
ar
X

iv
:1

11
1.

14
55

v2
  [

as
tr

o-
ph

.I
M

] 
 2

4 
N

ov
 2

01
1

Characterising the Atmospheres of Transiting Planets with a

Dedicated Space Telescope

M. Tessenyi1,2, M. Ollivier3,4, G. Tinetti1, J.P. Beaulieu2, V. Coudé du Foresto5,
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ABSTRACT

Exoplanetary science is one of the fastest evolving fields of today’s astronom-

ical research, continuously yielding unexpected and surprising results. Ground-

based planet-hunting surveys together with dedicated space missions such as

Kepler and CoRoT, are delivering an ever-increasing number of exoplanets, now

numbering at over 690, and ESA’s GAIA mission will escalate the exoplanetary

census into the several thousands. The next logical step is the characterisation

of these new worlds: what is their nature? Why are they as they are? The use of

the Hubble and Spitzer Space Telescopes to probe the atmospheres of transiting

hot, gaseous exoplanets has opened perspectives unimaginable even just ten years

ago, demonstrating that it is indeed possible with current technology to address

the ambitious goal of characterising the atmospheres of these alien worlds. These

successful measurements have however also shown the difficulty of understanding

the physics and chemistry of these exotic environments when having to rely on

a limited number of observations performed on a handful of objects.

To progress substantially in this field, a dedicated facility for exoplanet char-

acterisation, able to observe through time and over a broad spectral range a

statistically significant number of planets, will be essential. Additionally, the

instrument design (e.g. detector performances, photometric stability, etc.) will

be tailored to optimise the extraction of the astrophysical signal. In this pa-

per, we analyse the performance and trade-offs of a 1.2/1.4m space telescope for

exoplanet transit spectroscopy from the visible to the mid IR.

We present the signal-to-noise ratio as a function of integration time and

stellar magnitude/spectral type for the acquisition of spectra of planetary atmo-

spheres for a variety of scenarios: hot, warm, and temperate planets, orbiting

stars ranging in spectral type from hot F to cooler M dwarfs. Our results in-
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clude key examples of known planets (e.g. HD 189733b, GJ 436b, GJ 1214b, and

Cancri 55 e) and simulations of plausible terrestrial and gaseous planets, with a

variety of thermodynamical conditions. We conclude that even most challenging

targets, such as super-Earths in the habitable-zone of late-type stars, are within

reach of a M-class, space-based spectroscopy mission.

1. Introduction

The science of extra-solar planets is one of the most rapidly changing areas of

astrophysics and since 1995 the number of planets known has increased by almost two

orders of magnitude. A combination of ground-based surveys and dedicated space missions

has resulted in 690-plus planets being detected (Schneider 2011), and over 1200 that

await confirmation (Borucki et al. 2011). NASA’s Kepler mission has opened up the

possibility of discovering Earth-like planets in the habitable zone around some of the

100,000 stars it is surveying during its 3 to 4-year lifetime. The new ESA’s Gaia mission

is expected to discover thousands of new planets around stars within 200 parsecs of the

Sun (Casertano et al. 2008; Sozzetti 2010). Meanwhile, transit and combined light methods

have allowed the characterisation of the atmosphere of a few hot large bodies close to their

star using current space telescopes, (e.g. Charbonneau et al. 2002; Harrington et al. 2006;

Crossfield et al. 2010; Knutson et al. 2007b; Tinetti et al. 2007b, 2010b; Beaulieu et al.

2008, 2010; Swain et al. 2008a,b, 2009b,a; Grillmair et al. 2008; Stevenson et al. 2010)

and ground based telescopes (Redfield et al. 2008; Snellen et al. 2008; Swain et al. 2010;

Snellen et al. 2010; Waldmann et al. 2011). Transiting hot super-Earths, while being very

interesting targets since they are absent from our Solar System, are within reach with

current telescopes, e.g. GJ 1214b (Charbonneau et al. 2009; Bean et al. 2010), and Cancri

55 e (Winn et al. 2011).
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The next generation of ground-based telescopes and the James Webb Space Telescope

will have a noticeably larger collecting area compared to current facilities, allowing them

to probe fainter targets in the future. However, these facilities are built for the larger

astrophysics community and are not necessarily optimised for exoplanet characterisation.

The investigation of exoplanetary atmospheres requires a dedicated space mission that

is fine-tuned to this purpose. Such a mission should be able not only to simultaneously

capture the spectral signatures over a broad wavelength region to reveal the chemical and

dynamical processes of the atmosphere, but also have enough time to observe many systems

repeatedly. These systems should include the dimmer planets that approach the size of

Earth, hence the instrument design should be optimised to eliminate systematic errors.

In this paper, we consider the possibilities offered by — and the trade-offs of — a 1.2 to 1.4

m space based telescope capable of performing spectroscopy from the visible down to the

Mid-IR. A similar mission concept has most recently been selected for an assessment study

by ESA, under the name Exoplanet Characterisation Observatory (EChO)1 (Tinetti 2011).

2. Methods

2.1. Classification of planetary atmospheres

We classified the planetary atmospheres according to equilibrium temperatures and

sizes, in particular: three classes of atmospheric temperatures: ‘Hot ’ (800-2000 K), ‘Warm’

(350-800 K) and ‘Habitable’ (250-350 K) and three types of planetary sizes: Jupiter-like,

Neptune-like and super-Earth (see Table 1). Planets with ‘Cold ’ temperatures (200 K or

below) are not studied in this paper.

Super-Earths are expected to be between 1 and 10 M⊕, in this paper we assume a 5

1http://sci.esa.int/echo/
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Temperature/Size Jupiter-like Neptune-like super-Earth

Hot HJ HN HSE

Warm WJ WN WSE

HZ HZ-J HZ-N HZ-SE

Table 1:: Subdivision of planetary atmospheres according to temperature and planetary-size. The difficulty

in the observations increases from left to right and from top to bottom. All categories in bold are studied in

detail in section 3, results for the three other categories can be extrapolated.

Earth-mass body for our calculations, with a radius of 1.6-1.8 R⊕ (Grasset et al. 2009). By

comparing the Earth’s cross section: σ⊕ = π · R2

⊕
to those of the super-Earth, Neptune-like

and Jupiter-like planets, we obtain:

σSE ∼ 3 σ⊕; σN ∼ 25 σ⊕; σJ ∼ 100σ⊕ (1)

For transit and combined-light observations (transiting and non-transiting planets), the

important parameter is the ratio between the planetary and the stellar cross sections, κ,

obtainable by measuring the transit depth:

κ = σp/σ∗ (2)

This parameter changes significantly for different planet/star types. In Table 2, we give σ∗

for few key stellar types, along with the cross-section ratio value κ for the three planetary

types considered in this paper, expressed as a factor of κJupiter (κJup. ∼ 100σ⊕/σ⊙). A

Jupiter-sized planet orbiting a Sun-like star and a super-Earth orbiting a M4.5 dwarf will

both have a similar cross-section ratio κ ∼ κJup., observable with small, ground based

telescopes.
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Star type Temp. (K) Radius (R⊙) σ∗ (σ⊙) κJup. (κJ) κNept. (κJ ) κSE (κJ )

F3V 6740K 1.56 σF3 ∼ 2.4 ∼ 0.5 ∼ 0.05 ∼0.01

G2V 5800K 1 σG = σ⊙ 1 ∼ 0.1 ∼ 0.02

K1V 4980K 0.8 σK1 ∼ 0.6 ∼ 2 ∼ 0.2 ∼ 0.03

M1.5V 3582K 0.42 σM1.5 ∼ 0.18 ∼ 6 ∼ 0.7 ∼ 0.1

M3.5V 3376K 0.26 σM3.5 ∼ 0.07 ∼ 15 ∼ 2 ∼ 0.3

M4.5V 3151K 0.17 σM4.5 ∼ 0.03 ∼ 35 ∼ 4 ∼ 0.7

M6V 2812K 0.12 σM6 ∼ 0.01 ∼ 70 ∼ 9 ∼ 2

Table 2:: Cross section σ∗ = πR2
∗ for different stellar types and corresponding κ values for the three planet

sizes considered: Jupiter-like, Neptune-like and super-Earth. The reader can note that super-Earths in the

orbit of late M stars have a similar ratio κ to a Jupiter in the orbit of a Sun-like star.

