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Abstract

Tournament selection is the most frequently used form of selection
in genetic programming (GP). Tournament selection chooses individuals
uniformly at random from the population. As noted in [7], even if this
process is repeated many times in each generation, there is always a non-
zero probability that some of the individuals in the population will not
be involved in any tournament. In certain conditions, typical in GP,
the number of individuals in this category can be large. Because these
individuals have no influence on future generations, it is possible to avoid
creating and evaluating them without altering in any significant way the
course of a run. [7] proposed an algorithm, the backward chaining EA
(BC-EA), to realised this, but provided limited empirical evidence of the
actual savings and the experiments were restricted to fixed-length genetic
algorithms. In contrast we provide a generational genetic programming
implementation of BC-EA and empirically investigate the efficiency in
terms of fitness evaluations and memory use and effectiveness in terms of
ability to solve problems of BC-GP. Results indicate that large savings
can be obtained with this approach.

1 Introduction

In tournament selection, a group of n individuals is chosen randomly uniformly
from the current population, and the one with the best fitness is selected (e.g.,
see [1]). The tournament size n can be used to vary the selection pressure
exerted by this method. For large populations, such as those used in genetic
programming (GP), tournament selection is amongst the best methods as far
as computation load is concerned. For example, it does not require sorting the
whole population, like in rank selection. Also, it does not require repeatedly
iterating over the elements of the population like roulette-wheel selection. Its

1



efficiency and simplicity are probably the reasons why tournament selection is
currently the most popular form of selection in GP.

In a generational GP system with a population of size M , where crossover
is performed with probability pc while mutation is performed with probability
1− pc, the average number of selection steps required to form a new generation
is M(1 + pc).1 So, creating a new generation requires drawing n(1 + pc)M
individuals uniformly at random (with resampling) from the current population.
As highlighted by Poli in [7], an interesting side effect of this process is that not
all individuals in a particular generation are necessarily sampled, and this is
particularly true for small values of the tournament size n.

In general those individuals that do not get sampled by the selection process
have no influence whatsoever on future generations. However, these individuals
use up resources, e.g., CPU time, for their creation and evaluation. How many
individuals should we expect not to take part in any tournaments? Is it possible
to avoid generating such individuals? If so, can we avoid generating some of the
parents and ancestors of such individuals, too? What sort of saving could we
obtain by not creating any unnecessary individuals in a run?

In [7], a sound theoretical analysis based on Markov chains of the sam-
pling behaviour of tournament selection was provided. This has given some
answers the previous questions. In addition, [7] provided a general scheme, the
Backward-Chaining Evolutionary Algorithm (BC-EA), to exploit the sampling
deficiencies of tournament selection and reduce the number of fitness evaluations
in an EA. However, [7] provided limited empirical evidence of the actual savings
one can obtain from a BC-EA. In particular, the experiments were restricted
to fixed-length genetic algorithms and a very limited evaluation of the actual
problem-solving ability of BC-EAs as compared to corresponding standard EAs.
Finally [7] gave only limited implementation details.

The results in [7] indicate that the greatest benefits of a BC-EA would be
obtained when using very large populations, short runs and relatively small tour-
nament sizes. These are the settings used frequently in genetic programming,
particularly when attacking large real-world problems. So, a backward-chaining
GP system would appear to have a great potential.

Here we empirically investigate a BC-EA implementation of genetic program-
ming in terms of: efficiency of fitness evaluations, memory use and effectiveness
in terms of ability to solve problems. Our results (cf. Section 4) indicate that
the efficiency gains can be large.

In the next section we provide an extensive review of previous relevant work,
describing in detail the main findings reported in [7], since this has inspired the
present work. In Section 3 we present our system describing its implementation
and evaluating its time and space complexity. In Section 4 we provide extensive
experimental evidence to assess the performance and behaviour of this system
in comparison to the standard form of GP. Finally, in Section 5 we provide our

1This is valid in the typical situation where each genetic operator directly invokes the
selection procedure to provide a sufficient number of parents for its application (e.g., twice
in case of crossover) and the crossover operator returns one offspring after each application.
Extending the calculation to other cases is trivial.
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conclusions.

