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Consider low-speed potential flow past a ship modelled as a semi-infinite two-
dimensional body with constant draught. Is it possible to design the hull in such a way
as to eliminate the waves produced downstream of the ship? In 1977, Vanden-Broeck
& Tuck had conjectured that a single-cornered piecewise-linear hull will always
generate a wake; in this paper, we show how recently developed tools in exponential
asymptotics can be used to confirm this conjecture. In particular, we show how the
formation of waves near a ship is a necessary consequence of singularities in the
ship’s geometry (or its analytic continuation). Comprehensive numerical computations
confirm the analytical predictions.

Key words: surface gravity waves, wave–structure interactions

1. Introduction
The vast majority of the world’s total trade is transported by sea-going ships. Ships

produce waves and waves invariably represent a loss of energy, fuel, speed, and
ultimately, money. So for the naval architect, the design of a (practically) waveless
ship is of paramount importance, and indeed a great deal of numerical, experimental,
and analytical research has been applied to this topic of ship optimization and wave
resistance for over a century. Our interests, then, are simply stated: are waveless ships
theoretically possible? If so, what restrictions must we placed on their design? If not,
what can be done to minimise the production of waves?

Of course, when we refer to a waveless ship, we have a very specific regime in
mind: that of potential flow (a standard assumption). Now in attempting to solve
this problem, it becomes necessary to linearise the boundary conditions at the free
surface, and as it concerns ship waves we generally have three ways of proceeding.
The most standard and most well-developed method linearises the geometry of the
ship by assuming that the hull is sufficiently small in one or several of its dimensions.
For example, applying the thin-ship approximation leads to the well-known Mitchell
integral, for which it has been shown that wave resistance can never vanish at any

† Email address for correspondence: ptrinh@princeton.edu

mailto:ptrinh@princeton.edu


414 P. H. Trinh, S. J. Chapman and J.-M. Vanden-Broeck

FIGURE 1. Can any of these hull forms be made waveless? ¬ is the single-cornered ship,
­ is the multi-cornered ship, and ® is the bulbous ship. The flow is from left to right, and
nodes indicate singularities in the ship’s geometry.

finite speed for ships of finite displacement (Kotik & Newman 1964 and Kostyukov
1968, p. 354). But as remarked by Tuck (1991a,b), one cannot be quite sure that a
similar result will hold for non-thin ships.

Instead, if we wish to preserve the geometry of the ship in the approximation, an
alternative linearisation can be performed by developing a solution valid as the Froude
number tends to infinity. For these high-Froude-number problems, the flow detaches
from the ship smoothly at leading order (zero gravity) and the free surface is a free
streamline. Spurred on by the initial numerical computations of Vanden-Broeck (1980),
Madurasinghe & Tuck (1986) would go on to discover waveless ships, an analysis
which was later confirmed by the more detailed numerics of Farrow & Tuck (1995).

However, in discerning the effects of the ship’s geometry on the resultant waves,
the low-Froude-number limit is by far the more important and non-trivial choice. The
reason is that the analysis near a blunt three-dimensional ship can be reduced to the
study of the two-dimensional potential flow problem for which the ship is modelled
as a semi-infinite body with constant draft (Dagan & Tulin 1972). Ultimately, it is
the low-Froude limit which truly models the ship–water interactions and for which the
nonlinearity of the ship’s geometry is taken into account. Then, as an eventual goal,
we would like to be able to recognise whether any of the three ships in figure 1 are
waveless in the low-Froude-number limit. Note that in the potential flow problem, a
waveless solution past the stern (rear) of a ship, could be equally used as a smoothly
attaching (‘splashless’) bow flow. Thus, if the profiles in figure 1 are indeed solutions,
then they are equally valid for flow in either direction.

There is an important difficulty. When an ideal fluid flows past a surface-piercing
object or over an obstruction, waves are sometimes produced upstream or downstream
of the disturbance. But in the low-speed limit, the traditional asymptotic series
in powers of the Froude number fails to capture this phenomenon – this is the
so-called Low-Speed Paradox first mentioned by Ogilvie (1968). The waves are in
fact exponentially small (in the Froude number) and thus invisible to any traditional
asymptotic analysis.

This formidable singular limit has been painfully problematic in regard to previous
asymptotic and numerical treatments of the ship–wave problem. The fully nonlinear
problem was first computed by Vanden-Broeck & Tuck (1977), and on the basis of
numerical evidence, they conjectured that ship hulls with a single front face will
always generate waves (see also Vanden-Broeck 1985, 2010, for further details and a
review of these early results). Moreover, the earlier experimental work of Baba (1976)
had indicated that a bulbous bow can eliminate, or at least reduce, the splash at the
bow of a ship. This prompted the discovery of seemingly waveless ships with bulbous
profiles, first by Tuck & Vanden-Broeck (1984) and later confirmed by Madurasinghe
(1988) – but again, only numerically so. Another surprising result was suggested by
Yeung (1991), whose more recent numerics suggested that, for the single-cornered hull,
there exists a critical Froude number below which no trailing waves are possible – in
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direct contrast to Vanden-Broeck & Tuck (1977). Unfortunately, these last three results
were refuted by the more comprehensive numerical study of Farrow & Tuck (1995);
there, they wrote:

The free surface would at first sight appear to be waveless, but on closer
examination of the numerical data, there are very small waves present and they
have a steepness of 1.5× 10−3,

a comment they had made in reference to the bulbous profiles studied in Tuck &
Vanden-Broeck (1984). Clearly, these are questions which cannot be easily answered
using simple numerics. Indeed, in Reminiscences and Reflections: Ship Waves,
1950–2000, Tulin mentions two open questions:

The fundamental questions of whether such rising potential free-surface flows
before bluff bodies exist [...] still remain open,

and

Is it demonstrable [...] that continuous solutions will not exist in the limit of
vanishing speed? Does this have anything to do with the inability of Tuck and
his colleagues [...] to find a continuous solution in the two-dimensional bow
wave case? Do nonbreaking flows exist at all for surface-piercing ship forms of
arbitrary form and thickness, at any speed?

The key to resolving the Low-Speed Paradox is dependent on a clear understanding
of asymptotic divergence – its causes and its consequences. The low-Froude-number
limit is singular and causes the leading-order rigid-wall solution to exhibit singularities
in its analytic continuation, which eventually produces the divergence of the series.
This divergence, in turn, is associated with the presence of exponentially small
corrections to the algebraic expansion – in this case, representing our hidden free-
surface waves. And thus, the collection of tools to detect these corrections is often
referred to as exponential asymptotics or asymptotics beyond all orders (see for
example, reviews by Dingle 1973; Boyd 1998, 1999).

The resolution of the Low-Speed Paradox for the case of gravity waves over a
submerged obstruction was given by Chapman & Vanden-Broeck (2006) (see also
Chapman & Vanden-Broeck 2002, for a similar study of capillary waves). In this
paper, we will extend Chapman & Vanden-Broeck’s work to the problem of surface-
piercing bodies, and in particular, we will derive an analytical expression for the waves
produced by flow past a single-cornered ship. We will show how these exponentially
small waves must arise when the solution crosses the Stokes line originating from
the corner-singularity of the stern; in doing so, we thus confirm the 1977 conjecture
of Vanden-Broeck & Tuck concerning the impossibility of waveless single-cornered
ships. Finally, we provide sufficiently accurate numerical simulations which confirm
our analytical predictions.

2. Mathematical formulation
Let us consider two-dimensional steady irrotational flow past a semi-infinite body,

which consists of a flat bottom (y=−H, x< 0), and a face oriented at an angle πσ to
the horizontal (0< σ < 1). There is a uniform stream of speed U as x→−∞, and we
assume that the flow attaches to the stern at a stagnation point.