2.2. Primary Transit method

A primary transit occurs when a planet passes in front of its parent star with respect to

our line of sight. By subtracting the “in-transit” stellar flux from the “out-of transit”, we can

measure directly the parameter κ as described in eq. 2, hence the planetary radius in units

of stellar radii. If we repeat the observation of κ at different wavelengths, we can infer the

presence or absence of an atmosphere as well as retrieve the main atmospheric components

(Seager and Sasselov 2000; Brown et al. 2001). The spectral absorption of the planetary

atmosphere, while in transit, is measured from the transmission spectrum obtained. For

key examples of planetary cases, we use synthetic models fitting the existing observations

or we extrapolate from our knowledge of the planets in the Solar System. The models

were calculated with the line-by-line radiative transfer code described in (Tinetti et al.

2007a, 2011), with updated line-lists from Barber et al. (2006); Yurchenko et al. (2011);

Rothman et al. (2010); Tashkun and Perevalov (2011). For feasibility studies, we adopt as

well a more heuristic estimate of the atmospheric contribution rather than these detailed

simulations. In particular, the amount of light passing through the atmosphere of the
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planet will cross a small annulus:

2Rpπ∆z

πR⋆
2

=
2Rp∆z

R⋆
2

(3)

where Rp is the radius of the planet, R⋆ the radius of the star and ∆z the height of the

atmosphere. From observations ∆z = nH , with typically n ∼ 5, depending on the spectral

resolution and wavelength. H is the scale height defined by:

H =
k T

µ g
(4)

where k is the Boltzmann constant, g is the gravity acceleration and µ the mean molecular

mass of the atmosphere.

From the scale height expression (4), it is clear that the hotter and lighter the atmosphere

is, the easier it is to observe it with this technique. Also, dense objects such as telluric

bodies will have a higher value for g and consequently a more compact atmosphere. For

example, hot Jupiters have high temperatures, low mean molecular mass of the atmosphere

(µ ∼ 2 amu for hydrogen-rich atmospheres) and relatively low density. Their scale height

can easily reach 500 km. By contrast, the Earth’s temperature is colder (∼280 K), µ

is ∼ 28 amu and the bulk composition is denser. As a result the scale height is compacted

to ∼ 8 km.

As explained in §2.1, we are interested here in 3 main classes of planets: gas-giants,

Neptune-like and super-Earths. While gas giants and Neptunes are optimal targets for

primary transit observations, in general super-Earths are the least favourable, unless they

transit an M star and host a relatively hot and light atmosphere (see Table 3). For this

reason, in the most general case, super-Earths should be observed with the secondary

eclipse technique, as described in the next section.
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2.3. Secondary Eclipse method

A complementary technique to the primary transit, is the so called secondary eclipse.

This method relies on the possibility of observing the star alone when the planet is passing

behind it, so we can effectively subtract the stellar contribution from the star+planet

system. In practice, we measure the flux emitted and/or reflected by the planet in units of

the stellar flux:

FII(λ) =

(

Rp

R⋆

)2
Fp(λ)

F⋆(λ)
= κ

Fp(λ)

F⋆(λ)
(5)

where Fp and F⋆ are the planetary and stellar spectra, and κ was defined in §2.1. It is

clear from this equation that both the relative size planet/star (the parameter κ) and

the relative temperature are key parameters for secondary eclipse measurements. Here

we use synthetic models to represent key examples of exoplanets (Tinetti et al. 2010a).

The emitted/reflected spectra were generated with the line-by-line radiative transfer codes

described in Tinetti et al. (2005, 2006), with updated line-lists from Barber et al. (2006);

Yurchenko et al. (2011); Rothman et al. (2010). For these key cases, the stellar spectra are

either observed or modelled (Kurucz 1995). In Fig. 1 we show how FII(λ) changes for a

given planet as a function of star type. In this example, we chose a super-Earth with an

Earth-like atmosphere orbiting a selection of known M-dwarfs: clearly late M stars offer the

best planet/star contrast.

Infrared observations For feasibility studies in the IR, we approximate the planetary

and stellar spectra in eq. 5 with two Planck curves at temperature Tp and T⋆, with Tp being

the day-side temperature of the planet. While this approximation is not accurate enough

to model specific examples, it is helpful to estimate the general case.

FII(λ) ∼ κ
Bp(λ, Tp)

B⋆(λ, T⋆)
(6)
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Fig. 1.—: Planet/star flux contrast (eq. 5) for a super-Earth orbiting different M-type stars

(M1.5V, M3.5V and M4.5V). In this example the super-Earth is assumed to have an Earth-like

atmosphere. (see section 3.3)

In Fig. 2 we show the Planck curves for a few bodies at different temperatures. The planet

to star flux contrast will clearly be higher for hot planets. Note that in the IR temperate

planets at ∼300 K can be observed only at wavelengths longer than 5 µm, as they emit a

negligible amount of flux at λ ≤ 5µm (Fig. 2).

Optical observations For observations in the optical, we need to estimate the reflected

light from the planet. Eq. (5) becomes:

FII(λ) =

(

Rp

R⋆

)2
Fp(λ)

F⋆(λ)
= κA ζ

R2

∗

a2
F⋆(λ)

F⋆(λ)
= κA ζ

R2

∗

a2
(7)

where A is the planetary albedo, ζ is the observed fraction of the planet illuminated and

a the semi-major axis. The closer the planet to its stellar companion and the higher its

albedo, the larger the contrast in the optical will be. For planets colder than ∼ 1200K, the

reflected light component is predominant in the optical wavelength range (λ < 0.8µm). For

hotter planets, both equations 6 and 7 will bring a contribution (emission and reflection).
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Fig. 2.—: Blackbody curves for effective temperatures of 6000, 3000, 1000, 700 and 300 K.

The radiation emitted by the 300 K body is negligible at λ shorter than 5 µm.

Planet Phase Variations and Eclipse Mapping Phase-variations are important in

understanding a planet’s atmospheric dynamics and the redistribution of absorbed stellar

energy from their irradiated day-side to the night-side. These observations can only be

conducted from space since the typical time scale of these phase variations largely exceeds

that of one observing night. Phase variations are very insightful both at reflected and

thermal wavebands. In the infrared case, these kinds of observations are critical to constrain

General Circulation Models of exoplanets, of hot gaseous planets in particular. For

instance, the infrared 8µm Spitzer observations of the exoplanet HD189733b have shown

the night-side of this hot Jupiter to be only ∼ 300K cooler than its day-side (Knutson et al.

2007a), suggesting an efficient redistribution of the absorbed stellar energy. In addition,

towards the optical wavelength regime, an increasing contribution from reflected light is

expected (Snellen et al. 2009; Borucki et al. 2009).

A great advantage of a dedicated exoplanet mission would be the potential for long

campaigns: staring at a known planetary system for a sizable fraction of (Knutson et al.

2007a, 2009b,a) or an entire orbit (Snellen et al. 2009; Borucki et al. 2009), or —provided
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the flux calibration is accurate enough— using multi-epoch observations to obtain a more

sparsely sampled phase curve (Cowan et al. 2007; Crossfield et al. 2010). At thermal

wavelengths this may only be interesting for short-period planets, where the diurnal

temperature contrast is high. Additionally, non-transiting planets open up interesting

possibilities to study seasons (eg, Gaidos and Williams (2004)). Furthermore, the

simultaneous multi-band coverage would make it possible to simultaneously probe the

longitudinal temperature distribution as a function of pressure, which would be a very

helpful constraint for GCMs.

The potential for using phase variations to study non-transiting systems should also

be noted (Selsis et al. 2011). Non-transiting systems are going to be closer on average

than their transiting counterparts. The challenge is stellar and telescope stability over the

orbital time of a planet. For planets on circular orbits, thermal phases have limited value

because of the inherent degeneracies of inverting phase variations (Cowan and Agol 2008),

but for eccentric planets, phase variations will be much richer (Langton and Laughlin

2008; Lewis et al. 2010; Iro and Deming 2010; Cowan and Agol 2011). As one considers

increasingly long-period planets (warm rather than hot) even more of them will be on

eccentric orbits because of the weaker tidal influence of the host star.

For the brightest targets, eclipses can also be used as powerful tools to spatially

resolve the emission properties of planets. During ingress and egress, the partial

occultation effectively maps the photospheric emission region of the object being eclipsed

(Williams et al. 2006; Rauscher et al. 2007; Agol et al. 2010). Key constraints can be

placed on 3D atmospheric models through repeated infrared measurements. In this paper,

we will focus on the feasibility of primary transits and secondary eclipses. A more detailed

and thorough study of the observability of phase variations and eclipse mapping will be the

topic of future publications.
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2.4. Comparison between primary and secondary transit techniques

The primary and secondary transit techniques are complementary. Transmission

spectra in the infrared, from primary transits, are sensitive to atomic and molecular

abundances, but less to temperature gradients. In comparison, emission spectroscopy allows

for detection of molecular species alongside constraining the bulk temperature and vertical

thermal gradient of the planet. Additionally, during the primary transit we can sound the

terminator, whereas during the secondary eclipse we can observe the planetary day-side.