2 Background

One of the main emphases of research on selection in EAs has been into loss of
diversity. I.e. the proportion of individuals of a population that are not selected.
In [2, 3, 6] different selection methods, including tournament selection, were
analysed in depth mathematically.

It is important to understand the difference between not selecting and not
sampling an individual in a particular generation. Not selecting refers to an
individual that did not win any tournaments. This is exactly what research on
the loss of diversity has concentrated on. Not sampling, instead, refers to an
individual that did not participate in any tournament at all, simply because
it was not sampled during the creation of the required tournament sets. The
work on tournament selection reported in [7] focuses on individuals such as
this. Because we build on [7], in the next two sub-sections we review the main
ideas and relevant results of [7]. Section 2.1 shows for long runs up to 20% of
individuals may be neglected in each generation. While for short runs or huge
populations this can be up to 40% or more. Section 2.2 gives an algorithm,
based on reversing the traditional evaluation order of genetic algorithms, which
realises these potential savings.

2.1 Tournament Selection and the Coupon Collector

In [7] a connection between tournament selection and the coupon collection
problem was proposed and analysed. In the Coupon Collection problem, every
time a collector buys a certain product, a coupon is given to him. The coupon
is equally likely to be any one of N types. In order to win a prize, the collector
must have at least one coupon of each type. It is well known that on average a
collector will have to buy EN ≈ N log N products before he can expect to have
a full set of coupons [4].

How is the process of tournament selection related to the Coupon Collection
problem? We can imagine that the M individuals in the current population
are N = M distinct coupons and that tournament selection will draw (with
replacement) n(1 + pc)M times from this pool of coupons. If n(1 + pc)M <
M log M there may be a substantial number of individuals that selection did not
sample. I.e. for small tournament sizes or large populations, many individuals
(regardless of their fitness) will not be sampled.

Using other results on the coupon collection problem, [7] found that the
expected number of distinct individuals sampled by tournament selection in
one generation is approximately M(1 − e−n(1+pc)). So, assuming pc = 0.5, for
n = 2 we should expect about 5% of the population to be neglected. For n = 3
this drops to 1%, and becomes quickly negligible for bigger values of n. (Bigger
savings are possible for a mutation-only algorithm.)
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This analysis suggests that saving substantial computational resources by
avoiding the creation and evaluation of individuals which will be neglected by the
tournament selection process may be possible only for low selection pressures.
However, low selection pressures are quite common in GP practice, particularly
when attacking hard, multi-modal problems which require extensive exploration
of the search space before zooming the search onto any particular region. Also,
much greater savings in computation are possible if we exploit the transient
behaviour of tournament selection over multiple generations.

In [7] the sampling effects of tournament selection over multiple generations
were analysed by defining and studying a more complex form of coupon collec-
tion problem: the iterated coupon collection problem. In the iterated coupon
collection problem, the coupon set changes at regular intervals. Initially the
collector is given a (possibly incomplete) set of m(0) old coupons. Each old
coupon allows the collector to draw µ new coupons. So, he can perform a total
of µm(0) trials, which will produce a set of m(1) distinct coupons from the
new set. The coupon set now changes, and the player performs µm(1) trials to
gather as many as possible new distinct coupons. And so on.

The iterated coupon collector problem is a model for what tournament selec-
tion will do over multiple generations in a generational system. The connection
is simple. Suppose we were interested in knowing the genetic makeup and fitness
of m(0) individuals in a particular generation, G.2 These are like the initial set
of old coupons given to the player. Clearly, in order to create such individuals,
we will need to know who their parent(s) were. On average, this will require
running m(0)(1 + pc) tournaments to select such parents. In each tournament
we randomly pick n individuals from generation G− 1 (each distinct individual
in that generation is equivalent to a coupon in the new coupon set). After,
nm(0)(1+pc) such trials we will be in a position to determine which individuals
in generation G− 1 will contribute to generation G. Let m(1) be their number.
These m(1) individuals are the equivalent of the new set of coupons the collec-
tor has gathered. We can now perform nm(1)(1 + pc) trials to determine which
individuals in generation G − 2 (the new coupon set) will contribute to future
generations. Let m(2) be their number. The process continues until we reach
the initial random generation.