With φ(x, y) denoting the velocity potential, the problem can be non-
dimensionalised so that: (i) the stagnation point is located at (x, y)= (0, 0) and φ = 0;
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FIGURE 2. Non-dimensional flow past a one-cornered ship, shown in the physical
xy-plane (a), and in the potential w= φ + iψ plane (b).

(ii) the corner of the stern is located at φ =−1; and (iii) the potential tends to the unit
free stream, φ→ 1, as x→−∞. The motion of the fluid (see Vanden-Broeck 2010;
Trinh 2010) is then governed by Laplace’s equation, with the kinematic condition on
all boundaries, and Bernoulli’s equation on the free surface:

∇2φ = 0 for (x, y) in the fluid, (2.1)
∂φ

∂n
= 0 for (x, y) on the hull and free surface, (2.2)

ε

2
|∇φ|2 + y= 0 for (x, y) on the free surface, (2.3)

where all variables now non-dimensional. The parameter ε = U2/gL is related to the
square of the draft-based Froude number and ε� 1 is the low-Froude-number regime
we shall study. Here, L is defined as the ratio of the dimensional value of the potential
at the corner, divided by U. The physical and potential planes are shown in figure 2.

Unfortunately, formulated as a function of Cartesian coordinates (x, y), the problem
is rather difficult to approach, especially since the dynamic condition (2.3) must be
applied to an as-yet unknown free surface. In the simplifying hodograph formulation,
we introduce the complex potential w= φ+ iψ and let z= x+ iy. The ship/free surface
is chosen to be the streamline ψ = 0 and now, both Laplace’s equation (2.1) and the
kinematic condition (2.2) are immediately satisfied, so long as we ensure the complex
potential is analytic. We then define

qe−iθ ≡ dw

dz
= u− iv, (2.4)

so q is the speed of the flow and θ is the angle the streamline makes with the x-axis.
Differentiating Bernoulli’s equation (2.3) tangentially, that is, with respect to φ, yields

εq2 dq

dφ
+ sin θ = 0, (2.5)

where the free-surface condition is applied to the streamline ψ = 0 for φ > 0. To
close the system, we need one final equation, and this will be given by using the
analyticity of the logarithm of the hodograph variable, log q − iθ = log dw/dz. By
Cauchy’s theorem, it can be shown that

log q= 1
π
−
∫ ∞
−∞

θ(ϕ)

ϕ − φ dϕ, (2.6)
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which is the usual boundary integral result for two-dimensional free-surface flows.
Imposing the hull geometry and setting θ = 0 for φ <−1 and θ = πσ for −1< φ < 0
then gives

log q= log
(

φ

φ + 1

)σ
+ 1
π
−
∫ ∞

0

θ(ϕ)

ϕ − φ dϕ. (2.7)

Note that the relation between φ and the physical plane (and hence the physical size of
the ship’s face) can be determined a posteriori once (2.5) and (2.7) have been solved.

3. Complexification and the Stokes phenomenon
The general methodology of our ship–wave analysis can be described as follows:

when the fluid speed, q(φ), and streamline angle, θ(φ), are expressed as asymptotic
expansions in powers of the Froude number, ε, we find that the approximations are
waveless at every order. The free-surface waves produced by the ship’s hull are, in fact,
exponentially small and thus beyond-all-orders of the regular asymptotic expansions.

Of course, the velocity qe−iθ is entirely well-behaved on the free surface (ψ = 0
and φ > 0), but its analytic continuation contains a singularity at φ = −1, which
corresponds to the corner of the ship. To study this issue, we complexify the free
surface, writing φ 7→ φ + iψ = w ∈ C and qe−iθ 7→ qe−iθ = dw/dz ∈ C. However,
because of the nature of complex variables, we may continue to identify these new
complexified variables w and dw/dz, with the usual quantities of w (the complex
potential) and dw/dz (the complex velocity). Thus, within this paper, we will often
mention the ‘corner of the ship’, but we are referring to the singularity in the analytic
continuation, which is identifiable with the corner, rather than the physical corner
itself.

If we extend both the boundary integral (2.7) and the dynamic condition (2.5) into
the upper or lower half-φ-plane, this yields

log q± iθ = log
(

w

w+ 1

)σ
+H [θ(w)], (3.1a)

εq2 dq

dw
+ sin θ = 0, (3.1b)

where we have replaced the complexified φ by w and the ± signs correspond to
analytic continuation into the upper and lower half-φ-planes, respectively. We have
also introduced the notation

H [θ(w)] = 1
π

∫ ∞
0

θ(ϕ)

ϕ − w
dϕ, (3.2)

to represent the Hilbert transform of θ , integrated over the free surface, ϕ > 0.
The singularity, seen in (3.1a), has two important consequences, both of which

follow from the basic tenets of exponential asymptotics (see for example, reviews by
Dingle 1973; Boyd 1998, 1999). First, it causes the expansions of q and θ to diverge
for w ∈ R+. In order to achieve the best approximation, the expansions must then be
optimally truncated, at which point the remainder is exponentially small. The second
role of the singularity is to generate critical curves (Stokes lines) in the complex
plane. When w is analytically continued across such curves, the exponentially small
remainder ‘switches-on’ in a process known as the Stokes Phenomenon. As it relates to
the ship–wave problem, this switching-on mechanism is illustrated in figure 3.



418 P. H. Trinh, S. J. Chapman and J.-M. Vanden-Broeck

Stokes line

|     |
Im(w)

Re(w)

Right of
Stokes 

line

Left of
Stokes 

line

FIGURE 3. The physical solution in the ship–wave problem is θ(φ) for φ ∈ R+. For ε→ 0,
the asymptotic expansion for φ diverges because of the singularity in its analytic continuation
(shown as a perpendicular plane, φ = w ∈ C). By re-scaling near the singularity and optimally
truncating, we will be able to observe the smooth switching-on of the exponentially small
terms, scaled by the Stokes switching parameter, S .

4. Asymptotic approximation
We shall begin by performing the asymptotic analysis of (3.1a) and (3.1b) for

analytic continuation into the upper half-w-plane. The final ship waves will also
require the same analysis for continuation into the lower half-plane as well. The initial
analysis is nearly identical to the one in Chapman & Vanden-Broeck (2006) for gravity
waves over non-surface-piercing obstructions, but we include it here for completeness.

Substituting the usual perturbation expansion

θ =
∞∑

n=0

εnθn and q=
∞∑

n=0

εnqn (4.1)

into (3.1a) and (3.1b) yields at O(1),

θ0 = 0 on w ∈ R+, (4.2)

q0 =
(

w

w+ 1

)σ
. (4.3)

Then at O(ε), (3.1a) and (3.1b) yield

θ1 =−q2
0

dq0

dw
, (4.4)

q1

q0
+ iθ1 =H [θ1(w)]. (4.5)

The full expressions for the higher O(εn) terms are more complicated, but since we
are only concerned with the limit n→∞, we may proceed as follows: examine
the leading-order free surface, q0(w) in (4.3); the solution contains two singularities,
identifiable with points in the flow domain – one at the corner of the stern (w = −1)
and the other at the stagnation point (w = 0). However, because all the higher-order
problems are linear, no new singularities can be introduced and thus the singular
points of qn(w) must be the same singularities as for q0(w).