Jupiter Neptune super-Earth

star: K M2.5V M4V

Hot 0.18 0.98 0.3 / 0.09

Warm 0.42 2.17 0.7 / 0.2

HZ 0.9 10.4 1.2 / 0.3

Table 3:: Primary / secondary eclipse flux ratio for key examples of the planetary classes listed in Table

1. Numbers > 1 indicate that the primary transit is more favourable over the secondary, while numbers

< 1 indicate the opposite. The results are obtained by dividing the atmospheric signals calculated from

equations 3 and 5, taken at ∼ 10µm for all presented cases. For the super-Earth we report two values:

a case of an “ocean planet” (1.8 R⊕, (Grasset et al. 2009)) with water vapour being the main component

of the planetary atmosphere, and a telluric planet with CO2 as main atmospheric component (1.6 R⊕).

In the habitable-zone, the ratio for the latter case is less favourable, with 0.3 excluding the possibility of

primary transit studies. By contrast, for an “ocean planet”, the ratio of 1.2 is similar to the ratio for the

habitable-zone Jupiter-like planet.

In Table 3 we present ratios of signal values from primary transit and secondary eclipse

observations for the key examples of planetary classes (see Table 1). Given that long

integration times require the co-adding of multiple transit observations, for the primary

case, any systematic difference in the stellar flux could hamper results. For example, spot

redistributions over the stellar surface could potentially alter the depth of the transit, and
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could be a reason of concern for late-type stars since, on average, they can be quite active.

In the case of M-type star super-Earths, though, we rely mostly on secondary eclipse

observations which are quite immune from effects related to stellar activity, as the planetary

signal follows directly from the depth of the occultation without the need to model the

stellar surface.

2.5. Planets orbiting M-type Stars

In this section we focus our attention on M-class stars and their habitable zone. The

main reasons to consider them are:

1. Among the stars in the solar neighbourhood 90% are of M-type (e.g. Perryman and ESA

(1997)).

2. The relative small size of M stars (typically between 0.08 - 0.5 R⊙) allows us to probe

planetary sizes down to a few earth masses (see Eq. 5).

3. The low effective temperature of the star (2900< Teff <3900 K), places the habitable

zone (HZ) region closer-in to the star than would be the case for a hotter star. A

HZ planet will hence have a short orbital period (see Fig. 4) and a larger number of

transit events will be observable within a given time interval than would be the case

for a planet in the HZ of hotter (K, G, F) stars.

4. M stars are brightest in the IR (i.e.: more photons impinging onto the detector),

where the temperate exoplanets are easier to observe (see Fig. 2).

The combination of these effects brings the prospect of characterising terrestrial planets in

the HZ of main sequence stars within current technology capabilities. By contrast, it is

currently impractical to use the transit technique to observe the atmosphere of terrestrial
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planets in the HZ of more massive stars, as the orbital period in this case would be very

long (e.g. more than 100 days for a K-type star and 300 for a G-type star). In addition,

notice that M dwarf spectra differ significantly from blackbody radiation curves in the

visible and near infrared parts of the spectrum, but in the mid-infrared, considered for our

habitable-zone targets, the molecular absorptions are less important.

2.5.1. M-star population

Fig. 3.—: Expected number of stars out to 10 pc, for M0-4V and M5-M9V. Dots are stars in K

magnitude from the RECONS catalogue and lines represent the expectations, assuming uniform

spatial distribution and completeness at 6.6 pc. These plots suggest that the RECONS catalogue is

complete only up to 6.6 pc for the earliest spectral types and up to 4.5-6 pc for the M5-6V sample.

There are too few objects in the M7-9V range to say anything about completeness/space density

of such objects.

At the time of writing over 25% of stars in the Sun’s near neighbourhood are believed
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to be missing from star surveys (such as the catalogue by Lépine and Gaidos 2011), in part

because bright M stars in the infrared are quite faint in the visible, due to a combination

of temperature and the presence of molecular and atomic species absorbing in this spectral

region. For instance, a M3V star with V=12.30 mag. corresponds to K=7.53 mag., and a

M5V star with V=15.01 mag. corresponds to a K=8.40 mag. (Delfosse et al. 2000). For

this reason in this paper we use K magnitude rather than V to classify the luminosity of

M stars. The most complete catalogue of late-type nearby stars available today is the

Lépine and Gaidos (2011) catalogue, which includes nearly 9000 M dwarfs with magnitude

J < 10. According to the authors, the catalogue represents ∼ 75 % of the of the estimated

∼ 11, 900 M dwarfs with J< 10 expected to populate the entire sky.

An evaluation of the number of M stars in a magnitude-limited sample can be

derived also from the analysis of the 100 RECONS nearest star systems (RECONS 2011).

Their distribution in distance shows clearly that, while the M1-4V star sample is evenly

distributed within 6.7 pc, the M5-8V sample is significantly incomplete beyond 4-5 pc (see

Fig. 3). This analysis supports the hypothesis that a significant number of stars are still

missing in catalogues also in the very close solar neighborhood; there needs to be a major

effort in the next years in this direction.

Independent estimates of the M star population in the solar neighbourhood were provided by

Micela G. (private communication) through colour-colour diagrams applied to the 2MASS

(Two Micron All Sky Survey) catalogue. This selection might have some contamination

from two different sources: a) Distant giant stars may overlap with the nearby very early

M type, where the main sequence and giant models are still close together. b) Stars of

early spectral type could contaminate the dwarf M-star regime only if highly reddened by

intervening dust.

NASA’s Wide-field Infrared Survey Explorer (WISE) might help with removing the

contamination, by providing a survey in four additional IR channels (Wright et al. 2010).
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The Gaia mission, in its all-sky astrometric survey, will deliver direct parallax estimates

and spectrophotometry for nearby main-sequence stars down to R∼20. At the magnitude

limit of the survey, distances to relatively bright M stars out to 20-30 pc will be known with

0.1%-1% precision (depending on spectral sub-type). This will constitute an improvement

of up to over a factor 100 with respect to the typical 25%-30% uncertainties in the

distance reported for low-mass stars identified as nearby based on proper-motion and

colour selections (e.g. Lépine and Gaidos 2011). Starting with early data releases around

mid-mission, the Gaia extremely precise distance estimates, and thus absolute luminosities,

to nearby late-type stars will allow us to improve significantly standard stellar evolution

models at the bottom of the main sequence. For transiting planet systems, updated values

of masses and radii of the host stars will be of critical importance. Model predictions for the

radii of M dwarfs show today typical discrepancies of ∼ 15% with respect to observations,

and, as shown by the GJ 1214b example (Charbonneau et al. 2009), limits in the knowledge

of the stellar properties significantly hamper the understanding of the relevant physical

characteristics (density, thus internal structure and composition) of the detected planets.

Meanwhile, to account for the possibility of errors in current measurements, we provide a

variety of stellar temperatures and calculated corresponding star radii with our results. The

radii were calculated using isochrones of old (∼ 5bn yr) low-mass stars (Baraffe et al. 1998),

and observational constrains (Delfosse et al. 2000). For comparison, based on the simple

radius-temperature-luminosity relation considerations, we can infer that estimates of stellar

radii, when Gaia parallaxes known to < 1% will become available for nearby red stars,

will carry much reduced uncertainties, on the order of 1%-3%. Indeed, the precision in

the M dwarf effective temperature estimates from spectroscopy or photometric calibrations

(currently, 3%-5% at best) will then become the limiting factor in the knowledge of this

fundamental quantity.
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2.5.2. Planetary Periods

Figure 4 shows periods and transit durations for habitable-zone super-Earths orbiting

a range of M stars. These values clearly depend on orbital distances which are computed
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Fig. 4.—: Transit durations and orbital periods of habitable-zone (HZ) super-Earths for varying masses of

M stars. Our focus for the HZ is in the mass range delimited by the grey rectangle: between 0.11 and 0.45

M⊙, with orbital periods of 7 to 35 days and are optimal targets, as seen Section 2.5. For consistency, we

use the same stellar types for hot and warm super-Earths. In these cases, the transit and period durations

will clearly be shorter (see Tables 6 and 10 for respective ranges).

by fixing the planet temperature and stellar type. We define the radiation in and out of the

planet (in Watts):

Radin = πR2

plL∗f(1− A) (8)

Radout = 4πR2

plσT
4

pl (9)

where the planetary albedo is A = 0.3, and a small greenhouse effect contribution of ǫ = 0.7

is assumed. The distance of the habitable-zone for each M star type was estimated by

considering an average surface temperature for the planet Tpl = 287K. More specifically:

we started with the bolometric luminosity of the star at a distance a (semi-major axis):
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L∗ = (4πR2

∗
σT 4

∗
)/(4πa2). By equating the radiation in and out of the planet, we obtain an

expression for the planetary effective temperature:

Tpl = T∗

(
√

(1− A)

ǫ

R∗

2a

)
1

2

(10)

by imposing Tpl = 287K and assuming different values for the stellar temperature:

2900K < T∗ < 3900K, we rearrange this equation to calculate the semi-major axis a and

the planetary period P = 2π
√

(a3/GM). For the other cases presented in this paper, period

and transit durations were obtained either using similar calculations, or from observations.

