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Trapped vortices in rotating flow 
By E. R. JOHNSON 

Department of Applied Mathematics and Theoretical Physics, 
University of Cambridgef 

(Received 7 December 1976 and in revised form 21 November 1977) 

A variational principle is presented which characterizes steady motions, at  finite 
Rossby number, of rotating inviscid homogeneous fluids in which horizontal velocities 
are independent of depth. This is used to construct nonlinear solutions corresponding 
to stationary patches of distributed vorticity above topography of finite height in a 
uniform stream. Numerical results are presented for the specific case of a right circular 
cylinder and are interpreted using a series expansion, derived by analogy with a 
deformable self-gravitating body. The results show that below a critical free-stream 
velocity a trapped circular vortex is present above the cylinder and a smaller patch of 
more concentrated vorticity, of the opposite sign, maintains a position to the right 
(looking downstream) of t,he cylinder. An extension to finite Rossby number and 
finite obstacle height of Huppert's (1975) criterion for the formation of a Taylor 
column is presented in an appendix. 

1. Introduction 
Proudman (1916) and Taylor (1917) demonstrated that slow steady motion of an 

inviscid, homogeneous, incompressible, rotating fluid must be independent of the 
co-ordinate parallel to the axis of rotation: the Taylor-Proudman theorem. The 
peculiarity of this result prompted Taylor (1923) to perform an experiment in which 
a short cylinder was moved slowly across the floor of a tank rotating about a vertical 
axis. He found that the vertical cylindrical surface circumscribing the body separated 
regions with dissimilar velocity distributions: inside the fluid was at rest with respect 
to the obstacle, whereas outside it flowed asymmetrically in a two-dimensional 
pattern. The stagnant fluid region has come to be called a Taylor column (Hide 1961). 

Various theoretical models have been advanced to explain these observations, each 
retaining a different term in the equations of motion to remove the inherent degeneracy 
caused by the balance between the Coriolis force and the pressure gradient in the 
geostrophic limit. Grace (1927) and Stewartson (1952, 1953, 1967) considered the 
linearized inviscid initial-value problem and Jacobs (1  964) the linearized viscous 
steady problem. 

These solutions, however, do not possess the asymmetry which has been consistently 
observed (Taylor 1923; Hide & Ibbetson 1968, 1968). From a consideration of inertial 
effects, Hide (1961) predicted that a Taylor column first forms over an obstacle of 
height h,, in a tank of depth H,, when a = 8-'Ro decreases to some critical value 

t Present address: Department of Mathematics, University of British Columbia, Vancouver, 
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ac(S), say, of order unity. Here 6 = ho/Ho is the non-dimensional obstacle height, so 
that 6 < 1, and Ro = U/fL is the Rossby number for the flow, where U and L are 
horizontal velocity and length scales respectively and 4 f is the basic rotation rate. 
Ingersoll(l969) presented the first nonlinear calculations, based on the conservation 
of potential vorticity in steady quasi-geostrophic flow, i.e. the limit S --f 0, Ro +- 0 
such that a remains finite. This work was extended by Huppert (1975), who gave an 
expression for a,(O) and flow patterns when a 2 a,(O) for axisymmetric obstacles in the 
quasi-geostrophic limit. 

For a 2 ac(0) the flows obtained by Ingersoll and Huppert possess no closed stream- 
lines and so the potential-vorticity distribution is completely determined by the 
upstream conditions. However for a < aJ0) closed streamlines are present and 
further conditions are required to make the steady-state problem well posed. Ingersoll 
obtained these by demonstrating that the long-term effect of vanishingly small 
viscosity on fluid in any closed-streamline region is to spin that region down until it is 
stagnant with respect to the bottom topography. This gives the additional condition 
that any closed streamline region must be stagnant, and is sufficient to give a well- 
posed steady problem. He obtained solutions corresponding to a stagnant vortex 
trapped above the topography and asymmetric flow outside it. 

We present here an alternative, time-dependent, nonlinear approach for the regime 
a < ac(6), where the potential-vorticity distribution cannot be deduced solely from 
upstream conditions. By taking account of the constraints imposed on the motion by 
the requirement that potential vorticity must be conserved, we obtain steady solu- 
tions which may occur after the flow has started from rest. The complete equations of 
motion for starting flow over isolated topography have been integrated numerically by 
Huppert & Bryan (1  976). Although their results are for a stratified fluid, a description 
of the flow development based on conservation of volume and absolute vorticity is 
equally relevant for homogeneous starting flow. 