For example, if we examine the dynamic condition in (3.1b), we can see that each
successive term of the asymptotic approximation will require the derivative of the
previous term. Thus if qn contains a singularity of the form 1/(w − w0)

n, qn+1 will
contain a singularity of the form n/(w − w0)

n+1; each new derivative adds a factor to
the numerator and increases the strength of the singularity. Then as n→∞, we can
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expect the late-order terms to behave like factorial over power,

θn ∼ Θ(w)Γ (n+ γ )
χ(w)n+γ

and qn ∼ Q(w)Γ (n+ γ )
χ(w)n+γ

. (4.6)

With this ansatz in mind, we can now pinpoint the terms required at O(εn). In the limit
that n→∞, terms like qmqn (for m finite) dominate terms with smaller indices in n,
such as qmqn−1. Moreover, differentiating a term increases the order (in n) by 1, so a
term like ε dqn−1/dw is of the same order as qn. The relevant terms at O(εn) are

first-order︷ ︸︸ ︷
qn

q0
+ iθn−

second-order︷ ︸︸ ︷
qn−1q1

q2
0

+ · · · =
exp. subdominant︷ ︸︸ ︷

H [θn] , (4.7)

q2
0q′n−1︸ ︷︷ ︸

first-order

+ 2q0q1q′n−2 + 2q0q′0qn−1︸ ︷︷ ︸
second-order

+ · · · = − cos(θ0)θn︸ ︷︷ ︸
first-order

+ · · · . (4.8)

By recourse to Chapman & Vanden-Broeck (2006), we claim, at least for the moment,
that the integral on the right-hand side of the boundary integral equation (4.7) is
exponentially subdominant to the terms on the left-hand side for large n. We address
this claim a little later in § 5.3, but for now, we will assume that

θn ∼ i
qn

q0
− iq1qn−1

q2
0

+ · · · as n→∞, (4.9)

or

qn ∼−iq0θn − iθn−1q1 + · · · as n→∞. (4.10)

Finally, substituting (4.9) into the dynamic condition (4.8) and simplifying yields the
final form of our O(εn) expression:

first/second-order︷ ︸︸ ︷
[q3

0q′n−1 + iqn] +
[

2q2
0q′0qn−1 + 2q2

0q1q′n−2 − i
qn−1q1

q0

]
︸ ︷︷ ︸

second-order

+ · · · = 0. (4.11)

The factorial-over-power ansatz (4.6) can now be substituted into (4.11). As n→∞,
the leading-order expression is

−q3
0

dχ
dw
+ i= 0, (4.12)

which is simply solved to yield

χ =
∫ w i

q3
0(ϕ)

dϕ, (4.13)

where we will choose the initial point of integration in the next section. At the next
order in n, we find

Q′q3
0 + 2Qq2

0q′0 − 2Qq2
0q1χ

′ − iQ
q1

q0
= 0 (4.14)

or, using (4.12) and simplifying,

Q′

Q
=−2q′0

q0
+ 3iq1

q4
0

. (4.15)
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Thus by integration and simplification, we have

Q= Λ
q2

0

exp
(

3i
∫ w

w?

q1(ϕ)

q4
0(ϕ)

dϕ
)
, (4.16)

where Λ is a constant of integration and w? is any arbitrary point for which the
integral exists. By the ansatz (4.6) and relation (4.9), we know that θn ∼ iqn/q0 and
thus

Θ = Λi
q3

0

exp
(

3i
∫ w

w?

q1(ϕ)

q4
0(ϕ)

dϕ
)
. (4.17)

5. The singulant and its Stokes lines
In this section, we will use the expression (4.13) for the singulant, χ , to address

three separate questions: (a) Must the stagnation point at the origin produce an
exponentially small wave on the free surface? (b) What necessary conditions are
imposed on the corner of the hull in order for it to generate a wave? (c) How can
the boundary integral on the right-hand side of (3.1a) be shown to be exponentially
subdominant to the residue contributions on the left?

5.1. The stagnation point
The nature of the free surface near the stagnation point, w = 0, is a surprisingly
complex problem. First, there is the issue of how the solution behaves near w= 0 at a
fixed value of ε (the inner problem); the works of, for example, Dagan & Tulin (1972)
and Vanden-Broeck & Tuck (1994) have examined some of these problems. Second,
there is the question of how the solution near w = 0 interacts with the low-Froude-
number expansion of (4.1) and in particular, what is its role (if any) in controlling the
production of downstream waves. In regard to this latter question, Tuck (1991a) has
provided a series of unanswered questions for simpler differential equations related to
the full water wave equations in (3.1a) and (3.1b).

The local analysis near the stagnation point for ε fixed and w→ 0 is given in
Appendix A. There we show that

q=
{

O(wσ ) if σ > 1/3
O(w1/3) if σ < 1/3

(5.1)

and

θ = θ̂0 + O(wκ)=
{

0+ O(w3σ−1) if σ > 1/3
π
(
σ − 1

3

)+ O(wς) if σ < 1/3,
(5.2)

where ς is a transcendental number given by solving (A 13), and θ̂0 and κ are
introduced for later use. Thus, equation (5.2) states that for hulls with σ > 1/3, the
near-stagnation flow is the same as the rigid-wall solution; but for hulls with σ < 1/3,
the free surface makes a 2π/3 angle with the ship – very much like the cusp of a
highest Stokes wave (Wehausen & Laitone 1960).

Now we investigate the inner limit of the outer approximations. Consider first (4.5):

q1 =−iq0θ1 + q0

π

∫ ∞
0

θ1(ϕ)

ϕ − w
dϕ. (5.3)
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In the case of 1/3< σ < 1, the integrand satisfies the Hölder condition on the interval
[0,∞) and moreover, θ1(0)= 0. This guarantees that

1
π

∫ ∞
0

θ1(ϕ)

ϕ − w
dϕ ∼ 1

π

∫ ∞
0

θ1(ϕ)

ϕ
dϕ = constant (5.4)

as w→ 0. Thus q1 ∼ q0 as w→ 0 (the residue contribution −iq0θ1 is lower order)
and by induction qn ∼ qn−1 for all n. In other words, for hulls with σ > 1/3, the
singular nature of the origin does not magnify as n increases and hence there is no
eventual divergence in the asymptotic series. In this case, then, there is no exponential
contribution.

Now consider the case 0 < σ < 1/3. Here, the outer solution behaves like
q0 = O(wσ ) and consequently θ1 = O(w3σ−1) tends to infinity at the stagnation point.
An inner layer is required where the solution has the behaviour of (A 14) as w→ 0. In
any case, we can write

H [θ1(w)] = −σ
π

∫ ∞
0

dϕ
ϕ1−3σ (ϕ − w)

+ σ
π

∫ ∞
0

−(ϕ + 1)−1−3σ + 1
ϕ1−3σ (ϕ − w)

dϕ. (5.5)

It is easy to verify that the rightmost integrand satisfies the Hölder condition on [0,∞)
and is thus bounded and tending to a definite limit as w→ 0. The integral on the left
contains a power singularity and thus by (Gakhov 1990, p. 55), H [θ1(w)] = O(w3σ−1).
Inductively continuing this line of reasoning verifies that the growth of the integral
term is indeed proportional to the growth of the residue term and thus

qn = O(iq0θn−1) as n→∞. (5.6)

This shows that for σ 6 1/3, the singularity does cause the late-order outer terms to
diverge and, moreover, at a rate specified by the ansatz (4.6). Thus, the stagnation
point must be accompanied by the Stokes Phenomenon and the switching-on of
exponentials. Still, it is entirely possible that the accompanying Stokes line does
not come to intersect the free surface (other than at w = 0) and/or lies on a
separate Riemann sheet altogether; this is our conjecture. And while the claim remains
unproven, the numerical analysis of the problem in § 7 provides compelling evidence
in its favour. We will return to this issue in the discussion of § 8.