The quantities m(t) for t = 0, 1, ... are stochastic variables. Their proba-
bility distributions are necessary in order to evaluate the sampling behaviour
of tournament selection over multiple generations. These can be obtained by
modelling the iterated coupon collection problem as a Markov chain. This was
done in [7] where it was shown that under very mild conditions (bn(1+pc)c > 1)
the transition matrix for the chain is ergodic, and therefore the probability dis-
tributions of m(t) converges towards a limit distribution which is independent
from the initial conditions. I.e., after a transient phase, the expected value of
m(t) converges to a constant value.

In other words, for large G it is almost irrelevant whether m(0) is as small

2Interesting choices for m(0) would include m(0) = 1 and m(0) = M , while we could think
of G as the number of generations we are prepared to run our EA for.
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as 1 or as large as M as far as the total number of individuals not sampled by
tournament selection is concerned. For small values of G, however, the transient
of the chain is what one needs to focus on. Generally, both are provided by the
theory but one needs to be able to numerically compute the eigenvalues and
eigenvectors of the transition matrix. Unfortunately, when the population is
large (e.g. M > 1000 or so), this calculation becomes computationally very
heavy and errors tend to accumulate significantly. So, in these cases, only
empirical investigations can precisely assess behaviour.

Theory and empirical studies in [7] indicated that under some conditions,
for long runs, up to 20% of individuals may be neglected in each generation.
Furthermore, in runs where the duration of the transient is of the same order
of magnitude as the maximum number of generations G, there are conditions
when 40% or more individuals are unnecessary.

2.2 Efficient tournament selection and backward chaining
EAs

From a practical perspective, the question is: how can we modify an EA to
achieve a computational saving from not evaluating and creating individuals not
sampled by selection? The idea proposed in [7] is to reorder the different phases
of an EA. These are: a) the choice of genetic operator to use to create a new
individual, b) the formation of a random pool of individuals for the application
of tournament selection, c) the identification of the winner of the tournament
(parent) based on fitness, d) the execution of the chosen genetic operator, and
e) the evaluation of the fitness of the resulting offspring. (Phases (b) and (c)
are repeated once for mutation and twice for crossover. I.e. as many times as
the arity of the genetic operator chosen in phase (a).)

The genetic makeup of the individuals is required only in phases (d), (c)
and (e), but not (a) and (b). So, it is possible to change the order in which
we perform these phases without affecting the behaviour of our algorithm. For
example, we can first iterate phases (a) and (b) as many times as needed to
create a full new generation (of course, memorising all the decisions taken), and
then iterate phases (c)–(e). Indeed, this idea was used in [8] for the purposed
on speeding up genetic programming fitness evaluation. The approach there
was to estimate the fitness of the individuals involved in the tournaments by
evaluating them on a subset of the fitness cases available. On the basis of this
estimate, it was often possible to determine which individuals would win most
tournaments with a small error probability. These tournaments could therefore
be decided quickly, while only in a subset of tournaments individuals ended up
being evaluated using all fitness cases.

In fact, one can even go further as proposed in [7]. If we fix in advance
the maximum number of generations G we are prepared to run our EA for,
phases (a) and (b) can be iterated not just for one generation but for a whole run
from generation 0 to generation G. Then we iterate phases (c)–(e) as required.

Clearly the iteration of phases (a) and (b) over multiple generations induces
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Figure 1: Example of graph structure induced by tournament selection in a
population of M = 6 individuals run for G = 3 generations using a tournament
size n = 2 and pc = 1/3. Nodes with four incoming links were created by
crossover. The remaining nodes were created by either mutation or reproduc-
tion. Shaded nodes are the potential “ancestors” involved in the creation of the
first individual in generation G.

a graph structure containing (G+1)M nodes representing all the individuals to
be evolved during the run and where edges connect each individual to the indi-
viduals which were involved in the tournaments necessary to select the parents
of such an individual. For example, Figure 1 shows a possible graph structure
induced by tournament selection.

