the optimal capacity of the project.

Intuitively, as uncertainty increases the value of the option to invest, the loss

in option value increases with greater uncertainty when the capacity installed is

suboptimal and diminishes when the capacity level exceeds the optimal one.

3.2.2 Capacity Choice for an Investment Opportunity with

a Single Abandonment Option

3.2.2.1 Now-or-Never Investment

When an embedded option to abandon the project is available, the decision-

making problem the firm faces when exercising the investment opportunity im-

mediately is described by (3.20):

F̃ (1) (P0) = max
m̃(1)


V1

P0, m̃

(1)

+ F (0)

2
(P0)


(3.20)

The last term, F
(0)
2 (P0), is the maximised value of the option to abandon an

active project, which is exercised when the output price is P
(0)
2 . Assuming that
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the optimal capacity installed at the investment stage is m̃(1)∗ , F
(0)
2 (P0) is defined

as follows:

F (0)
2

(P0) = max
P
(0)
2

≤P0

 
P0

P
(0)
2

!2

V2

P (0)
2
, m̃(1)∗


(3.21)

Note that the CRRA utility function is homogeneous of degree 1−  in m̃(i), i.e.:

U

m̃(i)x


= m̃(i)1−

U(x) (3.22)

This implies that the solution to the optimisation problem described by (3.21),

i.e., the optimal abandonment threshold price, is independent of the optimal

capacity initially installed since, at abandonment, it equally impacts the firm’s

expected utility of both the revenues and the cost. Solving the unconstrained

optimisation problem, (3.21), yields the optimal abandonment threshold:

P
(0)∗

2 = c


1 +  − 1

1

 1
1−

(3.23)

In Chapter 2, it was shown that at each level of risk aversion, increased mar-

ket uncertainty delays abandonment by increasing its opportunity cost, while at

each level of volatility, risk aversion precipitates abandonment by decreasing the

expected utility of the project.

Finally, we address the optimisation problem described in (3.20) and deter-

mine the optimal capacity corresponding to the initial output price, i.e., m̃(1)∗, for

the case of now-or-never investment. Like in Section 3.1, at the optimal capacity

level, the gMB of a unit increase in the project’s capacity has to be equal to thegMC, which yields (3.24):

AP0
1−

m̃(1)∗
+

 
P0

P
(0)∗
2

!2
c1−

m̃(1)∗
=

c+ rbm̃(1)∗−1


h
cm̃(1)∗ + rbm̃(1)∗

i
+

 
P0

P
(0)∗
2

!2
AP

(0)∗

2

1−

m̃(1)∗
(3.24)
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Compared to (3.14), both the gMB and gMC have now increased due to the extra

terms on each side of (3.24), which are positive and represent the extra marginal

benefit and marginal cost from the embedded abandonment option. Since at

abandonment, the expected utility of the salvageable operating cost is greater

than the expected utility of the forgone cash flows, the gMB increases by more

than the gMC. Consequently, the abandonment option increases the marginal

utility of the investment’s payoff, thereby creating an incentive to install a project

with greater capacity.

Proposition 3.2.9 With a single abandonment option, the optimal capacity of

the project is greater compared to an irreversible now-or-never investment oppor-

tunity, ceteris paribus.

Consequently, when investing immediately, an abandonment option increases the

relative loss in project value due to fixed capacity when m̃(1) < m̃(1)∗ , thus in-

creasing the value of discretion over capacity, and decreases it when m̃(1) > m̃(1)∗

as it offers downside protection.

3.2.2.2 With a Deferral Option

Now, the decision-making problem the firm faces is to maximise the value of the

investment opportunity subject to the constraint of optimal capacity choice at

investment:

F (1)
1

(P0) ≡ max
P
(1)
1

≥P0

 
P0

P
(1)
1

!1 
V1

P (1)
1
, m(1)∗


+ F (0)

2


P (1)
1


(3.25)

Compared to (3.16), the value of the investment opportunity has increased due to

the extra term on the right-hand side of (3.25), which is positive and represents

the value of the option to abandon the project. Solving the optimisation problem

described by (3.25), we obtain the non-linear equation (3.26), which yields the

optimal investment threshold price:
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P (1)∗

1
=


2 +  − 1

2


c+ rbm(1)∗−1

1−
+
(2 − 1)(1− )

1m(1)∗1−
F (0)
2


P (1)
1

 1
1−

(3.26)

Due to the extra term on the right-hand side of (3.26), which is negative, the

optimal investment threshold and, in turn, the corresponding capacity are now

lower relative to the case of investment without operational flexibility, thereby im-

plying that the ability to hedge against the possibility of a downturn, through an

embedded abandonment option, increases the incentive to invest. Consequently,

relative to the case of irreversible investment, discretion over capacity is now

less valuable as the option to abandon the project narrows the wedge between

the optimal capacity level and the suboptimal capacity level the firm chooses.

Intuitively, the embedded option to abandon the project raises the value of the

option to invest, thus compensating for the loss in option value when the capacity

installed is lower than the optimal one.

3.2.3 Capacity Choice for an Investment Opportunity with

a Single Suspension and Resumption Option

3.2.3.1 Now-or-Never Investment

With a single suspension and resumption option, the firm’s problem when exer-

cising a now-or-never investment opportunity, is described by (3.27):

F̃ (2) (P0) = max
m̃(2)


V1

P0, m̃

(2)

+ F (1)

2
(P0)


(3.27)

The last term, F
(1)
2 (P0), is the maximised value of the option to suspend an

active project with a subsequent resumption option, which is exercised when the

output price is P
(1)
2 . Assuming that the optimal capacity of the project is m̃

(2)∗ ,

F
(1)
2 (P0) is defined as:
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F (1)
2

(P0) ≡ max
P
(1)
2

≤P0

 
P0

P
(1)
2

!2 
V2

P (1)
2
, m̃(2)∗


+ F (0)

3


P (1)
2


(3.28)

Here, P
(1)
2 is the threshold price at which we suspend the investment project.

Analogously, we define F
(0)
3


P
(1)
2


to be the maximised value of the option to

resume forever a suspended project, and P
(0)
3 is the threshold price at which we

exercise the option to resume the investment project:

F (0)
3


P (1)
2


= max

P
(0)
3

≥P
(1)
2

 
P
(1)
2

P
(0)
3

!1

V3

P (0)
3
, m̃(2)∗


(3.29)

Again, the homogeneity of the CRRA utility function implies that the optimal

resumption threshold is independent of the capacity of the project.

P (0)∗

3
= c


2 +  − 1

2

 1
1−

(3.30)

Intuitively, this happens because at resumption the capacity initially installed

will impact equally the expected utility of the revenues and the cost. Sinceh
2+−1

2

i 1
1−

> 1, we have P
(0)∗

3 > c, which implies that uncertainty and risk

aversion drive a wedge between the optimal resumption threshold and the oper-

ating cost. The size of this wedge depends on the levels of uncertainty and risk

aversion (Chapter 2).

Stepping back to when the investment project is active, we solve sub-problem

(3.28) and, thus, determine the critical threshold at which the suspension should

be exercised. Applying the FONC, we obtain the following non-linear equation

that gives the optimal suspension threshold:

P (1)∗

2
= c

⎡⎣1 +  − 1

1
+

 
P
(1)∗

2

P
(0)∗
3

!1
(2 − 1)(1− )

12

⎤⎦
1

1−

(3.31)

Notice that an embedded option to resume operations allows the firm to recover

the cash flows it forgoes when exercising a suspension option and creates the in-

centive to suspend operations at a higher threshold by protecting the firm against
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a temporary downturn.

Now, we can determine the optimal capacity corresponding to the initial out-

put price by solving the optimisation problem described by (3.27), given P
(1)∗

2

and P
(0)∗

3 . The solution to this problem, m̃(2)∗ , is when the gMB of increasing

capacity is equal to the gMC, as illustrated by (3.32):

AP0
1−

m̃(2)∗
+

 
P0

P
(1)∗
2

!2
c1−

m̃(2)∗
+

 
P0

P
(1)∗
2

!2
 
P
(1)∗

2

P
(0)∗
3

!1 AU

P
(0)∗

3


m̃(2)∗

=

 
P0

P
(1)∗
2

!2
⎡⎣AP (1)∗

2

1−

m̃(2)∗
+

c+ rbm̃(2)∗−1


h
cm̃(2)∗ + rbm̃(2)∗

i +
 
P
(1)∗

2

P
(0)∗
3

!1
U(c)

m̃(2)∗

⎤⎦(3.32)
Compared to (3.24), the gMB and gMC of increasing capacity have increased fur-

ther due to the extra terms on each side of (3.32) that are positive and represent

the extra gMB and gMC from the embedded resumption option. Since at resump-

tion the expected utility of revenues is greater than the expected utility of the

operating cost, the marginal utility of the investment’s payoff increases further,

thereby motivating the installation of greater capacity.

3.2.3.2 With a Deferral Option

With the discretion to wait, the firm’s decision-making problem is described by

(3.33):

F (2)
1

(P0) ≡ max
P
(2)
1

≥P0

 
P0

P
(2)
1

!1 
V1

P (2)
1
, m(2)∗


+ F (1)

2


P (2)
1


(3.33)

The further increase in operational flexibility increases the firm’s incentive to

invest in the project, thereby lowering the required investment threshold and

corresponding capacity. This is indicated by the last term on the right-hand side

of (3.34), which, compared to the case of investment with a single abandonment

option, is a greater negative number since it also consists of the embedded option

to resume operations:
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P (2)∗

1
=


2 +  − 1

2


c+ rbm(2)∗−1

1−
+
(2 − 1)(1− )

1m(2)∗1−
F (1)
2


P (2)
1

 1
1−

(3.34)

Similar to the case of investment with abandonment, the subsequent option to re-

sume operations increases the value of the investment opportunity further. This,

in turn, compensates for the loss in option value when the firm chooses a subop-

timal capacity level, thereby making discretion over capacity less valuable.

3.2.4 Capacity Choice for an Investment Opportunity with

Complete Flexibility

3.2.4.1 Now-or-Never Investment

By investing immediately in a project with complete operational flexibility, the

firm solves the following optimisation problem:

F̃ (∞) (P0) ≡ max
m̃(∞)

"
V1

P0, m̃

(∞)

+

 
P0

P
(∞)∗
e

!2 
V2

P (∞)∗

e
, m̃(∞)



+ F (∞)
o


P (∞)∗

e

 #
(3.35)

The symmetry of the problem suggests that the optimal values of the output

prices at which each embedded option is exercised will not be affected by ad-

ditional flexibility. Thus, by P
(∞)
e , where e stands for even (i.e., 2,4,6,...), we

denote the common threshold at which all suspension options are exercised, and

P
(∞)
o , where o stands for odd (i.e., 3,5,7,...), the common threshold at which all

resumption options are exercised. F
(∞)
o


P
(∞)
e

∗

is the option to resume a cur-

rently suspended project with infinite resumption and suspension options, given

that the current value of the output price is P
(∞)
e , and is given by (3.36):

F (∞)
o


P (∞)
e


= max

P
(∞)
o ≥P

(∞)
e

 
P
(∞)
e

P
(∞)
o

!1

F (∞)
e


P (∞)
o


(3.36)
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where F
(∞)
e


P
(∞)
o


describes the project’s value in an active state.

Following the methodology of McDonald (2006), the value of an operating

project activated at P
(∞)
o can be written as follows:

V3


P (∞)
o

, m(∞)∗


+

 
P
(∞)
o

P∞
e

!2

V2


P (∞)
e

, m(∞)∗


+

 
P
(∞)
o

P
(∞)
e

!2
 
P
(∞)
e

P
(∞)
o

!1

V3


P (∞)
o

, m(∞)∗

+ ...

=

∞X
i=0

⎧⎨⎩
 
P
(∞)
e

P
(∞)
o

!2
 
P
(∞)
o

P
(∞)
e

!1
⎫⎬⎭

i

×

⎧⎨⎩V3 P (∞)
o

, m(∞)∗

+

 
P
(∞)
o

P
(∞)
e

!2

V2


P (∞)
e

, m(∞)∗
⎫⎬⎭ (3.37)

Since
P∞

i=0


P
(∞)
o

P
(∞)
e

2 
P
(∞)
e

P
(∞)
o

1i

is a geometric series with

P
(∞)
o

P
(∞)
e

2 
P
(∞)
e

P
(∞)
o

1
<

1 , we have:

∞X
i=0

⎧⎨⎩
 
P
(∞)
o

P
(∞)
e

!2
 
P
(∞)
e

P
(∞)
o

!1
⎫⎬⎭

i

=
1

1−

P
(∞)
o

P
(∞)
e

2 
P
(∞)
e

P
(∞)
o

1 (3.38)

Hence, the firm’s problem in an active state is:

F∞
e
(P (∞)

o
) = max

P
(∞)
e ≤P

(∞)
o

V3


P
(∞)
o , m(∞)∗


+

P
(∞)
o

P
(∞)
e

2
V2


P
(∞)
e , m(∞)∗


1−


P
(∞)
o

P
(∞)
e

2 
P
(∞)
e

P
(∞)
o

1 (3.39)

Substituting (3.39) into (3.36) and using as an initial guess for P
(∞)
e the price

at which the option to abandon the investment project is exercised, i.e., P
(∞)
e =

P
(0)∗

2 , we obtain an equation that we maximise with respect to P
(∞)
o . The estimate

of P
(∞)
o we obtain this way is subsequently substituted into (3.39), which we

maximise with respect to P
(∞)
e . This procedure is iterated until each solution

converges. Finally, we return to the optimisation problem described by (3.35) in
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order to obtain m̃(∞)∗ .