5.2. The corner
The corner is the critical point which is responsible for the generation of waves. Since
χ(−1)= 0, we may write (4.13) as

χ = i
∫ w

−1

1
q3

0(ϕ)
dϕ = i

∫ w

−1

(
ϕ + 1
ϕ

)3σ

dϕ, (5.7)

where the contour of integration can be taken along any path in the upper half-plane
that does not go through w = 0. In fact, this expression can be exactly integrated in
terms of special functions, and

χ(w)=−i(−w)3σw−3σB (−w; 1− 3σ, 1+ 3σ)+ 3σπ [1+ i cot(3σπ)] , (5.8)

where B(x, y) is the Beta function. Near the corner,

q0 ∼ eπiσ (w+ 1)−σ and χ ∼
[

ie−3πiσ

1+ 3σ

]
(w+ 1)1+3σ (5.9)
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FIGURE 4. Stokes lines for various hulls: σ = 0.2 ¬, σ = 0.4, σ = 0.5 ­ , σ = 0.6 ®, and
σ = 0.8. The Stokes lines are closed loops that begin and end at w=−1 and are symmetrical
about the real axis. Across the intersection of the Stokes line with Re(w) > 0, we expect an
exponential to switch on. Although they are an imaginary construct and lie on the analytically
continued free surface, they nevertheless share a correspondence with a line in the physical
plane which begins at the corner and arcs towards the free surface.

and from Dingle (1973), Stokes lines are expected whenever 1+ 3σ > 0, and also

Im(χ)= 0 and Re(χ)> 0. (5.10)

The first (and only relevant) Stokes line leaves the critical point at an angle of

ϑ = π
(

3σ − 1/2
1+ 3σ

)
, (5.11)

arcs into the upper half-plane, and continues until it intersects the free surface. This
is shown in figure 4. We note that as σ → 0, the intersection point tends towards the
origin. In § 6 and onwards, we will focus what happens when each Stokes line is
crossed.

5.3. Exponential subdominance of the integral
In order to demonstrate the late-order subdominance of the boundary integral in (3.1a),
consider the case of σ = 1/2 (other values of σ are treated similarly). Here, the
Stokes line originating from the corner leaves at an angle of 2π/5 in the potential
plane, curves in an arc, and intersects the free surface at about w= φc ≈ 0.635. Along
the real and positive w-axis, Re(χ) = 3π/2, which can be computed by the residue
contribution of (5.7) at infinity or alternatively by using (5.8).

In figure 5, we plot the contours of |χ(w)|, a thick line representing the Stokes line,
as well as a dashed line for the contour |χ | = 3π/2. Since χ(w) is an analytic function
away from its singularities, the contour |χ | = 3π/2 must necessarily intersect both the
Stokes line and the real axis at the single point w = φc. Moreover, along the real axis
the point φc constitutes an absolute minimum. For the equation

qn

q0
+ iθn − qn−1q1

q2
0

+ · · · =H [θn(w)], (5.12)

when the ansatz (4.6) is used and the late terms sought, the integral will be evaluated
on the real axis, where χ is larger than anywhere along the Stokes line. Thus the
right-hand side of the equation is negligible as n→∞. Essentially, its only effect is in
altering the values of the early terms, q0, q1, q2, and so on.
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FIGURE 5. The thin lines are contours for |χ(w)|, with dark regions corresponding to
small values. The thick black line corresponds to the Stokes line, and the dashed line to
|χ(w)| = 3π/2. Our Stokes line switching analysis is confined to the region above the dashed
line, where the relevant exponentials are larger than anywhere along the free surface.

The subdominance of the boundary integral term which occurs in potential theory
was also used for the analysis of the viscous fingering problem in Hele-Shaw flows
(see for example Combescot et al. 1988; Chapman 1999) and was rigorously justified
for that problem by Xie & Tanveer (2002).

6. Inner problem
In the previous sections, we derived the general form of the high-order terms qn

and θn, up to the determination of certain unknown coefficients, namely Λ and γ . In
this section, we will show how these coefficients can be determined by matching the
high-order terms near the singularities in the flow field.

6.1. Inner limits of outer expansions
Before we begin studying the inner problem, let us take note of the behaviour of Q
and Θ as we tend towards to the flow field singularity, w = −1. Recall from (4.16)
and (4.17) that

Q= Λ
q2

0

exp
(

3i
∫ w

w?

q1(ϕ)

q4
0(ϕ)

dϕ
)

and Θ = Λi
q3

0

exp
(

3i
∫ w

w?

q1(ϕ)

q4
0(ϕ)

dϕ
)
, (6.1)

while from (4.5), q1 is given by

q1 =−iq0θ1 + q0H [θ1(w)]. (6.2)

Using θ1 =−q2
0 dq0/dw from (4.4), we have

q1 = iq3
0

dq0

dw
+ q0H [θ1(w)]. (6.3)

Thus the exponential factor in the expressions for Q and Θ in (6.1) can be written as

exp
(

3i
∫ w

w?

q1(ϕ)

q4
0(ϕ)

dϕ
)
= exp

(
−3
∫ w

w?

q′0(ϕ)
q0(ϕ)

dϕ
)

exp
(

3i
∫ w

w?

H [θ1(ϕ)]
q3

0(ϕ)
dϕ
)

= q3
0(w

?)

q3
0(w)

exp
(

3i
∫ w

w?

H [θ1(ϕ)]
q3

0(ϕ)
dϕ
)
. (6.4)
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For this equation, the integrand is well behaved near the singularity at w=−1 and so

exp
(

3i
∫ w

w?

q1(ϕ)

q4
0(ϕ)

dϕ
)
∼ C

q3
0(w)

, (6.5)

where C is the constant

C = q3
0(w

?) exp
(

3i
∫ −1

w?

H [θ1(ϕ)]
q3

0(ϕ)
dϕ
)
, (6.6)

and thus the inner limits of the late-order terms of the outer expansion are

θn ∼ iΛC

q6
0

Γ (n+ γ )
χ n+γ and qn ∼ ΛC

q5
0

Γ (n+ γ )
χ n+γ . (6.7)

The values of C for various hulls are computed in Appendix B. In order to select the
constant γ , we require the asymptotic behaviour of the late terms given in (4.6), to be
consistent with the order of the singularities of q0 and θ0 as w→−1. Equating powers,
we need −5σ − (1+ 3σ)γ = σ or

γ = 6σ
1+ 3σ

, (6.8)

which is equivalent to (3.22) in Chapman & Vanden-Broeck (2006).

6.2. Outer limit of inner expansions
Let us begin by discussing how the two governing equations change as we tend
towards the corner. Near the singularity, the dynamic condition (3.1b) remains
unchanged, but the boundary integral (3.1a) can be considerably simplified. In this
case, we would like to evaluate

log qinner(w)+ iθinner(w)=H [θouter(w)] (6.9)

as w→−1 and where the indices help to remind us where the functions q and θ are
being evaluated. The left-hand side is evaluated near the singularity and thus involves
the exact expressions for q(w) and θ(w) in the inner limit. However, the integrand on
the right-hand side is integrated over the free surface, far away from the singularity,
thus it involves only the outer expansion for θ(w). But we know that substituting the
outer expansion into the right-hand side of (6.9) leads to

log qinner(w)+ iθinner(w)= log q0 + εH [θ1(w)] + O(ε2), (6.10)

and since H [θ ] is well-behaved for w off the axis, this forms a well-ordered
asymptotic expansion. The leading-order inner solution, then, is equivalent to using
log q+ iθ ∼ log q0 and we may thus substitute

sin θ = eiθ − e−iθ

2i
∼ i

2

(
q

q0
− q0

q

)
(6.11)

into the dynamic condition (3.1b), yielding

εq0q3 dq

dw
+ i

2

(
q2 − q2

0

)= 0. (6.12)

The correct scaling to use is hinted at by the inner limits of the outer approximations.
In the inner region, where q0 ∼ c(w+ 1)−σ with c= eπiσ , we let

w=−1+ ε1/1+3ση and q= ce−σ/(1+3σ)η−σq. (6.13)
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FIGURE 6. Values of Ω , from (6.17), for various hull forms.

