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Abstract 

The urgent realisation of the low carbon economy requires the 

development of cheap, safe and lightweight hydrogen storage, both for 

commercialisation of hydrogen fuel cell vehicles, and for the use of hydrogen 

as a reservoir of energy from intermittent renewable energy sources. The 

primary motivation of this PhD project was to investigate 

(co)electrospinning, a cheap and scalable fibre production technique, for 

nanostructuring potential solid state hydrogen storage materials. Solid 

state storage of hydrogen is being extensively investigated worldwide. 

However, many of the candidate materials are still not able to meet the 

practical requirements for mobile applications. The principal drawbacks are 

that these materials either have low capacity for hydrogen storage 

(physisorption systems), even at cryogenic temperatures, or high release 

temperatures with slow release rates (chemisorption 

systems). Because kinetic and thermodynamic properties can be improved 

by nanoscale processing, nanoengineering of selected materials has 

emerged as one of the most effective ways of overcoming their associated 

performance barriers. In this thesis I present two successful approaches to 

nanostructuring using electrospinning:   firstly, by encapsulating chemical 

hydrides in polymeric nanofibres, as demonstrated by the development of 

co-axial ammonia borane-encapsulated polystyrene (AB-PS) fibres, and 

secondly, by post-processing of single-phase electrospun PAN 

fibres, resulting in the synthesis of potassium-intercalated graphitic 

nanofibres (K-GNFs). The results show that the micro and nano-structure 
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imparted through electrospinning, can have the effect of reducing 

dehydrogenation temperatures in AB-PS fibres (from 110 to ~85 °C) and 

improving the (de)hydrogenation rates by an order of magnitude in both 

composite fibres (from ~50 to <5 mins in K-GNFs and from ~150 minutes to 

as low as 15 minutes in AB-PS fibres). The details of co-axial 

electrospinning as a novel approach to nanoengineering chemical hydrogen 

storage materials and as a way of possibly overcoming issues regarding 

reversibility, stability and clean hydrogen release from many of these 

materials is discussed. The solution selection method I have developed for 

use in the synthesis of co-axial composite fibres can be applied as an 

efficient solution selection formula for multi-phase electrospinning in 

general. 
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Midway upon the journey of our life 

I found myself within a forest dark, 

For the straightforward pathway had been lost. 

 

Ah me! how hard a thing it is to say 

What was this forest savage, rough, and stern, 

Which in the very thought renews the fear. 

 

So bitter is it, death is little more; 

But of the good to treat, which there I found, 

Speak will I of the other things I saw there. 

 

Excerpted from  

The Divine Comedy 

[Dante Alighieri, 1307] 
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Introduction  

Society awaits a major technological breakthrough before we can 

reduce our dependence on fossil fuels that are rapidly depleting and causing 

serious damage to the planet. Hydrogen has emerged as one of the leading 

contenders in the search for a clean energy alternative for both automotive 

and stationary applications. The current challenge lies in finding a cheap 

and durable material that can store sufficient densities of hydrogen safely 

and practically within the vehicular constraints of weight, volume and 

efficiency. There is not yet such a system that satisfies such stringent 

storage requirements to make fuel cell vehicles competitive with their fossil 

fuel counterparts. Solid state storage of hydrogen is considered as the long 

term solution, while compressed gas or liquid hydrogen storage systems, 

currently tested on prototype fuel cell vehicles introduced into the market, 

are considered only as intermediary solutions. However the solid state 

stores, which can be categorised into chemisorption and physisorption based 

stores have intrinsic problems associated with their mode of storage. 

Physisorptive stores such as high surface area carbons and metal-organic 

frameworks display maximum uptake typically below 100 K, with 

enthalpies of adsorption less than 10 kJ mol-1. Metal and complex hydrides 

have enthalpies of adsorption greater than 50 kJ mol-1, and hydrogen 

desorption times are lengthy even at temperatures higher than 400 K, 

making them impractical for an operational store. 

Nanotechnology is now being employed as a way of improving the 

hydrogenation properties of many of these materials. Though the influence 

of nanostructure on the (de)hydriding properties can vary depending on the 

material, the improvements seen as a result of nanostructuring are 

generally associated with increase in surface area, lowered diffusion 
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distances and/or lowering in the energies required to drive a phase change. 

These effects can respectively lead to increased uptake, faster uptake and 

release rates of hydrogen in many materials and reduced decomposition 

temperatures in the case of chemical hydrides. Thus, a nanostructuring 

technique which enables successful tuning of the thermodynamic and 

kinetic sorption properties of these materials is necessary. 

There are currently not many nanostructuring techniques available 

and the most commonly used methods have particular disadvantages. For 

example, the ball-milling method, typically used for chemical hydrides, is 

rather expensive to scale up and other options such as nano-scaffolding (e.g. 

with etched silica) have disadvantages such as added weight to the storage 

system. Furthermore none of these options address the issue of non-

reversibility of hydrogen storage, or the instability of the materials in air, 

problems which are common to most chemical hydrides. 

The requirement for a scalable and cheap nanostructuring technique, 

which can be used to address many of the issues surrounding most 

hydrogen stores, was what inspired this research to investigate 

electrospinning as way of nanostructuring hydrogen storage materials. 

Electrospinning is a well-developed versatile technique, widely used for the 

manufacture of polymeric fibres with micro-to-nano diameters. In this study 

it is used in its two variant forms to investigate 1) its function as a way of 

nanostructuring chemical hydrides by encapsulating them in permselective 

polymeric nanofibres, and 2) as a way of making alkali metal intercalated 

graphitic nanofibres (GNFs) from electrospun carbonisable polymer fibres. 

In the first study co-electrospinning is used to encapsulate ammonia borane 

(AB) in a polymeric (PS) sheath. AB is considered as one of the most 

promising hydrogen stores due to its high hydrogen density (19.5 wt.%), 2/3 

of which is attainable at temperatures up to 150 °C. However, its slow 

dehydrogenation kinetics and its inability to reversibly store hydrogen 

make it unsuitable as a practical hydrogen store. Co-electrospinning offers 

the potential to overcome these issues through nanostructuring to enhance 

hydrogenation rates at reduced temperatures, and through encapsulation of 



Introduction                    3 

 

 

 

its reaction products in a hydrogen permeable polymeric sheath for 

regeneration upon pressurisation with hydrogen. In the second study 

single-phase electrospinning is used to electrospin PAN nanofibres which 

are later graphitised and intercalated with potassium to yield K-GIC (KC24) 

nanofibres. GICs, which are considered as ideal testbeds for exploring 

hydrogen storage in metal doped carbon nanomaterials, can be more 

controllably nanostructured using electrospinning to tune their hydrogen 

sorption properties. 

This investigation, the first of its kind to employ (co)electrospinning as 

a way of nanostructuring chemical hydrides and carbon based materials, 

has proven to be a highly successful step in the direction of nanoengineering 

materials for deployment in hydrogen storage applications. The process 

which has been developed and the results that have emerged will not only 

constitute the basis of further research in this field but has been important 

for developing the knowhow on co-electrospinning in general. 

This thesis is separated into a progression of literature studies that 

outline the current status of research in all fields related to the work 

discussed here, an elaborate description of the (co)electrospinning process 

and the results of the two separate studies. In Chapter 1, I present the 

background to hydrogen storage, outlining the requirements for and the 

issues surrounding hydrogen storage materials, and describe how 

nanotechnology can provide solutions. In Chapter 2, I introduce and 

describe single phase electrospinning, with a detailed description of how to 

control the process and solution parameters, as described in literature and 

tested throughout this study. In Chapter 3, I describe how the same 

parameters are controlled in the case of co-axial spinning where two co-

flowing solutions are used instead of one, with significant input from the 

tests conducted in this study. In Chapter 4, I describe the main 

characterisation techniques used in this investigation. In Chapter 5, I 

outline the detailed study on co-electrospun ammonia borane encapsulated 

polystyrene (AB-PS) fibres and their hydrogenation properties. In Chapter 

6, I discuss the details of the second (parallel) study on the synthesis of 
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intercalated graphitic nanofibres (GNFs), and their hydrogen storage 

properties as investigated by neutron scattering techniques. Both 

experimental chapters (Chapter 5 and 6) are composed of a literature 

survey of the materials investigated, the experimental details of the studies 

and the results and discussion sections.  



 

 

 

 

 

Chapter  1                               

Hydrogen Storage 

1.1 Introduction 

Hydrogen has attracted much attention as a next-generation energy 

carrier for both mobile and stationary applications [1]. It has a number of 

advantages compared to other chemical energy carriers. Firstly, hydrogen is 

a clean carrier of energy, the only by product in its energy conversion 

process is water. Secondly, hydrogen is plentiful in nature; it can be 

obtained from a diverse array of potential feedstocks, including water, fossil 

fuels and organic matter. If hydrogen is obtained through the electrolysis of 

water, with renewable energy sources used to power the electrolysers, we 

could essentially have a sustainable and clean production system. Lastly, 

hydrogen has a large chemical energy density on weigh basis (120 MJ/kg); 

nearly three times the energy content of gasoline (44 MJ/kg). However, on 

volume basis the energy content of hydrogen is much lower than that of 

gasoline (8 MJ/L for liquid hydrogen compared to 32 MJ/L for gasoline) [2]. 

In fact this is where the challenge arises; the low density of hydrogen 

makes it difficult to store sufficient amounts of it in a compact space on 

board a vehicle. For mobile applications it is required that the storage 

system occupies a small volume, has a low mass and a driving range of at 
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least 480 km (300 miles)  in a single fill. This corresponds to approximately 

5 to 13 kg of hydrogen on board the vehicle, based on projected future fuel 

cell efficiencies. However, besides the amount of hydrogen stored, practical 

operability of the storage system at ambient conditions (e.g. pressure and 

temperature) and its safety are crucial for the success of the storage system 

developed for fuel cell applications. Therefore, in order to identify the type 

of storage system that would be practical and commercially viable, the US 

Department of Energy (DOE) has devised a set of targets for the 

researchers around the world to follow. Their outlined vision and system 

storage targets for fuel cell vehicles are presented in §1.3.  

Hydrogen storage research has come a long way in the last two decades, 

with many potential systems developed and currently being optimised for 

both stationary and mobile applications. Yet, a major breakthrough is still 

awaited before fuel cell operated vehicles can replace their fossil fuel 

counterparts. Currently several options are available for storing hydrogen; 

these separate into three separate modes: i) cryogenic hydrogen storage (at 

21 K), ii) compressed hydrogen storage (up to 800 bar) and iii) solid state 

hydrogen storage. The first two options, which have been used in prototype 

fuel cell vehicles as demonstration technologies, are considered only as 

interim solutions due to their high cost and problems regarding safety. The 

third option, solid state storage, which involves many different systems that 

store hydrogen chemically or physically or as a combination, e.g. metal 

hydrides, complex hydrides and high surface area sorbents, allows for the 

possibility of storing hydrogen at greater densities than the liquid state and 

without the risk of hydrogen leak in the event of an accident. Solid state 

storage, being the most extensively studied storage mode at research level, 

is thus considered as the only long term solution to satisfy market 

requirements. 
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Figure 1.1: Status of hydrogen storage materials [3]. 

In this first chapter I will give a brief overview of the status of hydrogen 

storage systems by looking at existing technologies and those materials 

under strict scrutiny by the scientific community. Figure 1.1 shows the 

status of hydrogen storage materials in terms of their volumetric and 

gravimetric storage capacities compared to the targets set for 2015 and 

those ultimately required [3]. I will discuss the main issues associated with 

these storage systems and the way in which they are being tackled using 

nanotechnology. To elucidate the root cause of the problems associated with 

each material, I will categorise and discuss the materials in terms of their 

storage modes; liquid, gaseous, chemical and physisorbtive storage. Greater 

emphasis is placed on the latter two modes of storage since the materials 

that are of interest to this investigation; ammonia borane and intercalated 

carbon fibres, respectively, fall under these two categories of storage. Since 

knowing the technical requirements forms a key part of the assessment of 

these materials as potential hydrogen stores, I will start off this chapter 

with a section on hydrogen power plants (e.g. fuel cells) and another 

outlining the US Department of Energy storage targets and the safety 

considerations with regards to the use of hydrogen for transportation. 
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1.2 Hydrogen power plants 

Hydrogen is an energy carrier and can be utilised in two different ways 

for power generation. Its chemical energy can be either converted to 

mechanical energy by burning it in an internal combustion engine (ICE) or 

to electrical energy by reacting it with oxygen in a fuel cell. The hydrogen 

ICE engine is simply a modified version of the conventional gasoline-

powered ICE. The basic principle is the same, the burning of gas and air in 

the combustion chamber creates gasses of high temperature and pressure 

that expand, doing useful work, to move the piston inside a cylinder. 

However, as opposed to production of CO2, CO and NO2 as in the case of 

gasoline-powered ICE, the combustion of hydrogen with oxygen results only 

in production of water, though combustion of hydrogen with air can also 

produce small quantities of nitrogen oxides (NOx).  

 

Hydrogen fuel cells are considered as a better alternative to internal 

combustion engines and research within the hydrogen economy framework 

is mostly directed on developing fuel cell technology. This is because fuel 

cells are cleaner and can function with a greater efficiency: 50–60 %  

compared to ∼25 %  in the case of ICEs, in which the efficiency is limited by 

the Carnot cycle [4]. Of the fuel cell options available, the proton exchange 

membrane (PEM) fuel cell has emerged as the leading contender due to its 

high chemical-to-electrical energy conversion efficiency and high power 

density [5]. More importantly it has a more practical operational 

temperature range (60-120ºC),  as opposed to the high temperatures (500-

1000ºC) needed for molten carbonate and solid oxide fuel cells [5]. 
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Figure 1.2: Schematic illustration of a hydrogen/oxygen fuel cell and its 

reactions based on the proton exchange membrane (PEM) fuel cell. *Protons 

crossing the PEM electrolyte. 

A schematic diagram of a PEM fuel cell is shown in Figure 1.2. Like all 

battery systems that convert chemical energy to electrical energy, fuel cells 

also contain an electrolyte that separates the anode and cathode catalysts 

at each end. The hydrogen diffuses through the anode end where it 

dissociates into protons and electrons. The protons diffuse through the 

electrolyte (polymer membrane) to reach the cathode, while the electrons 

travel through the external circuit creating an electrical current. The 

oxygen diffusing through the cathode catalyst gets reduced upon arrival of 

the protons and electrons at the cathode to form water. In a PEM fuel cell 
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the electrolyte is formed of a thin ion conducting polymeric membrane. To 

reduce any losses in proton flow the thickness of the polymeric membrane is 

minimised to diameters around 50 nm. While splitting hydrogen is 

relatively easy with a platinum catalyst at the anode, the splitting of the 

oxygen is more difficult, leading to significant electrical losses. So far 

platinum is found to be the best catalyst for the cathode. While the PEM 

fuel cell efficiencies are approximately 2 to 3 times greater than 

conventional gasoline based ICEs and up to 2 times greater than diesel-

electric hybrids [5] the cost of the fuel cell is still significantly higher than 

these systems. Thus, every component of the PEM fuel cell requires specific 

attention to reduce costs and energy losses during operation for these power 

plants to become commercially viable [6]. 

 

1.3 System performance targets & safety  

There are many requirements to achieve technical success and 

commercial viability of hydrogen storage technologies for transportation 

applications. The US Department of Energy (DoE) has devised a set of 

targets to quantify and specify these requirements on the basis of making a 

hydrogen power plant (e.g. fuel cell or internal combustion engine) operated 

vehicle competitive with those running on fossil fuels. The 300 miles (500 

km) driving range target is supplemented by requirements on volume, 

weight, cost, refuelling time, durability, cycle life, and transient 

performance of the storage system, as shown in Table 1. These targets, 

which have been revised in 2009, provide a useful benchmark for comparing 

different storage methods. Table 1 provides a comparison of the original 

targets for 2010 and 2015 and the new 2010, 2015, and “Ultimate” targets. 

The ultimate targets are set with the aim of facilitating the introduction of 

hydrogen-fuelled propulsion systems across most vehicle classes. The 

targets were updated to account for differences in vehicle architecture 

between gasoline internal combustion engines and fuel cell vehicles; the 

current targets are based upon fuel economy of current fuel cell vehicles. It 
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is important to note that these targets are for a complete system, including 

tank, material, valves, regulators, piping, mounting brackets, insulation, 

added cooling capacity, and/or other balance-of-plant components [7, 8]. 

Therefore, the gravimetric and volumetric storage capacity of the actual 

storage material will need to be significantly higher than the ultimately 

required values of 7.5 wt. % and 70 g/L. It is also required that all these 

targets are still met at the end of the required service life (approximately 

1500 cycles or 5000 operation hours, equivalent of 150,000 miles) of the 

storage system. One important parameter not listed in table below is the 

operation temperature of the storage system, this is determined on the 

basis of what is practical (i.e. depending on ambient conditions) and the 

operation temperature range of the fuel cell; -40 to 85 °C is the range 

required on this basis [7]. 

Table 1. Performance targets as revised of 2009 [7]. 

Target 
2010 2010 2015 2015 Ultimate 

old new old new 
 

System Gravimetric Density [% wt.]  

(kWh/kg) 

6 

(2.0) 

4.5 

(1.5) 

9 

(3.0) 

5.5 

(1.8) 

7.5 

(2.5) 

System Volumetric Density [g/L] 

(kWhr/L) 

45 

(1.5) 

28 

(0.9) 

81 

(2.7) 

40 

(1.3) 

70 

(2.3) 

System fill time for 5-kg fill [min] 

(kg H2/min) 

3 

(1.67) 

4.2 

(1.2) 

2.5 

(2.0) 

3.3 

(1.5) 

2.5 

(2.0) 

System cost ($/kg H2) 

($/kWhrnet) 

133 

(4) 

133* 

(4)* 

67 

(2) 

67* 

(2)* 
Tbd 

*Cost targets are being considered as other H2 fuel cell targets are assessed. 

 
Safety considerations come before any of the above system 

requirements. It is vital that the storage system for transport applications 

must be crash-safe and not release hydrogen gas rapidly if damaged.  

Besides the system storage targets the safety implications have to be 

addressed at the research level; no material posing a serious risk will be 

considered as an option even if it can meet all the above performance 

targets. Although there are many important management and safety issues 
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associated with the widespread use of hydrogen, if stored and used safely, it 

poses no greater danger than conventional fuels, methane and propane. Any 

release of hydrogen into atmosphere, on the other hand, incurs a large risk 

of explosion or rapid combustion. This risk is even higher if the storage 

container is maintained at a high pressure. The temperature for the 

spontaneous ignition of hydrogen in air is 585 °C compared to 540 °C and 

487 °C for methane and propane respectively [9]. Furthermore, the 

minimum ignition concentration of hydrogen in air, 4 %, is four times 

higher than that of petrol vapour. Thus, hydrogen carries no greater risk 

than both these conventional fossil fuels. Furthermore, hydrogen‟s large 

buoyancy and diffusion properties mean that the released gas will rapidly 

rise and disperse rather than accumulate on the ground like petrol and 

propane, which present a hazard for major explosions. Nevertheless, the 

ignition of large amounts of hydrogen in the air can be very dangerous since 

the flame is almost invisible and the flame front moves very fast (~ 50 m/s) 

releasing more energy per unit weight than other fuel gasses. Thus, a 

hydrogen explosion can do substantial damage. For this reason, the security 

of the storage systems that are developed is of great importance. 

 

1.4 Hydrogen storage systems 

1.4.1 Hydrogen storage as compressed gas  

At ambient conditions (1 bar and 25 °C) 1kg of hydrogen gas occupies 

a volume of approximately 11m3 [1]. Thus, to contain it in smaller volumes 

it must be compressed to several hundred atmospheres and stored in 

specially designed pressure vessels. High pressure cylinders containing 

compressed hydrogen at 350 bar (5,000 psi) or 700 bar (10,000 psi) are 

currently the most commonly used systems in prototype fuel cell vehicles 

[10]. These cylinders are typically made of a high molecular weight polymer 
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or aluminium liner wrapped with carbon/epoxy composites to ensure high 

strength while maintaining light weight. While the polymer or Al liner 

serves as a hydrogen gas permeation barrier the composite wrap is used to 

strengthen the cylinder for high hydrogen pressures (5,000 - 10,000 psi). An 

example of this type of cylinder, as developed by Quantum Technologies, is 

illustrated Figure 1.3. For example, in newer cylinders the H2 weight 

capacity exceeds the old DOE target of 6 wt.% (for 2010) at maximum 

pressures of 350 bar, but the tank volume tends to be a factor of two or 

more higher than that acceptable for on-board applications. Increasing the 

hydrogen pressures from 350 to 700 bar enables approximately 30% 

reduction in the tank volume, but at the higher safety risk and increased 

compression energy requirements [11]. Compressed hydrogen tanks [5000 

psi (~35 MPa) and 10,000 psi (~70 MPa)] have already been certified 

worldwide. Although high pressure composite cylinders are the most 

commonly used storage systems for fuel cell operation, their safe 

installation and operation and the cyclic stability remain as important 

drawbacks. 

 

Figure 1.3:Design for high-pressure hydrogen tank by Quantum Technologies [12] 
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1.4.2 Hydrogen storage in liquid form  

Another common way of storing hydrogen is in its liquid state in 

cryogenic tanks by cooling it to 21.2 K at ambient pressure [1].  The 

volumetric capacity of liquid hydrogen is 0.070 kg/L (compared to 0.039 

kg/L at 700 bar) [2]. Thus, in principle, cryogenic tanks can store more 

hydrogen than compressed gas tanks. For example, the General Motors 

HydroGen3 Opel Zafira minivan is reported to have a driving range of 400 

km (249 miles) with 4.6 kg liquid hydrogen. This compares to 270 km (168 

mile) for 3.1 kg of H2 at 700 bar in the same vehicle [2]. However, a key 

issue with liquid hydrogen storage is hydrogen boil-off, the rate of which 

depends on a number of factors such as the amount of hydrogen stored, 

effectiveness of the thermal insulation, ambient conditions and driving 

frequency. More hydrogen is lost if the system has been dormant (i.e. not in 

motion) and the pressure of the tank reaches the H2 boil-off pressure. 

Though boil-off has been significantly reduced over the years through 

improved insulation systems (materials) to rates around 0.4% or 0.2% per 

day for tanks with a storage volume of 50m3 or 100m3 respectively [1], it 

remains an issue with safety implications in closed areas, such as car parks. 

Furthermore a trade-off between the amount of thermal insulation used 

and the system-level gravimetric and volumetric capacity has to be 

considered among all of these different factors. However, the cost of 

liquefying hydrogen remains an important drawback. Even with minimal or 

no boil-off, liquefying hydrogen costs one third of its energy content. Thus, 

liquid hydrogen storage is not an economically viable option unless low 

energy and cost effective liquefaction approaches are developed. 

 

1.4.3 Cryo-compressed systems 

The low volumetric and gravimetric storage capacities of above 

systems (compressed gas and cryogenic cylinders) are being tackled through 
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the use of both storage modes simultaneously in cryo-compressed tanks. 

This approach uses the fact that at a fixed pressure and volume, the 

volumetric capacity of the tank increases as the tank temperature 

decreases. Cryo-compressed hydrogen storage tanks are cryogenic vessels 

with high gas pressure (up to 350 bar) capability for on-board hydrogen 

storage applications. These systems, which are the main choice for BMW, 

can contain between 6.2 kg and 10.7 kg of hydrogen if the tank is refuelled 

with subcritical liquid hydrogen at temperatures between 180 K and 300 K 

[13]. In this system, the hydrogen is not maintained in a liquid state but, 

depending on the temperature, as a two-phase mixture of liquid and 

gaseous hydrogen. 

The gravimetric capacity is reported to be 5.4 wt.%, while the 

volumetric system capacity on average is around 32 g/L, a value higher 

than other storage options [13]. This system has several advantages over 

liquid hydrogen systems: no H2 loss through boil off, the option to fill 

gaseous H2 at ambient temperatures, and a simpler method for monitoring 

hydrogen in the tank [13]. Additionally, the cryo-compressed system has 

approximately twice the volumetric efficiency of 350 bar systems (with 20% 

lower cost) and a 40% higher volumetric efficiency than 700 bar systems 

(with 50% lower cost). However, these advantages come at the cost of 

increased off-board energy consumption due to liquefaction energy 

requirements. 

 

1.4.4 Chemical hydrogen storage (chemisorption) 

1.4.4.1 Introduction 

Most materials currently being investigated for hydrogen storage 

applications store hydrogen chemically; hydrogen is either chemically 

bound to the materials via chemisorption (i.e. through absorption and 

dissociation of H2) or chemically bound to the material through direct 



Hydrogen Storage                  16 

 

 

reactions between different hydrogen containing compounds. Chemical 

hydrides separate out in to different groups depending on the composition of 

the compound (e.g. whether binary or ternary) or nature of the chemical 

bonds (e.g. whether ionic, covalent or metallic or a combination of these). 

The two most common hydride families are Metal Hydrides and Complex 

Hydrides; the distinctions between these hydrides are described below. It 

should be noted that the demarcation between the different types is not 

very sharp [14] due to the co-existence of different types of bonds in some of 

the materials. 

These hydride materials have attracted much attention due to their 

high gravimetric and volumetric storage capacities, some of which already 

exceed the US DOE targets, as detailed in the sections below. However, the 

main problem with these materials are the high desorption temperatures 

(ranging from 150-700 °C), resulting from the high binding energies of 

hydrogen, which is typically well above 50 kJ mol-1, and slow hydriding/de-

hydriding kinetics due to the nature of the absorption and desorption 

process (described in §1.4.4.2). Improving the fuelling rates and conditions 

are absolutely critical for the viability of these materials as on board 

hydrogen storage systems. Adding nano-texture to these hydrides leads to 

dramatic changes in their physical and chemical properties, resulting in 

reduced decomposition temperatures and hyriding/de-hydriding kinetics. 

Reducing the size of these materials (i.e. nanostructuring) is currently the 

starting point in most hydrogen storage investigations. For this reason 

nanostructuring has been the central point of this study. A discussion on 

how nanostructuring can improve hydrogenation properties of hydrides is 

provided in §1.5. Before that the properties of metal and complex hydrides 

are discussed.  
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1.4.4.2 Metal hydrides and their hydriding mechanism 

A Metal Hydride is single phase compound composed of hydrogen atoms 

dispersed in a metal atom matrix. Binary hydrides with ionic bonds (e.g. 

MgH2, NaH, CaH2) are formed by alkali and alkaline earth metals, those 

with covalent bonds are formed by non-metal elements like S, Si, C or B, 

and those with metallic bonds (e.g. LaNi5H6, PdH0.6, FeTiH2) are composed 

of transition metal or a rare earth metal hydrides. The gravimetric and 

volumetric storage capacities, as well as the decomposition temperatures 

(Tdec) and reversibility of selected binary compounds are compared with that 

of gaseous and liquid hydrogen in Table 2 [6]. Of these materials, 

Magnesium hydride (MgH2) has attracted most attention due to its low 

atomic weight, high hydrogen storage capacity (7.6 wt.%), and low cost [15]. 

However, like many other hydrides it suffers from slow kinetics and a high 

decomposition temperature (∼330 °C). A more detailed overview about the 

status of Magnesium based hydrides and other metal hydrides can be found 

in references [6, 15, 16]. 

Table 2. Storage capacity, dehydrogenation temperature (Tdec) and the kinetic 

reversibility assessment of simple binary hydrides compared to that of  liquid 

and gaseous H2 [6].  

Compound 

Gravimetric 

capacity 

wt.% H2 

Volumetric 

density NH             

( H/ml x10-22) 

Tdec (°C) 
Kinetic 

reversibility 

H2, liquid 100 4.2 − − 

H2, gas 100 0.49 − − 

LiH 12.6 5.3 720 Poor 

NaH 4.2 2.3 425 Good 

MgH2 7.6 6.7 330 Very  poor 

CaH2 4.8 5.1 600 Good 

AlH3 10.0 8.84 150 Irreversible 

TiH2 4.0 9.1 380 −* 

*No information available. 
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The absorption of hydrogen to form a metal hydride consists of several 

steps. This interaction between the hydrogen and the metal at different 

points of the adsorption process can be described by a simplified one-

dimensional potential energy curve (1-D Lennard-Jones potential) as shown 

in Figure 1.4. Molecular hydrogen is first physisorbed on the surface of the 

metal (EPhys~10 kJmol-1 H2). When the pressure and temperature becomes 

sufficiently high, the adsorbed hydrogen then dissociates at the surface and 

becomes chemisorbed (EChem ~50 kJmol-1 H2), as depicted in  Figure 1.5; this 

happens when the conditions are right for the hydrogen to overcome a 

dissociation energy barrier for activation, which depends on the surface 

elements involved. As shown in Table 2 the reversibility of the process is an 

issue for some of the materials, which makes their use impractical for 

continuous use in any application. 

 

 

 

Figure 1.4 : Lennard-Jones potential energy curve for hydrogen binding to a 

metal at stages of (i) physisorption for both activated and non-activated 

processes; (ii) dissociation and surface chemisorption; (iii) surface penetration 

and chemisorption on subsurface sites; and (iv) diffusion  [17]. 
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The hydrogen atoms chemisorbed on the surface then move in to 

subsurface sites and rapidly diffuse through the material, forming a solid 

H-metal solution known as the α-phase ( when H/M<0.1) (Figure 1.5 (a))[6]. 

With increasing hydrogen concentration (H/M>0.1) and lattice expansion 

the interaction between H atoms becomes important and the hydride phase 

(β-phase) nucleates and grows (Figure 1.5 (b)) [6, 18]. The hydrogen to 

metal ratio in a fully formed hydride is typically H/M=1 [6]. This phase 

transition causes change in crystalline structure and volume expansion (of 

~10-20 %  in some materials) [18]. The energy barrier associated with this 

volume expansion and interface energy between the phases reduces 

hydriding kinetics, which can be improved through nanostructuring, as 

described in §1.5 below. Furthermore, this absorption process is highly 

exothermic; requiring about 14.6 MJ of heat energy per kilogram of H2 to be 

removed by a coolant in a metal hydride storage system [19]. 

 

 

 

Figure 1.5:  (a) Hydrogen adsorption, dissociation and absorption; a few 

hydrogen atoms have dissociated and diffused into the low density α-phase and 

(b) high hydrogen density β-phase formed through lattice deformation and 

expansion. 
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1.4.4.3 Complex hydrides 

Complex hydrides, are formed of highly stable metal hydrogen complexes 

with [AlH4]−, [BH4]−, [NH]2− and [NH2]− complex ions that form covalent or 

ionic bonds with a cation (e.g. Li, Na, K, Mg, or Ca) in which hydrogen 

usually resides at the corners of a tetrahedron with the metal (e.g. B or Al) 

at the centre. Complex hydrides, thus, divide into three main groups; (i) the 

alanates formed from the Aliminium based complex anion [AlH4]− (e.g. 

NaAlH4, Mg(AlH4)2), (ii) the borohydrides formed from the boron based 

complex anion [BH4]− (e.g. Li(BH4), Mg(BH4)2) and (iii) imides and amides 

formed from the nitrogen based complex anions [NH]2− and [NH2]− 

respectively; hydrogen is hydridic (Hδ−) in the former two and protonic (Hδ+) 

in the latter two systems [6]. 

Table 3 shows the storage capacities and hydrogen desorption 

temperatures of some selected complex hydrides. As shown in the table the 

ratio of hydrogen to metal atoms (H/M) in many cases is two; many of the 

materials exceed the DoE gravimetric storage capacity, with LiBH4 having 

the largest gravimetric density at 18.4 wt.%. These materials are 

considered as more promising options for hydrogen storage than metal 

hydrides due to their higher storage capacities, lower desorption 

temperatures and greater stability. Yet, the kinetics and the 

thermodynamics of the reactions are still big issues. Furthermore, some of 

the materials decompose above their melting points; most non-reversibly 

decompose into several phases upon hydrogenation. As an example, 

borohydrides decompose according to the equation  [1]:   

        
        

 

 
            

  

 
   (1.1) 
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Table 3. Gravimetric storage capacities and dehydrogenation temperatures of 

some complex hydrides, reproduced from ref [6, 15, 16]. 

Complex compound or reaction 

Storage 

capacity 

(wt.%) 

Tdes (°C) 

 

Dissociation 

Enthalpy 

(kJmol-1 H2) 

LiBH4 13.5 380 -177.0 

NaBH4 10.8 400 -216.7 

KBH4 7.4 500 ─ 

Mg(BH4)2 13.7 260-280 -39 to-57 

Ca(BH4)2 9.6 350 32 

Al(BH4)3 16.8 20 ─ 

LiAlH4 (1st,2nd reactions) 7.9 160,180 -10,25 

NaAlH4 (1st,2nd reactions) 5.6 210, >250 37,47 

KAlH4 (1st,2nd reactions) 5.7 300,340 55,70 

Mg(AlH4)2 9.3 140-200 41 

Ca(AlH4)2 (1st,2nd reactions) 5.9 127,250 -7,28 

Li3N + H2 →Li2NH + LiH + H2 5.4 >320 148 

Li2NH + LiN + H2 ↔LiNH2 + LiH +H2 6.5 280 45 

Mg(NH2)2 + 2MgH2 →Mg3N2 + 2H2 7.4 200 ~3.5 

 

Complex hydrides are formed through various chemical processes, 

involving reactions between compounds (elements) containing the 

constituent elements. Even though the dehydriding mechanism, which 

typically involves a series of reactions, is different to that in metal hydrides 

(described above), nanostructuring these materials also results in enhanced 

kinetics and lowered desorption temperatures [16]. For example, in the case 

of NaAlH4, which releases hydrogen in several steps (3.7 wt% H2 in the 1st 

and 1.9 wt% H2 in 2nd step) [15], ball milling of the complex for 15 minutes 

in one study, is reported to have lowered the decomposition temperatures 

from 210 °C to 160 °C and from 260 °C to 220 °C, respectively, for the first 

and second steps [16]. The reaction kinetics were also found to be faster in 

both reaction steps [16]. Studies also show reduction in the enthalpy of 

desorption in nano-size materials.  In the case of NaAlH4, Balde et al. 

reports that the desorption activation energy to be reduced from 116 kJ 

mol−1 for 1−10 μm particles to 58 kJ mol−1 for 2–10nm; a value reported to 

be lower than Ti catalysed NaAlH4 (Ti is generally used for catalysing the 

decomposition process of NaAlH4) [20]. Nano-NaAlH4 is also reported to 
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lower re-hydrogenation pressure, with hydrogen absorption at pressures 

starting from only 20 bar, as compared to 45 bar in Ti catalysed NaAlH4 

[20]. The greatest challenge with many of these materials, however, 

remains to be the non-reversibility of the decomposition process of 

hydrogen. Some of them, like some metal hydrides, are also reactive in air. 

Thus, any nanostructuring process developed to enhance dehydrogenation 

properties will also need to address these issues before they can be 

considered as viable solutions for hydrogen storage. 

1.4.4.4 Other chemical hydrides 

Other chemical hydrides, which do not specifically fall in to any of the 

above categories, are being investigated as potential hydrogen storage 

materials. These include multiple component complex hydride systems 

formed of binary mixtures of hydrides such as borohydrides or 

aluminohydrides, which show improved thermodynamics and thus reduced 

decomposition temperatures. For example the Li–Mg–N–H system with 

varying ratios of Mg(NH2)2:LiH (or LiNH2:MgH2) displays a relatively low 

desorption temperature at 150 °C while the hydrogen storage capacity is 

maintained at ∼ 5 wt% (as for the storage capacity of the individual 

compounds) [6]. Other materials of interest are Amino boranes (N-B-H 

compounds) which have ammonia addition. Of these ammonia borane 

(NH3BH3) has attracted the most attention due low molecular weight and 

high hydrogen content of 19.6 wt.%; it is in fact considered as  one of the 

most promising chemical hydrogen storage candidates, though non-

reversibility of the decomposition process remains a big challenge. Since 

ammonia borane is the chemical hydrogen storage material studied in this 

investigation an extended literature review of this material is provided in 

§5.2.1, where I discuss the study on nanostructuring ammonia borane 

through co-electrospinning by encapsulating it in a polystyrene sheath.  
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1.4.5 Hydrogen storage based on physisorption 

Physical adsorption (physisorption) is a process where gas molecules 

(adsorbate) bind weakly onto the adsorbing material (substrate) through 

van der Waals forces.  While charge fluctuations are present the electronic 

structure of the atoms or molecules are barely perturbed upon adsorption, 

i.e. chemical bonds are not formed. The interaction energy between the 

substrate (S) and the hydrogen molecule (H2) is given by: 

 
     

 
     

  
 

(1.2) 

where α is the polarizibility and R is the interaction distance [21]. Since 

   
is fixed, the only way to increase the interaction energy is to use 

substrates that contain highly polarisable species, such as those with outer 

π-electrons. The potential energy of the adsorbed molecule resulting from 

the attractive and repulsive forces tends to show a minimum at around one 

molecular radius, with the minimum interaction energy being in the order 

of 0.01–0.1 eV (1–10 kJ mol−1). At temperatures above the boiling point of 

the absorbent physisorption usually results in just a single molecular layer 

of adsorbate being formed [21]. The remaining gas interacts with this solid 

or liquid monolayer and, therefore, the binding energy of a second layer is 

similar to the latent heat of sublimation or vaporisation. For this reason, 

besides the strength of the interaction, the equilibrium adsorption amount 

n(T,p) of gas is proportional to the  surface area available (i.e. the quantity 

of hydrogen that can be accommodated in a monolayer) [21]. 

The enthalpy of adsorption, or the energy needed to keep the 

atoms/molecules bound to the system at a given temperature can be 

calculated thermodynamically. Since the adsorbed layer and the bulk gas 

are in equilibrium, the Gibbs free energies are equal: Ggas = Gads. 

Substituting G = H-TS yields: 
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                        (1.3) 

As adsorption results in a reduction in the molecular degrees of freedom, 

the entropy of the gas is taken to be much greater than that of the 

adsorbate (Sgas>>Sads). For most adsorbents this change in entropy is 

estimated to be approximately -8R [22]. From this the required enthalpy 

change upon adsorption (enthalpy of adsorption) for room temperature is 

estimated to be: 

                                (1.4) 

However, since the interaction strength is much weaker, significant 

adsorption is only obtained at temperatures less than 100 K; 77 K (liquid N2 

temperature) is typically used in studies of adsorption, though lower 

temperatures result in greater adsorption. 

For the purposes of hydrogen storage, physisorption based systems 

have a number of advantages over other systems that involve a 

chemisorption or chemical reactions (those systems discussed in §1.4.4). 

Since there is no bulk solid diffusion and dissociation, as in the case of 

chemisorption storage systems, H2 physisorption is very fast and reversible, 

allowing both refilling time and cycle-life targets to be met. Furthermore, 

since the adsorbed hydrogen does not react chemically, no fuel cell 

poisoning impurities are released during adsorption or desorption process. 

Also, since the binding energies are low, heat management issues during 

hydrogen charging and discharging is not an issue. It is these 

characteristics that make physical adsorption an attractive storage method. 

However, due to intrinsically low binding energies, the adsorbed hydrogen 

density is too low at room temperature and pressure.  
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Physisorption-based hydrogen storage systems can be separated out as 

carbon based materials; e.g. carbon nanotubes (CNTs) [23, 24], activated 

carbons (ACs) [25, 26], carbon and graphitic nanofibres (CNFs) [27-30], 

carbon aerogels [31], and high surface area materials; e.g. metal organic 

frameworks (MOFs) [32, 33] and zeolites [34, 35]. None of these materials 

satisfy the storage capacity targets and in fact have very low storage 

densities at room temperature. Even for modest densities a cooling system 

will be needed to lower the material temperature to that of liquid nitrogen 

(77K). While manufacturers will be reluctant to take up a system that 

requires such low temperatures, these systems will have economical 

advantage over liquid hydrogen storage. Studies have shown that the 

density of the adsorbed hydrogen at 77K approaches that of liquid hydrogen 

[36], with the refrigeration costs at this temperature being approximately 

25% of the liquefaction temperature (20 K), with far less boil-off [37]. 

Nevertheless, increasing the operating temperature and uptake capacities 

of these materials requires going beyond purely physisorbtive storage. In 

this respect, hydrogen storage studies on these materials are presently 

focused on increasing surface areas, e.g. through nanostructuring, and their 

binding energies (i.e. enthalpy of adsorption) by doping them with metallic 

species, as discussed in §1.5 below. 

1.4.5.1 Carbon adsorbents 

Carbon adsorbents have gained much attention as physisorption 

hydrogen storage systems due to their ease of manufacture, light weight, 

and low cost. Many forms of carbon have been investigated (e.g. CNTs, 

CNFs, Fullerenes, AC and graphite) with large dispersions obtained for 

hydrogen capacity values, even for the same kind of carbon material 

between different experiments. Much hype was created around carbon 

stores in the late 90s when Dillon et al. [23] reported storage densities 

around 5 and 10 wt.% for nanotubes and Chambers et al. [38] reported 67 

wt.% for graphite nanofibres. Although, none of these results were later 

reproducible, these publications have stimulated a lot of R&D activity in the 
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field of hydrogen storage in carbon nanomaterials. Both experimental and 

theoretical research has been undertaken to determine the hydrogen 

storage potential of many of these systems [21, 39], though theoretical 

research has been limited due to the difficulty of modelling the dispersion 

interactions using first principle ab initio calculations. In the more initial 

studies, as in the case of above mentioned work, experimental errors such 

as little amount of sample and/or the use of both non-purified samples and 

gas has led to a high dispersion and low reproducibility of storage values in 

some carbon systems [40].  Today, these issues are less prevalent and a 

greater understanding exists on the real potential of these carbon stores. 

Recent studies [21, 40, 41] have shown that in carbon materials 

where the specific surface area (SSA) is the main factor determining the 

quantity of hydrogen adsorbed (besides other factors such as polarisibility of 

the H2 molecule), the pore volume and size distribution, as well as pore 

shape, have a large effect on the total hydrogen storage potential of the 

material. Beneyto et al. [40] have found that at 298 K, the hydrogen 

adsorption capacity is dependent on both the micropore volume and the 

micropore size distribution. At 77 K, they find that hydrogen adsorption is 

dependent on the surface area and the total micropore volume of the 

activated carbon. Through a set of systematic experimental investigations 

into a large number of carbide derived carbons (CDC) Gogotsi et al. [41] 

report finding that at 77 K, pores of 0.6 –0.7 nm in diameter provide the 

largest H2 uptake per unit SSA at ambient and elevated pressures. It is 

found that pores larger than ~1.5 nm contribute little to hydrogen storage. 

The authors even report that the effect of pore size is stronger than the 

effect of surface chemistry on the hydrogen uptake.  

The factors above are determined by the dynamic volume of the H2 

molecule and the interaction potential the hydrogen molecules experience. 

It is now accepted that high SSA carbons with micropores (i.e. pores with 

diameters < 2nm), specifically those that have slit-pore structures [42, 43], 

provide stronger binding sites to hydrogen. This is due to the overlap in the 

interaction potential from the walls of the pores. In a similar way, curved 
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surfaces, as in the case of CNTs, leads to an overlap of the potential fields of 

carbon atoms and therefore to an increase in the adsorption energy; ab 

initio studies show that binding energies of hydrogen on curved graphenes 

can be three times that of planer graphenes [44]. The hydrogen storage 

potentials of the main carbon materials: activated carbons, carbon nanotubes, 

graphite and graphitic nanofibres are briefly discussed below. 

Activated carbons (AC) with micropores (< 2nm) have attracted much 

attention as high SSA materials for hydrogen storage applications [21, 40]. 

The pore size and distribution can be tuned through variation of process 

and conditions, to allow for more optimised storage. The hydrogen uptake is 

typically proportional to the SSA, though pore size and volume make a 

difference as discussed above; the adsorption follows a Langmuir isotherm 

model (monolayer adsorption). Although at room temperature and pressure 

the storage capacity of these materials are very low (typically <1 wt%), at 

increased pressures and low temperatures this value is significantly 

increased. In some chemically activated carbons storage capacities as high 

as 5.6 wt.% can be obtained with the temperature at 77 K and pressure 

increased to 4 MPa [40]. However at ambient temperature (298K) this value 

is only 1.2 wt.% at 20 MPa. Carbide derived carbons (CDC), which are 

produced by selective thermo-chemical etching of metal atoms from carbides 

(e.g. ZrC, TiC, SiC, and B4C) [21, 41] are a promising class of materials for 

hydrogen storage. These carbon systems with SSA of up to 3000 m2g−1 can 

store up to 3 wt.% at liquid nitrogen temperature and atmospheric pressure 

and up to 4.5 wt.% at 20 MPa [41]. 

Carbon nanotubes, typically with diameters of ~1nm, have attracted a 

lot of attention as potential hydrogen storage materials since their 

discovery in 1993. Both single- and multi-walled nanotubes have been 

extensively investigated since Dillon et al. [23] reported high storage 

capacities, though the excitement around the hydrogen storage potential of 

this material has since diminished with results being irreproducible and far 

less promising then the initial ones. A large range of H2 storage capacity 

results, between 0.25 and 56 wt.%, have been reported for different 
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experimental conditions. Studies show the storage capacity to be dependent 

on many factors, including their structure, structural defects, pre-treatment 

conditions, purification, geometry (surface area, tube diameter, and length), 

arrangement of tubes in bundles and/or „ropes‟, as well as the storage 

pressure and temperature [21]. There is not yet an agreement on what the 

actual adsorption sites in CNTs are (i.e. whether H2 is stored inside the 

tubes, outside the tubes, between tubes in „bundles‟ and „ropes‟ or between 

the shells in multi-walled nanotubes). However, with more recent studies it 

has become more evident that these materials are unlikely to meet the DoE 

targets unless more reactive sites (i.e. metallic species) are incorporated 

into the structures as in the case of other carbon materials, thus, current 

research on CNTs is being shaped is in this respect [40]. 

Graphite is another form of carbon that has been investigated for 

hydrogen storage application. However, due to its low interlayer distance 

and low SSA its hydrogen storage capability is very low. It has an 

adsorption enthalpy that is too low (4 kJ mol-1), just like other carbon 

structures, requiring cryogenic temperatures for hydrogen storage. Ball 

milling to increase the SSA or intercalation with alkali metals to increase 

the interlayer spacing are approaches tested for potentially increasing the 

hydrogen storage capacity of graphite. In one study it is reported that after 

80 hours of ball milling in a 1 MPa hydrogen atmosphere, up to 7.4 wt.% H2 

was stored, 80% of which could be desorbed at temperatures >600 K [21]. 

Intercalation of graphite with metal species is being used to tune the 

interlayer spacing of planes to distances considered optimal for hydrogen 

adsorption (6-7 A°)  and to create binding sites for H2 [21]. However, 

nanostructuring of these doped graphite systems appears to be necessary 

for increasing surface areas and hence the hydrogen adsorption capacities 

and kinetics. Besides ball milling, which is expensive and impractical, use 

of Graphitic Nanofibres (GNFs) is one option being investigated. 

Graphitic nanofibres (GNFs), also known as carbon nanofibres (CNFs) 

depending on their crystallinity, are typically grown catalytically at high 

temperatures (>600 °C) from a mixture of carbon-containing gases over 
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small metal particles [38, 45]. These nano-structures which consist of 

graphene sheets stacked at various angles with respect to the fibre axis, 

forming either ribbon like or in a tubular arrangement depending on the 

preparation process, have a structural conformation that enables enhanced 

hydrogen sorption. The arrangement of the graphite crystals along the fibre 

axis typically generates a nanofibre structure comprised of slit-pores, with 

edge sites exposed for adsorbates [38]. The exposed slit pores, with 

interplanar distance of 3.37 Å, enable the hydrogen with a kinetic diameter 

of 2.89 Å to easily seep through and be retained [38, 45]. The graphitic 

nanofibres which have small diameters (usually ranging from 5 and 100 

nm) and high surface areas (BET normally ranging from 100 to 300 m2g−1 

but with values as high as 700 m2g−1) [21], have a structure that should 

reduce diffusion paths for hydrogen. The reduced diffusion path is expected 

to facilitate faster adsorption kinetics. Although improvements are observed 

in the hydrogenation properties of these nanostructures, compared to that 

of bulk graphite, the binding energies are still too low. GNFs can be 

intercalated with metallic species to tune the binding energy of hydrogen 

for greater hydrogen adsorption. Though intercalation of graphite has been 

investigated for hydrogen storage applications [8, 46-48], as far as we know 

the intercalation of GNFs has not been tested before. This is what we have 

attempted to do in the second part of this PhD study, as discussed in 

Chapter 6. 

While nanostructuring is being employed for increasing the SSA in 

these carbon structures, doping with metallic species is crucial for sufficient 

H2 storage densities to be obtained, because even the maximum theoretical 

storage capacity of a single graphene sheet (with a surface area of 1315 

m2g−1) is calculated to be only around 3 wt.% at very low temperatures [21]. 

In this respect, Fullerenes (e.g. C60 buckyballs), which have shown no hydrogen 

storage capability have gained some interest in the last few years. Recent 

studies based upon first principle calculations within density functional 

theory have shown that decoration of carbon fullerenes Cn (20 ≤ n ≤ 82) with 

metal atoms (e.g. Ti, Sc, Ca, Be) can greatly increase their hydrogen storage 
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potential [49-51]. These calculations show that the binding strength of the 

H2 on either positively or negatively charged fullerenes increases due to 

enhanced polarizability of the H2 molecule, with values ranging from 0.18-

0.32 eV/H2 [49]. This correspond to a storage densitiy of around 8 wt.% H2 at 

ambient conditions. Some metals (e.g. Be) also show a Kubas like di-

hydrogen binding [51]. However, it has been difficult to verify these studies 

experimentally due to the tendency of the metal atoms to coalesce, as 

opposed to being dispersed uniformly on the surface. Recent efforts are 

devoted to finding metal systems that do not coalesce, e.g. boron is being 

used to help disperse the metals on the fullerenes [51]. Experimental 

studies have not shown any promising results yet, due to the difficulty of 

maintaining the metal atoms dispersed; one recent study on (C-60-Fe-C-60-

Fe)(n) complex has shown H2 adsorption capacity of 0.5 wt.% at 77K and 2 

bar [52]. 

1.4.5.2 Other high surface area materials for hydrogen 

storage 

Metal-organic Frameworks (MOFs) are another set of high surface 

area materials that have attracted a lot of attention as potential hydrogen 

stores. These crystalline compounds consist of a framework in which metal 

ions or clusters are connected to each other by organic molecules called 

linkers in a three dimensional structure and have an exceptionally large 

surface area of up to 5500 m2g-1 [32, 33]. The total H2 adsorption on the 

surface of MOFs is determined by the surface area available (as shown in 

Figure 1.6) and the induced dipole moment interactions between the 

hydrogen metal ions on the surface. The most promising gravimetric 

storage value reported for MOFs is 10 wt.% for NOTT-112 at 77 bar and 77 

K (or 2.3 wt.% at 1 bar) [53]. The storage values are still too low (<1 wt.%) 

at ambient temperature. The H2 binding energy (typically between 5-

10 kJ/mol) is still not sufficiently strong for room temperature storage. 

Thus, the challenge is to design and synthesise MOFs with frameworks that 



Hydrogen Storage                  31 

 

 

have high concentration of exposed metal sites that bind hydrogen [32]. 

