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Abstract

There are three areas of research in this thesis. The first is con-

cerned with the silica polymorph, tridymite, with simulations car-

ried out using three computational methods: free energy minimisa-

tion, molecular dynamics and Density Functional Theory. A num-

ber of tridymite structures with different atomic configurations have

been found in nature. The simulations explore various properties of

these different forms of tridymite and investigate whether it is pos-

sible to distinguish between them using the three computational

techniques. It was found that the interatomic potential and simula-

tion technique used, rather than the simulation temperature, were

the main factors affecting the resulting structure. There are a num-

ber of possible explanations for this result: The techniques may not

be sensitive enough to deal with an energy landscape as flat as in the

case of tridymite. Another reason is that the potentials have been

parameterised to distinguish between structures which have recon-

structive transitions (where bonds are broken and formed) and may

not be able to deal with displacive transitions (where only angles

between atoms change) as with tridymite. The final possible expla-

nation is that a number of the known structures may be meta-stable

and/or poorly characterised.

For the second research area molecular dynamics simulations using

a rigid ion two body potential were carried out in order to investi-

gate the properties of silica melts and glasses. A number of different

silica crystals were melted to see whether the melts are all similar or

whether their properties can be differentiated according to the orig-

inal crystal structure. At sufficiently high temperatures the starting
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structure did not affect the properties of the melt. Several properties

of silica melts and glasses were investigated: mean square displace-

ment, autocorrelation functions, pair distribution functions, the ex-

tent to which silicon and oxygen atoms move together, Arrhenius

plots, coordination number, bond lengths and angles. Investigations

were also carried out as to whether it is possible to use a shell model

to simulate a silica melt. Various properties were calculated and it

was found that agreement with experiment was not as accurate as

when using the rigid ion model.

The third research area is an exploration of the properties of amor-

phous silica at elevated pressures and a range of temperatures, using

molecular dynamics with a rigid ion two body potential. Calcula-

tions show that, at low temperatures, the distortion of the tetra-

hedra is not recovered upon decompression whereas experimental

results find complete recovery of the tetrahedra. There is little

available experimental data on the behaviour of silica at both high

pressures and temperatures. Calculations show that at high tem-

peratures all properties of the initial structure before compression

are recovered.

3



Contents

Declaration 1

Abstract 2

Acknowledgements 12

1 Introduction 13

1.1 Introduction to silica . . . . . . . . . . . . . . . . . . 15

1.2 Introduction to tridymite . . . . . . . . . . . . . . . . 16

1.3 Other silica polymorphs . . . . . . . . . . . . . . . . 26

1.3.1 Cristobalite . . . . . . . . . . . . . . . . . . . 28

4



CONTENTS

1.3.2 Quartz . . . . . . . . . . . . . . . . . . . . . . 29

1.3.3 Coesite . . . . . . . . . . . . . . . . . . . . . . 30

1.3.4 Stishovite and other six coordinated polymorphs 33

1.3.5 Higher pressure phases . . . . . . . . . . . . . 34

1.4 Introduction to amorphous silica . . . . . . . . . . . . 36

2 Methodology 41

2.1 Free energy minimisation . . . . . . . . . . . . . . . . 41

2.2 Molecular dynamics . . . . . . . . . . . . . . . . . . . 46

2.2.1 Finite difference methods . . . . . . . . . . . . 47

2.2.2 Time step . . . . . . . . . . . . . . . . . . . . 49

2.2.3 Initial velocities . . . . . . . . . . . . . . . . . 51

2.2.4 Equllibration and simulation time . . . . . . . 52

2.2.5 Periodic boundary conditions . . . . . . . . . 52

2.2.6 Ensembles . . . . . . . . . . . . . . . . . . . . 55

5



CONTENTS

2.2.6.1 Constant temperature simulations . 55

2.2.6.2 Constant pressure simulations . . . . 56

2.2.6.3 Choice of ensemble . . . . . . . . . . 57

2.2.7 Ewald summation . . . . . . . . . . . . . . . . 57

2.3 Potentials . . . . . . . . . . . . . . . . . . . . . . . . 59

2.3.1 Forces . . . . . . . . . . . . . . . . . . . . . . 61

2.3.1.1 Electrostatics . . . . . . . . . . . . . 61

2.3.1.2 Repulsion . . . . . . . . . . . . . . . 61

2.3.1.3 Dispersion . . . . . . . . . . . . . . . 62

2.3.1.4 Spring or bond stretch . . . . . . . . 62

2.3.1.5 Angle bending . . . . . . . . . . . . 63

2.3.1.6 Shell model . . . . . . . . . . . . . . 65

2.3.2 The BKS potential . . . . . . . . . . . . . . . 66

2.3.3 The Sanders potential . . . . . . . . . . . . . 68

6



CONTENTS

2.4 Electronic structure calculations . . . . . . . . . . . . 70

2.5 Properties . . . . . . . . . . . . . . . . . . . . . . . . 71

2.5.1 Pair Distribution Function . . . . . . . . . . . 71

2.5.2 Mean Square Displacement . . . . . . . . . . . 74

2.5.3 Diffusion coefficient . . . . . . . . . . . . . . . 74

2.5.4 Velocity Autocorrelation Function and Vibra-

tional Density of States . . . . . . . . . . . . . 75

2.5.5 Arrhenius plots . . . . . . . . . . . . . . . . . 76

2.6 Programs . . . . . . . . . . . . . . . . . . . . . . . . 77

3 An exploration of the silica polymorph tridymite 78

3.1 Free energy minimisation . . . . . . . . . . . . . . . . 79

3.1.1 Methodology . . . . . . . . . . . . . . . . . . 79

3.1.2 Results . . . . . . . . . . . . . . . . . . . . . . 80

3.1.2.1 Final atomic configuration . . . . . . 80

7



CONTENTS

3.1.2.2 Energy and volume . . . . . . . . . . 83

3.2 Molecular Dynamics . . . . . . . . . . . . . . . . . . 86

3.2.1 Methodology . . . . . . . . . . . . . . . . . . 86

3.2.2 Results . . . . . . . . . . . . . . . . . . . . . . 88

3.2.2.1 Energy and volume . . . . . . . . . . 88

3.2.2.2 Final atomic configurations . . . . . 91

3.2.2.2.1 Pair Distribution Functions 96

3.2.2.2.2 Bond lengths . . . . . . . . 100

3.2.2.2.3 O-Si-O angles . . . . . . . . 101

3.2.2.2.4 Si-O-Si angles . . . . . . . . 102

3.2.2.3 Alternative simulations . . . . . . . . 104

3.3 Simulations involving two potentials . . . . . . . . . . 106

3.4 Simulations involving two methods . . . . . . . . . . 108

3.5 Density Functional Theory . . . . . . . . . . . . . . . 114

8



CONTENTS

3.6 Discussion and conclusions . . . . . . . . . . . . . . . 116

3.6.1 Energy and volume . . . . . . . . . . . . . . . 116

3.6.2 Final atomic configuration . . . . . . . . . . . 117

3.6.3 Conclusions . . . . . . . . . . . . . . . . . . . 118

4 The static and dynamic properties of silica melts and

glasses 121

4.1 Modification of the BKS potential . . . . . . . . . . . 122

4.2 Production of quenched structure . . . . . . . . . . . 127

4.3 Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.4 Arrhenius plots and activation energies . . . . . . . . 133

4.5 Energy and volume . . . . . . . . . . . . . . . . . . . 140

4.6 Bond lengths, angles and Pair Distribution Functions 143

4.7 Coordination of silica melts and glasses . . . . . . . . 157

4.8 The effect of defects in a crystal on its melting behaviour162

9



CONTENTS

4.9 The nature of the Si-O bond in a melt . . . . . . . . 165

4.10 Melting a structure using the Sanders potential . . . 171

4.11 Conclusions . . . . . . . . . . . . . . . . . . . . . . . 175

5 The behaviour of amorphous silica under pressure 178

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 178

5.2 Literature review . . . . . . . . . . . . . . . . . . . . 180

5.2.1 Compression at ambient temperatures . . . . 180

5.2.1.1 Experimental studies . . . . . . . . . 180

5.2.1.2 Computational studies . . . . . . . . 182

5.2.2 Compression at high temperatures . . . . . . 184

5.2.2.1 Experimental studies . . . . . . . . . 184

5.2.2.2 Computational studies . . . . . . . . 185

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5.3.1 Volume . . . . . . . . . . . . . . . . . . . . . 187

10



CONTENTS

5.3.2 Coordination, bond lengths and angles . . . . 191

5.3.3 Gradual application and release of pressure . . 195

5.3.4 The release of both high pressures and tem-

peratures . . . . . . . . . . . . . . . . . . . . 201

5.4 Summary and conclusions . . . . . . . . . . . . . . . 203

5.4.1 Summary . . . . . . . . . . . . . . . . . . . . 203

5.4.2 Conclusions . . . . . . . . . . . . . . . . . . . 205

6 Summary and future work 207

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . 207

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . 211

Bibliography 213

11



Acknowledgements

I would like to thank my supervisors, Dr. Robert G. Bell, Prof.

C. Richard A. Catlow and Prof. Akira Takada, for their advice,

encouragement, friendliness and patience. I would also like to thank

past supervisors, Dr. Mark Wilson and Prof. G. David Price, for

giving me the opportunity to come to UCL.

I would also like to thank the following people: Clyde Fare, Dr.

Alexei Sokol and Dr. Scott Woodley for useful discussions on energy

minimisation, Dr. Simon Clifford for help with I.T., Dr. Dominic

Daisenberger for encouragement, advice and help with molecular

dynamics, Dr. Jamieson Christie for general advice and Hugh Glaser

for proofreading.

I am most grateful to the Engineering and Physical Sciences Re-

search Council, the UCL Graduate School and the Asahi Glass Com-

pany Ltd. for funding my research. I am also grateful to W. Smith,

T. R. Forester and I. T. Todorov for permission to use the DL POLY

code and to J. D. Gale for permission to use the Gulp code.

Finally, I would like to thank my friends and family for all their

support and encouragement.

12



Chapter 1

Introduction

Silica (SiO2) is the most abundant oxide in the earth’s crust [1],

with over 90% of its volume being composed of silicate minerals [2]

(minerals which contain silica amongst other molecules). The crusts

of the moon, Mercury, Venus and Mars are also mostly composed of

silica [3]. It is the main constituent of soil [3] and has a wide range

of applications: It is the archetypal glass former and is the principal

constituent of most glasses. It provides the raw material for the

production of silicon for use in computer chips. Fibre optic cables

for use in the telecommunications industry are produced from silica.

It is a good insulator and is used extensively in the production of

ceramics. It is therefore studied extensively.
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CHAPTER 1: INTRODUCTION 14

There are three areas of research in this thesis: One of the least

well understood polymorphs of silica is the tridymite polymorph.

A number of tridymite structures with different atomic configura-

tions have been found in nature. Chapter 3 discusses research into

tridymite and describes the exploration of various properties of the

different forms of tridymite and an investigation into whether it is

possible to distinguish between them using a number of computa-

tional techniques. Section 1.2 of this chapter introduces tridymite

and its various configurations. Section 1.3 of this chapter briefly

describes other silica polymorphs.

Chapter 4 describes computational research into the static and dy-

namic properties of liquid and glassy silica at ambient pressure.

Computational techniques are especially useful for investigating the

properties of amorphous structures such as liquids and glasses be-

cause there are certain properties that, in contrast to crystalline

materials, experimental techniques are not able to precisely deter-

mine. Section 1.4 of this chapter is an introduction to amorphous

silica.

The final research area, described in chapter 5, extends the scope

of chapter 4 to explore the properties of amorphous silica at non-

ambient pressures. The majority of experimental and computational
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studies in the literature relating to the application and release of

pressure have been carried out at ambient temperature. Simula-

tions where the application and release of pressure is carried out at

elevated temperatures are described. Amorphous silica has a wide

variety of applications and is used under a range of conditions. It

is therefore important to understand how its properties are affected

by variations in both pressure and temperature.

1.1 Introduction to silica

The basic building block of crystalline silica is a silicon atom sur-

rounded by four, six or eight oxygen atoms forming a tetrahedron,

octahedron or cube respectively. There are a large number of silica

polymorphs. The most common are quartz, cristobalite, tridymite,

coesite and stishovite. Transitions between these structures require

the breaking of bonds and the forming of new ones (reconstructive

transitions). Within a number of these polymorphs transitions can

take place where no breaking of bonds occurs but where the an-

gle between three atoms changes, called displacive transitions. The

best known displacive transition is probably between α-quartz and

β-quartz. The most significant changes that occur in displacive tran-

sitions in silica are changes in the Si-O-Si angles, i.e. changes in the
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angles between the basic building blocks of tetrahedra, octahedra or

cubes. The atomic arrangement within the basic building block is

not significantly altered in this type of transition.

1.2 Introduction to tridymite

The first research theme of this thesis concerns the silica structure

of tridymite. There are a large number of tridymite polymorphs,

perhaps because the tridymite structure is composed of large tunnels

and so is easily deformable. Figures 1.1 - 1.6 show some polymorphs

of tridymite that have been discovered in nature. Silicon atoms are

green and oxygen atoms are blue. All figures were obtained from [4]

and are shown as four primitive unit cells together (two in each unit

cell dimension).

Tridymite occurs at ambient pressure and is formed of silica (SiO4)

tetrahedra. These are joined together in six-membered rings, with

tetrahedra alternately pointing up and down. The rings are joined

together to make a sheet, with each tetrahedron being a member of 3

rings in each sheet. The sheets are placed on top of each other, but

with tetrahedra that point down above tetrahedra that point up,

in an ABAB stacking. The bottom oxygen atom of a tetrahedron
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pointing down and the top oxygen atom of a tetrahedron pointing

up on a sheet below it are the common linking atom. A large number

of tridymite polymorphs have been found in nature or synthesised,

more than for any other silica structure. A detailed description of

their ideal structure now follows.

HP (hexagonal packed) or high tridymite [5] [6] [7] (Figure 1.1)

has space group P63/mmc and is the highest temperature form of

tridymite. It is stable at temperatures above 750 K [8]. In the

HP structure as first determined by R. E. Gibbs in 1927 [7], all Si-

O-Si angles were determined to be 180◦, creating a structure with

hexagonal shaped tunnels. However, structural refinements by K.

Kihara in 1978 [5] revealed that 180◦ is only an average and that the

true value is approximately 149.2◦. It is not clear whether the value

of 180◦ is an average over time (i.e. all atoms are vibrating about

an average of 180◦) or whether it is an average over all space (i.e.

the individual Si-O-Si angles are different, but their average over

the entire structure is 180◦). Similar behaviour applies to β-quartz

and β-cristobalite [7], which is discussed later in Section 1.3.

LHP (lower hexagonal packed) tridymite [5] [9] (Figure 1.2) has

space group P6322 and is stable in the temperature range 680 K -

750 K [8]. It was first discovered by D. Cellai in 1994 [5]. It is
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Figure 1.1: HP (Hexagonal Packed) or high tridymite (size 2x2x2 primitive unit
cells)

Figure 1.2: LHP (Lower Hexagonal Packed) tridymite (size 2x2x2 primitive unit
cells)
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essentially the same as the HP form except that the Si-O-Si angles

in the planes of the rings are 151.56◦. The direction of the bend

in the Si-O-Si angle alternates between the layers, i.e. if an Si-O-Si

angle in one sheet is 151.56◦, the corresponding Si-O-Si angle in the

sheet below it will be 360◦-151.56◦ = 208.44◦. The Si-O-Si angles

between sheets remain at 180◦.

OC (third orthorhombic) tridymite [10] [11] [12] (Figure 1.3) has

space group C2221 and is stable in the temperature range 520 K -

620 K [8]. It was first determined by W. A. Dollase in 1967 [12]. The

structure differs from the HP form in that the sheets are not aligned.

The displacement alternates between the sheets in an ABAB form.

Also, the Si-O-Si angles are slightly less than 180◦. The Si-O-Si

angles between the sheets are 177.25◦. In the planes of the rings

there are four Si-O-Si angles of 160.60◦ and two angles of 170.38◦.

OP (orthorhombic) tridymite [13] [14] [10] (Figure 1.4) has space

group P212121 and is stable in the temperature range 380 K - 420 K

[8]. Its structure was first determined by A. Nukui, A. Yamamoto

and H. Nakazawa in 1979 [10]. As with OC tridymite the sheets

are displaced from one another in an ABAB form. In the structures

described so far the rings have all been the same shape. In the OP

tridymite structure there are two types of ring with differing Si-O-
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Figure 1.3: OC (third orthorhombic) tridymite (size 2x2x2 primitive unit cells)

Figure 1.4: OP (orthorhombic) tridymite (size 2x2x2 primitive unit cells)
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Figure 1.5: MC (monoclinic) tridymite (size 2x2x2 primitive unit cells)

Figure 1.6: MX1 (low) tridymite (size 2x2x2 primitive unit cells)
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Si angles. One type has 2-fold rotational symmetry, the other has

3-fold rotational symmetry.

MC (monoclinic) tridymite [15] [16] [17] (Figure 1.5) has space group

Cc and is stable in the temperature range 340 K-370 K or 340 K -

380 K [8]. Its structure was first determined in 1976 by K. Kato

and A. Nukui [17] and W. A. Dollase and W. H. Baur [16]. The

sheets are displaced from one another in an ABAB form, with the

Si-O-Si angles between the sheets being 175.43◦. In the planes of

the rings there are three Si-O-Si angles each of 147.06◦, 149.80◦ and

155.39◦. Most naturally occurring MC tridymite has been found in

meteorites. The remaining MC tridymite structures are of synthetic

origin [18].

MX1 (low) tridymite [19] [20] [21] (Figure 1.6) has space group P1

and is stable at temperatures below 380 K [8]. It was first discovered

by S. P. Gardner and D. E. Appleman in 1974 [22]. It has a large

unit cell with many different Si-O-Si angles. For more details on the

structure see [23].

Figures 1.7 - 1.9 show Pair Distribution Functions (PDFs) for the

above crystal structures. PDFs are explained in section 2.5.1. Fig-

ures 1.10 - 1.12 show Si-O bond lengths, O-Si-O angles and Si-O-Si
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Figure 1.7: Si-O PDF

Figure 1.8: Si-Si PDF
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Figure 1.9: O-O PDF

Figure 1.10: Si-O bond lengths
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Figure 1.11: O-Si-O angles

Figure 1.12: Si-O-Si angles
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angles for the above crystal structures.

The different polymorphs of tridymite are some of the least un-

derstood and investigated polymorphs of silica. The first research

theme in this thesis focuses on gaining a better understanding of

this polymorph. This work is described in chapter 3. There were a

number of aims:

1) The first was to investigate whether it is possible to distinguish

between the different phases of tridymite described above using a

number of computational techniques.

2) The second was to explore various properties of the polymorphs

of tridymite (e.g. Pair Distribution Function, bond angles and bond

lengths) using computer simulations.

3) Finally the performance of two different widely used potentials

was compared: the BKS potential [24] and the Sanders potential [25]

(which are described in sections 2.3.2 and 2.3.3).

1.3 Other silica polymorphs

Figure 1.13 shows a simplified phase diagram of silica. It can be seen

that α-quartz is the most stable structure at ambient temperature
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and pressure. It is therefore the most abundant structure of the

silica polymorphs in the earth’s crust [7].

Stishovite

Coesite

α- quartz

β- quartz

Liquid

Tridymite
Cristobalite

P
re

ss
u

re
 (G
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Temperature °C
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600 1000 1400 1800 2200 2600

Figure 1.13: Silica phase diagram taken from [26]

This section describes the other polymorphs of silica. It only in-

cludes those structures which have a field of thermodynamic sta-

bility (structures which have a point on the temperature/pressure

phase diagram where they are the most energetically favourable).



CHAPTER 1: INTRODUCTION 28

1.3.1 Cristobalite

Cristobalite, shown in Figure 1.14, is four coordinated and stable

at ambient pressure. It has space group Fd-3m and is stable in

the temperature range 1743 K to 2000 K [7]. Its average structure

is similar to HP-tridymite (section 1.2) in that it is constructed

from six membered rings of tetrahedra. However, in cristobalite the

sheets are not stacked directly above one another but are stacked

with a tetrahedron of one layer above the hexagonal void of the

layer below, so that the hexagons overlap. As can be seen in the

figure, in contrast to tridymite where the tetrahedra have the same

orientation in all layers, in cristobalite the tetrahedra of one layer

are rotated by 60◦ relative to the tetrahedra in layers above and

below. As with HP-tridymite the structure shown does not represent

the true instantaneous structure and is either a spatial or temporal

average structure [7]. (The structure shown in Figure 1.14 is in fact

β-cristobalite, which can undergo a displacive transition to a meta-

stable state, α-cristobalite, where the hexagonal rings become oval

shaped.)
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Figure 1.14: Cristobalite

1.3.2 Quartz

Like tridymite and cristobalite, quartz is a low pressure polymorph

and is four coordinated. β-quartz has space group P6422 and is

stable in the temperature range 846 K to 1140 K at atmospheric

pressure [7]. Its average structure is shown in Figure 1.15b. Its

tetrahedra are connected in a spiral shape with the sixth tetrahedron

being directly above the first one. As with HP-tridymite and β-

cristobalite, the structure shown in Figure 1.15 does not represent

the true instantaneous structure and is either a spatial or temporal

average structure.

β-quartz can undergo a displacive transition to α-quartz. When
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viewed along the spirals (in the 001 direction) as in Figure 1.15b,

β-quartz spirals appear hexagonal (having six-fold rotational sym-

metry), with all O-O distances being equal. When viewed from

the same direction (as in Figure 1.15a) α-quartz spirals only have

three-fold rotational symmetry, with the O-O distances appearing

alternately longer and shorter. α-quartz has space group P3121 and

is stable in the temperature range 0 K to 846 K at atmospheric

pressure [7].

