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1 Introduction

Elections are the cornerstone of democracy and voters’ decisions are essential inputs in

the political process shaping the policies adopted by democratic societies. Understanding

observed voting patterns and how they relate to voters’ preferences is a crucial step in our

understanding of democratic institutions and is of great relevance, both theoretically and

practically. These considerations raise the following fundamental question: Is it possible to

nonparametrically identify and estimate voters’ preferences from aggregate data on electoral

outcomes?

To address this question, one must first specify a theoretical framework that links

voters’ decisions to their preferences. The spatial theory of voting, formulated originally by

Downs (1957) and Black (1958), building on Hotelling (1929)’s seminal work in industrial

organization, and later extended by Davis, Hinich, and Ordeshook (1970), Enelow and Hinich

(1984) and Hinich and Munger (1994), among others, is a staple of political economy.1 This

theory postulates that each individual has a most preferred policy or “bliss point” and

evaluates alternative policies or candidates in an election according to how “close” they are

to her ideal. More precisely, consider a situation where a group of voters is facing a contested

election with any number of candidates. Suppose that each voter has preferences (i.e.,

their bliss point) that can be represented by a position in some common, multi-dimensional

ideological (metric) space, and each candidate can also be represented by a position in the

same ideological space. According to the spatial framework, each voter will cast her vote in

favor of the candidate whose position is closest to her bliss point (given the positions of all

the candidates in the election).2 In this case, we say that voters vote ideologically.3

In this paper, we study the issue of nonparametric identification and estimation of

voters’ preferences using aggregate data on elections with arbitrary number of candidates,

1See, e.g., Hinich and Munger (1997).
2Data sets containing measures of the ideological positions of politicians based on their observed behavior

in office are widely available (see, e.g., Poole and Rosenthal (1997) and Heckman and Snyder (1997) for the
United States Congress or Hix, Noury, and Roland (2006) for the European Parliament).

3For a survey of alternative theories of voting, see, e.g., Merlo (2006).
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under the maintained assumption that voters vote ideologically. Following Degan and Merlo

(2009), we represent multi-candidate elections as Voronoi tessellations of the ideological

space.4 Using this geometric structure, we establish that voter preference distributions and

other parameters of interest can be retrieved from aggregate electoral data. We also show

that these objects can be estimated using the methodology proposed by Ai and Chen (2003),

and perform an actual estimation using data from the 1999 European Parliament elections.

Since our analysis focuses on retrieving individual level fundamentals from aggregate

data, it is related to the ecological inference problem.5 It is also related to the vast literature

on identification and estimation of discrete choice models.6 In particular, our paper is most

closely related to the industrial organization literature on discrete choice models with ran-

dom coefficients and macro-level data (e.g., Berry, Levinsohn, and Pakes (1995) and, more

recently, Berry and Haile (2009)), and pure characteristics models (see Berry and Pakes

(2007) and references therein).7

In the language of the pure characteristics model, in our environment, the “consumer”

(i.e., the voter) obtains utility U t(Ci) = −(Ci−t)>W (Ci−t) from “product” (i.e., candidate)

i, where t is a vector of individual “tastes” (i.e., the voter’s bliss point), Ci is a vector of

“product characteristics” (i.e., the candidate’s position) and W is a matrix of weights. Also,

the distribution of tastes depends on “market” (i.e., electoral precinct) level covariates,

both observed and unobserved.8 Whereas the distribution of tastes is typically taken to

be parametric in pure characteristics models, we show that it can be nonparametrically

4Degan and Merlo (2009) characterize the conditions under which the hypothesis that voters vote ideologi-
cally is falsifiable using individual-level survey data on how the same individuals vote in multiple simultaneous
elections (Henry and Mourifié (2013) extend their analysis and develop a formal test of the hypothesis). In
this paper, we restrict attention to identification and inference based on aggregate data on electoral outcomes
in environments where the hypothesis is non-falsifiable.

5Ecological inference refers to the use of aggregate data to draw conclusions about individual-level rela-
tionships when individual data are not available. See, e.g., King (1997) for a survey.

6Starting with McFadden (1974)’s seminal work, other important papers investigating the identification
of discrete choice models include Manski (1988) and Matzkin (1992). See also Chesher and Silva (2002).

7Our work is also related to the spatial approach to individual discrete choice as a foundation for aggregate
demand pioneered by Hotelling (1929). Spatial demand models are closely related to random coefficient
models as pointed out, for example, by Caplin and Nalebuff (1991), who provide a unified synthesis of
random coefficients, characteristics and spatial models.

8Clearly, the analogy is only partial since in the environment we consider there are no prices.
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identified and estimated together with the finite dimensional components of the model (W ).

Our identification strategy relies on the geometric structure induced by the functional form

of the utility function implied by the spatial theory of voting.

Part of the identification strategy we develop in this paper is related to previous work

by Ichimura and Thompson (1998) and Gautier and Kitamura (2013) on binary choice models

with random coefficients. In fact, in the special case where W is known and elections only

have two candidates, the spatial model of voting is equivalent to a binary choice model with

random coefficients. However, in the general setting where W is not known and elections

have arbitrary numbers of candidates—the environment considered here—the identification

strategy in Ichimura and Thompson (1998) and Gautier and Kitamura (2013) does not apply.

The remainder of the paper is organized as follows. In Section 2, we describe the

model and in Section 3 discuss its identification. Nonparametric estimation is presented in

Section 4. In Section 5, we illustrate our approach with an empirical application. Concluding

remarks are presented in Section 6. All proofs are contained in the Appendix.

2 The model

Consider a situation where a population of voters has to elect representatives to public

office (e.g., a legislature). Consistent with the spatial theory of voting, there is a common

ideological space, Y , which is taken to be the k-dimensional Euclidean space (i.e., Y =

Rk and the reference measurable space is this set equipped with the Borel sigma algebra:

(Rk,B(Rk))). We observe a cross-section of elections e ∈ {1, ..., E}. An election e is a contest

among ne ≥ 2 candidates. The number of candidates ne may vary across elections, and we

allow for this possibility in estimation. However, to simplify exposition, we refer to the

number of candidates in a generic election by n, unless it is not clear from the context. Let

C ≡ (C1, . . . , Cn) ∈ Rnk denote a profile of candidates represented by the nk-dimensional

vector concatenating all the candidate positions characterizing an election. Each candidate
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i ∈ {1, ..., n} is characterized by a distinct position in the ideological space, Ci ∈ Y , which

is known to the voters and observed by the econometrician.

Each voter has an ideological position (or bliss point) t, and her preferences are

characterized by indifference sets that are ellipsoids in the k-dimensional Euclidean space,

centered around her bliss point.9 It follows that voter t’s preferences over candidates in an

election can be summarized by the utility function

U t (Ci) = ut
(
dW (t, Ci)

)
, (1)

where ut (·) is a decreasing function which may differ across voters and dW (·, ·) ≥ 0 denotes

the Euclidean distance with (positive definite, symmetric) weighting matrix W (i.e., for any

two points x, y ∈ Rk, dW (x, y) =
√

(x− y)>W (x− y)). Other than monotonicity, we im-

pose no additional restrictions on the ut (·) functions, which are therefore left unspecified.

Given these preferences, a voter t (strictly) prefers candidate i to candidate j in an elec-

tion if dW (t, Ci) < dW (t, Cj). According to the spatial theory of voting (see, e.g., Hinich

and Munger (1997)), the main diagonal elements in the matrix W subsume the relative

importance to voters of the different dimensions of the ideological space. The off-diagonal

elements, on the other hand, describe the way in which voters make trade-offs among these

different dimensions.

As in Degan and Merlo (2009), for each position Ci ∈ Y of a generic candidate i in

an election, let V W
i (C) ≡ {t ∈ Y : dW (t, Ci) ≤ dW (t, Cj), j 6= i} be the set of points in

the ideological space Y that are closer to Ci than to the position of any other candidate

in the election. Since dW (·, ·) is the weighted Euclidean distance, it follows that for each

pair of candidates in an election, Ci, Cj, the set of points in the ideological space Y that

are equidistant from Ci and Cj is a hyperplane HW (Ci, Cj), which tessellates the ideological

space Y into two regions (or half spaces), Y
Cj
Ci

and Y Ci
Cj

, where Y Ci
Cj

is the set of ideological

9In one dimension, the restriction implies that each voter’s utility function is single-peaked and symmetric.
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positions that are closer to the position of candidate i than to the position of candidate j

and vice versa for the set Y
Cj
Ci

. Hence, for each candidate i, V W
i (C) is the intersection of the

half spaces determined by the n− 1 hyperplanes (HW (Ci, Cj))j 6=i (i.e., V W
i (C) = ∩j 6=iY Ci

Cj
).

Note that, for all candidates i ∈ {1, ..., n}, V W
i (C) is non empty and convex. Hence, an

election implies a tessellation of the ideological space Y into n convex regions, {V W
i (C)}i∈{1,...,n},

where each region V W
i (C) is the set of voters voting for candidate i in the election.10 The

set V W (C) ≡ {V W
i (C)}i∈{1,...,n} defines what in computational and combinatorial geometry

is called a Voronoi tessellation of Rk and each region V W
i (C) is a k-dimensional Voronoi

polyhedron (or Voronoi cell).11 Because the Voronoi cells {V W
i (C)}i∈{1,...,n} are the same for

all weighting matrices αW with α > 0, we impose the normalization that ||W ||k×k =
√
k,

where ||W ||k×k =
√
Tr (W>W ) is the Frobenius norm. This, in particular, includes the

k-order identity matrix as a possible weighting matrix W .

Figure 1 illustrates an example of the Voronoi tessellation that corresponds to an

election with five candidates, {a, b, c, d, e}, with positions {Ca, Cb, Cc, Cd, Ce} in the two-

dimensional ideological space Y = R2 and weighting matrix equal to the identity matrix.

Voters are characterized by the random vector T, representing their preference types

in the ideological space Y ⊂ Rk. The distribution of preference types (or bliss points) T in

the population of voters is given by the conditional probability distribution PT |X,ε, which is

assumed to be absolutely continuous with respect to the Lebesgue measure on (Rk,B(Rk))

given X and ε and the weighting matrix W . Here, X represents observable characteristics at

the electoral precinct level, such as average demographic and economic features, and ε stands

for unobservable electoral precinct characteristics. For example, in our empirical application,

the French constituency of Paris is one such electoral precinct, for which we have data on

observable characteristics such as age, gender, employment status and per-capita GDP of the

precinct population at the time of the election. Together with the weighting matrix W , the

10Note that VW
i (C) ∩ VW

j (C) ⊂ HW (Ci, Cj) for all i 6= j, and ∪i∈{1,...,n}VW
i (C) = Y .

11For a comprehensive treatment of Voronoi tessellations and their properties, see, e.g., Okabe, Boots,
Sugihara, and Chiu (2000).
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Figure 1: The Voronoi Tessellation for a 5-candidate election in R2 and W = I.

main object of interest is PT |X ≡
∫
PT |X,εPε|X(dε|X), the conditional probability distribution

of preference types T in the population of voters given X only.

Conditional on X, candidates are drawn from a distribution characterized by the mea-

sure PC|X , again absolutely continuous with respect to the Lebesgue measure on (Rk,B(Rk)).

The proportion of votes obtained by each candidate is the probability of the Voronoi cell

that contains the candidate’s ideological position. For notational convenience, we omit the

conditioning variable for most of this and the next section and refer to the distribution of

voter locations simply as PT and to the distribution of candidates as PC . Since the identi-

fication arguments can be repeated for strata defined by regressors, this is without loss of

generality.

For each election, the observed data contain the number of candidates, the ideological

position of each candidate and the electoral results (i.e., the proportion of votes obtained by

each candidate). For any given profile of candidates C, preference type distribution PT and

weighting matrix W , we can define the following object:

(C, (PT ,W )) 7→ p(C, (PT ,W ))
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where p(C, (PT ,W )) takes values on the n−dimensional simplex and denotes the vector of

the proportions of votes obtained by all the candidates in the profile C according to the

preference type distribution PT and weighting matrix W . The expected proportion of votes

obtained by candidate i in an election with n candidates C = {C1, . . . , Cn} and Voronoi cell

V W
i (C) = {t ∈ Rk : dW (t, Ci) ≤ dW (t, Cj), j 6= i} is given by:

E(1t∈VWi (C)|X, C) =
∫

1t∈VWi (C)PT |X,C,ε(dt|X, C, ε)Pε|X,C(dε|X, C)

=
∫

1t∈VWi (C)fT |X,C,ε(t|X, C, ε)Pε|X,C(dε|X, C)dt

=
∫

1t∈VWi (C)fT |X,C(t|X, C)dt

where fT |X,C,ε is the density of PT |X,C,ε and analogously for fT |X,C. It is important for iden-

tification that we require that T and C be conditionally independent (given X) such that:

fT |X,C = fT |X . In this case,

E(1t∈VWi (C)|X, C) =

∫
1t∈VWi (C)fT |X(t|X)dt.

Notice that T and C are not (unconditionally) independent, but we assume that, upon

conditioning on the demographic covariates X, C carries no further information about the

distribution of T (i.e., the random vectors C and T are conditionally independent given X).

