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The phase diagram of Sr3Ru2O7 contains a metamagnetic transition that bifurcates to enclose an

anomalous phase with intriguing properties—a large resistivity with anisotropy that breaks the crystal-

lattice symmetry. We propose that this is a magnetic analogue of the spatially inhomogeneous super-

conducting Fulde-Ferrel-Larkin-Ovchinnikov state. We show—through a Ginzburg-Landau expansion

where the magnetization transverse to the applied field can become spatially inhomogeneous—that a

Stoner model with electronic band dispersion can reproduce this phase diagram and transport behavior.
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Fulde and Ferrell [1] and Larkin and Ovchinnikov [2]
conjectured that the transition between a superconductor
and insulator, driven by a magnetic field, could occur via
an intermediate phase with spatially modulated supercon-
ducting order. This proposal has since been extended to a
wide range of settings, from ultracold atomic Fermi gases
[3] and exciton insulators [4] to quark matter and neutron
stars [5]. However, experimental confirmation of these
predictions is still controversial [6,7]. In a similar spirit,
intermediate phases between a Fermi liquid and Wigner
crystal [8] have been discussed. We propose an inhomoge-
neous magnetic phase that can be considered a magnetic
analogue of the LOFF phase. In this case, a change in
homogeneous ferromagnetic order occurs via an inter-
mediate phase with spatially modulated magnetization.
This phase would generate clear experimental signatures.
Furthermore, we argue on the basis of both new and
previous experimental results that the anomalous phase
behavior observed in Sr3Ru2O7 [9–13] can be explained
in this way.

The bilayered ruthenate Sr3Ru2O7 shows a sequence of
metamagnetic transitions [12]. Recent angle-resolved pho-
toemission spectroscopy (ARPES) data have found evi-
dence of van Hove singularities that may drive this
metamagnetism [14]. Early studies focused on a line of
metamagnetic critical end points that could be tuned to a
quantum critical point by adjusting the magnetic field
strength and orientation [13]. Subsequently, ultrapure
samples showed a bifurcation of this line upon approaching
the putative quantum critical point [9,10] with a second
line of critical end points emerging from the zero-
temperature plane (see Fig. 1). This bifurcation is accom-
panied by the appearance of a striking peak in resistivity
[9] with curious, anisotropic dependence on the relative
orientation of current, lattice, and in-plane magnetic field
[11]. When current flows in the crystallographic direction
most parallel to the in-plane field, the resistivity peak rap-
idly decreases as the field is moved away from the c axis.
When it is nearly perpendicular to the in-plane field, the

peak persists. Further indications of a ‘‘roof’’ delineating
the region of anomalous phase behavior with field along
the c axis [9] were provided by a kink in the longitudinal
magnetization and a qualitative change in the temperature
dependence of resistivity. Figure 1 uses new resistivity data
to extend this roof in angle. Similar features occur else-
where in the phase diagram [11], with further bifurcations
apparent upon approaching the ab plane. These show a
smaller resistance anomaly, but have the same character-
istic anisotropy.
Beginning with a heuristic discussion of the physics of

the LOFF state and its magnetic analogue, in the following,
we will describe how the Wohlfarth-Rhodes [15] band
picture of metamagnetism is extended to allow the possi-
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FIG. 1 (color). The phase diagram of Sr3Ru2O7 as inferred
from in-plane transport properties. The green planes correspond
to abrupt changes in resistivity as a function of field. Blue
shading indicates regions where the in-plane resistivity is anom-
alously high, becomes highly anisotropic with respect to the in-
plane component of the field [11], and shows an anomalous
temperature dependence. The phase diagram obtained from
magnetic susceptibility [10] shows the same first-order transi-
tions as indicated here in green, but lacks the roof.
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bility of spatially modulated magnetic phases. In order to
deduce the effects upon the broader phase diagram, we turn
to a Ginzburg-Landau expansion of the microscopic
Hamiltonian. The key physics is revealed in an expansion
along the line of metamagnetic critical end points through
a vanishing stiffness to spatial modulation of the transverse
magnetization. This leads to a reconstruction of the phase
diagram. Finally, we describe how our picture explains the
behavior of Sr3Ru2O7—capturing both the experimental
phase diagram and the properties of the anomalous phase.