As the flow starts from rest, those vertical filaments of fluid initially above an 
obstacle move off downstream and, in the absence of vertical shear, remain vertical. 
As each filament stretches, conservation of volume requires the horizontal cross- 
section of the filament to decrease. The relative vorticity of the narrowing filament 
must thus increase to conserve angular momentum. Hence, on the downstream side 
of the obstacle, a cyclonic vortex of area smaller than that of the obstacle is 
formed. Simultaneously, the contraction of filaments moving over the obstacle means 
that a second, less intense, ant,icyclonic vortex is formed above the obstacle. When 
a exceeds a certain critical value, less than the relevant ac(6), Huppert & Bryan find 
that the cyclonic vortex eventually moves off downstream with a velocity which 
approaches asymptotically that of the free stream. However, for a less than this 
critical value, the interaction of the two vortices is strong enough to counteract the 
tendency of the free stream to sweep this vortex away. The cyclonic vortex slowly 
moves to take up a position to the right (looking downstream) of the obstacle. 

The aim of the present work is to show that there exists a steady solution to the 
finite Rossby number equations of motion corresponding to the latter situation. We 
obtain the shape and position of such a trapped cyclonic vortex both by use of a 
variational principle and through a gravitational analogy. 

The variational principle is based on ideas introduced by Benjamin (1976) in 
discussing axisymmetric vortex rings in non-rotating incompressible flow. The 
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equations of motion for such an axisymmetric flow show that the quantity w/r  (where 
o is the component of vorticity in the azimuthal direction and r is the radial co-ordinate) 
is conserved by individual fluid parcels. Thus, in a steady flow, w / r  at any point must be 
solely a function g (say) of the value at that point of the stream function. The existence 
of such a function g was f i s t  proved by Fraenkel & Berger (1974). Benjamin simplified 
this proof and obviated the necessity to consider the flow outside a region containing 
the support of w / r  by observing that the stream function can be obtained from w / r  
through a bounded linear operator. He also pointed out that the time-dependent 
dynamic equation for the conservation of w / r  is equivalent to requiring that w/r  
remains a rearrangement of some initial vorticity distribution. A vortex propagating 
with uniform velocity in otherwise quiescent fluid may thus be characterized as that 
rearrangement of the initial vorticity which possesses the maximum kinetic energy for 
a given linear momentum in the direction of propagation. Benjamin proved that 
such a maximum exists and hence was able to show that the motion is stable. These 
ideas may be applied to the present problem. 

For sufficiently thin and rapidly rotating flows, horizontal velocities are independent 
of depth (Greenspan 1968, chap. 5). This is a valid approximation for flows where 
~ R o ( H , / L ) ~  = a(h,/L)2 Q 1 and includes not only the ‘fat’ layers of rapidly rotating 
fluid (where (H,/L)2 - 1, Ro < 1) dealt with in the laboratory, but also the thin 
rotating layers of fluid (where (H,/L)2 Q I, R, 5 1) considered in ocean modelling. In  
these flows potential vorticity is conserved and there exists a bulk stream function 
which can be obtained from the potential vorticity through a linear operator. In 
contrast, however, to the quasi-geostrophic limit, the horizontal velocity field is not 
solenoidal and equal horizontal areas are associated with different fluid volumes owing 
to varying fluid depth. Thus a co-ordinate transformation is introduced before 
applying rearrangement ideas to obtain our main result. The steady-state potential- 
vorticity distribution above arbitrary topography in a uniform stream is characterized 
as that rearrangement, in a specified co-ordinate system, of the original potential- 
vorticity distribution which maximizes a functional related to the total energy of the 
motion. 

The advantage of the present principle over those previously discussed in geophysical 
situations (Stern 1975; Bretherton & Haidvogell976) lies in the concept of rearrange- 
ments. Bretherton & Haidvogel discussed quasi-geostrophic motion with no upstream 
flow. However, as they themselves noted, the nature of the variational principle they 
introduced specifies a priori that the potential vorticity is simply linearly related to 
the stream function, The specification of a finite number of power integrals by Stern 
is also equivalent to specifying the relationship a priori. Use of the rearrangement 
constraint eliminates these restrictions on the form of the function relating the 
potential vorticity and the stream function. The difficulty noted by Bretherton & 
Haidvogel, of determination of the correct function of potential vorticity to be 
minimized, disappears when their problem is posed as obtaining an extremum of 
the energy subject to the constraint that the vorticity remains a rearrangement of 
the original random field. 

The considerable simplification which occurs when attention is restricted to flat- 
topped obstacles is discussed in $4.  Numerical results obtained from the variational 
principle applied to a right circular cylinder are presented in $ 5 and discussed with the 
aid of an expansion of the solution as a power series in a, found by analogy with a 
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FIGURE 1. The co-ordinate system and scales of the motion. 

gravitational problem. From numerical work it appears that there exists a second 
critical value for a, a* say, less than the critical value ac below which stagnation 
points exist. Above this value of a* no solutions can be found corresponding to trapped 
cyclonic vortices. The three possible regimes a > ac, a, > a > a* and a* > a are 
discussed in 5 6. We conclude with an appendix in which expressions are given for 
the stream function and blocking height for axisymmetric obstacles of arbitrary 
height. These reduce to those given by Huppert (1975) in the quasi-geostrophic limit. 