For the transit duration tt we assume a circular, edge-on orbit. From Seager and Ornelas

(2002) we obtain:

tt =
PR∗

πa

√

(

1 +
Rpl

R∗

)2

− b2 (11)

For the general case the impact parameter b was set to zero, unless otherwise specified, so

that eq. (11) simplifies to:

tt =
P

π

(

R∗ +Rpl

a

)

(12)

2.6. Estimating the integration time

The integration time needed to observe specific targets depends on:

• the parent star: spectral class, type, magnitude in a specified spectral region

• the contrast between the parent star and the companion planet in the observed

spectral interval; this can be estimated from known observed or simulated objects

• the observational requirements: spectral region, resolution and signal to noise ratio

• the telescope characteristics: primary mirror diameter, overall transmission, coverage

and sensitivity of the detectors
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• the focal plane array characteristics during observation: number of pixels used per

spectral resolution element, readout time, quantum efficiency, full well capacity,

saturation threshold, dark current, readout noise

We consider then the flux of photons from the planet. This flux (given in photons/seconds/m2

in the whole spectral interval) is converted into electrons/pixel/seconds/“resolution element”

within the defined spectral region using the following expression

Fe− =
Fγ · A · transmission ·QE

Res ·Npx/Res

(13)

where Fe− and Fγ are respectively the electron and photon fluxes, A is the telescope mirror

surface area, QE the quantum efficiency, Res the number of spectral elements in the band

(resolution) and Npx/Res the number of pixels per resolution element. From here on, F

will only refer to the electron flux: Fe−. The transmission is the overall fraction of energy

that reaches the detector (before conversion to electrons). It includes the telescope and

instrument (optical) transmission.

Using these values the time required for one detector pixel readout is computed:

tro =
FWC · saturation

F⋆ + Fpl +DC
(14)

where ro stands for read out, FWC for full well capacity, DC for dark current and

saturation is a fraction of the full well capacity (FWC). Usually, a saturation at 70% of

the FWC is taken into account; that is the limit of electrons that can be accumulated in a

single exposure.

The number of readouts required is then computed using the following formula:

Nro = (SNR)2 ·
F⋆ + Fpl +DC + (RON2/tro)

F 2

pl · tro ·Npx/Res

(15)

where SNR is the signal to noise ratio within the defined spectral band, and RON the
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detector readout noise. For the secondary eclipse case, Fpl is the flux emitted or reflected

by the planet, while for the primary transit case (explained in section 2.2), Fpl corresponds

to the amount of flux (written as a negative) absorbed by the planet’s atmosphere:

Fpl = −
πRpl

2

πR⋆
2
((1 +

nH2

Rpl
)− 1) = −

2nHRpl

R⋆
2

(16)

where n is an atmospheric absorption factor.

With these values, the total integration time is computed by multiplying the duration of a

detector pixel readout by the number of readouts required.

The planet/star flux contrast ratio and the star brightness are the obvious main factors

affecting integration times. To estimate the contrast, we have considered observed spectra

and simulated synthetic spectra of stellar and planetary atmospheres (Sections 2.1 to 2.5).

2.6.1. Instrument detector and validation

Table 4 lists instrument setting values we have assumed for our simulator to cover the

four bands in which our results are given in.

For validating our tool, we have incorporated in our instrument simulator the

parameters of Hubble NICMOS, and compared our results for hot gaseous planets with

observed data from NICMOS. We obtained results in excellent agreement with the observed

data.
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Instrument Values Visible 2.5 to 5 µm 5 - 11 µm 11 to 16 µm

Detector used (SOFRADIR) CCD MWIR LWIR VLWIR

Full well capacity (electrons) 2 · 106 4 · 106 2 · 107 5 · 106

Dark current (electrons/s/pixel) 0.1 10 500 300

Quantum efficiency (electrons/photon) 0.5 0.7 0.7 0.7

Readout noise (electrons/pixel/readout) 10 400 1000 1000

Readout time (seconds) 0.004 0.01 0.03 0.01

Telescope temperature (K) 0 60 60 60

Instrument temperature (K) 0 45 45 45

Telescope transmission 0.85 0.9 0.9 0.9

Instrument transmission 0.7 0.7 0.7 0.7

Table 4:: Instrument settings used in our simulations, listed for each observing band used. In addition, the

two following settings are the same for all four bands considered: a 30 µm pixel size and 2 illuminated pixels

per spectral element are assumed. For the N band (7.7 to 12.7 µm) we have used the LWIR setting values.

Note that in the case of the VLWIR detector, we have used a dark current value of 300 electrons/s/pixel

considering existing technologies and expected future capabilities. Further discussion on these values can be

found in section 4.4. We give in the appendix two other options, compatible with a 1.2 m telescope, and a

different selection of detectors and instrument parameters.
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3. Results

We present our results ordered by planetary temperature: hot, warm and temperate

(habitable-zone, H-Z). For our key examples we have calculated the flux contrast by using

synthetic models (see sections 2.2 and 2.3), which either fit existing observations or are

extrapolated from our knowledge of the Solar System planets. For feasibility studies we

prefer to adopt cruder estimates of atmospheric contributions (i.e. blackbody curves) rather

than detailed simulations of each specific case. Plots of flux contrasts are given for each

case, accompanied by integration times represented as “number of transits” (based on

transit durations and orbital periods, see section 2.5.2), with a maximum number of transits

indicated. This number is estimated by dividing the nominal lifetime of a mission (we

consider 5 years here) by the orbital period for each target. For each case, integration times

are given over a range of stellar magnitudes. The signal-to-noise and resolution (SNR/Res)

values vary from table to table, from R=300 to R=10, and SNR=50 to SNR=5. For each

target, these values were selected to optimise the scientific return across the magnitude

range considered. The selected SNR and Resolution values are in most cases dictated by

the “limiting cases”, i.e. the most difficult star+planet combinations to be observed in a

specific class of objects. In most tables, the SNR/Res values can be raised for the bright

targets, and lowered to curb the integration times for fainter objects. The outcome of

our study is summarised in the MIR by showing results averaged over the 7.7 to 12.7 µm

spectral window (equivalent to the classical Johnson photometric N-band). In addition, we

provide in the appendix results averaged over three spectral bands (5-8.3, 8.3-11, 11-16µm),

the reader may compare performances of various bands for the listed targets. For hot

planets, observations in the NIR (2.5 to 5µm band) become feasible (see section 2.3 with

equation 7) and planets close to their star can be easily probed in the visible. In such cases,

the MIR integration times are followed by NIR and visible results.
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3.1. Hot planets

Gas giants: as a template for the hot Jupiter case, the observed hot gas giant HD 189733b

is used. A modelled transmission spectrum analogue of primary transit observations and a

planet/star contrast ratio, analogue of secondary eclipse measurements, are considered for

our simulations (Fig. 5). For both cases, integration times are listed in units of number of

transits in Table 5, where the modelled hot Jupiter is presented orbiting a sample of stars:

a Sun-like G2V star, a warmer F3V star and HD 189733, a K1/2V type star (Bouchy et al.

2005). HD 189733 has a magnitude in V of 7.67. We extrapolate our results from mag V=5

to V=9, with a resolving power of R=300 and a signal-to-noise ratio SNR=50, chosen for

the secondary eclipse, and R=100 and SNR=50 for the primary transit.