(a) α-quartz (b) β-quartz

Figure 1.15: Quartz

1.3.3 Coesite

The polymorphs discussed so far are all stable at ambient pres-

sure. Coesite (shown in Figure 1.16) is a high pressure polymorph,

although it is still four coordinated. Unlike quartz, tridymite and
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cristobalite, which are made up of six membered rings of tetrahedra,

coesite is constructed of four membered rings, allowing denser pack-

ing. Unlike the lower pressure polymorphs, there is only one coesite

structure, e.g. no α or β phases, probably due to the denser packing

which prevents the structure from being distorted as much as the

lower pressure polymorphs. It has space group C2/c. At ambient

temperature quartz converts to coesite at pressures of 2 - 3 GPa

which is stable up to approximately 8 GPa [27].

Figure 1.16: Coesite
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(a) Stishovite structure (b) CaCl2 structure

(c) PbO2 structure

Figure 1.17: Stishovite, PbO2 and CaCl2
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1.3.4 Stishovite and other six coordinated polymorphs

Coesite transforms to stishovite (Figure 1.17a) at approximately

8 GPa [27] at ambient temperature. Stishovite has the structure

of rutile, with space group P42/mnm. It is six coordinated (its

basic building block is an octahedron) allowing close packing of the

atoms. Unlike the lower pressure polymorphs where all bond lengths

in a structure are approximately the same, two of the Si-O bonds in

stishovite octahedra are significantly longer than the other four. The

length of the two longer bonds is approximately 1.81 Å compared to

1.75 Å for the four shorter bonds. Both these values are larger than

the bond lengths of the lower pressure polymorphs (approximately

1.6 Å) in order to accommodate the higher coordination. The two

longer bonds are in line with each other and therefore the octahedra

have the appearance of being stretched along one axis (i.e. one axis

has four-fold rotational symmetry and two have two-fold rotational

symmetry). The octahedra are connected such that the oxygen at a

corner of an octahedron with a longer bond length and an oxygen at

a corner of a neighbouring octahedron with a shorter bond length

are the common linking atom.

There is some debate over the stability of and location of the phase

boundaries of post-stishovite phases. The PbO2 structure (not on
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the phase diagram) shown in Figure 1.17c has space group Pbcn and

is stable at pressures from 35 GPa to 61 GPa according to [28]. The

octahedra are more asymmetric than in stishovite with two of the

Si-O bonds being approximately 1.98 Å and the other four being

approximately 1.72 Å. Unlike stishovite, where the octahedra are

connected via corner sharing, in the PbO2 structure there is edge

sharing, giving a denser packing. The octahedra are connected such

that two opposing edges of each octahedron are connected to edges

of other octahedra (accounting for four of the six oxygen atoms).

The two remaining oxygen atoms are connected via corner sharing

to the corners of two other octahedra.

The CaCl2 structure (not on the phase diagram) shown in 1.17b has

space group Pnnm and is stable at pressures from 50 GPa [29] to

at least 120 GPa [30]. In stishovite the Si-O-Si angles are all 90◦.

The CaCl2 structure differs from stishovite in that these angles are

alternately smaller and larger allowing for a denser structure.

1.3.5 Higher pressure phases

The phases described so far have all been established experimen-

tally as the most stable structure at a particular temperature and
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pressure. A number of ultra-high pressure eight fold coordinated

phases have been synthesised in the laboratory, although none have

been found in nature. It has not been established experimentally

whether there is a point on the phase diagram where they are the

most stable phase, although calculations suggest that this is a pos-

sibility. The fluorite structure (Figure 1.18) is an example of one

of these phases [6]. Its structure can be thought of as a stacking

of cubes with an oxygen atom at each of the eight corners and a

silicon atom at the centre of each alternate cube. It has space group

Fm-3m.

Figure 1.18: Fluorite
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1.4 Introduction to amorphous silica

According to J. E. Shelby [31, p. 3] the definition of a glass is:

“An amorphous solid completely lacking in long-range, periodic

atomic structure, and exhibiting a region of glass transformation

behaviour.” A region of glass transformation behaviour is a temper-

ature range at which the amorphous structure of a melt becomes

frozen in. A lack of long-range order means that, unlike crystalline

structures, there is no precise repetition of structural units. There-

fore, similarly to liquids and gases, the structure of amorphous silica

must be defined statistically [32]. Although there is no long range

order, a glass does exhibit some short range order. Experimental

data for amorphous silica are discussed in chapter 4.

Silica is a good glass former because, in comparison to other ma-

terials, the energy of the vitreous structure is only a little higher

than that of silica crystal structures [33]. This makes it easier for

the atomic configuration to fall into that of the vitreous structure

as the material is being quenched. Additionally, silica is a network

structure where all bonds are the same (unlike molecular structures

where there can be different types of bonds) making it less likely to

fall into an ordered structure.
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Glasses are most often produced by melting a silica crystal struc-

ture (the most widely used structure is α-quartz) and cooling at a

fast rate so that it does not have time to form crystals and to a

temperature at which the atoms do not have sufficient energy to re-

arrange themselves into a crystal structure, reaching a meta-stable

state. They can also be produced through pressurisation, grinding,

irradiation or chemical reaction [34, p. 120]. A glassy structure is

approximately 5% less dense than an equivalent crystal [35].

Pure silica glass is very durable: The Si-O bond is very strong

(over 335 kJ/mol [36]). The melting point of silica is high, at

1986 K [37, p. 9], and its linear coefficient of thermal expansion

is low at 0.25 ∗ 10−6/◦C [38, p. 345]. If an exceptionally durable

glass is required pure silica can be used, otherwise other materials

are usually added to lower the melting point, making production

easier and less expensive. The melting point of a typical soda-lime

glass is approximately 1770 K [31, p. 264] (soda-lime glass is the

most commonly used glass and is comprised of 70-75% SiO2, 13-17%

Na2O, 5-10% CaO and 1-5% other oxides such as B2O3, Al2O3 and

MgO [36]). Its linear coefficient of expansion coefficient, however, is

much larger at 100 ∗ 10−6/◦C [38, p. 345]. Different materials and

different proportions of those materials are added to silica to achieve
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different properties for the glass. For example, a larger proportion

of B2O3 is present in a boro-silicate (81% SiO2, 13% B2O3, 4% Na2

and 2% Al2O3 [36]) glass than in a soda-lime glass which lowers the

linear coefficient of thermal expansion to 3 ∗ 10−6/◦C [38, p. 345].

The second and third themes of this thesis are to investigate the

behaviour of amorphous silica under different conditions. Compu-

tational techniques can be used to investigate properties which are

difficult or impossible to obtain from experiment. They are espe-

cially useful for the study of amorphous materials: Experimental

diffraction techniques can only give average values [39] and although

powerful local techniques are available, including NMR [40] and EX-

AFS [41], developing a detailed structural model is still difficult.

Computational techniques enable structural models to be fitted to

experimental data which can then be interrogated to provide data

on a wide range of properties. The data can be more detailed, in

the form of distributions rather than simple average values.

The work is described in two chapters: chapter 4 presents research

on the structure and dynamics of a silica melt and vitreous structure

at ambient pressure. Chapter 5 discusses the effect of pressure on

glassy silica.
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Several questions regarding amorphous silica were investigated:

1) The role of defects in a silica crystal on its melting behaviour.

2) The strength of the Si-O bond in a silica melt and the extent to

which silicon and oxygen atoms move together.

3) The performance of the BKS potential [24] (introduced in section

2.3.2) in comparison to available experimental data.

4) The structural and dynamic properties of both a silica melt and

vitreous structure for which no experimental data is available.

5) A number of different silica crystals were melted. Research was

carried out to investigate whether the melts are all similar or whether

their properties can be differentiated according to the original crys-

tal structure.

6) A survey of the literature showed that no simulations for a silica

melt using a shell model have been published (see section 2.3.1.6

for an explanation of a shell model). Research was carried out to

investigate whether a shell model could be used to simulate a melt,

with the potential being modified if necessary. If this was possible,

the properties of this melt would be calculated.
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7) The effect of the application and release of pressure on amorphous

silica at high temperatures.



Chapter 2

Methodology

2.1 Free energy minimisation

Free energy minimisation (or lattice dynamics) is a technique for

searching for a particular configuration of atomic coordinates which

yields a stable structure. The multidimensional graph plotting free

energy against atomic coordinates, temperature and pressure is de-

noted the free energy landscape or surface. The minima correspond

to stable structures. The point with the lowest free energy is the

global minimum and the other minima are local minima. Free en-

ergy minimisation calculations were carried out using the GULP

code which was developed by J. D. Gale [42].

41
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There are two measures of free energy: The Helmholtz free energy is

used for constant volume experiments. The Gibbs free energy is used

for constant pressure experiments. Most experiments in chemistry

are at constant pressure, therefore the Gibbs free energy will be the

measure used in this thesis.

The formula for Gibbs free energy is:

G = U + pV − TS (2.1)

U is the internal energy.

p is the pressure.

V is the volume.

T is the temperature.

S is the entropy.

The internal energy (U) is the sum of the potential energy and the

kinetic energy of the atoms in the structure.

The potential energy of a structure is defined as the energy released

when atoms or ions are brought together from an infinite separation

to their position in the structure. It is a function of the distances be-

tween atoms and the attractive and repulsive forces between them.

The multidimensional plot of atomic coordinates against potential
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energy is denoted the potential energy landscape or surface. The

potential energy landscape is described by a formula called an in-

teratomic potential. Interatomic potentials are described in section

2.3. For a discussion of kinetic energy see section 2.2.6.1.

Although internal energy takes account of temperature, minimisa-

tion of the internal energy does not necessarily yield the most stable

structure at a given temperature and pressure, as it does not take

account of entropy.

In crystalline solids the major contribution to the entropy term is

from vibrations. In free energy minimisation atoms are modelled as

if they are vibrating harmonically around an equilibrium position.

This method is called the “harmonic” approximation [43, p. 257].

A consequence of this is that free energy minimisation is only ap-

propriate for simulating structures well below their melting point,

where no diffusion can occur. This approximation can be extended

to the “quasi-harmonic” approximation which allows the unit cell

parameters of the structure to change [44, p. 76].

The three-dimensional matrix of second derivatives of the potential

energy as a function of location for each atom in the structure is
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called the Hessian matrix, which gives the force constant for har-

monic vibration for each atom.

The formula for a simple harmonic oscillator is used to calculate the

vibrational frequency of each atom:

vi =
1

2π

√
k

m
(2.2)

vi is the vibrational frequency of atom i

k is the force constant.

m is the mass of the atom.

These frequencies can then be used to calculate the free energy using:

G = U + pV +
1

2

∑
i

hvi + kT
∑
i

ln(1− ehvi/kT ) (2.3)

U is the internal energy.

p is the pressure.

V is the volume.

h is Planck’s constant (6.626068 ∗ 10−34m2kg/s).

vi is the vibrational frequency of atom i.

T is the temperature.

k is the force constant.

The derivation of this formula is shown in [45, p. 38].
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The atomic vibrations of a structure are more conveniently calcu-

lated in reciprocal space than real space [46, chapter 2]. The unit

cell dimensions in reciprocal space are related to the reciprocal of

the unit cell dimensions in real space. The coordinates in reciprocal

space are called k-points. The more k-points sampled during a free

energy minimisation calculation, the larger the number of possible

vibrational modes that can be sampled, but the more computation-

ally intensive the calculation.

Minima on the free energy landscape can be searched for using a

number of possible algorithms. The method used in GULP is ei-

ther the steepest descent method or the Newton-Raphson method,

whichever is the most appropriate. The steepest descent method

is based on calculating first derivatives and moving along the en-

ergy landscape in a direction in which the gradient is negative. The

Newton-Raphson method is based on calculating second derivatives

and is therefore more computationally intensive than steepest de-

scent. However, since it calculates the rate of change of the gradi-

ent, it can choose a path where the gradient becomes more negative

more quickly and therefore is more likely to find a configuration with

a lower minimum. As the steepest descent algorithm approaches a

minimum, a very small step is required in order to find the mini-
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mum. With the Newton-Raphson technique, however, a larger step

can be used because the rate of change of the gradient indicates the

proximity to the minimum. Therefore, the steepest descent method

is used at locations far from a minimum and the Newton-Raphson

technique is used at locations close to a minimum. For more details

of these algorithms see [42] or [47].

At low temperatures free energy minimisation is often the method

of choice over molecular dynamics (MD), which is described in the

next section, as it takes account of zero point energy [48].

2.2 Molecular dynamics

At high temperatures dynamic effects, including diffusion, become

increasingly important. MD simulations include these effects explic-

itly by simulating the evolution of a system with time.

MD is based on calculating the acceleration of each atom by solving

Newton’s classical equation of motion:

Acceleration = Force/Mass (2.4)
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The force is calculated by taking the derivative of the energy. As

with free energy minimisation described above, the energy is calcu-

lated using an interatomic potential (described in section 2.3).

An MD simulation comprises a number of time steps. At each step

the acceleration of each atom is calculated using the above formula

and the atoms are moved accordingly.

The software used to perform MD simulations was DL POLY, de-

veloped by W. Smith, T. R. Forester and I. T. Todorov [49].

2.2.1 Finite difference methods

The ideal MD simulation would be continuous, where the forces be-

tween all atoms are recalculated after an infinitesimally small move-

ment of each atom. As this is not possible, finite difference methods

with a sufficiently small time step are used. There are several finite

difference methods. For MD simulations in this thesis the Velocity

Verlet [50] method was used. It was chosen because it is one of

the most accurate. Although it is not the fastest method, sufficient

computer resources were available to allow its use.

In the Velocity Verlet method, the new positions of the atoms at

each step are calculated using the velocity at time t + 1
2
δt rather
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than at time t + δt (where δt is the size of the time step), as is

the case with simpler algorithms. This is in order to make the new

positions of the atoms closer to a function of the average velocity

over the time step. This procedure has the disadvantage that the

velocity has to be calculated at both t+ δt and t+ 1
2
δt, making the

calculations slower than a simpler algorithm.

There are two stages to the calculations:

In the first stage the velocities at time t+ 1
2
δt are calculated:

v(t+
1

2
δt) = v(t) +

1

2
δta(t) (2.5)

v(t) is the velocity at time t.

a(t) is the acceleration at time t and is calculated using the formula:

a(t) = f(t)/m (2.6)

f(t) is the force at time t.

m is the mass of the atom.

The new positions of the atoms at time t+ δt are then calculated:

r(t+ δt) = r(t) + δtv(t+
1

2
δt) (2.7)
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r(t) is the position at time t.

The new forces at time t+ δt are calculated using r(t+ δt) and the

atomic potentials described in section 2.3.

In stage 2 the velocities at time t+ δt are calculated:

v(t+ δt) = v(t+
1

2
δt) +

1

2
δta(t+ δt) (2.8)

a(t+ δt) is calculated using the formula:

a(t+ δt) = f(t+ δt)/m (2.9)

2.2.2 Time step

When choosing the size of time step, a balance must be struck be-

tween it being large enough to enable a significant amount of phase

space to be explored but not too large that the system becomes

unstable due to excessive atomic displacements between time steps.

For simulations at low temperatures using the BKS potential (see

section 2.3.2 for details of this potential) a search of time steps used

in the literature indicated time steps between 1 femtosecond (fs) and

1.6 fs. Examples include: [51](1 fs), [52](1.6 fs) and [53](1.2 fs). A
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time step of 1 fs was chosen for this work as this was at the bottom

of the range of time steps.

For simulations at low temperatures using the Sanders potential

(see section 2.3.3 for details of this potential) a time step of 0.2 fs

was chosen as per [54]. The Sanders potential is a shell model and

therefore a smaller time step is required, because the shell has a very

small mass and can accelerate very quickly.

At higher temperatures, a shorter time step is advisable, since the

particles are moving at a higher velocity with consequent larger

atomic displacements.

For simulations of a melt using the BKS potential a search of time

steps used in the literature resulted in time steps between 0.5 fs and

2 fs. Examples include [55](1 fs), [56](1.6 fs), [51](0.5 fs), [52](1.6 fs),

[57](1 fs), [58](0.7 fs) and [59](2 fs). A time step of 0.5 fs was chosen

in this work as this was at the bottom of the range of time steps.

For simulations of a melt using the Sanders potential a time step of

0.02 fs was chosen, for reasons discussed in section 4.10.
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2.2.3 Initial velocities

As discussed in section 2.2.1, the velocities of the atoms at each step

are calculated using a formula which is a function of the velocities

at the previous step. This means that initial velocities must be as-

signed to the atoms. In DL POLY the initial velocities are assigned

at random according to a Maxwell-Boltzmann distribution. How-

ever, the sum of momenta of all the atoms must be equal to 0, to

ensure that the entire simulation cell does not move. Additionally

the sum of the kinetic energy of all the atoms must correspond to

the temperature of the simulation, which is achieved by ensuring

that the following formula holds:

1

2

N∑
i=1

mivi
2(0) =

3

2
NkbT (2.10)

i is the index for an atom.

v is the velocity.

m is the mass.

N is the number of atoms.

kB is the Boltzmann constant (1.381 ∗ 10−23J/K).

T is the simulation temperature.
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2.2.4 Equllibration and simulation time

An MD simulation usually has an initial period of equilibration to

allow the system to reach thermal equilibrium. In simulations in this

work an equilibration period of 100,000 time steps was used. This

value was chosen because test runs were carried out for all values

of time step used in calculations in this thesis, which showed that

this was a sufficient amount of time for initial fluctuations in values

such as energy and volume to settle.

The period following equilibration is referred to as the production

phase. Measurements are only taken during this phase. The length

of production phase used in simulations in this work was 100,000

time steps unless otherwise stated. This value was chosen because

test runs were carried out with different lengths of production phase

which showed that this was a sufficient amount of time for statisti-

cally significant data to be collected.

2.2.5 Periodic boundary conditions

The systems being modelled in this work are bulk structures. The

greater the number of atoms in a simulation, the more accurate
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the results: for example, a larger number of possible vibrational

modes can be captured. In practice, due to limited computer power,

simulations are limited to hundreds or thousands of atoms, where

surface effects might still be significant. In order to model structures

where the forces exerted on atoms are as similar as possible to those

in bulk systems, the method of periodic boundary conditions is used,

as illustrated in Figure 2.1.

Figure 2.1: Periodic boundary conditions

The system is represented as an infinite three-dimensional series of

copies of the structure (or simulation cell) being modelled, which

eliminates surfaces. As shown in Figure 2.1, an atom can inter-

act with another atom across the boundary of the simulation cell.

Atoms can also move across the boundary.



CHAPTER 2: METHODOLOGY 54

The calculations would obviously be intractable if the structure was

infinite. Therefore, the concept of a cut-off is introduced. An exam-

ple of a cut-off is shown by the circle in figure 2.1 and is a distance

from an atom beyond which short-range atom-atom interactions are

not calculated (long-range electrostatic interactions are calculated

beyond the cut-off and the method for dealing with this is discussed

in section 2.2.7). The cut-off also serves another purpose in that

it ensures that atoms cannot interact with their own image in an

adjacent simulation cell. If the value of the cut-off is chosen such

that it is half of the size of the shortest side of the simulation cell,

each atom will interact with the maximum possible number of other

atoms but without interacting with its own image. This rule is

known as the Minimum Image Convention. In simulations in this

thesis a cut-off of 8 Å was used unless a different value is specified.

This value was chosen because it is less than half the length of the

smallest side of the smallest unit cell of any of the structures simu-

lated in this thesis. This choice ensures that all structures obey the

Minimum Image Convention and that the final structures are easily

comparable as all simulations have the same cut-off.
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2.2.6 Ensembles

The type of ensemble specifies the properties of the system which

are kept constant throughout a simulation. The simplest method,

using the methods described so far, is in the NVE (microcanonical)

ensemble: The number of atoms (N), the energy (E) and the vol-

ume (V) are kept constant. The volume is constant because when

atoms move during a simulation they can move across the periodic

boundary instead of the simulation cell expanding or contracting.

This ensemble is not representative of typical experimental condi-

tions and an ensemble where the pressure and/or temperature are

constant but the volume and/or energy are allowed to fluctuate is

often required.

2.2.6.1 Constant temperature simulations

The kinetic energy (KE) of a system is related to its temperature

by:

Kinetic energy =
3

2
NkbT (2.11)

N is the number of atoms.

kb is the Boltzmann constant.

T is the temperature.
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The kinetic energy of an atom is related to its velocity by the for-

mula:

Kinetic energy =
1

2
mass ∗ velocity2 (2.12)

The temperature of a system can therefore be kept constant by keep-

ing the sum of the squares of the velocities of all the atoms constant.

This is achieved by rescaling the velocities at certain intervals. For

MD calculations in this thesis the velocity rescaling was carried out

at every time step.

2.2.6.2 Constant pressure simulations

In constant pressure simulations the volume of the simulation cell

can change. There are two types of constant pressure ensembles.

In an NPT ensemble the volume changes isotropically (by the same

amount in all directions). In an NσT ensemble the volume can

change anisotropically. As with constant temperature simulations,

in constant pressure simulations the size and/or shape of the simu-

lation cell is rescaled at certain intervals (every step in this thesis)

in order to keep the pressure of the simulation constant.
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2.2.6.3 Choice of ensemble

The ensemble used for the simulations described in this thesis, unless

otherwise stated, is NσT (isothermal-isobaric). A constant temper-

ature ensemble was chosen because various properties of silica as a

function of temperature were studied. Additionally, glasses of silica

were being simulated and such structures are produced by cooling a

melt at a particular rate. The capacity to set the temperature at a

particular value is therefore required. The constant pressure ensem-

ble was similarly chosen because various properties as a function

of pressure were studied. The crystal structures being simulated

in this thesis are anisotropic and therefore volume change due to

varying temperatures or pressures might occur by different amounts

in different directions. The NσT ensemble was used therefore in

preference to the NPT ensemble.