Both theoretical and experimental research is very active in this respect.  

 

 

Figure 1.6: Saturation H2 uptake plotted against Langmuir surface area for 

various MOFs at 77K (modified from ref [33]), saturation pressure varies 

between 10 to 80 bar for different MOFs. IRMOF-X are based on Zn4O(CO2)6, 

MOF-74 is based on [Zn3[(O)3(CO2)3]]∞ 31, HKUST-1, based on Cu2(CO2)4 

structures. 

 

Zeolites, microporous crystalline aluminosilicates, are another set of 

high surface area materials investigated for hydrogen storage applications, 

though less so than above mentioned materials. They have an open 3D 

structure, which enables selective exchange of different cations. As in the 

case of MOFs the hydrogen storage capacity depends on the surface area of 

the material, which can be as high as 1000 m2g-1, the volume of the 

micropores and the polarisibility of the hydrogen molecule by the cations 

present. At ambient conditions hydrogen uptake is once again very low in 

these systems; ZSM-5, a typical high silica zeolite with a surface area of 430 

m2g-1, has a hydrogen storage limit of 0.7 wt.% at 77 K and 1 bar, which is 

far lower than a typical activated carbon with a surface area of 2030 m2g-1 
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that adsorbs up to 2.1 wt.% of hydrogen [54]. Nevertheless, computational 

studies are being carried out with different cations (e.g. Ca, Na, Mg), to 

investigate H2 binding sites and energies, so that zeolites with the optimal 

geometry and most polarising ions can be synthesised.  

 

1.4.6 Hydrogen binding energies: the big challenge 

As I have tried to portray in the sections above hydrogen storage is 

still a big challenge and the issues that have to be resolved are not one but 

many. While some materials meet the DoE storage capacity targets, none of 

these systems have hydrogen binding energies falling within the range 

desirable for practical applications. Figure 1.7 shows the range of binding 

energies targeted by DoE and how it compares to the binding energies in 

physisorption and chemisorption based materials. The binding energies are 

quite different for the two approaches: too low (typically around 5 kJmol-1) 

for physisorption based systems and too high for chemisorption based 

systems (50-100 kJmol-1 for metal hydrides and >100 kJmol-1 for other 

chemical hydrides). The main challenge is therefore to shift the binding 

energies of these storage materials to within the desired range.  As 

discussed above in chemisorption based systems this challenge is being 

tackled through chemical destabilization of the materials i.e. addition or 

mixing of different chemical species to form intermediate reaction steps 

that result in reduction in the heat of formation, or through 

nanostructuring as discussed in the next section. In physisorption based 

systems this challenge is being tackled through the addition of metallic 

species to these materials. For example in carbon based systems binding 

energies are either increased through „Kubas binding’, where the metal 

additive (generally transition metals) interacts with the chemical bond in 

the hydrogen molecule and leads to a relatively strong adsorption of 

molecular hydrogen, as in the case of graphite intercalation compounds, or 

through  „spillover‟ where the additives act as a catalytic active centre for the 

dissociation and bonding of hydrogen to the carbon networks [21]. 
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Figure 1.7: Energy scale showing the targeted binding energy range (10-50 

kJmol-1) required for room temperature hydrogen storage compared to the bond 

strengths found in physisorption and chemisorption based materials.  

1.5 Nano-engineering hydrogen stores 

Nano-structured materials are defined as materials having an 

average grain size not exceeding 100 nm, with the range 5-50 nm being 

most typical. Many studies have now confirmed the positive effect of 

nanostructuring hydrogen storage materials to improve the 

hydrogenation/de-hydrogenation kinetics, to reduce the enthalpy of 

formation/desorption and to increase the surface area [18, 55-61]. For this 

reason nano-structuring of selected physisorption and chemisorption based 

materials has been at the core of our investigation. The mechanisms that 

allow for enhanced properties in these nano-structured materials varies 

depending on the material, i.e. whether it is a metal or chemical (complex) 

hydride or whether it is a high surface area physisorption based material. 

One important factor promoting enhanced kinetics in nano-structured 

materials is the reduced diffusion paths of hydrogen due to reduced 

grain/particle size of the host materail. This effect is nicely explained in the 

case of metal hydrides, in which the hydrogenation/de-hydrogenation 
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mechanism and the effects of nano-structuring are relatively well 

understood. For complex hydrides, where the decomposition process 

involves several reaction steps, the exact effect of nanostructuring on the 

decomposition process can vary for the specific hydride and in most cases it 

is not very well understood. In the case of physisorption based materials we 

have already discussed above (§1.4.5) that nanostructuring leads to 

increased surface area with greater density of edge sites and increased 

binding energy due to overlap of potential from the closely packed or curved 

walls. In this section I will look at the effects of nanostructuring in 

enhancing kinetics and reducing the enthalpy of reactions in metal 

hydrides. Since the physics discussed can be extrapolated to other 

materials, the knowhow gained in terms of the effects of nano-sizing of 

hydrides can be used to understand the effects of nanostructuring in other 

materials. 

 

1.5.1 Diffusion and nucleation 

In §1.4.4.2 it was discussed that for metal hydrides if the temperature 

and the pressure are high enough, the β-phase (the pure hydride phase) will 

nucleate from the saturated α-phase (the H-metal solution phase) and grow. 

The limiting reaction rate is the diffusion of the hydrogen through the β-

layer once the β-phase nucleates (Figure 1.8 (a)), this slows down hydride 

formation kinetics considerably [18].  However reducing the particle size 

can enable the hydrogen diffusion path to the β-phase to be reduced and 

hydride formation kinetics to be enhanced. Figure 1.8 illustrates how a 

sufficiently small particle can prevent the formation of a closed hydride 

layer that slows down hydrogen from accessing the core metal phase during 

hydrogenation or from leaving the hydride phase during de-hydrogenation 

[18].  
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Figure 1.8: An illustration showing how the density of nucleation in a bulk 

particle (top path) and  a nano-particle (bottom path) can vary and influence 

the interface energy between α- and β-phases; a) in the bulk particle multiple 

nucleation sites merge and form a closed loop to prevent fast diffusion of 

hydrogen, in the nano-particle the diffusion of hydrogen through the α-pahase 

remains possible even with a greater fraction of β-phase, b) during desorption 

the hydrogen in a bulk particle has to diffuse through a thicker layer of the β-

phase, but in the nano-particle the diffusion is much quicker [18]. 

Since, nucleation of the β-phase particle results in interfaces being 

formed between the fully formed β-phase and the surrounding α-phase, the 

diffusing hydrogen atoms need to overcome an interface energy barrier, 

which slows down the reaction rate. Besides nanostructuring, the existence 

of a high density of cracks, lattice defects, dislocations and interfaces can 

also help speed up the kinetics by favouring the heterogeneous nucleation of 

the β-phase [18]. While, ball-milling can help induction of such defects into 

the system, other techniques may not. Thus, nanostructuring is ultimately 

the route for improving hydriding/de-hydriding kinetics. 

 

1.5.2 Thermodynamics of reaction 

 
Understanding the mechanisms that control the thermodynamic 

stability of the hydrogen storage material is important for tailoring the 
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enthalpy of adsorption/desorption (∆H) to be within the desired range (10-

60 kJmol-1), the value required for system operation at near ambient 

conditions. ∆H, also known as the enthalpy of reaction, represents the heat 

released or absorbed by the material at a given pressure during the reaction 

(e.g. hydriding or de-hydriding reaction). While other approaches such as 

the use of catalysts [62, 63] or destabilization through alloy formation (i.e. 

hydride mixtures) [61, 62, 64] are used to catalyse and change reaction 

pathways and to reduce the enthalpy of reactions, nanostructuring allows 

for the enthalpy to be tuned (lowered) in a more controlled manner in a 

diverse range of materials without compromising for the storage density. 

The brief discussion provided here on the thermodynamics of the reaction in 

metal hydrides is based on the derivations given in ref. [18]; for a more 

comprehensive discussion the reader is advised to look at this reference. 

At a fixed temperature and pressure the force driving the reaction is 

the Gibbs free energy (∆G) defined as: 

 
          (1.5) 

where ∆H and ∆S respectively denotes the enthalpy and entropy change in 

the reaction at a given temperature T. The reaction is thermodynamically 

favoured (i.e. takes place spontaneously) when ∆G is negative, even with 

the existence of a rate limiting energy barrier or slow diffusion process that 

makes the reaction kinetically unfavourable. The energy barrier in a 

reaction (also known as the activation barrier, Ebar), can be related to the 

temperature using the following Arrhenius rate equation: 

            
     

   
  (1.6) 

where Kr(T) is the temperature dependent reaction rate. 
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In the case of metal hydrides, entropy change in the system mainly 

results from hydrogen being reduced from the gaseous phase to the 

chemisorbed phase (-130 kJmol-1 K-1), as well as some change due to surface 

reconstruction and lattice expansion. At low temperatures, where ∆H is 

larger in magnitude than T∆S, the Gibbs free energy (∆G) becomes negative 

and the hydriding reaction is favoured. However, at higher temperatures 

when T∆S becomes larger in magnitude, then ∆G becomes positive and the 

dehydriding reaction is favoured. This explains why high temperatures 

(typically in excess of 200 °C) are required to release the hydrogen in the 

material. 

Ignoring any surface effects contribution to entropy change, the 

change in the Gibbs free energy for an ideal gas, in this case hydrogen, at a 

given temperature can be calculated from: 

         
    

 

 

  

  (1.7) 

where ∆G0 is the molar free energy at the reference state of the system (∆G0 

= ∆H0 - T∆S0), R is the molar gas constant (8.31 m2 kg s-2 K-1 mol-1) and P is 

pressure (P0 is typically 1 atm) [18]. Equation (1.7) can be applied to any 

non-ideal substance (gas, liquid or solid) by replacing the pressure, P, with 

activity, a, which takes account of the non-idealities in the system, the 

Gibbs free energy is redefined as: 

             
    

     

  (1.8)  

The values for the standard enthalpy (∆H0) and (∆S0) can be obtained 

empirically from a van‟t Hoff plot, as shown Figure 1.9. For a given 

compound the plateau pressure at given temperature corresponds to a 

phase transition in a material (in metal hydrides this corresponds to 

transition from the α-phase to the β-phase); Figure 1.9 (a) illustrates this for 
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several temperatures. The van‟t Hoff plot is a logarithmic plot of the 

equilibrium pressure against inverse of the temperature (Figure 1.9 (b)), as 

defined by:  

 
     

  
 

   

  
 

   

 
 (1.10) 

Thus, at equilibrium where ∆G=0, the terms (∆H0) and (∆S0) can be, 

respectively, obtained from the slope and the intercept of the van‟t Hoff plot. 

When the pressure is equal to the reference state pressure, the 

decomposition temperature, Tdec, can be obtained from  

      
   

   

    

 

 

Figure 1.9: a) The plateau pressure corresponding to phase transition from α- 

to β-phase is measured at different temperatures, (b) van‟t Hoff plot: logarithm 

of the equilibrium pressures vs. inverse temperature, used to deduce the 

enthalpy (∆H) and entropy (∆S) of formation. 
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In reducing the size of the particles, the surface area and thus the 

surface energy contribution to Eq.(1.8) becomes important. In the case of 

nanomaterials this surface energy term is significantly large, and if it is 

larger for the hydride phase than it is for the metal then some of the heat of 

formation energy will be stored as the surface energy. Depending on 

whether this volume modified surface energy contribution is negative or 

positive upon nanostructuring, the enthalpy of absorption/desorption will be 

either lowered (if –ve) or increased (if +ve). In accounting for the surface 

energy term in the thermodynamic calculations, the molar free energy of 

reaction (Eq.(1.8)) becomes: 

             
    

     

  
         

     

 
 (1.11) 

  

where r is the radius of the particle (which is approximated to be spherical) 

and       
 is the surface term as given by: 

       
           

    
    

  
 

 
 

              

 

 

(1.12)  

and Vi (where i= M or MH2) denotes the molar volume of each phase; the 

molar volume of the system tends to increase by ~10-20% upon transition 

from the metal phase to the hydride phase [18, 19]. This surface 

reconstruction upon volume expansion changes the free energy as the bond 

energies and physical properties of the material change [18]. Since 

nanostructuring means an increase in the surface to volume ratio, which 

increases the adsorption sites due to the increased number of unsatisfied 

bonds, hydrogenation (i.e. binding of H2) at the surface of both metal and 

hydride will reduce the surface energy by minimising the number of 

unsatisfied bonds. Since the surface energy reduction may be different for 

metal and hydride phases, an additional energy term ΔEads, which accounts 

for the difference in the magnitudes of surface energy reductions due to the 
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adsorption of H2 molecules, is included in Eq. (1.12). Taking these changes 

into account, a new van‟t Hoff relation is formed; 

 
     

  
 

   

  
 

   

 
                     

         

 
  (1.13) 

which shows that there is a reduction in heat released (i.e. lowering of ΔH‟) 

in going from bulk to nano-structured materials, if ΔM→MH2 is positive (ΔH0 is 

a negative quantity) or the surface energy of the hydride phase is larger 

than that of the metal phase. In this case, significant reduction in the 

enthalpy of adsorption/desorption is possible if particle sizes can be reduced. 

However, calculations suggest that particles with diameters no more than a 

few tens of nanometres are required for an observable difference [18]. 

The detailed mechanism resulting in improved hydrogenation/de-

hydrogenation properties of materials may vary between different classes of 

materials, and in fact it is different for ammonia borane (AB) and graphite 

intercalation compounds (GICs) (the materials analysed for this PhD 

project). Nevertheless the above explanation, provided for metal-hydrides, 

can be used to understand any changes that may be seen as a result of 

nanostructuring these systems.  The theory above can in particular shine 

light on any nanostructural changes seen in GICs, which involve diffusion 

of H2 through a graphite lattice containing metallic species. 

Nanostructuring materials or synthesising materials with nano-

dimensions is generally a nontrivial process, especially with only a few 

nanostructuring techniques available. Ball milling and scaffolding of 

hydrides were described to be the most common methods employed. 

However, these techniques have important disadvantages associated with 

them; ball milling is an energy intensive process that can have problems 

such as sample contamination from the steel balls used for milling, and 

nanoscaffolding of metal hydrides can result in a significant reduction in 

the system storage capacity, especially if a heavy nanoscaffold (e.g. 

silicates) are used (as discussed in §5.2.1.4 ). Electrospinning, on the other 
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hand, is a technique that can be used for nanostructuring hydrogen storage 

materials in a more controlled manner and has the advantages of being a 

cheap and scalable process.  



 

 

 

 

Chapter  2                                      

The Electrospinning Process

2.1 Introduction 

 

Electrospinning is a highly versatile method that, through processing 

of polymeric solutions or melts, produces fibres with diameters ranging 

from a few microns to tens of nanometres [65-68]. This process, which has 

been used to produce continuous fibres for various different application, 

ranging from biomedical applications (such as tissue scaffolds, controlled 

drug release systems) [69-71] to filter systems, catalysis, protective 

clothing, optical applications (waveguides) and microelectronics [72, 73], is 

a technique that can potentially be used for nano-structuring hydrogen 

storage materials in a cheap and scalable way.  

In a typical electrospinning set-up as shown in Figure 2.1, a solution 

or a melt is first fed through a spinneret with an inner diameter in the 

order of 100μm. When a sufficiently high electric field is applied to the 

spinneret, which simultaneously serves as an electrode, the repulsive force 

caused by the concentration of similar charges in the solution can overcome 

the opposing surface tension of the droplet at the tip of the spinneret, a 

Taylor cone is formed, from which a polymeric jet initiates. Although the jet 
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is stable near to the tip of the spinneret, it soon enters a bending instability 

stage with the formation of a whipping cone under the influence of the 

columbic forces. This electrospinning jet stretches and coils, with an 

increasing diameter, until the solvent has evaporated, yielding fine fibres 

with diameters as low as few tens of nanometres. The fibres are collected as 

a nonwoven mesh of continuous fibres on an earthed collector, usually a 

metal plate or drum. The distance between nozzle and collector is set large 

enough to enable most of the solvent to evaporate and form dry fibres on the 

collection plate. The polymer chain entanglements within the solution 

prevents the electrospinning jet from breaking up and depending on the 

stability of the electrospinning process fibres with lengths of up to many 

hundreds of metres can be obtained.  

 

            

Figure 2.1: Schematic diagram of set up of electrospinning apparatus (a) 

typical vertical set up and (b) horizontal set up of electrospinning apparatus 

[74]. 

The versatility of the electrospinning process to produce fibres from a 

large range of polymeric materials or material combinations, including non-

polymeric ones, either through mixing, co-axial or multiphase 

electrospinning of solutions, or through addition of dopants, provides the 

scope for this method to be used to fabricate fibres for many different 

applications. Post processing of the elecrospun fibres, e.g. heat or solvent 
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treatments for creation of pores in fibres, further increases the field of 

applications, with more novel functions being realized through the use of 

different materials. We have been specifically interested in using this 

method to nanostructure materials for hydrogen storage applications, 

through co-axial (i.e. multiphase) spinning (Chapter 3) as outlined in 

Chapter 5 for ammonia borane-polystyrene fibres and through 

carbonisation of polymeric nanofibres as outlined in Chapter 6 for 

potassium intercalated carbon fibres. 

While at first glance electrospinning appears to be a simple and 

easily controllable technique, it is in fact a very intricate process governed 

by a complex interaction of forces (electrical, rheological, molecular) and 

instabilities (Rayleigh and whipping instabilities). The success of this 

process and the control of the resulting fibre morphology and diameters is 

governed by a delicate balance between the process (e.g. voltage, nozzle tip-

to-collector distance and solution feed rate), system parameters (e.g. 

polymer molecular weight, viscosity, conductivity, surface tension and 

solvent dielectric constant), ambient conditions (such as temperature, 

humidity and air velocity in the chamber) and finally motion of the target 

screen [73]. 

In order to pin down the factors that affect the formation of various 

nanofibre assemblies, it is important to understand the principles of 

electrospinning and the factors controlling the success of the process. In this 

chapter, the fundamentals of electrospinning process, such as the forces 

controlling jet evolution, the parameters controlling the success of 

electrospinning process and the influence of these parameters on the fibre 

morphology and diameters is explained.  

2.2 History of electrospinning  

The discovery of electrical effects on liquids was made in the late 

1500s when William Gilbert [75] set out to investigate the phenomena of 
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electricity and magnetism. Gilbert observed that a spherical droplet of 

water was drawn into a conical shape when a charged piece of Amber was 

placed near it, which caused small droplets of water to be emanated; a 

phenomenon now called electrospraying. This discovery came 2200 years 

after Thales of Miletus, the Greek philosopher discovered the phenomenon 

of electricity using the same special material, amber. Thales had noticed 

that light materials, such as feathers, were electrostatically lifted off the 

ground when an amber rod, which had been rubbed by a cloth, was placed 

near these materials.  

It wasn‟t until 1898, that electrodynamics theory was used by 

Larmour [76] to explain the excitation of dielectric liquid under the 

influence of an electric charge. Four years later in 1902, Cooley [77] and 

Morton [78], patented the first devices to spray liquids through the 

application of an electrical charge.  The electrospinning set up in Coley‟s 

patent included the use of rotating collector for the fibres produced from the 

jet directed by an auxiliary electrode [79]. 

In the 1930‟s electrospinning was further investigated by Antonin 

Formhals who attained the first patent [80] on electrospinning in 1934 for 

the fabrication of textile yarns from cellulose acetate using acetone and 

monomethyl ether of ethylene glycol as solvents [74]. Formhals came up 

with various innovative setups for fibre production and collection, including 

designs that do not require a spinneret or rotating fibre collection devices, 

as outlined in a series of patents he has authored [80-82]. Many of the 

recent electrospinning setups can in fact be traced back to these inventions 

and it is clear from these developments that the early researchers had 

already gained an in-depth knowledge of the electrospinning process [79]. 

However, it was not until 1964 that Sir Geoffrey Ingram Taylor, as 

continuation of the work started by John Zeleny in 1914 [83], looked at the 

behaviour of fluid droplets under the influence of an electric field and initiated 

mathematical studies on the jet forming process [84-86]. Taylor described 

that the onset of the jet in the electrospinning process was initiated by the 
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formation of a conical shape, now known as the Taylor cone. He 

theoretically derived that a perfect cone formed under the influence of an 

electric field required a semi-vertical angle of 49.3° and demonstrated that 

the angle of the cone on a droplet approached this theoretical value just 

before jet initiation. Two years after, in 1966 Simons [87] patented the 

apparatus for the production of lightweight, ultra-thin, non-woven fabrics 

using electrospinning and in 1971, Baumgarten [88] reported 

electrospinning of acrylic fibres from a new set up that produced fibres with 

diameters in the range of 0.05–1.1 μm. Baumgarten showed how the 

diameters of the fibres changed with changing electric field.  

Despite these early discoveries, electrospinning did not gain a lot of 

interest and was not utilized commercially until the 90s. It is only since the 

emergence of nanotechnology in the 1990s that electrospinning gained 

increasing attention as a way of manufacturing fibres at the nanoscale. 

Researchers have looked at the potential of electrospinning to produce 

complex and highly functionalized systems, which could be used in a variety 

of applications (as listed in §2.3) and applied on a commercial level. The 

possibilities presented by electrospinning in the fields of bio-medical 

research, electronics, catalysis, environmental and energy storage 

applications has led to an almost exponential increase in the number of 

scientific publications since the 90s [89, 90]. 

The research since the 1990s, initiated by certain research groups, 

notably Reneker and Rutledge [67, 91], has been focused on understanding 

the electrospinning process and system parameters that lead to reduced 

fibre diameters with different morphologies. Specifically in the last decade 

much theoretical work, i.e. mathematical calculations or modeling, has been 

carried out to gain an understanding of the electrohydrodynamic 

mechanism driving the electrospinning of electrically forced jets, such as 

the growth rate of various instabilities: the Rayleigh and whipping 

instabilities, as discussed in the next section. 
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Today, there are over 200 universities and research institutes 

worldwide that are looking at various aspects of electrospinning, mostly 

with the aim of producing nano-diameter fibres functionalised for specific 

applications. There are companies such as eSpin Technologies, 

NanoTechnics, KATO Tech, and The Electrospinning company that are 

using fibres obtained from electrospinning for more commercial 

applications, such as filtration, aerospace, structural composites, 

healthcare, energy storage, cosmetics, as well as research applications.  

2.3 Electrospinning applications 

Electrospinning is a very versatile process; by controlling the process 

parameters and conditions and the materials used, many essential 

properties of the electrospun scaffold can be adjusted, such as the fibre 

diameters, the morphology, the porosity and inner and outer chemistry of 

the fibres. The elecrospun fibres can be functionalised through the addition 

of various species depending on the application, i.e. nanotubes via heat 

treatment (Figure 2.2 (a)) [89], magnetic or conducting substances (Figure 

2.2 (b)) for electronics applications or biological materials and/or drugs 

(Figure 2.2 (c)) [92] for biomedical applications. However, since the process 

requires the electrospun material to have viscous/viscoelastic properties, 

the electrospun solution almost always contains a polymeric component, if 

not fully made of a polymeric solution. Furthermore, post processing options 

such as heating or solvent processing allows for the morphology and the 

chemical composition of the fibres to be further controlled as necessary for 

the specific application; e.g. porosity can be introduced (Figure 2.2 (d)) 

through removal of a bi-component material via solvent treatment. As a 

result electrospun fibres with a diverse range of properties have gained 

interest for applications in a number of fields, including biomedical 

research, electronics, catalysis, environmental and energy storage 

applications and even applications for defence and security Figure 2.3 

shows how electrospinning research has been divided within these targeted 
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areas [73]. The fact that most of the research has been focused on 

developing an understanding of the process parameters and conditions 

(both experimentally and theoretically) (24 %)  and the characterization of 

the fibres (36 %), outlines the complexity of the process and how every time 

it needs to be adjusted and controlled for each specific material and 

application. Electrospinning of fibres or even vesicles for biological 

applications, e.g. tissue engineering and wound dressing, affinity 

membrane and drug delivery, (at 20% of research) have attracted much 

interest in research. 

 

 

Figure 2.2: Some of the different fibre morphologies that can be produced for 

different applications a) TEM image of carbon fibres with grafted carbon 

nanotubes (CNTs), obtained from heat treatment of PAN fibres [89], b) 

Compartmented core–shell nanofibres with paramagnetic iron oxide particles 

at the interfaces, c) Poly(ethylene oxide) nanofibres that contain  the bacteria 

M. Letus, d) Highly porous nanofibres produced from mixtures of polylactide and 

poly(ethylene oxide) after water treatment [92]. 
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Figure 2.3: The division of research on electrospun polymer nanofibres, as 

adapted from [73]. 

2.4 Electrospinning theory: jet instability 

Electrospinning works for liquids that are conducting, such that the 

theory presented here discusses the behaviour of viscous and ionic solutions 

under the influence of an applied electric field. When a voltage is applied 

between the nozzle and the collector, migration of electrons from the 

cathode to the anode causes charge build up on the surface of the solution, 

with the polarity of the charges dependent on the polarity of the nozzle. If 

the nozzle is charged negative, cations are attracted to the electrode, if it is 

positive, anions are attracted (Figure 2.4). The free surface of the liquid 

maintains an equipotential at all times, with the charges distributed in a 

way that maintains a zero electric field inside the liquid [93]. When a 
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critical potential is established to enable the coulombic force, resulting from 

the repulsion of like charges on the liquid surface, to overcome the surface 

tension that keeps the droplet together, the liquid droplet acquires a conical 

shape referred to as the Taylor cone [94], having a half angle of 49.3° [93]. 

Although the size of the columbic force is correlated to the magnitude of the 

applied voltage, the density of ions and electrons in the overall neutral 

solution strongly influences the degree of charge build up.  

 

 

Figure 2.4: Schematic diagram of electrospinning nozzle with positive and 

negatively charged electrode: polarity of electrode determines polarity of charge 

build-up in solution 

Once the Taylor cone is established, an electrically charged jet issues 

from the tip of the cone and accelerates down or across to the collection 

plate, depending on the direction of the set up (as shown in Figure 2.1). This 

jet, if formed of a polymeric solution, undergoes a multi-component jet 

stretching mode with an initial straight jet portion followed by a radially 

spiralling conical jet part (see Figure 2.5), which respectively arises as a 

result of axisymmetric and whipping (or bending) instabilities [18]. These 

instabilities, which arise as a result of coupling of the coulombic forces in 

the jet with the electric field, enable stretching of the jet to yield fine fibres. 
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Figure 2.5: The electrospinning envelope showing the conical jet path and the 

way in which the bending instabilities cause thinning of the electrospun jet; 

three successive bending instabilities that cause spiralling and hence thinning 

of the jet are shown [67]. 

The mechanics of bending polymer jets under the influence of an 

electric field deserves special attention since the instability experienced by 

the jet plays a central role in the electrospinning process. Gaining an 

understanding of the electrohydrodynamics of the process is particularly 

important for developing predictive tools for control of the process and 

optimization of the electrospun fibre morphology. Since, gaining control of 

the fibre diameters and their morphology was critical to nanostructuring of 

the materials that are of interest to us, developing an understanding of the 
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instability mechanism and the parameters that control the electrospinning 

process formed an important part of this investigation. 

The mechanisms of the process relates to the pioneering studies of 

Taylor on the electrified liquid jets of low-molecular mass Newtonian 

liquids [95]. Taylor had shown the existence of the bending instability in 

electrified jets and derived equations for the bending perturbations in an 

inviscid liquid.  Due to the complexity in modeling the electro-

hydrodynamics of the process, theoretical studies have been limited in 

comparison to the experimental ones, though in the last one decade the 

number theoretical studies on the instability mechanisms in the electrified 

jets have shown significant growth [91, 94, 96-98]. Both simple one-

dimensional (1-D) models, used for determining jet diameters, and more 

complex three-dimensional (3-D) models, used for modelling the growth, 

size and instability modes of the jet, exist. While discussing the details of 

these models are beyond the subject of this investigation, outlining some of 

the equalities that are used in 1-D and 3-D modelling of the jet can help us 

understand the main control parameters that affect the jet behaviour and 

hence the fibre morphology. While in this section I will merely define the 1-

D equations used to calculate the jet radius of a single phase electrical jet, 

in §3.2.2, for the purpose of understanding the formation of specific 

morphologies in co-axial fibres, I will discuss the instability theory used for 

3-D modelling of co-axial jets. 

The most commonly used equation for determining the jet radius r as 

a function of axial distance z from the nozzle is  the differential equation 

developed by Spivak et al. [99], which takes the form: 

  

  
               

       
   

    

  
 

 

    (2.1)  
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where R is the dimensionless jet radius, Z is the dimensionless axial 

coordinate, NW, NE and NR are the Weber number, Euler number, and the 

effective Reynolds Numbers respectively. The dimensionless Weber number 

NW describes the ratio of inertial forces to surface tension in the jet: 

    
   

       
  (2.2)  

The dimensionless Euler number NE describes the ratio of inertial 

forces to electrostatic field pressure: 

    
     

 

      
  (2.3) 

The effective Reynolds number NR for the fluid, characterised by the 

power law, describes the ratio of inertial forces to viscous forces: 

    
   

      
  

      
 

   
 

 

 (2.4)   

where ρ = fluid density, σs = coefficient of surface tension, E = electric field, 

ε0= permittivity of vacuum, Q = volumetric flow rate, J = electric current.  

Spivak et al. have reported a power law asymptote for R with an 

exponent -1/4 for the jet radius;        [99]. Ji-Huan et al. have gone further 

to suggest a different relationship between jet radius and distance from the 

orifice [100] for different parts of the jet, with R ~ z-1/2 for the initial steady 

stage, R ~ z-1/4 for the instability stage, and R ~ z0 for the terminal stage by 

allometrical method. While these equations enable estimates of the jet 

radius to be made, using the parameters defined in Eq.(2.2(2.4, these 1-D 

models are considered as oversimplification of the real process and 

additional correlations are in fact needed to solve the stable jet profiles 

through 3-D models. One of the first extensive studies on 3-D modelling of 
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the electrospinning jet was done by Reneker et al. 2000 [91], and Shin et al. 

2001 [97]. Both groups have developed a theoretical approach based on 

empirical observations of the jet profiles and report obtaining theoretical 

results that are in good agreement with the experimental data.  

Evaluation of the dispersion relations attained from these 3-D 

models suggests the existence of three different types of instabilities: two 

axisymmetric modes and one non-axisymmetric mode, which determine the 

size and geometry of the deposited fibres or beads. The first axisymmetric 

mode is associated with the classical Rayleigh instability, which is 

dominated by the surface tension [91, 97]. The Rayleigh instability results 

in the formation of vesicles or beads, as opposed to fibres, in a process called 

electrospraying. This happens if the viscosity of the solution is below the 

optimum value (i.e. the density of chain entanglements in the solution is 

less than the value needed to maintain sufficient resistance to the 

electrostatic field) and the charge density is not high enough to overcome 

the opposing surface tension force that causes the jet to break up into small 

droplets [101]. In the case of a sufficiently viscous solution, the jet formed 

enters the electrospinning regime and undergoes a multi-component jet 

stretching mode, with an initial straight jet portion followed by a radially 

spiralling conical jet part, as shown in Figure 2.5. The trajectory and size of 

this jet and hence the size and morphology of the as spun fibres is 

determined by the latter two instabilities mentioned above; the 

axisymmetric and non-axisymmetric „whipping‟ (bending) modes, which 

cause the spirals to transform into smaller spirals until the jet solidifies.  
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Figure 2.6: (a) Axisymmetric and (b) non-axisymmetric instabilities in a fluid 

jet in an external electric field (E∞), Δ denotes the pertubations of the surface 

charge density (σ) [97], (c) idealised nodes; the arrows in (b) and (c) indicate the 

forces that bends the jet,  adapted from [73, 97].   

These instabilities arise as a result of coupling of the columbic forces 

in the jet with the electric field that cause the stretching of the jet, and are 

therefore primarily sensitive to fluid conductivity (or charge density) [97]. A 

schematic representation of the axisymmetric and non-axisymmetric 

instabilities is shown in Figure 2.6 (a) and (b) respectively; the local 

variations in the charge density (σ±∆) are shown. The straight, tapered 

segment of the jet which is accelerated towards the collector (parallel to the 

axis of the jet), experiences charge-driven axisymmetric instability as the 

statistical variance of the jet‟s radius causes a modulation of the surface 

charge density (Figure 2.6 (a)). This leads to a non-uniform charge 

distribution along the jet and gives rise to formation of dipoles oriented 

perpendicular to the jet. These dipoles set up a localized torque that bends 

the jet, which gives rise to the non-axisymmetric perturbation that couples 

to the radius modulation of the axisymmetric mode under the influence of 

the electric field, and amplifies it.  
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The magnitude of the coulombic force bending the jet can be 

estimated as follows. With reference to Figure 2.6 (c), when node  Y moves 

to node Y‟ under the influence a perturbing force, the coulomb forces from X 

and Z pushes it further away [73, 91]. Taking the coulomb force, F= (e/l)2, 

along the lines XY‟ and ZY‟, the horizontal force component from both 

coulomb forces can be resolved as 

             
   

  
  (2.5)    

However, surface tension and viscoelastic forces counteract these 

deflections that cause the bending to result in an energetically unfavorable 

increase in surface area. The bending stops when the viscosity of the jet 

reaches a critical point as a result of solvent evaporation, at which point the 

colulombic force is no longer sufficient to overcome the viscoelastic force 

being exerted. While the whipping instability controls the extent of bending 

and stretching of the jet, the specific process and system parameters that 

control the whole of the electrospinning process, including these 

instabilities, and hence the size and morphology of the as spun fibres, are 

discussed in the sections to follow. 

 

2.5 Electrospinning materials 

2.5.1 Polymers and their properties 

Polymers consist of long chain of molecules (or repeating units called 

monomers) that are typically connected via covalent bonds. An example of a 

polymer is polyethylene, which consists of repeating units of [-CH2CH2-]n. 

The long polymer chains have the tendency to entangle in solutions, with 

the extent of entanglement dependant on the chain lengths. For this reason 
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polymers and some ceramics are the only materials that enable sustained 

electrospinning, which is essentially the elongation of polymer chains in a 

fluid jet. The polymer material to be used is generally the first 

consideration for the choice of the solution system to be electrospun and is 

chosen on the basis of desired fibre properties and suitability for the specific 

application. The parameters taken into consideration in choice of polymer 

include melting and glass transition temperatures, solubility or 

compatibility with other polymers-solvent systems when forming blends, 

chemical and biological compatibility (i.e. availability of specific functional 

groups) and/or suitability for post processing (e.g. whether it can be 

carbonised to make composite fibres). There are a wide variety of polymers 

that can be used for electrospinning and narrowing down the options 

available depends very much on the specific application.  

Natural polymers are generally preferred over synthetic polymers for 

biomedical applications, due to their better biocompatibility and 

immunogenicity. Most natural polymers can be degraded by enzymes and 

hence electrospun fibres from these polymers are commonly used for 

biomedical applications such as tissue engineering, biosensors, wound 

dressing, drug delivery and enzyme immobilization. Most polymers that 

have been electrospun are proteins and polysaccharides, examples include 

collagen (a prominent biopolymer used extensively for tissue engineering 

applications), chitosan, gelatine, cellulose acetate, silk protein, chitin, 

casein etc. [73]. Silk protein obtained from silk worms and spiders provide 

the best mechanical properties, besides advantages such as 

biocompatibility, biodegradability, good oxygen and water permeability and 

minimal inflammatory reaction [73, 102]. 

Synthetic polymers, which are generally more readily available and 

less costly, are used for a wider range of applications due to their versatility 

to be tailored to have a wider range of properties, such as high 

viscoelasticity, strength for improved mechanical properties, and  desired 

degradation rates. Examples of synthetic polymers include Polystyrene,  

Polyacrylonitrile, Polycarbonate, Poly(benzimodozal), Pol(vinylidene 
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chloride), Poly(vinylidene fluoride), as well as bio-degradable polymers such 

as poly(ε-caprolactone), poly(L-lactic acid), polygylcolide,  etc. [73]. When 

mechanical properties and control of degradation rates is also important for 

biological applications, synthetic bio-degradable polymers are instead used.  

In the production of carbon fibres for applications such as filters [103], 

supercapacitors [104], batteries [105], and bottom-up assembly in 

nanoelectronics [104] and photonics [106], carbonaceous polymers, such as 

polyacrlonitrile (PAN), rayon or petroleum pitch are typically used. A 

detailed description of the synthesis process of carbonised and graphitised 

nanofibres, from PAN precursor, is given in §6.3.6.1.  Further details on the 

various polymers and polymer-solvent systems used in electrospinning, and 

their applications, can be found in references [73, 102]. 

For this investigation the choice of polymers were firstly determined 

on the basis of suitability for the application, secondly on the basis of the 

fibre morphology/structure envisioned and thirdly on the basis of 

availability of polymers that met the requirements for the former two 

conditions. While the polymer melting point (Tm), glass transition point (Tg) 

and molecular weight (Mw) were the main parameters considered, the exact 

reasons for the choice of polymers used in this investigation for making 1) 

chemical hydride encapsulated co-axial fibres,  and 2) graphitic fibres, are 

detailed out in Chapter 5 and 6 respectively. For the former study, the 

permselectivity of the polymer and its compatibility with the core chemical 

hydride solution, and for the latter, the carbonisibility of the polymer, were 

the defining factors in the selection of polymers used. 

2.5.1.1 Polymer molecular weight 

Polymer chains are made of repeated monomer units and the 

molecular weight defines the sum of the weight of the individual monomer 

units in a polymer chain. Though this value is not exact, due to a given 

molecular weight distribution, it represents the average molecular weight of 
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the polymer chains.  Polymer molecular weight is important for controlling 

solution viscosity as determined by the extent of the polymer entanglements 

and hence the control of fibre diameters.  

Generally molecular weight of the polymer is important for controlling 

physical properties such as the temperatures for transitions from liquids to 

waxes to rubbers to solids and the mechanical properties of the electrospun 

fibres such as stiffness, strength, viscoelasticity and toughness. Use of 

higher molecular weight polymers will generally yield fibres with higher 

transition temperatures and better mechanical properties. In this 

investigation molecular weight of the polymer was mostly used to control 

the viscosity of the solutions while maintaining low polymer concentrations. 

Minimising polymer concentration was important for lowering of 

electrospun fibre diameters, but a balance had to be maintained between 

the concentration and the solution viscosity to enable sufficient 

entanglement of polymer chains for electrospinning to yield polymer 

nanofibres.  

There are various ways of calculating the average molecular weight, 

by either using number average (MN) or weight average (MW) for a given 

distribution of molecular weights. The choice of method used to determine 

the molecular weight depends on the type of property being studied. If the 

property, for example, is sensitive to the number of molecules present and 

influenced by the size of any particle in the mixture (e.g. boiling and 

freezing point, or osmotic pressure) then the number average molecular 

weight (MN) is used. MN is the total weight of polymer divided by the 

number of polymer molecules and is defined by  

   
     

     
 
   

   
 
   

 
 (2.6) 

where Ni is the number of polymers with molecular weight Mi .  
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On the other hand if the polymer property of interest depends not just 

on the number of polymer molecules but also on the size or weight of each 

polymer molecule (e.g. light scattering), then the weight averaged molecular 

weight (MW) is used, as given by  

   
      

     
  

   

     
 
   

 
 (2.7) 

In this investigation since consideration of the physical and 

mechanical properties of the electrospun fibres came second to the 

diameters of the fibres, polymer molecular weight was selected on the basis 

of creating sufficiently viscous solutions with minimal polymer 

concentration. The type of the molecular weight used was therefore not 

considered as an important factor, other than for maintaining consistency 

in viscosity studies. 

 

 

2.6 Electrospinning parameters 

Success of the electrospinning process and control of the resultant 

fibre morphology is governed by many parameters, classified broadly as 

polymer-solvent solution (or system) parameters, process parameters and 

environmental parameters. Solution parameters include, polymer viscosity 

as determined by polymer molecular weight and concentration, solution 

conductivity, surface tension, dielectric constant of solvent, process 

parameters include  applied electric field (or voltage), feed-rate, diameter of 

spinneret/needle and distance between the spinneret tip and collector. The 

environmental parameters typically include ambient temperature and 

humidity of the atmosphere. The processing conditions are largely 

dependent on the system parameters and hence the process parameters 

have to be empirically determined for each solution system.  
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Most of these parameters have a range in which they allow for stable 

electrospinning of polymeric solutions. However, due to the sensitivity of 

the fibre morphology to small changes in these parameters, optimisation of 

these parameters is usually necessary for controlling the process to yield 

the desired fibre morphologies and diameters. However, attempts to control 

one parameter, especially properties of the solutions, can lead to unwanted 

changes in another, e.g. adding a salt to increase the conductivity can result 

in a change in the solution viscosity, making mutual optimisation of these 

parameters difficult. Understanding the effects of each parameter on the 

process and the resultant fibre morphologies and diameters, followed by the 

optimisation of each parameter for each system, formed a large part of this 

investigation. In this section, the key parameters of electrospinning and 

their effect on electrospun fibre morphologies will be discussed with 

reference to literature and some of our own findings. 

 

2.6.1 Solution parameters 

2.6.1.1 Viscosity 

One of the conditions for electrospinning to yield fibres is that the 

solution used must have sufficient viscosity, such that polymer 

entanglement during stretching of the electrically driven jet is sufficient to 

prevent the jet from breaking up. Viscosity of the polymer-solvent system 

(solution) is mostly determined by the molecular weight and concentration 

of the polymer, though the interaction between the polymer and the solvent 

can also have an effect. Generally the solution viscosity increases with 

increasing polymer concentration and molecular weight, both of which 

control the extent of polymer entanglement. 

The solution viscosity should be above a minimum for fibre formation, 

if the viscosity is too low the process results in electrospraying to yield 
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vesicles under the influence of an electric field. On the other hand if the 

viscosity is too high it can be difficult to pump the solution through the 

nozzle or the droplet at the tip of the nozzle may dry up too quickly as a 

result of insufficient amount of solvent. Likewise the molecular weight of 

the polymer should be above a minimum to enable sufficient entanglement, 

but below a maximum to allow for uniform dissolution of the polymer (i.e. to 

prevent congregation or curling of the highly entangled units) [107]. The 

lower and upper viscosity limits that enable continuous electrospinning 

varies between systems and will need to be determined empirically for each 

system. 

The effect of increasing the viscosity has a direct effect on the fibre 

diameters and morphology.  At low viscosity, above the critical point for 

fibre formation, the fibres formed are beaded (e.g. beads attached to a string 

with gaps) and as the viscosity is increased the shape of the beads change 

from being spherical to more spindle-like and finally uniform fibres are 

formed (as shown in Figure 2.7) [108, 109]. Fibre beading is attributed to 

the effect of surface tension, which acts to reduce the surface area of the jet, 

and when the surface tension dominates over the repulsive columbic force 

on the jet beaded fibres are formed. With increasing viscosity, the 

resistance to jet breaking increases (i.e. chain entanglement increases) 

while the effect of surface tension exerted by the solvent molecules 

decreases and, thus, the effect of beading is reduced or removed. 

 

Figure 2.7: The change in the beaded structure of fibres electrospun from 

solutions with increasing viscosity from left to right. 
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Increasing viscosity also typically leads to an increase in the fibre 

diameters. The existence of a power law relationship between solution 

concentration and fibre diameters is reported [110]. Thus, to obtain non-

beaded low diameter fibres, it is important to control solution viscosity by 

increasing molecular weight of the polymer (to increase entanglement) 

while decreasing its concentration. 

 

2.6.1.1.1 Determination of solution viscosity 

Viscosity is a measure of a solutions resistance to flow [73] and in the 

case of electrospinning where solution flow is initiated, the solution will 

experience a shearing stress. For Newtonian liquids the relationship 

between viscosity and the shearing force, in the case of straight, parallel 

and uniform flow, is generally explained in terms of the velocity gradient of 

a fluid moving between two layers spaced at a distance y, as shown in 

Figure 2.8.  

 

 

Figure 2.8: Laminar shear of fluid between two plates (with one stationary and 

one moving). The viscosity between the fluid and the moving boundary causes 

shearing of the fluid. This type of flow is known as Coutte flow. 
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For a given solution velocity gradient      , the size of the shearing force 

(τ) is controlled by a proportionality factor known as the viscosity (η) as 

defined by: 

     
  

  
  (2.8) 

Thus, there is a linear relationship between the applied stress and the rate 

of shear; the τ vs.        plot passes through the origin. The viscosity can 

easily be determined using techniques that exhibit e.g. Coutte flow, as 

shown in Figure 2.8 [73]. However, the polymeric solutions used in this 

study are non-Newtonian fluids and exhibit a non-linear τ vs.       

relationship. Polymer solutions tend to exhibit shear thinning in which the 

apparent viscosity  
 

       
  decreases with increasing shear rate, while some 

simultaneously experience time dependent variation in viscosity.  

The viscosities of solutions in this investigation were determined 

using the technique of Coutte flow in a co-axial cylinder; with the fluid 

placed in the gap between the inner (rotating) spindle and the outer 

(stationary) cylinder. The viscosity of the solutions was determined by 

measuring viscosity as a function of spindle rotational frequency and fitting 

the data to obtain the high shear limit of viscosity. Further explanation of 

this technique can be found in ref [73].  

It is also possible to get an estimate of viscosity by just using the 

concentration and the intrinsic properties of the polymer solution from the 

following equation:  

                  (2.9)   

where c is the polymer concentration and [η] is the limiting (intrinsic) 

viscosity of the solution, which is dependent on the dimensions of the 

isolated polymer molecule and  defined as :  
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  (2.10) 

where K and a are empirically determined constants that are characteristic 

of the polymer-solvent system at a given temperature, and Mw is the 

molecular weight of the polymer. The intrinsic viscosity of the polymer 

solution depends on the configuration adopted by the polymer chain in the 

solution; if the polymer chain is curled up the viscosity decreases but if the 

polymer chain is extended the intrinsic viscosity increases. This 

configuration is dependent on the molecular weight and the interaction of 

the polymer with the solvent, i.e. the extent to which the solvent molecules 

can break the curled chain configuration. Generally, the intrinsic viscosity 

is high in “good” solvents and low in “poor” solvents [73]. 

2.6.1.2 Surface tension 

The initiation of the polymeric jet from the droplet requires the 

repulsive influence of the surface charges to overcome the surface tension 

acting in the opposite direction. Also, as described above, as the jet travels 

to the collector, the stretching force by the repelling charges needs to 

dominate over the surface tension of the jet to prevent beading of the fibres. 

It is therefore important to reduce the surface tension of the solutions to the 

minimum possible. Lower solution surface tension enables the use of lower 

solution conductivities or electric fields to conduce jet initiation and 

production of uniform fibres [109].  

Surface tension is mostly determined by the solvent composition and 

the interaction of the solvent with the polymer and thus varies depending 

on the solvent used to dissolve a given polymer. Surface tension is 

determined by the strength of the cohesive force between the surface 

molecules in a liquid, which bind more closely together than they do to the 

molecules of the surrounding medium (e.g. air). This leads to the formation 

of a thin film around the fluid, making it harder to break it apart. Since 
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surface tension has dimensions of force per unit length or energy per unit 

area, and a spherical configuration is favoured to keep the surface energy to 

minimum. Due to this tendency for solvent molecules to retain a minimum 

energy configuration, in the presence of a high concentration of free solvent 

molecules in a solution, there is a greater tendency for solvent molecules to 

congregate and act against the influence of the charges that push the liquid 

apart. Conversely, a higher concentration of polymer can reduce this effect 

by causing solvent molecules to be dispersed more readily over the polymer 

molecules and hence lowering their tendency to come together [73]. The 

surface tension of solutions, which is typically 30 mNm-1 [102], can be 

lowered through blending of solvents with low surface tension values or 

through the addition of surfactants.  

2.6.1.3 Conductivity/surface charge density 

For electrospinning to take place the solution needs to be sufficiently 

conducting to enable the surface charges to overcome the surface tension of 

the droplet and initiate jet flow. Thus, non-conducting solutions will not 

electrospin. Increasing the conductivity results in an increase in the 

repulsive columbic force stretching out the solution jet, and thus, enables 

the formation of finer fibres. In fact, increasing the solution conductivity 

can be the simplest root to reducing fibre diameters or fibre beading in low 

viscosity solutions. 

The conductivity of the solution is largely determined by the type of 

solvent and polymer used, although addition of salts and/or surfactants may 

be needed to increase the charge density (i.e. the number of ions). While 

salts and surfactants readily dissolve in most solvents with significant 

polarity, dissolution of salts in non-polar solvents (such as toluene) may be 

difficult and hence the ionic conductivity required to initiate electrospinning 

may be difficult to achieve. This is a problem we have encountered in our 

research, as further discussed in §5.3.2. In such cases blending of solvents 

with higher conductivities or those that enable dissolution of salts can be 
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used to increase the conductivity (as we have done to overcome this 

problem). It should be noted that the size of the ions in the solution may 

also have an effect on the fibre morphology. Zhong et al. has demonstrated 

the removal of fibre beading on addition of salt, with smallest fibre 

diameters obtained for solutions containing NaCl and largest diameters 

obtained for solutions containing KH2PO4; while solutions containing 

NaH2PO4 yielded fibres with intermediate diameters [111]. This 

observation is attributed to the greater elongational force, caused by the 

greater mobility of the smaller ions, under the influence of the external 

electrostatic field.  

However, even with increased conductivity, there is a limit to the 

reduction in fibre diameter due to the increasing effect of viscoelastic forces 

on the stretched solution. As the solution jet is being stretched, the 

opposing viscoelastic force acts with an increasing magnitude against the 

coulombic force, halting solution stretching beyond a critical point. Also, in 

some cases addition of ions can increase the viscosity of the solution, and 

although conductivity may be increased, the increased viscosity may 

counteract the effect of increased charge density and hence result in an 

increase in the fibre diameters [112]. 

2.6.1.4 Dielectric constant 

The dielectric constant, also known as static relative permittivity of a 

material, is a measure of how well the material concentrates electrostatic 

lines of flux under the influence of an electric field. It is essentially the ratio 

of amount of stored electrical energy relative to the permittivity of vacuum 

when a voltage is applied. With an increasing dielectric constant the ability 

of the material to withstand larger electric fluxes increases and hence the 

materials capacity to hold larger quantities of charge for longer periods of 

time also increases. This parameter therefore has a significant influence on 

electrospinning. Using a solvent with a higher dielectric constant results in 

enhancement of the bending instability of the electrospinning jet, which 
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enables the reduction of the fibre diameters as facilitated by the increased 

jet path [113] and helps prevent or reduce bead formation in fibres [114]. 

Solvent mixtures containing solvents with high dielectric constants, 

such as DMF, water or acetonitrile, can be used to increase the dielectric 

constant of a solution. However, it is important to also consider other 

parameters of the solvents when forming mixtures, as parameters such as 

solvent conductivity or vapour pressure could have reverse effects on the 

fibre morphology or diameters. The dielectric constant of a solvent also has 

an effect on the solvating ability of the solvent, with higher values enabling 

easier dissolution of salts or ionic liquids [115]. This is an important point 

to consider for increasing conductivity of solutions through salt dissolution. 

