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Delay Distributions of Slotted ALOHA and CSMA
Yang Yang, Member, IEEE,and Tak-Shing Peter Yum, Senior Member, IEEE

Abstract—In this paper, we derive the closed-form delay distri-
butions of slotted ALOHA and nonpersistent carrier sense mul-
tiple access (CSMA) protocols under steady state. Three retrans-
mission policies are analyzed. We find that under abinary expo-
nential backoffretransmission policy, finite average delay and finite
delay variance can be guaranteed for 2 and 4 3,
respectively, where is the channel traffic and is the channel
throughput. As an example, in slotted ALOHA, ln 2 2 and

3(ln 4 ln 3) 4 are the operating ranges for finite first and
second delay moments. In addition, the blocking probability and
delay performance as a function of max (maximum number of re-
transmissions allowed) is also derived.

Index Terms—ALOHA, carrier sense multiple access (CSMA),
random access protocol.

I. INTRODUCTION

RANDOM ACCESS protocols, such as ALOHA and carrier
sense multiple access (CSMA), are widely used in wire-

less communication systems such as packet satellite communi-
cations, wireless LAN, and the random access channel in cel-
lular mobile systems. During the past three decades, ALOHA-
and CSMA-type protocols have been extensively studied with
stationary throughput and delay characteristics being derived for
slotted and unslotted channels, and finite and infinite population
models [1]–[4]. Typically, the system average backlog is derived
and the expected delay is obtained by using Little’s formula.

Analytical results on delay distributions of the slotted
ALOHA and CSMA protocols are obtained only for systems
with a finite population [5], [6]. Specifically, in [5], Tobagi
derived the transform and moments of both the waiting
time and interdeparture time distribution in slotted ALOHA
and CSMA with collision detection (/CD) protocols using
a discrete-time Markov chain. In [6], the matrix-geometric
method is used to derive the delay distribution of CSMA/CD
on a continuous-time Markov chain model. Both approaches
are analytically complicated and become intractable when the
population size is large.

In this paper, a simple closed-form expression of the delay
distribution is derived for slotted ALOHA and CSMA proto-
cols without using transform. Three retransmission policies are
analyzed and the conditions for achieving finite delay mean and
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variance are derived under thebinary exponential backoffpolicy.
The exact way whereby (maximum number of retransmis-
sions allowed) can be used to tradeoff the blocking probability
and delay performance is also given. The analytical results of
delay performance are verified by computer simulation.

II. SYSTEM MODEL

The system model and the notations follow that in [1]. To
summarize, we have the following.

1) Packets are of the same size with transmission time.
The maximum end-to-end propagation delay is denoted
by with normalized value . The maximum
round-trip delay is smaller than the packet transmission
time, i.e., .

2) The combination of new and retransmitted packet arrivals
is a Poisson process with rate (packets/ ), which is
referred to asoffered trafficto the slotted channel. Let
be the correspondingthroughput. Then, is the
success probability of a transmission.

3) When a new packet is generated, it accesses the channel at
the beginning of next slot. This is calledimmediate-first
transmission(IFT). The transmission result is broadcast
through a separate reliable acknowledgment channel.

A. Retransmission Policy

When a packet transmission fails, a retransmission is sched-
uled after a random backoff delay, which is determined by a
specific retransmission policy. Let be the th backoff delay
in unit of slots. Then, theth retransmission takes place at the
beginning of the th available slot after knowing the last trans-
mission is unsuccessful. The delay performance of a random ac-
cess system depends strongly on the distribution of. In this
paper, we consider three different retransmission policies.

1) Under auniform backoff(UB) policy, all ’s are uni-
formly distributed in the same range, say .

2) Under abinary exponential backoff(BEB) policy, backoff
delay is uniformly distributed in a binary exponentially
expanding range. In other words, the range of backoff
delay is doubled every time an unsuccessful retransmis-
sion occurs. Let be theinitial backoff range. is then
uniformly distributed in .

3) Under ageometric backoff(GB) policy, backoff delay is
geometrically distributed with parameter.

Table I compares some statistics of under the three retrans-
mission policies.

B. Access Delay

Let be the number of retransmissions needed andbe
the delay time due to theth unsuccessful transmission (or the
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TABLE I
STATISTICS OFBACKOFF DELAY W UNDER DIFFERENTRETRANSMISSIONPOLICIES

th retransmission if ). Naturally, is the access
delay when the initial transmission is successful. It includes the

seconds of transmission delay and an average of 0.5 slot of
slot synchronization delay. The access delayof a packet is
the time duration from its generation to the moment it is suc-
cessfully transmitted or

(1)

Under the Poisson arrival assumption and for large backoff
range, e.g., , can be accurately approximated by a
geometric distribution with transmission success probability
as the parameter [2], [7]

(2)

Obviously, different random access protocols have different
values. The distributions of are jointly determined
by the specific random access protocol and retransmission
policy.