Then (6.12) becomes

2ic3q2

(
−ση−3σ−1q+ η−3σ dq

dη

)
= q− 1

q
. (6.14)

We now let

z= iη1+3σ

c2(1+ 3σ)
, φ = q2 and φ =

∞∑
n=0

φn

zn
, (6.15)

yielding a recurrence relation for the outer limit of the leading-order inner solution:

φ0 = 1, φn =
n−1∑
m=0

(
m+ 2σ

1+ 3σ

)
φmφn−m−1, (6.16)

valid for z→∞. We match the leading-order inner limit of the nth term of the outer
expansion of q2 and match with the outer limit of the nth term of the leading-order
inner expansion. Using (5.9), (6.7), (6.13) and (6.15) gives

Λ= c6−3γ eiπγ /2

2C(1+ 3σ)
lim

n→∞
φn

Γ (n+ γ )︸ ︷︷ ︸
Ω

. (6.17)

The crucial limiting ratio, Ω , only depends on the local power of the singularity,
and numerical values for different ships are given figure 6. Notice that Ω is strictly
positive for all positive positive values of σ . In the next section, we will explain how
this fact relates to the production of waves.

6.3. Stokes smoothing

Remember: the underlying divergence of the asymptotic expansions will cause the
Stokes Phenomenon to occur, and as the complexified asymptotic solution crosses a
critical curve (the Stokes line), a small exponential switches on. The details of the
Stokes smoothing procedure are precisely the same as in Chapman & Vanden-Broeck
(2006), and here, we will only summarize the key ideas.
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In order to identify the exponentially small waves, we first optimally truncate the
asymptotic series at n=N so that

θ =
N∑
n=0

εnθn + RN and q=
N∑
n=0

εnqn + SN , (6.18)

whereby the remainders are related by (4.9) and thus SN ∼ −iq0RN . At the
optimal truncation point, the remainder SN is exponentially small (rather than only
algebraically small) and can be written as SN (w) = S (w)Qe−χ/ε , where we expect
S (w) to smoothly vary from zero to a constant across the Stokes line.

The procedure then is to re-scale near the Stokes line and examine the jump in the
exponentially small remainder as the Stokes line is crossed from upstream (indicated
with a + below) to downstream (indicated with a − below). The apparent jump in the
remainder of q can be shown to be[

SN

]−
+
∼ 2πi
εγ

Qe−χ/ε, (6.19)

while for θ , the jump is [
RN

]−
+
∼ 2πi
εγ
Θe−χ/ε. (6.20)

To finalise the analysis, we also need to complexify the free boundary into the
lower half-plane and this analogous process yields the functional complex conjugates
of (6.19) and (6.20); thus, the total contribution along the free surface is twice the real
parts of (6.19) and (6.20),

qexp ∼ 4π
εγ

Im(Qe−χ/ε), (6.21)

θexp ∼ 4π
εγ

Im(Θe−χ/ε). (6.22)

These formulae provide a link between the terms that are switched on across Stokes
lines, and the late-order terms of the asymptotic series.

6.4. The simplified nonlinear problem
The attentive reader will have noticed that the only effect of the Hilbert transform,
H [θ(w)], is to adjust the far-field waves by a non-zero constant factor. In fact, if
we were to simply ignore H [θ ], the only effects would be: (i) changing q1 in (4.5),
(ii) changing the computation of C in (6.6), and (iii) replacing the expression of Q in
(4.16), valid everywhere, by its expression valid near the singularity.

Thus, the salient features of the problem can still be retained if we use
log q ± iθ = log q0 instead of (3.1a), and in this way, we can reduce the full
problem in (3.1a) and (3.1b) to a simpler nonlinear differential equation in q. Analytic
continuation into the upper half-plane then gives the simpler formulation:

εq0q3 dq

dw
+ i

2

(
q2 − q2

0

)= 0. (6.23)

Tuck (1991a) also realised that the essential characteristics of the waveless ship
problem could be encapsulated by a single, local differential equation (his example,
however, was pedagogic in nature, whereas our approximation is justifiable). The
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one-cornered ship problem can thus be analysed more simply by studying (6.23)
instead of the full problem, and this is briefly presented in Trinh, Chapman & Vanden-
Broeck (2010); in fact, we shall use this simplified formulation to study the more
difficult multi-cornered ship problem in a future paper.

However, we now return to our study of the full problem in (3.1a) and (3.1b), for
which we have already completed the asymptotic analysis. In the next section, we will
provide numerical validation of our beyond-all-orders predictions.

7. Numerical results
Precise computation of exponential smallness is hardly a trivial affair, but despite

the fact that the quantities of interest are exceedingly small, many past workers have
still managed to confirm beyond-all-orders predictions with numerical simulations.
For example, by using a spectral basis supplemented by a function which mimics
the far-field waves, Boyd (1991) was able to compute the exponentially small
gravity–capillary waves of the fifth-order Korteweg–de Vries equation to over ten
digits of accuracy. And although these methods were never applied to the full
nonlinear water-wave equations, Chapman & Vanden-Broeck (2002, 2006) still
comfortably computed small capillary and small gravity waves for the full problem
using second-order finite differences – this time to five or six digits of accuracy.
Unfortunately, as we shall see, the ship–wave problem presents numerous new
challenges not encompassed by the previous numerical methods. These challenges
arise because of the surface-piercing nature of the ship, which supplements the usual
difficulties of resolving exponential smallness with the problem of now dealing with an
essential singularity at the origin.

We shall present two algorithms for resolving the far-field waves in the limit of
small Froude number. ALGORITHM A is quick and simple, and can be used whenever
ε is not too small or when the effect of the singularity is minimal. When either of
these two conditions is violated, we opt for ALGORITHM B, which uses a stretched
grid near the singularity. Both approaches were necessary to achieve our results, but
we emphasise the rather severe sensitivity of the waves (at small ε) to particular
parameter choices of the two algorithms; because of this, we have taken great care to
ensure reproducibility of all our results. The numerical difficulties encountered in this
paper have inspired recent work by Olver (2011) on developing spectral methods for
solving Riemann–Hilbert problems.

7.1. ALGORITHM A: a simple method

We first propose a very simple method based on the work in Chapman & Vanden-
Broeck (2002, 2006), though many authors have used this method for computing
two-dimensional nonlinear flows over obstructions (see for example Forbes 1983 for
the case of gravity flow over a semi-circular cylinder, and King & Bloor 1990 for the
case of flow over an arbitrary bed topography).

To begin, we first truncate the semi-infinite domain to a finite interval and introduce
an equally spaced mesh for φ and its midpoints, with separation distance, 1φ:

φj = (j− 1)1φ for j= 1, 2, . . . , n, (7.1)

φm
j = 1

2(φj + φj+1) for j= 1, 2, . . . , n− 1. (7.2)
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We seek to solve for the n unknowns, θj (evaluated at the points φj). Given an initial
guess for θj, values of τ = log q at the n− 1 midpoints are computed using

τm
j = σ log

(
φm

j

φm
j + 1

)
+ 1
π
−
∫ φmax

−3pt0

θ(φ)

φ − φm
j

dφ for j= 1, 2, . . . , n− 1. (7.3)

The principal value integral is computed by applying the trapezoidal rule with a
summation over the mesh points φj; this use of equally spaced points and midpoints
should allow us to neglect the singularity of the principal value without losing
accuracy. Bernoulli’s equation then provides a system of n− 1 equations to solve:

Fj = εe3τm
j

(
dτm

dφm

)
j

+ sin θm
j = 0 for j= 1, 2, . . . , n− 1, (7.4)

where the derivatives dτ/dφ are computed using second-order differences, and θm
j

denotes the value of θ at the midpoints. For the nth equation, we assign the boundary
condition

Fn = θ1 =
{

0 if σ > 1
3

π(σ − 1
3) if σ < 1

3 ,
(7.5)

and moreover, we replace the first equation with the condition that

F1 = θ3 − θ̂0 − (θ2 − θ̂0)

(
φ3

φ2

)κ
= θ3 − θ̂0 − (θ2 − θ̂0)2κ, (7.6)

where θ̂0 and κ are as prescribed in (5.2). Conditions (7.5) and (7.6) then assure us
that θ = θ̂0 + O(φκ) over the first three mesh points.