3.2.4.2 With a Deferral Option

Next, we account for the option to defer investment and solve the optimisation

problem (3.40), in order to obtain the optimal investment threshold, P
(∞)∗

1 , and,

in turn, the optimal capacity, m(∞)∗ :

F (∞)
1

(P0) ≡ max
P
(∞)
1

≥P0

 
P0

P
(∞)
1

!1
"
V1

P (∞)
1

, m(∞)


+

 
P
(∞)
1

P
(∞)∗
e

!2 
V2

P (∞)∗

e
, m(∞)


+ F (∞)

o


P (∞)∗

e

#
(3.40)

Using the FONC, P
(∞)∗

1 and m(∞)∗ are found numerically using the results for

P
(∞)∗

o , P
(∞)∗

e , and m̃(∞)∗

3.3 Numerical Results

3.3.1 Capacity Choice for an Irreversible Investment Op-

portunity

In order to illustrate the impact of risk aversion and uncertainty on the optimal

capacity, m(0)∗ , and optimal investment threshold, P
(0)∗

1 , let  = 3, b = 5, r =  =

0.05,  ∈ [0, 0.2],  ∈ [0, 1) and  = 0.01. The initial output price is P0 = $15,

while the operating cost is c = $13. Figure 3.5 illustrates the impact of risk

aversion and uncertainty on the marginal benefit and marginal cost of increasing

capacity for an irreversible now-or-never investment opportunity. According to

the graph on the right, increased risk aversion decreases the gMB, which consists of

the risky cash flows, more than the gMC and results in the decrease of the marginal

utility of the investment’s payoff and the installation of smaller capacity. Notice

also that the cost of investment and, in turn, the gMC of increasing capacity,

is deterministic and, therefore, is not affected by uncertainty both under risk

neutrality and risk aversion. On the other hand, the revenues are stochastic and,
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while uncertainty does not impact the gMB under risk neutrality, thereby leaving

the optimal capacity of the project unaffected, under risk aversion, the expected

utility of the revenues decreases. Hence, the gMB curve shifts downward with

volatility under risk aversion and intersects with the gMC curve at a lower level of

capacity, thus illustrating that, under risk aversion, increased volatility decreases

the optimal capacity of the project as shown in the graph on the right.
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Figure 3.5: Marginal benefit and marginal cost of increasing capacity under risk
neutrality for  = 0.2 (left) and risk aversion, i.e.,  = 0.2 (right) for a now-or-
never investment opportunity

The impact of risk aversion and uncertainty on the optimal capacity is illus-

trated in Figure 3.6. Notice that while under risk neutrality the optimal capacity

of the project is unaffected by uncertainty, under risk aversion, the optimal ca-

pacity decreases. This happens because under risk aversion, uncertainty lowers

the expected utility of the investment’s payoff, thereby creating an incentive to

reduce the amount of installed capacity.
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Figure 3.6: Optimal capacity versus risk aversion for an irreversible now-or-never
investment opportunity

As Figure 3.7 illustrates, the relative loss in the value of the now-or-never

investment opportunity due to fixed capacity, i.e.,

V1

P0, m̃

(0)∗

− V1


P0, m̃

(0)


V1 (P0, m̃(0)∗)
= 1−

V1

P0, m̃

(0)


V1 (P0, m̃(0)∗)
(3.41)

diminishes for m̃(0) < m̃(0)∗ , becomes zero for m̃(0) = m̃(0)∗ , and then increases

for m̃(0) > m̃(0)∗ . This happens because an increase in the amount of installed

capacity raises the expected utility of the investment payoff, and, as a result, the

discrepancy between the maximised value of the now-or-never investment oppor-

tunity, V1

P0, m̃

(0)∗

, and the expected utility of the static NPV, V1


P0, m̃

(0)

,

diminishes as m̃(0) increases and approaches m̃(0)∗ , becomes zero for m̃(0) = m̃(0)∗ ,

and then increases for m̃(0) > m̃(0)∗ . Notice also that V1

P0, m̃

(0)∗

becomes neg-

ative for large values of m(0), since then the expected utility of the cost is larger

than that of the revenues. As a result, the relative loss in project value be-

comes greater than 1. As the left panel illustrates, for m̃(0) < m̃(0)∗ the relative

loss in the value of the now-or-never investment opportunity decreases with in-

creasing risk aversion. This happens because if a firm picks some capacity level

m̃(0) < m̃(0)∗ , then increased risk aversion reduces V1

P0, m̃

(0)

. By contrast,

with discretion over capacity, greater risk aversion lowers m(0)∗ as well, thereby

reducing V1

P0, m̃

(0)∗

further. Consequently, for m̃(0) < m̃(0)∗ , with increasing
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risk aversion, the expected utility of the now-or-never investment opportunity

decreases by more than that of the static NPV, thereby reducing the discrepancy

between V1

P0, m̃

(0)

and V1


P0, m̃

(0)∗

. For m̃(0) > m̃(0)∗ , we observe the op-

posite effect since, due to the decrease of optimal capacity with increasing risk

aversion, the wedge between m̃(0) and m̃(0)∗ increases. Notice that uncertainty

has the same impact on the optimal capacity as risk aversion, and, as a result, the

relative loss in the value of the now-or-never investment opportunity diminishes

with increasing uncertainty for m̃(0) < m̃(0)∗ and increases for m̃(0) > m̃(0)∗ as in

the right panel.
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Figure 3.7: Relative loss in project value due to fixed capacity versus  for  = 0.2
(left) and versus  for  = 0.2 (right)

Interestingly, when allowing for the option to delay investment, we observe

that increased risk aversion lowers the value of the investment opportunity, thereby

increasing the required investment threshold while, at the same time, creating an

incentive to install a project with smaller capacity in order to reduce the incurred

investment cost. In Figure 3.8, the graph on the left shows that the optimal ca-

pacity decreases with risk aversion, thereby implying that the incentive to invest

at a lower threshold in order to incur a lower sunk and operating cost is more pro-

found than the incentive to delay investment. By contrast, uncertainty increases

the investment threshold by increasing its opportunity cost, thereby increasing

the optimal capacity. As the graph on the right indicates, the optimal investment
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threshold price decreases with risk aversion since a lower output price is required

to install smaller capacity. On the other hand, uncertainty increases the oppor-

tunity cost of investment and, in turn, the required investment threshold price.
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Figure 3.8: Optimal capacity and optimal investment threshold versus risk aver-
sion and uncertainty

In Figure 3.9, the left panel illustrates how risk aversion impacts the marginal

benefit and marginal cost of delaying investment. By delaying investment, the

firm suffers from forgoing cash flows; however, it benefits from not only allowing

the project to start at a higher output price but also saving on sunk and operating

cost. According to the left panel, risk aversion decreases the marginal benefit and

marginal cost of delaying investment. Since the latter consists exclusively of the

risky cash flow it should get affected more, thereby resulting in the increase of the

marginal utility of the investment’s payoff as well as the increase of the optimal

investment threshold. However, with discretion over capacity, the subsequent

decrease in the amount of installed capacity due to increased risk aversion causes

the MB to decrease by more than the MC. This lowers the expected utility

of the investment’s payoff and, in turn, the amount of installed capacity. On

the other hand, uncertainty increases the investment threshold and increases the

amount of installed capacity. As a result, the marginal benefit increases by more

than the marginal cost, thereby resulting in the increase of the marginal utility
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of the investment’s payoff and the subsequent increase of the required investment

threshold.
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Figure 3.9: Marginal benefit and marginal cost of delaying investment versus 
for  = 0.2 (left) and versus  for  = 0.2

The impact of volatility and risk aversion on the value of the investment op-

portunity, F
(0)
1 (P0), and the value of the project, V1


Pt, m

(0)

, is illustrated in

Figure 3.10. The value of the investment opportunity, evaluated at the initial out-

put price, P0, increases with uncertainty, thereby raising the required investment

threshold, as in the graph on the left. As a result, the optimal capacity increases,

thus causing the expected utility of the project to increase more rapidly. By con-

trast, the graph on the right shows that the value of the investment opportunity

decreases with risk aversion. At the same time, risk aversion increases the incen-

tive to install a project with smaller capacity in order to incur lower investment

cost, thereby causing the project value to increase more slowly.
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Figure 3.10: Option and project value versus  for  = 0.2 (left) and versus  for
 = 0.2 (right)

Figure 3.11 illustrates how risk aversion and uncertainty impact the relative

loss in option value, i.e.,

sup1∈S EP0

h
e−1V1


m(0)∗ , P

(0)
1

i
− sup1∈S EP0

h
e−1V1


m(0), P

(0)
1

i
sup1∈S EP0

h
e−1V1


m(0)∗ , P

(0)
1

i (3.42)

due to fixed capacity. Like in the now-or-never investment case, increased risk

aversion reduces the amount of installed capacity and, as a result, with greater

risk aversion the relative loss in option value diminishes for m(0) < m(0)∗ and

increases for m(0) > m(0)∗ . By contrast, uncertainty now delays investment,

thereby increasing the required investment threshold and the corresponding op-

timal capacity. Consequently, as the graph on the right illustrates, the relative

loss in option value increases with uncertainty for m(0) < m(0)∗ and diminishes

for m(0) > m(0)∗ . Hence, discretion over capacity becomes relatively less valuable

with increasing risk aversion and more valuable with increasing uncertainty when

m(0) < m(0)∗ , while the opposite is observed for m(0) > m(0)∗ .
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Figure 3.11: Relative loss in option value due to fixed capacity versus  for  = 0.2
(left) and versus  for  = 0.2 (right)

3.3.2 Capacity Choice for an Investment Opportunity with

a Single Abandonment Option

For the same parameter values as in Section 3.3.1 and assuming that investment

takes place immediately, we observe that the marginal utility of the investment’s

payoff increases when the firm has the additional option to abandon the project,

as Figure 3.12 illustrates. This happens because, at abandonment, the expected

utility of the salvageable operating cost is greater than the expected utility of

the forgone cash flows, and, as a result, the marginal benefit of increasing capac-

ity increases by more than the marginal cost. Consequently, the gMB and gMC

curves intersect at a higher capacity level compared to the case of irreversible

investment. Notice that under risk neutrality, uncertainty impacts only the extra

marginal benefit and extra marginal cost of increasing capacity from the embed-

ded abandonment option and, since c > P
(0)∗

2 , the gMB increases by more than

the gMC, thereby resulting in higher installed capacity. Under risk aversion, we

observe that the increase in capacity is less profound than under risk neutrality

because now uncertainty decreases also the expected utility of the risk cash flows,

thereby creating an opposing effect that does not allow the gMB to increase as

much as under risk neutrality.
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Figure 3.12: gMB and gMC of increasing capacity under risk neutrality (left) and
risk aversion, i.e.,  = 0.2 (right), for a now-or-never investment opportunity with
an embedded abandonment option

Unlike the case of irreversible investment, the optimal capacity of the project

increases with uncertainty under low risk aversion and decreases with uncertainty

under high risk aversion, as in Figure 3.13. Notice that under risk neutrality, un-

certainty increases the value of the embedded abandonment option without affect-

ing the value of the active project. Thus, the expected utility of the investment’s

payoff and, in turn, the incentive to install greater capacity increases. By con-

trast, under risk aversion, uncertainty lowers the value of the active project and

this effect becomes more profound and dominates for high levels of risk aversion.
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Figure 3.13: Optimal capacity versus risk aversion for a now-or-never investment
opportunity with an abandonment option
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According to Figure 3.14, the relative loss in project value due to fixed capacity

has increased for m̃(1) < m̃(1)∗ and m̃(0) < m̃(0)∗ , since now the firm misses

the optimal capacity by more than in the case of irreversible investment, and

decreased for m̃(1) > m̃(1)∗ and m̃(0) > m̃(0)∗ , since the abandonment option

provides downside protection. This implies that, with an abandonment option,

discretion over capacity becomes more valuable relative to the case of irreversible

investment when, in both cases, the amount of installed capacity is less than the

optimal one and less valuable when it is greater. Like in Section 3.3.1, risk aversion

diminishes the relative loss in project value for m̃(1) < m̃(1)∗ and increases it for

m̃(1) > m̃(1)∗ as it increases the incentive to install less capacity. By contrast,

uncertainty increases the optimal capacity of the project by increasing the value of

the embedded abandonment option. Thus, the relative loss in project value, which

equals 1 for m̃(1) = 0, increases for m̃(1) < m̃(1)∗ and decreases for m̃(1) > m̃(1)∗ .

However, the impact of uncertainty under risk aversion is less profound compared

to the risk neutrality case due to the simultaneous decrease of the expected utility

of the active project.
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Figure 3.14: Relative loss in project value due to fixed capacity versus  for
 = 0.2 (left) and versus  for  = 0.2 (right)

An embedded option to abandon an active project in case the output price

drops increases the value of the investment opportunity and decreases the re-

quired investment threshold. Figure 3.15 shows the impact of the embedded
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abandonment option on the value of the project and the value of the option to

invest, as well as the relative increase in option value evaluated at P0 due to

the embedded abandonment option. In the graph on the left, for  = 0.2 and

 = 0.2, we observe that the embedded abandonment option increases the value

of the investment opportunity as well as the value of the active project, thereby

increasing the firm’s incentive to invest in the project. The graph on right shows

that the relative increase in option value due to the embedded abandonment op-

tion is more significant for higher levels of uncertainty and risk aversion. This

implies that as risk aversion and uncertainty increase, the option to abandon an

active project becomes more valuable.
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Figure 3.15: Impact of abandonment option on the option to invest and the value
of the project

Like in Section 3.3.1, both the optimal investment threshold and the opti-

mal capacity decrease with risk aversion and increase with volatility, as in Figure

3.16. The graph on the left indicates that the optimal investment threshold has

decreased compared to the case of irreversible investment because the embedded

abandonment option increases the value of the investment opportunity, thereby

increasing the incentive to invest. Although at a common investment threshold,

an embedded abandonment option increases the project’s optimal capacity, allow-

ing for the option to delay investment, increased operational flexibility facilitates

investment, thus leading to the installation of a project with smaller capacity, as

the graph on the right indicates.
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Figure 3.16: Optimal investment threshold and optimal capacity versus risk aver-
sion and uncertainty

According to (3.17), since the embedded abandonment option facilitates in-

vestment, thereby lowering the required investment threshold and the corre-

sponding optimal capacity, discretion over capacity becomes less valuable when

m(1) < m(1)∗ and more valuable when m(1) > m(1)∗ , as illustrated in Figure

3.17. Like in Section 3.3.1, increased risk aversion reduces the optimal capacity

of the project and, as a result, the relative loss in option value diminishes for

m(1) < m(1)∗ and increases for m(1) > m(1)∗ . On the other hand uncertainty

has the opposite effect as it delays investment thereby increasing the required

investment threshold and the corresponding optimal capacity.
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Figure 3.17: Relative loss in option value due to fixed capacity versus  for  = 0.2
(left) and versus  for  = 0.2 (right)
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3.3.3 Capacity Choice for an Investment Opportunity with

a Single Suspension and Resumption Option

In Figure 3.18, we illustrate the impact of the additional resumption option on

the gMB and gMC of increasing capacity for the now-or-never investment case.

Since, at resumption, the expected utility of the revenues is greater than that of

the operating cost, the impact of the embedded resumption option on the gMB

of increasing capacity is more profound. As a result, the embedded resumption

option increases the marginal utility of the investment payoff and, in turn, the

optimal capacity.
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Figure 3.18: gMB and gMC of increasing capacity under risk neutrality (left) and
risk aversion, i.e.,  = 0.2 (right), for a now-or-never investment opportunity with
a single suspension and resumption option

Similar to the case of investment with abandonment, the optimal capacity of

the project increases with uncertainty under low risk aversion and decreases under

high risk aversion as in Figure 3.19. However, we observe now that uncertainty

increases the optimal capacity for a larger range of values of the risk aversion

parameter. This happens because as operational flexibility increases, the impact

of uncertainty on the embedded options becomes more profound than on the

value of the active project.
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Figure 3.19: Optimal capacity versus risk aversion for a now-or-never investment
opportunity with a single suspension and resumption option

As a resumption option increases the optimal capacity of the project further,

relative to the case of investment with abandonment, discretion over capacity

is now more valuable when, in both cases, the amount of installed capacity is

lower than the optimal one and relatively less valuable when it is greater. Like

in Section 3.3.2, increased risk aversion lowers the amount of installed capacity,

and, as a result, the relative loss in project value diminishes for m̃(2) < m̃(2)∗ and

increases for m̃(2) > m̃(2)∗ . On the other hand, uncertainty has the opposite effect

as it raises the optimal capacity and, as a result, the relative loss in project value

increases for m̃(2) < m̃(2)∗ and diminishes for m̃(2) > m̃(2)∗ .
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Figure 3.20: Relative loss in project value due to fixed capacity versus  for
 = 0.2 (left) and versus  for  = 0.2 (right)
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3.3 Numerical Results

An embedded option to resume a currently suspended project increases the

value of the option to invest as well as the value of the active project further.

