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Flow past a circular cylinder on a P-plane 

By E. R. JOHNSON’ A N D  M. A. PAGE2 
Department of Mathematics, University College London, Gower Street, 

London WC 1 E 6BT, UK 
*Department of Mathematics, Monash University, Clayton, Victoria 3168, Australia 

(Received 10 August 1992 and in revised form 6 January 1993) 

This paper gives analytical and numerical solutions for both westward and eastward 
flows past obstacles on a P-plane. The flows are considered in the quasi-geostrophic 
limit where nonlinearity and viscosity allow deviations from purely geostrophic flow. 
Asymptotic solutions for the layer structure in almost-inviscid flow are given for 
westward flow past both circular and more elongated cylindrical obstacles. Structures 
are given for all strengths of nonlinearity from purely linear flow through to strongly 
nonlinear flows where viscosity is negligible and potential vorticity conserved. These 
structures are supported by accurate numerical computations. Results on detraining 
nonlinear western boundary layers and corner regions in Page & Johnson (1991) are 
used to present the full structure for eastward flow past an obstacle with a bluff rear 
face, completing previous analysis in Page & Johnson (1990) of eastward flow past 
obstacles without rear stagnation points. Viscous separation is discussed and analytical 
structures proposed for separated flows. These lead to predictions for the size of 
separated regions that reproduce the behaviour observed in experiments and numerical 
computations on P-plane flows. 

1. Introduction 
Perhaps the simplest motion for a homogeneous, constant-depth ocean on the 

rotating Earth is that of uniform flow along parallels of latitude. When these parallels 
are interrupted by ocean boundaries or isolated islands, thin layers form where 
unsteadiness, nonlinear advection or viscosity become equally as important as Coriolis 
and pressure gradient forces. One of the most straightforward problems where these 
effects can be investigated is flow past obstacles on a /?-plane. Foster (1985) discusses 
uniform eastward flow past a cylinder, showing that the linear solution depends on a 
parameter a measuring the ratio of the @-effect to Ekman pumping destruction of 
vorticity, and that nonlinear effects are given by a parameter A measuring the ratio of 
advection to Ekman pumping terms. Foster presents the asymptotic form of the 
almost-inviscid solution when a % 1 and discusses the first effects of nonlinearity which 
appear as A increases to be of order 01-l + 1. Foster notes difficulties with the flow at 
the rear stagnation point and in obtaining solutions for westward flows. Matsuura & 
Yamagata (1 986) present numerical computations for equations modelling viscous 
flow on a P-plane. They note that although there is a well-defined ‘Long’s model’ 
solution (Long 1952) for westward flow, the predicted flow patterns differ greatly from 
experimental observations by Long himself and Boyer & Davies (1982). Matsuura & 
Yamagata’s integrations reproduce many of the aspects of the observed flows and they 
ascribe the difference from Long’s solutions to westward propagating waves. 

The problem of eastward flow is also considered in Page & Johnson (1990, hereafter 
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referred to as I) where the forms of the flow for various a and h are discussed supported 
by numerical integrations of the equation of motion for arbitrary a,h. This work 
emphasizes the upstream (westward) influence of obstacles and confirms the difficulties 
of obtaining a simple structure at the rear stagnation point. In fact numerical solutions 
are presented for an aerofoil-shaped obstacle so the rear stagnation point is absent and 
vorticity-carrying fluid is shed smoothly from the rear of the obstacle. A structure for 
the rear stagnation point can however be obtained following the analysis in Page & 
Johnson (1991, hereafter referred to as 11) which considers the more general problem 
of detraining stagnation-point flow in a western boundary current, formed for example 
by the collision of northward and southward western boundary jets. 

It is the purpose of the present paper to extend the results and methods of I and I1 
to present asymptotic structures for 

(i) almost-inviscid westward flow for all values of flow speed from A = 0 through 

(ii) eastward flow past bodies with bluff rear profiles when A - a-l, 
(iii) separated viscous westward flows, 

h - 01-l to h - 1 and h - a  B I ,  

and to discuss these in the context of previous observations and numerical 
computations. 

Section 2 describes the almost-inviscid limit, giving the governing equations and 
noting the method used to integrate the equations numerically to obtain solutions for 
comparison with the postulated asymptotic forms. Section 3 deals with westward flow. 
Section 3.1 summarizes briefly results for linear ( A  = 0) flow past a cylinder for later 
reference. Section 3.2 presents, for arbitrary a and A, a solution for an entraining 
stagnation point in a western boundary layer (WBL), which gives inter alia the 
localized structure at the front stagnation point of the cylinder. Section 3.2 also gives 
a solution for a detraining stagnation point of in an eastern boundary jet, depending 
on advection for its existence, and giving the localized structure for the rear stagnation- 
point flow on the cylinder that appears once h exceeds s-’. Section 3.3 gives the form 
of the flow when h is of order a-’, i.e. h = ah is of order unity, and nonlinearity first 
becomes important in the WBL. It is shown in 93.3.1 that provided h < a flow outside 
the WBL is unaltered from linear flow, with fluid from the layer passing through 
regions at the shoulders (widest points) of an obstacle to enter shear layers that spread 
downstream to the west. Section 3.3.2 shows however that once A exceeds some fluid 
from the WBL continues round an obstacle to form a detraining eastern boundary jet 
and less fluid enters the shear layers directly. Section 3.4 shows that once A is of order 
unity (h >> 1) the flow has completely changed from linear flow. The WBL is thicker 
and no longer affected by viscosity, the shear layers originating from the shoulder 
regions are absent, and all fluid from the WBL continues smoothly round the obstacle 
to form a detraining eastern boundary jet. Section 3.5 shows that with increasing h this 
solution joins smoothly to that obtained in purely inviscid flow from a ‘Long’s model’ 
type integration, conserving potential vorticity along streamlines from a region of 
uniform flow far upstream. Section 3.6 discusses modifications to the structure when 
obstacles have boundaries with regions of finite length lying precisely east-west. 
Eastward flow is considered in 94. 

The solutions of @3, 4 for almost-inviscid flow require horizontal viscous effects to 
be confined to thin attached vertical boundary layers against obstacles. Provided these 
Ef layers (where E is an Ekman number for the flow) remain attached the solutions can 
be expected to predict well flows of real fluids of small but non-zero viscosity. Section 
5 discusses the behaviour of the Ef layers on a circular cylinder noting that for 
moderate and large the layers are likely to separate. Once the Ei layers separate the 
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flow pattern can differ significantly from the analytical and numerical solutions in # 3, 
4. However the analysis of $3 allows the form of the separated solution to be obtained 
immediately over a wide range of A. Section 5 predicts flow patterns consistent with 
both Matsuura & Yamagata's calculations and Boyer & Davies' experiments, giving a 
scaling for the size of the separated region that reproduces all the qualitative variation 
observed in their experiments. 

The relationships between the various structures and previous work are summarized 
in §6 .  