Solutions for the σ = 20/48 and σ = 32/48 hulls at ε = 0.8 and ε = 0.4,
respectively are shown in figure 7. It is important to note that the values shown
are not from θj but rather, the midpoints θm

j ; this is due to the fact that the central
difference approach in the algorithm causes the original θ values to exhibit a sawtooth
pattern between mesh points – it is, after all, the midpoints which are used in the
solution of (7.4). Notice from the enlarged lower figure that even for these relatively
moderate values of ε, the downstream waves are already quite small. The algorithm is
most effective for both moderate values of σ (near or greater than the vertical hull)
and moderate wave amplitudes. Unfortunately, it proves to be ineffective for specific
types of solutions, due to certain numerical difficulties, as we shall now discuss.

The first difficulty is that the method of computing singular integrals by trapezoidal
integration over the midpoints is generally not as accurate as other comparable
second-order methods, particularly when the singularity is allowed to approach one
of the endpoints (see Noble & Beighton 1980). For increased accuracy, we need an
alternative treatment of the boundary integral.

The second minor difficulty is that compared to the amplitude of the far-field waves,
the algebraic decay of the core solution is extremely slow, at the rate of

θ = O

(
w3σ−1

(w+ 1)3σ+1

)
, (7.7)

as ε→ 0 and w→∞. Wave amplitudes are measured by computing differences in
numerical maxima and minima near φmax , and increased accuracy can be achieved
by averaging the small, locally linear shifts in the amplitudes. However, this slow
algebraic decay is a symptom of the surface-piercing nature of the problem and still
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FIGURE 7. Solutions for σ = 20/48 at ε = 0.4 (dashed) and σ = 32/48 at ε = 0.8 (solid);
these solutions were computed using ALGORITHM A with n = 2000 and 1φ = 0.05 for the
former hull, and n= 1000 and 1φ = 0.1 for the latter. Zooming in (not shown) shows that the
solution is ill-resolved near the stagnation point, but for a limited range of hulls, the algorithm
is sufficient.

provides an additional loss of accuracy in comparison with problems for which the
tails are generally exponentially decaying – as in the fifth-order Korteweg–de Vries
problem discussed in Boyd (1991), and also for gravity flows over a submerged
obstruction studied in Chapman & Vanden-Broeck (2006).

Finally and most importantly, for values of σ near or less than 1/3, the algorithm
does a poor job of approximating the solution, particularly those containing wave
amplitudes on the order of 10−3. Examination of θ near the stagnation point shows
that the numerical discretisation cannot cope with the essential singularity at the origin;
unfortunately, as σ → 0, the outer low-Froude-number solution becomes increasingly
singular. The inherent errors in using an inappropriately spaced mesh swamp the
computations and low-Froude-number solutions for σ small cannot be trusted.

In the next section, we will propose an alternative algorithm which focuses on
minimising the errors produced by the stagnation point.

7.2. ALGORITHM B: a comprehensive method

The algorithm in this section is similar to the one presented in Farrow & Tuck (1995)
but with a few key differences which allow a better resolution of the near-stagnation
flow.

The first change we implement is the use of a stretched grid in φ near the stagnation
point. We need a mesh which can approximate the essential singularity at the origin,
but which can also capture the almost-periodic waves downstream. For this, we define
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a stretched grid near the origin

φj = φ0 + (φc − φ0)

(
j− 1
m− 1

)1/s

for j= 1, 2, . . . ,m, (7.8)

for some initial point φ0, some matchpoint φc, a chosen number of mesh points m, and
a value of s we will later specify. Afterwards, a downstream discretisation is chosen:

φj = φc +1φmax
(

j− 1
n− m− 1

)
for j= m+ 1, 2, . . . , n, (7.9)

for a total of n mesh points and a downstream spacing of 1φmax . A better parameter to
use for the latter is given by

K = 2πε
1φmax

, (7.10)

where K now indicates the number of mesh points per linear wavelength of the
downstream waves. If the value of s is not too small, then we may select φc and m so
that the last separation distance of the initial mesh, φm − φm−1, is equal to the spacing
of the downstream mesh, 1φmax ; we refer to this as a smoothed mesh. However, if s
is too small, then the growth of the initial mesh is too slow, and we generally need
to manually choose suitable values of φc and m for each individual problem. The
complete choice of parameters which fully determine the initial and downstream mesh
is quite tricky and largely dependent on the choice of σ and ε. For solutions given in
the figures, we let B(σ ) = [n, φ0,K,m, φc] denote a vector of parameter values, and
write B(σ ) = [n, φ0,K, ∗, ∗] if a smoothed mesh is used. In the next section, however,
we will discuss which particular values work and which do not.

Here, we look to solve

Fj = ε3q3
0(φj) exp

[
1
π
−
∫ φn

φ1

θ(ϕ)

ϕ − φj
dϕ
]
+
∫ φj

φ1

sin θ dϕ = 0, (7.11)

for j = 1, 2, . . . , n, and the principle advantage of dealing with (7.11) rather than its
differentiated counterpart, (7.4), is that the lack of smoothness between the two meshes
at φ = c can now be ignored.

Now we turn to the computation of the right-most integral. We proceed as in Farrow
& Tuck (1995), and split the integral as∫ φj

0
sin θ dϕ =

∫ φj−1

0
sin θ dϕ +

∫ φj

φj−1

sin θ dϕ. (7.12)

The second integral on the right is calculated by computing the quadratic interpolation
of sin θ over φj−1, φj and φj+1, and integrating the quadratic exactly (the use of the
additional φj+1 point is to ensure stability and accuracy of the method). Similarly, for
the integral

−
∫ ∞

0

θ(ϕ)

ϕ − φj
dϕ =

∫ φj−1

0

θ(ϕ)

ϕ − φj
dϕ +−

∫ φj+1

φj−1

θ(ϕ)

ϕ − φj
dϕ +

∫ φmax

φj+1

θ(ϕ)

ϕ − φj
dϕ, (7.13)

the first and last terms on the right-hand side can be computed using the trapezoid rule,
whereas the singular term is calculated by fitting a quadratic through the points θj−1, θj,
and θj+1 and integrating exactly.
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FIGURE 8. Solutions for σ = 12/48 at ε = 1/3 (dashed) and σ = 18/48 at ε = 1/3
(solid). These were computed using the stretched grids of ALGORITHM B and as shown
in the enlargement in the lower figure, successfully produced well-resolved solutions
near the stagnation point. Parameters used were: B(12/48) = [1450, 10−8, 30, 20, 0.5] and
B(18/48)= [800, 10−8, 30, 20, 0.5].

Next, let us turn to boundary conditions. The selection of the number and type of
boundary conditions to impose is generally an ad hoc issue. In general, we must worry
about the solution remaining bounded at the last endpoint φ = φmax , and moreover,
for it to have the correct behaviour as φ → 0. For the former condition, we find
it sufficient to construct a quadratic interpolation through the three next-to-last mesh
points, and require the last mesh point to satisfy this relation; that is,

Fn = θn − (p2φ
2
n + p1φn + p0)= 0, (7.14)

where p0, p1 and p2 are the coefficients of the quadratic satisfying p2φ
2
j + p1φj+ p0 = θj

for j= n− 3, n− 2 and n− 1.
The behavioural condition as φ→ 0 is more difficult. For example, we could simply

ignore the issue, and assume that our choice for the near-field discretisation would be
sufficient for the solution to converge. Alternatively, we could impose the condition
that the quadratically extrapolated value from the first three mesh points coincides with
the correct value of θ at the origin. That is,

F1 = θ̂0 − (p2φ
2
1 + p1φ1 + p0)= 0, (7.15)

where θ̂0 is from (5.2), and p2, p1 and p0 are the coefficients of the quadratic which
satisfy p2φ

2
j + p1φj + p0 = θj, for j= 1, 2 and 3.
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Another condition could be to require that

F1 = θ2 − θ1

(
φ2

φ1

)κ
= 0, (7.16)

where κ is as prescribed in (5.2). Other possibilities may be to require that q(0) = 0
using a condition akin to (7.15); or perhaps, to require that q= O(wσ ) if σ > 1/3 and
q= O(w1/3) if σ < 1/3 using a condition akin to (7.16).