Fig. 5.—: Modelled transmission and emission spectra of HD 189733b (Tinetti et al. 2010a), a hot-Jupiter

around a K1/2V star, mag. V=7.67. Left: % absorption of the stellar flux occulted by the planetary

atmosphere during the primary transit (transmission spectrum). Right: Contrast ratio of the flux from the

planet (emission spectrum) over the flux from the star. Blackbody curves at 1000 K and 1600 K are plotted

in grey.
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Hot-Jupiters –Secondary eclipse, R=300, SNR=50, MIR

Star T R Contrast Period τtransit Max. n* Integration time (n. transits)

type (K) (R⊙) (∗10−3) (days) (hours) (transits) V=5 V=6 V=7 V=8 V=9

F3V† 6740 1.56 1 8.4 2.9 218 7 18 51 156 lower R

G2V 5800 1 2.9 3.2 2.36 570 0.7 1.8 4.7 14 45

K1V† 4980 0.8 5.6 2.21 1.8 826 0.2 0.4 1 2.9 9

Hot-Jupiters –Primary transit, R=100, SNR=50, MIR

F3V 6740 1.56 0.28 8.4 2.9 218 32 82 213 lower R

G2V 5800 1 0.68 3.2 2.36 570 4 10 26 70 198

K1V 4980 0.8 1 2.21 1.8 826 1.6 4 10 26 72

Hot-Jupiter in NIR – Secondary eclipse, R=300, SNR=50, NIR

K1V 4980 0.8 2.6 2.21 1.8 826 0.1 0.2 0.6 1.4 3.5

Table 5:: Integration times (in units of “number of transits”) needed to obtain the specified SNR and

spectral resolution for a given stellar type/brightness (in Mag. V). The upper table lists results for the

secondary eclipse scenario in the MIR (equivalent to the classical Johnson photometric N-band) followed

by primary transit results in the MIR, and secondary eclipse results in the NIR (between 2.5 and 5 µm).

τtransit is the transit duration given in hours, and “lower R” stands for target observable at lower resolution.

†: Planet/star systems marked by this sign have additional results listed in the appendix. ∗: The maximum

number of transits is computed by dividing a plausible mission lifetime (5 years assumed) by the duration

of the planet orbital period.

Neptunes: Neptune-like planets are expected to have a similar atmospheric composition

to the gas-giants with a smaller radius (R ∼0.35 Rj). While we do not directly present

results for these targets, by comparison with the hot Jupiter scenario, integration times

will be typically similar in the primary transit scenario and higher in the secondary eclipse

scenario given the relatively smaller radius of the planet.

Super-Earths: we show here two examples: a 2.1 R⊕ very hot planet in orbit around a

G8V star, 55 Cancri e (Winn et al. 2011), and a 1.6 R⊕, 850 K planet in orbit around a
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range of M stars with temperature varying between 3055 ≤ T ≤ 3582K. For the latter case,

we approximated the planet/star fluxes with black-body curves to assess feasibility. As

mentioned in section 2.2, primary transit observations for a planet with high gravitational

pull might be out of reach (55 Cancri e is reported to be ∼ 8.5M⊕), for this reason we focus

on secondary eclipses only. Planet to star flux contrasts are plotted in Figure 6 (55 Cancri e

left, 850 K super-Earth right), accompanied by integration times in Table 6 in the MIR and

NIR. For both bands a resolution of R=40 and SNR=10 were selected.

Fig. 6.—: Left: Secondary eclipse simulated signal for 55 Cancri e, a 2.1 R⊕ hot super-Earth orbiting a

G8V star. The atmospheric temperature could vary between 2800 K and 1980 K, depending on the heat

redistribution (Winn et al. 2011). Both possibilities are presented, alongside an intermediate case of a 2390

K atmosphere used for our results. Right: Secondary eclipse signal for a hot super Earth (850K, 1.6 R⊕)

orbiting a selection of M stars (from M1.5V to M5V). For the two figures, both the planet and the stellar

contributions here are estimated as black-bodies. While this description is too simplistic to capture the

properties of a real, specific case, for feasibility tests we do not want to rely on too narrow assumptions.

Observations in the visible: we present here two cases: the case of a hot Jupiter and

the case of a hot super-Earth. The reasons for our choice are based on Eq. 7: reflected light

is more prominent for planets close to their star. For the case of the hot super-Earth, we
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selected a 1.6 R⊕ planet with a fixed temperature of 850 K and varying albedo values. For

the case of the hot Jupiter, we present a fixed orbital distance with varying albedo values

(corresponding to temperatures ∼ 1200− 1500 K). Notice that the emission from the planet

is negligible at these temperatures when compared with reflection in the visible. Results

are given in Tables 7 and 8, with R=40 and SNR=20 for the hot Jupiter, and R=20 and

SNR=10 for the hot super-Earth.
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Hot super-Earths –Secondary eclipse. R=40, SNR=10, MIR

Star T R Contrast Period τtransit Max. n* Integration time (n. transits)

type (K) (R⊙) (∗10−4) (days) (hours) (transits) K=5 K=6 K=7 K=8 K=9

M0V 3893 0.57 0.7 2.17 1.6 840 38 97 253 689 lower R.

M1.5V† 3582 0.42 1.4 1.22 1.1 1494 13 33 87 236 707

M3V 3436 0.30 2.9 0.79 0.8 2300 4.2 11 28 75 225

M4V 3230 0.20 7.2 0.46 0.5 3955 1 2.7 7 19 58

M5V† 3055 0.16 12.2 0.25 0.4 7450 0.5 1.2 3.1 8 25

Hot super-Earths in NIR –Secondary eclipse, R=40, SNR=10, NIR

M0V 3893 0.57 0.1 2.17 1.6 840 199 499 lower R.

M1.5V 3582 0.42 0.3 1.22 1.1 1494 32 81 203 509 1279

M3V 3436 0.30 0.5 0.79 0.8 2300 15 39 97 243 611

M4V 3230 0.20 1.4 0.46 0.5 3955 3 8 19 18 121

M5V 3055 0.16 2.5 0.25 0.4 7450 1.1 2.8 7 18 45

Hot super-Earth –example of 55 Cancri e in secondary transit, R=40, SNR=10, MIR

Star T R Contrast Period τtransit Max. n* Integration time (n. transits)

type (K) (R⊙) (∗10−4) (days) (hours) (transits) V=5 V=6 V=7 V=8 V=9

G8V 5243 0.95 1.6 0.74 1.76 2467 1.4 3.4 9 22 58

Table 6:: Integration times (in units of “number of transits”) needed to obtain the specified SNR and

spectral resolution for a given stellar type/brightness (in Mag. K when orbiting M dwarfs, Mag. V when

orbiting G star). The upper table lists results for the secondary eclipse scenario in the MIR, followed by

secondary eclipse results in the NIR. τtransit is the transit duration given in hours, and “lower R” stands for

target observable at lower resolution. †, ∗: See Table 5 caption.
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Visible band hot Jupiter. With ζ = 1, R=40, SNR=20

Albedo a Contrast Period τtransit Max. n* Integration time (n. of transits)

Value (a.u.) (∗10−4) (days) (hours) (transits) V=5 V=6 V=7 V=8 V=9

0.1

0.031

0.31

4.7 2.36 570

7 18 44 110 278

0.3 0.92 0.8 1.9 4.9 12 31

0.5 1.54 0.3 0.7 1.8 4.5 11

0.7 2.16 0.1 0.4 0.9 2.3 6

Table 7:: Integration times (in units of “number of transits”) for a hot Jupiter observed in the visible

around a G2V star. The orbital distance is fixed and the planetary temperature varies with the albedo. For

the studies presented here, we have considered full illumination (ζ = 1), and values of R=40 and SNR=20.

When the planet is not fully illuminated (ζ < 1), longer integration times are needed for the same parameters.

∗: See Table 5 caption.

Visible band hot super-Earth, with ζ = 1, R=20, SNR=10

Albedo a Contrast Period τtransit Max. n* Integration time (n. of transits)

Value (a.u.) (∗10−4) (days) (hours) (transits) K=5 K=6 K=7 K=8 K=9

0.1 0.006 0.15 0.47 0.8 3916 426 1161 2917 lower R.