2.2.7 Ewald summation

The long-range electrostatic or charge-charge interactions (explained

in section 2.3.1.1) converge very slowly in real space. It is therefore

more efficient to calculate these types of interactions in reciprocal

space.
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Figure 2.2 shows a one-dimensional representation of the location of

atoms in a structure and their charges. The value on the x-axis is

the x-coordinate of an atom and the value on the y-axis is its charge.

In the method of Ewald summation a Gaussian function is added to

each point charge. The mean value of this function is the value of

the original point charge but with the opposite sign, as is shown in

Figure 2.3.

Figure 2.2: A 1 dimensional representation of the location of atoms and their
charges

This new system must be evaluated in real space. However, it con-

verges very quickly, since the overall amount of charge in the system

has been reduced by the addition of the Gaussian functions with op-

posite signs to the original point charges. In order to calculate the
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true energy of the system, Gaussian functions of the opposite sign

of the first Gaussian functions must be added i.e. functions whose

mean values are equal to the point charges. This is to cancel out the

first set of functions which were added. These Gaussians are shown

in Figure 2.4.

These functions converge slowly in real space. However, because

they are Gaussian functions they can be evaluated in reciprocal

space, in which they converge quickly.

The Ewald method enables the entire system to be represented by

rapidly converging functions.

2.3 Potentials

An interatomic potential is a formula for calculating the potential

energy of a system as a function of its atomic coordinates. The

derivative of the energy is taken to calculate the force between

atoms. There are a wide range of possible potentials and the choice

of which interactions to include in the potential will depend on a

number of factors, including the atomic species in the system, the

computational capacity available and the nature of the energy land-

scape.
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Figure 2.3: The point charges with Gaussians of opposite signs added

Figure 2.4: The Gaussians added to cancel out the first set of Gaussians
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2.3.1 Forces

A potential is a sum of the different types of interactions between

particles. The types of interactions used in this thesis are described

below.

2.3.1.1 Electrostatics

Electrostatic forces are long range classical coulomb-coulomb inter-

actions between charged particles:

Eij(rij) =
QiQj

rij
(2.13)

Eij is the energy of the electrostatic interaction between two atoms.

i and j are species of atoms, e.g. Si or O.

rij is the distance between atoms i and j.

Qi is the point charge of atom i.

2.3.1.2 Repulsion

There are a number of short range forces. The one which dominates

is electron-electron repulsion. This force occurs when atoms come

close enough for their electron clouds to overlap.
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An example formula for repulsive interactions:

Eij(rij) = Aije
−Bijrij (2.14)

Aij and Bij are parameterised constants.

2.3.1.3 Dispersion

Dispersion is an attractive force and arises from correlation effects

of electrons resulting in induced-dipole induced-dipole interactions.

The formula (which is exact, as it is derived from second-order per-

turbation theory) for dispersive interactions is as follows:

Eij(rij) = −Cij
rij6

(2.15)

Cij is a constant.

2.3.1.4 Spring or bond stretch

In a spring or bond stretching term there is a preset equilibrium

bond length that has the lowest energy. Deviations from this bond

length have a higher energy and so this type of interaction is repre-

sented by a harmonic function.
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An example formula for a bond stretch:

Eij(rij) = k(rij − r0)2 (2.16)

r0 is the equilibrium bond length.

k is the strength of the spring (i.e. the amount of energy needed to

make the bond length deviate from its equilibrium value).

2.3.1.5 Angle bending

The interactions described so far have been two body interractions,

i.e. the total energy of the system is given by the sum of each atom

interacting with every other atom, two atoms at a time. It can

often be useful to introduce terms which depend on the coordinates

of more than two atoms (called many body terms). In this thesis

the largest number of atoms in a many body term is three. A term

is added to the potential which is a function of the angle between

three atoms, as illustrated in Figure 2.5.

The angle bending terms used in this thesis are similar to bond

stretching terms in that an angle that is equal to a preset equilibrium

value will have the lowest energy and if the angle deviates from this

equilibrium value the energy becomes higher.
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(a) Two body interactions (b) Three body interactions

Figure 2.5: Two and three body interactions

An example formula for an angle bending term:

Eijk(rijk) = l(Θijk −Θ0)
2 (2.17)

Θ0 is the equilibrium angle.

Θijk is the angle between atoms i, j and k.

l plays a similar role to the strength of the spring in bond stretching

(i.e. the amount of energy needed to make the angle deviate from

its equilibrium value).

Three body potentials are often used in simulations of silica be-

cause the basic building blocks (e.g. tetrahedra for low pressure

polymorphs) are not easily deformed, i.e. the O-Si-O angles are

quite rigid. The three body term ensures that these angles do not

deviate greatly from an equilibrium value.
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2.3.1.6 Shell model

A shell model is widely used to model polarisation. The atom is rep-

resented by two separate entities: the core (representing the nucleus

and core electrons) and the shell (representing the valence electrons).

The core and the shell separately interact with other atoms and also

with each other. They also each have their own charge.

The core and shell interact with each other by a harmonic spring,

as described in section 2.3.1.4, but where the equilibrium distance

between them is set to 0. They interact with other atoms using a

formula containing terms described in the previous sections.

The shell can be assigned a mass or it can be massless. In the case

of a shell with a mass it is assigned a small fraction of the total

mass of the atom (typically ≈0.05 a.m.u.). It has a small mass so

that it can react quickly to changes in the location of its associated

core. Since the shell has a mass, Newton’s equation of motion can

be used to calculate its acceleration. It is therefore treated in the

same way as the core in its interactions with other atoms. Newton’s

equation of motion cannot be used in simulations with a massless

shell because it would give an infinite force. The location of the

shell is therefore calculated by statically minimising the force acting
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on it. Although the massless shell model is the more realistic, it is

more computationally intensive than the model with masses on the

shells. The reason for this is that the massless shell model requires

a number of iterations in order to obtain self consistent locations for

all the shells.

2.3.2 The BKS potential

The BKS potential was developed by B. W. H. van Beest, G. J.

Kramer and R. A. van Santen [24] for modelling low pressure silica

crystal structures.

The parameters of the model (i.e. the values of the constants in

the formula) were derived by iterating between the optimisation of

bulk experimental properties (unit cell dimensions and elastic con-

stants) and performing electronic structure calculations on a small

silica cluster. Electronic structure calculations are computationally

intensive and so can only be used for a relatively small number of

atoms, which might give less accurate results for certain properties

such as vibrational modes and bulk properties. The use of experi-

mental data means that longer range interactions can be included

in the fitting of the model parameters, therefore improving the ac-

curacy of the prediction of certain properties.
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Three of the interactions described in section 2.3.1 are included in

this potential: electrostatics, repulsion and dispersion. It is of the

form:

Θij(rij) =
QiQj

rij
+ Aije

−Bijrij − Cij
rij6

(2.18)

Θij is the energy.

i and j are species of atoms, e.g. Si or O.

rij is the distance between atoms i and j.

Aij, Bij and Cij are constants. ASi−O = 18003.7572 eV, AO−O =

1388.7730 eV, BSi−O = 4.87318 Å−1, BO−O = 2.76000 Å−1, CSi−O

= 1133.5381 eV Å6 and CO−O = 175.0000 eV Å6.

The formula contains no Si-Si short range terms as these forces are

negligible.

The Si-O bond is considered to be partially covalent and partially

ionic [60]. In the BKS potential partial charges are assigned to the

atoms in order to reflect this. Qi is the point charge of atom i and

QSi = +2.4 and QO = -1.2.

The BKS potential qualitatively reproduces the experimental silica

phase diagram of quartz, coesite, stishovite and the liquid phase

quite accurately, i.e. the shapes of the areas delimited by the lines

separating the different structures and their proportions are compa-
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rable. However, it is inaccurate quantitatively in that the location

of the different phase boundaries differs significantly from experi-

ment [61]. The potential also accurately reproduces the experimen-

tal elastic constants of α and β quartz [53] and [62].

2.3.3 The Sanders potential

This model was developed by M. J. Sanders, M. Leslie and C. R.

A. Catlow [25]. The parameters of this model were calculated by

fitting to experimental bulk properties (elastic constants and dielec-

tric properties) of quartz. The model includes five of the interactions

described in section 2.3: electrostatics, repulsion, dispersion, angle

bending and a shell component.

The two body effects are of the form:

Θij(rij) =
QiQj

rij
+ Aije

rij/−Bij − Cij
rij6

(2.19)

ASi−O = 1283.9073 eV, AO−O = 22764.0000 eV, BSi−O = 0.3205 Å,

BO−O = 0.149 Å, CSi−O = 10.6616 eV Å6 and CO−O = 27.88 eV Å6.

The potential is a full charge model: QSi = 4, QOcore = +0.8482

and QOshell = -2.8482.

i and j can be a silicon atom, an oxygen core or an oxygen shell.
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The repulsion and dispersion terms usually exclude oxygen core and

silicon core interactions as they are negligible. The shell is given a

mass of 0.05 a.m.u.

The three body term is given by:

Θijk(rijk) = k3b(Θijk −Θ0)
2 (2.20)

i, j and k are always oxygen, silicon and oxygen, respectively.

Θijk is the actual angle between three atoms.

Θ0 is the ideal O-Si-O angle (109.47◦).

k3b is a constant and takes the value 2.097.

The core-shell interaction is given by the formula:

Θcore−shell =
1

2
kcore−shell rcore−shell

2 (2.21)

rcore−shell is the distance between the core and the shell.

kcore−shell is the strength of the harmonic spring and has the value

74.9204.

Only oxygen atoms are modelled as a separate core and shell, as sil-

icon atoms are positively charged and are therefore not significantly

polarisable.

Although this potential was parameterised using the properties of
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α-quartz it accurately reproduces the unit cell parameters of α-

cristobalite, β-cristobalite and MX1 tridymite [63].

2.4 Electronic structure calculations

Electronic structure calculations form only a small part of the work

in this thesis. They will therefore be described only briefly.

The methods discussed thus far model each atom (or core and

shell) as a single entity. Electronic structure calculations model

the electrons and nucleus separately. They are based on solving the

Schrödinger equation:

HΨ = EΨ (2.22)

H is the Hamiltonian operator

E is the total energy of a particle

Ψ is the wave function of the particle

An exact solution for this equation can only be obtained for one elec-

tron systems. Therefore, although electronic structure calculations

require no input parameters (such as the repulsive and dispersion

terms in the pair potentials described previously), several approx-

imations must be made when solving the Schrödinger equation for
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all other systems. Prior to the development of Density Functional

Theory (DFT), electronic structure methods, notably Hartree-Fock

methods, calculated the wave function using the variational prin-

ciple. DFT is based on the concept of charge density, from which

energy and other properties are calculated. For a more detailed

explanation see [64].

The basis set used in calculations in this thesis was DND (Double

Numerical plus d-functions). For this basis set calculations are made

using two possible atomic orbitals (a ground state and an excited

state) for each electron. In addition there is a polarisation d-function

on all non-hydrogen atoms. For calculations in this thesis the Local

Density Approximation (LDA) was used with PWC (Perdew-Wang)

exchange-correlation functionals [65]. The maximum number of pos-

sible iterations was set to 200. The real space cut-off was set to 3.5

Å. The calculations were performed using the DMol3 code [66].

2.5 Properties

2.5.1 Pair Distribution Function

The Pair Distribution Function (PDF) provides information on the

distance between atoms. The number of other atoms at distance r
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Figure 2.6: Calculation of a Pair Distribution Function (PDF)

from each atom, averaged over all atoms is calculated. In this thesis

partial PDFs are calculated, where Si-O, Si-Si and O-O PDFs are

calculated separately. The PDF, represented by g(r), is calculated

by taking each atom in the structure individually as a central atom

and dividing the area round the atom into shells of thickness δr.

The number of atoms in each shell is counted. Figure 2.6 shows an

example of this. The silicon atoms are coloured pink and the oxygen

atoms are coloured white. If the Si-O PDF was being calculated the

number of oxygen atoms in the first shell surrounding the central

atom (shown in bold) would be 2 and the numbers in the second

and third shells would be 3 and 2 respectively. If the Si-Si PDF

was being calculated the number of silicon atoms in the first shell

surrounding the central atom would be 1 and the numbers in the
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second and third shells would be 4 and 1 respectively.

This procedure is repeated for all atoms and then averaged over all

atoms giving 〈n(r)〉.

The volume of each shell increases with increasing r. 〈n(r)〉 is there-

fore normalised by dividing by an approximation to the volume of

the shell. The volume of the shell is:

V olume =
4

3
π(r + δr)3 − 4

3
πr3 (2.23)

which is equal to:

V olume = 4πr2(δr) + 4π(δr)2 +
4

3
π(δr)3 (2.24)

This is approximated to:

V olume ≈ 4πr2(δr) (2.25)

This calculated value is then normalised so that it can be compared

with other structures by dividing by the density of the entire struc-

ture (ρ).
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The formula for g(r) is therefore:

g(r) =
〈n(r)〉

ρ4πr2(δr)
(2.26)

2.5.2 Mean Square Displacement

The Mean Square Displacement (MSD) provides information on the

distance atoms move from their original starting site during a sim-

ulation. It is the square of the difference between the initial coordi-

nates of an atom and its final coordinates, averaged over all atoms.

It is given by the formula:

〈ri2(t)〉 =
1

N

N∑
i=1

(ri(t)− ri(0))2 (2.27)

i is an index for an atom.

N is the total number of atoms.

r(t) represents the coordinates of an atom at time t.

2.5.3 Diffusion coefficient

The MSD is a function of the difference between the initial coor-

dinates of an atom and its final coordinates. Because atoms are
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vibrating, it will always be non-zero, even in a solid. This may

make it difficult to ascertain whether a structure has melted and

diffusion is occurring. The diffusion coefficient [67] takes account of

vibrations and will take the value zero in a solid. It is given by the

relationship:

D =
1

6
lim
t→∞

d

dt
〈(ri(t)− ri(0))2〉 (2.28)

2.5.4 Velocity Autocorrelation Function and Vibrational

Density of States

An autocorrelation function shows the correlation between different

points in time of a particular property of a particle. Figure 2.7 has

an example of a velocity autocorrelation function.

Figure 2.7: An example of a velocity autocorrelation function (for liquid silica)
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A Fourier transform of the velocity autocorrelation function pro-

duces the vibrational density of states or vibrational spectrum. It is

a plot with frequency of vibration on the x-axis and the number of

atoms vibrating at this frequency on the y-axis. It does not, how-

ever, give any information about the character of the vibrations, e.g.

whether they are bond stretching, angle bending, etc.

2.5.5 Arrhenius plots

It is useful to represent the temperature dependence of the diffusion

coefficients as an Arrhenius plot of ln D (diffusion) against 1/T

(temperature). It gives an indication of the ability of the atoms

in a structure to rearrange themselves at different temperatures as

a material is being heated or quenched. A material is a strong

glass former if the Arrhenius plot results in a near straight line [68].

The Arrhenius plot of a fragile glass is curved. A strong glass has a

significant amount of short range order [31, p. 121], whereas a fragile

glass does not. This is because as a fragile glass is cooled, there will

come a point where the diffusion coefficient decreases quite suddenly

(due to the Arrhenius plot being curved) and the configuration of

the melt is frozen in more quickly than it would be for a strong glass

former.
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The equation:

lnD = lnA− Ea
RT

(2.29)

is called the Arrhenius equation [69, p. 792]. A linear Arrhenius

plot allows the activation energy to be calculated.

R is the gas constant (8.31447 J/K Mol).

A is called the pre-exponential factor.

Ea is the activation energy. This is the height of the energy barrier

which needs to be overcome in order for the system to take on a

different configuration.

2.6 Programs

All programs for analysing the properties of the structures were

written by the author, with the exception of programs to analyse:

1) The density of states: The code used was developed by W. Smith

as a utility for the DL POLY code [49].

2) Torsion angles: The GULP code was used, which was developed

by J. D. Gale [42].

The programs are available from the author, as are output files

containing structures and their properties from simulations.



Chapter 3

An exploration of the silica

polymorph tridymite

The work discussed in this chapter uses three computational tech-

niques, free energy minimisation, molecular dynamics (MD) and

Density Functional Theory, to investigate the silica polymorph tridymite.

As discussed in section 1.2, tridymite is a particularly interesting

polymorph, having been found to exist in a large number of differ-

ent atomic configurations. The aims of this chapter are described

in section 1.2 on page 26.

78
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3.1 Free energy minimisation

3.1.1 Methodology

Free energy minimisation calculations (methodology described in

section 2.1) were carried out for a range of temperatures at ambi-

ent pressure for six tridymite structures. Free energy includes the

vibrational entropy term and was used in preference to static lattice

energy minimisation because simulations at high temperatures were

being carried out. The simulations were at constant pressure and

using the Zero Static Internal Stress Approximation (ZSISA) [42].

Simulations were run for a range of supercell sizes and shapes and

for several different numbers of k-points, ranging from 1 to 15.

Calculations were carried out using two different potentials:

The BKS potential (see section 2.3.2 and [24] for details) is a rigid

ion model and was chosen because it is one of the most successful

and widely used potentials for modelling silica structures at low

pressures.

The Sanders potential (see section 2.3.3 and [25] for details) was

chosen because it differs from the BKS potential: it is a shell model
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and so includes polarisation. It also includes 3 body terms. As with

the BKS potential it has also been used successfully for modelling

low pressure polymorphs of silica.

3.1.2 Results

Section 3.1.2.1 discusses results for final atomic configurations and

section 3.1.2.2 discusses results for final energies and volumes.

3.1.2.1 Final atomic configuration

Table 3.1 contains data on final structures obtained using free energy

minimisation for the BKS potential with 3 k-points and at ambient

pressure. The first column contains the starting structure of the

calculation. The numbers in the second column refer to the size and

shape of the supercell, e.g. 212 means that the length of the primi-

tive unit cell is doubled in the a and c directions. The fourth column

contains information on the appearance of the final structure and is

for simulations at 273 K. The fifth column has the same information

for simulations at 700 K. The final structures were categorised by

visual inspection and also analysis of Si-O-Si angles. N/A means

that the calculation did not achieve a minimised structure. Where
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two structures are given, the final structure was part way between

the two crystal structures.

A number of different final structures were obtained from the sim-

ulations. The final structure and starting structure appear to be

weakly correlated. However, the results are not consistent with the

tridymite phase diagram that has been obtained from experimental

studies [8] (the temperature ranges for these are given in section

1.2), where the final structure would be determined by the temper-

ature of the simulation. For example, some simulations with LHP

tridymite as the starting structure (the highest temperature form)

minimised to HP tridymite at a temperature (273 K) where MX1

tridymite (the lowest temperature form) would be expected to be

the most stable structure.

Moreover, two simulations with the same starting polymorph but

different supercell sizes and shapes often minimised to different final

structures. For example, at 273 K, simulations with MX1 as the

starting structure resulted in OC tridymite as the final structure

with a super cell size of 122, but resulted in OP tridymite as the

final structure with a super cell size of 221.
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Starting Supercell Appearance of final Appearance of final Appearance of final
structure shape structure most structure most structure most

similar to crystal similar to crystal similar to crystal
structure (0 K) structure (273 K)) structure (700 K)

HP 111 HP HP HP
112 HP HP HP
121 HP HP HP
211 HP HP HP
122 HP HP HP
212 HP HP HP
221 HP HP HP
222 HP HP HP
223 HP HP HP
232 HP HP HP
322 HP HP HP
233 HP HP HP
323 HP HP HP
332 HP HP HP
333 HP HP HP

LHP 111 Approximately HP HP N/A
112 Approximately HP No known structure HP
121 No known structure HP/LHP No known structure
211 Approximately HP No known structure No known structure
122 Approximately HP No known structure HP/LHP
212 Approximately LHP No known structure Approximately HP
221 Approximately OC No known structure Approximately LHP
222 Approximately OC HP Approximately LHP
223 Approximately OC HP Approximately LHP
232 Approximately MX1 HP Approximately HP
322 HP Approximately HP OC
233 N/A HP Approximately HP
323 Approximately HP Approximately LHP Approximately HP
332 Approximately OC Approximately LHP Approximately HP
333 Approximately HP OC/LHP HP

OC 111 No known structure No known structure No known structure
112 No known structure No known structure OC
121 Approximately OC No known structure No known structure
211 No known structure Approximately OC Approximately OC
122 Approximately OC Approximately OC Approximately OC
212 Approximately OC OC No known structure
221 Approximately OC Approximately OC OC
222 N/A Approximately OC N/A
223 Approximately OC N/A Approximately OC
232 Approximately OC Approximately OC OC
322 No known structure Approximately OC Approximately OC
233 Approximately OC Approximately OC OC
323 Approximately OC OC OC
332 Approximately OC OC OC

OP 111 Approximately OC Approximately OC OP
112 Approximately OC OP Approximately OP
121 No known structure OP OP
211 N/A OP OP
122 No known structure OP OP
212 No known structure OP OP
221 OP OP

MC 111 Approximately OC OP N/A
112 No known structure No known structure No known structure
121 No known structure No known structure OC
211 Approximately OC MC MC
122 No known structure No known structure OC
212 Approximately OC MC OC
221 No known structure MC OC
222 Approximately OC No known structure MC/OC
223 Approximately OC Approximately MC MC/OC
232 No known structure Approximately MC MC/OC
322 Approximately OC Approximately MC MC/OC
233 Approximately OC Approximately MC MC/OC
323 Approximately OC Approximately MC MC/OC
332 Approximately OC Approximately MC MC/OC

MX1 111 N/A MC No known structure
112 No known structure Approximately MC No known structure
121 N/A No known structure OP
211 N/A No known structure OC/OP
122 No known structure OC OC/OP
212 Approximately OC N/A N/A
221 Approximately OC OC Approximately OP
222 No known structure N/A Approximately OP

Table 3.1: Final structures for free energy minimisation for the BKS potential
with 3 k-points, at ambient pressure for two different temperatures
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Figure 3.1: Energies in eV for free energy minimisation using the BKS potential
with 3 k-points, at ambient pressure for two different temperatures. Each point
on the x-axis refers to a row in table 3.1, from HP tridymite with a supercell
size of 111 to MX1 tridymite with a supercell size of 222

3.1.2.2 Energy and volume

Figures 3.1 and 3.2 show resulting energies and volumes respectively

for the simulations in table 3.1. Each point along the x-axis refers

to a row in the table above, i.e. the first point is for simulations

for HP tridymite with a supercell size of 111 and the last point is

for simulations for MX1 tridymite with a supercell size of 222. The

experimental values for volume were taken from [7] and [8]. 21 out

of 222 simulations did not achieve a minimised structure and are

not shown in the figures.
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Figure 3.2: Volumes in Å3 for free energy minimisation using the BKS potential
with 3 k-points, at ambient pressure for two different temperatures. Each point
on the x-axis refers to a row in table 3.1, from HP tridymite with a supercell
size of 111 to MX1 tridymite with a supercell size of 222

The structures appear to fall into two groups. The first group con-

tains HP tridymite and LHP tridymite as starting structures. This

group has similar volumes of approximately 50 Å3 (per silicon atom),

with energies of approximately -57.78 eV (per silicon atom) for sim-

ulations at 0 K, -57.80 eV for simulations at 273 K and -58.00 eV

for simulations at 700 K. The second group contains the remaining

starting structures with similar volumes of approximately 45 Å3 and

energies of approximately -57.83 eV for simulations at 0 K, -57.87 eV
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for simulations at 273 K and -58.12 eV for simulations at 700 K.