As a general rule of thumb, the conditions in (7.15) and (7.16) both seem adequate
and more-or-less equivalent in correctly resolving the behaviour near the stagnation
point, provided the mesh is suitably chosen. With this in mind, we choose to use
(7.15) as this does not require κ . Examples of successfully computed solutions are
given in figure 8.

7.3. Numerical versus analytical results
In the end however, even with various ad hoc changes to accommodate the numerical
challenges of the surface-piercing and singular-integral aspects of the problem, it is
still difficult to understand how one change may affect the resultant wave amplitudes
in contrast with another. Because our regime of interest involves exponentially small
waves, small changes in not only the choice of boundary conditions, but also the
number of mesh points to place in the both the initial and downstream mesh can have
a significant impact on the eventual results.

We leave these questions concerning the construction of a truly robust and accurate
numerical method for further research and instead focus on sufficient confirmation
of our analytical results. Our numerical results are constructed by relying on a
combination of all the techniques mentioned in the previous sections.

In general, there are five crucial parameters to choose when using ALGORITHM B.
These are n, the total number of mesh points; m, the number of points in the stretched
grid; φ0, the first grid point; φc, the matchpoint between the two meshes; and finally K,
the points per wavelength. For small ε, a small adjustment to one of these parameters
can have a significant impact on the relative error of the solutions.

Let us begin with the easiest case: the σ = 1/2 hull is simplest to calculate because
its waves are only moderately small, and its behaviour near the origin only moderately
singular. Here, ALGORITHM A provides accurate results for amplitudes down to
roughly 10−4. Afterwards, the more careful treatment of the stagnation point and
quadrature schemes from ALGORITHM B can be used to extend these results down to
around 10−6.

There is a surprising requirement for numerical accuracy of hulls with σ larger than
1/2. For these cases, the behaviour near the stagnation point is less singular and, in
fact, the increase in accuracy gained from ALGORITHM B over A is less significant.
However, for smaller and smaller wave amplitudes, it becomes crucial to increase the
number of points per wavelength; in the case of σ = 5/8, for example, accurate results
can only be obtained for ε ≈ 0.5 with K = 60–90 points per wavelength. With this in
mind, both algorithms provide similar results, and because the simpler version is much
more computationally efficient, we favour it for these larger values of σ .

The most challenging regime occurs when σ is small and particularly when σ < 1/3.
In this case, it is crucial to correctly resolve the behaviour near the stagnation point.
Here, the difficulty is that the solution exhibits two types of behaviour near the critical
point: as ε tends to zero, the outer solution tends to negative infinity at the rate of
θ ∼ w3σ−1, which is a particularly strong blow-up. However, the nonlinear inner region
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FIGURE 9. Solutions near the stagnation point for σ = 14/48 and for various values of ε.
The leading-order asymptotic solution for ε = 0.22 is the dashed line whereas the small
node indicates the value θ0 ≈ −0.13. Initially (for ε = 0.5), there is a fairly clear inner
region (marked on the figure). As ε → 0, this inner region grows smaller and smaller,
making it increasingly difficult to resolve the inner-most solution. All computations used
B(14/48)= [1000, 10−8, 30, ∗, ∗].

has θ ∼ θ0 + wς , which behaves almost linearly for small σ (see (5.2) in § 5.1). Worst
still, the inner region is growing ever smaller and smaller, at the rate of ε1/1−3σ .

Consider the case of σ = 14/48 ≈ 0.2917. In this problem, the outer solution
roughly behaves like θ ∼ w−0.13, whereas the nonlinear prediction is θ = θ0 + w0.39.
These two behaviours are not wholly disparate. In this case, we may use ALGORITHM
B with the choice of s = ς ≈ 0.39 for the initial mesh. The choice is then sufficiently
singular to resolve the correct near-field behaviour and provide accurate results for
wave amplitudes down to about 10−6. Figure 9 is a blow-up of the stagnation point for
solutions of this ship for various values of ε.

Now consider the most challenging case: for σ = 12/48 = 0.25, the outer solution
roughly behaves like θ ∼ w−0.25, whereas the nonlinear prediction is θ = θ0 + w0.89.
Choosing s from either approximation leads to trouble. Our ad hoc solution has been
to choose a value of s sufficiently small to resolve the outer blow-up, but within reach
of the true nonlinear behaviour – for example s = 0.25. Once solutions for this mesh
have been computed, we may then slowly increase s while increasing m and examine
the convergence of the solutions.

By patiently adjusting each of the values involved in the computations, we have
been able to construct figure 10, which plots numerical and asymptotic results for the
hulls we have discussed, accurate to around five or six digits of accuracy. The slopes
of the semi-log trends are each matched to a particular hull, with the backward-facing
hulls (σ > 1/2) producing smaller waves than the forward-facing hulls. The agreement
between analytical and numerical results is very good, even over relatively large ranges
of ε.

8. Discussion
So in the end, do waveless ships exist?
For the one-cornered ship, the answer is clearly no. The Stokes line smoothing

necessitates the existence of the non-zero wave on the free surface. For stern flows,
these waves must propagate downstream, while for bow flows, these waves grow to
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FIGURE 10. Numerical (dots) and asymptotic (solid) wave amplitudes in θ , far downstream
and for a range of hull inclinations. At a given Froude number, the waves can
be minimised by simply inclining the hull ‘backwards’. The asymptotic predictions
from (6.22) provide a good fit for a large range of Froude numbers. The σ =
32/48 computation was done using ALGORITHM A with n = 1500 and discretisation
distance 1φ = 0.04; similarly, the σ = 30/48 computation used n = 1500 and 1φ =
0.05; the rest were done using ALGORITHM B. The following parameter values were
used: B(12/48) = [800, 10−8, 30, 90, 0.3], B(14/48) = [1000, 10−8, 30, ∗, ∗], B(18/48) =
[800, 10−8, 30, 50, 0.5], and B(24/48)= [800, 10−5, 30, 20, 0.5].

be of infinite amplitude near the hull (since |Q|, |Θ| → ∞ as w→ 0 in (6.1)). In
particular, this implies that for such flows, the assumption that the flow attaches to
the hull at a stagnation point is false; indeed, it has been conjectured that the correct
assumption must include an overturning splash near the bow (see Dias & Vanden-
Broeck 1993; Tuck 1994). Thus for the one-cornered hull, neither waveless sterns nor
splashless bows are possible.

But there are still a handful of open questions, and many of these unresolved issues
are significant for the wider study of general free-surface problems. One such issue,
which we had previously encountered in § 5.1, deals with the attachment between
free surface and ship when the inclination of the hull is less than π/3; here, does
the stagnation point produce an exponentially small contribution on the surface? Our
numerics seem to indicate that it does not, but this issue of evanescent waves near
a free-surface singularity has already been highlighted as a particularly challenging
problem (see Tuck 1991a,b), and we invite other researchers to address the issue.

Another open issue relates to the separation of our mathematical analysis into local
and global approaches. For example, consider the late-order terms of § 4, or consider
the local emergence of the Stokes lines of § 5.2, or the numerical solution of the
recurrence relation of § 6; all these results were derived using local properties of the
problem – indeed, their analysis simply depends on the behaviour of the asymptotic



Do waveless ships exist? 435

solutions near the relevant singularities. In contrast, the global nature of the ship
problem, which largely depends on the physical set-up, must be handled on a case-by-
case basis. Are there less obvious Stokes line arrangements, not examined in this study,
which produce different classes of solutions?