This assumption is reasonable insofar as X lists all the guiding variables for the determination

of a candidate’s position and accommodates some partial strategic behavior.12 It is similar

to the independence assumption between regressors and coefficients typically required in the

literature on discrete choice models with random coefficients (e.g., Ichimura and Thompson

(1998) and Gautier and Kitamura (2013)). In our case, the variables C allow us to identify the

12As it is common in the political economy literature on the spatial model of voting, we treat the distri-
bution of candidate positions as given. The assumption that, upon conditioning on the vector of observable
characteristics X, this distribution does not convey additional information on the distribution of voters’
preferences is consistent, for example, with the “partisan” model of Hibbs (1977) and Alesina (1988). A full
characterization of the distribution of candidates’ positions as an equilibrium object in a general environment
with more than two candidates and a multidimensional space is not feasible given the current status of the
theoretical literature (e.g., Merlo (2006)). It is therefore outside of the scope of our analysis.
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structure. Independent variation in characteristics is also used to identify the distributions

of interest in Ichimura and Thompson (1998) and Gautier and Kitamura (2013). We also

note that, except for prices, product characteristics are usually assumed to be exogenous in

the differentiated products demand literature (e.g., Anderson, De Palma, and Thisse (1989)

or Feenstra and Levinsohn (1995)). The assumption is made explicit below:

Assumption 1. The random vectors C and T are conditionally independent given X.

Since we use variation in candidate locations to identify the distribution of voters’

preference types T, we also assume that there is sufficient variation in those variables.13 We

collect this and other assumptions on the underlying distributions in the following assump-

tion:

Assumption 2. The distribution of candidate profiles C is absolutely continuous with re-

spect to the Lebesgue measure on (Rnk,B(Rnk)) and has full support on Rnk. The distribu-

tion of preference types T is absolutely continuous with respect to the Lesbegue measure on

(Rk,B(Rk)) and has full support on Rk.

3 Identification

The following definition qualifies our characterization of identifiability. We remind the reader

that the analysis is conditional on X and notation is omitted for simplicity.

Definition 1 (Identification). Let (PT1 ,W1) and (PT2 ,W2) be two pairs where Pi, i = 1, 2, are

probability measures on (Rk,B(Rk)), both absolutely continuous with respect to the Lebesgue

measure on Rk and Wi, i = 1, 2, are positive definite, symmetric weighting matrices. (PT1 ,W1)

is identified relative to (PT2 ,W2) if and only if p(·, (PT1 ,W1)) = p(·, (PT2 ,W2)), Leb-a.e. ⇒

(PT1 ,W1) = (PT2 ,W2).14 (PT ,W ) is (globally) identified if it is identified relative to any other

probability measure and weighting matrix pair.

13For example, if the profile of candidate positions is the same in every election, it would not be possible
to identify the distribution of preferences in the population of voters.

14Leb.-a.e. refers to the fact that the underlying measure is the Lebesgue measure on (Rnk,B(Rnk)).
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In words, two preference structures that for every possible configuration of candidates in

an election (except for cases in a zero measure set) generate the same proportions of votes

should correspond to the same (probability measure and weighting matrix) pair.

We begin our analysis by considering the case where the weighting matrix W is known.

While our main goal is to show that the distribution of bliss points and the weighting matrix

that characterize voters’ preferences are jointly identified, the analysis of the simpler case

allows us to clarify the relationship with the work by Ichimura and Thompson (1998) and

Gautier and Kitamura (2013). Moreover, it provides a useful step for the proof of the main

result of the paper contained in Theorem 1 below.

Lemma 1 establishes identification of the distribution of preference types in the pop-

ulation of voters when the weighting matrix is known.

Lemma 1. Suppose that W is known and Assumptions 1 and 2 hold. Then PT is identified.

The proof of Lemma 1 is given in the Appendix for elections with any number of

candidates and it is a straightforward extension of the argument in Ichimura and Thompson

(1998), which can be directly applied to our setting to establish identification for the two-

candidate case. The argument in the proof generalizes the simple insight that for two-

candidate elections the Voronoi tessellation is given by an affine hyperplane. One can then

sweep the space looking for an affine hyperplane that delivers different election outcomes

for two distinct preference type distributions. That such an affine hyperplane exists is

guaranteed by the Cramér-Wold device.15 In fact, even for the case where there are more

than two candidates, as long as one can sample elections where candidates are arbitrarily

clustered around two positions (which is guaranteed by our assumptions), identification

follows by continuity.

As pointed out above, the Cramér-Wold device is also used in Ichimura and Thompson

15The Cramér-Wold device refers to the result that the distribution of a random vector is uniquely char-
acterized by the family of distributions of all its linear combinations. This is related to the fact that the
characteristic function for a multivariate distribution is also the characteristic function for the distribution
of a linear combination of the random vector of interest (see Pollard (2002), p.202). Hence, one can also
employ Fourier methods directly to obtain identification.
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(1998) to show identification of the unknown distribution for the random coefficients in a

binary outcome model. When n = 2 and C = (C1, C2), the spatial model of voting postulates

that a voter at t chooses C2 when dW (t, C1) − dW (t, C2) ≥ 0. This can be written as

Z(W )>β ≥ 0 where

Z(W ) ≡ (−2(C1 − C2)>W, (C1 − C2)>W (C1 + C2))>

||(−2(C1 − C2)>W, (C1 − C2)>W (C1 + C2))||
∈ Rk+1 and β ≡ (t>, 1)>

||(t>, 1)||
∈ Rk+1.

Hence, when elections only have two candidates, the spatial model of voting reduces to

a binary choice model with random coefficients as in Ichimura and Thompson (1998) and

Gautier and Kitamura (2013). If W (and consequently Z) is known, one can then use their

arguments to identify the distribution of β which can then be used to obtain the distribution

of preference types T.

We now turn attention to the general environment where the weighting matrix W is

not known. We initially consider the special case where there are only two candidates and

the weighting matrix is unknown. As in the case where the weighting matrix is known, the

result can then be extended to elections with a general number of candidates by continuity

arguments. We elaborate on this point in more detail later in this section.

Lemma 2 establishes joint identification of the distribution of preference types in the

population of voters and of the weighting matrix, when elections have two candidates.

Lemma 2. Suppose Assumptions 1 and 2 hold, ||W ||k×k =
√
k, and there are two candidates.

Then (PT ,W ) is identified.

The proof of Lemma 2 is presented in the Appendix for arbitrary ideological space

dimension k. Here, we provide the intuition for the identification in the case where the

ideological space is two-dimensional. The result is established by showing that if there are

two tuples, (PT ,W ) and (PT ,W ), that are observationally equivalent, they would have to

place zero probability on any arbitrary set in the ideological space.

Consider then two environments (PT ,W ) and (PT ,W ) such that W 6= W and assume
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they are observationally equivalent. Start with an arbitrary bounded set in R2, as indicated

by the square in the upper-left panel in Figure 2. Then, consider an election with candidates

C = {C1, C2} such that this set is contained in V W
i (C), but not in V W

i (C) for some i. In the

upper-right panel in Figure 2, this is achieved for candidate C1. Under the weighted distance

dW , the Voronoi cells when there are two candidates are separated by the line

HW (C1, C2) ≡ {t ∈ R2 : C>1 WC1 − C>2 WC2 + 2(C2 − C1)>W t︸ ︷︷ ︸
≡dW (t,C1)2−dW (t,C2)2

= 0}, (2)

and analogously for the weighted distance dW . Hence, the area above HW (C1, C2) corre-

sponds to V W
1 (C) and the area below corresponds to V W

2 (C). Similarly, the area above

HW (C1, C2) corresponds to V W
1 (C) and the area below corresponds to V W

2 (C). Note that

the highlighted square is contained in V W
1 (C), but not in V W

1 (C).

Note also that the two lines HW (C1, C2) and HW (C1, C2) intersect at the midpoint

(C1 + C2)/2. If the two tuples (PT ,W ) and (PT ,W ) are observationally equivalent, the two

candidates C1 and C2 should obtain the same shares of votes under (PT ,W ) as they would

under (PT ,W ). Denote by p the vote share of candidate C2. As indicated in the two lower

panels in Figure 2, this is the probability of the area below HW (C1, C2) under PW and the

area below HW (C1, C2) under PW .

One can then obtain a translation of the candidates, say (C ′1, C
′
2), such that C1−C2 =

C ′1 −C ′2, and the same original Voronoi diagram is generated under W , as illustrated in the

upper-left panel in Figure 3. The line characterizing the W -Voronoi cells for the new pair

(C ′1, C
′
2) is parallel to the W -Voronoi line for (C1, C2). From the upper-right panel in Figure

3 note that the original square is contained in V W
1 (C ′), but not in V W

1 (C ′).

Candidates C ′1 and C1 obtain the same vote share, equal to (1−p), in their respective

elections under (PT ,W ), since they generate the same Voronoi cells (under W ). In particular,

this is the probability of the area above HW (C ′1, C
′
2) (which is the same as HW (C1, C2)), as

indicated in the upper-right panel in Figure 3. Under observational equivalence, the share of

12



Figure 2: Voronoi Tessellations for Candidates C1, C2
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candidate C ′1 should also be 1−p under (PT ,W ). This means that the area above HW (C ′1, C
′
2)

equals 1− p under PT (see the lower-left panel in Figure 3).

Figure 3: Voronoi Tessellations for Candidates C ′1, C
′
2

Since, under PT , the area above HW (C ′1, C
′
2) equals 1 − p and the probability of

the area below HW (C1, C2) equals p, the area between HW (C1, C2) and HW (C ′1, C
′
2) would

have zero probability (see the lower-right panel in Figure 3). Given that the rectangle is

between HW (C1, C2) and HW (C ′1, C
′
2), it also has zero probability. Since the argument can

be repeated for any bounded set, any such set would have probability zero. We then reach a

contradiction as this would lead to the conclusion that the probability of the entire ideological

space (R2) is zero. The proof of Lemma 2 simply formalizes and extends this argument for

a general ideological space dimension k.
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When there are more than two candidates, the same argument cannot necessarily be

applied since the existence of multiple profiles generating the same Voronoi tessellation is no

longer guaranteed when the number of candidates is greater than k + 1. It is nevertheless

intuitive that the addition of more information with a larger number of candidates would

still allow for identification. This is indeed so. As in Lemma 1, this is established if one can

sample candidates arbitrarily close to two positions (as guaranteed by our assumptions) and

appealing to continuity arguments. This is the main result of the paper, which is stated in

the following theorem:

Theorem 1. Suppose Assumptions 1 and 2 hold and ||W ||k×k =
√
k. Then (PT ,W ) is

identified.

An important implication of Theorem 1 is that the distribution of voters’ preferences

in the ideological space can be recovered together with the relative weights voters ascribe to

the various dimensions of the ideological space from cross-sectional, aggregate electoral data

for any election. Using electoral data for different types of office (e.g., local vs. national

legislatures), it is therefore possible, for example, to assess whether the recovered preference

distributions are the same across elections, or whether voters care differently about specific

ideological dimensions depending on the type of the political office. Similarly, using electoral

data for the same office through time, it is possible to quantify the way voters’ tastes evolve

through time and how they correlate with economic conditions or other aggregate outcomes.

We also note that W can potentially be made dependent on X, since the identification results

above are established for a given stratum of the covariates.

4 Estimation

In the simple case of a one-dimensional ideological space (k = 1), an election provides direct

estimates of the cumulative distribution function FT (t|X) =
∫ t
−∞ fT |X(u|X)du at each of
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the midpoints separating any two contiguous candidates.16 Estimation of the distribution of

voters’ preferences is therefore straightforward. Consider a generic election with n candidates

and assume, without loss of generality, that C1 < C2 < · · · < Cn. The sum of the proportions

of votes received by candidate Ci and by all the candidates positioned to the left of Ci gives

an estimate of the cdf FT at Ci ≡ Ci+Ci+1

2
where, i = 1, . . . , n − 1. As more elections

are sampled (possibly with different numbers of candidates in each election), we obtain an

increasing number of points at which we can estimate the cdf. Let pi, i = 1, . . . , n, be the

vote shares obtained by candidates C1, . . . , Cn in an election with n candidates. Notice that

E(1(T ≤ Ci)|C,X) = E(pi|C,X) = FT (Ci|X),

and a natural estimator for FT given a sample of elections with any number of candidates

would be a multivariate kernel or local linear polynomial regression. Under usual conditions

(see, e.g., Li and Racine (2007)), the estimator is consistent and has an asymptotically

normal distribution. Other nonparametric techniques (splines, series) may also be employed.

To impose monotonicity, one could appeal to monotone splines (Ramsay (1988), He and Shi

(1998)) or smoothed isotonic regressions (Wright (1982), Friedman and Tibshirani (1984),

Mukerjee (1988), Mammen (1991)), possibly conditioning on regressor strata if necessary.

In the general case where the number of dimensions of the ideological space is greater

than one (k > 1), however, it is not possible to directly recover estimates for the cumulative

distribution function as in the previous case.17 It is nevertheless true that for a given election:

E
[∫

1t∈VWi (C)fT |X(t|X)dt− pi
∣∣∣∣X̃] = 0, i ∈ {1, . . . , n}

where V W
i (C) is the Voronoi cell for candidate i, X̃ = (X, C), and the expectation is taken

with respect to ε given candidate positions and X. As before, the quantities pi, i ∈ {1, . . . , n},
16If the ideological space has only one dimension, FT (t|X) is the only object of interest, since W is a scalar

that plays no role.
17If the ideological space is multi-dimensional, the weighting matrix W is also an object of interest.
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are the electoral outcomes obtained from the data (i.e., the vote shares obtained by each

candidate in the election).