0.3 0.006 0.58 0.39 0.7 4728 35 89 223 560 1407

0.5 0.005 1.35 0.30 0.7 6085 7 16 41 103 260

0.7 0.004 3.16 0.20 0.6 8927 1.4 3.5 9 22 55

Table 8:: Integration times (in units of “number of transits”) for a hot super-Earth (850 K) observed in

the visible around a M4.5V star. Here the planetary temperature is fixed and the orbital distance varies

with the albedo. For the studies presented here, we have considered full illumination (ζ = 1), and values of

R=20 and SNR=10. When the planet is not fully illuminated (ζ < 1), longer integration times are needed

for the same parameters. “lower R” stands for target observable at lower resolution. ∗: See Table 5 caption.
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3.2. Warm planets

Gas giants: In this section we focus on Neptunes and super-Earths, skipping warm gas

giants, which fall between the categories of hot Jupiters and warm Neptunes.

Neptunes: we considered as example of a warm Neptune GJ 436b, a 4 R⊕ planet around

a M2.5V dwarf star, with a radius of 0.46 R⊙ and magnitude in K of 6.07 (Butler et al.

2004; Gillon et al. 2007). Spitzer photometric data have been analysed and interpreted

(by Beaulieu et al. (2011); Stevenson et al. (2010); Knutson et al. (2011)), observed results

captured by simulated spectra are shown in Figure 7 (primary transit left, secondary

eclipse right). Integration times for a primary transit and secondary eclipse of such a warm

Neptune-like planet follow in Table 9.

Fig. 7.—: Modelled GJ 436b (Beaulieu et al. 2011; Stevenson et al. 2010), a warm Neptune around a

M2.5V star, mag. K=6.07: Left: % absorption of the stellar flux occulted by the planetary atmosphere

during the primary transit. Right: Contrast ratio of the flux from the planet over the flux from the star.

Blackbody curves at 650 K and 850 K are plotted in grey.
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Warm Neptune –Secondary eclipse, R=50-100, SNR=30-50, MIR

Star T R Contrast Period τtrans Max. n R/SNR Integration time (n. transits)

type (K) (R⊙) ∗10−4 (days) (hrs) (trans.) K=5 K=6 K=7 K=8 K=9

M2.5V† 3684 0.46 4.6 2.64 1.03 691
100/50 80 207 563 lower Res.

50/30 14 36 95 263 low R

Warm Neptune –Primary transit, R=50-100, SNR=30-50, MIR

M2.5V 3684 0.46 10 2.64 1.03 691
100/50 17 44 120 358 low R

50/30 3 8 20 56 173

Table 9:: Integration times (in units of “number of transits”) needed to obtain the specified SNR and

spectral resolution for a given stellar type/brightness (in Mag. K). The upper table lists results for the

secondary eclipse scenario in the MIR, followed by primary transit results in the MIR. Both tables show two

selections of SNR and resolution values. τtransit is the transit duration given in hours, and “lower R” stands

for target observable at lower resolution. †, ∗: See Table 5 caption.

Super-Earths: GJ 1214b (Charbonneau et al. 2009) is a perfect example for the case of a

warm super-Earth orbiting a M star. We show in Fig. 8 a simulated transmission spectrum

of this planet. Since the available observations for this specific planet are not enough

to constrain its true composition and atmospheric characteristics (Bean et al. 2010), our

simulations here just show a possible scenario. We also present in Fig. 8 planet/star flux

contrasts for a 1.6 R⊕, 500 K planet in orbit of a range of M stars (from M1.5V to M5V with

temperatures ranging from 3055 K to 3582 K). Both the planet and the stellar contributions

here are estimated as blackbodies, and only secondary eclipse results are presented. The

integration times are listed in Table 10 in the MIR, with R=40 and SNR=10.
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Fig. 8.—: Left: simulated transmission spectrum for the warm super-Earth GJ 1214b, in units of %

absorption of the stellar flux. Right: secondary eclipse signal from a warm Super Earth (500 K, 1.6 R⊕)

orbiting a range of M stars, from M1.5V to M5V with temperatures ranging from 3055 K to 3582 K.

Warm super-Earths –Secondary eclipse, R=40, SNR=10, MIR

Star T R Contrast Period τtransit Max. n* Integration time (n. transits)

type (K) (R⊙) ∗10−4 (days) (hours) (transits) K=5 K=6 K=7 K=8 K=9

M1.5V 3582 0.42 0.4 6 1.9 304 52 131 335 low R ph

M3V 3436 0.30 0.8 3.9 1.3 468 18 44 114 298 low R

M4V† 3230 0.20 1.9 2.27 0.9 804 4 10 26 69 192

M5V† 3055 0.16 3.3 1.57 0.7 1163 1.8 4.6 12 31 85

Warm super-Earth –example of GJ1214b in primary transit, R=40, SNR=10, MIR

M4.5V 2949 0.21 27 1.58 0.88 1155 0.1 0.1 0.3 0.8 2.3

Table 10:: Integration times (in units of “number of transits”) needed to obtain the specified SNR and

spectral resolution for a given stellar type/brightness (in Mag. K). The upper table lists results for the

secondary eclipse scenario in the MIR, followed by secondary eclipse results in the NIR. τtransit is the

transit duration given in hours, “lower R” stands for target observable at lower resolution, and ph stands

for photometry. †, ∗: See Table 5 caption.
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3.3. Habitable Zone Planets

Gas giants: we present here the case of a hypothetical “cool” Jupiter, in the Habitable-

Zone (HZ) of a K4V star. Figure 9 shows our simulated secondary eclipse spectrum, with

an atmosphere in which we have included water vapour, methane, hydrocarbons, CO and

CO2 and a thermal profile with temperature decreasing with altitude. In Figure 9, the

departure from the (315 K) blackbody is noticeable. While our assumptions here are

reasonable, this is just one possible scenario, and completeness is beyond the scope of this

paper. Integration times are listed in Table 11, for different stellar brightness.

Fig. 9.—: Secondary eclipse signal from a conceivable habitable-zone Jupiter around a K4V, 4780 K star

–such as HAT-P-11. Blackbody curves at 210 K, 260 K and 315 K are plotted in grey.

Neptunes: we skip the case of a habitable-zone Neptune, as the secondary eclipse falls

between the categories of a HZ Jupiter and a HZ super-Earth. In the case of primary

transits, on the contrary, we expect a much more favourable result, as indicated in Table 3.
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Cool Jupiter –Secondary eclipse, R=20-40, SNR=10, MIR

Star T R Contrast Period τtrans. Max. n* R/SNR Integration time (n. of transits)

type (K) (R⊙) (∗10−4) (days) (hrs) (transits) V=5 V=6 V=7 V=8 V=9

K4V† 4780 0.75 1.5 101.6 6.9 18
40/10 0.3 0.6 1.6 4.1 11

20/10 0.1 0.3 0.8 2 5

Table 11:: Integration times (in units of “number of transits”) needed to obtain the specified SNR and

spectral resolution for a given brightness (in Mag. V). The results are given in the MIR with two selections

of SNR and resolution. τtrans. is the transit duration given in hours. Notice that the orbital period for a

planet in the HZ of a K4V star is more than 100 days, so the observation can be repeated less than 20 times

in 5 years. †, ∗: See Table 5 caption.

Super-Earths: here we present a 1.8 R⊕ telluric planet, with three plausible atmospheres,

as explained in section 2.1: Earth-like, Venus-like and hydrogen-rich (i.e. small Neptune).

Figure 10 shows the planet to star flux contrast obtained for a 1.8 R⊕ super-Earth orbiting

a M4.5V star with T=3150 K, with the three mentioned atmospheres in two spectral

resolutions: R=200 and R=20. Blackbody curves at 200, 250, 300, 350 K are included.

The change in contrast for the different atmospheric cases is noticeable: for instance,

the presence of water vapour in the Earth-like and small Neptune cases marks a sharper

departure from the blackbody curve. H2O, CO2 and ozone absorption are still detectable

even at very low resolution, but less abundant hydrocarbon species become more difficult to

capture. Table 12 lists integration times in the MIR for the case of a 300 K atmosphere and

a range of stars spanning in type and brightness. While a resolution of R=10 and SNR=5

were selected to cover the broadest range of stellar types in the table, the cooler stars in the

table will allow for higher SNR/Resolution values.
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Fig. 10.—: Left: Earth-like, Venus-like and small Nepture secondary eclipse spectra at R=200, with

marked blackbody contrast curves as temperature indicators (from left to right: 350, 300, 250 and 200 K).

The three atmospheres belong to a 1.8 R⊕ super Earth around an M4.5V star (at T=3150 K). Right: Same

case at a resolution of R=20.

