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Abstract

Macromolecular interactions play a key role in all life processes. The con-
struction and annotation of protein interaction networks is pivotal for the
understanding of these processes, and how their perturbation leads to dis-
ease. However the extent of the human interactome and the limitations of
the experimental techniques which can be brought to bear upon it necessit-
ate theoretical approaches. Presented here are computational investigations
into the interactions between biological macromolecules, focusing on the
structural prediction of interactions, docking, and their kinetic and thermo-
dynamic characterisation via empirical functions. Firstly, the use of normal
modes in docking is investigated. Vibrational analysis of proteins are shown
to indicate the motions which proteins are intrinsically disposed to under-
take, and the use of this information to model flexible deformations upon
protein-protein binding is evaluated. Subsequently SwarmDock, a docking
algorithm which models flexibility as a linear combination of normal modes,
is presented and benchmarked on a wide variety of test cases. This algorithm
utilises state of the art energy functions and metaheuristics to navigate the
free energy landscape. Information derived from Langevin dynamics sim-
ulations of encounter complex formation in the crowded cytosolic environ-
ment can be incorporated into SwarmDock and enhances its performance.
Finally, a benchmark of binding free energies derived from the literature is
presented. For this benchmark, a large number of molecular descriptors are
derived. Machine learning methods are then applied to these in order to
derive empirical binding free energy, association rate and dissociation rate
functions which take account of the conformational changes which occur
upon complexation.
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”No rest is rendered to the primal bodies Along the unfathom-
able inane; but rather, Inveterately plied by motions mixed,
Some, at their jamming, bound aback and leave Huge gaps
between, and some from off the blow Are hurried about with
spaces small between. And all which, brought together with
slight gaps, In more condensed union bound aback, Linked by
their own all intertangled shapes,- These form the irrefragable
roots of rocks And the brute bulks of iron, and what else Is of
their kind...”
”What seems to us the hardened and condensed Must be of
atoms among themselves more hooked, Be held compacted
deep within, as ’twere By branch-like atoms- of which sort
the chief Are diamond stones, despisers of all blows, And
stalwart flint and strength of solid iron, And brazen bars,
which, budging hard in locks, Do grate and scream. But
what are liquid, formed Of fluid body, they indeed must be
Of elements more smooth and round- because Their globules
severally will not cohere: To suck the poppy-seeds from palm
of hand Is quite as easy as drinking water down, And they,
once struck, roll like unto the same. But that thou seest among
the things that flow Some bitter, as the brine of ocean is, Is
not the least a marvel... For since ’tis fluid, smooth its atoms
are And round, with painful rough ones mixed therein; Yet
need not these be held together hooked: In fact, though rough,
they’re globular besides, Able at once to roll, and rasp the sense. ”

Lucretius - De Rerum Natura, Book II, 1st century BCE
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Chapter 1

Introduction

1.1 Lucretius Vindicated: Of Atoms, Interactions,

Life and Disease

The Latin philosopher Lucretius pre-dated the Roman Empire, yet in his 6
volume poem De Rerum Natura (On Natural Things), he laid forth a view
that the origin of disease lies within nature and that nature is composed of
discrete and finite bodies which interact with each other. With his physical
theories, then unsupported by what we would now call rigorous science,
he speculated that the interactions between atoms could be understood in
terms of hooks and notches. Whilst he knew nothing of electrons, protons
or thermodynamics, it is in consideration of these that atomic and molecular
interactions can be understood and his notions vindicated. Furthermore,
without knowledge of cells, viruses, proteins or evolution, he realised that
life and the causative agents of disease were constructed from atoms them-
selves; a realisation now so well understood as to be trite. These two ideas
underpin molecular biology and molecular medicine. His works were des-
troyed by the early Roman Church for their Epicureanism, and Lucretius
was slandered and ridiculed for his unorthodox views about religion, philo-
sophy, physics and biology. Only an unfinished version of De Rerum Natura
survived, but it is undoubtedly his magnum opus. We have almost no bio-
graphical knowledge of his life, but we do know that he had a deep and
penetrating intellect, without fear of grappling with new ideas. An expanse
of time separates us from him, over a millennium and a half of which was
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dominated by the protection of received wisdom and the violent oppression
of heresy. Despite the ocean of time between us, I think Lucretius would
feel more comfortable in the modern world than in his own era. He would
immediately recognise the concept of molecular interactions and their role
in biological systems, health and disease. He would stand in awe at the
progress we have made and at the questions that remain unanswered, not
just for the joy of learning and understanding, but also for the betterment of
the human condition. It is a pleasure to live in an era where the pursuit of
knowledge is not only unfettered, but encouraged and funded. Understand-
ing biological systems will play a key role not only in finding new molecular
targets for drugs against cancer and other illnesses, but also in modifying
those systems to biosynthesise drugs, biofuels and novel materials. The
characterisation and prediction of biomolecular interactions is the topic of
my thesis, and a long-standing problem which needs to be solved before the
seed of an idea in Lucretius’s mind, is brought to full fruition.

1.2 Outline of the thesis

In section 1.3, I outline what has motivated my work by placing it within
the wider context of the current paradigm. I will attempt to justify my thesis
by showing how the accurate and efficient computational determination of
structure, affinity and kinetics could revolutionise biology. I will also show
how the elucidation of the structure of biomolecular assemblies can provide
crucial information for rational drug design, and how docking can aid in
the de novo design of protein-protein interactions. In section 1.4, I give a
cursory review of the physical basis of molecular interactions in terms of
energetics, dynamics, kinetics and thermodynamics, and show some of the
conceptual frameworks within which macromolecular binding phenomena
can be viewed, as well as a brief review of the current state of empirical
binding free energy calculation. In section 1.5 is presented an introduction to
protein-protein docking and a survey of modern approaches and algorithms.

In Chapter 2, a comprehensive analysis of the use of normal modes in
protein-protein docking is presented. The ability for normal modes, on
their own and in linear combination, to capture conformational changes
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when proteins bind to one another is assessed at three levels of resolution,
both across the whole fold and at the interface. Following this analysis,
the development of a novel docking algorithm, which makes use of the
particle swarm optimisation metaheuristic, is shown in Chapter 3. The al-
gorithm, which models flexibility as a linear combination of elastic network
normal modes, is extensively benchmarked. Chapter 4 shows how Swarm-
Dock can be combined with rigid-body Langevin dynamics simulations of
encounter complex formation and its performance enhanced, along with
the presentation of investigations into the consequences of macromolecu-
lar crowding effects on protein-protein interactions. A summary of how
SwarmDock has performed in the CAPRI blind assessment experiment is
shown in Chapter 5. The performance of SwarmDock, combined with other
molecular descriptors, to the selection of de novo designed protein-protein
interactions is also shown. In Chapter 6, a benchmark of empirical binding
free energies is presented, along with a large set of molecular descriptors
which characterise the interactions. Finally, in Chapter 7 is outlined pre-
liminary investigations into how machine learning and feature selection can
be used to derive empirical models of binding free energy and kinetic rate
constants.

1.3 A Thesis Justified

1.3.1 Systems From the Ground Up

”That which I cannot build, I cannot understand.”
Richard Feynman

1.3.1.1 Cellular Logic

Biomolecular complexes feature in most biological processes (Gavin et al.,
2002; Alberts, 1998). However, knowledge of interacting partners can tell us
a lot more than just the relative positions of different molecules which are
colocalised. The word ’biology’ is a portmanteau which shares etymological
roots with the word ’logic’. This etymology refers to the application of
reason to the study of living things, however life itself is rational and logic
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is abundantly observed in the behaviour of living things. Since the renunci-
ation of vitalism, it has been known that biological systems observe the laws
of nature and that these laws govern the behaviour of life processes from the
atomic all the way up the hierarchy of biological structures. It is increasingly
realised that the true understanding of life, and the holy grail of systems
biology, depends on reductionism and reconstruction - finding the funda-
mental elements in living systems and understanding how higher levels
of organisation emerge from them, via the construction of predictive models.

Logic was established as a discipline by Aristotle, as a formal symbolic
representation of correct reasoning, and has percolated through almost
all fields of human thought. Once translated from natural language, the
structures of philosophical arguments are based in logic. The whole theory
of computation boils down to the study of that which can and cannot
be calculated algorithmically using Boolean logic (Turing, 1939). Logic
is widely believed to provide the foundations for the whole edifice of
mathematics (Carnap, 1931), and logical arguments underpin physical
reasoning; the laws of nature are themselves logical, even in the ostensibly
incomprehensible quantum world (Birkhoff, 1936). All logical operations
involve inputs, processing of those inputs, and outputs; a NOT gate on a
computer chip, for instance, takes an electronic signal as a Boolean input,
passes this signal through transistors, and outputs the inverse of the input.
Life can be cast in the same light. The inputs to a human can be taken
as being all that it sees, smells, feels, hears, breathes, eats and so on. Its
processing units are cells, which have been shaped by natural selection, and
its output is its behaviour. However, cells are not the fundamental unit of
computation, as they do not obey simple rules. They are themselves logical
operators - the inputs can be seen as the molecules which permeate the cell
wall and the panoply of cell surface receptors which detect the external
environment. The processing can be seen as the transduction of signals
through biological pathways and their subsequent modulation of gene
expression. Their output can be seen as their response to external stimuli,
their behaviour.

I will illustrate a simple example of cellular logic using the archetype of
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genetic regulation: the lac operon of E. coli. The metabolism of sugars allows
the extraction of chemical potential energy and the synthesis of ATP via
the glycolytic pathway. Two such sugars are glucose and lactose, the first of
which is more abundant and can undergo glycolysis immediately. The meta-
bolism of lactose however, requires additional lactose metabolising proteins.
These include lactose permease (LacY), a membrane protein which pumps
the lactose into the cell (Cohen and Monod, 1957), and β-galactosidase (LacZ),
which cleaves the ether bond of lactose, forming glucose and galactose (Cohn
and Monod, 1951). These lactose metabolising proteins are only synthesised
in the presence of lactose, and their expression is supressed if the more nour-
ishing glucose is present, even if lactose is also present. These facts can be
consolidated into a logical operator with inputs p and q respectively corres-
ponding to the presence of lactose and glucose in sufficient concentration,
and with the output being the production of lactose metabolising proteins.
This logical operator, known as the material nonimplication connective, is
given the symbol 2, and the truth table which surmises the mapping from
its inputs to its output is given in Table 1.1.

Table 1.1: The truth table for the material nonimplication operator.

p q p 2 q
T T F
T F T
F T F
F F F

In light of the struggle for the survival of the fittest, the expression of these
proteins only when they are beneficial is a prime example of evolutionary
expediency, and it is clear that natural selection would favour such a regu-
latory mechanism. Nevertheless, what is this mechanism? At what level is
the computation achieved? What is the equivalent of the transistors in the
circuitry of life? The mechanism underpinning this logic can be understood
in terms of the interactions between the molecular constituents of the cell,
as revealed in the seminal work of Jacob and Monod (1961), summarised in
Figure 1.1.

In the absence of lactose, the repressor protein lacI binds tightly to
the protomer region of the DNA, upstream of the LacY and LacZ coding
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Figure 1.1: Pictoral representation of the lac operon and its control elements. The open
reading frame, O, contains the LacY and LacZ genes. The promotor region contains
the CAP binding site and an RNAP binding site, P. The CAP protein only binds when
also bound to cAMP. RNAP exhibits cooperative binding to the DNA and CAP. A lacI
repressor binding site ovelaps the promotor region and the open reading frame. A
metabolite of lactose, allolactose, binds to lacI and precludes DNA binding. Image taken
from Wikimedia Commons under the Creative Commons Attribution 2.0 Generic license
(http://commons.wikimedia.org/wiki/File:Lac_operon.png).

http://commons.wikimedia.org/wiki/File:Lac_operon.png
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region, preventing transcription by occluding RNA polymerase. However,
if lactose is present, one of its metabolites, allolactose, can bind lacI and de-
bilitate its DNA binding, allowing the approach of RNAP. Further, CAP can
bind to the protomer region, but only when it is bound to cAMP. As cAMP
is present at a concentration inversely proportional to the concentration of
glucose, DNA bound CAP is a proxy for the absence of glucose. Due to a
positive cooperative binding effect between the carboxy-terminal domain
of the RNAP α subunit and CAP, the lactose metabolising genes are highly
transcribed in the absence of glucose (Ptashne and Gann, 2002). Hence,
the regulation of the lactose metabolising proteins boils down to molecular
interactions, and the truth table which surmises their production can be
deduced from these interactions and their consequences.

1.3.1.2 The Circuitry of Life

It is evident, at least for the lac operon system, that it is the interactions
between the molecular constituents of the cell which determine cellular
logic and information processing. The decades since have shown this to
be the case for many more systems, of ever increasing complexity. Indeed,
most biological systems are so complex, that the only way to make the
information comprehensible is to consolidate it as a schematic much as
electrical engineers and chemical engineers consolidate their systems as
circuit diagrams and process flow diagrams. Such a graph must not only tell
us which entities physically interact with each other, but must also contain
the logical structure connecting the inputs to the outputs; all the information
required to construct the systems truth table. For instance, in the lac operon,
just knowing that RNAP and lacI bind the protomer region is not sufficient.
Not only must we know that their binding is mutually exclusive, but we
must also know that lacI binds tightly, preventing the binding of RNAP.
Further, there are many other processes which must be represented, such
as covalent modifications, proteolytic cleavage, enzymatic stimulation,
movement between cellular compartments and so on. All such processes
must be part of the repertoire of symbols employed, and such schemes have
been proposed (Kohn, 1999). An example is given in Figure 1.2, using the
phosphorylation control of pRb, a protein which is frequently deactivated
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in cancer, as an example. The power of this view lies not just in its ability
to consolidate information, but also to act as a hypothesis generator, and
a method of predicting the effects of perturbing a system. A glance at
Figure 1.2 will show that inhibiting the cycD:cdk4 complex will result in
no phosphorylation of pRb, and consequently encourage formation of the
pRb:E2F1:DP1 trimer, whilst inhibiting the cycE:cdk2 complex will result
in phosphorylation of pRb at the D site only, but also encourage trimer
formation.

It is also important to relate the logical structure embedded within these
schematics to the underlying physical processes. Interactions between
molecules are not abstract entities. Interaction events occur at a place and
time, for a duration. The addition of glucose to a colony of E. coli doesn’t
result in the immediate dissociation of all lacI proteins from DNA, as a
naïve interpretation of logical operators acting as binary switches might
imply. Moreover, by the analogy which Monod used, these discrete states
correspond to the settings on a ’thermostat’ and the system dynamically
adjusts itself with the components changing states at various rates. In the
language of chemical kinetics, these discrete logical states correspond to a
steady-state, in which the rates of conversion to and from each molecular
species are equal. While Boolean or discrete state models have been useful
for modelling systems as disparate as the mammalian cell cycle (Faure et al.,
2006), flower morphogenesis (Mendoza et al., 1999), T-cell differentiation
(Mendoza, 2006), cell segmentation and polarity (Sanchez et al., 2008) and
many more (Morris et al., 2010), there are cases for which this approximation
is not appropriate, such as in biological oscillators (Friesen and Block,
1984). For these situations, a more accurate model can be made using ODEs
(Alon, 2006). An example of such a model is of the nucleocytoplasmic
shuttling of Smads in the TGF-β pathway (Schmierer et al., 2008). In this
model, a system of ODEs was solved which describe the kinetics of relevant
processes, including nuclear import and export, Smad homodimer and
heterodimer formation, phosphorylation and dephosphorylation, receptor
activation and inhibition. Most of the rates were found experimentally,
with only 7 parameters needing to be fitted. These parameters were fit to
four data sets describing the change in concentration of various constituents
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Figure 1.2: Schematic of the phosphrylation control of pRb. (1) A complex is formed
between cycD and cdk4. (2) A complex is formed between cycE and cdk2. (3) pRb can
be phosphorylated at the D site. (4) pRb can be phosphorylated at the E site. (5) The
cycD:cdk4 complex phosphorylates the unphosphorylated pRb at the D site. (6) The
cycE:cdk4 complex phosphorylates the D phosphorylated pRb at the E site, forming the
hyperphosphorylated pRb. (7) Transcription factors E2F1 and DP1 form a complex. (8)
The E2F1:DP1 dimer can form a trimer with pRb. (9) Hyperphosphorylated pRb inhibits
the formation of the (E2F1:DP1):pRb complex. Image adapted from Kohn (1999) with
permission from ASCB MBC (http://www.molbiolcell.org/cgi/content/full/10/8/
2703/).

http://www.molbiolcell.org/cgi/content/full/10/8/2703/
http://www.molbiolcell.org/cgi/content/full/10/8/2703/
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of the system in the nucleus and cytoplasm. The experimental data were
well reproduced, and the model could accurately predict both the effect of
introduction of a mutant Smad incapable of dimerising, as well as another
experimental data set describing the rate of fluorescence recovery of nuclear
Smads following photobleaching.

1.3.1.3 Aspirations, Tribulations and Computations

”If people do not believe that mathematics is simple, it is only
because they do not realise how complicated life is”
John von Neumann

The approach to modelling that I have discussed is immensely powerful.
It provides testable predictions, explains perturbations to biological systems,
deepens our understanding of how complexity emerges from the laws of
nature and indicates where areas of our knowledge are lacking. One notable
achievement in this vein is the engineering of completely new metabolic
pathways in micro-organisms, by integrating genes from multiple species
(Ro et al., 2006; Martin et al., 2003). This has made possible the biosynthesis of
anti-malarial drugs on a large scale and at a fraction of the cost of traditional
synthetic routes, a cost which is affordable to the third world countries which
need them the most.

It should come as no surprise that this approach has received a lot of
attention from those involved in biomedical research. What of understand-
ing and manipulating the biological systems of humans? Is systems biology
ready to influence clinical practice? In ’The Hallmarks of Cancer’, one of the
most cited papers in cancer research, Hanahan and Weinberg (2000) state

”Progress in dissecting signaling pathways has begun to lay out
a circuitry that will likely mimic electronic integrated circuits in
complexity and finesse, where transistors are replaced by pro-
teins (e.g., kinases and phosphatases) and the electrons by phos-
phates and lipids, among others”.

They predicted that the reductionist approach to cancer research would be
supplanted by a systemic view. The notion that a schematic of the processes
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involved in cancer could be derived is an appealing one. The prospect of
taking a sample of a patient’s tumour, finding the pathological rewiring
of gene transcription and protein-protein interaction networks, and using
the schematic to find molecular targets for personalised cancer therapy,
motivates many scientists. However, despite the many successes of the
systemic approach to biology, there is a long way to go before this vision is
translated from fantasy to the clinic.

Firstly, humans are not E. coli. Our cells are compartmentalised and
structured and we have sophisticated cell-cell signalling. Our transcriptome
has 5 times as many genes and unlike prokaryotes we don’t have a 1:1 gene
to protein mapping, but many splice variants, so our proteome is bigger
still. Our interactome is vast, containing an estimated 650,000 pairwise
interactions between proteins (Stumpf et al., 2008) and most of these are
unknown (Ramani et al., 2005). Accurate models need to be built which
embody cellular logic. However, the construction of these models is far
from trivial.

We have already seen how the building of accurate models requires a
number of related pieces of information which include but are not limited
to the following:

1. Binding partners; what interacts with what?

2. Affinity; how tenuous is the interaction?

3. Kinetics; how quickly do the proteins associate?

4. Physical change; for instance, are there allosteric or hindrance effects?

5. Chemical change; do covalent modifications occur and if so where?

All these pieces of information can be determined, but at a cost.
There are many ways of determining which molecules interact with each
other (Fu, 2004; Golemis, 2002). High-throughput technology, such as
yeast-two-hybrid, phage display and tandem affinity purification have
produced vast data sets, but these are plagued with false positives and false
negatives and do not provide any data other than the identity of interaction
partners. With the possible exception of S. cerevisiae, the interactomes
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are incomplete. Different experimental techniques have different biases,
prone to uncovering different sets of interactions and, with little spatial or
temporal annotation, interaction data expressed as an undirected graph
does not contain sufficient information to be of use (Kiemer and Cesareni,
2007). The inherent uncertainty and overwhelming volume of this sort of
data has failed to impress some of the most revered biologists of our time.
"I’m a little bit dubious about systems biology. These sort of static pictures
of what interacts with what I don’t find very illuminating. You can’t even
tell if they’re true or not actually" exclaimed Tim Hunt at the 2010 Lindau
meeting 1, while Sydney Brenner described much of this type of work as
"low-input, high-throughput, no-output biology". There is greater cause for
optimism than these quotes may suggest, and the data produced from these
methods are not without merit. The topology of these networks has some
value in predicting the localisation, function, processes, and gene ontology
labels of proteins, as well as in the study of the modularity of biological
systems (Zhang, 2009). One recent study managed to use protein-protein
interaction networks to predict the prognosis of breast cancer patients
with higher accuracy than the tools currently available to oncologists
(Taylor et al., 2009). However, it is undeniable that these interactions need
confirmation and supplementary information before they become anything
close to the accuracy of the well studied systems discussed in section 1.3.1.2.

A less bewildering yet still substantial array of techniques can be
deployed to study binding affinity and kinetics. These range from
sedimentation equilibrium, electrophoretic mobility shift assays and radio-
ligand binding, to methods which provide kon and ko f f kinetic constants,
such as stopped-flow fluometry, spectrophotometry, inhibition kinetics and
surface plasmon resonance (SPR), to isothermal titration calorimetry (ITC),
which provides binding free energy as well as how this is partitioned into
entropic (∆S) and enthalpic (∆H) parts. The ’gold standards’ of SPR and
ITC are not amenable to high-throughput processing. SPR requires locating
and modifying a residue by which to attach one of the binding partners
to a metal surface, whilst for ITC, the calorimeter can only be used to
study one interaction at a time. Both methods are limited in the range of

1NatureVideoChannel, 14 Sep 2010, http://www.youtube.com/watch?v=lQzjyKqLJiQ

http://www.youtube.com/watch?v=lQzjyKqLJiQ
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affinities they can determine. While there is a significant quantity of data
on affinity, kinetics and thermodynamics of biomolecular recognition, most
of it languishes in the scientific literature and current databases are poor
(Kumar and Gromiha, 2006; Kumar et al., 2009).

Great bearing on these problems can be obtained with structural
information as the consequences of the thermodynamic driving forces
of biomolecular recognition are there to be seen; salt-bridge formation,
electrostatic interactions, burial of hydrophobic surface area and hydrogen
bonding amongst others. Functional consequences can also be derived from
structure. For instance, the mutual exclusivity of two interactions which
share an interaction partner can be ascertained by considering the relative
positions and orientations of the binding partners, or conformational
changes occurring upon binding. Similarly, the relative positions of a
kinase and its substrate can indicate phosphorylation sites. Although
some structural information can be derived using low-resolution tech-
nology such as small angle X-ray scattering (Svergun and Koch, 2003)
or cryo-electron microscopy (Milligan et al., 1984), atomic resolution can
only be achieved experimentally using X-ray crystallography or NMR.
However, these techniques are expensive and have limitations. Not all
complexes will crystallise, especially those involving membrane proteins,
transient complexes and complexes containing intrinsic disorder. NMR
is limited by the size of the system that can be determined. For these
reasons, the structural annotation of known interactions lags far behind
the rate at which interactions are discovered by proteomics initiatives;
between 2006 and 2008, fewer than 1000 heterocomplexes were deposited
in the PDB, compared to over 100,000 new entries in the intAct database
(Nussinov and Schreiber, 2009; Aranda et al., 2010). It is clear that this
data must be supplemented with computational approaches to confirm and
characterise interactions, such as computational docking and using machine
learning to relate structure to affinity, thermodynamics and kinetics. Such
computational methods have the potential to be high-throughput and
accurate, and greatly enhance systems modelling.
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1.3.2 More Immediate Applications

Aside from the potential to aid in the in silico reconstruction of the mo-
lecular mechanisms of life, predicting and characterising protein-protein
interactions also has more immediate applications. These include finding
interfacial binding pockets for rational drug design, de novo protein-protein
interface design to probe biological functions, antibody engineering and the
rationalisation of mutations.

1.3.2.1 Protein-Protein Interactions as Drug Targets

Most small molecule drugs target cell surface receptors and enzymes, and
many others target ion channels, nuclear envelope proteins and transporter
proteins (Hopkins and Groom, 2002; Overington et al., 2006; Imming et al.,
2006). However, there is increasing interest in inhibiting protein-protein
interactions due to their importance in almost all biological processes (Berg,
2003; Arkin and Wells, 2004; Yin and Hamilton, 2005; Hershberger et al.,
2007; Wells and McClendon, 2007; Berg, 2008). As the binding energy was
believed to be distributed approximately evenly across the whole interface,
and the interface was believed to be too flat for a strong interaction with a
molecule small enough to be viable as a drug, protein-protein interactions
were traditionally seen as very difficult targets. However, since recent
developments in the understanding of protein-protein interactions, a
number of interaction inhibitors have shown promising therapeutic value
(Dechantsreiter et al., 1999; Wang et al., 2006; Tse et al., 2008; Nguyen et al.,
2007; Nabors et al., 2007).

For instance, the anti-apoptotic members of the Bcl-2 family of proteins
are commonly overexpressed in cancer cells. Their ability to enhance
cancer cell viability arises from binding to pro-apoptotic Bcl-2 proteins
and preventing them from activating the caspase cascade and initiating
cell death (Chao and Korsmeyer, 1998). Targeting the binding site of the
anti-apoptotic Bcl-2 proteins is an intriguing strategy in the development of
cancer treatments. Indeed, a number of compounds have been found which
bind to a hydrophobic cleft at the protein-protein interface with affinity
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ranging from micromolar to subnanomolar (Wang et al., 2006; Tang et al.,
2007a,b; Wang et al., 2008; Oltersdorf et al., 2005; Nguyen et al., 2007; Tse
et al., 2008). Some of these compounds have shown powerful anti-cancer
properties in mouse tumour models and have entered clinical trials.
Another anti-apoptotic oncogene is the X-linked inhibitor of apoptosis,
XIAP. It functions by binding to caspases 3, 7 and 9, ubiquitinating them
and tagging them for degredation (Duckett et al., 1998). A natural inhibitor
of this interaction is the tumour suppressor Smac/DIABLO which binds
XIAP. Smac/DIABLO mimics have shown promising activity against human
leukaemia, breast cancer and HeLa cell lines (Rajapakse, 2007; Li et al., 2004;
Sun et al., 2007; Nikolovska-Coleska et al., 2008). Anti-cancer properties
have also been shown in inhibitors which prevent Plk1 from binding to
interaction motifs which serve to anchor it where its enzymatic activity is
required to regulate mitosis (Strebhardt and Ullrich, 2006; McInnes et al.,
2005; Steegmaier et al., 2007; Gumireddy et al., 2005; Reindl et al., 2008).
The interaction between tumour suppressor p53 and oncogene MDM2 has
been the target of many drug development efforts (Domling, 2008). Further,
inhibition of the oncogene STAT, which transduces signals by binding to
cell surface receptors via its SH2 domain, has also yielded compounds
which show promising activity in mouse models and human cancer cell
lines (Siddiquee et al., 2007; Song et al., 2005).

Structures determined using protein-protein docking can aid rational
drug design. Indeed, drugs for which structural information is available
are more likely to enter clinical trials (Borshell et al., 2011). Knowing
the location of the binding site allows the identification and exploitation
of druggable cavities which are likely to inhibit the interaction (Perot
et al., 2010; Hajduk et al., 2005). Structure-based virtual ligand screening
of these sites can vastly reduce the cost of drug discovery compared to
high-throughput screening (Villoutreix et al., 2009). Such an approach,
for instance, was used to discover a compound capable of inhibiting the
interaction between the nef protein of the HIV-1 virus, and the cell surface
receptors of its hosts CD4+ lymphocytes (Betzi et al., 2007), and between
p53 and MDM2 (Bowman et al., 2007). Additionally, the structure of a
complex can allow the computational identification of hot spots, regions of
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the interface which contribute significantly to the overall binding affinity
(Grosdidier and Fernandez-Recio, 2008; Li et al., 2006). Fragment screening
has shown that hot spots are often generic, and the same contacts are often
used in binding molecular fragments, drug-like molecules and proteins
(Vajda and Guarnieri, 2006; English et al., 2001; Mattos et al., 2006). Hence, it
is no surprise that exploiting these hot spots by mimicking affinity imbuing
contacts has become a method of choice in designing protein-protein
interaction inhibitors (Trosset et al., 2006; Carr et al., 2005; Arkin and Wells,
2004).

1.3.2.2 Other Applications

Protein-protein docking also has use in other applications. For instance,
understanding the functional consequences of mutations and combining
docking and double-mutant cycles to build accurate models with confidence
(Lacy et al., 2005; Sivasubramanian et al., 2009; Horovitz, 1996). Docking has
also been used to investigate ion trafficking and electron transport (Medina
et al., 2008; Arnesano et al., 2004). Further, de novo design of unnatural
protein-protein interactions has been achieved by docking scaffold proteins
to biological targets, followed by iterative rounds of structure and sequence
optimisation (Liu et al., 2007; Huang et al., 2007; Fleishman et al., 2011). A
similar approach has had limited success in antibody engineering (Sircar
and Gray, 2010; Pedotti et al., 2011). These case studies highlight the
potential applications of protein-protein docking. However, improvements
still need to be made before these techniques can form a routine part of the
molecular biologists toolkit.

1.4 The Physical Basis of Reality

In this section I aim to show in a loose manner how the principles of macro-
molecular interactions can be derived from general underlying principles.
More comprehensive overviews of most the material presented here can be
found in Atkins and De Paula (2006); Atkins and Friedman (2004); Cramer
(2004); Leach (2001); Zacharias (2010b); Hinchliffe (2003) and Nussinov and
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Schreiber (2009). More rigorous treatments can be found in references
therein.

1.4.1 Quantum and Molecular Mechanics

The molecular world can only be truly modelled using quantum mechanics.
Due to the difference in size between electrons and nuclei, nuclear and
electronic effects can be separated, and the energy of a system can be derived
as a function of atomic coordinates, leading to the concept of a potential
energy landscape. This energy surface can be fit to simple equations. The
form and parameters of these equations constitute a molecular mechanics
force field, and a quick and computationally efficient way to approximately
calculate the energy of even large biomolecular systems such as protein-
protein complexes.

1.4.1.1 The Schrödinger Equation

Biological systems are composed of atoms, which are themselves composed
of electrons and nucleons. All observables pertaining to a physical system
are contained within its wavefunction, Ψ, and can be yielded by applying
operators upon it. The wavefunction is a complex function whose domain
is a set of all possible positions of all n electrons and nucleons of the system.
When multiplied by its complex conjugate, Ψ∗Ψ, the wavefunction tells us
the probability of finding the system in the state specified by its coordinates.
The energy, E, of the system can be determined by applying the Hamiltonian
operator, Ĥ, to the wavefunction, yielding the time independent Schrödinger
equation:

EΨ = ĤΨ (1.1)

where the Hamiltonian is composed of two further operators, the kinetic
energy operator, proportional to the second derivative of the wavefunction,
∇

2, and a potential energy term, V:

Ĥ = −
h̄2

2m
∇

2 + V(x1, y1, z1, x2, y2...xn, yn, zn) (1.2)

where m is the mass of the system and h̄ is Planck’s constant. Hence, if
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we know the wavefunction, we can calculate the energy of the system in
any configuration of electrons and nuclei.

The calculation of a wavefunction for a molecular system is very com-
putationally demanding. However, this can be greatly alleviated by fac-
torising the wavefunction into a nuclear and an electronic part using the
Born-Oppenheimer approximation; electrons are much lighter than nuclei
and hence the nuclei change position on a much slower time scale than the
electrons. For any configuration of nuclei, the system can be assumed to be
in the electronic ground state. This means that if we fix the coordinates of
the atoms, we can calculate the energy of the electrons. In the Hartree-Fock
method, the electronic wavefunction can be modelled using a liner combin-
ation of basis functions, where the basis set is a set of atomic spin orbitals
centred around the nucli, i.e. Ψelec : Rn

→ Q is given by equation 1.3.

Ψelec(x1, y1, z1, x2, y2...xn, yn, zn) =

j∑
i=1

ciψi (1.3)

where the set of j atomic orbitals ψi, usually a product of atom centred
Gaussian radial functions and spherical harmonic angular functions, are
weighted by orbital coefficients ci. The ground state of the system is its
lowest energy state. Knowing this, we can approximate the wavefunction
using the variational method; varying the orbital coefficients, applying
the Hamiltonian operator, and finally accepting the wavefunction once
the energy has been lowered to the desired level of accuracy. There are
a number of more sophisticated methods for modelling the interactions
between electrons, such as density functional theory, couple-cluster and
Møller-Plesset theory, as well as many different basis sets available. These
are covered elsewhere (Cramer, 2004).

1.4.1.2 Energy Landscapes

Combining the Born-Oppenheimer approximation and the variational prin-
ciple results in a very powerful concept, that of a potential energy surface.
We can perform a systematic conformational search and solve the electronic
Schrödinger equation at each atomic configuration. Knowing how the elec-
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tronic energy varies as a function of the positions of nuclei, we can use
this as the potential energy term in the nuclear wave equation, yielding a
manifold of rovibrational states which can be probed using microwave and
infrared spectroscopy. This potential energy function can be approximated
as a summation of different terms of different physical origin. If these terms
can be accurately modelled, it is possible to construct an energy function
which does not require solving the Schrödinger equation. The following are
some of these terms.

1. Bonding terms: Atoms can be held together by covalent bonds. The
energy of a diatomic molecule of internuclear seperation r can be mod-
elled as a Morse function, given in equation 1.4

V(r) = De(1 + e−a(r−re))2 (1.4)

where De is the dissociation energy, re is the equilibrium bond length
and a is a parameter relating to the width of the energy well. Biological
systems operate at a temperature at which the higher energy states are
not accessible. Hence, only the bottom of the energy well needs to
be modelled. This can be approximated as harmonic, taking the same
form as Hooke’s law, equation 1.5, governing the energy of two masses
connected by springs, where k is the spring constant.

V(r) =
1
2

k(r− re)
2 (1.5)

These functions can be seen in Figure 1.3.

2. Valence angle terms: Valence shell electron pair repulsion theory, or-
bital hybridisation theory and their successor, molecular orbital theory,
all show that bonds projecting from an atom have equilibrium valence
angles separating them. Deviation from equilibrium results in a rise in
energy. This rise in energy can be modelled using a modified version
of Hooke’s law, equation 1.5, in which the deviation from equilibrium
internuclear separation between two atoms, r − re, is replaced by the
deviation from equilibrium valence angle between three atoms, θ−θe.
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Figure 1.3: The Morse (blue) and Hooke (green) potentials for modelling covalent
bonds. Image adapted from Wikimedia Commons under the Creative Commons
Attribution-Share Alike 2.5 Generic license (http://en.wikipedia.org/wiki/File:
Morse-potential.png).

3. Dihedral angle terms: Bonds without π character are rotatable. As we
rotate about these bonds, the conformation changes from staggered to
eclipsed and back, as shown in Figure 1.4. Steric hindrance renders the
eclipsed state higher in energy than the staggered state. The variation
in energy as a function of the dihedral angle can be modelled by equa-
tion 1.6. The height of the energy maximum is kφ and the phase is δ.
Of the two bonded atoms, the maximum number of donor orbitals in
the hybridised valence orbitals is equal to n + 1, such that n represents
the number of minima in V(φ). For instance, a bond involving sp2

carbon will have n = 3, as shown in Figure 1.4. Unless the chemical
groups attached to the bonded atoms are the same, the energy minima
and maxima are not of the same magnitude. However, this is ignored
in most biomolecular force fields due to the additional complexity it
would engender.

V(φ) = kφ(1 + cos(nφ− δ)) (1.6)

http://en.wikipedia.org/wiki/File:Morse-potential.png
http://en.wikipedia.org/wiki/File:Morse-potential.png
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Figure 1.4: The dihedral energy as a function of angle for an sp2-sp2 bond. The staggered
and eclipsed conformations are shown as see-saw and Neuman projections.

4. Electrostatic terms: Nuclei and electrons carry charges and sub-
sequently produce electric fields surrounding them. A charged particle
within an electric field has a potential energy, the electrostatic poten-
tial, which can be calculated as the product of that charge and the
magnitude of the field. For two point particles, such as nuclei, separ-
ated by distance ri j, and of charges qi and q j, the potential is given by
the Coulombic energy, equations 1.7.

V(r) =
qiq j

4πε0ri j
(1.7)

where ε0 is the permittivity of free space. Equation 1.7 cannot deal
with electrons, which are not point particles but spatially diffuse entit-
ies. However, it can be modified such that if particle i is an electron,
the charge qi is replaced by a triple integral of the charge density over
x,y and z, where the density is given by Ψ∗Ψ, so that the total energy
is the sum of the interaction over all ’chunks’ of space, weighted by
the chance of finding that electron within those chunks. This presents
a serious problem when attempting to model the energy without de-
termining Ψ. The most common approximation used is to treat the
system such that all the negative charge is collapsed onto the nuclei:
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i.e. treat the nuclei as partial charges. In order to do this, a restrained
electrostatic potential fit procedure is done. In this procedure, the
partial charges are varied, whilst keeping the total charge an integer,
so that the electrostatic potential isosurface at the Van der Waals radii
matches as closely as possible that obtained by solving the Schrödinger
equation. Thus, the Coulomb equation can be used in its point-particle
form (Bayly et al., 1993).

5. Overlap-Exchange repulsion terms: The Pauli exclusion principle
dictates that no two particles can occupy the same region of space.
Thus, electrons cannot collapse upon their nuclei, despite their oppos-
ite charge, and must reside in distinct orbitals surrounding the nuc-
leus. This gives rise to the full diversity of chemical elements we see
around us. As two particle approach one another, their wavefunctions
overlap, resulting in an exchange repulsion which increases exponen-
tially. Biomolecular modellers rarely calculate this as an exponential
term, but instead treat it as a repulsion which scales as r−12

i j within the
Lennard-Jones equation, as explained below.

6. Electrostatic induction terms: The electron distribution of a molecule
in an electric field does not remain fixed, but adjusts itself according
to that field so as to lower the total energy due to the Debye force.
Like charges tend towards each other and opposite charges repel each
other. As electrons are difficult to model explicitly, this term is usually
ignored by the biomolecular modelling community, except when the
inducing multipole arises from spontaneous quantum fluctuations,
giving rise to the London dispersion energy.

7. London dispersion terms: The electrons in a molecule are in constant
flux, and at any moment in time there may be higher or lower electron
density in one part of the molecule than at the next moment, giving rise
to spontaneous dipoles or higher multipoles. These spontaneous mul-
tipoles in one molecule cause complimentary electrostatic induction
in the other, lowering the energy of the system. This energy change
scales as r−6

i j .

8. Lennard-Jones terms: The repulsive overlap-Exchange and attactive
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London dispersion terms are usually combined into the Lennard-Jones
potential function, equation 1.8.

V(ri j) =
√
εiε j

(Rmini, j

ri j

)12

−

(Rmini, j

ri j

)6 (1.8)

where Rmini, j corresponds to the minima, and √εiε j is the depth of the
potential well. These terms take this form due to its computational
efficiency; r−12

i j = (r−6
i j )

2. This is often referred to as the Van der Waals
energy, as it reflects the factors implicit in the Van der Waals equation
of state, a modification of the ideal gas law which takes account of the
volume of molecules and the attractive forces between them.

9. Cross terms: All the above terms have a clear physical origin. How-
ever, additional terms can also be employed to reduce the discrepancies
between the energy surface calculated using quantum mechanics and
a fitted force field. One correction is the cross-term, which couples the
φ and ψ protein backbone dihedral angles, and takes the form of nm
terms given by equation 1.9 (Mackerell et al., 2004).

V(ri j) = knm(1 + cos(nφ+ mψ− δnm)) (1.9)

where δnm is the phase.

1.4.1.3 Force Field Construction

For any given system, terms in section 1.4.1.2 can be fitted to a potential
energy surface derived from quantum mechanics to give a reasonable fit.
While parameters describing, say, a oxygen-hydrogen bond, are difference
from those describing an sp2

− sp2 carbon-carbon bond, the parameters
describing different O-H bonds, or O-H bonds in different systems, are
often very close to one another. If it is possible to classify atoms in a
system, or set of systems, such that the parameters relating to them are
the same as they are in many other systems, then it would be possible to
approximate the energy surface of a system whose parameters have not
been derived from quantum mechanical calculations. This principle, the
transferability hypothesis, makes it possible to construct a generic force
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field, a set of terms and parameters derived from, for example, dipeptides,
which can then be used to model tripeptides or even whole proteins. The
art of force field construction is beyond the scope of this introduction and
the topic has been dealt with extensively within the scientific literature.
In the menagerie of modern force fields, some are general (Wang et al.,
2004), others are for specific classes of compound, such as heterocycles
(McDonald and Jorgensen, 1998) or organic liquids (Jorgensen et al., 1996).
Some force fields are compatible with one another. One of the most popular
set are those which are compatible with the force field released with version
22 of the molecular simulations program CHARMM (MacKerell et al.,
1998; Brooks et al., 2009; Patel and Brooks, 2004; Patel et al., 2004). The
original CHARMM22 force field was developed specifically for simulating
proteins. However, since then, a compatible force field was developed
for nucleic acids (MacKerell et al., 2000) as well as a general force fields
for modelling small molecules (Vanommeslaeghe et al., 2010). These force
fields have proven remarkably accurate given their meagre computational
requirement. As a back-of-the-envelope estimate, doing a single point
energy calculation on a moderate protein of around 1,000 atoms using the
cc-pVTZ basis set and the MP4 quantum mechanics method (which scales
as N6 with the number of basis functions), will take around 800 times the
age of the universe. Doing a single point energy calculation on the same
protein with the CHARMM22 force field takes a fraction of a second.

1.4.2 Dynamics

1.4.2.1 Newton’s Laws

The temporal evolution of non-relativistic macroscopic physical systems are
governed by Newton’s laws of motion:

1. Without external force acting upon it, an object will remain stationary
or move with constant velocity.

2. The acceleration of a body is equal to the force applied upon it divided
by its mass.

3. The forces applied on each other by two bodies are equal and opposite.
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For a single body in one dimension, the second law can be variously
written as

f = ma = m
dv
dt

= m
d2x
dt2 = −

d
dx

V(x) (1.10)

where x is position, v is velocity, a is acceleration, m is the mass and
V(x) is the potential energy. The equivalence of force and the gradient of
the potential arises due to conservation of energy; any increase in kinetic
energy has a corresponding decrease in potential energy and thus the rate
of change of kinetic energy (the force) is equal and opposite to the rate of
change of potential energy. Generalised to any number of particles in any
dimensionality, Newton’s equation of motion for a classical system is given
by equation 1.11.

M
∂2

∂t2 x(t) = Fx(t) = −∇V(x(t)) (1.11)

where M is the mass matrix. As noted in section 1.4.1 these laws do
not apply to molecules. Nevertheless, some molecular processes can be
studied under the regime of classical mechanics, but only if the process is
slow and the thermal energy of the system is considerably larger than the
energy of quanta, i.e. if kBT >> h̄λ, where kB is the Boltzmann constant,
T is the temperature, h̄ is Planck’s constant and λ is the frequency of the
motion in question. At 300K, classical mechanics can meaningfully model
processes on a time scale above around 200fs, which is significantly lower
than the time scale of most biological functions not involving the movement
of electrons.

Thus, it is possible to take a protein structure, such as one given by NMR
or crystallography, set up a force field and perform molecular dynamics
by solving the differential equation 1.11 using a suitable integrator, such
as Verlet-Stoermer numerical integration (Alder and Wainwright, 1959).
Numerous technicalities need to be considered, however, assuming that the
potential function is exact, then this numerical approach can be seen as an
approximate solution to the exact problem. There is no general analytical
solution to Newton’s equation of motion. However, if we optimise the
system until we find the minima, express V(x(t)) as a Taylor series and
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Figure 1.5: Various simple systems of masses connected by springs.

truncate it after the third term, the potential function becomes a harmonic
well, with each coordinate of each particle obeying Hooke’s law, equation
1.5. For such systems there are an infinite number of analytical solutions
to equations 1.11, and one can obtain the exact solution to the approximate
problem. Of particular interest are the set of solutions which have the same
frequency, the normal modes of vibration, the acquisition of which is best
illustrated with simple systems of balls on springs.

1.4.2.2 The Simple Harmonic Oscillator

Take the simple system in Figure 1.5A, which obeys Hooke’s law. In this
system, the force acting on the mass is linearly proportional to the extension
of the spring, thus

f (r) = −k(r− re) (1.12)

Combining 1.10 and 1.12, we get the second-order differential equation
1.13.

m
d2r
dt2 = −k(r− re) (1.13)

This has the general solution
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r = re + A sin(t
√

k/m) + B cos(t
√

k/m) (1.14)

which repeats every t = 2π
√

k/m. The constants of integration, A and
B, can be found by imposing boundary conditions. Stipulating that r = re

at time t = 0, then B = 0, so that the rightmost term becomes zero. If we
then stipulate E, the total energy of the system, then A =

√
2E/k, by noting

that when at full extension, sin(
√

k/m) = 1, the kinetic energy is zero and
the total energy is given by the potential energy, equation 1.5. The quantity
√

k/m, which has units s−1, is the angular vibration frequency, ω, leaving the
final form of this simple harmonic oscillator:

r = re + A sin(tω) + B cos(tω) (1.15)

A slightly more complex example, with two balls and one spring, is given
in Figure 1.5B. Here, the length of the spring is given by r = x2 − x1, and its
extension, ξ is

ξ = x2 − x1 − re (1.16)

The equation of motion for the first mass is given by

m1
d2x1

dt2 = kξ (1.17)

and for the second mass, which moves in the opposite direction:

m2
d2x2

dt2 = −kξ (1.18)

Combining 1.17 and 1.18, we can express the equations of motion in
terms of a single internal coordinate.

d2r
dt2 = −

k
m2
ξ−

k
m1
ξ = −k

(
1

m1
+

1
m2

)
ξ (1.19)

This equation is of the same form as 1.13, and thus has solutions similar
to 1.14, only with the mass, m, replaced by the reduced mass, µ =

(
1

m1
+ 1

m2

)
.

In the next section, we shall go one step further in complexity by adding a
second spring. Using this as a basis, I will then derive a general form which
is useful for studying larger systems as well as systems whose potential



Chapter 1. Introduction 48

energy function may be much more complex than balls on springs, such as
one from a molecular mechanics force field.

1.4.2.3 Normal Mode Analysis

In the system given in Figure 1.5C, the first mass, at position x1 is subject to
forces originating from two springs. For these springs, the deviations from
their equilibrium positions are ξ1 = x1 − re1 and ξ2 = x1 − re2. For the first
spring, the force exerted upon the first mass is −k1ξ1. The force exerted by
the second spring on both masses depends not just on its deviation from
its equilibrium position, but also on the position of the first mass. Thus it
exerts k2(ξ2−ξ1) force upon the first mass and−k2(ξ2−ξ1) upon the second.
Newton’s equations of motion for this system can be expressed in terms of
two internal coordinates:

m1
d2

dt2ξ1(t) = k2(ξ2 − ξ1) − k1ξ1 = −(k2 + k1)ξ1 + k2ξ2 (1.20)

m2
d2

dt2ξ2(t) = −k2(ξ2 − ξ1) = k2ξ1 − k2ξ2 (1.21)

There are many solutions to these simultaneous differential equation, in-
cluding sets for which the angular frequency,ω, is the same for both particles,
the normal modes. All possible harmonic motions can be expressed as a lin-
ear combination of these normal modes. These solutions are of the form

ξ1(t) = A sin(ωt + δ1) (1.22)

ξ2(t) = A sin(ωt + δ2) (1.23)

Differentiating, and then substituting 1.22 and 1.23 back in:

d2

dt2ξ1(t) = −ω2A sin(ωt + δ1) = −ω
2ξ1(t) (1.24)

d2

dt2ξ2(t) = −ω2B sin(ωt + δ2) = −ω
2ξ2(t) (1.25)

Substituting 1.24 and 1.25 into equations 1.20 and 1.21 yields equations
1.26 and 1.27, which are only valid when ω has one of two values.
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−
(k1 + k2)

m1
ξ1 +

k2

m1
ξ2 = −ω2ξ1 (1.26)

k2

m2
ξ1 −

k2

m2
ξ2 = −ω2ξ2 (1.27)

This system of linear equations can be written in matrix form. The mass-
weighted force constant matrix is know as the Hessian. − (k1+k2)

m1

k2
m1

k2
m2

−
k2
m2


 ξ1

ξ2

 = −ω2

 ξ1

ξ2

 (1.28)

As this is of the form Hξ = λξ, the Hessian matrix can be diagonalised,
yielding the change in internal coordinates as eigenvectors, ξ, and the
negative square of their corresponding frequencies, λ, as eigenvalues.
These eigenvectors are the normal coordinates.

