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3Instituto de F́ısica de Ĺıquidos y Sistemas Biológicos, UNLP, La Plata 1900, Argentina
4Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge, CB3 0HE, UK

(Dated: October 31, 2013)

The phase diagram of Sr3Ru2O7 contains a metamagnetic transition that bifurcates to enclose
an anomalous phase with intriguing properties - a large resistivity with anisotropy that breaks the
crystal-lattice symmetry. We propose that this is a magnetic analogue of the spatially inhomoge-
neous superconducting Fulde-Ferrell-Larkin-Ovchinnikov state. Based on a microscopic theory of
Stoner magnetism we derive a Ginzburg-Landau expansion where the magnetisation transverse to
the applied field can become spatially inhomogeneous. We show that this reproduces the observed
phase diagram of Sr3Ru2O7.

I. INTRODUCTION

Phase transitions may occur through the sudden or
continuous appearence of order. A third possibility, that
the phase is established via an intermediate state with
spatially modulated order was postulated by Fulde and
Ferrell1, and Larkin and Ovchinnikov2, in the case of su-
perconductivity. They showed that a spatially modulated
superconducting phase is favourable in a narrow range of
magnetic fields between the normal and superconduct-
ing states. Despite stimulating great interest since its
proposal the Fulde-Ferrell-Larkin-Ovchinnikov (LOFF)
phase has yet to be conclusively observed. It is however
the source of much interest in cold atoms and heavy-
fermion and color superconductivity3. These ideas also
have links to the search for an intermediate phase be-
tween the isotropic Fermi liquid and the Wigner crystal
where the electronic liquid breaks some but not all of
the symmetries of its environment4. There is a magnetic
analogue to these phenomena. The formation of a spa-
tially modulated magnetization may pre-empt the tran-
sition between uniform paramagnet and ferromagnet, or
a metamagnetic transition.

Such a mechanism may explain the puzzling properties
of Sr3Ru2O7

5–10. This material shows a complex phase
diagram where a metamagnetic transition may be tuned
by varying the angle of the applied magnetic field with
respect to the crystal axes. As the critical endpoint of
this first order phase transition approaches zero temper-
ature the transition bifurcates to enclose a region with
striking transport properties. The resistivity in this re-
gion is anomalously high and shows anisotropy. When
current is passed in the direction most perpendicular to
the applied field then the resistivity drops away rapidly
if the field is applied at an angle from the c-axis. With
the current in the direction most parallel to the field then
the high resistivity persists for a greater range of angle.
We propose that this anomalous region is a phase of spa-
tially modulated magnetisation appearing between the
low- and high-field sides of the metamagnetic transition,
in analogy with the superconducting LOFF state.

This article is an extension of the ideas we presented
in Ref. 11. We begin by describing heuristically why
modulated states may become favourable before turn-
ing explicitly to the metamagnetic system. In a manner
similar to Ref. 12, we show how a Stoner model with
a peak in the electronic density of states can reproduce
the metamagnetic transition. We then consider how this
can be extended to include modulated states. We will
show how in an expansion about the line of metamag-
netic critical endpoints the transverse spin stiffness van-
ishes. Based on this we will study a phenomenology for
the modulated metamagnetic system and calculate how
the metamagnetic transition reconstructs to accomodate
the inhomogeneous phase. We compare this model with
the data on Sr3Ru2O7.

II. HEURISTIC PICTURE

We begin with a heuristic discussion of inhomogeneous
phase formation. We concentrate on superconductivity
as it was here that the intermediate modulated phase was
first proposed. We describe how analogous principles can
apply to the formation of spatially modulated magnetic
states.

A BCS superconductor is formed when electrons with
spin-up and momentum +k pair with electrons with spin-
down and momentum −k to form a Cooper pair with
zero total momentum. When a magnetic field is ap-
plied the Zeeman energy favours splitting the spin-up
and -down Fermi surfaces, therefore breaking the pairing.
The Fulde-Ferrell-Larkin-Ovchinnikov1,2 state occurs in
a narrow range of fields where the system can take ad-
vantage of both Zeeman and pairing energies by pairing
electrons with +k+ q

2 and −k+ q
2 . This produces Cooper

pairs with non-zero total momentum, corresponding to
a spatial modulation of the superconducting order with
wavevector q. In this way the transition from supercon-
ducting to normal phase may occur via an intermediate
modulated phase. A range of possible superconducting
textures are possible, made by superposing several mod-
ulation wavevectors3. Which texture is most favourable
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depends on microscopic details.
Similar ideas find application in magnetic systems. It

may be favourable for modulated magnetic states to form
as intermediate phases in metamagnetic transitions. For
magnetism to be favourable there must be an energetic
advantage to creating an imbalance in the number of up-
and down-spin electrons. In a Stoner model this is pro-
vided by Coulomb interaction energy, which is balanced
against a gain in single-particle kinetic energy due to the
change in electron momentum necessary to create the im-
balance. When the density of states (DoS) at the Fermi
surface is high enough the interaction energy wins and
the system becomes ferromagnetic. If there is a peak in
the DoS then one of the spin species’ Fermi surface can
be tuned into the region of high DoS by the application
of a magnetic field. When this happens it will become
favourable for the system to magnetize and a metamag-
netic transition occurs12–14. This peak may be caused
by, for example, a van Hove singularity in the electronic
band dispersion.

Spatial modulation may be stabilized by similar con-
siderations15,16. The formation of modulation recon-
structs the electronic dispersion, producing additional
peaks in the DoS due to anticrossing of the electronic
bands. Advantage can be taken of these peaks in the
same way as in the homogeneous case. The single-particle
energy cost to magnetising is reduced by occupying states
under the new peak, leading to the favourability of mod-
ulated magnetisation. As with the LOFF case a variety
of spin-textures can be formed by superposing several
wavevectors of modulation. The possible textures will be
determined by the symmetry of the band structure and
may be sensitively dependent on microscopic details. In
this paper we will consider a single-q state, the magnetic
analogue of the Fulde-Ferrell ansatz. A visulisation of a
single-q spiral and a spin-texture made by superimposing
four such spirals, as may occur in a fourfold symmetric
band structure, is presented in Fig.1.

The analogy between superconductivity and mag-
netism is general17,18. Magnetism can be viewed as
pairing in the particle-hole, rather than particle-particle
channel as in the superconducting case. The mapping
between the phase of the order parameter in the mag-
netic spin-spiral and the superconducting LOFF cases
has also been made in the mapping of the XY model to
superconductivity19.

III. MICROSCOPIC MODEL

A. The Stoner model

Having discussed inhomogeneous phase formation gen-
erally, we now turn to the microscopic model which we
will study. We introduce the energetic reasons for the
metamagnetic transition occuring and the methods by
which the metamagnetic phase diagram may be calcu-
lated. We discuss how this relates to Sr3Ru2O7.

a)

b)

FIG. 1: (Color online) Possible magnetic textures. a) A single
spin-spiral. b) A superposition of four spirals. The longitudi-
nal magnetic component has been suppressed for clarity.

The dominant feature in the magnetic phase diagram
of Sr3Ru2O7 is the metamagnetic transition. We begin
from the idea that the full phase diagram, including the
anomalous phase, is found by restructuring this metam-
agnetic transition. Based on this idea we use the sim-
plest model which reproduces the metamagnetic tran-
sition; the Stoner model with a peak in the electronic
DoS. This gives the correct topology for the metamag-
netic transition with a generic 2D band dispersion12.

We begin from the Hamiltonian:

Ĥ − µN̂ =
∑
k

ψ†k (εk − µ)ψk −
g

4

∫
dx
(
ψ†xσψx

)2
−h
∫
dx ψ†xσzψx, (1)

where ψ†k/x =
(
c†k/x,↑, c

†
k/x,↓

)
represents the electron cre-

ation operators in the momentum and position represen-
tations respectively, εk is the electonic band dispersion,
σ is the vector of Pauli matrices, g is a contact interac-
tion representing the screened Coulomb interaction and
where we have singled out z as the direction of the ap-
plied magnetic field h. Here, the first term is the single-
particle energy, the second term is the interaction energy
and the final term is the Zeeman energy. The balance be-
tween these terms will determine the magnetic properties
of the system.

We will consider the simplest dispersion which will pro-
duce a peak in the DoS, the 2D next-nearest-neighbour
tight-binding dispersion εk = − (cos kx + cos ky) +
t cos kx cos ky. Here t parameterises the amount of next-
nearest neighbour hopping and prevents the pathologi-
cal perfect nesting of the Fermi surface which causes the
nearest-neighbour dispersion to become an antiferromag-
netic insulator at van Hove filling. This dispersion has
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FIG. 2: (Color online) Cartoon for the formation of metam-
agnetism. At the metamagnetic transition the majority band
increases its filling through the van Hove singularity. The
presence of this singlarity leads to a reduced cost in single-
particle energy allowing the gain in interaction energy to win
out.

saddle points at k = (0,±π) and k = (±π, 0). These
saddle points produce logarithmically divergent peaks in
the DoS which will drive the metamagnetism20. The phe-
nomenology which we develop is generic and not tied
to this particular dispersion, relying only on a peak in
the DoS near to the Fermi energy. Details such as the
wavevector of the inhomogeneity will depend on the ex-
act dispersion used.