A BCS superconductor is formed by binding electrons
at the Fermi surface with opposite spin and momentum
(k, " and �k, # ) to form Cooper pairs. A magnetic field
imposes a Zeeman energy cost on the superconductor
which is balanced against the condensation energy. When
Zeeman energy dominates, the superconducting state is
destroyed; Cooper pairs break, allowing a spin polarization
to develop. The transition from superfluid to normal phase
can occur via an intermediate inhomogeneous condensate,
the LOFF phase [1,2]. By pairing electrons into a state with
nonzero total momentum (kþ q=2, " and �kþ q=2, # ),
the reduction in condensation energy due to modulation is
offset by a gain in Zeeman energy. The precise texture of
the superconducting order depends sensitively upon micro-
scopic details [5].

A similar mechanism can apply to itinerant magnets: A
spatially-modulated magnetic phase may intervene be-
tween the high- and low-magnetization states of a meta-
magnet. To form a ferromagnet, there must be an energetic
gain in transferring an electron from a spin-down to a spin-
up state of the same momentum. In a Stoner model, this is
due to Coulomb exchange energy acquired at the expense
of kinetic energy. Extending the Stoner model to include a
dispersion with peaks in the electronic density of states
(DOS) leads to metamagnetism [15,16]: As the Fermi
surface of, say, majority carriers approaches van Hove
filling, the single-particle energy cost in changing its filling
is reduced. This can lead to a step change in the magneti-
zation at certain values of the external field.

Inhomogeneous magnetic states can be stabilized by
DOS peaks in a similar way to spin density waves
[17,18]. The simplest such phase formed from a ferromag-
net is a spin spiral [19]. A spiral of the right wave vector
distorts the Fermi surface so that some regions are brought
closer to van Hove filling (see Fig. 2). The reduction in
single-particle energy cost due to occupying states near to
the peak in the DOS can outweigh the single-particle en-
ergy costs from elsewhere. This leads to peaks in the trans-
verse magnetic susceptibility [17] and provides a mecha-
nism by which a metamagnetic transition can split, the
transition between low and high magnetization occurring
via a phase of inhomogeneous transverse magnetization.

Such behavior can be shown explicitly for a Stoner

model with band dispersion: Ĥ ¼ P
k;�¼";#�kn̂k;� �

Un̂"n̂# ��BHðn̂" � n̂#Þ, where n̂k;� is the number operator

for electrons with momentum k and spin � and n̂"ð#Þ is the

total number operator for spin-up(down) electrons. �k is
the electronic dispersion—we focus, without loss of gen-
erality, upon a two-dimensional tight-binding dispersion
with next-nearest neighbor hopping. As noted above, this
model displays metamagnetism [15,16].
Inhomogeneous phase formation leads to a reconstruc-

tion of the phase diagram that is best revealed through a
Ginzburg-Landau expansion. The thermodynamic proper-
ties of a metamagnet can be developed as a Landau expan-
sion in magnetization density, M, as [20]

�FL ¼ rM2 þ uM4 þ vM6 � h �M; (1)

where h ¼ hêk is the external magnetic field. The coef-

ficients of this expansion for the Stoner model may be
calculated by a perturbative expansion in interaction [21],
and are specific functions of the external parameters: mag-
netic field, temperature and distance from van Hove filling.
The point r ¼ u ¼ h ¼ 0 is the parent tricritical point
where the line of continuous Stoner transitions at zero field
(r ¼ h ¼ 0, u > 0) bifurcates symmetrically into two lines
of metamagnetic critical end points parameterized by the

conditions, @MFL ¼ @2MFL ¼ @3MFL¼! 0.
As we are interested in a reconstruction of the meta-

magnetic transition, we shift our expansion from zero
magnetization to an expansion about the magnetization
along the line of metamagnetic critical end points.
Setting M= �M ¼ ð1þ�ðrÞÞêk þ�?ðrÞ, where �M denotes
the mean-field magnetization along the metamagnetic line
[22], and substituting into (1) gives

�FL

h �M
¼ �H�þ R�2 þ 5

8
�4 þ 1

2
ð1��þ�2Þ�2

?