We note from the graphs that there is a correlation between the tem-

perature of the simulation and the final free energy. There does not,

however, appear to be a strong correlation between the temperature

of the simulation and the resulting volume.

There is greater variation in the volumes than would be expected

from experimental data. The experimental value for the volumes of

HP, LHP, OC, OP, MC and MX1 tridymite are 45.70 Å3, 45.62 Å3,

45.38 Å3, 44.57 Å3, 44.24 Å3 and 44.22 Å3 respectively [8]. Resulting

volumes from simulations are spread over the range 40.0482 Å3 and

50.4432 Å3.

Within each of the two groups (the first group containing the HP

and LHP structures and the second group containing the remaining

structures as described above) there is as much variation between

different sized and shaped supercells within one polymorph as be-

tween different polymorphs. For example, for simulations at 273K,

volumes for OC tridymite range from 40.05 Å3 and 47.19 Å3 for

the different supercell sizes and shapes, and those for MC tridymite

range from 40.05 Å3 and 44.25 Å3.
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The simulations were run using a number of different k-points, rang-

ing from 1 to 15 and also using the Sanders potential. These simu-

lations yielded similar results to those described above.

3.2 Molecular Dynamics

3.2.1 Methodology

Molecular dynamics (MD) was used next (methodology described

in section 2.2) to model the structural properties of tridymite. As

discussed in section 2.1, energy minimisation is a suitable technique

for simulations at low temperatures but is less appropriate at high

temperatures because it uses the harmonic approximation and an-

harmonic effects are not taken into account. MD can simulate anhar-

monic effects and is therefore often more accurate at higher temper-

atures. Additionally, free energy minimisation is most suitable for

exploring energy landscapes with a small number of deep minima,

because it explores less phase space, whereas MD is more appropri-

ate for exploring an extensive and flat energy landscape (where the

energy barriers to move from one atomic configuration to another

are low). It is likely that the energy landscape of tridymite is quite
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flat, as transitions between the different structures require no break-

ing of bonds. DL POLY [49] was therefore used for MD simulations

using the same six structures and same two potentials as for free

energy minimisation.

The calculations were performed using the NσT ensemble and peri-

odic boundary conditions with Ewald summation with a cut-off of

8 Å. As discussed in section 2.2.5, this value was chosen because

it is less than half the length of the smallest side of the smallest

unit cell of any of the tridymite structures, which ensures that all

structures obey the Minimum Image Convention. Also, the final

structures are more easily comparable if all simulations have the

same cut-off. The Hoover thermostat (see [49] for details) was ini-

tially chosen as the mechanism for keeping the temperature constant

because it is the most commonly used thermostat in simulations of

silica. However, this resulted in the volume for all structures fluctu-

ating throughout the simulations by as much as 10%, even at very

low temperatures. Simulations with different relaxation times al-

tered the amount of fluctuation but did not eliminate it entirely.

The Berendsen thermostat (see [49] for details) eliminated the fluc-

tuation and was therefore chosen instead of the Hoover thermostat.

The thermostat relaxation time used was 1 ps and the barostat re-
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laxation time was 5 ps. As discussed in section 2.2.2 a time step of

1 fs was employed for the BKS potential and a time step of 0.2 fs for

the Sanders potential. All calculations were at ambient pressure. A

shell with a mass of 0.05 a.m.u. was used for the Sanders potential.

The range of temperatures used was between 1 K and 1600 K.

3.2.2 Results

Section 3.2.2.1 discusses results for final energies and volumes and

section 3.2.2.2 discusses results for final atomic configurations.

3.2.2.1 Energy and volume

In contrast to the free energy minimisation calculations, where the

final energy and volume could be approximately predicted depend-

ing on whether the starting structure was in the HP and LHP group

or in the other group, for MD calculations no relationship could be

found between the starting structure and the energies and volumes

of the final structures. For some of the structures, calculations were

carried out for several sizes of supercell. Tables 3.2 and 3.3 compare

the resulting energies and volumes for calculations at 273 K using

the BKS and Sanders potentials respectively.
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Starting Number of Energy per Volume per Experimental
structure Si atoms Si atom (eV) Si atom (Å3) volume (Å3)

HP 500 -58.0180 41.3660 45.70
1372 -58.0182 40.9825
2048 -58.0371 40.0122

LHP 500 -58.0180 41.3660 45.62
1372 -58.0219 40.9796
2048 -58.0371 40.2886

OC 512 -58.0332 40.4570 45.38
1000 -58.0480 39.616

OP 1536 -58.0547 39.5944 44.57

MC 512 -58.0566 39.6035 44.24
1000 -58.0360 40.2690

MX1 384 -58.0573 39.5990 44.22

Table 3.2: Energies and volumes of final structures using MD with the BKS
potential at 273 K

Starting Number of Energy per Volume per Experimental
structure Si atoms Si atom (eV) Si atom (Å3) volume (Å3)

HP 500 -128.4340 45.8980 45.70
864 -128.4375 45.9109
1372 -128.4329 45.9300

LHP 500 -128.4360 45.9660 45.62
864 -128.4375 46.0058
1372 -128.4329 46.0058

OC 512 -128.4336 45.9395 45.38

OP 1536 -128.4375 45.6797 44.57

MC 1000 -128.4300 45.9270 44.24

MX1 384 -128.4349 45.8802 44.22
1296 -128.4336 45.9298

Table 3.3: Energies and volumes of final structures using MD with the Sanders
potential at 273 K.

It can be seen that there is at least as much variation within differ-

ent supercell sizes and shapes of a particular structure as between

different structures.
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The calculated volumes for simulations using the Sanders poten-

tial are closer to experimental data than for those using the BKS

potential.

In contrast to the free energy minimisation calculations, the vari-

ation in volume between the different starting structures is more

comparable with experimental data. The experimental volumes

for structures range from 44.22 Å3 to 45.70 Å3. The volumes for

MD simulations for the BKS potential are in the range 39.5990 Å3

to 41.3660 Å3and those for the Sanders potential are in the range

45.6797 Å3 to 46.0058 Å3. Resulting volumes for free energy min-

imisation were in the range 40.1982 Å3 and 50.4432 Å3, although a

larger number of simulations were carried out using that method so

greater variation would be expected.

At the temperatures at which simulations reported here are being

carried out it would be expected that simulations at higher tempera-

tures would have both a higher energy and volume than simulations

at low temperatures. For energy, this was observed for the majority

of simulations. For volume, however, this was often not the case.

Tables 3.4 and 3.5 illustrate this for HP tridymite with 500 silicon

atoms as the starting structure for simulations using the BKS and

Sanders potentials respectively. The simulation using the BKS po-
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tential at 1100 K is inconsistent with the trend of the remaining

simulations which is a rise in volume with increasing temperature.

Table 3.5 shows that simulations using the Sanders potential display

a trend of decreasing volume with increasing temperature.

Temperature (K) Energy per Si atom (eV) Volume per Si atom (Å3)

300 -58.0180 40.3020
700 -57.6900 42.1220
900 -57.5360 42.5060
1100 -57.4000 41.7100
1600 -57.0000 43.1080

Table 3.4: Energies and volumes using MD with the BKS potential for HP
tridymite as the starting structure with 500 silicon atoms

Temperature (K) Energy per Si atom (eV) Volume per Si atom (Å3)

300 -128.4100 45.9300
700 -128.1160 45.7200
900 -127.9660 45.8260
1100 -127.8300 45.3360
1600 -127.4460 45.2600

Table 3.5: Energies and volumes using MD with the Sanders potential for HP
tridymite as the starting structure with 500 silicon atoms

3.2.2.2 Final atomic configurations

As with free energy minimisation, the final structures were not con-

sistent with the phase diagram that has been obtained from exper-

iments. For the BKS potential each simulation could be allocated

to one of four groups according to their final structure. The alloca-

tion appears to be independent of temperature. In each simulation
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the atoms reverted to their final structure within a small number

of time steps. None of the four final structures are similar to any

of the six tridymite crystal starting structures. Group 1 contains

LHP tridymite with 500 silicon atoms, LHP tridymite with 1372

silicon atoms and HP tridymite with 1372 silicon atoms as starting

structures. The final structure for this group is shown in Figure

3.3. Silicon atoms are green and oxygen atoms are blue. Group 2

contains OC tridymite with 1000 silicon atoms as starting structure.

The final structure for this group is shown in Figure 3.4. Group 3

contains MX1 tridymite with 384 silicon atoms, OP tridymite with

1536 silicon atoms and MC tridymite with 512 silicon atoms as start-

ing structures. The final structure for this group is shown in Figure

3.5. Group 4 contains HP tridymite with 500 silicon atoms, MC

tridymite with 1000 silicon atoms and OC tridymite with 512 sili-

con atoms as starting structures. The final structure for this group

is shown in Figure 3.6. Its appearance is similar to the final struc-

ture of group 3 except that it has two different types of ring: one

has 2 fold symmetry and another has 3 fold symmetry.

There does not appear to be a pattern which determines to which

final structure group a particular starting structure will belong. In

addition, a polymorph of a particular supercell size may belong to
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Figure 3.3: Final structure for group 1 using the BKS potential

Figure 3.4: Final structure for group 2 using the BKS potential
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Figure 3.5: Final structure for group 3 using the BKS potential

Figure 3.6: Final structure for group 4 using the BKS potential
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one group, while the same polymorph but with a different supercell

size may belong to another. For example, the HP polymorph with

500 silicon atoms at 273 K belongs to group 4 while the HP poly-

morph with 1372 silicon atoms at 273 K belongs to group 1. (It is

interesting to note that although more ordered than the structure

obtained from compression of the zeolite silicalite-1-F by J. Haines et

al. [70], the four structures bear some resemblance to it in the rings

being a full shaped and in the large variation in Si-O-Si angles).

Figure 3.7: Final structure for all starting structures using Sanders

All simulations using the Sanders potential resulted in the structure
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in Figure 3.7.

3.2.2.2.1 Pair Distribution Functions

Figures 3.8 - 3.10 show PDFs for the four final structures using the

BKS potential.

In comparison to the PDFs of the tridymite crystal structures in

Figures 1.7 - 1.9 (on pages 23 - 24), all of the PDFs above have

wider and shorter peaks, indicating a lower level of symmetry.

Of the tridymite structures found in nature, the final structure ob-

tained from all Sanders simulations appears to be most similar to

the LHP polymorph. Figures 3.11 - 3.13 compare the PDFs of

the final structure using the Sanders potential and those of LHP

tridymite. Although the width and height of the peaks are very dif-

ferent, their locations generally coincide. It is therefore possible that

the Sanders potential simulations are fluctuating about an average

structure of the LHP polymorph. This topic is discussed further in

section 3.2.2.2.4 which analyses the Si-O-Si angles.
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Figure 3.8: Si-O PDF for the four final structures using BKS

Figure 3.9: Si-Si PDF for the four final structures using BKS
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Figure 3.10: O-O PDF for the four final structures using BKS

Figure 3.11: Comparison of the Si-O PDFs of the final structure using the
Sanders potential and LHP Tridymite
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Figure 3.12: Comparison of the Si-Si PDFs of the final structure using the
Sanders potential and LHP Tridymite

Figure 3.13: Comparison of the O-O PDFs of the final structure using the
Sanders potential and LHP Tridymite
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3.2.2.2.2 Bond lengths

Figure 3.14 shows Si-O bond length distributions for the four final

BKS structures and the final Sanders structure. The frequency has

been normalised because the structures have different numbers of

atoms. Each point represents the frequency with which that bond

length occurs divided by the total number of atoms in the structure.

Figure 3.14: Si-O bond length distributions for the four final BKS structures
and the final Sanders structure

There appears to be little difference between the different final struc-

tures. However, the plots differ greatly from all the crystal struc-

tures shown in Figure 1.10 (on page 24), with the exception of MX1

tridymite. All simulated structures and MX1 tridymite only have

one peak, whereas all the remaining crystal structures have more
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than one. The peaks for the simulated structures and MX1 tridymite

are much wider and shorter than those for the crystal structures,

indicating a higher level of disorder. The mean bond length for all

simulated structures is 1.60 Å. This value is the same as for MX1

tridymite but is different from those for the other crystal structures.

3.2.2.2.3 O-Si-O angles

Figure 3.15 shows O-Si-O angle distributions for the four final BKS

structures and the final Sanders structure.

Figure 3.15: O-Si-O angles for the four final BKS structures and the final
Sanders structure

As with bond lengths there does not appear to be a significant dif-

ference in O-Si-O angles between the final structures. The peaks are
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much lower and broader than those for the all the crystal structures

(including MX1 tridymite) shown in Figure 1.11 on page 25. There

is only one peak for each of the simulated structures. This is the case

for four of the crystal structures. The remaining two (LHP and OC

tridymite) have 2 peaks. In contrast to the calculated bond lengths,

the mean of the O-Si-O angles for all simulated structures is similar

to those for the crystal structures: between 109.42◦ and 109.43◦ for

all simulated structures compared with 109.47◦ for all experimental

crystal structures except for the LHP polymorph which is 108.37◦.

3.2.2.2.4 Si-O-Si angles

Figure 3.16 shows Si-O-Si angle distributions for the four final BKS

structures and the final Sanders structure.

In contrast to both bond lengths and O-Si-O angles, the Si-O-Si

angles of the final simulated structures differ from one another, as

might be expected.

Groups 1 and 2 for simulations using the BKS potential are similar

to each other and display a very wide curve, much wider than for

any of the experimental crystal structures, as shown in Figure 1.12

(on page 25). The mean angles are 150.7◦ and 148.8◦ for groups 1
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Figure 3.16: Si-O-Si angle distributions for the four final BKS structures and
the final Sanders structure

and 2 respectively, which are similar to the mean of 149.7◦ for the

crystal structure of the MX1 polymorph.

Plots for groups 3 and 4 are similar to each other and display 2 peaks.

The locations of the peaks (at approximately 137◦ and 165◦) are very

different from those observed in any of the crystal structures.

The plots for the Sanders potential simulations have one peak with

the highest point at 153◦. The first of the 2 peaks in the equiva-

lent graph for the LHP crystal structure (Figure 1.12, page 25) is

quite close to this value at 152◦. Although the Sanders potential
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simulations do not have a second peak at 180◦, the main peak is

asymmetrical with a higher frequency of points to the right of the

peak than to the left and the means of the Si-O-Si angles for Sanders

simulations and LHP crystal structure are not too dissimilar at 156◦

and 158◦ respectively. It is therefore possible that the Sanders po-

tential simulations are fluctuating about an average structure of the

LHP polymorph.

When the atomic configurations are observed throughout a simu-

lation using the BKS potential, the atoms vibrate around Si-O-Si

angles which are significantly less than 180◦. This observation does

not confirm the postulation that the angles of the ideal structures

described in section 1.12 are instantaneous values and that the atoms

are actually vibrating around a mean value of 180◦.

3.2.2.3 Alternative simulations

Several changes were made to the inputs to the simulations to test

if there would be any affect on the resulting structures and their

properties:

1) Simulations were run with the original cut-off of 8 Å changed to

9 Å, 10 Å and 12 Å.
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2) The simulation time was doubled.

3) Simulations were run for non-ambient pressures.

4) The NσT ensemble was replaced with the NPT ensemble (de-

scribed in section 2.2.6).

5) The time step for the BKS potential was changed from 1 fs to 0.2

fs and the time step for the Sanders potential was changed from 0.2

fs to 0.1 fs.

6) In the Sanders potential the shell with a mass of 0.05 a.m.u. was

replaced with a massless shell (described in section 2.3.1.6).

7) Aluminium impurities were introduced: A number of simulations

were run where between 1 and 21 silicon atoms were replaced with

aluminium atoms. A sodium ion was added for each aluminium

atom to ensure charge neutrality.

8) Simulations were run using single clusters of various sizes rather

than using periodic boundary conditions. Hydrogen atoms were

added to the surface of the cluster for charge neutrality. Parameters

for O-H interactions were obtained from [71].

These changes did not appear to make a discernible difference (as

determined by bond lengths and angles) to the resulting structures.
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3.3 Simulations involving two potentials

In order to examine the extent to which the choice of potential de-

termines the properties of the final structure of a simulation, the

final structures of a number of simulations using the BKS potential

were used as starting structures for simulations using the Sanders

potential, and vice versa. Table 3.6 shows a sample of typical results

of these calculations. The first column refers to the first potential

used in the simulation. The second column refers to the potential

which took as input the output of the simulation using the first

potential. The fourth column contains the space group of the orig-

inal crystal starting structure which was used as input to the first

potential. The fifth column contains the resulting energy from the

second simulation. The sixth column contains the resulting volume

from the second simulation. Column seven contains the resulting

energy from a simulation using only one potential given in column

two and the crystal structure in column four as input. Column eight

contains the resulting volume for the simulations described for the

previous column.
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It can be seen that the energies and volumes resulting from simu-

lations using two potentials are comparable with simulations using

the second potential alone.

Additionally, the atomic configurations and PDFs of simulations

with the Sanders potential as the second potential are similar to

those using the Sanders potential alone, while the atomic configura-

tions and PDFs of simulations with the BKS potential as the second

potential fall into one of the four groups described in section 3.2.2.2.

These results are a strong indication that the most influential fac-

tor on the final atomic configurations, energies and volumes of a

simulation are the choice of potential.

3.4 Simulations involving two methods

Simulations were carried out where the output of a free energy cal-

culation was used as the input to an MD simulation using the BKS

potential, and vice versa.

Tables 3.7 and 3.8 contain results for MD simulations as the first

method and free energy minimisation as the second method for en-

ergy and volume respectively. Tables 3.9 and 3.10 contain results
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for free energy minimisation as the first method and MD as the sec-

ond method for energy and volume respectively. The first column

of each table contains the starting structure and the number of sil-

icon atoms in the structure used as the input for the first method.

The second column shows the temperature of the first simulation.

The third column shows the temperature of the second simulation.

Column 4 shows the resulting energy/volume from the second sim-

ulation. Column 5 shows the energy/volume of a single simulation

using free energy minimisation at the temperature in column 3. Col-

umn 6 shows the energy/volume of a single simulation using MD at

the temperature in column 3. A simulation showing N/A did not

successfully complete. The final column shows the final atomic con-

figuration resulting from the second simulation. Numbers in that

column refer to one of the four groups described in section 3.2.2.2

which are the outcomes of MD simulations using the BKS potential.

NKS stands for “no known structure”.

With regard to atomic configuration, all but 5 out of the 36 simula-

tions resulted in a structure with a configuration belonging to one of

the four groups described in section 3.2.2.2 which are the outcomes

of MD simulations using the BKS potential alone. This was regard-

less of whether MD was the first or second method. An explanation
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Starting Tempe- Tempe- Energy Energy Energy Appearance
Structure rature (K) rature (K) per Si of free of

atom (eV) energy molecular
after 2nd alone dynamics
method alone

HP 32 1 1 -57.88 -57.78 -58.22 2 or 3
HP 32 1 273.15 -57.92 -57.80 -57.94 2 or 3
HP 32 1 700 -58.14 -58.01 -57.89 1

LHP 32 273.15 1 -57.88 -57.83 N/A 2 or 3
LHP 32 273.15 273.15 -57.94 -57.96 N/A 2 or 3
LHP 32 273.15 700 -58.18 -58.08 -57.89 2 or 3

LHP 32 700 1 -57.88 -57.83 N/A 2 or 3
LHP 32 700 273.15 -57.92 -57.96 N/A 2 or 3
LHP 32 700 700 -58.18 -58.08 -57.89 2 or 3

MC 32 273.15 1 -57.88 -57.83 -58.23 2 or 3
MC 32 273.15 273.15 -57.92 -57.82 -58.13 2 or 3
MC 32 273.15 700 -58.18 -58.08 -57.89 2 or 3

MX1 64 1 1 -57.87 -57.88 -58.23 OC
MX1 64 1 273.15 -57.84 -57.87 -58.11 NKS
MX1 64 1 700 -58.14 -58.10 -57.82 Almost OC

Table 3.7: Energies and configurations using the output of an MD simulation
as input to a free energy minimisation calculation using the BKS potential

for this might be that in MD simulations a larger proportion of the

energy landscape can be explored than in free energy minimisation.