 

2.6.1.5 Vapour Pressure 

Solvent vapour pressure (P0) is another important parameter for 

success of co-electrospinning and morphology of the as spun fibres; a too 

high P0 will cause the droplet at the tip of the nozzle to dry, preventing 

electrospinning, and a P0 too low will cause the fibres to go down wet to 

form a film. Lower vapour pressure solvents can enable the electrospinning 

jet to remain fluid for longer and hence delay the solidification of the jet 

into fibres. A longer flight time will enable the jet path to increase with 

further stretching to yield fibres with lower diameters. A too high vapour 

pressure solvent may also result in the formation of collapsed or elongated 

fibre cross-sections, as shown in Figure 2.9. This happens as fast 

evaporation of the solvent from the surface layer of the solution jet leads to 

formation of a skin layer that buckles under the pressure difference created 

[116]. It is therefore important to use a sufficiently low vapour pressure 

solvent to retain a sufficiently liquid droplet at the nozzle tip to enable jet 

initiation, and for control of the fibre morphologies and diameters. Once 

again, solvent mixtures can be used to control the vapour pressure. 
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Figure 2.9: Collapsed (buckled) electrospun fibres; an effect attributed to high 

vapour pressure of the solvent used. 

 

The vapour pressure, P0, of a solvent can be calculated from its boiling 

point TB  and  heat of vaporisation ∆Hvap using the Clausius-Clayperon 

equation [117]: 

         
     

 
 
 

  

 
 

  
       (2.11) 

where R is the ideal gas constant  (8.314 J mol−1K−1), T0 is the temperature 

of measurement (in Kelvin or other absolute temperature units) and Patm is 

the atmospheric pressure (in units of atm).      
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2.6.2 Process parameters 

2.6.2.1 Voltage 

Electrospinning only takes place when a minimum threshold voltage 

is applied to a charged solution and this threshold varies depending on the 

solution system used, though typically a positive voltage of more than 6 kV 

is needed [73]. The applied voltage will cause charges to collect on the 

surface of a droplet and together with the applied electric field it induces 

the formation of a Taylor cone, with an electrospinning solution jet 

emanating from the tip of the cone. Generally, the greater the voltage is the 

greater the stretching of the electrospinning jet due to the increase in 

columbic force exerted by the charges [73]. Increasing the voltage also has 

the effect of increasing the jet acceleration and hence decreasing the flight 

time of the electrospinning jet. Both these effects greatly influence the fibre 

morphology and diameters. It is suggested that while increasing the voltage 

can reduce fibre diameters, due to increased stretching, going beyond a 

critical voltage can cause more solution being ejected from the nozzle, which 

leads to formation of fibres with greater diameters [118]. This is illustrated 

by the results of a voltage vs. fibre diameter experiment conducted using 

different concentrations of poly(methyl methacrylate) (PMMA)  in 

dimethylacetamide (DMA) solutions in this study. Figure 2.10 shows the 

different regimes that exist as voltage is increased; a saddle point exists in 

the data. The region before the saddle point (marked as 1) corresponds to 

the dripping region when the voltage is too low for the set flow rate (500 

μl/hr in this case); in this region the fibre diameters increase gradually as 

voltage increases up to the saddle point. At the top of the saddle point a 

stable Taylor cone is obtained at the tip of the nozzle (i.e. the rate of draw of 

the voltage matches the flow rate). With the voltage further increased 

(point 2) the fibre diameters once again decrease in diameter as the Taylor 

cone recedes into the nozzle up to the point of the saddle minima. Beyond 

this point the fibre diameters start increasing again (region 3) as a result of 
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the increased voltage causing more solution to be drawn out of the nozzle 

than that is available with the set flow rate. In this scenario the 

electrospinning process is intermittent as the jet breaks with the solution 

depleting in the nozzle and re-issues as more solution flows through after a 

short interval. Figure 2.10 also shows how these effects are much more 

pronounced for more viscous (i.e. higher PMMA concentration) solutions. 

 

Figure 2.10: Fibre diameter vs. voltage plot of PMMA fibres electrospun at 

different concentrations of PMMA. 

When a solution of low viscosity is used a high voltage may lead to the 

formation of multiple jets from the droplet, leading to fibres with lower 

diameters to be formed, but with a greater fibre diameter distribution. The 

voltage can also affect the crystallinity of the polymer fibres as the 

electrostatic field causes stretching of the entangled polymer chains 

(molecules) [73]. However, this effect is said to be true up to a given voltage, 

beyond which the jet acceleration is too high (i.e. flight-time too low) for 

polymer molecules to be aligned before they are deposited on the collection 

plate. Therefore, in order to investigate the effect of voltage on fibre 
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morphology and diameters for a given system, it is important to test a range 

of voltages within the range that enables stable electrospinning. This range 

is heavily dependent on the solution properties and the feed rate, as well as 

the collector distance from the tip of the nozzle, which are discussed next. 

2.6.2.2 Tip to collector distance 

Varying the tip to collector distance will change the flight distance as 

well as the electric field strength for a given voltage (Figure 2.11). When 

this distance is reduced the flight path will be reduced and the field 

strength that accelerates the jet downward will be increased. As a result 

there may not be sufficient time for the solvent to evaporate and the fibres 

will go down wet, forming either an interconnected fibre mesh or a polymer 

film, depending on the wetness of fibres. 

 

 

Figure 2.11: Schematic electrospinning set up showing tip-to-collector (flight) 

distance of electrospinning jet. 
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The effect of varying tip-to-collector distance depends on the solution 

system. In some cases increasing the distance has the effect of reducing 

fibre diameter, as facilitated by the increase in the flight path enabling 

greater stretching of the electrospinning jet [73]. But in other cases 

increasing the distance too far can also lead to increase in fibre diameters, 

due to reduced stretching of fibres under the lowered electric field strength 

[73]. 

Reducing the distance can also lead to beading of fibres, this is 

associated with the increased field strength, which, when it is too high, can 

cause instability in the jet and lead to the formation of beads, in the same 

way described above. It is therefore important, for a given system, to find 

the optimum tip-to-collector distance that is sufficiently high to enable 

evaporation of the solvent from the fibres, while enabling formation of a 

stable jet that stretches out the fibres as much as possible. 

2.6.2.3 Feed-rate 

The solution feed-rate (or flow-rate) determines the amount of 

solution that is available for electrospinning over a given time. The voltage 

needs to be varied for a given feed-rate to sustain a stable Taylor cone. If 

the solution extraction rate (as determined by the magnitude of the voltage) 

is not balanced by the feed rate, the solution at the tip of the nozzle will 

continuously drip during electrospinning. We have found that increasing 

the feed rate results in increased fibre diameters and bead sizes. This is not 

surprising since increasing the feed rate results in a greater volume of 

solution to be drawn away from the nozzle tip. However, it is reported that 

there is a limit to the increase in the fibre diameters due to feed-rate [73]. 

For a given voltage that balances the feed-rate, increasing the feed rate (or 

the volume of solution) further results in more charges in the droplet at the 

apex of the nozzle, which means a corresponding increase in the stretching 

of the solution [73]. Thus, once again the fibre diameter is controlled by 

balancing the effect of separate parameters. 
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2.6.3 Environmental (ambient) parameters 

The effect of ambient conditions on the polymer solution and hence 

electrospinning process and/or the fibre morphologies is not as thoroughly 

investigated as the process and system parameters, but increasing amount 

of research is pointing to the importance of the environmental conditions for 

controlling fibre morphology and diameters. These parameters include 

temperature, humidity, atmospheric pressure etc. The first two are 

discussed below. 

2.6.3.1 Temperature 

The ambient temperature, which determines the solution 

temperature, influences the solvent evaporation rate and solution viscosity, 

with the former increasing and the latter decreasing with temperature. As a 

result higher temperatures are shown to yield finer fibres [73]. This is 

because with a lower viscosity the columbic forces have a greater fibre 

stretching potential, while the lower evaporation rate of the solvent enables 

the jet to be stretched over a longer time period. 

2.6.3.2 Humidity (water content of atmosphere) 

Humidity (atmospheric water concentration), above a certain level, is 

found to cause pores on the surface or interior of the fibres. The size of the 

pores are found to increase with increasing humidity, eventually coalescing 

to form large, non-uniform structures [119]. The formation of pores at high 

humidity is attributed to water condensation on the surface of the fibres or 

formation of water islands within the fibres. As in the case of most 

parameters discussed above, the effect of humidity on the fibre morphology 

changes depending on the solvent-polymer system. For example, pores 

caused by humidity may be more prevalent in some polymer fibres than 

others. Casper et al. [119] report the presence of pores in Polystyrene (PS) 
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fibres when electrospun in an atmosphere with more than 30% relative 

humidity. In the case of Polysulphone (PSU) dissolved in Tetrahydrofuran 

(THF), the maximum humidity for smooth fibre formation is 50%. On the 

other hand, a very low humidity may aid rapid evaporation of a highly 

volatile solvent, as the partial pressure is decreased, causing the polymer 

jet to dry out too quickly, without sufficient stretching to form fine fibres. In 

this case the nozzle tip may also become clogged. Therefore, the humidity of 

the surrounding atmosphere has to be adjusted according to the chosen 

solvent-solution system to attain smooth (non-porous) fibres.



 

 

 

 

Chapter  3                                       

Co-electrospinning: Technology 

and Control 

 

3.1 Introduction 

 

As discussed in Chapter 2, electrospinning has been widely recognised, 

both at the research and industrial level, as a cost effective and versatile way 

of producing nanofibres. More recently, as a result of increasing demand for 

specialised nanostructured composite materials, a more complex variant of 

this process, called co-electrospinning (or co-axial electrospinning) [71, 72, 

120-126] has been developed. Co-electrospinning involves the use of two 

concentric nozzles to deliver two separate solutions to make functionalised 

bicomponent nanofibres with a core-shell configuration. This process works in 

a similar way to its single phase variant, such that an electric field is applied 

to a suspended droplet at the tip of the nozzle to yield co-axial fibres with 

diameters typically in the sub-micron range. The main difference is that two 

solutions, instead of one, are delivered independently through the concentric 
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nozzles, with one solution being the precursor for the core and the other for 

the shell of the fibres. The core material is not required to be polymeric, which 

enables a wide variety of materials either in melt or solution form to be 

encapsulated and structured, with properties of the polymeric shell chosen to 

enhance fibre functionality. This technique is therefore highly useful for 

encapsulating and nanostructuring non-polymeric materials for a wide range 

of uses with the possible benefits of: 

- enabling improved material properties as a result of  nanostructuring, 

- isolating the core material that may be unstable in air to minimise its 

chance of decomposition, 

- enabling controlled release of the core component over time through 

the use of a shell material that decomposes in a given environment, e.g. 

controlled release of a substance/drug contained in a biodegradable 

polymer, 

- enabling one material, usually the shell, to act as a scaffold for the 

other, such that fibres can be functionalised for a specific use, e.g. 

doping with metals for optoelectronics applications, 

- reinforcing a material to improve its mechanical properties [72]. 

Co-electrospinning has already gained attention for a variety of 

applications including biomedical (tissue engineering, controlled drug release 

systems) [69-71],  filter systems, catalysis, optical applications (waveguides) 

or as nanocables for microelectronics [72]. Its use for generating 

nanostructured materials for hydrogen storage applications has not been 

reported previously, yet the benefits described above and its potential as a 

cheap commercial process makes it a powerful tool for hydrogen storage 

research. With this idea in mind we have endeavoured to investigate co-

electrospinning as a means to encapsulate metal or complex hydrides inside a 

sheathing nanofilament of hydrogen-permeable polymer for hydrogen storage 

applications.  

Since this is the first investigation looking at encapsulating hydrides in 

nanofibres through co-electrospinning, a large part of this study was 

composed of understanding the parameters that will be important for 
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successfully controlling the process. Though, co-electrospinning works in a 

similar way to its single phase variant, such that it involves the control of the 

same process and system parameters (e.g. viscosity, electrical conducivity, 

voltage, etc) as described in Chapter 2, the use of two solutions instead of one, 

introduces additional complexity to the process. Also, due to the limited 

amount of work published on co-electrospinning, there is not yet a concrete 

understanding of the exact mechanisms that enable confinement of the core in 

the shell solution and hence how the core and the shell parameters have to be 

balanced to ensure the success of the process. The use of a highly reactive (i.e. 

polar) non-polymeric core material, such as AB, enabled us to see some of the 

issues that may arise and the factors that may require specific attention when 

using co-axial spinning to encapsulate complex materials, such as chemical 

hydrides. Thus, through this study we have attempted to bring clarity to some 

of the inconsistencies reported in experimental studies. We have also looked 

at some of the theoretical work published on the instability mechanism of 

compound jets to explain some of the fibre morphologies we have obtained. 

In the first part of this chapter I will discuss the co-electrospinning 

process in terms of the instability theory of the compound jet and in turn 

discuss conditions (i.e. balance between parameters) required for successful 

co-electrospinning of co-axial fibres, mostly based on what is outlined in 

literature (and verified in this study) and some of our supplementary findings 

based on the results of this study. In the second part I will describe a solution 

selection model I have developed as a way of efficiently selecting compatible 

solution combinations and as a way of effectively optimising the solution 

parameters described in the first part of the chapter. 

3.2  Co-electrospinning Process and Control 

3.2.1 General set up and the process 

The general set up is similar to that used for electrospinning described 

in §2.1, the only modification made is through the use a co-axial spinneret 
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system where a smaller (inner) capillary is inserted into a bigger (outer) 

capillary. The core capillary is connected to a reservoir (syringe) containing 

the core solution while the outer capillary is connected to a reservoir 

containing the shell solution and the feed rates of each solution is controlled 

separately using metering pumps or air pressure. It is important to have the 

co-axial nozzle system fully concentric, with the axis of both capillaries 

maintained parallel at all times; this requires careful designing and 

manufacture of the co-axial spinneret. The nozzle set up used in this 

investigation is shown in Figure 3.1; it has a vertical arrangement, but as in 

the case of single phase electrospinning a horizontal set up can also be used. 

The process of co-axial electrospinning is conceptually similar to single 

phase electrospinning, such that when a sufficiently large potential difference 

is applied between the nozzle tip and collector, charge accumulation 

predominantly on the surface of the sheath liquid causes a co-axial jet to 

emanate from the compound Taylor cone formed. The jet goes through the 

bending instability regime (as described in the next section) and forms fibres 

with the core-shell configuration once most of the solvent has evaporated. The 

entrainment of the core solution by the shell solution is enabled by the 

shearing forces such as “viscous dragging” and “contact friction” exerted by 

the shell onto the core solution when the shell solution is rapidly stretched  

under the influence of the columbic forces (Maxwell stresses) [72, 127, 128].  

The challenge is in ensuring that the core solution is uniformly confined 

in the shell solution through the creation of a co-axial jet that forms fibres 

with a core-shell configuration. While stability of the Taylor cone is a primary 

requisite [72], the compatibility of the core and shell solutions, as well as the 

balance between the solution and process parameters are highly important 

factors for ensuring success of the process.  
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Figure 3.1: Co-axial nozzle set up used in co-electrospinning. 
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3.2.2 Instability theory of a co-axial jet 

The behaviors of electrified co-axial jets are closely connected with the 

propagation and growth of disturbance waves on them. Amplified disturbance 

waves propagate downstream under the influence of surface tension and 

electrostatic force, making the jet break up ultimately [129]. Instability 

analysis of the co-flowing jets is therefore highly important for understanding 

the mechanisms that enable the compound bending jet to be sustained and 

formed. We were specifically interested in understanding how the instability 

modes in a compound jet can influence fibre morphology, especially in the case 

of unconventional core-shell solution combinations, such as the solution sets 

used in the production of ammonia borane-polystyrene fibres (i.e. a highly 

conducting non-viscous core solution surrounded by a low conductivity viscous 

shell). After an analysis of the theoretical work in literature on co-axial 

instabilities, I deduced the main instability mechanisms controlling the 

behavior of the co-electrospinning jet (as described in these studies) [96, 102, 

129-131]. In this section I present a summary, from literature, on the theory 

of the instabilities in a co-axial jet and the way in which some of the solution 

and process parameters control these instabilities. This literature study was 

specifically important for providing an explanation for the atypical porosity of 

our fibres and for investigating the possibility of gaining control of fibre 

porosity through the control of these instability modes. This will be discussed 

further in §5.4.4, here I will just focus on the theory. 

As in the case of single phase electrospinning the compound jet flowing 

under an electric field is subject to both axisymmetric and non-axisymmetric 

forces i.e. the Rayleigh, axisymmetric conducting and whipping conducting 

modes, which control the flow of the jet and whether it results in the 

production of hollow or compound micro/nanoparticles (co-axial 

electrospraying) or micro/nanofibres (co-axial electrospinning). There have 

been a substantial number of theoretical studies [102, 129-132] aimed at 

understanding the mechanisms responsible for the instability behaviour of co-

axial jets under the influence of an electric field. In §2.4, the instability in the 

electrospinning process was identified as being controlled by three different 
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instability modes; the Rayleigh, the axisymmetric and the non-axisymmetric 

(whipping or bending) modes. As in the case of single phase electrospinning, 

these modes control the continuity and the final morphology of the 

electrospun fibres. However compared with single liquid jets the behaviours of 

coflowing jets are much more complicated because of the existence of two 

liquids with two interfaces (the inner liquid-liquid interface and the outer gas-

liquid interface) [129]. 

Theoretically, the behaviour of a coaxial jet is determined by the type of 

instability in the jet, such that when it is perturbed by an arbitrary 

infinitesimal disturbance, its inner and outer interfaces will be modulated 

accordingly, depending on the type of disturbance waves propagating 

downwards under the influence of the surface tension and electrostatic force 

(electric field) [129, 131]. The theoretical models generally attempt to solve for 

the electrohydrodynamics of the compound jet flowing from a capillary tube, 

as schematically illustrated in Figure 3.2.  

 

 

Figure 3.2: A schematic illustration of the deformed compound jet, ρ1, ρ2 and ρ3 

are mass densities of the core, shell and outer fluids respectively, η1 and η2 are 

the core and shell viscosities respectively, figure adapted from [133].  

In general, the behaviour of capillary waves under the influence of gravity can 

be described by the dispersion relation:  
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(3.1) 

where ω is the angular frequency (with units of radians per second), ρ and ρ‘ 

are the mass density of the two fluids ( with units of kg m
-3, ρ > ρ‘ ) , ζ is the 

surface tension (with units of N m
-1 or J m

-2),  g is the acceleration due to 

gravity (with units of ms
-2) and k = 2π/λ is the wavenumber (λ has units of 

metres). The first term in Eq. (3.1) is for the gravity wave and the second 

term is for the capillary wave. At short wavelengths (i.e. large k), the capillary 

term dominates: 
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The amplitude a of these waves depend on the total energy Et 

    
  

  
  

   

  
 (3.3) 

where T is the temperature of the liquid. Thus, the surface tension controls 

both the frequency and the amplitude of the capillary waves between the two 

fluids. If the fluids are viscous then the waves will be damped with a time 

constant approximately given by: 

      
     

     

 (3.4) 

i.e. the viscosity of the fluid can have a stabilising effect on the capillary 

waves.  

Applying an external electric field causes the surfaces of these fluids to 

become unstable as the curvature of the surface creates a destabilising force 

that acts against the dampening effects of viscosity or the restoring force of 
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the surface tension. The instability characteristics of co-axial jets have been 

studied under axial or radial fields by many authors, who have predominantly 

looked at the axisymmetric instability modes due to the complexity of 

modelling the non-axisymmetric modes [102, 129, 130]. More recently Li et al. 

[131] have carried out a linear study on both the axisymmetric and non-

axisymmetric instability modes of a viscous co-axial jet in a radial electric 

field, where the outer liquid is considered to be a leaky dielectric and the 

inner a perfect dielectric. Based on the findings of this study, I will discuss 

how the solution and process parameters affect these instability modes and 

hence the way in which the compound jet is formed.  

3.2.2.1 Axisymmetric and non-axisymmetric instability modes 

 

 

Figure 3.3: Sketch of the unstable modes. (a) The para-varicose mode, (b) the 

para-sinuous mode, (c) and (d) the helical mode (e) the non-axisymmetric mode 

n=2, (f ) the nonaxisymmetric mode n=3, (g) the non-axisymmetric mode n=4 and 

(h) the non-axisymmetric mode n=5. Solid curves: the interfaces after 

perturbation; dotted curves: the interfaces before perturbation [131]. 
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Using a normal mode it is possible to decompose the capillary waves on a 

cylindrical surface into modes characterised by an azimuthal wavenumber n 

and the axial wavenumber k: 

                              (3.5) 

where r, θ, z are the radial, azimuthal and axial coordinates respectively and  

i=(-1)1/2 

The axisymmetric instability (n=0) is described by the existence of two 

unstable modes; para-varicose and para-sinuous modes, as determined by the 

phase difference of the flowing core and the shell solutions along the r-z plane. 

In the case of the para-varicose mode the core-shell interfaces are perturbed 

out of phase, whereas for the para-sinuous mode the interfaces are deformed 

in phase, as shown in Figure 3.3 (a) and (b) respectively [102, 129-132]. 

For the non-axisymmetric instability (n>0) modes there is a single 

unstable mode for any given azimuthal wavenumber. The interface 

configurations of the first few non-axisymmetric instability modes with small 

azimuthal wavenumbers (n = 1, 2, 3, 4, 5) are shown in Figure 3.3 (c)-(h), 

respectively [131]. In the first non-axisymmetric mode (n=1), also called the 

helical mode, the interfaces and the central line of the jet are displaced in 

phase with the area of cross-section unchanged, as shown in Figure 3.3 (c) and 

(d). On the other hand for the larger non-axisymmetric modes (n = 2, 3, 4, 5 

etc.) the central line of the jet is unperturbed, but the core-shell interfaces 

experience periodic variation in the r–θ plane, the period of which is 

determined by the value of n.  

The solution viscosity, as characterised by the Reynolds number, is 

found to control the growth of these instability modes; especially the para-

sinuous and non-axisymmetric n>1 modes. Thus, with increased solution 

viscosity the helical instability predominates over axisymmetric instability, 

such that the Rayleigh instability is suppressed, leading to bending of the jet 

in space without breakup, i.e. (co-axial) electrospinning. Increasing the 
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electric field has the effect of increasing the instability of all the modes, 

especially the helical mode, as well as increasing the number of possible 

wavenumbers of all modes [131]. Thus, the destabilising effect of the field on 

the flowing jet can be controlled by varying the electric field accordingly.  

The interfacial tension between the core-shell interfaces is reported to 

have a particularly important effect on the jet instability growth. This is 

intuitively obvious since the cohesion energy between the two liquids will 

increase as they become more miscible, such that the interfacial surface 

tension will tend to zero as their mutual interaction becomes as strong as 

their self-cohesion. Fang Li et al. [131], report that the influence of the para-

sinous mode is destabilized by interface tension in long wavelength region, 

whereas the helical mode and the non-axisymmetric modes n>1 are stabilized 

by interface tension.  

Most of the theoretical studies are carried out with some form of 

variation between the conditions set for each study (e.g. direction of the 

electric field, relative electrical properties of the solutions, viscosity etc.), such 

that it is difficult to make generalisations to describe the exact instability 

mechanisms in the jets and the factors influencing it. However, it is easier to 

generalise the mechanism that enable the switch from electrospraying to 

electrospinning. In general, it is found that a relatively small radial electric 

field, low liquid viscosity and high interface tension favour the predominance 

of the para-sinuous mode and hence electrospraying of the jet.  Conversely, a 

relatively large radial electric field, high liquid viscosity and low interface 

tension enables the helical mode to dominate and cause electrospinning of the 

jet.  The effects of these and other electrospinning parameters in co-

electrospinning are discussed in more detail in the next section. 
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3.2.3 Solution and process parameters 

3.2.3.1 Core-shell solution miscibility & compatibility 

Depending on the likeness between the molecular forces in the solutions 

(as determined by the strength and type of bonds in each component) the 

solutions will have varying degree of miscibility. Also, if the solutions interact 

in such a way that the solvent in one causes precipitation of the solute (e.g. 

polymer) in the other, then the solutions are considered incompatible. The 

interaction between the core and the sheath solutions, as determined by their 

solubility parameters and as manifested in the miscibility and compatibility 

behaviour of the solution when they come in contact at the tip of the capillary, 

is one of the first factors to consider when selecting the solution combinations. 

It was mentioned in the previous sections that the primary requisite for 

successful co-electrospinning is the formation of a stable Taylor cone at the tip 

of the co-axial capillary system. If the polymer in either of the solutions is 

precipitated out of its solution then the droplet will not be sufficiently liquid 

to enable the formation of a Taylor cone and/or ejection of the co-axial jet. Also 

in order to obtained fibres with uniform core shell structures it is important 

that the core and shell solutions remain phase-separated throughout the 

spinning process. However if the two solutions mix before the bending 

instability sets in then a core-shell configuration will not be obtained.  

There is not yet a consensus in literature on the importance of the 

miscibility of the core and shell solutions. Some authors demonstrate the 

feasibility of obtaining fibres with a core-shell configuration when using 

miscible solutions [121, 134]. It is postulated that the characteristic time of 

the bending instability is significantly smaller than the characteristic time of 

“diffusion spreading of a sharp boundary” between two miscible solutions and 

thus the solutions remain phase separated [121]. On the other hand others 

report  that the immiscibility of the core and shell solvents was critical to the 

production of well-defined core-sheath nanofibres [127, 135]. In these studies 

it is reported that porous fibres are obtained when miscible solution 
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combinations are used. However the extent of miscibility as defined by the 

solution solubility parameters, the inter-boundary diffusion of the solutions 

and the residence time of the core solution in the shell droplet is not discussed 

in any of these studies. In order to determine the importance of the degree of 

core and shell solution miscibility and to clarify some of the discrepancies in 

literature, the effect of solution miscibility on the success of the co-axial 

electrospinning process and the core-shell morphology of the fibres was  

investigated. This was done by the use of solutions with varying degrees of 

miscibility (i.e. miscible, semi-miscible and immiscible solutions), as discussed 

further in §5.3.2. 

3.2.3.2 Solution viscosities 

In co-electrospinning controlling the solution viscosities is highly 

important for ensuring that the core is uniformly entrained by the sheath 

material. The viscosity of the sheath solution should be high enough to ensure 

the viscous stress imparted by it on the core is sufficient to overcome the 

interfacial surface tension between the two solutions in the droplet and 

enable the formation of a compound Taylor cone, with a co-axial jet emanating 

from it [72, 136]. Since the sheath solution guides the core solution during the 

stretching of the jet, it is essential for sheath solution to be electrospinnable 

on its own, even though the core solution does not have to be. Nevertheless, 

the viscosity of the core solution should be neither too high or too low to 

ensure continuous entrainment of the core in the shell; if it‟s too low then the 

core jet will break up [78, 136], if it‟s too high (i.e. higher than the that of the 

shell) then the shearing force exerted by the shell will not be enough to 

stretch the core. Therefore it is important to use a sufficiently viscous core 

solution, but with a viscosity lower than that of the shell.  

As in the case of single phase electrospinning the inner and outer fibre 

diameters can be controlled by respectively varying the core and shell solution 

viscosities; with the diameter of each component increasing with their 

respective viscosities [137, 138]. Likewise, low viscosity solutions results in 

beaded fibres, as we found for PAN-PMMA (shell-core) solutions, shown in 



Co-electrospinning: Technology and Control                        89 

 

 

Figure 3.4 (a) and (b), which can be removed by increasing the viscosity of the 

solutions (Figure 3.4 (c) and (d)). 

. 

 

Figure 3.4: Co-electrospun PAN (shell): PMMA (core) fibres at core-shell flow 

rates of 500-500 μl/hr from solution of (a) 10 wt.% PAN in DMF and 12.5 wt.% 

PMMA in DMF,  (b) fibres in (a) heated at 500 °C to remove PMMA core, (c) 10 

wt.% PAN  and 15 wt.% PMMA, (d) fibres in (c) heated at 500 °C to remove 

PMMA core. 

3.2.3.3 Solution conductivities 

The electrical conductivity of the solutions is another variable that is 

highly important for controlling the co-electrospinning process and the quality 

of the co-axial fibres obtained. As described in §2.6.1.3 for the single-phase  

electrospinning, an increase in solution conductivity means an increase in 

charge density and hence an increase in the columbic force (Maxwell stress) 
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causing elongation of the whipping jet, which results in the reduction of fibre 

diameters.  

There appears to be discrepancies in literature on the way the 

conductivity must be controlled in co-electrospinning. While some 

experimental studies report on the necessity of having higher shell solution 

conductivity for continuous entrainment of the core by the shell [72, 127] since 

the shell needs to act as the driver of the compound jet, theoretical studies on 

the electrodynamics of the process suggest that this is not necessary. Reznick 

et al. [139] show that when a sufficiently large electric field is applied to the 

compound Taylor cone “the free charges migrate very rapidly from both fluids 

and their interface to the free surface of the shell”, suggesting that the electric 

field is acting only on the free surface (as shown in Figure 3.5). Thus the 

entrainment of the core would be controlled only by the viscous forces 

generated in the shell. This is found to be true even when the droplet is 

modelled as a leaky dielectric with very low conductivities used. It is reported 

that  the behaviour of the liquid droplet rapidly approaches that of a perfect 

conductor under the applied electric field even when inner and outer solution 

conductivities are as  low as σin=σout=3.75 x10−9 S/m in their model, which is 

said to be in good agreement with their experimental observations [139]. 

 

Figure 3.5 Schematic diagram of compound Taylor cone formation under the 

influence of an electric field: (a) charges migrate to surface of shell, (b) viscous 

drag exerted on the core by the deformed sheath droplet, (c) compound Taylor 

cone formed due to continuous viscous drag [139]. 
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Carol et al. [102] report the same findings as above for when outer liquid 

is a conductor and the inner is a dielectric. They point out that the electrical 

relaxation time of the charges in a conducting medium is much smaller than 

that in a dielectric. Thus, if the outer liquid is a conductor and the inner is a 

dielectric, the charges will collect on the outer liquid-gas interface, and the 

outer liquid will be driver for the compound jet. However, if the inner liquid is 

a conductor and the outer a dielectric then the electrical relaxation time of the 

inner liquid (as compared to the time taken for the bending instability to set 

in) is significantly smaller than that of the outer one and the charges are 

concentrated on the inner liquid-liquid interface;  the inner liquid is then the 

driving component of the jet [102].  

 Further support for the varying effect of having different core and shell 

conductivities on the co-electrospinning jet comes from  Li et al. [129], who 

have, through a linear instability analysis of the co-axial jet under an axial 

field, analysed four different cases of core-shell solution conductivity; IDOC 

(inner: dielectric; outer: conductor), ICOD (inner: conductor; outer: dielectric), 

ICOC (inner and outer: conductor), and IDOD (inner and outer: dielectric). 

For each case the authors report finding a separate dispersion relation. This 

result is particularly important for gaining control of electrospinning bi-

component liquids, especially in the case of complex materials where it may 

be difficult to control the relative conductivities in a way that enables the 

production of uniform, non-porous core-shell fibres. This will be discussed 

further in §5.4.4, where the porosity of the ammonia borane encapsulated 

polystyrene (AB-PS) fibres is attributed to the higher core solution 

conductivity of the co-axial jet. 

3.2.3.4 Solvent vapour pressure 

The vapour pressure of the core and shell solvents used is highly 

influential in controlling the core-shell morphology of the co-electrospun 

fibres. It is important to use solvents with sufficiently low and similar vapour 

pressures in the core and the shell solutions for two reasons. Firstly, because 

if the shell solvent evaporates too quickly at the droplet before a stable Taylor 
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cone is formed then either a jet will not emanate from it or multiple jets may 

be formed, halting the formation of uniform co-axial fibres [140]. Secondly, if 

there is a difference in the evaporation rates of the core and shell solvents 

such that either one of the core or shell solvents evaporates too quickly then 

the fibres may buckle to form ribbon like structures instead of co-axial fibres. 

This happens as a result of either the shell solvent evaporating too fast, 

forming an external skin layer that buckles under atmospheric pressure [128], 

or when the core evaporates faster and creates a thin layer at the core-shell 

interface, which also causes fibre buckling under atmospheric pressure once 

all the solvent evaporates leaving a vacuum behind [140].  

We have found fibre collapsing to be a common issue in our attempts to 

co-electrospin AB-PS fibres with the core and shell solvents chosen on the 

basis of compatibility. It is very difficult to satisfy all solution parameters in 

the right way to enable successful co-electrospinning, for example choosing an 

immiscible solution combination may mean choosing solvents with different 

vapour pressures, since both factors are controlled by differences in the 

internal molecular forces of the solvents. Thus, a systematised solution 

selection process is necessary to efficiently select the right combinations of 

core and shell solutions. In this respect I have developed a solution selection 

model, which will be discussed in §3.3.3. But before that I will outline the 

processing conditions that need to be controlled for co-electrospinning. 

3.2.3.5 Solution flow rates 

Considering that other parameters are kept fixed, increasing the flow 

rates results directly in the increase of fibre diameters, with the inner (core) 

and outer (shell) diameters, respectively, determined by the core and shell 

flow rates. This is illustrated in Figure 3.6 for co-electrospun PAN: PMA 

fibres (with concentrations of 12 wt.% PAN in DMF (shell) and 15 wt.% 

PMMA in DMF (core)), where the core:shell flow rate ratio was varied with 

total flow rate fixed at 1000 μm/hr. While the relative core-shell diameters 

(i.e. shell thickness) can easily be varied through control of flow rates, the 

balance between the flow rates should be such that the formation of a stable 
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compound Taylor cone is not compromised. If, for a given shell flow rate, the 

core flow rate is too low, then an insufficient amount of core fluid will be 

delivered and the continuity of the core entrainment will be broken down and 

fibres with a discontinuous core-shell structure will be obtained. On the other 

hand if the core flow rate is too high, such that the core Taylor cone becomes 

too large, then the viscous shearing force exerted by the shell on the core may 

be insufficient to confine the core solution [134, 136]. Therefore, in order to 

ensure the continuous encapsulation of the core in the shell solution it is 

important to maintain the core flow rate lower than that of the shell. 

 

Figure 3.6: Co-electrospun 12 wt.% PAN in DMF (sheath) and 15 wt.% PMMA in 

DMF (core) at varying flow rates; shell flow rate increased from 500 to 900 μl/hr, 

with 100 μl/hr increments while core flow rate reduced from 500 to 100 μl/hr 

(total flow rate fixed at 1000 μl/hr).  
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3.2.3.6 Core nozzle protrusion 

Several authors have reported, based on theoretical and experimental 

results, that the entrainment of the core solution in the shell and hence 

formation of core-shell jets is greatly facilitated by the protrusion (extension) 

of the core nozzle (capillary) from the shell nozzle [128, 141]. While the 

protrusion distance of the core nozzle is required to be about several tens of 

per cent of the radius of the outer nozzle, the optimal protrusion distance is 

said to be dependent on several factors: “the viscosity ratio of the liquids, the 

interfacial tension, and the feeding rates of the inner and the outer liquids.” 

[128, 141]. Reznik et al. [139] suggest 0.5 rout (where rout is the outer radius of 

the outer nozzle) to be an optimal value for the protrusion distance of the core 

nozzle. With the same control parameters a higher protrusion distance (e.g. 

rout 0.6) was found to cause multiple jets to be emitted from the droplet. 

However, this value may vary depending on the solution and process 

parameters. Thus, if theoretical models are unavailable, the optimal 

protrusion distance can be determined empirically for a given solution set at 

selected process parameters. The co-axial nozzle system used in this 

experiment was set up with the core nozzle protruded by 0.5 rout. 

3.2.3.7 Applied voltage 

The effect of voltage in co-electrospinning is not as thoroughly 

investigated as the above parameters, and reports on the influence of voltage 

on the success of co-electrospinning and the fibre morphology is limited to the 

works of Li and Xia [127], and Moghe and Gupta [72]. In all other studies only 

one value of voltage, the value that enables a stabilised Taylor cone, is 

reported. Li and Xia report that both the inner and the outer diameters of the 

fibres decrease with increasing voltage. Moghe and Gupta report that for a 

given pair of solutions at a given combined flow rate there is a “small range of 

applied voltages in which a stable Taylor cone was formed”. With voltages 

below this range the solutions drip and a jet issues only intermittently. This is 

in agreement with our observations in this study. We have also found that 
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lower voltages, which allowed for the droplet to get bigger in a given time, 

increase the chance of solution mixing in the droplet. On the other hand, with 

voltages above the critical range, the Taylor cone was found to recede into the 

capillary and multiple jets were issued from the solution. It is therefore 

important, for a given pair of solution set at a given flow rate, to empirically 

determine the most suitable voltage (or voltage range) that enables the 

formation of a stable Taylor cone and production of uniform core-shell fibres. 

3.2.3.8 Required co-electrospinning conditions: a summary 

The degree of miscibility is a necessary but not a complete guide to 

whether co-axial spinning is possible; it also is required to control the relative 

scale of a number of other parameters. At the nozzle tip, a stable liquid Taylor 

cone is needed to enable a consistent and continuous core-shell structure to 

form. In a normal case for electrospinning compound (core-shell) solutions, the 

outer solution is chosen to have a higher conductivity than the core; in which 

case the driving force of the compound jet comes from the electrostatic charge 

build up on the outer surface of the shell. Stable spinning then depends on the 

outer shell solution drawing out the inner core solution through shearing and 

contact forces, „viscous dragging‟ and „contact friction‟, which keep the inner 

solution confined to the core while the fibres are being stretched. For this 

reason the shell solution should be electrospinnable on its own and based on 

the discussion above (formulated from what is in literature [72] and some of 

my own work) the following conditions must be satisfied: 

- The shell solution must have a higher viscosity than the core solution 

such that the viscous force imparted by the shell on the core is enough 

to overcome the interfacial tension, 

- The shell solution must have a higher flow rate than that of the core, so 

that the viscous drag applied by the sheath solution is sufficient to 

confine the core solution within the cone [136], 

- The vapour pressure of both solutions must be sufficiently low and 

comparable so both the core and shell dry at similar rates to stop fibres 

collapsing, 
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- The conductivity of the shell solution should ideally be higher than 

that of the core to enable continuous entrainment of the core by the 

shell, though higher core conductivity will also allow for co-axial 

spinning, 

- The two solutions must possess low interfacial tension to prevent large 

stresses at the core-shell interface reducing fibre stability and to 

produce a stable Taylor cone [134, 136]. 

 

3.3 Solution Chemistry 

3.3.1 The need for a solution selection model  

Controlling and optimising the solution parameters, as discussed in the 

section above, is critical for ensuring success of co-electrospinning. To attain 

the required balance between the solution parameters it is necessary to 

optimise the parameters of each solution individually. The core and shell 

solution combinations should be such that the two sets of solutions are 

compatible. Solution compatibility in this context is defined as the suitability 

of two dissimilar solution systems to be electrospun together. Two solutions 

are considered as incompatible if the solvent in one causes the precipitation of 

the solute in the other, such that when the two come in contact at the tip of 

the co-axial nozzle, the droplet becomes insufficiently liquid to enable the 

formation of a Taylor cone and/or initiation of the co-axial jet. As well as 

ensuring compatibility of the solutions, the extent of solution miscibility needs 

to be controlled also, so that the core and the shell remain phase separated in 

the electrospinning jet. This is important for the formation of fibres with core-

shell configuration. Both the compatibility and miscibility of solutions depend 

on the relative affinities between the different components of the two solution 

systems. If for example, the solvents used in each solution have a greater 

affinity for each other, while the solvent in one solution is a non-solvent for 

the solute in the other, then the dissolving power of the mixed solvent system 
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decreases as the two solvents blend together. In such a case, where the 

solvent and the solute are considered as incompatible, the mixing of the 

solvents promotes polymer aggregation and precipitation.  

The interaction between the solvent-solvent, solvent-solute or solution-

solution systems is controlled by the similarity/difference between the 

intermolecular forces in each component of the solutions. The strength of 

these molecular forces are represented by the solubility parameters, one 

widely used set being Hansen solubility parameters [142]. These parameters 

can be used to predict the affinities between the solution components and 

hence the extent to which a given set of solutions are compatible and/or 

miscible.  

As discussed in §3.2.3, the effect of many of the parameters that control 

the physical spinning mechanisms such as solution viscosity ratio, interfacial 

tension, solution conductivity, solvent vapour pressure etc., are relatively well 

understood, but there is still a lack of understanding of the importance of the 

interaction (e.g. miscibility) between the core and shell solutions for the 

success of co-electrospinning. This is mostly because it is difficult to eliminate 

the influence of other parameters on the fibre morphology, such that the 

results observed on the nature of core-shell configuration cannot be solely 

attributed to miscibility of the solutions. Additionally, the use of co-

electrospinning has been mostly limited to polymeric core and the shell 

materials, though non-polymeric innocuous (e.g. non-polar) core materials 

such as heavy mineral/olive oil and glycerol [125, 127] have also been used, 

the use of strongly interacting solutions composed of highly polar materials, 

such as AB, has not been previously reported. Our preliminary studies on co-

electrospinning AB in a polymeric shell solution have highlighted the 

importance of core-shell solution interaction (e.g. miscibility) in controlling 

the success of co-electrospinning. We were unable to produce fibres from core-

shell solution sets with solvents selected purely on the basis of their 

suitability for dissolving a solute. Solution miscibility is expected to be more 

pronounced in highly polar, complex materials that form low viscosity 

solutions, such as AB, which impose severe restrictions on the choice of 

sheath solutions that can be used for the fabrication of co-axial fibres. 
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Therefore, on  the basis of identifying the importance of solution miscibility 

for the success of co-electrospinning and resultant fibre morphology, a range 

of different solution combinations with varying degree of miscibility were 

tested, these are categorised as: miscible, semi-miscible and immiscible. 

In a large parameter phase space where the values of many variables 

have to be optimised simultaneously, while solution immiscibility is controlled 

and compatibility is ensured, trial and error selection method for a given 

solute can be highly time consuming and ineffective at ensuring success of co-

electrospinning. I have, therefore, formulated a solution selection method 

using Hansen solubility parameters to assist in the choice of compatible 

solutions with the required solution properties and varying degrees of 

miscibility. In the second part of this chapter the details of this systematic 

model are outlined. This solution selection method, which can be used for 

efficiently selecting solvents and solutes with the required properties, is 

applicable to all multiphase electrospinning systems. 

 

3.3.2 Hildebrand and Hansen solubility parameters: 

Theory 

Solubility parameters have long been used in industries such as paints 

and coatings where understanding and controlling solvent/polymer 

interactions are vital for optimization of polymer dissolution in solvents. They 

can be used for various applications to predict the compatibility of polymers, 

chemical resistance and permeation rates [142]. The basic principle behind 

solubility parameters is based on the idea that like-dissolves-like, or like-

seeks-like, such that liquids with similar solubility parameters are expected 

to be miscible or a polymer with a given solubility value is expected to dissolve 

in solvents with solubility parameters similar to its own.  

The interaction between the different materials is strongly dependent on 

the strength of the molecular attractions, as given by the cohesive energy 

density between the materials, Ecoh: 
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                      (3.6) 

   

where H  ( measured in J mol-1) is the heat of vaporisation, R is the universal 

gas constant (8.314 J K-1mol-1), T is the absolute temperature (in Kelvin) and 

ΔV is the volume occupied (in units of m3). Cohesive energy, defined as the 

energy needed to completely remove a unit volume of molecules from their 

neighbours to infinite separation (an ideal gas), is an indirect reflection of the 

degree of the intermolecular forces holding the liquid together, measured in 

units of J/cm3. The solubility of a given solute in a solvent depends on the 

ability of the solvent molecule to overcome these intermolecular attractions 

between the solute molecules, so that a homogeneous solution can be formed. 

In 1936 Joel H. Hildebrand (who laid out the foundations of solubility 

theory in his classic work on the solubility of nonelectrolytes in 1916) [142] 

proposed that the measure of solubility of a given substance is determined by 

the solubility parameter, δ, which is given by the square root of the cohesive 

energy density: 

    
    

  
  

     

  
 (3.7) 

  

   

where Vm = molar volume. This solubility parameter provides a numerical 

estimate of the degree of interaction between materials and its definition is 

based on thermodynamic considerations. Thermodynamically for two 

substances to be mutually soluble the free energy of mixing, GM, is required 

to be zero or negative. By definition: 

               (3.8) 

  

  

   

where HM is the enthalpy of mixing and SM
 is the entropy of mixing. 

According to Hildebrand, the enthalpy of mixing can be calculated by: 
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  (3.9) 

  

  

   

where VM is the volume of the mixture, 1 and 2 volume fractions of 

components 1 and 2 (e.g. solvent and polymer), and 1 and 2 are solubility 

parameters of components 1 and 2.  

The accuracy of the solubility parameter depends on the accuracy in 

determining strength of the interactions contributing to the cohesive energy. 

In the equations derived by Hildebrand Eq. (3.7) and (3.9) only the dispersive 

forces are taken into account when defining the cohesive energy, so the 

predictions made on the basis of their Hildebrand solubility parameters are 

generally useful only for non-polar or slightly polar systems without hydrogen 

bonding. In a more refined calculation, Charles Hansen (1966) divides the 

total Hildebrand parameter into three components [142]; the Hansen 

parameters, to account for molecular forces arising from dispersion (Van der 

Waals), polar, and hydrogen bonds between the molecules of a given material. 

In this more generalizable approximation Ecoh is defined as:  

               (3.10) 

  

  

  

   

where Ed, Ep, and Eh are, respectively, the dispersion, polar and hydrogen 

bonding contributions to the cohesive energy. The corresponding equation for 

the solubility parameter becomes: 

        
      

      
     (3.11) 

  

  

  

  

   

where the δd, δp, and δh are the partial Hansen solubility parameters 

representing the strength of the dispersion, polar and hydrogen bonding 

forces, respectively, for a given material. The equivalent of Eq. (3.9) then 

becomes: 
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   (3.12) 

  

  

  

  

  

   

Hansen solubility parameters are found to be particularly useful at 

predicting solubility and swelling of polymers by solvents [142]. These 

parameters were used within a solvent selection model to construct a 

systematic method for selecting compatible core and shell solutions, while at 

the same time optimising the core and shell solution parameters that are 

important for co-electrospinning. The details for this solution selection 

method are described in the next section. 

 

3.3.3 Solution selection model 

The Hansen solubility parameters (HSPs) that quantify the interaction 

strengths as the polar (δp), dispersive (δd), and hydrogen bonding (δh) 

components are empirically determined and tabulated in literature in units of 

MPa1/2 [142]. These three parameters can be treated as co-ordinates for a 

point in a three dimensional space, known as the Hansen space, with a radius 

of interaction, R0, for a given solute. R0 is also calculated empirically as the 

fourth value of the HSPs [142]. If the Hansen co-ordinates of a potential 

solvent (or solvent blend) lie within the solubility sphere of a polymer, then 

the solvent would be expected to dissolve that polymer, i.e. it will be 

considered as a good solvent. In order to determine whether this is the case, 

the distance of the solvent from the centre of the polymer solubility sphere, 

Ra, needs to be calculated using the following equation [142]: 

   
            

            
 
          

  (3.13) 

  

  

  

  

The HSPs of the solute (e.g. polymer) δd1, δp1, and δh1, marks the centre 

of the Hansen solubility sphere, with the solubility parameters of the 



Co-electrospinning: Technology and Control                        102 

 

 

solvents, δd2, δp2, and δh2, dispersed in the solubility region within the sphere 

(as shown in Figure 3.7). If this distance (Ra) is less than the radius of 

interaction (R0) of the solute (polymer), then the solvent is expected to 

dissolve the polymer. The dispersion term is described as being twice as 

important as the polar- and hydrogen-bonding terms and hence more weight 

is put on it in Eq. (3.13) [142].  

 

 

 

Figure 3.7: The Hansen solubility plot showing the Hansen sphere as determined 

by the coordinates of the solute (polymer) (δd1, δp1, δh1) and its radius of interaction 

(R0). Liquids with solubility parameters within the volume are active solvents for 

that solute (polymer). 
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A convenient index for the relative goodness of a solvent for a polymer is 

the ratio Ra/R0, which gives the relative energy difference (RED) of the 

system: RED= Ra/R0; if RED<1, the molecules are alike and the system will 

dissolve, if RED≈1 then the system will partially dissolve, and if RED >1 the 

system will not dissolve, with progressively higher values of RED suggesting 

progressively more unfavourable interactions [143]. If one does not have an 

estimate for R0, then solvents can be ranked by Ra, with the smaller Ra 

indicating the better solvents. 

Since a three dimensional (3-D) graphical presentation is not always 

easy to produce, two-dimensional (2-D) methods for representation of 

solubility data have been proposed. These include various variations; δp-δh 

diagram proposed by Henry (1974), δ-δh diagram proposed by 

Hoernschemeyer (1974), or the δv-δh diagram [144]. The latter combines the 

polar dispersive (δp) and dispersive (δd) parameters to give a new parameter 

δv= (δd
2+δp

2)1/2, which is plotted against δh to produce a 2-D graphical 

representation of the solubility parameters. This 2-D representation was 

chosen as the method of choice, as it is considered to provide a sufficiently 

accurate approximation of the interaction parameters, since thermodynamic 

calculations initiated by Bagley et al., suggest close similarity between the 

effects of δd and δp on the total cohesive energy [144]. This particular method 

has the advantage of being a more accurate predictive tool that enables 

greater efficiency compared to other methods that rely on empirical analysis 

such as a Teas-graph: a triangular graph with each side being a scale for the 

percentage contribution of δh, δp, δd from a given solvent. The percentage 

contribution of each Hansen parameter is calculated and plotted on the teas 

graph, with the solvents close together on the graph being considered as more 

likely to be miscible than the solvents marked farther apart [144]. 
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Figure 3.8: A hypothetical δv-δh Hansen plot, circles mark the Hansen area for 

solutes (polymer) S-1, S-2 and S-3 as defined by the Hansen coordinates ( δv, δh ) 

of each solute marking the centre of the circles (•) and the radius of interaction 

for each solute respectively: R0-1, R0-2, and R0-3. The crosses (x) mark the 

coordinates of different solvents, those that fall inside a given polymer circle are 

predicted to be good solvents for that solute, those that fall outside are non-

solvents, and the closer they are to the centre of the circle the better solvents they 

are.  

Using this representation of the Hansen solubility space a 2-D, δv vs. δh, 

graphical diagram for polystyrene (PS), the sheath materials selected for 

encapsulating ammonia borane, was constructed. The solubility space of the 

polymer is delimited by a circle with a radius R0 as for the hypothetical 

polymer-solvents systems shown in Figure 3.8. In the case of PS the 

coordinates of the centre of the circle correspond to the solubility parameters 

δv=18 and δh=5 (Mpa)1/2 and the radius of interaction R0=5 [144]. The solvents 

with δv and δh parameters that fall within the circle are considered as good 

solvents for PS, those that fall outside are predicted to be poor or non-

solvents. 
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The exact Hansen parameters for AB are unknown, however, the polar 

nature of AB gives it an affinity for solvation in large pool of polar solvents, 

such as water, N,N-dimethylformamide (DMF) and dimethyl sulfoxide 

(DMSO). These AB solvents can be plotted on the Hansen plot containing PS 

solubility circle and used to predict the degree of miscibility of a PS-solvent 

solution with an AB-solvent solution. Using this plot I was able to predict 

which core-shell solvent combinations would be miscible, semi-miscible or 

immiscible, based upon the location of a given solvent on the δv vs. δh diagram, 

i.e. whether the solvent was inside, near the boundary or outside the 

solubility circle. Water, for example, has a very high δh parameter (42.3 MPa 

1/2), which is a long distance away from the PS solubility circle; therefore, it is 

predicted to be a non-solvent for PS and immiscible with those solvents in the 

circle. 