� 1

8
�4
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FIG. 2 (color). (a) Energy contours for a next-nearest neighbor
tight-binding model with Fermi surfaces for minority and ma-
jority electrons shown in blue and red, respectively, (left). The
minority and majority bands are distorted by a spiral modulation
with nonzero transverse magnetization and wave vector (right).
(b) DOS of minority and majority states with a uniform magne-
tization (left) and with a spiral distortion (right). In the former,
the Fermi surface lies just below a peak in the DOS and in the
latter it lies between two split peaks.
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H and R parameterize deviations from the metamagnetic
critical end point perpendicular and parallel to the first-
order line. The dependence of the higher order coefficients
onH and R can be neglected. Although we are interested in
reconstructions of the metamagnetic transition that may lie
outside the radius of convergence of the parent Landau
theory (1), it turns out that an explicit expansion for the
Stoner model gives the same coefficients as (2) when con-
strained to lie along the parent line of critical end points
[23].

To allow for inhomogeneous phase formation, we con-
sider a minimal gradient expansion of the free energy:

�FGL ¼ �FL þ ðK? þ K1�þ K2�
2 þ K3�

2
?Þðr�?Þ2

þ L?ðr2�?Þ2; (3)

where the parameters K1, K2, K3, and L? are functions of
the external parameters fixed by the microscopic theory.
We neglect terms involving gradients of �. While such
terms can lead to spatial modulation, they do not lead to the
phase reconstruction that we find. Gradient terms of fourth
order and higher ought strictly to respect the lattice anisot-
ropy [24]. We consider the isotropic case for simplicity.

The key ingredient introduced by explicit evaluation of
the gradient expansion for the Stoner theory—that cannot
be anticipated on purely symmetry grounds—is that K?
changes sign along the line of metamagnetic critical end
points [25]. This indicates an instability to the formation of
spiral transverse magnetization. As this spiral order is
established, the effective �4 term changes sign leading to
a tricritical point [10].

The resulting phase diagram is shown in Fig. 3. The
metamagnetic sheet bifurcates at a dislocated (symmetry
broken) tricritical point as shown in green [10]. The bifur-
cated wings embrace a region of inhomogeneous trans-
verse magnetization in accord with our heuristic
description. This region is further enclosed by a surface

of continuous phase transitions, shown in blue, at which the
transverse magnetization falls to zero. The longitudinal
magnetization shows a kink on this surface—a ghost of
the transition in the transverse magnetization.
The inhomogeneous magnetic structure may consist of a

superposition of several wave vectors. The sum of these
must be zero to avoid a spontaneous spin current. A four-
fold lattice symmetry (as in Sr3Ru2O7) suggests four pre-
ferred wave vectors. There are two ways to superpose
these: in pairs of �q leading to a spin density wave in
one of two directions that breaks the fourfold rotational
symmetry to 2; all four symmetry related wave vectors
leading to a spin crystal which preserves the lattice sym-
metry. An example of the latter is shown in Fig. 3.
Comparison with the experimental phase diagram,