2. The governing equations 
Consider a homogeneous fluid of density p* and kinematic viscosity v* of average 

depth d* rotating at angular velocity Q* about a vertical axis Oz*, and choose 
coordinates Ox*y*z* fixed in a frame of reference rotating with the fluid. Let the base 
of the container be inclined at a small angle p from the horizontal so that it slopes 
upward in the y* direction. Let a cylindrical obstacle with vertical generators and width 
of order I* occupy the whole fluid depth in the neighbourhood of the origin (see I for 
example). Suppose that at t* = 0 the fluid at large distance is set into uniform motion 
along lines of constant depth at speed U*.  It is noted in I that the four non-dimensional 
parameters 

the Rossby number, Ekman number, bottom slope and scaled depth respectively, are 
sufficient to describe the flow. Further for almost-inviscid flow, where E, Ro, and /3 are 
small, motion is two-dimensional with horizontal velocity components given by the 
geostrophic relations 

where 2p*U*Q*l*$ is the deviation of the pressure from its equilibrium value. The 
flow is governed by the equation for the vertical component of relative vorticity, 

(2.3) 

Here t is time scaled on Q*, all lengths have been scaled on I* and velocities on U*.  
The parameter 7 = is the scaled Ekman spinup time and 

Ro = U*/sZ*l*, E = v*/Q*d*2, tan/3, d = d*/ l* ,  (2.1) 

U = - $  y, = $,,, (2.2) 

5 = u, - uy = V", 
+A(& + vcy) + av + 5 = 0. 

Equation (2.3) follows from the full Navier-Stokes equations in the formal limit 
tan/3+0, Ro+O, E+O with a, A, d fixed. In this limit the Reynolds number 
U*l*/v* = Ro/d2E is infinite and the flow is effectively inviscid. The sole viscous effect 
is destruction of vorticity by Ekman pumping represented by the final term on the left- 
hand side of (2.3). Horizontal viscous effects are absent from the bulk of the fluid and 
the flow satisfies the usual inviscid impermeability conditions on solid boundaries. 
Vertical boundary layers within which the horizontal viscous terms are important form 
against solid boundaries. These layers and their possible separation are discussed in  
greater detail in 95. 

The sloping-bottom configuration is equivalent at leading order to the p-plane 
approximation in geophysical flows where the depth is constant, and the flow is taken 
to be rotating at the dimensional rate iu* +p*y*). The sole change is the replacement 
of tanp by P*d*/f* and Q* by !J*. The Oy-direction is then northward and Ox 
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eastward. When the obstacle is a circular cylinder the impermeability and far-field 

(2.5) 
conditions become 

(2.6) 
where the positive sign corresponds to westward flow at large distances and the 
negative sign to eastward flow. 

This paper considers steady solutions of (2.3), in particular asymptotic solutions in 
the limit of weak Ekman pumping, a 9 1. These structures are supported by numerical 
integrations of the initial value problem for (2.3) subject to (2.5), (2.6) and the 
condition that the flow is irrotational initially. The numerical method consists of 
introducing an outer sidewall at y - W 9 1, mapping the resulting variable-width 
channel to a constant-width channel and treating this simpler domain in Cartesian 
coordinates. The vorticity equation (2.3) is integrated forward in time using a modified 
AD1 method and at each time-step the resulting Poisson equation for the 
streamfunction is solved by cyclic reduction. A radiation boundary condition is applied 
far upstream to allow the most slowly decaying mode to propagate out of the domain, 
and far downstream the flow is taken to decay exponentially towards uniform flow, 
with the only modification here being a straightforward change to the radiation 
boundary conditions to make them appropriate for westward flows. Further details of 
the method and discussion of the radiation condition and decay rates are given in I. 

$ = 0 (x2+y2 = 1 , l >  O ) ,  
v$4 -+ (0, f 1) (x'+ y2 + 00, t > O ) ,  

3. Westward flow 

For slow steady flow with h 4 min(a-', 1) the vorticity equation (2.3) reduces to 

whose exact solution subject to (2.5) and (2.6) for westward flow is 

3.1. Slow flow ; a arbitrary, h small 

V2$ i- a$., = 0, 

$ = y - 2 exp ( - ;ax)  C nZn($z) [Kn(~ar) /Kn(+a)]  sin no, 

(3.1) 

(u 

(3.2) 

where r and 8 are the usual polar coordinates. Solution (3.2) reduces to potential flow 
in the limit a+O when the p-effect is weak. Figure 1 gives streamline patterns for 
a = 1 and 32. As a increases and viscosity becomes less important in the bulk of the fluid 
a stagnant region appears and grows downstream of the cylinder, the WBL in front of 
the cylinder thins and the shear layer matching the wake to the undisturbed flow also 
thins and lengthens. The remainder of this paper concentrates on the weakly viscous 
limit of a B 1. Viscous effects are thus weak outside layers thin compared to the 
cylinder diameter. A full discussion of the asymptotic properties at large a of the series 
in (3.2) follows from the methods introduced by Waechter (1968) in discussing the 
motion of a cylinder in a conducting fluid. The series analysed there and described 
further in Waechter & Phillips (1985) for flow in unsaturated soil is the &derivative of 
(3.2). A related series also appears in the discussion in Hide & Hocking (1979) of flow 
within a sliced cylinder. For present purposes, the asymptotic results of Foster (1985) 
are sufficient. 

n-1 

On scales of order the cylinder diameter the flow is purely westward with 

0, 
y ,  otherwise. 

x < -(1 -y2)f,IyI < 1 
(3-3) 

The flow is unperturbed approaching the cylinder from the east. Incident streamlines 
are turned within a boundary layer of thickness a-' on the leading half of the cylinder 
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FIGURE 1. Streamline and vorticity patterns for linear westward flow past a circular cylinder. (a) 
a = 1 ,  (b) a = 32. The streamline interval in this and all streamline patterns except figure 7 is 0.05. The 
vorticity contour interval is 0.05 in (a) and 2 in (b). 

to form northward and southward WBLs each carrying by ( x ,  y )  = (0, f 1) the unit flux 
incident on the cylinder between y = 0 and y = t. 1. It is here that with increasing flow 
speed advection first becomes important and these nonlinear effects are discussed in the 
remainder of this section. The fluid from the WBLs passes through shoulder regions at 
(0, & 1) of dimensions a-: x a-f, spreading to form a mass source for shear layers 
stretching along y = I in x <,O.  These layers carry unit flux, and for - x  of order 
unity have thickness of order a-2. The two layers have identical structure. In particular 
the layer about y = 1 is governed by the parabolic equation and leading-order (in a-’) 
boundary condition 

$Ji+$, = 0 ( - x  > O), (3.4) 

(3.5) 
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Shear layer 
a x  1 

..... ... .. Shear layer, 1 x ad 

Shoulder region, a-4 x a-i 
..... 

WBL, 0c-l x 1 

FIGURE 2. A schematic diagram of the various linear ( A  = 0) flow regimes and their sizes in the 
asymptotic limit of almost inviscid flow, a % 1. All fluid incident on the cylinder between y = 0 and 
y = 1 is turned by the WBL to pass through the shoulder region and k, emitted through a source of 
unit strength into the spreading shear layer, which is of thickness a-5 for -x  of order unity but 
spreads to  have unit width and merge with the equivalent layer about y = - 1 when - x  is of order 
a. 

where 9 = d ( y -  1) and - x  is a time-like variable. The layers spread with increasing 
--x and merge for --x of order a (figure 2). Foster (1985) notes that the treatment of 
the source and merging regions can be combined by introducing X = a-’x so that 

$‘yg+$x = 0 (-X> 01, (3.6) 

It is shown in succeeding sections that with increasing flow speed the equations 
governing the shear layers remain unaltered but the boundary conditions (3.9, (3.7) 
change and hence the flow in the layers is altered. 