Therefore, in MD there is a higher probability that an atomic con-

figuration with a lower energy or corresponding to a section of the

energy landscape surrounded by high energy barriers will be found.

The method of free energy minimisation may not explore enough of

the energy landscape to find an atomic configuration which has a

significantly lower energy than for MD or (if it is the second method)

may be unable to overcome the large energy barriers of the atomic

configuration found by MD.



CHAPTER 3: AN EXPLORATION OF TRIDYMITE 111

Starting Tempe- Tempe- Volume Volume Volume Appearance
Structure rature (K) rature (K) per Si of free of

atom (eV) energy molecular
after 2nd alone dynamics
method alone

HP 32 1 1 40.05 50.89 39.78 2 or 3
HP 32 1 273.15 40.20 49.95 40.34 2 or 3
HP 32 1 700 43.09 49.54 38.15 1

LHP 32 273.15 1 40.05 44.19 N/A 2 or 3
LHP 32 273.15 273.15 40.21 49.37 N/A 2 or 3
LHP 32 273.15 700 40.67 49.70 38.17 2 or 3

LHP 32 700 1 40.05 44.19 N/A 2 or 3
LHP 32 700 273.15 40.21 49.37 N/A 2 or 3
LHP 32 700 700 40.67 49.70 38.17 2 or 3

MC 32 273.15 1 40.05 44.25 42.24 2 or 3
MC 32 273.15 273.15 40.20 42.19 37.88 2 or 3
MC 32 273.15 700 40.70 44.02 38.33 2 or 3

MX1 64 1 1 44.47 40.05 41.32 OC
MX1 64 1 273.15 42.74 44.48 37.72 NKS
MX1 64 1 700 44.99 43.76 38.18 Almost OC

Table 3.8: Volumes and configurations using the output of an MD simulation
as input to a free energy minimisation calculation using the BKS potential

All the energies of the MD followed by free energy minimisation

calculations are similar to those of free energy minimisation alone.

The majority of the energies of the free energy minimisation followed

by MD calculations are similar to those of MD alone. This is not

in accord with the discussion in the previous paragraph that MD is

more likely to find a more stable structure. However, overall, the

differences in energy between all structures and methods are very

small.

The correlation described above for energies is not observed for vol-
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Starting Tempe- Tempe- Energy Energy Energy Appearance
Structure rature (K) rature (K) per Si of free of

atom (eV) energy molecular
after 2nd alone dynamics
method alone

HP 108 1 1 -58.21 -57.78 -58.24 4
HP 108 1 273.15 -58.04 -57.82 -57.94 4
HP 108 1 700 -57.75 -58.01 -57.59 4

HP 108 273.15 1 -58.21 -57.78 -58.24 4
HP 108 273.15 273.15 -58.04 -57.82 -57.94 4
HP 108 273.15 700 -57.74 -58.01 -57.59 4

HP 108 700 1 -58.24 -57.78 -58.24 4
HP 108 700 273.15 -58.04 -57.82 -57.94 4
HP 108 700 700 -57.75 -58.01 -57.59 4

LHP 108 1 1 -58.21 -57.78 -58.22 OC
LHP 108 1 273.15 -58.04 -57.82 -58.04 4
LHP 108 1 700 -57.74 -57.82 -57.74 4

LHP 108 700 1 -58.23 -57.78 -58.22 4
LHP 108 700 273.15 -58.04 -57.82 -58.04 4
LHP 108 700 700 -57.75 -57.82 -57.75 4

MC 32 273.15 1 N/A -57.83 -58.23 N/A
MC 32 273.15 273.15 -57.13 -57.82 -58.13 2 or 3
MC 32 273.15 700 -57.89 -58.08 -57.89 2 or 3

MX1 64 1 1 -58.31 -57.88 -58.23 2 or 3
MX1 64 1 273.15 -58.11 -57.87 -58.11 OC
MX1 64 1 700 -57.83 -58.10 -57.82 2 or 3

Table 3.9: Energies and configurations using the output of a free energy min-
imisation calculation as input to an MD simulation using the BKS potential

umes: For MD followed by free energy calculations, all the volumes

differ significantly from free energy alone and all but one differ from

MD alone. For free energy followed by MD all volumes differ sig-

nificantly from free energy alone, however, 16 out of 20 simulations

are similar to MD alone. This result accords with the postulation

that MD explores a larger proportion of the energy landscape and

finds a more stable structure.
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Starting Tempe- Tempe- Volume Volume Volume Appearance
Structure rature (K) rature (K) per Si of free of

atom (eV) energy molecular
after 2nd alone dynamics
method alone

HP 108 1 1 42.06 50.88 40.09 4
HP 108 1 273.15 40.51 50.41 40.34 4
HP 108 1 700 41.27 50.03 41.67 4

HP 108 273.15 1 42.06 50.88 40.09 4
HP 108 273.15 273.15 40.51 50.41 40.34 4
HP 108 273.15 700 41.33 50.03 41.67 4

HP 108 700 1 40.08 50.88 40.09 4
HP 108 700 273.15 40.50 50.41 40.34 4
HP 108 700 700 41.30 50.03 41.67 4

LHP 108 1 1 43.20 50.84 40.76 OC
LHP 108 1 273.15 40.52 43.46 40.56 4
LHP 108 1 700 41.29 50.39 41.36 4

LHP 108 700 1 40.43 50.84 40.76 4
LHP 108 700 273.15 40.52 43.46 40.56 4
LHP 108 700 700 41.30 50.39 41.36 4

MC 32 273.15 1 N/A 44.25 42.24 N/A
MC 32 273.15 273.15 37.89 42.19 37.88 2 or 3
MC 32 273.15 700 38.36 44.02 38.33 2 or 3

MX1 64 1 1 37.34 40.05 41.32 2 or 3
MX1 64 1 273.15 37.72 44.48 37.72 OC
MX1 64 1 700 38.20 43.76 38.18 2 or 3

Table 3.10: Volumes and configurations using the output of a free energy min-
imisation calculation as input to an MD simulation using the BKS potential

With a few exceptions the temperature of the first simulation does

not appear to greatly affect the outcome of the second simulation.

Table 3.11 shows energies and volumes using HP tridymite as the

starting structure for free energy minimisation, followed by the use

of the output as input to MD simulations, sorted by the temperature

of the second method. We note that the resulting energies and vol-

umes where the temperature of the second simulation is the same,
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are similar for all simulations, the exception being a simulation at

700 K followed by one at 1 K.

Temperature of Temperature of Energy per Volume per
first simulation second simulation Si atom (eV) Si atom (Å3)

1 1 -58.21 42.06
273.15 1 -58.21 42.06
700 1 -58.24 40.08
1 273.15 -58.04 40.51
273.15 273.15 -58.04 40.51
700 273.15 -58.04 40.50
1 700 -57.75 41.27
273.15 700 -57.74 41.33
700 700 -57.75 41.30

Table 3.11: Energies and volumes using the output of a free energy minimisation
calculation as input to an MD for simulations using the BKS potential for HP
tridymite

3.5 Density Functional Theory

Density Functional Theory (DFT) calculations (methodology de-

scribed in section 2.4) were performed for the polymorphs described

in the previous sections. This was to investigate whether any final

structures different from those from free energy minimisation and

MD could be reproduced.

Calculations using periodic boundary conditions did not converge.

For simulations using finite clusters only three of the six starting

structures converged.
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All three calculations resulted in a similar looking structure, shown

in Figure 3.17.

Figure 3.17: Final structure using Density Functional Theory

The structure appears to be part way between HP and LHP tridymite.

The Si-O-Si angle varies but is mostly in the range 150◦-170◦. For

the ideal HP structure it is 180◦ and for the LHP structure it is

151.2◦.

There was more variation in the resulting energies between struc-

tures than for the free energy minimisation and MD. This is, how-

ever, attributed to the fact that the values were less reliable for
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the Density Functional Theory calculations than for the other two

methods because clusters rather than periodic boundary conditions

were used. The clusters were made by adding hydrogen atoms to

the surface of the structures to ensure they were charge neutral.

The original cells of the structures were different shapes and sizes

and so it was difficult to construct clusters which were perfectly

comparable.

3.6 Discussion and conclusions

3.6.1 Energy and volume

The main finding with respect to the resulting energies of final struc-

tures from the simulations is that they are not dependent on the

starting structure, but that the atomic potential and simulation

technique used were the main factors affecting the final energies.

For most MD simulations for both the BKS and Sanders potentials

the energy of a structure increased (became less negative) with in-

creasing temperature, although there were several exceptions. This

trend was not seen in free energy minimisation calculations. A pos-

sible reason for this result is that the ZSISA (Zero Static Internal
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Stress Approximation) [42] which is generally used in free energy

minimisation calculations for silicates, minimises unit cell shape and

size with respect to free energy, but the atomic coordinates within

the cell are only minimised with respect to internal energy. This

approximation means that there is no temperature term in the min-

imisation of atomic coordinates.

The main finding with respect to the resulting volumes of final struc-

tures was that they are not dependent on the temperature of the

simulation. They are very weakly dependent on the starting struc-

ture in free energy minimisation calculations. As with values for

energy, the atomic potential and simulation technique used were

the main factors affecting the final volumes. The Sanders potential

reproduced experimental volumes more accurately than the BKS

potential.

3.6.2 Final atomic configuration

In general, the atomic configuration of the final structure did not

appear to be strongly determined by the temperature of the sim-

ulation. In free energy calculations the final structure was weakly

correlated with the starting structure, but this was not the case
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for MD simulations or electronic structure calculations. As with

energy and volume, the atomic potential and simulation technique

used were the main factors affecting the configuration of the final

structure. The atomic configurations resulting from MD simulations

using the BKS potential are unlike any structures documented in the

literature. However, all MD simulations using the Sanders poten-

tial resulted in one structure, in which atoms are most probably

vibrating around the ideal LHP structure.

These results differ from what might be expected experimentally. A

number of experimental studies have been carried out which have

concluded that different tridymite structures are the most stable at

different temperature ranges (these temperature ranges are given in

section 1.2), resulting in a phase diagram [8]. A range of temper-

atures was used in the simulations described in the present work.

Therefore, according to the experimental phase diagram, a range of

tridymite structures determined by simulation temperature would

have been expected.

3.6.3 Conclusions

There are a number of possible explanations for the results described

above:
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1) The transitions between the various tridymite polymorphs require

no bonds to be broken or formed. The most significant changes are

in the Si-O-Si angles. The energy landscape is therefore quite flat,

i.e. the energy barriers between polymorphs are quite low and can

be easily overcome. The techniques used above may not be sensitive

enough to deal with such low energy barriers. The fact that there is

little variation in energies between the simulated structures supports

this hypothesis.

2) The parameters for the two potentials used are derived from ab

initio calculations and experimental data for quartz. The potentials

are able to successfully reproduce the properties of a number of low

pressure polymorphs. The transitions between these structures are

reconstructive, where bonds are broken and formed, as opposed to

displacive, where only angles between atoms change. It may not

be possible to extrapolate these potentials to differentiate between

structures which undergo displacive transitions, as is the case for

the tridymite polymorphs.

3) Many of the starting structures used in this work have been ob-

tained from samples which have been found in nature. It is possible

that some of these structures are meta-stable and are at local min-

ima in the energy landscape, i.e. there is no point on the silica phase
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diagram where they are the most energetically favourable structure.

The resulting structures from the computer simulations may be dif-

ferent from the crystal structures because they have found different

local minima or have found the global minimum. It is unlikely,

however, that the simulations have found the true global minimum,

because all of the final structures from MD simulations and some

of the final structures from free energy calculations do not resemble

any of the tridymite crystal structures.



Chapter 4

The static and dynamic

properties of silica melts

and glasses

This chapter describes computational simulations using molecular

dynamics (MD) to explore the structural and dynamic properties of

amorphous silica, both of a melt and a glass, at a range of temper-

atures. As discussed in section 1.4, computational techniques are

especially useful for exploring the properties of amorphous mate-

rials, as there are certain properties of these materials which it is

not possible to precisely determine using experimental techniques.

121
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The aims of this chapter are described in section 1.4 on page 39,

numbered 1 to 6.

Section 4.1 of this chapter describes the modifications required to the

BKS potential to enable it to simulate a melt. Section 4.2 discusses

the simulations to produce a vitreous structure. Section 4.8 inves-

tigates aim 1. Section 4.9 describes research into aim 2. Sections

4.3 to 4.9 cover aims 3 to 5. Each section describes investigations

into a certain property or group of properties. Section 4.10 cov-

ers aim 6 and discusses the attempts to simulate a melt using the

Sanders potential (section 2.3.3) and the properties of the resulting

structure.

All simulations discussed in this chapter were carried out at ambient

pressure. Chapter 5 describes calculations at elevated pressures.

4.1 Modification of the BKS potential

At increasingly small interatomic distances the BKS potential di-

verges to infinitely low energies. This behaviour is shown in Figure

4.1, where interatomic distance is on the x-axis and energy is on the

y-axis.
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Figure 4.1: The divergence in energy of the BKS potential at small interatomic
distances

This does not present a problem when modelling materials at low

temperatures because the bonds between the atoms are strong and

the atoms are subjected to small forces. They are therefore not able

to access the small interatomic distances at which energy divergence

becomes a problem. In a melt, however, atoms may move with a

larger force and may therefore overcome the energy barrier at which

the divergence to infinitely low energies occurs.

When simulating structures at high temperatures, a correction must

be made to the formula for the potential so that it corresponds more
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Figure 4.2: Schematic interatomic potential

closely to the behaviour shown in Figure 4.2, where the energy be-

comes infinitely positive at increasingly small interatomic distances.

A number of possible methods for making this correction were tried

in this thesis:

A squared or cubed term (or both) can be added in order to make

the repulsive force stronger, as shown in Equation 4.1 (the original

BKS formula and parameters are given in [24] and section 2.3.2 and

include only the first three terms).

Θij(rij) =
QiQj

rij
− Cij
rij6

+Aije
−Bijrij +Dije

−Eijrij
2

+Fije
−Gijrij

3

(4.1)
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Several different values for the coefficients of the squared and cubed

terms were tried. However, this did not make the potential suffi-

ciently repulsive at small interatomic distances.

A second possible method is the addition of a harmonic term, as

shown in Equation 4.2.

Θij(rij) =
QiQj

rij
− Cij
rij6

+ Aije
−Bijrij + kij(rij −Dij)

2 + Eij (4.2)

Several different values for the constants were tried. However, values

which were large enough to ensure that the potential was sufficiently

repulsive at small interatomic distances significantly affected the

behaviour of the potential at larger distances.

Another possible method is the addition of a Lennard-Jones term

as is shown in Equation 4.3.

Θij(rij) =
QiQj

rij
− Cij
rij6

+Aije
−Bijrij + 4εµv((

σµv
rij

)30− (
σµv
rij

)6) (4.3)

The values for the additional parameters are taken from [72], where

εSi−O = 4.963460, εO−O = 1.6839685, σSi−O = 0.1313635 and σSi−O

= 0.1779239.
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When this method was tested on a melt it succeeded in ensuring

that interatomic distances did not become unfeasibly small. The

amended potential was tested on crystal structures at temperatures

below the melting point. The energy and volume of these struc-

tures were compared with those of the structures using the original

potential and it was found that that their values did not differ sig-

nificantly.

This method has been used in a number of published papers describ-

ing simulations of a silica melt, including [73], [61], and [74], which

explore diffusion coefficients and density anomalies in liquid silica.

Since it has a published track record of successfully simulating a

melt and the tests described above were successful, this method was

chosen as the one to be used for simulations in this thesis.

In order to implement the addition of the Lennard-Jones term, the

formula for the potential in the DL POLY Fortran code was modi-

fied. The specific code is located in the “vdw module.f” file at line

376. This file is located in the “srcmod” directory of the DL POLY

code.
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4.2 Production of quenched structure

With current computational speeds it is unfeasible to quench a melt

at the rate used in experiments and so in practice quench rates us-

ing computational techniques are several orders of magnitude faster

than under experimental conditions. To produce vitreous structures

for simulations using the BKS potential, a simulation was run for

100 ps, the temperature was reduced by 500 K and run for an-

other 100 ps. This was repeated until a temperature of 500 K was

reached. The final reduction in temperature was 499 K with the

final temperature being 1 K. 100 ps was a sufficient amount of time

to settle energy fluctuations, giving a quench rate of 5 x 1012 K/s.

K. Vollmayr, W. Kob and K. Binder [75] describe investigations into

different cooling rates of simulated silica and this rate is in the range

of quench rates recommended in the paper.

Six of the melts from crystal structures were successfully quenched.

Four of these were from a temperature of 6000 K. Two (cristobalite

and fluorite) were from a temperature of 5000 K because simulations

of melts for these crystal structures at 6000 K did not complete

successfully.
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4.3 Diffusion

There is only a small amount of experimental data available on

diffusion coefficients of a silica melt (for an explanation of diffusion

coefficients see section 2.5.3). All experiments have been carried

out in the range 1000 K - 1500 K ( [76], [77] and [78]) which is

below the silica melting point of 1986 K [79]. The resulting diffusion

coefficients are in the range 10-11 m2/s - 10-14 m2/s.

Figure 4.3: Diffusion coefficients (in units of 10-9 m2/s) for silicon for a number
of silica crystal structures at a range of temperatures

Figures 4.3 and 4.4 show the diffusion coefficients (in units of 10-9 m2/s)

of simulations starting with different crystal structures for silicon



CHAPTER 4: THE PROPERTIES OF SILICA MELTS AND GLASSES 129

Figure 4.4: Diffusion coefficients (in units of 10-9 m2/s) for oxygen for a number
of silica crystal structures at a range of temperatures

and oxygen respectively. The coefficients were calculated for the

production period of 100,000 time steps, which is 50 ps. Simula-

tions were carried out at a range of temperatures. The number

after the name of the crystal structure refers to the number of sili-

con atoms in the structure. 17 out of a total of 63 simulations did

not successfully complete and are not shown in the figures.

The values in the figures are comparable to the results of simulations

using the BKS potential carried out by Y. Zhang, G. Guo, K. Refson

and Y. Zhao [74] in which diffusion coefficients for simulations at

6543 K (in units of 10-9 m2) ranged from 11.0 to 16.8 for silicon and
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15.2 to 21.0 for oxygen. Simulations at 3310 K resulted in diffusion

coefficients in the range 0.027 to 0.044 for silicon and 0.048 to 0.74

for oxygen. The simulations described in the paper differ from those

in this work in that they were performed in the less experimentally

realistic NVE (constant volume and constant energy) ensemble, in

contrast to the NσT ensemble used in this thesis.

For information Figure 4.5 shows a typical Mean Square Displace-

ment of a melted structure from this thesis (for an explanation of

Mean Square Displacement see section 2.5.2).

Figure 4.5: A typical Mean Square Displacement plot

There does not appear to be a large variation in diffusion coefficients

between the different crystal starting structures at higher temper-
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atures. At lower temperatures different structures appear to have

slightly different melting points.

(a) Two particles heading
for a collision

(b) The particles collide (c) The particles are now
travelling in the opposite
direction

(d) The particles collide
again as they go
through the periodic
boundary

(e) The particles’ subse-
quent trajectory

Figure 4.6: Example of how a system with a small number of atoms can have a
lower diffusion coefficient than a larger system

As would be expected, the diffusion coefficients increase with in-

creasing temperature. However, in simulations described in [74] at

two different temperatures with four different system sizes it was

found that diffusion coefficients increase with increasing system size.

This is due to conservation of momentum and is illustrated in Fig-

ure 4.6. If two particles are travelling directly towards each other

and collide, the direction of travel of each of them will be altered
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so that they are travelling in opposite directions. In a system with

a small number of atoms the particles are more likely to meet each

other again when they leave the boundaries of the simulation box on

one side and enter it on the other side. This causes them to change

direction again. In a system with a larger number of atoms the two

atoms are more likely to be shielded from each other and from this

second collision by other atoms.