Habitable Zone super-Earth –Secondary eclipse, R=10, SNR=5, MIR

Star T R Contrast Period τtransit Max. n* Integration time (in N. transits)

type (K) (R⊙) (∗10−5) (days) (hours) (transits) K=5 K=6 K=7 K=8 K=9

M2.5V 3475 0.34 1.1 23.7 2.6 77 54 photometry

M3V
3436 0.30 1.4 20.6 2.3 88 37 photometry

3380 0.26 1.9 17.3 2.1 105 22 55 photometry

M4V†
3230 0.20 3.5 12 1.6 152 9 22 54 140 ph.

3150 0.17 4.6 10 1.4 182 6 14 36 94 ph.

M5V†
3055 0.16 6 8.3 1.3 220 3.6 9 23 60 158

2920 0.14 8.5 6.4 1.1 286 2.2 5 14 36 94

Table 12:: Integration times (in units of “number of transits”) needed to obtain the specified SNR and

spectral resolution for a given stellar type/brightness (in Mag. K) in the MIR. τtransit is the transit duration

given in hours, ph stands for photometry, where a few wavelenghts can be probed for the most challenging

targets. †, ∗: See Table 5 caption.
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4. Discussion

4.1. Stellar Variability

Our simulations do not include the effects of stellar variability on transit observations.

Kepler is reaching 200 ppm/min on an V=11 mag star and 40 ppm/min on a V=7 mag star.

The most up-to-date information about variability comes from the studies of Basri et al.

(2010, 2011) based on the analysis of 100,000 stars (first release of 43 days of Kepler data).

For timescales between 3-16 days, the authors showed that 57 % of G stars are active and

tend to be more active than the Sun (up to twice the activity level is typical). This fraction

increases to 87% of K and M dwarfs (figure 4 of Basri et al. (2010)). The peak of the

histogram of amplitude distribution is centered at 2 mmag. Scatter plots from Basri et

al. show that for K and M stars indeed the dominant source of scatter is variability, not

Poisson noise. The bulk of the periodicities is found at periods larger than 10 days, with

amplitudes ranging from 1-10 mmag. Ciardi et al. (2011) found that 80% of M dwarfs have

dispersion less than 500 ppm over a period of 12 hours, while G dwarfs are the most stable

group down to 40 ppm.

It is important to note here that the photometric variability is significantly lower in

the near infrared than in the Kepler band (Agol et al. 2010; Knutson et al. 2011), because

of the lower contrast between spots and the stellar photosphere at larger wavelengths. For

instance, Agol et al. (2010) measured that the infrared flux variations in the case of the

active K star HD 189733 are about 20% of the optical variations. This is in agreement with

the theoretical estimates by Ballerini et al. (2011)

Most importantly, all the timescales related to stellar activity patterns are very different

from the timescales associated to single transit observations (a few hours), and thus can be

easily removed. CoRoT-7 b provides a good example. The activity modulations are of the
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order of 2% and yet CoRoT managed to find a transit with a depth of 0.03%. This was

made possible by the continuous monitoring provided by CoRoT and the different timescale

compared with the transit signal that allowed for the removal of the activity effects and

the discovery of variations smaller than the overall modulation by a factor of 70. The same

situation has been encountered in the list of 1200 Kepler candidates announced recently, in

which stellar activity modulations and transit events have been disentangled, often with the

former being far greater than the latter.

In conclusion, the overall (random) photometric jitter of the star should not be a

crucial factor with the right strategy to adequately correct for modulations caused by spot

variations. Time series can be used as an “activity monitor” by the visible part of the

spectrum. As mentioned in 2.4, systematic differences in the stellar flux could hamper

multiple transit combinations. However, where primary transit observations are subject to

these effects, secondary eclipse observations are preferred as they are immune to them.

4.2. Planetary Variability

Upper limits about eclipse variability have been reported by Agol et al. (2010) and

Knutson et al. (2011). We do not know the nature of this variability, but the chance of

observing multiple spectra rather than photometric bands might be helpful to explore

the potential sources of atmospheric variability (thermal changes? chemical changes?

clouds/hazes?) for the most favorable targets. In the case of faint targets, for which

co-adding eclipse observations is necessary, only spatially/temporally-averaged information

will be available. From the experience with the planets in our own Solar System, this

information, although more limited, is expected to be still very significant.
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4.3. Stellar Population

The integration times required to study habitable-zone super-Earths (given in table

12) show that characterisation of these targets is possible provided they orbit late type

dwarfs. While bright targets are preferred, as they provide a higher photon signal, our

results cover a range of magnitudes from K=5 to K=9. In parallel, the M type population

found in the RECONS catalogue (RECONS 2011), which lists 100 stars up to 6.6pc in the

Sun’s local neighbourhood, is mostly formed of bright targets with a significant fraction

having magnitudes between K=4 and K=6 (see Fig. 3). Extrapolation from the catalogue

up to magnitude K=9 yields however a much larger stellar population that can be studied

for super-Earths. Thus, combining the feasibility of studying targets up to K=9, while

keeping a preference for brighter sources, and the greater amount of fainter stars up to mag.

K=9, creates a common area ideal for super-Earth observations centered around the K=7-8

magnitude region. A mission that aims to characterise habitable-zone super-Earths should

have detectors optimised for this magnitude range.

4.4. Instrument Transmission

Throughout this paper we have considered an instrumental transmission value of

0.7. In practical applications, many factors can reduce this transmission value. While

most of the cases presented allow for slightly longer observations, the most challenging

category of habitable-zone super-Earths will require high instrumental transmission values

to remain feasible. Instrument designs with high levels of transmission, such as fourier

transform spectrographs, can be considered a possibility for the characterisation of these

most challenging targets.
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4.5. Systematic Effects

We presented here idealised cases where systematic errors (such as detector time

constants, pointing jitter, re-acquisition errors, temperature fluctuations, etc.) were not

accounted for. Instrumental settings for our results from the visible to the infrared were

based on available technology and can be considered realistic. With these considerations,

the results presented in this paper highlight that in the coming years habitable-zone

super-Earths are realistically within reach. In future work, we will update our models as

information on the systematic effects of specific instruments becomes available.
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5. Conclusions

We have presented in this paper a detailed study of the performances and trade-offs

of a M-class transit spectroscopy mission dedicated to the observation of exoplanetary

atmospheres. We have demonstrated that, in principle, with a 1.2/1.4m space telescope

performing simultaneous spectroscopy from the visible to the mid-IR, we are able to secure

the characterisation of a plethora of exoplanets, ranging from the hot, gaseous down to

the temperate ones approaching the size of the Earth. According to our simulations, the

spectra of hot-Jupiters orbiting F, G and K-type stars with V mag. brighter than 10 can

be obtained by integrating from a fraction of transit up to few tens of transits to reach a

spectral resolution of 300 and SNR = 50. Habitable-zone super-Earths are undoubtedly

the most challenging category of targets due to their small size, low temperature and their

relatively large separation from the star. We show however, that these targets can be

observed at low resolution in the Mid-IR, provided their hosting star is a bright M dwarf.

While most of the Sun’s neighbourhood is composed of these late-type stars, efforts still

need to be directed at increasing the number of low mass stars known and constraining their

properties. The 2MASS catalogue sample, completed with current and planned dedicated

ground-based surveys, as well as space missions such as WISE and GAIA should offer a

viable solution to this critical issue in the next five years.

In future work, we will update our current instrument models by including a more realistic

treatment of the systematics.
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A. Appendix

In addition to the numbers presented throughout the paper for a 1.4m telescope, we

provide here two supplementary sets of results for a 1.2m telescope. We detail in Table 13

the parameters adopted for the two cases. The results are displayed in the following way:

Number of transits: Case 1 (Case 2).