Once all the solvent and non-solvents for PS and AB were identified, 

these solvents were plotted on a solution matrix with all the important solution 

parameters listed, including HSPs, RED, conductivity, dielectric constant, 

boiling point, vapour pressure and dipole moment values of all the solvents 

(see Appendix A).  This matrix was used to select solvents with the optimal 

parameters for co-electrospinning of the core and shell solutions. In order to 

create PS solutions with properties suitable for electrospinning, it was 

necessary to use solvent mixtures to optimise properties such as conductivity, 

dielectric constant, vapour pressure and viscosity. The parameters of the core 

and shell solution mixtures were controlled as described in below. 

Throughout this solution selection process, the main objective was to 

control the balance between the core and shell solution parameters in 

accordance with the requirements listed in §3.2.3, while maintaining control 

over the degree of miscibility between the solutions. This formulation is 

clearly a method that can be used for all multi-phase electrospinning 

applications and provides a systemised approach to selecting solvents and 

solution combinations much more efficiently than most other solvent selection 

methods (such as the teas graph approach), which typically rely on time 

consuming empirical analysis. 
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3.3.3.1 Calculating the solution parameters of mixtures 

Using the correct solvent ratio of each solvent in the mixtures was 

important for optimising parameters in the right direction as well as gaining 

control of the degree of miscibility between the core-shell solutions, which 

varies depending on the resultant Hansen solubility parameters of the 

mixtures. The way in which solution parameters were controlled is described 

below. 

3.3.3.1.1 Hansen Solubility Parameters 

The specific solvent ratio used in the mixtures was chosen to keep the 

overall HSPs of the solvent mixture within the Hansen circle. The HSPs of 

the mixtures are calculated using: 

   
         

 

 

 (3.14)  

  

  

  

  

  

  

   

where i is a component index and ai is volume fraction of solvent, δn is in units 

of MPa1/2 . 

3.3.3.1.2 Viscosity 

Solution viscosity (η), which is required to be higher for the shell 

solution, is important for controlling shear resistance exerted on the core, 

such that the viscous force imparted by the shell on the core is enough to 

overcome the interfacial and draw it out along with it. While solution viscosity 

depends on a combination of factors such as the effectiveness of the solvent at 

dissolving the polymer, average molecular weight of the polymer (Mw) and 

polymer concentration, variation of only the latter was sufficient for 

controlling solution viscosity. The viscosity of the solution in co-

electrospinning was controlled and measured in the same way as for single 

phase electrospinning (as discussed in §2.6.1.1.1). 



Co-electrospinning: Technology and Control                        107 

 

 

3.3.3.1.3 Conductivity 

Most of the liquids identified as good solvents for PS had very low 

conductivities, making them unsuitable for electrospinning in their pure form. 

Toluene, which is immiscible with water and a non-solvent for AB, was 

selected as the main shell solvent. However, we were not able to spin a PS-

toluene solution despite trying a wide range of PS concentrations and voltages 

as high as 30kV. Solvent conductivity can often be increased through the 

addition of ionic or protonic salts. The ability of a solvent to dissociate a salt 

and hence the increase in its conductivity is dependent on its dielectric 

constant (i.e. its polarity); as discussed in §2.6.1.4 solvent conductivity is 

shown to increase with dielectric constant  at different salt concentrations 

[145, 146]. Toluene has a very low dielectric constant and thus dissolution of 

salts was unsuccessful.  Despite this, by using a binary or ternary solvent 

system we were able to selectively change the dielectric constant and hence 

increase shell-solution conductivity to enable fibre drawing without rendering 

the shell solution incompatible (or miscible) with the core. The dielectric 

constant of the mixtures (εmix) was calculated using: 

         

 

   (3.15) 

  

  

  

  

  

  

   

where ai is the volume fraction of solvent i, ε has units of farads per metre (F 

m-1).  

3.3.3.1.4 Vapour pressure 

Controlling the vapour pressure (P0) of the solvents is essential for 

success of co-electrospinning and core-shell morphology of the as spun fibres; 

a too high P0 will cause the droplet at the tip of the nozzle to dry, preventing 

electrospinning, and a P0 too low will cause the fibres to go down wet to form 

a film. While it is important to use the right vapour pressure solvent in the 

shell solution to avoid these issues, it is important to use solvents (or solvent 

mixtures) with similar P0 values in the core and the shell solutions to avoid 
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fibre buckling (collapsing) [147]. The vapour pressure P0 of a solvent can be 

calculated from its boiling point TB  and  heat of vaporisation ∆Hvap using the 

Clausius-Clayperon equation (Eq. (2.11))[117]. The resultant vapour pressure 

of the solvent mixtures was calculated using Rault‟s law [117]: 

           

 

 (3.16) 

 

  

  

  

  

  

  

   

where i is the solvent component index and Xi is the mole fraction, P has units 

of Pascal (Pa).



 

 

 

Chapter  4                         

Characterisation and Neutron 

Scattering Techniques   

4.1 Fiber Imaging Methods 

4.1.1 Scanning electron microscopy (SEM) 

Scanning electron microscopy (SEM), a technique capable of producing 

high resolution images of a sample surface, was used for inspecting 

topographic morphology of the electrospun fibres. The signals that produce 

the SEM micrographs result from interactions of the electron beam with 

atoms at or near the surface of the sample imaged and, therefore, surface of 

the sample is required to be conducting for greater sample resolution. A 

wide range of magnification is available, ranging from 10,000X up to 

30,000X and the spatial resolution ranges from 10 to 100 nm. SEM images 

typically have a large depth of field due to the narrow electron beam used, 

which result in images with a three-dimensional appearance and show the 

variation in surface morphology.   

A schematic diagram of a typical SEM is shown in Figure 4.1. The 

electrons thermionically emitted from a tungsten cathode are accelerated 

towards an anode with a set energy typically ranging from a few hundred to 

100,000 eV. The electron beam is focused by one or two condenser lenses 

into a spot sized 1 to 5 nm. On its trajectory the beam passes through pairs 
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of scanning coils, which deflect the beam horizontally and vertically, such 

that it scans in a raster fashion over a rectangular area of the sample 

surface. The electrons that come in contact with the sample surface lose 

energy by repeated scattering and absorption over an area extending from 

less than 100 nm to around 5 μm on the specimen surface. Energy exchange 

between the electron beam and the sample results in emission of secondary 

and backscattered electrons as well as emission of electromagnetic radiation 

from the sample. The secondary and backscattered electrons detected are 

then amplified by a photomultiplier tube to produce an image; secondary 

electrons are good for obtaining morphological information from sample 

surface, while backscattered electrons are useful for illustrating contrasts in 

composition in multiphase samples [148]. The combination of highe 

magnification, large depth of focus, greater resolution, and ease of sample 

preparation makes the SEM one of the most commonly used technique for 

fibre analysis. 

Two separate scanning electron microscopes were used in this 

investigation depending on availability at the time of the investigation For 

analysis of AB-PS fibres we have used a field effect-scanning electron 

microscopy (FE-SEM, Hitachi S4000) using an accelerating voltage of 10 kV, 

which had 45 degree rotatable sample holder that was used to look at fibre 

tips. For the analysis of polymeric and carbonised PAN fibres we have used 

a FE-SEM (Carl Zeiss XB1540). 

SEM samples were easily prepared for imaging, a section of the 

electrospun fibre mesh was placed on a SEM stub or fibres were directly 

collected on small washers that were placed on to the SEM sample holder 

for imaging, tyoically after plasma deposition of a few atomic layers of 

platinum. Fibres imaged on washers generally produced better quality 

images due to the dark background of the hollow cores. For examination of 

the co-axial structure, it was important to expose the ends for imaging the 

fibre cross-section in the SEM.  However, due to tendency of the fibres to lie 

flat on a surface it was difficult to expose fibre tips. Therefore, the fibres 

were aligned and sealed between two layers of adhesive tape, which was 
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submersed in liquid nitrogen and then cut with a scissors using the 

embrittled tape as support. This was the only method that successfully 

enabled SEM imaging of the fibre cross-section. 

 

 

Figure 4.1: Schematic diagram of scanning electron microscope (SEM).  
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4.1.2 Transmission electron microscopy (TEM) 

Transmission electron microscopy (TEM) is a microscopy technique 

that uses a highly energetic beam of electrons that is transmitted through 

an ultra-thin specimen to provide a more penetrative image of the sample 

analysed. TEM was specifically used to image the core-shell morphology of 

the fibres along the fibre axis, which was not possible with the SEM. A 

schematic diagram of a typical TEM is shown in Figure 4.2. The electrons 

emitted from a light source at the top of the microscope travel through 

vacuum in the column of the microscope, which get focussed into a very thin 

beam before being transmitted through the specimen being analysed. The 

electrons transmitted through the sample scatter at different angles 

depending on the density of atoms in the specimen and some get lost. The 

transmitted electron signal is then magnified by a series of electromagnetic 

lenses and can be analysed through electron diffraction or direct electron 

imaging with the transmitted electrons projected on to a fluorescent screen 

or a layer of photographic film at the bottom of the column (as shown in 

Figure 4.2). This gives rise to a "shadow image" of the specimen, with a 

varying degree of darkness according to their density, which can be studied 

directly by the operator or viewed with a camera. The diffraction pattern 

obtained with the TEM in the diffraction mode can be used to determine the 

crystallographic nature of the sample analysed [24].  

TEMs have a very high resolution  (10-10 m) due to the small de Broglie 

wavelength of electrons, capable of imaging fine detail, as small as a single 

column of atoms, which is tens of thousands of times smaller than the 

smallest resolvable object in a light microscope. Sample preparation is 

rather difficult, since the samples imaged have to be typically thinner than a 

few tens of nanometres for the electrons to be transmitted through. 

However, due to the high degree of porosity in most our fibre samples, fibres 

with diameters as large as a couple of microns could be imaged with the 

internal structure visible most of the time. 
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Figure 4.2: Schematic diagram of a transmission electron microscope. 

 

For analysis of all fibres in this investigation we have used TEM, 

JEOL JEM-2010 (LaB6 filament) at an accelerating voltage of 200 kV. 

Sample preparation involved solvating the fibres in a non-solvent in a tube 

that was placed in an ultrasonic bath to break the fibres into smaller 

fragments. Droplets of the suspension were then placed onto TEM copper 
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grids that captured fibre fragments (fibrils) for analysis in the TEM. While 

this method worked very well for the carbon fibres, which were more brittle, 

a polymeric fibre mesh was less easy to separate into separate fibres, thus, 

tweezers were used to break small fragments off the mesh. The solvent used 

for solvation of PAN and carbon fibres was ethanol, and that used for AB-PS 

fibres was ether.  

 

4.2 Intelligent Gravimetric Analysis  

Intelligent Gravimetric analysis (IGA) system (Figure 4.3) uses the 

gravimetric technique to monitor the change in a sample‟s mass as a 

function of time with the sample under controlled pressure and/or 

temperature. The technique was used in conjunction with mass 

spectrometry to measure desorption products of ammonia borane, 

polystyrene or ammonia borane-polystrene (core-shell) fibres during the 

thermolysis processes of the samples. 

The IGA system used in this investigation was a Hiden Isochema IGA-

003 analyser, which integrates computer-control and measurement of 

weight change, pressure, temperature and gas flow. The samples to be 

analysed are placed in a stainless steel mesh sample bucket connected to a 

large capacity microbalance (5 g) with a resolution of 0.1 μg via a fine gold 

chain and a tungsten wire hang-down. This is sheathed, along with a 

platinum resistance thermocouple (accurate to ± 0.2 °C) and a gas 

inlet/outlet tube, by A UHV stainless steel reaction vessel (Figure 4.3). 

Software compensations for non-ideal gas behaviour and buoyancy effects 

due to the different temperatures and volumes of the sample and 

counterweight are all integrated into the system. 

Temperature was controlled using a fast response furnace capable of 

ramp rates between 0.2 and 20 °C min-1 up to a maximum temperature of 

500 °C. Using the mass spectrometer in conjunction with the IGA required it 
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to be operated in flowing mode with an inert background gas. The set up 

was such that the flowing background gas (which was either helium or 

nitrogen in this study) mixed with the desorbed gas from the sample, which 

was then carried to the mass spectrometer chamber through a 10 bar 

capillary tube for analysis of the desorption products. 

 

 

Figure 4.3: Schematic diagram of IGA [149]. 

 

Two separate IGA-mass spectrometer set ups were used. The IGA was 

of the same type in both cases, the mass spectrometer however was 

different. Majority of the studies were carried out with a Hiden Analytical 

Dynamic Sampling Mass Spectrometer system (DSMS type HPR-20) with a 

HAL 201, type 124100, with dual a Faraday/Electron Multiplier detector 

capable of detecting an atomic mass range of up to 200 AMU (with a limit of 
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0.1 to 1 ppm). Ionisation was via electron impact using a thoria coated 

iridium filament and the system can follow the partial pressures of up to six 

molecular ions simultaneously. The second mass spec was of the same model 

but with an atomic mass range of up to 50 AMU and this was used only 

when we had no access to the first IGA-mass spectrometer setup. For a 

typical experiment 50 mg of sample was loaded into a stainless steel mesh 

bucket, which was then placed on to the tungsten hang-down in air. The 

reactor was then raised and sealed with a copper gasket. The sample was 

then left under dynamic vacuum for 12 hours to remove all traces of 

contaminant gases. The chamber was refilled with 1 bar of He (or Ar) and 

the flow rate set to 100 ml min-1. The furnace was then attached and the 

experiment commenced with the set heating rate. All variables were 

sampled every 12.5 seconds.  

 

4.3 Differential Scanning Calorimetry 

Differential scanning calorimetry is a thermoanalytical technique 

commonly used for investigating the nature of phase transitions in a 

material. Figure 4.4 provides a schematic illustration of the cell 

compartment of a differential scanning calorimeter. The setup, consisting of 

two identical cells (one for the sample investigated (S) and another for a 

reference sample (R)), is configured in a way to enable the heat capacity 

between two materials to be measured. With the cells heated at a set rate 

and maintained at the same temperature throughout the measurement, the 

difference in the amount of heat required for increasing the temperature of 

the sample and reference is measured as a function of temperature.  
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Figure 4.4: Schematic illustration of the cell assembly of a differential scanning 

calorimeter. The temperature difference between the sample and reference cells 

(S and R) is maintained at zero (∆T = 0) by a feedback mechanism as the 

temperature is increased or decreased at a constant scanning rate. The 

differential power needed to maintain zero temperature difference is 

continuously recorded as a function of T. 

 

Usually, when the main sample undergoes a phase change, more or less 

heat will need to flow to it to maintain both samples at the same 

temperature. The amount of heat that flows to it depends on the nature of 

the transition i.e. whether it is exothermic or endothermic. This differential 

electrical power required to maintain the same temperature in both cells 

enables the heat absorption or release from the sample to be determined and 

after normalisation by scanning rate, yields the difference in heat capacity 

between the two cells. DSC is also typically used to observe more subtle 

phase changes, such as glass transitions in materials. 
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4.3.1 DSC measurements and data analysis 

DSC results are typically plotted as a curve of heat flux (with units of 

µJ/s or µcal/s) as a function of temperature or time. Depending on the 

specific technology used exothermic or endothermic reactions in the sample 

are illustrated as a positive or negative peak in the plot respectively. The 

area under the exothermic peak can be used to calculate enthalpies of 

transitions ΔH = KA, where ΔH is the enthalpy of transition, K is the 

calorimetric constant, and A is the area under the curve. The calorimetric 

constant will vary from instrument to instrument, and can be determined by 

analysing a well-characterized sample with known enthalpies of transition 

[150]. On the other hand, the endothermic peak is used to determine 

melting points of materials. 

The DSC measurements for this study were taken using Netzsch DSC 

200, F3 Maia, at a heating rate of 1° min-1 and nitrogen was used as the purge 

gas with a flow rate of 20 ml min-1. The reference was an empty aluminium 

pan calibrated previously. The calorimetric constant was calibrated into this 

instrument, thus, the enthalpy of transitions could simply be obtained from 

the area under DSC plot. The sample analysed was placed in another 

bucket. 

The DSC was specifically used to look at phase transitions in composite 

AB-PS fibres; the temperatures at which reactions took place (corresponding 

to hydrogen release) and the enthalpies of these reactions. Neat AB powder 

and pure PS fibres and pellets were also analysed for comparison.  Since the 

mass loss in the sample is associated with the exothermic events in the data, 

the DSC data was compared to the TGA data for samples heated at the 

same rate. The amount of sample used for DSC (~ 5-10 mg), was typically 

10% of the sample used for the IGA by weight. 
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Figure 4.5: Evanescent wave penetrating in the specimen placed in close contact 

with ATR crystal.  

4.4 ATR-FTIR 

Fourier Transform Infrared Spectroscopy (FTIR) is one of the most 

powerful techniques used for identifying the types of bonds (functional 

groups) in both organic and inorganic compounds. In this study we have 

used attenuated total reflectance (ATR)-FTIR to identify the chemicals 

present in the composite AB-PS fibres, both prior to and after thermolysis of 

the samples. A schematic diagram of an ATR-FTIR is shown in Figure 4.5. 

The infrared (IR) beam from the spectorometer is passed through an IR 

transmitting crystal with a high refractive index, typically a silicon or glass 

prism, which allows the IR radiation to be reflected internally (usually 

several times) at the surface. On reflection, the IR beam penetrates the 

immediate environment above the prism, where the sample is placed in 

close contact with the prism, via the so called “evanescent” wave. The 

penetration depth of the beam, as determined by its wavelength and 

refractive index of the prism, is usually of the order of a micron or so [23]. 
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On its final internal reflection the beam is directed out of the crystal into the 

detector. 

The resulting data, obtained from Fourier transformation (FT) of the 

output wave, is a single beam spectrum of intensity versus wavenumber (in 

cm-1). From this spectrum the particular vibrational modes of molecules (or 

functional groups) can be identified. While identification of the vibrational 

modes of a functional group can be done more easily for common materials 

using spectra available in spectral libraries, identification of less common 

materials in a spectrum may be more challenging. The spectra of AB and PS 

were obtained from ref [151] and [152, 153] respectively. 

The ATR-FTIR spectrometer used in this study was a Bruker Optics 

Vertex 70 FTIR spectrometer with an ATR Diamond/ZnSe diamond prism 

crystal. The wavelength of the IR beam was λ=15798 cm-1 (633 nm) at a 

resolution of 1 and 4 cm-1 with an incidence angle of 45° and a penetration 

depth of  2 μm. AB-PS fibres were analysed before and after heating to 

fingerprint the chemical makeup of the as spun fibres and to deduce if any 

phase change took place after heating or if AB and PS reacted during 

thermolysis of the fibres. The AB-PS fibres analysed had average diameters 

ranging from 1-2.5 µm, thus the IR beam could penetrate into most of the 

fibre cross-section if not all, considering that the fibres were aligned flat 

along the fibre axis on the ATR crystal. 

4.5 X-ray Powder Diffraction 

X-ray powder diffraction (XRD) is a common technique used for 

fingerprinting materials with a crystalline or semi-crytalline structure. The 

technique is based on measuring the scattered intensity of an X-ray beam 

from a sample as a function of incident and scattered angle and wavelength 

(as schematically illustrated in Figure 4.6). The diffraction pattern 

generated as a function of 2θ provides information on the crystallite size, 

preferred crystal orientation, preferred orientation in polycrystalline 



Characterisation and Neutron Scattering Techniques            121 

 

 

materials as well as the relative abundance of a particular crystallographic 

phase in heterogeneous solid mixtures. While diffraction pattern is typically 

compared to data from a database of known materials for specific 

identification of a given phase, lattice refinement techniques, such 

as Rietveld refinement, can be used to obtain structural information on 

unknown materials. As this is one of the most common techniques used in 

the characterisation of materials, many books and sources are available on 

the physics of X-ray diffraction and interpretation of the diffraction data; for 

further information the reader is advised to refer to reference [154]. 

The XRD instrument used in this study was a Siemens D5000 

diffractometer with Cu-K X-ray source. X-ray diffraction was used 

extensively in this study to characterise both AB-PS and graphitic 

nanofibres. A detailed fitting was not made in the case of AB-PS fibres since 

we were primarily interested in looking for any phase changes in AB and PS 

in the post electrospinning samples. The data was also used for checking the 

relative amounts of each species in the sample. 

 

Figure 4.6: Schematic illustration of a powder X-ray diffractomer measuring 2θ. 



Characterisation and Neutron Scattering Techniques            122 

 

 

4.6 Neutron Scattering 

4.6.1 Introduction 

Neutron scattering is a very important tool for investigating the 

structure and dynamics of condensed matter systems. This is mainly 

because neutrons can be moderated to have „thermal‟ energies corresponding 

to a de Broglie wavelength in the order of interatomic distances in solids and 

kinetic energies that are comparable to those of dynamic processes in 

materials [155]. Thus, elastically scattered neutrons can be used to deduce 

the structure of crystalline materials and their amorphous component, if 

any. Since their kinetic energies (typically in the range 5-100 meV) are 

similar to excitations in condensed mater systems, the momentum change 

undergone by a neutron in an inelastic neutron scattering (INS) event can 

be used to measure the dynamics of  atoms or molecules in materials; 

phenomena such as phonon states, diffusion  and tunnelling can be 

measured.  

Neutron scattering is in fact the most powerful tool for characterising 

the behaviour of hydrogen in materials and for studying the structural 

changes that take place in materials during hydrogen uptake. There are 

several reasons for why this technique is better than other scattering 

techniques such as electron or X-ray scattering for studying hydrogen. 

Firstly, hydrogen has the largest interaction cross-section with neutrons, 

higher than all other elements in the periodic table (the concept of neutron 

cross-sections is discussed in section §4.6.2.) Neutrons are scattered by 

nuclear forces and thus the scattering cross-section has no systematic 

dependence on the atomic number Z, unlike X-rays which have a scattering 

cross-section that varies with Z2. This scattering strength is such that even 

in a carbon adsorbent containing only 1wt.% hydrogen, more than half of the 

neutron scattering comes from the hydrogen. Also, the „scattering length‟ 

which defines the strength of the interaction (as discussed in the next 

section) can vary between isotopes of an atom, allowing for chemical 
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labelling of a particular type of species, such that atoms of the same kind in 

different materials or compounds can be differentiated through substitution 

of the isotope of a given species. In the case of isotopes of hydrogen, 

deuterium is typically used to differentiate between the hydrogen already 

present in the system and that loaded during neutron studies (or vice versa). 

Secondly, compared to electrons or X-rays, neutrons interact weakly with 

matter. Since neutrons have mass and no charge, they can penetrate beyond 

the surface of the material to give information about both the bulk structure 

and the dynamics of the atoms (or molecules) in the material. Furthermore, 

even though certain materials undergo ionisation and remain radioactive for 

a short while after experiment, neutron scattering is typically non-

destructive.   

In this section I will briefly outline some of the fundamental concepts 

of neutron scattering to show how it is used for extracting information from 

materials. I will not provide a detailed mathematical explanation of these 

concepts; instead I refer the reader to ref. [156] for further reading on the 

subject. I will then a give a brief description of the neutron scattering 

techniques and instruments used in this study to look at the structure and 

dynamics of hydrogen in potassium intercalated graphitic nanofibres (KC24 

nanofibres). 

4.6.2 Theory 

Upon scattering from materials neutrons can transfer energy and 

momentum to the scattering sample. Depending on whether the scattering 

is elastic or inelastic, and coherent or incoherent, information on the 

structure and dynamics of the species in the sample can be obtained. These 

concepts are discussed in some detail below. The main principle of neutron 

scattering is simply explained in terms of scattering of a quantum particle, 

which exhibits wave phenomena, from a fixed nucleus. In this regime the 

energy En of the neutron travelling in space is defined by: 
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where mn neutron mass and p is its momentum. Using the de Broglie 

relationship the momentum is defined as 
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where k is the wavevector, the magnitude of which is given by  
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In a scattering event the momentum transfer vector Q is typically used 

to determine the magnitude and direction of the interaction. As illustrated 

in Figure 4.7, the momentum transfer Q, which depends on both the 

scattering angle and the energy transfer, varies depending on whether the 

scattering is inelastic or elastic. In the case when scattering is inelastic, i.e. 

energy is gained or lost by the neutron (Figure 4.7 (a)), the overall energy 

and momentum transfer is respectively given by: 
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and 

              (4.5)  

  

  

  

  

  

where En and En' are the initial and final energies of the neutron 

repectively, Q is the momentum transfer vector, mn is the neutron mass, k 

and k' the incident and final neutron wavevectors. Alternatively, in the case 
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when the scattering is elastic, i.e. when no energy is exchanged between the 

sample and the neutron (Figure 4.7 (b)), the magnitude of Q is given by: 

   
       

 
  (4.6) 

 

 

 

 

 

 

 

The direction of Q with respect to the sample orientation is important 

for samples with preferred orientation, since information on structure is 

gathered along Q. Thus it is important to have the sample placed in its 

position in the correct geometry. Since the fibres were randomly aligned in 

all directions, the sample geometry was not an issue in looking at KC24 

nanofibres.  

 

 

Figure 4.7: Scattering triangles depicted for (a) inelastic scattering and (b) 

elastic scattering events. 
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Figure 4.8: Geometry for a typical scattering experiment [156]. 

 The quantity that is directly measured in a neutron scattering experiment 

is called the partial differential cross-section. It quantifies the fraction of 

neutrons with incident energy E scattered per second into a small solid 

angle dΩ in the direction θ, φ with final energy E’ and E’+dE’. It is defined by  
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where NdΩdE‟ is the number of neutrons scattered per second into a solid 

E’ and E’+dE’, and Φ is the 

incident neutron flux. Figure 4.8 shows the geometry of a typical scattering 

experiment, in which these parameters are diagrammatically defined. The 

total scattering cross-section, which accounts for total number of neutrons 

scattered in all directions per second, is given by 
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where b is the scattering length of the nucleus. 

Scattering does not take place from a single nucleus but from system of 

a large number of scatterers. Even if the system is composed of a single type 

of species the scattering length bi of an individual nuclei can differ 

depending on nuclear spin or isotopic variations between the atoms. This 

causes coherent or incoherent scattering from the system, the cross-sections 

for each is respectively given by 
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Coherent scattering essentially describes the interference of the waves 

resulting from the scattering of a single nuclei from all the atoms in the 

system. The intensity of coherently scattered waves, which gives structural 

information about the system, depends strongly on the scattering angle. 

Incoherent scattering, on the other hand involves the correlations between 

position of an atom at time zero and the position of the same atom at time t; 

there is no interference between waves scattered from different nuclei. 

Thus, it gives information about the position and dynamics of a single atom, 

whereas as the coherent scattering gives information about the relative 

position and motions of atoms. Generally, the incoherent intensity is the 

same for all scattering angles, and thus, it can be ignored when observing 

diffraction since it just adds intensity to the structureless background. 

There is no systematic variation of the coherent and incoherent scattering 

lengths between different elements and isotopes in the periodic table. In the 

case of hydrogen, the incoherent scattering length is quite large (25.18 

fermis) but the coherent scattering length is quite small (–3.74 fermis). But 

for deuterium the coherent scattering length (6.67 fermis) is larger than the 
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incoherent scattering length (3.99 fermis). This makes deuterium more 

desirable in diffraction studies. 

The van Hove correlation function, G(r,t), which describes how the 

correlation between two particles evolves with time, is interpreted as being 

equal to the probability of an atom being located at the origin at time zero 

and an atom being at position r at time t. The incoherent scattering function 

Sinc(Q, ω) is the Fourier transform in time and space of the van Hove self-

correlation function: 
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This quantity is measured in an inelastic neutron diffraction experiment 

through the measurement of the partial differential cross-section as defined 

by 
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In this representation Q and ω are special and temporal frequencies 

obtained by Fourier transform from the real space variables r and t.  This is 

why measurements at small Q are sensitive to changes in large 

characteristics lengths and measurements of small energy loss hω 

correspond to slow processes. 

In this study we have used both elastic scattering (diffraction) and 

inelastic scattering (INS) to investigate the structure of potassium 

intercalated graphitic fibres (KC24) and its dynamics during hydrogen 

loading of the samples. Due to differences in the interaction energies upon 

scattering and hence differences in the vector momentum transfer, different 

instrumental set ups are required to extract the necessary information from 

the sample. All neutron scattering experiments were conducted at ISIS 
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pulsed neutron source in Oxfordshire, UK. Below is a brief description of the 

type of neutron scattering experiments conducted on the KC24 fibres using 

both elastic and inelastic scattering techniques along with some details of 

the instruments used for the particular experiments. 

4.6.3 Inelastic neutron scattering 

Inelastic neutron scattering (INS) is used to measure the dynamics of a 

system through measurements of the energy transfer spectrum of the 

neutrons. As described above the quantity extracted from INS experiments 

is Sinc(Q, ω), as defined by Eq. (4.11). Upon scattering from a system the 

kinetic energy and momentum vector of the neutrons are changed and as 

long as the incident energy or final energy is known, the loss or gain in 

energy of the neutron at the sample can be calculated from the total time of 

flight. We were specifically interested in looking at the diffusion dynamics 

and the molecular rotations of hydrogen in KC24 fibres during 

hydrogenation. But this technique can also be used to look at thermal 

motions and other excitations in the material with energy transfers of up to 

several hundred meV, depending on the source and instrument set up. 

Experiments that involve a small energy transfer are known as quasi-

elastic neutron scattering (QENS). QENS looks at excitations very close to 

E=0 point, which result from those large fraction of neutrons that scatter 

elastically. Thermal processes lead to broadening of the peak at E=0, which 

can be qualitatively analysed to obtain the diffusion coefficients of 

molecules, which is a very useful tool for studying hydrogen diffusion in 

materials. 

A schematic diagram of a typical time-of-flight neutron spectrometer is 

shown in Figure 4.9. Just as in the start of the diffractometer flight path, 

the neutrons from the source are moderated and passed through a chopper 

system to select a specific energy range before being transmitted on to the 

sample. The neutrons that are scattered from the sample at an angle φ are 

passed through a crystal analyser to select a single monochromatic energy 
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through Bragg scattering (as described above). These single-energy neutrons 

are then detected by the detector at the end. The time taken for the 

monochromitised neutrons to arrive at the detector is compared with the 

time since the initial neutron pulse left the source. Since the neutron time-

of-flight, t2, over the secondary flightpath, L2, is known, the time-of-flight 

over the primary flight-path, t1, can be calculated to obtain the energy 

transfer to the sample. On an S(Q, ω) vs. energy transfer plot the neutron 

energy loss (that is energy transfer to system) appears on the positive 

energy transfer scale, and the energy gain (energies transferred from 

dynamic processes in the system to neutron) appears on the negative energy 

transfer scale. Inelastic neutron scattering measurements on the KC24 fibre 

samples were carried out using IRIS and TOSCA instruments at the ISIS 

facility. Details of these instruments are summarised below. 

 

 

 
 
 

Figure 4.9: Schematic layout of a time-of-flight neutron spectrometer. Incident 

neutrons that are energy selected scatter inelastically from the sample. Only 

neutrons that Bragg scatter from the analyser are detected; i.e. the detector 

collects only neutrons at constant energy and their time of arrival is used to 

determine the energy loss ∆E in the sample. The primary flight-pathL1 >>L2, 

the secondary flight-path [48]. 
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4.6.3.1 IRIS 

 

IRIS is a high resolution spectrometer with quasi-elastic and inelastic 

neutron scattering capabilities and diffraction at long d-spacing. It has a 

time-of-flight inverted-geometry [157]. Figure 4.10 shows a schematic 

illustration of IRIS instrument set up. The neutrons scattered off the sample 

are energy analysed using one of the two single crystal analysers available 

(pyrolytic graphite and muscovite mica) in close to backscattering geometry. 

Thus the data can be collected in two separate energy windows -0.8 – 2.0 

meV (1st energy window using the PG 002 analyser and a chopper frequency 

of 25 Hz giving an energy resolution of 15 μeV) and 0 – 20 meV (2nd energy 

window). The neutrons are then counted by a set of 51 ZnS scintillator 

detectors associated with each analyser bank in the semicircle geometry. 

These analysers, which can be operated simultaneously, enable high 

resolution over wide energy and momentum transfer ranges. Also, the 

graphite analyser can be cooled to liquid He temperature to reduce 

background contributions from thermal diffuse scattering. The diffraction 

capability of the instrument, which ranges from 1-12 Å, allows for the 

collection of structural data simultaneously with the dynamical data. A 25 K 

beryllium filter is also available for extending the accessible energy transfer 

range when the graphite analyser is used. The sample environment allows 

for the use of a thermal sensors and standard orange cryostat [48]. 

The IRIS spectrometer was specifically selected to do low-energy 

inelastic neutron scattering (INS) and quasi-elastic neutron scattering 

(QENS) on the potassium intercalated graphitic nanofibres (K-GNFs) so 

that we could study both the dynamics and diffusion properties of hydrogen 

adsorbed in the nanostructured KC24 fibres and compare it to the results for 

KC24 synthesised from bulk papyex carbon from ref [48]. Good resolution 

close to the elastic line and sensitivity to hydrogen made IRIS a natural 

choice for this work. 
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Figure 4.10:  Schematic illustration of the IRIS neutron spectrometer [48]. 

 

4.6.3.2 TOSCA  

TOSCA is an indirect geometry spectrometer designed for inelastic 

neutron scattering only [158]. It is optimised for the study of molecular 

vibrations in the solid state, with an energy transfer range 0-500 meV, but 

best resolution is below 250 meV [48]. This instrument (Figure 4.11) was 

used to look at the H2 dynamics over a much larger energy range than was 

accessible with IRIS, but with lower energy resolution. TOSCA has a 

Nimonic chopper which reduces the fast neutron background and a 

tailcutting absorber on the leading edge that suppresses slow neutrons and 

prevents frame overlap. It has two banks of detectors arranged annularly, 

which detect neutrons scattered both forward and backwards from the 

sample. Neutrons scattered off the sample are incident on a graphite 

analyser at angles of 45 and 135°. The analyser selects certain wavelengths 
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and transmits these neutrons through a cooled beryllium filter to 3He 

detector tubes. 

 

 
 

 
 

Figure 4.11: Exploded schematic diagram of TOSCA layout [158]. 

 

4.6.4 Neutron diffraction 

Diffraction experiments are analysed only as a function of Q (i.e. 

momentum transfer and not energy transfer).Thus, the instrument is set up 

so the detectors integrate over all energy transfers. This means the 

diffraction picture is an ensemble average of the material for t = 0. The 

momentum transfer is used to obtain structural information about the 
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crystalline sample analysed, i.e. to obtain the angle of scattering Eq. (4.6), 

which can be used with Bragg‟s law to determine the d-spacing.  

A schematic diagram of a typical diffractometer set up is shown in 

Figure 4.12. The neutrons moderated from the source are collimated to 

select only neutrons with a specific angular range, which are then 

transmitted on to the sample after traversing a distance of some metres. 

The incident neutrons diffract at the sample through an angle 2θ and are 

picked up by the detector. The scattered neutrons arrive at a distribution of 

times after the initial pulse leaves the moderator and since the scattering is 

elastic, their final energies can be deduced from the time-of-flight taken, t1 + 

t2, over the entire flight-path L1 + L2. Since only the neutrons with 

wavelengths satisfying Bragg's law for a set of crystal planes arrive at the 

detector, a complete diffraction pattern can be assembled from the different 

energies (wavelengths) arriving at the detector. This is how the diffraction 

data discussed in §6.5.5 was collected. 

We have used the General Materials Diffractometer (GEM) at the ISIS 

pulsed neutron source (Rutherford Appleton Laboratory) for the diffraction 

experiment. GEM is a powder diffractometer that can be used to perform 

high intensity and high resolution experiments for studying structure of 

disordered materials and crystalline powders. It has an incident flight path 

L1=17 metres. The beam incident on the sample has dimensions 40mm x 

20mm height to width, and can be changed using a set of 

adjustable apertures and a beam-scraper. GEM has zinc sulphide 

scintillator detectors covering a solid angle of ~3.5 steradians, which gives a 

scattering angle ranging from 1.1° to 169.3°. 
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Figure 4.12: Schematic layout of a time-of-flight neutron diffractometer. The 

Incident neutrons are collimated and selected by energy before being scattered 

elastically from the sample at an angle 2θ. The scattered neutrons arrive at the 

detector with a distribution of times, as determined by their energy, which can 

be calculated from the total time-of-flight t1+t2 using the total flight path L1+L2. 

[48]. 

 

 



 

 

 

Chapter  5                                 

Co-electrospun AB-PS Fibres  

5.1 Introduction 

One of the main aims of this study has been to investigate the possibility 

of using co-electrospinning as a way of encapsulating chemical hydrides in a 

polymer sheath, which besides enabling the hydride materials to be 

nanostructured in a cheap and scalable way it can, if controlled in the right 

way, provide the benefit of containing the spent materials inside the sheath for 

regeneration, as well as preventing oxidation of those hydrides reactive in air. 

Of the many chemical hydrides available (as discussed in §1.4.4) ammonia 

borane (AB, NH3BH3) was chosen as the initial core material, firstly because of 

its high hydrogen content and secondly because it has a number of properties 

that make it suitable for co-electrospinning, such as its ease of solubility in 

many organic and inorganic solvents (e.g. water) and its stability in air; making 

materials handling significantly less difficult. Polystyrene was selected as the 

sheathing polymer material primarily due to its permselectivity i.e. good 

hydrogen permeability (23.8 barrer) and because of its relatively high melting 

point (240 °C) [159], which had to be significantly higher than that of AB (114 

°C) so that it could be heated up to 150 °C to remove AB without degrading the 

polymer sheath. PS was also considered as a suitable polymer to be electrospun 

with AB based on its solubility parameters. 
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The use of co-electrospinning for hydrogen storage applications, 

specifically for encapsulating and nanostructuring hydrides, to our knowledge, 

has not been reported previously. This study is therefore the first for 

investigating and identifying some of the problems that may be encountered 

when co-electrospinning hydrogen storage materials e.g. highly polar (strongly 

interacting) non-polymeric materials such as AB, which impose severe 

restrictions on the choice of sheath solutions (materials) that can be used. As 

described in §3.2, the effect of many of the parameters that control the physical 

spinning mechanisms of a compound jet are relatively well reported. However, 

there appears to be a lack of understanding regarding the importance of the 

interaction between the core and shell solutions (e.g. solution miscibility) for 

the success of co-electrospinning. I have found that controlling the solution 

chemistry and the interaction between the two solutions (i.e. compatibility) is 

highly important for ensuring success of co-electrospinning, especially when a 

highly polar, non-polymeric material such as AB is used. The selection of 

solution sets purely on the basis of solubility of the core and shell material in a 

given solvent (i.e. without a chemical compatibility appraisal) may result in the 

selection of incompatible core-shell solutions that fail to co-electrospin. 

Problems such as mixing of core and shell and precipitation of the polymer at 

the nozzle orifice, due to incompatibility of the solutions, can prevent the 

synthesis of core-shell fibres, as it was found for some of AB and PS solutions 

initially tested.  

To overcome these challenges the solvent selection method described in 

§3.3.3 was developed and used for preparation of core and shell solutions for co-

electrospinning of AB-PS fibres. To investigate the effect of core-shell solution 

miscibility on both the success of co-axial electrospinning and the morphology of 

fibres, we have looked at a range of solutions with varying degrees of 

miscibility. In doing this we were aiming to find out the importance of core-

shell solution miscibility and settle the uncertainty surrounding this. The fibres 

produced had varying degrees of porosity, depending on the core-shell solution 

sets used, which appear to affect the dehydrogenation properties of AB 

differently. The highly porous fibres displayed nanostructured AB 

characteristics in their thermolysis measurements, while the non-porous fibres 
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did not. To understand how to control the fibre porosity, and hence the 

nanostructure of the fibres, I have developed a theory to explain the kind of 

porosity observed in some of the fibres based on the jet instability theory of co-

axial electrospinning described in §3.2.2. 

This chapter is based on the synthesis of composite AB-PS fibres from 

different core-shell solution combinations and the detailed investigation 

conducted on their chemical, physical and hydrogenation properties. The first 

part gives a detailed account of the materials used, ammonia borane (AB) and 

polystyrene (PS) and provides a detailed explanation for why these particular 

materials were selected through a more in-depth discussion of their properties. 

The second part details the experimental process, describing the solution 

preparation process (including control and optimisation of their properties 

using the Hansen solubility model and solvent matrix discussed in §3.3.3), the 

electrospinning set up and process details. The third section is on the 

morphological and structural analysis of the fibres, with the results presented 

and discussed on the basis of solution properties and mechanisms that govern 

co-electrospinning (i.e. the jet instability). The fourth section presents the 

result on the thermolysis and the hydrogenation characteristics of the AB-PS 

fibres and provides an assessment on the performance of AB-PS fibres as a 

potential hydrogen store. Finally, the conclusions are presented with 

possibilities for future work highlighted. 

5.2 Core and sheath materials 

5.2.1 Ammonia borane 

Ammonia borane (AB), is a  donor-acceptor adduct formed as a result of a 

dative bond between a Lewis acid (BH3) and a Lewis base (NH3), in which the 

lone electron pair of NH3 delocalises over an unoccupied pz orbital of boron in 

BH3. It is a white crystalline solid with chemical formula NH3BH3. The strong 

B–N bond results in hydrogen loss being favoured over the dissociation to 

ammonia and borane under most heating conditions.  AB has attracted a lot of 
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attention as a source of hydrogen fuel as it contains one of the highest total 

hydrogen densities (19.5 wt.%) of all potential hydrogen storage materials  [2, 

160], of which up to 2/3 is accessible at temperatures up to 150 °C.  In addition, 

its high volumetric capacity (0.145 kg/L), which is twice that of liquid hydrogen 

(0.070kg/L), and its stability in air, a prerequisite for a hydrogen generation 

system, makes it one of the most prominent hydrogen stores available. 

Ammonia borane along with its amine-borane adducts, after being 

synthesised and characterised by Shore and Parry in the 1950s [96], was 

initially studied as potential rocket fuel [161], an idea that was later abandoned 

until the late 1990s when Wolf et al. [162] realised its potential as a good 

hydrogen storage medium for fuel cell applications. What makes this molecule 

particularly interesting is its bonding structure; while it adopts a molecular 

structure like ethane (C2H4), which is a gas at room temperature, NH3BH3 

constitutes a structure that makes it solid at ambient conditions.  The short 

intermolecular contacts it exhibits due to the protic N–H and hydridic B–H 

bonds creates a network of N−Hδ+··· −δH−B dihydrogen bonds with a separation 

of  2.02 Å, a value less than the sum of Van der Waals radii of hydrogen (2.4 A˚) 

[93, 163, 164]. This somewhat unusual nature of bonding (between the proton 

and hydride)  is conferred to be the reason for its stability (ca. 90.4 kJ/mol) 

[165] and its comparatively high melting point (112-114 °C) [166] compared to 

its isoelectronic counterpart ethane (-181.3 °C) [167].  

Knowledge of the solid state structure of AB at different temperatures is 

particularly important for gaining an understanding of its thermal behaviour 

(i.e. decomposition temperatures and (de)hydrogenation kinetics) and possible 

mechanisms for regeneration of its decomposition products back to AB. In this 

respect many studies have been carried out using different analysis techniques, 

including spectroscopy (nuclear magnetic resonance (NMR), infrared and 

Raman spectroscopy), diffraction (X-ray crystallography) and scattering 

(inelastic or quasielastic neutron scattering).  

For the purpose of this investigation, in this section I will primarily focus 

on the structure of AB and thermal decomposition properties in its solid state, 

as a way of understanding the dehydrogenation mechanism of neat (bulk) and 
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nanostructured AB. For a more detailed consideration of the work that has 

been conducted on AB through the use of above-mentioned techniques the 

reader is directed to a recently published review by Staubitz et al. [166], which 

gives a succinct account of all the work that has been conducted on “ammonia 

borane and related compounds as dihydrogen sources” up until 2010.  

5.2.1.1 Crystal structure of ammonia borane 

The structure of ammonia borane has been investigated by several groups 

since its discovery in 1955 by Shore and Parry [168]. In 1956, Hughes 

determined a body-centre tetragonal cell at room temperature, and proposed 

the polar space group (I4mm), where the NH3BH3 molecules are located at the 

vertices and the centre of the unit cell. In a subsequent study by Lippert and 

Lipscomb [169] these results were confirmed, but neither of these studies could 

locate the hydrogen atoms. In a more detailed study on the crystal structure of 

AB, Hoon and Reynhardt, using powder X-ray [170] found that at low 

temperatures the structure is an orthorhombic (space group Pmn21), with the 

transition between the orthorhombic and tetragonal phase taking place at 

around 220 K [164].  

Single crystal X-ray studies on the orthorhombic phase of ammonia-

borane enabled H positions to be determined, enabling the di-hydrogen bond 

separation to be ascertained [93, 164]. The results from these studies, which 

also showed the nitrogen and boron atom positions to be reversed, were 

subsequently verified through neutron powder diffraction of fully deuterated 

ammonia borane (ND3BD3) [171, 172]. The neutron data also enabled the 

molecular orientations to be more precisely assigned. Hess et al.  [171] looked at 

the structural changes in AB over a temperature range of 15-340 K and found 

that with increasing temperature the AB molecules rotate about the B-N bond, 

with N being the pivotal point, while the crystal lattice contracts along the a-

axis and expands along the b-axis, resulting in the tetragonal phase (see Figure 

5.1). The results also showed that both phases contained two molecules of 

NH3BH3 with B-N bonds aligned parallel to the c-axis in each phase. In the 

orthorhombic Pmn21 phase the B-N bonds were found to be inclined toward the 
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c-axis (Figure 5.1 (a)), where as in the tetragonal I4mm structure they were 

aligned parallel to the 4-fold c-axis (Figure 5.1 (b)). These results, which are 

supported by ab initio molecular dynamic simulations, also show that hydrogen 

bonding is significantly reduced in the tetragonal phase, even though 

intramolecular geometry is unchanged, which could explain the loss of 

hydrogen with further increase in temperature. 

 

 

Figure 5.1: (a) Crystal structure at 15 K (orthorhombic). The dihydrogen 

bonding network is shown: D2··· D3, yellow; D2···D4, orange; D1··· D4, green. 

(i) b-c plane; (ii) a-c plane; (iii) a-b plane. (b) One of four possible orientations of 

AB in the tetragonal phase at 240 K including the dihydrogen bonding network 

D2···D3 (yellow) and D1···D4 (green), (i) a-c plane; (ii) a-a plane [171]. 
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5.2.1.2 Thermal decomposition of ammonia borane 

Ammonia borane releases H2 upon heating; two of the three H2 moles 

available (12 wt.%) can be obtained through heating up to 150 °C, which 

exceeds the stringent gravimetric hydrogen storage target of 7.5 wt% H2 

ultimately required [173]. Although the overall reaction is exothermic, external 

heating is required to overcome kinetic barriers, but once the compound is 

heated to a sufficiently high temperature the decomposition reaction proceeds 

on its own. The stepwise thermolysis process is summarised in equations (5.1) 

through (5.4): 

 

 nNH3BH3 → (NH2BH2)n + (n − 1)H2  (5.1) 

 (NH2BH2)n → (NHBH)n + H2  (5.2) 

 2(NHBH)n → (NHB − NBH)n + H2 + borazine + other products  (5.3) 

 (NHBH)n → BN + H2 (5.4) 

 

The first reaction (Eq. (5.1)) occurs around a peak temperature of 110 °C 

(depending on heating rate) near the melting point (~114 °C) and results in the 

formation of polyaminoborane -(NH2BH2)n- [174]; the second reaction (Eq. (5.2)) 

occurs at around 150 °C, concurrent with the formation of polyimidoborane -

(NHBH)- and the emission of borazine (c-(NHBH)3) and diborane ((BH3)2 or 

B2H6), either of which can poison the fuel cell membrane [160, 174]. At a 

slightly higher temperature the cross-linking between NHB−NBH molecules is 

observed to release additional hydrogen (Eq. (5.3)).  For the release of the third 

dihydrogen molecule (Eq. (5.4)), temperatures above 1200 °C are required. 

While over 12 wt.% of hydrogen is released in the first two decomposition steps 

[174], the slow speed of the polymerisation reaction results in a delay of many 

minutes before hydrogen is released. 
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A number of issues can be highlighted in this decomposition process. First 

of all, the hydrogen release temperatures are still above the fuel cell operation 

range (-40 to 85 °C) and the rate of release below 100 °C is still too low for 

practical applications. Additionally the small amount of volatiles released 

(borazine and diborane) pose major risk to the fuel cell and will have to be 

eliminated in the decomposition process if AB is to be used for fuel cell 

operation. While these issues are being tackled in various ways, the greatest 

challenge remains as the regenerability of AB. Since dehydrogenation of 

ammonia borane results in the formation of polymeric species, regeneration of 

products back to NH3BH3 (e.g. through rehydrogenation) is rather difficult. 

Despite the large amount of research into to  dehydrogenation properties of AB, 

there has been very little research published on tackling regeneration of AB as 

of late 2010, some recent references are [175-177]; this highlights the difficulty 

of the challenge being tackled in regenerating AB. Lowering the thermolysis 

temperatures to below 80 °C, improving the reaction kinetics and devising an 

energy efficient chemical process to regenerate NH3BH3 from dehydrogenated 

BNHx material, are all critical steps toward realisation of AB as a sustainable 

transportation fuel.  

In attempts to overcome these challenges, a number of alternative 

dehydrogenation processes are being investigated besides solid state 

thermolysis of neat (pure) AB. These include solution phase thermal 

decomposition [178-180], catalysis of dehydrogenation process through the use 

of transition metals [160, 181], additives, ionic liquids [182], Lewis- and 

Brønsted Acid-Catalyzed dehyrogentaion [183], metal hydrides and amides 

[184] as well as scaffolding processes that facilitate the dehydrogenation 

mechanism [185, 186]. The details for these processes can be found in the 

references cited, with a summary of the results from these studies given in the 

review by Staubitz and co-workers [166].   

Since in this investigation we were predominantly interested in the 

thermolysis properties of nanostructured AB in the solid state, I will only 

discuss studies on solid state thermolysis of neat AB and its thermolysis as 

facilitated by mesoporous silica and carbon cryogels [185, 186]. The 
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encapsulation of AB in mesoporous silica and carbon cryogels has shown 

improved dehydrogenation properties attributed to the nanostructuring of AB 

in these materials. The effect of nanostructure on the decomposition process of 

AB, is clearly important for this particular investigation.  

5.2.1.3 Solid-state thermolysis 

Thermolysis of neat AB in the solid state yields the maximum gravimetric 

density of hydrogen, since no additional material weight has to be accounted for 

as in the case of other thermolysis methods involving the use of other materials 

as hosts or additives. Geanangel and co-workers (1978) [187] were the first to 

look at thermal decomposition of neat AB using a variety of techniques 

including pyrolysis, thermogravimetric analysis (TGA), differential thermal 

analysis (DTA), and thermomanometry [187, 188]. DTA data taken at heating 

rates of 2, 5 and 10 °C/min showed the effect of heating rate on the thermal 

decomposition process, with the reaction temperature moving up to higher 

values with increasing heating rates. The thermal decomposition reaction was 

found to be initially endothermic, corresponding to the melting point of solid 

AB, followed by an exothermic peak as the reaction proceeded in the melt form. 

