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We consider a two-component atomic Fermi gas within a mean-field, single-channel model, where both
the mass and population of each component are unequal. We show that the tricritical point at zero
temperature evolves smoothly from the BEC to BCS side of the resonance as a function of mass ratio r.
We find that the interior gap state proposed by Liu and Wilczek is always unstable to phase separation,
while the breached pair state with one Fermi surface for the excess fermions exhibits differences in its
density of states and pair correlation functions depending on which side of the resonance it lies. Finally,
we show that, when r * 3:95, the finite-temperature phase diagram of trapped gases at unitarity becomes
topologically distinct from the equal mass system.
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Recent advances in the ability to manipulate and control
ultracold atomic vapors have provided a unique experi-
mental system in which to explore pairing phenomena.
Following the successful realization of the crossover
from the BCS to the Bose-Einstein condensed phase [1],
attention has turned to the consideration of more exotic
Fermi superfluids. A subject that has attracted particular
interest is that of Fermi condensates with imbalanced spin
populations [2,3], having relevance to QCD and magne-
tized superconductors [4]. Equally intriguing is the case in
which both the mass and population of each fermionic
species in the condensate are unequal. Indeed, the realiza-
tion of Feshbach resonances in Fermi-Bose mixtures [5]
and the predicted stability of diatomic molecules close to
resonance over a wide range of mass ratios [6] suggest that
such superfluid mixtures should be experimentally
accessible.

Previous studies [7–10] have raised several important
issues unique to Fermi condensates with spin and mass
imbalances. First, it has been proposed that the breached
pair (BP) state, where the superfluid and excess fermionic
states phase separate in momentum space, can possess
excess fermions with two Fermi surfaces (BP-2)—the
interior gap state [7]. In the case of equal masses, the BP
state can only have one Fermi surface (BP-1). However, it
is still unclear whether BP-2 can become stable for large
mass ratios near the Feshbach resonance [11], or whether it
is always unstable to phase separation in real space as in
the weak-coupling limit [12]. Second, although there have
been studies of the zero temperature phase diagram for the
homogeneous gas with unequal masses [8,9], so far no
tricritical point (such as that discussed in the equal mass
system [13,14] ) has been identified. It is natural to ask
whether such a tricritical point is generic and, if so, how it
evolves with mass ratio. Finally, it has been shown that
trapped Fermi gases with unequal masses can exhibit
spatial phase separation at zero temperature that differs
qualitatively from that of the equal mass case [10].
Whether and how such features extend to finite tempera-

tures remains unanswered. Focusing on the homogeneous
system, all three issues will be addressed in this work. To
focus our discussion, we will address the phase boundaries
between spatially homogeneous phases, leaving the poten-
tial for Fulde-Ferrell-Larkin-Ovchinnikov phases [15] to
future investigation.

Referring to wide (viz. entrance-channel dominated)
Feshbach resonances [16], we restrict attention to a
single-channel Hamiltonian with a contact potential:
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Here, �k� �
k2

2m�
(@ � 1), g is the interaction strength, V is

the volume, and we allow the mass m� and chemical
potential �� of each spin to be different, with average
chemical potential � � ��" ��#�=2 and ‘‘Zeeman’’ field
h � ��" ��#�=2. To obtain the topology of the phase
diagram spanning the BCS-BEC limits for unequal masses
(including the locus of the finite-temperature tricritical
point at which the transition between the superfluid and
normal phases switches from first to second order), we will
develop a mean-field analysis of the system analogous to
that presented for equal masses [13]. While such a treat-
ment is not expected to be quantitatively correct for all
interaction strengths, it should provide a reliable qualita-
tive description even close to unitarity.
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where min� gives the global minimum with respect to �
(to be calculated numerically). Here, �k � �k� �� and,

defining Ek �
������������������
�2

k ��2
q

, the quasiparticle energies are
given by Ek� � Ek � �h� �k��. The free energy (2)
differs from that of the equal mass system only through
the appearance of a momentum-dependent contribution,
�k�, to the Zeeman term which leads to the symmetry
�h; r�� ��h; 1=r�. We introduce the s-wave scattering
length a via the prescription mrV