The Hamiltonian (1) gives the well-known Stoner crite-
rion for the formation of ferromagnetism, gρF = 1 where
ρF is the DoS at the Fermi surface. This condition deter-
mines when a system will undergo a continuous transition
between paramagnetic and ferromagnetic states. When
the DoS at the Fermi surface becomes large enough the
system magnetizes. By tuning the Fermi-surface through
a peak in the DoS the system can be tuned through the
ferromagnetic transition.

1. Cartoon of the metamagnetic transition

We now present a cartoon for the metamagnetic tran-
sition. If the Fermi energy of a system is placed such that
it is near a peak in the DoS, but the Stoner criterion is
not yet satisfied then the system will be in the paramag-
netic state. If a magnetic field is applied then the Fermi-
surfaces are split, one moving towards the peak and one
away from it as shown in Fig.2. When one Fermi-surface
reaches a region of high enough DoS then the interaction
energy gain due to magnetising becomes greater than the
single-particle energy cost in splitting the Fermi-surfaces
further and the system spontaneously magnetizes. If the
Fermi-surface jumps discontinuously over the peak then
there is a first order transition in the magnetisation. This
is known to occur if the curvature of the DoS is high
enough such that it satisfies the Wohlfarth-Rhodes cri-

terion13 3 (ρ′F)
2
< ρFρ

′′
F. Thus the Stoner model with a

peak in the DoS produces a metamagnetic wing.
The phase diagram for this model can be calculated

h
µ

T

Metamagnetic
sheets

Tricritical point Ferromagnet

van Hove
filling

FIG. 3: (Color online) The phase diagram for the Stoner
model as a function of µ, h and T for the next-nearest-
neighbour tight-binding dispersion. The line of second order
transitions is given by ∂2

mF = 0, the line of metamagnetic crit-
ical endpoints by ∂3

mF = ∂2
mF = 0 and the tricritical point

by ∂4
mF = ∂2

mF = 0. The shaded area on the µ, h plane is a
schematic representation of the region of this phase diagram
which is observed in Sr3Ru2O7.

from the mean-field free energy. The phase transitions
are determined by conditions on the derivatives of the
free energy with respect to magnetization. The second
derivative gives the inverse of the magnetic susceptibility.
The susceptibility diverges at a second order transition,
giving a condition for a continuous transition. The line
of metamagnetic critical endpoints is determined by the
third derivative being zero. By symmetry this derivative
must be zero when there is no field and the tricritical
point in the zero field plane is determined by the fourth
derivative vanishing. These derivatives are the coeffi-
cients of a Landau expansion of the free energy which
we will derive shortly. These conditions may be solved
numerically to give the transition lines as a function of µ,
h and T . With the next-nearest-neighbour tight-binding
dispersion these conditions give the phase diagram shown
in Fig.3. At zero field and close to van Hove filling there
is a continuous transition into the ferromagnetic state
as the temperature is decreased. The transition becomes
first-order at a tricritical point. This first order transition
opens up into two metamagnetic wings at non-zero field
as µ gets further from van Hove filling. These are sheets
of discontinuous jumps in magnetization which end at a
critical endpoint.

In Sr3Ru2O7 the angle of the applied field tunes
through the metamagnetic wing, effectively taking the
role of µ. Rather than tuning the filling of a fixed band
structure, the field angle controls the position of a peak
in the DoS allowing tuning through the phase diagram by
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varying this angle. We will consider how this may come
about in a later section. The parent tricritical point does
not appear in the phase diagram of Sr3Ru2O7 as a func-
tion of the angle of applied field21. Sr3Ru2O7 can there-
fore be thought of as a segment of this phase diagram,
schematically indicated in Fig. 3 (the experimental phase
diagram is presented in Fig. 11).

B. Ginzburg-Landau expansion

In order to calculate the phase diagram including spa-
tial modulation we turn to a Ginzburg-Landau expansion
of the free energy around the line of metamagnetic critical
endpoints, an approach similar to that of Ref. 22,23. We
begin by considering the general properties of Ginzburg-
Landau expansions before developing an explicit expan-
sion of the microscopic Hamiltonian. We will see that the
coefficients of the expansion are constrained by the fact
that we are expanding about the line of critical endpoints.
The homogeneous phase diagram is calculated. We will
then investigate the formation of inhomogeneous trans-
verse magnetisation. We will see that modulated phases
become favourable along the line of critical endpoints.

The Ginzburg-Landau expansion is a method of study-
ing phase transitions which relies on the smallness of the
order parameter near to a continuous transition. In this
regime the free energy can be expanded in powers of the
order parameter. The terms which appear in this expan-
sion are governed by the symmetry of the system. In the
case of the zero-field paramagnet to ferromagnet transi-
tion the free energy becomes an expansion in even powers
of magnetisation

βFL = rM2 + uM4 + vM6 − h ·M. (2)

This gives a phase diagram in terms of the coefficients r,
u and the field h, shown in Fig. 4. For r < 0, u > 0
the plane h = 0 defines a sheet of first order transitions
with the line r = 0 being a second order transition line.
The point r = u = h = 0 is a tricritical point where
the second order transition bifurcates into two lines of
critical endpoints determined by the conditions r = 9u2

20v ,

h = ± 6u2

25

√
3|u|
10v3 . These transitions may be mapped onto

the parameters of any given microscopic theory by cal-
culating the coefficients r, u and v in terms of the mi-
croscopic parameters of the Hamiltonian. For the case of
the Stoner model we will calculate these coefficients as
functions of µ, h and T .

In order to include the energy cost for spatial mod-
ulation we add terms involving gradients of the order
parameter to the expansion. These gradient terms be-
come an expansion in powers of q. Like the powers of
the order parameter these are constrained by the sym-
metries of the system. If the system has inversion sym-
metry, like Sr3Ru2O7, then modulations with wavevec-
tors ±q must have the same energy. There can only be
even powers of q in the expansion. Inhomogeneity in

h

r

-u

p

T

h

FIG. 4: (Color online) The phase diagram for a general Lan-
dau expansion. The inset shows how this phase diagram maps
onto the microscopic parameters of a theory. This should
be compared with the calculated phase diagram for the the
Stoner model, Fig. 3.

this model is not the result of a Dzyaloshinskii-Moriya
interaction24–26. Furthermore the direction of q will be
picked out by anisotropies in the electronic dispersion.
We do not expect these anisotropies to alter the phase
diagram and so will consider a simplified isotropic model.
Assuming a single q the Ginzburg-Landau expansion for
the modulated system has the form:

βFL =
(
r +Kq2 + Lq4

)
M2 + uqM4 + vM6 − h ·M.

(3)

This is the same method often used to study the LOFF
transition3. We may therefore anticipate that a similar
effect occurs in magnetization, where the transition be-
tween low and high magnetization states on the meta-
magnetic wing is split by the formation of an inhomo-
geneous magnetic phase. In LOFF the expansion of the
microscopic theory reveals that the K coefficient of the
expansion is approximately proportional to the u coeffi-
cient. Therefore the tricritical point, where u = 0, is the
point at which inhomogeneity appears. We will look for
a similar relationship in the case of Stoner magnetism.
It will emerge that in this case the relationship is more
subtle. The formation of modulated transverse magneti-
zation self-consistently drives the longitudinal M4 term
negative. This results in a reconstruction of the metam-
agnetic line to include a tricritical point accompanied by
transverse spatial modulation.

We now turn to detailed calculation to obtain
the Ginzburg-Landau expansion from the Hamiltonian
Eq.(1). This process follows several standard steps. The
partition function is written as a path integral and the in-
teraction terms decoupled. The action is then expanded
in powers of m and q to obtain the terms of the Ginzburg-
Landau expansion.
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The partition function is written as a path integral over
Grassman fields,

Z =

∫
D
(
ψ†, ψ

)
e−

∫ β
0
dτ[ψ†∂τψ+Ĥ−µN̂]. (4)

The interaction terms are decoupled by a Hubbard-
Stratonovich transformation with coupling m(x) ·(
ψ†xσψx

)
. Integrating over the fermionic fields the par-

tition function can be expressed as a field integral, Z =∫
Dm e−S[m] where the Euclidean time action takes the

form

S[m] =
g

4

∫
dy m2 − tr ln

[
Ĝ−1

0 +
g

2
σ ·m

]
=

g

4

∫
dy m2 − tr ln

[
Ĝ−1

0

]
+

∞∑
n=1

(−1)n

n

(g
2

)2

tr
[
Ĝ0σ ·m

]n
, (5)

where
∫
dy ≡

∫ β
0
dτ
∫
ddx, β = (kBT )

−1
and d is the

spatial dimension. Here Ĝ−1
0 = −∂τ − ξk + hσz, where

ξk = εk − µ, denotes the inverse Green’s function of the
non-interacting electron. In the second line we have in-
troduced the expansion of the action in powers of m. It
will be convenient to absorb the external field into a shift
of the longitudinal magnetization, m 7→ m′ = m+ 2

gh.