It should be noted that the elements in the ith row of the Hessian all
have a factor of 1/mi, thus the matrix is described as mass weighted.
Factoring this out, the jth element of the ith row contains the coefficient
of the jth coordinate in the ith equation of motion, equations 1.20-1.21 in
this case. As 1.20-1.21 are linear with respect to the coordinates, then this
coefficient can be obtained by differentiating the ith equation of motion
with respect to the jth coordinate. For instance, if i = 1 and j = 1, then

d
dξ1
− (k1 + k2)ξ1 + k2ξ2 = −(k1 + k2) which, mass weighted, appears in the

top left of the Hessian in equation 1.28.

From here, it is easy to generalise to larger systems and systems of higher
dimensionality, such as proteins in 3D. Take a system with n coordinates,
such as a protein with n/3 atoms, where n is a multiple of 3. Then, a series
of equations of motion can be constructed, one for each coordinate.

mi
d2ξn

dt2 =

j=n∑
j=1

ci, jξ j for i = 1...n (1.29)

As shown above, the coefficients ci, j are the derivative of the force in
the ith equation of motion with respect to the jth coordinate. However, as
shown in equation 1.10, the force is equal to the derivative of the potential
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energy, and so the coefficients can be calculated as

ci, j =
∂2V
∂ξi∂ξ j

(1.30)

Now, the same line of reasoning can be employed as for the system in
Figure 1.5C. The solutions in which the angular frequency are the same are

ξi(t) = Ci sin(ωt + δi) for i = 1...n (1.31)

Differentiating, we get

d2

dt2ξi(t) = −ω2Ci sin(ωt + δi) for i = 1...n (1.32)

Substituting 1.31 into 1.32, and then substituting into 1.29, we end up
with a series of linear equations which, as matrix form, are

Hξ = λξ (1.33)

Due to equation 1.30, the Hessian, H, has elements

Hi, j =
1

m j

∂2V
∂ξi∂ξ j

(1.34)

and can be diagonalised to yield eigenvectors ξ, the normal coordinates,
and a set of eigenvalues λ = −ω2. All conformations of the molecule in
question can be expressed as a linear combination of normal coordinates,
which form an orthogonal basis.

1.4.3 Interaction Kinetics

In the section 1.4.1 we saw how the energy of a physical system varies as a
function of the coordinates of its constituents. In section 1.4.2.1 we saw how
Newton’s equation of motion can be used to model the temporal evolution
of the coordinates of a system as well as its kinetic and potential energy.
It is natural then to use these concepts as a basis for understanding mo-
lecular interactions. Biomolecular interactions occur in solution, constantly
buffeted by water and the other molecular constituents of the cell. Interac-
tions between molecules occur all the time, but those that are biologically
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meaningful are the ones which last for a long period of time, or between
molecules which, at equilibrium, are more likely to be found spatially closer
to one another than expected if they were evenly distributed in space.

Take a non-covalent interaction between molecular species A and B, to
form complex C:

A + B� C (1.35)

The concentration of these species can be denoted [A], [B] and [C]. There
are two processes which can occur; association happens when A and B
cohere and form C, and dissociation occurs when C decomposes into its
constituents A and B. It is clear that these rates depend on the concentration
of the species. If we have twice the concentration of [C], then the rate of
dissociation will be double. Thus we can model the rate of dissociation as

rate of dissociation = ko f f [C] (1.36)

where constant ko f f represents the innate disposition for the complex to
dissociation. Similarly the number of association events in a given period
of time is linearly proportional to [A] and [B], and we can define

rate of association = kon[A][B] (1.37)

Using these, we can express the rate of change of concentration of these
species

d[A]

dt
=

d[B]
dt

= ko f f [C] − kon[A][B] (1.38)

d[C]
dt

= kon[A][B] − ko f f [C] (1.39)

The system is in equilibrium when the rate of association equals the rate
of dissociation, and the concentration of all species remains constant, i.e.,
when equations 1.38 and 1.39 equal zero. Rearranging, we can define the
dissociation constant, KD, as a measure of binding affinity

KD =
[A][B]
[C]

=
ko f f

kon
(1.40)
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which relates the association and dissociation rates to the proportion of
molecules which are found in complex. The association constant, KA, is
the inverse of the dissociation constant. This allows us to calculate Y, the
fractional occupancy of the binding site on A or B:

YA =
[C]
[A]tot

=
[C]

[A] + [C]
=

KA[B]
1 + KA[B]

=
[B]

[B] + KD
(1.41)

Biologically meaningful interactions have a low KD, ranging from
around 10−4M to below 10−15M. One theoretically possible way of obtaining
the kinetics and structure of an interaction would be to simulate the
association and dissociation processes by solving Newton’s equation
of motion numerically. However, molecular dynamics simulations of
typical protein-protein complexes can only be realistically achieved on the
microsecond timescale, at best. Even if the bound structure was known
and the complex dissociated quickly, such as the complex between Ras
and RalGDS (Kiel et al., 2004), ko f f = 1.49s−1, the mean lifetime is on the
order of hundreds of milliseconds, well beyond the timescale attainable
by molecular dynamics. There has been little work done on calculating
dissociation rates, and that which had been done remains to be reproduced
(Bai et al., 2011).

There has, however, been a significant amount of work concerning the
prediction of association rates. Association events commence with a colli-
sion. Interactions for which diffusion is the rate limiting step are described
as diffusion controlled. In this case, the proteins can be modelled as spheres
and the collision probability can be found analytically considering the dif-
fusion constant, D, of the binding partners and their collisional radius r
(Smoluchowski, 1917):

kon = 4πr(DA + DB) (1.42)

The diffusion constant can, in turn, be calculated using the Einstein-
Stokes equation from the viscosity of the solution, η and the temperature
T

D =
kBT
6πηr

(1.43)
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The transition from an encounter complex to the bound state can be
simulated. The Smoluchowski equation, 1.42, is used to calculate the
probability of the proteins finding themselves within a certain separation
of each other. The probability of the complex progressing from here to a
final bound state can be determined using either using Brownian dynamics,
or transition state theory, where the magnitude of the energy barriers
separating the bound state from the unbound state are calculated (Northrup
et al., 1984; Rojnuckarin et al., 2000; Lee and Karplus, 1987; Cheng et al.,
2007b; Song et al., 2004; Zhou, 1997; Selzer and Schreiber, 1999).

Due to the difficulty of calculating binding affinity via kinetics, especially
the difficulty of calculating the dissociation rates, a natural alternative
would be to think of the physical binding process in terms of its energetics,
which is the subject of the next section.

1.4.4 Interaction Thermodynamics

”Thermodynamics has the same degree of certainty as its
postulates. Reasoning in thermodynamics is often subtle, but it
is absolutely solid and conclusive. We shall see how Plank and
Einstein built on it with absolute trust and how they considered
thermodynamics the absolutely firm foundation in which to
build a physical theory. Whenever they were confronted by
formidable obstacles they turned to it.”
Emilio Segrè, 1980, ’From X-Rays to Quarks’

Newtons equation of motion, 1.11, shows us that atoms accelerate to-
wards regions of low energy. For rigid bodies in the gas phase, collisions
are elastic; the kinetic energy gained from this acceleration is sufficient to
escape the potential well and no cohesion occurs. Subsequently, for gas
phase reactions of the form A + B � AB, two-body collisions do not result
in association, and a third body is required to take away the excess kinetic
energy if the reaction is to proceed. For interactions between biological mac-
romolecules, this excess kinetic energy can be taken away by the solvent, or
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be absorbed by either of the binding partners as vibrational motion. Either
way, the kinetic energy generated dissipates as disorderly motion. At con-
stant volume and pressure, the change in internal energy upon binding
is known as the interaction enthalpy and given the symbol ∆H. If ∆H is
negative, then it releases energy as heat, and the process is described as
exothermic. The reasoning above would suggest that a good strategy to
locate the structure of the complex would be to perform conformational
sampling by adjusting the coordinates of the binding partners, calculate the
enthalpy of interaction, and repeat until a promising enthalpy minimum is
found. Indeed, most binding events are exothermic, but some are endo-
thermic. These actually take heat from the surrounding when they bind to
one another, such as the interaction between the ephrin B2 ectodomain and
the ephrin B4 receptor, ∆H = 3.3kcal/mol (Chrencik et al., 2006), the inter-
action between eglin c and chymotrypsin, ∆H = 2.0kcal/mol (Ascenzi et al.,
1988), the interaction between Rac GTPase and p67 Phox, ∆H = 6.5kcal/mol
(Lapouge et al., 2000) or that between cytochrome C and cytochrome C per-
oxidase, ∆H = 2.3kcal/mol (Erman et al., 1997). Superficially, this presents a
conceptual challenge. In order for the system to spontaneously go from un-
bound to bound would require an increase in energy, and the atoms would
have to move against a repulsive force! Despite this, all these interactions
have a dissociation constant, KD, well below 10−5M. This apparent incon-
sistency arises from falsely equating the driving force of complex formation
to the system’s tendency to accelerate towards a low enthalpy configura-
tion. Indeed, the example of gas phase two-body collisions shows that it
is not enthalpy that drives spontaneous processes. Unless the excess kin-
etic energy is taken away, ultimately to increase the disordered motion of
the surrounding, the reaction cannot proceed. The driving force of not just
molecular interactions, but all processes, is the increase of disorder in the
universe, its entropy.

1.4.4.1 The Second Law: A Classical Perspective

When the laws of thermodynamics were discovered, their link to molecular
processes was not known. They were discovered via the study of engines
and the consideration of processes involving the transfer of work, heat and
matter. Comprehension of the second law of thermodynamic was born out
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Figure 1.6: Hypothetical distributions of ’gas’ particles in a 10 by 10 2D ’box’. (A) Lowest
entropy, (B) Low entropy, (C) High entropy.

of efforts to optimise the efficiency of dirty coal-fired machines. Despite
these grim origins, it is the second law which drives all change, from the
unfurling of a leaf in spring, to the growing of a child in the womb, to the
passage of thought through the mind.

One of the earliest definitions of entropy, proposed by Rudolph Clausius,
was the quantity of heat supplied to one system from another, divided by
the temperature. This is the thermodynamic definition of entropy, S:

dS =
dq
T

(1.44)

where q is the quantity of energy transferred as heat. Clausius recognised
that for any cyclic process, the process will be spontaneous if and only if the
total change in entropy is positive.

1.4.4.2 The Second Law: A Statistical Perspective

A deeper understanding of entropy can be first understood in terms of a
tautology; at equilibrium, a system is most likely to be found in a state in
which it is statistically more likely to be found. As an illustration, imagine
the 9 ’gas’ particles in the 10× 10 2D box in Figure 1.6.

How many ways are there to organise 9 particles into 100 positions? The
first particle can occupy any of the 100 positions, the second can occupy any
of the remaining 99, and so on. Because the particles are indistinguishable,
the ordering is irrelevant, and the total number of possible states is a 9-
combination of the set of 100 positions, given by the binomial coefficient
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Z = C(100, 9) ≈ 1.90 × 1012, known as the partition function. All possible
configurations of these particles are one of these states. In Figure 1.6A, the
particles all occupy a small region of the box, corresponding to a perfectly
ordered macrostate. There is only one configuration, or microstate, of these
9 particles corresponding to this macrostate, so we say the multiplicity, Ω,
of the most ordered macrostate, is one. Whilst it is possible to swap any one
of the particles for any other, as we are treating them as indistinguishable,
we only consider only distinct states.

Now, we can imagine the same number of particles, occupying the same
’volume’, but in which the system is slightly less ordered, as in Figure 1.6B.
In this state, the coordinates of one of the particles is unknown; it can be in
any of the 91 positions other than the top right hand corner, and the ’hole’
in the top right hand corner can be in any of the 9 positions. Thus, there
are Ω = 91 × 9 = 819 configurations, or microstates, corresponding to this
slightly less ordered ’macrostate’. Clearly, all positions being equally likely,
this state dominates the perfectly ordered macrostate.We can then consider
an even less ordered system, in which two of the particles are disordered.
Here there are 91 × 98/2 configurations of the two particles, and 9 × 8/2
configuration of the ’hole’. Hence, there are Ω = 160, 524 states with 2
disordered particles. Again, this state is statistically dominant compared
to the more ordered states. The multiplicity of increasingly disordered
’macrostates’, where the number of particles in the 3 × 3 box is specified, is
shown in Table 1.2, as calculated using equation 1.45.

Ωi =
91!

(91− i)!i!
×

9!
(9− i)!i!

= C(91, 91− i) ×C(9, 9− i) (1.45)

It can be seen that over 99.7% of the states have four or fewer particles
constrained, as calculated by dividing the sum of the multiplicities of these
states by the partition function, Z. In this model system, the most disordered
states are the dominant ones, so that as long as there is no a priori reason to
suspect that certain microstates are more likely than others, disorder is the
order of the day. Order could be defined as a different configurations, such
as positioned like a chequers board, or as a 9× 9 block not in the top right, but
anywhere on the grid, or in any shape in which all particles are adjacent. The
conclusions, however, are the same; the majority of configurations are non-
descript. In fact, if we were to use a finer grid than 10× 10, the dominance of
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Table 1.2: The multiplicity of macrostates corresponding to i and only i particles in a
pre-specified 3× 3 box within a 10× 10 grid.

i Ω Ω cumulative
9 1 1
8 819 820
7 147,420 148240
6 10,204,740 10,352,980
5 336,756,420 347,109,400
4 5,859,561,708 6,206,671,108
3 55,991,367,432 62,198,038,540
2 291,383,646,840 353,581,685,380
1 764,882,072,955 1,118,463,758,335
0 783,768,050,065 1,902,231,808,400 = Z

the disordered configuration increases. It we divide space up so finely that,
for all intent and purpose, it is continuous, then the most disordered state
is so probable that the probability of finding the system in any other macro-
state is vanishingly small. Further, if a system were to begin in an ordered
state, and were subject to perturbations, it would spontaneously move to-
wards a more disordered state, and the chance of that system spontaneously
reverting back to an ordered state is very small indeed. The multiplicity of
the macrostate is a precise measure of this disorder. Expressed in a more
convenient logarithmic scale, the statistical definition of entropy, S, is given
as

S = kB ln Ω (1.46)

The second law of thermodynamics can then be stated as ’A spontaneous
process at fixed volume with a fixed number of particles has a positive
change in entropy’.

For real systems, the microstate of a system is not given by its position in
configurational space, but its position in phase space; each particle possesses
not just a position, but also a velocity and its corresponding kinetic energy.
Similar arguments can be used for the distribution of energy as were used
for spatial distribution, only the constraint now isn’t that the particles are
located within the grid, but that the total energy is constant. To illustrate
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this, imagine that 10 units of energy are distributed between our 9 particles.
In this case, because all the particles have different locations, they can be
distinguished from one another. It could be that one single particle has all
10 units of energy, and the remaining 8 particles have none. As the particle
with all the energy could be any particle, the multiplicity of this energy
distribution is 9. Another possibility is that one particle has 9 units of energy,
and another has 1. The multiplicity of this energy distribution is 9 × 8 =

72. Similar calculations can be made as above, and similar conclusions
reached. The partition function can be calculated, and without a priori
expectation about the distribution of energy, the probability of finding a
system with a certain distribution of energy is calculated as the multiplicity
of the distribution divided by the partition function. Just as localised matter
dissipates to disorder, localised energy also dissipates to disorder. Just
as when the spacing of grid points is reduced to almost continuous, the
most disordered spatial distribution dominates all others, when the spacing
of energy levels is reduced to a pseudo-continuum, the most disordered
distribution of energy dominates. This disordered distribution of energies
is the Boltzmann distribution, given by equation 1.47.

ni

N
=

e−εiβ∑
i e−εiβ

=
Ωi

Z
(1.47)

where ni/N is the proportion of particles with energy εi, and β = 1
kBT .

The denominator is the partition function, and the numerator the mul-
tiplicity. A derivation of this equation is given in Atkins and De Paula
(2006), along with a demonstration of the equivalence of the classical
thermodynamic definition of entropy, equation 1.44, and the statistical
definition of entropy, equation 1.46. The Boltzmann distribution can be
thought of as either a probability distribution when considering a single
particle, or an actual energy distribution considering a quasi-infinite
number of particles. It is impossible to enumerate all states in most
cases, and in all cases for biological macromolecules. Thus the partition
function cannot be calculated. However, the probability of finding a particle
in one state relative to another can be found by the ratio of their multiplicities.
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1.4.4.3 The Gibbs Free Energy

It has been shown that an increase in entropy is the driving force for spon-
taneous processes, and its molecular basis demonstrated. The inability of
the reaction, A + B � AB to occur spontaneously in a two-body collision
can easily be explained; there are many more ways of distributing A and B
in which they are not together, than there are configuration in which they
are. The spontaneous nature of this reaction, or indeed a biomolecular in-
teraction, when the excess kinetic energy is removed to the surroundings,
can also be explained using equation 1.44. When energy is transferred to
a system, in this case the surrounding, more states become available and
the entropy of that system increases. Therefore, as long as the increase in
entropy of the surroundings is greater than the decrease in entropy associ-
ated with the reaction, then the reaction will proceed spontaneously. The
chemist Josiah Willard Gibbs derived a quantity, with unit of energy, which
for any given process weighs the entropy change of the surroundings with
the entropy change of the system in question, and can be used to determine
whether a process is spontaneous. This quantity is the Gibbs free energy:

∆G = −T∆Stot = −T∆Ssurr − T∆S (1.48)

As the entropy in spontaneous processes increases, and the temperature
is positive, spontaneous processes are those for which the Gibbs free energy
decreases. Using equation 1.44, we see

∆G =
T∆H

T
− T∆S = ∆H − T∆S (1.49)

Thus, the spontaneity of the process can be understood in terms of the
change in enthalpy and entropy. For a biomolecular interaction, the enthalpy
and entropy of interactions can be calculated as the enthalpy and entropy of
the binding partners when bound minus their enthalpy and entropy when
free in solution, and these two quantities can be used to calculate the free
energy of binding.

∆Hint = HAB −HA −HB (1.50)
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∆Sint = SAB − SA − SB (1.51)

Given the coordinates of a complex, the enthalpy of interaction can be
calculated by using a molecular mechanics force field (see section 1.4.1.3). If
solvent molecules are not modelled explicitly, an implicit solvation model
which treats the solvent as a continuous medium can be employed, such
as by solving the Poisson-Boltzmann equation (Fogolari et al., 2002), or its
approximation Generalised Born (Chen et al., 2006), or using other methods
(Schaefer and Karplus, 1996; Ferrara et al., 2002; Zhang et al., 1997; Lazaridis
and Karplus, 1999b; Wesson and Eisenberg, 1992). The entropy can be
trickier to calculate. If the potential energy surface is approximated as
harmonic, the states of the system and their energy are given by the normal
modes and their frequencies (see section 1.4.2.3). Within this approximation,
the vibrational entropy of the system is given by equation 1.52 (Mcquarrie,
2000):

− TSvib =
N∑

i=7

(
kBT ln(1− exp(−h̄λi/kBT)) − h̄λi

exp(h̄λi/kBT) − 1

)
(1.52)

where T is the temperature, kB is the Boltzmann constant, h̄ is Planck’s
constant and λi is the frequency of the ith normal mode, the square root of
the corresponding Hessian eigenvalue. As the six lowest frequency modes
correspond to trivial translational and rotational motions, the summation is
across the non-trivial modes. Outside of this approximation, calculation of
conformational entropy requires extensive conformational sampling, such as
Monte Carlo sampling, to determine the accessible states and their energies.

Rotational and translational entropy can be calculated as

Srot

R
= ln

 √πIaIbIc

σ

(
8π2kBT

h̄2

) 3
2
+ 3

2
(1.53)

Strans

R
= ln

(2πmkBT

h̄2

) 3
2 kBT

P

+ 5
2

(1.54)

where m is the mass of the protein or complex, R is the gas constant, Ia,
Ib and Ic are the moments of inertia around the x, y and z axes respectively,
P is the pressure and σ is the order of rotational symmetry. Other schemes
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exist for approximating other forms of entropy, such as the worm-like chain
model for disordered loops, or the Gaussian polymer model for disordered
chains (Zhou, 2004).

Another important entropic contribution to the binding free energy is due
to the hydrophobic effect. This occurs when non-polar atoms are transferred
to or from a solvent exposed environment. Water molecules are polar, and
form hydrogen bonds with one another. This network of hydrogen bonds
constantly dynamically adjusts itself. When a solute is incapable of forming
polar interactions with the water, it disrupts this network of hydrogen bonds
and the water forms a ’cage’ surrounding the hydrophobic region. As this
’cage’ is ordered, solvent exposure of hydrophobic atoms causes a decrease
in entropy, and burial of hydrophobic surface area causes an increase in
entropy. Calculating the magnitude of the hydrophobic effect is difficult.
However, thermodynamic measurement of the free energy of transfer of
non-polar solutes to the pure liquid phase have shown that the magnitude
of the hydrophobic effect is approximately proportional to the exposed
surface area. Thus, an estimate of the hydrophobic effect can be made
by calculating the solvent exposed hydrophobic surface area (Chothia, 1974).

1.4.4.4 Statistical Potentials

The previous section outlined different terms which can be used to calculate
the binding free energy by considering the underlying physical processes.
However, another way to calculate free energy changes is by using know-
ledge based potentials. In this methodology, many observations are used to
parameterise a free energy function, by comparing the statistical distribution
of the relative positions of atoms or residues to some reference state (Levitt,
1976; Miyazawa and Jernigan, 1985; Sippl, 1990).

To illustrate take, for instance, the distance between the Cα atoms of a
tyrosine residue and an isoleucine residue. If we assume that the potential
energy of these two atoms can be calculated as a function of their separation
then this potential energy function would give rise to a statistical distribution
of separations given by the Boltzmann distribution, equation 1.47, where
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each separation r, has energy F(r):

n(r)
N

=
e−F(r)β

Z
(1.55)

Z is the partition function. It is possible to rearrange this equation to
form the inverse Boltzmann equation, which can be used to derive an energy
function from an observed radial distribution:

F(r) = −kBT ln
ni

N
− kBT ln Z (1.56)

As the rightmost term is constant, it can be removed. Thus, we can take
a large number of high resolution crystal structures and derive a potential
energy function. However, there are a number of issues associated with this
approach. Many effects are averaged out, such as different protonation states
and relative orientations of the amino acids. It is possible to modify the form
of the potential function, such as to include the orientation of amino acids,
or to predict the protonation state of amino acids which have a pKa near
physiological pH and treat the same amino acid in different states as different
entities. Some effects, however, cannot be modelled using pair potentials,
such as changes associated with atomic restriction; rotational, vibrational
and translational entropy or entropy changes associated with disorder to
order transition. These effect are always averaged out or neglected when
deriving the statistical distribution. Further, there may be other factors
influencing distribution other than those of an energetic nature. A trivial
example is the fact that the volume of space between distance r − dr/2 and
r + dr/2 is proportional to the surface area of a sphere of radius r and
hence even if atom or residue pairs were evenly distributed, the radial
distribution would be quadratic. Also, some amino acids occur with greater
frequency than others, and biases can also be caused by the different shapes
of the proteins used in parameterisation. To overcome these problems, the
potential energy function is usually expressed relative to a reference state.

F(r) = −kBT ln
ni

nRi
(1.57)

For instance, the reference state may be the distribution expected if
the atoms were an ideal gas distributed evenly in a sphere of the same
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density as a typical protein, with the partial pressures of the atoms being
proportional to the abundance of their corresponding amino acids. This
way, the free energy of a system can be estimated from its structure, by
doing a pairwise summation of all atom or residue pairs.

There are many different statistical potential functions available, often
using different reference states. Most are pair potentials, but multi-body po-
tentials also exist, as do orientation-dependent potentials. Some are course-
grained residue-level potentials between Cα atoms, Cβ atoms or residue
centroids, whilst others are atomistic. Some are trained on intermolecular
pairs, others on intramolecular pairs.

1.4.4.5 The Free Energy Landscape

It is now possible to think of the energetics of protein-protein binding not in
terms of the potential energy (enthalpy) landscape, but in terms of the free
energy landscape. When proteins bind to one another and shift from the
unbound state to the bound state, their free energy lowers. It is known that
the energy landscape surrounding the bound structure forms a funnel-like
structure (Tsai et al., 1999; Ma et al., 1999; Wang and Verkhivker, 2003;
Zhang et al., 1999; Hunjan et al., 2008). Indeed, this must be the case, as
the combination of side chain angles, backbone conformations and relative
positions and orientations is so large that without a funnel-like structure
to guide two proteins towards the native state, the timescale on which
protein-protein association events occur would be much larger. Quite some
work has been done to characterise the ensemble of trajectories which are
taken when proteins bind to one another.

One possibility is that binding proceeds without significant conform-
ational change; the lock and key model of binding. In this model, the
ensemble of accessible structures adopted by the binding partners is not
significantly altered. This model of binding, whilst approximately true
for some cases, cannot explain all interactions, as structural data reveals
some conformational changes, however small, in most cases. In some cases,
the change is dramatic, and disorder to order transitions are seen; folding
and binding occur simultaneously (Sugase et al., 2007). The question now
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focuses on the degree to which the conformational ensemble of the binding
partners in the bound state overlap with the unbound state. At one end of
the spectrum lies the ’induced fit’ hypothesis, in which the conformations
accessible in the bound state are not accessible in the unbound state, and are
only stable in the presence of the other binding partner. At the other end of
the spectrum in the ’conformational sorting and population shift’ model, in
which the two ensembles share many conformations and the proportion of
proteins in the bound conformation is increased by the stabilising effect of
the binding partner. Evidence suggests that both effects occur, however the
conformational sorting mechanism is favoured when the energy barriers
separating the conformational states are large, when the interaction is weak
and when the interaction is dominated by short-range forces (Okazaki
and Takada, 2008; Zhou, 2010). For protein-protein interactions, the
evidence seems to suggest that the conformational sorting mechanism is
preponderant (Boehr et al., 2009; Okazaki and Takada, 2008; Goh et al., 2004;
Marsh and Teichmann, 2011; Boehr et al., 2009; Gsponer et al., 2008; Lange
et al., 2008; Marsh et al., 2010; Tobi and Bahar, 2005; Stein et al., 2011b).

1.4.4.6 Thermodynamic Cycles

The entropy, enthalpy, Gibbs free energy and potential energy are state
functions. This means that their value depends purely on the state of
the system, its pressure, temperature, volume and composition. This
property is very useful for the calculation of free energies, as it allows the
decomposition of binding into separate processes, via the construction
of a thermodynamic cycle. For instance, the binding free energy change
associated with proteins going from the unbound to the bound state in
solution can be calculated as the free energy of solvation of the bound
proteins, plus the free energy of binding in vacuo, minus the free energy of
solvation of the products. Not only can thermodynamic cycles correspond
to real processes, but also alchemical processes.



Chapter 1. Introduction 65

1.4.4.7 From Free Energy to Binding Affinity

The formation of a pure product from pure reactants, under standard condi-
tions, is known as the standard Gibbs reaction energy. This forces a distinc-
tion between actual, hypothetical and model systems. The standard Gibbs
binding energy, ∆G	, is the change of free energy when every protein A and
B, one mole of each, form one mole of the complex AB. This free energy is
the Boltzmann weighted average of all bound microstates. When a structure
is used to calculate a single point free energy, this corresponds to the energy
of one mole of AB at the corresponding set of coordinates, minus the energy
of one mole each of A and B all at the energy of the unbound coordinates.
In real biological systems, however, not all molecules of A and B are part of
a complex, and at equilibrium the relative proportion in the bound state is
determined by the dissociation constant, KD, given by equation 1.40. To es-
tablish a link between binding free energy and the binding affinity, we need
to consider the relationship between the standard Gibbs reaction energy and
the Gibbs energy of mixtures. The free energy change associate with adding
or removing a particle from a system is known as the chemical potential, µ.
The process of binding is equivalent to a thermodynamic cycle consisting of
the removal of one particle each of A and B, and the addition of one particle
of AB. The change in free energy for this cycle can be expressed as

∆G = µAB − µA − µB (1.58)

At equilibrium, the above equals zero, as there is no driving force to alter
the composition. The chemical potential of a substance can be determined by
equation 1.59, which is derived from first principles in Atkins and De Paula
(2006)

µX = µ	X + RT ln aX (1.59)

where aX is the activity of molecular species X, and µ	X is the chemical
potential of pure X at standard conditions. The activity can be expressed in
terms of [X], the concentration of X

aX =
fX[X]

c	
(1.60)
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where the standard concentration, c	, is 1M. For solutions of low concen-
tration the activity coefficient, fX, is close to 1, and so to a first approximation
the activity is equal to [X], and this can be used in equation 1.59. Therefore,
combining 1.59 and 1.58 and using the definition of the dissociation constant,
at equilibrium

0 = µAB − µA − µB = µ	AB + RT ln[AB] − µ	A −RT ln[A] − µ	B −RT ln[B]

= µ	AB − µ
	

A − µ
	

B + RT ln [AB]
[A][B]

= ∆G	 + RT ln KD
(1.61)

Rearranging and using the identities in equations 1.40 and 1.49, we get

∆G	 = −RT ln
ko f f

kon
= ∆H	 − T∆S	 (1.62)

This deduction is key, as it provides a solid link between the thermody-
namics and the kinetics of the binding process. It is difficult to overstate
the importance of this relationship, and it is used implicitly throughout
this thesis. Biologically significant interactions, the understanding of which
could facilitate systems biology studies, are those that have high affinity
and whose bound state engender biological function. This state relates to
the microscopic configurations of the atoms; the structural ensemble of the
complex. Through the above relationship, the structure of the complex can,
in principle, be used to calculate the binding affinity. Similarly, by finding
the global free energy minimum, the structures of unbound proteins can,
in principle, be used to predict the structure of the complex. Further, if
a sufficiently wide conformational search can be undertaken, the presence
or absence of a deep minimum can, in principle, confirm or repudiate a
putative interaction.

1.4.4.8 Binding Affinity Prediction

In section 1.3.1.3, it was shown how knowing the strength of the interactions
between the molecular constituents of biological systems is antecedent to
understanding cellular logic. There are a number of methods of calculating
affinities from structure, such as thermodynamic integration, free-energy
perturbation, MM-PBSA and others (Zacharias, 2010b; Gilson and Zhou,
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2007). However, these methods are very expensive, requiring extensive
conformational sampling. Even considering the advances in GPU acceller-
ated molecular dynamics, scoring whole interactomes is beyond the remit
of these techniques. Faster methods can be broadly split into two categories;
knowledge-based potentials, and "master" thermodynamic equations, both
of which must be empirically parametrised.
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Table 1.3: A summary of empirical binding free energy functions published to date. The
number of test cases are shown (Cases), with a subdivision in parentheses (protease-
inhibitors/other enzyme-inhibitors/antibody-antigen/small peptides/others). The para-
meters (Par.), number of variable terms (Var.), reported performance (Per.), the method
used (Method) and the reference (Reference) are also given. The method is reported as
either a potential of mean force (PMF) or a sum of terms (sum), with the name given
where applicable.

Cases Var. Perf. Method Par. Reference

3 (0/0/3/0/0) 0 10.5a sum Electrostatics, hydrophobic burial, side-chain entropy, constant Novotny et al. (1989)
15 (13/0/1/0/1) 3 0.96b sum Hydrophobic burial, polar burial, constant Horton and Lewis (1992)

9 (7/0/0/0/0) 0 2.4ac sum Electrostatics, H-bonding, side-chain entropy, constant Krystek et al. (1993)
9 (7/0/0/0/0) 0 1.3ac sum Electrostatics, hydrophobic burial, side-chain entropy, constant Vajda et al. (1994)

14 (14/0/0/0/0) 2 0.9a sum Electrostatics, desolvation Nauchitel et al. (1995)
9 (9/0/0/0/0) 4 0.74b sum Statistical function Wallqvist et al. (1995)

21 (16/0/2/0/3) 4 0.86b sum Hydrophobic burial, hydrophilic burial, # hydrophilic pairs, constant Xu et al. (1997)
9 (9/0/0/0/0) 0 0.7b PMF, ACE Coefficient, offset Zhang et al. (1997)

20 (16/0/3/0/1) 0 0.94bc sum Electrostatics, hydrophobic burial, side-chain entropy, constant Weng et al. (1997)
2 (1/0/1/0/0) 0 0.54a sum Electrostatics (water and self), VDW (water and self), cavitation, en-

tropy (translational, rotational, vibrational and configurational)
Noskov and Lim (2001)

28 (16/1/7/0/4) 1 0.75b PMF Coefficient, offset Jiang et al. (2002)
19 (16/1/1/0/1) 3 0.95b sum Hydrophobic burial, side-chain entropy, # hydrophilic pairs, constant Ma et al. (2002)

69 (19/2/8/27/13) 2 0.87b PMF, DComplex Coefficient, offset Liu et al. (2004)
52 (14/1/5/27/5)d 0 0.79be 0.85b sum, Rosetta Electrostatics, H-bonding, VDW, EEF1 desolvation, pair-potential, wa-

ter potential
Jiang et al. (2005)

82 (21/3/14/27/18) 2 0.73b PMF, DComplex Coefficient, offset Zhang et al. (2005b)
24 (18/1/2/0/3) 7 0.98b 0.95 f 0.62a sum, AffinityScore Interface gap volume, # exposed charges, # salt bridges, # hydrogen

bonds, # constricted torsions, # exposed hydrophobic groups, constant
Audie and Scarlata (2007)

20 (7/2/5/0/6) 5 0.83b sum Hydrophobic burial, polar burial, charge-charge interaction, charge
burial, side-chain entropy

Bougouffa and Warwicker (2008)

86 (25/2/13/26/20) 0 0.76b 2.24a PMF None Su et al. (2009)
63 (6/15/4/0/37) 8g 0.73bc f sum Trans/rot entropy, # atom pairs, # non-polar residues, # non-polar atom

pairs, interface planarity, interface gap volume, gap volume/interface
area ratio, constant

Bai et al. (2011)

a RMSE, kcal mol−1.
b Correlation.
c Two complexes omitted from evaluation.
d Identities from personal communication.
e Without water potential.
f Leave-one-out cross-validation.
g Feature selection.
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In the knowledge-based approach, statistical potentials (described in
section 1.4.4.4), are used to predict the binding free energy of complexes
with known binding affinity. Appropriately formulated, these do not require
training on binding free energies, only structures (Zhang et al., 1997; Su et al.,
2009). Having no adjustable parameters, these methods carry no risk of
over-fitting. Often, however, a correction to this prediction scheme, in the
form of a coefficient and an offset, is derived by linear regression of the
predicted energies against empirical binding free energies (Liu et al., 2004;
Zhang et al., 2005b), or by just adjusting the gradient (Jiang et al., 2002).
Such pair potentials cannot tell us about how the free energy is factorised
into entropic and enthapic components, nor can it be factorised according to
physical origin: electrostatics, desolvation, Van der Waals and so on.

In the "master equation" scheme, a number of physically relevant terms
are calculated explicitly and are taken in linear combination. In some
cases, the inclusion and weighting of each term is based on physical law,
such as Coulomb’s law, or on empirically parametrised functions, such as
the function relating the change in hydrophobic surface to the free energy
of transfer from aqueous to non-aqueous solvent (Chothia, 1974). This
information is derived from data other than the affinity test set and thus,
again, no fitting is required (Novotny et al., 1989; Krystek et al., 1993; Vajda
et al., 1994; Weng et al., 1997). In other approaches, the weights of some or
all terms are determined by linear regression against a training set (Horton
and Lewis, 1992; Xu et al., 1997; Ma et al., 2002; Bougouffa and Warwicker,
2008; Bai et al., 2011). Of course, the physical origins are known in these
methods, as their contributions are calculated explicitly, and their form can
also be related to the enthalpy and entropy of the binding for comparison
with isothermal titration calorimetry data (Weng et al., 1997). However,
often parameters can be colinear (Bougouffa and Warwicker, 2008; Vajda
et al., 1994), and thus it is difficult to be certain that the functional form
appropriately reflects the underlying physics. For instance, the affinities of
almost identical test sets can be equally predicted by equations of differing
functional form (Horton and Lewis, 1992; Xu et al., 1997; Weng et al., 1997).
A summary of methods published to date is given in Table 1.3.

In most efforts to predict binding free energy, the rigid-body approxim-
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ation was invoked. Either the rigid-body assumption was implicit as the
test/training sets were derived from previous publication in which struc-
tures which undergo conformational changes were excluded (Jiang et al.,
2002, 2005; Su et al., 2009), or flexible cases were explicitly excluded from
the set of complexes. Prior to Liu et al. (2004), only small sets of proteins
were used, and these mostly constituted protease/inhibitor interactions, and
other high affinity complexes composed of rigid binding partners, such as
barnase/barstar, the insulin dimer, the α and β chains of deoxyhaemoglobin
and lysozyme/antibody complexes. In these studies, excellent agreement
could be made between experiment and theory, with correlations up to 0.96
reported (Horton and Lewis, 1992; Nauchitel et al., 1995; Weng et al., 1997).

Between 2004 and 2009, four papers were published in which free energy
functions were applied to more diverse sets of complexes (Liu et al., 2004;
Jiang et al., 2005; Zhang et al., 2005b; Su et al., 2009). Most of this added
diversity came from the inclusion of small peptides, typically between 2 and
5 residues in length, and mostly involving interactions with oligopeptide-
binding protein (Sleigh et al., 1999, 1997; Tame et al., 1995). However, other
interactions such as those including G-binding proteins, signal transduc-
tion complexes and hormone/receptor pairs started entering the data sets.
Correspondingly, there was a decrease in the correlation between the ex-
perimental binding free energies and theoretical results. In the work of Bai
et al. (2011), feature selection and multiple regression was used to construct
models to predict affinity, dissociation and association rates for a diverse
set of complexes. However, it is not clear how they impliment their feature
selection algorithm, and there are a large number of adjustable parameters.
Further, the binding energy function seems incongruous, involving terms
such as the number of contacted atom pairs per 100Å2 interface area, the
volume of space between the interface per 100Å2 interface area, the planar-
ity of the interface and the number of non-polar residues at the interface.

A vastly more diverse set of interactions for which structural and affinity
data was available was collected and tested by Kastritis and Bonvin (2010).
In this set, no class of interaction is over-represented, as the list of complexes
from which it was derived contains no pairs with high sequence identity,
except for antibodies (Chen et al., 2003). Post corregendum, their test set
contained 46 complexes and 12 binding free energy functions were applied.
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The greatest correlation with these data is 0.53, highlighting the degree to
which previous studies were biased towards rigid proteins and particular
classes of interaction.

1.5 Protein-Protein Docking

In sections 1.4.4.3 and 1.4.4.4, I showed two approaches for calculating the
binding free energy of a protein-protein interaction from the coordinates of
a complex, and how this energy relates to the probability of finding two
proteins with that particular set of coordinates relative to a different set of
coordinates. This immediately suggests an intractable but sure method of
computationally determining the accessible structures a complex can adopt;
enumerate all states and their energies by performing an exhaustive search
of all conformations of both binding partners at all relative positions and
orientations, calculating the binding free energy at each point. However,
this approach is impossible in practice, as the combinatorial explosion
associated with having more than a handful of atoms renders the number
of possible conformations of the two proteins astronomical; hundreds of
orders of magnitude greater than the number of particles in the observable
universe! Here, I discuss the methods which can be employed to reduce the
problem from being equivalent to calculating the partition function, down
to something which is computationally feasible given current technology,
and discuss the current methods and issues in the protein-protein docking
field.

The free energy landscape of most proteins is such that their internal
structure is ordered. Indeed, in archaea and bacteria, it is believed that only
around 5% of proteins are mostly disordered, although in eukaryotes this
figure seems around five times higher (Oldfield et al., 2005). Thus, for the
majority of the time, most proteins in isolation adopt one of a relatively
narrow ensemble of conformations.

Analyses of the conformational changes associated with binding events
show that the topological features of the fold are conserved. Exceptions
do exist, such as the complex between thrombin and the heparin cofactor
(PDBid 1JMO), where the central strand of an antiparallel β-sheet distal
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to the binding site unravels, forming a parallel β-sheet and significant
structural rearrangement. However, most interactions for which structural
data is available demonstrate that the fold remains intact. Hence, a good
starting place for docking is to use an available unbound structure. If
this is not available, homology modelling can be employed to predict the
structure of the protein if the structure of homologues are known, although
docking homology models is inherently less reliable. If no homologues are
known, ab initio prediction of protein structure can be employed, but these
techniques are not currently viewed as capable of producing models of
sufficient quality for docking.

The earliest attempt to predict the structure of a complex from its
unbound constituents was an attempt to find the stacking of sickle cell
haemoglobin molecules into the fibres which exemplify the disease. In this
procedure, various relative positions and orientation of the haemoglobin
were chosen based on their consistency with electron microscopy data,
and side chain angles were optimised to eliminate clashes and optimise
electrostatics (Levinthal et al., 1975). A similar approach of optimising
electrostatics was used to model the complex between cytochromes b5
and c (Salemme, 1976). The first automated procedure, and the first
attempt at modelling which resembles modern docking, was the systematic
rigid-body docking of trypsin to BPTI, both small proteins (Wodak and
Janin, 1978). In this approach, the relative orientations and positions of
the two binding partners were systematically explored and the energy
was evaluated in terms of a non-bonded potential and a solvent exclusion
term. A coarse-grained model was used, with one interacting center per
residue, and the most promising solutions were refined. In broad outline,
the modern approach to the docking problem has not changed much since
these early studies, and docking is still viewed as an optimisation problem
or a systematic rigid-body search followed by refinement. However, the
conformational sampling and scoring routines have and are still progress-
ing, and no particular approach has yet been shown to be consistenly
superior (Mendez et al., 2005, 2003; Lensink et al., 2007; Lensink and Wodak,
2010b,a).
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1.5.1 A General Overview

There is no standard procedure for modern docking algorithms, however
many approaches share commonalities. Often a series of steps are per-
formed; an initial search, followed by refinement and then post-processing.
The initial step may be a rigid-body search which generates many structures,
which can be filtered with an efficient scoring function, or clustered, or
both. Then, a reduced list of potential docked poses can undergo flexible
refinement, to optimise the positions of sidechains and loops. Finally,
the refined structures can be re-ranked using a more expensive scoring
function. Not all algorithms undergo all steps and their details vary. Often
the algorithms run at the various stages can be substituted for one another.
For instance, the initial search can be performed by ZDOCK, PIPER, FTDock
or PatchDock (Chen and Weng, 2002; Kozakov et al., 2006; Gabb et al.,
1997; Schneidman-Duhovny et al., 2005b), refinement could be achieved
with RDOCK, MultiDock or FireDock (Li et al., 2003; Jackson et al., 1998;
Andrusier et al., 2007), and the final scoring/clustering could be completed
using ClusPro, ZRANK or RPScore (Comeau et al., 2004; Pierce and Weng,
2007; Moont et al., 1999).

1.5.2 Rigid-body Docking

The simplest representation of a protein is as a rigid body. Analysis of com-
plexes with known bound and unbound structure shows that in many cases
backbone rearrangements can be significant (Betts and Sternberg, 1999) and
almost 40% of interface side-chains swap rotamer (Guharoy et al., 2010; Ru-
vinsky et al., 2011). However, a rigid-body representation can often still be
used to find a reasonable docked pose and the lock and key model suffices
as a first approximation (Betts and Sternberg, 1999). Under the rigid-body
regime, there are six degrees of freedom, three translational and three ro-
tational, resulting in a manageable search space. This representation of
protein structure is frequently used as part of conformational searching and
refinement. For a systematic search in rigid-body search space with rota-
tional steps of 12◦, in a cube of 120Å, with translational grid spacing of 1Å,
around 1010 conformations need to be generated (Zacharias, 2010b). This
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is a large number of structures, however approximations can be used to
significantly accelerate the searching and scoring, and the most common
rigid-body approach uses the correlation technique, discussed in section
1.5.3. Alternatively, surface patches can be matched up to generate potential
docked poses, as discussed in section 1.5.4. These methods are based on
the observation that protein-proteins interfaces are often composed of com-
plementary surfaces, with protrusions matching indentations (Janin, 1995;
Chothia et al., 1985; Rebek, 1987; Norel et al., 1999). Rigid-body searching is
often a starting point for guided searches, in which the funnel-like energy
landscape is exploited, as discussed in section 1.5.5.

1.5.3 The Correlation Method

The correlation method of rigid body docking, developed by Katchalski-
Katzir et al. (1992), vastly accelerates the translational search by using the
fast Fourier transformation algorithm to calculate a correlation between two
discrete functions. These three dimensional functions, a and b, partition the
binding partners into interior, exterior and surface regions, discretised at a
resolution of 0.7− 0.8Å:

al,m,n =


1 on the surface

ρ inside

0 outside

(1.63)

bl,m,n =


1 on the surface

δ inside

0 outside

(1.64)

The interior parameters, ρ and δ, are set such that their product is large
and negative. The correlation function, c is given by

ca,β,γ =
N∑

l=1

N∑
m=1

N∑
n=1

al,m,nbl+α,m+β,n+γ (1.65)

The indices of the correlation function, α, β and γ, index the relative
position of the binding partners. Its value is positive if the surfaces match
and clashes are penalised by the large negative product of ρ and δ. The
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Fourier transform Xo,p,q, of a function xl,m,n is given by

Xo,p,q =
N∑

l=1

N∑
m=1

N∑
n=1

e−2πi ol+pm+qn
N xl,m,n (1.66)

The Fourier transform of the correlation function can be expressed in
terms of Bo,p,q and A∗o,p,q, the Fourier transform of b and the complex conjugate
of the Fourier transform of a respectively

Co,p,q = A∗o,p,qBo,p,q (1.67)

Hence it possible to use equation 1.66 to obtain the Ao,p,q and Bo,p,q, and
use these to to determine Co,p,q, the inverse Fourier transformation of which
yields ca,β,γ. Hence, a scored list of rigid body positions is obtained. This
procedure is repeated at different orientiations, to systematically search
both translational and orientational space.

Later, a modified version of the algorithm which included electrostatics
was implemented as the program FTDock (Gabb et al., 1997). In this scheme
the receptor is represented such that the discrete functions return the electro-
static potential at the exterior of the molecule, and the ligand is represented
as its charge, q

al,m,n =


∑

j
q j

ε(r j)r j
outside

0 inside
(1.68)

bl,m,n = q(l, m, n) (1.69)

Since then, a number of modifications to this scheme have been
proposed, such as the DOT algorithm (Mandell et al., 2001), which includes
solvent continuum electrostatics as well as Van der Waals forces, using
a more a general form of correlation functions, composite convolution
functions. In the ZDOCK algorithm (Chen and Weng, 2002), electrostatics
and surface complementarity are modelled along with the atomic contact
energy desolvation potential developed by Zhang et al. (1997). In another
correlation based approach, that of Heifetz et al. (2002), the discrete
functions are complex functions with the real part containing the surface
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complementarity and the electrostatics contained in the imaginary part.
In a later modification, a hydrophobic term was added (Berchanski et al.,
2004), resulting in improved performance. Alternatively, statistical pair
potentials can be encoded, such as is implemented in the docking program
PIPER (Kozakov et al., 2006). Here, the reference state for the pair potentials
were docking decoys; incorrect structures that were generated by docking.

