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Low-frequency scattering of Kelvin waves by 
continuous topography 

By E. R. JOHNSON 
Department of Mathematics, University College London, Gower Street, 

London, WClE 6BT, UK 

(Received 19 September 1989 and in revised form 12 March 1992) 

This paper continues the analysis of Johnson (1990, hereinafter referred to as I) of 
the scattering of Kelvin waves by collections of ridges and valleys. General results, 
flow patterns and explicit solutions follow by restricting attention to waves whose 
period is long compared to the inertial period but without the additional further 
simplification introduced in I of approximating general features by stepped 
topography. A simple direct method is presented giving explicit formulae for the 
amplitude of the transmitted Kelvin wave and the scattered topographic long waves. 
A simple but accurate approximation to the solution is also given. The accuracy and 
usefulness of the apparently crude method of 1 are confirmed and a superior method 
presented for choosing the positions of steps in the approximation of general 
topography. Inviscid flows, the effects of weak dissipation and weak stratification, 
the form and relevance of the short-wave field over downslopes, the partition of mass 
and energy flux between the long-wave and short-wave fields and the size and form 
of higher-order effects are also discussed. 

1. Introduction 
The paper continues the discussion of low-frequency scattering of Kelvin waves 

presented in Johnson (1990, hereinafter referred to as I). A Kelvin wave travelling 
along the bounding wall of a rotating domain is incident upon a region of irregular 
bottom topography whose isobaths become parallel sufficiently far from the 
bounding wall and so support topographic Rossby waves. It is shown in I that in the 
low-frequency limit the flow field separates naturally into three regions : an outer-x 
region containing the incident and transmitted Kelvin waves ; and outer-y region 
containing the scattered topographic long waves ; and an inner, geostrophic region. 
The analysis in I is further simplified by approximating general profiles by stepped 
topography. This removes the difficulties caused by short waves over continuous 
topography and allows the flow pattern a t  the wall to be resolved using the analysis 
of wall-step junctions in Johnson (1985), Gill et al. (1986) and Johnson & Davey 
(1990). As the number of approximating steps increases, a narrow high-velocity layer 
forms where steps in downslopes meet the bounding wall. It is the purpose of the 
present paper to consider directly the case of continuous topography, quantifying 
the contribution of the short waves, analysing the structure of the wall layer, 
obtaining various general results, assessing the rate of convergence of the stepped 
approximation of I and presenting a superior method of choosing the positions of the 
jumps when approximating complex topography. A simple but accurate estimate for 
the amplitude of the transmitted Kelvin wave emerges as a corollary. 

Section 2 introduces the equations of motion, discusses the separation of the flow 
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into distinct asymptotic regions and the matching between the regions, and presents 
explicit solutions and flow patterns for scattering by an upward escarpment. It is 
shown that the amplitudes of the transmitted and incident waves are equal for any 
similar topography not supporting short waves. Section 3 considers the flow field 
above downward escarpments, showing first that the volumeJEuxes of the incident and 
transmitted fields are equal and hence the amplitude of the transmitted Kelvin wave 
depends only on the fractional change of depth across the escarpment. A detailed 
solution and flow patterns are given for exponential topography and the form of the 
flow pattern for more general topography is discussed in sufficient detail for the 
subsequent analysis in 934 and 5.  Section 4 applies the methodology and results of 
$92 and 3 to obtain the form of the long-wave field and the transmitted wave 
amplitude over a ridge of general profile and $ 5  gives analogous results for a general 
valley. Both sections include accurate approximations for the transmitted Kelvin 
wave amplitude that require only the form of the fundamental topographic long 
wave. Section 6 gives specific examples of this theory for an exponential ridge where 
the full solution can be found and for triangular ridges and valleys where explicit 
analytical forms are found for the relevant eigenfunctions. Section 7 extends the 
analysis and discusses some aspects in more detail. The filtering out of the short-wave 
field over non-exponential topography is shown to be equivalent to the effect of weak 
dissipation in barotropic flow where energy is destroyed in viscous wall layers, or 
weak stratification in inviscid flow where energy is transmitted as internal Kelvin 
waves confined close to the bounding wall. In  both cases the long-wave field 
determined here is unaffected. Results are extended to non-planar bounding walls, 
locally non-rectilinear topography and topography with plateaux. The form and size 
of the higher-order (in frequency) terms giving the first corrections to the present 
solutions are noted. Appendix A considers the adjoint problem, showing that it 
differs from the usual form for non-rotating flow and obtaining the useful result that 
the transmitted volumeJluxes of the original and adjoint problems are the same a t  all 
sub-inertial frequencies. Appendix €3 notes the extension of the present method to 
more irregular topography, showing that the stepped-topography analysis of I can 
be regarded as the simplest discretization of the continuous problem. 

2. Governing equations and upward escarpments 
Using the notation of I the equations governing a Kelvin wave of frequency wf and 

unit amplitude incident on topography abutting the bounding wall of the semi- 
infinite domain y > 0 can be written 

iw[V.(hV~)-(l-w2)~]+~.(VhAV~) = 0 (y > 0) ,  

iwyv--yz = 0 (y = 0), 

T,I+e-y-iwx (x+-m). (2 .3)  

The surface elevation associated with the wave is Re {y(x, y) exp (iwft)} ; the local 
undisturbed depth is h(x, y), scaled to unity for -x % 1 ; 2 is a unit vertical vector; 
and horizontal lengths have been scaled on the incident Rossby radius (figure l a ) .  It 
is noted in I that above stepped topography in the low-frequency limit (w 4 1) there 
are three distinct regions : an outer-y region of long topographic waves where x and 
Y = wy are fixed as w -+ 0 ; an outer-x region containing the incident and transmitted 
Kelvin waves where X = wx and y are fixed; and an inner, geostrophic region with 
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,.' (& Y )  ( X = w x , y )  4 ; 
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FIGURE 1. (a)  The geometry considered. A Kelvin wave propagating along the wall y = 0 from a 
region of unit depth is incident upon a scattering region whose isobaths become parallel a t  large 
y. (b )  The regions of flow and the relevant scales in the low-frequency limit. The incident, upslope, 
downslope and tritnsmission regions are denoted 4, %, 9, and F. 

x, y fixed as w -+ 0. The possibility of X ,  Y fixed gives the quiescent ocean 7 = 0 (figure 
1 b).  Further, shorter lengthscales appear above continuous topography. These are 
confined to narrow layers in weakly dissipative flow (Johnson 1989a) and weakly 
stratified flow (Johnson 1991 b )  but occur everywhere above topography in purely 
inviscid barotropic flow (as in Johnson 1991 a). They are discussed in greater detail 
in $3.  For brevity of exposition the depth h is taken to be a function of x alone in 
$92-6. Results for more complex bathymetry follow straightforwardly as in Johnson 
(19893) and are noted in $7.  

Consider an upward escarpment with constant unit depth (h  = 1) in a region 4 
(x Q W- < 0) containing the incident Kelvin wave, an upslope region % (W- < x < 0) 
where the depth decreases (h' < 0) ,  and a flat shallower (h = h, < 1 )  region F 
(x 2 0) containing the transmitted Kelvin wave. Downward escarpments are con- 
sidered in 93. The analysis in Longuet-Higgins (1968) demonstrates that the 
upslope supports long waves carrying energy away from the wall and short waves 
carrying energy inwards. The sole source of energy in the present problem is the 
incident Kelvin wave and so causality precludes short waves above the upslope. The 
shortest scales in the upward escarpment problem are thus the escarpment width 
and the external Rossby radius. 
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2.1. The inner, geostrophic region 

As noted in I the flow on the scale of the topography is geostrophic in the low- 
frequency limit with the surface elevation 7 acting as a streamfunction and the 
velocity vector given by z A Vq. From (2.1) the inner geostrophic flow satisfies 

VhAVv=O if V h 4 O  

hV2T-7=O if V h = 0 ,  

T ~ = O  on y=O,  

7-te-Y as x-+--co. 

Boundary condition (2.5) requires the surface elevation to be constant to leading 
order along the wall. Thus 

and the transmitted Kelvin wave has unit amplitude. More generally, any geeonaetrg 
that does not support short outwardly propagating waves transmits Kelvin waves with 
undiminished amplitude in the low-frequency limit. 

Field equation ( 2 . 4 ~ )  shows that the surface elevation is constant along isobaths 
and flow follows isobaths. Combined with (2.7) this gives above the upslope 

r/ = 1 (y =o,  x = O(l ) ) ,  (2-7) 

r/ 3 1 on %, (y = O(1)). (2.8) 

The inner flow is stagnant to leading order and the surface is flat. If only the 
amplitude of the transmitted wave is of interest the problem for upward escarpments 
is complete. However, the analysis for the more involved problems of scattering by 
ridges and valleys can be shortened by establishing a general framework for solutions 
by solving for the complete flow field over the escarpment. The solution splits 
naturally into the incident and transmitted Kelvin waves, the outer long-wave field 
over the upslope r o ( x ,  Y), and an inner geostrophic flow vi(x,y) matching the two 
wavefields in the neighbourhood of the origin. 