In a parametric context, this structure suggests searching for parameters characteriz-

ing W and f that minimize the distance between sample analogs of the moments above and

zero. Because f(·) is non-parametric, we use a sieve minimum distance estimator as sug-

gested in Ai and Chen (2003) (see also Newey and Powell (2003) and Ai and Chen (2007)).

We follow here the notation in that paper. Letting W ∈ Θ and f ∈ H, the estimator is the

sample counterpart to the following minimization problem:

inf(W,f)∈Θ×HE
[
m(X̃, (W, f))>

[
Σ(X̃)

]−1

m(X̃, (W, f))

]
(3)

where Σ(X̃) is a positive definite matrix for every X̃ andm(X̃, (W, f)) = E
[
ρ(p, X̃, (W, f))|X̃

]
with

ρ(p, X̃, (W, f)) =

(∫
1t∈VWi (C)fT |X(t|X)dt− pi

)
i=1,...,n−1

(4)

where p = (pi)i=1,...,n denotes the vector of vote shares in the data. Notice that the n-

th component of the above vector is omitted as the vector adds up to one. For ease of

exposition, here we consider the case where elections have the same number of candidates. If

the number of candidates differs across elections (as is the case in our empirical application),

the objective function can be rewritten as the sum of similarly defined functions for different

candidate numbers and treated, for example, as in the analysis of auctions with different

numbers of bidders.18

As pointed out by Ai and Chen (2003), two difficulties arise in constructing this

estimator. First, the conditional expectation m is unknown. Second, the function space H

may be too large. To address the first issue, a non-parametric estimator m̂ is used in place

of m. With regard to the second issue, the domain H is replaced by a sieve space HE which

increases in complexity as the sample size grows.

18See for instance the treatment in Donald and Paarsch (1993).
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For the estimation of the function m, let {bj(·), j = 1, 2, . . . } denote a sequence

of known basis functions (e.g., power series, splines, etc.) that approximate well square

integrable real-valued functions of X̃ = (X, C). With bJ(·) = (b1(·), . . . , bJ(·))> and given

a particular parameter vector (W, f), the sieve estimator for the function mi(·, (W, f)), the

i-th component in m, is given by

m̂i(·, (W, f)) =
E∑
e=1

ρi(pe, X̃e, (W, f))bJ(X̃e)
>(B>B)−1bJ(·) i = 1, . . . , n− 1 (5)

where BE×J = (bJ(X̃1), . . . , bJ(X̃E))> and e = 1, . . . , E indexes the elections in the data.

We consider the class H of densities studied by Gallant and Nychka (1987).19 For

simplicity, we initially omit the conditioning variables (X), but notice that the approach can

be extended to conditional densities as in Gallant and Tauchen (1989), for example. Fix

k0 > d/2, δ0 > d/2, B0 > 0, and let φ(t) denote the multivariate standard normal density.

The class H admits densities f such that:20

f(t) = h(t)2

with ∑
|λ|≤k0

∫
|Dλh(t)|2(1 + t>t)δ0dt

1/2

< B0 (6)

where
∫
f(t)dt = 1,

Dλh(t) =
∂|λ|

∂tλ11 ∂t
λ2
2 . . . ∂tλkk

h(t), λ = (λ1, . . . , λk)
> ∈ Nk

and |λ| =
∑k

i=1 λi. Given a compact set on the ideological space, condition (6) essentially

19See also Fenton and Gallant (1996a), Fenton and Gallant (1996b), Coppejans and Gallant (2002) and
references therein.

20Since Gallant and Nychka (1987) study a likelihood-based estimator, they focus on f(t) = h(t)2 +εφ(t).
The additional term εφ(t) is meant to steer the (log-)likelihood function away from −∞. We use a moment-
based objective function and Theorems 1 and 2 in Gallant and Nychka (1987), which do not require this
additional term, so we drop this term from our presentation.
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constrains the smoothness of the densities and prevents strongly oscillatory behaviors over

this compact set. Out of this set, the condition imposes some reasonable restrictions on

the tail behavior of the densities. Nevertheless, condition (6) allows for tails as fat as

f(t) ∝ (1 + t>t)−η for η > δ0 or as thin as f(t) ∝ e−t
>tη for 1 < η < δ0 − 1.

Gallant and Nychka (1987) show that the following sequence of sieve spaces is dense on

the (closure of the) above class of densities (with respect to the norm ||f ||cons = max|λ|≤k0 supt

|Dλf(t)|(1 + t>t)δ0 , which is the consistency norm we use in Proposition 1 below):

HE =

f : f(t) =

[
Jt∑
i=0

Hi(t)

]2

exp

(
−t>t

2

)
,

∫
f(t)dt = 1



where Hi are Hermite polynomials, φ is the standard multivariate normal density and ε is a

small positive number.21 As mentioned before, the set of densities on which ∪∞E=1HE is dense

is fairly large. Because the (closure of) the parameter space is also compact with respect to

the consistency norm (see the proof for Proposition 1), the inverse operator is continuous

(see p. 1569 in Newey and Powell (2003)).

As in Gallant and Tauchen (1989), when the conditioning variables X are introduced,

let z = R−1(t − b − AX) where R and A are matrices of dimension k × k and k × dim(X)

respectively and b is a k-dimensional vector. Then,

f(t|X) = h(z|X)/ det(R)

where

h(z|X) =

[∑Jt
|α|=0 aα(X)zα

]2

φ(z)∫ [∑Jt
|α|=0 aα(X)Uα

]2

φ(U)dU

with aα(X) =
∑Jx
|β|=0 aαβX

β. The function zα maps the multi-index α = (α1, . . . , αd) into

the monomial zα = Πk
i=1z

αi
i and analogously for Xβ with respect to β = (β1, . . . , βdim(X)).

21Kim (2007) examines truncated versions of the Gallant-Nychka sieve space on a compact support.
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The estimator is formally defined as:

(Ŵ , f̂) = argmin(W,f)∈Θ×HE
1

E

E∑
e=1

m̂(X̃, (W, f))>
[
Σ̂(X̃)

]−1

m̂(X̃, (W, f)) (7)

For a given pair (W, f), the components of the vector m̂(·, (W, f)) are calculated as in (5).

In our empirical application {bj(·), j = 1, 2, . . . } is a polynomial sieve and the ith component

of m̂(X̃, (W, f)) is the linear projection of ρi(p, X̃, (W, f)) on X̃.

To calculate ρi(p, X̃, (W, f)) for a given (W, f) one needs to compute the integral in∫
1t∈VWi (C)fT |X(t|X)dt − pi. The estimator is very attractive computationally as integrals

for putative densities f over a particular Voronoi cell can be easily obtained by simulation.

Practically, we sample many draws from a bivariate normal density and take the average of

the Hermite factors of the density evaluated at each draw times an indicator for whether the

draw is closer to the candidate corresponding to the Voronoi cell of interest than to any other

candidate. More precisely, for given parameter values and X, we simulate S independent

multivariate normal random variables22 (with zero mean and identity variance-covariance)

z1, . . . , zS and estimate ρi(W, f) as

ρiS(W, f) ≡ 1

det(R)
S−1

S∑
s=1

[∑Jt
|α|=0 aα(X)zαs

]2

∫ [∑Jt
|α|=0 aα(X)Uα

]2

φ(U)dU
×1
[
dW (ts, Ci) ≤ dW (ts, Cj), j 6= i

]
(8)

where ts = b + AX + Rzs. Given the parameters, the integral in the denominator can be

analytically computed as it corresponds to the sum of even moments of normal variables. We

use Mathematica to compute these integrals. The indicator 1
[
dW (ts, Ci) ≤ dW (ts, Cj), j 6= i

]
allows us to obtain the proportion of simulated types ts that would choose candidate i and are

positioned in V W
i (C). The construction of ρiS(·, ·) allows us to evaluate the objective function

in (7) at given (f,W ) once Σ̂ is computed.23 Denote the estimator based on ρiS(·, ·) using S

22In our empirical application, we use S = 1000.
23In the empirical application we use Σ̂ = I.
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simulations by (ŴS, f̂S) . As the number of draws S increases, the approximation converges

to the desired integral of f(t|X) over the Voronoi cell for candidate Ci by the Law of Large

Numbers. In fact, because the convergence is uniform in (W, f), plimS(ŴS, f̂S) = (Ŵ , f̂) as

defined in (7).

Because of the simulations, our implementation of ρi and hence our objective function

are not smooth. Hence, to minimize this function we use Nelder-Meade’s non-gradient

algorithm (though other non-gradient based methods could also be employed).24 Using ten

randomly drawn initial parameter proposals we proceed incrementally, first minimizing the

objective function for values of Jt and Jx and using the optimal values as starting parameters

for higher orders. The program is executed in Fortran using a High Performance Computing

cluster. In our estimation, we follow Gallant and Tauchen (1989) and rescale the covariates

(see Section 5 for further details).

To establish consistency we rely on the following assumptions:

Assumption 3. (i) Elections are iid; (ii) supp(X̃) is compact with nonempty interior; (iii)

the density of X̃ is bounded and bounded away from 0.

Assumption 4. (i) The smallest and largest eigenvalues of E{bJ(X̃)bJ(X̃)>} are bounded

and bounded away from zero for all J ; (ii) for any g(·) with E[g(X̃)2] < ∞, there exist

bJ(X̃)>π such that E[{g(X̃)− bJ(X̃)>π}2] = o(1).

Assumption 5. (i) Σ̂(X̃) = Σ(X̃) + op(1) uniformly over supp(X̃); (ii) Σ(X̃) is finite

positive definite over supp(X̃).

Assumption 6. Let dim(J) be the number of parameters in the sieve approximation for m(·)

and let dim(Jt) and dim(Jx) be the number of parameters for the sieve approximation of the

distribution of types defined in equation (8). Analogously, let dim(W ) be the dimension of the

parametric component W . Then, (n−1)dim(J) ≥ dim(Jt)+dim(Jx)+dim(W ), Jt, Jx →∞

and J/E → 0 as E →∞.

24If changes of variables are used to make the domain of integration (i.e., dW (ts, Ci) ≤ dW (ts, Cj), j 6= i)
rectangular, the objective function may be made smooth (see, Genz and Bretz (2009)).
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The following proposition establishes consistency:

Proposition 1. Under Assumptions 1-6 and Θ compact (with respect to the Frobenius

norm),

plimS(ŴS, f̂S) = (Ŵ , f̂)→p (W, fT )

with respect to the norm

||(W, f)|| = max
|λ|≤k0

sup
t
|Dλf(t)|(1 + t>t)δ0 +

√
tr(W>W ).

The proof for the above result is a slightly modified version of Lemma 3.1 in Ai and

Chen (2003), where instead of appealing to Holder continuity in demonstrating stochastic

equicontinuity of the objective function we adapt Lemma 3 in Andrews (1992) using dom-

inance conditions. Because we do not rely on Holder continuity, however, the results on

rates of convergence in Ai and Chen (2003) do not directly apply here. Hence, we do not

provide asymptotic standard errors for the parametric components and functionals of the

non-parametric components as in Ai and Chen (2003).25 In the empirical application, we

do, however, provide bootstrap standard errors.

5 Empirical Application

In this section, we illustrate the methodology described above with an empirical analysis of

the 1999 elections of the European Parliament.26 Elections for the European Parliament take

place under the proportional representation system and typically with closed party lists. This

means that voters in each electoral precinct do not vote for specific candidates, but for parties,

and the total fraction of votes received by a party across all electoral precincts determines its

25Deriving rates of convergence in the context of our model is not straightforward and we leave it for
future research. When W is known and elections have no more than two candidates, Gautier and Kitamura
(2013) suggest an alternative estimator and provide rates of convergence.

26A description of the rules and composition of the European Parliament since its inception in 1979 can
be found at http://www.elections-europeennes.org/en/.
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proportion of seats in the Parliament. The identity of the politicians elected to Parliament

is then determined by the parties’ lists (e.g., if a party obtains three seats, the first three

candidates on its list are elected).27 Hence, in this context, the electoral candidates in an

election are the parties competing in the election. As pointed out by Spenkuch (2013), among

others, under proportional representation “it is in practically every voter’s best interest to

reveal his true preferences over which party he wishes to gain the marginal seat by voting

for said party” (p. 1). In other words, in elections with proportional representations, voters

have no incentives to behave strategically, and the maintained assumption that voters vote

ideologically is particulary well suited for the European Parliament elections.

Our data consist of ideological positions of the candidates/parties competing in the

election, electoral outcomes, and demographic and economic characteristics, for each elec-

toral precinct. Since data on all demographic and economic variables are not available at

the electoral precinct level for Austria, Belgium, Denmark and Italy, we exclude these coun-

tries from the empirical analysis. Hence, our data set is a cross-section of elections for the

European Parliament in the 693 electoral precincts of Finland, France, Germany, Greece,

the Netherlands, Ireland, Portugal, Spain, Sweden, and the United Kingdom in 1999.28

The ideological positions of the parties were obtained from Hix, Noury, and Roland

(2006), who used roll-call data for the 1999-2004 Legislature of the European Parliament to

generate two-dimensional ideological positions for each member of parliament along the lines

of the NOMINATE scores of Poole and Rosenthal (1997) for the US Congress.29 As indicated

in Heckman and Snyder (1997), ideological positions are obtained essentially through a

(nonlinear) factor model with a large number of roll-call votes and parliament members.