At a heating rate of 2 °C/min the melting exotherm had a trough at 114 °C, 

some 5° lower than that found for 10 °C/min heating rate. The melting point is 

now typically stated as being in the range 112-114 °C , depending on heating 

rate [189]. The DTA curves, showing the features more distinctively at lower 

heating rates, were used to discern the four separate reactions, identified 

through chemical analysis (IR and mass spectroscopy) of the trapped gas at 

each decomposition point during pyrolysis of AB. 

At the heating rates of 2 °C/min and 10 °C/min the first exothermic 

reaction peaked at 125 °C and 130 °C respectively; the reaction in the former 

case had a starting point 30 °C lower than the later. This peak was attributed 

to the rapid evolution of hydrogen from the molten NH3BH3 as shown by the 

reaction in Eq. (5.1) above. The second peak was associated with hydrogen loss 

from monomeric aminoborane [NH2BH2] (Eq. (5.2)), which begins near 100°C 

and continues in steps over a broad temperature range with a peak at 155 °C . 
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In this temperature range NH2BH2 rapidly polymerises to form 

poly(aminoboranes), which then undergo further decomposition releasing 

additional hydrogen along with borazine  and other products (Eq. (5.3)).  The 

loss of the last hydrogen, forming the residual boron-nitride (Eq. (5.4)), was found to 

require temperatures in excess of 500 C. At a heating rate of 5 °C/min a mass loss 

of 35% was measured by the TGA with the sample heated up to 200 °C. The 

authors also reported the foaming and swelling of the mixture during thermal 

decomposition (as a result of formation and release of volatiles) causing contact 

to be made with the thermobalance furnace walls, which can be a problem for 

making measurements of the thermal decomposition of ammonia-borane. These 

particular findings are important for us, as we have made similar observations, 

discussed further in the results section below. 

 

 

 

Figure 5.2: DSC curves of thermal decomposition of BH3NH3:  (─) heating rate 0.05 

K/min, (---) heating rate 1 K/min [190]. 

 

In more recent studies, Wolf and co-workers [174, 190] have investigated the 

decomposition process of AB by means of DSC, volumetric measurements, coupled 

TG/DSC and TG/FTIR, which enabled direct comparison between the methods and 
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isolation of the products throughout the reaction. They have specifically looked at 

the influence of heating rate on the decomposition process and carried out 

isothermal studies at a range of temperatures. Their results confirm that the 

temperature of the first exothermic reaction is reduced with decreasing heating 

rate and the temperature range of the exotherm corresponding to the reaction is 

also narrowed down (as shown in  

Figure 5.2). At a heating rate of 1 degree/min the exotherm precedes the melt 

endotherm, which interrupts the exothermic process causing a dip at a 

temperature few degrees higher than the start of the exotherm at 370 K (97 °C), 

the exotherm then continues increasing with a maximum at ~378 K (~105 °C), with 

the second reaction initiated before the first is complete, as represented by the 

broad peak centred around 415 K (142 °C) overlapped by another peak starting at 

125 °C, corresponding to the second reaction releasing H2, which starts before the 

second is complete. On the other hand with the heating rate increased to 5 

degrees/min, each reaction step is shifted to higher temperatures by approximately 

8 degrees and the second peak is much more pronounced (as shown in  

Figure 5.2). They have also found that „given enough time at lower 

temperatures, the decomposition process of AB is complete before the melt, as 

shown by the DSC data in Figure 5.3, where AB is heated is heated 

isothermally at values below 90 °C, showing peak temperatures and intensities 

lowered with relative reduction in temperature. The enthalpy change at the 

decomposition of AB (BH3NH3), as determined from the isothermal data, was –

21.7 ±1.2 kJ/mol, which remained unchanged regardless of the isothermal 

temperature [190]. 

Dehydrogenation steps outlined by Geanangel et al. Eqs. (5.1)-(5.4) were 

confirmed with these results. The total amount of H2 released below 200 °C, 

which did not change with heating rate, was 2 mol H2/mol BH3NH3, accounting 

for 14.3 wt.% of AB.  The heating rate, however, had a measurable effect on the 

thermal events and the quantity of volatile products formed.  The total mass 

loss of AB increased from 14 to 33 wt.% when the heating rate was increased 

from 0.5 to 10 °C/min. The greater mass loss at higher heating rates, which 

clearly exceeds  that caused by the release of hydrogen was attributed to higher 

quantities of borazine c-(BHNH)3 and diborane B2H6 being released at higher 

heating rates.  At low heating rates (1 < °C/min) only H2 was observed in the 
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gas phase and the major solid product was PAB (BH2NH2)x. It is reported that 

for the complete release of the third mole of dihydrogen, temperatures above 

1200 °C are required. The data also suggests the occurrence of simultaneous 

reactions, such as the simultaneous formation of BH2NH2 and borazine, the 

latter of which is said to form through dehydrogenation of the former above 125 

°C to the highly reactive monomeric iminoborane BHNH [22] and the 

trimerization of BHNH [174]. However, the formation of monomeric 

aminoborane BH2NH2 at temperatures above 125 °C cannot be explained. 

 

 

Figure 5.3: DSC curves of thermal decomposition of BH3NH3 at isothermal 

temperatures between 343 and 363 K. 

The exact mechanism and the intermediates leading to the release of 

hydrogen are still not very clear. Gaining fundamental insight into the reaction 

mechanism can potentially enable control of the hydrogen release rates and the 

release of those volatiles (e.g. borazine and diborane) that are harmful for the 

fuel cell. In a recent study Stowe et al. [191] provides a much more detailed 

picture of the decomposition mechanism of AB, using solid state 11B and 

11B[1H] MAS NMR spectroscopy  to follow the reaction in situ under isothermal 
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conditions at 88 °C, a temperature well below the reported melting point (112-

114 °C). The authors proposed a mechanism for the thermal dehydrogenation of 

AB through three distinct steps: induction, nucleation, and growth steps 

leading to hydrogen release (Figure 5.4).  

 

 

 

Figure 5.4: Time resolved 
11

B[
1
H] MAS-NMR spectra (7.1 T) taken by Stowe et al.  during 

thermal dehydrogenation of NH3BH3 at 88 °C taken at 2 min intervals from the 

start of heating. A „„new phase‟‟ (-23 ppm) is observed just prior to the observation 

of product –BH2 (-10 to -13 ppm) and –BH4 (-38 ppm) species [191].  

 

Their results suggest that during the induction period, the hydrogen 

bonding network is disrupted, permitting greater motion of the molecules 

leading to the formation of a new species containing a BH3 group resonating at 

-23 ppm, proposed to be a more mobile phase of AB (AB*). In the subsequent 

nucleation process, in which hydrogen starts to evolve, diammoniate of 

diborane (DADB) is generated. DADB then reacts with remaining AB in the 

growth process to generate [(NH3)2BH2]+[BH4]-, and two BH2N2 species, which 
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are thought to emerge from linear (NH3BH2NH2BH3) and the cyclic dimer 

(NH2BH2)2 of aminoborane intermediates, as shown in Figure 5.4. Hydrogen is 

mostly released through this stepwise bimolecular reaction taking place during 

the growth process and resulting in the formation of polyaminoborane, as 

shown in Figure 5.5.  

 

 

Figure 5.5: The thermal dehydrogenation mechanism of AB (NH3BH3) proposed by 

Stowe et al. The induction, nucleation and growth steps leading to hydrogen release 

are as shown in the reactions [191]. 

 

This scheme assumes that the N-H and/or B-H bonds of DADB are more 

reactive than the corresponding N-H or B-H bonds of ammonia borane. This 

would thus suggest that the energy barrier for reaction between DADB and AB 

molecules would be lower than that between two AB molecules. Thus, the 

addition of DADB to AB should in principle lead to a reduction in the induction 

period. This was confirmed experimentally by the authors.  

Follow up studies using techniques such as TGA/DSC, optical microscopy, 

and high temperature X-ray powder diffraction, used  to examine this process, 

have provided further evidence in support of this mechanism [192]. In the 
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initial stage, where very little hydrogen was released, an exotherm was 

observed in the DSC data, at which point it was found that the sample lost 

crystallinity and birefringence. This was interpreted as a sign for the formation 

of the new (more mobile) form of AB (*AB) and diammoniate of diborane, 

[NH3BH2-NH3]+[BH4]-.The phase change was even observed  visually when a 

crystal of ammonia-borane was heated to 90 °C, as shown in see Figure 5.6. 

From these images, a phase front can clearly be seen traveling through the 

crystal [193]. When a heated crystal was quench cooled, it was possible to 

arrest these phases and analyse them by Raman spectroscopy to identify their 

composition. Before the phase front, the Raman spectrum showed crystalline 

AB, but closer to the phase front, the peaks broaden significantly, and beyond 

the phase front a frequency corresponding to a B-H stretching mode was 

observed which compared well to an authentic sample of DADB. Another 

insightful observation made in this study was that even under pressures up to 

3 GPa, decomposed ammonia borane could not be converted back to neat AB, 

further highlighting the difficulties in recycling this material.  

 

 

Figure 5.6. Optical micrograph images of a single crystal of NH3BH3 heated to 90 

°C, images (a) to (e) shows the progression of the phase front in the AB crystal 

upon the transfer of heat, in (d) the phase transition is complete [193]. 

5.2.1.4 Hydrogen release from nanophase AB encapsulated in 

scaffolds 

 

As discussed in §1.5 it has already been demonstrated that in the case of 

metal hydrides, nanostructuring has the effect of improving (de)hydrogenation 

kinetics relative to the bulk materials [18]. Gutowska and co-workers [186] 
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have tested this observation in the case of AB, to see if nanostructuring of AB 

results in improved dehydrogenation characteristics. In respect of this they 

studied the intercalation of AB in high-surface-area mesoporous silica (SBA-15) 

scaffold as a model system. For such a nanocomposite of mesoporous silica and 

ammonia borane in a 1:1 mixture they have made three notable observations. 

The first of these was the lowering of the activation barrier that resulted in 

increased H2 release rates and lowering of the dehydrogenation temperature. 

This was observed through thermal decomposition of ammonia borane at 50 °C 

which showed a half-reaction time of 85 min compared 290 min at 80 °C for 

neat (bulk) AB. This corresponds to a peak dehydrogenation temperature of 

approximately 98 and 110 °C for AB:SBA-15 and neat AB respectively at a 

heating rate of 1 °C /min [186]. 

The second important observation was the reduction in the enthalpy of 

reaction releasing H2 (∆H = -1±1 kJ/mol) as measured by the DSC data that 

showed the loss of hydrogen being significantly less exothermic for the AB:SBA-

15 scaffold compared to that of neat  AB (∆H =-21±1 kJ/mol). This difference in 

the enthalpy of dehydrogenation was attributed to a difference in the reaction 

mechanism that leads to the release of hydrogen and other products. This 

hypothesis was confirmed by 11B NMR spectra of the volatiles released, which 

showed only one resonance (at δ=-23ppm) for AB:SBA-15 that was assigned to 

PAB, but three other boron resonances in addition to PAB was observed in the 

case of neat AB under the same experimental conditions. The formation of the 

additional boron-containing products is thought be the reason for higher 

exothermicity of the dehydrogenation reaction. The reduction in the enthalpy of 

the hydrogen loss reaction is a very important result in terms of regenerability 

of AB. As hydrogen loss becomes less exothermic, the reverse reaction; 

hydrogen uptake, becomes more favourable at a given temperature and 

pressure. This result has significant implications for the realisation of AB as a 

regenerable hydrogen source. 

The third notable observation in the thermolysis process of AB:SBA-15 

was the suppression of borazine release, which was shown by the TPD/MS data 

to be significantly lower than  for neat AB. Solid-state 11B NMR spectroscopy 
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was used to check if the borazine became entrapped within the mesoporous 

scaffold as a non-volatile product, but no 11B signal was observed for borazine. 

As borazine is not observed as a volatile or non-volatile product, the authors 

postulated that the mesoporous scaffold, or the nanostructure, may be affecting 

the decomposition pathway of AB to suppress borazine production.  

In another study, Feaver et al. [185] tested the idea of nanoscaffolding of 

AB in a material with much lower mass and better thermal conductivity than 

mesoporous silica, carbon cryogel (see Figure 5.7). They have observed an even 

greater reduction in the decomposition temperature with a 24 wt.% AB 

encapsulated in carbon cryogel, forming CC-AB composite. It is reported that 

hydrogen releasing reaction starts at 80 °C, with a broadened decomposition 

peak centred approximately at 90 °C, with no further decomposition peaks at 

higher temperatures. Volumetric measurements have shown that 

approximately 9 wt.% of hydrogen is released from AB in the nanocomposite 

and no borazine was detected in the mass spectroscopy data. However, the 

dehydrogenation reaction was found to be significantly more exothermic than 

neat AB, with an enthalpy of ∆H = -120 kJ/mol. 

 

 

 

Figure 5.7. Schematic of (a) an unmodified carbon cryogel and (b) a CC-AB 

nanocomposite as constructed by Feaver et al. [185]. 
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The exact mechanism responsible for the observed differences in the 

dehydrogenation of AB in both mesoporous silica and carbon cryogel is not very 

clear, but several possible explanations are provided.  The observed catalytic 

effect may be a function of the reduction in AB crystal size, due to nanoscale 

pores, which is known to lower the phase transition temperature (as discussed 

below) and thereby presumably the dehydrogenation temperature.  The pores 

in the carbon cryogels range in size from 2 to 20 nm and those in the 

mesoporous silica have an average diameter of 7.5 nm. Another possible reason 

for the differences in the dehydrogenation process could be due to the presence 

of functional groups exposed in the cavities in each material. In the case of AB 

encapsulated in mesoporous silica, SiO-H groups, and in the case of AB in 

carbon cryogel, carboxylic acids are considered to have a possible catalytic effect 

on the dehydrogenation process.   

More recent studies have been conducted on materials from the same 

family with the aim of getting further insight into the decomposition pathways 

of AB in these particular set of materials. In the case of mesoporous silica, a 

synchrotron X-ray powder diffraction study on MCM-41 [194] showed 

suppression of the AB tetragonal-orthorhombic phase transition temperature 

from  225 K in neat AB to 110 K in MCM-41 [194]. Quasielastic neutron studies 

looking at the dynamic behaviour of AB in MCM-41 scaffold showed reduced 

barriers of activation for proton movements, which could possibly contribute to 

faster dehydrogenation kinetics in the scaffold environment. A later study 

using 129Xe NMR also suggested possible disturbance  of the dihydrogen 

bonding network in AB at the surface of the mesoporous silica that leads to the 

formation of diammoniate of diborane [178, 195]. All of which provide further 

evidence for the manipulative effect of confinement and nanostructuring on the 

thermolysis behaviour of AB.  

In the case of AB incorporated into carbon cryogels, an 11B NMR and FTIR 

study on the system showed the formation of a new reaction product in the 

thermal decomposition process of AB in carbon cryogel (CC-AB) nanocomposite 

[151]. In this case, the new product is thought to have a destabilising effect on 

AB as a result of the –O–B bond formation, leading to a separate decomposition 
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pathway that is highly exothermic when hydrogen is released. Therefore, even 

though the exact mechanisms causing the changes seen in the decomposition of 

AB in these nanocomposites is not directly obvious, encapsulation and 

nanostructuring of AB in these systems is clearly having an effect on the 

decomposition pathways and resulting in improved kinetics and reduced 

decomposition temperatures. However, despite these improvements, it is 

important to note that these frameworks have high weight density, which 

means the effective weight % of H2 stored in them would be lower than 

desirable. Additionally, regenerability of AB from the decomposition products 

remains a challenge even in these materials. On the other hand, encapsulation 

of AB in nanofibres with a light weight polymeric sheath permeable only to 

hydrogen can enable the decomposition products other than hydrogen to be 

retained. Therefore, while enabling AB to be nanostructured, the AB-polymer 

fibres can potentially be reloaded with hydrogen for the regeneration of AB 

after a thermolysis process. In such a case, the stability and inertness of the 

polymer sheath will be particularly important for ensuring that no other 

elements are introduced into the system during the (de)hydrogenation process, 

or any other point, so that the polymer sheath acts solely as a layer facilitating 

the regeneration process. 

 

5.2.2 Polystyrene 

Polystyrene (PS) is an aromatic polymer, used for many applications due 

to its low cost, ease of processibility and performance properties. PS was 

selected as the sheath material for the co-electrospun fibres for a number of 

reasons. Firstly, the sheath material needs to be a lightweight polymeric 

material, with a high permselectivity in favour of hydrogen gas, such that all 

other reaction products are retained in the core while H2 molecules are 

released. Secondly it is important for the sheath be stable at temperatures up 

to ~200 °C, so thermolysis of the AB can take place without decomposition of 

the sheath. Finally, it is important to use a polymer that is soluble in solvents 

compatible and immiscible with AB solutions. PS was identified as a suitable 
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polymer on the basis of these requirements, as it has a good H2 permeability 

value (23.8 barrer) and a melting point of approximately 240°C [159]. 

PS is formed of molecular chains of styrene, with strong covalent bonds 

between the atoms and short range van der Waals attractions between chains. 

This intermolecular weakness (as opposed to the strong intramolecular bonds) 

allows the polystyrene chains to slide along each other, rendering the bulk 

system flexible and stretchable. Malleability of the sheath material is certainly 

an advantage for ease of shaping the hydrogen storage medium as necessary for 

the storage system. 

Depending on the processing technique polystyrene can come in various 

different structural forms, the amorphous „atactic‟ structure and the crystalline 

„isotactic‟ and „syndiotactic‟ molecular structures as determined by ordering of 

the phenyl groups along the polymer chain; Figure 5.8 compares the molecular 

structure of these three analogues. In the case of atactic or general purpose 

polystyrene, the chains form with a random stereochemistry with the large 

phenyl groups randomly distributed on both sides of the chain. In contrast, the 

isotactic and syndiotactic forms, which are produced by stereospecific catalysis 

techniques, have highly ordered structures. This high degree of molecular 

ordering enables isotactic and syndiotactic PS to crystallise from the melt, with 

crystalline domains giving rise to a semi-crystalline microstructure [196]. The 

degree of crystallinity has a large effect on the properties of the polystyrene as 

in the case of other polymers. Syndiotactic PS, for instance, exhibits 

performance attributes that are considerably different to the amorphous phase, 

including higher melting point (~270 °C for syndiotactic-PS compared to  ~205 

°C for atactic-PS) and much better electrical conductivity [196]. 
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Figure 5.8: Comparison of chemical structures of atactic, isotactic and syndiotactic 

polystyrene. 

The PS used for this experiment was of general purpose grade obtained 

from Sigma Aldrich, but other than its molecular weight no information was 

provided on its structural or physical properties. Powder X-ray diffraction and 

differential scanning calorimetry (DSC) was used, respectively, to determine its 

crystallographic composition and melting point prior to and post 

electrospinning (i.e. that of PS in pellet form and as electrospun fibres).  The 

DSC measurements on the PS pellets and fibres have shown no melting 

endotherm, a behaviour that is characteristic of amorphous polymers [197].  

However, XRD on pure PS and AB-PS fibres have shown the existence of both 
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amorphous and crystalline phases of polystyrene. The crystalline phase was 

neither identified as isotactic or syndiotactic, but a new crystalline phase was 

instead found, these results are further discussed in the results section below.  

 

5.3 Experimental Details 

5.3.1 Materials: solutes and solvents 

Ammonia borane (NH3BH3, AB) complex (purity 97%, Sigma Aldrich) was 

supplied in powder form and polystyrene (PS) (typical Mw ≈ 3.3 x 105 Daltons, 

general purpose grade, Sigma Aldrich) was supplied in pellet form. The 

solvents used were toluene (≥99.5, spectrometric grade, Sigma Aldrich), N,N-

dimethylformamide (DMF, 99.0% GC, Riedel-de Haën), dimethyl sulfoxide 

(DMSO, minimum 99.5%, Sigma Aldrich), 1,2-dichloroethane (DCE, 99+% 

spectrometric grade, Sigma Aldrich), deionised water and pyridinium formate 

(PF), an organic salt.  PF was prepared by reacting pyridine (99+% 

spectrometric grade, Sigma Aldrich) and formic acid (99-100%, Riedel-de Haën) 

in an equimolar amount. All materials detailed were used without further 

purification. 

 

5.3.2 Solution preparation 

The solvent selection process developed (as discussed in §3.3.3) was used 

for the preparation of the core and shell solutions. The solvents for the core 

(AB) and shell (PS) solutions were chosen on the basis of creating i) miscible, ii) 

semi-miscible and iii) immiscible solution combinations. I have specifically tried 

to optimise the conductivity, viscosity and vapour pressure of the shell solutions 

as these are parameters that have a strong influence on the success of co-

electrospinning and the resultant fibre morphology. However, as it was not 
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always possible to achieve the correct miscibility and the required core and 

shell solution properties using a single phase solvent in the shell, solvent 

blends were used to optimise these parameters, as outlined below.  The HSPs of 

selected solvents and their properties controlled for electrospinning are given in 

Table 4 and Table 5 respectively. A pictorial representation of the HSPs of the 

solvents and solvent blends is given in the 2-D Hansen solubility plot of PS 

(Figure 5.9). Both the RED values in Table 4 and Hansen solubility circle in 

Figure 5.9 was used when determining the degree of miscibility of solvents and 

solvent blends (as described in §3.3.3)  

The electrical conductivity of shell solutions was increased through the 

addition of salts to solvents with a dielectric constant high enough to allow 

dissolution of salts. It was discussed in §2.6.1.4 that salt dissolution in solvents 

decreases with decreasing dielectric constant of solvent, so it is important to 

select solvents with high dielectric constants if salts are to be used for 

increasing the electrical conductivity of solutions. Despite all efforts, it was not 

possible to obtain a shell solution with electrical conductivity higher than that 

of the core. This is because dissolution of AB, which is highly polar, results in 

highly conducting solutions. Whereas the addition of PS was found to reduce 

the conductivity of the selected shell solvent blends, which were mostly 

composed of low conductivity and low dielectric constant solvents. 

Controlling the vapour pressure of the core and shell solution sets was 

less straightforward, due to the large differences in the vapour pressures of the 

selected solvents.  It was important to use core and shell solvents with similar 

vapour pressures to prevent fibre buckling (which was discussed in §3.2.3.4). 

Equalising the vapour pressure of the core and shell solutions was particularly 

difficult for the preparation of immiscible core-shell solutions due to the limited 

number of solvents identified as being immiscible as well as compatible (i.e. 

suitable) as solvents for AB and PS. Nitrobenzene (NB) was identified as the 

solvent with the highest dielectric constant and boiling point (i.e. lowest vapour 

pressure) (see Appendix A) of those that reside in the Hansen sphere of PS 

(Figure 5.9). This solvent enabled the formation of the optimal shell solution for 

electrospinning non-porous core-shell fibres, as described below.  
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Figure 5.9: Two dimensional (δv vs. δh) diagram showing extent of solubility of 

polystyrene (PS) [●] in various solvents. The solvents and solvent blends used in this 

study are marked with triangles [▲] and [▲] respectively; sMS-1,2=7:1.2,1 mass ratio 

of toluene:DMF; IS-1=3:1:1 volume ratio of toluene:DCE:PF; IS-2=7:2:1 volume ratio 

DCE:NB:PF. Those that are non-solvents for PS but good solvents for AB are marked 

with a cross [×]. Other good solvents for PS are marked with diamond markers (♦), 

these include chloroform, diethyl ether, benzene, ethyl benzene, p-diethyl benzene, 

tetrahydrofuran, styrene, chlorobenzene, o-dichlorobenzene and carbon disulphide. 
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Table 4. Hansen solubility parameters of solvents and solvent mixtures, with a PS 

interaction radius of R0=5 [144] and Ra calculated using Eq.(3.15). 

Solvent 
δd 

(MPa) 

δp 
(MPa) 

δv 
(MPa) 

δh 

(MPa) Ra 
RED 

(Ra/R0) 

Miscible 

with PS?  

Polystyrene, PS 17.6 6.1 18.63 5.0 0 0 − 

N,N-

dimethylformamide, 

DMF 17.4 13.7 22.15 11.8 10.21 0.8 Yes 

dimethyl sulfoxide, 

DMSO 18.4 16.4 24.65 10.2 11.65 0.92 Yes 

Toluene, Tol 18 1.4 18.05 2 5.63 0.44 Yes 

1,2-dichloroethane, 

DCE 16.6 8.2 18.51 0.4 5.44 0.43 Yes 

Pyridine 19 8.8 20.94 5.9 3.99 0.31 Yes 

Formic acid, FA 14.3 11.9 18.6 16.6 14.55 1.15 No 

Water 15.6 16 22.35 42.3 38.8 3.05 No 

Pyridium Formate, PF 16.65 10.35 19.6 28.4 23.86 1.88 No 

7:1  mass. ratio 

Tol:DMF 17.91 3.16 18.19 3.4 3.41 0.27 Yes 

3:1:1 vol. ratio Tol: 

DCE:PF 17.45 4.55 18.03 6.96 2.52 0.2 Yes 

7:2:1 vol. ratio 

DCE:NB:PF 17.28 8.49 19.25 3.94 2.69 0.21 Yes 

Table 5. Solvent parameters used for solvent selection (solution preparation) for 

electrospinning. 

Solvent/ 

Solution 

Conductivity 

at RT  

(S/cm) 

Dipole 

moment 

(Debye) 

Dielectric 

constant 

 

Boiling 

Point 

(°C) 

Heat of 

vaporisati-

on (J/mol) 

Vapour 

pressure at 

20°C (atm) 

Water 5.5 x 10-3 1.87 78.54 100 40790 2.75 x 10-2 

DMF 6.0 x 10-8 3.8 36.7 153 47600 2.24 x 10-2 

DMSO 2.0 x 10-9 3.96 46.6 189 52900 3.54 x 10-4 

Toluene 8.0 x 10-16 0.4 2.4 111 38060 2.46 x 10-2 

Nitrobenzene 2 x 10-10 4 34.8 211 40590 1.39 x 10-3 

DCE 4.0 x 10-11 1.8 10.42 83.5 33910 8.37 x 10-2 

Pyridine 5.0 x 10-8 1.41 12.3 115.2 40200 1.74 x 10-2 

Formic acid 5.5 x 10-3 - 58 100 23100 1.31 x 10-1 

Pyrdinium 

formate 
1.49 x 10-2 - 27.15 - - 2.19 x 10-2 

7:1 Tol:DMF 6.0 x 10-8 - 6.69 - - 2.10 x 10-2 

3:1:1 

Tol:DCE:PF 
2.19 x 10-4 - 15.12 - - 5.22 x 10-2 

7:2:1 

DCE:NB:PF 
4.39 x 10-4 - 8.07 - - 3.15 x 10-2 



 

 

 

Materials were weighed into jars and solvents were added with a 

syringe while on a balance plate. Mixing was carried out with PTFE-coated 

magnetic stir bars; polymer solutions were heated at 50 °C until 

homogenous solutions were obtained. The specific solvent mixtures used to 

make i) miscible, ii) semi-miscible and iii) immiscible solution sets are as 

described below, with the exact combinations summarized in Table 6.  

Miscible: 

Two miscible solution sets were used: the first (MS-1) used 

dimethylformamide (DMF) for both the core and shell, and the second (MS-

2) used dimethyl sulphoxide (DMSO) for the core solvent and DMF for the 

shell. 

Semi-miscible: 

The shell solutions were composed of 20 wt.% PS dissolved in 7:1.2 or a 

7:1 mass ratio toluene:DMF and were semi-miscible with a core solution 

composed of 10 or 20 wt.% AB in DMSO (denoted sMS-1 and sMS-2 

respectively). The specific shell solvent ratios were chosen to keep the HSPs 

of the binary mixture within the Hansen sphere. DMF was specifically 

chosen to increase both the dielectric property and conductivity of the shell 

solution. 

Immiscible:  

The immiscible sets were made with a core solution composed of 10 or 

20 wt.% AB in water. In a further attempt to improve the conductivity of the 

shell solutions that needed to be composed mostly of toluene for control of 

miscibility, pyridinium formate (PF) salt was used. PF, which was made 

from equimolar amounts of pyridine and formic acid, was dissolved in 1,2-

dichloroethane (DCE), a solvent with a high dielectric constant, and added 

to toluene. This was used to produce the shell solution sets; IS-1, a 3:1:1 

volume ratio of toluene:DCE:PF and IS-2, with a 7:2:1 volume ratio of 

DCE:NB:PF. The latter mixture (IS-2), the last one to be prepared, after all 

above solutions were tested, was prepared to further optimise the shell 
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solution, i.e. to adjust for the vapour pressure of the shell solvent. 

Nitrobenzene, which is one of the few PS compatible solvents with a boiling 

point higher than that of water (see Table 5), was used to reduce the vapour 

pressure of the shell solvent mixture, such that it was more comparable with 

that of the core solvent (water) and to make it more suitable for 

electrospinning.  

Experimental verification of miscibility 

The degree of miscibility of the core and shell solvent mixtures was 

checked experimentally by mixing the shell and core solvents in equal 

proportions and the predictions made using HSPs were found to be correct. 

Figure 5.10 show the mixtures in bottles; the immiscible solution (IS) set 

remain phase-separated, the semi-miscible solution (sMS) set creates an 

opaque solution initially before turning clear over a period of a day; this 

suggests that solutions eventually mix though it starts off as partially 

miscible. On the other hand the miscible solution (MS) starts off as a 

colourless clear mixture and remain clear over time, indicating complete 

mixing. 

 

 

 

Figure 5.10: Core and shell solvent mixtures showing the difference between 

the immiscible (IS), semi-miscible (sMS) and miscible (MS) solution sets. 
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Figure 5.11: Electrospinning apparatus setup a) Glove box with high DC voltage 

supply, b) The nozzle and collector plate setup placed inside the glove box (note: 

the nozzle set up here is that for a single nozzle, but this can be exchanged with 

the co-axial nozzle set up shown in Figure 5.12. 



 

 

 

Table 6. Shell and core solution mixtures used to make the immiscible, semi-miscible and miscible core and shell solution combinations. 

The abbreviations for the solutions are: DMF Dimethylformamide, DMSO Dimethyl sulphoxide, Tol Tolunene, DCE Dichloroethane, PF 

Pyridinium formate and NB Nitrobenzene 

  
Shell solution               Core solution 

Core-shell solution set Composition 
Viscosity at 

20-22°C(cP) 

Conductivity at 

20°C (S/cm) 
 Composition 

Viscosity at 

20-22°C (cP) 

Conductivity at 

20°C (S/cm) 

Miscible 

MS-1 
20 wt.% PS in 

DMF 281 9.60 x 10
-7

 

10 wt.% AB in    

DMSO 
- 1.00 x 10

-5
 

MS-2 
10 wt.% AB in 

DMF 
- 4.59 x 10

-5
 

Semi-Miscible 

sMS-1 
18 wt.% PS in 

7:1.2 mass 

ratio Tol:DMF 

- 1.00 x 10
-8

 
(b) 20 wt.% AB 

in DMSO 
9.5 5.00 x 10

-6
 

sMS-2 
20 wt.% PS in 

7:1 mass ratio 

Tol:DMF 

254 1.00 x 10
-8

 
(a) 10 wt.% AB in 

DMSO 
- 1.00 x 10

-5
 

Immiscible 

IS-1 
20 wt.% PS in 

3:1:1 vol. ratio 

Tol: DCE:PF 

526 4.91 x 10
-5

 

(a) 10 wt.% AB in 

water 
1.5 4.71 x 10

-4
 

(b) 20 wt.% AB 

in water 
- 1.13 x 10

-3
 

IS-2 
20 wt.% PS in 

7:2:1 vol. ratio 

DCE:NB:PF 

1046 1.13 x 10
-4

 
10 wt.% AB in 

water 
1.5 5.72 x 10

-4
 



 

 

 

5.3.3 Electrospinning set-up 

The electrospinning set up used for this investigation is shown in 

Figure 5.11; the single nozzle-head shown in the figure is replaced with the 

co-axial nozzle-head shown in Figure 5.12. This system was designed and 

built by the Micro and Nano-Technology Centre at the Rutherford Appleton 

Laboratory. The inner and outer tubes of the co-axial nozzle were 

independently connected via tubing to 10 ml syringes that contained the 

solutions. The flow rates of core and shell solutions were controlled by 

attaching the syringes to two programmable Harvard- PHD 2000 syringe 

pumps. The inner diameters of the core and shell nozzles used were 0.45 and 

1.01 mm respectively. The flow rate of the core solution was varied between 

50 and 500 μl/hr, while that of the shell solution was fixed at 500 μl/hr; this 

allowed the AB:PS ratio to vary.  An aluminium sheet was used as the 

collector plate, at a distance of 30 cm from the nozzle tip. A Gamma High 

Voltage power supply was used to generate a high static potential difference 

across the nozzles (connected to the emitting electrode) and the collector 

plate (connected to the grounding electrode). The voltages used for the semi-

miscible and immiscible solution sets in this study were set at 12 kV and 19 

kV respectively. These specific voltages were selected as they yielded the 

most stable electrospinning. The stability of the spinning process was 

monitored by a high-speed CCTV camera focused on the nozzle tip. 

5.4 Results and Discussion 

AB-PS fibres with a range of morphologies and properties were co-

electrospun from a set of different solution combinations. Significant 

differences were observed between fibres electrospun from each solution set; 

with variation in the fibre morphology, core-shell configuration and the 

sample mass loss in the thermolysis process. Although solvent mixing was 

found to be a highly useful way of optimising solvent parameters for 

electrospinning, maintaining the delicate balance between all solvent 
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variables to ensure success of electrospinning was found to be rather 

difficult, as discussed further in §5.3.2. 

 

 

Figure 5.12: Co-axial nozzle setup used in experiments: (a) co-axial nozzle with 

pipe connections for the flow of core and shell solutions, (b) a close up of the co-

axial nozzle with insets showing a schematic of its cross-section and a schematic 

of the T-junction connecting the core and shell nozzle pipes together. 
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In this section the results of co-electrospinning for each solution set, the 

differences in the obtained fibre morphologies, their chemical and 

crystallographic structure and their thermal decomposition properties will be 

presented and discussed with respect to the parameters of core-shell solution 

combinations. In order to gain a better understanding of how the properties 

of each solution control the morphology and structure of the co-electrospun 

fibres, where possible, the fibres electrospun in the single phase (those solely 

from the core or shell solutions) are also analysed.  

 

5.4.1 Co-electrospinning of AB-PS fibres 

The miscible, semi-miscible and immiscible AB-PS solution 

combinations used in co-electrospinning are shown in Table 6. The minimum 

polystyrene concentration in DMF that yielded non-beaded continuous PS 

fibres was 20 wt.% for the PS molecular weight used (330,000 Daltons); this 

was the highest molecular weight PS available from the manufacturer.  For 

the purpose of maintaining consistency the same PS concentration was used 

throughout for all but one solution set (sMS-1), as shown in Table 6. The 

effect of polymer concentration on fibre morphology could not be measured in 

the case of PS-toluene solutions, as these solutions could not be electrospun 

in the single phase at any of the PS concentrations tested (10-30 wt.% PS in 

toluene). As for the core solutions, both 10 and 20 wt.% AB concentrations 

were used; the later value was found to be close to the point of solubility 

saturation in both core solvents used (water and DMSO), as measured by the 

opacity of the solutions with any additional amounts of AB. 

Fibres were co-electrospun from both semi-miscible and immiscible 

solution sets; however, neither of the miscible solution sets (MS-1 and MS-2) 

yielded any fibres. Although the outer shell solution (20 wt.% PS in DMF) can 

be electrospun successfully on its own, introducing the core solution (10 wt.% 

AB in DMSO or DMF) caused the polymer to precipitate out of solution at the 

nozzle orifice, preventing spinning from taking place. Polymer precipitation 
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resulted in the formation of an elastic gel-like material at the tip of the 

nozzle, with the droplet insufficiently liquid to precipitate a jet. This result, 

replicated in vitro away from the electrospinning apparatus, is attributed to 

the differing compatibility and miscibility of the solutes and solvents. In the 

case of MS-1, although the core solvent, DMSO, is a non-solvent for PS, it is 

highly miscible with DMF, the shell solvent. It is likely that the two solvents 

mix to produce a combination which can no longer dissolve PS, causing it to 

aggregate and precipitate out [198]. In an attempt to overcome this I have 

used DMF as the solvent in both the core and shell solutions, as it readily 

dissolves both AB and PS. However, the same problem was encountered once 

again, although PS precipitated out of the solution at a slower rate, perhaps 

owing to the presence of the AB. 

 In the case of semi-miscible and immiscible solution sets composite 

fibres of AB and PS were successfully electrospun. However, the optimisation 

of the solution parameters through blending of solvents with specific 

proportions was vital for the success of the process, so that a compound jet 

could be initiated and fibres could be electrospun. Nevertheless, problems in 

the continuity of the electrospinning process were still encountered at times. 

Nozzle blockage, in the case of highly volatile solutions, or electrostatic 

charging of fibres that caused the electrospinning jet to lose its stability, 

were two specific issues we had to watch out for during the spinning process. 

Fibre samples were collected over a period of minutes to hours on 

plastic rods lying on the collection plate, before being removed for analysis. 

The resulting fibre-mats, which resembled cotton wool or tissue paper (see 

figure Figure 5.13), were dried at ambient temperature under dynamic 

vacuum of at least 2 × 10-2 mbar for 4 hours or until no further weight loss 

owing to evaporation of solvents was observed. The incorporated AB 

proportion was calculated as a fraction of the total remaining sample mass, 

assuming complete evaporation of all the solvents from core and shell. 

Prior to co-axial tests, single phase electrospinning of individual core 

and shell solutions were tested using the inner nozzle. AB solutions 

electrospray rather than spin as there is no polymer (or viscoelastic) 
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component. The AB proportion in the resulting fibres ranged from 0 for the 

PS solution spun alone, through to 44 wt.%. This gives a nominal total 

accessible hydrogen content (2H2/AB molecule) of 5.8 wt.% (to 150 °C). 

 

 

Figure 5.13: Electrospun fibre mesh (fibre mat) collected off the collection plate. 

The fibre-mesh resembles cotton wool or tissue paper, depending on how aligned 

and flattened the fibres are. 

Samples obtained from each spinning session were numbered uniquely 

and separated into portions for each characterisation technique. Sample 

masses spun per session ranged from ~10 to 500 mg prior to drying 

depending on the combined flow rate and the length of the stable spinning 

period. In the drying process samples lost typically 30-50 % of their as-spun 

mass, indicating the removal of a significant fraction of the remaining 

solvent.  

The reported AB content was obtained from the set flow rate (FR) for 

each solution into the spinning nozzle, as given by: 
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Although the target was to maintain a consistent flow of both core and shell 

solutions, at the set flow rates, it was not always possible to do so due to 

factors that could not be easily controlled. Bubbles were often observed in 

the core solution which went into the flow line creating air gaps in the line. 

Occasionally the solution in the core nozzle was found to deplete at a faster 

rate than that set on the syringe pump, as observed through formation of a 

large air gap in the syringe. This suggested that the core solution was 

experiencing capillary flow under the influence of the electric field, 

sometimes at a rate greater than the set flow rate. Thus, uncertainties exist 

in the actual core/shell flow rate ratio, which appear to be semi-systematic 

but are difficult to determine quantitatively. A core flow rate error range of 

5-30 % was measured in some cases.  Also unknown was the quantity of 

solvent remaining in the fibres even after the drying period. The fibres 

analysed here are ordered by nominal AB content as calculated by the core-

shell flow rate ratios and concentrations (assuming equal core and shell 

solutions densities, a parameter not quantitatively determined). Where a 

difference was recorded in the flow rate and actual amount of solution used 

in the production of a given fibre sample notes are made. 

 

5.4.2 Morphological characterisation of fibres: SEM 

and TEM  

5.4.2.1 Semi-miscible solution set 

The semi-miscible solution sets (sMS-1 and sMS-2) were successfully 

co-electrospun with both 10 and 20 wt. % AB in DMSO as the core solution.  

Figure 5.14 (a-d) shows SEM and TEM micrographs of fibres co-electrospun 

using sMS-1 and sMS-2 solution sets; these fibres are highly porous, with the 

degree of porosity and extent of core-shell configuration changing depending 

on the particular shell solution concentration and flow rate ratio selected. 

Fibres produced using sMS-1, with 18 wt.% PS in 1:1.2 mass ratio Toluene: DMF 
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as shell solution, have a high degree of porosity extending through the bulk 

of the fibre, i.e. lacking a core-shell structure (Figure 5.14 (a) and (b)).  

On the other hand, fibres produced using the second semi-miscible 

solution set (sMS-2) with a slightly higher PS concentration in the shell, 20 

wt.% in 7:1 volume ratio Toluene:DMF, maintain a core-shell configuration with 

a porous sheath structure (Figure 5.14 (c) and (d)). It is important to note 

that while this shell solution does not electrospin on its own, due to its low 

conductivity (charge density) and dielectric constant, it does when spun co-

axially with the highly conducting core solution. Thus, in this case it is likely 

that the charge that collects on the interface between the core and shell 

solutions drives the electrospinning of the compound jet. As discussed in 

§3.2.3.3, theoretical studies suggest that the component driving the 

compound jet is the one that is the conductor because under the influence of 

the electrical field the electrical relaxation time of charges in a conducting 

solution is much smaller than that in a dielectric (insulating) solution. Thus, 

in this case the charges from the AB-DMSO solution migrate to the liquid-

liquid interface when a potential difference is applied, and the electrical 

stresses acting at the apex of the Taylor cone cause the viscoelastic 

stretching of the compound jet, enabling fibres to form. 

Formation of fibres from co-electrospinning of a core-shell system, 

composed of core and shell solutions non-spinnable in the single phase, is an 

important result for electrospinning of polymeric solutions that cannot be 

electrospun on their own. This finding, which has not been reported 

previously, suggests that if two solutions with the correct properties are 

combined (even if neither one of them have all its properties optimised for 

electrospinning) then it can be possible to initiate co-axial electrospinning 

even if it is not possible to spin either solution individually. Furthermore, I 

demonstrate experimentally that it is possible to initiate electrospinning 

using just a conducting core-solution and a non-conducting shell solution, in 

contrast to what is reported in the review by Moghe and Gupta [72]. Here it 

is important to note that though Loscertales and co-workers have 

demonstrated the possibility of using non-spinnable solutions for initiating 
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co-axial jets with only the core solution conducting [123, 124], co-

electrospinning of fibres from two non-electrospinnable solutions, to my 

knowledge, has not been reported before.  

Lopez-Herrera et al. [124] report on the variation of droplet diameters 

depending on whether the driving liquid is flowing inside or outside the core, 

while Li et al. [129] report, based on calculations, variation in the jet 

instability modes for core and shell liquids with different electrical 

properties. These observations can be used to explain some of the differences 

we see in our fibre sets, which were made from solutions with different 

relative core-shell conductivities. It is possible that in the case of a compound 

jet formed of a highly conducting core fluid of low viscosity and a shell fluid 

with no conductivity (but relatively high viscosity), as in the case of our sMS 

set, that the build-up of charge on the core-shell interface drives the mixing 

of the two phases under the influence of the electric field that causes 

instability or perturbations.  Incorporation of the core phase into the shell 

phase through such a mechanism will form core-solvent rich regions in the 

spinning jet, which will yield highly porous fibres once all the solvent has 

evaporated, possibly like those shown in Figure 5.14 (a) and (b). This type of 

porosity, which extends from the core to the surface of the fibres, is different 

from the surface porosity typically observed in fibres, which is normally 

attributed to humidity of the spinning environment. Based on theoretical 

data on the instability theory of the spinning jet, we have developed a theory 

to explain a mechanism that can possibly lead to the kind of porosity seen in 

sMS-1 fibres (Figure 5.14 (a) and (b)). This theory, which can be used to 

control the degree of porosity in electrospun fibres, is outlined in §5.4.4.  

On a further note, to illustrate the effect of core flow rate and AB 

concentration on the jet conductivity, we look at the variation of fibre 

morphology of those fibres produced using solution set sMS-1, which had a 

reduced PS concentration of 18 wt.% in 7:1.2 mass ratio of toluene:DMF. SEM 

images of these fibres (Figure 5.15) show that, in the case of 10 wt.% AB in 

DMSO as the core solution, at low core flow rates the fibres are highly beaded 

(Figure 5.15 (a)), but when the flow rate is increased the beads elongate 



Co-electrospun AB-PS fibres                                            173 

 

 

along the fibre axis (Figure 5.15 (b)), and when a higher AB concentration 

solution (20wt% AB in DMSO) is used the beads are almost completely 

removed (Figure 5.15 (c)).  

 

    

   

Figure 5.14: (a) SEM  and (b) TEM micrograph of fibres produced from semi-

miscible solution set-1, sMS-1, with 10 wt.% AB in DMSO as core solution 

(electrospun with shell-core flow rate of 500:250 μl/hr, voltage 12 kV, 

temperature 18°C, humidity 50 %), (c) SEM micrograph of fibres from semi-

miscible solution set-2, sMS-2, (electrospun with shell:core flow rate 500: 250 

μl/hr, voltage 12 kV, temperature 21°C, humidity 27 %, (d) TEM micrograph of 

fibres from sMS-2 (electrospun with shell-core flow rate 450:200 μl/hr, voltage 

12 kV. The morphological variation between the two sets of fibres (produced 

from sMS-1 and sMS-2) is illustrated; while sMS-1 fibres have no core-shell 

structure and high density of pores, sMS-2 fibres have core-shell morphology 

with much smaller and lower density of pores. 
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Fibre beading, which is attributed to the effect of surface tension, is 

typically removed by increasing the conductivity of the solution (as discussed 

in §2.6.1.3). Thus, it appears that the total conductivity of the compound jet 

is increased with increasing AB-solution flow rate and AB concentration (i.e 

with increasing charge density in the compound jet). While we have no direct 

measure of the conductivity of the compound jet, this hypothesis is in 

agreement with the results reported by Lopez-Herrera et al. [124], who have 

found that the electrical current transported by co-axial jets of conducting-

insulator liquids is dependent on the conducting fluid‟s flow rate. 

 

5.4.2.2 Immiscible solution sets 

The first immiscible solution set (IS-1) resulted in the formation of 

fibres most of which are collapsed, as shown in Figure 5.16 (a)-(c). These 

fibres have some porosity but with pore size and density significantly lower 

than that in the fibres produced from sMS sets discussed above. Fibre 

buckling (collapsing) is attributed to the difference in evaporation rates of 

the core and the shell solvents during the formation of the fibres [116] (as 

discussed in §3.2.3.4). The vapour pressure of the shell solvent blend used for 

making the IS-1 fibres is approximately 50% higher than that of the core 

solvent (Table 5), so the shell solvent will be expected to evaporate first 

leaving a semi-dry shell layer for the core solvent to diffuse through. The dry 

skin (shell) layer collapses under atmospheric pressure to form elliptical or 

flat fibres [128], the extent of which depends on the diffusion rate of the core 

solvent through the shell [116, 128].  
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Figure 5.15: Fibres co-electrospun with solution set sMS-2 showing reduction in 

beading with increasing core (AB) solution quantity (flow rate and 

concentration) a) core: 10 wt.% AB in DMSO, shell:core flow rate = 400:150, b) core: 

10 wt.% AB in DMSO, shell:core flow rate = 400:250, V=12, T=18, H=39 %)  core: 20 

wt.% AB in DMSO, shell:core flow rate= 400:250. The temperature and humidity 

in all cases is 17-18 °C and 39-40% respectively. 
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We find that the degree of collapsing decreases as the core solution flow 

rate increases for a fixed shell flow rate (500 μl/hr). This is illustrated in 

Figure 5.16 (a)-(c), which shows SEM micrographs of fibres co-electrospun 

with increasing core flow rates respectively (150, 250 and 500 μl/hr for fixed 

shell flow rate of 500 μl/hr). This suggests that the presence of a greater 

solution (or solvent) volume in the core, as well as reduction of fibre 

diameters, can reduce the degree of fibre collapse. The low vapour pressure 

of the shell solvent blend also caused the droplet at the tip of the nozzle to 

dry up, causing intermittent electrospinning; the jet was sustained only 

during the time the droplet was sufficiently fluid to form a compound jet. 

When the droplet dried up, it grew in size and detached from the nozzle as 

fresh solution emerged from the top, enabling electrospinning to ensue. 

Despite much effort to optimise the properties of the shell solution used 

to make IS-1, it was not possible to match the vapour pressure of the solvent 

mixture with that of the core solvent (water) by simply varying the 

proportion of each solvent, as none of the solvents in the blend had a vapour 

pressure lower than that of water. Thus, it was necessary to make an 

alternative shell solvent blend composed of PS-compatible solvents with 

lower vapour pressures without compromising the conductivity and dielectric 

constant, while retaining immiscibility of the core and the shell solutions. 

Immiscible solution set-2 (IS-2) was prepared with this in mind using 

nitrobenzene (NB), a low vapour pressure solvent, as an alternative to the 

main solvent, toluene, in IS-1. This solution set (IS-2), which had the most 

compatible core and shell solution combination and the most optimal 

properties for co-electrospinning of all the solutions tested, resulted in non-

porous cylindrical fibres with a core-shell configuration and a smooth surface 

morphology (Figure 5.17). Thus, the solution selection method developed was 

found to provide a successful approach to step-wise optimisation of solution 

properties and control of fibre morphology. It is important to note once more 

that our aim was to produce co-axial nanofibres with AB encapsulated in a 

thin polymer sheath permeable only to hydrogen. Fibre porosity is therefore 

a highly undesirable characteristic for core-shell fibres prepared to retain all 

reaction products of a hydrogen storage material (other than hydrogen) in 
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the core of the fibres. Nevertheless, the know how developed for 

understanding the factors leading to pore formation can be extremely useful 

for making porous fibres or vesicles in a controlled manner for other 

applications, such as controlled drug delivery systems, as discussed in §5.4.4 

below. 

 

Figure 5.16: (a)-(d) SEM micrographs of fibres produced from immiscible 

solution set-1, IS-1, with 20 wt.% AB in water as core solution illustrating  the 

change in degree of collapsing and core-shell morphology with increasing core 

flow rate,  a) Flow rate 500:150 ul/hr; b) Flow rate 500:250 ul/hr, c) Flow rate 

500:350 ul/hr, conditions: voltage 18 kV, temperature 23°C, humidity 28 %; (d) 

TEM micrograph of a fibre filament produced under same conditions as fibres in 

(b). 
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Figure 5.17: Fibres produced from immiscible solution set-2 (IS-2) with 20 wt.% 

AB in water as core solution, showing smooth (non-porous) and cylindrical (non-

collapsed) fibres.  