2. The time-dependent equations 
Although the actual analysis will be restricted to steady flows, it will help to motiv- 

ate the procedure if we begin by writing down the time-dependent equations. We 
consider the motion of a layer of depth H, of homogeneous, incompressible, inviscid 
fluid confined between two horizontal planes and initially in a state of solid-body 
rotation with angular velocity 4 f about a vertical axis. We take horizontal co-ordinates 
(2’) 9’) as in figure 1, with corresponding velocity components (u’, v’), and time t ’ .  We 
are concerned with the effect of an obstacle fixed to the lower boundary on the evolu- 
tion of this system when an applied pressure gradient accelerates the fluid a t  infinity 
from rest to uniform motion in the +x’ direction with velocity U. We assume that 
horizontal velocities are independent of depth. The vertically integrated continuity 
equation is thus 

where H(x’ ,  y’) = 1 - Sh(x’, y’) is the non-dimensional local fluid depth. Combining 
this with the vertical vorticity equation gives the conservation relation 

where n‘ = (5‘ + f )/H,H - f /H ,  = (5‘ + Sfh)/H,H is the potential vorticity and 6’ is the 
vertical component of the relative vorticity. Since we consider the fluid to be initially 
at rest relative to the rotating frame, we have 

(U’H) ,  + (V’H),. = 0,  

7T;+u’7T;*+v’7Ty, = 0, (2.2) 

(2.1) 

7 ~ ’  = Ghf/H,H at t’ = 0. (2.3) 
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The initial distribution of potential vorticity is non-zero only on that k i t e  area where 
the local depth differs from the basic depth H,. We introduce non-dimensional variables 
defined by 

(x', y') = L(x, y), (u', v') = SfL(u, v), t' = t /&f,  

g' = Sfc, n' = Sfn/Ho. 

In  the light of (2.1), we may also introduce a bulk stream function Y defined by 

WX, Y,) = ( V H ,  - UH), 

n, = -H-l8(Y,n)/8(x,y), 
and write (2.2) and (2.3) as 

n = h/H = ni (say) at t = 0, (2.5) 

where 8(Y, n)/a(z, y) = Yxn, -'Funx is the Jacobian and Y and n are related through 
the relative vorticity : 

6 = H(n-n i )  = vx-u, = (H-lY,JX+ (H-Tu), = 9 Y  (say). (2.6) 

The conservation relation (2.4) has a simple geometric meaning. This may be demon- 
strated by introducing any continuous bijection from (x, y) to new (non-orthogonal) 
co-ordinates ( E ,  7) which satisfies 

(Along with (2.7) it may also be required that the origin is invariant under the 
bijection and that the new co-ordinates differ from the old by an amount which 
decreases with increasing distance from the origin.) The volume element 

dP = W x ,  y) dxdy, 
which was previously a function of position, is independent of co-ordinate values in 
this new system: d,u = d t d y .  For any function G we introduce G * ( < , r )  =- G(x,y). 
The relation (2.4) becomes 

This states that the potential-vorticity distributions which evolve during any time 
interval are rearrangements in 5 , ~  space of some initial distribution, which, from (2.5), 
we take to be n:. This is the sole information from the time-dependent problem that we 
shall use in finding steady solutions. The steady problem may then be posed as finding 
a potential-vorticity distribution no (say) and corresponding stream function Yo such 
that no* is a rearrangement of n:, and no and Yo satisfy 

nt* = - a(Y*, ..*)/a(<, 7) .  (2.8) 

aw,, n,)/8(z, Y) = 0, (2.91 

(aY,/az, 8Yo/8y) -+ (0, -a) as x2+y2 -+ co. (2.10) 

3. The steady solution 
For a wide range of bottom topography the operator 9 in (2.6) may be inverted to 

obtain from a vorticity distribution with bounded support a stream function whose 
corresponding velocity components vanish at infinity. There exists a Green's function 
k(x, y, 6, Q), say, for (2.6) subject to the boundary condition (kx, k,) -+ (0 ,O) as 
x2+ y2 -+ 00. This point enables us to consider the bounded domain where the vorticity 
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is non-zero instead of the whole fluid field. To solve the steady problem we split Yo 
into irrotational and rotational parts. Let Yo = Yl + Y,, where Y, is given by 