Given the magnitude of these dimensions, we follow the empirical literature on “large N and

27More precisely, Germany, Spain, France, Greece, Portugal and the United Kingdom have closed party
lists; Austria, Belgium, Denmark, Finland, Italy, Sweden and the Netherlands have a preferential vote
system (where voters can express a preference for the candidates on the list, but votes that do not express a
preference are counted as votes for the party list); and Ireland has a single transferable vote system (where
the voter indicates his/her first choice, then his/her secondary choice, etc.).

28We only have complete data on one electoral precinct in Ireland, Dublin, which is included in our analysis.
29The data are publicly available at http://personal.lse.ac.uk/hix/HixNouryRolandEPdata.htm.

23



large T” factor models and take these scores as data (see, e.g., Stock and Watson (2002),

Bai and Ng (2006a) or Bai and Ng (2006b)).

Hix, Noury, and Roland (2006) provide an interpretation of the two dimensions of the

ideological space based on an extensive statistical analysis which combines parties’ manifestos

and expert judgements by political analysts. They relate the first dimension to a general

left-right scale on socio-economic issues, and the second dimension to positions regarding

European integration policies.

The members of the European Parliament (MEPs) organize themselves into ideologi-

cal party groups (EP groups) as in traditional national legislatures. Each EP group contains

all the MEPs representing the parties that belong to that group. Within each country, it is

typically the case that parties that belong to the same EP groups form electoral coalitions,

where all the parties in the same EP group run a common electoral campaign based on a

unified message representing the ideological positions of their group. Often, these positions

vary across electoral constituencies within a country, representing regional differences in pol-

icy stances.30 Since the closed-list proportional representation system induces strong party

cohesion (see, e.g., Diermeier and Feddersen (1998)), where elected representatives systemat-

ically (though not always) vote along party lines, we identify the ideological position of each

“candidate” running in an electoral constituency by the ideological position of his/her EP

group in that constituency. In particular, for each dimension of the ideological space, we use

the average coordinate of individual MEPs from each EP group in a constituency as the coor-

dinate for the position of the “candidate” representing that EP group in that constituency.31

Figure 4 plots the positions for the “candidates” across all electoral constituencies in our

data and indicates their EP group affiliation. All elections had more than two candidates:

68 elections had three, 396 elections had four, 43 elections had five, 40 elections had six, and

30Note that some countries have a single electoral constituency (Finland, France, Greece, Netherlands, Por-
tugal, Spain, and Sweden), while others (Germany, Ireland and UK) have many sub-national constituencies.
Each constituency contains many electoral precincts.

31Degan and Merlo (2009) use a similar procedure for U.S. congressional elections. Note that very similar
positions are obtained if instead of the average we use the median coordinate.
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146 elections had 7 candidates.

Figure 4: Candidate Positions, 1999

In accordance with the interpretation of Hix, Noury, and Roland (2006): “On the first

dimension (. . . ) the Radical Left and Greens [are] on the furthest left, then the Socialists on

the center-left, the Liberals in the center, the European People’s Party on the center-right,

the British Conservatives and allies and French Gaullists and allies to the right,” whereas on

the second dimension “the main pro-European parties (the Socialists, Liberals, and European

People’s Party) [are] at the top (. . . ) and the main anti-Europeans (the Radical Left, Greens,

Gaullists, Extreme Right and Anti-Europeans) at the bottom” (p. 499).

To further illustrate the data on ideological positions, in Figure 5 we also plot the

ideological positions of a few notable politicians who ran in the 1999 European Parliament

elections as front runners on their parties’ lists. On the left-wing/pro-Europe quadrant,

for example, we can locate François Hollande, current president of France, at coordinates

(−0.372, 0.609), whereas in the Southwest quadrant (left, anti-Europe integration), we find
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Claudia Roth, leader of the German Green Party, at coordinates (-0.715,-0.663). In the

right-wing/anti-Europe quadrant, we find Nicholas Clegg, leader of the UK Liberal Demo-

crat Party, at (0.123,−0.049); Jean-Marie Le Pen, founder and former leader of the French

National Front Party, at (0.576,−0.816); and Nigel Paul Farage, leader of the UK Indepen-

dence Party, at (0.566,−0.825).32

Figure 5: Individual Politician Positions, 1999

An observation unit in the data comprises information on candidate positions and

vote shares at the electoral precinct level. Figure 6 depicts a typical data point—the Paris,

France electoral precinct—with seven candidates, representing seven EP groups.

Each electoral precinct corresponds to a different tessellation of the ideological space,

and we measure the proportion of voters in each cell using the proportion of votes obtained by

each of the candidates in that electoral unit. Figure 7 combines the Voronoi tessellations for

32Note that Le Pen and Farage are remarkably aligned in the ideological space. This may not come
as a surprise after Marine Le Pen, daughter of Jean-Marie Le Pen, tweeted “congratulations” to the UK
Independence Party after their recent success in local elections.
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Figure 6: Voronoi Diagram for Paris (France), 1999

all the elections in our data. It is apparent from the figure that these tessellations cover the

ideological space and provide sufficient variation that allows us to identify and estimate the

distribution of voter types (see our discussion of the conditions for identification in Section

3 above).

Table 1 contains minima and maxima for candidate coordinates. As we can see from

the table, there is wide variability of candidate positions within each country, while the

support of candidate distributions does not vary much across countries. Hence, there is no

evidence of ideological segregation (or clustering) of electoral candidates by country.

We combine the data on the ideological positions of electoral candidates with electoral

outcomes in the 1999 elections and demographic and economic variables at the electoral

precinct level from the 2001 European Census.33 The election outcomes data were obtained

33Since the European Census is conducted every ten years, we use data from the 2001 census, which is the
closest to 1999.
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Figure 7: Superimposed Voronoi Diagrams, 1999

Table 1: Candidate Position Coordinates (Min and Max)
Dimension 1 Dimension 2
Min Max Min Max

Finland -0.802 0.572 -0.597 0.474
France -0.834 0.569 -0.792 0.280
Germany -0.885 0.690 -0.438 0.622
Greece -0.815 0.587 -0.550 0.551
Ireland -0.874 0.547 -0.376 0.564
Netherlands -0.856 0.577 -0.518 0.461
Portugal -0.846 0.580 -0.632 0.475
Spain -0.916 0.629 -0.400 0.603
Sweden -0.833 0.571 -0.591 0.274
UK -0.868 0.899 -0.855 0.521
Source: Hix, Noury and Roland. We define candidate positions
as the (average) position for MEPs from a given EP group
within each available constituency.
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Table 2: Summary Statistics
Mean Female/ % > 35 GDP per Unempl.
St Dev. Male Yrs.-old capita
Overall 1.040 0.616 21,989.10 0.074

( 0.034 ) ( 0.051 ) ( 9,165.46 ) ( 0.047 )

Finland 1.035 0.579 23,990.00 0.102
( 0.026 ) ( 0.026 ) ( 5,336.84 ) ( 0.036 )

France 1.052 0.679 21,820.83 0.083
( 0.023 ) ( 0.037 ) ( 7,140.55 ) ( 0.024 )

Germany 1.046 0.632 23,899.88 0.074
( 0.031 ) ( 0.029 ) ( 9,696.70 ) ( 0.051 )

Greece 0.985 0.563 12,058.82 0.108
( 0.038 ) ( 0.034 ) ( 2,947.06 ) ( 0.039 )

Ireland 1.065 0.446 40,600.00 0.030
· · · ·

Netherlands 1.018 0.549 25,502.50 0.022
( 0.023 ) ( 0.026 ) ( 5,057.15 ) ( 0.011 )

Portugal 1.067 0.572 10,876.67 0.039
( 0.032 ) ( 0.050 ) ( 3,122.79 ) ( 0.019 )

Spain 1.027 0.561 15,516.00 0.099
( 0.030 ) ( 0.048 ) ( 3,467.58 ) ( 0.046 )

Sweden 1.014 0.574 25,742.86 0.054
( 0.015 ) ( 0.019 ) ( 3,349.14 ) ( 0.012 )

UK 1.050 0.562 25,672.73 0.049
( 0.017 ) ( 0.038 ) ( 9,083.06 ) ( 0.015 )

Source: EUROSTAT. GDP per capita is in Euros. We only have complete
data on one precinct in Ireland: Dublin. Hence, no standard deviations are
provided for Ireland.

from the CIVICACTIVE European Election Database.34 The demographic and economic

data were obtained from EUROSTAT and we extracted four variables at the electoral precinct

level: the female-to-male ratio; the percentage of the population older than 35; GDP per

capita; and the unemployment rate.35 We present summary statistics for these variables in

Table 2.

Using these data, which as noted above contain a cross-section of 693 elections, we

estimate our model. Following Gallant and Tauchen (1989), we re-scale the data to avoid

situations in which extremely large (or small) values of the polynomial part of the conditional

34The data is available at http://extweb3.nsd.uib.no/civicactivecms/opencms/civicactive/en/.
35Female-to-male ratio is obtained from a combination of the variable cens 01rsctz (where available) and

demo r d3avg (otherwise), where cens 01rsctz is based on census data, while demo r d3avg contains yearly
estimates. The number of individuals above 35 years-old comes from cens 01rapop. GDP per capita comes
from nama r e3gdp. Unemployment figures are obtained from lfst r lfu3rt.
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density are required to compensate for extremely small (or large) values of the exponential

part. We transform the data so that X̌e = S−1/2(Xe − X) where S = (1/E)
∑E

e=1(Xe −

X)(Xe − X)>,X = (1/E)
∑E

e=1 Xe and S−1/2 is the Cholesky factorization of the inverse

of S. The estimates for m(·) as defined in (5) are linear projections on covariates. We use

Hermite polynomials of order Jt = 2 (types) and Jx = 2 (covariates).36 Finally, we use the

identity matrix as our estimation weighting matrix (Σ̂).

The estimates of the weighting matrix W we obtain are W2,2 = 0.287 and W1,2 =

W2,1 = −0.316. Bootstrap standard errors for W2,2 and W1,2 are equal to 0.052 and 0.049,

respectively. Given Jt and Jx, the estimator is essentially an (overidentified) GMM estima-

tor. We compute the standard errors from estimates obtained from 200 bootstrap samples

(after recentering the targeted moments as recommended by standard practice, see Horowitz

(2001)).37 Bootstrap standard errors are also presented for functionals of the estimated

distributions of voter types.

These estimates quantify the relative importance of the European integration dimen-

sion (dimension 2) versus the socio-economic policy dimension (dimension 1), W2,2 (with

W1,1 normalized to one), and the extent to which voters are willing to trade-off the two

dimensions, W1,2. Figure 8 plots an indifference curve for a voter with ideological position

(0, 0) implied by these estimates. In particular, the figure depicts the loci of candidates at

distance 1 from a voter with ideological position (0, 0). Our results indicate that when a

candidate adopts a more right-leaning position on the left-right socio-economic policy scale,

voters need to be “compensated” by a more pro-European integration posture to attain

the same utility level. At the same time, voters attribute more importance to candidates’

ideological positions on socio-economic issues than to their stance on European integration.

Turning attention to the estimates of the distribution of the ideological positions of

36In total, we have 78 parameters, including the parametric component (= dim(Jt) +dim(Jx) +dim(W )).
Since we have up to 7 candidates per election (n− 1 = 6) and a constant plus four covariates and candidate
positions in our linear estimation of m(·), dim(J) = 1 + 4 + 2 × 7 = 19, the bounds in Assumption 6 are
comfortably satisfied.

37Chen and Pouzo (2009) suggest a weighted bootstrap when the generalized residual ρ(·) is nonsmooth
(as in our case), but require that m(·) be smooth (which is not our case).
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Figure 8: Indifference Curve for dW (0, C) = 1.

voters, PT |X , Figure 9 plots level curves for the voter type distribution for electoral precincts

at the 75th percentile of the female-to-male ratio (approximately 1.06 in our data) and

the 25th percentile of the proportion of residents above 35 years-old (approximately 0.58

in the data) and various percentile combinations for the other two variables (per-capita

GDP and the unemployment rate).38 As we can see from the figure, multi-modality and

non-concavity are pronounced features of the recovered distribution of voter preferences.

These findings represent a potential challenge for theoretical research in political economy,

which systematically assumes that the distribution of voters’ preferences is uni-modal and/or

log-concave (see, e.g., Persson and Tabellini (2000), Austen-Smith and Banks (2000) and

Austen-Smith and Banks (2005)).

Another summary of our estimates is presented in Table 3, where we present the

average coordinates of the estimated distribution of voter preferences and the correlation

between coordinates for each country in our sample (see the table’s notes for the exact

construction). For purposes of comparison, Table 3 also reports the average coordinates of

38Electoral precincts with about 1.06 female/male ratio and 58% of the population above 35 years-old in
the data correspond approximately to localities such as Leziria do Tejo (PT) or North Yorkshire (UK), for
example.
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Figure 9: Results at Percentiles of Conditioning Variables (Female/Male: 75 pctile and %
> 35 Years-old: 25 pctile)

the distribution of candidate positions in the data and the correlation between coordinates for

each country. According to our estimates there is a positive correlation between candidates’

(average) coordinates and voters’ (average) coordinates, which is equal to 0.76 for dimension

1 and 0.23 for dimension 2.39 With respect to the correlation between (average) coordinates,

the signs of the correlation for voters and for candidates are the same for six out of the ten

countries.