Another correlation based method of note is that implemented in the
program HEX (Ritchie and Kemp, 2000). In this approach, the coordinate
system consists of 1 intermolecular distance and 5 angles. The shape
and electrostatics are expressed as a linear combination of the product of
spherical harmonics and Laguerre polynomials. In doing so, the correlation
function can be simultaneously evaluated for the 5 angular degrees of
freedom, as opposed to just the three translational degrees of freedom in
the earlier Fourier transformation based methods, resulting in considerable
speed up (Ritchie et al., 2008). Ported to GPU technology, this algorithm
can complete the entire 6D systematic search in as little as 15s, two orders
of magnitude faster than the next quickest systematic search methods
(Ritchie and Venkatraman, 2010), and has hence been a method of choice
for high-throughput docking (Wass et al., 2011).

One disadvantage of the correlation approach is that whilst it works
very well for proteins which undergo little conformational change upon
binding, it can produce many false positives and often other information,
or refinement, is required to determine which generated structures are
near-native.

1.5.4 Surface Matching

An alternative to systematic search is to only generate those structures
which have surface complementarity. Concave and convex features of
the protein surface can be characterised by their size and shape. These
’critical points’ on the solvent-accessible surface were first discussed by
Connolly, and later adaptations have served as a basis for the geometric
hashing technique, in which these surface descriptors are stored in a hash
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table (Wang and Levinthal, 1991; Connolly, 1983, 1986), or for sub-matrix
matching (Helmer-Citterich and Tramontano, 1994). The first successful
attempt at matching ’holes’ to ’knobs’ using geometric hashing was
performed by Norel et al. (1994). Following this success, the groups of
Nussinov and Wolfson later refined the algorithm and released it as the
program PatchDock, one of the most efficient surface matching algorithm
available to date (Fischer et al., 1995; Norel et al., 1999; Schneidman-Duhovny
et al., 2003, 2005b). The surface matching approach has been extended
to other molecular shape representations, such as descriptors based on a
linear combination of Zernike polynomials (Venkatraman et al., 2009), or
facets generated using the marching cubes algorithm (Bordner and Gorin,
2007; Lesk and Sternberg, 2008). Surface matching can be modified to
include flexibility, such as in the 3D-Garden method (Lesk and Sternberg,
2008) and FlexDock, a modified version of the PatchDock algorithm
(Schneidman-Duhovny et al., 2005a). A quite different surface matching
approach is the SKE-DOCK method (Komatsu et al., 2003; Terashi et al.,
2007). Benzene clusters are simulated around the surface of the binding
partners by molecular dynamics. Hydrophobic benzene attractor points
serve as the equivalent of ’holes’ and ’knobs’, which are matched up and
further refined. Surface matching and guided search docking methods are
not mutually exclusive, as some algorithms can fit easily into either category.

1.5.5 Guided Search

Guided docking methods are ones which employ optimisation or simu-
lation techniques to minimise the interaction energy, such as molecular
dynamics, Monte Carlo sampling, Newton-Raphson, simplex or steepest
descent. This approach takes advantage of the energy funnel surrounding
the bound ensemble of structures. Methods of this type include ATTRACT
(Zacharias, 2003), which uses a quasi-Newton minimiser, 3D-Dock, which
uses steepest descent (Jackson et al., 1998), ICM-disco, which uses a pseudo-
Brownian Monte Carlo routine (Fernandez-Recio et al., 2004; Fernández-
Recio et al., 2003), HADDOCK, which uses simulated annealing and steep-
est descent, (Dominguez et al., 2003; de Vries et al., 2007), methods based
on the genetic algorithm (Gardiner et al., 2001), MC2, which uses Monte
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Carlo sampling (Bastard et al., 2003), SMOOTHDOCK, which uses molecu-
lar dynamics, simplex and adopted basis Newton-Raphson (Camacho and
Vajda, 2001; Camacho and Gatchell, 2003), RDOCK, which also uses adop-
ted basis Newton-Raphson (Li et al., 2003), RosettaDock, which uses Monte
Carlo with quasi-Newton minimisation (Wang et al., 2005; Gray et al., 2003),
FireDock, which uses linear programming, Monte Carlo and quasi-Newton
minimisation (Andrusier et al., 2007), ReplicOpter, which uses an adapted
Hooke-Jeeves optimiser (Demerdash et al., 2010) and FibreDock, which uses
Monte Carlo and quasi-Newton minimisation (Mashiach et al., 2010).

1.5.6 Accounting for Flexibility

When proteins bind to one another, a number of possible structural changes
can occur. These can be global motion, such as hinge bending, in which
domains connected by a flexible region move rigidly relative to one another,
or shear motion, in which the interdigitated sidechains of two packed
structural elements move parallel along with those elements and repack
themselves. Localised rearrangements are more frequent; flexible loops can
change their conformation, and sidechains can switch rotamer, or move to
a non-rotameric conformation. Accounting for the conformational changes
which occur as proteins bind to one another remains a problem in the field
of protein-protein docking, and has been subject to a number of recent
reviews (May and Zacharias, 2005; Bonvin, 2006; Gray, 2006; Andrusier
et al., 2008; Moreira et al., 2010; Zacharias, 2010a; Bastard et al., 2011).

The simplest common method to account for the coformational changes
is to use ’soft’ potentials to allow clashes and some interpenetration of
surfaces (Palma et al., 2000; Fernández-Recio et al., 2003; Jiang and Kim,
1991; Zacharias, 2003; Katchalski-Katzir et al., 1992; Gabb et al., 1997;
Mandell et al., 2001; Chen and Weng, 2002; Eisenstein and Katchalski-Katzir,
2004; Gardiner et al., 2001; Gray et al., 2003; Schneidman-Duhovny et al.,
2004). Indeed, in the first pioneering early studies, either a reduced model
(Wodak and Janin, 1978), or a softened Van der Waals term in which the
repulsive 1/r12 term is replaced by a 1/r8 term, was used (Levinthal et al.,
1975). Soft potentials also reduce the ruggedness, and thus the multi-
modality, of the energy landscape, which aids optimisation as it reduces
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the number of local minima in which the algorithm can become trapped.
Soft potentials and coarse-graining are simple methods of soft-docking,
however three other approaches stand out as particularly noteworthy.
One of these is employed in the GRAMM-X approach (Tovchigrechko
and Vakser, 2006). Here, the degree of coarse-graining and smoothing
of the potential can be varied, and thus a finer grain can be used when
docking high-resolution structures or those deemed to be rigid, whilst
a coarser grain can be used for lower resolution structures, homology
models or flexible proteins, or for studying low-resolution recognition
factors. Another interesting form of coarse-graining is the potential used in
the SMOOTHDOCK algorithm (Camacho and Vajda, 2001; Camacho and
Gatchell, 2003), where initially electrostatics and desolvation dominates
the energy function, and the weight of the Van der Waals interaction is
slowly increased as the algorithm proceeds. Thus, the ruggedness of
the energy landscape increases as the search is focussed. Finally, the
semi-definite programming-based underestimation approach developed
by the Vajda lab uses the convex global underestimation method which
was originally developed for protein folding (Paschalidis et al., 2007; Shen
et al., 2008). In this model, the local energy minima are fitted to a quadratic
function, and further sampling is biased towards the minima of this function.

The most basic method to refine structures which are generated with soft
potentials is energy minimisation in all degrees of freedom. For instance,
following a systematic rigid-body search, Li et al. (2003) tooks a series
of three minimisations, first with just Van der Waals, then with Van der
Waals and uncharged polar groups and finally with Van der Waals and full
electrostatics. This method, however, can only deal with clashes and very
minor changes.

A more advanced method of including flexibility is ensemble docking. In
this approach, ensembles of structures are docked together. The ensembles
can be generated in a number of ways, and there are a number of different
ensemble-based approaches. In the cross-docking method, molecular
dynamics is performed on the ligand and receptor, the trajectories are
clustered and the clusters rigidly docked pairwise to one another (Smith
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et al., 2005; Grunberg et al., 2004; Krol et al., 2007a). A similar approach is
that of Mustard and Ritchie (2005), in which the program CONCOORD
(de Groot et al., 1997) was used to generate an ensemble of structures using
pseudo-NMR restraints. Principle component analysis was employed and
used to generate ’eigenstructures’, which were subsequently cross-docked.
The other main ensemble based docking method is the mean field approach,
in which the whole ensemble is docked simultaneously (Koehl and Delarue,
1994). Take, for instance, two interacting side-chains. Each member of
the ensemble of both side chains are weighted equally. Each member of
the first side chain ensemble feels the weighted average energy of the
second side-chain, and their weights are adjusted such that they follow
the Boltzmann distribution. Then the weights of the second side chain are
then adjusted so as to follow a Boltzmann distribution in the mean field
created by the first side chain. Then, the weights of the first side chain are
adjusted again, and the process is repeated iteratively until self-consistency
is achieved. This model can be extended without loss of generality. This
approach has been used to model side chains in a number of programs,
including MultiDock and ATTRACT (Jackson et al., 1998; Zacharias, 2003;
Koehl and Delarue, 1994; Mendes et al., 1999), as well as to model loops
in RosettaDock, MC2 and ATTRACT amongst others (Bastard et al., 2003;
Loriot et al., 2011; Chaudhury and Gray, 2008; Bastard et al., 2006). Of
course, the ability to accurately model loops and side chains is predicated
upon the native conformation residing within the inital ensemble. This
inital ensemble can be derived from loop or rotamer databases (Oliva et al.,
1997; Michalsky et al., 2003; Wang and Dunbrack, 2003), from molecular
dynamics or Monte Carlo simulations, CONCOORD, NMR ensembles,
normal mode analysis or from known homologues (Demerdash et al., 2010).
Mean field modelling is commonly applied during a docking procedure,
however sometimes loops can be ignored during the docking itself and
rebuilt in the post-processing stage (Wang et al., 2007a; Soto et al., 2008).

Others have developed methods of modelling hinge motions, and this
is particularly suited to modelling multi-domain proteins. Usually this is
done by locating hinge regions either manually or automatically (Emekli
et al., 2008), docking both sides of the hinge independently and then
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reassembling the complex (Ben-Zeev et al., 2005; Schneidman-Duhovny
et al., 2005a, 2007; Sandak et al., 1998b,a; Cheng et al., 2008; Karaca and
Bonvin, 2011). The approach detailed in Karaca and Bonvin (2011), which
has been implemented in the HADDOCK suite, is of particular interest
as it allows the simultaneous modelling of hinge-bending, side-chain and
backbone motions. Other interesting approaches to hinge modelling have
been outlined by Wang et al. (2007a) and Zhao et al. (2006), in which
flexibility is handled by novel data structures, although it remains to be seen
whether these approaches can consistently model hinge motion efficiently
and accurately.

Another method to account for flexibility is Monte Carlo sampling, in
which backbone or side-chain conformational changes are proposed and
either accepted or rejected depending on the energy of the new conforma-
tion. For instance, side chain Monte Carlo sampling has been implemented
in ICM-DISCO (Abagyan and Totrov, 1994; Fernández-Recio et al., 2003) and
RosettaDock (Gray et al., 2003). Side-chain rotamer prediction has also been
tackled using molecular dynamics (Camacho and Gatchell, 2003; de Vries
et al., 2007), genetic algorithms (Tuffery et al., 1991) and neural networks
(Hwang and Liao, 1995). Another approach uses graph-theoretical models
in which each side-chain is represented using a node, and those with an inter-
acting rotamer pair are connected by edges. The graph can be decomposed
such that the optimal set of rotamers is derived by combining the optim-
ised rotatmer combination corresponding to sub-graphs (Krivov et al., 2009).

Monte Carlo sampling can also be used to model the conformational
changes of loops. Fixed-end-moves, the rotation of a number of atoms
around two fixed points (Betancourt, 2005), have been observed in crystal
structures (Davis et al., 2006) and can capture some known protein motions
(Friedland et al., 2009). They have been used to model backbone motions in
the RosettaDock program as part of the Monte Carlo move set (Fleishman
et al., 2010; Lauck et al., 2010). Modelling backbone flexibility has also been
done by varying φ and ψ torsion angles, either using Monte Carlo (Wang
et al., 2007a) or by simulated annealing molecular dynamics (de Vries et al.,
2007).
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The final approach to modelling conformational changes that occur
upon binding is to use normal modes. As many protein motions can
be approximated using a small number of low frequency modes (see
section 1.4.2.3), using a linear combination of normal modes is a promising
approach for modelling conformational change. Aside from the approach
analysed and implemented during the course of the PhD, and presented
in later chapters, two other groups have dynamically adjusted movements
along normal coordinates as part of a flexible docking strategy. In the
ATTRACT program, the 5 lowest frequency non-trivial normal modes are
used as degrees of freedom, along with the translation and orientation
(May and Zacharias, 2008a). Quasi-Newton minimisation is performed
from multiple starting positions, the proteins are represented using a
coarse-grained model and the energy is calculated using a soft Van der
Waals potential and electrostatics. The other approach is that used in the
FibreDock refinement protocol (Mashiach et al., 2010). In this protocol, the
side-chains of rigidly soft-docked poses, derived from another method,
are optimised using a linear programming routine (Kingsford et al., 2005).
Then rigid-body minimisation is performed followed by minimisation in
normal mode space. In this step, the overlap between pre-calculated normal
modes and the forces acting upon the binding partners is used to select
10 modes, and Monte Carlo sampling is undertaken in this normal mode
space. Finally, after another round of rigid-body minimisation, the lowest
energy solutions are returned.

1.5.7 Re-Ranking and Clustering

The above methods can be used to generate structures, either ab initio or by
the refinement of initial structures. Re-ranking and clustering has shown to
be an essential component of many docking protocols, either for filtering
prior to refinement, or for final scoring and model selection.

The basis of clustering is the fact that long range forces steer the
binding partners into regions of low free energy, and it has been shown to
significantly improve the ranking of generated structures (Comeau et al.,
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2004; Kozakov et al., 2005; Lorenzen and Zhang, 2007; Tong and Weng,
2004; Zhang et al., 2005a). A typical clustering protocol is exemplified
by the ClusPro methodology (Comeau et al., 2004; Kozakov et al., 2005).
In this approach the all-versus-all RMSD matrix is calculated and each
structure scored by the number of other structures within a certain cut-off.
The first cluster consists of the highest scoring structure and all structures
within the cut-off of it. These structures are removed from the matrix and
subsequent clusters are similarly determined. Clustering can be performed
hierarchically, where the clustering threshold is adjusted, thus revealing
low-resolution determinants of binding and sub-clusters within clusters.
This information can then be used to guide model selection.

Re-ranking is the process of ranking generated structures using a higher
accuracy, and generally more expensive, scoring function than that used
in model generation. For instance, in the grid-based docking algorithm
BIGGER, amino acid propensities and geometric complementarity is used
to rank structures which are rapidly determined using fast heuristics
and Boolean logic (Palma et al., 2000; Krippahl et al., 2003). Then, in the
post-processing stage, amino acid propensities, surface complementarity,
desolvation and electrostatics are used to score all the generated structures.
These terms are fed through a neural network which was trained on a
set of 25 protein-protein complexed using a back-propagation algorithm,
in which the objective function was to maximise the distinction between
false structures and near-native complexes. A more recent neural network
based scoring function takes atom-pair distance distributions as the input.
The neural network was trained on docking decoys for 185 protein-protein
complexes, and tested against 65 complexes which weren’t used for training
(Chae et al., 2010). This method managed to find near-native structures in
the top 10 in 22 cases, when ranking unrefined structures generated from a
correlation based systematic search. Another interesting approach is that
of Bernauer et al. (2007), in which the interfaces of native structures and
false positive docked solutions are converted to Voronoï diagrams; a set of
polygons which encode information about the structure of the interface.
Amino acids were categorised according to physiochemical properties:
hydrophobic, aromatic, positive, negative, polar and small. The Voronoï
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diagrams were used to derive a number of features relating to the compos-
ition and interactions at the interface. These features were then used to
train a number of machine learning methods, including logistic regression,
support vector machines and a genetic algorithm, which maximised the
area under receiver operator curves. The latter two methods provided a
considerable improvement in the ranking of structures generated using
DOCK and HADDOCK.

One of the most popular re-ranking approaches uses pair potentials
(Muller and Sticht, 2007; Huang and Zou, 2008; Liang et al., 2007). These
can be statistical potentials as described in section 1.4.4.4, or they can be
derived to maximise discrimination between true and false docked poses.
Alternatively, a combination of terms can be weighted to aid in ranking. For
instance, the ZRANK program weights Van der Waals, electrostatics and
a desolvation score (Pierce and Weng, 2007). The repulsive and attractive
components of the Van der Waals term were separated, and the contribu-
tion of electrostatics was decomposed into four terms: short-range (< 5Å)
attractive, short-range repulsive, long-range attractive and long-range re-
pulsive. A simplex algorithm was used to determine the weights of these
seven parameters to optimise the ranking of near-native structures.

1.5.8 Incorporating Experimental Data

Experimental data can be incorporated into a docking routine in various
ways. For instance, many homomultimeric complexes are symmetric.
Information about this symmetry can be derived from small angle x-ray
scattering (SAXS), cryo-electron microscopy (cryo-EM) and NMR residual
dipolar coupling and juxtaposed chemical shift. As the conformations of
molecules in symmetric complexes are related by symmetry operations,
only one of each molecule needs to be modelled, and the others are recon-
structed via these symmetry operations, thus reducing the search space.
A number of docking algorithms incorporate Cn symmetry, including
M-ZDOCK (Pierce et al., 2005), SymmDock (Schneidman-Duhovny et al.,
2005a), HADDOCK (Karaca et al., 2010), RosettaDock (Andre et al., 2007),
MultiDock (Jackson et al., 1998), MultiFit (Lasker et al., 2010b), ClusPro
(Comeau and Camacho, 2005) and others (Berchanski and Eisenstein, 2003;
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Berchanski et al., 2005; Huang et al., 2005).

SAXS curves themselves can be used as part of a docking strategy, and
although these offer low-resolution data, they are particularly suitable
for characterising large and anisotropic complexes. As such, a number
of docking protocols which incorporate SAXS data have been developed,
which either filter docking results by comparing the synthetic SAXS
profiles of docked solutions to experimental SAXS profiles, or combine
the overlap of synthetic and experimental curves into the scoring function
(Schneidman-Duhovny et al., 2011; Forster et al., 2008; Petoukhov and
Svergun, 2005; Pons et al., 2010).

Another source of experimental data which can be incorporated is
cryo-EM, and tools for fitting components into cryo-EM density maps are
available, such as Flex-EM (Topf et al., 2008) and the Situs suite (Wriggers,
2010). Incorporating computational docking techniques with the fit between
modelled structures and cryo-EM density has been a focus of research in
the groups of Haim Wolfson and Andrej Sali (Lasker et al., 2010b, 2009).
Indeed, this is currently being incorporated into the Integrative Modelling
Platform (IMP), in which restraints based on cryo-EM, SAXS and various
other proteomics data can be simultaneously incorporated and weighted
for the modelling of multimeric assemblies (Lasker et al., 2010a).

Other sources of experimental information which illuminate biomolecu-
lar recognition include site-directed mutagenesis, where the influence of
mutations on protein-protein binding can be ascertained (Otzen and Fersht,
1999), and H/D exchange, where the occlusion of interfacial hydrogens
can be determined (Garcia et al., 2004). Further, the physical properties
of a protein surface and the evolutionary conservation of it amino acids
can be used to predict binding sites or binding hot spots (Ezkurdia et al.,
2009; Tuncbag et al., 2009; de Vries and Bonvin, 2008). This data, however,
can be unreliable and although the identity of interacting residues may be
known, specific contacts are usually not. The incorporation of this type of
data into docking has been pioneered by the group of Alexandre Bonvin in
the HADDOCK package (de Vries et al., 2007). An additional energy term
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is added to the scoring function in order to account for these ambiguous
restraints. A list of residues which are believed to be involved in binding
(active residues) and those which may be involved in binding (passive
residues) is provided as an input to the algorithm. For each active residue
the additional energy term is evaluated against all passive residues and
the other active residues such that contacts between these residues are
favoured. The algorithm is run several times, with different random subsets
of these restraints, so that residues which may be erroneously identified as
being interfacial do not systematically bias the search.

1.5.9 High-Throughput Docking

A number of key issues which, if resolved, could facilitate the ambitions of
systems biology, were outlined in section 1.3.1.3. The methods discussed
above show some promise at being able to derive structures of complexes.
However, the confirmation or rejection of interactions discovered by high-
throughput proteomics, the identification of new interactions, and the struc-
tural annotation of protein-protein interaction networks have not yet been
considered. These questions are beginning to be addressed using high-
throughput docking (Stein et al., 2011a; Wass et al., 2011; Matsuzaki et al.,
2009; Yoshikawa et al., 2009; Mosca et al., 2009). Attempt to use docking
to pick out known interactions from all-versus-all docking or by picking
known interactions from decoy docking partners has so far shown only lim-
ited success. The precision of these methods can be quite high, but the recall
is low (Matsuzaki et al., 2009; Yoshikawa et al., 2009; Wass et al., 2011). A first
attempt at the structural annotation of an interactome has been undertaken,
however estimates of both recall and sensitivity are both low, with at most
a quarter of true structures being ranked as one of the top three docked
structures (Mosca et al., 2009).

1.5.10 The CAPRI Experiment

As docking algorithms progressed, the structural bioinformatics community
saw a need for docking algorithms to be put to the test. In 1994, following the
crystallographic determination of the complex between TEM-1 β-lactamase
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and β-lactamase inhibitor 1 by researchers at the University of Alberta, nine
laboratories were set the challenge of predicting the structure of the complex
given nothing but the coordinates of the unbound proteins (Strynadka et al.,
1996). Six of the groups rose to the challenge, submitting between 1 and 15
complexes each. To determine the accuracy of the submitted answers, the
RMSD between the submissions and the crystal structure were calculated as

RMSD =

√√√
1
N

N∑
i=1

δ2
i (1.70)

where N is the number of atoms, and δi is the distance between the ith
atom of the bound structure and the ith atom of the predicted structure. The
coordinates were optimised to find the minimum RMSD, and this was used
to judge the accuracy of the model. All six of the groups produced models
with RMSD below 2.5Å, and five below 2.0Å. In hindsight, the target was
an easy one, being an enzyme-inhibitor complex, having subnanomolar
affinity (Albeck and Schreiber, 1999), and with a change in interface RMSD
below 0.5Å, however it was recognised that blind tests would be the acid
test for the state of macromolecular docking. Soon after, another docking
challenge was issued as part of CASP2, a blind test for the protein/homology
modelling community commenced in order to determine the state of the
modelling field. The docking community soon followed suit with CAPRI;
Critical Assessment of PRediction of Interactions. Generous structural
biologists were asked to volunteer their structures prior to release, so that
anyone who chooses to register can test their algorithms (Vajda et al., 2002).

One of the earliest questions raised pertained to the evaluation of sub-
missions. The RMSD of the complex is not a perfect score, as if the interface
is essentially predicted correctly, a small rotation of a large prolate ligand
causes a larger increase in RMSD than for a smaller spherical one, to such
an extent that one submission could be deemed better than another with
a more accurately modelled interface. Further, physically impossible pre-
dictions with many clashes could rank highly. To resolve these issues, and
others, a number of different measures are evaluated to judge the goodness
of prediction.
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1. Interface RMSD, I_RMSD; the minimum RMSD of interface main-chain
atoms, where the interface is defined as the residues which lose surface
area upon binding.

2. Ligand RMSD, L_RMSD; the RMSD of the smaller of the binding part-
ners, after superimposition of the larger.

3. F_nat; The fraction of native residue-residue contacts correctly pre-
dicted, where a ligand residue and a receptor residue are deemed to
be in contact if an atom in one is within 5Å of an atom in the other.

4. F_nonnat; The fraction of non-native contacts which appear in the
predicted structure.

Submitted models are removed if they contain too many clashes. The
remaining models, are categoried as either high accuracy (F_nat ≥ 0.5 and
either I_RMSD ≤ 1.0 or L_RMSD ≤ 1.0), medium accuracy (F_nat ≥ 0.3 and
either 1.0 < I_RMSD ≤ 2.0 or 1.0 < L_RMSD ≤ 5.0), acceptable (F_nat ≥ 0.1
and either 2.0 < I_RMSD ≤ 4.0 or 5.0 < L_RMSD ≤ 10.0), or incorrect (F_nat
< 0.1).

Usually, each round of the CAPRI experiment is split into two parts;
prediction and scoring. In the prediction part, the participants are given
the unbound structure or, if this is not available, the amino acid sequence
for homology modelling. Participants then upload 10 predicted structures,
ordered by preference. Participants are also encouraged to upload up to
100 structures for the scoring round. In the scoring round, participants
can download all the uploaded structures and are given the challenge of
selecting the best models, up to 10 of which are refined and uploaded. Teams
are then ranked according to how many targets they successfully predicted,
and similarly for how many targets are correctly selected during the
scoring round, although this procedure has been criticised and an alternat-
ive method of ranking the scorers has been proposed (Feliu and Oliva, 2010).

Approximately every two years, members of the CAPRI community
are invited to convene at a conference, and a special issue is published in
the journal ’Proteins: Structure, Function and Bioinformatics’, in which the
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performance of the participants is analysed, and the latest developments
in docking algorithms published; Volume 52, Issue 1 (2003), Volume 60,
Issue 2 (2005), Volume 69, Issue 4 (2007) and Volume 78, Issue 15 (2010). A
number of groups have participated regularly in the CAPRI experiment,
and as time goes on this number is growing.



Chapter 2

Normal Mode Analysis and
Conformational Transitions

2.1 Introduction

Protein-protein docking can be formulated as an optimisation problem, in
which an energy function is optimised in the given degrees of freedom.
Rigid-body docking, in which only the 6 translational and rotational
degrees of freedom are optimised, cannot capture the conformational
changes which occur when proteins bind to one another. For a system
of N particles, including full flexibility requires 3N degrees of freedom,
one for each coordinate. A representation of conformation can take a
number of forms. For instance, in the Cartesian representation, each
coordinate corresponds to either the x, y or z position of an atom. In the
internal coordinate system, each coordinate corresponds to a bond length,
valence angle or dihedral angle. The difficulty of an optimisation problem
is related to the number of variables which need to be simultaneously
optimised, and so increasing the search space by including full flexibility
vastly increases the difficulty of optimisation. In section 1.5.6, a number
of ways of incorporating flexibility with fewer degrees of freedom were
outlined, including restricting flexibility to side-chain and/or flexible loops,
or just optimising torsion angles. The potential success of any reduction in
complexity is predicated upon the degrees of freedom being eliminated not
being relevant to the conformational changes observed. For instance, the
observation that bond lengths do not vary significantly when proteins bind

90
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to one another allows these degree of freedom to be eliminated when using
an internal coordinate system, leaving only 2N variables for optimisation.

Normal coordinates, the derivation of which appears in section 1.4.2.3,
are complete, as in any possible conformation can be expressed as a linear
combination of some, or all, of the 3N modes. They are also orthogonal;
no motion along one mode can be expressed as a linear combination of
any other modes. Hence, they can be considered a candidate coordinate
system. Indeed, representing protein conformation as a linear combination
of normal modes has been discussed as a coordinate system for guided
protein-protein docking (Andrusier et al., 2008; Bonvin, 2006; May and
Zacharias, 2005), has been used used in protein-small molecule docking
(May and Zacharias, 2008b; Floquet et al., 2006; Sander et al., 2008; Cavasotto
et al., 2005; Kovacs et al., 2005), to refine protein-DNA and protein-small
molecule interactions (Zacharias and Sklenar, 1999; Lindahl and Delarue,
2005) and generate structures for protein-small molecule cross-docking
(Rueda et al., 2009). It has also been used in two protein-protein docking
routines, as discussed in section 1.5.6 (May and Zacharias, 2008a; Mashiach
et al., 2010). In these approaches, higher frequency normal modes were
eliminated, on the basis that many protein motions resemble a single low
frequency normal mode, usually one of the first 5 (Yang et al., 2007a; Krebs
et al., 2002; Tama and Sanejouand, 2001; Atilgan et al., 2001). In the context
of protein-protein binding, Dobbins et al. (2008) demonstrated that the
same is true when considering the global conformational changes which
occur when highly flexible proteins bind to one another. These results
suggests that normal modes can be a very powerful representation of
protein conformation. Using an internal coordinate system, even if all bond
lengths and valence angles are eliminated, there are still as many degrees
of freedom as there are atoms, which can be well over a thousand. The
above studies suggest that the conformational changes which occur upon
binding could be modelled using only a few low frequency modes, say 5 or
10, conferring a huge advantage to this model.

These studies, however, neglect some salient issues pertaining to the
use of normal coordinates when docking. Most of them use a coarse-
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Figure 2.1: The complex between murine IgG1,λ HC19 antibody in the bound (green)
and unbound (red) conformation, and influenza hemagglutinin (purple), PDBid 2VIS.
The structures are superimposed on the binding domain. Image taken from Moal and
Bates (2010) under the Creative Commons Attribution 3.0 licence.

grained model of protein conformation, whilst most docking algorithms
operate at atomic resolution, especially those which aim at producing high-
resolution models. All of them focus upon single modes in isolation, whilst
for guided docking algorithms the mode which best represents the con-
formational change is not know, and thus multiple modes must be taken in
linear combination. Finally, they all focus on global conformational changes
occurring across the whole fold, whilst it is known that in silico, as in vivo,
protein-protein binding is driven by changes which occur at the binding
interface, and it is the reconstruction of these changes which is of greatest
import in a docking protocol.

To illustrate this last point, consider the interaction between influenza
hemagglutinin and the HC19 IgG1,λ antibody, shown in Figure 2.1, for
which the lowest frequency mode can capture the observed conformational
change (Dobbins et al., 2008). It is clear in this case that the normal mode
analysis is identifying the hinge motion, and that the hinge motion is not
functionally relevant, as it corresponds to the movement of a domain which
is not involved in binding. It is likely that the observed hinge motion is due
to crystal packing forces acting upon the intrinsic flexibility of the protein,
as is the case for the differing hinge angles observed when D-allose-binding
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protein is crystallised in different space groups (Magnusson et al., 2002).
Another example of global conformational differences arising due to crystal
packing forces is given by two different crystal structures of the T4 lysozyme.
Molecular dynamics simulations of these structures show convergence
of the interdomain hinge angle after 500ps (Arnold and Ornstein, 1997).
Additionally, there are the different hinge angles of the same protein in the
asymmetric unit of the rabbit tissue factor crystal structure (Muller et al.,
1998b), and different crystallographic conformations of the SIV proteinase
(Wilderspin and Sugrue, 1994). Thus, while it is difficult to ascertain which
global conformational changes are due to crystal packing, and which are
functionally related to binding, interfacial conformational change upon
docking is expected to be less susceptible to this effect, as this change is either
not associated with global change, or the global movements are functional
aspects of the binding, such as when binding to a cleft between two domains.

In this chapter, the above issues are addressed by evaluating the ability for
normal coordinates to capture unbound to bound conformational transitions
at atomic, main-chain and residue level resolution, across the whole fold,
and at the interface, on a large data set of 236 proteins. This reveals the upper
limit of what conformational changes can be modelled using low frequency
modes in linear combination during a docking run. This work has been
published in Moal and Bates (2010).

2.2 Methods

2.2.1 Normal Mode Analysis

Calculating normal modes can be very computationally expensive. The cost
arises from having to extensively optimise the system prior to calculating
the Hessian. The elastic network model is an alternative formulation which
is much less computationally demanding, and is the one used here (Tirion,
1996; Bahar et al., 1997; Atilgan et al., 2001).
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2.2.1.1 The Elastic Network Model

In the elastic network model (ENM), the system is treated as balls on springs.
For all atom or residue pairs A and B, within a certain cutoff, c, a Hooke
potential VAB, equation 1.12, is employed. The same force constant, k = 1.0,
is used for each spring, and re, the equilibrium spring length, is set to be
that given in the initial structure, ensuring that this structure is the energy
minimum. Thus, the potential energy function becomes

Vtot =
∑

rAB<c
VAB (2.1)

A cutoff of c = 10Å is used for all calculations. This function is used
to construct the Hessian and yield the normal modes (see section 1.4.2.3).
This model may seem very simplistic, only taking account of the shape of
the molecule, and ignoring all electrostatics and hydrogen bonding and so
on, as well as only being relevent to small linear motions and ignoring mul-
tiple minima and solvent damping effects. Nevertheless, the model, which
is robust to the value of the cutoff used (Kurkcuoglu et al., 2006), has been
able to reproduce thermal B factors at atomistic resolution (Tirion, 1996), and
residue-level resolution (Bahar et al., 1997), as well as atomic fluctuations as
determined using NMR (Yang et al., 2007b) and molecular dynamics (Rueda
et al., 2007). Additionally, it has been shown that for most known protein
motions, the global rearrangements of the fold can be modelled using a
single low-frequency mode (Yang et al., 2007a; Krebs et al., 2002; Tama and
Sanejouand, 2001; Atilgan et al., 2001; Dobbins et al., 2008; Cui et al., 2004;
Petrone and Pande, 2006). In this work, the Hessian matrix is constructed
using pdbmat, part of the ElNeMo package (Suhre and Sanejouand, 2004).
To diagonalise the Hessian, we used either the Basic Linear Algebra Subpro-
grams (BLAS) library (Dongarra, 2002), or diagrtb, an implimentation of the
rotation-translation-of-blocks method (see below) (Suhre and Sanejouand,
2004). Calculations were done on unbound structures, at either a coarse-
grain level, or at atomistic detail. For the coarse-grain calculations, only Cα
positions were considered. For the atomistic calculations, small molecule
ligands, but not crystallographic waters, were used to construct the Hessian.
These were ignored for the remainder of the analysis.
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2.2.1.2 Rotation-Translation-of-Blocks

The rotation-translation-of-blocks method offers considerable computa-
tional saving, as unwanted higher frequency modes are not calculated.
Blocks of atoms, usually of one residue or more, are treated as rigid units
capable of rotation and translation. The all-atom Hessian is projected into
a block translation and rotation subspace by applying a projection matrix.
This projected Hessian is used to determine vibrational frequencies and ei-
genvectors (Tama et al., 2000; Li and Cui, 2002). The all-atom eigenvectors
are then constructed by applying the transpose of the projection matrix
to the block eigenvectors, to produce approximate low-frequency modes.
Subsequently, these approximate all-atom modes are iteratively perturbed
toward the exact solution by using higher frequency modes calculated inde-
pendently for each block (Durand et al., 1994; Durand, 1983). Compared to
the standard method of diagonalising the all-atom Hessian, this method can
reproduce frequencies and atomic fluctuations with comparable accuracy.
In this work, single residue blocks are used.

2.2.2 Overlap

The ability for the jth normal mode to capture the displacement of atoms
involved in a protein motion is given by its overlap, O j, with that motion
(Marques and Sanejouand, 1995).

O j =
|
∑3n

i=1 ai j(rb
i − ru

i )|√∑3n
i=1 a2

i j
∑3n

i=1(r
b
i − ru

i )
2

(2.2)

where rb
i and ru

i are the ith coordinates of the bound and unbound struc-
tures respectively and ai j is the ith coordinate of the jth normal mode. If the
movement is in exactly the same direction as the mode, this function has a
value of 1. If the mode and the conformational change are orthogonal, it
takes a value of 0. The overlap can be calculated over the whole set of points
used in the ENM, or a subset of those points, such as the interface.

Two sets of m modes, a and b, can be compared using the overlap matrix,
for which the ith element of the jth row corresponds to the overlap between
the ith mode of a and the jth mode of b. The degree of similarity between these
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two sets of modes can be ascertained by calculating, Ō, the root-mean-square
inner product between them.

Ō =

√√√
1
m

m∑
i=1

m∑
j=1

(aib j)2 (2.3)

A value of 1 indicates that all the modes in a can be expressed as a linear
combination of modes in b. A value of 0 indicates that all modes in a are
orthogonal to all modes in b.

2.2.3 Modes in Linear Combination

The overlap value only tells us how closely a single mode corresponds
to a conformational change, and not how well a number of modes in
combination can capture the change. A method of determining the ability
of a linear combination of normal modes to capture unbound to bound
transitions was used by Lindahl and Delarue (2005) and Mustard and
Ritchie (2005). As the modes are orthogonal, a projection was used to
calculate the contribution of each mode independently. However, when
investigating subsets of atoms such as the interface, orthogonality breaks
down and this technique overestimates the degree to which the conforma-
tional change can be modelled. As this approach is not applicable in such
cases, an alternative approach was formulated; the unbound to bound
transitions were decomposed through basis expansion of a limited number
of low-frequency modes. When the mode set is orthonormal, this method is
identical to that used by Lindahl and Delarue (2005). This basis expansion
was achieved using linear least-squares. It is exact and analytical, and was
used to determine the extent of deformation along each mode that was
necessary to generate the closest possible structure to the bound using a
subset of normal coordinates. Before fitting, the atom sets which are being
mapped are superimposed. As this approach has not previously been used
for this purpose, a full derivation follows.

Take D to be a vector of length n containing all the Cartesian coordinates
of all the atoms in the unbound structure, or to be the coordinates of a subset
of atoms in the unbound structure, such as main chain atoms, or interface
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atoms. Similarly, take E for the bound conformation. The unbound to bound
transition is defined as T = E−D. The ith element of T is defined as Ti. Take
M to be an m × n matrix containing m normal modes, with each column
corresponding to a different normal mode and each row corresponding to
each coordinate, such that Mi j is the displacement of the jth coordinate of
the ith mode. We define M j as the vector of atomic displacements for the jth

mode.
Firstly, we wish to derive an expression in which the unbound to bound

transition is equal to a linear combination of normal modes,
∑m

j=1 β jM j, plus
some residual vector r

T = E−D = r +
m∑

j=1

β jM j (2.4)

where β is defined as a vector of the β coefficients. Rearranging 2.4, ri,
the residual of the ith coordinate for any given β can be calculated as

ri(β) = Ti −

m∑
j=1

Mi jβ j (2.5)

We wish to find the set of β coefficients which minimise the sum square
residuals, S, which can be obtained using

S(r) =
n∑

i=1

r2
i (2.6)

The particular set of β coefficients which minimise this function is given
the symbol β̂. In order to find this set, we must find where the gradient of S
is equal to zero. Using the chain rule, we have

∂S
∂β j

=
∂S
∂ri

∂ri

∂β j
= 0 (2.7)

As the residuals r(β) are linear with respect to the β coefficients, so is their
sum. Therefore, the sum square residual, S(r(β)) is a quadratic function,
and its derivative is linear with one unique root. It is evident that S(β) is
also a convex function; if any of the β coefficients are pushed to extremes,
then S becomes very large and positive. Hence, this solution corresponds to
a minimum. Differentiating 2.6 with respect to the residuals, we find
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∂S
∂ri

= 2
n∑

i=1

ri (2.8)

Differentiating 2.5 with respect to β j yields

∂ri

∂β j
=

m∑
j=1

−Mi j (2.9)

Substituting 2.5 into 2.8, and substituting the resulting equation and 2.9
into 2.7, we find the following series of equations

∂S
∂β j

= 2
n∑

i=1

Ti −

m∑
k=1

Mikβ̂k

 (−Mi j
)
= 0 for j = (1, 2, 3, ..., m) (2.10)

Expanding the bracket

∂S
∂β j

= −2
n∑

i=1

Mi jTi + 2
n∑

i=1

m∑
k=1

Mi jMikβ̂k = 0 for j = (1, 2, 3, ..., m)

(2.11)
Rearranging, the 2s cancel and we get the normal equations

n∑
i=1

m∑
k=1

Mi jMikβ̂k =
n∑

i=1

Mi jTi for j = (1, 2, 3, ..., m) (2.12)

Expressed in matrix notation

(MTM)β̂ = MTT (2.13)

Inverting the normal equations shows how the fitted coefficients, β̂, are
obtained. These coefficients correspond to the magnitudes of deformation
along their respective normal coordinates.

β̂ = (MTM)−1MTT (2.14)

The inversion was achieved using the Cholesky decomposition routine
implemented in the Python NumPy library. For illustration, an example is
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Figure 2.2: The interaction between actin (purple) and vitamin D binding protein (VDBP,
PDBid 1KXP). Bound VDBP is shown in green, and unbound in red. The Cα RMSD
between these is 2.12Å. In blue is the fitted structure, as determined by linear regression
to the unbound to bound transition using 20 normal modes as a basis. This corresponds to
the closest possible structure to the bound that can attained with the 20 lowest frequency
modes. The RMSD against the bound has reduced to 0.87Å. Image taken from Moal and
Bates (2010) under the Creative Commons Attribution 3.0 licence.

given in Figure 2.2.

In order to achieve the above fitting, a one-to-one correspondence of
atoms in the bound and unbound state is necessary. For some complexes in
the data set, this was the case. For the other cases, sequences were aligned
and non-matching residues were ignored in the mapping, but not in the
construction of the Hessian.
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Figure 2.3: The mean overlap matrix between the fine grained (y-axis) and coarse grained
(x-axis) ENM for the lowest frequency 20 non-trivial modes. Matrix elements correspond
to the mean value of that element across the whole data set. This graph shows that the low
frequency modes in the fine-grained model have an approximately 1:1 correspondence
with the modes in the coarse-grained model. Only minor deviations in the ordering
of modes is observed, which is to be expected when the lowest modes are of similar
frequency.

2.2.4 Data Set

For the fitting, 124 complexes in the Protein-Protein docking benchmark v3.0
were used (Hwang et al., 2008). Both binding partners were analysed, giving
236 conformation changes upon binding, after the removal of 12 cases for
which the unbound structure is known for only one binding partner. All
structures have a resolution below 3.25Å and redundancy is alleviated as
described by Chen et al. (2003). The interface was determined as amino acids
containing a heavy atom within 6Å of a heavy atom on the binding partner.
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2.3 Results

2.3.1 Atomistic and Coarse ENM

As the elastic network model has mostly been studied using coarse-graining,
and all of the following analysis uses atomistic normal modes, the degree
of correspondence between the coarse and atomistic ENM was evaluated
to ensure that this model is appropriate. There are 3N − 6 non-trivial
modes for an ENM of N nodes. Moving from the coarse-grained model to
the fine-grained ENM, the low-frequency collective modes are preserved
whilst the additional modes derived correspond to localised nanosecond
scale motions. Between the coarse-grained and fine-grained ENM, using
the lowest 20 non-trivial normal modes, there is a mean root-mean-square
inner product of 0.97 averaged over the whole data set, indicating great
agreement between the low frequency modes derived using both models.
Figure 2.3 shows the mean value of elements in the overlap matrices,
indicating a prevalence of one to one correspondence for the lowest modes.

2.3.2 Single Modes

The overlap between the conformational change upon binding and low fre-
quency modes was calculated for the whole data set, at the interface and
across the whole fold, and at atomic, backbone and Cα resolution. For each
protein, the mode amongst the lowest frequency 20 which has the greatest
overlap with the conformational change, was found. This maximum over-
lap, averaged across the whole data set, is shown in Figure 2.4. When the
Hessian is diagonalised in the standard way, the mean maximum overlap
increases as the size of the subsystem decreases. As backbone atoms move
collectively with their adjacent atoms, the difference between the backbone
and the Cα mean maximum overlap is small. There is a greater difference
in mean maximum overlap when we compare backbone to all atoms, a con-
sequence of the fact that whilst the side chains do move in concert with their
adjacent backbone atoms, they can also move independently and change
rotameric state. When the mean maximum overlap of the whole protein
is compared to that of the interface, a decrease is observed at all levels of
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Figure 2.4: Mean maximum overlap with the first 20 modes, across the whole fold and
the interface, for all atoms, backbone atoms and Cα atoms, calculated with (A) standard
diagonalisation of the Hessian and (B) the RTB approach. The percentage of complexes
for which the mode of maximum overlap is one of the first five non-trivial modes is shown
above the bars. Image taken from Moal and Bates (2010) under the Creative Commons
Attribution 3.0 licence.
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resolution. Additionally, while the global motion is often best represented
by one of the 5 lowest frequency modes (57%-62% of the modes of max-
imum overlap), the same is not true of conformational change at the binding
interface (26%-29%).

When this analysis is extended to the modes of maximum overlap cov-
ering the lowest 500 normal modes, a difference can be seen between the
motion of interface Cα atoms and all interface atoms, as shown in Figure
2.5. Nevertheless, when compared to the distribution of modes of max-
imum overlap for global motion, much higher frequency modes are clearly
involved in the more subtle changes that occur at the binding interface. This
demonstrates that the conformational change of the binding interface does
not usually resemble one of the five lowest modes, whilst the global change
does. Petrone and Pande (2006) suggested that, upon complexation, a pro-
teins binding partner can induce higher frequency modes within it, which
is consistent with the activation of higher frequency modes observed here.

2.3.2.1 Rotations-Translation-in-Blocks Method

The normal modes were recalculated using the RTB method, and compared
with the results arrived at from the exact Hessian diagonalisation shown
above. The mean maximum overlaps are shown in Figure 2.4B. The same
trend is observed going from atomic resolution to a coarser representation.

There is, however, a noticeable difference in the methods ability to
model conformational change across the whole fold when compared to
the interface. The mean overlap across the interface is 0.30 and 0.41 for
the atomistic and Cα levels of resolution respectively. This is notably
higher than for the more computationally demanding method of exactly
diagonalising the Hessian (0.23 and 0.36), and is comparable to the well
documented ability for the ENM to capture global motion (0.28 and 0.42).
It is not clear the reason why this is the case, but it may be related to the
way in which the low frequency modes are perturbed with higher modes
calculated for each residue. Nevertheless, this does suggest that not only
being a faster and less memory demanding technique, the RTB approach
is also a better choice when pre-calculating normal modes for use in docking.
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Figure 2.5: Maximum overlap and respective mode for (A) interface residues and (B)
the whole fold. This demonstrates that the changes at the interface are most closely
associated with higher frequency motions. Image taken from Moal and Bates (2010)
under the Creative Commons Attribution 3.0 licence.
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2.3.3 Modes in Combination

Although the overlap gives a good measure of the degree to which the
conformational changes resemble any given single normal mode, without
the bound structure it is not possible to know which mode has the greatest
overlap. Hence, it is preferable to include a number of modes in a docking
strategy. Furthermore, if modes are used in linear combination, the ability
to model the unbound to bound transition may be significantly enhanced
compared to when single modes are used in isolation, whilst still vastly
reducing the degrees of freedom which need to be modelled compared
to an internal or Cartesian coordinate representation of conformation. To
investigate this, the conformational changes that occur upon binding were
decomposed into a linear combination of normal modes using the method
outlined in section 2.2.3. It should be noted that the purpose of this analysis
is not to model dynamics, the original purview of normal mode analysis,
but to determine the potential efficacy of using normal coordinates in a
docking algorithm. Hence there is no consideration of the phase or energy
of each mode.

For each structure in the data set, the coefficients for multiple subsets
of low-frequency modes were obtained which, of the infinite structures
that can be generated with the linear combination, minimise the RMSD
against the bound conformation. The minimisation was performed at three
levels of resolution, both across the whole protein and at the interface. The
mean reduction in RMSD, as a percentage of the initial bound-unbound
RMSD, is shown plotted against the number of low frequency modes used
in the fitting in Figure 2.6. At the Cα resolution and using the 5 lowest
modes, only 44% of the complexes have a greater reduction in interface
RMSD than across the whole fold. However, when 10, 15 and 20 modes
are used, this figure increases to 55%, 60% and 64% respectively. The same
trend is observed when considering all atoms (41%, 45%, 50% and 52%).
Evidently, as the number of modes used increases, the ability to model the
unbound to bound transition at the interface improves at a greater rate than
across the whole fold, even though the conformational change across the
fold has greater overlap with single low frequency modes. Hence, despite
the observation that much higher frequency modes require consideration
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Figure 2.6: Mean percentage reduction in RMSD as a function of the number of modes
used. Initially, the rate of improvement with respect to the modes is great, but lowers to
a constant as the graph tends towards more modes. Image taken from Moal and Bates
(2010) under the Creative Commons Attribution 3.0 licence.
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in order to find a single mode which represents conformational change
at the interface, not all the modes are required to model this change; a
fewer number in linear combination will suffice. Indeed, the RMSD for
interface Cα atoms is reduced by almost 70%, on average, when 50 modes
are employed.