Greater operational flexibility increases the firm’s incentive to invest, thereby

lowering the required investment threshold further. This is illustrated in Figure

3.21, where the graph on the left indicates the further increase of the value of the

investment opportunity as well as the further decrease of the optimal investment

threshold for  = 0.2 and  = 0.2. The graph on the right shows that the impact

of the embedded resumption option on the value of the option to invest is more

profound for higher levels of uncertainty and risk aversion.
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Figure 3.21: Impact of resumption option on the project value and the value of
the option to invest

As Figure 3.22 indicates, relative to the case of investment with abandonment,

discretion over capacity becomes less valuable for m(2) < m(2)∗ and m(1) < m(1)∗ ,

and more valuable for m(2) > m(2)∗ and m(1) > m(1)∗ , as the option to resume

operations lowers the required investment threshold and the corresponding opti-

mal capacity further. Again, risk aversion diminishes the relative loss in option

value for m(2) < m(2)∗ and increases it for m(2) > m(2)∗ by reducing the optimal

capacity, while increasing uncertainty has the opposite effect by increasing the

optimal capacity.
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Figure 3.22: Relative loss in option due to fixed capacity value versus  for  = 0.2
(left) and versus  for  = 0.2 (right)

Like the case of investment with a single abandonment option, an embed-

ded resumption option increases the value of the investment opportunity further,

thereby increasing the firm’s incentive to invest. As a result, the optimal in-

vestment threshold and the corresponding optimal capacity decrease further, as

illustrated in Figure 3.23. Again, with discretion over capacity, risk aversion cre-

ates an incentive to reduce the cost of investment, thereby resulting in a reduced

optimal capacity as well as a lower optimal investment threshold.
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3.3 Numerical Results

3.3.4 Capacity Choice under Complete Operational Flex-

ibility

With complete operational flexibility, the expected utility of the investment’s

payoff increases further, thereby increasing the incentive to install more capacity

when investing immediately, as shown in Figure 3.24. This, in turn, increases the

value of discretion over capacity, relative to the cases of investment with finite

flexibility, for m̃(∞) < m̃(∞)∗ and m̃(2) < m̃(2)∗ and decreases it for m̃(∞) > m̃(∞)∗

and m̃(2) > m̃(2)∗ . Again, like in Sections 3.3.2 and 3.3.3, risk aversion reduces

the relative loss in project value for m̃(∞) < m̃(∞)∗ by lowering the amount of

installed capacity, while uncertainty has the opposite effect by increasing the

optimal capacity of the project.
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Figure 3.24: Relative loss in project value due to fixed capacity versus  for
 = 0.2 (left) and versus  for  = 0.2 (right)

Infinite suspension and resumption options increase the value of the invest-

ment opportunity further creating an even greater incentive to invest. As Figure

3.25 illustrates, under complete operational flexibility the value of the option

to invest and the value of the active project is greater compared to the case of

investment with a single suspension and resumption option. Consequently, the

increased incentive to invest leads to a further decrease of the optimal investment

threshold.
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Figure 3.25: Option value and project value versus Pt under complete operational
flexibility

Similar to Sections 3.3.2 and 3.3.3, the relative loss in option value due to

fixed capacity increases further when the capacity installed is lower than the

optimal and diminishes when it is greater as shown in Figure 3.26. The impact

of risk aversion and uncertainty is the same as in Sections 3.3.2 and 3.3.3 since

the former reduces the optimal capacity by decreasing the expected utility of the

project and the latter increases it by delaying investment.
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Figure 3.26: Relative loss in option value due to fixed capacity versus  for  = 0.2
(left) and versus  for  = 0.2 (right)
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3.4 Conclusions

Like in Sections 3.3.2 and 3.3.3, by increasing the level of flexibility the value

of the investment opportunity increases, thereby motivating the firm to require

a lower investment threshold. This, in turn, leads to the further decrease of the

project’s optimal capacity as Figure 3.27 illustrates.
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Figure 3.27: Optimal investment threshold and optimal capacity versus risk aver-
sion, under complete operational flexibility

3.4 Conclusions

In a world of increasing economic uncertainty, the need to examine the interac-

tion between risk aversion and operational flexibility, so as to provide optimal

investment, operational, and sizing decisions, is of great essence. The main con-

tribution of this chapter is that it illustrates how risk aversion can impact the

optimal investment strategy in a very different way than what the traditional

literature has so far indicated. We show that risk aversion facilitates investment

(unlike the case with fixed capacity) and reduces the optimal capacity of the

project. Furthermore, uncertainty now affects the now-or-never optimal capac-

ity in a non-monotonic manner that is not captured by Dangl (1999). We also

find that, with the option to delay investment, discretion over capacity becomes

more important with increasing uncertainty and less important with higher risk
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3.4 Conclusions

aversion when the level of capacity installed is lower than the optimal one. When

investing immediately in a project without operational flexibility, discretion over

capacity is more important with increasing risk aversion and uncertainty, however,

with operational flexibility, the impact of uncertainty on the value of discretion

over capacity is ambiguous. Finally, we illustrate how operational flexibility in-

creases the value of the investment opportunity and, in turn, the incentive to

invest, thereby resulting in the decrease of the optimal capacity.

So far, we have examined how the optimal investment, operational, and sizing

decisions of a single firm are affected by risk aversion, uncertainty, and operational

flexibility without taking into account the presence of other firms that may want

to enter the market. This is the objective of Chapter 4, where we analyse how

duopolistic competition impacts the entry decision of firms in pre-emptive and

non-pre-emptive duopoly settings.
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Chapter 4

Duopolistic Competition under

Risk Aversion and Uncertainty

Due to the deregulation of many sectors of the economy, decision rules for man-

aging capital projects should consider not only uncertainty in the underlying

variables but also competition in the output market. For example, in Europe,

ever since the euro was introduced, there has been an increase in competition in

sectors such as transport, energy, and telecommunications, which only a decade

ago were the preserve of state monopolies. Furthermore, the ongoing process

of mergers and takeovers as well as legislation against monopolies justifies the

existence of and development toward more competitive markets. Indicative of

this situation is the new partnership between Nokia and Microsoft. This alliance

was the result of tough competition due to which Nokia lost its leadership in the

area of smartphone operating system shipments to Android (and, in turn, mar-

ket share to rivals such as Google and Apple) and risk aversion due to costs of

financial distress (The Wall Street Journal, 2011). Another example is from the

energy sector where the natural gas industry is undergoing significant changes as

European legislation regarding competition is forcing gas companies to restruc-

ture their business and make room for new entrants, thus leading to increased

competition (Independent Energy Review, 2010).

Canonical real options theory finds particular application in such sectors as it

facilitates the analysis of capital budgeting decisions by accounting for the flexi-

bility embedded in them. However, treatment of such decision-making problems
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via canonical real options theory has mainly been under monopoly or perfect com-

petition. Moreover, recent work that considers a duopolistic setting has assumed

risk neutrality. In this chapter, we extend the traditional real options approach to

strategic decision making under uncertainty by examining how duopolistic com-

petition affects the entry of a risk-averse firm. We consider two identical firms

that are risk averse and hold an option each to invest in a project that yields

stochastic revenues. The firms face the same output market, and, as a result,

investment decisions of one firm impact the revenues of both firms. We begin

by analysing the monopolistic case and then extend this framework by adding

one more firm assuming either a pre-emptive or a non-pre-emptive setting. In

the pre-emptive duopoly, both firms have the incentive to invest in order to ob-

tain the leader’s advantage, while in the non-pre-emptive duopoly, the role of the

leader is assigned exogenously. For each setting, we analyse the impact of uncer-

tainty and risk aversion on the optimal investment timing decisions of the two

competing firms and examine the degree to which the presence of a competitor

impacts the entry of a risk-averse firm. Hence, the contribution of this chapter

is threefold. First, we develop a theoretical framework for analysing investment

under uncertainty and risk aversion for a monopoly as well as pre-emptive and

non-pre-emptive duopolies in order to derive closed-form expressions where pos-

sible for the optimal investment thresholds. Second, we quantify the degree to

which competition impacts the strategic investment decisions of a risk-averse ri-

val. Finally, we provide managerial insights for investment decisions and relative

firm values under each setting based on analytical and numerical results.

We proceed by formulating the problems in Section 4.1. In Section 4.2, we

solve the problems and analyse the impact of uncertainty and risk aversion on the

optimal investment timing decisions of the two competing firms in each setting. In

Section 4.3, we provide numerical examples for each case in order to examine the

effects of volatility and risk aversion on the optimal investment timing decisions

and quantify the degree to which the entry of the risk-averse firm is affected by the

presence of a rival. We also illustrate the interaction between risk aversion and

uncertainty and present managerial insights to enable more informed investment

decisions. Section 4.4 concludes by summarising the results and offering directions

for future research.
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4.1 Problem Formulation

4.1 Problem Formulation

4.1.1 Assumptions and Notation

Assume that each firm i, i = 1, 2, can incur an investment cost, K, in order

to start a project that produces output forever with no operating cost. Time is

continuous and denoted by t, and the revenue received from the project at time

t ≥ 0 is Rt = PtD(Qt) ($/annum). Here, Qt denotes the number of firms in the

industry, i.e., Qt = 0, 1, 2, and D(Qt) is a strictly decreasing function reflecting

the quantity demanded from each firm per annum. We assume that the price per

unit of the project’s output, Pt, follows a GBM:

dPt = Ptdt+ PtdZt, P0 > 0 (4.1)

where  ≥ 0 is the growth rate of Pt,  ≥ 0 is the volatility of Pt, and dZt is

the increment of the standard Brownian motion. Also, we denote by r ≥ 0 the

risk-free discount rate and by  ≥  the subjective discount rate. Let  ji be the

time at which firm j, j = ℓ, f (denoting leader or follower, respectively), enters

the industry given market structure i = m, p, n (denoting monopoly, pre-emptive

duopoly, or non-pre-emptive duopoly, respectively), i.e.,


j
i ≡ min

n
t ≥ 0 : Pt ≥ P


j
i

o
(4.2)

where P

j
i
is the corresponding output price. Finally, we denote by F


j
i
(P0) the

expected value of firm j’s investment opportunity under market structure i that

is exercised at time  ji and by V
j
i (P0) the expected NPV of firm j given the initial

output price, P0.

In order to account for risk aversion, we assume that the preferences of both

firms are described by an identical increasing and concave utility function, U(⋅).

As a result, our analysis can accommodate a wide range of utility functions, such

as HARA, CARA, and CRRA utility functions. In our analysis, we apply a

CRRA utility function as in Hugonnier and Morellec (2007) defined as follows:

U(Pt) =

(
P
1−
t

1−
if  ≥ 0 &  ∕= 1

ln(Pt) if  = 1
(4.3)
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4.1 Problem Formulation

4.1.2 Monopoly

We begin by formulating the problem for the case of monopoly, where a single

firm starts a perpetually operating project at a random time  jm. Up to time 
j
m,

the monopolist invests K in a risk-free bond and earns an instantaneous cash

flow of rK per time unit with utility U (rK) discounted at her subjective rate

of time preference,  > . At  jm, when the output price is P

j
m
, the monopolist

swaps this risk-free cash flow for a risky one, PtD(1), with utility U (PtD(1)) as

illustrated in Figure 4.1.

P0


R  jm
0

e−tU (rK) dt - R∞

j
m
e−tU (PtD(1)) dt

-

P

j
m

-

 jm

∙
0
∙

t

Figure 4.1: Investment under risk aversion for a monopoly

The conditional expected utility of the cash flows discounted to time t = 0 is:

EP0

"Z 
j
m

0

e−tU (rK) dt+

Z ∞


j
m

e−tU (PtD(1)) dt

#
=

Z ∞

0

e−tU (rK) dt

+EP0

h
e−

j
m

i
V j
m


P

j
m


(4.4)

where,

V j
m


P

j
m


= EP


j
m

Z ∞

0

e−t [U (PtD(1))− U (rK)] dt


(4.5)

is the expected utility of the project’s cash flows discounted to  jm, and the mo-

nopolist’s objective is to maximise the discounted expected utility of the project’s

cash flows, i.e., EP0

h
e−

j
m

i
V j
m


P

j
m


. Here, EP0 denotes the expectation opera-

tor, which is conditional on the initial value of the price process.
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4.1 Problem Formulation

4.1.3 Duopoly

4.1.3.1 Pre-Emptive Duopoly

We extend the previous framework by adding one more firm to the industry. Since

here the roles of the leader and the follower are defined endogenously, the two

firms are fighting for the leader’s position, and, therefore, each one of them runs

the risk of pre-emption. The firm that enters the market first is the leader, and

the firm that enters second is the follower as shown in Figure 4.2.

z }| { z }| {

| {z }

Leader earns monopoly profits Firms share the market

Follower’s waiting region



 -
R fp
 ℓp
e−tU (rK) dt

R fp
 ℓp
e−t (U (PtD(1))− U (rK)) dt

R∞

f
p
e−t (U (PtD(2))− U (rK)) dt-


R∞

f
p
e−tU (PtD(2)) dt -

-

P

f
p

-

 fp

∙∙

P ℓp

 ℓp t

Figure 4.2: Investment under risk aversion for a pre-emptive duopoly

Consequently, the conditional expected utility of all future cash flows of the

follower discounted to t =  ℓp is:

EP
ℓp

"Z 
f
p

 ℓp

e−tU (rK) dt+

Z ∞


f
p

e−tU (PtD(2)) dt

#
=

Z ∞

 ℓp

e−tU (rK) dt

+EP
ℓp

h
e−(

f
p−

ℓ
p)
i
V f
p


P

f
p


(4.6)

where,

V f
p


P

f
p


= EP


f
p

Z ∞

0

e−t [U (PtD(2))− U (rK)] dt


(4.7)

is the expected utility of the project’s cash flows discounted to  fp , and, like the

monopoly case, the scope of the pre-emptive follower is to maximise the dis-

counted to  ℓp expected utility of the project’s cash flows, i.e., EP
ℓp

h
e−(

f
p−

ℓ
p)
i
×
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V f
p


P

f
p


.

Next, the conditional expected utility of all future cash flows of the leader

discounted to t =  ℓp is:

V ℓ
p


P ℓp


= EP

ℓp

"Z 
f
p

 ℓp

e−t [U(PtD(1))− U (rK)] dt

+

Z ∞


f
p

e−t [U(PtD(2))− U (rK)] dt

#
= V j

m


P ℓp


+ EP

ℓp

h
e−(

f
p−

ℓ
p)
i
×

EP

f
p

Z ∞

0

e−t [U (PtD(2))− U (PtD(1))] dt


(4.8)

Notice that up to time  fp , the leader enjoys monopolistic profits as in (2.4), while

after the entry of the follower the two firms share the market, as illustrated in

Figure 4.2. This implies that, although up to time  fp the leader is alone in the

market, her value function does not correspond to that of a monopolist since the

future entry of the follower reduces the expected utility of the leader’s profits.

This reduction is reflected by the second term on the right-hand side of (4.8),

which is negative since D(2) < D(1).