Case 1 Case 2

Detector used SOFRADIR RAYTHEON

LWIR VLWIR JWST Si:As

Spectral range considered (µm) 5 - 11 11 - 16 5 - 16

Full well capacity (electrons) 2 · 107 5 · 106 2 · 105

Dark current (electrons/s/pixel) 500 300 0.2

Quantum efficiency (electrons/photon) 0.7 0.7 0.7

Readout noise (electrons/pixel/readout) 1000 1000 15

Readout time (seconds) 0.03 0.01 3

Telescope temperature (K) < 60 < 60 < 60

Instrument temperature (K) 45 45 45

Telescope transmission 0.9 0.9 0.85

Instrument transmission 0.7 0.7 0.4

Table 13:: List of parameters used in the two sets of appendix results. In the first case, two detectors are

needed to cover the 5 to 16 micron range, while for the second set of results, which represents an alternate

design of the instruments, one detector is used for the full range. The results are split into four columns

representing wavelength bands used. The first column lists values in the photometric N band, which is also

the band used for results presented throughout the paper, followed by three channels: 5 to 8.3 µm, 8.3 to

11 µm and 11 to 16 µm. A 30 µm pixel size and 2 illuminated pixels per spectral element are assumed (For

the N band (7.7 to 12.7 µm) we have used the LWIR setting values). In the case of the VLWIR detector,

we have used a dark current value of 300 electrons/s/pixel considering existing technologies and expected

future capabilities. Further discussion on these values can be found in section 4.4.
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A.1. 1.2m telescope, Hot Planets

Bands: N (7.7 to 12.7) 5 to 8.3 8.3 to 11 11 to 16

1) Contrasts: 1.01E-03 5.13E-04 8.34E-04 7.21E-04

V=5 9.56 (15.71) 12.62 (21.22) 13.60 (22.38) 41.05 (58.11)

V=6 25.29 (39.49) 32.30 (53.31) 35.94 (56.21) 111.60 (157.43)

V=7 71.63 (99.33) 84.94 (133.92) 101.47 (141.22) LR (LR)

V=8 LR (LR) LR (LR) LR (LR) LR (LR)

V=9 LR (LR) LR (LR) LR (LR) LR (LR)

2) Contrasts: 5.56E-03 2.89E-03 4.61E-03 3.93E-03

V=5 0.21 (0.36) 0.27 (0.50) 0.30 (0.50) 0.90 (1.28)

V=6 0.54 (0.89) 0.67 (1.13) 0.77 (1.26) 2.35 (3.33)

V=7 1.44 (2.24) 1.73 (2.84) 2.04 (3.18) 6.42 (9.05)

V=8 4.12 (5.64) 4.55 (7.14) 5.80 (7.98) 19.33 (27.07)

V=9 13.42 (14.23) 12.76 (17.95) 18.81 (20.06) 68.83 (95.35)

3) Contrasts: 1.38E-04 8.61E-05 1.32E-04 1.69E-04

K=5 17.86 (30.06) 15.30 (36.55) 19.15 (32.23) 25.47 (36.29)

K=6 45.71 (75.54) 38.68 (65.21) 48.97 (80.96) 66.87 (95.81)

K=7 120.18 (189.99) 98.68 (163.79) 128.52 (203.40) 186.32 (270.04)

K=8 335.66 (478.83) 257.50 (411.44) 357.59 (511.12) 583.75 (863.62)

K=9 1056.31 (1212.80) 707.50 (1033.57) 1117.56 (1285.18) LR (LR)

4) Contrasts: 1.22E-03 7.78E-04 1.17E-03 1.48E-03

K=5 0.63 (1.06) 0.51 (1.23) 0.67 (1.13) 0.90 (1.29)

K=6 1.61 (2.66) 1.28 (2.16) 1.72 (2.84) 2.73 (3.40)

K=7 4.23 (6.69) 3.27 (5.44) 4.51 (7.13) 6.60 (9.56)

K=8 11.82 (16.87) 8.54 (13.65) 12.54 (17.92) 20.63 (30.52)

K=9 37.19 (42.72) 23.42 (34.30) 39.18 (45.07) 77.42 (117.64)
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Table 14:: 1: Integration times in number of transits for a hot Jupiter orbiting a F3.0V star. The four

columns compare integration times in different bands for the same target. The contrast value and number

of resolution elements are given for each band. The five rows list results for the specified star with varying

magnitude (here in mag. V). The star temperature used is 6740 K, and the transit duration assumed is

2.90 hours. A spectral Resolution of 300 and a SNR value of 50 are used. A dash ‘-’ signifies that the

number of transits required is over the maximum number of transits that can be covered over a mission

lifetime. ‘LR’ stands for Lower Resolution, and is indicated when observations need to be done at a lower

spectral resolution to fit within the time constrains of a mission, and ‘phot’ stands for photometry at selected

wavelengths, where lower resolution is not feasible.

2: Planet: Hot Jupiter, Star: K1V, temp: 4900K, R=300, SNR=50.

3: Planet: Hot SE, Star: M1.5V, temp: 3582K, R=40, SNR=10.

4: Planet: Hot SE, Star: M5V, temp: 3055K R=40, SNR=10.
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A.2. 1.2m telescope, Warm Planets

Bands: N (7.7 to 12.7) 5 to 8.3 8.3 to 11 11 to 16

1) Contrasts: 4.61E-04 3.10E-04 4.10E-04 1.28E-03

K=5 19.39 (32.52) 14.12 (27.06) 23.82 (39.97) 5.31 (7.57)

K=6 49.84 (81.74) 35.75 (60.11) 61.18 (100.40) 14.03 (20.07)

K=7 132.40 (205.61) 91.55 (151.00) 162.21 (252.24) 39.56 (57.18)

K=8 378.10 (518.31) 241.00 (379.32) 461.30 (633.88) 126.66 (186.27)

K=9 LR (LR) 675.07 (LR) LR (LR) 490.38 (LR)

2) Contrasts: 1.93E-04 7.12E-05 1.75E-04 2.94E-04

K=5 5.55 (9.40) 13.49 (65.35) 6.62 (11.22) 5.06 (7.22)

K=6 14.08 (23.63) 34.00 (65.35) 16.79 (28.18) 13.13 (18.86)

K=7 36.22 (59.41) 86.06 (144.73) 43.14 (70.78) 35.62 (51.91)

K=8 96.34 (149.68) 220.38 (363.54) 114.42 (177.86) 106.09 (159.04)

K=9 275.81 (378.73) 580.07 (LR) 325.63 (447.17) 371.25 (580.26)

3) Contrasts: 3.29E-04 1.22E-04 2.98E-04 4.98E-04

K=5 2.46 (4.17) 5.86 (28.50) 2.93 (4.96) 2.25 (3.21)

K=6 6.24 (10.47) 14.76 (28.51) 7.43 (12.47) 5.84 (8.39)

K=7 16.05 (26.33) 37.36 (62.82) 19.09 (31.32) 15.84 (23.08)

K=8 42.69 (66.33) 95.65 (157.81) 50.62 (78.69) 47.15 (70.67)

K=9 122.22 (167.84) 251.71 (396.40) 144.07 (197.85) 164.88 (257.66)

Table 15:: See Table 14 for additional explanation.

1: Planet: Warm Neptune, Star: M2.5V, temp: 3480K, R=50, SNR=30.

2: Planet: Warm SE, Star: M4V, temp: 3230K, R=20, SNR=10.

3: Planet: Warm SE, Star: M5V, temp: 3055K, R=20, SNR=10.
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A.3. 1.2m telescope, HZ Planets

Bands: N (7.7 to 12.7) 5 to 8.3 8.3 to 11 11 to 16

1) Contrasts: 1.53E-04 2.12E-06 1.27E-04 1.58E-04

V=5 0.35 (1.86) phot (-) 0.49 (2.70) 0.69 (1.75)

V=6 0.87 (1.86) - (-) 1.24 (2.70) 1.74 (2.47)

V=7 2.21 (3.72) - (-) 3.12 (5.26) 4.44 (6.32)

V=8 5.65 (9.36) - (-) 7.98 (13.22) 11.63 (16.66)

V=9 14.83 (LR) - (-) LR (LR) LR (LR)

2) Contrasts: 3.54E-05 4.97E-06 2.89E-05 8.15E-05

K=5 11.60 (36.69) phot (-) 16.91 (59.39) 4.60 (7.84)

K=6 29.28 (52.81) phot (-) 42.68 (76.96) 11.87 (18.20)

K=7 74.47 (132.80) - (-) 108.43 (phot) 31.75 (49.50)

K=8 phot (-) - (-) phot (-) 92.00 (phot)

3) Contrasts: 8.46E-05 1.21E-05 6.92E-05 1.93E-04

K=5 2.95 (10.42) 47.51 (-) 4.29 (15.55) 1.18 (2.08)

K=6 7.46 (13.87) 119.51 (-) 10.83 (20.15) 3.04 (4.81)

K=7 18.96 (34.87) phot (-) 27.53 (50.61) 8.13 (13.07)

K=8 49.10 (87.83) phot (-) 71.12 (127.18) 23.53 (39.10)

K=9 132.62 (222.11) - (-) 191.12 (phot) 78.75 (137.79)

Table 16:: See Table 14 for additional explanation.

1: Planet: HZ Jup, Star: K4V, temp: 4780K, R=40, SNR=10.

2: Planet: HZ SE, Star: M4V, temp: 3230K, R=10, SNR=5.

3: Planet: HZ SE, Star: M5.5V, temp: 2920K, R=10, SNR=5.
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