5.4.2.3 Effect of increasing core solution viscosity 

In the case of all co-electrospun fibres described above, the core solution 

was composed solely of AB dissolved in a single solvent and due to 

dissociation of AB (NH3BH3) molecules in the solvent, the core solution had 

very low viscosity compared to that of the polymeric shell which is 

viscoelastic. This satisfies the higher-shell-viscosity condition considered 

necessary for co-electrospinning. To test the effect of increasing core viscosity 

on fibre morphology, without exceeding the viscosity value for shell, a small 

fraction (3 wt.%) of high molecular weight poly(ethylene oxide) (PEO, 

Mw=900,000 Da) was added to the 10 wt.% AB-water solution to make the 

core solution viscous. The shell solution used was the same as that used for 

IS-1 (20 wt. % PS in 3:1:1 Tol:DCE:PF mixture).   
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Figure 5.18: (a) SEM and (b) TEM micrograph of fibres co-electrospun from IS-1, 

20 wt.% PS in 3:1:1 volume ratio Tol-DCE-PF (shell) &  20 wt.% AB in water + 3 wt.% 

PEO (core) ( FR=500:200 μl/hr, voltage 19 kV, temperature 21°C, humidity 40%), 

showing collapsed bulk fibres with very little porosity; (c) SEM micrograph of 

fibres obtained with the core solution (20 wt.% AB in water + 3 wt.% PEO) 

electrospun on its own, AB has formed crystallites attached to the fine PEO 

fibres. 

Co-electrospinning of this core-shell solution set resulted in the 

formation of solid fibres with significantly reduced porosity and degree of 

collapsing, as illustrated by the SEM and TEM micrographs in Figure 5.18 

(a) and (b) respectively. Dror et al. [199] reported seeing similar effects due to 

the polymer precipitating out onto the inner wall of the shell, stiffening the 

fibres and suppressing the collapse. Figure 5.18 (c) shows the core solution 

(20 wt.% AB in water + 3 wt.% PEO) electrospun on its own through the core 
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nozzle (i.e. without the shell solution running through the annulus of the co-

axial nozzle). The core was electrospun to test the process parameters 

required for electrospinning of the core solution, which was considered as the 

driver of the compound jet.  The PEO fibres formed are very fine (<100 nm) 

due to low concentration of PEO with AB crystallites (with crystal sizes 

ranging between 0.2-2 μm). Although this is a very good way of obtaining 

high density of nano- and micro-structured AB crystals attached to polymeric 

fibres, the electrospinning process was very unstable due to the difficulty of 

maintaining continuous electrospinning. The process was not investigated 

any further since the AB was not encapsulated as required for this study. 

 

5.4.3 Fibre diameters and core structure 

A relatively high degree of variation was observed in the core shell 

morphology and fibre diameters in fibres co-electrospun from both sMS-1,2 

and IS-1 fibre sets as shown in SEM and TEM images in Figure 5.19 and 

Figure 5.20, and the mean fibre diameter plot in Figure 5.21. Fibres with 

larger diameters have larger pores (as shown in Figure 5.19 (b)) and appear 

to have collapsed at the tips, most probably as a result of pressure exerted on 

them in preparation of fibres for SEM imaging, which requires cutting the 

fibres encased in sticky tape to expose the ends. Fibre variation could be 

attributed to the instability in the electrospinning process or the particular 

voltage used (12 kV), as studies have shown lower spinning voltages yield 

fibres with a greater diameter distribution (this was discussed in §2.6.2.1). 

However, the large difference between the fibres electrospun from solutions 

made on different days or the fibres electrospun from a given solution on 

different days was suggestive of a time-varying effect. There are many 

variables that can of course vary with time; these are the ambient conditions 

(i.e. the temperature and humidity of the atmosphere) as well as solution 

properties such as viscosity and conductivity. Having tested for the latter we 

have found a large variation over time in the conductivity of the core 

solutions containing AB, as shown in Figure 5.22. This observation is a very 
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good example of how strictly all the parameters have to be controlled in 

electrospinning and shows how important it is to identify and control those 

variables that vary over time. Unfortunately, the variation in conductivity 

was only discovered in latter stages of the study and hence was not properly 

controlled for in earlier studies. Fresh AB solutions were made and used on 

the same day in most cases.  

 

 

 Figure 5.19: Fibres co-electrospun from solution set sMS-2 with 10wt% AB in 

DMSO as the core solution, showing the variation in fibre diameter and the 

degree of porosity along the fibre axis in one fibre set. Larger fibres collapsed at 

the fibre ends due to pressure applied when cutting the ends for SEM analysis; 

a) shell:core flow rate 500:250, V=12, T=21, H=27 b), c)  shell:core flow rate 

500:500, V=12, T=20, H=33 d) shell:core flow rate 500:200, V=12, T=21, H=32.  
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Figure 5.20: TEM images of fibres electrospun from (a) sMS-2 solutions set (with 

10 wt.% AB in DMSO (core); (b) IS-1 solutions set with 10 wt.% AB in water, 

showing the variation between the two fibre sets and the difference in the fibre 

morphology and diameters within each fibre set. 

 

 

Figure 5.21: Mean diameters of fibres electrospun from semi-miscible (sMS-2) 

and immiscible (IS-1) solutions sets; error bars represent the standard deviation 

on sample of ~100 fibres. 
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The fibres produced have diameters typically in the range 1-2.5 μm as 

shown in the plot of mean fibre diameters as a function of total flow rate for 

sMS-2 and IS-1 (Figure 5.21). These diameters are unfortunately not in the 

nanometre range we were aiming to get. Fibre diameters can typically be 

reduced by reducing polymer concentration, while using a higher molecular 

weight polymer to maintain a specific viscosity for chain entanglement, and 

by increasing electrical conductivity of the diluted solution to prevent 

beading. It was not possible to obtain a higher molecular weight general 

grade PS from the manufacturers, and reducing the PS concentration even a 

small amount resulted in beaded fibres for the molecular weight used (Mw = 

350,000 Daltons), as shown by fibres electrospun from sMS-1 (Figure 5.15). 

Increasing the electrical conductivity of the shell solution further was very 

difficult using the selected PS-compatible solvents. However, the main 

reason for the lack of focus on lowering the fibre diameters further was 

because the porous fibres, with pores tens of nanometres across, were 

considered to be nanostructured based on the initial dehydrogenation data 

obtained using coupled TGA-mass spectroscopy techniques are discussed (as 

discussed below in §5.4.6).  

It is possible to observe some discontinuity in the core-shell 

configuration in some of the fibres in all sample sets, sMS1,2 and IS-1,2 (as 

shown in Figure 5.14, Figure 5.16, Figure 5.17 and Figure 5.19); there 

appears to be some variation in the wall thickness and while some fibres 

have a hollow core structure, some do not. In the case of these fibres the 

hollowness of fibres is attributed to evaporation of the core solvent after the 

shell has hardened; the core solution will take up more space than the AB 

can fill after the core solvent has evaporated and hence fibres with hollow 

cores are formed with AB presumably deposited on the inner walls. Hollow 

fibre structures were observed by Dror et al. [199] and Arinstein et al. [200] 

even in the case where the core solution was polymeric like the shell 

solution. In these studies, based on both experimental and theoretical 

findings, the formation of the hollow fibre structure is attributed to a 

mechanism whereby the shell forms a hardened skin layer due to initial 

evaporation of the shell solvent, which results in the formation of microtubes 
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that contain many slugs of entrapped core solvent that are bound by a 

vapour phase [199, 200]. As the remaining core solvent evaporates the slugs 

shorten from each end in the tubes, leaving a thin but macroscopic layer of 

core solute behind [199]. Depending on the rate of evaporation of core solvent 

through the shell layer the core of the fibres can result in being either hollow 

or compact.  If the AB is retained on the inner surface of the pores in a 

similar manner in the case of porous sMS fibres, then the AB encased in the 

pores may well be formed of nano-AB layers or crystallites. This is a possible 

reason for the observed reduction in desorption temperature in the sMS 

fibres but not the IS ones (as discussed in 5.4.6). However, it is important to 

note that, continuity of the core flow and phenomena such as bubbles in the 

core solution during electrospinning of the fibres could also potentially 

influence the core structure (i.e. hollowness) of the fibres. 

Further analysis of the internal structure of the fibres are needed to 

more conclusively determine how AB is deposited in the core of the fibres 

and whether AB is nanostructured in some of the fibres. Unfortunately the 

TEM images of the fibres (see examples in Figure 5.14(b) and (d) and Figure 

5.20(a)) do not conclusively show how AB is encapsulated in the fibres, 

mostly because AB crystals are not visibly obvious in the images. TEM 

diffraction was used to see if AB crystals were present in certain segments of 

the fibres imaged, but no diffraction data was obtained in the few tests done. 

Further research is needed using the TEM to determine how AB is deposited 

or encapsulated in the fibres (both along the fibre axis and its cross-section). 

Also, if AB is deposited on the inner core of the fibres as particles, the 

particle dimensions have to be determined; if it is deposited as a film then 

the film thickness will have to be determined, though this could be less 

straightforward. In the case of porous fibres, it is important to determine if 

the AB is embedded in the pores of the fibres along their cross-section or 

purely in the hollow core of the fibres. The high density, crack like core 

structures, as observed in Figure 5.20(a), have to be further investigated to 

determine if these are due to AB coagulation, etc. These variations can 

explain some of the differences measured in the thermolysis experiments as 

discussed later. 
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Figure 5.22: Graphs showing the variation of AB solution conductivity over time 

for different AB concentration in (a) DMSO and (b) in water. 
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5.4.4 Fibre Porosity 

Porosity in the co-electrospun fibres was a phenomenon we had not 

initially anticipated at the beginning of this study, at least to the extent we 

have seen in the fibres. Since porosity was initially considered as an 

undesirable characteristic of AB-PS fibres, attaining an understanding of the 

factors that lead to porosity and removal of the pores from the fibres was 

crucial for this investigation. However, upon conducting thermolysis studies 

on the electrospun fibres, more interesting results were obtained in the case 

of fibres with the greatest degree of porosity, which indicated possible 

nanostructuring of AB in the highly porous fibres (as discussed in §5.4.6 

below). This in return made fibre porosity and the mechanisms that lead to 

porosity more interesting to investigate. In this section I will look at the 

factors that are thought to lead to porosity, as outlined in literature, and 

discuss why these do not provide sufficient justification for the kind of 

porosity seen in the co-electrospun fibres discussed. I will then make 

references to the jet instability model discussed in §3.2.2.1, to explain how it 

could possibly be used to explain the extent of porosity we see in our fibres. 

This theoretical model, which needs to be tested more thoroughly on other 

solution systems, can be very powerful for gaining control of the porosity in 

fibres and vesicles, opening up many potential applications for engineered 

porous fibres besides biomedical uses. 

5.4.4.1 Creating porous fibres 

In literature, fibre porosity is attributed to a thermodynamic instability 

driven either by cooling, the loss of solvent or the increase in the 

concentration of a non-solvent such as water that drives the phase 

separation during the electrospinning process [201-204]. Volatile solvents 

such as THF can cause significant evaporative cooling. If this takes the 

system below its upper critical solution temperature (UCST) then the system 

will become unstable and separate into a solvent-rich phase and a solvent-

poor phase, the solvent-rich phase results in the formation of pores as the 
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solution evaporates. This is known as thermally induced phase separation 

(TIPS). A related effect known as vapour-induced phase separation (VIPS) is 

also thought to occur when the atmospheric humidity is high. As the water 

concentration increases in the solution, it can also drive the system into the 

unstable region of the tertiary phase diagram. In principle both effects could 

occur simultaneously.  

PS in water-soluble solvents such THF [205, 206] or DMF [201, 202, 

206, 207] shows porosity at relative humidities of above 25-30% as would be 

expected via VIPS. However, porosity has also been observed with PS 

dissolved in water-insoluble solvents such as toluene at similar values of 

relative humidity [206]. In our investigation all the fibres were electrospun 

in an atmosphere with a humidity greater than 25% (typically between 30-

50%) and as reported elsewhere  [119, 208] there appears to be some increase 

in porosity with atmospheric humidity, but only in fibres produced from the 

semi-miscible solutions. However, the large variation in porosity between 

fibres produced from each solution set (sMS-1, sMS-2, IS-1 and IS-2), despite 

being electrospun in an environment with the same atmospheric conditions, 

suggest additional factors are influencing the porosity of these fibres. This is 

clearly illustrated by the fibres electrospun from IS-2 set (Figure 5.17), 

which have no porosity despite being electrospun in an atmosphere with a 

relatively high humidity (50%). 

Toluene and PS are completely miscible at room temperature and 

below; because of the nature of the interaction between solvent and polymer 

it is a system which does not have UCST but a lower critical solution 

temperature, LCST, of around 550 K [209], making it necessary to heat the 

solution to initiate phase separation. This and the fact that toluene and 

water are immiscible imply that neither VIPS nor TIPS should occur. Even 

though our semi-miscible solutions contain a small proportion of DMF (a 7:1 

or 7:1.2 ratio of toluene and DMF), this mixture is still largely immiscible 

with water. However, it is not clear if the mixing of the shell solution with 

the core solution (AB-DMSO) at the nozzle orifice would introduce a UCST 

that could initiate thermodynamic instability and yield porous fibres. 
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By engineering a solution or pair of solutions, which phase separate 

reliably, vapour- or thermally induced phase separation could be exploited in 

a more controlled manner to form porous fibres with the desired size of pores 

(important for nanostructuring) rather than just relying on environmental 

parameters such as temperature or humidity. It is possible to use the 

Hansen parameters to obtain an estimate of the Flory-Huggins interaction 

parameter [142] and hence some idea of the nature of the binary phase 

diagram. The process is complex and much also depends on factors such as 

the volatility of the solvent. High evaporation rates cause significant cooling 

which makes both VIPS and TIPS more likely, but if the polymer drying time 

is too fast then it can solidify before significant water can be absorbed [207].  

Although vapour or thermally induced phase separation can lead to 

pores in fibres, the kind of pores seen in semi-miscible solutions (sMS) are of 

a different character than those which would be expected by VIPS or TIPS, 

which would produce pores more like the ones seen in immiscible-solution 

(IS) fibres. In the sMS fibres there are a large number of regularly spaced 

pores with smaller surface openings, extending frequently through the entire 

fibre cross-section (as in Figure 5.14 (a)), and sometimes co-existing with a 

larger core section (as in Figure 5.14 (c)). For a given fibre the pores are all of 

roughly equal size, whereas in the porous IS fibres, the pores are shallow, 

sparse, and distributed less evenly (as shown in Figure 5.16). Therefore, it 

appears that another mechanism is controlling fibre porosity and we think 

this is the electrohydrodynamic instability experienced by the 

electrospinning compound jet. This instability mechanism and the 

justification for why we think it may play a role in shaping fibre porosity are 

discussed below. 

5.4.4.2 Core-shell instability 

The idea that porosity is driven by a thermodynamic instability is 

compelling, but it must also be remembered that there may well be effects 

due to the large electrostatic fields. In the semi-miscible solution 

combination, the conductivity of the core solution is 2 to 3 orders of 
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magnitude higher than that of the shell solution, so charge will collect on the 

core-shell interface rather than on the outside of the fibre. This is predicted 

to create an instability driven by the axial component of the electrostatic 

field, which can induce fibre porosity in addition to phase separation or even 

if there is no phase separation; a mechanism that can also be effective during 

melt electrospinning. 

Most theoretical work on the electro-hydrodynamics of electrospinning 

has focused on the axisymmetric instability modes which drive the helical 

motion of the fibres and the breakup of the fibres into droplets [210, 211]. 

These works show that the viscosity, as characterized by the Reynolds 

number, controls the growth of these instability modes; and higher viscosity 

will suppress the Rayleigh-type modes that cause the break-up of the jet into 

droplets i.e. electro-spraying. But they also show that as the Weber number, 

which is proportional to the inverse of the surface tension, increases, the 

higher wavenumber modes become unstable.  

Calculations by Li et al. [212] show that these non-axisymmetric modes 

can also be driven unstable in a radial electric field as the Weber number 

becomes sufficiently large. Because these modes are actually on the core-

shell interface in our system, it is the interfacial surface tension resulting 

from the difference in cohesion energy between the two liquids which is 

relevant in this case. It is intuitively obvious that as two liquids become 

miscible, their mutual interaction becomes as strong as their self-cohesion, 

and the interfacial surface tension will tend to zero.  

It was described in §3.2.2.1 that using a normal mode it is possible to 

decompose the capillary waves on a cylindrical surface into modes 

characterized by an azimuthal number n. 

                              (5.5) 

  

where k is the wavenumber along the fibre axis. The axisymmetric modes are 

all n=0 and the helical mode is n=1 (as discussed in §3.2.2.1). These modes 
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are shown for three values of m for a co-axial fibre in Figure 5.23 (a). The 

amplitude for a capillary wave for a given energy is proportional to one over 

the square-root of the surface tension (from Eq. 3.3), so the capillary waves 

on the interface between the inner and outer solutions will be controlled by 

the interfacial surface tension. 

 

 

 

      

Figure 5.23: a) A series of cross-section of some non-axisymmetric modes for a 

coaxial fibre. b) A representation of an m=8 non-axisymmetric mode on the core 

shell interface with different amplitudes showing the formation of the porous 

fibres. 
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For a wide range of solvents Beerbower [213] showed that there is a 

correlation between the surface tension and the Hansen parameters:  

                 
          

    
    (5.6)  

  

where γ1 is the surface tension in air for material 1; suggesting that the 

surface tensions of two solutions would become the same as Ra tends to zero.  

For a liquid on a solid surface the cosine of the contact angle decreases 

with increasing Hansen radius Ra. (Eq. 3.15)[214]. When Ra is sufficiently 

small the contact angle goes to zero as the liquid spreads out to form a thin 

film. Assuming no mixing, the same trend should be true of two liquids. The 

contact angle between a liquid and a solid, or in our case two liquids, is given 

by 

                (5.7)  

  

for liquid 1 on liquid 2, where γ12 is the interfacial surface tension. A contact 

angle of zero would occur if γ1 and γ2 are the same and γ12 is zero; i.e. the 

solutions are miscible and Ra is zero. As Ra increases, γ1 and γ2 will diverge, 

and γ12 will become non-zero and the contact angle will get larger. We can 

therefore control the interfacial surface tension by controlling Ra. As we make 

our solutions more miscible we reduce our interfacial surface tension. Figure 

5.23 (b) shows the resulting growth of instability of an m = 8 azimuthal 

capillary wave, forming intrusions of core solution into the shell and 

penetrating the fibre surface to leave a regular pattern of porous inclusions 

similar to that seen in SEM images of sMS fibres (e.g. Figure 5.14(a)). 

In co-axial spinning cases where the charge lies on the core-shell 

interface, therefore, it may be possible to drive interfacial instabilities if the 

solutions are sufficiently miscible and the interfacial surface tension is 

sufficiently small. We propose that these instabilities are likely to produce 
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highly porous fibres and can be suppressed either by making the solutions 

less miscible, as with the IS fibres, or by increasing the viscosity of both shell 

and core.  

In those fibres produced from the semi-miscible solution set sMS-1, the 

pores are spaced approximately 200 nm apart and have an approximately 50 

nm opening on the surface of the fibre. It is interesting to note that the 

spacing of the pores is roughly the same parallel and perpendicular to the 

fibre axis, indicating that the same wavenumber is unstable in both 

directions. Therefore, by controlling the core-shell conductivities, the 

interfacial surface tension and the viscosities accordingly, it should be 

possible induce porosity in the fibres in a controlled manner.  

There are indications from X-ray and FTIR results that porous fibres 

spun from semi-miscible solutions may lose some or all of their AB during 

the spinning process. In the most extreme case, sMS fibres with a nominal 

AB proportion of 38 wt.% did not show any AB content at all. AB is reported 

to sublime at higher temperatures [215] but not at room temperature; 

however, it is possible that AB solution is lost through the pores during the 

spinning process. Under the strong radial fields and mechanical forces 

present during spinning, any core solution that penetrates the shell outer 

surface may be electrostatically sprayed from the fibre.  

In the application for hydrogen storage we were interested in reducing 

the surface porosity to a minimum for successful encapsulation, but the 

solution selection method I have formulated (as discussed in §3.3.3) could 

also be used to select solutions with the required properties for controlling 

fibre porosity in co-axially spun fibres, for nanostructuring hydrides in these 

fibres (though without encapsulation) and for other applications. In 

biomedical applications by controlling the size of the pores in co-axial fibres 

that contains a drug in the core, the release rate of a drug through the 

porous sheath can be controlled, for example, to make active wound 

dressings. It is also possible to make structured nanofibres through 

templating: e.g. if a sol-gel material is spun down the centre of the fibre and 

then the composite fibre is heated to drive off the polymer and set to oxide it, 
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it would be possible to make highly structured oxide fibres for sensors or 

catalyst applications.  

5.4.5 Structural characterisation: X-ray diffraction 

Figure 5.24 and Figure 5.26 show XRD patterns as a function of 

nominal AB content for sMS-2 fibres and IS-1 fibres respectively. AB/PS 

fibre patterns show mixed phases of pure tetragonal AB and electrospun PS. 

It is notable that in most cases there is no sign of a mixed or intercalated 

phase and that the AB/PS fibres therefore consist of regions of oriented 

tetragonal AB intermingled with crystalline PS.  

While PS pellets consist purely of an amorphous phase, pure 

electrospun PS consists of some portion of amorphous PS identified as a 

broad peak with a width of 8° centred around 19° and a smaller peak around 

9°, and a crystalline phase superposed on this pattern with a primary peak 

at 18°, two large sub-peaks at 20 and 22°, and smaller peaks at 28, 29, 38, 41 

and 47° (Figure 5.24 to Figure 5.26). This phase has some features which 

make it distinct from crystallised isotactic or syndiotactic PS [216]: all the 

peaks are of similar width (~0.8°) and none are present at angles below 18° 

(d-spacing 2.49 Å), suggesting a lack of long-range order coupled with strain 

broadening. The influence of solvent evaporation on the formation of semi-

crystalline PS after electrospinning can be compared with solution casting, 

as both cases occur below the PS glass transition temperature. However the 

strong tensile forces acting during the electrospinning process and 

subsequent stretching of the PS polymer chains are likely to lead to a strong 

preferred orientation. 

AB incorporated in the fibres, for both semi-miscible (sMS-2) and 

immiscible (IS-1) solution combinations, is generally in the tetragonal phase 

(t-AB), but there is greater variance in the intensity of the AB peaks across 

the sMS-2 fibres, with some samples lacking AB diffraction signal entirely. 

Interestingly, some of the fibres appear to undergo a change in crystalline 

structure over a period of time, as observed by the variation in the XRD 
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patterns of the same samples after a period of ~3 months. Though it is not 

known at which stage the crystalline transition was complete, it is clear that 

a new AB phase appears in the fibres as the sample ages (see Figure 5.25). 

 

 

Figure 5.24: XRD patterns of fibres produced from semi-miscible solutions (sMS-

2), ordered by nominal AB content (labelled as weighted proportion of whole 

sample). The X-ray wavelength is 1.5402 Å (Cu Kα). The patterns are 

normalised to the height of the PS peak at 18°. Also included are pure AB 

powder diffraction and pure PS fibres from 20% PS in DMF solution.   
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Omitting these exceptions, there is a trend to more AB diffraction as 

the nominal AB fraction spun in the sample increases. The XRD 

measurements are taken from a macroscopic area of sample and with a 

penetration depth of at least 1 mm and so the variation in AB peak intensity 

probably reflects variations in the AB content of samples accurately. The 

ratio of crystalline to amorphous PS varies slightly, as can be seen by the 

variation in intensity of the 9° peak and the relative intensities of the 

crystalline and principal amorphous peaks (see Figure 5.25 and Figure 5.27). 

It is interesting that the crystalline portion of PS disappears in IS-1 fibres 

containing above a certain portion of AB (≥ 0.33) as shown in Figure 5.26. 

The reason for this is not immediately obvious looking at the morphological 

(SEM) data, especially since the crystalline portion of PS is unchanged in 

sMS-2 fibres containing even higher amounts of AB (as shown in Figure 

5.24) 

Preferred orientation in the encapsulated AB is evident from the 

change in intensity ratios of the two most intense peaks, the (1 1 0) at 23.8° 

and the (1 0 1) at 24.4° 2θ, from bulk powder AB. The powder averaged 

intensity ratio is given to be 3:2 for (1 1 0) to (1 0 1), but in bulk AB this ratio 

appears closer to 2:1. In the fibres, the (1 0 1) peak is in many cases <1/10 

the intensity of the (1 1 0) peak. For a (1 1 0) preferred orientation plane, the 

March-Dollase parameter [217], which represents the effective sample 

compression or extension due to the preferred orientation effect, is 0.8 for 

bulk AB (as determined by data fitting in the PowderCell program). 

However, the range of preferred orientations evident in sMS fibre diffraction 

patterns have March-Dollase parameters from 0.5-0.7. This suggests that a 

higher degree of preferred orientation is present in the AB in electrospun 

fibres. As the fibres are flattened lengthwise onto the XRD sample platform, 

this orientation indicates that the AB is preferentially aligned with the 

crystallographic c-axis parallel to the fibre axis. 

Small variations in the peak positions for both AB and PS suggest that 

there is slight variation in the unit cell dimensions, which may arise from an 

interaction between core and shell material where they mix. These do not 
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vary consistently with AB content. PS in single phase fibres appears to have 

a slightly larger unit cell than in the co-axially spun fibres. In the case of 

fibres from IS-1, this pattern is clearer. The ratio of the AB (1 1 0) at 23.7° to 

the (1 0 1) peak at 24.5° is changed in both cases from bulk AB. In most cases 

(for both sMS-2 and IS-1 fibres) the peak widths of both crystalline PS and 

AB are not significantly changed within the resolution of the instrument, 

implying that no reduction in crystal dimensions from the bulk occurs. While 

morphological differences are observed between the two AB-PS fibre sets, the 

XRD is not particularly sensitive to the differing morphologies in the fibres 

(see Figure 5.27 for a comparative XRD plot of the two fibre sets, AB and 

pure PS fibres). 

 

 

Figure 5.25:  XRD patterns of fibres produced from semi-miscible solutions 

(sMS-2), showing anomalous phase of AB compared with typical pattern of fibres 

with the same nominal AB content. The X-ray wavelength is 1.5402 Å (Cu K). 

The patterns are normalised to the height of the PS peak at 18°. Also included 

are pure AB powder diffraction and pure PS fibres from 20% PS in DMF 

solution. 
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Figure 5.26: XRD patterns of fibres produced from immiscible solutions (IS-1), 

ordered by nominal AB content (labelled as weighted proportion of whole 

sample). The X-ray wavelength is 1.5402 Å (Cu K). The patterns are 

normalised to the height of the PS peak at 18°. Also included are pure AB 

powder diffraction and pure PS fibres from 20% PS in DMF solution. 
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Figure 5.27: X-ray diffraction patterns of AB powder, electrospun PS fibres, 

electrospun AB-PS fibres spun using miscible and immiscible core-shell solution 

combinations. X-ray wavelength 1.5402 Å (Cu Kα). Patterns are normalised to 

the height of the PS peak at 18° and offset for clarity. 
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5.4.6 Thermolysis properties of AB-PS fibres: DSC, 

TGA and mass spectroscopy analysis 

5.4.6.1 Differential scanning calorimetry 

From DSC measurements the fibres show a mixture of thermolysis 

characteristics. Figure 5.28 shows DSC measurements on neat AB (at a 

heating rate of 1 and 5 °C/min). As characteristic of AB decomposition, a 

melt endotherm precedes the first decomposition exotherm, which starts 

before the melting is complete. At a heating rate of 1 °/min the exothermic 

peak, which commences during melting (between 95 and 100 °C) peaks at 

~105 °C. The second reaction is not very visible, but appears to take place 

between 130 and 150 °C. At a heating rate of 5 °/min the reaction 

temperatures for neat AB are shifted up in temperature by ~ 8-10 °C; first 

reaction commences at ~ 115 °C and peaks at ~120 °C, the second peak is not 

visible but the first has a long tail up to approximately 150 °C, which 

indicates a reaction is still commencing up to this point.1 This data compares 

well to that reported by Wolf et al., as discussed in §5.2.1.3 and reproduced in  

Figure 5.2; the only exception being that they have observed a strong 

signal for the second reaction at around 140 °C, whereas we see this peak to 

be suppressed significantly.  

The DSC data for pure PS fibres (PS post-spinning) and pellets (PS 

prior to spinning) is shown in Figure 5.29. While the PS pellets only show a 

glass transition at ~100 °C, the PS fibres show no transition up until the end 

point of the measurements (300 °C). A thermogravimetric analysis on the PF 

fibres has shown the fibres to decompose at ~ 350 °C. According to these 

results, which show no melt endotherm, the electrospun PS fibres are non-

crystalline. These results show some inconsistency with the XRD data on PS 

fibres, which showed (see Figure 5.24) the electrospun fibres to have some 

                                              
1
 The sloping background seen in the data collected for the run at 1 °/min is due to an instrumental 

problem in the DSC, which has been calibrated out to ensure the actual measurements are corrected. 
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crystalline structure. Thus, further analysis is needed to determine why the 

DSC and XRD data do not match. 

The DSC measurements on the AB-PS fibres (all of which were taken 

at a heating rate of 1 °C/min) show differing results between different fibre 

sets. While the data have shown some inconsistency between different fibre 

sets depending on the AB proportion in them and the day they were 

electrospun, there appears to be a sharp difference between some sMS-2 and 

IS-1 fibres. In sMS fibres the decomposition temperature of AB is generally 

lowered while in IS-1 fibres the decomposition is more bulk like, as shown in 

Figure 5.30  and Figure 5.31  respectively. In some sMS fibres where the 

decomposition of AB takes place at a temperature below the melting 

temperature (112-114 °C), no melting endotherm is observed (Figure 5.30). 

 

 

Figure 5.28: DSC measurements of neat AB at heating rates of 5 and 1 °/min. 

The peak corresponds to the first exothermic reaction that realises the first H2 

molecule in the decomposition of AB and the troth corresponds to the melting of 

AB, which coincides with the start of the reaction. 
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Figure 5.29: DSC measurements of pure Polystyrene (PS) fibres (post 

electrospinning) and PS pellets (prior to electrospinning) as show in the inset.  

 

In the case of fibres obtained from sMS-2 with 10 wt.% AB in the core, 

the decomposition temperature is lowered significantly, down to ~94 °C in 

some samples (as shown in Figure 5.32) and no discernable trend is seen 

with AB proportion in the fibres. However, with 20 wt.% AB in the core of 

these fibres, the decomposition behaviour is more bulk-like, and the 

decomposition temperature appears to increase slightly with AB proportion 

in the fibres. Likewise, the fibres obtained from IS-1 appear to show a bulk 

like decomposition behaviour, with both 10 and 20 wt.% AB in the core. 

Analysis of the SEM images of each fibre sets show that sMS-2 fibres with 10 

wt.% AB (the only ones to show reduced decomposition temperatures in this 

particular set) are the only fibres with significant porosity, see Figure 5.33. 

Thus, porosity clearly has the effect of reducing the decomposition 

temperature, indicating nanostructuring of AB in the porous fibre sets. 
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Figure 5.30: DSC measurements of sMS-2 fibres electrospin with 10 wt.% AB in 

core, measured at a heating rate of 1°/min (plotted as black squares in Figure 

5.32; note AB proportions for comparison). 

 

Figure 5.31: DSC measurements of IS-1 fibres electrospun with 10 wt.% AB in 

core, heating rate of 1°/min (plotted as green triangles in Figure 5.32).  
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Figure 5.32: AB decomposition temperature vs. AB proportion in the fibres. 

 

Figure 5.33: SEM images of fibres corresponding to the DSC data in Figure 5.32; 

a) sMS-2  fibres with 10% AB, b) sMS-2 fibres with 20% AB, c) IS-1 fibres with 

10% AB,  d) IS-1 fibres with 20% AB. 
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Figure 5.34: Hydrogen mass spectrometry measurements of hydrogen from 

thermolysed neat AB and sMFs fibres into 1.0 bar Ar carrier gas, and IS-1 fibres 

into He carrier gas stream. Heating rate = 1°C min-1. 

5.4.6.2 Thermogravimetric analysis 

Thermogravimetric data obtained using the IGA (as detailed in §4.2), 

during the thermolysis of the fibres, show results in agreement with the DSC 

data discussed above. However once again, while there is a particular trend 

in the thermolysis behaviour of a given fibre set, the results can show small 

variations between samples made from a given solution set made and 

electrospun on different days. For example the decomposition temperature of 

AB in the fibres can differ a few degrees between samples made of solutions 

with the same formula. While the exact reasons for these variations in the 

fibres were not determined during the time of this PhD project (mostly due 

to the vast number of variables that have to be controlled), it is thought that 

factors such as the variation in solution conductivity over time (as discussed 

in §5.4.3), viscosity and even the actual core solution flow rate, which at 

times appeared not to match the set flow rate (as determined by the air gap 
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in the syringe) are all possible factors for the small variations between a 

given fibre set. Due to the availability of a large amount of data obtained 

from many different fibre samples, the data discussed here is only 

representative of the thermolysis behaviour of a given sample set; neat AB, 

sMS and IS fibres. In the case of sMS-2 fibres the hydrogen releasing 

reaction was initiated at around 60 °C, reduced significantly from the value 

of ~95 °C  in neat AB, with  the peak hydrogenation temperature reduced to 

90°C from the value of 110° in neat AB (as shown by the red peak in Figure 

5.34). However, in the case of IS-1 fibres, in accordance with the DSC 

measurements, the decomposition was more bulk-like (as shown by the blue 

peak in Figure 5.34)2. In the SMS-2 sample the second hydrogenation 

reaction observed at around 150 °C for neat AB is either suppressed or 

lowered down in temperatures (i.e. starting before the first is complete) and 

hence not clearly visible as a separate peak, or it does not take place at all. 

In the case of IS-1 fibres, the second reaction peak is present but suppressed.  

 

Figure 5.35: Hydrogen mass spectrometry measurements of hydrogen from 

thermolysed sMS fibres into 0.12 bar Ar carrier gas (blue line) compared to that 

                                              
2
 A different IGA-MS set-up (set-2 of the same model) was used to obtain the H2 loss data from IS-1 

sample in Figure 5.34. 



Co-electrospun AB-PS fibres                                            207 

 

 

taken at ambient pressure (1 bar, red line). Heating rate = 1°C min-1. Mass loss 

data for sample at 1 bar (black line) shown for comparison with mass spec data.  

Furthermore, little or no borazine and diborane emission was observed 

in sMS-2 fibres. These differences between the decomposition of neat AB and 

sMS fibres suggest a different decomposition pathway of AB in sMS fibres, 

possibly due to nanostructuring of AB in the porous fibres produced from 

semi-miscible solutions. The peak temperature of the first hydrogenation 

reaction was found to be reduced even further with the pressure around the 

sample lowered from ambient (1 bar) to 0.12 bars, as illustrated in Figure 

5.35. The influence if sub-ambient pressure on the isothermally induced 

decomposition of AB is reported in a recently published study [138] (after the 

measurements in Figure 5.35 were taken). The authors of the study report 

that at pressures below 800 mbar the induction period is appreciably 

reduced, leading to the release of the first equivalent of hydrogen from AB at 

shorter reaction times. A possible cause for the reduction in the induction 

time, as we have observed (Figure 5.35) is attributed to the observed 

sublimation of AB at lowered pressures, which apparently can cause 

disruption of the dihydrogen bonding network in the AB crystals as a result 

of defects that occur during the physical sublimation. Since previous studies 

have shown that disruption of dihydrogen bonds in AB facilitates the 

isomerisation of AB to the diammoniate of diborane (DADB), followed 

immediately by the release of molecular hydrogen, sublimation of AB is 

provided as the possible reason. 

The difference between the semi-miscible and immiscible fibre sets is 

further highlighted in Figure 5.36 which shows a typical series of 

thermogravimetric mass loss measurements from both fibre sets as a 

function of temperature. To 200 °C, with AB/PS ratios as a comparative 

indicator, more mass is lost from sMS fibres – up to 30% in samples shown in 

Figure 5.36 , but as much as 50% in some cases (as shown in Figure 5.37). 

The characteristic mass loss curve suggests that desorption for sMS fibres 

begins at temperatures significantly below 110 °C, although the amount of 

mass lost is far greater than the value of 12 wt.% [174] expected for the 
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desorption of 2H2 per entrained NH3BH3 molecule below 150 °C. In the case 

of IS fibres, the trend in mass loss more closely follows that predicted by 

desorption of only hydrogen from the entrained AB, being <10 wt.% in 

general, and the temperature of greatest mass loss rate (i.e. the peak 

temperature) is approximately 110 °C. 

 

 

Figure 5.36:  Thermogravimetric mass loss as a function of temperature for 

fibres obtained from immiscible (IS-1) and semi-miscible (sMS-2) solution sets, 

at a heating rate of 1 °/min.  
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Figure 5.37: Thermogravimetric mass loss on heating at 1°/min to 200 °C 

immiscible (IS-1) and semi-miscible (sMS-2) samples, as a function of sample 

nominal wt.% AB, with linear fits. The dashed line represents x=y. 

The marked difference between the sMS-2 and IS-1 fibres is more 

obvious with the plot of fibre mass loss to 200 °C as a function of nominal AB 

content of fibres (expressed as a percentage of total fibre mass), as shown in 

Figure 5.37. Immiscible solution-based fibres show mass loss on heating that 

scales weakly with AB proportion, from 7 to 12 wt.% across a 40 wt.% range 

of AB. The fibres from sMS set show a much greater mass loss as shown in 

Figure 5.36 , which fits closely with the starting AB wt.%. 

The total mass loss measured for neat AB heated up to 200 °C at 1°/min 

was also found to be excessively high, with up 50% mass loss found in some 

thermogravimetric measurements. While a mass loss of 35% is reported in 

literature for neat AB heated at 5°/min up to 200 °C [187], such a large 

reduction in mass is puzzling. The amount of mass loss in the samples raises 

questions as to what is differing in the decomposition processes between the 

volatiles released, or even if the mass loss is purely due to the release of 
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volatiles in the case of neat AB. The problem with AB is that it tends to foam 

and expand out of its container due to the release of volatiles when heated. 

For this reason the large mass loss seen in the thermogravimetric data was 

initially not just attributed to the release of volatiles, but to the physical loss 

of AB from the container. But even with controlled measurements of small 

amounts of AB, which did not overflow out of the container, such high mass 

losses were observed. The high mass loss seen in the AB-PS fibres, however, 

was clearly due to the loss of volatiles and not physical mass loss, since these 

samples were retrieved as hardened nuggets of brittle and crumbly material, 

fully entrained in the sample container post heating, no sample loss was 

possible.  

Thus, the mass spectroscopy measurements taken in conjunction with 

the thermogravimetric data was rigorously analysed for clues for the 

volatiles causing the large mass loss during heating. Figure 5.38, Figure 5.39 

and Figure 5.40 show the mass spectra of AB, sMS-2 and IS-1 samples, 

respectively, taken while the samples are incubated at 88 °C (the samples 

are raised to 88 °C in less than 10 minutes). The background 

species/fragments (i.e. those detected with an empty can run) are annotated 

with horizontal lines on the red bars). These species/fragments are thought 

to be H (AMU=1), H2O(AMU=18), 40Ar2+ (AMU=20) and 36Ar(AMU=36) and 

appear to saturate the spectra. The spectra for all samples are rather 

similar. There is a trace amount of a species with AMU=28, which could be 

diborane. However it should be noted that diborane was not seen in the 

spectra when the samples were heated at 1 °C/min up to 200 °C. 

Unfortunately, volatiles with AMU>50 could not be detected with the mass 

spectrometer used to look at these specific samples. Thus, tracing borazine 

(AMU=81) was not possible. However, the mass spectra from another mass 

spectrometer3, which had an AMU range of 1≤ AMU ≥ 100, showed no signs 

of borazine in neither of the sMS or IS samples. This second data set is not 

presented here as the instrument background spectrum was not available, 

and thus, a reliable comparison cannot be made between the samples. 

                                              
3
 This mass spectrometer is located at the Chemistry department of University of Oxford, and access 

to it was limited. 
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This data (Figure 5.39 and Figure 5.40) however, does not explain the 

large difference in the mass loss seen in thermolysis of sMS-2 and IS-1 

fibres. Since the mass loss cannot be explained by a normal loss of H2 gas, it 

is likely that heavier fragments that are not detected by the mass 

spectrometer cause the difference in the mass loss. However, it is also 

possible that the difference in mass loss between the sMS-2 and IS-1 

samples is attributed to the morphology of the fibres rather than the 

difference in the volatiles emitted. In the sMS-2 fibres the volatiles will be 

released more easily through the pores or the hollow core of the fibres. But in 

the case of IS-1 fibres, which are mostly collapsed and non-porous, some 

volatiles may be trapped in the core (or released at lower quantities). More 

detailed analysis of the mass spectra data is required to determine the kind 

of reactions taking place along with normalisation for sample mass and full 

calibration of the mass spectrometer. 
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Figure 5.38: Mass spectra of neat AB rapidly heated to and incubated at 88 °C 

for 4 hours, partial pressure of fragments detected under Ar carrier gas. 

 

Figure 5.39: Mass spectra of a sMS sample rapidly heated to and incubated at 

88°C  for 4 hours, partial pressure detected under Ar carrier gas. 
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Figure 5.40: Mass spectra of an IS sample rapidly heated to and incubated at 

88 °C for 4 hours, relative partial pressure detected under Ar carrier gas. 

Another important point to note is that on fast heating to 200 °C 

(>10°/min.) under dynamic vacuum, AB is found to evaporate and reform on 

cooler surfaces inside the furnace tube (the „fingerprinting‟ of the deposited 

AB was carried out using FTIR spectroscopy). Sublimation of AB, though not 

commonly reported, has been observed in other experiments [138, 187] at 

sub-ambient pressures. It is therefore possible that the large mass loss 

observed in the sMS-2 fibres is partly due to sublimation of the encapsulated 

AB through the porous structure to the fibre surface and out of the fibres, a 

route largely inaccessible in the IS-1 fibres, where the AB core is physically 

separated from the fibre surface by the polymer sheath which has a lower 

degree of porosity. The slow heating rate and ambient pressure of the TGA 

carrier gas should preclude this possibility in the case of bulk AB, but the 

nanostructured mixed-phase sMS-2 fibres may conceivably increase the 

thermodynamic selectivity of this route. On the other hand, there is no sign 

of gaseous molecular AB (30-31 AMU) in sMS-2 sample‟s mass spectroscopy 

data so if this is occurring the AB must condense out of vapour phase or 

decompose further, long before it is carried to the mass detector. 

Investigation into identifying all the thermolysis molecules released and the 

difference in the mass loss seen between different fibre sets continues beyond 

the study discussed in this thesis. 

Isothermal thermogravimetric studies have been performed on AB-PS 

fibres made from semi-miscible solution sets (sMS) with the fibre samples 

incubated at a temperature of 85 °C for a period of time.4 While the data 

produced were variant between fibre sets made from different AB-PS ratios, 

the general trend has been in the lowering of the peak induction time of the 

decomposition reaction in the AB-PS. A comparison between thermolysis 

results of neat AB (Figure 5.41) and sMS fibres (Figure 5.42) shows that the 

peak induction time of the hydrogenation reaction is lowered by an order of 

magnitude for the fibres as compared to the time taken for neat AB; in the 

                                              
4
 TGA isothermal measurements on AB-PS fibres were taken by my colleagues as part of the work 

following on from that reported here and I have selected only an example to report on. 
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case of sMS fibres the reaction is complete in 15 minutes whereas for neat 

AB it takes ~150 minutes (as deduced from the width of the H2 release 

peaks). This is a clear indication for improved reaction kinetics in the sMS 

fibres. These results, in addition to the DSC and TGA thermolysis data at 1 

°C/min heating rates, suggest the nanostructuring of AB in the sMS fibres. 

Taking a look at the evolution of the species detected through mass 

spectroscopy over time (Figure 5.44), it appears that NH3 and B2H6 (or N2) 

evolves at the point the hydrogenation reaction takes place. 

 

 

Figure 5.41:  Thermogravimetric and mass spectrometry measurements of 

hydrogen from neat AB into 1 bar He carrier gas with the sample rapidly heated 

to and incubated at 85 °C. Sample mass loss data from IGA (red line) compared 

to H2 loss (pressure) data from mass spec (blue line), with the corresponding 

sample temperature shown (black line). 
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Figure 5.42: Thermogravimetric and mass spectrometry measurements of 

hydrogen from a set of sMS fibres (made from 15 wt.% PS in 5:1 Tol: DMF 

(shell) and 10 wt.% AB in DMSO (core) at shell-core flow rate ratio of 1000:750 

ul/hr) into 1 bar He carrier gas with the fibres rapidly heated to and incubated 

at 85 °C. Sample mass loss data from IGA (red line) compared to H2 loss 

(pressure) data from mass spec (blue line), with the corresponding sample 

temperature shown (black line). 

 

Figure 5.43: SEM image of sMS fibres prior to being incubated at 85 °C. 
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Figure 5.44:  Mass spectrometry data from sMS fibres (made from 15 wt.% PS in 

5:1 Tol: DMF (shell) and 10 wt.% AB in DMSO (core) at shell-core flow rate ratio of 

1000:750 ul/hr) into 1 bar He carrier gas with the fibres rapidly heated to and 

incubated at 85 °C.  

 

5.4.7 ATR-Fourier transform infrared spectroscopy 

FTIR data showing the spectra of as-received AB, electrospun single-

phase PS fibres and typical sMS and IS AB-PS fibre samples are shown in 

Figure 5.45. The PS-containing samples are normalized to the highest-

intensity PS peak at 700 cm-1, and the pure AB spectrum is normalized to 

the intensity of the B-H stretching mode in the IS fibre spectrum at 2300 cm-

1. The AB-PS spectra are very similar and consist principally of a linear 

combination of the pure PS and pure AB modes. There is minimal 

interaction between the AB and the PS modes, though two modes are shifted 

or created (marked •). The marked mode at 1020 cm-1 shows a significant 
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exchange of intensity with the B-H2 torsional mode at 1055 cm-1 in pure AB 

between the IS and sMS fibre spectra, relative to the other AB modes. As 

there is little or no change in recorded mode widths for AB in the AB-PS 

fibres, the vibrational environment of the AB seem to remain essentially 

unchanged in the fibres. 

 

 

Figure 5.45: FTIR spectra of AB powder, electrospun PS fibres, electrospun AB-

PS fibres spun using semi-miscible and immiscible solution combinations. The 

PS-containing spectra are normalized to the height of the PS CH ring bending 

mode at 700 cm-1; the AB spectra is normalized to the B-H stretching mode in 

the IS fibre spectrum at 2300 cm-1. Shifted or new modes in the composite fibres 

are marked (•). 

 

5.5 Summary and Conclusions  

Co-axial electrospinning has been successfully used to make composite 

AB-PS fibres with a core-shell and/or amorphous morphologies with a total 
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accessible hydrogen content of up to 5.8 wt.% (to 150 °C) in some fibres, 

opening the way for further research on encapsulating chemical hydrides in 

polymeric fibres for hydrogen storage applications. The success of the process 

is achieved through the development of a new method for determining the 

compatibility and miscibility of co-electrospinning solutions using the 

Hansen solubility parameters. This model was used to select mixtures of 

solvents with optimised properties and varying degrees of miscibilities to 

form core-shell solution combinations that were miscible, semi-miscible and 

immiscible. While fibres were co-electrospun with an AB core from the latter 

two sets, no fibres were obtained from the first (miscible) set due to 

incompatibility of the miscible solutions. Thus, we have not been able to 

definitively resolve the uncertainty in literature with regards to the 

inconsistent reports on the requirements of core-shell solution miscibility in 

co-electrospinning. However, it is clear that the use of immiscible solutions is 

desirable for ensuring success of co-axial spinning. Due to AB solutions being 

highly conducting (with greater electrical conductivities than that of shell 

solutions) the core solution is found to have a greater response to the electric 

field than the shell and appears to act as the driver of the coaxial jet. This 

disproves the reports in literature regarding the requirement of higher shell 

solution conductivity for the success of co-electrospinning.  

Many different techniques (SEM, TEM, XRD, FTIR, DSC, TGA and 

mass spec) have been employed to investigate the structural and thermolysis 

properties of the fibres. It is found that different solution sets yield different 

fibre morphologies; those made from semi-miscible solution (sMS) set are 

mostly porous, while those made from the first immiscible solutions (IS-1) 

are mostly non-porous and collapsed. These fibres, differing in morphology, 

display different thermolysis characteristics (as measured by the TGA and 

DSC). The porous fibres co-electrospun from sMS sets appear to contain a 

nanostructure that enables three notable improvements in the 

dehydrogenation properties of AB, these are: 

1) lowering of the first dehydrogenation temperature of AB by 15-20 ºC, 
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2) the improvement of the dehydrogenation kinetics with the reaction 

time reduced by an order of magnitude from ~150 minutes to as low 

as 15 minutes in some sMS fibres sets, and 

3) absence of the poisonous species borazine from the reactions, 

all of which are effects observed in other nanostructured AB systems. On the 

other hand, the fibres analysed from the IS set, which were mostly collapsed, 

did not show any sign of nanostructure neither in the SEM images or the 

thermolysis results, which were similar to that of bulk AB. Borazine, 

however, was not seen in the thermolysis of IS fibres either. This may be 

because the encapsulation of the hydride in the polymer sheath results in 

trapping the impurities. The sMS-2 samples, however, show a large mass 

loss, which increases with AB proportion in the fibres, with up to 50% mass 

loss in fibres containing 40% AB. This compares to a maximum mass loss of 

15% in IS-1 fibres containing ~40% AB.  

The marked difference observed in the thermolysis measurements of 

AB in sMS-2 fibres is attributed to nanostructure of AB in the fibres on the 

basis of the SEM and TEM images that show pore diameters of tens of 

nanometres across. Unfortunately, direct measurements of the AB particle 

size in the fibres are not yet available for verification of this assumption. 

Thus, further structural and morphological characterisation, such as TEM 

measurements, are needed to verify the particle size of AB crystals and how 

they are embedded into the structure of the fibres. To ensure that the AB 

particles are traceable in the TEM images, a chemical marker can be used to 

look at AB embedded in the polymer. Further XRD analysis of crystal 

dimensions and SEM imaging with Energy Dispersive Spectroscopy (EDAX) 

can also be carried out to obtain an idea of the dimensions of the AB 

particles/crystals.  

The FTIR measurements from the as spun fibres have not produced 

any conclusive results that point to any phase change that may be prevalent 

in the fibres. More FTIR measurements of the fibres are needed look at any 

possible phase change in the fibres as different stages of the thermolysis 

process. 
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As this was the first study of its kind, a major part of this thesis was 

devoted to formulating ways of successfully co-electrospinning AB 

encapsulated fibres as well as finding the best ways to analyse the as spun 

fibres. As a result, the study was not conducted as systematically as it could 

have been to identify the variables that make a difference to the solution 

properties, the morphology and the chemical decomposition of the AB-PS 

fibres. The dependence of co-axial electrospinning on many inter-related 

variables made the systemisation process much more difficult, since 

changing one variable often resulted in change in another. Also, at different 

stages of the study the area of focus varied depending on the kind of 

information that needed to be extracted from the fibres using a given 

technique, and thus, parallel measurements using the other techniques were 

not always done. This is why it has been specifically challenging to extract 

consistent information from the measurements that were made.  

It is very important to note that none of the fibres electrospun were 

synthesised in the structure initially envisioned; this was the production of 

nano-diameter fibres with AB encapsulated in a non-porous polymer sheath. 