4.1.3.2 Non-Pre-Emptive Duopoly

Here, the roles of the leader and the follower are defined exogenously. Conse-

quently, the future cash flows of the leader are discounted to time t = 0. Since

the follower considers entry into the market assuming that the leader has already

invested, the future cash flows of the follower are discounted to  ℓn as illustrated

in Figure 4.3. The conditional expected utility of the follower’s cash flows is the

same as in the pre-emptive case but discounted to  ℓn, i.e.,Z ∞

 ℓn

e−tU (rK) dt+ EP
ℓn

h
e−(

f
n−

ℓ
n)
i
V f
n


P

f
n


(4.9)

where V f
n (⋅) = V f

p (⋅) and the objective of the follower is to maximise the expres-

sion EP
ℓn

h
e−(

f
n−

ℓ
n)
i
× V f

n


P

f
n


.
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Figure 4.3: Investment under risk aversion for a non-pre-emptive duopoly

The leader now knows that she has the right to enter the market first and,

therefore, does not run the risk of pre-emption. As a result, the expected utility

of the leader’s future cash flows discounted to t = 0 is:

EP0

"Z  ℓn

0

e−tU (rK) dt+

Z 
f
n

 ℓn

e−tU (PtD(1)) dt+

Z ∞


f
n

e−tU (PtD(2)) dt

#

=

Z ∞

0

e−tU (rK) dt+ EP0

h
e−

ℓ
n

i
V ℓ
p


P ℓn


(4.10)

where V ℓ
p (⋅) is defined as in (4.8). Here, the objective of the leader is to maximise

EP0

h
e−

ℓ
n

i
V ℓ
p


P ℓn


.

4.2 Analytical Results

4.2.1 Monopoly

In this case, there is a single firm in the market that contemplates investment

without the fear of pre-emption from the entry of a competitor. Consequently,

the firm has the option to delay investment until the output price hits the op-

timal threshold, P

j∗
m
, that will trigger investment. Hence, for P0 ≤ P


j∗
m
, (4.11)

indicates the value of the monopolist’s investment opportunity:
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F

j
m
(P0) = sup


j
m∈S

EP0

Z ∞


j
m

e−t [U (PtD(1))− U (rK)] dt


= sup


j
m∈S

EP0

h
e−

j
m

i
V j
m


P

j
m


(4.11)

Here, S denotes the collection of admissible stopping times of the filtration gen-

erated by the price process. Using Theorem 9.18 of Karatzas and Shreve (1999)

for the CRRA utility function in (4.3), we find that the expression in (4.5) can

be simplified using the following:

EP0

Z ∞

0

e−tU (Pt) dt = AU (P0) (4.12)

where A = 12
(1−1−)(1−2−)

> 0, and 1 > 1, 2 < 0 are the solutions for x to

the following quadratic equation:

1

2
2x(x− 1) + x−  = 0 (4.13)

By using the fact that the expected discount factor is EP0

h
e−

j
m

i
=


P0
P

j
m

1

(Karatzas and Shreve, 1999) and applying the strong Markov property along with

the law of iterated expectations, (4.11) can be written as follows:

F

j
m
(P0) = max

P

j
m
≥P0

 
P0

P

j
m

!1 
AU


P

j
m
D(1)


−
U(rK)




(4.14)

Solving the unconstrained optimisation problem (4.14), we obtain the optimal

investment threshold, P

j∗
m
, for the monopolist:

P

j∗
m
=

rK

D(1)


2 +  − 1

2

 1
1−

(4.15)

According to (4.15), uncertainty and risk aversion drive a wedge between the

optimal investment threshold and the amortised investment cost. Indeed, it can

be shown that higher risk aversion increases the required investment threshold

by decreasing the expected utility of the investment’s payoff, while increased
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uncertainty delays investment by increasing the value of waiting. All proofs can

be found in the appendix.

Proposition 4.2.1 Uncertainty and risk aversion increase the optimal invest-

ment threshold.

4.2.2 Symmetric Pre-Emptive Duopoly

We solve this dynamic game backward by first assuming that the leader has just

entered the market. The value of the follower at  ℓp <  fp is indicated in (4.16):

F

f
p
(P ℓp) = sup


f
p≥ ℓp

EP
ℓp

h
e−

f
p

i
V f
p


P

f
p



= max
P

f
p
≥P

ℓp

 
P ℓp

P

f
p

!1

V f
p


P

f
p


(4.16)

Solving the unconstrained optimisation problem described by (4.16), we obtain

the optimal threshold, P

f∗
p
, that triggers the entry of the follower:

P

f∗
p
=

rK

D(2)


2 +  − 1

2

 1
1−

(4.17)

Notice that since D(2) < D(1), we have P

f∗
p

> P

j∗
m
, i.e., the optimal entry

threshold of the pre-emptive follower is higher than that of the monopolist. In-

tuitively, this happens because the follower requires compensation for losing the

first-mover advantage. After the critical threshold, P

f∗
p
, is hit, the value of the

follower is the discounted expected utility of the project’s cash flows, as indicated

by (4.7).

Assuming that the follower chooses the optimal policy, the value function of

the leader for P ℓp ≤ Pt < P

f∗
p
, i.e., when the leader is alone in the market, is:
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V ℓ
p (Pt) = EPt

"Z 
f∗

p

0

e−t (U(PtD(1))− U(rK)) dt

+

Z ∞


f∗
p

e−t (U(PtD(2))− U(rK)) dt

#

= AU (PtD(1))−
U (rK)



+

 
Pt

P

f∗
p

!1

AU

P

f∗

p

 
D(2)1− −D(1)1−


(4.18)

For Pt ≥ P

f∗
p
, the two firms share the market and, as a result, the value function

of the leader is the same as the follower’s.

As we show in Proposition 4.2.2, under a large discrepancy in market share,

there exists a finite output price at which the pre-emptive leader’s value function

is maximised. Otherwise, the pre-emptive leader’s value function is strictly in-

creasing. Intuitively, a higher output price simultaneously increases the expected

discounted utility of cash flows and facilitates the follower’s entry. With a higher

loss in market share, the impact of the latter effect dominates.

Proposition 4.2.2 The value function of the pre-emptive leader is concave, and

its maximum value is obtained prior to the entry of the pre-emptive follower

provided that:

D(2) < D(1)


1 +  − 1

1

 1
1−

(4.19)

In order to determine the leader’s optimal investment threshold, we need to

consider the strategic interactions between the leader and the follower. Let P ℓ∗p
denote the threshold price at which a firm is indifferent between becoming a leader

or a follower. Recall that in the pre-emptive setting both firms want to enter first

in order to obtain the leader’s advantage. However, for Pt < P ℓ∗p , the follower has

not entered the market, and a firm would be better off being the follower since

then V ℓ
p (Pt) < F


f
p
(Pt), while for Pt > P ℓ∗p , a firm is better off being a leader since

then V ℓ
p (Pt) > F


f
p
(Pt). Hence, it must be the case that V

ℓ
p


P ℓ∗p


= F


f
p


P ℓ∗p


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for entry, a condition that is found numerically by solving the following equation:

AU

P ℓ∗p D(1)


−
U (rK)


+

 
P ℓ∗p

P

f∗
p

!1

AU

P

f∗

p

 
D(2)1− −D(1)1−


= 

P ℓ∗p

P

f∗
p

!1 
AU


P

f∗
p
D(2)


−
U(rK)




(4.20)

Solving (4.20) for P ℓ∗p , we obtain the entry threshold of the leader that denotes

the output price at which a firm is indifferent between becoming a leader or a

follower. Indeed, as we show in Proposition 4.2.3, the optimal entry threshold

of the pre-emptive leader is lower than that of the monopolist. This happens

because the risk of pre-emption deprives the leader of the option to postpone

investment, thereby lowering the required investment threshold.

Proposition 4.2.3 The pre-emptive leader’s optimal entry threshold is lower

than that of the monopolist.

Although increased risk aversion raises the required investment threshold by

decreasing the expected utility of the investment’s payoff, the loss in the value of

the leader due to the entry of the follower, evaluated at P ℓ∗p , relative to that of

the monopolist is not affected by risk aversion. Intuitively, the value of the leader

at P ℓ∗p equals the value of the follower’s investment opportunity. Since both

the follower and the monopolist hold a single option each to enter the market,

increased risk aversion poses a proportional decrease in the option value of the

follower relative to the monopolist.

Proposition 4.2.4 The loss in the pre-emptive leader’s value relative to the mo-

nopolist’s value of investment opportunity at the pre-emptive leader’s optimal en-

try threshold price is not affected by risk aversion.

We next investigate how this ratio changes with uncertainty. In Figure 4.4,

the horizontal lines represent the utility of the instantaneous revenues the leader

receives over time under low uncertainty, , and under high uncertainty, ′. As we

will illustrate numerically, increased uncertainty raises the required entry thresh-

old of the follower by more than that of the leader. This results in the increase
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of the expected utility of the leader’s profits, represented by the shaded area of

Figure 4.4, since, under higher uncertainty, she enjoys monopoly profits for longer

time and the loss in the leader’s expected utility due to the entry of the follower

is not significant enough to offset it. In fact, this result is enhanced when the

discrepancy in market share is large, since the greater D(1) is, the greater the

pre-emptive leader’s incentive to invest will be as then the first-mover advantages

are greater. Notice also that as greater uncertainty raises the required entry

threshold of the follower, the leader’s instantaneous revenues cannot drop below

the level corresponding to ′ for t ≥  f
′

p .

Proposition 4.2.5 The relative discrepancy between the value of the pre-emptive

leader and the monopolist at the pre-emptive leader’s optimal entry threshold price

diminishes with increasing uncertainty.
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Figure 4.4: Incremental change in pre-emptive leader’s instantaneous revenues
due to increased uncertainty

4.2.3 Symmetric Non-Pre-Emptive Duopoly

In the non-pre-emptive setting, the roles of the leader and the follower are defined

exogenously, and, as a result, both firms have the option to delay their entry into

the market as the risk of pre-emption is eliminated. The follower’s value function

and entry threshold are unchanged from the pre-emptive case since she will still

enter the market considering that the leader is already there. Hence, the follower’s

value of investment opportunity at  ℓn is:
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F
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Since the non-pre-emptive leader has discretion over investment timing, her

value of investment opportunity is described by:

F ℓn(P0) = max
P
ℓn
≥P0


P0

P ℓn

1

AU


P ℓnD(1)


−
U(rK)


+

+

 
P ℓn
P

f∗
n

!1

AU

P

f∗
n

 
D(2)1− −D(1)1−

⎤⎦ (4.22)

The solution to the optimisation problem (4.22) yields the optimal entry threshold

of the non-pre-emptive leader:

P ℓ∗n =
rK

D(1)


2 +  − 1

2

 1
1−

(4.23)

Notice that by delaying entry, the leader suffers from forgoing cash flows but

benefits from temporarily delaying the entry of the follower. At the same time,

allowing the project to start at a higher output price yields a higher NPV but

then the leader enjoys monopoly revenues for less time. As it is shown in the

appendix, the marginal benefit and marginal cost corresponding to the entry of

the follower cancel.

Proposition 4.2.6 The optimal entry threshold of the non-pre-emptive leader is

the same as that of the monopolist.

Notice that the leader’s option to invest consists of the expected utility of the

immediate payoff reduced by an amount corresponding to the expected loss in

utility due to the entry of the follower. After the leader has entered the market

and prior to the entry of the follower, i.e., for P ℓn ≤ Pt < P

f∗
n
, the leader receives

monopolistic profits with expected utility described by (4.24):

AU (PtD(1))−
U(rK)


+

 
Pt

P

f∗
n

!1

AU

P

f∗

n

 
D(2)1− −D(1)1−


(4.24)
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According to (4.24), although the leader is alone in the industry, the expected

utility of her profits do not correspond to those of a monopolist since the potential

entry of a rival reduces the expected utility of the leader’s profits. Finally, after

the follower’s entry, i.e., for t ≥  fn , the two firms share the industry, thereby

making equal profits, and their value is simply the discounted expected utility of

the project’s cash flows.

In the non-pre-emptive framework, the value of the leader would be the same

as the monopolist’s if it were not for the potential entry of the follower that

reduces the expected utility of the leader’s profits. However, the reduction in

the leader’s value of investment opportunity due to the potential entry of the

follower decreases with risk aversion. This happens because risk aversion delays

the entry of the follower, thereby reducing the expected loss in the option value

of the leader. Consequently, the relative discrepancy between the leader’s value

of investment opportunity and the monopolist’s diminishes with increasing risk

aversion, thereby reducing the relative loss in the value of the non-pre-emptive

leader.

Proposition 4.2.7 The loss in the value of the investment opportunity for the

non-pre-emptive leader relative to that of a monopolist at the pre-emptive leader’s

optimal entry threshold price decreases with risk aversion.

According to Proposition 4.2.8, depending on the discrepancy in market share,

uncertainty may increase or decrease the relative loss in the value of the invest-

ment opportunity for the non-pre-emptive leader relative to that of a monopolist.

Notice that the value of the non-pre-emptive leader consists of the value of the

monopolistic investment opportunity and the expected loss in project value due

to the entry of the follower. Both of these components increase with uncertainty;

however, for the latter, the impact of uncertainty becomes less profound as the

discrepancy in market share diminishes. As a result, under low discrepancy in

market share, the impact of uncertainty on the non-pre-emptive leader’s value

of monopolistic investment opportunity dominates, thereby making her better

off. By contrast, under large discrepancy in market share, increased uncertainty

causes the loss in project value to increase faster than the value of the investment

opportunity, thereby making the non-pre-emptive leader worse off.
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Proposition 4.2.8 The discrepancy between the non-pre-emptive leader’s value

of investment opportunity and the monopolist’s at the pre-emptive leader’s optimal

entry threshold price increases with uncertainty if:
D(1)

D(2)

1

> e, e ≃ 2.718 (4.25)

In Figure 4.5, the instantaneous revenues of the leader are represented by the

solid line for low uncertainty, , and by the broken line for high uncertainty, ′.

Here, unlike the pre-emptive setting, the leader has the option to delay entry into

the market. Notice that a large discrepancy in market share implies a greater first-

mover advantage but also leads to a greater loss in the value of the leader upon

the entry of the follower, which becomes more profound with higher uncertainty.

However, increased uncertainty also raises the value of the leader’s investment

opportunity, thereby creating an opposing effect. According to Proposition 4.2.8,

under small discrepancy in market share, the increase in option value due to

increased uncertainty, represented by the shaded area between  ℓn and 
ℓ′

n in Figure

4.5, offsets the loss in the leader’s revenues due to the entry of the follower, thereby

reducing the discrepancy between the value of the monopolist and the leader.

The opposite result is observed if the discrepancy in market share is large, since

then the loss in the leader’s revenues is more profound than the increase in the

value of her investment opportunity. This happens because a higher first-mover

advantage reduces the required entry threshold of the leader. Consequently, the

increase in the value of the investment opportunity is less profound, and as higher

uncertainty impacts the loss in project value by more, the non-pre-emptive leader

becomes worse off.
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Figure 4.5: Incremental change in non-pre-emptive leader’s instantaneous rev-
enues due to increased uncertainty under low discrepancy in market share (left)
and large discrepancy (right)

4.3 Numerical Results

4.3.1 Pre-Emptive Duopoly

In order to examine the impact of risk aversion and uncertainty on the entry of the

pre-emptive leader and follower, we assume the following parameter values:  ∈

[0, 1),  ∈ [0.1, 0.5],  = 0.01, r =  = 0.04, K = $100, c = $0, D(0) = 0, D(1) =

1.5 or 3, and D(2) = 1. Figure 4.6 illustrates the impact of uncertainty on the

value of the pre-emptive leader and follower under risk aversion. First, we observe

that the leader’s entry threshold is lower than the monopolist’s. This happens due

to pre-emption since the leader does not have the option to defer investment and,

as a result, the risk of pre-emption reduces the required investment threshold.