III. SLOTTED ALOHA

For slotted ALOHA, the length of a slot is equal to the packet
transmission time . Therefore, is uniformly distributed in

. The success probability was derived in [1] as

(3)

Fig. 1 shows the access procedure of a tagged packet generated
at time and transmitted at the next slot. The sender waits for
a round-trip propagation delay of seconds before receiving
the first acknowledgment (unsuccessful, in this case). Here, we
have implicitly assumed that the sum of packet processing timeat
the receiver and the round-trip propagation delay is smaller than
one slot time. When this is not true, only a fixed constant term
needs to be added to the final delay equation. Assume a collision
occurs at theth transmission, the backoff delay caused is .
Add to it the slot due to packet transmission, we have

(4)

Substitute (4) into (1), we get

(5)

where and .

A. Delay Distribution

Given (where ), the distribution of is derived
in Appendix A for different retransmission policies as

(6)

where and is the initial backoff range. , ,
and are three sequences defined in Appendix A.

Next, is a random variable uniformly distributed in
. Let and be the cumulative distri-

bution functions of and , respectively. As and
are independent, the conditional distribution for

can be computed by convolving and
. In other words

(7)

Let , where ( is the floor func-
tion) and represent the integer and decimal parts
of , respectively. Then, (7) can be simplified to

(8)
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Fig. 1. Access mechanism of slotted ALOHA.

Fig. 2. Access mechanism of slotted nonpersistent CSMA.

Removing the conditioning on , we have

(9)

where as each retransmission takes up at
least two slots.

B. Moments of Delay

Under UB and GB policies, ’s are independent and iden-
tically distributed (i.i.d.) random variables. Therefore, the mean
delay can be derived as

(10)

and the delay variance is

(11)

For , and are finite.
For BEB policy, ’s are no longer identically distributed.

and are derived by conditioning on . Specifically, the
conditional expected delay is given by

(12)

Removing the conditioning on , we obtain

(13)

Note that in (13), the condition for finite expected delayis that
, or . This is necessary for the infinite

summation over to converge.
The conditional second moment of access delay under BEB

is

(14)

can then be derived by removing the conditioning on
. But here, the infinite summation overconverges only for

. This is also the condition for finite second moment
under BEB policy. Finally, delay variance is given by

(15)

As a check, (10) is identical to that in [1]. However, (11), (13),
and (15) are not found in the literature.

IV. SLOTTED NONPERSISTENTCSMA

In slotted nonpersistent CSMA, the length of a slot is defined
to be equal to the maximum propagation delay . Hence,

is uniformly distributed in . The success proba-
bility was derived in [1] as

(16)

Fig. 2 shows the access procedure of a tagged packet gener-
ated at time . At its initial transmission, assume the channel is
sensedbusysothat thetransmissionisunsuccessful.After thefirst
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backoff delay (in unit of slots), the tagged packet senses the
channel for the second time. If it isidle, the packet is transmitted
andthesenderwaits foraround-trippropagationdelayofs to
learn the transmissionresult. Incaseacollisionoccurs, the tagged
packet will try to access the channel again slots after re-
ceiving the acknowledgment. Therefore, the delay timeand

due to the first two unsuccessful transmissions are simply

(17)

and

(18)

Let be the number of unsuccessful trans-
missions due to busy channel. The access delayin this case is

(19)

where is the same as in (5) and is defined
as .

A. Delay Distribution

Given and , the conditional cumu-
lative distribution function for

can be derived in a similar way
as in Section III-A.

(20)

where and are the
integer and decimal parts of . is defined as

.
The joint distribution of and is derived in Appendix B

as

(21)

where is the probability that the channel is sensed busy and
is the probability that a collision occurs. They are given in

Appendix B as (B.4) and (B.5), respectively.
Removing the conditioning on and , we obtain the dis-

tribution of as

(22)

where as should be larger than
at .

B. Moments of Delay

As in slotted ALOHA, the expected delay under UB and
GB policies can easily derived as

.

(23)

The derivation of delay variance is straightforward, and so
is omitted here.

For BEB, the expected delay conditioned on and
is

(24)

The average access delayis, therefore, given by

(25)

Again, is required for finite average delay. Delay vari-
ance can be derived in the same way as that in Section III-B
and is again found to be the condition for finite
variance.