Starting No. of Diffusion coefficient (10−9m2 per second) at temperature

structure Si atoms 4000 4250 4500 4750 5000 5250 5500 5750 6000

HP tridymite 500 0.000 0.015 2.755 3.269 5.618 6.025 8.146 10.611 12.881
HP tridymite 1372 0.000 0.002 0.000 4.628 5.477 7.177 9.507 N/A N/A

LHP tridymite 500 0.000 0.001 0.005 3.787 4.691 6.009 6.291 10.36 13.248
LHP tridymite 1372 0.000 0.004 2.733 4.079 5.314 7.508 N/A N/A N/A

MC tridymite 512 0.000 0.000 0.005 N/A 4.442 6.483 7.301 10.634 13.122
MC tridymite 1000 0.000 0.004 2.736 4.289 5.764 6.508 9.282 12.320 N/A

Table 4.1: Diffusion coefficients of silicon for structures of different sizes

Starting No. of Diffusion coefficient (10−9m2 per second) at temperature

structure Si atoms 4000 4250 4500 4750 5000 5250 5500 5750 6000

HP tridymite 500 0.000 0.022 3.814 4.656 6.126 8.060 9.846 13.104 14.666
HP tridymite 1372 0.003 0.008 0.0165 5.527 7.202 9.131 11.501 N/A N/A

LHP tridymite 500 0.005 0.000 0.015 5.070 5.963 7.750 8.525 12.512 16.245
LHP tridymite 1372 0.002 0.010 3.868 5.474 7.269 9.3595 N/A N/A N/A

MC tridymite 512 0.000 0.000 0.012 N/A 6.062 7.630 9.871 12.302 17.089
MC tridymite 1000 0.000 0.011 3.738 5.405 6.936 8.418 11.103 14.949 N/A

Table 4.2: Diffusion coefficients of oxygen for structures of different sizes

Tables 4.1 and 4.2 show diffusion coefficients at a range of temper-

atures for silicon and oxygen respectively. Simulations given the

value N/A did not successfully complete. The increase in diffusion

coefficient with increasing system size is generally observed in sim-
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ulations in this thesis at temperatures above 4500 K. Simulations

in the temperature range 4000 K - 4500 K do not exhibit this be-

haviour, which is attributed to the particles having low diffusion

coefficients and so rarely moving through the boundaries of the sim-

ulation cell, therefore behaviour shown in 4.6 does not occur.

In order to provide further evidence that the structures have melted

a frequency table was constructed showing the displacement of every

silicon atom individually, comparing its location at the beginning

and end of the simulation. Table 4.3 shows this for all silicon atoms

for a melt at 6000 K with LHP tridymite as the starting structure.

It can be seen that no atom is displaced by less than 10 Å2 from

its original site, indicating that a significant number of the original

bonds in the crystal have been broken. Similar frequency tables were

constructed for each crystal starting structure and similar results

were obtained.

4.4 Arrhenius plots and activation energies

There have been a number of experimental studies to measure the

activation energies of silicon and oxygen in silica (for an explana-

tion of Arrhenius plots and activation energies see section 2.5.5). All
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Distance Number of atoms
in Å2 at that distance

0-10 0
10-20 1
20-30 5
30-40 6
40-50 2
50-100 11
100-300 72
300-500 91
500-700 81
700-900 55
900-1100 36
1100-1300 41
1300-1500 24
1500-1700 22
1700-1900 11
>1900 42
Total 500

Table 4.3: Displacement of each silicon atom for a melt of LHP tridymite at
6000 K over 100 ps

the studies of which we are aware were carried out below the silica

melting point of 1713◦C [79]. Only one experiment investigating the

activation energy of silicon could be found which was carried out by

O. Jaoul, F. Bejina and F. Elie [77] and used Rutherford backscat-

tering spectrometry resulting in an activation energy for silicon of

7.6 eV. Data obtained by J. C. Mikkelsen Jr. [80] using secondary ion

mass spectrometry in the temperature range 1200◦C-1400◦C finds

the activation energy of oxygen to be 4.7 eV. Experiments carried

out by E. L. Williams [78] using heterogeneous isotope exchange

in the temperature range 850◦C-1250◦C resulted in an activation

energy for oxygen of 1.26 eV. E. W. Sucov [81] describes experi-
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ments using the same method with an activation energy for oxygen

of 1.3 eV. K. Muehlenbachs and H. A. Schaeffer [82] also used iso-

tope exchange but in the temperature range 1150◦C-1430◦C and

found an activation energy of 0.87 eV. All activation energies for

oxygen except for one are much less than the strength of the Si-O

bond (4.82 eV according to H. A. Schaeffer [83] and 3.8 eV accord-

ing to J. C. Mikkelsen Jr. [80]), suggesting that the diffusion process

consists of exchange of network oxygen [83].

Table 4.4 shows activation energies calculated from diffusion coef-

ficients given in the previous section and R2 values for the fit of

the Arrhenius plots (the extent to which the activation energies lie

on a straight line, with a value of 1 representing a perfect straight

line and 0 representing a random distribution). This was only done

for starting structures which yielded at least five successfully com-

pleted simulations with non-zero diffusion coefficients in the range

4000-6000 K. As can be seen in Figures 4.3 and 4.4 on pages 128

and 129, a couple of the starting structures have different melting

points. The first point on the Arrhenius plots was therefore taken

as the first non-zero diffusion coefficient. The temperature of this

first point is given in column two of table 4.4. The temperature of

the final point is given in column three. Simulations were carried
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out at intervals of 250 K.

Silicon Oxygen

Starting structure First temp- Second temp- R2 Activation R2 Activation
and no. of Si atoms -erature (K) -erature (K) energy energy

Tridymite HP 500 4500 6000 0.99 2.494 0.99 2.191
Tridymite LHP 500 4750 6000 0.94 2.412 0.96 2.263
Tridymite MC 512 5000 6000 0.98 2.751 0.98 1.951
Tridymite MC 1000 4500 5750 0.98 2.732 0.99 2.365
Tridymite OP 1536 4500 5500 0.97 2.434 0.99 2.626
Quartz 375 5000 6000 0.96 2.732 0.99 2.270
Stishovite 400 4500 6000 0.99 2.566 0.99 2.349
PbO2 500 4250 5500 0.96 2.448 0.94 2.249
CaCl2 756 4750 6000 0.97 2.448 0.99 2.373
Fluorite 864 4000 5750 0.99 2.524 0.99 2.524

Table 4.4: Activation energies and R2 values of fits of Arrhenius plots

Figures 4.7 to 4.10 contain examples of Arrhenius plots from calcu-

lations in the above table. Figures 4.7 and 4.9 show the best and

worst fits respectively for silicon and Figures 4.8 and 4.10 show the

best and worst fits respectively for oxygen.

The high R2 values in table 4.4 for all starting structures confirm

that silica is a strong glass former (see section 2.5.5 for an explana-

tion of why this is so) and that this property is not affected by the

starting structure. There is little variation in activation energy be-

tween the different starting structures, indicating that they exhibit

similar melting behaviour at sufficiently high temperatures.

The calculated activation energies (which are above the melting

point) for oxygen are approximately in the range of the values found
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Figure 4.7: Arrhenius plot for silicon with stishovite as the starting structure
(the highest R2 of all the starting structures for silicon)

Figure 4.8: Arrhenius plot for oxygen with CaCl2 as the starting structure (the
highest R2 of all the starting structures for oxygen)
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Figure 4.9: Arrhenius plot for silicon with PbO2 as the starting structure (the
lowest R2 of all the starting structures for silicon)

Figure 4.10: Arrhenius plot for oxygen with PbO2 as the starting structure (the
lowest R2 of all the starting structures for oxygen)
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in experiments below the melting point, described above (0.87, 1.26,

1.3 and 4.7 eV). The calculated activation energies for silicon are

much lower than the experimental value (7.6 eV) for silicon below

the melting point.

MD simulations using the BKS potential described by J. Horbach,

W. Kob and K. Binder [52] result in activation energies significantly

different from those in this study, at 4.9 eV for silicon and 4.45 eV for

oxygen. This result might be explained by a number of differences:

The paper uses a time step of 1.6 fs compared to one of 0.5 fs in

the work described here. Simulations in the paper were carried out

at constant volume, whereas in the present study the volume was

allowed to fluctuate. Finally, the temperature range used for the

calculations in the paper is 2900 K to 6100 K compared to 4000 K

to 6000 K in the simulations discussed here.

It might be expected that the activation energy for silicon would be

significantly higher than that for oxygen, since in order for silicon

to diffuse four bonds must be broken, whereas for oxygen only two

bonds need to be broken. This difference is observed in experimental

data below the melting point, discussed earlier. However, in calcula-

tions shown in table 4.4, although the activation energy of silicon is

generally slightly higher than that of oxygen, the difference is not as
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great as between experimental values below the melting point. The

calculated values shown in the table suggest that at temperatures

above the melting point the diffusion mechanisms of both silicon

and oxygen are similar.

4.5 Energy and volume

Figures 4.11 and 4.12 show the final energies and volumes of sim-

ulated melts starting with different crystal structures. Simulations

were carried out at a range of temperatures. The number after the

name of the crystal structure refers to the number of silicon atoms in

the structure. 17 out of a total of 63 simulations did not successfully

complete and are not shown in the figures.

The spread of final energies between different starting structures

decreases with increasing temperature with a range of -55.45 eV

to -54.66 eV at 4000 K and -52.40 eV to -52.08 eV at 6000 K.

This is also the case for final volumes with a range of 25.09 Å3 to

44.93 Å3 at 4000 K and 38.22 Å3 to 38.54 Å3 at 6000 K. This provides

some evidence that the starting structure does not affect the final

structure of the melt, providing the temperature is sufficiently high.
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Figure 4.11: Final energy for simulations of a number of silica crystal structures
at a range of temperatures

Figure 4.12: Final volume for simulations of a number of silica crystal structures
at a range of temperatures
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Table 4.5 shows energies and volumes for the six vitreous structures

described in section 4.2. All results are at 1 K. The first column

contains the original crystal structure from which the melt was pro-

duced. The third column contains the temperature from which the

structure was quenched.

Original Number of Temperature Energy (eV) Volume (Å3)
structure silicon atoms of melt (K)

LHP tridymite 500 6000 -55.618 37.594
MC tridymite 512 6000 -55.645 37.725
Cristobalite 1000 5000 -56.096 38.051
Stishovite 400 6000 -55.5025 37.723
PbO2 500 6000 -55.614 37.864
Fluorite 864 5000 -56.110 37.817

Table 4.5: Energy and volume for vitreous structures

Although the volumes for vitreous structures quenched from 5000 K

and 6000 K are comparable, the energies for vitreous structures from

6000 K are higher than those from 5000 K, illustrating the discussion

in section 4.2 on quench rates in computational studies being several

orders of magnitude faster than those in experiments. The reason

for this is that although melts at 5000 K and 6000 K are at an

equilibrium, the quench rate is too fast for the structures to relax

and find a configuration with a sufficiently low energy state. The

quenching for the 6000 K structures between 6000 K and 5000 K is

an additional period with a quench rate that is too fast which does
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not take place for structures cooled from 5000 K.

No experimental data were found on the density of a silica melt. The

experimental density of silica glass has been found to be 2.2 g/cm3

[84]. The density of a melt produced from simulations in this thesis

is approximately 2.60 g/cm3 and that of a vitreous structure approx-

imately 2.65 g/cm3. These numbers are significantly larger than the

experimental value for glass and might be explained by deviations

from experiment in coordination number, discussed in section 4.7.

The densities presented here are, however, consistent with other

similar computer simulations described in [85] and [86], and the di-

vergence is almost certainly a consequence of the fast quench rates

in computer simulations.

4.6 Bond lengths, angles and Pair Distribution

Functions

Figures 4.13 and 4.14 show typical examples of Pair Distribution

Functions (PDFs) for a melt and a vitreous structure respectively.

All plots have the appearance that would be expected from an amor-

phous structure, having no long range order. However, both struc-
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(a) PDF Si-O

(b) PDF Si-Si

(c) PDF O-O

Figure 4.13: Example of a PDF of a melt (at 6000 K)



CHAPTER 4: THE PROPERTIES OF SILICA MELTS AND GLASSES 145

(a) PDF Si-O

(b) PDF Si-Si

(c) PDF O-O

Figure 4.14: Example of a PDF of a vitreous structure
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tures display significant short and medium range order (up to ap-

proximately 8 Å) as found in X-ray diffraction experiments [87].

Vitreous structures have a larger amount of short-range order than

liquids, which can be seen by the first peak for all three PDFs be-

ing higher and narrower in the vitreous structure. The short and

medium range order in both types of structure is explored further in

the following discussion on bond lengths and angles and in section

4.7 which investigates coordination.

Unlike crystalline structures, experimental data on bond lengths

and angles for amorphous structures can generally only give average

values. Computational techniques can provide more detailed infor-

mation and are useful for investigating the distributions of these

properties.

In order to calculate bond lengths and angles a cut-off must be

specified beyond which atoms are not considered to be bonded. In

a crystalline structure this is straightforward. However, in an amor-

phous structure where there is a continuous range of bond lengths

and angles the choice of cut-off is salient. This issue is illustrated

in Figures 4.15 and 4.16 which show Si-O distance against cumula-

tive mean coordination number for a melt and a vitreous structure

respectively (from a melt of LHP tridymite at 6000 K). The y-axis
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Figure 4.15: Si-O distance against cumulative mean coordination for a melt (at
6000 K)

Figure 4.16: Si-O distance against cumulative mean coordination for a vitreous
structure
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shows the number of oxygen atoms near a silicon atom within the

distance on the x-axis, averaged over all silicon atoms. Figure 4.16

shows that in a vitreous structure there is a clear cut first coordina-

tion shell and a cut-off anywhere in the range 1.8 Å and 2.6 Å would

be appropriate. However, Figure 4.15 shows that there is no clear-

cut first coordination shell in a melt. For a melt a cut-off of 2.5 Å

was chosen as this was the point on the graph with the smallest gra-

dient (also the minimum point after the first peak in the PDF). The

same value was also chosen as the cut-off for a vitreous structure

as it is in the range on the graph where the line is flat. However,

calculations for bond lengths and angles were additionally carried

out using cut-offs of 2.0 Å and 3.0 Å in order to test the sensitivity

of the results.

Figures 4.17 to 4.19 show bond length distributions, O-Si-O angle

distributions and Si-O-Si angle distributions of a melt at 6000 K

(with LHP tridymite as the starting structure) with a cut-off of

2.5 Å. Figures 4.20 to 4.22 show the same distributions but for a

vitreous structure for the same starting structure. Similar distribu-

tions were obtained for the remaining starting structures.

Table 4.6 shows mean bond lengths and their standard deviations

for melts and vitreous structures for different starting structures
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Figure 4.17: Typical Si-O bond length distribution for a melt (at 6000 K)

Figure 4.18: Typical O-Si-O angle distribution for a melt (at 6000 K)

Figure 4.19: Typical Si-O-Si angle distribution for a melt (at 6000 K)
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Figure 4.20: Typical bond length distribution for a vitreous structure

Figure 4.21: Typical O-Si-O angle distribution for a vitreous structure (the ideal
O-Si-O angle is 109◦

Figure 4.22: Typical Si-O-Si angle distribution for a vitreous structure
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(i.e. means and standard deviations for the graphs shown above for

different starting structures). Table 4.7 shows mean O-Si-O angle

distributions and table 4.8 shows mean Si-O-Si angle distributions.

Calculations using a cut-off of 2.0 Å are also shown.

Cut-off = 2.5 Å Cut-off = 2.0 Å

Starting Mean Si-O Standard Mean Si-O Standard Mean Si-O Mean Si-O
structure distance (Å) deviation distance Å deviation distance (Å) distance (Å)

for a melt for a vitreous for a melt for a vitreous
structure structure

Tridymite LHP 1.732 0.239 1.607 0.101 1.658 1.605
Tridymite MC 1.741 0.252 1.607 0.078 1.658 1.605
Cristobalite 1.723 0.221 1.609 0.040 1.664 1.608
Stishovite 1.742 0.249 1.608 0.100 1.661 1.604
PbO2 1.746 0.249 1.610 0.074 1.663 1.608
Fluorite 1.725 0.222 1.610 0.040 1.664 1.607

Table 4.6: Bond lengths for melts and vitreous structures for a number of start-
ing structures

Cut-off = 2.5 Å Cut-off = 2.0 Å

Starting Mean O-Si-O Standard Mean O-Si-O Standard Mean O-Si-O Mean O-Si-O
structure angle for deviation angle for deviation angle for) angle for

a melt a vitreous a melt a vitreous
structure structure

Tridymite LHP 107.73 22.37 109.18 8.92 109.47 109.33
Tridymite MC 106.76 23.50 109.26 8.23 109.49 109.31
Cristobalite 107.10 21.60 109.24 8.14 109.04 109.28
Stishovite 106.94 24.29 109.18 8.92 109.33 109.28
PbO2 106.87 23.18 109.16 9.09 109.50 109.23
Fluorite 106.96 22.17 109.31 7.63 108.88 109.33

Table 4.7: O-Si-O angles for melts and vitreous structures for a number of
starting structures

Cut-off = 2.5 Å Cut-off = 2.0 Å

Starting Mean Si-O-Si Standard Mean Si-O-Si Standard Mean Si-O-Si Mean Si-O-Si
structure angle for deviation angle for deviation angle for angle for

a melt a vitreous a melt a vitreous
structure structure

Tridymite LHP 127.60 22.76 146.54 15.96 133.62 148.34
Tridymite MC 127.10 24.80 147.13 15.02 133.97 147.52
Cristobalite 130.91 23.44 147.61 14.69 137.25 147.95
Stishovite 126.53 23.34 146.54 15.96 132.79 147.16
PbO2 127.19 24.25 146.79 15.80 133.91 147.25
Fluorite 129.95 23.64 148.07 14.20 135.81 148.27

Table 4.8: Si-O-Si angles for melts and vitreous structures for a number of
starting structures
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The values for all three properties do not significantly differ between

the different starting structures for vitreous structures. This is also

the case for bond lengths and O-Si-O angles for melts. However, the

mean Si-O-Si angles in melts with cristobalite and fluorite as starting

structures are slightly higher than for the remaining structures. This

difference may be due to the simulations for those two structures

being at 5000 K (the highest possible temperature that resulted in

a successfully completed simulation) rather than 6000 K which was

used for the remaining structures.

As would be expected from the earlier discussion, the properties of a

vitreous structure do not significantly differ when a cut-off of 2.0 Å

is used rather than 2.5 Å, as they are both in the appropriate range

of 2.0 Å to 2.6 Å. However, this is not the case for a melt, showing

that the results are quite sensitive to the choice of cut-off.

Figures 4.17 to 4.22 show that the distributions in a melt are wider

than those in a vitreous structure. This is confirmed by tables 4.6

to 4.8 where the standard deviations are larger in a melt than in a

vitreous structure. These differences support the discussion relating

to PDFs, above, that there is more short and medium range order

in a vitreous structure than in a melt.
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We now compare results obtained here with the experimental and

computational literature on silica liquid and glasses.

There are no experimental data available for bond lengths and angles

of a silica melt. A simulation of a melt using a two-body potential

derived from Car-Parrinello molecular dynamics simulations is de-

scribed in [88]. At a temperature of 3600 K a mean Si-O-Si angle of

150◦ was found. This value is higher than the mean Si-O-Si angles

of simulations of melts in this thesis. However, the parameters for

the potential used are derived using a very different method to those

of the BKS potential.

Considering now the vitreous structure, one of the first important

papers on the Si-O bond length in vitreous materials (published

in 1969) is that of R. L. Mozzi and B. E. Warren [87]. In X-ray

diffraction experiments they found that the mean bond length of

vitreous silica is 1.62 Å, which is a little higher than the calcula-

tions in the present study. More recently (1994) A. C. Wright [39]

carried out two X-ray diffraction and two neutron scattering experi-

ments. The two X-ray diffraction experiments give mean Si-O bond

lengths of 1.626± 0.004 and 1.619± 0.002 Å. The two neutron scat-

tering experiments give mean Si-O bond lengths of 1.608 ± 0.004

and 1.605± 0.003 Å. The result of calculations for a vitreous struc-
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ture are consistent with both the neutron scattering experiments

but less so with the X-ray diffraction experiments. According to G.

H. Beall [89] the Si-O bond length of vitreous silica is between 1.59

and 1.62 Å. This is based on X-ray, neutron and electron diffraction

experiments. The results for all the calculated quenched structures

are in the middle of this range.

In the earliest X-ray, neutron and electron diffraction experiments

described in [89], the mean O-Si-O angle was found to be 109.5◦,

which is a little higher than for calculations in this study. In high

energy X-ray diffraction experiments described in [90] it was found

to be 109.3◦ which is consistent with calculations.

As can be seen from the standard deviation column for a vitreous

structure in table 4.8 there is a wide distribution of Si-O-Si angles

in a silica glass. In Mozzi and Warren’s X-ray diffraction experi-

ments [87] the distribution of Si-O-Si angles was found to be be-

tween 120◦ and 180◦ with a maximum at 144◦, which is confirmed

by studies described in [91] and [92]. In high energy X-ray diffrac-

tion experiments carried out by H. F. Poulsen, J. Neuefeind, H.-B.

Neuman, J. R. Schneider and M. D. Zeidler [90] the maximum was

determined to be at 147◦. NMR experiments by T. M. Clark, P. J.

Grandinetti, P. Florian and J. F. Stebbins [93] also found the max-
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imum angle to be 147◦. In NMR experiments by E. Dupree and R.

F Pettifer in [40], it was found that the Si-O-Si angle distribution

is wide with roughly constant probability in the range 140◦-155◦.

These findings are all consistent with results from this thesis. Sim-

ulations of a vitreous structure using the BKS potential by X. Yuan

and A. N. Cormack [59] found a most probable Si-O-Si angle of

152◦. This value is higher than calculations in this thesis. However,

simulations described in the paper differ from those described here

in that they were carried out at constant volume.

Another piece of evidence that the simulated vitreous structures pro-

duced are similar to experimental structures is shown in the similar-

ity between Figure 4.23, which shows the experimental vibrational

density of states taken from experiments by S. N. Taraskin and S.

R. Elliott [95] (the line labelled “true” is the one to be compared),

and Figure 4.24, which shows a typical spectrum calculated from

vitreous structures in this thesis. For further density of states cal-

culations see [96] which uses MD to simulate a glass, calculates the

density of states and then characterises the vibrations (e.g. bond

stretching, angle bending, etc.).