3.2. Stagnation-point JIow in the western boundary layer 
Close to the forward stagnation point at (x, y )  = (1,O) the cylinder is locally planar and 
the oncoming flow near the centreline y = 0 is uniform. The governing equation (2.3) 
in this region has a similarity solution of the form 

$ = Y F W ,  (3 * 8) 

provided A(F’F‘-FF”)+F’+aF= 01, (3.9) 

where F(0) = 0 and F( 00) = 1. The system has the exact solution 

F(x) = 1 - exp ( - x/6), (3.10) 

provided a6*-6-h = 0. (3.1 1) 

This gives a boundary layer of thickness 6 > 0 with 

6 = [ 1 + (1 + 4aA)i]/2a. (3.12) 

The solution exists for all values of the flow speed A. In addition to giving the local 
solution for flow near the forward stagnation point in westward flow past a cylinder, 
(3.8)-(3.12) give the complete solution for westward flow towards a planar wall at 
x = 0. The uniform westward flow splits, turning to form northward and southward 
boundary jets which entrain fluid at a constant rate as they move away from the 
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stagnation point. Their thickness S remains constant and so the velocity in the jets 
increases linearly with distance from the stagnation point. For large a and h < a-l the 
layer thickness 6 - a-', the layer thickness in linear flow. The layer thickens with 
increasing flow speed A although remaining of order a-l for A - a-l < 1. For h of 
order unity 6 is of order or-;, much thicker than the linear layer. For almost inviscid 
flow where h - a % 1 the layer has thickness of order unity and westward flow past a 
cylinder turns on scales of order the cylinder diameter. The limits can be combined by 
introducing 

6 = (A/a) t  = RO/P ,  (3.13) 

the Rossby wave scale (the reciprocal of the wavenumber K in I) determined by /I and 
the flow speed. Once h is of order a-l or larger the boundary jets have thickness of 
order 6. The three distinguished limits A - a-', h - 1, h - a are described in the 
following subsections. 

The second root of (3.11) is negative giving a detraining eastern boundary layer of 
thickness 

-6 = [(I +4ah$- 11/2a. (3.14) 

This layer depends on advection for its existence, having thickness of order h for 
h 4 1 and thickness of order b once h is of order a-l or larger. It is shown in H3.4, 3.5 
that this flow appears at the rear stagnation point of the cylinder for h % a-l. 

These stagnation-point solutions relate closely to general boundary-layer solutions. 
At the outer edges of the boundary layers the flow deviates locally only slightly from 
uniform flow. Linearizing about this uniform flow gives precisely solution (3.10). The 
values of 6 give the asymptotic form of the outer boundary-layer structure and, in 
particular, the entraining WBL corresponding to (3.12) can match an arbitrary 
incoming flow. This point is discussed further for detraining layers in 44.1. 

3.3. TheJIow$eld for  h - a-',a b 1 
With increasing flow speed the advection of vorticity first becomes important in the 
WBL which becomes nonlinear for h - a-', as Foster (1985) notes for eastward flow. 
In the layer the vorticity equation (2.3) becomes 

&titt + fito) + t+ 8 cos e = 0, (3.15) 

where n = ah ,  6 = a(r- 1). The velocity components in the r- and &directions are 

(3.16) 

and the vorticity has the single component, t= 8,. Values of 8 , to f  order unity thus 
correspond to azimuthal velocities of order a % 1 and vorticuty of order a*. As noted 
in $3.2 the asymptotic form for the outer edge of the layer can match an arbitrary 
entraining outer flow. The layer thus satisfies the zero-normal-flow and far-field 
conditions 

$(OY 6)  = 0, $(a4 6)  = $,(a (3.17) 

where $m(f3) is the streamfunction value at the outer edge of the layer. Here 

$,(@ = sin 8, (0 < 8 < in). (3.18) 

Since the flow field for large 6 is known completely, (3.15) can be integrated once 
directly to yield 

~ ( u ' i i ,  + aa,,) + D + $ cOS 0 = $,(el COS e. (3.19) 

Equation (3.19) can be integrated further most straightforwardly by introducing a 
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L = O  I 

0 b 
8 

FIGURE 3. The scaled tangential velocity u' against the surface of the cylinder when = a/\ is of order 
unity. The velocity is plotted as a function of 8 from the front stagnation point at 8 = 0 to the 
shoulder region at 8 = in. For x < f the velocity vanishes at 0 = $K and the end of the WBL is like 
stagnation-point flow. However for h > t, u' is non-zero and fluid from the WBL continues as a 
narrow boundary jet. 

Von-Mises transformation from (&8) to ($, 8) as in Foster (1985) and 11. Along lines 
of constant $, (3.19) reduces to the ordinary differential equation 

hijije + ij + + cos 8 = $ m ( ~ )  cos 8, (3.20) 

giving ij as a function of 8. The far-field condition (3.17) shows that the incident 
streamline with $ = $, (0 < $, < 1) originates along 8 = 8, = sin-' $,. At large 
distances the flow is uniform and so ij vanishes. Hence the integration of (3.20) along 
the streamline $ = $, starts at 0 = 8, with initial condition ij = 0 and proceeds with 
increasing 8 to the end of the layer at 8 = in. Figure 3 gives, for various values of the 
oncoming flow strength h, the velocity ij at the surface of the cylinder obtained by 
integrating (3.19) along $ = 0 away from the forward stagnation point. The azimuthal 
velocity ij vanishes at 8 = in provided h < f but is non-zero there for h > f .  This 
difference changes the whole local structure of the solution. The two forms are 
discussed in the following subsections. 

3.3.1. Theflowfield for h = ha < f ,  a % 1 
As h increases from zero the WBL retains the same general form as the linear layer 

of 6 3.1. The layer entrains fluid from the incident uniform stream and carries it round 
the cylinder until the layer ends at 8 = in. The linear solution on this scale at the layer 
end is locally like stagnation-point flow as the WBL of thickness a-' expands to join 
the shoulder region of thickness a-i before passing to the shear layer about y = 1 .  The 
nonlinear layer is not so restricted. Equation (3.20) requires only that on each 
streamline 

i j (Xi j0+ 1) = 0, (8 = in). (3.21) 

Hence either 6 vanishes and the flow is locally stagnation-like or = - l / x .  For 
h < a a stagnation solution can be obtained similarly to that for eastward flow in Foster 
(1985) by seeking a solution of the form 

$ = G(@ - 8) 5). 
Substituting in (3.15) gives 

- ~ ( G ' ) * + G ' + G  = 1 ,  

(3.22) 

(3.23) 
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FIGURE 4. Streamlines for flow in the WBL. (a) I\ = f. The azimuthal velocity v' vanishes on each 
streamline, the end of the layer is locally stagnation-like and all fluid from the WBL spreads to pass 
through the shoulder region and enter the shear layer about y = 1. (6) x = 1. The azimuthal velocity 
vanishes at the layer end on streamlines with $ 2  *s = 0.75 and the outer flow is stagnation-like with 
one quarter of the WBL fluid spreading to pass through the shoulder region and enter the linear shear 
layer. Fluid on streamlines with $ < $s continues onward through the shoulder region as a thin jet. 
The separating streamline $ = gS is thickened. 

with G(0) = 0 and G( 00) = 1 .  This has the solution 

G = 1 +(S2-  1)/4h (0 < S < l), (3.24) 

with S given implicitly by 

(3.25) 1-s - , = - (+x-e)t  (A ,< +). S-(l-4h)f+log 
1-(1-4A)r 

In this solution vanishes on each streamline at the end of the WBL. Figure 4(a)  gives 
streamlines for A = + calculated by integrating (3.20) to give v' as a function of 6 and 
then evaluating 

(3.26) 
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to obtain the displacement of the streamline $. This pattern is typical of flows for 
x < with all entrained fluid expelled at the end of the layer through the stagnation 
flow. 