2.2. The long waves 

From (2.1) the wavefield 'lo varying on the long-y scale satisfies 

%(ha, T o )  - T o  - 3' aY T o  = 0, 

and has separated solutions of the form 

yo(x ,  Y )  = $(x) ePihY, 

provided hY+h'$'-$-Ah'$ = 0. 

Away from the upslope h vanishes and so 

(2.10) 

(2.11) 

(2.12) 

for some constants c1 and c2. Thus (2.11) is to be solved over the upslope % subject 
to  the boundary conditions 

(is-4 = 0, x = w-, ( 2 . 1 3 ~ )  

$'+h?$=O, x = O ,  (2.13 b)  

guaranteeing continuity of $ and $' across x = W-, 0. Since h' is single-signed (2.11) 
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and (2.13) form a standard Sturm-Liouville problem with positive eigenvalues 
0 < A, < A, < ... and sole accumulation point infinity. The corresponding eigen- 
functions q$, q5z, . . . have none, one, . . . zero-crossings, with zeros of successive modes 
interlacing, and form a complete set with orthogonality relation 

The scattered long-wave field above the upslope can thus be expanded as 

m 

vo(x,  Y )  = X a, $,(XI e+‘, 
12-1 

where the unknown modal amplitudes a, remain to be determined. 

(2.14) 

(2.15) 

2.3. Matching the inner- and outer-y solutions 
Denote the inner limit of the outer-y long-wave solutions by g(x). Then 

00 

g(x)  = lim To(% Y) = T O ( ” , O )  = c a,+n(4- (2.16) 
Y+O fk-1 

This matches the outer limit of the inner geostrophic flow, i.e. 

g(x) = lim q(x,y) = I on 42, 
!J+m 

from (2.7), uniquely determining the amplitudes a, as 

r r 

01, = J (-h’)$,dx/ J (-h’)&dx. 
Q 

(2.17) 

(2.18) 

The numerator is the inward mass flux associated with eigenfunction n and the 
denominator its energy flux. 

The total mass flux carried by the long waves is 

-(x,O)hdx = jm g’hdx = j9g’dx+h,jTg’dx = g(W-)-h,g(O) = 1--hm. 
-m 

(2.19) 

As the mass flux of the transmitted Kelvin waves is h,, mass is conserved. Similarly 
the energy flux of the long waves, normalized on the energy flux of the incident 
Kelvin wave, is 

= g2(W-)-h,gz(0) = l-hm. (2.20) 

As the normalized energy flux of the transmitted Kelvin wave is h,, energy is also 
conserved. Note that g given by (2.17) does not satisfy (2.13) and so expansion (2.16) 
although absolutely convergent exhibits Gibbs phenomena a t  x = W-, 0 caused by 
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the discontinuity in bottom slope there. The slope discontinuity does not modify the 
zero-order flow but drives a high-x-wavenumber component to the flow of order 3. 
These higher-order effects are discussed briefly in 9 7. 

2.4.  The geostrophic flow over the flat bottom 

Above the escarpment the leading-order flow field is given completely by (2.15) with 
the a, determined by (2.18).  The remainder of the leading-order flow field is 
determined by the inner geostrophic solution over the flat incident and transmission 
regions away from the escarpment. 

Consider first the incident region 9. The solution here can be written 

7 = e-y-ix +TO($,  Y )  + Ti(x, ~ 1 ,  (2.21) 

where the geostrophic term yi satisfies (2 .46)  with h = 1 .  The boundary conditions on 
qi come from the specified surface elevation at the wall, matching the surface 
elevation across 2 = W-, and requiring the solution to be bounded at large distance. 
These give 

7. = -e-” ( x = W-, y > O ) ,  

vqi+o (x+--co, y-tco). 

qi = - g ( x )  = -exp ( x -  W-) (y = 0,  x < W-), 

The solution of (2 .46)  subject to (2.22)-(2.24) follows as in I as 

q. = - 
l 7 1  

[( l/Z-Z/K2) exp ( - K  1 x- W-1) -exp ( -  Ix- W-l)Z] sin Zy dl, 

where K = (Z2- 1); .  
In the transmission region F the surface elevation can be written as 

7 = e x p [ - h & / + i ~ ) ~ + q o ( x ,  Y)+vi(x,y), 

(2.22) 

(2 .23)  

(2.24) 

(2.25) 

(2.26) 

with qi given by (2.25) with, however, W- = 0 and K = (Z2+h-,l)i. 
The expansions of this section have been derived assuming that h’ is strictly 

negative in %. It is noted in 97 that the results here are unaltered for profiles with 
flat regions, i.e. for the wider class of escarpments where h’ < 0. 

2.5. A uniformly sloping escarpment 

Consider the continuous linear upward escarpment given by 

X G - w ,  

h =  I + ( h , - l ) ( X / W + l ) ,  - W Q x < O ,  [::, x 2 0. 

For - W Q x < 0 introduce X = [X i  + sgn ( 1  - h,) Ixl]; so 

(2.27) 

h = (X/Q2 ( X ,  < x < XI), (2.28) 

where Xi = Wh,/ll-h,l  and X; = W / l l - h l l .  Then the long-wave equation (2.11) 
becomes 

X2q&+X$X-4X2(h-X:) $ = 0 (X, < x Q XI), (2.29) 
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-3  -2  - 1  0 1 2 
FIQURE 2 .  Contours of surface elevation for a Kelvin wave of unit amplitude incident on an 
escarpment rising linearly from unit depth in the incident region x < - 1 to depth h, = 0.5 in the 
transmission region. The contour interval here and in later figures is 0.2 with positive contours 
continuous, negative contours finely dotted, the zero contour omitted for clarity and the changes 
of slope at x = -W, 0 dashed. The surface is plotted a t  time t = 0 when the incident wave has 
maximum instantaneous amplitude at 2 = 0. Since only long waves are present in this example the 
contours are streamlines of the flow to leading order in the frequency w.  Here w = 0.1. 

Bessel's equation of order zero. The solution of (2.29) subject to ( 2 . 1 3 ~ )  is 

$4 = (P/JO) J0(kX) - (J'/JO) Y0(kX) ( -  w d 2 < O), (2.30) 

(2.31) 

(2.32) 

where Jo, J1, Yo, Yl are the Bessel functions of the first and second kind and 

Substituting (2.30) into (2.13 b )  gives the eigenfunction relation determining k and 
the A,  as 

kht [FJl(kXO) - J1YI(kXO)] + 2xo J O  = 0. (2.33) 

I P = 2x,  Y0(kX1)-kY1(kX1), 

J1 = 2X1J0(kX1)-kJ1(kX1),  
Jo  = y lJo(kXo)-JIYo(kXo) ,  

h = aka+X; > 0. k2 = 4 ( h - x 3  so 



180 E.  R.  Johnson 

W 
FIGURE 3. The distribution of energy flux in the scattered field above an upward linear escarpment 
as a function of the escarpment width W for depth h, = 0.5. The fluxes have been normalized on 
the flux of the incident wave with the contributions of the long topographic waves denoted 1,  2+ 
and that of the transmitted Kelvin wave, KT. It is shown in the text that  the transmitted Kelvin 
wave always carries the fraction h, of the incident flux. As short waves are precluded by the 
radiation condition, energy is conserved within the long-wave field. The scattered field is 
dominated by the fundamental mode- the sole surviving mode for W e  1 as in the vertical 
escarpment of I. 

Each of (2.30)-(2.33) is even in k and thus it is sufficient to take k > 0. Once the A, 
and k have been found the amplitudes a, of the scattered long-wave modes follow 
from (2.18). The integral in the numerator can be obtained explicitly by noting that 
h' is constant for x + -W,O and so the long-wave equation (2.11) with conditions 
(2.13) gives 

( - h') 4, dx = ( - Jt') ( 1 + A, K)-l  JQ (I@,)' dx s, 
= [h{4,(0)+4,(-W)]h'/(l+A,h'). (2.34) 

Figure 2 gives the surface elevation derived from (2.15)) (2.18), (2.25) and (2.26) for 
an escarpment of width W = 1 rising to depth h, = 0.5. As the surface elevation of 
the incident wave rises and falls through a cycle a topographic wave pulse, consisting 
mainly of the fundamental mode, is generated and propagates outwards along the 
escarpment. 