On the other hand, the required investment threshold of the pre-emptive follower

is higher than that of the monopolist since the former requires compensation for

losing the first-mover advantage. According to the graph on the right, uncertainty

increases the value of waiting, thereby raising the required investment threshold
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and delaying the entry of the follower. This, in turn, increases the time interval in

which the leader enjoys monopoly profits and diminishes the relative discrepancy

between the value of the pre-emptive leader and that of the monopolist.
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Figure 4.6: Project and investment opportunity value of monopolist, pre-emptive
leader, and follower for  = 0.2 (left) and  = 0.4 (right) under risk aversion
( = 0.2) for D(1) = 3

Figure 4.7 illustrates the impact of risk aversion on the value of the pre-

emptive leader and follower. According to the graph on the right, increased risk

aversion reduces the expected utility of the investment’s payoff for both the leader

and the monopolist, thereby raising their required investment thresholds. Fur-

thermore, it seems that the impact of risk aversion on the pre-emptive leader’s

value is greater than on the follower’s value. Consequently, the two curves inter-

sect at a higher output price, thereby indicating that the output price at which a

firm is indifferent between becoming a leader or a follower increases with higher

risk aversion.
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Figure 4.7: Investment opportunity and project value of monopolist, pre-emptive
leader, and follower under risk neutrality (left) and risk aversion ( = 0.5) (right)
for  = 0.4 and D(1) = 3

4.3.2 Non-Pre-Emptive Duopoly

In the non-pre-emptive duopoly, the roles of the leader and the follower are pre-

assigned, and, as a result, both firms have the option to postpone their entry into

the market. According to Figure 4.8, the optimal entry threshold of the non-pre-

emptive follower is the same as in the pre-emptive case since the follower will still

enter the market considering that the leader has already invested. Notice also

that, the optimal entry threshold of the non-pre-emptive leader is the same as

the monopolist’s, and, as a result, the required investment threshold of the non-

pre-emptive leader is higher than that in the pre-emptive scenario. Although

the optimal entry threshold is the same for the monopolist and non-pre-emptive

leader, the investment opportunity value of the latter is lower than that of the

former since the potential entry of the follower reduces the expected utility of the

leader’s profits. As the graph on the right illustrates, increased uncertainty raises

the value of waiting, which, in turn, postpones investment in all cases, thereby

increasing the required investment thresholds.
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Figure 4.8: Project and investment opportunity value for non-pre-emptive leader
and follower for  = 0.2 (left) and  = 0.4 (right) under risk aversion ( = 0.2)
for D(1) = 3

Figure 4.9 illustrates the impact of risk aversion on the optimal entry thresh-

olds of the monopolist and the non-pre-emptive leader and follower. As indicated

in the graphs, higher risk aversion reduces the expected utility of the investment’s

payoff in all cases, thereby raising the required investment thresholds.
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Figure 4.9: Project and investment opportunity value for non-pre-emptive leader
and follower under risk neutrality (left) and risk aversion ( = 0.5) (right) for
 = 0.4 and D(1) = 3
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4.3 Numerical Results

4.3.3 Sensitivity Analysis

As the left panel in Figure 4.10 illustrates, all entry thresholds increase with

volatility as greater uncertainty implies greater value of waiting and are higher

with risk aversion as it delays investment both for the leader and the follower by

decreasing the expected utility of the project’s cash flows. Proposition 4.2.6 is

illustrated by the fact that the leader’s optimal investment threshold is the same

as the monopolist’s. Also, higher first-mover advantages represented by greater

D(1) result in the decrease of the required entry thresholds of the pre-emptive

and non-pre-emptive leader as illustrated in the graph on the right.
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Figure 4.10: Optimal entry thresholds for D(1) = 1.5 (left) and D(1) = 3 (right)

In order to compare the pre-emptive and non-pre-emptive leader’s values to

the monopolist’s, we evaluate both at the pre-emptive leader’s optimal entry

threshold, i.e., at P ℓ∗p . According to the graph on the left in Figure 4.11, increased

uncertainty diminishes the relative loss in the pre-emptive leader’s value function,

i.e.,

F

j
m
(P ℓ∗p )− V ℓ

p (P ℓ∗p )

F

j
m
(P ℓ∗p )

(4.26)

thereby reducing the discrepancy between the pre-emptive leader’s value and the

monopolist’s value of investment opportunity. This happens because uncertainty
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postpones the entry of the follower, thus allowing the pre-emptive leader to enjoy

monopoly profits longer. Notice that the impact of uncertainty is more profound

when the discrepancy in market share is low since then the expected loss due to

the follower’s entry is smaller.

Uncertainty increases the discrepancy in the non-pre-emptive leader’s value

of investment opportunity, i.e.,

F

j
m
(P ℓ∗p )− F ℓn(P ℓ∗p )

F

j
m
(P ℓ∗p )

(4.27)

if the discrepancy in market share is small, i.e.,

D(1)
D(2)

1
< e, as in the graph on

the left. Intuitively, this happens because under low discrepancy in market share,

the increase in the non-pre-emtpive leader’s value of investment opportunity due

to increased uncertainty is greater than the expected loss due to the entry of the

follower. However, if the discrepancy is large, then the increase in option value is

less profound with higher uncertainty due to higher first-mover advantages and,

as a result, cannot offset the expected loss from the follower’s entry, which is now

greater.

Furthermore, risk aversion does not affect the relative loss in the value of

the leader for the pre-emptive duopoly setting, but it makes the loss in value

relatively less for the leader in a non-pre-emptive duopoly setting due to delayed

entry of the follower. Notice that at P ℓ∗p , the value function of the pre-emptive

leader is the same as the option value of the pre-emptive follower. As a result,

the impact of risk aversion on the value of the pre-emptive leader at P ℓ∗p is the

same as that on the value of the follower’s investment opportunity at the same

output price. Since the follower’s investment opportunity value differs from the

monopolist’s only with respect to the market share, risk aversion impacts the

values of the follower and the monopolist proportionally.
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Figure 4.11: Relative loss in value of the pre-emptive and non-pre-emptive leader
for D(1) = 1.5 (left) and D(1) = 3 (right)

4.4 Conclusions

In Chapter 4, we develop a utility-based framework in order to examine the impact

of risk aversion and uncertainty on the optimal investment timing decisions of a

firm that faces competition. The analysis is motivated both by the increasing

competition resulting from the deregulation of many sectors of the economy such

as energy, telecommunications, transport, etc, and the fact that attitudes towards

the risk arising from the potential entry of a rival may impact investment decisions

of a firm. The combination of these two factors creates the need to incorporate

risk aversion into the real options framework, in order to analyse strategic aspects

of decision making under uncertainty.

We find that, under the fear of pre-emption, higher uncertainty reduces the

relative loss in the value of the leader due to competition by delaying the entry of

the follower. However, in the non-pre-emptive setting, the impact of uncertainty is

ambiguous and depends on the discrepancy in market share. If the discrepancy is

large, the non-pre-emptive leader’s relative loss in value increases with uncertainty

since then the impact of the follower’s entry is more profound and offsets the

increase in the leader’s value of investment opportunity. By contrast, under low

discrepancy in market share, higher uncertainty makes the non-pre-emptive leader
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better off as the increase in the value of investment opportunity is greater than

the expected loss in value due to competition. Interestingly, the relative loss in

the pre-emptive leader’s value is not affected by risk aversion, while the non-pre-

emptive leader becomes better off with greater risk aversion as it delays the entry

of the follower.

Since Chapter 4 considers the case where the two competing firms exhibit the

same level of risk aversion, a potential extension is to relax this assumption and

consider an asymmetric duopoly in terms of different levels of risk aversion for

each firm. Furthermore, potentially useful insights could be extracted by allowing

for operational flexibility like in Chapters 2 and 3. Directions for future research

may also include the application of a different stochastic process, e.g., arithmetic

Brownian motion, or the study of other aspects of the real options literature, such

as the time to build or capacity sizing, under the same framework.
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Chapter 5

Summary and Conclusions

Real options analysis adapts valuation techniques developed for financial options

to non-financial settings. Thus, it addresses the flexibility and uncertainty present

in most capital budgeting decisions by analysing capital projects as a series of

options. The bulk of real options models are based on the assumptions of mar-

ket completeness and risk neutrality, which were inherited by corporate finance,

thereby ignoring the impact of risk aversion on investment decisions. However,

decision makers often exhibit risk aversion either due to costs of financial dis-

tress or due to risk that cannot be diversified, which occurs for example in R&D

projects with technical risk that is idiosyncratic. The deregulation of many sec-

tors of the economy has resulted in greater competition and uncertainty, thus

shifting the focus to knowledge-based sectors such as R&D that become increas-

ingly important. Consequently, in an era of increasing economic uncertainty and

deregulation the need to develop a utility-based framework in order to account

for risk aversion becomes essential.

The objective of this thesis is to bridge the gaps in real options theory so that

it may be more suitable not only for decision making but also for risk assessment.

We begin by developing a utility-based framework in order to analyse how the

optimal investment decisions are affected by risk aversion and uncertainty. In

order to quantify the impact of risk and operational flexibility, we assume that

the project offers suspension and resumption options that can be exercised at

any time. We proceed by assessing how the flexibility to adjust capacity in

the presence of risk aversion impacts the value of an option to invest, thereby
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5.1 Optimal Investment under Operational Flexibility, Risk Aversion,

and Uncertainty

extending the traditional real options approach to investment under uncertainty

with discretion over capacity by allowing for risk aversion, through a CRRA utility

function, and operational flexibility in the form of suspension and resumption

options. Finally, in order to explore strategic aspects of decision making under

uncertainty, we determine how duopolistic competition affects the entry of risk-

averse investors and how the value of a firm under two different oligopolistic

frameworks varies with risk aversion and uncertainty. Here, we will summarise

the results of this thesis, discuss its limitations and offer directions for further

research.

5.1 Optimal Investment under Operational Flex-

ibility, Risk Aversion, and Uncertainty

In Chapter 2, we extend the real options approach with operational flexibility,

i.e., a situation in which the decision maker has infinitely many embedded op-

tions to suspend or resume the project, to account for risk aversion. We introduce

risk aversion on part of the decision maker via a CRRA utility-of-wealth function

analogous to Hugonnier and Morellec (2007). We solve this problem backwards

by first assuming that the project is active and has a single abandonment option

at its disposal. This enables us to find its expected value and exercise threshold

by solving the analogous optimal stopping problem. By then including this aban-

donment option in the payoff of the original investment opportunity, we solve the

problem of investment in a project with a single abandonment option, i.e., we ob-

tain the investment and abandonment thresholds along with the expected value

of the investment opportunity. Finally, by extending this methodology to incor-

porate infinitely many suspension and resumption options, we analyse a project

with complete operational flexibility.

Our results indicate that operational flexibility facilitates investment and op-

erational decisions by increasing the likelihood of investment, suspension, and

resumption of the investment project. Furthermore, we show that risk aversion

may increase the incentive for decision makers to delay the investment and re-

sumption of the investment project and accelerates their decision to abandon it.

Moreover, we describe how an environment of increasing uncertainty may affect
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5.2 The Value of Capacity Sizing under Risk Aversion and

Operational Flexibility

the optimal investment policy and lead to hysteresis. Also, we provide insights

regarding the behaviour of the optimal suspension threshold when the level of

risk aversion changes. Interestingly, numerical results indicate that increased risk

aversion may facilitate the abandonment of a project while delaying its tempo-

rary suspension prior to permanent resumption. Finally, we demonstrate how

operational flexibility becomes more valuable as risk aversion increases and the

economic environment becomes more volatile.

In order to quantify further the degree to which the investor’s risk is hedged

through operational flexibility, risk measures such as value-at-risk and conditional

value-at-risk for the canonical real options investment problem could be devel-

oped. Such risk measures quantify the market risk of a project which to date has

been applied only numerically to real options. Furthermore, in contrast to the

standard real options approach, it could be particularly insightful to determine

not only the expected value of the option to invest but also its moment-generating

function.

5.2 The Value of Capacity Sizing under Risk

Aversion and Operational Flexibility

In many capital projects, the investor also holds discretion over capacity, e.g.,

the size of a factory. Dangl (1999) uses a continuous cost function first to find

the optimal size of the active investment as a function of the price by maximising

the expected NPV. He then obtains the expected value of the option to invest

and the investment threshold price by using value-matching and smooth-pasting

conditions with the expected NPV function. In the third chapter, we extend this

approach by accounting for risk aversion on part of the investor via a CRRA

utility-of-wealth-function. Specifically, by first assuming that the project value

evolves according to a GBM, we work backwards by solving for the capacity size

of the project that maximises the discounted expected utility of the project’s

cash flows. Next, we substitute the utility-maximising capacity size, which is

a function of the project’s cash flows, into the expression for the project value

and then solve the analogous optimal stopping problem. The resulting expected

option value, investment threshold price, and capacity size are then compared

121



5.2 The Value of Capacity Sizing under Risk Aversion and

Operational Flexibility

with the ones under the risk-neutral assumption of Dangl (1999) to gauge the

extent to which risk aversion affects sizing decisions.

The objective in Chapter 3 is to assess how valuable discretion over the ca-

pacity of the project is under risk aversion and operational flexibility. In contrast

to a project without scalable capacity, we find that, with the option to delay

investment, increased risk aversion facilitates investment and decreases the re-

quired investment threshold price by reducing the amount of installed capacity.

We also find that, when investing immediately, the relative loss in project value

due to installation of suboptimal capacity diminishes with risk aversion and un-

certainty. With operational flexibility, discretion over capacity becomes more

valuable when exercising a now-or-never investment opportunity and less valu-

able when the option to defer investment is available when the capacity installed

is suboptimal.

One of the limitations of this model arises from the particular choice of a cost

function that is increasing and strictly convex, thereby implying that the average

cost is increasing. Due to this property, this model is best suited for analysing

projects that exhibit diseconomies of scale, e.g., renewable energy power plants.

This choice results from the assumption of an exogenous output price, which is

an additional limitation of the model since investment decisions do not affect

future prices. This limitation is particularly obvious when investment in very

large capacity is optimal. Therefore, it would be interesting to examine the

implications of relaxing this assumption by allowing for the price to depend on

the capacity installed. Although useful insights regarding the robustness of the

model could be obtained through the application of different utility functions or

alternative stochastic processes, nevertheless, it would be interesting to generalise

the results presented in the second and third chapters of the thesis so that they

are independent of the type of the utility function. This requires the verification

of the results simply assuming that the output price follows a GBM and that the

decision maker’s preferences are described by an increasing and concave utility

function. Furthermore, other aspects of the real options literature, e.g., the time-

to-build problem, may be examined under the same framework.
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5.3 Duopolistic Competition under Risk Aversion and Uncertainty

5.3 Duopolistic Competition under Risk Aver-

sion and Uncertainty

A monopolist typically defers entry into an industry as both price uncertainty and

the level of relative risk aversion increase. The former attribute may be present

in most deregulated industries, while the latter may be relevant for reasons of

market incompleteness or the presence of technical uncertainty. By contrast, it

has been shown that the presence of a rival hastens entry under risk neutrality

in certain frameworks. In the first two chapters of this thesis, we have taken the

perspective of a price-taking firm that holds a perpetual option to investment in a

project with infinite lifetime and wants to maximise the expected utility of future

profits. In Chapter 4, we assume a duopolostic setting and analyse the strategic

interactions of decision making under uncertainty and risk aversion. Specifically,

we examine how duopolistic competition affects the entry decisions of risk-averse

firms and explore how the impact of competition on the value of a firm under two

different oligopolistic frameworks, i.e., pre-emptive and non-pre-emptive duopoly,

varies with risk aversion and uncertainty.