The Landau theory is developed as an expansion
around the saddle point of this action along the line of
critical end-points. Varying the action with respect to
m and applying the ansatz m = M̄ , constant, gives the
equation for the uniform saddle-point

M̄ − 2

g
h =

1

βLd

∑
kσ

σGσ(k)

=
1

Ld

∑
kσ

σ nF

[
εk − gM̄σ/2

]
, (6)

where Gσ(k) = (iωn − ξk + g
2M̄σ)−1 and nF(ε) =

(eβ(ε−µ) + 1)−1 is the Fermi distribution function with
σ = ±1 denoting spin-up and -down electrons. For a
given interaction g, this gives the value of the saddle-
point magnetization M̄ as a function of chemical poten-
tial µ, magnetic field h and temperature T .

As mentioned earlier, the coordinates of the metam-
agnetic critical endpoint are found by the requirement
that the second and third derivatives of the free energy
with respect to magnetisation are zero. This gives the
conditions

2

g
= − 1

Ld

∑
kσ

n
(1)
F

[
εk − (gM̄/2 + h)σ

]
,

0 =
1

Ld

∑
kσ

σn
(2)
F

[
εk − (gM̄/2 + h)σ

]
, (7)

where n
(n)
F (ε) = ∂nε nF(ε). These equations not only de-

termine the phase transitions but will be used to simplify
the expressions for the coefficients of the Landau expan-
sion.

C. Homogeneous expansion

The Ginzburg-Landau expansion is constructed by
evaluation of the terms in the expansion of the action
(5). As the expansion is centered on the line of criti-
cal endpoints we expand about the saddle-point value M̄
and not zero. The presence of the field singles out a par-
ticular direction in space and components of the magne-
tization parallel and perpendicular to this direction may
have different properties. We set M = (m+ M̄)ê‖+ m⊥
with the deviation from the saddle-point solution M̄ pre-
sumed small. Discarding the constant contribution to the
action, the saddle-point solution ensures that most of the
terms at first order in M must vanish, leaving only the
field-dependent contribution,

S(1) = −
∫
ddx hm. (8)

At second order the action can be split into longitudinal
and transverse components,

S(2) =
g

4

∫
ddx m2

+
(g

2

)2

tr
[
Ĝ↑m⊥ · Ĝ↓m⊥

+
1

2

(
(Ĝ↑m)2 + (Ĝ↓m)2

)]
. (9)

Defining the longitudinal and transverse susceptibilities

Π||σ(q) =
1

βLd

∑
k

Gσ(k)Gσ(k + q),

Π⊥(q) =
1

βLd

∑
k

G↑(k)G↓(k + q), (10)

we have

S(2) = S(2)
|| + S(2)

⊥ ,

S(2)
|| =

g

4

∫
ddxm2 +

g2

8

∑
qσ

Π||σmqm−q,

S(2)
⊥ =

g

4

∫
ddxm2

⊥ +
g2

4

∑
q

Π⊥m⊥qm⊥−q. (11)

Expanding in powers of q will lead to the gradient terms
in the Ginzburg-Landau expansion. Initially we will con-
sider the q = 0 homogeneous case. Evaluating the sus-
ceptibilities we find

S(2)
|| = β

∫
ddx rm2,

S(2)
⊥ = β

∫
ddx r⊥m2

⊥, (12)

where

r =
g

4
+
g2

8

1

Ld

∑
kσ

n
(1)
F (εk − gM̄σ/2),

r⊥ =
g

4
− g2

4

1

gM̄

1

Ld

∑
k

σnF(εk − gM̄σ/2). (13)
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Considering the situation of zero field, M̄ → 0. r⊥ be-

comes a constant and r becomes g
4

(
1 + g

Ld

∑
k n

(1)
F (εk)

)
.

The condition r = 0 corresponds to a second-order tran-
sition. This is the standard Stoner criterion, 1 = gρ(εF)
at zero temperature.

At third order, the longitudinal and transverse mag-
netisations become coupled. It is this coupling which al-
lows inhomogeneity in the transverse component to affect
the phase diagram of the longitudinal magnetisation.

S(3) = −g
3

24
tr
[
(Ĝ↑m)3 − (Ĝ↓m)3

]
−g

3

8
tr
[
Ĝ2
↑Ĝ↓mm2

⊥ − Ĝ↑Ĝ2
↓mm2

⊥

]
= β

∫
ddx

[
sm3 + s⊥mm2

⊥
]
, (14)

where

s = −g
3

48

1

Ld

∑
kσ

σn
(2)
F (εk − gM̄σ/2),

s⊥ = − 2

(gM̄)2

1

Ld

∑
kσ

[
σnF(εk − gM̄σ/2)

+
gM̄

2
n

(1)
F (εk − gM̄σ/2)

]
. (15)

s vanishes in the absence of an external field, as expected
from symmetry. The line of critical endpoints is given by
the condition r = s = 0.

The expansion can be evaluated at each order to obtain
the coefficients of the Landau expansion. There is little
to be gained by a detailed description of this process
and we simply present the results here. On the line of
critical endpoints certain simplifications occur. Applying
the conditions (7) to the expressions for the coefficients
and adopting dimensionless magnetizations φ = m/M̄
and φ⊥ = M⊥/M̄ , we obtain a Landau expansion with
the form:

βFL = hM̄
[
Rφ2 + Sφ3 + Uφ4 + Tφ5 + V φ6 −Hφ

+R⊥φ
2
⊥ + U⊥φ

4
⊥ + V⊥φ

6
⊥

+S1φφ
2
⊥ + U1φ

2φ2
⊥ + T1φ

3φ2
⊥

+V1φ
4φ2
⊥ + T2φφ

4
⊥ + V2φ

2φ4
⊥
]

(16)

where

R = 0, S = 0,

U =
1

4!

(
M̄3

h

)(g
2

)4 1

Ld

∑
kσ

n
(3)
F (ε− gM̄σ/2),

T =
1

5!

(
M̄4

h

)(g
2

)5 1

Ld

∑
kσ

σn
(4)
F (ε− gM̄σ/2),

V =
1

6!

(
M̄5

h

)(g
2

)6 1

Ld

∑
kσ

n
(5)
F (ε− gM̄σ/2),

R⊥ =
1

2
, U⊥ = −1

8
, V⊥ =

1

16
,

S1 = −1

2
, U1 = −4U⊥ =

1

2
,

T1 = −1

2
+ 2U, T2 =

3

8
,

V1 = 1− 2U − 5

2
T, V2 = −3

4
+

3

2
U. (17)

The condition that we lie on the line of critical end-points
is sufficient to reduce many of the coefficients of the ex-
pansion to constants. This independence of the coeffi-
cients from the details of the dispersion and filling sug-
gests that we may be able to deduce them from general
principles. We shall later show that this is the case.

These coefficients are sufficient to determine the phase
diagram for homogeneous magnetisation as shown in
Fig.3. It is not favourable to form transverse magneti-
sation in the homogeneous case as the coefficients of the
φ⊥ terms raise the free energy. There is a metamagnetic
transition in the longitudinal magnetisation, as there is
when the transverse component is not considered. We
will show that it may become favourable to form trans-
verse magnetisation when this magnetisation is spatially
modulated and that the appearance of this component
causes the reconstruction of the longitudinal metamag-
netic transition.

D. Transverse susceptibility

Having discussed how features in the DoS can lead to
metamagnetism we show that they can also lead to spa-
tial modulation of the magnetism.

The tendency of the system to form order at any
wavevector is encoded in the q-dependent susceptibil-
ity. We will consider modulation in the component of
the magnetisation transverse to the applied field. While
spatial modulation of the longitudinal magnetization is
possible, it does not lead to the type of phase reconstruc-
tion considered here and we do not study it. The suscep-
tibility for transverse magnetisation is given by Eq.(10).
Putting explicitly the q-dependence, which we previously
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ignored, this becomes:

Π⊥(q) =
∑
k

nF

(
εk+q − gM̄

2

)
− nF

(
εk + gM̄

2

)
εk − εk+q + gM̄

(18)

where nF (ε) =
(
1 + eβ(ε−µ)

)−1
is the Fermi-Dirac distri-

bution, q is the wavevector of modulation and M̄ is a
shifted magnetisation which includes the external field:
M̄ 7→ M̄ ′ = M̄ + 2

gh. This may be numerically evalu-

ated for all q at any point in the phase diagram (µ, M̄ ,
T ). The first column of Fig.5 shows the susceptibility
evaluated for two points near the metamagnetic transi-
tion of our example tight-binding dispersion. Parameters
are chosen to illustrate the various situations which may
arise. These plots show that the susceptibility has peaks
both at high and low wavevector. A similar investiga-
tion has been presented by Monthoux and Lonzarich16.
The subsequent calculations will be performed with the
parameters of Fig. 5b.