The partition of energy amongst the scattered modes also shows the importance of 
the fundamental mode. The energy flux carried by mode n in expansion (2.15) is 

(2.35) 

Figure 3 gives the distribution of energy flux among the transmitted Kelvin wave 
and the long waves as a function of the escarpment width for h, = 0.5. The long-wave 
energy is carried almost entirely by the fundamental mode. As W-t  0 the escarpment 
steepens and the wavelengths of all modes but the fundamental vanish as do their 
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amplitudes in the scattered field. The wavelength of the fundamental mode 
approaches (1 -h:)-l, the value for a vertical step. This is unity (the reciprocal of the 
external Kelvin wave speed) for very shallow transmission regions (h, 4 1) and 
increases monotonically without bound as the escarpment height decreases and h, 
approaches unity.t The amplitude of the scattered fundamental mode remains non- 
zero as W + 0, with the mode carrying the whole fraction 1 - h, of the incident energy 
scattered away from the wall, as in I. This dominance of the fundamental mode 
forms the basis for accurate approximations of the more complex fields over ridges 
and valleys in $$4 and 5 .  

3. Downward escarpments 
Consider a downward escarpment with constant unit depth (h  = 1 )  in the incident 

region 4 ( x  Q 0) ,  a downslope region 9 (0 Q x Q W,) where h’ is positive and the 
depth increases, and a flat deeper (h  = h, > 1) transmission region F ( x  W+). This 
escarpment supports long waves carrying energy towards the wall and short waves 
carrying energy outwards. Causality thus precludes long waves above the downslope 
but allows short scattered waves with inwardly propagating phase but outward 
group velocity. The short waves have scales w 4 1 in their direction of propagation 
and unity along wave fronts. For general escarpments the ray paths of short waves 
are not straight (Smith 1972) and so in the rectilinear coordinates ( x ,  y )  the wavefield 
has scale w in both 2 and y .  These short scales are responsible for the formidable 
difficulties in obtaining both numerical (Killworth 1989) and complete explicit 
analytical solutions a t  low frequencies. The analysis in Johnson (1991 a )  extends 
directly to show that although the short waves carry energy outwards they carry no 
net instantaneous mass flux. The mass j h x  in the Kelvin wave field i s  conserved over 
escarpments that do not support outwardly propagating long waves. Independently of 
the escarpment profile the transmitted Kelvin wave carries unit mass and so has 
reduced amplitude h-,l < 1. The transmitted wave carries energy flux h-,l and so a 
flux 1 - hi1 is scattered into the short waves to be carried away from the wall. If only 
the amplitude of the transmitted wave is of interest the problem for downward 
escarpments is complete. However, as for upward escarpments in $2,  examination of 
the complete flow field establishes a framework for discussing scattering by more 
general topography. 

3.1. The wavefield above an  exponential downslope 
Above exponential topography ray paths are straight, solutions simplify, and the 
complete scattered field can be obtained analytically. Consider the continuous 
escarpment 

1,  XGO,  

h =  epx, O Q x Q W , ,  (3.1) I h,, 22 w+, 
where p = (l/W+)logh, (p > 0 for h, > 1 ) ,  and separate the phase and group 
velocity components by writing (see Johnson 1991 a )  

~ ( x ,  y )  = exp (iPy/o) Y ( x ,  Y )  over 9. (3.2) 

t For h, > 1, downward escarpments, the fundamental wavelength decreases from infinity as h, 
increases and, as hl+ a, approaches once again the reciprocal of the external Kelvin wave speed 
for the deeper side. 
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Restoring time-dependence shows that the factor exp ( i d  + ipy/w) gives the rapidly 
varying incoming phase of the short waves. The slowly varying envelope Y(x,Y) 
satisfies 

Yzz +PYX - h-l Y + ipYY = 0 over 9. (3.3) 

The boundary conditions on envelope are discussed in detail in Johnson (1991 a) and 
require that to leading order no flow crosses escarpment edges: 

!P= 0 (x = 0, w+, y > O ) ,  (3.4) 

YX+/3Y= ( h q X  = 0 over9 (y = 0). (3.5) 

Substituting form (3.2) into the impermeability condition (2.2) gives at the wall 

Integrating this boundary condition across the escarpment gives hY = 1, i.e. the 
surface elevation at the wall is 

9 = h-* over9  (y = 0). (3.6) 

It is shown below that (3.6) holds for all downward escarpments. 
Equation (3.3) has wavelike solutions of the form 

Y(x, Y )  = $,(x) e-'PY, 
provided the ,urn, $, satisfy 

(3.7) 

hv+h'$ ' -$+ph$ = 0. (3.8) 

Equation (3.8) is the long-wave equation of 92 with the direction of propagation 
reversed, giving, however, outwardly propagating energy again here as the sign of 
the slope is also reversed. The eigensolutions p,, $,, satisfying the no-flux conditions 
(3.4) at the escarpment edges, have the same general properties as the A,, 4% and so 
the wavefield satisfying the wall condition (3.6) can be expanded as 

where 

m 
Y(x, Y )  = C an $,(x) e-'pny, 

)a=l 

I- f 

a, = J (h'/h)$,dx/J h'$idx. 
D 9 

(3.9) 

(3.10) 

An analogous evaluation to (2.19) shows that the total outward short-wave energy 
flux is 1 - l/h, as required by energy conservation. Mass is conserved as a matter of 
course since the amplitude of the transmitted Kelvin wave is determined by 
requiring the short waves to carry no mass. 

3.2. The geostrophic component over the $at bottom 

The remainder of the leading-order flow field consists of an inner geostrophic solution 
~,(z,y) over 9 and 9. Since the short waves carry no mass this flow decouples 
entirely from the flow above the downslope and is thus the same for all escarpments. 
There is a sink/source pair of strength unity (strictly, of strength coswt once time- 
dependence is restored) where the escarpment edge meets the wall at (5, y) = ( 0 , O )  of 
precisely the form discussed in detail in Johnson (1985) for a vertical escarpment 
meeting a bounding wall and a similar source/sink pair (also with mass flux, hr ,  
unity) at the other edge-wall junction (W+,O). Consider first the incident region 9. 
The solution here can be written 

(3.1 1) = e-u-ix+ %(X> Y), 
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FIGURE 4. Contours of surface elevation for a Kelvin wave incident on a downward escarpment of 
width W = 1 where the depth increases exponentially from unity to h, = 2. Away from the slope 
the contours are streamlines for the flow but the short scales above the slope contribute additional 
terms t o  the velocity components. The phase above the slope propagates towards the wall but the 
energy of the waves is scattered outwards. 

where the geostrophic term Ti satisfies the same field equation (2.4b) and boundary 
conditions (2.22), (2.24) as Ti in $2.4 with, however, the wall condition (2.23) replaced 

vi = 0 ( y  = 0 ,x  < 0). (3.12) 

An expression for qi of form (2.25) follows directly as in $2.4 as does the analogous 
expression to (2.26) for 7 and vi in the transmission region Y. 

The inclusion of the geostrophic flow completes the analytical description of the 
surface elevation. However, unlike the eigensolutions for the linearly sloping 
escarpment of $ 2 ,  the solutions ,un, I,.+~ for exponential slopes have no useful simple 
analytical form in free-surface flows (although simple expressions exist in the rigid- 
lid limit, W+ + 0). Numerical results follow most straightforwardly by solving (3.9) 
directly. Routine DO2KEF of the Numerical Algorithms Group library using a 
Pruefer substitution proved accurate and highly efficient, extending directly to the 
more complex topographies of $6. Once the eigenfunctions are found, (3.10) gives the 
modal amplitudes directly and fast Fourier inversion gives the geostrophic 
component ri. Figure 4 gives contours of surface elevation for an escarpment of width 
W, = 1 and transmission region depth h, = 2. Over each cycle of the incident Kelvin 
wave one cycle of the short topographic wave arrives and is absorbed at the wall. 
Away from the slope the contours are streamlines and in particular the wall coincides 
with the streamline 7 = 1 in x < 0 and 7 = l/h, in z 2 W. Above the slope additional 
terms contribute to the velocity components so contours of r,~ are no longer 
streamlines and intersect the wall although the normal velocity vanishes there. The 
source/sink pairs at  (0,O) and ( W+, 0) are clearly visible. 

by 

3.3. General downslopes 
The wavefield above non-exponential downslopes does not decompose straight- 
forwardly into modes and hence an explicit solution is not direct. However, the 
behaviour above the slope but close to the wall can be described in detail. This is 
sufficient to determine the amount of energy scattered into short waves even though 
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the subsequent wave paths cannot be determined explicitly. When even vanishingly 
small dissipation is included this layer gives the whole flow above the downslope and 
the energy scattered into short waves is destroyed there. 

For arbitrary h(x) consider a region against the wall of thickness of order the 
wavelength of the short waves. Introduce 5 = y/w so the field equation (2.1) and the 
impermeability condition ( 2 . 2 )  become 

ihy,+ h'y, = 0, 

iyC--yz = 0 (g = 0). 