Fluid from the WBLs passes through the shoulder regions to enter the shear layers 
about y = f 1 which are of the same form and carry the same mass as in linear flow. 
Except for the interior dynamics of the WBL the flow is unchanged from linear flow. 

3.3.2. T h e g o w j e l d  for h = ha > t a % 1 
Once h > a solution (3.25) is no longer valid. The WBL carries more fluid than can 

be expelled through the stagnation point into the shoulder region. Figure 4(6) gives 
streamlines of flow in the WBL for h = 1. For this value of 1 the streamline )cis = 0.75, 
thickened in figure 4(b), divides the layer into two regions. On streamlines in the outer 
region where $ > $s the tangential velocity vanishes as 8+ in  and a stagnation 
solution remains valid. On streamlines in the inner region where $ < $s the tangential 
velocity is non-zero at 8 = fn  and no stagnation solution exists. 

The general structure of the outer region for h > can again be found by looking for 
a solution of form (3.22) satisfying (3.23) with however the boundary condition 
G(0) = kS, where as above $s is the non-zero value of the streamfunction along the 
separating streamline at the edge of the continuing jet. A solution of form (3.24) exists 
with S given by 

S+ log( l  - S )  = - ($n-O) t+c ,  (3.27) 

provided G is restricted to the range $s < G < 1, where 

$s = 1 - 1/4h, (3.28) 

and the constant of integration has been evaluated by requiring the streamline G = $s 
to follow the curve (in - 0) 6 = c. Since c = G-l($s) -+ G-'(O) = 0 as h + this solution 
merges with the solution in $3.3.1 as required. Equation (3.23) determines the velocity 
along $cis near 8 = in as ij = - $E = -(in - 8) G' = -(in - 69/21, which vanishes as 
0-+$ as expected. 

The tangential velocity on inner streamlines where $ < $s remains non-zero as 
0 .+in (satisfying the alternative condition that 1 +Xi?,, vanishes at  the end of the layer) 
and so a fraction $s of the fluid entrained into the WBL continues onwards. Only fluid 
following the outer streamlines enters the shoulder region and spreads to form the start 
of the shear layer about y = 1 ; the rest stays within a layer of thickness of order a-' 
against the cylinder. This layer is governed once again by (3.15) and forms a detraining 
jet bound to the rear of the cylinder. The initial velocity profile v ( $ )  of the jet at 
8 = in is given by the exit velocity profile of the continuing fluid from the WBL and 
must be determined numerically in general. The function a($) is positive for $ < $s 
and vanishes for $ > $s, however the displacement of the separating streamline $$ 
increases without limit as S++n and so ij(0 > 0 for all 

Information can propagate westwards from the jet and so, unlike the WBL, the far- 
field flow is not known completely a priori. The boundary conditions on the layer are 
thus 

$(0,8) = 0, u'(oo,O) = 0 (fn < 8 < n). (3.29) 

As usual for a jet the precise form of the exterior flow, and thus the function $m(0), 
are determined by the solution of the boundary-layer equation, in this case (3.20). 
Numerical solutions are obtained for this equation by transforming the independent 
variables from (0, $) to (8, q5) where q5 = $/$=(0), so that the domain of q5 is fixed at 
0 < q5 < 1 ,  even within the range 0 > in where $=(8) is undetermined. Equation (3.20) 

> 0 at the start of the jet. 
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0 n 

FIGURE 5. The streamfunction values a t  the outer edge of the detraining eastern boundary jet as a 
function of the azimuthal angle 8 from the stagnation point a t  B = 0 thr_ough the shoulder region a t  
8 = to the rear stagnation point a t  H = A. No fluid continues for A = a and so @,(8) = 0 for 
8 >, :A. With increasing A more fluid enters the jet which however for finite h always terminates before 
8 = A. For % 1 the jet starts with unit flux and continues to 8 = n with @.JO) = sin8 for all 
o G e ( A .  

25 

E 

0 

I i. = 
FIGURE 6. Streamlines of the complete structure for the layers of thickness a-1 when 2 = 1. One 
quarter of the fluid entering the WBL leaves through a singular stagnation point flow a t  the shoulder 
region and the remaining three-quarters detrains from a finite-length eastern boundary jet. 

transforms from an ordinary differential equation into a hyperbolic partial differential 
equation subject to inflow boundary conditions at q5 = 1 for 0 ,< 0 < ~ I I .  This system 
was solved using second-order finite differences, based on the box method, with the 
value of $, determined iteratively in 0 > in using Newton's method to ensure that 
v' = 0 at q5 = 1. The values of ii on q5 = 0 for 0 > F, which form a boundary condition 
on the transformed equation, were obtained by integrating along 4 = 0 from 0 = in. 
Figure 5 gives $,(0) from these calculations for various h > a, showing the jet 
terminating before 0 = II at a point which moves further round the cylinder as h 
increases. Figure 6 gives the flow pattern for the combined WBL and eastern jet at 
h = 1 showing the expected singularity at 8 = ~ I I  for large values of [. One advantage of 
using the Von-Mises form (3.20) is that this singularity is resolved more easily. 

Once $J0) is determined the structure of the shear layers about y = +_ 1 and their 
merging at large --x is fixed. In particular, for X = 01-I-x and y both of order unity the 
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FIGURE 7. The streamline pattern for X = cclx of order unity and = 8. Fluid passing through the 
shoulder region forms a point source of strength & at (0,l)  and fluid detraining from the eastern 
boundary jet gives a distributed source of total strength & along (O-,y), 0 < y < 1. The streamline 
interval is 0. I .  
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Shear layer, 1 x a-i 

Shoulder region, a-i x a-I 
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FIGURE 8. The postulated structure for attached flow when > i. A fraction 1/4A of the fluid 
entrained into the WBL spreads in the shoulder region to enter the linear shear layer. The remaining 
fraction 1 - 1/4i of the WBL fluid continues along the cylinder as a finite-length detraining eastern 
boundary jet. The flow immediately outside the jet on the scale of the cylinder is no longer stagnant, 
being determined by (3.30). 

merging layers are given by the solution of (3.6) that is odd in y and satisfies the initial 
condition 

(3.30) 

Here $. , (~x)  = $s = 1 - 1/4h so the discontinuity in $(O, y )  at y = 1 represents a 
source of strength 1/4>. The solution can be written 

Y(l) exp (PX) sin ly dl, 

y) - y] sin ly dy. 