To investigate the relationships between demographic and economic variables and the

distribution of voters’ preferences, Tables 4 and 5 report the fraction of voters who are on

the right of the left-right socio-economic policy dimension and the fraction of voters who

are pro-Europe, respectively, for electoral precincts at the 25th, 50th and 75th percentiles of

each covariate and average levels for all other covariates.40 As we can see from the tables,

39Recall that Assumption 1 postulates that, after conditioning on observable characteristics, the distribu-
tions of voter preferences and candidate positions are independent. The correlations reported in Table 3 are
not conditional on covariates.

40Loosely speaking, the table reports the “marginal effects” of each covariate.
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Table 3: Distribution of Voters and Candidates Coordinates
Voters Candidates

Country Dim. 1 Dim. 2 Correl. Dim. 1 Dim. 2 Correl.
(mean) (mean) (mean) (mean)

Finland 0.366 0.543 0.673 -0.017 -0.029 0.222
France 0.371 0.396 -0.692 -0.002 -0.161 -0.027
Germany 0.465 0.488 -0.410 0.197 0.246 -0.079
Greece 0.093 0.401 -0.579 -0.094 0.079 0.469
Ireland 0.652 0.967 0.322 0.243 -0.175 0.018
Netherlands 0.728 0.597 -0.227 0.074 0.019 0.112
Portugal 0.656 1.543 0.587 0.091 0.148 -0.091
Spain 0.505 0.888 0.127 0.068 0.232 0.158
Sweden 0.265 0.416 0.629 -0.015 -0.057 0.267
UK 0.666 0.699 0.492 0.283 -0.117 -0.689
Note: Average voter coordinates for each country are a (population weighted) average of
precinct distributional means given that precinct covariates. The voter type correlation is
conditional on national average values for the covariates. Candidate averages and correlation
are constructed using the ideological positions for each of the MEPs available in the data.

electoral precincts with a relatively larger female-to-male ratio, precincts with a relatively

larger share of the population above the age of 35, and precincts with a relatively higher level

of GDP per-capita are relatively less conservative (or less right-leaning on socio-economic

policies), and more pro-Europe. On the other hand, electoral precincts with a relatively

higher unemployment rate are relatively less conservative, but also less pro-Europe.

Although not directly comparable, many of our findings are consistent with those of

the EUROBAROMETER surveys, which document similar correlations between the gender

and employment status of European citizens and their sentiments toward European policies.41

In particular, according to the 1999 survey, relatively fewer women (37.04%) and relatively

fewer people who are unemployed (29.71%) locate themselves on the “right” of the political

spectrum than men (39.48%) and people who are employed (38.09%), respectively.42 More-

41The EUROBAROMETER surveys are public opinion surveys conducted annually by the European
Commission. They interview a representative sample of European citizens in all European Union mem-
ber nations asking a variety of questions, that may differ from year to year, about the citizens’ at-
titude toward Europe and European policies. Detailed descriptions of the surveys can be found at
http://ec.europa.eu/public opinion/index en.htm. The statistics we report here are for the ten coun-
tries in our estimation sample only and are calculated using the Mannheim Eurobarometer Trend File,
1970-2002 (ICPSR 4357), which is available on-line at http://www.icpsr.umich.edu.

42These statistics are based on the answer to the following question: “In political matters people talk of the
‘left’ and the ‘right’. How would you place your views on this [10-point] scale?” where “right” corresponds
to an answer of 6 and above. Note that the relative comparisons between men and women and between
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Table 4: Fraction of right-leaning voters
Female/ % > 35 GDP per Unempl.

Percentiles Male Yrs.-old capita
25th 0.616 0.655 0.665 0.694

( 0.096 ) ( 0.083 ) ( 0.102 ) ( 0.093 )

50th 0.642 0.644 0.650 0.670
( 0.067 ) ( 0.065 ) ( 0.071 ) ( 0.074 )

75th 0.665 0.636 0.640 0.614
( 0.093 ) ( 0.066 ) ( 0.072 ) ( 0.070 )

Note: Proportion of voters with first component (left-right) > 0. Standard
errors in parentheses computed by bootstrap from 200 samples.

over, according to the 1995 EUROBAROMETER survey, relatively fewer women (14.92%)

and relatively more people who are unemployed (18.17%) consider their country’s member-

ship of the European Union “a bad thing” than men (15.87%) and people who are employed

(15.43%), respectively.43 On the other hand, according to the same EUROBAROMETER

surveys, relatively more people older than 35 locate themselves on the “right” of the political

spectrum (39.39%) and consider their country’s membership of the European Union “a bad

thing” (16.57%) than their younger counterparts (36.35% and 12.92%, respectively), which

is somewhat at odds with our findings.

As a measure of within-sample fit, we calculate the Pearson correlation between re-

alized and predicted vote shares which is equal to 0.84. In order to assess the out-of-sample

performance of the model, we also perform an additional estimation. We exclude Portugal

and its 108 electoral precincts from the estimation sample, and use the estimated model

to predict the voting shares in the excluded Portuguese electoral precincts. The Pearson

correlation between realized and predicted vote shares we obtain for Portugal is equal to

0.81. Overall, these results indicate that the model fits the data relatively well.

employed and unemployed hold for any value of the cutoff used to classify answers as “right.” Also, note
that the EUROBAROMETER 10-point scale does not necessarily map into the spatial representation of the
ideological space we consider.

43These statistics are based on the answer to the following question: “Generally speaking, do you think
that [your country’s] membership of the European Community (common market) is ...?” The 1999 survey
did not ask this question.
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Table 5: Fraction of pro-Europe voters
Female/ % > 35 GDP per Unempl.

Percentiles Male Yrs.-old capita
25th 0.624 0.691 0.675 0.679

( 0.093 ) ( 0.094 ) ( 0.110 ) ( 0.097 )

50th 0.677 0.683 0.683 0.688
( 0.081 ) ( 0.082 ) ( 0.087 ) ( 0.082 )

75th 0.730 0.677 0.685 0.670
( 0.098 ) ( 0.083 ) ( 0.078 ) ( 0.087 )

Note: Proportion of voters with second component (against-pro Europe) > 0. Standard
errors in parentheses computed by bootstrap from 200 samples.

6 Discussion

In this paper, we have addressed the issue of nonparametric identification and estimation

of voters’ preferences using aggregate data on electoral outcomes. Starting from the basic

tenets of one of the fundamental models of political economy, the spatial theory of voting,

and building on the work of Degan and Merlo (2009), which represents elections as Voronoi

tessellations of the ideological space, we have established that voter preference distributions

and other parameters of interest can be retrieved from aggregate electoral data. We have

also shown that these objects can be consistently estimated using the methods by Ai and

Chen (2003), and have provided an empirical illustration of our analysis using data from the

1999 European Parliament elections.

One potential extension of interest allows for electoral candidates to differ not only

with respect to their locations in the ideological space, but also with respect to (non-spatial)

individual characteristics related to their quality. These quality characteristics, which are

commonly referred to as “valence” in the literature (see, e.g., Enelow and Hinich (1984)

and the discussion in Degan and Merlo (2009)), are typically assumed to be known to the

voters, but not the econometrician. The identificaton of such a model may be demonstrated

along the same lines of our previous results and we provide further discussion in the Online

Appendix.

To conclude, it may be useful to cast our model into the broader context of a general

spatial model of preferences with generic products, where the “consumer”obtains utility
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U t(Ci) = −(Ci − t)>W (Ci − t) from “product”i, t is a vector of individual “tastes”, Ci is a

vector of “product characteristics”, W is a matrix of weights, and the distribution of tastes

in the population of consumers PT |X,ε depends on “market”level covariates, both observed

(X), and unobserved (ε). Since this framework abstracts away from price endogeneity, the

results of our analysis do not immediately translate to demand estimation, and generalizing

our framework to address this broader class of problems is outside of the scope of this paper.

Nevertheless, (parametric) identification of individual taste heterogeneity is also im-

portant in demand estimation with aggregate data à la Berry, Levinsohn, and Pakes (1995)

(BLP). Hence, our results have some relevance for this broader class of problems. Like those

demand models, our framework allows for unobservable covariates to impact the distribution

of tastes, and could in principle explain why there is not a perfect fit between market shares

as predicted by the model and the observed market shares in a particular market. This is

important since, as BLP also note, without an unobservable one would typically reject the

model using a standard chi-squared goodness-of-fit test. This is because the number of sam-

pled consumers that enter the measured market shares is typically quite large, so observed

shares should equal predicted shares in each market. However, the unobservable breaks this

equality: for a given market (i.e., product locations) the model will still predict a distribution

of market shares.
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Online Appendix: Proofs

Proof of Lemma 1.

Since W is known, without loss of generality we assume that W = I.44 It is enough to

consider a single election with n candidates. In what follows, for any integers l, m and

r: Mr×l is the space of r × l real matrices which is endowed with the typical Frobenius

matrix norm ||A||r×l =
√

Tr(A>A) for A ∈ Mr×l; ||b||l is the typical Euclidean norm in

Rl; and the product metric space Mr×l × Rm is endowed with the normed product metric

d((A1, b1), (A2, b2)) =
√
||A1 − A2||2r×l + ||b1 − b2||2m.

Step 1: (If n = 2,PT is identified) It suffices to show that any two distinct distribu-

tions PT1 and PT2 are relatively identified. When there are only two candidates, say C1 and

C2, voters for whom d(t, C1) − d(t, C2) < 0 will vote for candidate C1. Those for whom

d(t, C1)− d(t, C2) > 0 will vote for candidate C2. Equidistant voters determine the bound-

ary of these two sets (which are the Voronoi cells for each candidate), which is defined by

an affine hyperplane {t ∈ Rk : d(t, C1) = d(t, C2)} = {t ∈ Rk : At = b} where it can be seen

that b = C>2 C2 − C>1 C1 and A1×k = 2(C2 − C1)>.

Suppose that PT1 and PT2 are observationally equivalent. For any two candidates C1

and C2, vote shares will be identifical under either PT1 or PT2 . This means that PT1({T ∈ Rk :

AT ≤ b}) = PT2({T ∈ Rk : AT ≤ b}),∀A, b. Hence, the cummulative distribution function

for any linear combination of T will coincide under PT1 and PT2 . By the Cramér-Wold device

(see Pollard (2002), p.202), this implies that PT1 = PT2 . Consequently,

PT1 6= PT2 ⇒

∃(A∗, b∗) ∈Mn−1×k × Rn−1 : PT1({T ∈ Rk : A∗T ≤ b∗}) 6= PT2({T ∈ Rk : A∗T ≤ b∗}).

Given A∗ and b∗, one can then find two candidates C∗1 and C∗2 such that b∗ = C∗>2 C∗2−C∗>1 C∗1

44This is because one can then focus on the identification of the distribution of W−1/2T, which would
yield identification of the distribution of T if W is known.
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and A∗1×k = 2(C∗2−C∗1)> for whom vote shares under PT1 would be different from vote shares

under PT2 .

For any two candidates, PT ({T ∈ Rk : d(T, C1) − d(T, C2) ≤ 0}) = PT ({T ∈ Rk :

C>1 C1−C>2 C2 +2(C2−C1)>T ≤ 0}) =
∫
C>

1 C1−C>
2 C2+2(C2−C1)>t≤0

dP(t). Since this is a contin-

uous function of C1 and C2, any pair of candidates in a neighborhood of the candidate pair

(C∗1 , C
∗
2) obtained above would also present vote shares that are different under PT1 than un-

der PT2 . Since the candidate and voter type distributions have a common support, elections

allowing the distinction of any two distinct type distributions occur with positive probability.

Step 2: (If n > 2,PT is identified) If PT1 6= PT2 , Step 1 demonstrates that there is a

pair of locations C∗1 and C∗2 such that the proportion of votes closest to each one of the

two locations differs under PT1 and PT2 . Given our assumptions, even if candidates are not

exactly positioned on these two locations, there is positive probability that an election occurs

with candidates situated in small open balls around C∗1 and C∗2 with diameter η > 0.

For a particular voter, let d(t, C∗j ; η) be the largest distance between that voter and

any vector in the neighborhood of C∗j , j = 1, 2. Likewise, let d(t, C∗j ; η) be the smallest

distance between that voter and any vector in the neighborhood of C∗j , j = 1, 2. It should

be clear that d(t, C∗j ; η) ≤ d(t, C∗j ) ≤ d(t, C∗j ; η), j = 1, 2. The proportion of votes going to

the candidates in the neighbohood of C∗1 is bounded above by PT ({T ∈ Rk : d(T, C∗1 ; η) −

d(T, C∗2 ; η) ≤ 0}) and bounded below by PT ({T ∈ Rk : d(T, C∗1 ; η)− d(T, C∗2 ; η) ≤ 0}).

As the diameter η of these neighborhoods shrinks to zero, d(t, C∗j ; η)→ d(t, C∗j ) and

d(t, C∗j ; η)→ d(t, C∗j ). Then the proportion of votes going to candidates in the neighborhood

around C∗1 and the proportion of votes for the candidates in the neighborhood around C∗2

converge to the proportion of votes obtained by candidates situated exactly at C∗1 and C∗2 ,

respectively. Since these two positions distinguish the two distributions PT1 and PT2 , continu-

ity guarantees that elections where candidates are situated in a small enough neighborhood

of these two positions also distinguish the two distributions. �
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Proof of Lemma 2.