Y, = -ay +aK[(H-l),] (3.1) 

and the linear operator K is defined by 

It may be verified that Y, satisfies 9 Y l  = 0 and the boundary condition (2.10). The 
rotational component Y, satisfies 

where 

We are now in a position to characterize n,* as that rearrangement of n: which 
maximizes the functional 

F(n*) = -/ 
= -/ 

(n* - n,*) {Y? + &K*(n* - 7$)} dp 
aupp (A* -  A ; )  

aupp (A' - ?If, 
(n* - n:) Y: dp - 5 (n* - n,*) K*(n* -mi*) dp. '1 supp (n*-nt) 

The first integral in the latter expression may be identified with the impulse, or linear 
momentum, of the vorticity distribution in the 2 direction and the second with its 
kinetic energy. Benjamin's result may be obtained as a special case of the result that 
it  is the ratio of absolute vorticity to depth which is conserved when the depth varies 
linearly in the cross-stream direction. In  his case both the integral for impulse and that 
for kinetic energy are independent of time. However, with more general depth varia- 
tion, drag from bottom topography means that neither integral is conserved 
individually although substitution in (2.8) shows the combination F to be a constant 
of the motion. 

By establishing a priori certain properties of the maximizing function for his case, 
Benjamin was able to produce an elegant proof of existence. It is not obvious how 
similar properties might be demonstrated for the function no*. We prove solely that 
if n,* is a local maximum of F ( n )  then it is a solution of the time-independent equation 
of motion (3.3). 

We assume tha t  no* is maximal for perturbations with parameter s that are deter- 

(3.5) 

is a maximum of F, the first variation of F about T: vanishes. Ordering in 

mined by * P,+a(g,P)/i?(&q) = 0 for all s 0, PI,=, = no, 

where g = g(E,q,  s) is chosen arbitrarily. 

powers of s, the first variation complying with (3.5) is 
Since 

p = -8 %I, no*)/%, 7). 
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Thus P = {P[YT + iK*(n: - n:)] + i(n,* - 7 ~ :  ) K*P} dp s 
= /(Y:+Y:)Pdp, where Yg = K*(n,*-n:), 

Since F vanishes for arbitrary g ,  

w: + yt, n,*)P(<, 7) = 0. 

This is precisely the dynamic condition (3.3) for steady motion in the present co- 
ordinate system. The stationary-vortex problem is thus reduced to finding the local 
maxima (if any) of P corresponding to a given a,& and h subject to the constraint that 
no* be a rearrangement of n:. 

4. Flat-topped obstacles 
An appreciable simplification occurs when attention is restricted to obstacles which 

are of uniform, non-zero height within some given region and of zero height elsewhere, 
For such obstacles the requirement that n* remains a rearrangement of n: becomes 
a simple weighted area constraint. This greatly reduces the difficulty of numerical 
calculations. 

Consider the obstacle given by h = xd, where xd is the characteristic function for 
some bounded, simply connected region d (i.e. xd takes the value unity inside &' and 
the value zero elsewhere). The initial potential vorticity is thus ni = (1 - 6)-1xd, from 
(2.5). Since n is conserved the subsequent value of n at any point is either (1 -&)-I 
or zero, i.e. the determination of the motion is reduced to obtaining, at  any time t ,  the 
support a(t) (say) of n, since we then have n(z,y,t) = (1 -&)-lxtar. Calculating the 
relative vorticity shows that 6 is non-zero in two compact regions: 

(;= -xy+(1-&)-1x.q. (4.1) 

The potential vortex 9 consists of those filaments which have moved off the obstacle 
after initially occupying a position above it while the topographic vortex .F consists 
of those filaments now above the obstacle which were not there initially. The require- 
ment that n* remains a rearrangement of n: in a space defined by (2.7) becomes 
simply that 

Jtarn*dp = ldn:dp. ( 4 4  

Relative to  z, y co-ordinates, this states that 

area (9) = (1 -6) area (F). 

Equations (4.1) and (4.2) show that (for 6 > 0 )  the potential vortex is of opposite sign, 
smaller and more intense than the topographic vortex. In  the quasi-geostrophic limit 
the intensities and areas of the topographic and potential vortices do not differ. 
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I n  terms of a co-ordinate system satisfying (2.7), F may be written as 

where 

(Y: + @* + #K*n*) n*dp + (YT + #@*) T: dp, (4.3) 

c 

Here a* is the contribution to the stream function from the topographic vortex and 
YT is the irrotational part of the stream function, given by (3.1). Since the final term in 
(4.3) is independent of &I* we take 

p*(a*) = - (1 - 8)-lS I* (YT + @* + +( 1 - 8)-lJI* k* d i ]  dp.  