I have got close to making fibres with properties closer to that idealised 

using the IS-2 solution set, which was developed using the solution selection 

model formulated. The IS-2 fibres produced had a well-defined core-shell 

structure with non-porous shell. However, the solution properties required 

further optimisation to reduce their diameters to tens of nano-metres instead 

of the 1-2 μm measured. Unfortunately, due to the lack of time the 

thermolysis properties of these fibres were not investigated during the 

duration of this PhD project.  

Finally, though some of the AB-PS fibres (i.e. porous sMS-2 fibres) 

appear to be nanostructured by showing improved dehydrogenation 

properties compared to bulk AB, regenerability of hydrogen is still an issue 

in these fibres. The porosity, which seems to enable nanostructure, also 

appears to allow permeation of all the reaction products of AB from the core. 

Thus, in order to ensure regenerability of these materials, further work is 
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needed to induce nanostructure in the non-porous core-shell fibres (i.e. those 

produced from the immiscible solution sets, IS-1,2. 

 

5.6 Prospects and Future Work 

This study, based on the use of co-electrospinning to manufacture fibres 

of encapsulated and nanostructured complex hydrides, initiates another field 

of interest for this versatile technique. I have shown that an electrospun 

polymer can act as a scaffold, protective sheath and impurity filter for a 

hydrogen storage material. With further work it can be possible to increase 

the maximum hydrogen storage capacity in excess of 5.8.wt.% obtained for 

some of the fibre. For improving the decomposition rates of AB it is 

important to understand the factors that have led to increased decomposition 

kinetics in some of the SM-2 fibres. For mass production of fibres it is 

important to find compatible core-shell solution sets that co-electrospin 

easily without frequent breakup. Thus, continuing the solution optimisation 

process started in this study, by using the solution selection model as a guide 

to selecting different polymers and solvents, is critical to the advancement of 

this research. With further work, the co-axial electrospining method can 

potentially be used as a scalable, one-step production process for a 

lightweight nanostructured hydrogen store. This could be done with any 

hydride that can be dissolved or suspended in compatible solvents. Also, with 

effective choice of hydride and the synthesis of a non-porous polymer sheath 

this composite store could be made reversible by re-pressurising with H2. 

Further work is needed to determine the exact reasons for some of the 

observations made on the morphology and the thermolysis process of the 

fibres, or more specifically if the improvements seen in the decomposition 

process of the sMS-2 fibres are due to the nanostructuring of AB: These 

include: 
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 Determining the average size and morphological distribution of AB 

particles in the fires and hence whether the AB is nanostructured in 

the PS fibre matrix.  

 Identifying all the decomposition products of AB using the mass spec 

data and accounting for the large mass loss seen in the TGA 

measurements of sMS-2 fibres. 

 The verification of the reason(s) for the porosity seen in the fibres. 

 Identification of any phase change that may be taking place in AB or 

PS during the decomposition process of the fibres (i.e. further FTIR 

analysis is required). 

 Resolving the discrepancy between XRD and DSC measurements on 

the crystallinity of the PS fibres, as the former showed the fibres to be 

semi-crystalline while the latter gives results suggesting a solely 

amorphous structure.  

 Identification of any time dependent changes (e.g. changes in viscosity 

and conductivity) or any reactions that may be taking place in the 

solutions prepared for electrospinning.  

Further work also needs to be carried out on the thermolysis properties 

of the fibres produced from the second immiscible solutions (IS-2). As these 

fibres have the desired morphology for regeneration of AB in the core of the 

fibres, further optimisation of the solution properties is necessary to reduce 

their diameters and induce nanostructure in them. 

While this specific study has to be concluded for AB and PS solutions 

used in this study, the solution selection formula needs to be used to select 

and test other compatible core-shell solution combinations to electrospin AB-

Polymer fibres with the objective of producing. nano-structured non-porous 

co-axial fibres, with further improved hydrogenation properties. 

Increasing the mass density of AB in the fibres beyond 5.8 wt.% is also 

very important. Extending this study to other chemical hydride materials, 

such as MgH and NaBH4, is important for understanding the prospects of 

this novel study for hydrogen research. 



 

 

 

Chapter  6                             

KC24 nanofibres and Hydrogen 

6.1 Introduction 

One of the main aims of this investigation was to study the 

hydrogenation properties of doped graphitic nanofibres (GNFs) produced 

using the electrospinning technique. In §1.5 I have discussed how (de)-

hydrogenation properties of materials can be heavily influenced by 

nanostructure, and how this is likely to be a key factor in improving the 

performance of many functional materials. In the study outlined in this 

chapter we have looked at whether similar improvements can be made to 

physisorption of H2 in potassium doped graphitic nano-fibres (GNFs).  

As discussed in §1.4.5.1 carbon materials having slit-pore structures 

with opening distances slightly higher than the kinetic diameter of hydrogen 

(2.89 Å) are considered most ideal for physisorption of hydrogen. Graphitic 

nanofibres, which have a unique crystalline arrangement consisting of 

graphitic layers with an interplanar distance of 3.37 Å, have this slit pore 

structure over a long range, making it an interesting material to explore for 

hydrogen storage applications.  I have already discussed in §1.4.5.1 that 

graphite on its own has a very low adsorption enthalpy (4 kJ mol-1), which 

needs to be increased to within 15 – 24 kJ mol-1 range before it can have any 

practical use. Intercalating graphite with metal species on the other hand 

can dramatically increase the interaction potential between the graphite 
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sheets as a result of charge transfer from the metal ion to graphite and the 

hydrogen molecule, making it possible to „tune‟ the formation enthalpy into 

the desired range. Nanostructuring the graphite host is also expected to 

enable faster hydriding kinetics, as a result of shortened diffusion paths of 

hydrogen. Investigating the hydrogenation properties of intercalated GNFs 

is therefore important for determining the hydrogen storage potential of 

these compounds.  

While many groups have already looked at the hydrogen adsorption 

characteristic of graphite (§1.4.5.1) and their intercalates (as discussed in 

the next section), no studies on the hydrogenation properties of intercalated 

GNFs are reported. Graphitic nanofibres, depending on the precursor 

material and the synthesis process can have the graphene sheets arranged 

in a parallel, perpendicular, or angular orientation with respect to the fiber 

axis, with only the graphene edges exposed and often with an amorphous 

component. The particular orientation of the graphite planes or increased 

density of edge states may influence the ease of intercalation as well as the 

hydrogen adsorption potential. For example, zig-zag graphite edges are 

known to have unusual electronic and even magnetic properties near the 

Fermi surface due to the presence of unbonded π-bonds: these appear to 

enhance the electron transfer from the donor atoms making it possible to 

intercalate many species that are not possible in bulk graphite. 

We were specifically interested in investigating the intercalation of 

graphitic nanofibres obtained from electrospun polymeric fibres (made from 

carbonisable precursors) and their hydrogen adsorption properties. 

Electrospinning has the advantage of being a scalable method for large-scale 

polymer nanofibre production and is a more efficient method than the 

traditional techniques used for the production of carbon fibres, such as 

chemical vapour deposition, plasma-enhanced chemical vapour deposition 

methods or wet spinning and stretching methods. 

Of the existing alkali metal GICs only K, Rb, and Cs compounds are 

known to adsorb hydrogen. Even though the adsorption capacity of these 

materials is no more than 2 wt.%, their high degree of structural ordering 
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makes them a model system for studying hydrogen adsorption in carbon 

nanostructures [218]. In this investigation we have looked at hydrogen 

storage properties of K intercalated graphitic nanofibres. The potassium-

graphite system was selected as the initial GIC due to its relative ease of 

synthesis and its attractiveness as a lightweight dopant; the reversible 

hydrogen uptake of up to 2H2 per K ion in the second stage graphite 

intercalation compound (GIC) KC24 [219-221] was what made this 

stoichiometry specifically interesting. The improvement in enthalpy of 

adsorption in KC24 to 9 kJ mol-1 [48] from that in graphite (4 kJ mol-1) is 

another important factor taken into consideration in selection of this 

compound. We were interested in seeing how nanostructuring affects the 

physics of the intercalation and hence enthalpy of sorption of hydrogen, and 

if the adsorption/desorption kinetics will be improved as expected for a 

nanostructured material. 

This particular investigation is split into two sections: 1) Synthesis of 

polymer nanofibres using electrospinning and their subsequent 

carbonisation to obtain graphitic fibres, 2) Potassium intercalation of the 

GNFs to obtain KC24 nanofibres and their hydrogen adsorption properties as 

investigated by neutron scattering measurements. Our objective in the first 

part was to understand the mechanisms that control fibre diameters and 

use these in the right way to obtain uniform polymer nanofibres with the 

lowest possible diameters achievable for the selected polymer-solvent 

system. Furthermore, we were interested in understanding the effects of the 

heat treatment process on the carbonisation and subsequent graphitisation 

of the electrospun polymer fibres in order to deduce a method for obtaining 

reproducible graphitic nanofibres, which could then be used to make alkali-

intercalated fibres for hydrogen adsorption investigations. Our principle 

objective in the second part was to investigate the structure and dynamics of 

hydrogen in our first nanostructured GIC (KC24 nanofibres) using neutron 

scattering techniques.   

The work undertaken in this investigation will be presented in the 

following order. In the first section I will be reporting on the work done for 
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quantitatively tuning fibre diameters and morphology through the addition 

of an anionic surfactant, higher-conductivity polymer, and NaCl salt to the 

PAN-DMSO solutions used to electrospin the polymer fibres. I will also 

describe the heat treatment processes used for carbonisation and 

graphitisation of the electrospun fibres and provide the results for their 

structural analysis (i.e. SEM, TEM and XRD data). In the second part I will 

discuss the intercalation process of the GNFs to make KC24 nanofibres and 

present the neutron diffraction and spectroscopy data for hydrogenation 

studies on the KC24 nanofibres. In order to elucidate the effect of 

nanostructuring on the adsorption properties of hydrogen, I will be 

providing a comparative analysis between the neutron data of 

nanostructured KC24 (GNFs) and bulk KC24 GICs using results from a 

previous study by this group. 

6.2 Graphite and hydrogen  

Graphite is an ordered allotrope of carbon constructed from stacked 

layers of sp2 bonded trigonal planer sheets, known as graphene sheets. In 

each layer, the carbon atoms are arranged in a hexagonal lattice, so each carbon has 

three bonds separated by 120°, with a separation distance of 0.142 nm. The 

neighbouring planes have an interlayer spacing of 0.335 nm [221] and experience 

week van der Waals interactions, 1/300th of C−C bond strength experienced 

by the intraplanar carbon atoms in the sheets. The basal planes register in a 

–ABA– sequence along the c-axis (hexagonal) or more rarely in a –ABCA– 

sequence (rhombehedral). The crystal structure of the former, which has 

group geometry P63mmc, is shown in Figure 6.1.  

The electronic shell configuration of a carbon atom (1s2 2s2 2p2) results 

in each carbon atom forming a covalent π-bond with its three nearest 

neighbours, giving rise to the sp2 hybridisation, with the fourth electron 

forming a delocalised ζ-bond. In the basal plane (i.e. graphene layers) the 

binding energy is 7 eV/atom [221]. The weak overlapping of the π-bands 
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leads to a 0.02 eV/atom binding energy between the planes, giving rise to a 

semi-metallic nature in three-dimensionally ordered graphite. 

 

 

Figure 6.1: Structure and unit cell of graphite showing the stacking sequence of 

the basal planes along the c-axis following a staggered -ABA- pattern;  half of 

the carbon atoms in a given plane sit between the hexagon centres of the layers 

above and below it [221]. 

 

 It is this difference between the intra-planar and inter-planar 

interaction that cause the large anisotropic properties characteristic of 

graphite. One manifestation of this anisotropic geometry is unidirectional 

electrical conductivity; the free electrons within the carbon layers have a 

much greater mobility within the plane than across the planes such that the 

electrical resistivity of pure graphite is approximately one thousand times 
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greater across the interlayer spacing than it is in any direction in the 

graphene planes [221]. The weak van der Waals interaction between the 

basal planes allows for the planes to slip along one another under a small 

force, enabling graphite to be used for lubrication purposes, the reason for 

why layers of graphite are easily transferred from a pencil „lead‟ on to a 

sheet of paper. 

Graphitic carbons have very low surface areas due to the lack of 

porosity, with specific surface areas a(ssa) typically under 20 m2g-1 , and as a 

result have a very small hydrogen uptake ( < 0.5 wt.% ) at low temperatures 

[222]. The measured adsorption enthalpy of hydrogen on Graphon, a 

material closely approaching the characteristics of graphite, was found to be  

3.8 kJ mol-1 [223], well below the targeted value. 

Various hypothetical structures, such as slit pore structures [43, 198] 

or pillared graphite layers [224, 225] have been the subject of computational 

studies for investigating the scope for increasing the binding energy of 

hydrogen. When the graphitic layers (walls) have a width not exceeding a 

few molecular diameters the potential fields from opposing slit-pore walls 

overlap, leading to an enhancement of the heat of adsorption as attractive 

force acting on adsorbate molecules increases [14]. Increasing the space 

between the graphene sheets to accommodate for two H2 monolayers on each 

slit-pore wall also increases uptake. Nevertheless, the general consensus is 

that the gravimetric density is intrinsically low in graphite due to the 

geometry. Assuming condensation of a monolayer  of H2 molecules on a 

graphene sheet with a specific surface area of S = 1315m2g−1 and using  

liquid H2 density at boiling point, the amaximum concentration of  hydrogen 

on carbon is calculated to be 2.28×10−3 wt.% S[m2g−1] = 3.0 wt.% (H/C= 0.18). 

The details of this calculation can be found in reference [14]. So the 

theoretically maximum possible concentration of hydrogen in graphitic 

carbon with hydrogen adsorption on both sides of a graphene layer is 

approximately 6 wt.%. Even if this value was attainable in practice, though 

it is not, the binding energy of hydrogen is still too low for practical 

applications of graphitic carbon as a hydrogen storage medium.  On the 
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other hand, intercalation of metallic species in between the layers (galleries) 

provides the scope for increasing the binding energy further, as discussed in 

the next section. 

6.3 Graphite intercalation compounds 

6.3.1 Graphite intercalates and hydrogen storage 

Graphite intercalation compounds (GICs) are a unique class of 

lamellar materials formed by the intercalation (insertion) of atomic or 

molecular „guest‟ species between the graphene layers of „host‟ graphite. 

Since graphite is an amphoteric material it can accept both positively and 

negatively charged intercalant species that form donor or acceptor 

compounds depending on the charge on the guest species. The most widely 

known and studied donor compounds are alkali metal e.g. K, Rb, Cs and Li 

GICs, although other donor intercalants, such as alkaline earth metals and 

lanthanides also exist. Acceptor compounds are often based on Lewis acid 

intercalants such as the halogen Br2 or halogen mixtures, metal chlorides, 

bromides, fluorides and oxyhalides [221].  

In the intecalation process the guest species usually remain molecular 

and cause the graphite galleries to expand along the c-axis; the expansion 

being proportional to the size of the intercalated molecules. The readily 

charged guest materials exchange charge with the π-bands in the graphene 

sheets, enabling controlled variation of physical properties of the graphite 

host, such as its electrical, thermal and magnetic properties. The free carrier 

concentration of graphite is very low (10-4 free carriers/atom at room 

temperature) but through intercalation of different species at different 

concentrations it is possible to vary it‟s electrical conductivity behaviour 

from almost insulating for c-axis conductivity in certain acceptor compounds 

to superconducting in-plane below 1.0 K for the first stage alkali metal 

donor compounds, e.g. KC8 [221].  In the case of KC24, the electrical 
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conductivity along the c-axis is about 24 times larger than that for pristine 

graphite, the anisotropy factor σc/σa  being  around 860 [226].  

The particular change induced in the graphite host is largely 

dependent on the type of species intercalated and their specific 

concentration. The amount of intercalant used determines the staging 

sequence of the intercalant between graphite galleries, denoted as stage-n, n 

being an integer corresponding to the number of graphene planes between 

each intercalate layer. For example, a stage-1 GIC such as KC8 (Figure 6.2) 

contains metal ions between every graphene layer, making it the most 

densely intercalated compound. The density of the intercalant in the 

graphite galleries can also change between different stages, for example the 

stage-2 potassium GIC KC24 is only 2/3 as densely populated with K as its 

stage-1 counterpart (Figure 6.2).  

 

 

Figure 6.2: Graphite stacking and interlayer spacings for pure graphite, stage-1 

and stage-2 potassium graphite intercalation compounds. Roman numerals 

mark graphene layer arrangement and red bars represent metal layers [48]. 

The simple relationship between the staging and the c-axis lattice spacing Ic 

is given by the following equation: 

 
                    (6.1)   
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where n is the stage number and ds is the interlayer distance of a fully-

intercalated gallery. 

In the case of alkali-metal GICs it is thought that in the process of 

transferring charge to the graphite lattice the alkali-metal ions are pulled 

into the galleries and hence diffuse through along them. It is interesting 

that these GICs can easily undergo transition between different stages, e.g. 

from stage-1 to stage-2 under the right conditions. The exact mechanism for 

this transition is difficult to explain, especially since the metal atoms are 

unable to cross between the planes through the graphene sheets. In the 

standard staging model outlined by Daumas and Hérold [227] the 

mechanism for staging is explained by shifting of domains of intercalate in 

between the layers periodically until the minimum energy configuration is 

reached. 

The induced polarity of the intercalate and the expansion between the 

graphene layers increases the interaction potential between the graphite 

and a second intercalant, such that the uptake of a second species e.g. 

hydrogen, can be more energetically favourable in GICs than in pure 

graphite. This interaction potential varies between different GICs [228] and 

in fact only K, Rb, and Cs compounds are known to adsorb hydrogen. Of the 

first stage compounds only RbC8 is known to adsorb small proportions of 

hydrogen, to give RbC8H0.05 [48]. The hydrogen uptake is more promising in 

stage-2 compounds. In the case of MC24 GICs, where M=K, Rb, Cs, it has 

been reported in several studies that they reversibly adsorb ~2H2 per metal 

ion at temperatures below 200 K [219, 220, 229].  

Although the maximum reported hydrogen uptake in GICs is no more 

than 2 wt.%, their high degree of structural ordering and potential to be 

chemically modified make them a model system for studying hydrogen 

adsorption in a carbon nanostructure. Also, more recent studies on GIC 

based structures [230, 231] have raised the possibility of obtaining high-

density storage at near ambient temperatures and pressures with their 

physical properties tuned to optimise hydrogen uptake. Yet, research on the 

hydrogenation properties of GICs is currently limited and the 
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understanding of the exact effects of chemical modification on hydrogen 

adsorption is incomplete. One of the main reasons for this is because the 

interaction of the hydrogen with the host is through dispersion forces, which 

are extremely difficult to calculate using first principle methods. Therefore, 

despite the low hydrogen uptakes, investigating the thermodynamics and 

kinetics of H2 in these materials is specifically important for developing an 

understanding of the hydrogen storage potential of these materials. 

Furthermore, we expect nanostructuring to lead to some improvement in the 

hydrogen adsorption properties as described in §1.5. A brief description of 

potassium doped graphite, more specifically KC24 (the GIC we‟ve chosen to 

study), is given in the next section. 

 

6.3.2 Structure of potassium-intercalated graphite 

Potassium GICs are formed by intercalation of potassium atoms in 

between the graphitic galleries; the compounds known to form are KC8, KC24 

and KC36. There are two competing forces in the system upon insertion of K 

atoms into the galleries. The first is due to the host graphite planes wanting 

to form a staggered sequence, ABAB stacking (as shown in Figure 6.2 (a)), in 

which half the carbon atoms in a given plane sit over the hexagon centres of 

the adjacent planes. The second is due to the arrangement of K atoms that 

want to sit at the hexagon centres due to the strong graphite corrugation 

potential, forcing the graphite planes into an AA stacking geometry (as 

shown in Figure 6.2 (b)). It is the competition between these two forces that 

gives rise to discrete GIC stages [8]. The stoichemetry and hence the staging 

of the final compound depends on the concentration of the potassium i.e. the 

amount of K used in the intercalation process or the chemical potential 

gradient across the intercalated and the vapour phase (as described in §6.3.5 

below).  

The stacking sequence of KC24 is not known for sure and in fact the in 

plane geometry of the stage-2 GICs is not yet fully characterised. For a 
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stage-2 compound Nixon and Perry [232] suggest an AB׀BC׀CA׀A stacking, 

which means that the graphite layers (denoted by Roman letters) on either 

side of the intercalate layer (denoted by the vertical bar) are aligned while 

the empty galleries maintain a graphite layering structure [8]. It is known 

that upon intercalation of the K atoms the filled layer expands from 3.35 Å 

to 5.4 Å, while the unfilled layers maintain the same c-axis dimensions 

[232]. 

The in-plane geometry of KC24 (or other stage-2 compounds) is not 

conclusively determined either, but since graphite has a hexagonal 

honeycomb lattice structure, the minimum energy configuration would 

result in K atoms sitting at the centre of the hexagons forming a triangular 

lattice. The KC24 (or K:C = 1:24) stoichiometry is expected to result in a 

(           R30 geometry, as in the structure illustrated in Figure 6.3 (a). 

However this structure is inconsistent with XRD results. In fact at room 

temperature the potassium atoms are disordered, they diffuse through the 

layers like a two dimensional liquid [233]. Upon cooling the structure is 

found to undergo a series of phase transformations in which both the in-

plane structure and the stacking sequence assume long-range order [234, 

235].  

Two other geometries are proposed as shown in Figure 6.3 (b) and (c). 

The first of these (Figure 6.3 (b)) is based on a domain structure model used 

to explain the conformation of Cs in the CsC24 structure, in which a 

(        ) R19.11 commensurate structure is surrounded by domain walls 

(as shown in Figure 6.4) [8]. Even though the (        ) structure has a 

stoichiometry of KC28, taking account of the greater alkali metal density in 

the domain walls can give a KC24 stoichiometry. The last proposed structure, 

and probably the most likely one is the incommensurate close-packed 

potassium structure with a liquid-like separation of roughly 6 Å [8]. This 

structure is thought to result from the rotation of the K-monolayer about the 

c-axis by an arbitrary angle, followed by the relaxation of the potassium 

atoms into the nearest hexagon centres [236]. This relaxed close-packed 

structure, which has the closest agreement with single-crystal X-ray data 
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[237] has nearest-neighbour distances of 2a,    , and 3a (as shown in 

Figure 6.3 (c)).  

 

 

Figure 6.3: Proposed in-plane potassium structures for K-GIC showing K 

registry with the graphite host. (a) The (            structure corresponds to a 

KC24 stoichiometry. (b) The (        ) corresponds to a KC28 stoichiometry. (c) 

The relaxed close-packed structure which consists of a close-packed potassium 

layer rotated in-plane and relaxed into the nearest hexagon centres [8]. 
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Figure 6.4: Domain model for CsC24 in which (        ) islands are separated by 

domain walls, or discommensurations [8]. 

 

6.3.3 Hydrogen Storage in KC24 

Hydrogen physisorption in stage-2 compounds KC24, RbC24, and CsC24 

was initially investigated by Watanabe et al. in the early 70s [219, 220]. The 

maximum H2 uptake in KC24 was reported to be ~2.1 H2 molecules/K ion. 

The hydrogen is adsorbed into the metal containing layers and causes these 

galleries to expand by ~5% along the c-axis (from 5.4 Å to 5.6 Å). This 

expansion, which indicates a monolayer mixing of H2 and K atoms, is also 

true for RbC24, though not for CsK24. The expansion is thought to be just 

enough to overcome the hindering potential for hydrogen entry [228]. It is 

also found that due to quantum sieving effects D2 adsorbs preferentially 

over H2 [238]. The H2 appears to stay molecular as no evidence exists for H2 

dissociation upon intercalation. Thus, the interaction between H2 and KC24 
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is thought to be composed of just dispersive and electrostatic components. 

Charge transfer from potassium to graphite induces a strongly polarized 

potential field, which is thought to enhance the interaction of the adsorbed 

H2 molecules with the system through charge-quadrupole and charge-

induced dipole forces. It is also possible that an increase in the charge 

density around the potassium atoms and the graphene layers enhances the 

dispersion interaction with the H2 molecule. In fact computational studies 

[239, 240] appear to suggest the increase in the electron density around the 

alkali ions is the main cause of the enhanced H2 interaction potential in 

these systems. The isosteric heat of H2 adsorption for KC24 is reported to be 

8.4 kJ/mol, approximately double that for pristine graphite.  

 

6.3.4 Inelastic neutron scattering from KC24 

As described in §4.6, neutron scattering is the most powerful tool for 

investigating the structure and dynamics of H2 bound systems. Inelastic 

neutron scattering has been specifically used to investigate the excitation 

characteristics of H2 in GICs. Beaufils et al. [46], in the early 80s, have 

looked at RbC24(H2)x with x in the range 0.5 to 2.1, the upper value 

corresponding to H2 saturation at 30 K. The data produced in the energy 

range 100 μeV < ΔE < 1400 μeV (0.8 cm-1 ∼ 11 cm-1) showed an excitation 

peak at 1.34 meV, and as H2 loading increased from x = 1.5 to x = 2.1, this 

peak acquired a growing shoulder at 1.17 meV while another excitation 

appeared and grew at 0.60 meV (Figure 6.5). These peaks were thought to 

be the result of H2 molecules undergoing quantum tunnelling in a hindering 

potential and they proposed a two site model A and B for H2 in this GIC 

system below 77 K; site-A representing an tetrahedral crystal field and the 

double peak site-B representing an octahedral one. While tests with 

methane and HD were carried out to verify this model the resolution of the 

peaks is not good enough to deduce a finer structure at the specific energy 

modes. Furthermore, the data suggests that the hydrogen was not entirely 

converted to para-H2 as intensity appears on the neutron energy gain side. 
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Figure 6.5: INS spectra of RbC24(H2)x for x = 1:0, 1.5, 2.0, 2.1 (Beaufils et al.) 

[46]. 

Stead et al. [241] used inelastic neutron scattering to look at the H2 

excitations in CsC24(H2)1,2 in the librational energy region ∆E=10 to 200 meV 

(80-1600 cm-1). The tunnelling and librational transitions of the H2 

molecules in a bound system are used to obtain the strength and symmetry 

of the molecular barrier to rotation. Hence, the data obtained was used to 

calculate the molecular barrier to rotation in the CsC24(H2)1,2 compound with 

the use of a H2 librational splitting model for H2 in a cos2θ potential outlined 

by Silvera [242]. The tunnelling data is reported to be consistent with the 

two site model (site A and B) mentioned above. These site occupancies are 

thought to occur as a result of metal-ion superlattices with the H2 molecules 

centred in the plane of the metal ions, but oriented perpendicularly to the 

graphite plane, which suggests the energy of the H2 molecules to be 

independent of the in-plane orientation (i.e. cylindrical symmetry). 

Assuming this geometry the data is said to indicate a sinusoidal potential as 

given by  



KC24 Nanofibres and Hydrogen                                             238 

 

 

 
              

 

(6.2) 

where 2V0 is the barrier constant and θ is the angle to the preferred 

orientation. Using this potential model with the data (details given in ref. 

[241]), they have calculated the transition energies from the ground state as 

a function of the hindering potential, as shown in Figure 6.7. This splitting 

diagram, which allows for the predicted tunnelling and librational modes to 

be read off directly, suggest the presence of a strong hindering potential that 

causes the splitting of the first hydrogen J = 1 rotational level into two: the 

singly-degenerate M = 0 level, and the doubly degenerate M = ±1 level, as 

shown in Figure 6.7. According to their model, the “A” site in CsC24(H2) has 

a potential barrier of 2V0=13B, which predicts the tunnelling mode seen at 

1.55 meV and a corresponding librational line seen at 39 meV (as verified  

by their experimental data showing 1.0-1.2 and 35-38 meV, respectively). 

The “B” site is said to have the same symmetry but a stronger potential with 

2V0 = 18B, predicting tunnelling at 0.65 meV and a fundamental libration at 

50 meV (with observed values of 0.67 and 49-51 meV). These are seen to 

shift in energy as a function of coverage: the principal line from 37 meV in 

CsC24(H2)1 to 35 meV in CsC24(H2)2.  

This two-site model, as described for CsC24(H2)x and later used for 

BeC24(H2)x was subject to scrutiny by Lovell et al. and co-workers [48, 218] 

with new (more refined) INS data collected from KC24(H2)x. The authors 

argue that the data (from the low-energy spectra) presented above by 

Beaufils et al. (Figure 6.5), showed additional complexity (multiplet 

structure) which was not accounted for in detail. The new data on KC24, as 

discussed in §6.5.4.1, shows that there are no clear differences in the 

coverage dependence of the two tunneling bands at 0.6 and 1.5 meV and the 

peak at each band are formed of three triplets (i.e. each band has three band 

heads). Thus, the presence of two distinct sites with their own librational 

energy level structure is said to be questionable. The authors propose that 

the  multiplet structure seen at 0.6 meV indicates the existence of multiple 
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sites with an almost identical librational energy barrier and that the band 

at 1.5 meV, which is also formed of a triplet with the same symmetry to that 

in 0.6 meV, is related to this multiplicity of sites. This hypothesis was 

supported by theoretical work using PW-DFT code CASTEP, which showed 

good agreement with INS data when the structure was modelled with H2 

delocalised in three neighboring sites located 1.1 Å away from the centre of 

the trigonal subunit cell (as shown in Figure 6.6). On the basis of these 

results the authors conclude that there is a quantum mechanical 

delocalization (QD) of the H2 centre of mass across these three sites. Further 

details of this calculation are given in ref [218].  

 

 

Figure 6.6: View along the c axis (white lines define the unit cell). The trigonal 

subunit cell and its centre are shown in red. White circles denote three adjacent 

H2 sites [218]. 
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Figure 6.7: Splitting pattern for the rotational energy levels of a hydrogen 

molecule in a cylindrically symmetric cos2θ potential showing transition 

energies from the ground state in meV. Rotational transitions are depicted up 

to J0 = 4. (a) is the „A‟ site in CsC24(H2)x, (b) is the „A‟ site in RbC24(H2)x, (c) is the 

„B‟ site in both compounds. Reproduced from Stead et al. [241]. 
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6.3.5 Intercalation methods 

A number of general techniques exist for the preparation of graphite 

intercalation compounds, these include the two-zone vapour transport, the 

liquid intercalation and co-intercalation techniques [221]. The main 

parameters taken into consideration are temperature, vapour pressure, the 

chemical and physical properties of the intercalant. The prime objective is to 

get the intercalant (guest) species to mobilise and enter the graphite (host) 

galleries. Although any one of the above techniques can in principle be used, 

the physical and chemical properties of the intercalant generally favours one 

technique over another in terms of the ease of intercalation. The nature of 

the graphite sample, e.g. size and crystallinity, also effects the ease of 

intercalation, with small and thin samples yielding more homogeneous and 

better staged compounds than larger ones. In this section I will only 

describe the vapour pressure method, since this was the method we have 

used for the intercalation of potassium in to our graphitic nanofibres. 

Further details on this and all other methods can be found in the review by 

Ebert in ref. [243]. 

In the vapour transport method, the intercalant and the graphite host 

are placed in a sealed, typically evacuated, container and heated to a specific 

temperature to vaporise the intercalant, which gets taken up by the 

graphite sample. The intercalation temperature is determined according to 

the intercalant used. Two variants of this technique exist, the first known as 

one-zone vapour transport (1ZVT), the second is the two-zone vapour 

transport (2ZVT) method (see Figure 6.8). 

In the 1ZVT method the intercalant metal and the graphite host are 

placed in a sealed container in near contact, with both samples being 

exposed to the same temperature T1Z. The staging of the intercalation is 

controlled by using the correct stoichiometric amount of the intercalant 

metal plus a small excess (Figure 6.8 (b)). In the two-zone vapour transport 

method, the intercalant and the graphite are placed a distance apart and 

the intercalant (metal) is heated to temperature Ti while the graphite is 
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maintained at a higher temperature Tg (Figure 6.8 (b)). The desired staging 

is obtained by controlling the thermal gradient between the intercalant and 

the graphite, a smaller difference in Ti and Tg yields GIC with lower stages. 

The correct Ti and Tg temperatures are listed for many metals and are 

available in literature; for K Ti=250 °C, and Tg (°C) = 225-320 (stage-1), 350-

400 (stage-2) and 450-280 (stage-3) [221]. The region of stability for a given 

stage decreases with increasing difference in Ti and Tg, i.e. higher stages 

have a smaller Tg-Ti temperature range over which they are stable. Excess 

amounts of metal can be used since the intercalation is controlled by the 

chemical potential. The time taken for the completion of the intercalation is 

highly dependent on the intercalant species and the size and structure of the 

graphite host. It can vary between a few seconds for an easily intercalated 

species such as potassium to many weeks for metals more difficult to 

intercalate such as Ytterbium in HOPG (highly ordered pyrolytic graphite). 

 

 

Figure 6.8: Schematic diagram of (a) one-zone transport method with accurate 

stoichiometric amount of metal at the same temperature, and (b) two-zone 

vapour transport method where Tg and Ti indicate the temperature of the 

graphite and intercalant respectively [48]. 
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Upon intercalation the charge transfer to the graphite results in the 

compound having a unique colour, characterised by type of species and the 

intercalation stage. Thus, the staging of the compounds can be monitored 

through observation of the colour change during the intercalation process 

and the purity of the resultant sample can be assessed from the sample 

colour. Pure KC8, like RbC8 and CsC8, is a golden-orange colour and KC24 a 

metallic blue [48], but the tones and intensity of the colours can change 

depending on the mosaicity of the graphitic sample.  

 

6.3.6 Carbon fibres and their synthesis 

Carbon fibres have historically gained great commercial interest with 

applications ranging from sports equipment to the aerospace industry. Their 

high tensile strength [244, 245], large length-to-diameter ratio [246], high 

specific surface area [247] and high thermal and electrical conductivity [248, 

249] have ensured that they have an increasing number of applications. As 

production methods improved, nanoscale carbon fibres have found 

increasing numbers of applications including their use as templates for 

nanotubes [250], filters [251], supercapacitors [104], batteries [105], and 

bottom-up assembly in nanoelectronics [104] and photonics [106]. 

Conventionally nanofibres are prepared using techniques such as chemical 

vapour deposition [252], plasma-enhanced chemical vapour deposition[253] 

or wet spinning and stretching methods. However, electrospinning has the 

advantage of being a far more efficient way of producing carbonisable fibres 

than these particular methods.  

Carbon fibres are considerably less ordered than highly oriented 

pyrolytic graphite (HOPG), even though the degree of ordering is strongly 

dependent on the precursor fibre being graphitised as well as the heat 

treatment temperature. Since the graphitic structure of the nanofibres are 

highly important for both intercalation and hydrogen adsorption purposes, 
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understanding the graphitisation process and the structure of the resultant 

fibres formed a significantly large part of this study. 

Most common carbon fibre precursors are polyacrylonitrile (PAN), 

pitch or rayon fibres. PAN was initially used in this study as it was more 

easily attainable than both pitch and rayon. While the precursor material 

plays the determining role in shaping the microstructure, increasing the 

heat treatment temperature results in: (i) an increase in the mean 

crystallite size and (ii) increased degree of alignment of the basal planes 

along the fibre axis. Generally heat treatment temperatures >2500 °C yield 

fibres that have a greater degree of ordering. 

In the PAN-based fibres the graphitic structure forms through the 

growth of graphite ribbons that tend to be aligned along the fibre axis. The 

degree of alignment generally is highest near the outer skin, decreasing 

towards the core of the fibre (as illustrated in Figure 6.9 (a)). In contrast the 

basal planes in Pitch tend to form in a radial direction along the fibre cross-

section (as shown by Figure 6.9 (b)). The microfibril structure of PAN based 

carbon fibres are illustrated in  Figure 6.10 and Figure 6.11 showing 

depiction of the fibre structure in 2D (side view) and 3D (crossection and 

side view). The ordering in the fibres is typically characterised by the length 

(Lc) and with (La) of the ordered ribbon regions.  

Polymer fibres pyrolysed for carbonisation are generally subjected to a 

stabilisation step in which they are heated in the presence of oxygen, which 

apparently changes the carbonisation steps to yield stronger fibres. To 

investigate the effect of oxidisation on the development of graphitic 

structure in the fibres and whether it was a necessary step, we have looked 

at fibres pyrolysed with and without this step. The stabilisation mechanism 

and its possible effects on the fibre structure are discussed in the next 

section. 
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 Figure 6.9: (a) Knibbs‟ identified three different types of structures for PAN 

based carbon fibres prepared under different processing conditions  (b) Endo‟s 

proposed structure for two different pitch-based carbon fibres [254]. 
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Figure 6.10: Structural model of carbon fibres from PAN precursor as suggested 

by Diefendorf and Tokarsky [255] showing microfibrils. 

 

 

Figure 6.11:  A schematic 3D representation of the structure of a PAN based 

carbon fibre showing irregular space filling and the distortion of the carbon 

layers [256]. 
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6.3.6.1 Thermal treatment of polymer fibres for carbonisation 

In order to develop an understanding of the carbonisation and the 

subsequent graphitization process it was important to gain knowledge on 

the possible reaction mechanisms during the pyrolysis process and the effect 

of stabilization (oxidation) on the graphitic structure of fibres. The 

stabilisation of fibres is accepted as an important step for obtaining high 

strength stable carbon fibres [257]. In spite of the numerous studies that 

have been done to understand the reaction steps involved in this particular 

process the chemistry of the stabilisation step remains complicated and not 

well understood.  

Chain scission and loss of molecular alignment are two processes that 

take place during carbonisation leading to a loss in a significant mass [258]. 

Heating the fibres in an oxidising atmosphere while under mechanical 

restraint appears to prevent this from happening to a large degree. Grassie 

et al. [259] has shown the occurrence of an exothermic reaction at around 

300 °C when PAN fibres are heated in an inert atmosphere. The exotherm is 

shown to correspond to a significant weight loss as a result of the rapid 

increase in sample temperature, with the release of volatile products such as 

CO2, N2, NH3, HCN [257-259]. The process causing the exotherm is believed 

to be the polymerization of nitrile groups to give conjugated carbon-nitrogen 

sequences, which inhibit the cyclisation process and result in a chain 

scission reaction. From 350 °C to 700°C, the cyclized structure loses 

hydrogen and become more aromatic in character. At around 900 °C, the 

chain begins to lose nitrogen, indicating breakdown of the heterocyclic rings 

in PAN and rearrangement to give pure carbon. A detailed explanation of 

this work is given in [259]. On the other hand the oxidative stabilisation 

treatment of polymers, before this exotherm occurs, appears to stop this 

chain scission effect, preventing mass loss and fusion of polymers. During 

the oxidative thermal treatment of PAN fibres, dehydrogenation and 

oxidation reactions take place, as well as „nitrile cyclization reactions‟ that 

produce a stabilised (more rigid) ladder polymer as illustrated in Figure 6.12 

[259-262]. Nitrile cyclisation involve the conversion of the nitrile groups 
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(−C≡N) into >C=N-which is highly exothermic, leading to the formation of 

heteroaromatic rings. The oxygen that is added during stabilisation is 

thought to result in formation of −OH, =CO and (=N−O) which promotes 

cross linking as shown in Figure 6.12 [262]. During subsequent 

carbonization in a non-oxidizing atmosphere, oxygen and the heterocyclic 

nitrogen are split off and planar polyaromatics are formed. All nitrogen 

incorporated into the ladder structure is eliminated by at 1700 °C [263]. 

 

 

Figure 6.12: Mechanistic pathways for the thermal degradation of 

polyacrylonitrile according to Keller et al. [262]. 
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Although numerous studies have looked at how the stabilisation 

process improves the mechanical properties of the carbon fibres by 

improving cross-linking and retaining higher carbon content, the difference 

in the development of  graphitic structure in the fibres between the oxidised 

and non-oxidised has not been discussed.  We were interested in 

establishing the difference between the development of the graphitic 

structure, e.g. rate of formation and orientation of graphite crystals, 

between oxidised and non-oxidised carbon fibres. This detail is important for 

controlling the carbonisation process to yield fibres that are most suitable 

for intercalation and hydrogen adsorption.  

Typical conditions for preparation of carbon fibres are oxidation in air 

at 200-300 °C for 2-10 hours, preferably under mechanical restraint for 

optimised mechanical properties, followed by carbonization in vacuum or 

inert atmosphere. These fibres can then be graphitized by heating at 

temperatures ranging from 1500 to 3000 °C in an inert atmosphere or 

vacuum for 1-2 hours. 

 

6.4 Experimental details 

6.4.1 Solution preparation 

Polymer solutions were made by mixing polyacrylonitrile, PAN, powder 

(150,000 gmol-1) in >99.5 % purity Dimethyl sulfoxide, DMSO, (both from 

Sigma Aldrich). PAN was selected as the carbon precursor as it was the 

most easily obtainable polymeric carbon precursor. DMSO was used because 

it is a highly compatible solvent with PAN (i.e. it has matching solubility 

parameters) and because it is a more benign solvent, both environmentally 

and physiologically, than N,N-Dimethylformamide, DMF, which is typically 

used for electrospinning PAN. Since our main aim was to minimise the fibre 

diameters we have modified the solution concentrations and chemistry 
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through the use of additives to find the composition that yielded uniform 

fibres with the lowest diameters.  For this reason we have prepared 

solutions with a range of concentrations, 2-10 wt.% PAN. These solutions 

took approximately a day to achieve a clear-coloured homogeneous state, but 

this time could be reduced by immersion of the solution contained in bottles 

in an ultrasonic bath heated to 40-50 °C. 

Sodium chloride (NaCl) and the anionic surfactant 4-styrenesulphonic 

acid, sodium salt hydrate (SASH) (Sigma-Aldrich), were added to some 

solutions at concentrations of 1 mg ml-1 and 5 mg ml-1 respectively. Salts 

increase the conductivity of the solution without largely varying the 

viscosity, while surfactants have the effect of reducing the solution surface 

tension and increasing the conductivity. Both additives when balanced in 

the right direction (to allow for the columbic force to overcome surface 

tension) enable the production of low diameter uniform fibres from low 

polymer concentration solutions that otherwise have the tendency to yield 

beaded fibres. 

Solution viscosity and conductivity was determined using a Brookfield 

(Programmable –II+) viscometer and a Jenway 4510 conductivity meter 

respectively,  at room temperature (~ 21°C) prior to electrospinning. The 

viscosity curves obtained as a function of spindle rotational frequency were 

fitted to obtain the high shear limit of viscosity. 

 

6.4.2 Electrospinning of PAN fibres: Set up and 

process parameters  

The same in-house-built electrospinning rig (as detailed in §5.3.3) was 

used to electrospin the PAN solutions, except with a single nozzle set as 

opposed to a co-axial nozzle. The solution feed rate was controlled using a 

programmable Harvard- PHD 2000 syringe pump. The inner diameter of the 

nozzle used was 0.45 mm and its height from the aluminium collection plate 
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was set as high as possible within our equipment, to 30±1 cm. This height 

was maximised to allow for fibres with smaller diameters to be electrospun 

(as explained in §2.6.2.2). The voltage was adjusted between 5-10 kV for 

each solution until a stable jet was emitted from the Taylor cone, but once 

this stability voltage was found it was generally kept fixed at that value. 

The flow rate was selected once the flow rate dependence of the fibre 

diameters was determined. The rate selected was 200 l hr-1, which was the 

most stable rate that produced fibres with the lowest diameters. The 

electrospun fibres were either collected on small aluminium stubs (for 

microscopy studies) or graphite discs (for heat treatment) Figure 6.13. 

 

 

 

Figure 6.13: Electrospun PAN fibres (white coating) on grounded collection 

plate.  
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6.4.3 Thermal treatment of as-spun PAN fibres 

The electrospun PAN fibres were heat treated in a series of steps to 

yield graphitic nanofibres. As discussed earlier in §6.3.6.1 the synthesis of 

carbon fibres from polymer fibres involves three steps: i) stabilization, ii) 

carbonization and iii) graphitization. Although we were not initially 

concerned about maximizing the tensile strength, which is why the 

stabilisation step is usually used, we were interested in investigating the 

effect of oxidation on the structure of our fibres, primarily because it reduces 

the mass loss during graphitization. Thus two sets of CNFs were prepared; a 

non-oxidised set and an oxidised set.  

The non-oxidised (non-stabilised) set were obtained by heating the 

PAN fibres in a tube furnace at a heating rate of 3° min-1 to 500 °C, where 

the temperature was retained for one hour. During this time the system was 

kept under a dynamic vacuum to remove the volatiles. The stabilised CNF 

set was obtained by initially heating the PAN fibres in air at 250 °C for six 

hours, (using the same ramp rates of 3° min-1) followed by the same 

carbonization procedure of the non-oxidised set up to 500 °C. To graphitise 

these CNFs they were then further heated in a high temperature furnace at 

a set of temperatures ranging from 1500 to 3000°C, again at a heating rate 

of 3° min-1. The heat treatment temperature (HTT), the polymer used and 

the process condition employed in making the fibres are the most influential 

factors affecting the development of the structure. Since our main aim was 

to develop carbon fibres of sufficient crystallinity to enable alkali-metal 

intercalation, we looked at the change in the crystallinity of the fibres at a 

range of temperatures to monitor the development of the graphitic structure 

from the amorphous CNFs. From X-ray diffraction and TEM results we 

found that the out-of-plane crystallinity in the fibres increased with heat 

treatment temperature (HTT), as discussed in the results section below. It 

should be noted that every graphitized fibre sample in this study was spun 

using polymer solutions of 6.8 % PAN in DMSO or higher. Although this did 

not produce the finest fibres it did rapidly produce sufficient quantity of 
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material for characterisation and neutron studies without much compromise 

for the fibre diameters. 

 

6.4.4 Characterising fibre morphology and crystal 

structure 

The fibres were imaged using a FE-SEM (Carl Zeiss XB1540) to 

determine the morphological appearance of the as-spun fibres. These SEM 

micrographs, taken from various regions on the SEM stub, were then used 

to determine average fibre diameters, using the image processing program 

ImageJ [264]. For each spinning condition the arithmetic mean and standard 

deviation were measured for the fibre diameters from at least 100, and more 

typically around 300 fibre measurements.  

The structure of the nanofibres was examined by X-ray diffraction 

(XRD), using a Philips X-Pert theta-theta X-ray diffractometer with Cu-Kα 

source, to determine the degree of crystallinity. A background obtained from 

an empty glass slide was subtracted from each pattern, and the intensities 

were normalised to the (100) peak. High magnification images of the fibres 

were obtained using a TEM (JEOL JEM 2010) at an accelerating voltage of 

200 kV, which also enabled a qualitative comparison with XRD of the extent 

of graphitization of the fibres.  

 

6.4.5 Synthesis of KC24 nanofibres  

The KC24 fibre samples were prepared primarily for neutron scattering 

experiments. Prior to intercalation the graphitised fibres (~1g) were weighed 

and outgassed (pumped on) for more than 24 hours to remove all trapped 

gas and impurities. This was done with the samples placed in a quartz tube 

sealed with a valve that can be connected to a turbomolecular pump (see 
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Figure 6.14). In order to ensure that all the volatiles on the sample were 

removed the outgassing was carried out with the GNF sample heated to 500 

°C with the quartz tube placed in a tube furnace, the release of volatiles was 

monitored through the pump pressure reading. When the pump reading was 

low and stable (1-1.5x10-6 mbar was considered sufficiently low) the furnace 

was turned off and the valve on the tube was firmly shut once the tube had 

cooled. The quartz tube that was tightly sealed at one end was removed from 

the cooled furnace and placed into an argon glove box. At this point onwards 

it was critical not to let the sample to be exposed to air, moisture or any 

other reactants, for this reason the glove box used was a high purity one 

with H2O and O2 concentrations of less than 10 ppm  (the ideal value was 

less than 1 ppm). The GNF sample was then removed from the tube in the 

glove box and weighed once again to determine the weight loss during 

outgassing. This outgassed sample was then ready to be intercalated with 

potassium. 

 

 

Figure 6.14: Quartz sample tube with valve for vapour transport synthesis. 

The intercalation process was carried out using one-zone vapour 

transport method, which involves heating the intercalant (potassium in this 

case) above its melting point in the vicinity of the graphitic sample placed 

inside a glass tube (heated in a furnace) and waiting for the intercalant to 

vaporise and intercalate into the graphite over a period of time (as discussed 

in §6.3.5). For this intercalation step the graphitic sample was placed back 

into the quartz tube inside the glove box with the correct stoichiometric 



KC24 Nanofibres and Hydrogen                                             255 

 

 

weight of potassium + 20 wt.% excess placed close to it. While the 

stoichiometric amount of potassium was calculated on the basis of making 

KC24 with the available mass of carbon sample, the excess was added to 

account for potassium that got trapped inside the quartz tube during the 

intercalation process. From previous intercalation experiments (using the 

same method) it was found that a mirror layer of solidified potassium 

formed inside the cooler end of the quartz tube, at the point close to the 

valve, where the intercalant vapour condensed and solidified. Evidently, a 

proportion of the intercalant vapour did not enter the graphite even if there 

was room for it; thus, to ensure the end result was close to a 

stoichiometrically-desired stage-2 potassium GIC, excess potassium was 

added to account for the loss of the intercalant.  

The tube containing the potassium (intercalant) and the graphitic 

fibres was then sealed (with the valve closed), removed from the glove-box 

and placed inside a tube furnace that was not yet turned on. The glass tube 

was then reconnected to the turbo-molecular pump and pumped on with the 

valve open to remove the Ar gas, until the pressure reading was as low as 

5x10-5 mbar. The valve was closed off once again and the furnace 

temperature was set to 300 °C for 1 hour period, during which time the 

potassium melted, vaporised and intercalated into the graphitic fibres, with 

the fibre colour changing from a dark blue-to-bronze colour (as shown in 

Figure 6.15). This contrasts with the bright blue-to-gold shade obtained for 

intercalated Papyex strips. This is thought to be due to diffuse reflection of 

light from the GNF sample surface, which is much rougher than the Papyex 

carbon strips used as a result of the random orientation of the fibres in the 

sample. Once the quartz tube had cooled after the intercalation it was 

returned back to glove box, where the sample was retrieved, weighed and 

stored in an air tight container, ready to use for experimentation. Besides 

the colour of the resultant GIC sample (which is a direct indicator of its 

stage as discussed in §6.3.1) the new mass of the sample (i.e. mass uptake) 

was also used to check if stoichiometric composition was that of KC24. XRD 

was also used to check that it had the correct stoichiometry as well to make 

sure that the samples were fully intercalated. However, since X-ray 
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diffraction only gives information about the surface layers of the sample, the 

bulk intercalation of the fibre samples was only verified through the use of 

neutron diffraction prior to hydrogenation studies (as discussed in §6.5.5.1). 

 

 

Figure 6.15: Graphitic nanofibres during the intercalation process of potassium, 

(left) shows the fibres at a point near the beginning and (right) towards the end 

of the intercalation. 

  

6.5 Results and Discussion  

6.5.1 Minimising fibre diameters 

As outlined earlier our main objective in the synthesis of the PAN 

nanofibres was to determine the electrospinning conditions (i.e. process and 

solution parameters) that yielded fibres with the lowest attainable 

diameters from a PAN-DMSO solution system. Since the main solution 

parameters that control fibre diameters are polymer concentration (or 

viscosity), conductivity and surface tension (as discussed in §2.6.1), we have 

initially looked at the effect of varying these parameters.  