(3.31) 

(3.32) 

For h = f no fluid enters the eastern boundary jet, @E = 0, the source at (0,l) has unit 
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FIGURE 9. The streamlines and vorticity distribution from numerical integrations of the full equations 
for a = 32 and A = Q so 2 = 4. The vorticity pattern shows high-vorticity boundary fluid continuing 
round the cylinder region past the shoulder region at 8 = and the streamlines show fluid detraining 
from the short eastern boundary jet which terminates at 0 = 0.7n (cf. figure 5). The vorticity interval 
is 2. 

strength and the flow is precisely the linear flow of two merging layers. As X increases 
less fluid passes through the sources at (0, f 1) and more into the eastern jet. Figure 7 
gives streamlines calculated from (3.31) for X = 8. Fluid passing through the shoulder 
region forms a point source of strength & at ( 0 , l )  and fluid detraining from the eastern 
boundary jet gives a distributed source of total strength 3 over part of the rear of the 
obstacle. Figure 8 summarizes the structure presented here for attached flow when 
X > a and figure 9 gives the streamline pattern and vorticity distribution from numerical 
integrations of the full equations for a = 32 and A = (so h = 4). The vorticity pattern 
shows the high-vorticity boundary fluid continuing round the cylinder past the 
shoulder region at 8 = in and the streamlines show fluid detraining from the short 
eastern boundary jet which terminates at 8 x 0 . 7 ~  (cf. figure 5). For h % 1 no fluid 
passes through the source and all fluid enters the jet, which then extends to 8 = ~t. The 
solution then takes the particularly simple form given in the following subsection. 

3.4. Theflow field for h N 1, a % 1 
For faster flows where h is of order unity (3.12), (3.13) show that the boundary layer 
at the front stagnation point thickens to have width 6 = (h/a)f = b for a 9 1.  The 
WBL and eastern boundary jet thus also have thickness b and satisfy the inviscid form 
of (3 .19,  

(3.33) ii&+ i ~ g  + BCOS 8 = 0, 

where ii and B are again polar velocity components defined as in (3.16) but with 
,$ = ( r -  l)/b here. This scaling matches with that of 43.3 when h - a-’. Equation (3.33) 
expresses the conservation of potential vorticity in the layer. The absence of viscous 
terms allows the far-field condition (3.17) to be applied to both layers, specifying the 
complete exterior flow for 0 < 8 < n. Integrating across the layer gives 

m t + m O + $ ~ ~ s 8  = ;sin28 (0 < 8 G n), (3.34) 

which has the solution $(& 8) = H(5) sin 8 provided H satisfies the ordinary differential 
equation 

- H H ” + H ’ H ’ + H  = 1 ,  (3.35) 
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FIGURE 10. The streamlines and vorticity distribution for the ‘Long’s model’ solution (3.39) with 

b = I .  The vorticity interval is 0.05. 

precisely the boundary-layer form of (3.9) in a layer of thickness ad.  The solution for 
the whole layer is thus 

$(r,  0) = { 1 - exp [ - ( r  - l ) / b ] }  sin 8. (3.36) 

All the oncoming flux with 0 < y < 1 enters the WBL and is carried round the cylinder 
to be expelled through the eastern boundary jet. Outside these layers the flow is 
completely uniform. 

3.5. TheJIowJield for h % 1, ~ 1 1 %  1 
For large h and a the flow on scales of order the cylinder diameter is governed by the 
conservation of potential vorticity. Equation (2.3) becomes 

(3.37) 

where the Rossby wavelength scale b is now of order unity. For uniform upstream flow, 
integrating (3.37) along streamlines from x % 1 (where $ + y )  gives the linear ‘Long’s 
model ’ problem 

VZ,,) - b-2$ = -6-2 Y .  (3.38) 

Solutions of (3.38) consist of a uniform stream plus a contribution near obstacles 
decaying exponentially with scale b. Thus, for all b the flow on the viscous lengthscale 
01-l is uniform and Ekman pumping is negligible everywhere. For h of order unity b is 
small and the flow consists of an entraining WBL and detraining eastern jet, both of 
thickness b, as in the previous subsection. For large b the boundary flow weakens, the 
flow turns on scales of order the obstacle diameter and as b + m  approaches 
irrotational flow. The streamfunction for flow past a circular cylinder, satisfying (3.38) 
and the impermeability condition $ = 0 on r = 1 is 

(3.39) 

similarly to Long (1952). Figure 10 gives streamlines from (3.39) for b = 1. These are 
indistinguishable from streamlines (not shown here) for h = a = 32 obtained by 
integrating the full nonlinear equations. 

$ = [ r -  K,(br)/K,(b)] sin 8, 
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FIGURE 11. A schematic diagram of the asymptotic structure for westward flow past a ‘cigar tube’ 
obstacle. The structure f?r all values of = aA greater than 4 up to x of order az is summarized in 
terms of x and b = (A/a)i. For - 1 a detraining jet of length of order unity runs along y = 1 .  For x $ 1 the jet thickens and lengthens. Over distances of order unity it conserves potential vorticity as 
in Long’s model. Once x is of order a* the southern boundary jet and the two linear shear layers merge 
to form a single nonlinear jet of thickness of order the obstacle width and length of order a % I .  

3.6. Longer obstacles 
The analysis above centres on obstacles of aspect ratio of order unity in general and 
for a circular cylinder in particular. Flow patterns for more elongated obstacles differ 
in some of the parameter regimes. Consider first westward flow past the ‘cigar tube’ 
with boundary 

y =  ( *(l-xz), o < x <  1 (3.40) 

Linear flow and nonlinear flow with x ,< + are unchanged save solely that the shear 
layers at y = f 1 spread only outwards into Iy( > 1. The dynamics change for h > i. 
The continuing fluid from the WBL can no longer form a detraining eastern jet and 
instead forms (in y > 0) a southern boundary jet along y = 1,x -= 0, so called here as 
the jet runs along a southern boundary. The dynamics of this jet are discussed below 
and apply to any jet running precisely (for a B 1) east-west or west-east and thus to 
jets along northern boundaries also. The flow structure in the three distinguished limits 
of increasing flow speed > t, h - 1 and h - a can be compressed to the single 
structure illustrated in figure 11 by noting that the WBL has thickness of order b in 
each of these limits. Fluid from the WBL thus forms a jet of width b carrying flux of 
order unity. The scalings within the jet are equivalent to those introduced for mass- 
carrying layers in $3.4 with y = (y- l ) / b ,  ii = - $g = bu, and additionally x = x/xi. 
Integrating (2.3) across the layer gives 

iiiiz + Fii# = - ii, (3.41) 

where the constant of integration is evaluated by noting that since u is of order unity 
outside the layer, iivanishes to leading order as p-t 00. This is the equation for ‘bottom 
frictional’ jets discussed by Gadgil (1971) and for ‘wide’ jets by Page & Eabry (1990). 
It has the Von-Mises solution 

li = -X+ii0($), (3.42) 
where go($) is the velocity profile entering the jet from the end of the WBL. Equation 
(3.42) shows that ii decreases linearly with x along each streamline so the jet terminates 
after a finite distance at the position js, = ~ ~ ( 0 )  (where both of these quantities are 

0, l < x  

* 1, x < 0. 

21 FLM 251 
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FIGURE 12. The length (in cylinder radii) of both the southern boundary jet along an extended 
obstacle of $3.6 and the separated jetin viscous flow past a bluff body of $5.1. The jets are absent for 

< a and their length approaches As for A $ 1. This structure applies when a % 1 and h < a, i.e. 
A < a2. 

/i 

negative). Figure 12 shows the variation with h of the length of the jet in units of 
cylinder radii, i.e. - x$io(0) = Xii(0, an), where ii follows straightforwardly by 
integrating (3.20) along $ = 0 from 0 = 0 to in. The jet is absent for < and, as 
expected from the discussion of the southern boundary jet in 11, increases smoothly 
with h for h > f .  The large-X behaviour follows from noting from (3.36) that ii + 6-’ as 
h -+ 00 so the jet length approaches hi. The first stages of this asymptotic behaviour are 
apparent in figure 12. 

lies within the linear shear 
layer. The value of $ at the outer edge of the jet (where P = 0) is given implicitly 
by the solution of 

and (3.43) then forms the boundary condition along y = 1 for the shear layer. This 
structure shows particularly clearly when n is sufficiently large that the entire WBL 
flow enters the jet. Then (3.39) gives Po(@) = $- 1 so (3.42) gives @ = (1 +@(1  -e-#) 
and (3.43) gives $m = 1 +X. The jet terminates when R = - 1. Jets for smaller h 
terminate earlier. 