If we are interested in calculating and evaluating m(0) individuals in the
population at generation G, maximum efficiency can be achieved by considering
(flagging for evaluation) only the individuals which are directly or indirectly
connected with those m(0) individuals. For example, if in Figure 1 we were
interested only in the first individual in the last generation, we would need to
create and evaluate only that individual and its potential ancestors (shown with
shaded nodes), which would produce a saving of 50% fitness evaluations. In gen-
eral the problem of determining the possible ancestors of our m(0) individuals
of interest can be solved with a trivial connected-component algorithm. Once
the relevant sub-graph is detected, we can then proceed evaluating only the
individuals in the sub-graph, from generation 0 to generation G.
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The graph induced by tournament selection can be created without the need
to know either what each individual (node) represents or its fitness. So, one
might ask whether the construction and the evaluation of the individuals in the
sub-graph should simply be performed in the usual (forward) way, or whether
it may be possible to instantiate the nodes in some different order and there
would be any benefits associated with that. In [7] it was proposed to recursively
proceed backward.

Here is the basic idea. Let us suppose we are interested in knowing the
makeup of individual r in the population at generation G. In order to generate
r we only need to know what operator to apply to produce it and what parents
to use. In turn, in order to know which parents to use, we need to perform
tournaments to select them. In each such tournaments we will need to know
the makeup of n individuals from the previous generation (which of course,
at this stage we may still not know). Let S = {s1, s2, . . .} be the set of the
individuals that we need to know in generation G − 1 in order to determine r.
If we don’t know the makeup of these individuals, we can recursively consider
each of them as a subgoal. So, we determine which operator should be used to
compute s1, we determine which set of individuals at generation G−2 is needed
to do so, and we continue with the recursion. When we emerge from it, we repeat
the process for s2, etc. The recursion can terminate in one of two ways: a) we
reach generation 0, in which case we can directly instantiate the individual in
question by invoking the initialisation procedure, or b) the individual for which
we need to know the genetic makeup has already been evaluated before. Once
we have finished with r we repeat the same process for any other individuals of
interest at generation G, one by one.

This algorithm is effectively a recursive depth-first traversal of the graph
induced by tournament selection (c.f. Figure 1). While we traverse the graph,
as soon as we are in a position to know the genetic makeup of a node encountered
we invoke the fitness evaluation procedure. An EA running in this mode is a
Backward-Chaining EA (BC-EA).

Irrespectively of the problem being solved and the parameter settings used,
because the decisions as to which operator to adopt to create a new individual
and which elements of the population to use for a tournament are random,
statistically this version of the algorithm is almost identical to a standard EA
(see [7] for a more detailed discussion).

One important difference between the two modes of operation is the order in
which individuals in the population are evaluated. For example, let us consider
the population depicted in Figure 1 and suppose we are interested in knowing the
first individual in the last generation, i.e. individual (3, 1). In a standard EA, we
evaluate individuals column by column from the left to the right in the following
sequence: (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (1, 1), (2, 1), ... until, finally,
we reach node (1, 3). A backward chaining EA would instead evaluate nodes in
a different order, for example, according to the sequence: (1, 0), (3, 0), (4, 0),
(1, 1), (2, 0), (2, 1), (1, 2), (6, 0), (4, 1), (5, 1), (3, 2), and finally (1, 3). So, the
algorithm would move back and forth evaluating nodes at different generations.

Why is this important? Typically, in an EA the average fitness of the popula-
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tion and the maximum fitness in each generation grow as the generation number
grows. In the standard EA the first 3 individuals evaluated have an expected
average fitness equal to the average fitness of the individuals at generation 0,
and the same is true for the BC-EA. However, unlike for the standard EA, the
fourth individual created and evaluated by BC-EA belongs to generation 1, so
its fitness is expected to be higher than that of the previous individuals. In-
dividual 5 has same expected fitness in the two algorithms. However, the 6th
individual drawn by BC-EA is a generation 1 individual again, while the for-
ward EA draws a generation 0 individual. So, again the BC-EA is expected to
produce a higher fitness sample than the other EA. This applies also to the 7th
individual drawn. Of course, this process cannot continue indefinitely, and at
some point the individuals evaluated by BC-EA start being on average inferior.