Usually, only a subset of the modes used in the fitting contribute
significantly to the reduction in RMSD. The mode of greatest influence is
that with the largest coefficient. When 20 modes are used, the average mode
of greatest influence across the fold is 5.0 and 6.8, when using all atoms
and Cα atoms respectively. However, when the interface is considered, this
increases to 8.1 and 9.3, consistent with Figure 2.5 and the notion that higher
frequency motions are involved with the conformational rearrangements at
the interface. A broad breakdown of the distribution of significant modes
for a number of the higher-flexibility proteins is given in Figure 2.7. The
salient features of this graph illustrate a number of conclusions. Firstly,
when 20 modes are used, the reduction in RMSD is, on average, greater
across the interface than across the whole protein. Secondly, whilst the
conformational changes across the fold are mostly modelled using the
lowest 5 modes (purple), higher frequency modes are more often involved
in the changes which occur at the interface (red and green).

In Figure 2.8, a more detailed breakdown of mode contributions is given
for the 30 complexes of highest flexibility, as calculated using 20 modes.
A notable feature of this image is structure 5, the structure of influenza
hemagglutinin and its paratope (PDBid 2VIS), discussed in section 2.1.
Here it is clear that the global hinge-bending motion, which probably
arises due to crystal packing forces, is associated with the first mode and
is unrelated to the subtler conformational rearrangements occurring at
the interface. For most the complexes shown, the distribution of modes
at the interface is distinctly different from the modes which contribute
to global motion. There are, however, a number of exceptions: I1BR
(Ran/Importin β complex), 1E4K (immunoglobulin G Fc fragment/FcγRIII
complex) and 1Y64 (actin/BNI1 complex). All these complexes correspond
to larger columns. For the Ran/Importin β complex, the ligand spans the
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Figure 2.8: Percentage reduction of initial RMSD for the 30 structures of greatest RMSD
across the fold. Structures appear from left to right in descending order of initial all-
atom RMSD. Effect of inclusion of 1 to 20 modes is shown for both the interface and
the whole fold. Structures included are (1) 1IRA_r,(2) 1H1V_l,(3) 1Y64_r,(4) 1FAK_r,(5)
2VIS_r,(6) 1R8S_r,(7) 1IBR_r,(8) 1EER_r,(9) 1FC2_r,(10) 2FD6_l,(11) 2C0L_l,(12) 1FQ1_l,(13)
1JMO_r,(14) 1BKD_l,(15) 1GPW_r,(16) 1I2M_r,(17) 1YVB_l,(18) 2AJF_l,(19) 1NW9_r,(20)
1E4K_r,(21) 1IBR_l,(22) 2CFH_l,(23) 1HIA_l,(24) 2OT3_l,(25) 1KKL_r,(26) 1PXV_r,(27)
1KTZ_r,(28) 1BKD_r,(29) 1EER_l and (30) 1IB1_r. Image taken from Moal and Bates
(2010) under the Creative Commons Attribution 3.0 licence.

entire length of the receptor, which wraps around it. For the actin/BNI1
complex, the ligand is intercalated in a cleft between two domains. For
the immunoglobulin G Fc fragment/FcγRIII complex, the receptor opens
a region between two domains via hinge bending motion, into which the
ligand binds. In all three of these cases, the global motion is functionally
related to the binding process.

The observation that in most cases the conformational change at the
interface is distinct from global change prompted the question of whether
flexibility prediction techniques which have proven successful at predicting
global change are also able to predict the extent of local rearrangements.
One such method was shown by Dobbins et al. (2008). In this method, the
conformational change was hypothesised to be driven by thermal motions,
and the degree to which available thermal energy can drive a given motion
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is related to λ, the frequency of that motion. Frequencies were calculated
using normal mode analysis, and the proposed relationship between RMSD
and the frequencies is given as

RMSD ∝

√√√√
1
N

3N−6∑
j=1

1
λ j

(2.15)

This method was shown to be a reasonable predictor of the extent of
conformational change observed in a large set of known protein-protein
interactions. When applied to the extent of conformational change at the
interface, a Wilcoxon rank-sum test showed that there is no significant differ-
ence between the predicted RMSD and the real RMSD, at significance levels
of 0.0197, 0.0197 and 0.0006, when ordered by Cα, backbone and all-atom
RMSD respectively, confirming that this method is also capable of estimating
the extent of rearrangement at the interface.

2.4 Discussion

The conformational changes which occur upon protein-protein binding
have been studied using ENM normal mode analysis, with a focus on
its use in the construction of docking algorithms. A large test set was
used to assess the ability of the atomistic ENM to capture conformational
rearrangements, by quantifying the ability of normal modes to move all
atoms, backbone (C, O, N, Cα) and Cα atoms from the unbound to bound
conformation. It was confirmed that the differences in the crystal structures
of bound and unbound proteins can usually be approximated using a single
low-frequency normal mode. However, interfacial changes are the greatest
contributor to the free energy of binding; desolvation, electrostatics and
Van der Waals effects. Thus, it is the computational reconstruction of these
changes which are most significant when designing a docking algorithm,
and close attention was paid to the residues which are involved in binding.
Global protein motion was shown to be significantly different from localised
conformational rearrangement at the interface, except in a minority of cases
where global motion is functionally involved in docking. Despite this, the
global flexibility predictor developed by Dobbins et al. (2008) can still be
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used to predict the extent to which the conformation at the interface changes.

Conformational rearrangements of interface residues were found to
be associated with higher frequency modes than global changes. Despite
hundreds of modes needing consideration to find a single mode which
sufficiently captures the unbound-bound transition at the interface, when
used in linear combination, much fewer were required. When increasing
numbers of modes are used, a greater reduction in RMSD can be made
across the interface than across the whole protein, despite higher frequency
motions being involved. The applicability of the RTB method was also
assessed. Although less accurate at predicting global conformational
changes, this technique has a greater ability to model conformational
change at the interface. For this reason, and due to its computational
efficiency, this method makes a better choice for generating pre-calculated
modes for docking.

The ENM is computationally inexpensive, and only needs to be calcu-
lated once prior to docking. Further, applying normal motions to proteins
is also inexpensive and can easily be incorporated into a guided docking
protocol. For almost all cases, this method is capable of modelling some
of the conformational changes, and for those where large hinge motion
is required to accommodate the ligand, the RMSD to the bound can be
reduced by up to 60% with as few as 5 modes. On average, 10 modes allows
the RMSD of the backbone to be reduced by 20%, a significant reduction
considering the modest increase in computational expense. When 50 modes
are included, the RMSD of interfacial α carbons is reduced by 70%, on
average.

It is also worth bearing in mind that the complex does not exist as a static
structure, but as an ensemble of structures. As protein-protein binding
is believed to be predominantly governed by the conformational sorting
and population shift mechanism (see section 1.4.4.5), this lends credence
to the notion of modelling binding using a pre-calculated representation
of conformational diversity. It is not necessary to model exactly the
conformation revealed by crystallography or NMR, but moreover find
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a structure within the ensemble of bound conformations. Even if this
cannot be achieved using a set of low frequency normal modes, the ENM
may be capable of alleviating clashes and reveal geometric or electrostatic
motifs on the protein surface that steer the complex from the encounter
complex towards the final docked pose. Should such a structure have
sufficient binding energy to be distinguished from the false positives, then
an approximate binding mode will be revealed. Induced fit effects are also
thought to be relevant to molecular recognition. As flexible guided docking
methods usually allow a protein to adjust its conformation in the presence
of the field generated by its binding partner, movement can be induced
along higher frequency modes, which are less frequently visited in solution.



Chapter 3

SwarmDock

3.1 Introduction

Elastic network normal mode analysis has shown to reproduce functionally
relevant protein dynamics at many levels of resolution, with application
ranging from the identification of small molecule binding sites (Tuzmen
and Erman, 2011), to the study of molecular leviathans such as viral
capsids and the ribosome (Chennubhotla et al., 2005). The analysis in the
previous chapter aimed at establishing the potential efficacy of using normal
coordinates derived from this method to model conformational changes in
a guided protein-protein docking algorithm. Given the encouraging results
of this work, such an algorithm was developed and tested, and later entitled
’SwarmDock’. At its inception, no other protein-protein docking protocol
based on pre-calculated normal modes had been published, although two
methods have since appeared in the literature (May and Zacharias, 2008a;
Mashiach et al., 2010).

Aside from the modelling of flexibility, a number of other issues are
in need of consideration. One problem with docking methods based on
a systematic search is the sheer number of potential solutions which are
produced. Although generating tens of thousands of structures increases the
chances of finding a near native, it also produces many false positives, and if
flexible refinement is needed for the binding energy to stand out from the sea
of false structures, then near native structures can easily be removed from
the list of poses deemed sufficiently promising for refinement. For instance,

113
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in a comparison of ContextShapes, ZDOCK and PatchDock tested on 84
complexes, a structure with RMSD within 5Å of the bound was discovered
for 41, 43 and 38 complexes respectively. However, fewer than 15 of these
structures were found in the top 1,000 (Shentu et al., 2008).

For this reason, it was decided that our docking algorithm could benefit
from simultaneous refinement and searching, so as not to produce a vast
quantity of unrefined false structures capable of swamping out unrefined
near-natives. However, flexible refinement is costly, and a compromise
between coverage of search space and flexibility was undesirable. As the
inclusion of normal modes is a cheap method of perturbing structures
into physically plausible regions of conformational space, it made an ideal
candidate. However, this approach is still inevitably more computationally
expensive than those accelerated using the correlation method or by
decomposing the surfaces into convex and concave regions, and an efficient
optimisation algorithm is paramount. The best way to achieve this is to
exploit the funnel-like energy landscape surrounding the global minimum
(see section 1.4.4.5). All the guided docking approaches mentioned in
section 1.5.5 work in this fashion. Some of these, such as those based on
the steepest descent or quasi-Newton methods, are greedy algorithms; they
only lower their energy. These are particularly prone to becoming trapped
in local energy minima, a very significant problem in protein-protein
docking, as the energy landscapes encountered tend to be highly rugged
and multimodal (Ruvinsky and Vakser, 2009, 2008). Others can cross energy
barriers. For example, take the popular Monte Carlo simulated annealing
method. In this approach, a move is derived from a move set and proposed.
If the change in energy after undergoing the proposed move is negative, the
move is accepted. Otherwise, the move may be accepted or rejected, with
the probability of acceptance being exponentially distributed about the
change in energy. Thus, higher energy solutions can be accepted, as long as
the increase in energy is not too high. The rate parameter in the exponential
distribution can be adjusted - if it is too high, then higher energy regions
are too infrequently sampled for efficient barrier crossing. However, if
it is too low, then the algorithm spends an inordinate amount of time in
high energy regions and optima are not found. A balance must be struck
between exploring new regions of search space and exploiting low energy
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regions. Without knowing the nature of the energy landscape surround the
starting position in advance, the width of minima and the barrier heights
between them, it is difficult to tune the algorithm. Almost always with
these methods, a multi-start approach is used, such as in the RosettaDock
(Wang et al., 2007a), HADDOCK (Dominguez et al., 2003) and ATTRACT
(May and Zacharias, 2008b) protocols. This helps alleviate the problems
associated with getting trapped in local minima, as long as a sufficient
number of starting positions are used. However, computational resources
can be wasted, as some runs will inevitably spend much time searching
false energy funnels, being unable to lower their energy below that of
the minimum, nor be able to escape the barriers that separate it from the next.

The approach which was taken in the SwarmDock protocol uses the
Particle Swarm Optimisation algorithm (PSO) (Kennedy and Eberhart,
1995). Based upon the Swarm Intelligence paradigm, it is a self-organising
population based metaheuristic which exhibits emergent properties which
allow it to efficiently navigate search space and cross energy barriers. It has
a number of desirable features which distinguish it from other methods
used for protein-protein docking, and is particularly suited to highly
multimodal problems, and problems of high dimensionality. Firstly, it is
much less susceptible to getting trapped in local minima, as individual
members of the swarm, the particles, can get ’dragged’ out of basins of low
energy if other members of the swarm find more energetically favourable
regions elsewhere. The algorithm performs significantly better than many
other methods on a wide variety of optimisation problems, the reason
for which is partially attributed to this broadcasting ability arising from
communication between particles (Engelbrecht, 2006; Eberhart et al., 2001).
Secondly, the algorithm automatically samples a large range of search space,
dynamically adjusting between exploiting promising low energy regions by
intensification of the swarm, and exploring diffuse regions of search space
via its diversification. Particles are initially sparsely distributed within the
search space, as long as they are not so sparsely distributed that they fail
to find, by chance, a point within the rim of the binding energy funnel.
During the earliest phases of the algorithm, the search is effectively random.
Some particles are high in energy, and others are low. The particles are
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programmed to behave such that they tend towards low energy regions
they have previously visited. This is their cognitive aspect. Each particle
can also communicate with some of the other particles, those which are
said to be within its neighbourhood. Particles have a tendency towards the
lowest energy region of search space found by the other particles within
their neighbourhood. This is their social aspect. As the algorithm proceeds
the particles tend towards the lower energy regions of space, forming
many small clusters. The energy wells associated with these clusters are
explored, some yielding lower energy than others. Particles from the less
yielding clusters tend towards those of lower energy, sampling search
space as they go, potentially finding new energy basins along the way. As
the algorithm proceeds further, the clusters of particles become fewer and
more populated, and thus the search is focussed upon the deepest wells.
In the particular version of the PSO that is implemented, there is a term
specifically aimed at diversification included in the equations governing
the propogation of algorithm. If no energy basins consistently stand out as
being of low energy, the swarm remains diffuse. Ultimately, the algorithm
converges upon the deepest energy funnel discovered during the search,
which potentially corresponds to the global minimum.

The PSO algorithm has been successfully applied to hundreds of optim-
isation problems. Poli (2008) cites over 600 successful applications of the
algorithm to a multitude of problems. It has been shown to be significantly
more efficient in protein-small molecule docking than simulated annealing
Monte Carlo and a genetic algorithm (Namasivayam and Gunther, 2007;
Janson et al., 2008; Chen et al., 2007). There are a number of different
versions of PSO, and it is frequently combined with a local search as part
of a memetic algorithm, as is the case with SwarmDock. Although a
comprehensive account of SwarmDock is given here, details have also been
published in Moal and Bates (2010) and Li et al. (2010b).
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3.2 Methods

3.2.1 Search Space

The search space specifies the variables which are optimised in the Swarm-
Dock algorithm. In the search, the position and orientation of the receptor
is kept fixed. The algorithm optimises the position and orientation of the
ligand and the normal mode space for the receptor and the ligand. The
translational dimensions consist of Cartesian coordinates of the ligand
centre of mass. The normal mode space for the receptor and the ligand
correspond to the coefficients of the modes when they are taken in linear
combination (see Chapter 2). The orientation of the ligand is represented
using a quaternion. This particular representation was chosen partly due
to its ease of implementation, computational efficiency, numerical stability
and its ability to avoid the gimbal lock problem, where two axes in Euler
angles can become aligned. However, it also is particularly suited to both
the PSO algorithm and the local search.

Quaternions are an extension of complex number, and they consist of a
’real’ part and three ’imaginary’ parts. Take the quaternion z,

z = a + bi + cj + dk (3.1)

The three ’imaginary’ dimensions correspond to an axis around which
the rotation takes place, whilst the fourth corresponds to the extent of
rotation about that axis. Two inter-convertible ways of doing this are
applied. In the first, the b, c and d form a normalised vector representing
the axis of rotation in 3D space, and a is the angle of rotation in radians.
This is useful for the local search, since if we want to randomly perturb the
ligand by approximately 0.1 radians, we can simply alter a by a number
of approximately this magnitude. In the second, the whole quaternion is
normalised, and each orientation corresponds to a position on the surface
of a four dimensional hypersphere. The ’poles’ of the hypersphere corres-
ponds to no rotation at all, and orthogonal to the poles lies a unit 3-sphere
which corresponds to a rotation of 180◦ around the axis corresponding to
the position on that sphere. This method is particularly suited to the PSO,
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as a particle in one region of orientational space can move directly towards
a particle in another region of orientational space. As the quaternion is
normalised upon each iteration, this approximately corresponds to moving
in a straight line across the surface of the hypersphere and represents
smooth interpolation between the two positions. If Euler angle space were
employed instead, the trajectory of the atoms would depend on the order
in which rotations are performed. To eliminate this artefact would be
intractable.

To convert from the first quaternion representation to the second simply
requires normalisation of z. Conversion from the second to the first is ob-
tained by normalising< b, c, d > and the angle is obtained by θ = 2 cos−1 a =

2 sin−1
√

b2 + c2 + d2. In order to apply the rotation to the ligand, the rotation
matrix, R, is obtained from the normalised quaternion as

R =


a2 + b2

− c2
− d2 2bc− 2ad 2bd + 2ac

2bc + 2ad a2
− b2 + c2

− d2 2cd− 2ab
2bd− 2ac 2cd + 2ab a2

− b2
− c2 + d2

 (3.2)

3.2.2 SwarmDock: An Overview

SwarmDock is coded in C++ using current standards (Iso14882, 1998) . Code
repetition was kept to a minimum during its development, and the efficient
std::vector<T> class was used for all containers. The boost library was
used for all random number generation. SwarmDock was developed as a
C++ library organised into modules, such as the protein class for construct-
ing proteins and reading pdb files, or the quaternion class which contains
methods for manipulating orientation. The swarm class contains the con-
structor to create an instance of a swarm, as well as the methods related
to the propagation of the algorithm. Proteins are organised hierarchically,
such that a protein object possesses chains, which in turn possess residues,
which possess groups which possess atoms. All the energy functions and
algorithms are internal such that with the exception of the normal modes,
which must be pre-calculated, SwarmDock is a completely stand-alone pro-
gram. The clustering algorithm was programmed in Python.

An overview of the SwarmDock algorithm is given in Figure 3.1. Firstly,
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Figure 3.1: An overview of the SwarmDock algorithm. Image taken from Moal and
Bates (2010) under the Creative Commons Attribution 3.0 licence.
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starting positions are generated surrounding the receptor. From each of
these positions, a swarm of 350 particles is generated as described in section
3.2.3. The orientation of each particle is randomised, and the particles are
moved in a random direction from the starting position by an amount drawn
from a Gaussian distribution (σ = 10Å). Normal mode coefficients are also
drawn at random from a Gaussian distribution (σ = 3.0). This range is
narrow so that the internal bonded geometry of the complex isn’t perturbed
beyond that which is physically reasonable. Each particle is also assigned a
velocity in search space, all of which are initially set to zero.

Following this, the binding energy of each member of the swarm is
calculated using one of the scoring functions outlined in section 3.2.6. The
energies are then used to update the velocities of the particles in search space,
and the velocities are used to update the particle positions, as described
in section 3.2.4. At this point, the lowest energy member of the swarm
undergoes a local search, as described in section 3.2.5. The cycle of energy
evaluation, velocity and position update, and local search is repeated for
600 iterations. The process is repeated from each of the starting positions.
The best energy structure found in each of the runs are amalgamated and
clustered as described in section 3.2.7, yielding a list of clusters ordered by
energy. A typical run from a single starting position takes around 10 minutes
on a single 2.66 GHz CPU.

3.2.3 Initialisation

SwarmDock is run from several positions surrounding the receptor, usually
around 120. The strategy for deriving these positions was to approximate
the shape of the receptor, and then use this as a basis for generating the final
positions.

Specifically, the receptor is first approximated as an ellipsoid. It is initially
translated such that its centre of mass coincides with the origin (0,0,0). The
moments of the receptor, with atoms i, around any given axis are given
by the formula M =

∑
imiri where mi is the mass of atom i and ri is the

perpendicular distance from the axis to that atom. If, for every possible
line that passes through the centre of mass of a receptor, a point is placed
at a distance proportional to 1/M, then the resulting distribution of points

approximates the shape of the receptor. An ellipsoid, x2

a2 +
y2

b2 + z2

c2 = 1, is
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Figure 3.2: This image shows the starting points generated for arfaptin (PDBid 1I49). The
points after approximation of the receptor as an ellipsoid are shown in yellow. The final
points are shown in blue. This protein is particularly asymmetrical, and thus an even
distibution is of particular importance, so as not to bias the algorithm towards any given
region of search space.

fit to this shape by setting the equatorial radii, a and b, to max(1/M) and
min(1/M) respectively and setting the polar radius, c, to 1/M around the
axis perpendicular to the plane defined by a, b and the centre of mass. The
receptor is rotated so that its principal axes, x, y and z are parallel to the
semiprincipal axes of the elliposid, (a,0,0), (0,b,0) and (0,0,c). From here, n
elliptical cross-sections, ε1 · · · εn are made in the y-z plane, with x values given
by the arithmetic progression x = a(1 − 1

n), a(1 − 3
n), a(1 − 5

n) · · · a(1 −
2n−1

n ).
The distance, l, between ellipses along the x axis is given by l = 2a

n . For all
ε1 · · · εn, t points are equally spread along the circumference of the ellipse
and f (ε j, l) ∈ Z is a function which returns the value of t for which the arc
length between points is closest to l. The value of n is found which gives a
value for expression 3.3 which is closest to an arbitrary value of 120.

2 +
n∑

j=1

f (ε j, l) (3.3)

Knowing n, the vectors which describe all the t j points evenly spaced
around all n ellipses, along with the vectors (a,0,0) and (−a,0,0), are nor-
malised. Along each of these vectors, a ligand protein is drawn from the
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origin, one Ångström at a time, until a negative or zero interaction energy
is obtained. It is then drawn a further 15Å away from the receptor, so as
to be approximately twice the radius of gyration away from the receptor,
for a typical protein. The centres of mass for these ligands then become
the starting positions for SwarmDock, and are approximately evenly spaced
around the receptor. An example of the distribution of generated starting
positions for a particularly prolate protein is shown in Figure 3.2.

3.2.4 Particle Swarm Optimisation

The PSO is a population based algorithm inspired by the behaviour of social
animals (Kennedy and Eberhart, 1995). The simplest version of the algorithm
is as follows. Individuals (particles) in a population (swarm), are simulated
as they navigate search space (the objective function). Each particle, i, has
a position vector specifying a position in search space, χi, and a velocity
vector, vi

χ =



x
y
z

nx

ny

nz

θn

Mrec,1

Mrec,2
...

Mrec,r

Mlig,1

Mlig,2
...

Mlig,l



v =



∆x

∆y

∆z

∆nx

∆ny

∆nz

∆θn

∆Mrec,1

∆Mrec,2
...

∆Mrec,r

∆Mlig,1

∆Mlig,2
...

∆Mlig,l



(3.4)

The algorithm is iterative, whereby the objective function and two simple
transition functions are evaluated for each particle, on each iteration, t. The
transition functions, which update the positions and velocities synchron-
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ously, are

χi(t + 1) = χi(t) + vi(t + 1) (3.5)

vi(t + 1) = wvi(t) + c1r1,i(pi(t) − χi(t)) + c2r2,i(pg(t) − χi(t)) (3.6)

where w, the inertial weight, is the degree to which previous velocity
contributes to the new velocity (Shi and Eberhart, 1998). The terms r1,i and
r2,i are random numbers taken from a uniform distribution between 0 and
1. Parameters c1 and c2 are the cognitive and social aspect respectively, both
typically set to 2.05 (Clerc, 1999). The cognitive aspect is the propensity
for the particle to move toward the best scoring position it has previously
experienced. The social aspect is the degree to which the particle moves
toward the best position found by any member of the swarm. The position
vectors pi and pg correspond to the best position (i.e. position with lowest
energy) found by particle i and the best position found by any particle in
the swarm, respectively.

3.2.4.1 Neighbourhoods

A common variant on this algorithm, implemented in SwarmDock, uses the
concept of neighbourhood (Eberhart and Kennedy, 1995). When the swarm
in initialised, k particles are deemed to be in the neighbourhood of each
particle i. These are the particles either side of i in the array of particles. In
this scheme, pg is replaced with pg,i, the best position found by any particle
in the neighbourhood of particle i.

χi(t + 1) = χi(t) + vi(t + 1) (3.7)

vi(t + 1) = wvi(t) + c1r1,i(pi(t) − χi(t)) + c2r2,i(pg,i(t) − χi(t)) (3.8)

In SwarmDock, neighbourhoods are set to wrap around, such that the
particle at the end of the particle vector ’see’ those at the beginning and
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vice versa. Subsequently, the neighbourhood graph forms a ring network
topology (Kennedy and Mendes, 2002).

3.2.4.2 Velocity Clamping

To avoid situations in which the swarm explodes, and to control the trade-off

between focussing and diversifying the swarm, velocity clamping is often
employed to impose a limit on the distance the particles can move in any
one iteration. If the maximum velocity is exceeded, it is reduced accordingly

vi j(t + 1) =


v′i j if −V j,max < v′i j < V j,max

V j,max if v′i j > V j,max

−V j,max if v′i j < −V j,max

where v′i j is the calculated velocity of iteration t + 1. After paramet-

erisation, Vmax was set at 5Å for translational parameters, 0.2 rad for
the angular term in the quaternion and 0.5Å for the spatial terms (see
section 3.3.1). Conformational parameters were found not to reach excess-
ive velocities, and thus no clamping was set on the normal mode coefficients.

3.2.4.3 Variations of PSO

Numerous modifications of the PSO algorithm are available, with various
strategies to control the dynamics of the swarm. The following variants
were tested in combination with the local search:

BPSO: The basic particle swarm optimisation algorithm, as described
above.

CPSO: The constricted PSO. Introduced by Clerc and Kennedy (2002),
this PSO variant is designed to prevent explosion of the swarm by using
a constriction factor, κ, to dampen motion. This allows faster convergence
and velocity clamping is not used. This method uses equation 3.9 in place
of equation 3.8.

vi(t + 1) = κ(vi(t) + c1r1,i(pi(t) − χi(t)) + c2r2,i(pg,i(t) − χi(t))) (3.9)
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where

κ =
2

|2−ψ−
√
ψ2 − 4|

and ψ = c1 + c2 > 4.0 (3.10)

CPSOvc: Constricted PSO with velocity clamping. This method is
identical to CPSO but with limits on the velocity, and has shown to have
improved performance in some test cases (Eberhart and Shi, 2000).

CPSO2: An alternatice version of the constricted PSO, where the sum of
the scalar parts of the last two terms in equation 3.8 is not random. This is
reported to give small improvements over CPSO (Clerc and Kennedy, 2002).
Velocity clamping was included.

vi(t + 1) = wvi(t) + c1
r1,i

r1,i + r2,i
(pi(t) − χi(t)) + c2

r2,i

r1,i + r2,i
(pg,i(t) − χi(t))

(3.11)
RPSO: Repulsive PSO. This novel variation of PSO includes a repulsive

term. For each particle, a random particle is chosen and a distance dependent
repulsive term is included in the velocity update function. This variation
was postulated to keep the swarm diffuse.

vi(t + 1) = wvi(t) + c1r1,i(pi(t) − χi(t)) + c2r2,i(pg,i(t) − χi(t))

− c3r3,i(prand(t) − χi(t))

Ultimately, the RPSO variant was selected for use in SwarmDock, due to
its enhanced performance compared to the others (see section 3.3.1). Fuller
discussions of these variations are available elsewhere (Van Den Bergh,
2002; Engelbrecht, 2006).

3.2.5 Local Search

SwarmDock is a memetic algorithm which combines PSO with a local
search. This search is performed on the lowest energy member of the
swarm and is executed after each iteration. It is essentially as that described
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by Solis and Wets (1981), and is the same as is used in combination with
a genetic algorithm in the AutoDock protein/small-molecule docking
package (Morris et al., 1998). It randomly picks a displacement in search
space from a probability distribution which is biased towards directions
which have previously resulted in a lowering of energy. The magnitudes of
the displacements depend upon how successful recent moves have been.
Initial test of SwarmDock showed that the inclusion of this local search
significantly improved the frequency at which the correct structure was
found (data not shown).

For each dimension of search space, j, a deviation is drawn from a Gaus-
sian distribution of standard deviation ρ j, centred around b j. These form
the vectors ρ and b respectively. Initially, b is set to zero for all dimensions.
For translational and conformational dimensions, the initial ρ is set to 2.5Å
and 0.15 respectively. The ρ for the angular part of the quaternion is initially
set to 5◦, and 0.25Å in the spacial dimensions. The deviates form a vector d,
and the energy of the position χ+d is evaluated. This is a greedy algorithm,
so the move is accepted only if it corresponds to an improvement in energy.
Otherwise, the energy is evaluated at the χ − d position and this move is
accepted if it results in a lowering of the energy. If neither of these positions
result in a decrease in energy, a new set of deviations are drawn, after up-
dating the bias vector b. This vector is updated according to equation 3.12,
such that the bias is attenuated if both positions fail to lower the energy, and
the bias is bolstered in the sampled direction if successful.

b(t + 1) =


0.6b(t) + 0.4d if E(χ+ d) < E(χ)

0.6b(t) − 0.4d if E(χ+ d) > E(χ) and E(χ − d) < E(χ)

b(t)/2 if E(χ+ d) > E(χ) and E(χ − d) > E(χ)
(3.12)

There is also a success counter and a failure counter. Upon each successful
move, the success counter is incremented and the failure counter is reset to
zero. Upon each unsuccessful move, the success counter is reset to zero and
the failure counter is incremented. If the success counter reaches 5, then the
magnitude of the jumps is increased by doubling the standard deviations,
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ρ. If the failure counter reaches 5, then the jumps are contracted by halving
ρ. The algorithm terminates after 5 consecutive contractions.

3.2.6 Energy Function

In total, three forms of the energy function were tested. The first of these
includes only the electrostatics and Van der Waals terms (see section 1.4.1.2).
The second has an additional desolvation term (Lazaridis and Karplus,
1999b). The third is the DComplex statistical pair potential (Liu et al., 2004).

3.2.6.1 Van der Waals and Electrostatics

The first scoring function implemented was composed of an electrostatic
term, modelled using partial charges and the Coulomb equation (eqn. 1.7),
and a Van der Waals terms, modelled using the Lennard-Jones equation
(eqn. 1.8). It is a pairwise term, summed over atom pairs

Eint =
atoms∑

i

atoms∑
j

Ei, j (3.13)

The most time consuming component of the docking algorithm is the
evaluation of equation 3.13. To alleviate this bottleneck, methods of redu-
cing computational cost were employed. Firstly, as the energy is dominated
by short and medium range interactions, long ranges interactions can
be neglected. The simplest method for achieving this is to use a simple
cut-off, in which interactions between atom pairs separated by a distance
greater than that cut-off are neglected. This method is fine for Van der
Waals interactions, as these interactions scales as 1/r6 and quickly tend to
zero. For the electrostatics, however, this approach gives rise to artefacts.
Energy discontinuities give rise to ’jumps’ in the energy surface, with the
energy artificially low on one side of the discontinuity and high on the
other. Thus, in the greedy local search algorithm, moves which should be
accepted may be rejected due to an artificial increase in energy. This is most
pronounced when the cut-off splits polar groups. Long-range interaction
should appear approximately neutral, due to the effects of the opposite
charges on the group cancelling out. However, if only one half of the polar
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group is considered, energy can be artificially raised or lowered significantly.

To overcome this problem, a switching function was employed with
group based cut-offs (Leach, 2001). This switching function uses two cut-
off distances, ron = 7Å and ro f f = 9Å, and smooths the potential between
these points from the full interaction energy below ron to zero above ro f f .
Groups of atoms are defined as they are in the CHARMM19 force field, and
are electrically neutral (MacKerell et al., 1998). When calculating the energy
between two groups, the degree of smoothing used is determined by r̂, the
distance between the centres of mass of the groups. Thus, the Ei, j term in
equation 3.13 becomes

Ei, j =



qiq j
εri, j

+
√
εiε j

[(Rmi, j
ri, j

)12
−

(Rmi, j
ri, j

)6]
if r̂i, j < 7(

(ro f f−r̂i, j)
2(ro f f+2r̂i, j−3ron)

(ro f f−ron)3

) [
qiq j
εri, j

+
√
εiε j

[(Rmi, j
ri, j

)12
−

(Rmi, j
ri, j

)6]]
if 7 < r̂i, j < 9

0 if 9 < r̂i, j

(3.14)
All parameters are taken from the CHARMM19 force field.

A further method of accelerating the energy evaluation is undertaken
by partitioning space into boxes of length ro f f . Only groups whose centre
of mass are in the same box or adjacent boxes have their distance evaluated,
as otherwise they will be lie beyond ro f f . The indices of the box in which
a group appears is easily obtained from its centre of mass by dividing its
coordinates by ro f f , and truncating them at the decimal place by converting
to integers. Groups are deemed to be in the same or adjacent boxes as long
as the difference between any index does not exceed one. Thus effectively,
an initial distance filter is applied using very efficient integer operations.
Subsequently, the remaining group pair distances are evaluated. The full
atomistic pairwise interaction is only calculated between groups whose
centre of mass are below ro f f . The SwarmDock implementation of this
scoring function was verified by comparing energies of a number of
structures to energies calculated using CHARMM and finding identical
values.



Chapter 3. SwarmDock 129

3.2.6.2 EEF1 Desolvation

The desolvation effective energy function (EEF1) developed by Lazaridis
and Karplus (1999b) was also coded and implemented in SwarmDock. This
model is an empirically parametrised method whose functional form is
based on statistical mechanics. It is very computationally inexpensive as it
uses the idea that the interaction energy between the solvent and the solute
can be calculated as a sum of pairwise interactions between the atoms in
the solute. The basis for this idea is that each atom has a solvation free
energy, and that nearby atoms hide it from the solvent and reduce this
energy. Thus, a completely buried atom makes no contribution to the total
solvation free energy. This method is fundamentally different from those
based on solving or approximating the Poisson-Boltzmann equation. These
techniques calculate the effect of placing the solvent around atoms which,
by default, are not solvated. In the EEF1 method, each atom is assumed to
be fully solvated by default and the effect of solvent exclusion by the other
solute atoms is calculated. The functional form of the pairwise desolvation
energy between atom i and j is given by

∆Gi j = −
2∆Gi

4π
√
πλir2

i j

exp

− (
r−Ri

λi

)2 V j −
2∆G j

4π
√
πλ jr2

i j

exp

− (
r−Ri

λ j

)2 Vi

(3.15)
where λi is the thickness of the hydration shell around atom i and ri j

is the internuclear separation between i and j. The solvation free energy
of atom i is ∆Gi, which was determined empirically by considering the
solvation free energy of small molecules in which the same atom type is
largely exposed, and extrapolated to approximate the energy of a fully
exposed atom. The Van der Waals radius and volume of atom i are Ri

and Vi respectively. The rationale behind the form of this equation is
given in Lazaridis and Karplus (1999b). All the volume, radii, λi and ∆Gi

parameters were taken from the CHARMM implementation of this energy
function. As the model was empirically parametrised to be compatible
with the CHARMM19 force field, it is already correctly weighted with the
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electrostatics and Van der Waals terms. The same cutoffs and switching
term are used as above.

3.2.6.3 DComplex

The third energy function tested was the DComplex statistical pair potential.
This simple interaction potential was originally derived from the crystal
structures of individual proteins (Zhou and Zhou, 2002), however it has
shown promise when studying protein-protein interactions (Liu et al.,
2004). Its derivation is essentially as described in section 1.4.4.4. This
potential was re-coded and implemented in SwarmDock using the original
DComplex data files. The implementation was validated by obtaining
identical energies from SwarmDock and the DComplex binary.

3.2.7 Clustering

After the docking has been completed, the resulting structures are clustered.
The clustering algorithm used is more efficient than the algorithm outlined in
section 1.5.7, as it does not require the calculation of the whole all-versus-all
RMSD matrix. The lowest energy structure is assigned as the first member
of the first cluster. The remaining poses are then clustered in ascending
order of energy; for each structure, the list of clusters is iterated upon. If
the structure is found to be within the cutoff RMSD of the first member
of a cluster, then the structure is added to that cluster. If all clusters have
been checked and the structure has not been assigned, then it becomes the
first member of a new cluster. Clusters are returned in the same order they
were constructed. Tests in which the cluster resolution was varied between
2.0 Å and 6.0 Å have shown that the algorithm is robust to the value used
at 2.5 Å and above (data not shown). Below 2.5 Å resolution, the cluster
corresponding to the correctly docked pose can be split.
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3.3 Results

3.3.1 Parameterisation

3.3.1.1 PSO Variant Selection

Table 3.1: The performance of different PSO variants described in section 3.2.4.3, for
local bound-bound docking; agglomerated results for 7 test complexes. The number
of times a correct solution is found, irrespective of its ranking, is shown. The average
neighbourhood size, population size and number of steps required before successfully
finding the bound complex is also shown, in order to demonstrate the most successful
neighbourhood sizes and population sizes for the variants, as well as how many
iterations are required, on average, in order to find the correct solution.

Method # Hits av. k/n av. n av. steps
BPSO 100 0.36 339 219
CPSO 68 0.23 350 317

CPSOvc 223 0.35 326 246
CPSO2 56 0.19 339 169
RPSO 728 0.48 323 273

The first test of the algorithm was performed to select the PSO vari-
ant which performs most favourably. Initial benchmarking with the five
variations of the PSO algorithm described in section 3.2.4.3 was done by
rigid body docking of seven diverse structures in their bound conformation.
These complexes are as follows: antibody/antigen complexes 1MLC and
1E6J, enzyme/inhibitor complexes 2MTA and 1F34, and other complexes
1GCQ, 1I4D and 1H1V. 1MLC, a FAB/Lysozyme complex, has a highly hy-
drophobic interface whilst 1E6J, FAB/HIV1 capsid protein p24 complex, has
significant electrostatic contribution to the binding energy. 2MTA, methyl-
amine dehydrogenase/amicyanin complex is hydrophobic, with no inter-
molecular hydrogen bonds and one salt bridge and 1F34, pepsin/pepsin
inhibitor complex, has a large interface with 13 hydrogen bonds. 1GCQ,
GRB2/VAV complex, has a fairly small interface. 1I4D, arfaptin/RAC1-GDP
complex is hydrophobic, with only 2 hydrogen bonds. Finally, actin/gelsolin
complex 1H1V has a large interface which is very electrostatic in nature.

As this test was performed to establish the behaviour of the swarm,
only local docking was undertaken. Ligands were pulled away from the
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Figure 3.3: Correctly determined poses were placed into bins of 25 iterations for the 5
different PSO variants. The RPSO method is shown to be considerably more likely to
find the correct binding site than the other methods. The downward trend after the first
hundred or so iterations is due to the swarm focusing on low energy regions away from
the binding site and no longer exploring new regions of search space.
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receptor by 20Å, moved randomly by a number generated from a Gaussian
distribution (σ = 30Å) and randomly oriented. Different swarm sizes, n,
and neighbourhoods, k, were tested. For each complex, 25 parameter sets
were tested, being all permutations of n = 100, 200, 300, 400, 500 and k =

2, 0.25n, 0.5n, 0.75n, n − 1. Runs for each parameter set were repeated 10
times. The number of times the binding site was found (RMSD < 1.0Å
compared to crystal structure) is shown in Table 3.1, along with the average
neighbourhood size, swarm size and number of iterations for successful
runs. In Figure 3.3, correct binding site identification events are put into
bins of 25 iterations for the various methods.

It is clear from Table 3.1 and Figure 3.3 that the RPSO variant performs
significantly better than the others. For this reason, this variant was chosen
for further parametrisation and for all subsequent docking runs. Based
on the average population size and neighbourhood size of successful runs
shown in Table 3.1, the number of particles used per run was set to n = 350,
with a neighbourhood size of k = 114 for all subsequent runs.

It was speculated that the enhanced performance of the RPSO variant
compared to the other variants was due to the distance-dependent repul-
sion term maintaining the diversity of the swarm when no particular region
of search space had yet shown to be consistently lower in energy. Mechanist-
ically, contraction of the swarm will reduce the magnitude of the repulsion
term and hasten further contraction. The initial collapse will occur when the
pi and pg,i for many particles coincide and the particles all head to toward
close regions in search space. To test whether this effect prevented prema-
ture convergence, the diversity of the swarm was tracked as the algorithm
progressed. As a measure of how diffuse the swarm is, the mean Euclidean
distance between the particles was calculated every 25 iterations. This is the
distance separating centres of mass of the particles averaged over all particle
pairs. The results, averaged over all runs, is shown in Figure 3.4A. Upon
termination, the centre of mass of particles for successful runs are around
5Å closer to one another than for runs in which the correct binding site was
not found, indicating that the repulsion term is behaving as expected.

To look into this effect further, successful runs were separated into 6
groups depending on when the correct binding site was found. The results
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Figure 3.4: The convergence behaviour of the RPSO. (A) The mean Euclidean distance
between ligand centres of mass, averaged over all runs, successful runs and runs which
failed to correctly locate the binding site. (B) The mean Euclidean distance for successful
runs.
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of this can be seen in Figure 3.4B. It is clear that the swarm collapses earlier
if the binding site is found earlier, an effect which was not observed for any
of the other PSO methods tested. For runs in which the correct binding site
is found between iteration 101 and 200, the swarm had already started to
collapse prior to iteration 100. This indicates that the low energy attractors,
pi and pg,i, had already flagged the binding funnel as a promising region
worthy of focusing the search, in keeping with the above mechanism.

3.3.1.2 Inertial Weight and Velocity Limits

The model contains a number of variable parameters. Finding the best
combination of parameters is difficult as we do not know the range to
investigate and if we did, an exhaustive scan presents a combinatorial
explosion. Rigid-body parameters were tested using mutually orthogonal
Latin squares. This method generates parameter sets giving good coverage
spanning a large range of values. It vastly reduces the computational
expense of parametrisation compared to an exhaustive search, and has been
used in a number of applications (Vengadesan and Gautham, 2003; Mandl,
1985; Viji et al., 2009; Arunachalam et al., 2006; Vengadesan et al., 2004;
Prasad et al., 2005). As the quaternion representation of orientations consists
of three numbers specifying a unit vector and one angle of rotation around
that vector, there are two maximum velocities to be optimised; Vmax,n for
the first three parameters and Vmax,A for the angular parameter. Maximum
Euclidean velocity and the inertial weight were also tested. The method
was tested on 10 diverse complexes: 1E6J, 1F34, 1GCQ, 1H1V, 1I4D, 1MLC
and 2MTA in the bound state and 1I9T, 1NCA and 2QFW in the unbound
state.

Latin squares are o order square matrices filled with o symbols such that
each symbol appears once in each row and each column. Two Latin squares
are orthogonal if each symbol appears in the same element of both squares
only once. For example, the following Latin squares are orthogonal, as the
symbols only appear in the same position in the leftmost column.
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1 3 2
2 1 3
3 2 1

1 2 3
2 3 1
3 1 2

A set of mutually orthogonal Latin squares (MOLS) is a set of Latin
squares in which all are orthogonal to one another. A set of 4 mutually
orthogonal Latin squares of order 5 were generated using the algorithm out-
lined by Vengadesan and Gautham (2003). Each Latin square corresponds
to a different parameter in the SwarmDock algorithm. Each symbol corres-
ponds to a value of that parameter. When the squares are superimposed,
each element has a set of parameters for the SwarmDock algorithm. For all
tested complexes, for all elements of the superimposed Latin squares, two
docking runs were performed. For all values of all parameters, correctly
bound structures were counted, the results of which appear in Table 3.2.

Table 3.2: Parameter efficiency using MOLS. The number of correctly bound structures
for each parameter value was summed across all parameter sets containing that parameter
value.

Parameter Value Count
0.4 1020

0.525 996
W 0.65 1022

0.775 1037
0.9 967
0.5 890
1.1 947

Vmax 1.7 1019
2.3 1080
3.0 1106

Parameter Value Count
0.2 972

0.325 1014
Vmax,n 0.45 990

0.575 1024
0.7 1042

0.05 956
0.1 1007

Vmax,A 0.15 1056
0.2 987

0.25 1036

As the only clear trend is in Vmax, another run was completed with a
larger range, as is shown in Table 3.3. This shows that this trend stops at
around Vmax=2.5. As the variation between the second set of runs is not
significant, the following values were chosen arbitrarily from within the
acceptable range for all subsequent calculations: W=0.8, Vmax = 5.0Å, Vmax,n

= 0.5Å, Vmax,a = 0.2 rad.
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Table 3.3: Parameter efficiency using MOLS. The number of correctly bound structures
for each parameter value was summed across all parameter sets containing that parameter
value.

Parameter Value Count
0.4 1159

0.525 1187
W 0.65 1154

0.775 1147
0.9 1172
2.5 1159
3.2 1187

Vmax 3.9 1151
4.6 1136
5.3 1152

Parameter Value Count
0.2 1155

0.35 1134
Vmax,n 0.5 1190

0.65 1187
0.8 1153
0.1 1155
0.2 1134

Vmax,A 0.3 1190
0.4 1187
0.5 1153

3.3.2 Bound-Bound Benchmark v2.0

The performance of rigid-body bound-bound docking of all 84 complexes
in the Benchmark v2.0 (Mintseris et al., 2005), using the electrostatics and
Van der Waals energy function and clustering at 3.5Å resolution, is shown
in Table 3.4. These runs are not intended to represent a biologically useful
docking scenario, but are merely a preliminary test of the energy function
and the algorithm. Starting positions were generated as described in section
3.2.3, and the algorithm was run twice from each point.
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Table 3.4 continued from previous page
Complex Rank # found bCluster IRMSD LRMSD FNat FNNat bIRMSD bLRMSD bFNat bFNNat bRank

1UDI 1 29 yes 0.19 0.46 0.99 0.00 0.08(1/29) 0.08(1/29) 1.00(1/29) 0.00(1/29) 1/1/1
1VFB 1 46 yes 0.19 0.37 0.96 0.04 0.09(1/46) 0.09(1/46) 0.98(1/46) 0.00(1/46) 1/1/1
1WEJ 1 51 yes 0.15 0.56 0.98 0.02 0.10(1/51) 0.10(1/51) 1.00(1/51) 0.00(1/51) 1/1/1
1WQ1 1 6 no 0.12 0.33 0.95 0.01 0.12(1/6) 0.12(1/6) 0.96(1/6) 0.01(1/6) 1/1/1
2BTF 1 34 yes 0.10 0.32 0.96 0.01 0.06(1/34) 0.06(1/34) 0.99(1/34) 0.00(1/34) 1/1/1
2HMI 102 1 no 5.50 23.43 0.32 0.65 5.50(102/1) 15.95(1/1) 0.32(102/1) 0.65(102/1) -/-/-
2JEL 1 14 no 0.06 0.13 0.98 0.04 0.03(1/14) 0.03(1/14) 1.00(1/14) 0.00(1/14) 1/1/1

2MTA 19 27 yes 0.20 0.78 1.00 0.08 0.08(19/27) 0.08(19/27) 1.00(19/27) 0.00(19/27) 19/19/19
2PCC 135 8 no 0.35 0.59 0.97 0.12 0.33(135/8) 0.33(135/8) 1.00(135/8) 0.10(135/8) 135/135/135
2QFW 1 30 yes 0.36 2.10 0.94 0.04 0.26(1/30) 0.26(1/30) 0.96(1/30) 0.00(1/30) 1/1/1
2SIC 1 3 no 0.16 0.38 1.00 0.04 0.16(1/3) 0.16(1/3) 1.00(1/3) 0.04(1/3) 1/1/1
2SNI 1 4 no 0.12 0.26 0.97 0.01 0.12(1/4) 0.12(1/4) 0.97(1/4) 0.01(1/4) 1/1/1
2VIS 1 6 no 0.18 0.63 1.00 0.02 0.08(1/6) 0.08(1/6) 1.00(1/6) 0.00(1/6) 1/1/1
7CEI 1 33 yes 0.13 0.40 0.96 0.00 0.09(1/33) 0.09(1/33) 0.98(1/33) 0.00(1/33) 1/1/1

The performance of bound-bound docking using the electrostatics and Van der Waals energy function, clustering at 3.5Å
resolution. All structures in the benchmark v2.0 are docked (Mintseris et al., 2005). A number of performance metrics are
evaluated. For the lowest IRMSD first cluster member, the cluster rank (Rank), the cluster size (# found), interface RMSD
(IRMSD), ligand RMSD (LRMSD), fraction of native contacts (FNat), fraction of non-native contacts (FNNat), and whether
this is the largest cluster (bCluster) are shown. Also, the best IRMSD (bIRMSD), LRMSD (bLRMSD), FNat (bFNat) and
FNNat (bFNNat) found, with the their corresponding cluster rank and size in parentheses, are reported, as is the best
ranked high, medium and acceptable solution (bRank). All metrics are evaluated per the CAPRI standards (see section
1.5.10 or Mendez et al. (2003)).
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It is clear that most structures are bound with high accuracy. For all
but three of the complexes, an acceptable structure was found, according
to the CAPRI criteria (Mendez et al., 2003). All but five were found with
a ligand RMSD below 1.0Å. Most complexes, 69/84, were ranked first and
73/84 were in one of the top 10 clusters. Even of the 11 structures which
didn’t rank in the top 10, five of these were amongst the 52 cases where the
largest cluster contained the lowest IRMSD. SwarmDock performed very
well by all metrics. However, for a number of cases, the correct structure
was found infrequently. Considering the complexes 1DE4, 1DFJ, 1EER
and 1IBR, for instance, the most accurate cluster only had a population
of one, even though this cluster still ranked first. A number of cases
did perform particularly badly. These were investigated and for most of
these the reasons for the failure of the algorithm is evident. These are the
exceptions which prove the rule; bound-bound docking is a solved problem.