(3.13) 

(3.14) 

The general solution of (3.13) can be written 

y = b(x)+[a(x)-b(x)]exp(ih'c/h) over9 (y = O ( w ) ) ,  (3.15) 

where a(x) and b(x )  are arbitrary functions with a(x) giving the surface elevation at  
the wall (g = 0) so 

a(0) = 1, a(W+) = A ,  (3.16) 

for incident amplitude unity and transmitted amplitude A. The first term in (3.15) 
is the contribution in the region from external long waves or geostrophic flow and so 
does not vary with y on this short scale. The second term gives the amplitude 
a ( x )  - b(x )  o f  the short waves with rapidly varying inwardly propagating (since 
h < 0) phase. Substituting (3.15) into (3.14) gives 

(ha)' = h'b over $9 (5 = 0). (3.17) 

Since long waves are precluded above downward escarpments b( z) is identically zero 
in the present case and (3.17) integrates immediately along the wall to extend (3.6) 
to arbitrary downslopes. Within this region 

y = h-l exp [(ih'lh) yl. (3.18) 

For downward escarpments (h' > 0) (3.18) consists of short waves with inwardly 
propagating phase carrying energy outwards. 

The analysis in Johnson (1989a) extends to show that the inclusion of even 
vanishingly small viscosity introduces an order-unity negative part to the coefficient 
of 5 in (3.18) and hence causes short-wave energy to be dissipated within a wall-layer 
of thickness w .  This layer carries all the Kelvin wave mass flux but dissipates a 
fraction 1 - h ~ ~  of the incident energy. Outside the layer the flow field becomes 
simply 

y = O  over9 ( y >  0), (3.19) 

and the scattered short-wave field is absent. Similarly, the analysis of inviscid 
scattering of coastally trapped waves in Johnson (1991 b)  shows the barotropic flow 
on the geostrophic and long-wave scales to be unaffected by weak stratification, i.e. 
when B < 1 where the stratification parameter B = No H / f L  for buoyancy frequency 
N,, depth H and escarpment width L. Moreover, if w < B 4 1 the barotropic short 
waves are absent and the energy scattered out of the barotropic long-wave field is 
scattered into a set of transmitted internal Kelvin waves to be carried towards 
z = 00 confined closely to the wall y = 0 in a thin layer of thickness B << 1. For a 
downward escarpment the transmitted external Kelvin wave carries the whole 
incident mass flux and a fraction h-,l of the incident energy flux, and the internal 
Kelvin wave field carries no mass but transmits the remaining fraction 1 -hG1 of the 
incident energy flux. 



Scattering of Kelvin waves by continuous topography 185 

Since the short-wave components of the wave field for inviscid barotropic flow 
above general topography have no simple analytical expression the analysis for 
general topography in the remainder of this paper concentrates on determining 
completely the barotropic long-wave and geostrophic components of the flow and the 
short-wave component only within a distance w of the wall. The above results show 
however that fields omitting short waves give the leading-order flow patterns outside 
thin wall layers for weakly dissipative barotropic flow and for weakly stratified flows 
where w 4 B 4 1 .  The full flow patterns including short waves can of course be given 
for piecewise exponential topography. 

4. Ridges 
A flat-topped ridge can be formed from an upward escarpment followed by a 

downward escarpment. If the two escarpments are separated by two or more Rossby 
radii the analysis of §§2 and 3 can be applied independently giving outwardly 
propagating long waves over the upslope and an outwardly propagating envelope of 
short waves (with inwardly propagating phase) over the downslope. As in I, the 
amplitude of the transmitted wave is given by H J H ,  < 1, the ratio of the minimum 
depth over the ridge to the depth after the ridge. For narrower ridges the two 
wavefields interact. 

4.1. The long waves and the outer-y region 
Consider a continuous ridge with unit depth (h  = 1) in an incident region 9 (x < W-), 
monotonic decreasing depth (h’ < 0) in an upslope region % (W- < x < 0) ,  monotonic 
increasing depth in a downslope region 9 (0 < x < W+), and a flat (h  = h,) 
transmission region Y ( W+ < x). Ridges with plateaux are discussed in § 7 and more 
general profiles in Appendix B. In  weakly dissipative flow short waves are confined 
to wall layers and so above the ridge the leading-order surface elevation varies only 
on the long-wave scale Y = wy. This long-wave field qo(x, Y )  satisfies (2.9) and can be 
decomposed into wave modes of form (2.10) satisfying (2.11) and boundary 
conditions (2.13) a t  the edges of the ridge. As h’ is not single-signed the eigenvalue 
problem for the wave modes is no longer of standard Sturm-Liouville form. However 
similar arguments apply and the oscillation theorem (Ince 1927, chap. 10) implies 
that problem (2.11), (2.13) has countably many distinct real eigenvalues with two 
accumulation points at  & 00. The eigenvalues can be labelled 

... < h  _, < . . . < h _ 2 < h _ l < O < h , < h 2 < . . . < h , <  .... (4.1) 

To each eigenvalue there corresponds exactly one eigenfunction. The eigenfunctions 
divide into two groups. Those corresponding to positive eigenvalues (outwardly 
propagating long-waves) are oscillatory above upslopes and decay exponentially 
above downslopes and those for negative eigenvalues (inwardly propagating long 
waves) are oscillatory above downslopes and decay above upslopes. Within each 
group the zeros of consecutive eigenfunctions interlace. Multiplying (2.1 1 )  by q5 and 
integrating from -GO to GO gives a variational principle of the same form as in 
Johnson (1989d) for the A,, q5,, 

For an eigenfunction the numerator gives the associated energy flux and the 
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denominator the energy density, the first term giving the kinetic energy 
second the potential energy. The variational principle furnishes the inner 
and energy norm 

and the 
product 

(4.3) 

The eigenfunctions form an orthogonal set and any function orthogonal to each $% 

corresponds to h-l = 0 in (4.2) and hence vanishes above non-flat regions of finite 
width. The q5, thus form a complete set for topographies without plateaux. Let g(x) 
be the inner limit of the outer long-wave solution as in $2. Then g has the unique 
expansion 

m 

= Z an#n(x), a n  = (gl#n)/II$nI12- (4.4) 
n=-m 

Note that s-", h'f, fi dx no longer yields a positive definite inner product for non- 
monotonic h as s-", h'q5; dx is positive for n < 0 and negative for n > 0. It does 
however yield the simpler alternative expression for the a,, 

where the denominator is non-zero by (4.2). The radiation condition, that the 
incident Kelvin wave is the sole energy source, precludes incoming waves and so 
constrains g to be orthogonal to the q5, for n < 0, i.e. 

a? 

h'gq5,dx = 0, n = -1, -2, ..., (4-6) I-, an = 0, 

giving an outer solution of precisely the form (2.15), (2.16) of $2. 

4.2. The wall layer 

Above the ridge on the inner scales x, y the flow follows bathymetry by ( 2 . 4 ~ ) .  The 
outer limit (y+ 00)  of this inner geostrophic flow matches g(x), the inner limit of the 
long-wave solution. Thus for the present, case with h a function of y alone and in the 
weakly dissipative limit 

7 = g(x) over%!,9 (y = O(1)) .  (4.7) 

Equation (4.7) forms the outer boundary condition for the long-wave part of the 
wall-layer solution (3.15). Thus the flow in the wall layer is given by (3.15) with b(x) 
= g(x), where the first term in (3.15) is the long-wave contribution and the second 
term the short waves within the layer. Above 9 the slope h' is positive and this 
second term gives inward phase and outward energy in inviscid flow or exponentially 
decaying waves in weakly dissipative flow. Boundary condition (3.17) becomes 

(ha)' = h'g, o v e r 9  (6  = 0), 
which can be rewritten 

-hv = [ ( a -g )  h]', 

where -v = -g'(x) is the inward velocity in the geostrophic region. Equation (4.8) 
thus expresses conservation of mass, stating that the mass flux coming into the layer 
is equal to the rate of increase of mass carried by the layer. 
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Above the upslope % the slope h' is negative and the second term in (3.15) would 
represent short waves with outward phase and so inward energy (precluded by 
causality) in inviscid flow or disturbances growing exponentially with distance from 
the wall in weakly dissipative flow. Hence this term vanishes giving the simple 
solution 

q = a(x) = g(x)  over!& (y = O ( w ) ) .  (4.10) 

There is no wall-layer above upslopes and the geostrophic flow (4.7) extends to the 
wall. The impermeability condition (2.2) thus requires 

ys = a'(x) = g'(s) = 0 over!&. (4.11) 

The free surface is level above upslopes and the flow is stagnant to leading order, 
The constraints on a(%) and g(x)  implied by (4.8) and (4.11) holds for any 

combination of upslopes and downslopes. Continuity of surface elevation along the 
wall requires a( W-) to be unity and so for a simple ridge (4.11) integrates to become 

a(x) = 1,  g(x) = 1 over%. (4.12) 

Combining this with (4.8) gives the surface elevation at  the wall a(%) in terms of the 
inner limit g(x) of the long-wave field, 

1, over 9 and %, 

a(x)  = [h(x,) + [ h ' g  dx]/h(x), over 9, 

A ,  in F,  

(4.13) 

so the transmitted amplitude A is given by 

(4.14) 

from (2.16) where the amplitudes 01, of the long-wave modes have yet to be 
determined. 