The condition that &I* is a stationary point of F*, subject to the constraint (4.2), i.e. 
that a* has the same measure as d* under measure p, requires that 

c 

'rT + a* + ( 1  -&)-I) k* d,G 
I* 

be constant on the boundary of 9P. This is simply the condition that the boundary of 
a* must be a streamline for the flow to be steady. For those steady solutions in which 
d n 93' is empty (which is always the case for sufficiently small a), the problem becomes 
that of maximizing 

where 

Y, is given by (3.1) and &I is constrained so that 

area (9) = (1 -8) area (d). (4.5) 

I n  this case, the  combination of the irrotational and topographic parts of the stream 
function, i.e. @ + Y,, is the finite-8, non-axisymmetric form of the zero-potential- 
vorticity stream function given by Huppert (1975) for axisymmetric obstacles in 
homogeneous flows in the limit S + 0. The general form of 0 + Y, for arbitrary 
axisymmetric obstacles and the effect of finite 6 on Huppert's criterion for blocking 
are presented in the appendix. 

5. Right circular cylinder 
A right circular cylinder is perhaps the simplest example we may consider as it is 

both axisymmetric and flat-topped. We thus take a height function xd, where x? is a 
disk of radius one centred about the origin. For the evaluation of F(@ we require the 
Green's function k and the zero-potential-vorticity stream function @ +Yl. In  the 
appendix it is shown that 

- a ( l - , 8 ) y - ~ ( l - S ) ( r 2 - 1 )  if r < 1, 

- a( 1 -,8/+) y - # In r if r > l ,  
@+Y, = 
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The equation satisfied by the where (2, y) = (r  cos 8, r sin 8) and P = +S( 1 - 
Green’s function follows from (2.6) as 

subject to (kz, ky) -+ (0,O) as x2+ y2 +- 00. This may be solved by expanding IC in a sum 
of terms of the form 

A,(r,p)cos[n(8-$)], n = 0, 1 ,2 . . . ,  where (a,$) = (pcos$,psin$). 
Then 

Ws, Y, = 

I G(rY OIP, $) -BG(r, 01 l/py 9) + (27rr)-lBlnr if r > 1, p > 1, 

( 1 - 6 ) G ( r , B l p , ~ ) + P ( 1 - 6 ) G ( r , 8 1 l / p , 9 ) + ( 2 7 r ) - l P ( l - S ) h p  if r < 1, p < 1, 

(1 -P)G(r, q p ,  $) + (24-1Plnp if r < 1 < p ,  

(1 -P)G(r, q p ,  $1 + (24-lPlnr if p < 1 < r ,  

( 5 4  
G ( r , B ( p , $ )  = (4n)-11n[r2-2rpcos(O-$)+p2]. where 

As 6 -f 0, k +- G ,  the fundamental solution of Laplace’s equation in two dimensions. 

the area constraint (4.5), which becomes 

[ 
Expressions (5.1) and (5.2) form the basis for the maximization of (4.4) subject to 

area (a) = ( 1  - S) n. 

Expressions (4.4) and (4.5) are based on the assumption that d n 9’ is empty, which is 
always true for sufficiently small a. As a increases it is possible for this condition to be 
violated and then the previously noted stretched co-ordinates must be introduced. 
Numerical calculations have, to date, been carried out for solely the simpler quasi- 
geostrophic limit 6 -+ 0, so that the transformed and original co-ordinates coincide and 
(4.4) and (4.5) are valid even when d n is not empty. The integral in (4.4) was 
replaced by a sum over 650 vortex points from 2500 fixed grid points. The value of F 
calculated for a given configuration was tested against all other values of F for con- 
figurations which could be obtained by exchanging a vortex point for a point next to 
the vortex. If P could be increased the points were exchanged and the process con- 
tinued until the test was successful. Streamline patterns of the flow for a = 0.18, 0.25 
and 0.259 are presented in figure 2. The dotted region is that covered by the potential 
vortex, i.e. 23’. It may be noted that the region of fluid isolated from the upstream flow 
by the splitting streamline is not stagnant and is of more than twice the area of the 
obstacle, decreasing in area with increasing upstream velocity. The streamline pattern 
is very much like that of a line-vortex pair. 

The extension of these calculations to finite S and the interpretation of the present 
solutions are aided by an expansion of the solution as a power series in a, obtained by 
analogy with the effect of gravity on a deformable body. The condition that the 
boundary of be a streamline in steady flow is analogous to the condition that the 
boundary of any deformable body should be a gravitational equipotential. 