In order to get a physical picture of why inhomoge-
neous magnetisation is favourable at particular wavevec-
tors we will consider the way in which the energy disper-
sions are altered by inhomogeneity and how this appears
in terms of peaks in the DoS. The formation of a spi-
ral magnetisation state involves hybridizing spin-up and
-down electrons. The dispersion of the hybridised state
is given by

2E±k =
(
εk+q/2 + εk−q/2

)
±
√(

εk+q/2 − εk−q/2 + gm|| + h
)2

+ (gm⊥)
2
,

(19)

where m|| and m⊥ are the components of magnetisation
parallel and perpendicular to the applied field. The sec-
ond column of Fig.5 shows the undistorted Fermi surfaces
shifted by ±q. The development of transverse magnetisa-
tion then hybridises the bands. The anti-crossing where
the undistorted bands are degenerate results in the ap-
pearance of additional saddle-points in the dispersion, as
is illustrated in Fig.6. These saddle points produce ad-
ditional peaks in the DoS as seen in Fig.5. If the new
peak lies at or below the Fermi surface then it can result
in a lowering of the energy. By occupying the states un-
der this new peak the formation of spiral magnetization
reduces the energy cost of forming the transverse magne-
tization, allowing the interaction energy gain to win out.
We see from Eq.(18) that when a displacement of the

Fermi surface by q overlaps significantly with the origi-
nal Fermi surface then the denominator is minimised and
the distortion is favoured. This is due to large regions of
the Fermi surface being removed by anticrossing of the
dispersions, resulting in a peak in the DoS at the Fermi
surface.

The various peaks in the susceptibility have different
origins in the Fermi surface. The high q peaks are related
to the standard partial nesting wavevectors of the Fermi
surface. The small-q peak in Fig. 5a corresponds to a
new nesting vector between the spin-split Fermi surfaces.
This corresponds to nesting one Fermi surface inside the
other and is illustrated in the center panel of Fig. 5a.
The low-q maxima on the qx and qy axes of Fig. 5b do
not correspond to nesting vectors. They correspond to
distortions which cause the Fermi surface of the spiral
state to jump over one of the van Hove singularities of
the original dispersion, as shown in the figure. In all cases
the distortions result in new peaks in the DoS.

We note that the q in this picture may be a substantial
fraction of the Brillouin zone and depends on the details
of the dispersion.

E. Inhomogeneous expansion

We have found the phase diagram for homogeneous
magnetization from the expansion of the free energy
and examined the possibility of inhomogeneous states
from the susceptibility. We continue in the spirit of a
Ginzburg-Landau theory and expand the coefficients of
the Landau expansion in powers of q. This approach is
valid when considering small wavevector features. As we
will later argue it is not necessary for the structure of
the phase diagram that the inhomogeneity is at small q.
However, we will restrict our explicit analysis to cases
where this expansion is valid and carry our conclusions
across to the more general case with appropriate modifi-
cations.

In order to simplify our analysis, we study the sim-
plest form of inhomogeneity, namely a spiral φ⊥(r) =
φ⊥ (cos q · r, sin q · r), where q is the wavevector of the
spiral. This is the magnetic analogue of the Fulde-
Ferrell ansatz. As in LOFF the most stable inhomoge-
neous phase may consist of spirals with several different
q-vectors superposed, creating a ‘crystalline’ structure.
The competition between such states is complex and will
not be considered here, but the ansatz is enough to iden-
tify the regions of inhomogeneity. With this simplifying
ansatz, the free energy has the form

βFL = hM̄
[(
Rφ2 + Uφ4 + Tφ5 + V φ6 −Hφ

)
+
(
R⊥ +K⊥q2 + L⊥q4 + (S1 +K1q

2)φ+ (U1 +K2q
2)φ2 + T1φ

3 + V1φ
4
)
φ2
⊥

+
(
U⊥ +K3q

2 + T2φ+ V2φ
2
)
φ4
⊥ + V⊥φ

6
⊥
]
, (20)



8

π

π−π kx

ky

0

π 0

πΠ┴

qx

qy

π

π−π

ky

kx

0

π 0

πΠ┴

qx

qy

0

π

−π

−2π

0

π

−π

−2π
0 π−π−2π

0 π−π−2π

AB

C

D

ρ

ρ

ε

ε

μ

μ

ky

kx

ky

kx

D

B

D

C

B
A

b)

a)

FIG. 5: (Color online) The transverse susceptibility and associated features in the Fermi surface and DoS of the next-nearest-
neighbour tight-binding model discussed in the text. The first column shows transverse susceptibility, Π⊥(q) evaluated for two
situations, a) t = 0.8, µ = −0.6, and b) t = 0.2, µ = −0.37, chosen to illustrate various possible wavevectors of disortion. In
both cases M̄ is chosen such that the spin-splitting places one species’ Fermi surface at the van Hove singularity, in a) this is
the minority Fermi surface and in b) the majority. The susceptibility shows peaks at both large and small q. In the second
column the spin-up and -down Fermi surfaces are shown for each case. Displacements of these Fermi surfaces corresponding to
the wavevectors of the peaks in the susceptibility are indicated. These displacements show the origin of the peaks. Wavevectors
A, B and C are all nesting vectors, however D is not, it corresponds to a different situation described below. Note that in a) we
have indicated the equivalent displacement of the hole rather than electron pocket for ease of visualisation. The third column
shows the Fermi surfaces after hybridisation for the low q cases, these are the Fermi surfaces in the spiral state. The wavevector
D corresponds to opening the neck of the Fermi surface across the van Hove singularity. The black dotted line shows the Fermi
surface before hybridization. The rightmost column shows the densities of states for the two spin-species before (black dotted
line) and after (solid lines) the spiral state forms. In a) a new peak has appeared below the Fermi level. In b) the peaks in the
densities of states have split and moved below the Fermi level. The energetic origin of the nesting (A, B, C) and non-nesting
(D) vectors is therefore similar, being associated with the appearance of new peaks in the DoS below the Fermi surface.

where the terms L⊥, K1, K2 and K3 are required to
bound the free energy for the case of non-zero q. In
order to determine the gradient terms in the Ginzburg-
Landau expansion, we return to the transverse suscepti-
bility Eq.(10) and allow for the previously-neglected q-
dependence. Expanding the Green’s function gives

Gσ(k + q) = Gσ(k) + [Gσ(k)]2∂kiεkqi

+

(
[Gσ(k)]3∂kiεk∂kj εk +

1

2
[Gσ(k)]2∂2

ki,kj εk

)
qiqj

+O(q3). (21)

The first term in this expansion gives the homogeneous
term already considered. Terms of first order in q cannot
contribute to the action due to the symmetry of the elec-
tronic dispersion. Including second order terms we find

the action

S(2)
⊥ = β

∫
ddx

[
r⊥m2

⊥ +K⊥(∇m⊥)2
]
, (22)

where r⊥ is as before and

K⊥ = − 1

4gM̄3

1

Ld

∑
kσ

[
σnF(εk − gM̄σ/2)

+
gM̄

2
n

(1)
F (εk − gM̄σ/2)

]
(∂kεk)2. (23)

Here we have used the fact that the angular dependence
of the integrand enters only through the derivatives of
the energy. Assuming a dispersion with square symmetry
allows us to use the relationship∫

dd−1k ∂2
ki,kj εk =

∫
dd−1k ∂2

kεk
δij
d
. (24)
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FIG. 6: (Color online) a) Energy dispersions for the spin-up (red [dark grey, lower plot]) and spin-down (blue [light grey, upper
plot]) Fermi surfaces shifted by ±q/2. b) Energy dispersions including a transverse magnetization. This hybridises the bands,
causing anticrossing and the formation of new saddle points.

Although the coefficient K⊥ is independent of the direc-
tion of q this is not true for all coefficients. Higher order
terms such as L⊥ (which is 4th order in q) are anisotropic
and pin the wavevectors to specific directions in the lat-
tice. Since we are considering a lattice with square sym-
metry, there will be at least four degenerate directions
along which q-vectors could lie. The K1, K2 and K3

terms may also be calculated by gradient expansions of
the appropriate higher-order terms. Here we neglect this
complication.

K⊥ is the leading order tendency to formation of spiral
magnetization. We may evaluate this coefficient numeri-
cally at every point along the line of metamagnetic criti-
cal endpoints. We find that for the example tight-binding
dispersion it varies smoothly as we move along the tran-
sition and in fact becomes negative as we move further
from the van Hove singularity, as shown in Fig.(7). This
shows an instability to the formation of spatially mod-
ulated magnetization. We will use this fact to motivate
the construction of a phase diagram for the formation of
inhomogeneous magnetization along the metamagnetic
transition.

We now consider how this relates to the analysis in
the LOFF case. If we linearise the Fermi velocity about
the Fermi surface then the expansion of the longitudi-
nal magnetization to quadratic order gives a coefficient
K ∝ U . Since U becomes negative at the tricritical point
this indicates that modulated states become favourable
at the tricritical point. Rather than simply turning first-
order the transition occurs via an inhomogeneous phase.
In this limit the equations for spatially modulated mag-
netization and superconductivity become equivalent3,15.