4.3. Geostrophic $ow over the flat bottom 

Once the a, are known the surface elevation over the ridge is given by (2.15) and the 
Kelvin wave amplitude A by (4.14). The remainder of the flow field consists of the 
inner geostrophic solutions qi(x, y) in the incident and transmitted regions. In the 
incident region 9 the surface elevation is precisely (2.21) with qi given by (2.25) : all 
the incident mass flux turns to travel outwards along the upslope. 

The flow in the transmission region is more complex with the mass flux of the 
transmitted Kelvin wave being supplied over two different paths. The surface 
elevation at  the ridge edge x = W+ in the geostrophic region outside the wall layer is 
9 = g(W+) and hence corresponds to a mass flux h, 2 carried inwards over the flat 
bottom beside the ridge edge by the long-wave field. This flux turns in the 
neighbourhood of the origin to join a flux h,[a( W+) --y(W+)] = h,(A -2) that is 
entrained into the wall layer above the downslope and carried in the layer to spread 
over the flat bottom from a source at  (x, y) = (W+, 0). Together these fluxes give the 
transmitted flux h,A. The flow in region 9- is thus of form (2.26) where qi satisfies 
(2.4b) with h = h, and boundary conditions 

7 = -Aexp(-y) (x = W+,y > 0), (4.15 a )  

y = -9exp(W+-s) (x > W+,y = 0). (4.15b) 

1-2 
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An expression of form (2 .25 )  for yi follows straightforwardly. Section 6 discusses flow 
patterns derived from these expressions for ridges with exponential and triangular 
profiles. 

4.4. Matching the inner- and outer-y regions 

It remains to determine the a,. For a simple ridge it is most direct first to determine 
the amplitude of the long waves that superpose to satisfy (4.12) over 42 and then to 
evaluate a(x) by substituting (2.16) for g(x)  over 9 in (4.12). Methods for more 
complex topography are discussed in Appendix B. Although the long-wave field over 
49 could be obtained by collocation a more robust and transparent method is given 
by least-squares fitting with weighting function - h' (which remains positive over 
49). Define the squared deviation from (4.12) of g given by (2.16) by 

(4.16) 

and choose the a, to minimize D. At a minimum i?D/aa, vanishes for each n, i.e. 

(4.17) 

Rearranging gives the infinite system for E = (al, a', . . .)T, 

C.a = r .  (4.18) 

where the elements of matrix C and vector r are given by 

C,, = q5mq4n(-h')dx, (m = 1 , 2 ,  ...; n = 1 , 2 ,  ...), (4.19a) 
% 

rm = 1,q5m(-h')dx, (m = 1,2 ,... ). (4.196) 

The expression for off-diagonal terms of C can be simplified by multiplying (2.1 1)  for 
q5m by $,, subtracting times the equation for $n and integrating over 42 using 
(2.13a) a t  x = W-. This yields 

Cmn = ( A m - h ) - ' [ # L # n - # k # m I x = o  (m * n). (4.20) 

Matrix C is symmetric. For the upward escarpments of 32 (where the downslope is 
absent and W+ = 0) (2.13b) and (4.20) show the off-diagonal elements of C t o  be zero. 
System (4.18) then gives immediately the explicit values (2.18) for the wave 
amplitudes. For a ridge (where a downslope is present and W+ > 0) the off-diagonal 
terms of C are non-zero. The orthogonality of the q4n over the whole interval 
W- < x < W+ gives the alternative expression to (4.19a) for the coefficients, 

(4.21) 

The q4m,q4n decay exponentially and monotonically over $3 from their extrema a t  
x = O ,  with higher modes decaying more rapidly. The C,, are thus positive and 
decrease rapidly in magnitude with increasing n or m for n $. m. High modes are 
almost orthogonal on and the diagonal terms of C dominate. Matrix C thus is 
invertible. For general ridge profiles the diagonal terms of C and the components of 
the vector r can only be determined numerically. Since (4.20) gives the off-diagonal 
elements explicitly the timing of the computation increases only linearly with the 
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number of modes retained even though the modes are not orthogonal over the range 
of interest. Once the a, are determined from (4.18), the sum (2.16) defines g(x) for all 
x and (4.14) gives a(x). In particular 

A = [h(O) + s'"C-lr]/h( W+), (4.22) 

where s, = lgII'Q,dl (n = 1 , 2 ,  ...). (4.23) 

Expression (4.22) is independent of the normalization of the $n. For upward 
escarpments $9 is absent, s = 0, A = 1, and r + 0 as in $2. For downward escarpments 
42 is absent, r = 0 ,  and A = hi1 as in $3.  

An approximate solution to (4.18) can be found by noting that for sufficiently large 
n the $n are negligible in 9 and so arbitrarily extending the integrals in (4.21) to the 
whole interval W- 6 x < W,. Then once again the off-diagonal terms of C vanish and 
(4.18) has an explicit solution giving the ratio of amplitudes of successive modes as 

a n + i / a n  = (1, #m+1> l l # m l l z / < l ~  #%+I) l14n+il12. (4.24) 

This is precisely the ratio of the amplitudes of modes in the upper and lower bounds 
derived by Killworth (1989). The bounds thus correspond to the surface elevation 
being constant across the whole ridge but discontinuous in general a t  the ridge edges. 
The bounds are thus achieved only for upward escarpments. 

A closer approximation is given by noting that since the rate of exponential decay 
in 9 of the q5, increases with increasing n, the s, decrease rapidly with n and the 
dominant contribution to A comes from the lowest modes, predominantly from the 
first for ridges of width unity or more. Truncating (4.18) a t  n = 1 gives the amplitude 
estimate 

Ah, x h(0) + h' dx #1 h' dx #: h' dx, (4.25) 

where is the fundamental mode. Section 6 gives comparisons of this estimate with 
the exact solution. Estimates of the amplitudes of the long waves follow from 
neglecting the off-diagonal terms of (4.18) to give 

an S, $n h' dx/ S, K dx. 

L s, is, 

(4.26) 

5. Valleys 
The wall-layer relations showing conservation of mass above downslopes (4.8) and 

constant surface elevation above upslopes (4.1 1 )  hold irrespectively of the number or 
order of slopes. I n  particular the results of the previous section extend directly to 
valleys. Consider a simple valley where the depth increases monotonically for a 
downslope region 9 (W- < x < 0) and then decreases monotonically for an upslope 
region (0 < x < W+). Integrating (4.8) and (4.12) along the wall and matching at 
the valley edges gives the surface elevation 

in 9, i 1, 

a(x) = 1 ( l+ l -h 'ydx) /h(x) ,  over9,  

\ A ,  over %! and F,  
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where the amplitude of the transmitted Kelvin wave is given by 

A = 1 +  h'gdx /h(x) .  ( J9 1 
The solution of system (4.18) with elements given by (4.21) gives the amplitudes in 
expansion (2.16) for a function equal to unity over %. The required coefficients for 
g, which is identically equal to A over 4? by (4.12) and (5.1), are thus given by 

a = AC-G. (5.3) 
The discussion on C and Y following (4.18) carries over unchanged. Substituting (5.2) 
in (5.3) gives 

A = ( I  +AsTC-lr/h(0), 

i.e. A = [h(O) -sTC-lr]-l. (5.4) 

Again A = h;' for downward escarpments, where % is absent, s = 0,  but r $: 0 ;  and 
A = 1 for upward escarpments, where 93 is absent and r = 0.  The amplitude estimate 
analogous to (4.25) is 

6. Specific ridges and valleys 
6.1. An exponential ridge 

As an example of a complete solution including short-wave contributions outside 
wall layers consider the symmetric piecewise exponential ridge of minimum depth h, 
given by 

(6.1) 

with /3 = - ( l / W )  logh, so /3 > 0 for h, < 1. As for the short-wave envelope 
eigensolutions of $ 3  there is no useful simple analytical form for the long-wave 
eigensolutions A,, $a for this profile. Further, since h is not single-signed over the 
ridge (2.11) does not lead to a standard Sturm-Liouville problem. A solution follows 
for this simple ridge by dividing the domain into regions - W < x < 0 where h' < 0, 
and 0 < x G W where h' > 0, integrating inwards in each domain from the extremes 
x = & W and matching at x = 0. Routine D02KEF again proved efficient, returning 
both #n and 9; and hence allowing direct evaluation of the off-diagonal terms of C 
through (4.20). Expression (4.18) gives the modal amplitudes a,, (4.4) the inner limit 
g(x) of the long-wave solutions and (4.13) the surface elevation a(x)  a t  the wall. These 
determine 9 and the amplitude A of the transmitted Kelvin wave in (4.15) and 
hence give the geostrophic component of the solution by fast Fourier inversion of 
the analogous integral to (2.25). This completes the determination of the long-wave 
and geostrophic fields. For the present exponential topography the full short-wave 
field for inviscid barotropic flow can also be found. Expression (3.15) for the 
wavefield above the downslope in the neighbourhood of the wall gives the amplitude 
of the short-wave field at the wall as a(x) - g ( x ) .  The short-wave envelope is thus given 
by (3.15) with modal amplitudes 

r r 

a, = J h'(a-g) $n dx/ J h'@i dx. 
9 9 
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FIGURE 5 .  Contours of surface elevation for a Kelvin wave incident on an exponential ridge of 
minimum depth h, = 0.5. (a) W = 1 .  For a ridge of width of order the external Rossby radius or 
larger almost all the incident flux passes through the source a t  (W,  0). ( b )  W = 0.3. For narrower 
ridges the long-wave field extends across the ridge providing an alternative path for some of the 
incident fluid. Away from the downslope region where short waves dominate the contours are 
streamlines for the flow. 