This behaviour is typical: a BC-EA will converge faster than an ordinary
EA in the first part of a run and slower in the second part. So, if one restricts
oneself to that first phase, the BC-EA is not just faster than an ordinary EA
because it avoids evaluating individuals neglected by tournament selection, it is
also a faster converging algorithm.

3 Backward-chaining GP

Based on the ideas summarised in the previous section, we have designed and
implemented a Backward-Chaining Genetic Programming (BC-GP) system in
Java. The objective is to evaluate whether the BC-EA approach indeed brings
significant efficiency gains in the case of large populations and short runs, and
whether a BC-GP compares well with an equivalent standard (forward) version
of GP in terms of ability to solve problems.

3.1 Backward-chaining GP Implementation

Figure 2 provides a pseudo-code description of the key components of our sys-
tem. The main thing to notice is that we use a “lazy-evaluation” type of
approach. We do not create the full graph structure induced by tournament
selection: we statically create the nodes in the graph (and store them using
two-dimensional arrays) but then edges are only dynamically generated and
stored in the stack as we do recursion. This is achieved by choosing genetic
operator and invoking the tournament selection procedure only when needed in
order to construct an individual, rather than at the beginning of a run and for
all individuals and generations.

Also, note that our implementation is rather simplistic, in that it requires
the pre-allocation of three G×M arrays:

Population is an array of pointers to the programs in the population at each
generation. Programs are stored as strings of bytes, where each byte
represents a primitive.
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run(G,M):

begin

Create G x M tables Known, Population and Fitness

For each individual I of interest in generation G

evolve_back(I,G)

return all I of interest

end

evolve_back(indiv,gen):

begin

If Known[indiv][gen] then

return

if gen == 0 then

Population[gen][indiv] = random program

else

if random_float() < crossover_rate then

parent1 = tournament(gen-1)

parent2 = tournament(gen-1)

Population[gen][indiv] = crossover(parent1,parent2)

else

parent = tournament(gen-1)

Population[gen][indiv] = mutation(parent)

endif

endif

Fitness[gen][indiv] = fit_func(Population[gen][indiv])

Known[gen][indiv] = true

end

tournament(gen)

begin

fbest = 0

best = -1

repeat tournament_size times

candidate = random integer 1...M

evolve_back( gen, candidate )

if Fitness[gen][candidate] > fbest then

fbest = Fitness[gen][candidate]

best = candidate

endif

endrepeat

return( Population[gen][best] )

end

Figure 2: Pseudo-code for backward-chaining GP.
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Fitness is an array of single precision floating point numbers. This is used to
store the fitness of the programs in Population.

Known is an array of bits. A bit set to 1 indicates that the corresponding
individual in Population has been computed and its fitness has been
calculated.

This is wasteful since, in BC-GP, not all the entries of the arrays are used (only
those corresponding to individuals sampled by tournament selection are). So,
by using more efficient (albeit complex) data structures one could save some
memory.

3.2 Space and time complexity of BC-GP

Let us evaluate the space complexity of BC-GP and compare it to the space
complexity of standard GP. We divide the calculation into two parts:

C = Cfixed + Cvariable,

where Cfixed represents the amount of memory (in bytes) required to store the
data structures necessary to run GP excluding the GP programs themselves,
while Cvariable represents the memory used by the programs. This can vary as a
function of the random seed used, the generation number and other parameters
and details of a run.

As far as the fixed complexity is concerned, in a forward generational GP
system

CF
fixed = 2×M × (4 + 4) = 16M

The factor of 2 arises since, in our generational approach, we store both the
current and the new generation. This requires 2 vectors of pointers (4 byte
each) to the population members and two vectors of fitness values (floats, 4 byte
each), where the vectors are of size M . In BC-GP, instead, we need

CB
fixed = G×M × (4 + 4 +

1
8
) ≈ 8GM

since we need to store one array of pointers, one of floats, and one bit array, all
of size G×M .