In the case which we are presently considering the meta-
magnetic transition is caused by proximity to van Hove
singularities. In this situation the dispersion cannot be
linearised and the full form must be used instead. In this
case there is no simple relation between coefficients as in
LOFF.

IV. PHENOMENOLOGY

A. Phenomenological derivation of
Ginzburg-Landau expansion

1. Metamagnetism

Thus far we have given a heuristic description of
the formation of inhomogeneous phases and derived a
Ginzburg-Landau expansion for the formation of such
states from an expansion of the Hamiltonian. We now
discuss how such a Ginzburg-Landau theory may be de-
duced on general grounds of symmetry and the topology
of the metamagnetic phase diagram. We will find that
such arguments reproduce the form of the expansion and
its coefficients as derived from microscopics. We then
calculate a phase diagram for such a theory.

The generic phase diagram of a metamagnetic system
may be produced from a simple Landau expansion about
zero magnetization, Eq.(2). We wish to investigate the
potential for inhomogeneous order leading to a recon-
struction of the metamagnetic wings and so develop an
expansion about the line of metamagnetic critical end-
points. We denote the longitudinal magnetization in the
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FIG. 7: (Color online) a) The line of metamagnetic critical
endpoints projected onto the µ, T plane. b) K⊥ evaluated
along the line of metamagnetic critical endpoints. As µ gets
further from the van Hove singularity this becomes negative.
Plots evaluated for the dispersion discussed in the text with
t = 0.2 and g = 1.7.

vicinity of the line of metamagnetic critical end-points
by M = m + M̄ , where M̄ is the magnetization on the
line and m is the deviation from it. The perpendicular
component is denoted M⊥. Substituting this shift of or-
der parameter into the Landau free energy (2) results in
a theory with terms up to sixth order in m, M̄ and M⊥.
This unwieldy number of terms is reduced considerably
by explicitly constraining our expansion to be about the
line of critical end-points. The conditions that M̄ be the
magnetization along the line of critical end-points are
that the first three derivatives of the Landau free energy
(2) with respect to M are zero. This gives

∂M (βFL) = 0 = 2rM + 4uM3 + 6vM5 − h,

∂2
M (βFL) = 0 = 2r + 12uM2 + 30vM4,

∂3
M (βFL) = 0 = 24uM + 120vM3, (25)

which imply the relationships r = 15vM̄4, u = −5vM̄2

and h = 16vM̄5 when on the line of critical endpoints.

We adopt dimensionless magnetizations as before.
Substituting into Eq.(2) with the coefficients of the ex-
pansion constrained to lie along the line of critical end-

points by Eq.(25), we find the free energy (16) with

S = 0, U = 5/8, T = 3/8, V = 1/16,

R⊥ = 1/2, U⊥ = −1/8, V⊥ = 1/16,

S1 = −1/2, U1 = 1/2, T1 = 3/4,

V1 = 3/16, T2 = 3/8, V2 = 3/16. (26)

The values for the transverse coefficients, and most of
the coupling coefficients, are identical to that found from
the microscopic analysis Eq.(17). The longitudinal coef-
ficients depend on the microscopics and vary along the
line of critical endpoints, so would not be expected to be
reproduced by this analysis.

Exactly on the line of critical end points, R = 0 and
H = 0. We allow non-zero values in order to parametrize
deviations from the line of critical end-points. This Lan-
dau theory leads to a line of first order transitions at
R < 0 terminating at a second order end-point at H = 0,
R = 0 corresponding to the metamagnetic wing of Fig. 4.

2. Inhomogeneous magnetism

We now wish to consider whether inhomogeneous mag-
netic states are more favourable over any region of the
phase diagram than the homogeneous ferromagnetic or
paramagnetic states. Such inhomogeneous states will
produce extra contributions to the free energy dependent
on the magnetization gradient. As we did previously, we
consider only inhomogeneities in the transverse compo-
nent of the magnetization. Also, we restrict our study to
cases where symmetry forbids terms linear in the gradi-
ent.

The first term that must be added to the free energy
density is K⊥ (∇φ⊥(r))

2
. When K⊥ < 0 higher order

gradient terms are required in the free energy density:
L(∇2φ⊥)2, K2φ

2 (∇φ⊥)
2

and K3 (∇φ⊥)
2
φ⊥.

With the spiral ansatz φ⊥(r) = φ⊥(cos q · r, sin q · r)
the free energy including the effects of spatial modula-
tion reduces to Eq.(20) with the homogeneous coefficients
given by Eq.(26).

As we have shown from our microscopic calculation of
K⊥ for the tight-binding dispersion this coefficient varies
smoothly along the line of metamagnetic critical end-
points and can eventually turn negative. We will there-
fore use K⊥ as a parameter which represents movement
along the metamagnetic wing. The formation of inhomo-
geneity will reconstruct the metamagnetic transition, as
we will shortly show. We will determine the phase dia-
gram of the Ginzburg-Landau free energy as a function of
R, H and K⊥. These parametrize directions within the
metamagnetic wing, perpendicular to it and along the
line of critical end points, respectively. Finally, we note
that such a model has a fundamental anisotropy due to
the influence of the lattice and, strictly, this is reflected in
the higher order gradient terms in the free energy. This
anisotropy will determine the direction of q, but does not
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affect the topology of the phase diagram and we do not
treat it explicitly.

B. Phase diagram

Having discussed how the Ginzburg-Landau expansion
can be obtained we now calculate the phase diagram
which this expansion gives.

Determining the phase diagram for Eq.(20) involves lo-
cating the minima of the free energy as a function of φ, φ⊥
and q. The broad scheme is as follows: Minimizing the
free energy with respect to q gives the optimum wavevec-
tor q̄(φ, φ⊥). Focusing on this wavevector, minimization
of the free energy with respect to φ⊥ gives the optimum
inhomogeneous transverse magnetization φ̄⊥(φ). There
is no real solution for φ̄⊥(φ) over much of the phase di-
agram. This leads to a restricted region where inhomo-
geneity is allowed. This corresponds to the region in
which the inhomogeneous terms of the free energy lower
the total free energy, rather than raise it. An example
plot of the free energy is shown in Fig.8. The value of
φ which minimizes the free energy therefore determines
the longitudinal and transverse magnetization, as well as
the wavevector of the inhomogeneous magnetization.

There are many terms in the free energy and it is hard
at first glance to understand the role of the various terms
and how the phase diagram comes about. To clarify this

R

H

-K┴

Inhomogeneous phase

Metamagnetic sheet

Line of
critical
endpoints H

R Continuous

First-order

φ
φ┴

H

FIG. 9: (Color online) Phase diagram for the Ginzburg-
Landau theory. Green (dark grey) sheets represent first-order
transitions in φ. Blue (pale grey) sheets represent continuous
transitions into the inhomogeneous phase. A cut through the
phase diagram at constant K⊥ and the variation of φ and φ⊥
along a path through this cut are shown. This shows both
first-order and continuous transitions.

we have performed an extensive study of the role of the
various terms which we present in the appendix.

Carrying out the minimization analysis results in the
phase diagram indicated in Fig.9. In this figure, the line
R = H = 0 is the parent line of metamagnetic criti-
cal end points. Upon moving along this line away from
the tricritical point, K⊥ reduces from a positive value,
eventually becoming negative. When it becomes suffi-
ciently negative, the metamagnetic sheet bifurcates into
two wings. This structure is symmetry broken, or dis-
located, in that the smaller first-order wing at higher
fields does not emerge from the metamagnetic sheet at
the same point as the larger wing. This phase diagram
is very similar to the dislocated tricritical point of Green
et al22. Here the bifurcation is caused by the appearance
of the inhomogeneous phase which provides a ‘roof’ to
the anomalous phase as a continuous transition into the
phase, which is missing in the previous theory. Transi-
tions into this inhomogeneous region occur in two differ-
ent ways: In the first case, indicated by the green (dark
grey) wings in Fig.9, the transition is first order in both
the longitudinal and transverse magnetization with a step
change in the former and the latter appearing discon-
tinuously from zero (and at finite q). The second type
of transition into the inhomogeneous region is indicated
by the blue (pale grey) sheet in Fig.9. On this sheet
the transverse magnetization undergoes a second order
transition, appearing continuously from zero. The longi-
tudinal magnetization undergoes a continuous transition
with a step change in its gradient upon moving through
this sheet. This kink is the ‘ghost’ of the transition in
the transverse magnetization.

Recalling that this phase diagram is constructed from
an expansion about the line of critical endpoints, the full
phase diagram for the metamagnetic system is obtained
by placing the bifurcated structure back into the context
of the metamagnetic wing. The inhomogeneous phase
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gram of Fig.9 fits into the phase diagram for the metamagnetic
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(grey) sheet is the h = 0 transition, the green “wings” are the
metamagnetic transition.

then appears as shown in Fig.10.