Figure 5 gives contours of surface elevation for ridges of minimum depth h, = 0.5 and 
widths W = 1 and W = 0.3. The wavelengths of both the long and short waves scale 
on the ridge width for W < 1 and so are shorter above the narrower ridge. The long 
waves penetrate across the narrower ridge into the flat transmission region with the 
flux 9 differing significantly from zero. 

6.2. Triangular ridges and valleys 
As an example of a non-monotonic profile whose associated long-wave modes can be 
found analytically and thus be evaluated directly to arbitrary accuracy consider the 
symmetric piecewise linear triangular profile 

For h, < 1 this gives a ridge and for h, > 1 a valley. Following the analysis of $2.5 
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FIGURE 6. Convergence of the transmitted amplitude with increasing numbers of' retained modes 
for a triangular ridge of half-width W = 1 and height h, = 0.5. The crosses give the solution 
obtained by truncating (4.18) and in particular approximation (4.25) is given by N = 1. The values 
obtained from an evenly spaced stepped approximation, with N steps for each slope, are given by 
pluses. The improved approximation using Tchebychev points to take account of high-wavenumber 
contributions whenever h' vanishes is given by circles. 

and matching 4 and 4' across x = 0, IfI W leads to (2.30) for - W < x d 0 and for 
O < X X W ,  

whereIo,Ko,Il,Kl are the modified Bessel functions; P, J n ,  J1,Xo,Xl andX are given 
in $ 2 . 5 ;  and 

Q, = ( ~ ' / I ' ) I n ( ~ X ) - ( ~ / ~ ) K o ( K X ) ,  0 < x X W ,  (6.4) 

(6 .5)  

(6.6) 

1 I1 = 2x,I0(KX,)  + K I 1 ( K X l ) ,  
K1 = 2X,Kn(KX,) - KI1(KX1), 

1' = K I I o ( K x , , )  - I 1 & ( K x 0 ) ,  

and K = (lc2+X$ where the x-wavenumber lc is determined by 

K K I I l ( K x o )  -k K l l K l ( K x o )  = - k ~ J l ( k x o )  + kJIYl(kxo) .  

For a ridge the associated eigenvalue is given by (2.32) and is positive. For a valley 
the eigenvalue is given by -A. Solution (2.30), (6.4) yields long waves travelling 
outwards along a ridge and inwards above a valley. As the profile is symmetric the 
oppositely propagating long waves are given by reflecting these solutions about 
z = 0 and changing the sign of the eigenvalue. 

Computations for this example are particularly simple as integrals of the form 
(2.34) give explicit formulae for r ,  s and the indefinite integrals of (4.13) and (5.1). 
Figure 6 shows the convergence of the transmitted amplitude with increasing 
numbers of included modes for a triangular ridge of height h, = 0.5 and width W = 1 .  
The crosses give the amplitude obtained by truncating (4.18) a t  N =  1,  2, ..., 10 
modes. The approximation (4.25) is given by N = 1 and is within 1.5 % of the exact 
answer. The pluses give the results from the stepped-topography approximation of 
I, obtained by dividing the upslope and downslope into N equal intervals. This 
approximation is within 1 YO by N = 6 but further improvement is slow due to Gibbs 
phenomena at x = 0, f W (where h vanishes). A more efficient choice of steps is to 
concentrate points near these singular regions. The circles in figure 6 give the 
transmitted amplitude obtained from I by choosing points between successive zeros 



Scattering of Kelvin waves by continuous topography 193 

, I #  
0.2 ' 

I , ,  

-1:O -0:5 ' X 0 ' 0!5 -4  -2 0 2 x 
FIGIJRE 7. The surface elevation at the wall a(x) and the inner limit of the outer-y long-wave 
solution g(z), determined by the sum of sixteen modes on Y = 0, for a triangular ridge of minimum 
depth h, = 0.3. (a)  A narrow ridge, W = 0.3. Of the transmitted flux almost half, denoted 9, is 
carried inwards along the far side of the ridge by the long-wave field. (b )  A wide ridge, W = 3. With 
exponentially small error, the whole transmitted flux emerges through a source of strength 9' at 
(W,O). 

of h to be the Tchebychev points. For a profile where h' vanishes in 1x1 > W and 
passes through zero only at, x = 0 these are 

(-&W{l +cos [nn/(N+ l)]) 

I -~w(l-cos[nn/(N+1)]} 

( -  W < x < O) ,  

(0 < x < -W) ,  
x, = (6.7) 

n = 1,2, . . . ,N .  By N = 6 this gives an error of less than 0.1 %, and appears to give the 
most straightforward method of analysing complex topography. 

Figure 7 gives the surface elevation against the wall a(x) and the surface elevation 
g(x)  at the inner limit of the outer-y long-wave region (Y + 0) for a ridge of minimum 
depth h, = 0.3. Only sixteen terms are used in the summation to demonstrate the 
Gibbs phenomena, weak at x = - W and stronger at x = 0. Figure 7(u )  shows a 
narrow ridge (W = 0.3) where the long-wave field still has significant amplitude at 
x = W. The surface elevation is constant along the wall until the ridge crest and then 
decays over the downslope 9. The inner long-wave elevation g ( x )  equals a(x) over the 
upslope 42, decaying exponentially on both sides of %. Of the transmitted mass flux 
A = a( W ) ,  almost half (9 = g( W ) )  is carried by the long-wave field along the far side 
of the ridge with the remainder emerging from a source at ( 0 , W )  of strength 
Y = a(W)-g(W)  = A -2. Figure 7 (b )  shows a wide ridge (W = 3) where the long 
waves have negligible amplitude a t  x = W and so the whole transmitted flux A 
emerges through a source of strength 9' z A .  The figure shows how the geostrophic 
region elevation in 9 decreases towards its wide-topography limit of g = 0 as W 
increases. Figure 8 gives flow patterns for ridges of minimum depths h, = 0.5. For the 
narrow ridge (W = 0.3) of figure 8 (a )  the fraction 9 of the incident flux passes 
directly across the ridge. Figure 8 ( b )  is shown with a width of W =  1 rather than 
W = 3 as already to within the accuracy of the plotting all fluid enters the wall layer 
above the downslope and leaves through a source a t  ( W ,  0). The stippling along the 
wall y = 0 in x > W shows the region of thickness B occupied by internal Kelvin 
waves when w < B < 1. I n  this limit the external Kelvin wave carries all t he  
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FIGURE 8. Contours of surface elevation for a Kelvin wave incident on a triangular ridge of 
minimum depth h, = 0.5. (a) A narrow ridge, W = 0.3. A fraction 49 of the incident flux passes 
directly over the ridge. ( b )  A wide ridge, W = 1. Almost the entire flux enters the wall-layer above 
the downslope and is expelled through the source at ( W ,  0). The stippling along the wall y = 0 in 
x > W shows the region of thickness B occupied by internal Kelvin waves when o Q B 4 1. 

transmitted mass flux and the higher-order internal Kelvin waves carry the 
remainder of the transmitted energy flux. 

Figure 9 gives a and g for a valley of maximum depth h, = 3. The Gibbs 
phenomena are now at the slope breaks at x = 0 and z = W .  The surface elevation at  
the wall decays from its unit incident value over the downslope 9, and then remains 
constant at  its transmitted value A after the valley bottom. The geostrophic 
elevation g is raised to A over the upslope 42, again decaying exponentially on both 
sides of%. Figure 9 (a )  gives a and g for a narrow valley (W = 0.3) showing that about 
a third of the incident flux (9 = g( - W ) )  is turned outwards as a Kelvin wave 
running along x = - W before the valley and about two-thirds (9 = a( - W )  -g( - W ) )  
enters the boundary layer through a sink a t  ( - W ,  0). Since a( W) = g( W) there is no 
source on the far side of the valley. Figure 9(b) gives a and g for a wide valley 
(W = 3),  showing that almost the entire incident flux enters the boundary layer. 
Once again g decreases over 9 with increasing W although, as noted in I, the 
approach to its wide-topography limit of g = 0 is slower than in figure 7 as the 
Rossby radius is larger above the valley. 