Consider two different spatial voting models characterized by (PT ,W ) and (PT ,W ). If

W = W , any election between two candidates will lead to the same partition of voters

across the two environments and identification follows along the lines of Lemma 1. Further-

more, if k = 1, the weighting matrix W is a scalar and the normalization sets it equal to

one. The identification again follows along the lines of Lemma 1. Assume then that W 6= W

and k > 1. Suppose that (PT ,W ) and (PT ,W ) are observationally equivalent: for almost

every candidate-election profile C = (C1, C2), the proportion of votes obtained under the two

different systems is identical.

Throughout, we focus on elections such that C1i 6= C2i for every ith coordinate (i = 1, . . . , k)

in C1 and C2 and W (C1−C2) and W (C1−C2) are linearly independent. These elections hap-

pen with probability one given Assumption 2. First, note that the set {(C11, . . . , C1k, C21, . . . ,

C2k) ∈ R2k : C1i = C2i} has dimension 2k − 1 for each i = 1, . . . , k and hence, (Lebesgue-)

measure zero. Hence, ∪i=1,...,k{(C11, . . . , C1k, C21, . . . , C2k) ∈ R2k : C1i = C2i} has (Lebesgue-

) measure zero.

To see that the event {(C1, C2) ∈ R2k : W (C1−C2) and W (C1−C2) are linearly dependent}

also has (Lebesgue-) measure zero, suppose that this were not the case. Then, one can

find k linearly independent vectors t1, . . . , tk such that W t1 = α1W t1, . . . ,W tk = αkW tk

for some αi ∈ R − {0}, i = 1, . . . , k. Since t1, . . . , tk are linearly independent, they form

a basis for Rk and any vector in Rk is uniquely expressed as a linear combination of those

vectors. Let t then be any other vector in Rk expressed as t = a1t1 + · · · + aktk with non-

zero coefficients a1, . . . , ak. (The set of vectors in Rk for which this is not the case has zero

Lebesgue-measure.) Then W t = W (a1t1 + · · · + aktk) = W (a1α1t1 + · · · + akαktk). If W t

and W t are linearly dependent, we have W t = αW t for some α ∈ R − {0}. These two
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expressions deliver that

Wαt = W (a1α1t1 + · · ·+ akαktk)⇔ t = a1
α1

α
t1 + · · ·+ ak

αk
α

tk,

where we use the fact that W is positive definite (and, hence, invertible) and that α 6= 0.

Since t is uniquely expressed as a linear combination of the basis vectors, we then have that

α = α1 = · · · = αk. Since this holds for every t and α1, . . . , αk depend on the basis but do

not depend on the specific vector t (with non-zero coefficients a1, . . . , ak), α does not depend

on t. This then means that (W − αW )t = 0 holds for every t, implying that the dimension

of the nullspace of W − αW is k and its rank is zero (by the rank-nullity theorem). Since

the only matrix with zero rank is a matrix of zeros, W − αW = 0. Then ‖W‖ = |α|‖W‖,

which implies that |α| = 1 (since ‖W‖ = ‖W‖ =
√
k). Given that W 6= W , this means that

W = −W and hence t>W t > 0 for any t 6= 0⇔ t>W t = −t>W t > 0 for any t 6= 0. Then,

either W or W cannot be positive definite.

Since the events ∪i=1,...,k{(C11, . . . , C1k, C21, . . . , C2k) ∈ R2k : C1i = C2i} and {(C1, C2) ∈

R2k : W (C1 − C2) and W (C1 − C2) are linearly dependent} both have zero (Lebesgue-

)measure, so does their union. Consequently, the complementary event that elections such

that C1i 6= C2i for every ith coordinate (i = 1, . . . , k) in C1 and C2 and W (C1 − C2) and

W (C1 − C2) are linearly independent has probability one.

Step 1: (There is more than one set of candidates that generates the same

partition of voters for a given weighting matrix W .) Consider an election where

C1i 6= C2i for every ith coordinate (i = 1, . . . , k) in C1 and C2 and such that W (C1 − C2)

and W (C1 − C2) are linearly independent. (Note that this event happens with probability

one given Assumption 2.) Take the set of vectors t such that

dW (t, C1) = dW (t, C2).
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The above equation can be explicitly written as

(C1 − C2)>W t = (C>1 WC1 − C>2 WC2)/2.

The solution set for this equation contains at least one element as long as (C1 − C2)>W is

different from the zero vector. Since W is positive definite and, consequently, has full rank,

its nullspace is a singleton (comprised of the vector zero). Hence, (C1−C2)>W 6= 0 (on the

event that C1i 6= C2i, i = 1, . . . , k). In this case, let P denote one solution to the equation

above such that (C1 − C2)>WP 6= 0 (to be used in Step 3) and let C ′ be such that

C ′i = 2Ci − P, ∀i.

Notice that dW (t, C ′1)− dW (t, C ′2) is equal to

(C ′1 − t)>W (C ′1 − t)− (C ′2 − t)>W (C ′2 − t)

= C ′>1 WC ′1 − C ′>2 WC ′2 − 2(C ′1 − C ′2)>W t

= (2C1 − P )>W (2C1 − P )− (2C2 − P )>W (2C2 − P )− 4(C1 − C2)>W t

= C>1 WC1 − C>2 WC2 − (C1 − C2)>WP − (C1 − C2)>W t.

P is such that dW (P,C1) − dW (P,C2) = 0 and consequently 1
2

(
C>1 WC1 − C>2 WC2

)
=

(C1 − C2)>WP . This, in turn, implies that

dW (t, C ′1)− dW (t, C ′2) = 0 ⇔

C>1 WC1 − C>2 WC2 − 2(C1 − C2)>W t = 0 ⇔

dW (t, C1)− dW (t, C2) = 0.

This establishes that the partition of voters under W (i.e., the W -Voronoi diagram) is the

same across the two elections.
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Step 2: (For C, C ′ defined above, HW (C1, C2) and HW (C1, C2) are different hy-

perplanes and HW (C1, C2) and HW (C ′1, C
′
2) are parallel.) With only two candidates,

Voronoi cells are simply half-spaces of Rk defining the nearest-neighbor sets for each can-

didate. Consider C and C ′ such that their Voronoi tessellations under W coincide, i.e.,

V W (C) = V W (C ′) where C and C ′ are obtained as in Step 1.

To see that HW (C1, C2) 6= HW (C1, C2), first note that

HW (C1, C2) ≡ {t ∈ Rk : C>1 WC1 − C>2 WC2 + 2(C2 − C1)>W t = 0}, (9)

is the solution set to a linear equation. Since W is positive definite, 2(C2−C1)>W is nonzero

on the event that C1i 6= C2i, i = 1, . . . , k. Then, with probability one the solution set to the

equation defining HW (C1, C2) above has dimension k − 1, which is the dimension of the

nullspace of 2(C2−C1)>W . The same holds for HW (C1, C2), which is defined as in (9) using

W instead of W .

On the other hand, the intersection of HW (C1, C2) and HW (C1, C2) is the solution

set (in Rk) to the system of equations given by:

 C>1 WC1 − C>2 WC2 + 2(C2 − C1)>W t = 0

C>1 WC1 − C>2 WC2 + 2(C2 − C1)>W t = 0.

This solution set has dimension k−2 as long as 2(C2−C1)>W and 2(C2−C1)>W are linearly

independent. This is because in this case the nullspace for the matrix of coefficients (which

stacks these two row vectors) has dimension k − 2. Consequently, because the dimension of

their intersection is smaller than the dimension of either HW (C1, C2) or HW (C1, C2), these

two sets are different.

We now show that HW (C1, C2) and HW (C ′1, C
′
2) are parallel. Given our definition of
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C and C ′, note that

C ′1 − C ′2 = 2(C1 − C2).

Then see that

t ∈ HW (C ′1, C
′
2) ⇒ C ′>1 WC ′1 − C ′>2 WC ′2 − 2(C ′2 − C ′1)>W t = 0

⇒ 1
2

(
C ′>1 WC ′1 − C ′>2 WC ′2

)
− 2(C2 − C1)>W t = 0.

(10)

where HW (C ′1, C
′
2) is defined as in (2). This shows that HW (C ′1, C

′
2) is a translation of the

hyperplane

HW (C1, C2) = {t ∈ Rd :
(
C>1 WC1 − C>2 WC2

)
− 2(C2 − C1)>W t = 0}.

In other words, the linear equations defining the two hyperplanes differ only by a constant.

Step 3: (For C, C ′ defined above, ∃i such that V W
i (C) is strictly contained in

V W
i (C ′).) The Voronoi cell V W

i (C) is a half-space in Rk. It is defined by:

V W
i (C) = {t ∈ Rk : dW (t, Ci) ≤ dW (t, Cj)}

= {t ∈ Rk : 2(Cj − Ci)>W t ≤ C>j WCj − C>i WCi}.

Similarly, using the result (from Step 2) that HW (C1, C2) and HW (C ′1, C
′
2) are parallel,

V W
i (C ′) = {t ∈ Rk : 2(Cj − Ci)>W t ≤ 1

2
(C ′>j WC ′j − C ′>i WC ′i)}.

Let

∆ij ≡ C>j WCj − C>i WCi −
1

2

(
C ′>j WC ′j − C ′>i WC ′i

)
for j 6= i.

We note that ∆ij 6= 0 (on the event that C1i 6= C2i, i = 1, . . . , k) when P is chosen so
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that (Ci − Cj)>WP 6= 0. To see this, note first that, if ∆ij = 0, from the expressions above

for V W
i (C) and V W

i (C ′), we would have that V W
i (C) = V W

i (C ′). This is in turn means that

dW (Ci, t)− dW (Cj, t) = 0 ⇔ dW (C ′i, t)− dW (C ′j, t) = 0.

Then, note that

dW (Ci, t)− dW (Cj, t) = 0 ⇔ C>i WCi − C>j WCj − (Ci − Cj)>W t = 0.

Given that C ′i = Ci + P , where P is defined in Step 1 to attain V W
i (C) = V W

i (C ′), we also

have that

dW (C ′i, t)− dW (C ′j, t) = 0 ⇔

C>i WCi − C>j WCj − (Ci − Cj)>W t− (Ci − Cj)>WP = 0.

These then imply that (Ci − Cj)>WP = 0, which contradicts the criterion used to select P

from the solution set to dW (P,C1)− dW (P,C2) = 0.

If we have that ∆ij > 0,

2(Cj − Ci)>W t <
1

2
(C ′>j WC ′j − C ′>i WC ′i)⇒ 2(Cj − Ci)>W t < C>j WCj − C>i WCi

and V W
i (C ′) ⊂ V W

i (C). Furthermore, because the inequality is strict, int(V W
i (C)\V W

i (C ′)) 6=

∅ (where for any set B, int(B) denotes the interior of that set). If ∆ij < 0, the inclusion is

reversed.

Step 4: (PT (Rk) = 0, leading to a contradiction.) From the previous steps, given

C, we can generate C ′ 6= C such that V W (C) = V W (C ′), and V W
i (C) is strictly contained

in V W
i (C ′) for some i. (Notice that this can be done for any C, except perhaps on a set
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of Lebesgue measure zero.) Take an arbitrary vector tO ∈ int(V W
i (C ′)\V W

i (C)). Then, for

any t ∈ Rk, let Ct−tO denote the candidate profile where each candidate position in the

original candidate profile is translated by t − tO, i.e. Ct−tO = (Ci + t − tO)i=1,...,n. Because

C ′i = 2Ci−P (see Step 1), each component in the candidate profile C ′ will also be translated

by the same vector t− tO. Accordingly, denote the translated profile by C ′t−tO . It can then

be established that t ∈ int(V W
i (C ′t−tO)\V W

i (Ct−tO)).

Now, note that because Qk, the k-Cartesian product of the set of rational numbers Q,

is dense in Rk, we have that ∪t∈Qk int(V W
i (C ′t−tO)\V W

i (Ct−tO)) = Rk (i.e., this is a countable

cover of Rk). (Because Rk is a separable metric space and consequently second-countable, it

can be covered by a countable family of bounded, open sets.)

Since (PT ,W ) and (PT ,W ) are observationally equivalent, for (almost) every candi-

date profile

p(C;PT ,W ) = p(C;PT ,W ),

where p(·;PT ,W ) is the vector of shares that each candidate gets under (PT ,W ). Consider

one of the translated profiles Ct−tO . For this profile, let pt−tO denote the proportion of votes

obtained by candidate Ci + t− tO:

pt−tO = PT (V W
i (Ct−tO)) = PT (V W

i (Ct−tO)),

where the second equality follows from the assumption of observational equivalence.

Then consider C ′t−tO . Notice that the Voronoi tessellations generated by Ct−tO and

C ′t−tO are translations of the Voronoi tessellations generated by C and C ′, respectively. Be-

cause V W (C) = V W (C ′), we then have that V W (Ct−tO) = V W (C ′t−tO) and the proportion of

votes obtained by candidate C ′i + t− tO under W is also pt−tO :

pt−tO = PT (V W
i (C ′t−tO)).
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Since (almost) every candidate profile generates observationally equivalent outcomes under

(PT ,W ) and (PT ,W ), we can assume that this is also the case for almost every profile C ′

generated from a profile C according to Step 1. If that is not the case, there is a set of C with

positive measure that leads to C ′ which are not observationally equivalent under (PT ,W ) and

(PT ,W ). Because this set of C ′ candidate profiles has positive measure and the outcomes

under (PT ,W ) and (PT ,W ) are distinct, we would attain identification.

Otherwise, if the outcomes for C ′t−tO are observationally equivalent under (PT ,W )

and (PT ,W ), it is then the case that

PT (V W
i (C ′t−tO)) = pt−tO .