V. COMPARISON WITH EXPERIMENT

A. Experimental results

We now give a brief summary of the experimental re-
sults on Sr3Ru2O7 before discussing the signatures of
our proposed inhomogeneous state and how they com-
pare. The bilayered ruthenate Sr3Ru2O7 shows a se-
quence of metamagnetic transitions6. Early studies fo-
cussed on a line of metamagnetic critical end-points that
could be tuned to a quantum critical point by adjust-
ing the magnetic field strength and orientation5. Sub-
sequently, ultra-pure samples showed a bifurcation of
this metamagnetic line upon approaching the putative
quantum critical point7,22 with a second line of critical
end-points emerging from the zero-temperature plane as
shown in Fig.11a. This bifurcation is accompanied by
a striking peak in resistivity7 with curious, anisotropic
dependence on the relative orientation of current, lattice
and in-plane magnetic field8. When current flows in the
crystallographic direction most perpendicular to the in-
plane field, the resistivity peak rapidly decreases as the
field is moved away from the c-axis. When it is nearly
parallel to the in-plane field, the peak persists.

The bifurcating metamagnetic transitions are shown
by green (dark grey) surfaces in Fig.11 with the region of
resistive anisotropy further delimited by the roof shown
in blue (light grey). Indications of this roof were previ-
ously found with field along the c-axis7 (including signa-
tures in magnetostriction, magnetization and the temper-
ature dependence of resistivity) Fig.11 extends this roof
in angle. Similar features occur elsewhere in the phase
diagram8, with further bifurcations apparent upon ap-

proaching the ab-plane. These show a smaller resistance
anomaly, but have the same characteristic anisotropy
(the dome-shaped region in the foreground of Fig.11).

B. Comparison of theory and experiment

We now compare our model with results on Sr3Ru2O7

and other materials. Our model readily accommodates
the behaviour of Sr3Ru2O7.

The phase diagram, Fig.11a, is obtained— in the spirit
of Ginzburg-Landau theory— by interpreting R, H and
K⊥ as linear functions of the experimental parameters
T , θ and h. Fig.11b shows the result of such a transfor-
mation. The resulting phase diagram has the same form
as the experimental diagram. In particular the sheet of
continuous transitions into the inhomogeneous phase be-
comes a ‘roof’. This roof encloses the anomalous phase
and has been detected in several experimental probes7,10.
This roof is signaled by a qualitative change in the tem-
perature dependence of resistivity and by a noticeable
kink in the magnetization. We associate it with the con-
tinuous transition into the inhomogeneous phase found
in the present theory. This roof previously presented a
real puzzle as there is no obvious way to obtain it from
a simple Landau theory for φ, but it is nevertheless re-
quired to enclose the postulated broken symmetry phase
in the bifurcated region.

The identification of the specific wavevector of mod-
ulation in Sr3Ru2O7 would require a realistic model for
the band structure of the material. Quantum oscillation9

and ARPES28 results show that this band structure is
extremely complex, making a full calculation extremely
difficult. However ARPES studies show a single band
(named γ2 in Ref.28) with a peak in the DoS just below
the Fermi energy28 which is implicated in the metamag-
netic transition. This is consistent with our single-band
picture of a mechanism driven by a van Hove singular-
ity. It is therefore possible to work in a simplified picture
containing only this band to capture the behaviour of
Sr3Ru2O7. We expect that the wavevector of magnetic
modulation will be associated with the nesting of these
Fermi pockets. We note that work has recently been
carried out on a nematic distortion associated with this
band29.

As the anomalous behaviour only appears in the clean-
est samples, any mechanism that explains it must be sen-
sitive to disorder. Our mechanism shows this sensitiv-
ity, since disorder smooths out features in the density of
states.

1. Band structure and angle dependence

The natural parameters of our microscopic theory are
field, temperature and band filling. An additional mech-
anism is required to translate from filling to angle. The
most promising candidate is the field angle coupling to
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the underlying atomic orbitals and therefore modifying
the band structure. This mechanism has been investi-
gated recently27,29.

The Fermi surface of Sr3Ru2O7 is made up predomi-
nantly from atomic orbitals of dxy, dzx and dyz character.
The hybridization of these orbitals, together with bilayer
splitting and backfolding due to structural distortion is
responsible for the material’s complex band structure28.
By including spin-orbit coupling and both orbital and
spin Zeeman effects the angular dependence of the Fermi
surface can be calculated27.

We briefly present a minimal model to describe the
effect of field angle. Figure 12 shows a Fermi surface
made from three orbital bands, the quasi-1D dzx and
dyz bands and a backfolded version of the 2D dxy band.
Angular dependence is included through orbital Zeeman
coupling with the in-plane field component aligned at
45◦ to the a-axis. As the field angle is changed from
aligned with the c-axis to in-plane then the saddle point
of the dispersion, and therefore the peak in the DoS,
moves to lower energy. In this way the critical field of the
metamagnetic transition changes. Work to fully include
the angle in our model of spiral magnetization and to
more accurately describe the Fermi surface of Sr3Ru2O7

is ongoing.

Spatially inhomogeneous magnetic structures lead in-
evitably to enhanced scattering in certain directions. In
order to fully explain the anisotropy, there must be a
mechanism for an in-plane magnetic field to align the

magnetic inhomogeneity. Our simple model does not
contain such a mechanism. We suggest that its origin
lies in the orbital effects of the in-plane field as described
above. These modify the dispersion, breaking the sym-
metry between different orientations of the underlying
helices when there is an in-plane field component, as
seen in Fig. 12b). When the sample is in the anoma-
lous phase, there is significant magnetic inhomogeneity
leading to enhanced resistivity. With a magnetic field
in the c-direction, the inhomogeneity does not break the
crystal symmetry (at least macroscopically) and resistiv-
ity is isotropic. This may be due to the formation of a
spin crystal with the fourfold symmetry of the dispersion
(see Fig.12a), or through equal domains of each orienta-
tion. As the field is rotated into the plane the distortion
of the Fermi surface picks out a particular wavevector
axis. The magnetic inhomogeneity no longer preserves
the lattice symmetry— either through the formation of
an anisotropic spin crystal or by a preponderance of do-
mains of spin density waves of one orientation. This
anisotropy is reflected in resistivity. An explicit calcu-
lation of the resistivity is beyond the scope of this paper.
We may expect it to be proportional to the magnitude of
m⊥ which, as we have shown, goes continuously to zero
at the ‘roof’ of the anomalous phase. This is in agreement
with the measured resistivity anisotropy8.
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FIG. 12: (Color online) Angle dependence of simple model.
a) Fermi surface for a minimal model of Sr3Ru2O7. Dotted
lines show the unhybridized bands. Colored lines indicate the
Fermi surface of one spin species for a variety of angles: Red,
along c-axis. Green, 45◦ from c. Blue, ab-plane. b) DoS for
above angles. The peak moves to lower energy as the angle
from c increases. c) An in-plane field component along one
axis breaks the symmetry of the dispersion. Inset, the various
field angles illustrated in the Fermi surface plots.

VI. DISCUSSION

We conclude by summarizing our results and how they
compare with experiment. We briefly consider other the-
oretical proposals for the anomalous phase of Sr3Ru2O7,
and how these proposals could be distinguished.

We have shown that including the possibility of spa-
tially modulated magnetization into the Stoner model al-
lows for the formation of inhomogeneous states as an in-
termediate state in a metamagnetic transition. This situ-
ation may already have been observed in Sr3Ru2O7 where
a bifurcation of the metamagnetic transition is accom-
panied by a region of anomalously high and anisotropic
resistivity. Our theory reproduces the topology of the
experimentally observed phase diagram, including the
bifurcation of the transition and a ‘roof’ of continuous
transitions enclosing the phase.

We have suggested a mechanism for the angle of the
applied field to affect the properties of the system. An-
gle is known to play two roles: tuning the metamagnetic
critical field to enable movement through the phase di-
agam at all, and aligning the resistivity anisotropy in the
anomalous region. We suggest that the effects of angle
are likely to be due to orbital effects which modify the

band structure27,29. In this scheme both spin-orbit and
orbital-Zeeman coupling modify the Fermi surface based
on the underlying orbitals.

There are several other theoretical proposals for mod-
ulated or anisotropic electronic states. Here we briefly
discuss the Dzyaloshinskii-Moriya interaction, quantum
fluctuation corrections and nematic states.

In systems without a center of inversion symmetry
spin-orbit interactions lead to a Dzyaloshinskii-Moriya
interaction24,25. This favours the formation of magnetic
spirals26 and possibly magnetic crystals30–32. Here we are
concerned with systems which do have inversion symme-
try and so our results are not due to a Dzyaloshinskii-
Moriya interaction.

Analysis of quantum fluctuation corrections to the
theory of itinerant magnets suggests that they can in-
duce metamagnetism and magnetic inhomogeneity33–36.
Whether such effects can recover the phase behaviour of
Sr3Ru2O7 is unclear. These effects may compete or act
in parallel with the mechanism proposed here, their in-
teraction with band structure induced features being as
yet unexplored. We expect that van Hove singularities
are characterized by larger energy scales and dominate if
present.