The irrotational term Yl corresponds to a background field which at large distances 
from the origin is of uniform strength and directed in the + y direction; the topographic 
contribution CD corresponds to the potential function of a repulsive two-dimensional 
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( b  ( c )  
FIQURE 2. Streamlines for steady flow over an infinitesimal cylinder with a trapped 
potential vortex. The dashed circle indicates the edge of the cylinder, at r = 1, and the 
area of non-zero potential vorticity is dotted. The splitting zero streamline is thickened. 
(a) a = 0.18, ( b )  a = 0.25, ( c )  a = 0.259. The scale is the same in each diagmm and 
the streamline interval is 0.2. 

field centred on the origin; and the region 43 corresponds to a deformable self- 
gravitating body of area (1 - 6) n and density ( 1  - S)-l with gravitational potential 
given by 

(l-&)--l/ kd2dfJ. 

This configuration is depicted in figure 3. 
For slow flow, a < 1, i.e. a weak background field in the analogy, equilibrium can 

occur only at large distances from the repulsive body. The repulsive field has an equal 
and opposite strength to the background field at (2, y) = (0, - d),  where 

d = *a - 2ap - 8a3p2 + O(a6). 

a 
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f 

+ 

r t  t IT 

FIGURE 3. Field lines for the model considered in the gravitational analogy. The circular 
region d is of density 1, area 7r and exerts a force directed away from the origin. Region 
a is self-gravitating, of density (1 - 8)-1 and of area (1 - 8)  7r. The background field is of 
approximately uniform strength a. 

Both fields will be uniform to zeroth order in a and so its own gravitational field will 
cause the deformable body to be circular to zeroth order. To satisfy the area constraint, 
9 will thus be a disk of radius y = ( 1  -&)a and centre (0, -d).  The steady-state 
system, viewed on a length scale a-lL % L, has the appearance of a line-vortex pair in 
an almost uniform stream, the negative vortex being at the origin, the positive vortex 
at (0, -d). 

Higher approximations to the shape of a may be obtained by expanding in terms 
of a. We take the boundary of -9? to be given by (z,y) = (R(O)cos8, - d  +R(O)sin O), 
where 

~ ( 6 )  = y + a”fi (8) -F ay2(o) + o(a4). 

The potential a t  the boundary of 33 due to the background and repulsive fields is then, 
from (5.1) and to within a constant, 

(Y, + @)(R(e), 0) = - a2y2 cos 28 - +a3y3 sin 38 + O(a4). (5.3) 
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The potential at  the boundary of 93 due to self-gravitation is 
2 K  R(6)  

cV(8) = y-2I0 jo k(R(O)cos8, -d+R(O)sinO,pcos$, -d+psin$)pdpd+. 

This integral can be evaluated to order a4 without excessive manipulation by noting, 
from (5 .2 ) ,  that the potential a t  any point ( r ,  8) due to a point mass at (p, 9) is, forp > 1 
and r > 1, the sum of three potentials which depend solely on the logarithm of a 
distance. These are the distances from (p,  q5) to (i) ( r ,  O), (ii) ( l / r ,  6) and (iii) (0 ,O).  The 
last two reflect the presence of an obstacle of finite height and vanish as 6 --f 0. 
Thus the simple logarithmic potential due to the body B' is found for an arbitrary 
point ( r ,  O), r > 1, and is used to calculate the three contributions to the potential for an 
obstacle of finite height. This gives, to within a constant, 

a2 2n a2 
@@(6) = - ( f l ~ ~ ) + ~ f z ( ~ ) ) + z , r ~ o  Cfl(4)+~f2($)lln{2[1 - cos (~ -$ ) l )~d$  

+ 4a3yP sin 8 + O(a4). (5.4) 

For the boundary of Pi? t o  be an equipotential, the two expressions (5.3) and (5.4) can 
differ by the most a constant, independent of a. Thus, equating coefficients of a, 

2Y 

fl(6)+1 ~2'fl(q5)h{2[1 - cos(8-q5)]}idq5 = 2y3cos28, 
n o  

f2($) In {2[1- COB (8 - $)]}* d$ = #y4 sin 38 - 8y2Psin 8. 

Expanding the logarithmic kernel in sine and cosine series gives the exact solutions 

fl(8) = 4y3cos26, fz(8) = Zy4sin38-4y2Psin8. 

Hence, to order a4, d and R are given by 

d = $a -as( 1 - +S)-l- 2a3S2( I - R(8) = (1  - S)i + 4( 1 - S)# a2 cos 26 

+ 2a3( 1 - 6) [( 1 -6) sin 38 - S( 1 - gS)-l sin 81. (5 .5)  