V. STABILITY CONDITIONS FORBEB

In the delay equations for slotted ALOHA and nonpersistent
CSMA, (5) and (19), there is a common term .
Under the BEB retransmission policy, ’s are independent
but not identical random variables. As a result, theth condi-
tional moment of delay has a sequence of fac-
tors of . Also, different random access proto-
cols differ only by the parameter , such as (3) for
slotted ALOHA and (16) for slotted nonpersistent CSMA, in
the delay distribution. Now, removing the conditioning on
(geometrically distributed) requires summation of terms
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Fig. 3. Conditions for finite expected delay and finite delay variance under the BEB policy.

, and over an infinite geo-
metric series. The convergent conditions for all these sums are

...
(26)

Taking the tightest bound, the condition for the finiteth mo-
ment of access delay is simply . This translates to

and for the first two moments. In Fig. 3,
the throughput curves of slotted ALOHA, 1-persistent, and non-
persistent CSMA protocols are plotted against offered traffic.
The two straight lines, and , represent the
lower bounds of for finite first and second moments of access
delay. The intersections , , and give
the upper limits of operation for guaranteeing finite first two
delay moments in different random access protocols. However,
intersections and offers the operating upper
bounds for finite expected delay only.

As seen in Fig. 3, slotted nonpersistent CSMA has throughput
not much higher than slotted ALOHA

if finite delay variance needs to be guaranteed.
The operating range of slotted 1-persistent CSMA is, however,
much larger . We can, therefore, conclude
that, under BEB, 1-persistent CSMA is superior to nonpersis-
tent CSMA, although the latter can offer a much higher max-
imum throughput in theory [2]. Further, when (or

), the throughput curves of 1-persistent and
nonpersistent CSMA/CD are very close to that of the corre-
sponding CSMA protocols [3], [7]. Hence, the same conclusion
applies to CSMA/CD. This confirms the correct choice of 1-per-
sistent CSMA/CD over that of nonpersistent CSMA/CD for the
IEEE 802.3 standard a long time ago [8].

VI. WHEN IS LIMITED TO

Protocols adopted in applications often block a packet after
a certain number of unsuccessful retransmissions. If is

the maximum number of retransmissions allowed, the blocking
probability is defined as

(27)

Figs. 4 and 5 show the relationship betweenand with
as a parameter for slotted ALOHA and nonpersistent CSMA,
respectively. For slotted ALOHA, operating near capacity, say

, is needed to guarantee and
is needed for . For slotted nonpersis-

tent CSMA, things are quite different. In order to have a rea-
sonable blocking probability, say and retransmis-
sion delay, say , the channel throughput has to be lim-
ited to , significantly lower than the channel capacity

. This shows that for slotted nonpersistent CSMA,
the upper portion of the throughput, i.e., for , is
in fact “unfriendly,” or the channel has poor quality of service.

For those packets that are successfully transmitted (i.e., not
blocked), their retransmission distribution of is just the dis-
tribution of conditioned on . In other words

(28)

Replacing by in the previous results, we obtain the
corresponding delay distributions and moment equations under
blocking condition. By substituting (28) into (13) and (15), it is
easy to see that for finite, both and are finite. The
choice of gives a tradeoff between blocking probability
and the latency requirement.

VII. N UMERICAL AND SIMULATION RESULTS

The computer simulation results reported in this section are
obtained by the following procedure. New packets are gener-
ated according to a Poisson process. Each new packet is time
stamped at its birth and the sojourn time (in unit of slots) is mea-
sured when the packet is successfully transmitted. The delay sta-
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Fig. 4. Blocking probabilityP versus throughputS, slotted ALOHA.

Fig. 5. Blocking probabilityP versus throughputS, slotted nonpersistent CSMA.

tistics are then estimated by processing a large number of such
sojourn time values.

For slotted ALOHA with BEB policy, Fig. 6 shows the cumu-
lative distribution function of delay (in unit of slots) for

, , and different values. The analytical re-
sults shown in solid lines are obtained by substituting (28) into
(9).1 As seen, they match very well with the simulation results
shown in markers. For all those simulation points, the 95% confi-
denceintervalsaremadetobesmaller thanthemarkersizeshown.

Since access delay is no less than and is uni-
formly distributed in , we have and

(the initial
transmission is successful), as shown in the figure. If the initial
transmission is not successful , is larger than as
the round-trip propagation delay value(s) should be taken into

1Note that the summation overr in (9) is now upper bounded by
minfr ; r g. Similarly, for slotted nonpersistent CSMA with finiter
values, the summation overr in (22) is upper bounded byminfr ; r g.

account (see Fig. 1). Therefore, we have for
all the curves in Fig. 6.