The first is 1BGX, the complex between Taq polymerase and a murine
antibody. This is a highly suspicious structure, which is likely fake and
should be removed from the protein databank and the docking benchmark.
It was deposited by H. M. Krishna Murthy, a known perpetrator of scientific
fraud who has forged numerous crystal structures (Borrell, 2009). While
some of his suspect papers have been forcibly retracted (Retraction, 2010),
others remain. This complex was published just before the time period
investigated by the University of Alabama at Birmingham, and is thus not
one of the 12 structures explicitly demonstrated to be forged. However, it is
likely to be fake, as its WHAT IF check report shows that it has an anomylous
Ramachandran plot, severly atypical B-factors, unusual chirality deviations,
bond lengths, valence angles, torsion angles,φ angles,ψ angles,ω angles and
χ angles, untenable unit cell dimensions, unusual proline puckering phases
and amplitudes, Van der Waals clashes, abnormal residue packing, water
molecules without hydrogen bonds and many unsatisfied buried hydrogen
bond donors and acceptors.

The complex between adrenodoxin reductase and adrenodoxin (PDBid
1E6E) should, also, arguably not be present in the docking benchmark. The
complex contains a covalent crosslink between LYS27 of adrenodoxin and
the ASP39 residue of adrenodoxin reductase. In light of this, it is of little
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surprise that only a single low RMSD structure was found, and that it did
not rank highly; covalent bonds are shorter that non-covalent interactions,
and thus the true binding pose would be deemed to have a serious Van der
Waals clash using the current force field.

The Anabaena Ferredoxin I/Ferredoxin-NADP reductase complex (PD-
Bid 1EWY) is also easily explained. This complex contains an Fe2S2 iron
cluster and a flavin-adenine dinucleotide at the binding interface, which
were ignored during the docking protocol. Nevertheless, although it doesn’t
rank first, the correct structure still has the largest cluster size, being found
12 times. The next biggest clusters, ranked 1 and 17, both have only 6 mem-
bers, so the true structure still stands out as being found more frequently
by the swarm, even if it doesn’t stand out as being the most energetically
favourable.

The complex between soluble tissue factor and blood coagulation factor
VIIA (PDBid 1FAK) is not so easily explained, although the factor VIIA
wraps significantly around the tissue factor, which may proclude association.
Irrespectively, no reasonable structures were found by SwarmDock.

The complex between complement C3 and the Epstein-Barr virus CR2
receptor (PDBid 1GHQ) is highly suspicious. Recent mutagenesis studies
add to a mounting quantity of evidence which suggest that the interface in
this crystal structure is not biologically significant. In the words of Isenman
et al. (2010), "The results with CR2 confirm our earlier mapping studies and
cast even further doubt on the physiologic relevance of the complex visu-
alized in the C3d:CR2 cocrystal". Nevertheless, a highly accurate structure
was found five times, the lowest energy of which contained all the native
contacts and no non-native contacts. This structure, however, did not rank
first.

It is unknown why the interaction between HIV-1 reverse transcripase
and a murine antibody (PDBid 2HMI) failed to dock. However, it is pos-
sible that the interface is not amenable to detection using the current scoring
function, due to the domination of desolvation effects driving binding. In-
terestingly, this is one of the few complexes which performed better when
the EEF1 desolvation term is included in the energy function (see section
3.3.3).

Similarly, it is unknown why the yeast cytochrome C and its peroxidase
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(PDBid 2PCC) fail to dock correctly. It may be related to the fact that this is
only a weak interaction of micromolar affinity, and is driven predominantly
by entropic forces (Pielak and Wang, 2001). A very close non-cognate
cytochrome C/peroxidase complex, similarly driven by entropy, has been
shown to be highly sensitive to ionic strength (Erman et al., 1997). It could
well be that the protonation states of interfacial histidines are important for
binding, a factor which is not considered during the assignment of atomic
charges. Nevertheless, the cluster corresponding to the bound structure
still has a very reasonable size of 8, the third largest cluster found.

Despite the three examples for which there is no immediate explaination
for failure, the algorithm performs very well. Whilst bound-bound docking
is of little scientific value, it acts as a good proof of principle and suggests
that the algorithm and scoring function may serve as a suitable starting point
for tackling the more difficult unbound-unbound problem.

3.3.3 The EEF1 Desolvation Term

The EEF1 desolvation model was included in the first design of the Swarm-
Dock algorithm. In an early investigation, SwarmDock was run with and
without this term in the energy function. As this was an early test, under-
taken before flexibility or clustering were included in the protocol, structures
were docked as rigid bodies. Their bound conformations were used. As
such, the runs are also not intended to represent a biologically useful dock-
ing scenario, but merely as a preliminary test of the energy function and
the algorithm. A subset of the docking benchmark 2.0 was used, containing
68 complexes (Mintseris et al., 2005). Points were generated as described in
section 3.2.3, and the algorithm was run twice from each point. The struc-
tures were ranked by energy without clustering. Table A.1, which appears
in the appendix, shows the lowest ligand RMSD after superimposing the
bound receptors, the best ranked structure with a ligand RMSD below 5Å,
and the number of times a structure was found with ligand RMSD below 5Å.

For 40 of the structures, the correct structure ranked first both with and
without the EEF1 term. However, the Van der Waals and electrostatics only
runs produced better ranking models for 23 cases, as opposed to 4 which
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rank better with the EEF1 term. The ligand RMSD was lower for 61 of the
cases when the desolvation term was omitted, as opposed to only 6 when it
is wasn’t. In addition, for most cases, the desolvation term resulted in the
bound structure being found less frequently. There are some cases where
the EEF1 term did improve the results. For the complex between cyclophilin
A and the HIV-1 capsid (PDBid 1AK4), the correct binding mode was found
twice as often and the ligand RMSD was significantly reduced. Similarly, for
the actin/Dnase I complex (PDBid 1ATN), the correct structure was found
5 times more frequently, and the ligand RMSD dropped by more than half.
For the Methylamine dehydrogenase/Amicyanin complex, the complex was
found more frequently and its rank improved from 27 to 1. The EEF1 term
also greatly increased the number of correctly determined structures for
complexes 1E6J, 1E96, 1I4D and 1UDI. Despite these cases, the algorithm
does perform significantly better when this term is discarded. The EEF1
terms were similarly deleterious for rigid-body unbound-unbound docking
(data not shown).

The reason why the EEF1 term is detrimental to the algorithm is
not known. However, there are a number of problems associated with
the function, amongst them those discussed by Lazaridis and Karplus
(1999b) themselves. The suitability of a pairwise summation in modelling
desolvation is by no means assured. However, although the EEF1 model
does fail to distinguish near native poses from decoys for some small
molecule/protein interactions (Seok et al., 2003), the extent to which this
term impairs SwarmDock is difficult to reconcile with the fact that it can help
in ranking small molecule complexes (Davis and Baker, 2009), as well as in
distinguishing near native conformations from false positive conformations
in protein folding (Lazaridis and Karplus, 1999a) and in reproducing
protein dynamics (Krol, 2003; Lazaridis and Karplus, 1999b). Interestingly,
when used for flexible refinement of docked protein-protein interactions, it
does not perform as well as using a simple distance dependent dielectric
constant in the Coulombic term, a very crude approximation of solvation
effects (Krol et al., 2007b). Similarly, a modified version of the function
performed worse at refining docked poses than an alternative desolvation
term when tested by Solernou and Fernandez-Recio (2011). This, along
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with the results presented here, suggest that whilst the EEF1 model may be
useful in modelling the folding and dynamics of single proteins, it is not
fit for modelling protein-protein interactions. The EEF1 term was omitted
from all subsequent simulations.

3.3.4 Unbound-Unbound Benchmark v2.0

The SwarmDock algorithm was applied to all 84 complexes in the docking
benchmark v2.0 (Mintseris et al., 2005), using the unbound structures. This
was done both rigidly and including normal mode flexibility. For the flex-
ible docking the five lowest frequency modes, as calculated using the RTB
method, were used for both the receptor and the ligand. For both sets of
runs, the algorithm was run twice from each starting position. The tables
of results, B.1 and C.1 appear in the appendix. As expected, the success
rate was considerably lower than for the bound-bound problem. Judging
by the CAPRI criteria (see section 1.5.10 or Mendez et al. (2003)), rigid-body
docking generated an acceptable structure for 35 cases, medium quality
structures for 16 cases and high quality structures for 6 cases. Including
flexibility improved the results, as acceptable structures were generated for
47 cases, medium quality structures for 21 cases and high quality structures
for 5. A summary of all the complexes for which a structure was found with
an interface RMSD below 5Å is given in Table 3.5, showing the best cluster
size, cluster rank and interface RMSD for each complex. By this criterion,
63 complexes (75% of the data set) bound in either the rigid or the flexible
runs, or both. A summary of the results for the flexible method is shown
in Table 3.6. As expected, the success rate drops markedly as the extent
of conformational changes upon binding increases, with no high accuracy
solutions found for the complexes of medium flexibility, and no high or
medium accuracy solutions found for the highly flexible complexes.

Table 3.5: Flexible vs. Rigid-Body Unbound-Unbound docking.
The best performance for each metric is highlighted in bold.

Flexible Rigid-Body
Complex RMSD Rank Clus RMSD Rank Clus

1NCA 0.391 1 6 0.356 1 28
Table 3.5 continued on next page



Chapter 3. SwarmDock 147

Table 3.5 continued from previous page
Flexible Rigid-Body

Complex RMSD Rank Clus RMSD Rank Clus
1KTZ 0.660 106 6 - - -
1QFW 0.821 5 4 0.793 5 20
1AY7 0.872 19 6 0.935 21 16
1QA9 1.158 155 3 0.996 164 2
2QFW 1.272 143 1 1.288 104 3
7CEI 1.313 11 10 1.625 5 22

1GCQ 1.399 169 1 - - -
1VFB 1.403 117 1 1.295 93 5
1FSK 1.437 65 1 3.728 72 2
1HE8 1.448 46 1 1.042 90 4
1I9R 1.483 1 10 1.445 1 34

1ML0 1.553 5 1 2.274 79 2
1JPS 1.567 23 4 2.066 23 1

1GRN 1.578 16 7 1.590 42 26
1AVX 1.591 25 1 1.565 60 4
1E6E 1.745 94 2 1.781 127 2
1WEJ 1.785 6 1 1.349 9 4
1EWY 1.845 13 3 1.838 77 8
1EAW 1.866 1 1 - - -
1BUH 1.921 59 6 1.896 124 3
1KAC 2.238 1 9 2.194 3 20
1FQJ 2.264 11 2 2.341 27 10
1PPE 2.467 62 1 3.687 112 1
1NSN 2.523 20 2 2.766 45 2
1TMQ 2.589 72 3 3.185 81 1
1HIA 2.606 2 1 - - -
1WEJ 2.750 116 1 4.851 88 3
2SNI 2.801 178 1 4.487 47 1

1WQ1 2.925 14 1 2.787 30 6
1BJ1 2.990 183 1 - - -

1KXQ 3.058 97 1 - - -
1E96 3.099 174 2 4.562 170 1
1K5D 3.141 30 1 - - -
1F34 3.259 15 2 2.892 138 1
1KXP 3.277 122 1 4.966 185 1
1E6J 3.441 6 3 3.322 35 7
2BTF 3.624 93 1 - - -
2PCC 3.711 48 2 3.770 37 4
1DQJ 3.714 47 1 3.029 38 3

Table 3.5 continued on next page
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Table 3.5 continued from previous page
Flexible Rigid-Body

Complex RMSD Rank Clus RMSD Rank Clus
1I2M 3.765 2 7 3.648 4 17
1HE1 3.814 205 1 - - -
1MLC 3.834 47 1 - - -
1GP2 3.884 11 1 - - -
2SIC 3.935 41 2 - - -
1KKL 4.009 32 1 - - -
2JEL 4.362 183 1 4.552 76 1

1BVN 4.409 115 1 - - -
1BVK 4.437 128 1 3.525 141 1
1B6C 4.587 145 1 - - -
1K4C 4.597 168 1 - - -
1ACB 4.625 121 1 - - -
1I4D 4.708 66 1 - - -

2HMI 4.721 217 1 - - -
1F51 4.765 179 1 - - -
1D6R 4.852 19 4 3.460 27 1
2MTA 4.947 21 1 4.525 35 4
1CGI - - - 4.527 123 2
2VIS - - - 3.164 124 1

1MAH - - - 1.795 148 1
1GHQ - - - 4.547 124 1
1M10 - - - 4.822 58 2
1EER - - - 4.365 93 1

Table 3.6: The performance of SwarmDock using the Van der Waals and electrostatics
potentials. Complexes are categorised as enzyme/inhibitor (EI), antibody/antigen
(AB) or other (OT). Complexes are also categorised according to their difficultly:
rigid (Rig., IRMSD < 1.5Å), difficult (Diff., IRMSD > 2.2Å) and medium (Med., the
remainder). Models are classified as high (High), medium (Med.) or acceptable
(Acc.) as per the CAPRI criteria (see section 1.5.10 or Mendez et al. (2003)). Three
criteria for success are also used; whetner the model is found, whether it is found
and ranked in the top 100 clusters, or whether it is found and ranked in the top 10 clusters.

Found. Top 100 Top 10
Acc. Med. High Acc. Med. High Acc. Med. High

All (84) 56% (47) 26% (22) 6% (5) 42% (35) 20% (17) 5% (4) 14% (12) 8% (7) 4% (3)
Rig. (63) 63% (40) 32% (20) 8% (5) 46% (29) 24% (15) 6% (4) 17% (11) 11% (7) 5% (3)

Med. (13) 46% (6) 15% (2) 0% (0) 46% (6) 15% (2) 0% (0) 8% (1) 0% (0) 0% (0)
Diff. (8) 12% (1) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0)
EI (22) 54% (14) 23% (6) 4% (1) 50% (13) 23% (6) 4% (1) 12% (3) 4% (1) 0% (0)
AB (26) 73% (16) 36% (8) 14% (3) 50% (11) 27% (6) 14% (3) 27% (6) 18% (4) 14% (3)
OT (36) 47% (17) 22% (8) 3% (1) 31% (11) 14% (5) 0% (0) 8% (3) 6% (2) 0% (0)

Of the complexes in Table 3.5, 20 were not found by the rigid body
method, whilst 6 were not found by the flexible method. Hence inclusion
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of flexibility does increase the chance of finding the correct binding site.
However, of the 37 complexes for which both runs bound, the interface
RMSD found using the flexible method was lower for only 18 complexes,
indicating that neither method is consistently superior in terms of RMSD.
Furthermore, whilst the chances of finding the correct binding site is greater
with the flexible method, the site is found less frequently; 34 of the sites
found with the flexible method had a cluster size of 1, compared to 14
for those found using the rigid-body method. However, for the flexible
method, the best structure was found in the top 10 ranked clusters for 10
cases, 4 of which were not found with the rigid-body method. Rigid-body
docking ranked the correct structure in the top 10 for 7 complexes. Of these,
3 were better ranked using the flexible method, 3 were equally ranked
with both methods and only 1 was not found with the flexible method.
Of the correctly bound structures found using both methods, which were
not ranked in the top 10 of either methods, 18 were best ranked using
the flexible method and 8 using the rigid-body method. This lead us to
conclude that modelling flexibility using a linear combination of normal
modes improves both the chance of finding the correct binding site and the
rank of the solution once found.

3.3.5 Docking as a Function of Modes

The previous analysis showed that the inclusion of flexibility notably im-
proved the performance of SwarmDock. However, it remained uncertain as
to how many modes should be used to model flexibility. In order to invest-
igate this, eight of the complexes were chosen for further docking runs, in
which the number of modes included are varied.

Four of the chosen cases were ’easy’ targets, for which only small con-
formational changes occur upon binding. These were docked globally; four
times from each starting position. One of these was the complex 1AY7,
which originally docked with low RMSD and a good rank. This was chosen
to investigate whether the inclusion of extra flexibility increased the number
of false positives. Another complex, 1GCQ, was chosen to see if it improved
in rank because, as shown in the previous section, low RMSD solutions were
found, but these ranked poorly. Conversely, 1E6J was chosen as it ranked
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Table 3.7: The mean cluster size for the correct binding site (RMSD < 5Å), averaged over
runs including different numbers of modes. The greatest values are marked in bold.

Modes
Complex 1-10 11-20 21-30 31-40

1AY7 15.1 11.2 12.3 14.3
1GCQ 1.2 1.9 2.9 2.6
1E6J 10.0 9.9 11.0 11.5

1TMQ 2.1 2.9 4.7 2.9
1EER 3.6 3.1 5.3 5.9
1K5D 5.9 6.9 7.4 6.6
1GRN 26.6 28.7 29.3 27.3
1KKL 2.8 2.9 3.9 5.6

well, but the RMSD had room for improvement. 1TMQ was chosed for its
mediocrity, since its rank and RMSD were both moderate.

The other four complexes were those which contain significant backbone
rearrangements at the interface. These complexes, 1EER, 1GRN, 1K5D and
1KKL, have Cα RMSDs at the interface of 2.44Å, 1.22Å, 1.19Å and 2.20Å
respectively. These structures were docked locally, with the algorithm being
run 8 times from the 10 starting positions nearest the binding site.

For each of these complexes, unbound-unbound docking was performed
with between zero and 40 normal modes included in both the receptor
and the ligand. For some of the runs in which a large number of modes
were used, some non-physical structural deformations were observed,
compromising the integrity of the complex. To correct any such perturba-
tions, the structures underwent extensive minimisation in CHARMM (600
steps steepest decent for rapid minimisation, 500 steps conjugate gradient
for higher accuracy and 4000 steps adopted basis Newton-Raphson for
fine-tuning). For all runs, the structures were clustered at 2.5Å RMSD. The
rank and RMSD of the global runs are shown in Figure 3.5, and of the local
runs in Figure 3.6.

For the global docking, the gradient of the regression line for both
the rank and RMSD is negative in all cases, suggesting that the inclusion
of more modes generally improves the ability of the algorithm to model
the conformation of the interfaces as well as discriminate between false
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Figure 3.5: Docking results and linear regression for global docking. I_RMSD is the
lowest value found during the run. Image adapted from Moal and Bates (2010) under the
Creative Commons Attribution 3.0 licence.
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Figure 3.6: Docking results and linear regression for local docking. I_RMSD is the lowest
value found during the run. Image adapted from Moal and Bates (2010) under the
Creative Commons Attribution 3.0 licence.
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positives and the true structure, despite the fact that these complexes
undergo only small conformational changes upon binding. This suggested
that perhaps the algorithm preferentially broadens or deepens the binding
funnel relative to the energy wells surrounding false positive struc-
tures. For the local docking runs, near-native structures with low RMSD
could be found in all cases, and for 1EER and 1KKL, significant improve-
ments in RMSD were found as the number of included modes was increased.

As a broader binding funnel has a wider rim, the search algorithm
is more likely to stumble upon it by chance, and subsequently locate
the minimum. To test the idea that the inclusion of extra normal modes
broadens the true binding funnel, the size of the cluster corresponding to
the binding interface was investigated. The mean cluster sizes, averaged
over runs with various numbers of modes, is shown in Table 3.7. For all
but one of the eight cases, the binding site was located more frequently
in the runs including 21-30 modes, or 31-40 modes, suggesting that the
binding funnel was broadened by the inclusion of a higher number of modes.

To investigate the possibility that as more modes are included, the true
binding funnel is preferentially deepened compared to false positive fun-
nels, the minimum energy of a near-native structure found by SwarmDock
was compared to the lowest energy false positive structures. The results
of this analysis are shown in Figure 3.7. With the exception of 1E6J, the
energy of the false positive structures did not decrease significantly as the
number of modes included increased. The energy of the docked structures
closest to the native, however, did seem to decrease significantly in most
cases, suggesting that the inclusion of ever higher frequency modes does
preferentially deepen the true binding funnel.

3.3.6 The DComplex Potential

After the EEF1 desolvation term was abandoned (see section 3.3.3), we were
concerned about the neglection of this important driving force for protein
association. Due to the importance of hydrophobic burial, it was decided
that the DComplex statistical pair potential should be programmed into
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Figure 3.7: Energy of lowest energy true positive structure and mean energy of the lowest
energy member of the 5 lowest energy false positive clusters. Image taken from Moal and
Bates (2010) under the Creative Commons Attribution 3.0 licence.
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SwarmDock, as it implicitly accounts for some desolvation effects. With this
new energy function, flexible unbound-unbound docking was performed on
78 cases from the benchmark and compared with the results for the previous
scoring function. Aside from the different energy function, the runs were
identical. For 67 of the cases tested, a structure with interface RMSD below
5Å was found. A summary of these results is found in Table 3.8, showing
the best cluster size, cluster rank and interface RMSD for each complex.

Table 3.8: DComplex vs. VDW & Elec Unbound-Unbound dock-
ing. The best performance for each metric is highlighted in bold.

DComplex VDW & Elec.
Complex RMSD Rank Clus RMSD Rank Clus

1NCA 0.467 10 6 0.391 1 6
1PPE 0.510 1 15 2.467 23 1
1JPS 0.624 26 3 1.567 19 2
1BJ1 0.668 112 2 2.990 134 1

1KXQ 0.756 6 8 3.058 57 1
1MAH 0.829 36 2 - - -
1QFW 0.845 84 2 0.821 5 3
1FSK 0.846 6 9 1.437 4 1

1AHW 0.868 22 8 1.443 6 1
1IQD 0.892 83 3 - - -
1EAW 0.913 5 5 1.866 1 1
1GCQ 0.921 41 6 1.399 122 1
1TMQ 0.951 1 3 2.589 72 3
1MLC 1.002 20 4 3.834 48 1
1AVX 1.017 30 2 1.591 25 1
1AY7 1.027 19 5 0.872 2 6
7CEI 1.141 13 11 1.313 12 9
1E6J 1.173 19 7 3.441 6 3

1KXP 1.184 2 9 3.277 107 1
1ML0 1.192 1 12 1.553 5 1
1QA9 1.311 76 11 1.158 35 3
1KTZ 1.340 98 1 0.660 114 6
1BVN 1.341 22 3 4.409 104 1
2PCC 1.422 36 4 3.711 49 2
1I9R 1.448 36 2 1.483 1 10
1WEJ 1.451 22 1 2.750 36 2
1GRN 1.532 55 7 1.578 17 4
1F51 1.603 28 4 4.765 184 1

Table 3.8 continued on next page
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Table 3.8 continued from previous page
DComplex VDW & Elec.

Complex RMSD Rank Clus RMSD Rank Clus
1NSN 1.620 3 8 2.523 20 2
1BUH 1.657 11 29 1.921 60 6
1UDI 1.726 4 13 - - -
2QFW 1.757 20 6 1.272 83 1
1RLB 1.798 84 2 - - -
2SNI 1.839 38 1 2.801 180 1
1HE1 1.850 27 3 3.814 171 3
1KAC 1.925 30 5 2.238 1 9
1DFJ 1.939 1 3 - - -
1E96 1.939 4 9 3.099 180 2

1EWY 2.015 6 15 1.845 13 3
1B6C 2.157 3 15 4.587 148 1
2SIC 2.239 113 1 3.935 34 2
1F34 2.386 3 6 3.259 16 3
2JEL 2.466 9 3 4.362 184 1
1E6E 2.512 1 13 1.745 94 2
1I2M 3.013 3 9 3.765 2 7
1D6R 3.044 15 5 4.852 85 1
2BTF 3.238 78 3 3.624 95 1
1CGI 3.312 8 2 - - -
2MTA 3.574 3 5 4.947 21 1
1HE8 3.644 58 2 1.448 46 1
1FQJ 3.728 71 2 2.264 11 2
1VFB 3.890 32 1 1.403 118 1
1GP2 4.032 91 2 3.884 11 2
1DQJ 4.079 10 2 3.714 42 1
1M10 4.324 51 1 - - -
1I4D 4.350 36 1 4.708 66 1
1HIA 4.365 2 4 2.606 2 2
1K4C 4.413 6 3 4.597 170 1
1SBB 4.558 150 3 - - -
1AKJ 4.723 107 1 - - -
1A2K 4.756 151 2 - - -
1KKL 4.768 25 2 4.009 33 1
1EER 4.964 154 1 - - -
1K5D - - - 3.141 31 1
2HMI - - - 4.721 217 1
1BVK - - - 4.437 133 1
1ACB - - - 4.625 124 1
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The DComplex energy function outperformed the Van der Waals and
electrostatics energy function by all metrics. It correctly found the bound
structure for 11 cases which were not found by the previous energy
function, as opposed to only four complexes which were found with the
previous scoring function but not DComplex. Further, of the structures
found by both methods, DComplex had a lower interface RMSD in 37 cases,
as opposed to 15 cases. Further, the cluster size was larger for 37 cases
versus 7 for the previous function. These metrics show that this potential
is better able to generate the correct docked structure. Additionally, the
correct structure was ranked higher in 32 cases, as opposed to 19, showing
that the DComplex potential is also better able to discriminate the correct
structure from the other generated poses. A summary of the performance
of SwarmDock using the DComplex potential is shown in Table 3.9. As
shown above, the success rates are greater than for the runs in which the
Van der Waals and electrostatics potentials are used (Table 3.6). As with
the previous energy function, the success rates drop dramatically as the
extent of conformational change increases. Table 3.9 also gives us absolute
measures for both the ability to generate the correct docked pose and the
ability to select is; whilst an acceptable or better structure could be found for
over two thirds of the complexes in the benchmark, only around a quarter
of the complexes were ranked in the top 10 clusters of lowest energy. As the
DComplex potential was added later in the PhD period, it was not included
in the runs for the analyses in previous sections, and was used only in later
rounds of CAPRI.

Table 3.9: The performance of SwarmDock using the DComplex potential. Complexes
are categorised as enzyme/inhibitor (EI), antibody/antigen (AB) or other (OT). Complexes
are also categorised according to their difficultly: rigid (Rig., IRMSD < 1.5Å), difficult
(Diff., IRMSD > 2.2Å) and medium (Med., the remainder). Models are classified as high
(High), medium (Med.) or acceptable (Acc.) as per the CAPRI criteria (see section 1.5.10
or Mendez et al. (2003)). Three criteria for success are also used; whetner the model is
found, whether it is found and ranked in the top 100 clusters, or whether it is found and
ranked in the top 10 clusters.

Found. Top 100 Top 10
Acc. Med. High Acc. Med. High Acc. Med. High

All (78) 68% (53) 50% (39) 17% (13) 62% (48) 49% (38) 15% (12) 26% (20) 14% (11) 6% (5)
Rig. (61) 80% (49) 62% (38) 21% (13) 75% (46) 61% (37) 20% (12) 31% (19) 18% (11) 8% (5)

Med. (10) 30% (3) 10% (1) 0% (0) 20% (2) 10% (1) 0% (0) 10% (1) 0% (0) 0% (0)
Diff. (7) 14% (1) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0)
EI (25) 80% (20) 52% (13) 16% (4) 76% (19) 52% (13) 16% (4) 44% (11) 16% (4) 8% (2)
AB (20) 75% (15) 65% (13) 40% (8) 70% (14) 60% (12) 35% (7) 25% (5) 20% (4) 15% (3)
OT (33) 55% (18) 39% (13) 3% (1) 45% (15) 39% (13) 3% (1) 12% (4) 9% (3) 0% (0)
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In order to see how well this energy function performs in SwarmDock
compared to other methods, a comparison was done with a number of other
docking algorithms. Unfortunately, there is no standard method to evaluate
the performance of an algorithm which is used consistently throughout
the literature. However, Table 3.10 compares the SwarmDock results with
results from two recent publications in which the criteria for a successful hit
varies markedly in their tolerance of deviations from the crystal structure
of the complex (Ravikant and Elber, 2011; Shentu et al., 2008). When the
more lenient criterion is used (rank < 250 and IRMSD < 4Å), SwarmDock
correctly identifiess two structures more than ZDOCK/ZRANK, but eight
structures fewer than DOCK/PIE. Interestingly, SwarmDock performs best
on the rigid cases and fails to identify any of the difficult cases. Presumably,
this is due to the softness of the potential used in the initial search compared
to the relatively hard DComplex potential used by SwarmDock. It should
be noted that whilst the ZDOCK/ZRANK and DOCK/PIE methods include a
re-ranking stage, no such stage is included for SwarmDock. Further, the PIE
and ZRANK re-ranking methods were trained using the same complexes
which are used to evaluate their performance, and thus overfitting cannot
be ruled out. No such biases exist for the DComplex potential. When
the stricter criterion is used (rank < 250 and IRMSD < 2.5Å) and no re-
ranking stage is included, SwarmDock performs very favourably compared
to Patchdock, Context Shapes and ZDOCK. Although no highly flexible
complexes are correctly identified, SwarmDock outperforms in all other
categories. However, this performance comes at much higher computational
expense relative to these other methods, and thus this may not constitute a
fair comparison.

3.4 Discussion

SwarmDock, a protein-protein docking algorithm, has been developed.
Flexibility is modelled with elastic network normal modes, calculated using
the RTB method (see section 2.3.2.1). Putative docked poses are generated
using a memetic algorithm composed of a PSO and a local search. The al-
gorithm has been tested with three different scoring functions, on a large set
of protein-protein interactions, and the inclusion of flexibility was shown
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Table 3.10: A comparison of SwarmDock with a number of other methods, in terms
of the number of hits found. Complexes are categorised as enzyme/inhibitor (EI),
antibody/antigen (AB) or other (OT). Complexes are also categorised according to their
difficultly: rigid (Rig., IRMSD < 1.5Å), difficult (Diff., IRMSD > 2.2Å) and medium (Med.,
the remainder). The methods are SwarmDock (SD), DOCK/PIE (DP), ZDOCK/ZRANK
(ZDR), Patchdock (PD), ZDOCK (ZD) and Context Shapes (CS).

All (78) Rig. (61) Med. (10) Diff. (7) EI (25) AB (20) OT (33)
SD† 67% (52) 80% (49) 30% (3) 0% (0) 76% (19) 80% (16) 52% (17)
DP† 74% (58) 79% (48) 50% (5) 71% (5) 96% (24) 70% (14) 61% (20)

ZDR† 64% (50) 74% (45) 30% (3) 29% (2) 76% (19) 80% (16) 45% (15
SD‡ 55% (43) 69% (42) 10% (1) 0% (0) 60% (15) 75% (15) 39% (13)
PD‡ 8% (6) 10% (6) 0% (0) 0% (0) 12% (3) 10% (2) 3% (1)
ZD‡ 13% (10) 16% (10) 0% (0) 0% (0) 24% (6) 15% (3) 3% (1)
CS‡ 10% (8) 13% (8) 0% (0) 0% (0) 12% (3) 25% (5) 0% (0)

† The criteria for success is rank < 250 and IRMSD < 2.5Å. Results taken from Ravikant and Elber (2011).
‡ The criteria for success is rank < 250 and IRMSD < 4.0Å. Results taken from Shentu et al. (2008).

to produce a marked improvement in performance compared to rigid-body.
The best results were obtained using the DComplex statistical pair poten-
tial, for which reasonable structures could be generate for around 80% of the
unbound-unbound cases.

The algorithm was further tested on 8 cases of varying difficulty, with
between zero and 40 normal modes included in the search. The rank and
RMSD of the generated structures was shown to improve as more modes
were included. These simulations also suggest that the inclusion of higher
modes broadens and preferentially deepens the binding funnel.

Whilst SwarmDock has shown promise, there is still much scope for
future development. Automated re-ranking, accounting for cluster size
and rank simultaneously is underway. Further, even with the DComplex
potential, only 20 of the structures were ranked in the top 10 clusters. Of
the 63 structures which bound correctly, 9 were only found once, and 36
of them were found fewer than 5 times. This strongly suggests that a
higher proportion of the complexes would have been correctly identified
had more runs been undertaken. However, running the algorithm more
times runs the risk of generating false positives and potentially lowering
the rank of the correct structures. The criticality of the energy function
for both searching and ranking is evident, and there are many avenues of
exploration which can be taken to optimise it for the task of docking. For
re-ranking, machine learning and artificial intelligence techniques can be
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used to combine terms describing the interaction, such as pair potentials
or desolvation energy models (see section 1.5.7). The SwarmDock pipeline
would benefit from such a step, and its implementation should not prove
a difficult future development. However, these methods can only help
choose the most likely structure. To find an energy function to be used
within the algorithm, which facilitates the generation of near-native poses
is a more difficult. One possibility would be to sample the energy wells
surrounding both true and false positive structures. Machine learning tools
could be used in an attempt to derive an energy function which broadens
and deepens the true binding funnel, whilst attenuating the false energy
wells, thus bolstering the swarm’s ability to navigate the energy surface
towards the native structure.

Another important shortcoming regarding SwarmDock is its inefficient
side-chain modelling. While modelling flexibility with normal modes does
allow linear movement of side-chain atoms, it does not permit rotamer
switching, repacking or specific torsion angle changes. There are a number
of possibilities which can be used for this. One of these would be to include
a sidechain repacking algorithm for each particle at each iteration, requiring
up to 500,000 repackings per run. In tests where all rotamers are packed in
a test set of 65 proteins, the scwrl and OPUS-rota methods took on average
2 and 8 seconds per protein respectively (Lu et al., 2008b). In SwarmDock,
only the interface atoms would require repacking, and this figure would
drop dramatically. However, even this would still represent an inordinate
computational expense, and a back of the envelope calculation in which an
interface repacking process takes on average 0.1s would still increase the
running time a SwarmDock run from around 10 minutes to 10 hours, far
beyond what is desirable considering that the algorithm is currently run
around 240 times per complex.

An alternative side-chain modelling approach would be to derive a
discrete ’side-chain space’ for both binding partners prior to running
SwarmDock, and explore this simultaneously with the translational, ori-
entational and conformational space. Sub-optimal solutions to the solvent
exposed rotamer optimisation problem could be linked together on a graph,
with each solution corresponding to a node. Solutions which differ by one
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rotamer can be linked by an edge. This graph can be cheaply pre-computed.
The PSO can navigate this graph, using a discrete version of the same
equations which propagate SwarmDock through the rest of search space
(discrete PSOs are discussed, for instance, in Engelbrecht (2006)). The dis-
tance between any given pair of positions on the graph can be pre-calculated
using Dijkstra’s algorithm, as can the identity of the edge which needs
to be crossed to move from one position towards another. This approach
would be fast, as the potential packed solutions would be pre-calculated,
and the only additional computations required during the SwarmDock run
itself would be handled by fast indexing with the Boost Graph Library,
and the reassignment of the rotamer corresponding to the edge. As long
as a pair of rotamer sets (one for the ligand and one for the receptor)
correspond to a set of rotamers in the ensemble of bound structure, this
approach has the potential to significantly enhance the SwarmDock pipeline.



Chapter 4

Crowding and Search Space
Reduction

4.1 Introduction

Protein-protein docking is traditionally undertaken by sampling the posi-
tion, orientation and conformation of two proteins in isolation. However,
proteins have evolved to interact in vivo, where they are constantly buffeted
by water and the other molecular constituents of the cell, the latter of which
can occupy a large proportion of the volume. This crowded environment
gives rise to phenomena collectively entitled ’macromolecular crowding
effects’ (Zimmerman and Trach, 1991; Minton, 1981; Hall, 2003; Ellis, 2001;
Zhou et al., 2008; Hall, 2003). Proteins constantly undergo non-specific
interactions, forming temporary associations held together by electrostatics
and desolvation forces, only to disengage swiftly. For binding partners of
biological significance, the formation of this encounter complex is likely
antecedent to the formation of the final docked ensemble (Tang et al.,
2006; Camacho et al., 1999; Blundell and Fernandez-Recio, 2006). The
phenomenon of encounter complex formation is surely an exaptation to the
evolution of specific protein-protein interactions. Steering effects brought
about by complementary electrostatics will result in preferential contact of
certain surface patches. From these favoured regions, proteins can explore
each others surfaces. The surface search will not be entirely random, but
electrostatics and shorter range forces will likely bias it in certain directions.
During the surface search, the two proteins will spend a greater amount of

162
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time in lower energy regions. Should the lifetime of this interaction have
consequences for the fitness of the organism, then it can be acted upon
by natural selection. The mutation of surface residues could increase the
efficiency of electrostatic steering, bias the surface search, or further deepen
the energy well. Such a mechanism seems a highly plausible explanation
for the origin of the binding funnel. It is a particularly efficient mechanism,
as the 2D surface search constitutes a reduction in dimensionality compared
to a 3D search in which the binding partners must, by chance, come into
contact with their binding surfaces correctly positioned and oriented.

In light of this, an understanding of encounter complex formation has
the potential to be informative for docking; should it possible to glean
information regarding the encounter complex ensemble, docking searches
could be focussed upon regions of frequent or tenuous contact. During
the development of SwarmDock a colleague, Xiaofan Li, was developing
BioSimz, a Rigid-body Langevin dynamics package for the purpose of
studying encounter complex formation and macromolecular crowding
effects (Li et al., 2010b,a; Li, 2011). Information regarding encounter complex
formation was derived from BioSimz simulations and used to restrict the
search space during SwarmDock runs. Simulations were run both with
and without external crowder proteins included to replicate the effects of
the crowded in vivo environment. This work has been published (Li et al.,
2010b), and was recently described as "an important new research area
that will clearly be very relevant to CAPRI in the future" (Lensink and
Wodak, 2010b). In this work, Langevin dynamics simulation and trajectory
merging was performed by Xiaofan Li. The scoring of SwarmDock starting
positions, statistical tests and all docking runs were performed by myself.
The analysis of the influence of crowding effects by molecular type was
performed in unison.
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4.2 Methods

4.2.1 Data Set

Unbound structures for 26 complexes in the easy and medium categories of
the docking benchmark 2.0 were studied (Mintseris et al., 2005). These in-
clude enzyme-inhibitor (1AVX, 1AY7, 1PPE, 7CEI, 1TMQ, 1EAW, and 1HIA),
enzyme-substrate (1EWY and 1E6E), antibody-antigen (1QFW, 1JPS, 1NCA,
1VFB, 1AHW, 1NSN, 1I9R, and 1FSK), and signal-effector/receptor (1KTZ,
1GCQ, 1GRN, 1FQJ, 1BUH, 1KAC, 1ML0, 1QA9, and 1HE8) complexes. The
term ’receptor’ refers to the larger of the two binding partners, and ’ligand’
to the smaller. The methods presented here were also applied to a number
of CAPRI targets.

4.2.2 BioSimz

The BioSimz package is an efficient rigid-body dynamics simulator for the
simulation of biological molecular systems at atomic resolution. Full details
of the package are given elsewhere (Li et al., 2010b,a; Li, 2011). Briefly, Bi-
oSimz models dynamics based on the Langevin dynamics scheme whereby
the temporal evolution of a molecule at position x is modelled using the
following form of Newton’s equation of motion

m
d2x
dt2 = −∇

N∑
i

u(xi) − γ
dx
dt

+
√

2γkBTmξ(t) (4.1)

where γ = 10−11s is the damping constant which models the hydro-
dynamic drag interaction between the solvent and the solute, and the
last term models random Brownian motion in which ξ(t) is a normally
distributed random force. The potential energy u(xi) of atom i is calculated
using the Van der Waals and electrostatics terms in the CHARMM27 force
field, along with a desolvation and hydrogen bonding term.

For all runs, molecules are randomly distributed in a 240 × 240 × 240Å3

box with periodic boundary conditions. The molecules were allowed to
equilibrate in a 10ns high-energy run. Subsequently, 200ns of dynamics
with a 1ps timestep was performed at 298K. Each simulation was run
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Figure 4.1: A snapshot of a crowded BioSimz simulation of the interaction between
TGFβ3 and TβII (PDBid 1KTZ). The binding partners, which are forming an encounter
complex, are coloured according to their surface electrostatics as calculated with APBS.
Figure reproduced from Li et al. (2010b) with permission from Wiley.
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Table 4.1: External crowder proteins used in BioSimz simulations
# Name Weight (Da) PDB Copy #
1 Hexokinase 52,209.9 1IG8 2
2 Phosphoglucose Isomerase 125,225.0 1HOX 2
3 Phosphofructokinase 35,263.2 4PFK 2
4 Fructose 1,6-bisphosphate Adolase 37,046.1 1ZEN 2
5 Triose Phosphate Isomerase 53,326.5 2YPI 1
6 Glyceraldehyde-3-phosphate Dehydrogenase 73,379.5 3GPD 2
7 Phosphoglycerate Kinase 45,315.5 3PGK 1
8 Phosphoglycerate Mutase 56,864.5 1EQJ 2
9 Endolase 93,739.4 2ONE 2
10 Pyruvate Kinase 198,428.0 1E0U 1

10 times and the results amalgamated for the remainder of the analysis.
Eight receptors and eight ligands were included in each simulation,
corresponding to a concentration of 1.92mM. Due to the variation in the
size of the proteins, this corresponds to between 18.5 and 19.2 gL−1. Runs
were performed either with or without the presence of external crowder
molecules not involved with the interaction in question. The crowder
molecules chosen were taken from the glycolytic pathway, as these are
present in high abundance, are highly conserved between species and
pervasive throughout almost all forms of life (Ishihama et al., 2008). The
identities of the crowders are shown in Table 4.1. The crowded simulations
correspond to a total protein density of between 168 and 252gL−1, a value
comparable to the 300gL−1, the approximate protein concentration of the in
vivo cytosol (Zimmerman and Trach, 1991). Figure 4.1 shows a snapshot of
a crowded simulation of the interaction between TGFβ3 and TβII (PDBid
1KTZ).

4.2.3 Combining BioSimz and SwarmDock

The BioSimz trajectories were used to generate a ’cloud’ of ligand density
surrounding the receptor. Firstly, the trajectories were converted to tra-
jectory points, which are composed of one point per ligand molecule per
picosecond, positioned at the ligand centre of mass. The density of traject-
ory points within a given region act as a measure of both how frequently that
region is visited and the duration of those visits. In order to generate the lig-
and density ’cloud’, the receptors for all timesteps are superimposed along
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Figure 4.2: A ligand cloud derived from superimposing receptors and merging trajectory
points derived from BioSimz simulations. The SwarmDock starting positions are shown,
coloured according to their score.
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with their associated trajectory points, which are subsequently merged. To
ensure that only trajectories associated with interacting binding partners are
considered, all trajectory points beyond a cutoff of a receptor atom are re-
moved. This cutoff is determined as the longest distance between the centre
of mass of the ligand and a ligand atom, plus an additional 7Å.

This ’cloud’ of ligand density was used to restrict the search space used by
SwarmDock, by eliminating half the starting positions on the basis that the
ligand density surrounding them is low. The starting positions are initially
generated using the method outlined in section 3.2.3. They are then scaled so
as their mean distance from the receptor centre of mass is equal to that of the
trajectory points. In order to score the starting positions based on the ligand
density, the following procedure was employed. For each trajectory point,
the scores of the nearest 5 starting points are incremented by 1. Due to slight
unevenness in the spacing of starting positions, a correction term is applied;
the score of each starting position is scaled by a quantity proportional to
the inverse cube to the nearest starting point. This correction was chosen
on the basis that the volume of space within a given distance of a point is
proportional to the inverse cube of that distance. To illustrate, an example
of a set of scored starting positions, along with the merged trajectory points,
is shown in Figure 4.2.

4.2.4 Wilcoxon Rank-Sum Test

The ranked list of starting positions was used in two ways. Firstly, it was
used to remove positions which scored poorly prior to SwarmDock runs.
Secondly, it was used to determine whether the region surrounding the
binding site was engaged in more frequently and tenuous encounter com-
plexes than regions away from the binding site, with statistical significance.
In order to determine this statistical significance, a one-tailed Wilcoxon
rank-sum test was employed. For the 10 starting positions nearest the bound
ligand centre of mass, the scores were tested against the null hypothesis
that they were drawn from the same distribution as the scores of the
remaining starting positions. The alternative hypothesis was that the scores
of the 10 starting positions nearest the binding region were greater than the
scores of the remaining starting positions. The tests were repeated with
the alternative that the scores of the starting positions nearest the binding



Chapter 4. Crowding and Search Space Reduction 169

Figure 4.3: A contact heatmap for CAPRI target 37, the complex between human ADP-
Ribosylation factor 6 (ARF6) and the second leucine zipper of JNK-interacting protein 4
(JIP4-LZ2), which was built by homology modelling. The most contacted zipper residue
is in contingence with ARF6, which also contacts a diffuse region of frequent visitation to
the right.

site were lower than those of the remaining points, to give an indication
of whether the binding regions could be disfavoured during the simulations.

4.2.5 Surface Contact Heatmaps

BioSimz trajectories were also used to derive surface contact heatmaps
showing which residues are most frequently involved in tenuous contacts.
Residues are scored by the number of times they contact their binding part-
ner. Only contacts associated with interactions which last for longer than
100ps are counted, so as to negate glancing blows which bias the count to-
wards peripheral residues and are not relevant to encounter complex form-
ation. An example of such a heat map is given in Figure 4.3, for which the
colour is shown on a logarithmic scale.

4.3 Results

4.3.1 Uncrowded Simulations

Langevin dynamics simulations as outlined above were applied to the
26 complexes in the data set and used to score the SwarmDock starting
positions. Wilcoxon rank-sum tests were then applied to test whether the 10
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positions nearest the binding region scored significantly higher than the re-
maining positions at the 5% significance level. This was found to be the case
for 12 of the complexes (1KAC, 1KTZ, 1FQJ, 1E6E, 1EWY, 1AHW, 1GRN,
1BUH, 1VFB, 1FSK, 7CEI and 1AY7). Subsequently, the test was applied to
ascertain whether for any of the complexes, the 10 starting positions nearest
the binding site scored significantly lower than the remaining positions at
the same significance level. This was found to be the case for three of the
complexes (1I9R, 1EAW and 1TMQ). It is interesting to note that for two of
these complexes, 1EAW and 1TMQ, a protrusion from one of the binding
partners intercalates deeply within a grove within the other, and as such it
is unlikely that the binding process can be adequately modelled using rigid-
body dynamics. The associated p-values of these tests are shown in Table 4.2.