The form of this solution tallies both with intuition and the shapes for 93 obtained from 
the numerical maximization. For a given 6, the first effect, with increasing a, of the 
non-uniformity of the repulsive field is the existence of components of force directed 
away from the y axis. This causes Pi? to become elliptical with major axis parallel to 
the 2 axis and is given by the term in a2 in (5.5). The next effect of increasing a, as the 
equilibrium position moves closer to the origin, is due to the difference between the 
field on the side of the body closer to the origin and that on the side further away. 
The body assumes a banana shape, curving to keep itself as far from the origin as 
possible. This is reflected in the a3 term in ( 5 . 5 ) ,  and is evident in the numerical 
solutions. It is also a t  this order that there occurs the first term due solely to non-zero 
obstacle height. This term represents the shift to a point further from the obstacle 
than the balance point (0, - d) of the y moment of the deformable body. Owing to the 
weakening of the background field corresponding to finite obstacle height, the centroid 
of S? is (0, - d - 4a3P) to order 014. The effect of increasing S on the lower-order terms is 
equivalent to decreasing a by the factor ( 1  - S)i. For a given a, 93 deviates less from a 
circular shape for larger 6: the potential vortex is smaller and more intense and thus 
deformed less by the external field. 
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6. Discussion 
It has been shown that if a rearrangement, relative to a particular co-ordinate 

system, of the initial potential-vorticity distribution above topography of finite height 
maximizes a functional related to the total energy of the motion, then this rearrange- 
ment is a soIution of the time-independent equations of motion. We have, however, 
not shown, as Benjamin was able to, that such a maximum must exist in a suitably 
defined function space. It appears, in fact, that there exists a critical value of a above 
which no such maximum may be found. This corresponds in the gravitational analogy 
to noting that, for sufficiently strong background fields, the repulsion between the two 
bodies will not be great enough to oppose the background field and no equilibrium 
configuration will exist. For a cylinder with 6 = 0 no maximum of the functional has 
been found for a > a* = 0.259. The results for flow with zero potential vorticity, 
derived for arbitrary 6 in the appendix, show that closed streamlines first occur for 
6 = 0 when a decreases past ac(0) = 0.5. Thus we may divide the flow into three 
regimes. 

(i) a > ac. While the flow is set up those fluid elements initially above the topography, 
with non-zero potential vorticity, drift off downstream, so that within any fixed finite 
area the potential vorticity will be zero at sufficiently large times. The flow will then be 
given by the zero-potential-vorticity solution (A 6) .  

(ii) a, > a > a*. The present method will not give an unambiguous form for the 
solution in this regime. We expect that, for flow velocities first increasing to above a, 
before approaching the final a value, the potential vortex would be lost downstream 
and the solution would be the zero-potential-vorticity solution (A 6), containing closed 
streamlines. However, for monotonically increasing flows, some potential vorticity 
may remain in the vicinity of the origin. 

(iii) a < a*. Provided that the basic flow reaches its final velocity monotonically, 
we expect trapped vortices to be present, containing all the original potential vorticity. 

Only in the last two cases is the mode of initiation critical, since it is always possible 
to sweep away the potential vortex by starting with a sufficiently large and sustained 
a before decreasing it to its final value. 

The analysis presented above has been for obstacles whose height is everywhere 
positive. For obstacles of negative height analogous results may be derived. There will, 
however, be qualitative differences. Since flow moving over a depression is stretched, 
the topographic vortex will be cyclonic and the potential vortex anticyclonic. The 
equilibrium point will thus be to the left (looking downstream) of the depression. In  the 
quasi-geostraphic limit the motion for 6 < 0 will be simply the reflexion about the 
x axis of that for 6 > 0 if the obstacle is symmetric about the x axis. However, for 
finite 6, volume and vorticity conservation require that the potential vortex is less 
intense but occupies a larger area than the topographic vortex. As there is no bound on 
obstacle depth (in contrast to bump height, which has a maximum of 6 = I) ,  there 
is no bound on how large and weak a potential vortex due to a depression may be, 
provided, of course, that a solution is possible for 6 large and negative. 

The analysis has also concerned solely inviscid motions. For a real fluid, if the flow 
persisted for a sufficiently long time the closed streamline region, present in the 
inviscid solution for a < ac, would be slowly spun down by the effect of small viscosity 
to give Ingersoll’s solution. When (v,/fL2)* < Ro, the time scale for this to occur 
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(Greenspan & Howard 1963) is far longer than the advection time scale for setting 
up the flows discussed here. 

The initial-value numerical solutions of Huppert & Bryan (1976) appear to approach 
the present solutions at large times for sufficiently low basic velocities, and photo- 
graphs obtained by Huppert & McEwan (private communication) in laboratory 
experiments show what could well be trapped potential vortices described by the 
previous analysis. Oceanographic evidence for the occurrence of these trapped vortices 
is less clear. The present analysis points to the possibility of finding not only trapped 
anticyclonic vortices above seamounts but also cyclonic vortices trapped by weak 
streams to the right (looking downstream) of mountains. Measurements of spatial and 
temporal variability (Stommel 1955; Swallow & Hamon 1960; MODE, Mid Ocean 
Dynamics Experiment) have yet to give unequivocal evidence of trapped vortices. 