Variable complexity is harder to compute. In a standard GP system this is

CF
variable ≈ 2×M × SF

max,

where SF
max is the maximum value taken by the average program size during

each generation of a run. In a BC-GP

CB
variable = EB × SB

avg,

where SB
avg is the average program size during a BC-GP run (i.e., it is the

program size averaged over all individuals created in a run) and EB is the
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number of programs actually created and evaluated during the run (EB ≤
EF = GM). So, the difference in space complexity between the two algorithms
is

∆C = CB − CF = M(8G− 16) + EB × SB
avg − 2×M × SF

max,

which indicates that in most conditions the use of BC-GP carries a significant
memory overhead. However, this does not prevent the use of BC-GP. For
example, in the worst possible case (where all programs are constructed and
evaluated) a BC-GP with a population of 100,000 individuals run for 50 gener-
ations and with an average program size (throughout a run) of 100 nodes would
require around 540MB of memory — an amount of memory readily available in
most modern ordinary personal computers.

The memory overhead of BC-GP, ∆C, is a function of the average average-
program-size SB

avg and the maximum average-program-size SF
max. We know that

statistically BC-GP and GP must behave the same, so we should expect SF
max =

SB
max, and, consequently, also SB

avg < SF
max. However, because of size changes

during the run, we expect SB
avg 6= SF

avg. If we require BC-GP to compute only
very few individuals in the last generation (e.g., just one), then BC-GP will
construct many individuals in the first generations of a run, and, typically,
very few in the last generations, while a forward GP will always compute equal
numbers of individuals at all generations. If bloat [5] happens in a particular
problem, then both GP and BC-GP will show bloat. However, since with BC-
GP we only evaluate very few individuals in the last generations of a run —
those where bloat is typically most marked — we should expect to see that SB

avg

is significantly smaller than SF
avg. That is, in these conditions the programs

created in a BC-GP are on average smaller than those created by GP. So, we
should expect SB

avg � SF
max.

These effects partly mitigate the memory overhead, ∆C, of BC-GP. Also
because BC-GP tends to evaluates smaller programs than GP it has an impact
on run time too. To see this we need to assess the computational effort T
required to run GP and BC-GP. As is usual in GP, T is effectively determined
by the cost of running the fitness function (the costs of recursive calls and array
updates in BC-GP are negligible compared to fitness evaluation). The cost of
fitness evaluation depends on various factors, but it is typically approximately
proportional to the number of primitives in the program to be evaluated (i.e.,
executed) and the number of fitness cases N . So, if we express T in number of
primitives executed, we have

TF = G×M ×N × SF
avg

for standard GP, and
TB = EB ×N × SB

avg

for BC-GP. So, the saving provided by BC-GP is

∆T = TF − TB = N × (G×M × SF
avg − EB × SB

avg).
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That is, for a bloating population the parsimony of BC-GP in terms of fitness
evaluations is compounded with its parsimony in terms of average program
sizes. As will be shown in the next section, in some conditions this can lead to
considerable computational savings.

4 Experimental Results

4.1 Test problems and setup

We used backward chaining GP in a variety of experiments on three continu-
ous symbolic regression problems where the objective was to induce a target
function from examples. The target functions were a univariate quartic polyno-
mial, a multivariate quadratic polynomial and a multivariate cubic polynomial.
The quartic polynomial is f(x) = x4 + x2 + x3 + x. For this problem we
used 20 fitness cases of the form (x, f(x)) obtained by choosing x uniformly
at random in the interval [−1,+1]. One multivariate polynomial, Poly-4, is
f(x1, x2, x3, x4) = x1x2 + x3x4 + x1x4. For this problem 50 fitness cases of
the form (x1, x2, x3, x4, f(x1, · · · , x4)) were used. They were generated by ran-
domly setting xi ∈ [−1,+1]. The second multivariate polynomial, Poly-10, is
f(x1, · · · , x10) = x1x2 + x3x4 + x5x6 + x1x7x9 + x3x6x10. Also for this problem
we used 50 fitness cases of the form (x1, · · · , x10, f(x1, · · · , x10)), which, again,
were obtained by randomly setting xi ∈ [−1,+1]. The function set for GP in-
cluded the functions +,−,× and the protected division DIV. I.e. if |y| <= 0.001
DIV(x, y) = x else DIV(x, y) = x/y. The terminal set included the independent
variables in the problem (x for Quartic, x1, x2, x3, x4 for Poly-4 and x1, x2, ...
x10 for Poly-10).