The anisotropic transport discussed here resembles
that found in high Landau levels, where stripes of differ-
ent filling factor break rotational and translational sym-
metry leading to smectic order. They may be aligned by
small in-plane components of magnetic field leading to
highly anisotropic resistivity37. Melting of the stripe ori-
entation may restore the translational symmetry giving
rise to nematic order. Similarly, melting of the ordering
of magnetic helices may lead to nematic order.

Others have speculated that the anomalous phase may
be a different type of nematic metal with a d-wave dis-
tortion of the Fermi surface4,38. Recent work has cen-
tered on an orbital ordering which creates a similar dis-
tortion27,29,39. Although it invokes a different sector of
the interaction, the model used to describe these distor-
tions has many similarities to ours, with a very similar
energetic drive. The topology of the resulting phase di-
agram should be similar if extended in angle. The main
experimental distinction is in the spatial modulation that
we predict. Spatial modulation of magnetization should
show up as Bragg peaks in elastic neutron scattering in
the anomalous region. Unfortunately, such data do not
exist. There are, however, pseudo-elastic data outside
of the anomalous region that are consistent with fluc-
tuations that would freeze into the type of spin-crystals
that we predict. These increase in intensity upon low-
ering temperature towards the anomalous phase and are
consistent with the nesting vector of the γ2 pockets40.
Neutron scattering should ultimately reveal whether the
order is of magnetic crystalline, or nematic type.

Our analysis is rather general and its results may have
broader applicability. e.g. NbFe2

41 exhibits a peak in
resistivity associated with the bifurcation of a metamag-
netic transition and finite wavevector magnetic order and
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ZrZn2
42 may show similar features.
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Appendix: Understanding the Ginzburg-Landau
theory

The complexity of the Ginzburg-landau theory Eq.(20)
makes it hard to identify the role of each term. In order

to clarify this we break down the expansion and study
the effect of each term one at a time. As well as having
explanatory value, this analysis will make explicit the
process of calculating the phase diagram and reveal the
fact that the smallness of q is not necessary for the phase
reconstruction which we find.

The full free energy is broken into symmetric and an-
tisymmetric segments with the cross-terms between m||
and m⊥ labelled F1, F2, and F3:

β

hM̄
FL =

F0: no cross-terms︷ ︸︸ ︷(
Rφ2 + Uφ4 + V φ6 −Hφ

)
+
(
R⊥ +K⊥q2 + L⊥q4

)
φ2
⊥ + U⊥φ

4
⊥ + V⊥φ

6
⊥

+U1φ
2φ2
⊥︸ ︷︷ ︸

F1

+V2φ
2φ4
⊥︸ ︷︷ ︸

F2

+
(
K2q

2φ2 + V1φ
4
)
φ2
⊥ +K3q

2φ4
⊥︸ ︷︷ ︸

F3

+K1q
2φ+ Tφ5 +

(
S1φ+ T1φ

3
)
φ2
⊥ + T2φφ

4
⊥︸ ︷︷ ︸

Fa: antisymmetric

.

(A.1)

We will consider the effect of the various cross-terms on
the phase diagram of the symmetric part before consider-
ing how the antisymmetic terms affect the phase diagram.

1. Cross-terms: U1φ
2φ2
⊥

The minimal theory with interesting structure in the
phase diagram includes the F1 = U1φ

2φ2
⊥ cross-term that

couples φ and φ⊥.

βF (φ, φ⊥, q) = hM̄ (F0 + F1) . (A.2)

The phase diagram corresponding to this free energy is
shown in Fig.13. For small K⊥ the longitudinal magne-
tization has a single metamagnetic transition. At suf-
ficiently negative K⊥, the formation of inhomogeneous
transverse magnetization becomes favourable. The meta-
magnetic wing splits into a Y shape, as shown in Fig.13.
The arms and leg of the Y are first order transitions in
both φ and φ⊥ and extend to infinity. Between the arms
of this Y the transverse magnetization is inhomogeneous.

Now let us discuss how this phase diagram follows from
the free energy given in Eq.(A.2). The result of cross
terms between longitudinal and transverse magnetization
is that real, non-zero solutions for the transverse magne-
tization exist only in a restricted range of longitudinal
magnetization and hence H. Our analysis proceeds by
finding the optimum wavevector q̄ and optimum trans-
verse magnetization φ̄⊥ and substituting them back into
the free energy to obtain an effective free energy Feff(φ).
We present a graphical analysis of this free energy to give

a feel for the structure of the phase diagram and show
analytically why all of the phase transitions between ho-
mogeneous and inhomogeneous phases are first order in
this simplified theory.

The optimum wavevector, found by minimizing over q
is q̄ =

√
−K⊥/2L⊥. Substituting into Eq.(A.2) gives

β

hM̄
Feff(φ, φ⊥) = Rφ2 + Uφ4 + V φ6 +

(
R′⊥ + U1φ

2
)
φ2
⊥

+U⊥φ
4
⊥ + V⊥φ

6
⊥. (A.3)

where R′⊥ = R⊥ −K2
⊥/(4L⊥). The optimum transverse

magnetization calculated from this free energy is given
by

φ̄2
⊥ =

−2U⊥ +
√

4U2
⊥ − 12V⊥ (R′⊥ + U1φ2)

6V⊥
, (A.4)

The effective free energy as a function of φ, Feff(φ),
is obtained by substituting φ̄2

⊥ from Eq.(A.4) into
Feff(φ, φ⊥) from Eq.(A.3). There are two subtleties in
making this substitution. Firstly, in order that the free
energy Feff(φ) be an expansion in powers of φ, we Taylor
expand Eq.(A.4) for φ̄2

⊥ before substitution. Secondly, we
must allow for the fact that φ̄2

⊥ is only real and non-zero
in certain regions. We account for this by introducing
step functions, Θ, that restrict the inhomogeneous con-
tributions to the free energy to regions where φ̄2

⊥ is real
and positive. Substituting φ̄2

⊥ into Feff(φ) accounting for
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2 cross-term. b) A cut through the phase diagram at

K⊥ = −0.5 with example free energy curves. Note the first
order transition in panel 3 where two minima are degenerate.
[We take L⊥ = 0.1]

these considerations results in an effective free energy

β

hM̄
Feff(φ) = Rφ2 + Uφ4 + V φ6 −Hφ

+
(
α+ βφ2 + γφ4 + δφ6

)
Θ(θ)Θ(φ̄2

⊥)

(A.5)

where

α =
2U3
⊥ − 9R′⊥U⊥V⊥ − 2U2

⊥A+ 6R′⊥V⊥A

27V 2
⊥

,

β =
U1(U2

⊥ − 3R′⊥V⊥ − U⊥A)

3V⊥A
,

γ = −U
2
1

4A
,

δ = −U
3
1V⊥

8A3
,

A =
√
U2
⊥ − 3R′⊥V⊥,

θ = 4U2
⊥ − 12V⊥R

′
⊥. (A.6)

We now examine the transitions into the inhomogeneous
phase. Fig.13 shows the free energy plotted at various

points on the phase diagram. The black curve is the
free energy with no contribution from inhomogeneity in
the transverse magnetization. The green (grey) curve
shows the free energy with inhomogeneity in the trans-
verse magnetization; i.e in the region where the step func-
tions in Eq.(A.5) are 1. We see that for low and high H
the global minima of the free energy lies on the homo-
geneous curve. The free energy is minimised by a value
of φ which corresponds to φ̄⊥ = 0 and the system is
in the homogeneous state. For low H we see that the
global minimum lies on the inhomogeneous curve. The
inhomogeneous terms in the free energy have created an
additional minimum of the free energy at low φ. For val-
ues of H for which this is the absolute minimum of the
free energy the system is in the inhomogeneous state.

The nature of the transitions depend on the magneti-
zations corresponding to the minima of the free energy
when they are degenerate. At the transition point the
global minimum of the free energy jumps discontinuously
between a minimum in the homogeneous region and a
minimum in the inhomogeneous region as H is varied.
This results in a discontinuity in the optimum value of φ
and a sudden jump to a non-zero value of φ⊥. This is a
first order transition in both longitudinal and transverse
magnetization. We may construct a rigorous argument
why the transitions are first order in φ and φ⊥ in the
present simplified theory. For a transition between the
homogeneous and inhomogeneous phases to be second or-
der φ̄2

⊥ must be zero at the transitions. From Eq.(A.4)
we see that there is no real solution for φ when φ̄2

⊥ = 0
and, therefore, that the transitions into the inhomoge-
neous phase are always first order.