4�a �
V
g �

Pk0
k

1
2�k�

, where
the UV cutoff k0 can be sent to infinity at the end of the
calculation. With experiments performed at fixed density,
� and h are determined from the total density n � n" �
n# � �@�0=@� and the population imbalance m � n" �
n# � �@�0=@h [17]. Note that the stability criterion
adopted in Refs. [8,9] corresponds only to finding local
minima with respect to � in Eq. (2) and thus will not
correctly locate a first-order transition. The presence of
such a transition implies a region of phase separation in
real space if n and m are held fixed [12]. The two phases in
question are a normal phase with � � 0 and a superfluid
phase with � � 0, which is less magnetized as pairing
tends to enforce equality of populations.

Beginning with zero temperature (Fig. 1), we find that
the basic structure of the phase diagram ( 1

kFa
, m
n ) for

unequal masses mirrors that of the equal mass system
[18]. Phase separation (PS) is found between the normal
(N) and superfluid states. On the BCS side the superfluid
component is always unpolarized, while the BP or magne-
tized superfluid (SFM) state exists for sufficiently strong
interaction and eventually undergoes a second-order tran-
sition to the fully polarized normal state beyond the tricrit-
ical point. However, the position of the tricritical point is
dramatically shifted, with the regions of PS and SFM

shrinking and expanding, respectively, as r increases (in
qualitative agreement with Refs. [8–10] ).

We can gain further insight into the phase diagram by
examining the behavior of the tricritical point as a function
of mass ratio, r. As shown in Fig. 2, the tricritical point,
determined as the point at which both the quadratic and
quartic terms in the Landau expansion of the free en-
ergy (2) vanish, evolves smoothly from the BEC to BCS
limits, with �h="F; 1=kFa�tric ! �1;1� as r! 0 and
�h="F; 1=kFa�tric ! �22=3;�1� as r! 1. Moreover, as
in the equal mass system, the tricritical point always cor-
responds to a fully polarized state, m=n � 1 [19]. It is
interesting to note (Fig. 2) that the chemical potential, �,
at the tricritical point becomes positive for r 	 3, hinting at
the possibility of a BP-2 state. However, a mean-field
analysis of the phase boundaries in the limit r! 1 shows
that only the BP-1 state is ever stable. As in the weak-
coupling limit [12], phase separation is always favored
over the BP-2 state [20].

Even though the BP state only ever possesses one Fermi
surface, the associated quasiparticle excitation spectrum
can display minima at nonzero k, a property which is also

characteristic of the BP-2 phase. As demonstrated in Fig. 3,
while the spectrum remains gapless for both r � 0:5 and
r � 10 [i.e., the density of states, DOS�!�, is finite at ! �
0], the excitation spectrum for r � 10 also exhibits sta-
tionary points at nonzero k resulting in a square-root
singularity in the associated DOS. Such a singularity
may be regarded as ‘‘BCS-like,’’ while its absence for r �
0:5 is ‘‘BEC-like’’ (cf. quasiparticle excitation spectra at
the BCS-BEC crossover in the equal mass case [21] ).
More generally, DOS singularities in the BP state only
occur for r > 1, where the species with the smaller mass
is in the majority. When �> 0, the singularities exist for
all polarizations, but when�< 0, they are restricted to the

 

0

0.5

m
/n

−2 −1 0 1 2 3 4 5
1/k

F
a

0

0.5

r=0.5

r=10.0SF
M

N PS

N PS SF
M

FIG. 1 (color online). Zero temperature phase diagrams for
different mass ratios r � m#=m", where a positive polarization m
corresponds to an excess of particles with spin " . All mass ratios
exhibit the same three phases: the normal state (N), the spatially
homogeneous superfluid (SFM), and phase separation (PS) be-
tween normal and superfluid states in real space. The region of
SFM expands with increasing r. The boundaries enclosing the PS
region are all first order, while the tricritical point is represented
by a circle. The line defined by m=n � 0 corresponds to the
usual BCS-BEC crossover.
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FIG. 2 (color online). Evolution of the tricritical point
�1=kFa; h="F�tric as a function of mass ratio r with h > 0. The
values of r � 1, the equal mass case, and r � 3, where the
chemical potential � changes sign, are explicitly marked.
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region around m � 0 where �=j�j> 2
���
r
p
=�r� 1� [22].