We show that the entry threshold of the non-pre-emptive leader is the same as

that of the monopolist under both risk neutrality and risk aversion. Moreover, we

illustrate how all entry thresholds increase with volatility as greater uncertainty

implies greater value of waiting and are higher than the thresholds under risk

neutrality. Also, the value of the leader in a duopoly relative to the value of

a monopolist at the pre-emptive leader’s optimal entry threshold indicates that

the non-pre-emptive duopoly leader is hurt less than the pre-emptive duopoly

leader. In the non-pre-emptive duopoly setting, if the discrepancy between the

market share of the leader and the follower is large, then the non-pre-emptive

leader’s relative loss in value increases with uncertainty since the impact of the

follower’s entry is more profound and offsets the increase in the leader’s value

of investment opportunity. By contrast, under low discrepancy in market share,

higher uncertainty makes the non-pre-emptive leader better off as the increase in

the value of investment opportunity is greater than the expected loss in value due

to competition. Furthermore, risk aversion does not affect the loss in the value
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of the leader for the pre-emptive duopoly setting, but it makes the loss in value

relatively less for the leader in a non-pre-emptive duopoly setting.

Since the analysis presented in Chapter 4 is restricted to the case where both

firms exhibit the same level of risk aversion, this framework can be extended

to account for the case of asymmetric duopoly where the levels of risk aversion

are different. Furthermore, by analysing the case where each firm has discretion

over the capacity of the project will also provide further insights and allow for

comparisons with the results of the third chapter.
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Appendix A

Proofs of the Propositions of

Chapter 2

Proposition 2.2.1: Under a CRRA utility-of-wealth function, the expected utility

of a perpetual GBM discounted to P0 is given by (2.10):

EP0

Z ∞

0

e−tU(Pt)dt = AU(P0) (A.1)

where A = 12
(1−1−)(1−2−)

> 0 and 1 > 1, 2 < 0 are the solutions to the

following quadratic equation:

1

2
2x(x− 1) + x−  = 0 (A.2)

Proof: We want to derive the analytical expression of the following expectation:

EP0

Z ∞

0

e−tU (Pt) dt (A.3)
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where Pt follows GBM:

dPt = Ptdt+ PtdZt (A.4)

Solving for Pt we have:

Pt = P0 exp


−

1

2
2

t+ Zt


(A.5)

Inserting (A.5) into (A.3), the expression of the expectation we want to determine

becomes

EP0

Z ∞

0

e−tU


P0 exp


−

1

2
2

t + Zt


dt (A.6)

Following the steps of Karatzas and Shreve (1999) p.146, the expectation (A.6)

can be written as:

EP0

Z ∞

0

e−tU (Pt) dt =

2

2(1 − 2)


P
2
0

Z P0

0

x−2−1U (x) dx+ P
1
0

Z ∞

P0

x−1−1U (x) dx


(A.7)

Applying a CRRA utility function we have:

EP0

Z ∞

0

e−tU (Pt) dt

=
2

2(1 − 2)


P
2
0

Z P0

0

x−2−

1− 
dx+ P

1
0

Z ∞

P0

x−1−

1− 
dx


= −

2

2
1

(1− 1 − )(1− 2 − )
U(P0)

= AU(P0) (A.8)

where A = 12
(1−1−)(1−2−)

.
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Proposition 2.2.2: Under a CRRA utility-of-wealth function, the optimal in-

vestment threshold is:

P (0)∗

1
= (c+ rK)


2 +  − 1

2

 1
1−

(A.9)

Proof: The optimisation problem is described by (A.10):

F (0)
1
(P0) = max

P
(0)
1

≥P0

 
P0

P
(0)
1

!1 
AU


P (0)
1


−
U(c + rK)




(A.10)

The FONC for the unconstrained optimisation problem (A.10) may be expressed

as follows:

2

1− 2 − 
P (0)∗

1

1−
+ (c+ rK)1− = 0 (A.11)

Solving with respect to P
(0)∗

1 , we obtain the following expression for the optimal

investment threshold:

P (0)∗

1
= (c+ rK)


2 +  − 1

2

 1
1−

(A.12)

This is equivalent to the expression of the optimal investment threshold in Hugonnier

and Morellec (2007). Indeed, according to Hugonnier & Morellec:

P (0)∗

1
= (c+ rK)


1

1 +  − 1

Δ



 1
1−

(A.13)

where,

Δ =  + ( − 1)


−

1

2
2


(A.14)
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For the two expressions to match, the following equality must be hold.

1

1 +  − 1

Δ


=
2 +  − 1

2

⇔
1

1 +  − 1


1 +

 − 1




−

1

2
2


=
2 +  − 1

2

⇔ 12


1 +

 − 1




−

1

2
2


= (1 +  − 1)(2 +  − 1)

⇔ 12


1 +

 − 1




−

1

2
2


= 12 + 1 − 1 + 2 + 2 −  − 2 −  + 1

⇔ 12
 − 1




−

1

2
2


= 1( − 1) + 2( − 1) + ( − 1)− ( − 1)

⇔
12




−

1

2
2


= 1 + 2 +  − 1 (A.15)

Since

1 =
1

2
−



2
+

s


2
−
1

2

2

+
2

2
(A.16)

2 =
1

2
−



2
−

s


2
−
1

2

2

+
2

2
(A.17)

it follows from (A.15) that:

12




−

1

2
2


= 1 + 2 +  − 1

⇔ −

2
2




−

1

2
2


= 1−

2

2
+  − 1

⇔ −
2

2
+  = −

2

2
+  (A.18)

which is true.

Proposition 2.2.3: The objective function is strictly concave at P
(0)∗

1 iff  < 1.

Proof: The objective function evaluated at the critical value, P
(0)∗

1 , is the fol-
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lowing:

F
(0)
1


P (0)∗

1


=

 
P0

P
(0)∗
1

!1
"
A
P
(0)∗

1

1−

1− 
−
(c+ rK)1−

(1− )

#
(A.19)

Differentiating the objective function with respect to P
(0)∗

1 twice yields the fol-

lowing result:

∂2F
(0)
1


P
(0)∗

1


∂P

(0)∗
1

2 = (1 + 1)1

 
P0

P
(0)∗
1

!1
 

1

P
(0)∗
1

!2 "
A
P
(0)∗

1

1−

1− 
−
(c + rK)1−

(1− )

#

+ 1

 
P0

P
(0)∗
1

!1
 
−

1

P
(0)∗
1

!
AP (0)∗

1

−

−

 
P0

P
(0)∗
1

!1

A(1 + )P (0)∗

1

−−1
(A.20)

The SOSC requires that
∂2F

(0)
1


P
(0)∗

1



∂P
(0)∗
1

2 < 0. Simplifying the above expression yields:

∂2F
(0)
1


P
(0)∗

1


∂P

(0)∗
1

2 < 0 ⇔
21 +  + 1

1− 
> 0 (A.21)

Notice that the numerator is positive, which implies that for the inequality to

hold the denominator needs to be positive as well. Hence, the SOSC is satisfied

if and only if 0 ≤  < 1.

Corollary 2.2.1: The MB curve is steeper than the MC curve at P
(0)∗

1 .
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Proof: We will show that
 ∂MB

∂P
(0)
1

 >  ∂MC

∂P
(0)
1


P
(0)
1

≡P
(0)∗
1

.

1

 
P0

P
(0)∗
1

!1
1

P
(0)∗
1

"
12

(1− 1 − )(1− 2 − )
P (0)∗

1

−
+

1

P
(0)∗
1

U(c+ rK)



#
+ 

P0

P
(0)∗
1

!1
"

12

(1− 1 − )(1− 2 − )
P (0)∗

1

−−1
+

1

P
(0)∗
1

2

U(c + rK)



#
>

1

 
P0

P
(0)∗
1

!1
1

P
(0)∗
1

212

(1− 1 − )(1− 2 − )

P
(0)∗

1

−

1− 
+ 

P0

P
(0)∗
1

!1
212

(1− 1 − )(1− 2 − )

P
(0)∗

1

−−1

1− 
(A.22)

Simplifying (A.22) and substituting for P
(0)∗

1 leads to the following result:

21 +  + 1 > 0 (A.23)

This is true since, 1 > 1 and 0 ≤  < 1

Proposition 2.2.4: The optimal investment threshold is increasing with risk

aversion.

Proof: Differentiating the optimal investment threshold, P
(0)∗

1 , with respect to

 yields:

P (0)∗

1
= (c + rK)


2 +  − 1

2

 1
1−

⇒
∂P

(0)∗

1

∂
= P (0)∗

1

∂

∂
ln

"
(c+ rK)


2 +  − 1

2

 1
1−

#
(A.24)

Since P
(0)∗

1 > 0, we only need to determine the sign of ∂
∂
ln


(c + rK)


2+−1

2

 1
1−


.
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Hence,

∂ lnP
(0)∗

1

∂
> 0 ⇔ ln


1− 2 − 

−2


> 1−

−2

1− 2 − 
(A.25)

We now set x = −2
1−2−

> 0⇒ 1
x
= 1−2−

−2
. Consequently, we need to show that:

− ln x > 1− x ⇔ ln x < x− 1 (A.26)

The equality lnx = x− 1 holds for  = 1, which is not considered here. To show

that inequality (A.26) holds, we first need to show that:

ex ≥ 1 + x, ∀x ∈ ℝ (A.27)

For all x ∈ ℝ, we assume a  ∈ ℕ such that  > −x, i.e.  + x > 0. Then,

1+ x

> 0, and so we have


1 + x




≥ 1+  x


= 1+ x from Bernoulli’s inequality.

Finally, we have:

ex = lim
→∞


1 +

x




≥ lim

→∞
(1 + x) = 1 + x⇒ ex ≥ 1 + x ∀x ∈ ℝ (A.28)

Thus, we have shown that ex ≥ 1 + x, ∀x ∈ ℝ. Hence, assuming that x > 0 and

using ln x instead of x, we have:

elnx = x ≥ 1 + ln x⇒ ln x ≤ x− 1 (A.29)

Proposition 2.2.5: The optimal investment threshold is increasing with volatil-

ity.

Proof: Since 2 =
1
2
− 

2
−

q


2
− 1

2

2
+ 2

2
, substituting into the expression of
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the optimal investment threshold we have:

P 0∗

1
= (c+ rK)

⎛⎝1 +  − 1

1
2
− 

2
−

q


2
− 1

2

2
+ 2

2

⎞⎠ 1
1−

(A.30)

Differentiating with respect to 2 yields:

∂P
(0)∗

1

∂2
= c


1

1− 

⎡⎣1 +  − 1

1
2
− 

2
−

q


2
− 1

2

2
+ 2

2

⎤⎦ 1
1−

−1

×

⎡⎢⎢⎢⎣−
( − 1)




4
−


1

2
q
[ 

2
−

1
2 ]

2
+ 2

2


2



2
− 1

2

 
− 

4


− 2

4




1
2
− 

2
−

q


2
− 1

2

2
+ 2

2

2

⎤⎥⎥⎥⎦(A.31)

Note that:

2




2
−
1

2


−


4


−
2

4
< 0⇔ −

2

2
−
2− 

2
< 0 (A.32)

which is true. Hence, the last term in (A.31) is positive. Since the rest of the

factors in (A.31) are positive, we conclude that
∂P

(0)∗

1

∂2
> 0.

Proposition 2.2.6: The objective function is strictly concave at P
(0)∗

2 iff  < 1.

Proof: The objective function evaluated at P
(0)∗

2 takes the following expression,

F
(0)
2


P
(1)
1


=

 
P
(1)
1

P
(0)∗
2

!2
"

c1−

(1− )
−A

P
(0)∗

2

1−

1− 

#
(A.33)
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Differentiating twice with respect to P
(0)∗

2 yields the following,

∂2F
(0)
2


P
(1)
1


∂P

(0)∗
2

2 = 2(2 + 1)

 
P
(1)
1

P
(0)∗
2

!2
 

1

P
(0)∗
2

!2 "
c1−

(1− )
−A

P
(0)∗

2

1−

1− 

#

+2

 
P
(1)
1

P
(0)∗
2

!2
 

1

P
(0)∗
2

!
AP (0)∗

2

−

+

 
P
(1)
1

P
(0)∗
2

!2

A(2 + )P (0)∗

2

−−1
(A.34)

Simplifying the above expression, we have the following result:

∂2F
(0)
2


P
(1)
1


∂P

(0)∗
2

2 < 0⇔  < 1 (A.35)

Hence, the objective function is concave at P
(0)∗

2 if and only if  < 1.

Proposition 2.2.7: The optimal abandonment threshold is increasing with risk

aversion.

Proof: Following the same steps as in Proposition 2.2.4 we have:

∂P
(0)∗

2

∂
> 0 ⇔ ln


1 +  − 1

1


> 1−

1

1 +  − 1
(A.36)

We now set x = 1
1+−1

. Thus, we need to show that ln x < x− 1 which we have

already shown in Proposition 2.2.4 that holds.

Proposition 2.2.8: The optimal abandonment threshold is decreasing in volatil-

ity.

Proof: The optimal abandonment threshold is given by the following equation:

P
(0)∗

2 = c


1 +  − 1

1

 1
1−

(A.37)
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Substituting for 1, (A.37) takes the following expression:

P
(0)∗

2 = c

⎡⎣1 +  − 1

1
2
− 

2
+
q



2
− 1

2

2
+ 2

2

⎤⎦ 1
1−R

(A.38)

Differentiating (A.38) with respect to 2 we have:

∂P
(0)∗

2

∂2
= c


1

1− 

⎡⎣1 +  − 1

1
2
− 

2
+
q



2
− 1

2

2
+ 2

2

⎤⎦
1

1−
−1

×

⎡⎢⎢⎢⎣−
( − 1)




4
+


1

2
q
[ 

2
− 1

2 ]
2
+ 2

2


2



2
− 1

2

 
− 

4


− 2

4




1
2
− 

2
+
q



2
− 1

2

2
+ 2

2

2

⎤⎥⎥⎥⎦ (A.39)

Notice that in (A.39):

2




2
−
1

2


−


4


−
2

4
< 0⇔ −

2

2
−
2− 

2
< 0 (A.40)

The latter is true, and, therefore, the last term of (A.39) is negative. Hence, since

the first three factors are positive, we conclude that
∂P

(0)∗

2

∂2
< 0.

Proposition 2.2.9: The optimal investment threshold price when a single aban-

donment option is available is less than that with an irreversible investment op-

portunity, ceteris paribus.

Proof: The FONCs that provide the optimal investment thresholds for the case

of irreversible investment and investment with a single abandonment option are:

2

1− 2 − 
P (0)∗

1

1−
+ (c+ rK)1− = 0 (A.41)

2

1− 2 − 
P (1)∗

1

1−
+ (c+ rK)1− +

2 − 1

1
(1− )F (0)

2
(P (1)∗

1
) = 0 (A.42)
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Subtracting the two equations, we have:

P (0)∗

1

1−
− P (1)∗

1

1−
= (1− 2 − )F (0)

2


P (1)∗

1


(A.43)

Since 2 < 0 and F
(0)
2 (P

(1)∗

1 ) > 0 the quantity on the right-hand side is positive.

Hence:

P (0)∗

1

1−
− P (1)∗

1

1−
> 0 ⇒ P (0)∗

1
> P 1∗

1
(A.44)

Proposition 2.2.10: The optimal resumption threshold is increasing with risk

aversion.