In discussing these global issues, we are naturally led to the following question: Do
waveless ships of a more general form exist? Perhaps. One could imagine that for a
general multi-cornered ship (such as the one depicted as ­ in figure 1) the position
of each corner could be strategically chosen so that the wave contribution due to each
singularity adds to zero in the far field – the entire body would then move without
a wake. In a future paper, we shall demonstrate that for most ‘obvious’ classes of
multi-cornered ships, total wave cancellation does not occur. Moreover, it seems to be
the case that the bulbous ships studied by Tuck & Vanden-Broeck (1984) (shown as ®
in figure 1) cannot be made waveless either; indeed, this was the claim in Farrow &
Tuck (1995) based on numerical evidence. Research on this problem is ongoing.

Appendix A. Local behaviour near the stagnation point
In this appendix, we will derive the local behaviour of the free surface near the

stagnation point along the ship’s hull. For the local behaviour, it is initially easier to
work with Cartesian coordinates as a function of the potential z = z(w), and now,
assuring analyticity of z (or w) is equivalent to satisfying the boundary integral
equation; we may thus focus on Bernoulli’s equation (2.3), which can be written
as

−2
ε

Im[z]
∣∣∣∣ dz

dw

∣∣∣∣2 = 1 on w ∈ R+, (A 1)

where the wall condition requires that

sin(πσ)
(

dx

dw

)
− cos(πσ)

(
dy

dw

)
= 0 on w ∈ (−1, 0). (A 2)

Now, one way to proceed is to let

z(w)∼A wα +Bwβ (A 3)

where A ,B ∈ C and we are concerned with w→ 0. Tuck & Roberts (1997) instead
consider z = X(w) + iY(w) where they require X,Y ∈ R on w ∈ R+, but the two
approaches are equivalent. We now have to split everything into real and imaginary
parts and multiply out. If we write

z= [aeiδ]wα + [beiρ]wβ, (A 4)

where β > α, and all the variables save for w are real, then we find two possible cases.
First, if δ = 0, then the requirement that z is real on w ∈ R+ is satisfied automatically,
whereas the wall condition in (A 2) requires that α = 1− σ . Thus,

z(w)∼ aw1−σ ⇒ dw

dz
= qe−iθ ∼ C wσ , (A 5)

where the constants C and a cannot be determined purely by local means. The
expression in (A 5) is simply the leading-order solution in the small-ε limit.

Now suppose on the other hand that δ 6= 0. Then we may write

dz

dw
= ˆA eiδwα−1 + B̂eiρwβ−1, (A 6)
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where we have denoted ˆA = αa and B̂ = βb. Then along the free surface, we can
write for w= φ > 0,∣∣∣∣ dz

dw

∣∣∣∣2 = ˆA 2φ2α−2 + B̂2φ2β−2 + 2 ˆA B̂ cos(δ − ρ)φα+β−2, (A 7)

whereas

Im(z)= Im[aeiδφα + beiρφβ] = [a sin δ]φα + [b sin ρ]φβ . (A 8)

We may now write the free-surface condition in (A 1) as

[a sin(δ)φα + b sin(ρ)φβ][ ˆA 2φ2α−2 + B̂2φ2β−2 + 2 ˆA B̂ cos(δ − ρ)φα+β−2] = ε
2
. (A 9)

The leading-order dominant balance requires

a3α2 sin(δ)φ3α−2 =−ε
2
, (A 10)

so α = 2/3 and the wall condition in (A 2) requires δ = πσ − π/3. Finally, a can be
determined by substituting these values into (A 10), yielding

a=
[

9ε
8 sin (π/3− πσ)

]1/3

. (A 11)

The next order in the free-surface equation is φ2α+β−2, where

2β sin (πσ − π/3) cos(πσ − π/3− ρ)+ (2/3) sin ρ = 0, (A 12)

and here, the wall condition requires that ρ = πσ − πβ − 1; substituting this into the
above gives

2β sin(πσ − π/3) cos(2π/3+ πβ)+ 2/3 sin(πσ − πβ − 1)= 0. (A 13)

The above expression provides a formula for the transcendental power, β and in fact it
can be shown that the series expansion for z(w) with ε fixed and w→ 0 proceeds in
transcendental powers after the first term. Nevertheless, along the free surface, we may
write

θ = δ +
(

b

a

)
φβ−α

{
sin ρ
cos δ

− tan(δ)
cos ρ
cos δ

}
+ O

(
φ2β−2α

)= δ +Dφς , (A 14)

where we define the important power as ς = β − α = β − 2/3 and the constant D
cannot be found by local means alone.

Appendix B. Computation of C in (6.6)
In this appendix, we will analytically derive |C| and provide numerical computations

for the argument of C. Without loss of generality, we will choose the initial point of
integration ϕ = w? to lie on the positive real axis. There is a residue contribution at
ϕ =∞, so we will also let ζ ′ = 1/ϕ. The integral becomes

C = q3
0(w

?) exp

(
−3i

∫ w∗

1/w?

1

ζ ′2q3
0(1/ζ ′)

[
1
π

∫ ∞
0

θ1(t)

t − 1/ζ ′
dt

]
dζ ′
)
, (B 1)
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where the singularity is w? = −1 for the one-cornered ship. Now since we are only
interested in the modulus of C, we note that for real ζ ′,

Im
[

1
π

∫ ∞
0

θ1(t)

t − 1/ζ ′
dt

]
=
{

0, ζ ′ < 0
θ1, ζ ′ > 0

(B 2)

the residue being positive since we wish to remain in the upper half-ϕ-plane during
integration. Thus

Re

(
−3i

∫ w∗

1/w?

1

ζ ′2q3
0(1/ζ ′)

[
1
π

∫ ∞
0

θ1(t)

t − 1/ζ ′
dt

]
dζ ′
)

= 3
∫ 0

1/w?

θ1(1/ζ ′)
ζ ′2q3

0(1/ζ ′)
dζ ′ − 3 Res


1
q3

0

∫ ∞
0

θ1(t)

t − 1/ζ ′
dt

ζ ′2
, ζ ′ = 0

 . (B 3)

Setting θ1 = −q2
0 dq0/dw by (4.5) and changing the first integral back to the w-plane

yields

3
∫ ∞

w?

θ1(ϕ)

q3
0(ϕ)

dϕ = 3
∫ ∞

w?

q′0(ϕ)
q0(ϕ)

dϕ =−3 log q0(w
?), (B 4)

and the residue is

Res


1
q3

0

∫ ∞
0

θ1(t)

t − 1/ζ ′
dt

ζ ′2
, ζ ′ = 0

= Res


1
q3

0

∫ ∞
0
−θ1(t) dt

ζ ′
, ζ ′ = 0

=
1
3
. (B 5)

Thus

Re
(
−3i

∫ −1

w?

1
q3

0(ϕ)

[
1
π

∫ ∞
0

θ1(t)

t − ϕ dt

]
dϕ
)
=−3 log q0(w

?)− 1, (B 6)

and so the magnitude of C is

|C| = 1
e
. (B 7)

Note that this computation for |C| does not depend on the particular form of q0,
only that it tends to 1 as w→∞. The numerical computation of Arg(C) can be
considerably simplified by using the exact expression for the inner integral,

1
π

∫ ∞
0

θ1(ϕ)

ϕ − w
dϕ = σ

3(1+ w)

[
1
σ
+ 3π exp(−3πiσ)cosec(3σπ)

w

(
w

w+ 1

)3σ

+ 3
1− 3σ 2F1(1, 1, 2− 3σ,−w)

]
, (B 8)

where 2F1 is the hypergeometric function. With this, (6.6) can now be computed by
numerically integrating along a semi-circular arc in the upper half-plane from w ∈ R+
to w=−1. Figure 11 plots the values of Arg(C) for different hull configurations.
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FIGURE 11. Numerically integrated values of Arg(C) for various hull forms. The argument
reaches its maximum at σ ≈ 2/3, where Arg(C)≈ 0.9346.
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