There is no experimental data available on torsion (Si-O-Si-O) an-

gles. Figure 4.25 shows a typical distribution of torsion angles in a
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Figure 4.23: Experimental density of states for vitreous silica taken from [94]

Figure 4.24: A typical density of states spectrum for a vitreous structure in this
thesis
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vitreous structure from this thesis (this particular graph is from

a vitreous structure produced from a melt of LHP tridymite at

6000 K). The distribution is quite uniform. The mean angle for

this distribution is 90.3◦ (with a standard deviation of 52) which

confirms this uniformity (as the angles can only take values between

0◦ and 180◦).

Figure 4.25: Distribution of torsion angles for a vitreous structure

4.7 Coordination of silica melts and glasses

It has generally been thought that a vitreous structure is “almost

always tetrahedrally coordinated” [31] (the number of oxygen atoms

surrounding each silicon atom is four).
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Table 4.9 taken from [39] shows the mean coordination number for a

vitreous structure for four different experiments: two X-ray diffrac-

tion experiments and two neutron diffraction experiments. No data

could be found on the coordination of a silica melt.

Experiment Coordination number

X-ray 3.77± 0.12
X-ray 3.58± 0.09
Neutron 3.85± 0.16
Neutron 3.79± 0.14

Table 4.9: Mean coordination number from X-ray and neutron diffraction ex-
periments taken from [39]

As with bond lengths and angles, a cut-off must be chosen beyond

which atoms are not considered to be bonded when performing cal-

culations. The same cut-off (2.5 Å) as described in the previous

section was chosen.

Tables 4.10 and 4.11 show mean coordination numbers for calculated

melts and vitreous structures respectively for a number of simula-

tions. All vitreous structures are at 1 K.

Figure 4.26 shows the distribution of coordination number for a

number of simulations of a melt. The x-axis shows the original crys-

tal structure which was melted and the temperature of the melt.

Figure 4.27 shows the distribution of coordination number for dif-
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ferent simulations of a vitreous structure. The x-axis shows the

original crystal structure which was melted and the temperature

from which it was quenched.

Starting structure Temperature (K) Mean coordination number

Cristobalite 5000 4.071
Fluorite 5000 4.132
PbO2 6000 4.026
Stishovite 6000 4.147
LHP Tridymite 6000 4.180
MC Tridymite 6000 4.234

Table 4.10: Mean coordination number of a melt for a number of starting struc-
tures

Starting structure Temperature from which Mean coordination number
glass was quenched (K)

Cristobalite 5000 4.025
Fluorite 5000 3.932
PbO2 6000 4.108
Stishovite 6000 3.884
LHP Tridymite 6000 4.008
MC Tridymite 6000 4.018

Table 4.11: Mean coordination number of a vitreous structure for a number of
starting structures

In the melts (Figure 4.26) there are a significant number of 3 and

5 coordinated atoms, with only approximately 60% of atoms be-

ing four coordinated. There does not appear to be a significant

difference in the distribution of coordination between the different

starting structures.

It is not clear why the distribution for the vitreous structures (Fig-

ure 4.27) varies between the different starting structures. It does not
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Figure 4.26: Distribution of coordination number for a number of melts

Figure 4.27: Distribution of coordination number for a number of vitreous struc-
tures
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appear to be related to either the temperature or the diffusion coef-

ficient of the melt. The starting structures with fewer 4 coordinated

atoms are the high pressure polymorphs, although it is not clear why

this is the case because the coordination of the melts from which the

vitreous structures were made all have a similar distribution (Figure

4.26).

The mean calculated coordination numbers for a melt (table 4.10)

are a little higher than those calculated for a vitreous structure (ta-

ble 4.11). The mean calculated coordination numbers for a vitreous

structure are significantly higher than the experimental values (ta-

ble 4.9) for most of the starting structures. This may be due to

the fast quench rate, which is several orders of magnitude faster in

computational simulations than for experiment. The true melted

structure probably has a significantly higher coordination than the

vitreous structure. The structure being quenched computationally

does not have sufficient time to relax from the melted structure to

a lower mean coordination. This would also explain the higher den-

sity (discussed in section 4.5) found in simulated vitreous structures

compared to experiment. The findings of the simulations described

here do not appear to contradict the hypothesis that the vast major-

ity of silicon atoms in vitreous silica are tetrahedrally coordinated.
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4.8 The effect of defects in a crystal on its melt-

ing behaviour

In this section we explore the effect of defects on the melting be-

haviour of a silica crystal, for which little experimental data was

found. A number of simulations at a range of temperatures with

differing numbers of defects were carried out. The defects were

made by removal of two oxygen atoms for every one silicon atom to

ensure charge neutrality. One defect represents the removal of one

SiO2 cluster, two defects represent the removal of two SiO2 clus-

ters, etc. The crystal structure used as the initial configuration was

Hexagonal Packed (HP) tridymite with 500 silicon atoms. Figures

4.28, 4.29, 4.30 and 4.31 show a comparison of the energies, volumes

and diffusion coefficients of the structures with defects with those of

the perfect crystal structure. 3 out of a total of 49 simulations did

not successfully complete and are not shown in the figures.

The energies, volumes and diffusion coefficients are similar for all

structures at temperatures up to 3000 K. However, at intermediate

temperatures (3500 K to 4500 K) there is a spread of values for these

properties, which provides some evidence that defects significantly

lower the melting point of silica. A small number of defects appears
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Figure 4.28: Final energy for simulations with the LHP tridymite structure with
500 silicon atoms with differing numbers of defects at a range of temperatures

Figure 4.29: Final volume for simulations with the structure LHP tridymite with
500 silicon atoms with differing numbers of defects at a range of temperatures
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Figure 4.30: Diffusion coefficients for silicon with the LHP tridymite structure
with 500 silicon atoms with differing numbers of defects at a range of tempera-
tures

Figure 4.31: Diffusion coefficients for oxygen with the LHP tridymite structure
with 500 silicon atoms with differing numbers of defects at a range of tempera-
tures
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to be sufficient to make a significant difference. For example, for

simulations at 4500 K, the diffusion coefficient of a perfect crystal is

0.005 10−9m2/s, whereas with only two defects it is 2.136 10−9m2/s.

At higher temperatures (5000 K and above) defects do not appear

to make a significant difference to the energies, volumes and diffu-

sion coefficients. These results indicate that the presence of defects

significantly lowers the melting temperature.

4.9 The nature of the Si-O bond in a melt

This section explores the duration of the Si-O bond and the extent to

which silicon and oxygen atoms move together in a silica melt. Two

methods were used. In the first, silicon and oxygen atoms bonded

together at a particular point in the simulation were tagged (atoms

were deemed to be bonded if they were within a certain cut-off, as

discussed in section 4.6). The duration that two atoms remained

within the cut-off for the remainder of the simulation was recorded

and averaged over all atoms in the structure. The calculations were

carried out for the last 10 ps of a 100 ps simulation to ensure that

the structure was a typical melt. Table 4.12 shows the mean du-

ration in ps that atoms remained within the specified cut-off for a
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melt of LHP tridymite with 500 silicon atoms at four different tem-

peratures. Similar results were obtained for the other melted crystal

structures used in this thesis.

Temperature (K) Cut-off (Å)

2.0 2.5 3.0

4500 1.007 10 10
5000 0.400 2.005 2.354
5500 0.337 1.354 1.574
6000 0.309 0.891 1.038

Table 4.12: Bond length duration (in picoseconds) at different temperatures

At temperatures of 4500 K and below bonds are not broken. This

can be seen by the mean duration of a bond for cut-offs of 2.5 and

3.0 Å at 4500 K being equal to the total simulation time. The

value of 1.007 ps for a cut-off of 2.0 Å at this temperature shows

that this value is too small to give meaningful results, as the atoms

are vibrating with a large amplitude and vibrate beyond this cut-

off. The table shows that at temperatures of 5000 K and above

the duration of the Si-O bond is very short, approximately 2 ps at

5000 K and approximately 1 ps at 6000 K. Figure 4.32 shows the

distribution of bond length duration for the calculation at 6000 K

with a cut-off of 2.5 Å.

In the second method atoms bonded together at a point in the sim-

ulation were tagged, as above. At the end of the simulation, mean



CHAPTER 4: THE PROPERTIES OF SILICA MELTS AND GLASSES 167

Figure 4.32: Bond time distribution for a silica melt

Si-O distances of all atoms which were bonded together at the be-

ginning were compared with the mean Si-O distances of all atoms

whether bonded or not (i.e. distances between each silicon atom

and every other oxygen atom in the structure and vice versa). Fig-

ure 4.33 shows this calculation starting at the 50 ps point in a 100

ps calculation (so the starting structure is amorphous) with LHP

tridymite as the starting structure and run at 6000 K.

Figure 4.34 shows the same calculation for an entire simulation (so

the starting structure is a crystal) with the PbO2 polymorph as the

starting structure and run at 6000 K. Similar behaviour is seen for

melts for all crystalline starting structures.
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Figure 4.33: Si-O distances for atoms originally bonded against Si-O distances
for all atoms in a silica melt with a melt as the starting structure for the last
50 ps of a 100 ps simulation (at 6000 K)

Figure 4.34: Si-O distances for atoms originally bonded against Si-O distances
for all atoms in a silica melt with a crystal as the starting structure for a 100
ps simulation (at 6000 K)
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It can be seen that in both instances bonded silicon and oxygen

atoms become separated very quickly. There does not appear to be

a significant cage effect (where an atom is trapped by its surrounding

atoms and can only move within them). By the end of the simulation

the mean distance between the originally bonded atoms and between

all atoms in the structure is the same, showing that no memory of

the original Si-O bond remains.

A qualitative illustration of the relative movements of silicon and

oxygen atoms in a melt might prove informative. Figure 4.35 shows

a typical trajectory of a silicon atom and an oxygen atom for the

final 10 ps of a 100 ps simulation. Each point represents the location

in space of either the silicon or oxygen atom at a particular point

in time. A frame is taken every 100 time steps (every 50 fs, with

the time step being 0.5 fs) and a point is shown on the graph every

frame. The lighter colours represent the trajectory of the silicon

atom and the darker colours represent the trajectory of the oxygen

atom. The same colour represents the same time period for the two

atoms, with the atoms being differentiated by light and dark so that

they can be compared, e.g. light pink represents frames 81-120 for

silicon and dark pink represents frames 81-120 for oxygen.

As with the previous figures it can be seen that the atoms become
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(a) x y plane

(b) x z plane

(c) y z plane

Figure 4.35: Typical trajectories of a silicon and oxygen atom in a melt (at 6000
K)
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separated and begin moving independently after a relatively short

time.

4.10 Melting a structure using the Sanders po-

tential

A literature search revealed no published papers using a shell model

to simulate a silica melt. We therefore investigated the use of the

Sanders potential for simulating a silica melt.

The potential was amended to simulate a melt using the same method

as for the BKS potential (see [72] and section 4.1 of this chapter).

The three body term was removed to allow silicon atoms to have a

coordination number different from four.

As with the BKS potential, runs were carried out using a number of

different crystal starting structures. The only simulation which ran

for a sufficient amount of time without terminating prematurely

and at a sufficiently high temperature to produce a melt (judged

according to PDFs, the proportion of bonds broken and diffusion

coefficients; see below) was one with a starting structure of HP

tridymite, with 500 silicon atoms, at a temperature of 4500 K and
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with a time step of 0.02 fs. The largest number of time steps possible

before the calculation terminated was just over 200,000. The total

simulation time was therefore 4 ps (compared to 100 ps using the

BKS potential).

Table 4.13 is a frequency table (described in section 4.3 for the BKS

potential) which shows the displacement from its starting position

at the end of the simulation of every silicon atom individually. We

note that only one atom is displaced by less than 10 Å2 from its

original site, providing some evidence that the structure has melted.

Distance in Å2 Number of atoms at that distance

0-10 1
10-20 0
20-30 4
30-40 3
40-50 0
50-100 16
100-300 74
300-500 53
500-700 40
700-900 42
900-1100 45
1100-1300 48
1300-1500 51
1500-1700 42
1700-1900 32
>1900 49
Total 500

Table 4.13: Mean square displacement of each silicon atom for a melt of HP
tridymite at 4500 K using the Sanders potential

Table 4.14 contains data on a number of properties of the simulated
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structure which are compared with the same starting structure us-

ing the BKS potential at 4500 K and 6000 K.

Property Sanders at 4500 K BKS at 4500 K BKS at 6000 K

Diffusion (10−9m2 per second) 9.71 2.76 12.88
Volume per Si atom (Å3) 31.83 37.23 38.24
Mean Si-O bond length (Å) 1.783 1.700 1.741
Mean O-Si-O angle 104.21◦ 107.54◦ 107.14◦

Mean Si-O-Si angle 120.64◦ 133.70◦ 128.52◦

Mean coordination 4.81 4.19 4.25

Table 4.14: Properties for a simulation using the Sanders potential with a start-
ing structure of HP tridymite with 500 silicon atoms, compared to the same
starting structure using the BKS potential

The magnitude of the diffusion coefficient of the simulation using the

Sanders potential at 4500 K (9.71) shows that the system is a liquid.

The value is lower than for the BKS simulation at 6000 K (12.88),

but much higher than for the BKS simulation at 4500 K (2.76),

indicating that the melting temperature of the Sanders potential is

lower than that of the BKS potential.

The mean Si-O-Si angle is significantly smaller in the Sanders sim-

ulation than in both BKS simulations, which is contrary to what

might have been expected: The Sanders potential is a full charge

model, with the more highly charged atoms repelling each other to

a greater degree than in the BKS potential, which is a partial charge

model. It would therefore have been expected that these angles were
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straighter in simulations using the Sanders potential.

For the simulation using the Sanders potential the mean bond length

is longer and the mean O-Si-O angle is smaller than for either of the

structures simulated using the BKS potential. This indicates that

there are a larger number of more highly coordinated silicon atoms

in the Sanders melt, which is confirmed by the mean coordination

being significantly higher than for the BKS structures. A higher co-

ordination would produce a more dense structure. This is confirmed

by the volume for the simulation with the Sanders potential being

significantly lower than for either of the BKS structures.

The structural properties of simulations of a silica melt using the

Sanders potential differ significantly from those using the BKS po-

tential. Little experimental data is available for these properties, so

it is not possible to determine at this stage which of the potentials is

the most accurate. However, the BKS potential is the more robust

of the two, as the majority of simulations at high temperatures using

this potential terminated successfully, whereas only one simulation

using the Sanders potential ran for a sufficient amount of time to

determine properties.

Attempts were made to quench the Sanders melt but these were
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unsuccessful.

4.11 Conclusions

1) Structural and dynamic properties of a silica melt and glass that

are not available from experimental data have been investigated:

Diffusion coefficients at high temperatures (section 4.3), activation

energies at high temperatures (section 4.4), the mean and the distri-

bution of bond lengths and angles of a silica melt (section 4.6), the

distribution of bond lengths and angles of a vitreous structure (also

section 4.6), the mean and distribution of the coordination number

in a melt (section 4.7), the distribution of the coordination number

in a vitreous structure (also section 4.7), the duration of the Si-O

bond in a melt (section 4.9) and the relative movements of silicon

and oxygen atoms in a melt (also section 4.9).

2) Given a sufficiently high temperature, the structural and dynamic

properties of both a silica melt and glass are independent of the

crystal structure from which the melt was produced. This finding

has been tested by calculating a number of properties for melts and

vitreous structures produced from a number of crystal structures,
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including diffusion coefficients (section 4.3), activation energies (sec-

tion 4.4), energies and volumes, (section 4.5), bond lengths and

angles (section 4.6) and coordination numbers (section 4.7). The

initial structures included higher pressure polymorphs with higher

coordination numbers.

3) Section 4.8 discusses the effect of defects in a crystal on its melt-

ing behaviour. It concludes that at high temperatures defects do

not significantly affect the crystal’s melting behaviour. However, at

intermediate temperatures (3500 K to 4500 K for simulated struc-

tures) the energy, volume and diffusion coefficients significantly de-

pend on the presence and number of defects.

4) The performance of the BKS potential was assessed for a melt

and glass by comparing its output to available experimental data.

There was good agreement between the experimental and calculated

vibrational density of states (section 4.2). Calculated bond lengths

and angles for a vitreous structure are also consistent with experi-

mental data (section 4.6). The calculated mean coordination for a

vitreous structure is significantly larger than that of the experimen-

tal data (section 4.7). This difference is probably not caused by the

potential but is due to the faster quench rate in simulations com-

pared to experiment. The melted structure probably has a higher
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coordination than the glass and the structure being quenched does

not have sufficient time to relax from the melted structure. The

density of a vitreous structure simulated in this thesis was signifi-

cantly larger than experimental values, although it was consistent

with other published simulations (section 4.5). This feature can be

attributed to the larger coordination.

5) The performance of the Sanders potential for simulating a melt

and glass was assessed. Only one structure ran at a high tempera-

ture for a significant enough length of time to produced statistically

meaningful results. The melting temperature was lower than for

the BKS potential. The volume, mean bond lengths, mean angles

and mean coordination for the melt were significantly different from

the BKS potential (section 4.10). A quench run using the Sanders

potential was not successful.



Chapter 5

The behaviour of

amorphous silica under

pressure

5.1 Introduction

The preceding chapters have focused on simulations at a range of

temperatures but at ambient pressure. This chapter extends the

scope of the research to include non-ambient pressures.

Amorphous silica has a wide range of applications (discussed in sec-

tion 1.1) and is used under a variety of conditions. It is therefore

178
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important to understand its behaviour and durability when exposed

to a range of temperatures and pressures. The abundant silicate ma-

terials in the interior of the earth and a number of other planets are

subjected to very high pressures. A greater understanding of the

properties of silica at high pressures and temperatures would pro-

vide insight into the factors affecting the geology of these planets.

Neutron diffraction has been used to investigate the structure of

amorphous silica at ambient pressure [39] [89], but unfortunately,

samples produced at high pressure are often too small for investiga-

tion using this method. X-ray diffraction has not been wholly suc-

cessful in determining the detailed structure of amorphous silica at

high pressure [97]. Computational techniques therefore have much

to contribute to the understanding of the properties of materials at

high pressures.

There are two aims to this chapter. The first is to assess the perfor-

mance of the BKS potential ( [24] and described in section 2.3.2) at

elevated pressures and compare its output with available experimen-

tal and computational data. The second aim is to use the potential

to investigate properties of amorphous silica at high pressure for

which experimental and computational data are not available.
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5.2 Literature review

This section discusses the experimental and computational litera-

ture relating to the application and removal of pressure in amor-

phous silica. The studies cover a range of temperatures, although

the majority have been carried out at ambient temperatures. The

experimental studies are generally consistent with each other. How-

ever, the computational studies in the literature do not always agree

with each other and often disagree both quantitatively and qualita-

tively with experimental data.

5.2.1 Compression at ambient temperatures

5.2.1.1 Experimental studies

When pressures up to approximately 9 GPa are applied to amor-

phous silica densification occurs. This behaviour is due to a re-

versible reduction in Si-O-Si angles, which has been observed in

Raman scattering experiments [98] [99].

Between approximately 9 GPa and 20 GPa the densification is not

completely reversed when the pressure is released. This behaviour
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is due to irreversible changes in the Si-O-Si angles. Neutron diffrac-

tion experiments [97] carried out on samples compressed to 16 GPa

show a 20% permanent increase in density and a significant decrease

in Si-O-Si angles. Brillouin scattering experiments [100] showed a

20±10% permanent increase in density after the application of a

pressure of 17.5 GPa. Experiments using Raman scattering [101]

find that below approximately 10 GPa the Raman spectra before and

after compression are indistinguishable, whereas above this pressure

they are different. Experiments by C. H. Polsky, K. H. Smith and

G. H. Wolf [102] also use Raman scattering and estimate that the

pressure at which densification begins to be irreversible is in the

range 8.5 GPa to 10.6 GPa.

At pressures above 20 GPa there is an additional mechanism of

densification [103] in addition to the changes in the Si-O-Si angles,

which involves the deformation of the tetrahedra, with an increase

in coordination number and therefore changes in bond lengths and

O-Si-O angles. This additional change is completely reversible and

when the pressure is released the coordination, bond lengths and

O-Si-O angles return to their original values as before compression,

although Si-O-Si angles do not. X-ray diffraction experiments dis-

cussed in [104] were carried out at four different pressures: ambient
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pressure, 8 GPa, 28 GPa and 42 GPa. There is no significant differ-

ence in the modal Si-O distance of 1.57 Å between ambient pressure

and 8 GPa. At 28 GPa this distance rises from 1.57 Å to 1.64 Å. At

42 GPa it rises to 1.66 Å. At 42 GPa the modal O-Si-O angle is 96◦

(for 4 and 6 coordinated silica the ideal O-Si-O angles are 109.5◦

and 90◦ respectively) indicating that at this pressure the majority

of silica atoms are 6 coordinated.

It is interesting to compare the experimental results indicating that

the increase in coordination is completely reversible for amorphous

silica with the finding that the 6-coordinated silica crystal struc-

ture stishovite (section 1.3.4) can exist at ambient pressure. The

stishovite structure has been found in nature at ambient pressure

[105] and when synthesised in a laboratory and the pressure re-

moved, the 6-coordinated structure was retained [106].

5.2.1.2 Computational studies

Molecular dynamics (MD) simulations [107] [108] [109] were carried

out using a two body potential (the TTAM potential, described

in [110]) which, similarly to the BKS potential, was parameterised

using ab initio electronic structure calculations but, unlike the BKS
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potential, did not include experimental data in its parameterisation.