Fitness was calculated as the negation of the sum of the absolute errors
between the output produced by a program and the desired output on each of
the fitness cases.

We used binary tournaments (n = 2) for parent selection. The initial pop-
ulation was created using the “grow” method with max depth of 6 levels (the
root node being at level 0). We used 80% standard sub-tree crossover (with
uniform random selection of crossover points) and 20% point mutation with a
2% chance of mutation per tree node. The maximum number of generations G
was 10, 20 and 30. The population size M , depending on target polynomial,
was 100, 1 000, 10 000 and 100 000.

For each setting we performed 1,000 independent runs of both the backward
and the standard version of the algorithm applied to the three problems.

In symbolic regression problems the fitness of programs in the population,
even after a prolonged period of evolution, can be extremely variable. Since the
mean is a linear function, the mean population fitness can be seriously changed
by individuals with outstandingly poor fitness. So while both algorithms draw,
at each generation, individuals from the same distribution the measured means
can be different. While observed means are similar in most generations, even
averaging over many runs, the mean of means is still sometimes affected by

12



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

Fr
ac

tio
n 

of
 R

un
s 

fin
di

ng
 a

 s
ol

ut
io

n

Effort (generations)

Forward
Backward g=10
Backward g=20
Backward g=30

Figure 3: Quartic polynomial regression problem. Normal (forward GP, solid
line) contrasted with effort and chance of success with backward chaining GP
(generation 10, 20 and 30, population size 100, average over 1000 runs).

noise injected by poor individuals. In contrast other statistics, e.g. the median
and best, are non-linear and much less effected by the worst in the population.
Therefore, we chose to plot the best and the proportion of successful runs.

To make a comparison between the algorithms possible, for BC-GP we com-
puted statistics every M fitness evaluations, and we treated this interval as a
generation even though the fitness evaluations may be spread over several gen-
erations. In the BC-GP we computed only one individual in the last generation
(i.e. m(0) = 1).

4.2 Effectiveness and efficiency comparison

Figures 3, 4 and 5 show the cumulative number of fitness evaluations required
to solve the quartic polynomial. (I.e. to find a program with an error of less
than 10−5 summed across all fitness cases.) The error bars indicate standard
error (based on the binomial distribution). With a small population of 100,
as expected, with all three run lengths (10, 20 and 30 generations) backward
chaining initially does slightly better. However the difference may not be sta-
tistically significant. With a bigger population (1 000, c.f. Figure 4, or 10 000,
c.f. Figure 5), however, BC-GP is always better than or equal to standard GP.
In all cases, with a population of M = 10 000, for almost all generations, both
forward and backward GP almost always solve the quartic polynomial. Never-
theless backward chaining reaches 100% faster.

The four-variate polynomial, Poly-4, is much harder than Quartic. This is
an interesting test case since it requires large populations to be solvable in most
runs. Figure 6 shows the fraction of successful runs (out of 1000 runs) on the
Poly-4 problem contrasting forward GP (run for 30 generations) against BC-
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Figure 4: Quartic polynomial regression problem. As Fig.3 but with population
of 1000. Note, except near the end of runs backward chaining (dotted lines)
consistently gives a higher chance of success for the same number of fitness
evaluations.
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Figure 5: Quartic polynomial regression problem. As Fig.3 but with population
of 10 000. Again backward chaining consistently gives a higher chance of success
for the same number of fitness evaluations.
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Figure 6: Fraction of successful runs (out of 1000 runs) on the Poly-4 problem
for forward GP (30 generations) and BC-GP (10, 20 and 30 generations) with
populations of 100 000. Only the first 15 generations are shown for ease of
comparison. For G = 20 and G = 30 backward chaining GP (dotted lines)
consistently finds better programs for the same number of fitness evaluations.