The shear layer forced by the jet outflow has length of order hi and thus, from (3.1), 
width of order d. It is governed by (3.4) (with x replacing x and y’ = ( y -  l)/bi 
replacing 9)  subject to the boundary conditions 

This nonlinear jet of width y- 1 - b and length - x - 
&($m) = X, (3.43) 

@(O, Y7 = 1, @@, 0) = !bm(X), (3.44) 

and a solution similar to (3.31), (3.32) follows directly. On the lengthscale of X = x / a  
the layer is unaltered from the corresponding shear layer in linear flow. 
- The structure of figure 11  holds for a < x < a’. For faster flows, where A - a % 1 (so 
A - a’, b - l), the WBL has thickness of order unity, governed by the conservation of 
potential vorticity through Long’s model, and the southern boundary jet and shear 
layers merge to form a nonlinear, detraining jet of thickness unity and length of order 
a governed by equation (5.1) of I. Solutions of this latter equation have a wider 
significance for flow over long obstacles and will be discussed elsewhere. The layer 
structure for obstacles with east-west boundary sections of finite, non-zero length 
follows directly by combining the ‘cigar tube’ structure discussed here with the 
detraining eastern jet of R3.3-3.5. 
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4. Eastward flow 
Eastward flow is governed by (2.3)-(2.6) with the negative sign chosen in (2.6). For 

slow steady flow where a is arbitrary and A < min (a-', l), the vorticity equation (2.3) 
reduces to (3.1) as in westward flow. The solution with uniform eastward flow at large 
distance is thus given by multiplying solution (3.2) by - 1. The pattern of streamlines 
is unaltered. Oncoming flow displaced into shear layers about y = f 1 passes through 
shoulder regions at ( x , y )  = (0, f 1) and enters a detraining WBL on the rear of the 
cylinder. 

4.1. Thejlow near the rear stagnation point 
The stagnation point at ( x , y )  = (l,O), which for westward flow is an entraining 
forward stagnation point in a WBL, is in eastward flow a detraining rear stagnation 
point. The full governing equation (2.3) again has a solution of similarity form (3.8) 
where F here satisfies (3.9) with a replaced by -a on the right-hand side. This has the 
exact solution F(x) = - 1 +exp ( - x / 6 ) ,  satisfying the far-field condition F(m) = - 1, 
provided ad2 - 8 + A  = 0. The two roots for 6 are 

6, = [1 +(I  -4a~)i1/2a, 6, = [ I  - ( I  -a~)i]/2a, (4.1) 

which, as required, are both positive and real for = a A  < f .  For weak advection 
(A -+ 0), 6, +. a-2 and 6, + 0. The layer that evolves smoothly with increasing flow speed 
from the linear layer is thus the layer of thickness S,.f As X increases, this layer thins 
and the simple stagnation-point solution vanishes as X passes through f and the roots 
(4.1) become complex. The roots continue to give the oscillatory behaviour of the outer 
part of the boundary layer and it is the presence of two roots that allows the unusual 
boundary condition at the exterior of the nonlinear WBL in $4.2. Although the layer 
is detraining, which usually precludes specifying precisely the outer flow field (as in the 
eastern jet of §3.3.2), the presence of two decaying solutions of unspecified amplitude 
allows the exterior streamfunction itself to be specified as for an entraining boundary 
layer (like the WBL of $3.3). 

Since both roots (4.1) have positive real part, the similarity form does not yield a 
stagnation-point solution for the flow at the forward stagnation point (x,  y )  = (- 1,O). 
In contrast to the detraining eastward jet in westward flow, the absence here of any 
decaying solutions for the outer regions of the boundary layer precludes an entraining 
eastern boundary layer irrespective of the strength of the oncoming flow. 

4.2. Thejlow field for A - a-l, a 4 1 
As noted in $3.3 and I nonlinearity first becomes important in the WBL for X of order 
unity. The shear layers remain linear and the shoulder regions turn the oncoming flow 
to form the start of the WBL. The layer is again of thickness o1-l and analogously to 
$ 3.3 is governed by 

h%,+i,+@se = -isin28, (4.2) 

@(o,8) = 0, @(m,e) = -sin8 (0 < 8 <in). (4.3) 

The solution of (4.3) for h < f is discussed in Foster (1985) and I and follows directly 
by integrating (4.3) along streamlines to obtain C($, 8) and then evaluating (3.26) to 
obtain the displacement of streamlines. Provided < f all fluid entering the WBL from 
the shoulder region detrains by the rear stagnation point at 8 = 0. 

For X > f this is no longer the case and the azimuthal velocity -ij remains positive 

t This root is given in 11. However 8 in I1 equals S;l here and (14) in I1 should have 8 replaced by 
8-I. 



620 E. R .  Johnson and M .  A .  Page 
................... ............ Shear layer, 1 x a-i ..... .......... / 

..... Shoulder region, a-i x a-i .... 
".. '.. / 

.............. 1.; ..... 
. . . .  ..:.. ,WBL, a-' x 1 ..*. 

Shear layer i lnertial corner region, OL-' x a-' 
lnertial boundary current, a-1 x a-i a x  1 

... 

FIGURE 13. A schematic diagram of the asymptotic structure of eastward flow past a cylinder 
when A = a A  is of order unity but greater than ;. 

as 8 + 0 on those streamlines closest to the cylinder. Simple stagnation flow at 8 = 0 
breaks down. The flow at a rear stagnation point when h > a is examined in detail for 
a model problem in I1 where an asymptotic structure is presented supported by 
accurate numerical computations. Figure 13 gives a schematic diagram of this 
structure, modified for the present geometry. The continuing flow from the WBL is 
turned in a square inertial region of dimension a-l x 01-l where the governing equation 
is the conservation of relative vorticity. The incoming southward velocity profile is 
simply turned to give the outgoing eastward velocity profile for a detraining southern 
boundary jet of dimensions 1 x a-' along y = 0. The eastward jet, governed by 
equations equivalent to (3.41) and (3.42), has length of order h and forms the southern 
boundary condition for a shear layer of dimensions 1 xa - i  governed by (3.4) that 
returns fluid to the west. This returning fluid rejoins the WBL in an inertial boundary 
current of dimensions a-f x a-i governed by the conservation of potential vorticity. 

Unlike the asymptotic structure for westward flows in g3.4 and 3.5, the structure for 
eastward flows does not remain locally determined if the speed increases so that A 
becomes of order unity or larger. This appears to be closely related to the upstream 
influence problem discussed in 1. Similarly, no new structure appears for elongated 
obstacles like those in $3.6. For obstacles like (3.40) corresponding to eastward flow 
over an abrupt southward step the sole difference from flow past a cylinder is that the 
upstream linear shear layers spread into only lyl > 1. Flow over a northward step is 
even simpler: the flow is displaced northwards over distances x of order a without 
forming flux-carrying shear layers, and remains linear for speeds up to those where 
h - a % - l .  