For the delay range (3,35] (note that ), the curves
appear to be quite straight. This is because the increment of

over the above range is dominated (mostly contributed)
by the packets with , especially when the delay valueis
close to three. In other words, the probability that a packet with
accessdelay is retransmitted twoormore times is
quite small compared with the probability that it is retransmitted
just once. When is slightly larger than three, the probability

is negligible. Hence, the curve slopes are given by

(29)

As becomes larger and larger, the probability
increases so that the curves become, actually, steeper and steeper
until the point . In addition, it is seen in the figure that a
smaller value gives a steeper curve and a larger curve-slope
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Fig. 6. Cumulative distribution function of delayF (x), slotted ALOHA, BEB policy,! = 32, andr = 5.

Fig. 7. Cumulative distribution function of delayF (x), slotted ALOHA, BEB policy, and! = 32.

increment (from to ). This is expected, as a smaller
implies a larger number of retransmissions, and therefore,

higher probability .
Consider a packet with access delay larger than. We

know for sure that it has been retransmitted at least twice be-
cause the initial backoff range is . Hence, the increment
of for the delay range is contributed purely by
the packets with . This is quite different from the situa-
tion in the range (3,35] and results in a great drop of increment
rate (curve slope) of . Specifically, when is large and

is close to 35, the slopes can be approximated by2

(30)

2This equation accounts for the contributions by the packets withR = 2
only. It underestimates the real curve slopes shown in the figure, especially when
p is small andx is much larger than 35. For this case, the contributions by the
packets withR � 3 could not be ignored.

Comparing to the curve slope given by (29) for the delay
range (3,35], this slope is much smaller, leaving as
the common point where all the curve knees are located.
To obtain a specific delay value larger than 35, there are
many more possible combinations of and
values. Therefore, no particular value could dominate the
increment of and no curve knee appears in the range

.
The effect of value on the cumulative distribution

function of delay is shown in Fig. 7 for slotted ALOHA with
BEB policy with as a parameter. As seen, when the success
probability is large, the difference between the curves for

and is indistinguishable. When is
small, say , the curve for is higher than
that for over the entire delay range. This is expected,
as the denominator in (28) is a monoincreasing function of

. The smaller delay for over is at the
expense of a larger blocking probability. The results for slotted
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Fig. 8. Expected delayD versus throughputS, slotted ALOHA, BEB policy, and! = 32.

Fig. 9. Delay standard deviation� versus throughputS, slotted ALOHA, BEB policy, and! = 32.

nonpersistent CSMA and the other two retransmission policies
are quite similar (not shown).

Figs. 8 and 9 show the expected delay and the delay stan-
dard deviation (both in unit of slots) for slotted ALOHA with
BEB policy for various values of . The 95% confidence in-
tervals are shown for all the simulation points. We see that for
large , say , the analytical model severely under-
estimates the delay for systems operating close to the capacity,
just like the classical result when . But for
(a moderate value), the model gives an accurate prediction of
the first two moments of delay. This result is expected, because
if the number of retransmissions is smaller, the correlation of
packet arrivals is also smaller. Therefore, the combined new
and retransmitted traffic is less “bursty,” or more Poisson-like,
leading to a closer match between the simulation and the ana-

lytical results. Similar results and conclusions can be drawn for
the other two backoff policies.

For the special case , Fig. 10 compares the cumula-
tive distribution functions of delay under three different retrans-
mission policies for slotted ALOHA protocol. For the sake of
comparison, we let the fixed backoff range in UB policy equal
the initial backoff range in BEB policy, and let the retransmis-
sion parameter in GB policy be . In doing so, the ex-
pected values of first backoff delay under these three
policies are the same (see Table I). The curves for UB policy are
similar to the corresponding curves for BEB policy, except that
they approach unity much faster asgoes large. This is because
the backoff range in UB policy is fixed so that the probability
that a particular slot is chosen for a packet’s next retransmission
is larger than that in BEB policy. To illustrate, consider the UB
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Fig. 10. Cumulative distribution function of delayF (x), slotted ALOHA,r = 5, ! = 32, andq = 2=33.

Fig. 11. Cumulative distribution function of delayF (x), slotted nonpersistent CSMA,a = 0:01, r = 5, ! = 32, andq = 2=33.

curves for large values, the curve slopes in the right-hand side
range close to 35 and can be approximated by

(31)

which is about twice that of the BEB curves (approximated by
). The retransmissions in GB policy are not limited by any

backoff ranges, the resulting GB curves are therefore smooth
over the entire delay range.