The study does not discuss decompression but finds that from 3 GPa

the average coordination number begins to increase (as opposed to

20 GPa according to experiments).

MD simulations [111] using the BKS potential show the average co-

ordination remaining at 4 until 14 GPa, increasing to 5 at 15 GPa

and reaching 6 by 20 GPa. This finding is not necessarily incon-

sistent with experimental results, however, the same paper suggests

that the change in density is reversible up to 14 GPa (as opposed

to 9 GPa according to experiment).

L. Huang and J. Kieffer [112] carried out MD calculations using

a three body potential where both the Si-O-Si and O-Si-O angles

were constrained. Si-O-Si angles approaching 180◦ were made to be

energetically unfavourable. O-Si-O angles in a tetrahedral coordi-

nation were made to be the most energetically favourable, meaning

the probability of any change in coordination number is greatly re-

duced. Compressions were carried out at pressures between 0 and

20 GPa. It was found that in this pressure range the mean Si-O

bond length and mean O-Si-O angle did not change and that the

mean Si-O-Si angle decreased with increasing pressure. Although

these results are consistent with experiment, they are as would be
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expected given the many constraints of the potential. However, al-

though the mean O-Si-O angle did not change, it was found that

its distribution became wider with increasing pressure. This is an

interesting finding considering that these angles were constrained.

5.2.2 Compression at high temperatures

5.2.2.1 Experimental studies

A number of experimental studies have been carried out on the ef-

fect of both high temperatures and pressures on amorphous silica,

although the range of temperatures is limited. Experimental stud-

ies suggest that the higher the temperature, the greater the amount

of permanent densification. They also suggest that the higher the

temperature, the lower the pressure at which densification becomes

irreversible. Experiments [113] at two different temperatures (475 K

and 545 K) provide evidence for the first point. A study by G. D.

Mukherjee, S. N. Vaidya and V. Sugandhi [114] finds that at 953 K

the pressure at which densification becomes irreversible is 3.6 GPa

(compared to approximately 9 GPa at ambient temperature). Ra-

man spectra [115] for glassy silica compressed at 3.95 GPa and 530◦C

show a significant permanent decrease in volume due to a decrease
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in the mean Si-O-Si angle. Experiments [116] also using Raman

spectroscopy carried out at 700◦C and at pressures up to 8 GPa

find permanent densification at pressures as low as 2 GPa. The

most significant features are a decrease in Si-O-Si angle, although

a lengthening of Si-O bonds is also observed. Raman spectroscopy

studies [117] at 5 GPa and 600◦C found a decrease in the mean

Si-O-Si angle from approximately 144◦ to approximately 120◦.

5.2.2.2 Computational studies

Only one computational study at high temperatures and pressures

has been reported: MD simulations carried out by L. Huang and J.

Kieffer [118] at 1000 K and 1500 K found that the amount of per-

manent densification increases with increasing temperature. The

potential used for the simulations is not discussed in the paper. If

it is the same potential as in the authors’ previous work [112] dis-

cussed above it will have the O-Si-O and Si-O-Si angle constraint

and so may not be appropriate for simulating changes in coordina-

tion number.
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5.3 Results

This section discusses the results of simulations at a range of tem-

peratures and pressures carried out in two stages: In the first stage

a vitreous structure is pressurised at a given pressure and tempera-

ture. In the second stage the pressure is released (i.e. the pressure

is changed to 0 GPa). For the majority of simulations the tempera-

ture is not changed for the second stage. A few of simulations were

carried out where the temperature is reduced to ambient tempera-

ture in the second stage. These are described in section 5.3.4. It

should be noted that in work described in the previous chapter it

was found that the vitreous structures produced exhibited a higher

density than has been found in experiment, probably due to the

faster quench rate (see section 4.5 for details). Therefore, the struc-

tures being compressed as discussed in this chapter have an initial

density which is higher than in experiment.

The majority of simulations at ambient pressure described in the

previous chapter were run for 100 ps. It is possible that with the

application and release of pressure the structures require a longer

run to reach equilibrium. Longer simulation runs, up to 300 ps for

each stage of the application or release process, were carried out in
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order to examine the amount of time required for equilibrium to be

reached. However, the results showed that 100 ps was a sufficient

amount of time to settle fluctuations.

Simulations were run for five different amorphous structures of dif-

ferent supercell sizes and shapes, in order to investigate variability.

These structures were generated by melting and quenching five dif-

ferent silica crystal structures with different unit cell shapes and

sizes. The results for all the starting structures were similar.

5.3.1 Volume

Figures 5.1 to 5.5 show the resulting volumes per silicon atom of

typical simulations at a range of temperatures and pressures. The

pink points represent the volume of a single simulation at 0 GPa.

The green points represent the volume of a single simulation at

the pressure specified in the legend. The blue points represent the

resulting volume of a second simulation at 0 GPa using the structure

resulting from the simulation represented by the green points as

input, i.e. the resulting volume after the pressure specified in the

legend has been released.
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Figure 5.1: Volume resulting from compression of amorphous silica at 2 GPa at
a range of temperatures

Figure 5.2: Volume resulting from compression of amorphous silica at 4 GPa at
a range of temperatures
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Figure 5.3: Volume resulting from compression of amorphous silica at 8 GPa at
a range of temperatures

Figure 5.4: Volume resulting from compression of amorphous silica at 16 GPa
at a range of temperatures
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Figure 5.5: Volume resulting from compression of amorphous silica at 32 GPa
at a range of temperatures

We note that for simulations at high temperatures the original vol-

ume is recovered after decompression, regardless of pressure. These

results contradict the experiments discussed in section 5.2.2 which

find that the higher the temperature, the greater the amount of

permanent densification.

The figures show that at low temperatures, for all pressures, the

volume before compression is not recovered after decompression.

These results again do not agree with experimental findings, which

are that the volume change is reversible up to 9 GPa. It is interesting

to note that the melting temperature in a simulation is much higher

than in experiment: approximately 6000 K with the BKS potential,

compared to 1986 K [37, p. 9] for experiment. The differences
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between calculations and experiment for both the behaviour under

pressure and the melting point might be due to a similar mechanism.

An explanation could be that the energy barriers in the potential

might be higher than those in experiment, so at low temperatures

the atoms cannot overcome these barriers and therefore get caught

in meta-stable energy minima. Additionally, experimental materials

will have defects, which were not included in simulations in this

chapter. However, work described in section 4.8 indicates that the

presence of defects significantly lowers the melting point of a silica

crystal. It is possible that the presence of defects might affect the

behaviour of silica under pressure, which could be an interesting

area for further work.

5.3.2 Coordination, bond lengths and angles

Figures 5.6 and 5.7 contain results for mean coordination, bond

lengths and angles for simulations at 0 K and 4000 K respectively.

The mauve bars show values for simulations at 0 GPa. The pink

bars show values for simulations at pressures displayed on the x-axis.

The cream bars show values for simulations at 0 GPa following a

simulation at the pressure displayed on the x-axis.
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(a) Coordination

(b) Si-O bond lengths

(c) O-Si-O angles

(d) Si-O-Si angles

Figure 5.6: Mean coordination, bond lengths, O-Si-O angles and Si-O-Si angles
at 0 K
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(a) Coordination

(b) Si-O bond lengths

(c) O-Si-O angles

(d) Si-O-Si angles

Figure 5.7: Mean coordination, bond lengths, O-Si-O angles and Si-O-Si angles
at 4000 K
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We first discuss simulations at 0 K. During compression, as would

be expected, Si-O-Si angles decrease with increasing pressure at all

pressures. However, there are no pressures at which Si-O-Si angles

recover completely upon decompression. This result contradicts ex-

perimental data (section 5.2.1.1) which find permanent changes in

these values only at pressures of 9 GPa and above. Coordination,

bond lengths and O-Si-O angles also change upon compression at all

pressures. These results do not agree with experimental data which

find that these values are only affected by compression at pressures

above 20 GPa. Additionally, experiments show that, regardless of

pressure, these values completely recover after decompression, con-

tradicting the results shown in the figure.

The figures show that at all pressures at 4000 K there are significant

changes in coordination, bond lengths, O-Si-O angles and Si-O-Si

angles upon compression. No previous experimental or computa-

tional studies were found relating to changes in tetrahedra at high

temperatures. The figures also show that there is no significant dif-

ference between values for these properties at 0 GPa and after de-

compression. This result does not agree with experiments discussed

in section 5.2.2.1, which cites two studies at high temperatures that

found a permanent decrease in Si-O-Si angle, even at low pressures.
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5.3.3 Gradual application and release of pressure

The results described so far relate to simulations where a change in

pressure has been immediate. Pressure changes which were gradual

rather than immediate would be more representative of experimental

conditions. Simulations were carried out where both application

and release of pressure were gradual. The simulations with gradual

compression were carried out by running for 200,000 steps with a

time step of 0.5 fs (totalling 100 ps) at 0 GPa then increasing the

pressure by a small amount and running for a further 200,000 steps.

This process was repeated until the required pressure was reached.

The simulations of gradual decompression were carried out similarly

but in reverse. Two different compression/decompression rates were

used: the change in pressure between each stage was either 0.5 GPa

or 1.0 GPa.

Figure 5.8 compares volumes for gradual and immediate compres-

sion/decompression. The first line of the x-axis labels gives the

temperature of the simulation. The second line for the compression

graph shows the pressure to which the structure was compressed

and for the decompression graph shows the pressure from which

the structure was decompressed. The third line gives the difference
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in pressure or step (in GPa) between each stage of the compres-

sion/decompression. As described in previous sections, simulations

with five different starting structures were carried out in order to in-

vestigate variability. The results for all the starting structures were

similar and the values in the figure represent the mean values of the

different starting structures.

The graphs for decompression show no discernible difference in vol-

ume between immediate and gradual decompression where the step

is 0.5 GPa. There is a small difference between immediate decom-

pression and gradual decompression where the step is 1.0 GPa.

In the case of compression, however, in all cases the volume for

gradual compression is significantly higher than for immediate com-

pression. In order to investigate the reasons for this difference, the

coordination, bond lengths and angles of the two types of simulation

were compared and are shown in Figure 5.9.

The figure shows that there is a higher coordination for immediate

compression when compared to gradual compression, which is con-

firmed by the larger O-Si-O angles. The bond lengths are longer in

order to accommodate the higher coordination. The Si-O-Si angles

are smaller for immediate application of pressure than for gradual
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(a) Compression

(b) Decompression

Figure 5.8: A comparison of the mean resulting volumes of simulations with
gradual and immediate changes in pressure
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(a) Coordination

(b) Si-O bond lengths

(c) O-Si-O angles

(d) Si-O-Si angles

Figure 5.9: Comparing mean coordination, bond lengths, O-Si-O angles and
Si-O-Si angles for simulations with gradual and immediate compression
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application. The smaller volume observed with immediate appli-

cation of pressure (Figure 5.8) is therefore due to both the higher

coordination and smaller Si-O-Si angles.

The differences between immediate and gradual compression were

further analysed by constructing a frequency table showing the dis-

placement of every silicon atom, comparing its location at the be-

ginning and end of the simulation. Table 5.1 shows such a table for

all silicon atoms comparing immediate and gradual compression to

8 GPa at 500 K. Immediate decompression from 8 GPa at 500 K is

also shown for comparison.

The table shows that there is a marked difference in the displace-

ment of the atoms between immediate and gradual compression.

There is more displacement with gradual compression, indicating

that a large number of bonds might be broken. An explanation for

this difference might be that on immediate compression the height

of the energy barriers increases by a large amount quite suddenly,

meaning that the new atomic configuration must have energy min-

ima which are very close to those of the initial structure, due to the

atoms finding it difficult to overcome a large number of high energy

barriers. When the structure is compressed gradually it has a longer

time to explore a phase space which has lower energy barriers and
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Distance Number of atoms
in Å2 at that distance

Immediate compression Gradual compression Immediate decompression

0.0-0.2 16 0 176
0.2-0.4 25 6 102
0.4-0.6 34 16 67
0.6-0.8 29 35 40
0.8-1.0 26 44 24
1.0-1.2 30 64 18
1.2-1.4 20 38 18
1.4-1.6 32 49 13
1.6-1.8 28 32 11
1.8-2.0 16 33 10
2.0-2.2 12 21 6
2.2-2.4 18 22 3
2.4-2.6 20 21 2
2.6-2.8 13 17 2
2.8-3.0 13 27 2
>3.0 168 75 6
Total 500 500 500

Table 5.1: Displacement of each silicon atom for decompression
from/compression to 8 GPa at 500 K

Number Temperature Pressure Energy (eV) per Energy (eV) per
of Si (K) (GPa) Si atom for Si atom for
atoms gradual compression immediate compression

500 0 4 -57.780 -57.710
512 0 4 -57.777 -57.730
500 500 8 -57.512 -57.462
512 500 8 -57.469 -57.445

Table 5.2: A comparison of final energies in eV for gradual and immediate
compression
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can therefore find a more energetically favourable configuration. Ta-

ble 5.2 shows that it is indeed the case that structures pressurised

by gradual compression have a lower energy than those that have

been compressed immediately.

This finding might explain the data in Figure 5.9, with the lower

coordination and larger Si-O-Si angles indicating that a more ener-

getically favourable structure has been found on gradual application

of pressure.

5.3.4 The release of both high pressures and temperatures

A number of simulations were carried out where the pressure was

removed and the temperature lowered to ambient levels simultane-

ously. No literature on these type of experiments or simulations was

found. Figure 5.10 shows an example of the resulting volumes of

such a simulation. The pressure of each first run was 8 GPa, at the

temperature specified on the x-axis. The pressure was then released

to 0 GPa with the temperature also being lowered to 300 K.

For all simulations there is a large difference between the volumes

of structures at 0 GPa and the decompressed structures. This

behaviour possibly illustrates the point discussed in section 5.3.1:
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Figure 5.10: Volume for simulations where both temperature and pressure are
lowered

When the temperature is low the particles cannot move with a suf-

ficiently high force to overcome the energy barriers and therefore

remain in meta-stable energy minima. These results are probably

due to the parameters of the potential and the fast cooling rate and

may not be representative of experimental results.

5.4 Summary and conclusions

5.4.1 Summary

This chapter describes simulations of the compression and decom-

pression of amorphous silica at a range of temperatures and pres-
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sures.

At low temperatures, upon compression at any pressure the sim-

ulations result in structures where there are significant changes in

volume, coordination, bond lengths, O-Si-O angles and Si-O-Si an-

gles. These results do not agree with experimental results which

find that tetrahedra only begin to become deformed above 20 GPa

(section 5.2.1.1). The results are similar to a number of computa-

tional studies discussed in section 5.2.1.2 in finding changes in all

values at low pressures, but differ from two of the studies which are

more consistent with experiment.

Upon decompression at low temperatures, results of simulations

presented here find that the original volume, coordination, bond

lengths, O-Si-O angles and Si-O-Si angles are not recovered at any

pressure. These findings also disagree with experimental data which

find that deformations of tetrahedra due to any pressure are always

recovered upon decompression and that the original volume and

Si-O-Si angles are recovered at pressures up to 9 GPa.

Simulations of compression at high temperatures resulted in signif-

icant changes in volume, coordination, bond lengths, O-Si-O angles

and Si-O-Si angles at all pressures. No experimental data were found
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investigating deformation of tetrahedra, but experiments show that

volume and Si-O-Si angles are reduced upon compression.

On decompression at high temperatures simulations result in com-

plete recovery of volume, coordination, bond lengths, O-Si-O angles

and Si-O-Si angles at all pressures. In contrast to the findings de-

scribed here, experimental data show that the higher the tempera-

ture, the lower the pressure at which changes in the above values are

not recovered upon decompression. The single computational study

at high temperatures that was found agrees with the experimental

results, although the tetrahedra were constrained by the potential

used.

It was found that the volume of a system compressed gradually dif-

fered significantly from the volume of a system undergoing immedi-

ate compression, which was due to differences in coordination, bond

lengths, O-Si-O angles and Si-O-Si angles. This difference in volume

was not observed between gradual and immediate decompression.

5.4.2 Conclusions

There are significant quantitative and qualitative differences be-

tween results of simulations discussed in this thesis and the experi-
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mental literature.

The deformation of tetrahedra upon compression at pressures much

lower than in experiment might be due to the nature and parame-

terisation of the potential. The O-Si-O angles of amorphous silica

from simulations using the BKS potential may not be sufficiently

rigid under pressure.

For all pressures, at low temperatures, none of the structural pa-

rameters (volume, coordination, bond lengths, O-Si-O angles and

Si-O-Si angles) are recovered after decompression, whereas at high

temperatures they are recovered completely. Neither of these find-

ings agree with experimental data which find that different char-

acteristics are recoverable at different pressures. The most likely

explanation for this behaviour is that the potential is constructed

such that at low temperatures the atoms get caught in meta-stable

energy minima, with possibly higher energy barriers than in exper-

iment, and do not have sufficient energy to explore the phase space

and find a more energetically favourable structure. In contrast, at

high temperatures the atoms are possibly able to explore a larger

area of phase space and can therefore find a more optimal structure

than in experiment.



Chapter 6

Summary and future work

6.1 Summary

The techniques of free energy minimisation, molecular dynamics

(MD) and Density Functional Theory were used to simulate a num-

ber of different tridymite starting structures at a range of temper-

atures. It was found that the interatomic potential and simulation

technique used were the main factors affecting the resulting struc-

ture. The temperature of the simulation and the initial structure

did not generally affect the final atomic configuration or volume

and the initial structure did not affect the final energy. Of the

two interatomic potentials used, the Sanders potential (section 2.3.3

206
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and [25]) reproduced experimental volumes more accurately than

the BKS potential (sections 2.3.2 and [24]). Additionally, the final

atomic configurations from MD simulations using the Sanders po-

tential were similar to a tridymite structure that has been found in

nature, in contrast to the those from the BKS potential, which were

not similar to any of the known structures. These results may be

due to a number of possible reasons: Firstly, the transitions between

the various tridymite structures require only changes in Si-O-Si an-

gles (displacive transitions) with no breaking or forming of bonds

(reconstructive transitions). The energy landscape of tridymite is

therefore very flat and the techniques and potentials used may not

be sensitive enough to deal with this. Another possible reason is

that the potentials have been parameterised to distinguish between

structures which have reconstructive transitions and these parame-

ters may not be able to simulate displacive transitions as is the case

with tridymite. Finally, if the structures which have been found

in nature are meta-stable and/or poorly characterised, it might be

difficult for the simulation techniques to find their atomic configu-

rations.

Properties of silica melts and glasses that are not available from ex-

periment were investigated using MD simulations with the BKS po-
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tential. This method was also used for calculating properties which

are available from experiment in order to assess the performance

of the potential. The properties investigated were the mean square

displacement, autocorrelation functions, pair distribution functions,

energy, volume, the extent to which silicon and oxygen atoms move

together, Arrhenius plots, coordination number, bond lengths and

angles. It was found that the density and coordination are sig-

nificantly higher than in experiment. This result is not, however,

attributed to the potential, but to the higher quench rate in com-

putational studies than an experiment. Additionally, a range of

different silica crystals (including both high temperature and high

pressure forms) were melted and a number of properties of these

melts were investigated. It was found that at sufficiently high tem-

peratures the melts are all similar and that the starting structure

does not affect the properties of the melt. Investigations were also

carried out to see whether it is possible to use the Sanders potential

to simulate a silica melt. Various properties of such a melt were

calculated, which were found to be significantly different to those

calculated using the BKS potential.

There is little experimental data available on the behaviour of amor-

phous silica at both high temperatures and pressures. MD with the



CHAPTER 6: SUMMARY AND FUTURE WORK 209

BKS potential was used to explore the properties of amorphous sil-

ica at elevated pressures and a range of temperatures. Calculations

at low temperatures show that when compressed to any pressure, all

properties (volume, coordination, bond lengths, O-Si-O angles and

Si-O-Si angles) of the structure are affected, in contrast to experi-

mental results which show that tetrahedra do not become deformed

until pressures above 20 GPa. Upon decompression the original

values of the calculated properties are not recovered, whereas ex-

perimental results find complete recovery of the distortion of the

tetrahedra on decompression from any pressure. Calculations at

high temperatures result in all properties of the initial structure be-

fore compression being recovered, which contrasts with experimental

findings which show that the higher the temperature, the lower the

pressure at which the original properties are not recovered.

Computer simulation techniques are a powerful tool for investigating

a range of structural and dynamic properties. In this work we have

gained insight into the capabilities and limitations of a number of

techniques and potentials and have also learned much about the

properties of liquid, glassy and crystalline silica.
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6.2 Future work

The research on the tridymite polymorph, discussed in chapter 3,

could be extended by carrying out further electronic structure cal-

culations. The chapter describes the results of Density Functional

Theory calculations on silica clusters terminated by hydrogen atoms.

Calculations using periodic boundary conditions are often more ac-

curate than those using clusters and therefore calculations using this

method may be a worthwhile route to pursue.

Chapter 4 describes molecular dynamics simulations to calculate

various static and dynamic properties of pure silica. An interesting

area for further work might be to explore the extent to which these

properties differ when impurities are added.

It was found that the density of vitreous silica produced computa-

tionally differs significantly from that of experiment. This difference

is most probably due to the computational quench rate being several

orders of magnitude faster than in experiment. In order to confirm

whether this is the correct explanation, computational simulations

with much slower quench rates than is standard could be carried

out.
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In chapter 5 it was found that the results of simulations at high

pressures using the BKS potential did not generally agree with ex-

perimental results. This potential was parameterised for modelling

silica structures at ambient pressure. A further area of work could

be to reparameterise the potential so that it more accurately repro-

duces experimental results at high pressures.
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