Such dramatic differences in the DOS should be accessible
experimentally using optical excitations [23].

Further signatures of breached pairing are visible in the
momentum distribution, nk�, and correlation function,
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Referring to Fig. 4, breached pairing is characterized by a
phase separation in momentum space between the excess
of majority species " and the minority species # involved in
the superfluid state. In both cases, the correlation function
C"# shows a ‘‘hole’’ for momenta less than the Fermi
momentum of the majority quasiparticles. This hole at
small momenta is reminiscent of the Pauli blocking ob-
served in the closed-channel molecule of the 40K Feshbach
resonance [24] where there is always an inherent particle
number asymmetry in the open channel, even in the usual
BCS-BEC crossover. The correlation function C"# can also
directly probe the sign of �: for �> 0 we have a peak
beyond the blocked region, as shown in the r � 10:0 case,
provided �=� > jh=�� �1� r�=�1� r�j. In principle,
such a feature can be detected experimentally using noise
correlations [25].

Turning to finite temperature, the phase diagram for
unequal masses in the homogenous system is qualitatively
similar to the equal mass case, but the topology of phases
within a trap can be different. A study of 6Li-40K mixtures
at zero temperature [10] has already revealed that the
unequal mass case offers a richer variety of phase-
separated states. In addition to configurations where there
is a superfluid core surrounded by the normal state (as in

the equal mass case), the superfluid region can occupy a
shell sandwiched between a normal inner core and a nor-
mal outer shell with opposite polarizations. To investigate
the effects of temperature T and different mass ratios r in
the trap geometry, we restrict ourselves to the case in which
the local density approximation can be applied. Thus,
assuming each species experiences the same trapping po-
tential V�r�, the effects of the trap can be included in the
spatially varying chemical potential, �� V�r�, while the
term h remains fixed.

In Fig. 5, we plot mean-field phase diagrams at unitarity
as a function of T=� and h=�. Note that Nozières-
Schmitt-Rink fluctuations will not alter these diagrams
since corrections only enter into the density, n, and the
polarization, m [26]. We restrict ourselves to the case
where �> 0 because this is enough to completely encom-
pass the SF-N phase boundaries, even though a fully
polarized normal state obviously exists for �jhj<�<
0. While the equal mass (r � 1) phase diagram is sym-
metric around h � 0 as expected, we see that lowering or
increasing r translates the superfluid dome to the left or
right, respectively. For sufficiently small translations, we
have the ordinary trapped case of a superfluid core with a
first (arrow a) or second (arrow b) order transition to the
surrounding normal state. However, once r * 3:95, the
superfluid region has shifted entirely to the h > 0 plane,
as shown for r � 6:7 and r � 10 [27]. Provided h=� is
sufficiently small at the trap center, this naturally leads to a
superfluid shell structure where the superfluid phase is
sandwiched between a ‘‘heavy’’ normal core and an outer
‘‘light’’ normal phase. This structure can either have two
first-order SF-N phase boundaries (d), one first and one
second (c), or two second-order phase boundaries (e),
depending on the value of T=h. The case considered in
Ref. [10] corresponds to the T=� � 0 axis in the r � 6:7
phase diagram, and is thus an example of category d. Note,
however, that one tricritical point vanishes when r is
further increased [corresponding to the point where
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�1=kFa�tric changes sign in Fig. 2], so that ‘‘d-type’’ SF
shells are then no longer possible.

In conclusion, we have investigated the mean-field phase
diagram of a polarized Fermi condensate with unequal
masses. We have shown that the zero temperature tricritical
point smoothly crosses over from 1=kFa > 0 to 1=kFa < 0
as r increases, but the interior gap state is never stable, even
in the limit of infinite r. However, differences in the BP
states do show up in the DOS and pair correlations. Finally,
we show how the phase diagram of trapped gases depends
on r and T, including how one obtains superfluid shells for
r * 3:95.
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