Table 4.2: P-values for uncrowded simulations using one-tailed Wilcoxon rank-sum tests,
testing whether the scores of the 10 starting positions nearest the ligand centre of mass are
greater in value than the remaining points (Pg) or lesser in value (Pl). Significant results
are highlighted in bold.

Complex Pg Pl
1GRN 0.014 0.986
1HE8 0.335 0.668
1QFW 0.256 0.747
1GCQ 0.621 0.384
1AY7 0.049 0.951
1KTZ 0.000 1.000
1VFB 0.026 0.975
7CEI 0.036 0.965
1QA9 0.361 0.643
1FSK 0.029 0.972
1FQJ 0.002 0.998
1I9R 0.998 0.002

1ML0 0.221 0.781

Complex Pg Pl
1BUH 0.016 0.984
1NCA 0.856 0.146
1JPS 0.094 0.907

1AVX 0.372 0.632
1AHW 0.010 0.990
1EWY 0.007 0.994
1EAW 0.997 0.003
1KAC 0.000 1.000
1PPE 0.051 0.950
1NSN 0.190 0.813
1TMQ 0.965 0.036
1HIA 0.730 0.273
1E6E 0.004 0.997

Following the scoring of the SwarmDock starting positions, two sets
of SwarmDock runs were initiated. The first of these was identical to
the flexible method used in section 3.3.4. The second set was the same,
however with only half the number of starting positions, where the lowest
scoring half are removed. For all runs, the complexes were clustered at
3.5Å resolution, ranked, and compared. The results are surmised in Figure
4.4. For 17 of the complexes, the rank was improved and for five, the rank
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Figure 4.4: SwarmDock ranks following unbound-unbound docking, for the best ranking
clusters less than 5Å away from the bound crystal structure. For the rightmost four
complex, filtered runs failed to successfully dock. Image reproduced from Li et al. (2010b)
with permission from Wiley.

remained the same (note that for four of these, the correct structure was
already ranked in the top two). The remaining four structures failed to
dock correctly using the filtered list of starting positions. For three of these
(1EAW, 1I9R and 1HIA), the binding region was disfavoured in the BioSimz
simulations, whilst for the other (1ML0), the binding region was enhanced,
but SwarmDock failed to correctly identify the final docked pose.

Another pair of SwarmDock runs were set up. Again, the first of these
was identical to that in section 3.3.4, with the algorithm run twice from each
starting position. The second set of runs was same except the algorithm
was run four times from half the starting positions, whereby the lowest
scoring half of the starting positions were removed. The difference in
cluster size between the unfiltered runs versus the filtered runs is shown
in Figure 4.5, plotted against the min(log P) value of the two Wilcoxon
rank-sum tests. Of the 12 complexes for which the starting positions
surrounding the binding site scored significantly greater than those away
from the binding site, the correct docked pose was found more frequently
during the filtered runs than the unfiltered in all cases. Of the 11 complexes
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which did not exhibit a significantly enhanced or diminished binding site
ligand density, one was found an equal number of times, five docked more
frequently and five docked less frequently. For the three complexes for
which the binding site had unfavourable ligand density, SwarmDock found
the binding site less frequently. For two of these (1I9R and 1EAW), using
the filtered starting positions resulted in no correctly docked solutions.
In conclusion, information gleaned from simulations in which external
crowding molecules are not included either enhance the performance of
SwarmDock or at least do not depreciate it in most cases. Performing such
a BioSimz simulation prior to docking takes around 4h of computing time
using a typical 8 core CPU.

4.3.2 Crowded Simulations

The dynamics simulations and statistical tests were repeated on the test
set in the presence of the external crowder molecules, and results are
shown in Table 4.3. For eight of the complexes, higher ligand occupancy
was observed around the binding site irrespective of whether crowders
are included in the simulation or not (1GRN, 1FSK, 1FQJ, 1BUH, 1EWY,
1KAC, 1E6E, and 1KTZ). For six of the complexes, the inclusion of crowder
molecules enriched the ligand density around the binding site relative to
the uncrowded simulations (1HE8, 1GCQ, 1QA9, 1JPS, 1ML0, and 1NCA),
while for six others, crowders diminished the signal (1AVX, 1VFB, 1AY7,
1AHW, 1PPE and 7CEI). The complexes 1NSN and 1QFW did not have
enhanced specific binding, irrespective of their environment. For four of
complexes (1I9R, 1TMQ, 1EAW and 1HIA), the binding site is consistently
visited less frequently than non-binding regions in both sets of simulations.

As the scoring scheme used to rank the starting positions by the ligand
density surrounding them was chosen arbitrarily, a number of different
metrics were devised. These schemes, and their corresponding p-values are
shown in the appendix (Table D.1 and Table D.2). For all metrics, a greater
or equal number of cases had a significantly enhanced binding region
for the crowded simulations compared to the uncrowded simulations
(p ≤ 0.05). Similarly, for all metrics, an equal number of cases or fewer
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Figure 4.5: Difference in hits between filtered and unfiltered runs (y-axis) versus minimum
Wilcoxon rank-sum test p-value, shown on a logarithmic scale (x-axis). SwarmDock
performance is enhanced or diminished as expected depending on whether the binding
site corresponds to ligand density hotspots; all the complexes which exhibit a significant
signal around the binding site (red) are found more frequently after filtering while those
which have a diminished ligand density around the binding site (blue) are found less
frequently. However, there is not sufficient data to show that the separation of data is
significant using a chi-square test (with Yates’ correction for a 2× 2 matrix).
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Table 4.3: P Values for crowded simulations using one-tailed Wilcoxon rank-sum test,
testing whether the scores of the 10 starting positions nearest the ligand centre of mass are
greater in value than the remaining points (Pg) or lesser in value (Pl). Significant results
are highlighted in bold.

Complex Pg Pl
1GRN 0.039 0.961
1HE8 0.016 0.984
1QFW 0.169 0.834
1GCQ 0.005 0.995
1AY7 0.366 0.638
1KTZ 0.050 0.951
1VFB 0.491 0.513
7CEI 0.386 0.618
1QA9 0.006 0.995
1FSK 0.047 0.954
1FQJ 0.003 0.997
1I9R 0.995 0.006

1ML0 0.041 0.960

Complex Pg Pl
1BUH 0.037 0.964
1NCA 0.138 0.864
1JPS 0.050 0.951

1AVX 0.842 0.161
1AHW 0.150 0.852
1EWY 0.005 0.995
1EAW 0.990 0.011
1KAC 0.000 1.000
1PPE 0.557 0.447
1NSN 0.232 0.771
1TMQ 0.859 0.143
1HIA 0.810 0.193
1E6E 0.041 0.960

had a significantly diminished binding region for the crowded simulation
compared to the uncrowded simulations. These results suggest that the
inclusion of external crowder molecules offers a small improvement over
the simulations in which they are omitted. Of greater interest, however,
are the different biases for biological types observed in the crowded
and uncrowded simulations. No particular pattern is observed for the
antibody-antigen complexes; one performed well in both the crowded and
uncrowded simulations, two performed better in the crowded simulations,
two performed better in the uncrowded simulations, one performed
consistently badly and two showed no particular enrichment of the binding
site in either simulation. Both enzyme-substrate complexes, however, per-
formed consistently well in both the crowded and uncrowded simulations,
unlike the seven enzyme-inhibitor complexes, none of which performed
consistently well. Four of these performed well in uncrowded but not
the crowded simulations, and three of them performed consistently badly.
The best results, however, were observed for the signal/effector-receptor
complexes. None of these performed badly in both sets of simulations and
none of them performed better in the uncrowded simulations compared to
the crowded simulations. Four performed better in the crowed simulations
and five performed well in both simulations.
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Figure 4.6: The SwarmDock starting positions for CAPRI target 32 (PDBid 3BX1), coloured
by their score, for (A) uncrowded and (B) crowded simulations. Image adapted from Li
et al. (2010b) with permission from Wiley.

This result is of particular interest, as signal transduction complexes
are seen as difficult docking targets. They are typically of weaker affinity
and often have multiple binding sites. Enzyme-inhibitor complexes, in
contrast, are easier targets, being of high affinity, fast binding kinetics,
high specificity and often irreversible in nature. The reasons why this
particular pattern is observed is not clear, and the mechanistic rationale
behind macromolecular crowding effects have not yet been fully elucidated.
However, both positive and negative effects on binding kinetics have
been observed in crowded simulations (Zhou et al., 2008). One possibility
which is consistent with the presented results is that crowders act as
ambient momentum providers, allowing the weaker-binding complexes to
overcome energy barriers and arrive at the bound state. The more tightly
bound complexes, however, are more likely to be found in the bound state,
and the additional momentum provided could act to destabilise the complex.

4.3.3 CAPRI Targets

Simulation and statistical tests were performed on CAPRI targets 32 and
38-40, both with and without environmental crowder proteins. Target 32 is
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the complex between the enzyme subtilisin savinase and its barley inhib-
itor (PDBid 3BX1). Unlike the seven enzyme-inhibitor complexes above,
this complex performed better in the crowded simulations (P = 0.025) com-
pared to the uncrowded simulations (P = 0.354). The SwarmDock starting
positions, coloured by score, are shown in Figure 4.6. In both simulations,
the correct binding site was found. However, without the crowders, three
false positive binding sites, b, c and d, were also prominent, one of which
exhibited a greater signal than the true binding site, a. When the crowding
proteins were included, however, one of the false positive sites, c, disap-
pears altogether, whilst the signals for b and d were significantly attenuated,
leaving a single prominent signal near the correct binding region.

Similar results were found when the method was applied to target 38
(PDBid 3FM8), a signal-effector complex between centaurin-α1 and the FHA
domain of kinesin family member 13B (KIF13B). As the unbound structure
of KIF13B was not available, it was built by homology modelling using the
POPULUS server (Offman et al., 2008). For this complex, crowded simu-
lations (P = 0.057) performed significantly better than in the uncrowded
simulations (P = 0.388). Target 39 was the same target as target 38, only
with bound conformation of the KIF13B FHA domain, and the results were
essentially identical.

Target 40 was a bivalent complex between the double-headed arrowhead
protease inhibitor and two trypsins (PDBid 3E8L). For one site, p-values
of 0.016 and 0.003 were obtained using the uncrowded and crowded
simulations respectively. P-values for the second site were 0.159 and 0.169.
The SwarmDock starting positions, coloured by score, are shown in Figure
4.7.

4.3.4 Possible Mechanistic Insights

During the above analysis it was observed that for many of the complexes,
the high-scoring starting positions were not directly above the binding site
but, to a greater or lesser degree, proximal to it (see Figures 4.6 and 4.7).
This phenomenon was also observed in the contact heat maps. Intriguingly,
for three cases (1BUH, 1QA9 and CAPRI target 39), patches are observed
on the ligand and the receptor such that the two patches could be matched
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Figure 4.7: The SwarmDock starting positions for CAPRI target 40 (PDBid 3BX1), coloured
by their score, for the crowded simulations. The ligands for both binding sites are shown.
Image adapted from Li et al. (2010b) with permission from Wiley.
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Figure 4.8: The contact heatmap for the CDK2-Ckshs1 complex (PDBid 1BUH), construc-
ted from the crowded simulation. Although hotspots are not located across the whole
crystallographic binding site, numerous residues of frequent contacts form patches adja-
cent to and overlapping with the crystallographic site.

up by a concerted rotation from the crystallographic binding site, indicating
that the site of preferential encounter complex formation can proceed to the
final docked pose via the rolling of the binding partners across each others
surfaces. For the complex between CDK2 and Ckshs1 shown in Figure 4.8
(PDBid 1BUH), the proximal patches are only slightly shifted and overlap
the crystallographic site. For target 39, however, the patches do not form part
of the crystallographic binding site, but are located directly opposite from
one another, as shown in Figure 4.9. These results are consistent with the
encounter complex formation/2D surface search mechanism laid fourth in
the introduction to this chapter, and described by Blundell and Fernandez-
Recio (2006).

4.4 Discussion

BioSimz and SwarmDock were combined into a simulation and docking
protocol. Of the complexes tested, around half exhibited preferential en-
counter complex formation near the binding site region, and for all of these,
taking account of this information to restrict the SwarmDock search space
resulted in improved docking performance. For those which did not exhibit



Chapter 4. Crowding and Search Space Reduction 179

Figure 4.9: The contact heatmap for CAPRI target 39, constructed from the crowded
simulation. Neither the crystallographic contacts nor sites distal to the binding site are
noteworthy. However, a very strong signal can be observed on opposing patches on the
ligand and receptor. Image adapted from Li et al. (2010b) with permission from Wiley.

preferential visitation near the binding site, the site was not disfavoured and
the restriction of search space did not adversely affect docking performance,
except in a minority of cases. The inclusion of external crowding molecules
in the simulations aids in the location of the binding site in some cases, and
reduces the signal in others. However, averaged over the whole data set, the
inclusion of these molecules does seem to facillitate binding site recognition.
Intriguingly, the crowders were found to attenuate the signal for enzyme-
inhibitor complexes, but enhance the signal for signal/effector-receptor com-
plexes, although the reasons for this are unknown. These simulations also
appear to give mechanistic insights into the transition from unbound bind-
ing partners to the final docked complex, and complement kinetic and NMR
data which suggest that biomolecular recognition proceeds via biased en-
counter complex formation and surface search.
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CAPRI

5.1 Introduction

SwarmDock was used to model complexes in the CAPRI experiment from
round 15 (see section 1.5.10) and has performed respectably, coming joint
11th out of the 54 groups which participated during the last assessment
period (Lensink and Wodak, 2010b). For rounds 16-17, the method previ-
ously employed in the laboratory, developed by Dr. Marcin Król, was used
in tandem with SwarmDock (Krol et al., 2007a). Briefly, molecular dynamics
was performed on both the receptor and the ligand. These structures were
clustered at a resolution which generated approximately 10 clusters each.
These were then crossdocked and the results amalgamated (see section
1.5.6). Following a short minimisation in CHARMM, the structures were
ranked by electrostatics and the DComplex pair potential. The top 500
structures according to electrostatics, and the top 300 structures according
to DComplex, were then clustered. The lowest energy members of the
largest clusters are then selected.

In the scoring part, the approach employed vaguely follows the concept
of ’Crowd Intelligence’ (Surowiecki, 2005), whereby the results from all
competitors are amalgamated, filtered and clustered in order to find a
consensus structure. Initially, all the submitted structures are minimised
and ranked using DComplex. Subsequently, the top 300 structures are
clustered hierarchically. The lowest energy structures from the largest
clusters are then selected for submission. This approach has proven highly

180



Chapter 5. CAPRI 181

fruitful, as during the last assessment period no other participating group
managed to correctly identify the structure of more targets (see Lensink and
Wodak (2010b), supplementary table S13).

Two very different challenges were also recently posed to the CAPRI com-
munity, in which the ability to discriminate between pairs of proteins which
bind and those which do not, was tested. The following sections describe
each round individually. To summarise, Table 5.1 shows the performance
of SwarmDock in the prediction rounds of CAPRI compared to the other
participating groups for targets 37 to 42. An acceptable or better structure
was found for five of these targets, which is equal to or better than all but
two other groups, those of Zho and Zacharias. Despite frequently locating
the correct structure, only one of these was classified as good accuracy, and
two as medium accuracy. The scoring rounds are summarised in Table 5.2.

5.2 Standard Rounds

5.2.1 Round 15

The first round of CAPRI in which SwarmDock was entered was round
15. Just seven months into the postgraduate course, the algorithm was in
a primitive state; no flexibility had been included, the deleterious EEF1
desolvation term was included, and no proper benchmarking had yet been
undertaken. Considering that this early set-up is incapable of consistently
docking proteins already in their bound conformation (see section 3.2.6.2),
it is no surprise that we failed to generate any acceptable structures. Even
for the relatively easy target 32 (the Subtilisin Savinase enzyme/BASI
inhibitor complex, PDBid 3BX1), for which acceptable solutions or better
were submitted by 11 groups (5 of which were high accuracy), retroactive
analysis showed that SwarmDock failed to even generate an acceptable
structure when docking the Savinase (unbound, PDBid 1SVN) to BASI
(unbound, PDBid 1AVA).

Targets 33 and 34 were for the same complex, the interaction between
a homology model of Rlma(II) methyltransferase and a portion of bacterial
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Table 5.1: A summary of the performance of the participating groups in CAPRI targets
37 to 42. Predictions are categorised as incorrect (0), not participated (-), acceptable (*),
medium (**) and good (***) as per the CAPRI criteria (see section 1.5.10 or Mendez et al.
(2003)). Servers are highlighted in capital letters. A summary is given for each participant,
showing the number of complexes found, with the number of medium and high accuracy
solutions shown in parentheses. Table adapted from Lensink and Wodak (2010b).

Predictor T37.1 T37.2 T38 T39 T40A T40B T41 T42A T42B Summary

Zacharias ** * 0 0 *** *** *** *** 0 6(4***/1**)
Zou ** * 0 0 *** *** *** 0 *** 6(4***/1**)

Vajda 0 0 0 *** *** *** ** *** 0 5(4***/1**)
Wolfson * 0 0 0 *** *** ** *** 0 5(3***/1**)

Weng 0 *** 0 0 ** *** ** 0 ** 5(2***/3**)
Bonvin 0 ** 0 0 *** *** ** * 0 5(2***/2**)

CLUSPRO 0 0 0 ** ** * ** *** 0 5(1***/3**)
Bates * * 0 0 ** *** ** 0 0 5(1***/2**)

Eisenstein 0 0 0 0 *** *** *** 0 *** 4(4***/0**)
Nakamura - - 0 0 *** *** ** *** 0 4(3***/1**)

Wang 0 0 0 ** *** *** * 0 0 4(2***/1**)
Zhou 0 * 0 0 *** 0 *** 0 0 3(2***/0**)
Gray 0 0 0 0 *** *** ** 0 0 3(2***/1**)

Camacho 0 * 0 0 ** *** - - - 3(1***/1**)
HADDOCK 0 0 0 0 0 *** ** 0 * 3(1***/1**)

Ritchie 0 0 0 0 ** ** ** 0 0 3(0***/3**)
GRAMM-X 0 0 0 0 *** *** *** 0 0 3(3***/0**)

Takeda-Shitaka 0 0 0 0 *** ** *** 0 0 3(2***/1**)
Xiao 0 0 - - * *** *** 0 0 3(2***/0**)

Vakser 0 0 0 0 *** *** ** 0 0 3(2***/1**)
SKE-DOCK * * 0 0 0 *** 0 0 0 3(1***/0**)

Fernandez-Recio 0 0 0 0 0 0 * ** 0 2(0***/1**)
Ten_Eyck 0 0 0 0 *** *** - - - 2(2***/0**)

Tovchigrechko 0 0 0 - *** *** 0 0 0 2(2***/0**)
F_Jiang 0 0 0 0 0 * * 0 0 2(0***/0**)
Comeau - - - - *** *** 0 0 0 2(2***/0**)
Elofsson ** ** 0 0 0 0 0 0 0 2(0***/2**)

Baker 0 0 0 0 *** 0 0 0 0 1(1***/0**)
Mitchell 0 0 0 0 0 0 0 ** 0 1(0***/1**)

PATCHDOCK 0 0 0 0 0 0 0 *** 0 1(1***/0**)
FIBERDOCK - - - - - - *** 0 0 1(1***/0**)
FIREDOCK 0 0 0 0 *** 0 - - - 1(1***/0**)

Alexov 0 0 0 0 0 0 ** 0 0 1(0***/1**)
Bajaj - - - - - - ** 0 0 1(0***/1**)

TOPDOWN 0 0 0 - 0 ** 0 0 0 1(0***/1**)
Elber - - 0 0 0 * 0 0 0 1(0***/0**)

Günther 0 0 0 - - - * 0 0 1(0***/0**)
Kihara 0 0 - - 0 0 * 0 0 1(0***/0**)

Kinoshita * 0 - - - - - - - 1(0***/0**)

ribsomal RNA, the first protein-RNA complex to be modelled in CAPRI. As
SwarmDock was designed to read in CHARMM parameter files, only small
changes needed to be made in order to use the CHARMM-27 force field,
which includes nucleotide parameters. For target 33, Rlma(II) methyltrans-
ferase was to be docked to a homology model the rRNA, and in target 34 the
bound structure of the rRNA was provided. The Rlma(II) homology model
was built using POPULUS (Offman et al., 2008), and the rRNA was built
from PDB structure 1MT4 by nucleotide replacement and ’stitching’ helical



Chapter 5. CAPRI 183

Table 5.2: A summary of the performance of the participating groups in CAPRI targets 37
to 42. Scores are categorised as incorrect (0), not participated (-), acceptable (*), medium
(**) and good (***) as per the CAPRI criteria (see section 1.5.10 or Mendez et al. (2003)).
A summary is given for each participant, showing the number of complexes found, with
the number of medium and high accuracy solutions shown in parentheses. Table adapted
from Lensink and Wodak (2010b).

Scorer T37A T37B T38 T39 T40A T40B T41 Summary

Bates *** ** 0 0 ** ** * 5(1***/3**)
Wang ** ** 0 0 ** *** * 5(1***/3**)

Bonvin ** * 0 0 ** *** * 5(1***/2**)
Zou *** 0 0 0 *** *** *** 4(4***/0**)

Haliloglu ** ** 0 0 ** *** 0 4(1***/3**)
Weng *** 0 0 0 *** 0 * 3(2***/0**)

Wolfson * 0 0 0 *** *** 0 3(2***/0**)
Elber - - 0 0 *** *** * 3(2***/0**)

Camacho 0 0 - - *** *** - 2(2***/0**)
Takeda-Shitaka 0 0 0 0 *** 0 ** 2(1***/1**)

Liu - - - - ** ** - 2(0***/2**)
Aze *** 0 0 0 0 0 0 1(1***/0**)

Fernandez-Recio 0 0 0 0 0 0 ** 1(0***/1**)
Kihara - - - - 0 0 ** 1(0***/1**)

SAMSON+HEX - - - - - - ** 1(0***/1**)
Xiao - - - - - - ** 1(0***/1**)

Mitchell 0 * 0 0 0 0 0 1(0***/0**)

RNA generated using CHARMM.
For target 33, molecular dynamics was run on the built RNA structure,

and the resultant trajectory was clustered in order to generate a diverse
conformational ensemble against which to dock the Rlma(II). Having six
backbone degrees of freedom per nucleotide, RNA is intrinsically more
flexible than protein and none of the generated rRNA structures resembled
the bound conformation and no accurate structures were generated. None
of the other CAPRI participants submitted an acceptable structure or higher
quality solution.

For target 34, with the bound conformation of rRNA, we also failed to
generate an acceptable structure. However, 13 other groups did manage to
find acceptable solutions. For the scoring of this target, only the CHARMM
energy was taken into account for selecting structures for clustering, as
DComplex cannot score nucleotides. One large, low energy cluster was
found. This cluster was split into sub-clusters by clustering at lower resolu-
tion. Of the structures submitted for scoring, nine were of acceptable quality.

Targets 35 and 36 were not a protein-protein complex, but two domains
of the same protein, xylanase Xyn10B, connected by a disordered linker
(PDBid 2W5F). Both domains had to be modelled by homology for target
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Figure 5.1: The crystal structure of CAPRI target 37 (PDBid 2W5F). The best submitted
SwarmDock model is also shown, superimposed on the leucine zipper, with the ARF6 in
green, IRMSD = 2.93Å, fnat = 0.31.

35, and the bound structure for the CBM22 domain was given for target
36. As this is an intramolecular interaction rather than intermolecular, in
order to adopt the crystallographic structure the interaction energy between
the two domains need not be sufficiently low as to overcome the entropic
penalty associated with the loss of three translational degrees of freedom.
Hence, this was considered a difficult target, compounded by the fact
that homology models had to be used. Only one acceptable solution was
submitted for target 35 by any of the participants, and only one for target
36.

5.2.2 Round 16

By the time round 16 came around, normal mode flexibility had been ad-
ded to SwarmDock and the EEF1 term had been removed from the energy
function. Only one target, 37 (PDBid 2W5F), was included in this round, a
C2 symmetrical interaction between two ARF6 proteins (unbound, PDBid
2A5D) and a symmetrical homodimer, the second leucine zipper of JIP4
(built by homology). Four acceptable solutions were submitted, derived as
follows, the best of which is shown in Figure 5.1. Nine other participating
groups also managed to identify correctly the structure of the complex.

Molecular dynamics was performed on both binding partners, and the
trajectories clustered. The derived structures were used for crossdocking
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both with SwarmDock and with FTDock. For each of the pairwise Swarm-
Dock runs, clusters of low energy and/or large size were amalgamated. Of
these structures, a number of similar poses clustered together. The same
cluster was found after collecting and clustering the low energy FTDock
crossdocked structures. We submitted five SwarmDock and four FTDock
structures, including two of acceptable accuracy from each method. The final
structure we submitted, which was incorrect, was constructed by superim-
position of ARF6 and the leucine zipper onto their respective homologues,
RhoA and ROCKI in the PDB structure 1S1C. In the scoring round, six correct
structures were submitted, including one of high accuracy.

5.2.3 Round 17

Round 17 was comprised of two targets, both the complex between
centaurin-α1 and the KIF13B FHA domain (PDBid 3FM8). In target 38,
the FHA domain was constructed by homology modelling, and the bound
conformation was given for target 39. Pairwise and crossdocking was per-
formed with SwarmDock and FTDock. No correct solutions were submitted
for target 38 by any of the participating groups, and only two groups submit-
ted correct solutions for target 39. Retroactive analysis of target 39 showed
that SwarmDock had found a medium accuracy structure (IRMSD = 1.67Å,
LRMSD = 3.55Å). However, it only ranked 102nd, highlighting the need for
a refinement and/or re-ranking stage to be implemented in SwarmDock. No
groups managed to identify correctly the complex in the scoring rounds for
either target.

5.2.4 Round 18

Round 18 also consisted of a single bivalent complex, target 40 (PDBid 3E8L).
This target contained the double-headed arrowhead protease inhibitor A in
the bound conformation, bound to two trypsin molecules (unbound, PDBid
1BTY). During this round, Dr. Zhiping Weng discovered the identity of
two residues involved in binding, one from each site. This information
was passed on to the other participants, although for the primary site this
information was redundant due to an obvious protease binding motif. High-
ranking and clustering solutions were filtered according to the involvement
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Figure 5.2: The crystal structure of CAPRI target 40 (PDBid 3E8L). The best submitted
SwarmDock models for both sites are shown in green, after superimposition of the pro-
tease inhibitor. For the primary site (left), a medium solution is shown (IRMSD = 1.49Å,
fnat = 0.81). For the secondary site (right), the high quality solution is shown (IRMSD =
0.94Å, fnat = 0.88).

of this binding motif, and molecular dynamics was performed on the best
fitting structure. The trajectory was clustered, and the clusters ranked by
binding energy. The nine lowest energy structures were submitted, four of
which were of acceptable quality and five of medium quality. The tenth
structure submitted was for the secondary site, being the only solution of
reasonable energy found by SwarmDock for which the residue identified by
Dr. Weng participated significantly in the interaction. This structure was of
high quality. The best submitted structures are shown in Figure 5.2. Of the
participating groups, 23 correctly modelled the binding site of at least one
site. In the scoring round for this target, all ten submitted structures were of
medium quality and covered both sites.

5.2.5 Round 19

Round 19 contained two targets. The first of these (PDBid 2WPT), is the
complex between non-cognate mutants; Colicin E9 DNase (unbound, PD-
Bid 1FSJ) and IM2 immunity protein (unbound, PDBid 2NO8). Wild-type
cognate Colicin/IM interactions are of very high affinity, and a number of
structures are available in the databank. SwarmDock managed to generate
the correct structure a number of times, and comparisons with homologues



Chapter 5. CAPRI 187

Figure 5.3: The crystal structure of CAPRI target 50 (PDBid 3R2X). The top ranked
SwarmDock model is shown in green.

allowed identification and submission of five acceptable and one medium
quality structure, along with 21 other groups with correct predictions. Four
acceptable structures were submitted in the scoring round.

The second structure in round 19, target 42, was a synthetic homodimer
of a tetratricopeptide repeat (PDBid 2WQH), where the monomer required
homology modelling. In the crystal structure, two different homodimeric
assemblies appear in the asymmetric unit, one with C2 symmetry and the
other with screw axis symmetry. Although 10 groups had successfully
found one or the other, no group correctly found both structures. None of
the submitted SwarmDock structures were of acceptable quality, although
one submission was close (IRMSD = 5.3Å, Fnat = 0.12), and a refinement
stage in the SwarmDock pipeline may have been able to nudge the structure
towards the native.

5.2.6 Rounds 22 onwards

Rounds 20 and 21 were scoring only rounds, and are dealt with in section
5.3. Round 22 contained a single target, 46, the interaction between
MTQ2 and TRM112 (PDBid 3Q87), which required the construction of
homology models of both domains. Only the Bonvin group submitted
correct solutions. Whilst none of the submitted SwarmDock structures
were of acceptable quality, one was close (IRMSD = 4.68Å, Fnat = 0.15).
In the scoring round, two acceptable structures were submitted. Again, a
refinement protocol may have been able to refine in from this position.
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Rounds 23 and 24 contained two and three targets respectively, but have
not yet been assessed. Round 25 had one target, but was cancelled as its
structure was found by the Bonvin group to be available on the internet.
The structure of target 50, part of round 24, a de novo designed protein
which binds to influenza hemagglutinin, has since been deposited in the
protein databank (PDBid 3R2X). The top ranked SwarmDock model that was
submitted is shown in Figure 5.3. Although the crystallographic complex
is rotated relative to the SwarmDock prediction, the recognition helix was
essentially replicated.

5.3 Interface Design Rounds

Rounds 20 and 21 of CAPRI were not typical rounds in which the crystal
structure of a complex was to be predicted. Moreover, they were challenges
commissioned by Sarel Fleishman and David Baker at the University of
Washington, aimed at assessing the ability of the CAPRI community to
recognise the features which identify experimentally verified interactions
amidst ostensibly indistinguishable interactions for which experiments
have failed to show binding.

The de novo design of protein-protein interactions is an important prob-
lem in structural bioinformatics. Attempts to design such interactions not
only provide a test of our fundamental understanding of protein-protein in-
teractions, but could also have considerable biomedical significance. Whilst
proteins can be targeted specifically by antibodies, no technology yet ex-
ists to target specific surface patches. For instance, antibodies which tar-
get variable regions of pathogenic proteins may be capable of blocking the
pathogen. However, the variability renders such antibodies prone to resist-
ance, a phenomenon which is less problematic when targeting functionally
conserved regions. Such an endeavour to design protein-protein interac-
tions from scratch has been undertaken by Fleishman et al. (2011). In their
approach, individual residues were docked in order to find hot spots. Fol-
lowing this, scaffold proteins are docked using PatchDock and refined using
RosettaDock. Structures are ranked according to the degree to which their
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residues match the positions and orientations of the hot spot residues. These
hotspots are then grafted onto the scaffold and further refined. Those with
the best energetics are selected for experimental testing. Their correspond-
ing DNA constructs are then cloned, expressed and the interaction verified
with SPR, yeast display or lysate ELISA.

In principle, with efficient sampling and an accurate energy function,
this protocol should be able to identify the sequence of proteins which
bind to specific surface patches of any target of interest. However, when
tested, very few of the designs showed evidence of binding, despite the
RosettaDock scoring function being unable to consistently distinguish
between the designs and known protein-protein complexes on the basis of
energetics. This indicates a disparity between reality and the free energy
function; some physical process or phenomenon is not accounted for or is
badly modelled, and this disparity is of sufficient magnitude to thwart the
design process in all but a small minority of cases.

From this disparity were commissioned three challenges, two of which
constituted CAPRI round 20, and the third of which formed round 21. The
first challenge in round 20 was to distinguish the crystal structure of a true
interaction from 20 designed interactions which failed to display binding
function. The crystal structure was modified such as to mask any telling
signs of its crystallographic origin, so that the answer was not known to
the participants until the results were announced. In the second challenge
of round 20, another set of 21 structures was given, all of which were de-
signed. The participants were asked to predict which, if any, had shown
experimental evidence of binding when tested. Again, the participants had
no a priori knowledge about any of the structures. In these rounds, there
was always the possibility that binding did occur, but that the affinity was
below the detection threshold of around 7 kcal mol−1. Further, absence of de-
tectable binding may be due to poor monomer solubility, not unfavourable
energetics.

The third challenge, round 21, was essentially a binary classification
problem. Structures for 120 known protein-protein interactions, and for
87 designs, were given. The aim of the round was to distinguish between
the structures by deriving a single metric with which to rank them. As a
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condition of the challenge, no information pertaining to the 87 designed
structures was to be used in the derivation of this metric. A manuscript
outlining this work, including our contribution, is in preparation at the
Baker laboratory.

5.3.1 Round 20

Table 5.3: The performance measures applied in CAPRI round 20, challenge one.
Structures are ranked in order of preference. Metrics are the SwarmDock rank (SD
rank), ligand RMSD (LRMSD), SwarmDock cluster size (Csize), whether the cluster
corresponding to the given structure was the largest (Bclus), BioSimz association scores
for the receptor (Ar rank) and ligand (Al rank), and the BioSimz dissociation score (D
rank).

Rank Model SD rank LRMSD Csize Bclus Ar rank Al rank D rank

1) 10 1 1.046 58 Yes 3 1 17.0888
2) 4 1 1.083 19 No 0 0 18.0174
3) 6 1 0.354 74 Yes 3 1 15.632
4) 8 3 1.061 93 Yes 0 0 17.2262
5) 9 2 1.267 45 Yes 0 0 17.6508
6) 5 20 0.854 37 Yes 3 1 17.9287
7) 1 5 0.410 15 Yes 0 1 16.9812
8) 3 8 0.504 17 Yes 0 1 16.0287
9) 11 5 1.185 31 Yes 0 2 17.4597

10) 2 5 0.560 16 No 0 0 16.9510
11) 19 79 0.308 17 No 3 3 17.1189
12) 14 27 0.708 14 No 0 0 17.7264
13) 15 112 0.787 12 No 3 0 18.9913
14) 7 21 0.614 20 No 0 2 15.4912
15) 21 84 1.894 20 No 3 3 17.1113
16) 16 N/A N/A N/A N/A 3 0 19.5187
17) 17 204 1.130 9 No 3 0 18.2994
18) 12 12 6.938 16 No 0 0 18.2452
19) 18 107 2.695 12 No 0 0 19.7383
20) 13 171 2.532 3 No 0 1 17.7149
21) 20 N/A N/A N/A N/A 0 1 16.5006

Seeing as the first challenge in this round was to identify which complex
corresponds to a crystal structure in the bound conformation, the approach
which was taken was to derive metrics describing the interaction and
compare these to a benchmark of known complexes. As bound-bound
docking had been benchmarked already (see section 3.3.2), SwarmDock was
used to re-dock the 21 structures and check whether the results deviated
from those typical of bound-bound docking. After redocking globally, the
generated structures were minimised, clustered and ranked. The results
are shown in Table 5.3. All but five of the structures (4, 6, 8, 9 and 10) were
discarded on the basis that they either did not dock or had an anomalous
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ligand RMSD, rank or cluster size. At this stage, models 4, 6 and 10 were the
most promising because, like the majority of bound-bound docking cases,
the redocked structures ranked first. Models 6, 8, 9 and 10 had very large
cluster sizes, larger than all the other clusters for those models, another good
indicator of a bound complex. To distinguish between these models, we
studied their association and dissociation dynamics using BioSimz. Firstly,
the encounter complex formation process was studied using the method
outlined in section 4.2.3. The degree to which the binding site received
preferential visitation was determined by visual inspection of the scored
SwarmDock starting positions, and rated on a scale of 1 to 3 for both the
visitation of the receptor to the ligand site, and vice versa. This information
was used to whittle the options down to either model 6 or model 10, both
of which have favourable association dynamics. In order to discriminate
between these two models, the dissociation dynamics was studied by
performing rigid-body Langevin dynamics simulations starting from the
bound conformation. Multiple runs were performed and the tendency for
the complex to dissociate was measured (for a more detailed description,
see Li (2011)). These simulations were also performed on known complexes
from the docking benchmark, as a control. Of models 6 and 10, the former
dissociated far quicker than the latter, and the bound-bound benchmark
complexes. Hence, by a process of elimination, we chose model 10 as
the most likely to be the crystal structure, on the basis that it is the only
structure which measures as a typical true interaction by all metrics used.
When the results for this challenge were released, not only was model
10 the correct answer, but only one other participating group managed
to correctly identify it. This challenge further highlights the utility of
combining BioSimz and SwarmDock.

For the second challenge in round 20, the same metrics were used on the
21 structures. The results for these appear in Table 5.4. When this challenge
was commissioned, most of the proteins had not yet been assessed for
binding affinity. Unfortunately, the bacterial system which was used failed
to express a number of these complexes (1, 6, 7, 9-11, 13), and thus it is not
known whether binding occurs between the two complex which performed
most favourably according the metrics presented here. However, a weak
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Table 5.4: The performance measures applied in CAPRI round 20, challenge two.
Structures are ranked in order of preference. Metrics are the SwarmDock rank (SD
rank), ligand RMSD (LRMSD), SwarmDock cluster size (Csize), whether the cluster
corresponding to the given structure was the largest (Bclus), BioSimz association scores
for the receptor (Ar rank) and ligand (Al rank), and the BioSimz dissociation score (D
rank).

Rank Model SD rank LRMSD Csize Bclus Ar rank Al rank D rank

1) 1 1 1.167 69 Yes 0 0 16.3744
2) 6 32 1.104 36 Yes 3 2 19.7654
3) 8 15 0.394 15 Yes 0 0 19.1811
4) 4 25 0.797 22 No 0 0 16.9905
5) 5 23 1.230 22 Yes 0 0 18.5996
6) 7 86 1.335 14 No 0 0 16.7699
7) 3 150 0.655 20 No 0 2 17.1649
8) 18 121 0.475 12 No 2 1 17.6775
9) 2 115 4.856 12 No 3 0 18.5311

10) 13 55 0.974 6 No 1 0 17.2667
11) 15 107 1.663 7 No 1 3 18.3724
12) 20 165 0.762 9 Yes 1 0 17.382
13) 11 152 0.666 2 No 3 0 18.4147
14) 21 146 1.936 7 No 0 0 18.2067
15) 16 239 1.277 5 No 0 0 16.7891
16) 19 184 1.063 7 No 0 2 19.0746
17) 9 220 9.044 2 No 2 2 18.829
18) 14 107 5.653 4 No 0 0 19.3307
19) 10 90 7.630 1 No 0 0 18.2486
20) 12 N/A N/A N/A N/A 1 0 19.2216
21) 17 N/A N/A N/A N/A 0 0 17.5926

binding signal was detected for model 2. We did not rank this model
favourably due to its poor SwarmDock rank and RMSD. The performance
of the other participating groups has not yet been announced.

5.3.2 Round 21

The aim of round 21 was to derive a score capable of distinguishing 120
known protein-protein interactions from 87 failed designed interaction
without incorporating information about the designed proteins in the deriv-
ation of the score. The approach used was as follows. Firstly, the structures
were evaluated using a number of different molecular descriptors, described
in section 5.3.2.1. In order to establish whether these descriptors contained
sufficient information for distinguishing between the failed designs and the
true interactions, both the failed and the true interactions were used to train
support vector machines (see section 5.3.2.2). Cross-validation was used to
minimise over-fitting the data, and a population based forward greedy fea-
ture selection algorithm was employed to select descriptor subsets capable of
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achieving the discrimination. Once the ability to capture the differences was
established, a number of empirical scoring functions were trained against
experimental protein-protein binding affinities (section 5.3.2.3). These func-
tions were applied to the whole set of failed designed and true interactions,
giving good discrimination between the two sets. The binding affinity score
was used to bin the complexes into one of five categories: ’binds’, ’likely to
bind’, ’uncertain’, ’likely not to bind’, and ’does not bind’. This approach
yielded one of the best performances in round 22, and we were offered
the opportunity to validate our results. The Baker lab sent us nine new
structures and asked us to select which, if any, exhibited binding function
when tested experimentally. After applying our empirical scoring function,
eight of the structures were found to be in the ’does not bind’ or ’unlikely
to bind’ categories, and one structure was allocated to the ’binds’ category.
After providing our results to the Baker lab, Dr. Fleishman confirmed that
the design we identified as a true interaction does indeed exhibit binding
function experimentally, and that the eight designs we predicted as not in-
teracting all failed to show evidence of binding. This work is of particular
interest, as the experimental evaluation of the designs is a bottleneck in the
de novo design process, requiring weeks of work to synthesise the DNA con-
structs, clone the genes, express them and test for binding function. The
empirical scoring function presented here can be evaluated in a matter of
hours, and the ability to discriminate promising designs from ones which
will fail can vastly reduce the number of complexes requiring this experi-
mental evaluation.

5.3.2.1 Molecular Descriptors

A large number of descriptors were derived. The complexes were re-docked
with SwarmDock, and the interface RMSD, rank and cluster size were used
as features. In addition, two binary descriptors were derived, first whether
the top ranked structure had an interface RMSD below 5Å, and second
whether the top cluster corresponded to the biggest cluster. These took the
value of 1 if true, and 0 if false.

Also included were interaction energy features derived using the
PyRosetta package (Chaudhury et al., 2010), calculated as the energy of
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the complex minus the energy of the individual binding partners. These
included the repulsive and attractive Van der Waals components, the Rosetta
desolvation energy, the hydrogen-bonding potential and all-atom statistical
pair potentials. The coarse-grain Rosetta terms were also calculated; Van
der Waals, residue pair and Cβ potentials and the environment score. The
total Rosetta energy was also decomposed into residue contributions, and
each complex was also assigned a hot-spot count, defined as the number of
residues with interaction energy below 1.5kcal mol−1.

The change in solvent accessible surface area upon binding was evalu-
ated with the NACCESS package (Hubbard and Thornton, 1993). Interface
residues were categorised based on their degree of burial of solvent exposed
surface area upon binding. Those with total burial are ’core’, partial ’peri-
phery’ and the remaining ’unburied’. Total buried surface are was taken
as a feature, as was the number of residues in each category, and the total
Rosetta energy of residues in each category. The PyRosetta package was
also used for re-docking using the default two stage RosettaDock protocol,
in which a coarse-grained search is followed by an atomistic refinement
(Chaudhury et al., 2010). The number of correct redocking hits, as well as
the lowest interface RMSD found and the rank, were included as descriptors.

Two descriptors used by London and Schueler-Furman (2008) were also
included, both of which have shown use in discriminating between true
docked solutions and false positives. The first of these is the difference in
atomistic energy after RosettaDock coarse-grain docking, and the energy
after refinement at atomic resolution. This was speculated to relate to the
energy difference between the near-native encounter complex and the final
docked solution, in which the interface is well packed. The second of these
descriptors is the number of unsatisfied buried hydrogen bond donors
or acceptors. The rationale behind this descriptor is that the energetic
contribution of interfacial hydrogen bonds is negligible, as these bonds can
be equally satisfied by solvent molecules when unbound. However, if a
hydrogen bond is not satisfied upon burial, this corresponds to an energetic
penalty.
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In addition, following the observation by Smith et al. (2005) that the
core and peripheral interface residues undergo different dynamics, three
features were derived to characterise the flexibility of these residues. Elastic
network normal mode analysis was applied to all the binding partners, and
the ElNeMo tools suite was used to predict thermal B factors (Suhre and
Sanejouand, 2004). The mean interface B factor, the mean B factor for core
residues, and the mean B factor for peripheral residues were evaluated and
taken as features.

As a crude estimate of the degree of interface packing, the number of
atom contacts (atom pairs, one on each binding partner, within 5Å of each
other) was calculated and taken as a descriptor, as was the ratio between
this descriptor and the change in accessible surface area. The interface
packing and surface complementarity scores developed by Mitra and Pal
(2010) were also determined, as was the DComplex interaction potential
(Liu et al., 2004). BioSimz association and dissociation simulations were also
undertaken. Association and dissociation scores were used as features, as
were the p-values calculated as per section 4.2.3. Finally, a number of terms
derived from CHARMM were included. These included the SASA implicit
solvation energy (Ferrara et al., 2002), the GBSW generalised Born non-polar
and solvation energy, and the various components of the solvation energy
using the analytic continuum electrostatics (ACE) model developed by
Schaefer and Karplus (1996).

5.3.2.2 Feature Set Validation

A condition of the challenge was that no information regarding the failed
designs be used in the training of the model. The approach to this problem
was to derive a binding free energy score using the above descriptors,
trained on experimental binding free energies for the true interactions.
However, whilst a list of binding free energies for these complexes had been
published shortly before round 21 was initiated (Kastritis and Bonvin, 2010),
this list had not yet come to our attention. For this reason, we believed that
the binding free energies would have to be manually amalgamated from the
scientific literature, an endeavour which would require a significant amount
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of work. As the success of our approach was inevitably predicated upon
the descriptor set containing sufficient information for the discrimination
of false designs from the true binding partners, an initial test of this was
undertaken prior to assembling the list. This would not only demonstrate
that the information required to discriminate between the two classes of
structures resides within phenomena already studied, but most importantly,
validate the above feature set and justify the effort of manually compiling
a list of empirical binding free energies. To do this, a binary classification
model was derived using a feature selection algorithm and an SVM with
cross-validation. This model was quickly set up using the RapidMiner
machine learning environment (Mierswa et al., 2006).

In the machine learning routine used here, a feature selection algorithm
is used to derive a feature subset. It is a population based algorithm, with
a population of three; upon each iteration, three feature subsets are carried
on to the next iteration. It is also a forward selection algorithm, in which
the feature set grows by one feature each iteration. Further, it is a greedy
algorithm, so that the three feature sets which are carried onto the next
iteration are the three which give the highest classification accuracy when
evaluated. For each evaluation, ten-fold cross-validation is employed. The
data set is split into ten sets using stratified sampling and 90% of the data is
used to train an SVM which is evaluated on the remaining 10%. This process
is repeated ten times until every data point has been classified by an SVM for
which it hadn’t been used for trained. The results of these ten evaluations are
then collected and the overall classification accuracy calculated. An analysis
of variance (anova) kernel is used in the SVM.

Upon the first iteration of the feature selection algorithm, each feature is
tested on its own. The three best features then form the three feature sets
carried onto the next iteration. In the second iteration and all subsequent
iterations, for each feature set in the population, each feature not in that
set is evaluated with the features in that set. The three new sets which
classify most accurately with the cross-validation are then carried forward
to the next iteration. The algorithm continues up to three speculative
rounds; should no feature set perform with higher accuracy than the best
performing set previously evaluated, for three consecutive iterations, then
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the algorithm terminates and the best performing set is returned.

When the above algorithm was applied to the bionomial classification
challenge of round 21, a feature set was found which could classify the struc-
ture with an accuracy of 97.6% (two complexes were incorrectly classified
as non-binding, three incorrectly classified true binders, and the remainder
were correctly classified). When leave-one-out cross-validated, the accuracy
dropped slightly, to 95.7%. The features selected were: SwarmDock cluster
size, hot-spot count, attractive and repulsive VDW, the Rosetta Cβ and atom-
istic pair potentials, the number of Rosetta redocking hits, the Rosetta re-
docking energy change, the number of unsatisfied buried hydrogen bond
donors and acceptors, BioSimz p-values and association and dissociation
scores, the interface packing score, electrostatics and the ACE interaction,
solvation and Coulomb terms. Due to the kernel used, it is difficult to assess
the relative importance of each feature. A number of other machine learning
routines available in RapidMiner were also performed, including logistic re-
gression, naïve Bayes, discriminant analysis, decision trees, neural networks
and rule induction. These were combined with backward selection and evol-
utionary feature selection algorithms as well as the above forward selection
algorithm, all with cross-validation. These methods also performed well,
typically with over 80% classification accuracy.