Scattering of Kelvin waves by continuous topography 195 

I 

I 

1 

, a .  

Mode 

X X 

FIGURE 9. The surface elevations a and g for a triangular valley of maximum depth h, = 3. (a) 
A narrow valley, W = 0.3. Of the incident flux about one third, denoted 9, is carried outwards along 
the near side of the valley by the long-wave field and the remaining two-thirds enters the wall layer. 
(a) A wide valley, W = 3. Almost all the incident flux enters the wall layer through a sink of 
strength Y a t  ( -  W, 0). 
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FIGURE 10. The distribution of mass flux amongst the transmitted Kelvin wave and scattered 
topographic long waves as a function of the half-width W, normalized on the incident flux. (a) For 
a ridge with minimum depth h, = 0.2 the transmitted mass flux KT = A approaches I, = 0.2 as W 
increases. (b) For a valley of maximum depth h, = 3 the transmitted flux approaches A = l /h,  = 5 
with increasing W. In both cases mass is conserved and at each W the total flux scattered into long 
waves is 1 -A, carried predominantly by the fundamental mode. 

. 
K, = A 

1 . .  

Figure 10 gives the distribution of the mass flux among the wave modes aa a 
function of feature width. For both the ridge with minimum depth h, = 0.2 of figure 
lO(a) and the valley with h, = 3 of figure 10(b) ,  the fundamental long wave 
dominates the mass transport with negligible transport in higher modes for any 
width W. Since the depths in the incident and transmission regions are the same the 
fundamental mode here, unlike that in $2, is not anomalous for small W.  As W-tO 
its wavelength and amplitude in the scattered field, like those of the higher modes, 
vanishes. This contrasts with the behaviour as W+O for topographies like the 
escarpment of figure 3 across which there is a net change of depth. For all widths W 
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FIQURE 11. The distribution of energy flux amongst the transmitted Kelvin wave, the scattered 
topographic long waves and scattered short waves, normalized on the incident flux, as a function 
of the half-width W for the same features as figure 5 .  (a) For the ridge the transmitted flux 
K,  = A' approaches h! = 0.04, the flux scattered into long waves approaches 1 - A  = 0.8, and the 
flux scattered into short waves approaches A(1-A)  = 0.16. ( b )  For the valley the correspond- 
ing limiting values are: transmitted flux, A2 = l / h :  = 4; long waves, A ( l  - A )  = %; and short- 
waves 1 - A  = $. 

the total mass flux is unity as expected, with the transmitted Kelvin wave carrying 
flux A and the scattered long waves varying flux 1 -A .  That this holds for any ridge 
or valley follows by direct integration of the long-wave flux, s-", g'h dx, using (4.13) 
and (5.1). Figure 11 gives the distribution of energy flux among the wave modes for 
the same profiles as figure 10. Once again the dominant long-wave mode is the 
fundamental and high modes carry little energy. A significant fraction of the incident 
energy is however dissipated in the wall layer or scattered outwards as short waves. 
Consider a wide ridge of minimum depth h,. Before the ridge the amplitude a, mass 
and energy fluxes and depth are unity. After the upslope the depth is h,, the 
amplitude remains unity and so the mass and energy fluxes are h,. The energy and 
mass transported outwards by long waves are thus both 1 - h, = 1 - A  as in $2. After 
the downslope the depth is again unity, the amplitude A = h, and the transmitted 
mass and energy fluxes are A and A 2  respectively. Hence the short waves over the 
downslope carry no mass but have outwards energy flux A (1 -A) with maximum 
value t for a ridge of half the fluid depth. By W = 4 in figure 11 (a )  these asymptotic 
values have been closely achieved. For a wide valley of maximum depth h, the mass 
flux over the valley floor is unity so the amplitude and energy flux are both l/h,. 
The short waves over the downslope carry no mass but have outward energy flux 
l-l/hl = 1-A as in $3. After the upslope the amplitude remains A = l / h ,  
and the transmitted mass and energy fluxes are A and A2. Hence the long waves 
carry outward a mass flux of 1 -A which has a maximum value of t for a valley of 
depth twice the far-field depth. Over a valley it is the long-wave field whose 
energy is bounded above to be less than one quarter the incident energy, whereas 
over a ridge it is the short-wave field that is so bounded. Although approaching their 
asymptotic values, the fluxes in figure 11 ( b )  do not approach as closely as those in 
figure 11 (a) until W is of order 10 owing to the larger Rossby radius above the valley. 
Unlike the simple expressions for the partitioning of the mass flux, those for the 
energy flux hold only in the wide-feature limit. 
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FIGURE 12. Bounds and approximations to the transmitted amplitude as a function of the half- 
width W :  (i) the exact value; (i i)  the one-mode approximation (4.25) ; (iii), (iv) the upper and lower 
bounds from Killworth (1989). (a )  A ridge of minimum depth 0.2. ( b )  A valley of maximum 
depth 3. 

Figure 12 gives the one-mode approximation (4.25) and the upper and lower 
bounds of Killworth (1989). As the bounds are derived neglecting energy in the short- 
wave field they are achieved only above upward escarpments. 

7. Discussion 
An explicit solution method has been derived for the scattering of Kelvin waves 

by continuous topography and the structure of the solution a t  low frequencies 
obtained. The wavefield is most straightforward over upward escarpments where 
only long waves are present and the surface elevation a t  the wall is constant. Over 
downward escarpments the scattered topographic field contains only short waves. 
For exponential topography a complete description of the flow field follows by 
separating the rapidly varying phase and slowly moving group velocity components 
but for general topography where ray paths are not straight no simple closed-form 
description of the complete short-wave field is possible. However, analysis of the 
short waves within a distance o of the wall y = 0 where they are generated leads to 
a differential equation for mass conservation that relates the inner limit of the outer 
long-wave flow to the surface elevation at  the wall. Together with a radiation 
condition this allows a complete solution for the barotropic long-wave field and in 
particular determines the amplitude of the transmitted Kelvin wave. An explicit 
form for the whole short-wave field is not required. 

Vanishingly small dissipation and weak stratification (w 4 B 4 1) both cause short 
waves to decay exponentially with distance from the wall y = 0. Outside these wall 
layers the long-wave and geostrophic fields derived here give the complete flow 
pattern in these limits. The short waves carry no mass. I n  the weakly dissipative limit 
their energy is destroyed within a thin wall layer above downslopes. In weakly 
stratified flow this energy is scattered into internal Kelvin waves which are 
transmitted past the topography propagating along the wall y = 0 confined within 
a layer of dimensional thickness No H / f .  With stratification increasing from 
barotropic flow where B < w 4 1 to weakly stratified flow with w < B 4 1 the long- 
waves fields are unaltered but the short-wave energy changes smoothly from being 
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scattered outwards along downslopes to being transmitted along the wall. The 
transmitted energy flux increases with the ratio B/w but the transmitted mass flux 
remains constant. 

The present method confirms the accuracy of the apparently crude stepped- 
topography approximation for similar problems presented in I, placing the analysis 
there into the more usual context of solution by mode matching and elucidating some 
of the structures that appear in the discrete problem as the resolution is increased. 
For general continuous topography the eigenfunctions for the long-wave modes can 
be found only numerically and hence the choice in solution is between solving the 
exact problem approximately, truncating at  a fixed number of modes as discussed 
here, or solving an approximating problem exactly as in I. If the topography is 
complicated or the transmission amplitude alone is required then the stepped- 
topography approximation of I appears greatly superior. If the topography is simple 
and the fundamental topographic mode easy to obtain then the present analysis 
yields a simple but accurate approximation directly. The details derived here for the 
structure of the continuous problem enable the efficiency of the previous stepped- 
topography approximation to be greatly improved. The stepped approximation is 
optimized by dividing the domain into intervals bounded by those places where h‘ 
vanishes and concentrating the approximating points near the ends of the intervals. 