Furthermore, note that

0 = PT (V W
i (C ′t−tO))− PT (V W

i (Ct−tO)) =

= PT (V W
i (C ′t−tO)\V W

i (Ct−tO)).

The second equality follows from the fact that V W
i (C) is a strict subset of V W

i (C ′). But since

∪t∈Qk int(V W
i (C ′t−tO)\V W

i (Ct−tO)) = Rk,

countable subadditivity implies that

PT (Rk) ≤
∑
t∈Qk

PT (int(V W
i (C ′t−tO)\V W

i (Ct−tO))) = 0.

This implies that PT (Rk) = 0, a contradiction. �

Proof of Theorem 1

The argument follows along the lines of Step 2 in Lemma 1. Lemma 2 demonstrates identifi-
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cation for two candidate profiles. Focussing on elections where candidates are concentrated

in a vicinity of two positions in the ideological space delivers identification by continuity.

�

Proof of Proposition 1.

We first show that plimS(ŴS, f̂S) = (Ŵ , f̂). This can be established by showing that ρiS(·, ·)

converges in probability to ρi(·, ·) uniformly over the parameter space (i.e., Θ and the set of

coefficient vectors characterising f). Note first that, given X = x, C1, . . . , Cn,

g(zs) =
1

det(R)

[∑Jt
|α|=0 aα(x)zαs

]2

∫ [∑Jx
|α|=0 aα(x)Uα

]2

φ(U)dU
× 1

[
dW (ts, Ci) ≤ dW (ts, Cj), j 6= i

]
,

with ts = b+Ax +Rzs is Euclidean as defined in Pakes and Pollard (1989). This is because

the first factor is essentially a polynomial in zs with bounded coefficients and the second

factor is an indicator for zs belonging to a Voronoi cell, which is an intersection of halfspaces.

Both are Euclidean classes (see Example 2.9 in Pakes and Pollard (1989) for the first factor

and Lemmas 2.4, 2.5 and the discussion before Lemma 2.8 also in Pakes and Pollard (1989)

for the second factor). Finally, the product of two functions in Euclidean classes forms an

Euclidean class (Lemma 2.14). Lemma 2.8 in Pakes and Pollard (1989) then shows that

|ρiS(W, f) = ρi(W, f)| converges almost surely to zero uniformly in the parameters.

We then show consistency of (Ŵ , f̂)(≡ plimS(ŴS, f̂S)). The result follows from an

adaptation of the consistency result in Lemma 3.1 of Ai and Chen (2003) (which in turn

uses Theorem 4.1 and Lemma A1 from Newey and Powell (2003)).

Seven assumptions are employed by Ai and Chen (2003) in demonstrating consistency.

Our Assumptions 3-6 directly reproduce assumptions 3.1, 3.2, 3.4 and 3.7 in Lemma 3.1 in Ai

and Chen (2003). Assumption 3.3 in Ai and Chen (2003) is an identification assumption that

is attained from the identification results in Theorem 1. Theorem 2 in Gallant and Nychka

(1987) says that ∪∞E=1HE is dense in (the closure) of H. This corresponds to Assumption
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3.5(ii) in Ai and Chen (2003). The compactness of Θ with respect to the topology induced by

the Frobenius norm and the compactness of (the closure of) H with respect to the topology

induced by the consistency norm (which follows from Theorem 1 in Gallant and Nychka

(1987)) imply that the product space is also compact (with respect to the product topology)

by Tychonoff’s Theorem. This delivers Assumption 3.5(i) in Lemma 3.1 from Ai and Chen

(2003).

Given compactness, pointwise convergence can be established easily given Assump-

tions 3.1-3.5, 3.7 in Lemma 3.1 from Ai and Chen (2003). Assumption 3.6 in that paper is

then used to establish the uniform convergence of the objective function, which corresponds

to condition (ii) from Newey and Powell (2003). Once this is done, Ai and Chen apply

Lemma A1 from Newey and Powell (2003) to obtain consistency. Instead of appealing to

Holder continuity (as in Assumption 3.6 from Ai and Chen (2003)), here we use alternative

results to show that the objective function is stochastically equicontinuous and hence con-

verges uniformly (see Theorem 2.1 in Newey (1991)). This can be obtained once we show

stochastic equicontinuity of

gE(f,W ) =
1

E

E∑
e=1

(
ρi(pe, Ce,Xe,W, f)2

)
i=1,...,n−1

=
1

E

E∑
e=1

(
ρi,e(W, f)2

)
i=1,...,n−1

.

We let ρi,e(W, f) ≡ ρi(pe, Ce,Xe,W, f) and ρi = [ρi,1, . . . , ρi,E]>. To obtain stochastic

equicontinuity, notice that the E × (n− 1) matrix of estimates

M̂ = B(B>B)−1B>ρ(W, f) = Pρ(W, f),

where ρ is an E×(n−1) matrix stacking
(∫

1t∈VWi (C)f(t)dt− pi
)>
i=1,...,n−1

for all observations

and P is an E × E idempotent matrix with rank (= trace) at most J . Since we have

Assumption 5, we can assume without loss of generality that Σ̂(Xe, C) = I. This in turn

54



implies an objective function equal to

Qn(W, f) ≡ 1

E

E∑
e=1

||m̂(Xe, Ce, (W, f))||2 =
1

E
tr
(
M̂>M̂

)
=

1

E
tr
(
ρ>P>Pρ

)
,

which in turn delivers

|Qn(W1, f1)−Qn(W2, f2)| =
∣∣∑n−1

i=1

(
1
E
||Pρi(W1, f1)||2 − 1

E
||Pρi(W2, f2)||2

)∣∣
≤

∑n−1
i=1

∣∣ 1
E
||Pρi(W1, f1)||2 − 1

E
||Pρi(W2, f2)||2

∣∣ , (11)

where ‖ · ‖ is the usual Euclidean norm. Because, for any vectors A and B and positive

scalar c,

∣∣∣∣ ||A||√c − ||B||√c
∣∣∣∣ ≤ ||A−B||√

c
⇒
∣∣∣∣ ||A||2c

− ||B||
2

c

∣∣∣∣ ≤ ||A−B||(||A||+ ||B||)c
,

each of the terms in the sum in expression (11) is bounded by

∣∣∣∣ 1

E
||P (ρi(W1, f1)− ρi(W2, f2)) || (||Pρi(W1, f1)||+ ||Pρi(W2, f2)||)

∣∣∣∣ ≤∣∣∣∣ 1

E
||ρi(W1, f1)− ρi(W2, f2)|| (||ρi(W1, f1)||+ ||ρi(W2, f2)||)

∣∣∣∣ ,
where the inequality follows because P is idempotent and consequently ||Pa|| ≤ ||a|| for

conformable a (see the proof for Corollary 4.2 in Newey (1991)). Now, since

||ρi(W, f)||2 =
E∑
e=1

ρi,e(W, f)2 ≤ 4E,

we have

∣∣∣∣ 1

E
||ρi(W1, f1)− ρi(W2, f2)|| (||ρi(W1, f1)||+ ||ρi(W2, f2)||)

∣∣∣∣ ≤∣∣∣∣∣4
√
||ρi(W1, f1)− ρi(W2, f2)||2

E

∣∣∣∣∣
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This in turn gives

sup
(W1,f1)∈Θ×H

sup
(W2,f2)∈N ((W1,f1),δ)

|Qn(W1, f1)−Qn(W2, f2)|

≤
n−1∑
i=1

sup
(W1,f1)∈Θ×H

sup
(W2,f2)∈N ((W1,f1),δ)

∣∣∣∣∣4
√
||ρi(W1, f1)− ρi(W2, f2)||2

E

∣∣∣∣∣ ,
where N ((W1, f1), δ) is a ball of radius δ centered at (W1, f1). These imply that

Prob

(
sup

(W1,f1)∈Θ×H
sup

(W2,f2)∈N ((W1,f1),δ)

|Qn(W1, f1)−Qn(W2, f2)| > ε

)

≤
n−1∑
i=1

Prob

(
sup

(W1,f1)∈Θ×H
sup

(W2,f2)∈N ((W1,f1),δ)

∣∣∣∣∣4
√
||ρi(W1, f1)− ρi(W2, f2)||2

E

∣∣∣∣∣ > ε

n− 1

)

=
n−1∑
i=1

Prob

(
sup

(W1,f1)∈Θ×H
sup

(W2,f2)∈N ((W1,f1),δ)

||ρi(W1, f1)− ρi(W2, f2)||2

E
>

ε2

16(n− 1)2

)
.

Consequently, if we show for each i = 1, . . . , n− 1 that

lim
δ→0

lim
n→∞

Prob

(
sup

(W1,f1)∈Θ×H
sup

(W2,f2)∈N ((W1,f1),δ)

||ρi(W1, f1)− ρi(W2, f2)||2

E
> ε

)
= 0

for any ε > 0, we obtain stochastic equicontinuity of the objective function:

lim
δ→0

lim
n→∞

Prob

(
sup

(W1,f1)∈Θ×H
sup

(W2,f2)∈N ((W1,f1),δ)

|Qn(W1, f1)−Qn(W2, f2)| > ε

)
= 0

for any ε > 0.

Let then

Yeδ = sup
(W1,f1)∈Θ×H

sup
(W2,f2)∈N ((W1,f1),δ)

(ρi,e(W1, f1)− ρi,e(W2, f2))2
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(for i ∈ {1, . . . , n− 1}) and notice that

sup
(W1,f1)∈Θ×H

sup
(W2,f2)∈N ((W1,f1),δ)

||ρi(W1, f1)− ρi(W2, f2)||2

E
=

1

E

E∑
e=1

Yeδ.

To show stochastic equicontinuity we adapt the proof of Lemma 3 in Andrews (1992). Con-

sider ε > 0 and take M > 4 and δ > 0 such that Prob (Yeδ > ε2/2) < ε2/(2M). That such

a δ can be chosen follows because of compactness of Θ×H and continuity of ρi(·, ·). (This

corresponds to Assumption TSE-1D in Andrews (1992).) For such a δ,

lim
E→∞

Prob

(
1

E

E∑
e=1

Yeδ > ε

)
≤ lim

E→∞

1

ε
E

(
1

E

E∑
e=1

Yeδ

)
=

1

ε
E(Yeδ)

=
1

ε

[
E
(
Yeδ1

(
Yeδ ≤

ε2

2

))
+ E

(
Yeδ1

(
ε2

2
< Yeδ ≤M

))
+ E (Yeδ1 (Yeδ > M))

]
≤ 1

ε

(
ε2

2
+MProb(Yeδ >

ε2

2
)

)
≤ ε

The first inequality follows from Markov’s Inequality. The following equality holds since

observations are i.i.d. The second inequality follows because E
(
Yeδ1

(
Yeδ ≤ ε2

2

))
≤ ε2

2
,

E
(
Yeδ1

(
ε2

2
< Yeδ ≤M

))
≤MProb(Yeδ >

ε2

2
) and, finally, Prob(Yeδ > M) = 0 since M > 4.

The last inequality then stems from Prob (Yeδ > ε2/2) < ε2/(2M). Since this argument can

be repeated for i = 1, . . . , n− 1, we have stochastic equicontinuity. �
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Online Appendix: Monte Carlo Experiments

In this Appendix, we examine the small sample performance of the suggested estimation

strategy in a few Monte Carlo experiments. We investigate models without covariates with

three potential distribution of voter types. We use the distributions suggested by Ichimura

and Thompson (1998) and summarized in Table 6 and Figure 10. For each of these, we

postulate two different weighting matrices W for the weighted distance function. The first

one has W1,2 = W2,1 = 0 and W2,2 = 2, and the second W1,2 = W2,1 = 0.5 and W2,2 = 2. Both

matrices are normalized to have W1,1 = 1. We assume that the analysis has 100 observations

in each set of Monte Carlo experiments.45 Each observation contains the position and vote

proportions for 2 candidates that are sampled uniformly over [−1, 1]2. The proportions

are estimated using (1000) draws from the voter type distribution in the data generating

process. This introduces sampling error in the observed proportion of votes (i.e., an electoral

precinct level ε) which differ in general from the numerical integration of the proposed type

distribution over the candidate’s Voronoi cell. We use 50 Monte Carlo repetitions for each

one of the three models.

Table 6: Data Generating Processes

Model 1: T ∼ N ([0, 0]′, I2)
Model 2: T is an equiprobable mixture of

Ta ∼ N
([

µ
−µ

]
,

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

])
and

Tb ∼ N
([
−µ
µ

]
,

[
σ2

2 ρσ1σ2

ρσ1σ2 σ2
1

])
µ = 0.3587, σ2

1 = 0.2627, σ2
2 = 0.06568, ρ = −0.1

45This sample size is much smaller than in actual datasets (e.g., in our empirical illustration we use between
270 and 693 elections) and should depict the usefulness of the methodology even in relatively data-scarce
scenarios. Of course, performance will improve in larger datasets.
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Table 6: Data Generating Processes (Continued)
Model 3: T = (T1, T2)> with T1 and T2 independently distributed

T1 ∼ N (0, σ2)
T2 an equally weighted mixture of Ta and Tb
Ta ∼ N (0.2806, σ2) , T1 ∼ N (−1.6806, σ2)
σ2 = 0.038462

Figure 10: DGP Densities
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The estimation follows the guidelines prescribed in the previous section. For the es-

timation of m(·) we use linear splines (with cross-products) for Models 1 and 2 and simple

linear projections for Model 3. The estimation weighting matrix (Σ̃) is the identity. In Ta-

bles 7, 8 and 9, we report squared bias, variance and MSE for the two parameters in the W

matrix for each of the three models. We follow Blundell, Chen, and Kristensen (2007) in re-

porting similar quantities for the density estimates. Letting f̂i be the estimate of f from the

ith Monte Carlo simulation and letting f(t) =
∑MC

i=1 f̂i(t)/MC. The pointwise squared bias

is then defined as
(
f(t)− f(t)

)2
and the pointwise variance is

∑MC
i=1

(
f̂i(t)− f i(t)

)2

/MC.