Fig. 1, is obtained by expressing R,H, and K? as functions
of the experimental parameters T, � and h. These functions
are analytic (as is confirmed by their microscopic calcu-
lation) and in the usual spirit of the Ginzburg-Landau
expansion their leading dependence near to the critical
point is linear [26]. We expand about the point along the
line of metamagnetic critical end points where K? changes
sign. Figure 4 shows the result of such a correspondence.
The natural parameters of our microscopic theory are field,
temperature and band filling. An additional mechanism is
required to map from filling to angle. One candidate is
spin-orbit coupling [27] (which leads to an angle depen-
dent Zeeman coupling) together with orbital effects of an
in-plane field. The anomalous behavior of Sr3Ru2O7 is
sensitive to disorder as it only appears in the cleanest
samples. Our mechanism shows this sensitivity, since dis-
order smooths out features in the DOS.
Spatially inhomogeneous magnetic structures lead in-

evitably to enhanced scattering in certain directions. In
order to fully explain the anisotropy, there must be a
mechanism for an in-plane magnetic field to align the
magnetic inhomogeneity. Our simple model does not con-
tain such a mechanism. We suggest that its origin lies in a
modification to the dispersion due to in-plane magnetic
field, which breaks the symmetry between different orien-
tations of the underlying helices. In the anomalous phase
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FIG. 3 (color). Phase diagram for the Ginzburg-Landau theory
with possible spin texture. Green sheets represent first-order
transitions in �. Blue sheets represent continuous transitions
into the inhomogeneous phase. The possible spin texture is
constructed from four spin helices arranged in a square. The
longitudinal magnetization has been suppressed in this picture
for emphasis.
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FIG. 4 (color). The phase diagram rotated into the experimen-
tal orientation. The dashed line shows a trajectory through the
inhomogeneous region. The inset shows the variation of longi-
tudinal and transverse magnetization through this trajectory.
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this magnetic inhomogeneity leads to enhanced resistivity.
With a magnetic field in the c direction, the inhomogeneity
does not break the crystal symmetry (at least macroscopi-
cally) and resistivity is isotropic. As the field is rotated into
the plane, the magnetic inhomogeneity no longer preserves
the lattice symmetry—either through the formation of an
anisotropic spin crystal or by a preponderance of domains
of spin density waves of one orientation. This anisotropy is
reflected in resistivity.

Spatial modulation of magnetization should show up as
Bragg peaks in elastic neutron scattering in the anomalous
region. Unfortunately, no such data exist. There are, how-
ever, pseudoelastic data outside of the anomalous region
consistent with fluctuations that would freeze into the type
of spin crystals that we predict [28].

The mechanism of inhomogeneous magnetic phase for-
mation presented here contrasts with two other proposals:
(i) Spin-orbit interactions in systems without a center of
inversion symmetry lead to a Dzyalosinskii-Moriya inter-
action [29] that favors the formation of magnetic spirals
[30] and possibly magnetic crystals [31]. We restrict atten-
tion to systems, such as Sr3Ru2O7, that have a center of
inversion symmetry. (ii) Analysis of quantum fluctuation
corrections to the theory of itinerant magnets suggests that
they can induce metamagnetism and magnetic inhomoge-
neity [32]. Whether such effects are important in Sr3Ru2O7

is unclear. We expect that van Hove singularities are char-
acterized by larger energy scales and provide the dominant
mechanism. Others have speculated that the anomalous
phase in Sr3Ru2O7 may be a nematic metal with a
d-wave distortion of the Fermi surface [33]. The topology
of the resulting phase should be similar to ours if extended
in angle. The main distinction is in the spatial modulation
that we predict, which could be probed directly by neutron
scattering.

In conclusion, it has long been established that the
Stoner model with a peak in the DOS can lead to meta-
magnetism. We have shown that a generic band dispersion
leads to a bifurcation of this metamagnetism by the inter-
vention of a phase of spatially modulated magnetism
analogous to the superconducting LOFF state. This behav-
ior might have been seen already in Sr3Ru2O7. Indeed, our
analysis is rather general and its results may have broader
applicability, e.g., NbFe2 [34] exhibits a peak in resistivity
associated with the bifurcation of a metamagnetic transi-
tion and finite wave vector magnetic order and ZrZn2 [35]
may show similar features.
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