The solutions here give the surface elevation to zero order in the frequency 
w < 1. Although the surface elevation is continuous everywhere the velocity parallel 
to the topography, w = qx, is discontinuous at the edges of the topography and 
whenever h vanishes (e.g. ridge crests and valley floors). This discontinuity forces 
the leading-order correction to the flow field. For the upslope of $2, vX is discontinuous 
at  x = W- and x = 0 for y of order unity. This discontinuity forces waves varying 
rapidly in x with scale wf 4 1. Over 42 the solution contains an extra term of form 

4rh(E, X, Y), (7.1) 
where $ = x/&. Noting that the leading-order solution is constant over $2 and 
substituting in (2.1) gives the leading-order problem in a WKB expansion for qh 

i&+ (h’/h) 72 = 0 over@, (7.2) 
7: = %7i(W-, y) (x = w-1, rf = axr,(o, y) (x: = O), (7.3) 

qh = 0, y = 0, over@. (7.4) 

Equation (7.2) is a form of the long-wave equation since the x-scale of the motion is 
much smaller than the y-scale and h’/h gives the slowly varying (in fJ local slope. A 
complete solution to the problem posed by (7.2)-(7.4) can be derived by Fourier 
integral techniques. To determine the general form of the extra term r , ~ ~  it is sufficient 
to note that solutions of (7.2) represent a high-x-wavenumber field forced at the 
escarpment edges and spreading rapidly on the inner-y scale to cover the whole 
upslope in inviscid flow or remaining confined to the escarpment edges as in Johnson 
(19894 in weakly dissipative flow. This term gives the leading-order correction 
to the flow field representing an additional mass flux of order wi and energy flux of 
order w .  

A similar high-x-wavenumber contribution is forced by the discontinuity in the 
leading-order q5 at a ridge crest or valley floor. Consider a profile that is locally 
parabolic at x = 0 so h’(0) = 0 but h”(0) =I= 0. Then the relevant short scale is 
& = x/& and (2.1) gives to leading order 
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where here the extra term over the topography is of the form w’vh(x/&, x, y ) .  
Solutions of (7.5) behave as Airy functions in being oscillatory on upslopes (where 
h”(0) sgnx is negative for both ridges and valleys) and decaying exponentially over 
downslopes (where h”(0) sgn x is positive). This term is larger than the correction at 
escarpment edges although the correction there would also be of order wi if the slope 
were continuous but h” discontinuous, i.e. the escarpment edges were locally 
parabolic. 

The results of $82-4 were presented for profiles without plateaux, i.e. finite 
intervals of x where h’ vanishes. The long-wave modes q5n no longer form a complete 
set above profiles with plateaux and an arbitrary function of x cannot be expanded 
there in terms of the 4% alone. The outer limit of the inner solution is not however 
completely arbitrary. Above flat regions the inner region satisfies (2.43) and as 
y-2 00 the y-dependence decays exponentially to leave the outer limit of the 
inner solution satisfying 

hy,,-v = 0 (y+0O, h = 0). (7.6) 

This is precisely the form of (2.1 1 )  above plateaux, satisfied by each long-wave mode. 
Expression (2.16) for the inner limit of the outer-y solution is thus sufficient to match 
the outer limit of any possible inner solution. The present results thus apply equally 
to profiles with plateaux and the matching above plateaux is automatic. Integrals 
like (2.18) thus do not depend explicitly on values where h’ = 0. The precise form of 
the flow above plateaux can be found as in I where the topography consists solely of 
vertical escarpments separated by plateaux. In  general the flow above plateaux in 
upslopes is stagnant with the surface elevation taking the same constant value as 
over the remainder of the upslope. Over downslopes the fluid carried by the wall layer 
escapes through a source on the wall at the leading edge of the plateau and spreads 
over the plateau before contracting to pass into a sink on the wall at  the trailing edge 
of the plateau and entering a new wall-layer. Such flows are illustrated in I. 

The comments in I on non-rectilinear topography apply here also. In the 
geostrophic region (2.4a) implies that the surface elevation is constant along 
isobaths. Thus for a given far-field profile the solution is unaltered if the bounding 
wall is not planar or if the isobaths are not straight, provided solely that all far-field 
isobaths reach the wall. If a ridge is broken by a gully or a valley by a bridge then 
some far-field isobaths do not reach the wall. Values of g(x) above the isobaths that 
curve back are then related by connection formulae as in Johnson (19893) and the 
transmitted Kelvin wave is stronger as in I. 

The profiles considered in $6 are symmetric. An example of an asymmetric profile 
is considered in I, where i t  is noted that reflecting a ridge or valley profile leaves the 
transmitted Kelvin wave amplitude unaltered when the far-field depths on each side 
of the profile are equal. This is a special case of the result proved in Appendix A that 
the transmitted mass f lux i s  invariant under reJEection at arbitrary subinertial frequencies. 
From the example in I it appears that maximum blocking occurs for the Steiner 
symmetrization of a given ridge or valley profile. 

Appendix A. The adjoint problem 
The adjoint problem follows most straightforwardly by reversing the direction of 

the rotation. The incident Kelvin wave then travels inwards from x = co and is 
scattered into outwardly propagating topographic waves by the ridge. A transmitted 
wave continues onwards to x = - 00. Let 7 and U give the spatial dependence of the 
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surface elevation and velocity fields in the original problem and let the corresponding 
surface elevation and velocity fields for the adjoint problem be q and I/. Then q 
satisfies, from (2.8) in I, 

- iw(l-d)q = V . ( h V ) .  (A 1) 

Taking 7 x ( A  1)  + q x (2.8) of I gives 

v. ( H y Y + H q U )  = 0. 

Integrating (A 2) over a sufficiently large rectangle 0 < y < yl, -xl < x < x1 and 
noting that for the Kelvin waves, 

gives 
U.i=- (1  -4 71y, 

m 

(1 -d) ( H ,  A -&A’) = (HqV .j+HqU.j) dx, (A 3) J-, 
where A ,  A’ are the amplitudes of the transmitted waves in the original and adjoint 
problems for unit-amplitude incident waves. Since the left-hand side of ( A 3 )  is 
constant, the right-hand side is independent of yl, for sufficiently large yl. Far from 
the wall the topographic wave fields 7 and q each consist of a sum of propagating 
modes. Consider a typical term from each sum proportional to (say) exp(ih,y) 
and exp (ih, y). Then their joint contribution to the integral is proportional to 
exp[i(A,-h,)y,]. Since the right-hand side is independent of yl, this term has 
coefficient zero if A, -+ A,, i.e. for waves modes of differing wavenumber 

All waves in the summation for 7 carry energy outwards for positive rotation whereas 
those in the summation for q carry energy outwards for negative rotation. Hence a t  
fixed frequency the group velocities of the two sets of waves are in the opposite 
direction and so the same wavenumber cannot appear in both sums. By (A 4) the 
right-hand side of (A 3) vanishes giving 

H,A = H,A’. (A 5 )  

The transmitted volumeJux of the adjoint and original problems is the same. The result 
is valid for all subinertial (o < 1) incident waves. 

Note that because of the asymmetry of the radiation conditions q cannot be 
identified with p, the complex conjugate of p ,  even though they satisfy the same 
equation (A 1 ) .  This is a significant difference between rotating and non-rotating 
scattering and arises from the unidirectional propagation of waves of given shape. 

Appendix B. General topography 
For general topography consisting of many ridges, valleys and plateaux and 

possibly extending to infinity it is convenient to follow I and introduce the 
cumulative depth given here in terms of infinitesimals by 

0 over upslopes, h’ < 0, 

dh over downslopes, h’ 2 0, 
ds= { 

with s( - co) = h( - 00) = 1. Then s is a monotonically increasing function of x and for 
continuous h there corresponds to each x a unique s. Moreover, since a is constant 
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when ds = 0 by (4.11) and ds > 0 elsewhere, a is uniquely determined as a function 
of s and hence as a function of x. In terms of s (4.8) becomes 

(B 2) g(5) = (d/ds) (as) .  

Note that this form incorporates any plateaux in h automatically : the transformation 
to the new ordinate removes the necessity to discuss flat-topped topography 
separately. At plateaux in upslopes or downslopes g is continuous but dg/ds is in 
general discontinuous. At a ridge-crest or valley-floor plateaux g is discontinuous as 
a function of s. 

It remains to match the outer solution (2.16) at Y = 0 with (B 2). The most 
straightforward matching foliows as in I by solving (B 2) subject to the constraints 
(4.6) and, once a and g are determined, obtaining the coefficients aj in (4.13) from 
(4.5). The simplest parameterization of (B2)  corresponds to taking a(5) to have 
values a,,a,, ..., a, for n-values of 5 from so = 1 to s, = s,,, where smax is the 
maximum value of 5 (occurring at  x = co), and forming the finite-difference 
approximation 

gi = (ajs,-a,-l 8+1)/(8j--5j-1), j = 1, . .., n, (B 3) 

as in (3.7) of I. The stepped-topography approximation of I corresponds t o  the 
simplest discretization of the continuous problem. 

A more efficient discretization can be obtained by expanding a(5) as a Tchebychev 
series with undetermined coefficients and determining the coefficients from the 
constraints (4.6). As a(s)  is continuous for all profiles and differentiable for profiles 
without ridge-crest or valley-floor plateaux the convergence of such expansions is 
guaranteed. 
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