This analysis confirmed that the information needed to discriminate
between the failed designs and true interactions was within the derived
feature set, and that this information was robust to the method used to ex-
tract it. Given this, we proceeded to manually collect empirical binding
energies from the scientific literature.

5.3.2.3 Empirical Binding Score

Experimental binding affinities for 95 of the 120 protein-protein inter-
actions were obtained by scouring the scientific literature. Every effort
was made to ensure that the binding affinity corresponded as closely as
possible to the structure. As the affinities were reported variously as
binding free energies, dissociation constants, independent enthalpic and
entropic contributions, or by their kon and ko f f rate constants, they were
all converted to free energies using the equalities in equation 1.62. These
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Figure 5.4: Predicted and Experimental binding free energies for the round 21 test cases.
Data points are coloured by their ACE self electrostatics energies.

binding affinities were later expanded and checked in triplicate by us and
our collaborators, and formed part of a binding affinity benchmark (see
next chapter). Multiple regression was performed using feature subsets.
Initially, the feature selection algorithms outlined above were used to
explore descriptor subset space. However, it quickly became apparent
that even with the cross-validation scheme employed, 95 data points
were not sufficient to avoid overfitting. The feature space was evidently
sufficiently large for ensembles of feature subsets to posses the property
of being able to consistently reproduce test data when regressed against
the noise in the training data, irrespective of how the data is split into
test and training sets. Further, these subsets were being selected by the
feature selection algorithms. Indeed, regressions with accuracy ostens-
ibly greater than the experimental error associated with binding affinity
measurements were found, even when the predictions were derived using
leave-one-out cross-validation. For this reason, a change of tack was needed.

Instead, subsets were chosen on the basis of their physical plausibility
and their ability to aid in the discrimination in round 20. A number of these
subsets were tested, and when an appropriate binding energy threshold is
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chosen, these were capable of distinguishing the failed designs from the
true interaction with accuracies between 70% and 90%. The terms of one
such subset is as follows, with absolute regression coefficients shown in
parentheses. As the training features are normalised to z-scores prior to
regression, these values reflect the relative contributions of each term to the
final score:

1. Is SwarmDock top ranked structure under 5Å RMSD to bound? (0.076)

2. Does the biggest SwarmDock cluster correspond to the bound? (0.009)

3. Rosetta atomistic statistical pair potential (0.299)

4. Rosetta coarse-grained pair potential (0.122)

5. Van der Waals (0.192)

6. BioSimz association score (0.027)

7. interface packing (0.181)

8. surface complementarity (0.176)

9. ACE self energy (0.780)

10. GBSW solvation energy (0.071).

The first two terms are Boolean, and had been successfully applied to the
first challenge of round 20, as had the BioSimz association score. The coarse
and fine statistical pair potentials were used to account for low-resolution
recognition factors, and to supplement the other atomistic terms respect-
ively. The Van der Waals term was included due to its fundamental physical
origin. The interface packing and surface complementarity scores were in-
cluded to favour tightly interdigitated interfaces. The ACE self energy was
included as it is the most accurate electrostatics descriptor; it treats atoms as
a distribution of charge rather than collapsing the charge density onto the
nuclei. The GBSW solvation term was included as this was regarded as the
best, if most computationally demanding, solvation model in the feature
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Figure 5.5: Box and whisker plots of the distribution of predicted binding free energy
(kcal mol−1) for the known interactors (true) and failed designs (false). The box shows
the median and upper and lower quartiles, with whiskers showing the 5% and 95%
percentiles. Mean and standard deviation are also shown.

set. Clearly the most significant contribution is given by the ACE self
electrostatics term. Regression with this feature set yielded a binding energy
function which reproduced the experimental data with an RMS error of 2.76
kcal mol−1 and a correlation of 0.414. The predicted binding free energies
plotted against the experimental values are shown in Figure 5.4, with data
points coloured by their ACE self energy. Interestingly, the greatest outlier,
with anomalously favourable electrostatics, is 1BGX, a forged structure
submitted by H. M. Krishna Murthy which should be removed from the
protein databank. The only reasons that this structure was included in the
analysis was because its dubious provenance was not know to us at the time.

Applying this score to all the structures yields the score distribution
shown in Figure 5.5. The sensitivity of this score when applied to the
round 21 binary classification problem is shown by the ROC curve in
Figure 5.6, the area under which constitutes 91.2% of the plot. Using a
threshold of -9.55 kcal mol−1, this score can classify the complexes with
88.4% accuracy. Two of the designs are misclassified as true binders,
and 22 of the true interactions misclassified as non-interacting, yielding
98.0% precision, 81.7% recall and specificity of 97.7%. As the Baker lab
wished to have the results in a comparable format, the participating groups
were requested not just to submit raw scores, but also to place all of
the structures into one of the following five categories: ’binds’, ’likely



Chapter 5. CAPRI 201

Figure 5.6: Receiver operating characteristic curve for the bionomical classification of true
interactions and failed designs. The threshold, as a fraction of the range of the binding
affinities, is also shown.

to bind’, ’uncertain’, ’likely not to bind’ and ’does not bind’. To assign
the structures, the threshold separating ’binds’ from ’likely to bind’ was
set to 9.8 kcal mol−1, and the thresholds between the higher categories
at intervals of 0.2 kcal mol−1. By this allocation, one of the designs was
found to score highly enough to place it in the ’binds’ category. However,
no evidence for binding was found for this protein. Further, one of the
designs was later found to show experimental evidence for binding, and
this was not predicted by the above allocation. None of the other particip-
ating groups managed to identify this model as possessing binding function.

As the results presented above constituted one of the best sets submitted,
Dr. Fleishman wished to verify the efficacy of the score in a blind test.
After round 21 was closed, we were sent nine structures and asked to score
them with our energy function. Seven of the structures were of poor score,
landing firmly in the ’does not bind’ category. One scored slightly better,
and was allocated to the ’likely not to bind’ category, and the final structure
scored well, with -9.95 kcal mol−1, placing it in the ’binds’ category. After
relaying these results, Dr. Fleishman informed us that upon experimental
evaluation, the complex which was predicted to bind did show binding
function, and the remaining eight complexes showed no evidence of binding.



Chapter 5. CAPRI 202

5.4 Discussion

The CAPRI experiment has presented the structural bioinformatics com-
munity with important and challenging tasks over the last three years. This
level playing field has allowed the testing of algorithms and a comparison
of results. SwarmDock has been used in a number of rounds of CAPRI,
and has performed reasonably well at predicting structures. A scoring
scheme, loosely based on the ’Wisdom of Crowds’ paradigm, employing
hierarchical clustering, has performed very well at selecting the complex
from the aggregated submissions of the participating groups. Two unusual
scoring rounds were initiated with the aim of assessing the ability of the
community to select de novo designed proteins that are likely to interact with
their target proteins. For the first of these, a combination of SwarmDock and
BioSimz characterisation allowed the correct identification of a true interac-
tion amidst 20 structures which, upon testing, failed to show evidence of
binding, a feat only achieved by one other participating group. In the second
of these rounds, an empirically parametrised binding energy function was
determined to classify 207 structures as true or false interactions with 88.4%
accuracy. This method was validated by a blind test of nine structures, all
of which were correctly classified.
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The Affinity Benchmark

6.1 Introduction

The current state of binding affinity prediction using empirical functions
was outlined in section 1.4.4.8. It was noted how most studies to date have
focussed on interactions involved in a limited set of biological functions,
and between rigid proteins; when tested on more diverse data sets, these
methods performed significantly worse. Many factors pertaining to
biomolecular recognition have yet to be incorporated into empirical binding
free energy functions. For instance, the effects of conformational changes
upon binding, and linkage phenomena between affinity and allostery, pH,
ionic environment and temperature. The framework in which the linkage of
thermodynamic and environmental properties has already been formulated
(Wyman and Gill, 1990; Woodbury, 2008), although much work remains to
be done before this can be fully related to structure.

Before the subtle effects of thermodynamic linkage can be addressed and
used in the annotation of protein-protein interaction networks, it is necessary
to derive robust and accurate empirical binding free energy models for
pairwise interactions. To do so requires extensive benchmarking on large
and diverse protein sets. The construction of such an affinity benchmark,
which was published in Kastritis et al. (2011), and a broad description of the
complexes within it is outlined in section 6.2. A number of empirical free
energy functions were tested on this benchmark and subsets of it, and the
results of this are outlined in section 6.2.4.

203
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6.2 The Affinity Benchmark

The first thing that must be done in order to benchmark and/or parametrise
a binding affinity metric is to obtain a reliable data set of sufficient size.
Whilst collecting binding affinity data for use in CAPRI round 21 (see
section 5.3.2.3), the binding affinity benchmark of Kastritis and Bonvin
(2010), which contained affinities for 81 interactions, came to our attention.
As both this benchmark and the true interaction set of CAPRI round 21
were based on the docking benchmark 3.0 (Hwang et al., 2008), there was
considerable overlap between the set of 95 complexes gathered for round
21 and the data in the benchmark of Kastritis and Bonvin (2010). For these
overlapping complexes, of which there were 70, the two data sets were
plotted against each other. This revealed that whilst for most complexes
the same or similar affinity had been recorded, for many of the data points
there were discrepancies between our data sets, which for some complexes
exceeded several orders of magnitude in binding affinity. Upon further
investigation, it was found that mistakes had been made for around 40% of
the data in Kastritis and Bonvin (2010). Upon contacting the Bonvin group
and relaying concerns about the quality of the data, it was revealed that
Prof. Joël Janin at Université Paris-Sud had also raised misgivings about
the values presented, and the group subsequently prepared and published
a corrigendum.

This highlighted the difficulty in procuring data from the literature.
Many different methods of determining affinity are used, not all of which are
applicable in all cases (Albeck and Schreiber, 1999). Results are presented in
different units and scales. Some proteins have different names in different
papers and some names correspond to multiple splice variants or are
used for all the homologues in different species. For some complexes, a
mutant form appears in the protein databank or was used for the affinity
determination. Affinities are often dependent on the kinetic model used; for
example, the complement C3/CR2 receptor complex fits well to a single-site
model according to Guthridge et al. (2001), whilst Sarrias et al. (2001) claim
that the data will only fit a bivalent binding model. Some complexes are
also very sensitive to pH or ionic strength, such as the interaction between
cytochrome c and its peroxidase (Kresheck et al., 1995). Sometimes different
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authors give widely different affinities, such as the interaction between
ubiquitin and UCH-L3, for which Hirayama et al. (2007) report an affinity
of tens of nanomolar, whilst Reyes-Turcu and Wilkinson (2009) claim the
affinity is in the range of hundreds of micromolar. Sometimes a number
of different constructs are used for the same protein (Eathiraj et al., 2005),
and absence or presence of cofactors can have a dramatic effect of binding
affinities. For instance, the presence of GDP or GTP can reduce the affinity
of Ran GTPase for RCC1 by six orders of magnitude (Klebe et al., 1995).
The degree to which comparisons between affinities determined at different
temperatures is also questionable in some cases, such as for the interaction
between the subunits of tryptophan synthase in the hyperthermophile
Pyrococcus furiosus, which becomes more exothermic as the temperature
increases (Ogasahara et al., 2003). Even the buffer can have an effect, such as
for the interaction between α-amylase and tendamistat, which has shown
affinity differences when determined in the ionisable TRIS-HCl buffer when
compared to non-ionisable HEPES (Piervincenzi and Chilkoti, 2004).

Whilst some lists of binding affinities had been previously published,
these were either small (Brooijmans et al., 2002; Krystek et al., 1993; Xu et al.,
1997; Horton and Lewis, 1992; Gray et al., 2003), had no primary references
(Zhang et al., 2005b), or had no structural cross-referencing (Stites, 1997).
Further, these lists had only a single value for each complex, when often
differing or corroborating values were also available. None of the lists made
reference to structures of the binding partners in their unbound state, and no
details of experimental conditions or the method used were included. At the
time at which we contacted the Bonvin lab, a new docking benchmark, the
benchmark 4.0, had been released by the group of Zhiping Weng (Hwang
et al., 2010). The Bonvin, Janin and Weng groups had decided to expand upon
the affinity benchmark in Kastritis and Bonvin (2010), and welcomed us into
their collaboration. Together, we collated the largest database of binding
affinities to date. For each entry, all differing and corroborating values
were added, as were the identities of cofactors, the pH, temperature, buffer
conditions, experimental methods and further notes regarding enthalpies,
entropies and rate constants, as well as cross-referencing with the protein
databank entries for the complex and for the individual binding partners
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in their unbound state. Each entry was vigilantly checked in triplicate,
with care to ensure the maximal correspondence between the affinity and
structure. After months of trawling the literature and reading hundreds of
papers, the benchmark was finalised and appears in Table 6.1. Due to space
limitations, the temperature, pH, buffer conditions, cofactors present in the
structure and affinity determination, corroborating affinities and references,
kinetic and thermodynamic data, the method of affinity determination and
further notes are omitted from this table. This information can be found
at the website for the affinity benchmark, http://bmm.cancerresearchuk.
org/~bmmadmin/Affinity/.

http://bmm.cancerresearchuk.org/~bmmadmin/Affinity/
http://bmm.cancerresearchuk.org/~bmmadmin/Affinity/


Chapter 6. The Affinity Benchmark 207

Ta
bl

e
6.

1:
Th

e
bi

nd
in

g
affi

ni
ty

be
nc

hm
ar

k.
†

Pe
rs

on
al

co
m

m
un

ic
at

io
n.

C
om

pl
ex

Ty
pe

Pr
ot

ei
n

1
PD

B1
Pr

ot
ei

n
2

PD
B2

D
A

SA
(Å

2 )
I-

R
M

SD
(Å

)
R

ef
er

en
ce

K
D

(M
)

∆
G

(k
ca

l
m

ol
−

1 )

1A
2K

_C
:A

B
O

G
R

an
G

TP
as

e-
G

D
P

1Q
G

4_
A

N
uc

le
ar

tr
an

sp
or

tf
ac

to
r

2
1O

U
N

_A
B

16
03

1.
11

C
ha

ill
an

-H
un

ti
ng

to
n

et
al

.
(2

00
0)

1.
50

E-
07

9.
31

1A
C

B_
E:

I
EI

C
hy

m
ot

ry
ps

in
4C

H
A

_A
BC

Eg
lin

C
1E

G
L_

A
15

44
1.

08
A

sc
en

zi
et

al
.(

19
88

)
2.

00
E-

10
13

.0
5

1A
H

W
_A

B:
C

A
Fa

b
5g

9
1F

G
N

_L
H

Ti
ss

ue
fa

ct
or

1T
FH

_A
18

99
0.

69
H

ua
ng

et
al

.(
19

98
)

3.
40

E-
09

11
.5

5
1A

K
4_

A
:D

O
X

C
yc

lo
ph

ili
n

2C
PL

_A
H

IV
ca

ps
id

1E
6J

_P
10

29
1.

33
Yo

o
et

al
.(

19
97

)
1.

60
E-

05
6.

43
1A

K
J_

A
B:

D
E

O
X

M
H

C
cl

as
s

1
H

LA
-A

2
2C

LR
_D

E
T-

ce
ll

C
D

8
co

re
ce

pt
or

1C
D

8_
A

B
19

95
1.

14
W

ye
r

et
al

.(
19

99
)

1.
20

E-
04

5.
32

1A
T

N
_A

:D
O

X
A

ct
in

1I
JJ

_B
D

na
se

I
3D

N
I_

A
17

74
3.

28
M

an
nh

er
z

et
al

.(
19

80
)

2.
00

E-
09

12
.0

7
1A

V
X

_A
:B

EI
Po

rc
in

e
tr

yp
si

n
1Q

Q
U

_A
So

yb
ea

n
tr

yp
si

n
in

hi
bi

to
r

1B
A

7_
B

15
85

0.
47

Le
bo

w
it

z
an

d
La

sk
ow

sk
i(

19
62

)
4.

80
E-

10
12

.5
1A

V
Z

_B
:C

O
X

H
IV

-1
-N

EF
pr

ot
ei

n
1A

V
V

_A
Fy

n
ki

na
se

SH
3

do
m

ai
n

1F
Y

N
_A

12
59

0.
73

A
ro

ld
et

al
.(

19
98

)
1.

58
E-

05
6.

55
1A

Y
7_

A
:B

EI
R

na
se

SA
1R

G
H

_B
Ba

rs
ta

r
1A

19
_B

12
37

0.
54

H
ar

tl
ey

et
al

.(
19

96
)

2.
00

E-
10

13
.2

3
1B

6C
_A

:B
O

X
FK

BP
bi

nd
in

g
pr

ot
ei

n
1D

6O
_A

T
G

Fβ
re

ce
pt

or
1I

A
S_

A
17

52
1.

96
H

us
e

et
al

.(
20

01
)

2.
80

E-
07

8.
94

1B
J1

_H
L:

V
W

A
B

Fa
b

-v
EG

F
1B

J1
_H

L
vE

G
F

2V
PF

_G
H

17
31

0.
5

M
ul

le
r

et
al

.(
19

98
a)

3.
40

E-
09

11
.5

5
1B

R
S_

A
:D

EI
Ba

rn
as

e
1A

2P
_A

Ba
rs

ta
r

1A
19

_B
15

55
0.

42
H

ar
tl

ey
(1

99
3)

2.
00

E-
13

17
.3

2
1B

U
H

_A
:B

EI
C

D
K

2
ki

na
se

1H
C

L_
A

C
ks

hs
1

1D
K

S_
A

13
24

0.
75

Bo
ur

ne
et

al
.(

19
96

)
7.

70
E-

08
9.

7
1B

V
K

_D
E:

F
A

Fv
H

ul
ys

11
1B

V
L_

BA
H

EW
ly

so
zy

m
e

3L
Z

T_
A

13
21

1.
24

Fo
ot

e
an

d
W

in
te

r
(1

99
2)

1.
40

E-
08

10
.5

3
1B

V
N

_P
:T

EI
α

-a
m

yl
as

e
1P

IG
_A

Te
nd

am
is

ta
t

1H
O

E_
A

22
22

0.
87

Pi
er

vi
nc

en
zi

an
d

C
hi

lk
ot

i(
20

04
)

9.
20

E-
12

15
.0

6
1C

BW
_A

BC
:D

EI
C

hy
m

ot
ry

ps
in

4C
H

A
_A

BC
BP

TI
9P

TI
_A

14
57

0.
74

C
as

tr
o

an
d

A
nd

er
so

n
(1

99
6)

1.
10

E-
08

10
.7

5
1D

E4
_A

B:
C

F
O

X
H

em
oc

hr
om

at
os

is
pr

ot
ei

n
H

FE
1A

6Z
_A

B
Tr

an
sf

er
ri

n
re

ce
pt

or
ec

to
do

m
.

1C
X

8_
A

B
20

66
2.

59
W

es
te

ta
l.

(2
00

1)
6.

80
E-

08
9.

78
1D

FJ
_E

:I
EI

R
ib

on
uc

le
as

e
A

9R
SA

_B
R

na
se

in
hi

bi
to

r
2B

N
H

_A
25

82
1.

02
V

ic
en

ti
ni

et
al

.(
19

90
)

5.
90

E-
14

18
.0

5
1D

Q
J_

A
B:

C
A

Fa
b

H
yh

el
63

1D
Q

Q
_C

D
H

EW
ly

so
zy

m
e

3L
Z

T_
A

17
65

0.
75

Li
et

al
.(

20
00

)
2.

80
E-

09
11

.6
7

1E
4K

_A
B:

C
O

R
FC

fr
ag

m
en

to
fh

um
an

Ig
G

1
2D

TQ
_A

B
H

um
an

FC
G

R
II

I
1F

N
L_

A
16

34
2.

59
M

ae
na

ka
et

al
.(

20
01

)
1.

70
E-

06
7.

87
1E

6E
_A

:B
ES

A
dr

en
ox

in
re

du
ct

as
e

1E
1N

_A
A

dr
en

ox
in

1C
JE

_D
23

15
1.

33
Sc

hi
ffl

er
et

al
.(

20
04

)
8.

56
E-

07
8.

28
1E

6J
_H

L:
P

A
Fa

b
13

B5
1E

6O
_H

L
H

IV
-1

ca
ps

id
pr

ot
ei

n
p2

4
1A

43
_A

12
45

1.
05

M
on

ac
o-

M
al

be
te

ta
l.

(2
00

0)
2.

90
E-

08
10

.2
8

1E
96

_A
:B

O
G

R
ac

G
T

Pa
se

1M
H

1_
A

p6
7

Ph
ox

1H
H

8_
A

11
79

0.
71

La
po

ug
e

et
al

.(
20

00
)

2.
70

E-
06

7.
42

1E
A

W
_A

:B
EI

M
at

ri
pt

as
e

1E
A

X
_A

BP
TI

9P
TI

_A
18

66
0.

54
Fa

ra
dy

et
al

.(
20

07
)

4.
97

E-
11

14
.0

6
1E

ER
_A

:B
C

O
R

Er
yt

hr
op

oi
et

in
1B

U
Y

_A
EP

O
re

ce
pt

or
1E

R
N

_A
B

33
47

2.
44

D
ar

lin
g

et
al

.(
20

02
)

3.
70

E-
12

15
.5

9
1E

FN
_B

:A
O

X
H

IV
-1

-N
EF

pr
ot

ei
n

1A
V

V
_A

Fy
n

ki
na

se
SH

3
do

m
ai

n
1F

Y
N

_A
12

53
0.

9
Le

e
et

al
.(

19
95

)
3.

80
E-

08
10

.1
2

1E
M

V
_A

:B
EI

C
ol

ic
in

E9
nu

cl
ea

se
1F

SJ
_B

Im
9

im
m

un
it

y
pr

ot
ei

n
1I

M
Q

_A
15

35
1.

28
W

al
lis

et
al

.(
19

95
)

2.
40

E-
14

18
.5

8

1E
W

Y
_A

:C
ES

Fe
rr

ed
ox

in
re

du
ct

as
e

1G
JR

_A
Fe

rr
ed

ox
in

1C
Z

P_
A

15
02

0.
8

Sa
nc

ho
an

d
G

om
ez

-M
or

en
o

(1
99

1)
3.

57
E-

06
7.

43

1E
Z

U
_C

:A
B

EI
D

10
2N

Tr
yp

si
n

1T
R

M
_A

Y
69

F
D

70
P

Ec
ot

in
1E

C
Z

_A
B

27
51

1.
21

Ya
ng

et
al

.(
19

98
)

8.
00

E-
11

13
.7

7

1F
34

_A
:B

EI
Po

rc
in

e
pe

ps
in

4P
EP

_A
A

sc
ar

is
in

hi
bi

to
r

3
1F

32
_A

30
38

0.
93

A
bu

-E
rr

ei
sh

an
d

Pe
an

as
ky

(1
97

4)
1.

00
E-

10
14

.1
9

1F
6M

_A
:C

ES
T

hi
or

ed
ox

in
re

du
ct

as
e

1C
L0

_A
Th

io
re

do
xi

n
1

2T
IR

_A
18

30
4.

9
O

bi
er

o
et

al
.(

20
10

)
2.

70
E-

06
7.

6
1F

C
2_

C
:D

O
X

St
ap

hy
lo

co
cc

us
Pr

ot
ei

n
A

1B
D

D
_A

H
um

an
Fc

fr
ag

m
en

t
1F

C
1_

A
B

13
07

1.
69

W
al

ke
r

et
al

.(
19

95
)

2.
25

E-
08

10
.4

3
1F

FW
_A

:B
O

X
C

he
m

ot
ax

is
pr

ot
ei

n
C

he
Y

3C
H

Y
_A

C
he

m
ot

ax
is

pr
ot

ei
n

C
he

A
1F

W
P_

A
11

70
1.

43
Sc

hu
st

er
et

al
.(

19
93

)
1.

35
E-

06
8.

09
1F

LE
_E

:I
EI

El
as

ta
se

9E
ST

_A
El

afi
n

2R
EL

_A
(4

)
17

71
1.

02
W

ie
do

w
et

al
.(

19
90

)
1.

00
E-

09
12

.2
8

1F
Q

J_
A

:B
O

G
G

t-
α

1T
N

D
_C

R
G

S9
1F

Q
I_

A
18

06
0.

91
Sk

ib
a

et
al

.(
19

99
)

6.
70

E-
08

9.
79

1F
SK

_B
C

:A
A

B
Fa

b
-B

ir
ch

po
lle

n
an

ti
ge

n
Be

t
V

1
1F

SK
_B

C
Bi

rc
h

po
lle

n
an

ti
ge

n
Be

tV
1

1B
V

1_
A

16
23

0.
45

†
Jø

rg
en

N
ed

er
ga

ar
d

La
rs

en
2.

40
E-

10
13

.1
2

A
ffi

ni
ty

be
nc

hm
ar

k
co

nt
in

ue
d

on
ne

xt
pa

ge



Chapter 6. The Affinity Benchmark 208

A
ffi

ni
ty

be
nc

hm
ar

k
co

nt
in

ue
d

C
om

pl
ex

Ty
pe

Pr
ot

ei
n

1
PD

B1
Pr

ot
ei

n
2

PD
B2

D
A

SA
I-

R
M

SD
R

ef
er

en
ce

K
D

∆
G

1G
C

Q
_B

:C
O

X
G

R
B2

C
-t

er
SH

3
do

m
ai

n
1G

R
I_

B
V

av
N

-t
er

SH
3

do
m

ai
n

1G
C

P_
B

12
08

0.
92

N
is

hi
da

et
al

.(
20

01
)

1.
70

E-
05

6.
51

1G
L1

_A
:I

EI
C

hy
m

ot
ry

ps
in

4C
H

A
_A

BC
PM

P-
C

(L
C

M
II

I)
1P

M
C

_A
(6

)
15

95
1.

2
K

el
le

nb
er

ge
r

et
al

.(
19

95
)

2.
00

E-
10

13
.2

3
1G

LA
_G

:F
ER

G
ly

ce
ro

lK
in

as
e

1B
U

6_
0

G
lu

co
se

sp
ec

ifi
c

II
IG

lc
1F

3Z
_A

13
04

0.
98

Pe
tt

ig
re

w
et

al
.(

19
98

)
1.

10
E-

05
6.

76
1G

PW
_A

:B
O

X
H

IS
F

pr
ot

ei
n

1T
H

F_
D

A
m

id
ot

ra
ns

fe
ra

se
H

IS
H

1K
9V

_F
20

97
0.

65
†

R
ei

nh
ar

d
St

er
ne

r
5.

00
E-

09
11

.3
2

1G
R

N
_A

:B
O

G
C

D
C

42
G

T
Pa

se
1A

4R
_A

C
D

C
42

G
A

P
1R

G
P_

A
23

32
1.

22
H

off
m

an
et

al
.(

19
98

)
2.

39
E-

07
9.

03
1G

X
D

_A
:C

EI
Pr

oM
M

P2
ty

pe
IV

co
lla

ge
na

se
1C

K
7_

A
M

et
al

lo
pr

ot
ei

na
se

in
hi

bi
to

r
2

1B
R

9_
A

24
45

1.
39

O
ls

on
et

al
.(

19
97

)
5.

20
E-

09
11

.3
1H

1V
_A

:G
O

X
A

ct
in

1I
JJ

_B
G

el
so

lin
pr

ec
ur

so
r

C
-t

er
m

1P
8X

_A
20

71
1.

05
Br

ya
n

(1
98

8)
2.

50
E-

08
10

.2
1H

9D
_A

:B
O

X
R

un
x1

do
m

ai
n

of
C

BF
α

1
1E

A
N

_A
D

im
er

is
at

io
n

do
m

ai
n

of
C

BF
-β

1I
LF

_A
(1

)
21

25
1.

32
Ta

ng
et

al
.(

20
00

)
4.

50
E-

08
9.

18
1H

C
F_

A
B:

X
O

R
N

eu
ro

tr
op

hi
n-

4
1B

98
_A

M
Tr

kB
-d

5
gr

ow
th

fa
ct

or
re

ce
pt

or
1W

W
B_

X
21

46
0.

88
N

ay
lo

r
et

al
.(

20
02

)
2.

60
E-

10
13

.0
8

1H
E8

_B
:A

O
G

R
as

G
TP

as
e

82
1P

_A
PI

P3
ki

na
se

1E
8Z

_A
13

05
0.

92
Pa

co
ld

et
al

.(
20

00
)

3.
20

E-
06

7.
37

1H
IA

_A
B:

I
EI

K
al

lik
re

in
2P

K
A

_X
Y

H
ir

us
ta

ti
n

1B
X

8_
A

17
37

1.
4

So
lln

er
et

al
.(

19
94

)
1.

30
E-

08
10

.7
6

1I
2M

_A
:B

O
G

R
an

G
TP

as
e-

G
D

P
1Q

G
4_

A
R

C
C

1
1A

12
_A

27
79

2.
12

K
le

be
et

al
.(

19
95

)
2.

50
E-

12
15

.8
3

1I
4D

_D
:A

B
O

G
R

ac
G

T
Pa

se
1M

H
1_

A
A

rf
ap

ti
n

1I
49

_A
B

16
57

1.
41

Ta
rr

ic
on

e
et

al
.(

20
01

)
3.

00
E-

06
7.

46
1I

B1
_A

B:
E

O
X

14
-3

-3
pr

ot
ei

n
1Q

JB
_A

B
Se

ro
to

ni
n

N
-a

ct
ey

la
se

1K
U

Y
_A

28
08

2.
09

O
bs

il
et

al
.(

20
01

)
2.

00
E-

08
9.

76
1I

BR
_A

:B
O

G
R

an
G

TP
as

e-
G

D
P

1Q
G

4_
A

Im
po

rt
in
β

1F
59

_A
33

70
2.

54
V

ill
a

Br
as

la
vs

ky
et

al
.(

20
00

)
1.

00
E-

09
12

.0
7

1I
JK

_A
:B

C
ER

Vo
n

W
ill

eb
ra

nd
Fa

ct
or

do
m

.A
1

1A
U

Q
_A

Bo
tr

oc
et

in
1F

V
U

_A
B

16
48

0.
68

M
iu

ra
et

al
.(

20
00

)
2.

30
E-

08
10

.4
2

1I
Q

D
_A

B:
C

A
B

Fa
b

-F
ac

to
r

V
II

Id
om

ai
n

C
2

1I
Q

D
_A

B
Fa

ct
or

V
II

Id
om

ai
n

C
2

1D
7P

_M
19

76
0.

48
Ja

cq
ue

m
in

et
al

.(
19

98
)

<
1.

4e
-1

1
15

1J
2J

_A
:B

O
G

A
rf

1
G

T
Pa

se
.G

N
P-

R
an

BD
1

1O
3Y

_A
G

A
T

do
m

ai
n

of
G

G
A

1
1O

X
Z

_A
12

09
0.

63
Sh

ib
a

et
al

.(
20

03
)

1.
10

E-
06

8.
13

1J
IW

_P
:I

EI
A

lk
al

in
e

m
et

al
lo

-p
ro

te
in

as
e

1A
K

L_
A

Pr
ot

ei
na

se
in

hi
bi

to
r

2R
N

4_
A

(1
)

20
18

2.
07

Fe
lt

ze
r

et
al

.(
20

00
)

4.
00

E-
12

15
.5

5
1J

M
O

_A
:H

L
ER

H
ep

ar
in

co
fa

ct
or

1J
M

J_
A

T
hr

om
bi

n
2C

N
0_

H
L

34
61

3.
21

C
ia

cc
ia

et
al

.(
19

97
)

1.
15

E-
07

9.
47

1J
PS

_H
L:

T
A

Fa
b

D
3H

44
1J

PT
_H

L
Ti

ss
ue

fa
ct

or
1T

FH
_B

18
52

0.
51

Pr
es

ta
et

al
.(

20
01

)
1.

00
E-

10
13

.6
4

1J
TG

_B
:A

EI
β-

la
ct

am
as

e
in

hi
bi

to
r

pr
ot

ei
n

3G
M

U
_B

β-
la

ct
am

as
e

TE
M

-1
1Z

G
4_

A
26

00
0.

49
A

lb
ec

k
an

d
Sc

hr
ei

be
r

(1
99

9)
4.

00
E-

10
12

.8
2

1J
W

H
_C

D
:A

ER
C

as
ei

n
ki

na
se

II
β

ch
ai

n
3E

ED
_A

B
C

as
ei

n
ki

na
se

II
α

ch
ai

n
3C

13
_A

14
51

1.
27

R
aa

fe
ta

l.
(2

00
8)

1.
26

E-
08

11
.1

4
1K

5D
_A

B:
C

O
G

R
an

G
TP

as
e

1R
R

P_
A

B
R

an
G

A
P

1Y
R

G
_B

25
27

1.
19

Se
ew

al
d

et
al

.(
20

03
)

3.
00

E-
10

12
.7

7
1K

A
C

_A
:B

O
R

A
de

no
vi

ru
s

fib
er

kn
ob

pr
ot

ei
n

1N
O

B_
F

A
de

no
vi

ru
s

re
ce

pt
or

1F
5W

_B
14

56
0.

95
K

ir
by

et
al

.(
20

00
)

1.
48

E-
08

10
.6

8
1K

K
L_

A
BC

:H
ES

H
Pr

ki
na

se
C

-t
er

do
m

ai
n

1J
B1

_A
BC

H
Pr

2H
PR

_A
16

41
2.

2
La

ve
rg

ne
et

al
.(

20
02

)
4.

50
E-

08
10

.0
2

1K
LU

_A
B:

D
O

X
M

H
C

cl
as

s
2

H
LA

-D
R

1
1H

15
_A

B
St

ap
hy

lo
co

cc
us

en
te

ro
to

xi
n

C
3

1S
TE

_A
12

54
0.

43
A

nd
er

se
n

et
al

.(
19

99
)

4.
60

E-
06

7.
28

1K
T

Z
_A

:B
O

R
TG

F-
β

1T
G

K
_A

TG
F-
β

re
ce

pt
or

1M
9Z

_A
98

9
0.

39
D

e
C

re
sc

en
zo

et
al

.(
20

06
)

2.
90

E-
07

8.
92

1K
X

P_
A

:D
O

X
A

ct
in

1I
JJ

_B
V

it
am

in
D

bi
nd

in
g

pr
ot

ei
n

1K
W

2_
B

33
41

1.
12

M
c

Le
od

et
al

.(
19

89
)

9.
00

E-
10

12
.3

4

1K
X

Q
_H

:A
A

B
C

am
el

V
H

H
-P

an
cr

ea
ti

c
α

-a
m

yl
as

e
1K

X
Q

_H
Pa

nc
re

at
ic
α

-a
m

yl
as

e
1P

PI
_A

21
72

0.
72

La
uw

er
ey

s
et

al
.(

19
98

)
3.

50
E-

09
11

.5
4

1L
FD

_B
:A

O
G

R
as

.G
N

P
5P

21
_A

R
al

G
D

S
R

as
-i

nt
er

ac
ti

ng
do

m
ai

n
1L

X
D

_A
11

67
1.

79
K

ie
le

ta
l.

(2
00

4)
1.

94
E-

06
7.

79
1M

10
_A

:B
ER

Vo
n

W
ill

eb
ra

nd
Fa

ct
or

do
m

.A
1

1A
U

Q
_A

G
ly

co
pr

ot
ei

n
IB

-α
1M

0Z
_B

20
97

2.
1

H
ui

zi
ng

a
et

al
.(

20
02

)
5.

80
E-

09
11

.2
4

1M
A

H
_A

:F
EI

A
ce

ty
lc

ho
lin

es
te

ra
se

1J
06

_B
Fa

sc
ic

ul
in

1F
SC

_A
21

45
0.

61
M

ar
ch

ot
et

al
.(

19
93

)
2.

50
E-

11
14

.5
1

1M
LC

_A
B:

E
A

Fa
b4

4.
1

1M
LB

_A
B

H
EW

ly
so

zy
m

e
3L

Z
T_

A
13

92
0.

6
G

ol
db

au
m

et
al

.(
19

99
)

9.
10

E-
08

9.
61

1M
Q

8_
A

:B
O

X
IC

A
M

-1
do

m
ai

n
1-

2
1I

A
M

_A
In

te
gr

in
α

-L
Id

om
ai

n
1M

Q
9_

A
12

41
1.

76
Sh

im
ao

ka
et

al
.(

20
03

)
3.

00
E-

06
7.

53
1N

B5
_A

P:
I

EI
C

at
he

ps
in

H
8P

C
H

_A
St

efi
n

A
1D

V
C

_A
18

02
1.

58
Le

na
rc

ic
et

al
.(

19
96

)
6.

90
E-

11
13

.8
6

1N
C

A
_H

L:
N

A
B

Fa
b

-F
lu

vi
ru

s
ne

ur
am

in
id

as
e

N
9

1N
C

A
_H

L
Fl

u
vi

ru
s

ne
ur

am
in

id
as

e
N

9
7N

N
9_

A
19

53
0.

24
Pr

ue
tt

an
d

A
ir

(1
99

8)
8.

30
E-

09
11

.0
2

1N
SN

_H
L:

S
A

B
Fa

b
N

10
-S

ta
ph

yl
oc

oc
ca

l
nu

cl
ea

se
1N

SN
_H

L
St

ap
hy

lo
co

cc
al

nu
cl

ea
se

1K
D

C
_A

17
76

0.
35

Sm
it

h
et

al
.(

19
91

)
<

1E
-1

0
14

1N
V

U
_Q

:S
O

G
R

as
G

TP
as

e.
G

TP
1L

F0
_A

So
n

of
se

ve
nl

es
s

2I
I0

_B
31

27
1.

98
So

nd
er

m
an

n
et

al
.(

20
04

)
3.

60
E-

06
7.

43
A

ffi
ni

ty
be

nc
hm

ar
k

co
nt

in
ue

d
on

ne
xt

pa
ge



Chapter 6. The Affinity Benchmark 209

A
ffi

ni
ty

be
nc

hm
ar

k
co

nt
in

ue
d

C
om

pl
ex

Ty
pe

Pr
ot

ei
n

1
PD

B1
Pr

ot
ei

n
2

PD
B2

D
A

SA
I-

R
M

SD
R

ef
er

en
ce

K
D

∆
G

1N
V

U
_R

:S
O

G
R

as
G

TP
as

e.
G

TP
1L

F0
_A

So
n

of
se

ve
nl

es
s

2I
I0

_B
34

52
3.

09
So

nd
er

m
an

n
et

al
.(

20
04

)
1.

90
E-

06
7.

8
1N

W
9_

B:
A

ER
C

ap
as

e-
9

1J
X

Q
_A

BI
R

3
do

m
ai

n
of

X
IA

P
(2

49
-3

54
)

2O
PY

_A
21

12
1.

97
V

uc
ic

et
al

.(
20

05
)

1.
30

E-
08

11
.1

9

1O
C

0_
A

:B
ER

Pl
as

m
in

og
en

ac
ti

va
to

r
in

hi
bi

to
r-

1
1B

3K
_A

V
it

ro
ne

ct
in

So
m

at
om

ed
in

Bd
2J

Q
8_

A
(4

)
13

13
1

Z
ho

u
et

al
.(

20
03

)
1.

00
E-

09
12

.2
8

1O
PH

_A
:B

EI
α

-1
-a

nt
it

ry
ps

in
1Q

LP
_A

Tr
yp

si
no

ge
n

2P
TN

_A
13

60
1.

2
St

ra
ti

ko
s

an
d

G
et

ti
ns

(1
99

7)
5.

00
E-

09
11

.3
2

1P
2C

_A
B:

C
A

Fa
bF

10
.6

.6
2Q

76
_A

B
H

EW
ly

so
zy

m
e

3L
Z

T_
A

14
56

0.
46

C
au

er
hff

et
al

.(
20

04
)

1.
02

E-
10

13
.6

3
1P

PE
_E

:I
EI

Tr
yp

si
no

ge
n

2P
T

N
_A

C
M

TI
-1

sq
ua

sh
in

hi
bi

to
r

1L
U

0_
A

16
88

0.
34

Bo
le

w
sk

a
et

al
.(

19
95

)
3.

00
E-

12
15

.5
6

1P
V

H
_A

:B
O

R
IL

6
re

ce
pt

or
β

ch
ai

n
D

2-
D

3
do

m
ai

ns
1B

Q
U

_A
Le

uk
em

ia
in

hi
bi

to
ry

fa
ct

or
1E

M
R

_A
14

03
0.

34
Bo

ul
an

ge
r

et
al

.(
20

03
)

8.
00

E-
08

9.
52

1P
X

V
_A

:C
EI

St
ap

hy
lo

co
cc

us
au

re
us

cy
st

ei
n

pr
ot

ea
se

1X
9Y

_A
C

ys
te

in
pr

ot
ea

se
in

hi
bi

to
r

1N
Y

C
_A

23
36

2.
63

D
ub

in
et

al
.(

20
07

)
3.

10
E-

10
12

.9
7

1Q
A

9_
A

:B
O

X
C

D
2

1H
N

F_
A

C
D

58
1C

C
Z

_A
13

53
0.

73
va

n
de

r
M

er
w

e
et

al
.(

19
94

)
9.

00
E-

06
7.

16
1R

0R
_E

:I
EI

Su
bt

ili
si

n
ca

rl
sb

er
g

1S
C

N
_E

O
M

TK
Y

2G
K

R
_I

14
09

0.
45

Em
pi

e
an

d
La

sk
ow

sk
i(

19
82

)
2.

94
E-

11
14

.1
7

1R
6Q

_A
:C

ER
C

lp
pr

ot
ea

se
su

bu
ni

tC
lp

A
1R

6C
_X

C
lp

pr
ot

ea
se

ad
ap

to
r

pr
ot

ei
n

C
lp

S
2W

9R
_A

24
50

1.
67

Z
et

h
et

al
.(

20
02

)
3.

30
E-

07
8.

84

1R
LB

_A
BC

D
:E

O
X

Tr
an

st
hy

re
ti

n
2P

A
B_

A
BC

D
R

et
in

ol
bi

nd
in

g
pr

ot
ei

n
1H

BP
_A

14
39

0.
66

M
al

pe
li

et
al

.(
19

96
)

8.
00

E-
07

8.
18

1R
V

6_
V

W
:X

O
R

PI
G

F
re

ce
pt

or
bi

nd
in

g
do

m
ai

n
1F

Z
V

_A
B

Fl
t1

pr
ot

ei
n

do
m

ai
n

2
1Q

SZ
_A

16
39

1.
09

Sa
w

an
o

et
al

.(
19

96
)

1.
70

E-
10

13
.8

6
1S

1Q
_A

:B
O

X
U

EV
do

m
ai

n
2F

0R
_A

U
bi

qu
it

in
1Y

J1
_A

12
88

0.
98

Po
rn

ill
os

et
al

.(
20

02
)

6.
36

E-
04

4.
29

1T
6B

_X
:Y

O
R

A
nt

hr
ax

pr
ot

ec
ti

ve
an

ti
ge

n
1A

C
C

_A
A

nt
hr

ax
to

xi
n

re
ce

pt
or

1S
H

U
_X

19
48

0.
62

W
ig

el
sw

or
th

et
al

.(
20

04
)

1.
70

E-
10

13
.1

1U
S7

_A
:B

ER
H

ea
ts

ho
ck

pr
ot

ei
n

82
N

-t
er

do
m

ai
n

2F
X

S_
A

H
SP

90
co

-c
ha

pe
ro

ne
C

D
C

37
C

-t
er

do
m

ai
n

2W
0G

_A
11

06
1.

06
R

oe
et

al
.(

20
04

)
1.

46
E-

06
8.

09

1U
U

G
_A

:B
EI

U
ra

cy
l-

D
N

A
gl

yc
os

yl
as

e
3E

U
G

_A
G

ly
co

sy
la

se
in

hi
bi

to
r

2U
G

I_
B

21
21

0.
77

Be
nn

et
te

ta
l.

(1
99

3)
<

1.
00

E-
13

18
1V

FB
_A

B:
C

A
Fv

D
1.

3
1V

FA
_A

B
H

EW
ly

so
zy

m
e

8L
Y

Z
_A

13
83

1.
02

Bh
at

et
al

.(
19

94
)

3.
70

E-
09

11
.4

6
1W

D
W

_B
D

:A
ER

Tr
yp

to
ph

an
sy

nt
ha

se
β

ch
ai

n
1

1V
8Z

_A
B

Tr
yp

to
ph

an
sy

nt
ha

se
α

ch
ai

n
1G

EQ
_A

31
59

1.
29

O
ga

sa
ha

ra
et

al
.(

20
03

)
2.

50
E-

09
12

.7
2

1W
EJ

_H
L:

F
A

Fa
b

E8
1Q

BL
_H

L
C

yt
oc

hr
om

e
C

1H
R

C
_A

11
77

0.
31

C
ar

bo
ne

an
d

Pa
te

rs
on

(1
98

5)
7.

14
E-

10
12

.4
8

1W
Q

1_
R

:G
O

G
R

as
G

TP
as

e.
G

D
P

6Q
21

_D
R

as
G

A
P

1W
ER

_A
29

13
1.

16
Ec

cl
es

to
n

et
al

.(
19

93
)

1.
70

E-
05

6.
62

1X
D

3_
A

:B
O

X
U

C
H

-L
3

1U
C

H
_A

U
bi

qu
it

in
1Y

J1
_A

22
81

1.
24

D
an

g
et

al
.(

19
98

)
3.

00
E-

07
8.

9
1X

Q
S_

A
:C

O
X

H
sp

BP
1

1X
Q

R
_A

H
sp

70
A

TP
as

e
do

m
ai

n
1S

3X
_A

23
50

1.
77

Sh
om

ur
a

et
al

.(
20

05
)

6.
50

E-
06

7.
08

1X
U

1_
A

BD
:T

O
R

TN
F

do
m

ai
n

of
A

PR
IL

1U
5Y

_A
BD

TA
C

IC
R

D
2

do
m

ai
n

1X
U

T_
A

(1
1)

17
00

1.
3

W
u

et
al

.(
20

00
)

6.
40

E-
09

11
.1

8
1Y

V
B_

A
:I

EI
Fa

lc
ip

ai
n

2
2G

H
U

_A
C

ys
ta

ti
n

1C
EW

_I
17

43
0.

51
W

an
g

et
al

.(
20

07
b)

6.
50

E-
09

11
.1

7

1Z
0K

_A
:B

O
G

R
ab

4A
G

TP
as

e.
G

N
P

2B
M

E_
A

R
A

B4
bi

nd
in

g
do

m
ai

n
of

R
ab

en
os

yn
1Y

Z
M

_A
17

87
0.

53
Ea

th
ir

aj
et

al
.(

20
05

)
7.

70
E-

06
6.

98

1Z
H

I_
A

:B
O

X
BA

H
do

m
ai

n
of

O
rc

1
1M

4Z
_A

Si
r

O
rc

-i
nt

er
ac

ti
on

do
m

ai
n

1Z
1A

_A
13

22
0.

68
H

ou
et

al
.(

20
09

)
2.

00
E-

07
9.

08
1Z

LI
_A

:B
EI

C
ar

bo
xy

pe
pt

id
as

e
B

1K
W

M
_A

Ti
ck

ca
rb

ox
yp

ep
ti

da
se

in
hi

bi
to

r
2J

TO
_A

(6
)

20
87

2.
53

A
ro

la
s

et
al

.(
20

05
a)

1.
30

E-
09

12
.0

4

1Z
M

4_
A

:B
ES

El
on

ga
ti

on
fa

ct
or

2
1N

0V
_C

D
ip

ht
he

ri
a

to
xi

n
A

ca
ta

ly
ti

c
do

m
ai

n
1X

K
9_

A
15

54
2.