Proof: Similar to Proposition 2.2.4.

Proposition 2.2.11: The optimal suspension threshold is higher than the optimal

abandonment one.

Proof: Comparing the two FONCs that provide the optimal abandonment and

optimal suspension thresholds, we have:

1

1− 1 − 
P (0)∗

2

1−
+
c1−

1
= 0 (A.45)

1

1− 1 − 
P (1)∗

2

1−
+
c1−

1
−
(1 − 2)(1− )

12
F (0)
3


P (1)∗

2


= 0 (A.46)

By subtracting the two equations, we have:

P (1)∗

2

1−
− P (0)∗

2

1−
=
(1 − 2)(1− 1 − )(1− )

12
F (0)
3


P (1)∗

2


(A.47)

Since 1 > 1, 2 < 0 and F 0
3


P
(1)∗

2


≥ 0 quantity on the right-hand side is

positive. Therefore,

P (1)∗

2

1−
− P (0)∗

2

1−
> 0 ⇒ P (1)∗

2
> P (0)∗

2
(A.48)
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Proposition 2.2.12: The optimal investment threshold price when a single sus-

pension and a single resumption option is available is lower than that with an

investment opportunity with a single abandonment option.

Proof: The FONCs that yield the optimal investment thresholds are:

2

1− 2 − 
P (1)∗

1

1−
+ (c+ rK)1− +

2 − 1

1
(1− )F (0)

2


P (1)∗

1


= 0 (A.49)

2

1− 2 − 
P (2)∗

1

1−
+ (c+ rK)1− +

2 − 1

1
(1− )F (1)

2


P (2)∗

1


= 0 (A.50)

Subtracting these two equations, we have:

P (1)∗

1

1−
− P (2)∗

1

1−
=

(1− 2 − )(1 − 2)

12
×

(1− )

F (0)
2


P (1)∗

1


− F (1)

2


P (2)∗

1


(A.51)

Since the option to suspend operations with the embedded option to resume them

permanently, F
(1)
2


P
(2)∗

1


, is greater than the abandonment option, F

(0)
2


P
(1)∗

1


,

the right-hand side of (A.49) is negative indicating that:

P (1)∗

1

1−
− P (2)∗

1

1−
> 0⇒ P (1)∗

1
> P (2)∗

1
(A.52)
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Appendix B

Proofs of the Propositions of

Chapter 3

Proposition 3.2.1: For all  > 1 the optimisation problem (3.13) has a solution,

while for  ↓ 1the solution diverges.

Proof: According to (3.14), the marginal benefit of increasing capacity is:

gMB =
AP0

1−

m̃(0)
> 0, ∀m̃(0) > 0

⇒
∂gMB

∂m̃(0)
= −

AP0
1−

m̃(0)+1 < 0, ∀m̃(0) > 0 (B.1)

The marginal cost of increasing capacity is:

gMC =
c+ rbm̃(0)−1


h
cm̃(0) + rbm̃(0)

i > 0, ∀m̃(0) > 0

⇒
∂gMC

∂m̃(0)
=

rb(− 1)m̃(0)−2



cm̃(0) + rbm̃(0)

 − 

c+ rbm̃(0)−1

2


cm̃(0) + rbm̃(0)

+1 (B.2)
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Regarding the sign of ∂gMC
∂m̃(0) we have:

∂gMC

∂m̃(0)
> 0 ⇔

rb(− 1)m̃(0)−2



cm̃(0) + rbm̃(0)

 − 

c + rbm̃(0)−1

2


cm̃(0) + rbm̃(0)

+1 > 0

⇔ rb(− 1)m̃(0)−2

cm̃(0) + rbm̃(0)


− 


c+ rbm̃(0)−1

2
> 0

⇔ rb(− 1)c+ r2b2(− 1)m̃(0)−1

−
c2

m̃(0)−1 − r2b22m̃(0)−1

−2crb > 0

⇔ (− 1)c+ rb(− 1)m̃(0)−1

−
c2

rbm̃(0)−1 − rbm̃(0)−1

−2c > 0

⇔ (− 1− 2)c+ rb(− 1− )m̃(0)−1

−
c2

rbm̃(0)−1 > 0

⇔ (− 1− 2)crbm̃(0)−1

+ r2b2(− 1− )m̃(0)2(−1)

−c2 > 0 (B.3)

Setting x = m̃(0)−1

, (B.3) can be rewritten as

1x
2 + 2x + 3 > 0 (B.4)

where 1 = r2b2( − 1 − ), 2 = rb( − 1 − 2)c, 3 = −c2. Since Δ =

22−413 > 0 and 1 > 0, we conclude that (B.4) is true for x > 1, where 1 is the

positive root of (B.4). Hence, gMC is increasing with m̃(0) for m̃(0) > 
1

−1

1 . SincegMB is constant under risk neutrality and strictly decreasing under risk aversion

while gMC is strictly increasing for m̃(0) > 
1

−1

1 and, for m̃(0) → 0, gMB > gMC

we conclude that gMB and gMC curves intersect at a single point that denotes the

optimal capacity of the project.
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As  ↓ 1, we have:

gMC =
c+ rb

 [cm̃(0) + rbm̃(0)]


⇒
∂gMC

∂m̃(0)
=

− (c+ rb)2

 (cm̃(0) + rbm̃(0))
+1 < 0, ∀m̃(0) > 0 (B.5)

Thus, the gMB and gMC are positive and decreasing in m̃(0). Hence, for  ↓ 1 we

have:

gMB > gMC ⇔
AP0

1−

m̃(0)
>

c+ rb

 [cm̃(0) + rbm̃(0)]


⇔ AP0
1− >

(c+ rb)1−



⇔ AU(P0) >
U(c + rb)


(B.6)

which is true. As the marginal cost of increasing capacity is always less than the

marginal benefit, it is always optimal to install greater capacity.

Proposition 3.2.2: For a now-or-never investment opportunity, the optimal ca-

pacity decreases with uncertainty under risk aversion.

Proof: When the firm invests in the project immediately, i.e., at P0, the value

of the optimal capacity is determined by equating the gMB of increasing capacity

to the gMC. This is described by (3.14), which we re-write here:

AP0
1−

m̃(0)
=

c+ rbm̃(0)−1


h
cm̃(0) + rbm̃(0)

i (B.7)

Notice that while under risk neutrality the gMB is constant, i.e.:

gMB =
P0

r − 
(B.8)
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under risk aversion, we observe that the gMB is a strictly decreasing and convex

function of m̃(0):

∂gMB

∂m̃(0)
= −

AP0
1−

m̃(0)+1 < 0, ∀m̃(0) > 0 (B.9)

∂2gMB

∂m̃(0)2
=
( + 1)AP0

−1

m̃(0)+2 > 0, ∀m̃(0) > 0 (B.10)

On the other hand,

∂gMC

∂m̃(0)
=
rb(− 1)m̃(0)−2

− 

cm̃(0) + rbm̃(0)

−1 
c+ rbm̃(0)−1

2


cm̃(0) + rbm̃(0)

 (B.11)

Notice that under risk neutrality, i.e., for  = 0,

∂gMC

∂m̃(0)
=
rb(− 1)m̃(0)−2


> 0, ∀m̃(0) > 0 (B.12)

and

∂2gMC

∂m̃(0)2
=
rb(− 1)(− 2)m̃(0)−3


> 0, ∀m̃(0) > 0 (B.13)

Hence, under risk neutrality, the cost function is strictly increasing and convex.

By introducing a utility-based framework and applying the CRRA utility func-

tion, we perform a concave transformation of the cost function. In fact, increasing

risk aversion diminishes the convexity of the cost function and increases its con-

cavity. Consequently, for small values of m̃(0), the gMC decreases with increasing

risk aversion and then increases. Without loss of generality, we assume that the

initial output price is such that exercising a now-or-never investment opportunity

yields positive profits. Since the gMB is strictly decreasing and the gMC eventu-

ally increases, the gMB and gMC curves intersect at a single point that denotes
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the optimal capacity of the project. Notice now that:

∂A

∂2
< 0⇒

∂gMB

∂2
< 0 (B.14)

Hence, volatility decreases the expected utility of the revenues for  > 0. Since

the cost of investment is non-stochastic, the gMC is independent of 2, as volatil-

ity increases the gMB and gMC curves will intersect at a lower level of capacity,

which indicates that the optimal capacity of the project decreases with volatility

when the firm exercises a now-or-never investment opportunity.

Proposition 3.2.3: For an irreversible investment opportunity, the optimal in-

vestment threshold is:

P (0)
1


m(0)∗


=

c+ rbm(0)∗−1

2 +  − 1

2

 1
1−

(B.15)

Proof: In the case of investment without operational flexibility, the value of the

option to invest is given by:

F (0)
1
(P0) = max

P
(0)
1

≥P0

 
P0

P
(0)
1

!1
⎡⎣AU m(0)∗P (0)

1


−
U

cm(0)∗ + rbm(0)∗




⎤⎦(B.16)
This optimisation problem considers the inner extremum over capacity choice,

which is described by (B.7) and may be expressed as:

Am(0)∗−P (0)
1

1−
−
1




cm(0)∗ + rbm(0)∗

− 
c+ rbm(0)∗−1


= 0 (B.17)

Notice that since investment takes place at 1, we have substituted P0 with P
(0)
1 .

Also, since the capacity of the project is a function of the output price at in-

vestment, we have m(0)′ ≡
∂m(0)


P
(0)
1


∂P

(0)
1

. The FONC for the optimisation problem
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described by (B.16) is:

∂F
(0)
1 (P0)

∂P
(0)
1

= 0⇔
Am(0)∗−P (0)

1

1− 1




cm(0)∗ + rbm(0)∗

− 
c+ rbm(0)∗−1


| {z }

= 0

m(0)∗ ′ −

1

P
(0)
1

⎡⎢⎣A

m(0)∗P

(0)
1

1−
1− 

−


cm(0)∗ + rbm(0)∗

1−
(1− )

⎤⎥⎦+
AP (0)

1

−
m(0)∗1− = 0 (B.18)

Solving (B.18) with respect to P
(0)
1 we have:

∂F
(0)
1 (P0)

∂P
(0)
1

= 0 ⇔ P (0)
1


m(0)∗


=

c+ rbm(0)∗−1

2 +  − 1

2

 1
1−

(B.19)

Corollary 3.2.1 The MB curve is steeper than the MC curve at P
(0)∗

1 .

Proof: See Corollary 2.2.1 in Chapter 2.

Proposition 3.2.4 For an irreversible investment opportunity, the optimal ca-

pacity is:

m(0)∗ =


c

rb

1− 

(1 +  − 1)− 1

 1
−1

,  >
1

1 +  − 1
(B.20)

Proof: Inserting the expression for P
(0)
1


m(0)∗


described by (B.19) into (B.17),

we have:

Am(0)∗−

c+ rbm(0)∗−1

1− 2 +  − 1

2


−
1



c+ rbm(0)∗−1
cm(0)∗ + rbm(0)∗

 = 0

⇔
1− 

1 +  − 1
c+ rbm(0)∗−1


1(1− )− ( − 1)

1 +  − 1


= 0 (B.21)
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Hence, the expression for the optimal capacity size is:

m(0)∗ =


c

rb

1− 

(1 +  − 1)− 1

 1
−1

(B.22)

For the closed-form expression of m(0)∗ , and, in turn, P
(0)∗

1 to hold we need

(1 +  − 1) − 1 > 0; otherwise, we will obtain negative values for the op-

timal investment threshold and optimal capacity. This condition implies that

 > 1
1+−1

. Notice that 1 +  − 1 < 1 and, as a result,
1

1+−1
> 1. Conse-

quently, for our results to hold, we need to choose  larger than 1
1+−1

, which

implies that the cost function cm(i) + rK

m(i)


must be significantly convex.

Proposition 3.2.5: The optimal capacity is decreasing in risk aversion.

Proof: Partially differentiating (B.22) with respect to , we have:

∂m(0)∗

∂
=

1

− 1


c

rb

1− 

(1 +  − 1)− 1

 2−
−1

×
c

rb

−1(− 1)

((1 +  − 1)− 1)
2 (B.23)

Note that the last term on the right-hand side of (B.23) is negative, and, as a

result, we have ∂m(0)∗

∂
< 0.

Proposition 3.2.6: The optimal investment threshold price is decreasing in risk

aversion.

Proof: Solving (B.19) with respect to m(0)∗ we have:

m(0)

P (0)∗

1


=

"
1

rb

"
2 +  − 1

2

− 1
1−

P (0)∗

1
− c

## 1
−1

(B.24)

By substituting the expression for P
(0)∗

1 from (B.19) into (B.24) we have:

m(0)

P (0)∗

1


=


c

rb

1− 

 (1 +  − 1)− 1

 1
−1

(B.25)
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Hence,

"
1

rb

"
2 +  − 1

2

− 1
1−

P (0)∗

1
− c

## 1
−1

=


c

rb

1− 

(1 +  − 1)− 1

 1
−1

(B.26)

Notice also that:

∂m(0)

P
(0)∗

1


∂P

(0)∗
1

=
1

− 1

"
1

rb

"
2 +  − 1

2

− 1
1−

P (0)∗

1
− c

## 1
−1

−1

×

1

rb


2 +  − 1

2

−
1

1−

(B.27)

As a result,

∂m(0)

P
(0)∗

1


∂P

(0)∗
1

> 0⇔ P (0)∗

1
>


2 +  − 1

2

 1
1−

c (B.28)

which according to (B.19) is true. From this, we infer that m(0)

P
(0)∗

1


is a

monotonically increasing function of P
(0)∗

1 . Also, according to Proposition 3.2.5,

m(0)∗ is decreasing with risk aversion. From these results, we conclude that the

optimal investment threshold price is decreasing with risk aversion. This is true

because if the optimal investment threshold increased with higher risk aversion,

then, due to the monotonicity of m(0)

P
(0)∗

1


, the corresponding optimal capac-

ity would be greater, but this would contradict Proposition 3.2.5.

Proposition 3.2.7: The optimal capacity is increasing in volatility.

Proof: We now differentiate (B.20) with respect to :

∂m(0)∗

∂
=

1

− 1


c

rb

1− 

(1 +  − 1)− 1

 2−
−1

×
c

rb

−∂1
∂
(1− )(− 1)

((1 +  − 1)− 1)
2 (B.29)

Since ∂1
∂

< 0, the right-hand side of (B.29) is positive, and, hence, we have
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∂m(0)∗

∂
> 0.

Proposition 3.2.8: The optimal investment threshold price is increasing in

volatility.

Proof: Substituting the expression for m(0)∗ from (B.22) into (B.19) we obtain

the expression of the optimal investment threshold:

P (0)∗

1
=


c +

c(1− )

(1 +  − 1)− 1


2 +  − 1

2

 1
1−

(B.30)

Let  =

2+−1

2

 1
1−

; From Chapter 2 we have that ∂
∂2

> 0. Also, according

to Proposition 3.2.7, the optimal capacity of the project is increasing in volatil-

ity. Hence, the first factor on the right-hand side of (B.30) is also increasing in

volatility.

Proposition 3.2.9: With a single abandonment option, the optimal capacity of

the project is greater compared to an irreversible now-or-never investment oppor-

tunity, ceteris paribus.