I wish to thank Dr Ronald Smith for his many helpful suggestions and Dr Herbert 
Huppert for his constructive comments on previous drafts of this paper. The interest 
they have shown in this work is greatly appreciated. This work was financed by a 
Commonwealth Scholarship. 

Appendix. Stream functions and blocking for finite axisymmetric obstacles 
The results in $3 4 and 5 require knowledge of the zero-potential-vorticity flow field 

due to obstacles of b i t e  height. I n  this section we obtain a general expression for this 
field for arbitrary axisymmetric obstacles and the particular form for the specific case 
of a right circular cylinder. This also enables us to extend Huppert's (1975) blocking 
criterion to axisymmetric obstacles of finite height. 

Let the axisymmetric obstacle be H ( s ,  y) = 1 - 6h(r), where (2, y) = (r cos 8, r sin 8) 
and h has a maximum value of 1. Then from (2.6), the vorticity operator, in polar 
co-ordinates, is 1 

1 - ah) 

The irrotational component Y, of the stream function has been defined to satisfy 
9Y, = 0 subject to 

We may thus put Y, = -a sin O(r + 6R(r)}, where R is a function of r alone, vanishing 
at the origin and at infinity, which satisfies, from (A 1) and (A2),  

(aY?,/ax, 8TJay) + (0, -ct) as r -+ co. (A 2) 

-(l--~?h)(&~R,.) 1 --R 1 = - ( 1 - ~ 9 h ) - ~ h , .  
r r r2 

For arbitrary 6 and h this ordinary differential equation would have to be integrated 
numerically to obtain the behaviour of R. The exact solution of (A 3) for a cylinder is 
given later in this appendix. 

We are concerned with the case of zero potential vorticity so the vorticity of the 
flow is given by LJx, y) = -h(r ) .  Thus the stream function Q due to the topographical 
vortex satisfies 9Q = - h, i.e. -(--) 1 rQr = - h ,  

r 1 - 6 h .  
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subject to the boundary conditions that @,. is bounded at r = 0 and vanishes as 
r + m. The required solution of (A 4) is 

Thus the zero-potential-vorticity stream function is 

where R satisfies (A 3). This finite4 result reduces to that given by Huppert in the 
limit of quasi-geostrophic flow. 

For sufficiently large upstream velocities, Y, will dominate @ and no stagnation 
points will be present. For a given 6, as a decreases it will reach a critical value ac(6) at 
which a stagnation point first appears and below which the flow field represented by 
(A 6) contains closed streamlines. Decreasing 01 a t  constant 6 is equivalent to decreasing 
the Rossby number. As Ro decreases, rotation effects become more important than 
inertia and eventually blocking occurs. At a stagnation point 

(QrJ = ('9 '1' (A 7) 

Hence as Ro decreases from infinity, a stagnation point occurs first at 8 = - 
for some finite r, 

when, 

Let the maximum value of F o v e r  all r occur at ~~(6). Then Roc = F(r,(&),&). For 
Ro > Roc, (A 8) and hence (A 7) possess no solution, there are no closed streamlines in 
the flow field and the zero-potential-vorticity flow is unambiguously determined. For 
Ro = Roc there exists precisely one stagnation point, a t  (rc(6), - an), and for Ro < Roc 
the flow contains closed streamlines about the point (rc(6), -in). 

ExampZe. Consider the cylinder 

1 if r < 1, 

0 otherwise. 
h(r) = 

Then 

and 

Thus 

-(Z-S)-lr if r < 1, 

-(2-6)--lr-l if r > 1, 
R(r) = 

- a r s i n 8 ( l - p ) - ~ ( l - S ) ( r 2 - 1 )  if r < 1, 

- ar sin 8( 1 -b/r2) - 4 Inr if r > 1, 
Q@,@ = { 

where 

As Ro decreases from infinity, a stagnation point first occurs at (re, 8,) = (1, - an) when 

p = &S( 1 - iS)-1. 

Ro, = &3(1- $8). (A 9) 
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The critical value of a is given by ac(S) = 6 lR0 , .  In  the limit S + 0 this gives a,(O) = 4 
as in Huppert (1975). Equation (A 9) states that stagnation occurs solely for Rossby 
numbers less than 0.25 and for obstacles of height greater than 

8, = 1 - ( 1  - 4Ro)i = 2Ro + 2R02 + O(Ro3) as Ro + 0. (A 10) 

Expression (A lo) shows that the critical blocking height calculated for quasi- 
geostrophio flow over a cylinder underestimates the height required to cause stagna- 
tion a t  non-zero Rossby number. This result is closely analogous to that obtained by 
Huppert & Stern (1974) for rotating-channel flow. 
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