We report squared bias, variance and MSE integrated over a grid of 100× 100 points.

Table 7: Monte Carlo Results: Model 1
(W1,2,W2,2) = (0, 2)
Bias2 Variance MSE Jt
(0.0001, 0.0141, 4.4566× 10−5) (0.0011, 0.0408, 2.2451× 10−5) (0.0012, 0.0549, 6.7017× 10−5) 1
(0.2781, 0.3837, 4.8133)× 10−5 (0.0005, 0.0093, 3.8467× 10−5) (0.0005, 0.0093, 5.1980× 10−5) 2

(W1,2,W2,2) = (0.5, 2)
Bias2 Variance MSE Jt
(0.0008, 0.0230, 6.4572× 10−5) (0.0034, 0.0477, 4.6148× 10−5) (0.0042, 0.0707, 1.1072× 10−4) 1
(0.0000, 0.0011, 4.0107× 10−5) (0.0008, 0.0089, 5.6757× 10−4) (0.0008, 0.0100, 4.5782× 10−5) 2
The three arguments correspond to W1,2, W2,2 and the integrated quantities for the density as described in the text. The
order refers to the Hermite polynomial order. m(·) is estimated using linear splines. 50 Monte Carlo repetitions for 100
elections with two candidates sampled uniformly on [0, 1]2.
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Table 8: Monte Carlo Results: Model 2
(W1,2,W2,2) = (0, 2)
Bias2 Variance MSE Jt
(0.0023, 0.4658, 0.0025) (0.2206, 0.2212, 5.5267× 10−4) (0.2228, 0.6871, 0.0031) 1
(0.0010, 0.0853, 0.0016) (0.1215, 0.2108, 4.6720× 10−4) (0.1224, 0.2961, 0.0020) 2
(0.0001, 0.0201, 0.0012) (0.0912, 0.1316, 4.3440× 10−4) (0.0913, 0.1517, 0.0016) 3
(0.0006, 0.0120, 9.3694× 10−4) (0.0693, 0.0952, 3.9928× 10−4) (0.0699, 0.1072, 0.0013) 5
(0.0001, 0.0088, 8.4013× 10−4) (0.0556, 0.0900, 3.6408× 10−4) (0.0557, 0.0988, 0.0012) 5

(W1,2,W2,2) = (0.5, 2)
Bias2 Variance MSE Jt
(0.2346, 2.5381, 0.0042) (0.2391, 0.8908, 0.0042) (0.4737, 3.4289, 0.0042) 1
(0.2435, 2.0193, 0.0038) (0.2473, 1.0363, 0.0007) (0.4908, 3.0556, 0.0046) 2
(0.2005, 1.9740, 0.0037) (0.2497, 1.0579, 8.1940× 10−4) (0.2005, 3.0319, 0.0045) 3
(0.1958, 1.0874, 0.0036) (0.2458, 1.0874, 8.2810× 10−4) (0.4416, 3.0167, 0.0044) 4
(0.1937, 1.9216, 0.0036) (0.2439, 1.0867, 8.7007× 10−4) (0.0180, 0.5403, 0.0045) 5
The three arguments correspond to W1,2, W2,2 and the integrated quantities for the density as described in the
text. The order refers to the Hermite polynomial order. m(·) is estimated using linear splines. 50 Monte Carlo
repetitions for 100 elections with two candidates sampled uniformly on [0, 1]2.

Table 9: Monte Carlo Results: Model 3
(W1,2,W2,2) = (0, 2)
Bias2 Variance MSE Jt
(0.0015, 0.0002, 0.0274) (0.0442, 0.1275, 0.0014) (0.0457, 0.1277, 0.0287) 1
(0.0008, 0.0111, 0.0274) (0.0221, 0.0633, 0.0015) (0.0229, 0.0633, 0.0289) 2
(0.0007, 0.0164, 0.0136) (0.0938, 0.0317, 0.0125) (0.0946, 0.0481, 0.0260) 3
(0.0036, 0.0064, 0.0149) (0.0775, 0.0258, 0.0136) (0.0812, 0.0323, 0.0285) 4
(0.0008, 0.0389, 0.0073) (0.0244, 0.2360, 0.0131) (0.0252, 0.2749, 0.0204) 5

(W1,2,W2,2) = (0.5, 2)
Bias2 Variance MSE Jt
(0.0021, 0.0208, 0.0279) (0.0752, 0.4363, 0.0019) (0.0773, 0.4571, 0.0019) 1
(0.0002, 0.0056, 0.0274) (0.0186, 0.0226, 0.0016) (0.0187, 0.0282, 0.0289) 2
(0.0004, 0.0561, 0.0133) (0.1189, 0.1552, 0.0138) (0.1193, 0.2113, 0.0271) 3
(0.0010, 0.0099, 0.0140) (0.0880, 0.0226, 0.0139) (0.0890, 0.0326, 0.0279) 4
(0.0001, 0.0301, 0.0071) (0.0097, 0.1467, 0.0115) (0.0098, 0.1768, 0.0186) 5
The three arguments correspond to W1,2, W2,2 and the integrated quantities for the density as
described in the text. The order refers to the Hermite polynomial order. m(·) is estimated using
linear projections. 50 Monte Carlo repetitions for 100 elections with two candidates sampled
uniformly on [0, 1]2.

As expected, the estimator attains low bias and variance for relatively low orders of

the Hermite polynomial in Model 1. An order 0 polynomial (Jt = 1) already offers good

properties. Moving to an order 1 polynomial (Jt = 2) leads to improvements particularly for

the weighting matrix parameters. For Model 2, with a diagonal weighting matrix, substantial
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gains are observed before one reaches an order 3 polynomial (Jt = 4) when incremental

improvements are then minor. With a non-diagonal weighting matrix, the type distribution

seems to be accurately estimated even at lower orders, but the parameters are less precisely

estimated. For Model 3, even with a non-diagonal weighting matrix the estimator seems to

behave well.

Online Appendix: Random Intercept

One potential extension of interest allows for electoral candidates to differ not only with

respect to their locations in the ideological space, but also with respect to (non-spatial)

individual characteristics related to their quality. These quality characteristics, which are

commonly referred to as “valence” in the literature (see, e.g., Enelow and Hinich (1984)

and the discussion in Degan and Merlo (2009)), are typically assumed to be known to the

voters, but not the econometrician. In the context of our model, this extension can be

accommodated within our framework by assuming that voter t’s preferences over candidates

in an election can be summarized by the utility function

U t (Ci, δi) = ut
(
dW (t, Ci)

2 + δi
)
,

where δi is a candidate-specific valence term and ut(·) is a decreasing function as in Section

2 above. For this “linear-quadratic” specification of voter preferences, which is widely used

in the political economy literature (see, e.g., Enelow and Hinich (1984)), Degan and Merlo

(2009) have shown that the set of nearest neighbors to a given candidate is still given by an

intersection of halfspaces as when utility functions are given by expression (1). Specifically,

the Voronoi cells for each candidate are now given by:

V W
i (C, δ) ≡ {t ∈ Y : dW (t, Ci)

2 + δi ≤ dW (t, Cj)
2 + δj, j 6= i},
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where δ ≡ (δ1, . . . , δn).

In order to establish identification for this alternative specification of the model that

incorporates valence terms, we need to modify our previous assumptions accordingly.

Assumption 1’. The random vectors (C, δ) and T are conditionally independent given X.

Assumption 2’. The distribution of (C, δ) is absolutely continuous with respect to the

Lebesgue measure on (Rn(k+1),B(Rn(k+1))) and has full support on Rnk+1. The distribu-

tion of preference types T is absolutely continuous with respect to the Lesbegue measure on

(Rk,B(Rk)) and has full support on Rk.

Under these assumptions, we can then establish that voter preference distributions

and other parameters of interest (which include the valence parameter vector δ ≡ (δ1, . . . , δn))

can be identified from aggregate electoral data. The result is demonstrated along the same

lines of our previous results and we provide further details on the necessary modifications to

our arguments below.

Theorem 2. Suppose Assumptions 1’ and 2’ hold and ||W ||k×k =
√
k. Then (PT ,W ) is

identified.

Proof of Theorem 2

The result follows along the lines of Theorem 1 and here we elaborate on the necessary

modifications to the intermediate steps in establishing the statement. The alterations take

into consideration the fact that the set of voters for candidate i are now given by

V W
i (C, δ) ≡ {t ∈ Y : dW (t, Ci)

2 + δi ≤ dW (t, Cj)
2 + δj, j 6= i}.

Lemma 1 (W = I) follows with minor alterations. In Step 1, with n = 2, the scalar b should

incorporate the valence terms and is now equal to C>2 C2 − C>1 C1 + δ2 − δ1. The vector A

is unaltered. The same argument delivers an election profile (C∗i , δ
∗
i )i=1,2 for which the two

voter distributions PT1 and PT2 produce different voting proportions. Step 2 then uses the
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fact that voting proportions are continuous in C∗ to demonstrate that elections with n > 2

where candidates are situated in η-neighborhoods of C∗1 and C∗2 produce different voting

proportions under each voter type distribution. The argument can be easily adapted using

now (η-)neighborhoods around δ∗1 and δ∗2 as well.

Lemma 2 then assumes that W 6= W and n = 2 to show that (PT ,W ) is identified. The

first step in the proof shows that there is more than one set of candidates that generates the

same partition of voters for a given weighting matrix W . Given two candidates and their

valence terms, the set of voters t who are equidistant from both candidates is given by

HW (C1, C2, δ1, δ2) ≡ {t ∈ Rk : 2(C1 − C2)>W t = (C>1 WC1 − C>2 WC2) + δ1 − δ2}.

Consider P in this set such that P 6= aC1 + (1 − a)C2 and such that 2(C1 − C2)>W (P −

aC1 − (1− a)C2) 6= 0, where

a =
(C2 − C1)>W (C2 − C1) + δ1 − δ2

2(C2 − C1)>W (C2 − C1)
.

(Note that aC1 + (1 − a)C2 also pertains to HW (C1, C2, δ1, δ2).) The requirement that

2(C1 − C2)>W (P − aC1 − (1 − a)C2) 6= 0 is important for Step 3. The set of vectors P

satisfying such restrictions is nonempty. To see this, remember that 2(C1 − C2)>W and

2(C1 −C2)>W are linearly independent (on the event that C1i 6= C2i, i = 1, . . . , k) (see Step

2 in Lemma 2). Hence, the set HW (C1, C2, δ1, δ2) has dimension k − 1 and its intersection

with {t ∈ Rk : 2(C1 −C2)>W (t− aC1 − (1− a)C2) = 0} forms a system of 2 equations in k

unknowns and has dimension k − 2. Then, consider

C ′i = Ci + (P − aC1 − (1− a)C2)

and δ′i = δi, i = 1, 2. It is immediate to obtain that C ′1 − C ′2 = C1 − C2. Furthermore, one
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gets

C ′>1 WC ′1 − C ′>2 WC ′2 = C>1 WC1 − C>2 WC2 + 2(C1 − C2)>W (P − aC1 − (1− a)C2).

Since both P and aC1+(1−a)C2 belong to HW (C1, C2, δ1, δ2), the last term in the right-hand

side is zero. Consequently, C ′>1 WC ′1 − C ′>2 WC ′2 = C>1 WC1 − C>2 WC2. This in turn implies

that

2(C1 − C2)>W t = (C>1 WC1 − C>2 WC2) + δ1 − δ2

⇔

2(C ′1 − C ′2)>W t = (C
′>
1 WC ′1 − C

′>
2 WC ′2) + δ′1 − δ′2,

which establishes the first step in the Lemma. Upon redefining HW (C1, C2) and HW (C1, C2)

in Step 2 to accomodate the valence terms, this step is also straightforward. For Step 3,

though, it is relevant to point out that, since C ′1 − C ′2 = C1 − C2, the last line in (10) now

equals C ′>1 WC ′1 − C ′>2 WC ′2 + δ′1 − δ′2 − 2(C2 − C1)>W t = 0. Since δi = δ′i, i = 1, 2, this

implies that ∆ij is now given by C>1 WC1 − C>2 WC2 − (C ′>1 WC ′1 − C ′>2 WC ′2), which using

the definition of C ′i, i = 1, 2 equals 2(C1−C2)>W (P−aC1−(1−a)C2). Given the choice of P ,

this last quantity is nonzero and Step 3 follows to demonstrate that for these two elections,

∃i such that V W
i (C, δ) is strictly contained in V W

i (C ′, δ′). Step 4 can then be carried out with

the obvious notational modifications to incorporate δ. Using a continuity argument as in

Theorem 1, we then obtain the result for n > 2. �

We note that while in the proof of Theorem 2 the profile of valence terms (δ1, . . . , δn)

are assumed to be fixed across elections (which is consistent, for example, with our empirical

application, where it would correspond to the valence of parties or party groups), in principle,

they could also be allowed to vary across elections.
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