Proof: This result follows from the properties of the gMB and the gMC of increas-

ing capacity, described in Proposition 3.2.2, and the fact that at abandonment

the expected utility of the revenues is greater than the expected utility of the

forgone cash flows. The expressions of the gMB and the gMC are:

gMB =
AU (P0)

m̃(1)
+

 
P0

P
(0)∗
2

!2
U(c)

m̃(1)
(B.31)

gMC =


c+ rbm̃(1)−1

− 
c+ rbm̃(1)−1


(1− )m̃(1)

+

 
P0

P
(0)∗
2

!2 AU

P
(0)∗

2


m̃(1)

(B.32)

Notice that the last terms on the right-hand sides of (B.31) and (B.32) represent

145



the extra gMB and gMC from the embedded abandonment option, respectively. As

their analytic expressions indicate, the former is the discounted expected utility

of the salvageable operating cost divided by a monotonic function of the capacity,

while the latter is the discounted expected utility of the forgone cash flows di-

vided by the same function of the capacity. Since, at abandonment, the optimal

abandonment threshold is strictly less than the operating cost, as (A.37) indi-

cates, the extra gMB from abandonment is greater than the corresponding extragMC:

 
P0

P
(0)∗
2

!2
U(c)

m̃(1)
>

 
P0

P
(0)∗
2

!2 AU

P
(0)∗

2


m̃(1)

, ∀m̃(1) > 0 (B.33)

Hence, the gMB from increasing capacity increases more than the gMC. As a

result, the gMB and gMC curves intersect at a higher level of capacity, thereby

indicating the increase of the optimal capacity due to the embedded abandonment

option.
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Appendix C

Proofs of the Propositions of

Chapter 4

Proposition 4.2.1: Uncertainty and risk aversion increase the optimal invest-

ment threshold.

Proof: See Propositions 2.2.4 and 2.2.5 in Chapter 2.

Proposition 4.2.2: The value function of the pre-emptive leader is concave

and its maximum value is obtained prior to the entry of the pre-emptive follower

provided that:

D(2) < D(1)


1 +  − 1

1

 1
1−

(C.1)

Proof: The value of the pre-emtpive leader is:

V ℓ
p (Pt) = AU (PtD(1)) −

U (rK)



+

 
Pt

P

f∗
p

!1

AU(P

f∗
p
)

D(2)1− −D(1)1−


(C.2)
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Differentiating (C.2) with respect to Pt we have:

∂V ℓ
p (Pt)

∂Pt
= AD(1)1−Pt

−

+ 1

 
Pt

P

f∗
p

!1
1

Pt
AU(P


f∗
p
)

D(2)1− −D(1)1−


(C.3)

Hence,

∂V ℓ
p (Pt)

∂Pt
= 0⇒ Pt = P


f∗
p

(
1

1− 

"
1−


D(2)

D(1)

1−
#) 1

1−1−

(C.4)

Notice that 1
1−1−

< 0. Hence, for (C.4) to be valid we must have:

1−


D(2)

D(1)

1−

> 0⇔


D(2)

D(1)

1−

< 1⇔ D(2) < D(1) (C.5)

which is true. In order to show that the value of the pre-emptive leader obtains

a maximum, we partially differentiate (C.3) with respect to Pt.

∂2V ℓ
p (Pt)

∂Pt
2 = AD(1)1−(−)Pt

−−1

+1(1 − 1)Pt
1−2

 
1

P

f∗
p

!1

AU(P

f∗
p
)

D(2)1− −D(1)1−


(C.6)

As both terms in (C.6) are negative, we have
∂2V ℓ

p (Pt)

∂Pt
2 < 0 for all Pt ∈

h
P ℓp , Pf

∗

p


.

Finally, we will derive the condition under which the output price at which V ℓ
p (Pt)
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becomes maximised is lower than the optimal entry threshold of the follower:

(
1

1− 

"
1−


D(2)

D(1)

1−
#) 1

1+−1

> 1

⇔
1

1− 

"
1−


D(2)

D(1)

1−
#

> 1

⇔ 1−


D(2)

D(1)

1−

>
1− 

1

⇔ D(2) <


1 +  − 1

1

 1
1−

D(1) (C.7)

Notice that 1+−1
1

< 1. This implies that in order for the value function of the

pre-emptive leader to decrease prior to the entry of the follower, the discrepancy

in market share must be significantly large.

Proposition 4.2.3: The pre-emptive leader’s entry threshold is lower than that

of the monopolist.

Proof: First, notice that the follower’s value of investment opportunity is:

F

f
p
(Pt) =

 
Pt

P

f∗
p

!1

V f
p


P

f∗
p


(C.8)

Hence

∂F

f
p
(Pt)

∂Pt
= 1P

1−1
t

 
1

P

f∗
p

!1

V f
p


P

f∗
p


> 0, ∀Pt ∈

h
P ℓp , Pf∗p


(C.9)

and

∂2F

f
p
(Pt)

∂P 2
t

= 1(1 − 1)P 1−2
t

 
1

P

f∗
p

!1

V f
p


P

f∗
p


> 0, ∀Pt ∈

h
P ℓp , Pf

∗

p


(C.10)
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Thus, the value of the follower’s investment opportunity is convex and strictly

increasing from zero. Second, from Proposition 4.2.2, we know that the pre-

emptive leader’s value function is strictly concave in Pt starting from a negative

value. Consequently, for Pt < P

f∗
p

the two value functions intersect at most

once. In order to show that the pre-emptive leader’s entry threshold is lower

than that of the monopolist, we will evaluate the pre-emptive leader’s value and

the pre-emptive follower’s value of investment opportunity at the monopolist’s

entry threshold. The objective is to prove that at the monopolist’s optimal entry

threshold, the value of the pre-emptive leader is greater than the value of the

pre-emptive follower’s investment opportunity, i.e.,

AU

P

j∗
m
D(1)


−

U (rK)


+

 
P

j∗
m

P

f∗
p

!1 h
AU


P

f∗
p
D(2)


−AU


P

f∗
p
D(1)

i
> 

P

j∗
m

P

f∗

p

!1 
AU


P

f∗
p
D(2)


−
U(rK)




(C.11)

Substituting for P

j∗
m
and P


f∗
p

we have:

1−  + 1


D(2)

D(1)

1
"
1−


D(1)

D(2)

1−
#
>


D(2)

D(1)

1

(1− )

⇔ (1− )


D(1)

D(2)

1

− 1


D(1)

D(2)

1−

> 1− 1 −  (C.12)

The last inequality can be written as follows:

b− a + axb − bxa > 0 (C.13)

where a = 1− < 1, b = 1 > 1, and x =

D(1)
D(2)


> 1. Since b−a = 1+−1 > 0,

in order to show (C.13), we need to show that axb− bxa > 0. For this reason, let:

f(x) = axb − bxa (C.14)
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Notice that:

f ′(x) = ab

xb−1 − xa−1


(C.15)

Since b > a⇒ f ′(x) > 0. Notice also that:

f ′′(x) = ab

(b− 1)xb−2 − (a− 1)xa−2


> 0 (C.16)

which implies that f(x) is increasing and convex. Also:

f ′(x) = 0⇒ x = 1 and f(1) = 0 (C.17)

As a result, the minimum value of f(x) is at x = 1 and is equal to f(1) = 0.

Thus,

f(x) > f(1) = 0⇒ axb − bxa > 0, ∀ x > 1 (C.18)

Therefore, at the entry threshold of the monopolist, the value function of the

pre-emptive leader is greater than the follower’s value of investment opportunity.

Notice also that:

Pt → 0⇒ V ℓ
p (Pt) < F


f
p
(Pt) (C.19)

Since, according to Proposition 4.2.2, the maximum that the value of the pre-

emptive leader can obtain in
h
P ℓp , Pf

∗

p


is global, this implies that, ∀Pt : Pt <

P

j∗

m
, ∃ at most one price P ℓ∗p : F


f
p
= V ℓ

p . Hence, from (C.18) and (C.19), we

conclude that P ℓ∗p < P

j∗
m
.

Proposition 4.2.4: The loss in the pre-emptive leader’s value relative to the

monopolist’s value of investment opportunity at the pre-emptive leader’s optimal

entry threshold price is unaffected by risk aversion.
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Proof: In order to show that the relative loss in value is unaffected by risk

aversion, we consider the following ratio:

V ℓ
p


P ℓ∗p


F

j
m


P ℓ∗p

 (C.20)

Notice that F

j
m
(⋅) is given by (4.11), which we re-write here for P0 = P ℓ∗p :

F

j
m


P ℓ∗p


=

 
P ℓ∗p

P

j∗
m

!1 
AU


P

j∗
m
D(1)


−
U (rK)




(C.21)

Similarly, the expression for V ℓ
p (⋅) evaluated at P ℓ∗p is given by:

V ℓ
p


P ℓ∗p


= AU


P ℓ∗p D(1)


−
U (rK)



+

 
P ℓ∗p

P

f∗
p

!1

AU

P

f∗

p

 
D(2)1− −D(1)1−


(C.22)

Notice also that for P ℓ∗p , the equality V
ℓ
p (P ℓ∗p ) = F


f
p
(P ℓ∗p ) holds, i.e.:

AU

P ℓ∗p D(1)


−
U (rK)


+

 
P ℓ∗p

P

f∗
p

!1

AU

P

f∗
p

 
D(2)1− −D(1)1−


= 

P ℓ∗p

P

f∗
p

!1 
AU


P

f∗
p
D(2)


−
U(rK)




(C.23)

Substituting the expressions for P ℓ∗p and P

j∗
m
from (4.15) and (4.17) into (C.21)

and (C.23), respectively, we have:

F

j
m


P ℓ∗p


=

 
P ℓ∗p

P

j∗
m

!1 
1− 

1 +  − 1


U (rK)


(C.24)
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and

V ℓ
p


P ℓ∗p


=

 
P ℓ∗p

P

f∗
p

!1 
1− 

1 +  − 1


U (rK)


(C.25)

By cancelling the P ℓ∗p term and substituting for P

j∗
m
and P


f∗
p
, we have:

V ℓ
p


P ℓ∗p


F

j
m


P ℓ∗p

 =


D(2)

D(1)

1

(C.26)

As a result, the relative loss in the value of the pre-emptive leader is constant

and, for this reason, is unaffected by risk aversion.

Proposition 4.2.5: The relative discrepancy between the value of the pre-emptive

leader and the monopolist at the pre-emptive leader’s optimal entry threshold price

diminishes with increasing uncertainty.

Proof: According to (C.26), the relative value of the pre-emptive leader com-

pared to that of a monopolist is:

V ℓ
p


P ℓ∗p


F

j
m


P ℓ∗p

 =
V ℓ
p


P ℓ∗p


F

j
m


P ℓ∗p

 =


D(2)

D(1)

1

(C.27)

Partially differentiating (C.27) with respect to , we have:

∂

∂

(
D(2)

D(1)

1
)
=


D(2)

D(1)

1

ln


D(2)

D(1)


∂1

∂
(C.28)

153



Notice that since ∂1
∂

< 0 and ln

D(2)
D(1)


< 0, we have:

∂

∂

⎡⎣ V ℓ
p


P ℓ∗p


F

j
m


P ℓ∗p


⎤⎦ > 0 (C.29)

This implies that with increasing uncertainty, the loss in the value of the pre-

emptive leader relative to the monopolist’s diminishes.

Proposition 4.2.6: The optimal entry threshold of the non-pre-emptive leader

is the same as that of the monopolist.

Proof: Given the initial output price, P0, and assuming that the follower has

chosen the optimal policy, the non-pre-emptive leader’s entry problem is described

by (C.30):

F ℓn(P0) = max
P
ℓn
≥P0

(
P0

P ℓn

1

AU


P ℓnD(1)


−
U(rK)



+

 
P ℓn
P

f∗
n

!1 h
AU


P

f∗
n

 
D(2)1− −D(1)1−

i⎤⎦⎫⎬⎭(C.30)

Partially differentiating (C.30) with respect to P ℓn yields:

∂F ℓn
∂P ℓn

= 1


P0

P ℓn

1

−

1

P ℓn


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
P ℓnD(1)


−
U(rK)




+

+
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AD(1)1−P−

 ℓn
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
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!1 h
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
P

f∗
n

 
D(2)1− −D(1)1−
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+ 1


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P

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n

!1 
1

P ℓn

h
AU


P

f∗
n

 
D(2)1− −D(1)1−

i
(C.31)

Rearranging (C.31) in order to equate the marginal benefit of delaying invest-
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ment to the marginal cost yields (C.32). The first term on the left-hand side

of (C.32) corresponds to the reduction in marginal cost due to saved investment

cost, while the second term is the marginal benefit from starting the project at a

higher output price. The third term reflects the marginal benefit from delaying

investment, which postpones the entry of the follower. The first term on the

right-hand side of (C.32) corresponds to the marginal cost of forgone cash flows

due to postponed investment, while the second term reflect the marginal cost

from enjoying monopoly profits for less time.

1


P0

P ℓn

1


1
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
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
+


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P ℓn

1
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P

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n
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
P

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n

 
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
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1


P0
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P

f∗
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AU


P

f∗
n
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D(2)1− −D(1)1−

i
(C.32)

Notice that the marginal benefit from postponing investment cancels with the

marginal cost from enjoying monopoly profits for less time, and, thus, we obtain

(C.33):

∂F ℓn
∂P ℓn

= 0 ⇔ 1


P0

P ℓn

1

−

1

P ℓn


AU


P ℓnD(1)


−
U(rK)




+

+


P0
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1
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 ℓn
= 0

⇔ P ℓ∗n =
rK

D(1)


2 +  − 1

2

 1
1−

(C.33)

From (C.33), we see that the optimal investment threshold for the non-pre-

emptive leader is the same as the monopolist’s.
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Proposition 4.2.7: The loss in the value of the investment opportunity for the

non-pre-emptive leader relative to that of a monopolist at the pre-emptive leader’s

optimal entry threshold price decreases with risk aversion.

Proof: The relative loss in the non-pre-emptive leader’s value is:

F

j
m


P ℓ∗p


− F ℓn


P ℓ∗p


F

j
m


P ℓ∗p

 = 1−
F ℓn


P ℓ∗p


F

j
m


P ℓ∗p

 (C.34)

Recall that prior to investment, the non-pre-emptive leader’s value of investment

opportunity at P ℓ∗p is:

F ℓn


P ℓ∗p


=


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⎤⎦⎤⎦ (C.35)

Notice that the expression of the monopolist’s value of investment opportunity,

F

j
m
(⋅), evaluated at P ℓ∗p is given by (C.36):

F

j
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
P ℓ∗p


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P ℓ∗p

P

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P

j∗
m
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


(C.36)
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Hence,
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Partially differentiating (C.34) with respect to  yields:
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According to (C.38),
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Setting x =

D(1)
D(2)

1−
> 0 we have:

x− 1− x ln x ≤ 0 ⇔ x (1− ln x) ≤ 1

⇔ 1− ln x ≤
1

x

⇔ 1 + ln
1

x
≤
1

x

⇔ − ln
1

x
≥ 1−

1

x
(C.40)

Setting 1
x
= y we have:

− ln y ≥ 1− y ⇔ ln y ≤ y − 1 (C.41)

which is true.

Proposition 4.2.8: The discrepancy between the non-pre-emptive leader’s value

of investment opportunity and the monopolist’s at the pre-emptive leader’s optimal

entry threshold price increases with uncertainty if:


D(1)

D(2)

1

> e

Proof: According to (C.37), the relative loss in option value of the non-pre-

emptive leader is:
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Partially differentiating with respect to  we have:
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Hence,
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