5. Viscous separation 
This paper considers the limit of Ekman and Rossby numbers vanishing with 

A = Ro/2Ei fixed. In this limit Ekman pumping by Ekman layers on the upper and 
lower boundaries gives the leading-order viscous effect on an otherwise inviscid 
motion. Horizontal viscous effects are negligible in the bulk of the flow, becoming 
important only within thin boundary layers on the vertical sides of obstacles. Provided 
these layers remain thin and attached to the obstacles they do not affect the flow. If the 
layers separate then the leading-order flow in the neighbourhood of the obstacle alters. 
A review of results on the separation of Ef layers on anf-plane is given in Page (1987). 
In particular Page (1982) notes that attached flow can be expected on an f-plane 
provided 
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du 
ds 

A L 2 - 1  

at each point on the boundary. Here un is the tangential velocity and s is the distance 
along the boundary in the flow direction. The discussion in Page (1987) and the 
numerical solutions for f-plane flows in Becker (1991) show further that the shape of 
the separated region can be obtained by choosing the region boundary so that equality 
holds in (5.1) at each point on the boundary. 

The linear solutions ( A  = 0) of 53.1 and nonlinear solutions of 53.3 for h < t can 
be regarded as separated flows. An Ef layer forms on the incident side of the cylinder 
with the fluid accelerating before separating at the shoulder regions at 8 = &:n. No Ef 
layer is required on the western side of the cylinder as the flow is stagnant there to 
leading order, and no Ei layers are present within the linear shear layers as the leading- 
order flow is arbitrarily differentiable there. Once h > : in the inviscid solution of $3.3.2 
some fluid enters an eastern boundary jet along the rear of the cylinder. The flow 
decelerates within this jet and may separate. This is considered in the following 
subsection. 

5 .  I .  A structure for westward separatedflow 
While the Ea layer remains attached to the cylinder it brings the non-zero slip velocity 
along $ = 0 at the inner limit of the mass-carrying layer of 53.3 to rest at the cylinder 
surface. Suppose the flow is symmetric about y = 0 and the Ef layer remains attached 
in y > 0 from the front stagnation point F until a point S where the layer separates 
tangentially from the cylinder. Denote the path of the separated streamline by SA and 
introduce normal and tangential coordinates rotated through an angle y(s) from Oxy, 
with arclength s measured from S (figure 14a). The Ea layer matches a discontinuity in 
tangential velocity across SA and a mass-carrying of thickness b matches a 
discontinuity (on the scale of the cylinder radius) in $ across SA. The equation 
governing the mass-carrying layer in these coordinates (with ii = u/a) follows similarly 
to (3.20) as 

(5.2) 

along lines $ = constant. Here $&) is non-zero, specifying the detraining of fluid 
from the layer into the external flow in n > 0. Including the Ef layer viscous terms in 
(5.2) and integrating across the E f  layer at $ = 0 then gives the &plane extension (for 
a >> 1) of the free-streamline condition in Page (1987), i.e. 

hiiii, + ii- $ sin y(s) = - $&) sin y(s), 

along the separated streamline. 
Equation (5.3) can be expected to have two solutions for the tangential velocity uo(s) : 

one, u;(s) say, corresponding to the flow just inside the separated streamline $ = 0 and 
the other, ui(s) say, corresponding to flow just outside the streamline $ = 0 and so 
forming the inner boundary condition of the separated mass-carrying layer. Now u; 
vanishes at the separation point S and ~m is non-zero there for h > a. Equation (5.3) 
thus requires that y vanishes there: the flow separates at 8 = in for all x > t. Now 
suppose that y(s) is positive at some s > 0. From (5.3) this would imply that u; is 
negative there, giving within the separated region an order-unity flow counter to the 
free-stream flow. This flow pattern would differ from the numerical integrations for p- 
plane flows of Matsuura & Yamagata (1986) and the $plane integrations of Becker 
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FIGURE 14. A structure for separated westward flow when 1/4u < A 4 a. (a) The coordinate system. 
Flow enters a mass-carrying boundary layer at the front stagnation point F and separates tangentially 
at S. Tangential and normal coordinates s and n are rotated through an angle y(s) from Oxy, with 
arclength s measured from S. (6) The postulated structure in y > 0. Fluid from the WBL passes into 
a finite-length jet lying along y = 1. The jet detrains into y > 1 leaving the region immediately behind 
the cylinder stagnant. This detrained fluid spreads into y < 1 within a shear layer of length of order 
a of exactly the same tapering structure as the equivalent layer in the linear flows of figures 1 and 2. 
To leading order the length of the separated region is proportional to a. (c) Streamlines for large X 
and 6 = 0.1 on the jet-length scale, x = x/Xi ,  showing for y of order unity the basic flow and the shear 
layer forced by the detraining jet. The cylinder and WBL become the line x = 0, 0 i y < 1 and the 
jettheline - l < k < O , y = l .  
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(1991). It thus appears that y = 0 and u; = 0 along the entire length of the separated 
Ei layer. As a result, the flow is stagnant close to the rear of the cylinder and the 
separated streamline $ = 0 lies along y = 1. 

With y = 0 equation (5.2) is equivalent to (3.41) and the flow in the mass-carrying 
layer along y = 1+ is determined exactly as in $3.6 for the layer along a longer obstacle. 
As there, the structure over the wide range from h > t to A Q a can be condensed to 
a single form. The separated jet has thickness by finite length hu,(O) of order Xi (shown 
as a function of n in fiBure 12), and lies within a linear shear layer of length of order 
Xi and width of order bs. An example of this structure for large h is given in figure 14(c) 
for b = 0.1. Here (3.4) has been integrated subject to (3.43) using the large-h result of 
43.6 that $m 1 = 1 +TI. 

On the scale of X = x / a  the flow field is of precisely the same form as linear flow: 
there are sources of unit strength at (0, & 1) from which fluid spreads to fill the stagnant 
region behind the cylinder (figure 14b). There is no separation bubble as such. 
Unusually, the separated flow on this scale more closely resembles linear flow than 
attached nonlinear flow (where fluid detrains from a distributed source on the rear of 
the cylinder as illustrated by figure 7). Provided h is small compared to a the size of 
the stagnant region is independent of h to leading order and the length of the 
streamline pattern scales on a. For h of order a the various layers behind the cylinder 
merge into a single layer as in $3.6. 

5.2. Comparison with observedJlows 
Experimental observations of separation behind circular cylinders in westward flows 
on a P-plane are reported by Boyer & Davies (1982, called BD herein). BD concentrate 
on determining the variation of the length of the separated region as a function of the 
various non-dimensional parameters describing the flow. They note a difficulty in 
ascribing a definite length to a separation bubble and instead present results for the 
distance behind the cylinder by which dye streaks released separately from the cylinder 
surfaces in y > 0 and y < 0 have converged to within one-fifth of a cylinder radius. The 
structure put forward in $5.1 and illustrated by figure 14(c) shows that even this 
definition is not necessarily robust. The length determined in this manner would 
depend on the value of the streamfunction along the streakline: for the streamline 
$ = e > 0 the distance of approach to the axis y = 0 increases as -loge as 6 + 0. This 
weak dependence on 6 may not be significant in the experiments. 