GP (run for 10, 20 and 30 generations) when the population includes 100 000
individuals. In 122 (out of 1000) 10-generation runs BC-GP solved the problem
almost instantly but other runs made no progress after that. However, when
run for 20 and 30 generations, BC-GP found more solutions faster than forward
GP for generations 0...3. The difference between the two algorithms is statis-
tically significant. Table 1 shows that, by the end of the runs, the backward
chaining GP evolved solutions of similar fitness but took, depending on number
of generations, between 33% and 91% fewer fitness evaluations.

Symbolic regression of Poly-10 is very hard. We tried 1000 runs with pop-
ulations of 100, 1000 and 10 000 and 10, 20 or 30 generations. Neither the
standard nor the backward chaining GP found a solution in any of their 9000
runs. Table 2 shows that, by the end of the runs, the backward chaining GP
evolved solutions of similar fitness but took, depending on number of genera-
tions, between 27% and 75% fewer fitness evaluations. Figure 7 shows in all
three cases (10, 20 and 30 generations) except right at the end of runs, the
backward chaining GP on average finds better programs for the same effort.

Finally, to assess the behaviour of BC-GP with respect to bloat and to
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Table 1: Normal GP v. Backward chaining on Poly 4 problem. Population
100 000. Means of 1000 runs.

Forward Backward
Gens Best Evals Best Evals Saving

fitness fitness
10 0.030 1 000 000 0.122 89600 91%
20 0 2 000 000 0.001 1 046 000 48%
30 0 3 000 000 0 2 015 000 33%

Table 2: Best-of-run results for normal GP and backward chaining GP on Poly-
10 problem. Population 10 000. Means of 1000 runs.

Forward Backward
Gens Best Evals Best Evals Saving

Fitness Fitness
10 14.5 100 000 15.6 25 000 75%
20 13.6 200 000 14.2 122 000 39%
30 13.0 300 000 13.4 219 000 27%
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Figure 7: Error summed over 50 test cases for Poly-10 regression problem (means
of 1000 runs, with populations of 10 000). Except near the end of runs, backward
chaining (dotted lines) consistently finds better programs for the same number
of fitness evaluations.
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Table 3: Time complexity comparison between normal GP and backward chain-
ing GP on Poly-4 (30 generations). Means of 100 runs. (See Section 3.2 for the
meaning of symbols.)

Forward Backward
M=100 M=10 000 M=100 M=10 000

E 3 000 300 000 2 540 219 000
Savg 16.43 24.12 11.64 10.55
T 2 460 000 362 000 000 1 480 000 116 000 000

Saving 40% 68%
Solved 2% 94% 3% 93 %

evaluate its effective time complexity we re-run Poly-4 with populations of 100
and 10 000 for 30 generations (performing 100 independent runs in each case)
while collecting program size statistics. Table 3 illustrates that GP and BC-GP
had essentially the same performance in terms of ability to solve the problem
(bottom row), but that average program sizes in BC-GP were substantially
smaller. Compounding this with the saving in terms of fitness evaluations (15%
for M = 100 and 27% for M = 10 000), BC-GP had an average time complexity
of between 40% and 68% fewer primitive evaluations.

5 Conclusions

We exploited a recent theoretical analysis [7] of the sampling behaviour of tour-
nament selection over multiple generations to build a new, highly efficient re-
alisation of GP: backward chaining genetic programming (BC-GP). Thanks to
its special way of recursively computing programs and fitnesses backward from
the last generation to the first, BC-GP offers a combination of simplicity, fast
convergence, increased efficiency in terms of fitness evaluations and primitive
evaluations, statistical equivalence to a standard GP, reduced bloat and broad
applicability. This comes only at the cost of an increased memory use. In fu-
ture research we intend to test the new algorithm on other problems and explore
possible ways of further improving the allocation of trials and decision making
in BC-GP.
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