2. Cross-terms: adding the V2φ
2φ4
⊥ term

Adding a further cross-term V2φ
2φ4
⊥ the free energy

becomes

βF (φ, φ⊥, q) = hM̄ (F0 + F1 + F2) . (A.7)

The phase diagram now takes the form shown in Fig.14.
Many of the features of this phase diagram are the same
as found in the preceding case. The main difference be-
tween the phase diagram obtained from Eq.(A.7) (Fig.14)
and that obtained from Eq.(A.2) (Fig.13) is that for
Eq.(A.7) the transition may be either first order or con-
tinuous. When the Y first appears the transition between
homogeneous and inhomogeneous order is first order in
both longitudinal and transverse magnetization. At more
negative values of K⊥, the transition becomes continuous
above a critical value of R — as indicated by the change
from green (thick) to blue (thin) lines in Fig.14. Along
these thin blue lines, the transition is second order in φ⊥
with inhomogeneous transverse magnetization appearing
continuously from zero. The corresponding transition in
longitudinal magnetization is also continuous but with a
discontinuity in its gradient.
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The structure of this phase diagram can be understood
as before by optimising the free energy over φ⊥ and q2

and substituting back their optimum values to obtain an
effective free energy for the longitudinal magnetization
φ. The optimum value of φ⊥

2 is

φ̄2
⊥ =

−2
(
U⊥ + V2φ

2
)

6V⊥

+

√
4 (U⊥ + V2φ2)

2 − 12V⊥ (R′⊥ + U1φ2)

6V⊥
.

(A.8)

Analysis of the expression for φ̄2
⊥ allows us to deduce

the order of transitions between the homogeneous and
inhomogeneous regions of the phase diagram. This is
determined by the value of R′⊥ = R⊥ − K2

⊥/(4L⊥). At
a second order transition φ̄⊥ must be zero. This occurs
when the U⊥ + V2φ

2 term and the square root term of
Eq.(A.8) are zero. These conditions are satisfied for real
φ only when R′⊥ < − 1

3 . This free energy gives first order
transitions near to the point where the inhomogeneous
phase first appears, which become second order as we
move to more negative K⊥.

3. All symmetric terms

We now include the remaining symmetric terms from
the free energy Eq.(20); V1φ

4φ2
⊥, K2q

2φ2φ2
⊥ andK3q

2φ4
⊥.

The free energy is given by

βF (φ, φ⊥, q) = hM̄ (F0 + F1 + F2 + F3) . (A.9)

The resulting phase diagram is shown in Fig.15. The
major modification from previous cases is the location of
the line of critical points where the transition between
homogeneous and inhomogeneous order becomes first or-
der. These lines converge upon the parent line of meta-
magnetic critical end-points to form a tricritical point
structure —although this is of an unusual type. As we
will see in more detail below, the most important of the
additional terms in driving this restructuring of the phase
diagram is the q2φ4

⊥ term.
As in the preceding analysis, the phase diagram is ob-

tained by considering an effective free energy for the lon-
gitudinal magnetization, βFeff(φ). The first step in de-
riving this effective free energy is to optimize over q.
Because of the additional, momentum-dependent cross
terms between φ and φ⊥, q̄ is not constant, but depends
upon φ;

q̄2 = −K⊥ +K2φ
2 +K3φ

2
⊥

2L⊥
. (A.10)

The optimum value of φ⊥
2 is given by

φ̄2
⊥ =

1

6 (V ′⊥)

(
−2
(
U ′⊥ + V ′2φ

2
)

+√
4 (U ′⊥ + V ′2φ

2)
2 − 12V ′⊥ (R′⊥ + U ′1φ

2 + V ′1φ
4)

)
.

(A.11)

where the dashed coefficients are simple functions of the
undashed coefficients in the free energy.

The phase diagram shown in Fig.15a is similar to that
of a conventional tricritical point (inset to Fig.15a. In-
deed, the topology of the first order transitions in the
phase diagrams — indicated by the green (dark grey)
surfaces in Fig.15 — is identical. There are, however,
important differences due to the phase of inhomogeneous
transverse magnetization which has produced the bifur-
cation.

A cut through the phase diagram at negative K⊥, as
shown in Fig.15b, consists of a Y shape with arms and leg
that extend to infinity. The arms begin by describing a
first order transition in both longitudinal and transverse
magnetization — indicated in green (thick line). At a
critical value of R, the order of the transition changes
— in a conventional metamagnet, the arm would stop
here at a critical end point. Along the blue (thin) lines
in Fig.15b and over the entire blue (pale grey) surface in
Fig.15a a second order transition to non-zero transverse
inhomogeneous magnetization is accompanied by a kink
in the longitudinal magnetization. This latter feature has
no analogue near the conventional tricritical point. Mov-
ing towards positive K⊥, the point at which the transi-
tion becomes continuous gets closer to the junction of the
Y until they coincide at the tricritical point.

A comparison of free energy curves is made for typi-
cal points along the metamagnetic wing in Fig.15b. A
first order transition occurs when local minima of Feff(φ)
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FIG. 15: (Color online) a) Phase diagram for the symmetric theory with particular choices for K2 and K3. Inset shows the
tricritical point structure of a conventional Landau theory. b) A cut through the phase diagram taken at K⊥ = −1 showing
first order transitions below R = 0.2 and second order transitions above. Plots of the effective free energy show 1) a first
order transition, and 2) a second order transition. The top free energy curve shows how this occurs for the inhomogeneous
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inhomogeneous terms. Also shown are magnetization plots as a function of H showing both longitudinal (black) and transverse
(red) magnetization. The magnitude of the jump in φ at the first order transition (∆φ)is related to the spacing of minima in
the free energy. [We take L⊥ = 0.1, K2 = 0.3 and K3 = 0.2].

have the same free energy. For the present theory one
of the minima is in the inhomogeneous phase (shown in
green [grey]) and the other in the homogeneous phase
(shown in black). This leads to a jump in longitudinal
magnetization, ∆φ, and also a jump to non-zero inhomo-
geneous transverse magnetization. For the conventional
case there is no inhomogeneous phase, but the transi-
tion remains a jump between two homogeneous minima.
As we move along the transition line in the direction of
increasing R the size of the jump in magnetization de-
creases. Along the thin blue line, the minimum of the
free energy swaps continuously between the homogeneous
(black) and inhomogeneous (green [grey]) curves. Near
the conventional tricritical point there is no signature in
the free energy along this line.

This structure of the bifurcated metamagnetic wings
and of the crucial role of the K3q

2φ4
⊥ term can be appre-

ciated from an analysis of Eq.(A.11). This is simplified
by restricting the analysis to the vicinity of the tricrit-
ical point so that φ- and φ⊥-dependent terms can be
neglected in Eq.(A.10) and Eq.(A.11). In this limit, the
renormalized φ4

⊥ coefficient is given by U ′⊥ = U⊥+K3q̄
2.

In fact, the optimum wavevector is only weakly depen-
dent upon φ and this renormalization is the dominant ef-
fect of the K3q

2φ4
⊥ term throughout the inhomogeneous

regime. At a second order transition, φ̄⊥ must be zero.

Near to the tricritical point this leads to the condition

− 2U ′⊥ +
√

4U ′2⊥ − 12V⊥R′⊥ = 0. (A.12)

If U ′⊥ (recall that U⊥ = −1/8) is negative then this can-
not be satisfied. If the renormalization of U⊥ due to the
the K3q

2φ4
⊥ term is large enough then U ′⊥ becomes pos-

itive. The condition for a continuous transition becomes
R′⊥ < 0, which is by definition satisfied in the inhomo-
geneous region, thus implying that the transition into
the inhomogeneous region is continuous at the tricritical
point.

4. Adding antisymmetric terms

When we add antisymmetric terms the tricritical point
becomes symmetry broken, or dislocated, as shown in
Fig.16. A conventional Landau theory of a dislocated tri-
critical point was previously proposed by Green et al22.
Whilst the latter theory captured the phase diagram ob-
tained from longitudinal magnetic susceptibility, it could
not accommodate the ‘roof’ over the region of anoma-
lous transport found experimentally7 (see Fig.11 of the
main text). The blue (pale grey) surface in Fig.15 cor-
rectly reproduces the features of the roof as seen in the
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an angle to the R-axis shows how the inhomogeneous region
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cuts at constant K⊥.

cut through Fig.16. The phase diagram after suitable
reorientation in the spirit of Landau theory is shown in
Fig.11b.

Finally, we comment upon the wavevector of the in-
homogeneous order. So far we have assumed that this
is small and performed a standard Ginzburg-Landau ex-
pansion in powers of q. In fact, it is not necessary that q̄
be small in order to obtain the phase reconstruction dis-
cussed here. As indicated in our discussion of the role of
the K3q

2φ4
⊥ term above, the optimum wavevector stays

largely constant through the inhomogeneous phase. Its
role is mainly to renormalize various homogeneous coef-
ficients in the free energy. It is not necessary that q̄ be
small in order to fulfill this role. The only requirement is
that the inhomogeneous order become favourable at some
point along the line of metamagnetic critical end-points
upon moving away from the parent tricritical point. As
we saw in the microscopic analysis, it is plausible that in-
homogeneity occurs at either small or large wave-vectors
depending upon the details of the electronic dispersion.
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