On the assumption that in different experiments the inner streakline corresponds to 
approximately the same streamfunction value, the eddy lengths observed by BD should 
increase linearly with a provided a is large and A remains small compared to a. The 
parameter definitions in BD differ slightly from those here. In terms of the parameters 
in BD the present parameters become 

a = ,!?HR^o/R(2Ek)iy h = HR^o/R(2Ek)i, (5.4) 

where a hat has been added to symbols used both here and in BD to denote their form 
in BD. In summarizing their results BD note that when westward flow around a 
cylinder separates the length of the separated region: 

(i) increases with increasing R̂ o, 
(ii) increases with increasing ,!?, 
(iii) decreases with increasing RIH,  
(iv) decreases with increasing Ek. 

Two particularly clear plates with reasonably strong P-effect in BD are their figure 
This behaviour is consistent with a separation region proportional to a. 
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5 ( c )  and the westward flow with p = 1 in their figure 26. Both plates show flows with 
the general form of the linear flows of figure 1 as expected. The corresponding values 
of (a,A) are (1.4, 1.8) and ( 3 . 1 , 3 . 1 ) .  These would predict that the separated region in 
figure 26 of BD should be twice as long as that in their figure 5 ( c ) .  The streaklines in 
the two plates do not show this. As noted above the streaklines might follow different 
streamline values; some support for this comes from noting that the separation bubble 
in figure 26(a) appears to be of a similar size to that in figure 26(b) where a x 0.8. It 
should also be noted that a is not large in figure 5(c) so Ekman pumping is as strong 
as vortex stretching there. The thicknesses b = @/a): for the mass-carrying layers in 
the two figures are 1 . 1  and 1.0. These are significantly thicker than the Ea layers, of 
thicknesses ŝ  = d E t / l / 2  of about 0.2 and 0.1 respectively, and so the general theory of 
5 5.1 can be expected to apply. However the mass-carrying layers are not thin compared 
to the cylinder radius and so the description of the wake region in terms of three 
distinct layers is not strictly applicable. 

Among their numerical computations for viscous westward flows Matsuura & 
Yamagata (1986) specifically model some of BD’s experiments. The streamline and 
vorticity patterns of their figure 2 (c)  with (a, A, i) = (1.41,1.77,0.161) to model BD’s 
figure 5(c) ,  show the flow separating at the shoulders of the cylinder and layers 
extending westwards, rather than approaching and joining as in the corresponding 
eastward flow. The slight deviation downwards from the line y = 1 is probably caused 
by the displacement effect in the asymmetric Ef layer. The patterns in their figure 6, 
with (a,A, $) = (15, l O , O . l ) ,  (3,2,0.02) and ( I S ,  1,O.OI) in (a) ,  (b),  and ( c )  respectively, 
are also broadly consistent with the structure presented above, as is their figure 8 which 
shows the wake length increasing linearly with 1 at large Reynolds number. A further 
feature confirmed by Matsuura & Yamagata is the insensitivity to changes in the flow 
parameters of the position of the point of separation in westward flows: the flow 
always separates at the top of the obstacle. 

The structure proposed here differs significantly from the flows postulated by 
Merkine (1980) who assumes that the unseparated solution of (3.39) always gives the 
flow external to the viscous E: boundary layer even when the E: layer solution he then 
calculates separates from the cylinder. His prediction that westward flow separates at 
0 = 1.78 (102’) cannot be considered reliable. 

5 . 3 .  Eastward separatedjow 
Separation in eastward flows is discussed in Foster (1985) and I but determining the 
structure of the separated region is less straightforward than in westward flows. 
Provided n < a the E; layer within the WBL in eastward flow remains attached to the 
cylinder. Once > condition (5 .1)  for attached flow is violated close to the rear 
stagnation point. The flow separates but arguments similar to those in 55 .1  show that 
the separated streamline is no longer restricted to lines y = constant but can slope 
steeply to confine the separated flow to a finite region in the neighbourhood of the rear 
stagnation point. The obstacles treated in I were chosen to be streamlined partly 
because inviscid calculations for such shapes could be expected to closely approximate 
viscous flows with attached boundary layers and separated viscous flows. The general 
structure of the flow outside the separated region remains that of figure 13 with excess 
mass from the WBL forming a southern boundary jet along the axis y = 0. 
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6. Summary 
This paper has considered flow past bluff bodies in both eastward and westward 

flows in the almost-inviscid, infinite-Reynolds-number limit of Ro + 0, E + 0 with 
A = Ro/2Ei fixed. For westward flows a complete structure in the limit of vanishingly 
small Ekman pumping (a 9 1) has been obtained for all strengths of nonlinearity A 
from linear flow ( A  = 0) through to purely inviscid flow conserving potential vorticity 
everywhere ( A  - a 9 1). For eastward flows a complete structure has been presented 
for the regime in which nonlinearity first becomes important ( A  - a-l -g 1). 

One unusual and unexpected result of the analysis of eastward flow is the conclusion 
that a western boundary layer (WBL) in this parameter regime can match any interior 
flow. If the layer is entraining then the presence of a single decaying solution for the 
exterior of the layer shows that the vorticity and mass flux in the layer is determined 
by the exterior flow, i.e. by the entrained fluid. If the layer is detraining then the 
presence of two decaying solutions for the exterior of the layer allows the layer to 
match any specified exterior flow. Thus in this limit, as for linear flow, the WBL is 
passive, simply transferring mass to match the interior flow. 

Horizontal viscous effects in these flows are confined to layers of thickness Ef which 
are thinner than the mass-carrying western boundary layers and their extensions 
discussed elsewhere in this work provided tan $ 6 Ei. If the Ea layers remain attached 
they do not affect the external flow. Once x = aA exceeds some critical value in flows 
past bluff bodies these layers separate. The results in 43 then lead directly to the 
proposed structure for separated flow in $ 5 .  Unlike the wide and spreading separation 
bubbles of non-rotating, infinite-Reynolds-number flows (Smith 1985, 1986 and 
Fornberg 1985), the separated regions predicted here and observed in experiments are 
no wider than the obstacle producing them. 

The present structures demonstrate why Long’s (1 952) theory for westward flows 
differs from both his and Boyer & Davies’ (1982) experiments and from Matsuura & 
Yamagata’s (1986) integrations. Long’s model is at the advection-dominated end of the 
continuous spectrum of almost-inviscid flow development which stretches, with 
increasing flow speed, from the linear flows of figures 1 and 2 through the flows with 
attached detraining eastern boundary jets of figures 8 and 9 to the potential-vorticity- 
conserving flows of figure 10. Since the numerical method used here retains time- 
dependence and allows wave propagation both upstream and downstream, this smooth 
continuum of flows belies Matsuura & Yamagata’s comment that it is westward long- 
wave propagation that accounts for the difference between Long’s model and 
experimental observations. The experiments and viscous numerical flows bifurcate 
smoothly from the almost-inviscid continuum when x exceeds some critical value of 
order unity (i for the circular cylinder) and the Ea layer separates at the shoulders of 
the obstacle to form detached jets, of the same thickness as the WBL, within the linear 
shear layers along lines y = constant. It is viscous separation that accounts for the 
differences. 

In their experimental observations of flow in a spherical shell Fultz 8c Long (1951) 
note that there are velocity discontinuities or vortex sheets on either side of the wake 
behind a cylinder in westward flow whereas there is only one such surface behind a 
cylinder in eastward flow ; comparing the patterns for eastward and westward flows 
with = 0.25 in figure 26 of BD shows the differences clearly. The structures proposed 
here for these flows and illustrated in figures 13 and 14(b) have these properties with 
a single jet along y = 0 in eastward flow and twin jets along y = + 1 in westward flow. 
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