For slotted nonpersistent CSMA protocol, the delay distri-
butions (in unit of slots) under different retransmission poli-
cies are compared in Fig. 11. As seen, these curves are
slightly different from those for slotted ALOHA protocol. First,
we choose parameter so that the slot size here
is one-hundredth of the packet transmission time. Second,
since is now uniformly distributed in , we have

and . Finally, for CSMA
protocol, when the channel is sensedbusy, the packet can at-

tempt at the next slot. So, the access delayis continuous
starting from the point . This is different from the case
in slotted ALOHA protocol, where the interval (2,3] is a gap in
the entire delay range, and hence, we have . As
a result, the curve knees of both UB and BEB curves are now
located at the point .

VIII. C ONCLUSIONS

We have derived the delay distributions of slotted ALOHA
and nonpersistent CSMA under three retransmission policies.
For BEB policy, the conditions for finite average delay and finite
delay variance are also derived. In addition, we have studied the
effect of finite on the blocking and delay performance.

Extending the results to unslotted channel model and other
random access protocols is straightforward. Further generaliza-
tion to variable packet size case [3], to other retransmission poli-
cies [9], and todelayed-first-transmission(DFT) scheme [5]
should also be possible.
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APPENDIX A
DERIVATION OF (6)

Since is the sum of independent random variables ’s,
the probability mass function of is given by

(A.1)

where “ ” represents convolution operation.
Consider first the UB policy. Let sequence equal to one

for and zero otherwise. Then

(A.2)

(For simplicity, we only specify the range of for which the
probability is nonzero in the following derivations.) Further, de-
fine sequence as

(A.3)

According to the definition, can be recursively
derived as3

(A.4)

The distribution of is simply

(A.5)

For BEB policy, we define sequence exactly the same
as . Hence, the probability mass function of can be
expressed as . Since under BEB policy,
backoff range is doubled every time an unsuccessful transmis-
sion occurs, sequence is defined as

(A.6)

which can also be recursively calculated4

(A.7)

3Note that the elements in sequencea (n) are actually thepolynomial co-
efficientsof functionf (t) = (1 + t + t + � � � + t ) [10, pp. 77–78],
where elementa (k); (r � k � r!) corresponds to the coefficient oft .
Based on this observation, all elements ina (n) can be derived, theoretically,
by differentiatingf (t) with respect tot. But this approach is very complicated
and unpractical when! andr are large.

4Incidentally, sequenceb (n) can also be shown as the coefficients of

a function, sayg (t) = t 1 + t , where

elementb (k) corresponds to the coefficient oft .

Therefore, the distribution of is given by

(A.8)

Consider finally the GB policy. Let sequence be a dis-
crete unit step function whereby for and

, otherwise. Hence, the probability mass function of
can be expressed as . Sim-

ilar to , sequence is defined as

(A.9)

and can be recursively derived as

(A.10)

The distribution of is simply

(A.11)

APPENDIX B
DERIVATION OF (21)

Conventionally, busy period analysis is used to derive
throughput of random access protocols [1]–[4], [7]. Fig. 12
shows the busy and idle periods for slotted nonpersistent
CSMA protocol. Let and denote the length of busy and idle
periods, respectively. Follow the approach in [4, pp. 90–91],5

the average busy period is given by

(B.1)

and the average idle periodis

(B.2)

Consider a tagged packet (not shown in Fig. 12) accessing the
channel. In a typical cycle shown in Fig. 12, there are
points (marked with “ ”) where the tagged packet will be suc-
cessfully transmitted if it attempts (no other packets are arrived
in the last slot before these points). At the points marked with
“ ” (totally such points),
the channel is sensed busy and no transmission (including the
tagged packet) will take place. The remaining
points marked with “ ” are the instants where the channel is

5A different approach, which offers the same results of throughput,p , p ,
andp , is presented in [7, pp. 312–315].
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Fig. 12. Busy and idle periods in slotted nonpersistent CSMA protocol. Up arrows point at packet arrival instants. TP is the abbreviation fortransmission period.

sensed idle but a collision will occur if the tagged packet is trans-
mitted (one or more packets have already arrived in the last slot
before these points). Based on the above analysis, the success
probability can be derived as

average number of points in a cycle
average number of and points in a cycle

(B.3)

The throughput is simply .
By the same argument

channel is sensed busy

(B.4)

collision

(B.5)

As a check, .
Recall is the number of retransmissions needed for a suc-

cessful transmission and is the number of times the channel
is sensed busy when accessed. Given , the conditional
probability is given by

(B.6)

Recall has a geometric distribution with parameter. The
joint probability is simply

(B.7)

Equation (B.7) is used in the text as (21). As a check, the distri-
bution of is

(B.8)

and the mean value of is

(B.9)

as expected.
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