Figure 6.16 shows the variation of viscosity with PAN concentration 

and the respective change in diameters with viscosity (as shown by the 

inset). If the fibre diameter were a simple function of the polymer content of 

the solution then it should increase as a square root of the PAN 
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concentration. However, the solution viscosity, which increases 

exponentially with concentration (Figure 6.16), also has an effect on the 

diameter. As the viscosity increases, the extent to which the spinning jet can 

be stretched at a given voltage will decrease, resulting in an increase in fibre 

diameters. However, when the viscosity is too low, the Rayleigh instability 

and the increased surface tension cause the jet to break up into droplets, 

causing electrospraying of the jet. For pure PAN/DMSO solutions this point 

was established for solutions with PAN concentration of around 3.8 wt.%.  

 

Figure 6.16: Viscosity of PAN solutions in DMSO, the inset shows the fibre 

diameter as a function of viscosity 

Below this concentration it was no longer possible to produce fibres. Above 

this concentration the diameter does appear to grow approximately as the 

square root of the PAN concentration (Figure 6.17). However, above 6 wt.% 

PAN the fibre diameter no longer increases. The reason for this is not clear; 

however, in order to maintain the stability of the spinning process the 

voltage was adjusted to obtain a stable Taylor cone. Although the voltage 

variation was only within the range 7.7 to 9.8 kV, it is probable that this 
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variation caused the small reduction in fibre diameters between 6 and 10 

wt.% PAN concentration.  

 

Figure 6.17: Polymer and 500 °C pyrolysed (CNF) fibre diameters as a function 

of concentration of PAN in DMSO solution, without (left) and with (right) added 

SASH surfactant. The error in the readings is taken as the standard deviation 

of the normal distribution of fibres measured from the SEM images. 

 

The variation in electrical conductivity of PAN/DMSO solutions (with 

and without SASH surfactant or NaCl salt additives) is shown in Figure 

6.18. Conductivity increases linearly with increased PAN concentration in 

the pure solution. Adding NaCl increases conductivity 20-fold up to 2 wt.% 

PAN. Even though the solution conductivity increases with the addition of 

SASH, the increase is reduced with PAN concentration. This is probably due 

to the reduced mobility of the ions in more concentrated solutions.  
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Figure 6.18: Conductivity of PAN solutions in DMSO: (Closed circles) PAN in 

DMSO; (open circles) PAN in DMSO with 5 mgml-1 4-styrenesulphonic acid, 

sodium salt hydrate (SASH) surfactant;  (triangles) PAN in DMSO with 1 

mgml-1 NaCl. 

Without any additives the PAN/DMSO solutions produced beaded 

fibres below PAN concentrations of 5.2 wt.% PAN (see Figure 6.19 (a)), but 

of course beading occurred down to the point when beading converted to 

electrospraying below 3.8 wt.%. For beaded fibres the measured fibre 

diameters are from the inter-bead regions which are narrowed as the 

surface tension draws polymer from the fibres into the beads. Beading is 

known to occur as a result of the competition between the electrostatic forces 

and the surface tension (as discussed in 2.6), and we found that using a 

saturated solution of NaCl was effective at reducing the beading. NaCl only 

really changes the conductivity (increasing it from less than 50 µS cm-1 to 

around 400 µS cm-1) with little effect on the viscosity and surface tension. 

Addition of an anionic surfactant (5 mg ml-1 SASH) was also effective at 

controlling the beading, as shown in Figure 6.19 (b), although it is not clear 
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whether this is due to the increased conductivity (also to around 400 µS cm-

1) or due to a decrease in surface tension.  

     

Figure 6.19: SEM images of fibres electrospun from 4.2 wt.% PAN/DMSO 

solution; a) fibres without SASH b) fibres with SASH  

When investigating the effect of additives on the polymer fibre 

diameters, the variation in the diameters of the same fibres when 

carbonised at 500 °C was also studied. Thus, it was be possible to obtain an 

idea of the final diameters once the fibres were carbonised. Table 7 shows 

the variation in the diameters of the fibres produced from 4.2 wt.% PAN in 

DMSO solution. The lowest diameter is obtained without any additives. 

Although the additives remove the beading it also causes the polymer mass 

to be more evenly distributed along the fibre axis. In the beaded fibres the 

polymer density is greater in the beads and the fibre between the beads is 

stretched more to give finer fibres. The lower SASH concentration (5 mg ml-

1) solution bizarrely results in lower diameter fibres than that with the 

higher concentration (10 mgml-1). Likewise with NaCl and SASH combined. 

It is possible that adding saturation amounts of additives cause ions in the 

solution to coalesce and result in reduced conductivities, which will lead to 

increased fibre diameters. As shown in the table, the standard deviation of 

the data is relatively large; this is due to the large variation in the fibre 

diameters for a given sample set. Although these particular diameters are 

on the low end of the diameter range, the smallest fibre diameters (with an 

average of 106 nm for polymer fibres and 49 nm for the same fibres 



KC24 Nanofibres and Hydrogen                                             261 

 

 

carbonised at 500 °C) were obtained through the electrospinning of 3.8 wt.% 

PAN/DMSO + SASH solution. 

Once the effect of NaCl and SASH on fibre diameters was established 

and the optimal process parameters were determined, one solution 

concentration had to be chosen to be used for making large quantities of 

fibres for graphitisation. The selected solution was 6.8 wt.% PAN in DMSO; 

even though this solution did not necessarily produce fibres with the lowest 

diameters, we used a solution concentration in the mid-range as a 

compromise between fibre diameter and the rate of fibre production. All the 

heat treatments processes described below were carried out with these 

fibres. 

 

 Table 7. Average fibre diameters for 4.2% PAN in DMSO with NaCl and SASH 

additives, as-spun polymer and after carbonisation at 500 °C under vacuum. 

 
Polymer  Carbonised at 500°C 

 
Fibre diameter 

[nm] 

Standard 

deviation [nm] 

Fibre diameter 

[nm] 

Standard 

deviation [nm] 

4.2% PAN in DMSO 130 50 60 20 

plus 5mg/ml SASH 170 80 110 40 

plus 10mg/ml SASH 290 60 200 60 

plus 1mg/ml NaCl 160 50 90 40 

plus 1mg/ml NaCl 

and 5 mg/ml SASH 

200 70 140 60 
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Figure 6.20: SEM images of heat treated non-oxidised fibres: a) HTT=1500°C, b) 

HTT=2800°C,  and oxidised fibres c) HTT= 1500°C and d) HTT= 2800°C. 

 

6.5.2 Carbonised fibres: SEM & TEM analysis 

SEM images of fibres from 6.8% PAN in DMSO solution after heat 

treatment (Figure 6.20 (a)-(d)) show how the surface morphology of the 

fibres changes with increasing temperature. While the fibres heat treated at 

lower temperatures (<1500 °C, Figure 6.20 (a) and (b)) have a smooth 

surface, those at higher temperatures (e.g. 2800°C, Figure 6.20 (c) and (d)) 

develop a rougher and more ridged morphology with increasing 

temperature. As shown in Figure 6.21 the fibre diameters and sample mass 

decrease with increasing heat treatment temperature. Oxidized fibres retain 

a greater proportion of their diameter and overall mass loss to 1500 °C is 

approximately 70% of the starting polymer mass, which remains constant to 

3000 °C. Non-oxidized fibres lose upwards of 90% mass to 3000 °C. This may 

be a result of the mass loss on heating, and of the transformation of an 
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amorphous carbon structure to a more crystalline graphitic structure. The 

non-oxidized fibres, as well as having a smaller average fibre diameter, have 

a more uneven morphology along the fibre axis than the oxidized fibres, 

probably due to the fact that they are prone to a greater loss of carbon in the 

heating process as a result of greater evaporation of volatiles [245, 265]. The 

development of the graphitic structure with increasing heat treatment 

temperature (HTT) is clearly visible in Figure 6.22 through the formation of 

graphitic ribbons (called fibrils in literature). Both the fibril depths, which 

correspond to layers of graphite basal planes in c-direction, and lengths 

increase with temperature. The orientation of (002) planes along the fibre 

axis also increases with heat treatment temperature, in agreement with 

previous work [255]. 

Higher magnification TEM images of the fibres heated treated at 

2800°C are shown in Figure 6.23; (a) and (b) are images of a non-oxidised 

fibre, (c) is that of an oxidised fibre at the same magnification as (b) (400K). 

Though it is difficult to make a generalised comparison between the 

structure of oxidised and non-oxidised fibres with just an observation of part 

of the fibre, graphitic structure appears to be similar in both fibres (treated 

under oxidised and non-oxides conditions) as confirmed by XRD 

spectroscopy discussed below. Both oxidised and non-oxidised fibres have an 

entangled ribbon structure formed of micro-fibril layers of graphite basal 

planes (sp2 type carbon). The average layer spacing measured from the 

images is 3.34Å. These ribbons appear to pass smoothly from one domain of 

stacking to the other, with a general orientation along the fibre axis. This 

observation is in agreement with the „ribbon structure model‟ suggested by 

Diefendorf and Tokarsky [255] for formation of graphitic structure in carbon 

fibres (as discussed in §6.3.6.1). It is however not clear how the ribbons 

interact in three dimensions to give the undulations and entanglement seen 

in the TEM images. The 3D structure proposed by Bennett and Johnson, as 

shown Figure 6.11, show a possible way in which the graphite layer planes 

interlink both longitudinally and laterally. Although such a structure 

results in some two-dimensional (2D) ordering, three-dimensional (3D) 

ordering is not attained. Thus, it appears that the graphitic structure 



KC24 Nanofibres and Hydrogen                                             264 

 

 

obtained from carbonisation of the PAN fibres results only in 2D ordering of 

the graphite planes, in the presence of an amorphous component as 

discussed below. 

 

 

Figure 6.21: Fibre diameters and normalized mass (inset) of fibres from 6.8wt.% 

PAN in DMSO solution as a function of HTT. Closed circles = oxidized fibres, 

open circles = non-oxidized fibres. Mass is normalized to the pre-heat treatment 

polymer mass for each sample. 
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Figure 6.22: TEM images of fibres at a) HTT = 1500, b) HTT= 2200, and c) HTT 

= 2800 °C. 
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Figure 6.23: TEM images of fibres heat treated at 2800C; Non-Oxidised fibres 

(a) and (b) and Oxidised fibre (c) ((b) and (c) magnification 400K). 
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6.5.3 XRD Analysis of GNFs 

The background-subtracted X-ray diffraction data are presented in 

Figure 6.24. The principal graphite diffraction peaks seen for high HTT are 

the (002), (100), (004), (110) and (006). There is no evidence for the presence 

of peaks combining in-plane (hk0) and out-of-plane (00l) indices (h, k, l >0), 

and so the graphitic nanofibres do not appear to contain 3D ordering. Thus 

the local structure of the graphitic fibrils appears to be unregistered, or 

turbostratically disordered, stacked graphene planes. This result is 

expected, as PAN is not a precursor of crystalline graphite. 

 

 

Figure 6.24: X-ray diffraction data from oxidised and (inset) non-oxidised fibres 

at HTT from 500 to 3000°C using Cu Kα source. The background from the glass 

slide has been subtracted from each pattern. 

 

The data show a strong signature of developing graphitization in the c-

axis direction. For both oxidized and non-oxidized fibres the graphitic 

structure increases with temperature, as is evident from the growing 
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intensity of the (002) peak at 3.3 Å and the (004) at 1.7 Å. The asymmetry of 

the (100) peak at 2.1 Å, with a tail to the low-d side, is typical of turbostratic 

graphite [266]; but the (002) peak is asymmetric with a tail in the opposite 

direction. This is unexpected for a single phase peak; however, theory shows 

that when there are very few graphene layers the (002) peak is shifted 

towards lower d-spacings even though the interlayer spacing is unaltered. 

So we believe that the tail is actually due to the presence of only a few 

graphitic layers. Using the theory developed by Fujimoto [266], it is possible 

to fit to a model containing a percentage of graphene bilayers, tri-layers etc. 

However, it was not possible to get a stable fit using this method since above 

3 or 4 layers the peaks are too similar in width and position. We chose a 

simplified model where we fitted the (002) peak to two Lorentzians: a broad 

one at low d-spacings to represent the fraction of the graphite with only 2 or 

3 layers and one at higher d-spacings to represent 4-layers and above. 

Although not strictly accurate this model produces a stable fit and gives a 

good indication of the development of the c-axis stacking as a function of 

heat treatment temperature.  

The areas of the peaks are expressed as a proportion of the overall 

fitted peak area at each temperature in Figure 6.25. As the HTT increases, 

the proportion of two and three-layer graphitic material falls and many-

layer turbostratic graphite increases, above 80% for oxidized fibres and 60% 

for non-oxidized fibres. The fitted peak width reduces slightly between 2200 

and 3000 °C, although the intensity grows for both oxidized and non-

oxidized fibres, suggesting that the many-layer c-axis crystallite nucleates 

at or below 2200°C and further increase in layer stacking scales only weakly 

with temperature. However at these temperatures the (002) peak is now 

sufficiently symmetric to reliably extract the number of graphite layers from 

the Scherrer equation: 

   
  

     
 (6.3)   
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Figure 6.25: Proportional sub-peak fits to the (002) peak showing the growth of the 

graphitic phase from a phase consisting of few-layer (1- and 2-layer stacked) graphite with 

increase in HTT; (a) for oxidised and (b) non-oxidised GNF. Exponential fits are provided 

as a guide to the eye. 
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with a pre-factor of K=0.9 [266] , X-ray wavelength  λ=0.15418 nm, β, the 

line broadening at half the maximum intensity (FWHM) in radians, and θ, 

the Bragg angle. At a HTT of 2800 °C and above, the c-axis crystallite 

dimension is ~30 graphene layers for oxidized GNFs (corresponding to 

7.3±0.2nm lattice dimension), which compares well with what we observe in 

the TEM images (e.g. Figure 6.23 (c)) where up to 30 graphene layers can be 

counted in visible crystallite fibrils. 

Table 8: The resulting c-axis crystallite dimensions for graphitic component of 

(002) peak fit at the specific HTTs. 

 
Oxidised  Non-oxidised 

Temperature (°C) No. of layers    No. of layers 

2200 27±3 29±4 

2500 19±2 -- 

2800 29±1 39±4 

3000 28±3 36±1 

 

 

For assessing the in-plane graphite lattice dimension, the (100) peak 

width was measured, and the pre-factor to Scherrer‟s equation, which 

depends on crystallite size, was obtained from [266]. For oxidized GNFs with 

a HTT of 3000°C, the in-plane dimension was found to be 5.8±0.2 nm, using 

a pre-factor of 1.70. For non-oxidized GNFs with the same HTT, the 

equivalent dimension was 4.5±0.1 nm, using a pre-factor of 1.55. This is 

almost certainly not a reflection of the ribbon width, but an indication of the 

length scale over which they are flat [267].   

Thus, as indicated by the TEM micrographs earlier (Figure 6.23) and 

the XRD results above the fibres are not fully graphitised and 3-D ordering 

is not attained. The entanglement of the ribbons in 3-D is not clear and 

further work is needed to see how these ribbons are formed and ordered 

across the cross-section of the fibres. TEM imaging of the fibre cross-sections 

must be done. Additionally, Raman spectroscopy could be used to look at the 
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crystallographic structure in 3-D. The degree of graphitisation and the 

configuration of the graphitic planes is important for intercalation of species 

into the fibres. The ideal configuration for ease and speed if intercalation 

would be to have the graphene planes ordered either perpendicularly to the 

fibre axis (i.e. basal planes being stacked like discs along the fibre axis) or to 

have the basal planes ordered radially along the fibre axis, as in the case of 

pitch fibres (shown in Figure 6.9 (b)). Both these configurations give greater 

exposure of the graphite edges for intercalation of species. Unfortunately, 

neither of these configurations was observed in the case of CNFs made from 

PAN. Other precursor materials such as pitch or rayon, which yield greater 

degree of graphitic ordering, could be used as alternatives to PAN. 

6.5.4 Neutron scattering measurements on H2-KC24  

6.5.4.1 Inelastic neutron scattering 

In the neutron scattering studies we were interested in investigating 

the effect of nanostructuring on the hydrogenation/dehydrogenation 

behaviour of hydrogen in KC24. Inelastic neutron scattering (INS) provides 

direct information on the nature and strength of the hydrogen bonding, 

making it one of the most effective methods for studying hydrogen in 

materials. INS measurements on hydrogenated KC24 nanofibres were 

carried out using the IRIS time-of-flight inelastic neutron spectrometer 

(§4.6.3.1), at the ISIS pulsed neutron source. The IRIS spectrometer was 

specifically selected to perform low-energy inelastic neutron scattering (INS) 

and quasi-elastic neutron scattering (QENS), so that we could study both 

the dynamics and diffusion properties of hydrogen adsorbed in KC24 

nanofibres. Good resolution close to the elastic line and sensitivity to 

hydrogen made IRIS a natural choice for this work. The data obtained from 

this study is compared to that from a previous study on bulk-KC24 (prepared 

using Papyex exfoliated graphite)[48, 218], so that any variation in the 

dynamical behaviour of hydrogen in the KC24 nanofibres, as opposed bulk 

KC24, can be deduced and the possible effects of nanostructuring 
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determined. The details of this earlier study on bulk-KC24, conducted by the 

same group, also on IRIS, prior to the start of this PhD project, can be found 

in the following references [48, 218].  

This neutron experiment was designed to be the same as the previous 

study on bulk KC24 [48, 218], so that a direct comparison can be made 

between the two studies. The KC24 fibre sample was prepared as discussed 

in §6.4.5. The hydrogen concentration was measured volumetrically in situ. 

Para-H2 was required to simplify the observed spectrum, thus 

measurements were conducted at the cryostat base temperature (1.5 K), to 

enable ortho-hydrogen (the triplet state of H2 with a molecular spin 

quantum number J=1 (½+½)); to convert to para-hydrogen (the singlet state 

of H2 with a molecular spin quantum number J=0 (½–½)), which took 

approximately 10 hours to be complete. The sample of mass 0.7552 g was 

loaded in to the hollow annulus of a cylindrical aluminium can (with an 

annulus thickness of 1.5 mm) as shown in Figure 6.26 and attached to the 

instrument sample stick (Figure 6.27) to be  inserted in to the instrument.  

The sample stick had valves for controlled release of gasses into the sample 

volume. Sample heating was controlled through the copper elements 

attached to the top and bottom of the sample can. All INS measurements 

were taken at the cryostat base temperature (1.5 K) across both energy 

windows on IRIS: the first being the -0.8–2.0 meV energy window, selected 

through the use of the PG 002 analyser and a chopper frequency of 25 Hz, 

which has an energy resolution of 15μeV close to the elastic line, and the 

second being 0 – 20 meV energy window. Concentrations of high-purity 

para-hydrogen were measured from a gas handling rig by volume at 55 K. 

The following hydrogen concentrations were studied: KC24(H2)x, x=0 

(background), 0.25 (0.27), 0.5 (0.49), 1 (2.02), 1.5 (1.6), 2 (1.87), and 

saturation; the values in brackets are the actual experimental values 

calculated after recalibration of the dosing volume. It should be noted that 

the saturation value is lower than the 2H2/K expected, this is probably due 

to the GNFs having an amorphous component, or the possibility of 

overfilling with K. For each additional loading of hydrogen, the cryostat 

temperature had to be raised to 55 K before being cooled back down to 1.5 K 
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to take the measurements. The IRIS INS data was analysed using the 

software package MODES [268]. 

 

Figure 6.26: KC24 nanofibre sample being loaded into the IRIS sample can. 

 

Figure 6.27: The IRIS sample can attached to the cryostat centre stick. 
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6.5.4.2 INS results 

Figure 6.28 shows the spectra of the hydrogen excitations in KC24 in 

the -0.8 to 2.0 meV energy window (a) for bulk KC24 synthesised from 

Papyex exfoliated graphite (from previous study)[48, 218] and (b) for the 

nanostructured KC24 synthesised from graphitic nanofibres (GNFs, from 

this study). The instrument and sample-can background has been 

subtracted from the spectrum of pure KC24. In the INS data from the 

previous sample (Figure 6.28 (a)) two sets of excitations are prominent; one 

centred around 0.6 meV, and one around 1.5 meV, which shift very slightly 

towards lower energies with coverage. The band at 0.6 meV arises from 

tunnel splitting and has a librational counterpart at 48 meV (expected at 51 

meV), as shown in the TOSCA data (Figure 6.29 (a)). With the high 

resolution attainable on IRIS, it was possible to detect a further splitting of 

this band into a triplet, which was attributed to the existence of three 

distinct sites for the binding of molecular hydrogen in bulk-KC24 [218]. This 

tunnelling peak is predicted by the librational splitting model [242] 

discussed in §6.3.4, for H2 in a cos2θ potential. The second doublet peak 

centred around 1.5 meV, which was not predicted by librational splitting 

model,  was thought to arise from a combination band involving tunnel 

splitting and translational motions of the H2 centre of mass. The observation 

of three distinct peaks reinforces the notion of three different adsorption 

sites in KC24 (discussed further in [218]]. This assignment was validated by 

the absence of librational features at 39 meV (see Figure 6.31 ), which is 

expected if the features in the tunnelling region were to originate from the 

presence of orientational forces alone. However, more recent analysis based 

on new fitting data suggests a different phenomenon. The fittings (see 

Figure 6.29) show that there is a 2:1 intensity ratio between the outer and 

inner INS features and a rough 2:1 width change in the bulk GIC system, 

with the fine structure features more- or-less mirrored in each part. This 

second tunnelling peak at the higher energy is now attributed to 

dimerization of H2 (i.e. H2-H2 interactions in the system). 

 



KC24 Nanofibres and Hydrogen                                             275 

 

 

 

Figure 6.28: INS spectra of KC24(H2)x using 25 Hz -0.8 to 2.0 meV energy 

window of IRIS. (a) Bulk KC24 sample, data from previous study [1, 13]; two 

sets of peaks are seen, one around 0.6 meV and the other around 1.5 meV. 

(b) Data from KC24 nanofibres, from this study; the first peak is shifted to 

the lower energy end by ~0.15 meV, while the second peak associated with 

H2-librations appears to be suppressed. Note: the key is the same for both graphs. 
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The INS spectra taken from hydrogen in KC24 nanofibres (as shown in 

Figure 6.28 (b)) show some variation from the data obtained for the bulk 

(Figure 6.28 (a)). In the nanofibres the spectra take the form of a broad peak 

which grows with hydrogen coverage, centred on 0.45±0.05 meV in neutron 

energy loss for 0.25<x<1.5, and softened to 0.32 meV for saturation x=1.87 

(x= 2+ nominal loading). The principal peak at each coverage has a wide 

shoulder suggestive of a broader excitation partly covered by the principal 

but centred higher in energy transfer. By taking each spectrum between 

0.15 and 2.0 meV to be a conflation of these two peaks, each with Gaussian 

lineshape, a fit was performed and the resulting peak centres are plotted in 

Figure 6.30 with the full-width half maxima represented by the error bars. 

For coverage of 0.25<x<1.5, the fitted peak positions are constant to within 

~1/5 of the fitted peaks‟ full-width half maxima. Thus, the site model has the 

same energy independent of coverage. The reason for the shift in energy of 

the excitations at x=1.87 (x=2+ nominal) to a slightly lower value (~0.3 meV) 

is not very clear but is thought to be due to the saturation of hydrogen sites; 

another indication of excess K in the GNFs (i.e. slightly more than 1 K per 

24 C atoms). 

The greater width of features in the nanofibre system is consistent 

with the lack of long-range order and implies that the fine structure is 

smeared out with a continuous variation in site energies, i.e. the sites are 

less distinct and the fine structure, as seen for the bulk, is smeared out. The 

lack of long range order, or the difference between the crystal sizes between 

the two samples is discussed further below (§6.5.5.1). What is not so obvious 

is whether there are two overlapping features in the KC24 nanofibre spectra. 

When fitted as two Lorentzians and two Gaussians the 2:1 ratio is not so 

clearly marked in the case of nanofibres. This may be because the peaks 

overlap too much for the fit. This broadening and shift in energy of the 

higher energy peak (peak B in Figure 6.28) is further suggestive of this peak 

being a manifestation of the H2 dimer (i.e. H2-H2 interactions in the system). 

This is because the disorder in the GNFs is likely to result in disordered 

intercalation of K and hence removal of H2 dimerization that exists in a 
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more ordered adsorption configuration, which could explain the absence of 

the higher energy peak that was present in the bulk sample. Figure 6.28 (b) 

also shows significant intensity on the neutron energy gain side of the 

window, implying that the hydrogen was not fully converted into the ground 

state while scattering was taking place. The tunnelling transitions (as 

shown in the neutron energy loss side of the window) are detected through 

incoherent scattering of neutrons from H2 as a result of the nuclear-spin-flip 

through para-to-ortho conversion of H2. This is due to the length of time in 

which the ortho-para conversion took to complete, which was ~10 hrs 

despite the reported catalytic effect of the intercalate [48]. Time constraints 

for the experiment meant that a complete transition was not attainable. 

 

Figure 6.29: Ratio of peak areas obtained using two-peak Gaussian or 

Lorentzian fits to bulk-KC24 data shown in Figure 6.28 (a). 
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Figure 6.30: (a) Peak centres and (b) peak full-width half maxima derived from 

two-peak Gaussian fits to bulk-KC24 data shown in Figure 6.28 (a). 
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Figure 6.31: INS spectra of KC24(H2)x nanofibres on TOSCA from forward-

scattering banks; (a) data collected on bulk KC24 (from previous study) [48], (b) 

data collected on KC24 nanofibres (from this study). 

The higher librational states at 39 and 51 meV, as predicted by the 

tunnelling model discussed in §6.3.4, were looked at using the TOSCA 

instrument which cover this energy range. The presence of these states, 

along with the lower energy states seen in the IRIS data, supports the 

theory on the tunnelling of Hydrogen in a cos2θ potential, as discussed in 

§6.3.4.  
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While the first transition is neither seen in the bulk KC24 (Figure 6.31 (a)) or 

KC24 nanofibre (Figure 6.31 (b)) data, a peak is observed at 48 meV in both 

cases for all coverages (corresponding to 51 meV predicted by the cos2θ 

potential model).  While this peak is well defined for the bulk samples it is 

broadened in energy in the case of the nanofibres, in accordance with the 

IRIS data. No other difference is observed in the two data sets obtained from 

the forward scattering banks of TOSCA. 

 

6.5.5 Neutron diffraction 

Neutron diffraction measurements were conducted to look at the 

structural changes that take place in KC24 nanofibres upon hydrogenation 

and to see how this compares to the changes observed in the bulk KC24 

samples. The diffraction studies were carried out on the high neutron flux 

GEM diffractometer at ISIS. For this diffraction experiment deuterium was 

used instead of hydrogen. This is because although hydrogen is highly useful 

for dynamical studies it is not very suitable for diffraction experiments due 

to its high incoherent scattering cross-section. Deuterium, on the other 

hand, is a better coherent scatterer and is therefore generally used in 

diffraction experiments instead of hydrogen to improve the quality of the 

diffraction data.  

Besides looking at any structural changes in the fibres, we were also 

interested at looking at the hydrogenation kinetics as determined by time-

resolved diffraction data during deuterium loading of the sample. For this 

reason it was important to use a high neutron flux diffractometer such as 

GEM. In graphite based compounds (e.g. GICs) the ease of structural 

changes such as intercalation of hydrogen is thought to be regulated by the 

elastic constraints of long range order; this is what leads to orderly staging 

in GICs. This elastic constraint is also thought to affect the kinetics of 

hydrogen adsorption. For this reason we expected the hydrogenation 

kinetics to be substantially different in nano-graphites, in which the size 
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reduction is expected to lower the elastic strain and hence the ease of 

intercalation as well as lowering the diffusion distances. Once again for a 

comparative analysis between nanostructured and bulk KC24, the results 

from this experiment were compared to those obtained for bulk KC24 from a 

separate study conducted previously on the POLARIS diffractometer at ISIS 

[48].  

The 0.7552 g KC24 nanofibre sample used on IRIS and TOSCA was 

loaded (within the same annular aluminium container) into the GEM 

neutron diffractometer (§4.6.4), where diffraction measurements were 

carried out at 50 K on the following nominal D2/KC24 compositions, 

measured as pressures in a calibrated volume: 0, 0.25, 0.5, 0.75, 1.0, 1.5, 

1.75 and 2.0. As the sample was saturated at 1.22 D2/K, it appeared that 

significant degradation in the uptake capacity had occurred. A new sample 

consisting of 0.3952 g of KC24 nanofibres from the same synthesis batch, but 

unused, was loaded into the same annular aluminium container. Since no 

difference was observed in the diffraction results of the both samples, I have 

chosen to report on the diffraction measurements on this second sample. 

Firstly, the sample was saturated with D2, to a maximum uptake of 

1.64 D2/K. This was then evacuated by warming the sample to 170 K under 

dynamic vacuum. Following this, the sample was reloaded with several 

different compositions in steps, with diffraction data recorded at each 

loading at 50 K as before: x=0 (background), 0.25 (0.235), 0.5 (0.47), 0.75 

(0.72), 1.0 (0.96), 1.25 (1.19), 1.5(1.43), 1.75(1.60) and saturation (1.67) D2/K.  

6.5.5.1 Diffraction results 

Figure 6.32 shows the time resolved diffraction patterns for (a) bulk 

KC24 sample from previous study on POLARIS and (b) KC24 nanofibres from 

this study on GEM, taken during D2 loading up to the saturation point at 50 

K. Since both the Papyex-based sample (bulk KC24) and the sample made 

from graphitic nanofibres (nanostructured KC24) are turbostratic they have 

a preferred orientation in one direction; the small crystallites in the Papyex-
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based sample are mostly arranged with the c-axis perpendicular to the plane 

of the sheet, and the fibres even when crushed have the tendency to align in 

one direction with the crystallite c-axis mostly aligned perpendicular to the 

fibre axis. Despite both GEM and POLARIS having detectors with a Q-

vector range covering the scattering angles from both c-axis stacking and a-

b plane stacking, the in-plane geometry is not easy to resolve due the lack of 

long-range order in either of the samples. For this reason the data range 

selected for comparison between the bulk and nanostructured KC24 is the 

data showing the out-of-plane geometry of the samples, as shown by the 

(002) and the (003) peaks in Figure 6.32. From this data we can clearly see 

that the GNF sample is fully intercalated to yield KC24 as no sign of pure 

graphite is detected; otherwise graphite (002) peak would be present at 3.34 

Å, as measure by XRD on the GNFs (§6.5.3). 

It must be noted that despite the lack of long range order in both 

graphitic samples, Papyex is locally more like single crystal; the flakes that 

make it are aligned turbostratically but there is reasonable long range order 

in the c-axis within each flake, whereas the GNFs are highly turbostratic. 

The average crystalline dimensions in Papyex is reported to be La≈ 600 Å 

(in-plane) and Lc ≈ 300 Å (out-of-plane) [269], for the GNFs used in the 

neutron scattering experiments these values were calculated to be La≈ 58 Å 

(in-plane) and Lc ≈ 73 Å  (out-of-plane), as discussed in §6.5.3 above. This 

greater disorder in the GNFs is one reason for the broader spectrum (peak 

width) seen in the neutron scattering measurements, as discussed above in 

the INS data and as shown below for the diffraction data (Figure 6.32 and 

Figure 6.33) 

One obvious difference we found between the nanostructured and the 

bulk sample is the rate of D2 adsorption. The rate is significantly faster for 

KC24 nanofibres for the same mass of sample. It can be seen from both (003) 

and (002) peaks in the bulk sample (Figure 6.32 (a)) as deuterium is put on 

the sample, the KC24 peaks diminish and hydrogenated peaks appear and 

increase at a slightly expanded d-spacing. By the time the full amount of D2 

is present, the original peaks are less than a faint shoulder on the new ones.  
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Figure 6.32: Time-resolved diffraction patterns of (a) bulk KC24 sample from 

previous study on POLARIS [48] and (b) KC24 nanofibres from this study on 

GEM, taken during D2 loading up to the saturation point at 50 K. Both data 

sets show c-axis expansion with 1 D2 loading per KC24 (offset for clarity). The 

time resolution is 10 minutes in (a) and 5 minutes in (b). 

The c-axis repeat distance increases from 8.66 ± 0.03 Å to 8.94 Å.  

Considering that the empty gallery spacing in the KC24 unit cell does not 

change significantly, then the results can be quantified by a change in the 

filled layer spacing from 5.35 to 5.63 Å, corresponding to a gallery expansion 

of 5.1%. This value is the same for the nanostructured KC24 sample with an 

increase in the filled layer spacing from 5.30 to 5.57 Å. While it takes 40-50 
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minutes for the phase change from KC24 to 1D2-KC24 to complete in the bulk 

sample, it takes less than five minutes in the case of the nanofibres. Though 

this is as expected for a sample with reduced domain dimensions, which 

provides reduced diffusion distances for the deuterium (hydrogen), the 

increase in the speed of hydrogen adsorption is significant for the same 

mass of sample.  

 

 

Figure 6.33: The evolution of the (003) diffraction peak of (a) bulk and (b) 

nanostructured KC24 with increasing concentration. Data in (a) obtained from 

previous diffraction study on IRIS [48].  
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To look at the cause of this difference in the kinetics of adsorption, it is 

important to take a closer look at the data and the way in which the 

transition from the non-deuterated phase to the deuterated phase differs 

between the two samples. Figure 6.33 (a) shows the evolution of the (003) 

peak with increasing hydrogen concentrations. This is the diffraction data 

taken on IRIS in the previous experiment [48] and was the only one 

available for comparison with the GEM diffraction data on the nanofibres at 

different hydrogen loadings (Figure 6.33 (b)). As the hydrogen content of 

bulk sample increases, the intensity of the original peak (the un-

hydrogenated phase) diminishes and that of the hydrogenated peak 

increases. The peaks remain discrete, but coexist, which suggests that 

domains of hydrogenated and pure KC24 are prevalent in the sample during 

H2 loading [48]. The peak positions also shift slightly to higher d-spacing 

with uptake. However, what is interesting is that we do not see such a 

heterogeneous transition with the nanofibres (Figure 6.33 (b)). At first sight 

the peak, which is very broad, appears to show a homogeneous transition 

from the non-deuterated phase to a deuterated phase, as opposed to the 

clear heterogeneous phase change seen for the bulk sample. Due to the 

breadth of the peak, even a more quantitative analysis of this peak does not 

give a clear indication of whether this is a homogeneous or a heterogeneous 

phase transition taking place. ARIEL, a data reduction/visualisation 

package developed for handling crystallographic data on GEM, was used to 

fit the data in order to determine if the (002) and (003) peaks were 

undergoing a heterogeneous or homogeneous transition. The fitting function, 

which was a convolution of a Lorentzian and Gaussian function, 

incorporating the instrument resolution parameters, struggled to fit two 

peaks to the both (002) and (003) peaks. The two peak fittings, with the 

peak centres set to be that of the deuterated and the non-deuterated phase 

as in bulk KC24, which were not-fixed, collapsed in to a single peak when 

fitted.  The χ2 values and the peak widths and intensities did not give 

conclusive results as to whether a heterogeneous or a homogeneous 

transition was taking place. However, the presence of an isosbestic point (as 

shown in Figure 6.33 (b)) indicate that the two phases co-exist at once in the 
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nanostructured KC24 sample; an isosbestic point typically arises as a result 

of two inter-converting species having a well-defined, fixed, spectral 

response mutually [270]. Thus, at this stage with the data available and the 

level of analysis done, it is not conclusive whether the phase transition is 

homogeneous or heterogeneous (i.e. filled by growth of hydrogenated 

domains in the sample) as postulated for the Papyex based GIC in the 

previous study [48]. 

 

6.5.6 Enthalpy of adsorption 

The enthalpy of adsorption of hydrogen is one of the key parameters of 

interest to us, as it gives an indication of how strongly the hydrogen is 

bound to the system. I have discussed in §1.4.5 and §1.5.2 respectively that 

the enthalpy of adsorption (in the case of physisorption based materials) or 

the enthalpy of absorption (in the case of metal hydrides) is usually 

determined through the use of Langmuir isotherms or a Van‟t Hoff plot. In 

this study, since desorption data was collected in situ on IRIS, an 

alternative method developed by Fernandez-Alonso and co-workers [TIDES] 

was used to determine the desorption enthalpy of KC24 nanofibres. As 

described in more detail in Ref. [TIDES], this method involved an isochoric 

temperature programmed desorption run of the KC24 sample, with a specific 

H2 coverage, and the measurement of pressure as a function of temperature. 

The experimental details are summarised as follows: 

1)  The sample is dosed with H2 at 50 K to specific coverage; I report the 

results for 1H2/KC24 below. 

2) The sample is then isolated from the gas manifold and cooled to the 

base temperature, 5 K.  

3) Once at base temperature, the sample is again opened to the rest of 

the gas manifold to allow desorption of H2 in to the known manifold 

volume by heating the sample at set temperature steps (2 °C steps 

were used in this case). The pressure (P) in volume (V) is then 
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recorded as a function of temperature (T) with the temperature 

increased up to a point beyond complete desorption of H2 from the 

sample (>150 K in this case). For these measurements it is important 

that the pressure equilibrates at each temperature step, thus, a dwell 

time of 5 minutes was used to ensure this. 

The pressure desorption curve obtained from these measurement, which is 

normalised to the maximum pressure (Pmax, as determined by the manifold 

volume), shown in Figure 6.34, was used to fit the data and to extract the 

hydrogen desorption energy, Edes, using the following equation [TIDES]: 

 

        
 

   
    

    
    

   
  (6.4)   

 

where A is a fitting parameter, which is said to be related to the change of 

entropy between gaseous and adsorbed phases and  k is Boltzmann constant 

(1.38 × 10-23 m2 kg s-2 K-1). This equation provides an alternative way of 

extracting pressure dependent parameters using the method described 

above. It is to be noted that Equation (6.4) assumes a single adsorption site 

and no adsorbate-adsorbate interactions.  

As shown in Figure 6.34, the fitting obtained using the function (Eq. 

(6.4)) (red line), fits very well to the measured data. Using this fit desorption 

energy of hydrogen from the KC24 nanofibres is calculated to be 4.39 kJmol-1. 

This is half the value 10.1 kJmol-1 for the Papyex based bulk-KC24 sample in 

a previous study by Fernandez-Alonso and co-workers [TIDES] using the 

same method described above. This is a significant change in the desorption 

energy, though it is in line with what is observed with nanostructuring of 

the metal hydrides (§1.5.2) which show a reduction in enthalpy through 

nanostructuring, it is greater than expected. Most importantly, this 

reduction is an unfavourable result for GICs which store hydrogen through 
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physisorption. Since binding energy is weak in the physisorption regime, the 

adsorption/desorption energy needs to be increased rather than lowered. 

The exact reasons for the reduction in the desorption energy is not known, 

however, it is highly likely that the surface energy contribution to the Gibbs 

free energy is increased as discussed for metal hydrides in §1.5.2. In this 

earlier section, looking at thermodynamic effects of nanostructuring metal 

hydrides, I had discussed that in reducing the size of the particles, the 

surface area, and thus, the surface energy contribution to the Gibbs free 

energy becomes important. It was discussed that if the surface energy term 

is larger for the hydrogenated phase than the pure adsorbate phase then 

some of the heat of formation energy will be stored as the surface energy, 

which will reduce the enthalpy of absorption/desorption (see §1.5.2 for 

further details and calculations).  

 

 

Figure 6.34: The pressure desorption curve of KC24 nanofibres with H2 coverage 

of 1H2/KC24, black line correspond to the original data and red line is that 

fitting obtained using Eq.(6.4) 
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6.6 Summary and Conclusions 

The electrospinning method was successfully used for the synthesis 

polymeric nanofibres from PAN in DMSO which were then heat treated for 

the production of carbon and graphitic nanofibres (CNFs and GNFs). As our 

main aim in the first part of this study was to lower the diameters of the 

electrospun fibres to as low as possible with the available PAN solutions, as 

well as to make them as highly graphitic as possible, both the 

electrospinning and the carbonisation processes were subject to thorough 

analysis through modification of the solution parameters and measurements 

of the morphological and structural characteristics of the polymeric and 

carbonised fibres.  

Addition of surfactant and salt to polymeric solutions was found to 

lower the fibre diameters as well as removing or reducing beading found at 

low polymer concentrations. While fibre diameters as low as 130nm was 

achieved for polymer fibres electrospun with low polymer concentration 

solutions (4.2 wt.% PAN in DMSO), these diameters were lowered to as low 

as 60 nm in CNFs ( polymer fibres heat treated up to 500 °C). With further 

heat treatment, up to 2800 °C, these fibres were converted to graphitic 

nanofibres (turbostratic nanofibres, GNFs). The stabilisation step in the 

heat treatment process was found to be important for maintaining fibre 

mass during the pyrolysis process. The structure of the graphitised fibres, 

which also have an amorphous component as shown by the XRD results, is 

found to be of fibrils of graphite running along the length of the fibres with 

c-axis graphite staking varying from bilayers to ~40 layers depending on the 

heat treatment temperature. The way in which the ribbons are entangled in 

three dimensions is not clear, but the XRD measurements show that 3-D 

ordering of the graphitic planes is not fully attained. 

The synthesised GNFs were then intercalated with potassium to yield 

KC24-nanofibres, which were then used for hydrogenation studies through 

the use of neutron scattering techniques. The INS neutron data on the K-

intercalated nanofibres, which is compared to previous data on bulk-KC24 



KC24 Nanofibres and Hydrogen                                             290 

 

 

gives us no new information about the interaction dynamics of hydrogen in 

the K-GIC system, though differences are seen as a result of differences in 

the long range order of potassium intercalation (arising from the disorder in 

the nanofibres). As a result, the fine detail seen in the bulk-KC24 resulting 

from the local interaction of hydrogen in the potential is not visible and, in 

fact, the H2 dimerization seen in the bulk KC24 system is lost or suppressed 

in the nanofibres.  

Two important observations have been made with regards to the 

(de)hydrogenation process of hydrogen in these fibres: 

1) The speed of hydrogenation in the nanofibres is greatly improved 

with hydrogenation times reduced to <5 min in the nanofibres 

compared to the 40-50 minutes seen in the bulk-sample, for the 

dosing of 1D2/K.  

2) The enthalpy of adsorption/desorption is lowered by more than 50% 

in the nanofibres from 10.1 kJmol-1 in the bulk sample to 4.39 

kJmol-1 in the nanofibres.  

The first observation shows a substantial change in the dehydrogenation 

speed of hydrogen, thus, a significant improvement is made through 

nanostructuring. The second observation, though an expected consequence 

of nanostructuring, is however a change in the wrong direction for 

physisorption based materials like graphite compounds, which require their 

enthalpy of adsorption to be increased for more practical hydrogen storage 

applications. 

 

6.7 Future Work 

Future work should be initially focussed on further investigating the 

hydrogenation properties of the K intercalated GNFs to verify the results 

above and to further understand the effect of nanostructuring and disorder 
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on the breakdown of hydrogen dimerization in intercalated graphite fibres. 

It is worth investigating if hydrogen dimerization affects the speed of 

hydrogenenation by testing graphites of varying degrees of ordering. DFT 

calculations looking at the potential energy surface of the K-H2 in the 

graphite to investigate where the dimerization breaks down can give further 

information about the way H2 is intercalated in KC24 GICs. 

This investigation should be extended to CNFs made from other 

precursors, which may yield a greater degree of structural ordering, such as 

pitch, rayon and cellulose. The ideal configuration for ease and speed if 

intercalation would be to have the graphene planes ordered either 

perpendicularly to the fibre axis (i.e. basal planes being stacked like discs 

along the fibre axis) or to have the basal planes ordered radially along the 

fibre axis, as in the case of CNFs made from pitch. Both these configurations 

give greater exposure of the graphite edges for intercalation of species. 

Thus, investigating other precursors of carbon fibres in the search for such a 

structure is certainly worthwhile for hydrogen storage investigations. It is 

very important that electrospinning efforts of fibres from other carbon 

precursors should continue to focus on further reducing the fibre diameters. 

 

 



 

 

 

Appendix A  Polymer and solvent data sheet (solvent matrix) 

 

Polymer (PS) 
Molecular 

weight 
(g/mol) 

 
Solubility 
radius R 

δd δp δh δv  
Solubility 
in water 
(g/100g) 

Solubility 
in water 
(% w/w) 

Melting 
point 

Hydrogen 
permeability    

Polystyrene 
variant, 

used 350, 
000  

12.7 21.3 5.8 4.3 22.1 insoluble insoluble 240 °C 23.8 barrers 
   

              

Selected solvents for 
AB  

Molecular 
weight 
(g/mol) 

δtotal  δd δp δh δv  
Solubility 
in water 
(g/100g) 

Solubility 
in water 
(% w/w) 

Boiling 
point 
(°C) 

Dielectric 
constant at 

20C 

Dipole 
Moment 

(D) 
Polarity 

Electrical 
Conductivity 

(S/cm) 

Water 18 47.8 15.6 16 42.3 22.3 N/A N/A 100 78.54 1.87 100 5.50E-06 

Dimethylformamide 73 24.8 17.4 13.7 11.3 22.1 − Total 153 36.7 3.8 40.4 6.00E-08 

Dimethyl sulfoxid 78 26.7 18.4 16.4 10.2 24.6 − − 189 46.6 3.96 44.4 2.00E-09 

              

Solvents PS but not 
for AB 

Molecular 
weight 
(g/mol) 

δtotal  δd δp δh δv  
Solubility 
in water 
(g/100g) 

Solubility 
in water 
(% w/w) 

Boiling 
point 
(°C) 

Dielectric 
constant at 

20C 

Dipole 
Moment 

(D) 
Polarity 

Electrical 
Conductivity 

(S/cm) 

Chloroform 119 19 17.8 3.1 5.7 18.1 0.795 0.82 61 4.8 1.1 25.9 <1.0E-10 

Cyclohexane 84 16.8 16.8 0 0.2 16.8 <0.1 0.0055 81 2.02 0.3 0.6 7.00E-18 

1,2-Dichloroethane 99 18.5 16.6 8.2 0.4 18.5 0.861 0.81 83.5 10.42 1.8 32.7 4.00E-11 

Dichloromethane 84.93 11.09 5.62 8.21 4.99 9.9 1.3 − 40 9.1 − − − 

Diethyl ether 74 15.8 14.5 2.9 5.1 14.8 7.5 6.9 35 4.3 1.3 11.7 3.00E-16 

Ethyl acetate  88.10 18.1 15.8 5.3 7.2 16.7 8.7 − 77 6 − − − 

Heptane 100.21 15.3 15.3 0 0 15.3 0.01 3.00E-04 98 1.92 0 1.2 1.00E-16 

Hexane 86.18 14.9 14.9 0 0 14.9 0.014 9.50E-04 69 1.89 - 2 0 0.9 1.00E-16 



 

 

 

Solvents PS but not 
for AB 

Molecular 
weight 
(g/mol) 

δtotal  δd δp δh δv  
Solubility 
in water 
(g/100g) 

Solubility 
in water 
(% w/w) 

Boiling 
point 
(°C) 

Dielectric 
constant at 

20C 

Dipole 
Moment 

(D) 
Polarity 

Electrical 
Conductivity 

(S/cm) 

Pentane 72 14.5 14.5 0 0 14.5 0.04 3.80E-03 36.1 1.84 0 0.9 2.00E-10 

Toluene 92 18.2 18 1.4 2 18.1 0.05 0.052 111 2.4 0.4 9.9 8.00E-16 

Chlorobenzene 112.56 19.6 19 4.3 2 19.5 0.05 − 131.7 5.69 − − − 

o-dichlorobenzene 147 20.5 19.2 6.3 3.3 20.2 − − 180 − − − − 

Nitrobenzene 123 22.2 20 8.6 4.1 21.8 − 0.19 211 34.8 4 32.4 2.00E-10 

1,4 Dioxane 88.11 20.5 19 1.8 7.4 19.1 miscible − 101.1 2.21 − − − 

Styrene 104.15 19 18.6 1 4.1 18.6 − − 145 − − − − 

Xylene mixtures − 18 17.8 1 3.1 17.8 Insoluble 0.02 136 2.3 1.3 7.4 8.00E-16 

Benzene 78 18.6 18.4 0 2 18.4 insoluble 0.18 144 2.28 0 11.1 4.40E-17 

Carbon Tetrachloride 154 17.8 17.8 0 0.6 17.8 0.08 0.077 76.7 2.24 0 5.2 4.00E-18 

1,1,2 
Trichlorotrifluoro-

ethane 
133 14.7 14.7 1.6 0 14.8 − 0.13 74 7.2 1.7 17 7.30E-09 

Tetrahyrofuron 72 19.4 16.8 5.7 8 17.7 − Total 66 7.6 1.75 21 4.5 E-5 

Acetone 58 20 15.5 10.4 7 18.7 − Total 56 20.6 2.9 35.5 5.00E-09 

Methylethylketone 
(MEK) 

72.1 19 16 9 5.1 18.4 27.5 − 79.9 − 2.76 − 4.41E-06 

Pyridine 79.1 21.8 19 8.8 5.9 20.9 Miscible − 115.2 12.3(25) − − − 

Formic Acid 46.03 24.9 14.3 11.9 16.6 18.6 Miscible − 100 °C 58 1.41 − − 

Dimethylacetamide 87.82 22.7 16.8 11.5 10.2 20.4 Miscible − 166 37.8 
3.79E-29 

@20C 
− − 

Dimethylformamide 73 24.8 17.4 13.7 11.3 22.1 − Total 153 36.7 3.8 40.4 6.00E-08 

 

            Key:   Solvents that are immiscible or have very low miscibility with water 

 

  Solvents with high boiling point and hence low vapour pressure 

 

  Solvents with high dielectric constant which are likely to dissolve salts 

 

  Solvents with high dipole moment which are likely to dissolve salts 

 

  Solvents with high Conductivity 
   



 

 

 

 

 

Appendix B  Permeability of selected polymers to selected gasses 

 

1 barrer = 3.348 x 10-19 kmol m / (m2 s Pa) Melting 
Temperature, 

°C 

Permeability ( at 30°C, 30psi feed pressure) 

  polymer 
H2 

(barrers) 
N2 

(barrers) 
O2 

(barrers) 
CH4 

(barrers) 
CO2 

(barrers) H2/CO2 

Ref: Orme 
et al.[159] 

polysulphone [PSU] 190 12.1 0.8 1.7 0.4 6.1 2 

polystyrene [PS] (Mw=280, 000) 240 23.8 0.6 2.4 0.8 10.4 2.3 

Poly(benzyl methacrylate) 200 11     1.4 7.9 1.4 

Poly(methyl methacrylate) [PMMA] 130 2.4 1.2 3.3 0.6 0.6 4 

co-polymer of poly(ethylene) and polyvinyl 
alcohol   0.5 0.3 0.2 0.2 0.2 2.5 

PVDF kynar 160 2.4 0.7 1.3 1.3 1.2 2 

  Poly(dimethyl siloxane)   375 299 540 600 1300 0.3 

  Poly(ethylene) low density film 110 17.3 4.2 6.3 7.7 17.9 0.9 

  Poly(vinyl acetate)   15.1 1.3 2.3 0.9 13.1 1.2 

  Poly(styrene co-butadiene)   7.9 1.8 0.6 2.5 15.3 0.5 

  Poly(propylene) - in mixed gas stream 160 3.5           

  Poly(ether ether ketone) 334             

  Polycarbonate 225             
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