94
A

rm
st

ro
ng

et
al

.(
20

02
)

1.
30

E-
06

8.
03

2A
9K

_A
:B

ES
R

al
-A

.G
D

P
1U

8Z
_A

M
on

o-
A

D
P-

ri
bo

sy
lt

ra
ns

fe
ra

se
C

3
2C

8B
_X

17
51

0.
85

Pa
ut

sc
h

et
al

.(
20

05
)

6.
00

E-
08

10
.2

5

2A
BZ

_B
:E

EI
C

ar
bo

xy
pe

pt
id

as
e

A
1

3I
1U

_A
Le

ec
h

ca
rb

ox
yp

ep
ti

da
se

in
hi

bi
to

r
1Z

FI
_A

(1
)

14
47

0.
9

A
ro

la
s

et
al

.(
20

05
b)

2.
80

E-
09

11
.6

7

2A
JF

_A
:E

O
R

A
ng

io
te

ns
in

-c
on

ve
rt

in
g

en
zy

m
e

2
1R

42
_A

SA
R

S
sp

ik
e

pr
ot

ei
n

re
ce

pt
or

bi
nd

in
g

do
m

ai
n

2G
H

V
_E

17
04

0.
65

Li
et

al
.(

20
05

)
1.

62
E-

08
10

.6
3

2A
Q

3_
A

:B
O

X
TC

R
V
β8

.2
1B

EC
_A

SE
C

3
1C

K
1_

A
11

05
1.

82
C

ho
et

al
.(

20
10

)
1.

20
E-

05
6.

71
A

ffi
ni

ty
be

nc
hm

ar
k

co
nt

in
ue

d
on

ne
xt

pa
ge



Chapter 6. The Affinity Benchmark 210

A
ffi

ni
ty

be
nc

hm
ar

k
co

nt
in

ue
d

C
om

pl
ex

Ty
pe

Pr
ot

ei
n

1
PD

B1
Pr

ot
ei

n
2

PD
B2

D
A

SA
I-

R
M

SD
R

ef
er

en
ce

K
D

∆
G

2B
42

_A
:B

EI
X

yl
an

as
e

2D
C

Y
_A

X
yl

an
as

e
in

hi
bi

to
r

1T
6E

_X
25

20
0.

72
Fi

er
en

s
et

al
.(

20
05

)
1.

07
E-

09
12

.1
1

2B
4J

_A
B:

C
O

X
In

te
gr

as
e

(H
IV

-1
)

1B
IZ

_A
B

PC
4

an
d

SF
R

S1
in

te
ra

ct
in

g
pr

ot
ei

n
1Z

9E
_A

(1
)

12
59

0.
99

Ts
ia

ng
et

al
.(

20
09

)
1.

09
E-

08
10

.8
6

2B
T

F_
A

:P
O

X
A

ct
in

1I
JJ

_B
Pr

ofi
lin

1P
N

E_
A

20
63

0.
75

Sc
hl

ut
er

et
al

.(
19

98
)

2.
30

E-
06

7.
69

2C
0L

_A
:B

O
X

TR
P

re
gi

on
of

PE
X

5
1F

C
H

_A
St

er
ol

ca
rr

ie
r

pr
ot

ei
n

2
1C

44
_A

20
13

2.
62

St
an

le
y

et
al

.(
20

06
)

1.
09

E-
07

9.
82

2F
JU

_B
:A

O
G

Ph
os

ph
ol

ip
as

e
β

2
2Z

K
M

_X
R

ac
G

TP
as

e
1M

H
1_

A
12

45
1.

04
Sn

yd
er

et
al

.(
20

03
)

5.
30

E-
06

7.
2

2G
O

X
_A

:B
O

X
C

om
pl

em
en

tC
3d

fr
ag

m
en

t
1C

3D
_A

St
ap

hy
lo

co
cc

us
au

re
us

Ef
b-

C
2G

O
M

_A
16

31
0.

6
H

as
pe

le
ta

l.
(2

00
8)

1.
40

E-
09

12
.0

8
2H

LE
_A

:B
O

R
Ep

hr
in

B4
re

ce
pt

or
2B

BA
_A

Ep
hr

in
B2

ec
to

do
m

ai
n

1I
K

O
_P

21
16

1.
4

C
hr

en
ci

k
et

al
.(

20
06

)
4.

00
E-

08
10

.0
9

2H
Q

S_
A

:H
O

X
To

lB
1C

R
Z

_A
Pa

l
1O

A
P_

A
23

33
1.

14
Bo

ns
or

et
al

.(
20

07
)

2.
70

E-
08

10
.1

5
2H

R
K

_A
:B

O
X

G
lu

ta
m

yl
-t

-R
N

A
sy

nt
he

ta
se

2H
R

A
_A

G
U

-4
nu

cl
ei

c
bi

nd
in

g
pr

ot
ei

n
2H

Q
T_

A
15

95
2.

03
K

ar
an

as
io

s
et

al
.(

20
07

)
9.

00
E-

09
10

.9
8

2I
25

_N
:L

A
Sh

ar
k

si
ng

le
do

m
ai

n
an

ti
ge

n
re

ce
pt

or
2I

24
_N

H
EW

ly
so

zy
m

e
3L

Z
T_

A
14

25
1.

21
D

oo
le

y
et

al
.(

20
06

)
1.

00
E-

09
12

.2
8

2I
9B

_E
:A

O
R

uP
A

R
su

rf
ac

e
re

ce
pt

or
1Y

W
H

_A
U

ro
ki

na
se

-t
yp

e
pl

as
m

in
og

en
ac

ti
va

to
r

2I
9A

_A
23

82
3.

79
G

ar
ds

vo
ll

et
al

.(
20

04
)

3.
30

E-
10

12
.9

3

2J
0T

_A
:D

EI
M

M
P1

In
te

rs
it

ia
lc

ol
la

ge
na

se
96

6C
_A

M
et

al
lo

pr
ot

ei
na

se
in

hi
bi

to
r

1
1D

2B
_A

(2
0)

14
71

1.
23

W
ei

et
al

.(
20

03
)

4.
00

E-
10

13
.3

4
2J

EL
_H

L:
P

A
B

Fa
b

Je
l4

2
-H

Pr
2J

EL
_H

L
H

Pr
1P

O
H

_A
15

01
0.

17
Sm

al
ls

ha
w

et
al

.(
19

98
)

2.
80

E-
09

11
.5

9
2M

TA
_H

L:
A

ES
M

et
hy

la
m

in
e

de
hy

dr
og

en
as

e
2B

BK
_J

M
A

m
ic

ya
ni

n
2R

A
C

_A
14

61
0.

41
D

av
id

so
n

et
al

.(
19

93
)

4.
50

E-
06

7.
42

2N
Y

Z
_A

B:
D

O
R

V
ir

al
ch

em
ok

in
e

bi
nd

in
g

p.
M

3
1M

K
F_

A
B

C
he

m
ok

in
e

X
C

L1
1J

9O
_A

21
60

2.
09

A
le

xa
nd

er
-B

re
tt

an
d

Fr
em

on
t

(2
00

7)
5.

00
E-

10
12

.6
9

2O
3B

_A
:B

EI
N

uc
A

nu
cl

ea
se

1Z
M

8_
A

N
ui

A
nu

cl
ea

se
in

hi
bi

to
r

1J
57

_A
16

84
3.

13
G

ho
sh

et
al

.(
20

07
)

3.
20

E-
12

15
.6

8

2O
O

B_
A

:B
ES

E3
ub

iq
ui

ti
n-

pr
ot

ei
n

lig
as

e
C

BL
-B

U
BA

do
m

ai
n

2O
O

A
_A

U
bi

qu
it

in
1Y

J1
_A

80
8

0.
85

K
oz

lo
v

et
al

.(
20

07
)

6.
00

E-
05

5.
66

2O
O

R
_A

B:
C

ER
N

A
D

(P
)t

ra
ns

hy
dr

og
en

as
e

su
bu

ni
tα

pa
rt

1
1L

7E
_A

B
N

A
D

(P
)t

ra
ns

hy
dr

og
en

as
e

su
bu

ni
tβ

1E
3T

_A
20

65
1.

42
D

ig
gl

e
et

al
.(

19
96

)
1.

55
E-

08
10

.6
5

2O
U

L_
A

:B
EI

Fa
lc

ip
ai

n
2

3B
PF

_A
C

ha
ga

si
n

2N
N

R
_A

19
33

0.
53

W
an

g
et

al
.(

20
07

b)
1.

70
E-

09
11

.9
6

2O
Z

A
_B

:A
O

X
M

A
P

ki
na

se
14

3H
EC

_A
M

A
P

ki
na

se
-a

ct
iv

at
ed

pr
ot

ei
n

ki
na

se
2

3F
Y

K
_X

62
54

1.
89

Lu
ka

s
et

al
.(

20
04

)
2.

50
E-

09
11

.7
3

2P
C

B_
A

:B
ES

C
yt

C
pe

ro
xi

da
se

1C
C

P_
A

C
yt

oc
hr

om
e

C
1H

R
C

_A
10

29
0.

45
Er

m
an

et
al

.(
19

97
)

1.
00

E-
05

6.
82

2P
C

C
_A

:B
ES

C
yt

C
pe

ro
xi

da
se

1C
C

P_
A

C
yt

oc
hr

om
e

C
,y

ea
st

1Y
C

C
_A

11
41

0.
39

Pi
el

ak
an

d
W

an
g

(2
00

1)
1.

60
E-

06
7.

91
2P

T
C

_E
:I

EI
Tr

yp
si

no
ge

n
2P

T
N

_A
BP

TI
9P

TI
_A

14
29

0.
28

V
in

ce
nt

an
d

La
zd

un
sk

i(
19

72
)

6.
00

E-
14

18
.0

4

2S
IC

_E
:I

EI
Su

bt
ili

si
n

1S
U

P_
A

St
re

pt
om

yc
es

su
bt

ili
si

n
in

hi
bi

to
r

3S
SI

_A
16

17
0.

36
U

eh
ar

a
et

al
.(

19
78

)
7.

12
E-

11
13

.8
4

2S
N

I_
E:

I
EI

Su
bt

ili
si

n
1U

BN
_A

C
hy

m
ot

ry
ps

in
in

hi
bi

to
r

2
2C

I2
_I

16
28

0.
35

O
tz

en
an

d
Fe

rs
ht

(1
99

9)
2.

00
E-

12
15

.9
6

2T
G

P_
Z

:I
EI

Tr
yp

si
no

ge
n

1T
G

B_
A

BP
TI

9P
TI

_A
14

32
0.

57
Bo

de
(1

97
9)

2.
40

E-
06

7.
54

2U
U

Y
_A

:B
EI

Tr
yp

si
no

ge
n

2P
T

N
_A

Tr
yp

ta
se

in
hi

bi
to

r
fr

om
ti

ck
2U

U
X

_A
12

80
0.

44
Pa

es
en

et
al

.(
20

07
)

5.
60

E-
09

11
.2

6

2V
D

B_
A

:B
O

X
Se

ru
m

al
bu

m
in

3C
X

9_
A

Pe
pt

os
tr

ep
to

co
cc

al
al

bu
m

in
-

bi
nd

in
g

pr
ot

ei
n

2J
5Y

_A
18

07
0.

47
de

C
ha

te
au

et
al

.(
19

96
)

1.
50

E-
10

13
.4

2V
IR

_A
B:

C
A

Fa
b

1G
IG

_L
H

Fl
u

vi
ru

s
he

m
ag

gl
ut

in
in

2H
M

G
_A

B
12

63
0.

8
Fl

eu
ry

et
al

.(
19

98
)

1.
00

E-
09

12
.2

8
2V

IS
_A

B:
C

A
Fa

b
1G

IG
_L

H
Fl

u
vi

ru
s

he
m

ag
gl

ut
in

in
2V

IU
_A

C
E

12
96

0.
8

Fl
eu

ry
et

al
.(

19
98

)
4.

00
E-

06
7.

36
2W

PT
_A

:B
EI

C
ol

ic
in

E9
nu

cl
ea

se
1F

SJ
_B

Im
2

im
m

un
it

y
pr

ot
ei

n
2N

O
8_

A
15

81
1.

61
Li

et
al

.(
19

98
)

1.
50

E-
08

10
.6

7

3B
P8

_A
B:

C
O

X
M

lc
tr

an
sc

ri
pt

io
n

re
gu

la
to

r
1Z

6R
_A

B
PT

S
gl

uc
os

e-
sp

ec
ifi

c
en

zy
m

e
EI

IC
B

3B
P3

_A
13

98
0.

45
N

am
et

al
.(

20
08

)
4.

14
E-

09
11

.4
4

A
ffi

ni
ty

be
nc

hm
ar

k
co

nt
in

ue
d

on
ne

xt
pa

ge



C
hapter

6.The
A
ffi

nity
Benchm

ark
211

Affinity benchmark continued
Complex Type Protein 1 PDB1 Protein 2 PDB2 DASA I-RMSD Reference KD ∆G
3BZD_A:B OX TCR Vβ8.2 1BEC_A SEC3-1A4 3BVZ_A 1312 1.08 Cho et al. (2010) 9.60E-08 9.57
3CPH_G:A OG Ras-related protein Sec4 1G16_A Rab GDP-dissociation inhibitor 3CPI_G 1685 2.12 Ignatev et al. (2008) 3.30E-07 8.84

3SGB_E:I EI Streptogrisin B 2QA9_E
Ovomucoid inhibitor third
domain

2OVO_A 1268 0.36 Wieczorek et al. (1987) 1.79E-11 14.51

4CPA_A:I EI Carboxypeptidase A 8CPA_A
Potato carboxypeptidase
inhibitor

1H20_A(9) 1177 1.52 Ryan et al. (1974) 5.00E-09 11.32
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6.2.1 The Structures

The benchmark contains values for 144 complexes. For all of the inter-
actions, high resolution (< 3.25Å) crystal structures are available for the
complex and the individual binding partners in isolation, except for a
few antibody/antigen complexes. As the affinity benchmark was based
on docking benchmark 4.0 (Hwang et al., 2010), no pairs of complexes
with high sequence identity are included, in order to alleviate redundancy.
Exceptions were made for nine pairs of complexes, in which one is a high
affinity cognate complex, and the other is a closely related non-cognate
complex with much lower binding affinity. Many of the complexes undergo
extensive conformational changes, some involving disorder to order
transitions, and others with interface Cα RMSD up to 5Å between the bound
and the unbound conformations.

6.2.2 The Affinities

The affinity data comes from a wide variety of sources, mostly isothermal
titration calorimetry, surface plasmon resonance, stopped-flow fluorimetry
and other spectroscopic techniques, and they span nine orders of magnitude.
In many cases, affinities were derived from inhibition constants, used as
part of a kinetic model. Corroborating KD values could be found for around
half the complexes, and typically differed from each other by about a factor
of 2, corresponding to around 0.4 kcal mol−1 error, significantly larger than
the 20-50% standard error typically reported. Greater differences in affinity
were observed when the conditions were varied; temperature, pH and ionic
strength. All but three of the affinities were obtained in the 18-35◦C range.
The cases in which affinity is determined at various temperatures suggest
that this can affect the affinity by up to a factor of two (Kresheck et al., 1995;
Schwarz et al., 1995; Ogasahara et al., 2003; Smallshaw et al., 1998). Studies
in which the effect of varying ionic strength is ascertained show that salt
concentrations within the typical range of 0.1-0.5M can results in differences
in binding affinity up to an order of magnitude (Davidson et al., 1993; Erman
et al., 1997; Kresheck et al., 1995; Mc Leod et al., 1989; Eccleston et al., 1993;
Alexander-Brett and Fremont, 2007; Armstrong et al., 2002). However, the
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greatest variations in binding affinities are observed when the pH is varied;
this can result in differences up to a factor of 50, corresponding to around 2.3
kcal mol−1 in the typical pH range of 5.5-8.5 (Faller and Bieth, 1991; Ascenzi
et al., 1988; Mc Leod et al., 1989). For these reasons, any predictive binding
affinity function capable of determining free energies within around 2 kcal
mol−1 should be deemed to be accurate to within the limitations of the data
unless these environmental factors are accounted for.

Table 6.2: A summary of the binding affinity benchmark. High affinity is deemed to be
KD < 10−10M, medium 10−10 to 10−6 and low > 10−6. Complexes deemed to have large
conformational changes (Flex.) are those with interface Cα RMSD > 1.5Å. Means and
standard deviations are calculated with non-cognate complexes excluded. Table adapted
from Kastritis et al. (2011).

Number Affinity class ∆G/kcal mol−1

Class All Noncognate High Med. Low Mean σ Flex.
Antibody/Antigen 19 2 2 16 1 12.2 1.3 0
Enzyme/Inhibitor 40 4 17 22 1 13.8 2.3 7
Enzyme/Other 21 1 0 12 9 9.2 1.9 7
G-protein 17 - 1 6 10 8.9 2.5 6
Receptor 13 - 1 11 1 11.5 2.1 4
Miscellaneous 34 2 0 22 12 9.3 2.2 11
All 144 9 20 90 34 11.0 2.9 35

6.2.3 The Functions

The complexes are involved in wide ranging functions, which were used
to classify them. These included antibody-antigen complexes (A, or AB
where no unbound antibody was available), enzyme-inhibitor complexes
(EI), enzyme-regulatory/accessory chain complexes (ER), receptor contain-
ing complexes (OR), complexes with G-binding proteins (OG) and miscel-
laneous complexes (OX). The breakdown of all complexes according to their
number, affinity and associated conformational changes, is shown in Table
6.2.

6.2.4 Affinity Prediction

A number of potentials were applied to the benchmark and subsets of it,
in order to investigate the capabilities of methods such as those described
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Table 6.3: Empirical binding free energy functions tested on larger data sets. The number
of test cases are shown (Cases), with the corresponding set in parentheses, correlation
(Corr.), the method used (Method) and the reference (Reference), are shown. Potentials
of mean force are denoted ’PMF’, and master thermodynamic equations as ’sum’.

Cases Corr. Method Reference
46 (C) 0.35 sum, HADDOCK de Vries et al. (2007)
46 (C) 0.26 PMF, DComplex Liu et al. (2004)
46 (C) 0.35 sum, ATTRACT Bastard et al. (2006)
46 (C) 0.50 sum, AffinityScore Audie and Scarlata (2007)
46 (C) 0.53 sum, PyDock Cheng et al. (2007a)
46 (C) 0.40 sum, FireDock Andrusier et al. (2007)
46 (C) 0.52 sum, Rosetta Jiang et al. (2005)
46 (C) 0.36 sum, FastContact Champ and Camacho (2007)
46 (C) 0.35 sum, ZRANK Pierce and Weng (2007)
137 (B) 0.59 other Section 7.3
137 (B) 0.33 PMF, DComplex Liu et al. (2004)
80 (N) 0.3 other Section 7.3
80 (N) 0.21 PMF, DComplex Liu et al. (2004)
67 (R) 0.72 other Section 7.3
70 (F) 0.32 other Section 7.3
57 (V) 0.76 other Section 7.3
57 (V) 0.44 PMF, DComplex Liu et al. (2004)
57 (V) 0.51 PMF Su et al. (2009)

28 (V ∩R) 0.91 other Section 7.3
28 (V ∩R) 0.67 PMF, DComplex Liu et al. (2004)
28 (V ∩R) 0.85 PMF Su et al. (2009)
29 (V ∩ F) 0.54 other Section 7.3
29 (V ∩ F) 0.41 PMF, DComplex Liu et al. (2004)
29 (V ∩ F) 0.35 PMF Su et al. (2009)
14 (V ∩C) 0.72 other Section 7.3
14 (V ∩C) 0.61 sum, AffinityScore Audie and Scarlata (2007)
14 (V ∩C) 0.66 sum, PyDock Cheng et al. (2007a)
14 (V ∩C) 0.69 PMF, DComplex Liu et al. (2004)
14 (V ∩C) 0.64 PMF Su et al. (2009)
37 (B∩C) 0.60 other Section 7.3
37 (B∩C) 0.40 sum, AffinityScore Audie and Scarlata (2007)
37 (B∩C) 0.44 sum, PyDock Cheng et al. (2007a)
37 (B∩C) 0.57 PMF, DComplex Liu et al. (2004)
31 (⊂ V) 0.59 sum Section 7.4

in section 1.4.4.8, as well as the quality of the data. The benchmark, which
we shall denote B, was split into subsets. The subset containing flexible
complexes, F, is the sets for which the interface Cα RMSD is greater than
1.0. Its complement, R = Fc, contains the rigid complexes. In addition,
we compiled a subset of the benchmark containing only entries for which
we had confidence in the binding affinity. For this set, which we call the
validated set, V, complexes were included only if their binding affinity
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has been measured experimentally by more than one group or more than
one experimental technique, and that the measurements were within 1
kcal mol−1 of one another. The validated set contains 57 complexes, 29 of
which are in the intersection with F, and spans an affinity range of 13 kcal
mol−1. It comprises of 3 antibody/antigen complexes, 16 enzyme-inhibitor
complexes, 5 enzyme-substrate complexes, 5 other complexes with en-
zymes, 8 complexes containing G-proteins, 7 receptor-ligand complexes
and 13 miscellaneous complexes. The complement of the validated set is
the non-validated set, N = Vc.

The results of this analysis appear in table 6.3. For comparison, this table
also includes the results from Kastritis and Bonvin (2010), in which a number
of methods were evaluated on a set of 46 complexes, which are denoted
C, as well as some of the results from the empirical free energy models
explained in the next chapter. These results show that the quality of data is
very important, as the performance of these method on V are consistently
superior to B, which in turn are superior to N. Further, they highlight the
difficulties arising due to conformational changes; the performance of these
methods on F are significantly worse than on R.

6.3 Summary

A large structurally cross-referenced database of protein-protein binding
affinities has been assembled, with care to ensure environmental conditions
and corroborating data is reported. These span a broad variety of functions
and affinities, and undergo a wide range of conformational changes upon
binding, including disorder to order transitions. A number of empirical
binding free energy functions were evaluated on the structures, highlighting
the importance of high quality data, and the challenges presented when
conformational changes are not negligible.



Chapter 7

Affinity and Kinetics Prediction

7.1 Introduction

The binding affinity benchmark, discussed in the previous chapter, was
used to devise binding free energy functions and functions for the prediction
of kinetic rate constants. To do so, we first compiled a large descriptor set
covering many physical and geometrical aspects of the complexes, which is
discussed in section 7.2. In section 7.3, it is shown how these descriptors are
used to construct models using random forest regression, M5’ regression,
multivariate adaptive regression with splines and radial basis function
interpolation. These outperform all other methods which were tested, and
their consensus prediction is better still. Finally, in section 7.4, I show
how cross-validated multiple regression, feature selection and a form of
early stopping regularisation can be used to build simple dissociation
and association rate functions for the prediction of binding kinetics and
affinity. The model is carefully parameterised and benchmarked, and
shown to perform well. This performance is speculated to be due to the
divide-and-conquor approach, in which the binding affinity prediction is
split into two problems which are solved independently: dissociation rate
prediction and association rate prediction. Both the affinity and kinetics
models only require input data which can be quickly and easily computed,
and are thus suitable for high-throughput studies.

216
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7.2 Molecular Descriptors

In order to construct binding free energy models, we derived a large num-
ber of molecular descriptors for the binding affinity benchmark. The previ-
ous chapter, and section 1.4.4.8, highlight a number of issues regarding the
prediction of binding affinities, and we had these in mind when selecting
descriptors. The following considerations guided our choices.

1. A first concern was computational efficiency. Most of the chosen
descriptors can be calculated in a fraction of a second, and all but
two can be calculated within seconds. The first of these, the change in
vibrational entropy, is traditionally calculated using normal mode ana-
lysis with an all atom force field, and requires hours of minimisation
prior to the analysis. We used an approximate method based on the
elastic network model, which typically takes less than 5 minutes (Car-
rington and Mancera, 2004). The second computationally demanding
feature included was the BioSimz association score. However, this
feature was not important for any of the derived affinity models.

2. As proteins do not exist as static structures, but as structural ensembles
(see section 1.4.4.5), the measured binding affinities correspond to the
Boltzmann weighted average of the energy of the bound ensemble,
minus the energy of the unbound ensembles, and we wished to ac-
count for this. However, we did not want to perform computationally
expensive molecular dynamics or Monte Carlo simulations. To achieve
this, we generated ensembles of each complex and its unbound con-
stituents using CONCOORD (de Groot et al., 1997), a method which
uses pseudo-NMR restraints. This typically takes minutes. As the
CONCOORD method generates physically plausible structures, all
the models were treated equally, and the mean was calculated over
the ensemble.

3. We wished to keep the features as physically plausible as possible.
With the exception of a few interface composition and geometrical
features, all the descriptors can be traced back to putative physical
phenomena. However, we did not wish to restrict ourselves to terms
relating to single phenomena, such as in the master thermodynamic
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equations discussed in section 1.4.4.8. Moreover, we wished to al-
low for the possibility of, say, mixing statistical pair potentials which
account for many phenomena simultaneously, with other terms relat-
ing to phenomena which aren’t captured by pair potentials, such as
entropy changes.

4. We wished to have a number of features relating to entropy, as this
effect is harder to account for and is often neglected. Thus we made
sure to include terms relating to vibrational entropy, the entropy of
disordered loops and termini, side-chain entropy, rotational and vi-
brational entropy, as well as the hydrophobic effect.

5. Solvation effects are important in driving biomolecular recognition,
and so a number of solvation models were included, from simple
hydrophobic burial terms to sophisticated continuum electrostatics
models.

6. As the pH is the most significant environmental factor influencing
binding affinity, and alternative protonation states are included in the
CHARMM22 force field, a number of the descriptors were added which
account for this. Firstly, PROPKA was used to determine the pKa of the
titratable amino acids (Bas et al., 2008). The pKa of the amino acids and
the pH of the solution determine the probability that a given residue
exists in a given protonation state. The most probable assignment
of protonation states, at the experimental pH, was determined using
PDB2PQR (Dolinsky et al., 2007). For the 16 complexes for which the
experimental pH was not reported, the standard pH of 7.5 was used.
All the descriptors prefixed with ACE22 were calculated with these
pH adjusted models.

7. Conformational changes are very common in the benchmark, and thus
we decided to include many features relating to the change in energet-
ics as the proteins go from the unbound state to the bound.

By no means can the final descriptors be seen as a complete set which fit
the above criteria, but we believe they give good coverage of the various
physical phenomena at play.
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In total, 200 parameters were calculated to describe the interface, interac-
tion and conformational changes upon binding. These are divided into the
following sections, although some fit equally into multiple categories. Some
parameters describe the interface directly, such as surface complimentarity,
while others were calculated as Eint = Ecomplex − (ER,b + EL,b). Of the values,
some were calculated de novo, others were calculated by servers, packages
or stand-alone programs including the ProtorP server (Reynolds et al.,
2009), CHARMM (Brooks et al., 2009), PyRosetta (Chaudhury et al., 2010),
FireDock (Andrusier et al., 2007), and the Potentials’R’Us server (Feng et al.,
2010).

Before calculating the molecular descriptors, post-translational modi-
fications were treated as follows: S-oxymethionine (2TGP) and selenome-
thionine (1FQJ, 1KKL, 3BP8, 3CPH, 2HQS, 2OOB, 1S1Q and 1XQS) were
changed to methionine, phosphoserine (1F34) and phosphothreonine (1IB1)
residues were converted to serine and threonine respectively, O-sulfo-L-
tyrosine (1JMO) was changed to tyrosine, D-glutamine (1S1Q and 1XD3)
was modelled as L-glutamine, dioxyselenocysteine (2SNI) was changed
to cysteine and diphthamide (1ZM4) was changed to histidine. With the
exception of the phosphothreonine in 1IB1, these modifications are away
from the binding interface. 137 proteins were used, with the following
omissions: 1DE4 was removed from the test set due to its size. 1UUG, 1IQD
and 1NSN were removed as only upper limits to their dissociation constant
are available. 1M10, 1NCA and 1NB5 were removed owing to difficulties
in deriving a complete descriptor set.

7.2.1 Statistical Potentials

A total of 35 statistical potentials are used, both coarse grain and atomistic.
Most were dervied from intramolecular interactions. However, such
potentials have shown considerable utility in charaterising interfaces and
disinguishing true interfaces from decoys (Liu et al., 2004).

The potentials considered include the atomistic (ROS_FA_PP) and
coarse grained (ROS_CG_PP) Rosetta pair potentials (Simons et al., 1999),
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the DFIRE (Zhou and Zhou, 2002) (DFIRE) and directional DFIRE (Yang and
Zhou, 2008) (DDFIRE) potentials, the OPUS-Ca (Wu et al., 2007) (OPUS_CA)
and OPUS-PSP (Lu et al., 2008a) (OPUS_PSP) potentials, the residue level
potential of Rykunov and Fiser (2010) (RF_PP), the geometric potential
function of Li and Liang (2011) (GEOMETRIC) and the EMPIRE potential
(Liang et al., 2007) (EMPIRE). Further are the 26 two-body and four-body
coarse grain potentials provided by the Potentials’R’Us server, which
are described by Pokarowski et al. (2005) (FOUR_BODY, GEN_4_BODY,
SHORT_RANGE, QA_PP, QM_PP, QP_PP, HLPL_PP, SKOB_PP, SKOA_PP,
SKJG_PP, MJPL_PP, MJ3H_PP, MJ2H_PP, TS_PP, BT_PP, BFKV_PP, TD_PP,
TEL_PP, TES_PP, RO_PP, MS_PP, MJ1_PP, MJ3_PP, GKS_PP, VD_PP and
MSBM_PP).

7.2.2 Solvation and Entropy terms

Accounting for solvation are the atomic contact energies (DELISI_SOLV)
developed by Zhang et al. (1997), the Lazaridis-Karplus effective energy
function (Lazaridis and Karplus, 1999b) (LK_SOLV), the SASA model
(Ferrara et al., 2002) (SASA), and the Rosetta Cβ (ROS_CG_BETA) and envir-
onment (ROS_CG_ENV) potentials (Simons et al., 1999). Also included are
the electrostatic self energy (ACE22_SELF) and screening (ACE22_SCRE)
contribution to the solvation free energy, and their sum (ACE22_SOLV),
as calculated using the analytical continuum electrostatics method of
Schaefer and Karplus (1996) using the CHARMM22 force field, along with
their hydrophobic burial term (ACE22_HYDR). These terms were also
calculated using the CHARMM19 force field (ACE19_SELF, ACE19_SCRE,
ACE19_SOLV and ACE19_HYDR). The hydrophobic burial term from the
STC package was also calculated (STC_S_SOL) (Lavigne et al., 2000).

Other entropic terms include the translational (S_T) and rotational (S_R)
entropy changes (see equations 1.53 and 1.54), and their sum (S_TR), as
calculated using CHARMM, and the total entropy change calculated by
STC (Lavigne et al., 2000). Change in vibrational entropy upon binding
(S_VIB) was calculated using normal modes, via equation 1.52. The N − 6
non-trivial elastic network normal modes were calculated using ElNeMo
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(Suhre and Sanejouand, 2004), and the entropy was calculated using the M1
scheme described by Carrington and Mancera (2004).

Entropy changes arising from restriction of side chain conformation
upon binding (STC_S_SC) were calculated using STC (Lavigne et al.,
2000). Two models of entropy changes associated with disorder to order
transitions were included, as reviewed by Zhou (2004), with a Gaussian
polymer model for free chains at termini, and a wormlike chain model
for loops linking ordered regions. Disordered residues are taken as those
which are either not resolved in the crystal structure or that have a Cα
occupancy below 0.5. Residues which are disordered in both the bound and
the unbound structure are neglected, as are loops of fewer than 3 residues.
In the Gaussian polymer model (S_GP_ALL2), configurational entropy is
proportional to ln(det(W)) where W is the Wang-Uhlenbeck matrix (Wang
and Uhlenbeck, 1945). For the non-interacting loops in the data set, this
reduces to the logarithm of the number of residues. For the worm-like chain
model (S_WLC_ALL2), the method of Zhou (2001) was employed (with
C=0). Two further parameters (S_GP_INT2 and S_WLC_INT2) are also
included, for which only the entropy changes of loops involving interfacial
residues (those with a non-hydrogen atom within 10Å of a non-hydrogen
atom on the binding partner) are considered.

7.2.3 Other Potentials

Other potentials include the directional H-bonding potential implimented in
Rosetta (Kortemme et al., 2003) (ROS_HBOND) and the 12-10 potential im-
plimented in FireDock (Andrusier et al., 2007) (H_BOND), as well as orienta-
tion independent π-π (PI_PI), cation-π (CATION_PI) and aliphatic-alphatic
(ALIPHATIC) potentials (Misura et al., 2004). Further are the total Rosetta
energy (ROS_TOTAL), total CHARMM22 energy (ACE22_ALL), total STC
enthalpy (STC_H) and free energy (STC_G), attractive (ROS_FA_ATR), re-
pulsive (ROS_FA_REP) and coarse grained (ROS_CG_VDW) Van der Waals
terms, CHARMM 22 Coulombic (ACE22_COUL), electrostatic interaction
(ACE22_INTE, the sum of ACE22_COUL and ACE22_SCRE) and total elec-
trostatic (ACE22_ELEC, the sum of ACE22_INTE and ACE22_SELF), as well
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as the CHARMM19 electrostatic interaction (ACE19_INTE) and Coulombic
terms (ACE19_COUL).

7.2.4 Other Descriptors

The proportion of interface residues which are in alpha helices
(INT_ALPHA) and beta sheets (INT_BETA), were determined with
DSSP (Kabsch and Sander, 1983) as well as the number of interfacial H-
bonds (NUM_HB), salt bridges (NUM_SB) and water bridges (NUM_WB)
as calculated by HBPLUS (McDonald and Thornton, 1994; Barlow and
Thornton, 1983). Further are parameters obtained with NACCESS (Hub-
bard and Thornton, 1993), including DASA, the change in surface area
upon binding, RES_P, RES_NP and RES_C, the percentage of interface
residues that are polar, non-polar and charged respectively and ATOM_P,
ATOM_NP and ATOM_N, the percentage of interface atoms which are
polar, non-polar and neutral. Geometrical properties of the interface
are characterised by the planarity (PLANARITY), numerical eccentricity
(ECCENTRIC), the volume of empty space at the interface (GAP_VOL) and
this volume divided by the interface area (GAP_INDEX) as calculated with
the SURFNET package (Laskowski, 1995). NSC, a surface complimentarity
score and NIP, an interface packing score (Mitra and Pal, 2010), were also
calculated. BIOSIMZ_KON is the predicted log(kon), calculated using
BioSimz (Li, 2011). STC_CP is the change in specific heat upon binding, as
calculated with STC.

7.2.5 Unbound-Bound Descriptors

As well as the loop entropy changes described above, a number of
other parameters were used to quantify the effects of conforma-
tional changes upon binding. Only residues which appear in both
the bound and unbound structures are included, in order to make
the two conformational states comparible. One of these terms is
the change in internal energy (INTERNAL_UB), as calculated with
the CHARMM19 force field. The remaining terms, which are used
as described above, are followed by the suffix _UB and are calculated as
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EUB→B = (ER,b−ER,u)+ (EL,b−EL,u): ROS_FA_ATR_UB, ROS_FA_REP_UB,
LK_SOLV_UB, ROS_FA_PP_UB, ROS_CG_VDW_UB, ROS_CG_PP_UB,
ROS_CG_ENV_UB, ROS_CG_BETA_UB, ROS_HBOND_UB,
ROS_TOTAL_UB, DFIRE_UB, DDFIRE_UB, OPUS_CA_UB,
OPUS_PSP_UB, RF_PP_UB, GEOMETRIC_UB, FOUR_BODY_UB,
GEN_4_BODY_UB, SHORT_RANGE_UB, QA_PP_UB, QM_PP_UB,
QP_PP_UB, HLPL_PP_UB, SKOB_PP_UB, SKOA_PP_UB, SKJG_PP_UB,
MJPL_PP_UB, MJ3H_PP_UB, MJ2H_PP_UB, TS_PP_UB, BT_PP_UB,
BFKV_PP_UB, TD_PP_UB, TEL_PP_UB, TES_PP_UB, RO_PP_UB,
MS_PP_UB, MJ1_PP_UB, MJ3_PP_UB, GKS_PP_UB, VD_PP_UB,
MSBM_PP_UB, ACE19_HYDR_UB, ACE19_SELF_UB, ACE19_SCRE_UB,
ACE19_COUL_UB, ACE19_SOLV_UB, ACE19_INTE_UB and SASA_UB.

7.2.6 Ensemble Descriptors

Ensembles of structures were generated using CONCOORD 2.1 (de Groot
et al., 1997) with dynamic tolerence setting. For each case, 100 struc-
tures were generated for the ligand, the receptor and the bound
complex. Many of the above parameters were calculated on the en-
sembles, and their mean value reported with the suffix _ENS for
parameters relating to the interaction and _EBU for parameters re-
lating to unbound to bound conformational change: STC_CP_ENS,
STC_H_ENS, STC_S_ENS, STC_S_SOL_ENS, STC_S_SC_ENS,
STC_G_ENS, ROS_FA_ATR_ENS, ROS_FA_REP_ENS, LK_SOLV_ENS,
ROS_FA_PP_ENS, ROS_CG_VDW_ENS, ROS_CG_PP_ENS,
ROS_CG_ENV_ENS, ROS_CG_BETA_ENS, ROS_HBOND_ENS,
ROS_TOTAL_ENS, NIP_ENS, NSC_ENS, DELISI_SOLV_ENS,
H_BOND_ENS, PI_PI_ENS, CATION_PI_ENS, ALIPHATIC_ENS,
DFIRE_ENS, DDFIRE_ENS, OPUS_CA_ENS, OPUS_PSP_ENS,
RF_PP_ENS, GEOMETRIC_ENS, ROS_FA_ATR_EBU, ROS_FA_REP_EBU,
LK_SOLV_EBU, ROS_FA_PP_EBU, ROS_CG_VDW_EBU,
ROS_CG_PP_EBU, ROS_CG_ENV_EBU, ROS_CG_BETA_EBU,
ROS_HBOND_EBU, ROS_TOTAL_EBU, ACE19_HYDR_EBU,
ACE19_SELF_EBU, ACE19_SCRE_EBU, ACE19_COUL_EBU,
ACE19_SOLV_EBU, ACE19_INTE_EBU, SASA_EBU, INTERNAL_EBU,
GEOMETRIC_EBU, DFIRE_EBU, DDFIRE_EBU, OPUS_CA_EBU,
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OPUS_PSP_EBU and RF_PP_EBU.

7.3 Binding Free Energy Models

In collaboration with colleague Rudi Agius, the descriptors described in
the previous section were used to train a random forest regression ma-
chine learner (RF), a multivariate adaptive regression with splines function
(MARS), a radial basis function interpolation model (RBF), and an M5’ de-
cision tree regression model (M5’). These were all implimented in MatLab.
The efficacy of these learners was tested with leave-one-out cross-validation
as an outer wrapper, and were shown to perform well compared to the
other binding prediction methods described in section 1.4.4.8. The predic-
tions were then combined into a consensus model, in which the final value
is taken as the mean of the four models.

7.3.1 Methods

A wide variety of machine learning tools are available, and their perform-
ance is highly dependent on the task at hand. It was our intention not to
pick methods at random, and use them as black boxes, but to select methods
which are particularly suited to the problem. The four methods were chosen
on the basis of the following considerations.

1. All the chosen methods allow their internal mechanisms to be scrutin-
ised. This was deemed to be important so that the physical plausibility
of the model could be evaluated, and to ascertain the relative contri-
bution of the various factors at play.

2. Methods were chosen that had different philosophical rhetoric. The RF,
for instance, is derived from the consensus of many low-accuracy mod-
els. The MARS method allows the exploitation of parameters which
have predictive value only over certain ranges. The M5’ method works
by splitting hairs, and finding local differences between quantitatively
similar examples, whilst the RBF method exploits global features of
the training set, and the predicted affinity of any given case is largely
determined by examples further away in feature space. These differ-
ent approaches were considered likely to capture different aspects of
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the descriptor set, and hence more likely to work synergistically when
combined together into a consensus model.

3. None of the chosen methods requires fine tuning, and they are robust to
the model parameters. This property is valuable, as it eliminates biases
which could originate from tweaking parameters until the desired
result is obtained. Default parameters were used in all cases, and were
not optimised.

4. As we have more features than examples, overfitting is a serious con-
cern. The methods chosen account for this problem either explicitly
or implicitly. Random Forests do not overfit as more trees are added,
rather the test error converges to a limiting value. The RF is able to
achieve low bias predictions through trees built from different subsets
of the data and descriptors, and low variance through averaging the
output of all trees for the output, and the cancellation of errors. The
M5’ and MARS methods both have backward elimination routines in
them to eliminate redundant features. In the RBF method, each fea-
ture is equally weighted and it is the significance of the examples in
the training set which are determined. This is particularly suited to
situations in which there are more features than examples, as is the
case here.

5. As many of the features are correlated with each other, we chose meth-
ods which did not allow the exploitation of colinearity. In linear re-
gression, for instance, two highly correlated features can be assigned
large positive and negative coefficients, accentuating their differences
and allowing overfitting. None of the methods used are susceptible to
this effect.

7.3.1.1 Random Forest

The RF algorithm, as described by Breiman (2001), was used as its MatLab
implementation (Liaw and Wiener, 2002). Briefly, take N to be the number
of complexes in the training set. Bootstrap sampling is used to generate 750
lists of binding affinities, each of length N; i.e. each member of each list is
chosen at random such that for each list, some affinities are duplicated and
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others are omitted. These 750 lists are then used as a basis for constructing
750 decision trees. For each node of each tree, 20 molecular descriptors are
chosen at random and of these, the descriptor which is best able to split
the data by affinity is chosen. The tree is grown until each affinity on its
list corresponds to a leaf. Once the forest is constructed, it can be used for
prediction; the features are fed into each decision tree, and the predicted
binding affinity is the mean output of all trees.

7.3.1.2 Multivariate Adaptive Regression Splines

A version of the MARS regression algorithm was used for model building
(Friedman, 1991). In this method, the binding free energy function consists
of a linear combination of basis functions. These basis functions can take one
of three forms: (1) A constant; this is only included once, and is the mean of
the training affinities. (2) A hinge function; one linear term, consisting of a
feature multiplied by a coefficient, is used up until a hinge point. Beyond
this point a second linear term is used. The two terms are equal at the hinge
point. (3) An interaction function; the product of two hinge terms.

Initially, during model construction, the basis set consists of only the
constant. Additional basis functions are then added one by one by greedy
forward selection. The pair of features for each additional basis function
consists of either the constant or a feature which has already been used, and
a new feature. A brute force search selects the feature pair, hinge point and
coefficients which maximally reduce the square residuals of the regression.
The algorithm terminates either when 21 basis functions have been selected,
or when the addition of a new basis function reduces the square residuals
by less than 0.0001 kcal2 mol−2. As this initial construction often produces
a model which overfits the data, a feature elimination routine is used. This
backward greedy algorithm removes descriptors based on cross-validation.
The elimination routine can remove whole basis functions, but it can also
remove just one of the linear terms, thus leaving features which are used
only over certain ranges. In the version used here, hinge points are replaced
with hinge regions, within which there is a smooth interpolation between
the two terms.
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7.3.1.3 Radial Basis Function Interpolation

The RBF method was also used to construct an empirical free energy function
(Hardy, 1971). Before the function is parametrised, the values for each
descriptor are normalised in the range [0,1]. In this method, the energy
function consists of the mean affinity of the training set, µ, plus a linear
combination of multiquadratic basis functions, φ(d) =

√
d2 + 1, summed

across the n cases in the training set.

F(x) = µ+
n∑

i=1

aiφ(||x− xi||) (7.1)

where x is the descriptor vector. The a regression coefficients are de-
termined by multiple regression. In this intriguing model, all features are
equally weighted, and it is the weights of the cases in the training set which
are optimised.

7.3.1.4 M5’ Decision Tree

The M5’ decision tree regression, as explained in Wang and Witten (1997),
was also applied. Briefly, a decision tree is constructed in which the criteria at
each node is selected such that the standard deviations within the branches
are minimised. The tree is fully grown until each leaf corresponds to a
single affinity. For each internal node, a linear regression model is built
using all molecular descriptors. The RMS error of each model is weighted
by the number of features used in the regression. Subsequently, a greedy
backward selection algorithm is applied to each regression model until the
weighted error is minimised. The tree is then pruned back from the leaves
for as long as the weighted error of each nodes regression model decreases.
When used for prediction, the tree is descended according to the splitting
criteria at each node. The tree is then ascended back to the root, and the
value predicted from the regression model of the leaf is combined with the
value predicted from each internal node as it is crossed, using the method
of Quinlan (1992). In the implementation used here, 16 M5’ decision trees
are constructed, in four sets of four. Each tree recieves a random subset
of features to work with, in such a way that each set of four trees contains
every feature and each feature is used by only one tree. When predicting,
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the mean output of the 16 trees is returned.

7.3.1.5 Data Sets

All 137 complexes for which the molecular descriptors were calculated were
used in this investigation. We also investigate performance on the subsets of
examples outlined in section 6.2.4; the validated set, the non-validated set,
the flexible set and the rigid set. Also considered was the set of complexes
that overlap with the data set tested by Kastritis and Bonvin (2010), the
predictions for which were generously supplied to us by the authors.

7.3.1.6 Model Evaluation

The ability for the models to predict binding affinity was determined by
calculating the Pearson’s product-moment correlation coefficient between
the leave-one-out cross-validated predictions and the experimental data.
When comparing models, a Fisher r to z transformation of the correlation
coefficients is performed to yield the test statistic.
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Figure 7.1: Scatter plots of leave-one-out cross-validated results for the four regression
models. (A) MARS, rall=0.65, rrig=0.82, r f lex=0.45. (B) RBF, rall=0.75, rrig=0.87, r f lex=0.54.
(C) RF, rall=0.68, rrig=0.89, r f lex=0.46. (D) M5’, rall=0.69, rrig=0.84, r f lex=0.48.
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Figure 7.2: The performance of the empirical energy functions and the consensus model,
tested on various data sets, as measured by correlation coefficient. Leave-one-out cross-
validation is used where applicable to ensure no over-fitting. (A) The validated test set.
(B) The affinity benchmark. (C) The overlap between the data set of Kastritis and Bonvin
(2010) and the validated set. (D) The overlap between the data set of Kastritis and Bonvin
(2010) and the affinity benchmark.
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Figure 7.3: Scatter plots of leave-one-out cross-validated results for the consensus model,
rall=0.76, rrig=0.91, r f lex=0.54.

7.3.2 Results

7.3.2.1 All Features

The four regression models were trained on the validated data set. Scatter
plots for leave-one-out cross-validation are shown in Figure 7.1. Although
the RBF method performed the best, all methods perform well, with cor-
relations of between 0.65 and 0.75. For comparison, binding affinities were
calculated using DComplex (Liu et al., 2004) and the PMF determined by Su
et al. (2009). For DComplex, the results were rall=0.44, rrig=0.67, r f lex=0.41.
For the PMF, correlations were found to be rall=0.51, rrig=0.85, r f lex=0.35.

The correlations between the predictions were evaluated, to see if the
different models were yielding different values. Whilst the predictions of
the RF and M5’ methods were correlated with the RBF method (r=0.87
and r=0.86 respectively), and highly correlated with each other (r=0.95),
the MARS model was less correlated with the RBF, RF and M5’ methods
(r=0.65 , r=0.69 and r=0.68 respectively). This suggested that the models
may be detecting different aspects of the feature set, and a consensus model
was built in which the predicted affinity was the mean output of the four
models. The performance of the consensus model was comparable to that
of RBF of its own, although it does perform slightly better when only the
rigid complexes are taken into consideration (rrig=0.91). The scatter plot
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Figure 7.4: Scatter plots for the consensus model for all complexes in the affinity bench-
mark (rall=0.53, rrig=0.72, r f lex=0.32). This is the unison of the predictions for the non-
validated set, where the model is trained on the whole validated set, and of the leave-
one-out cross-validated predictions for the validated set.

for this model is shown in Figure 7.3. The consensus model performs
significantly better than both DComplex (z=2.27, p=0.003) and the other
PMF (z=2.25, p=0.012), as shown in Figure 7.2A. The predicted binding
affinity for the rigid cases were found to have a much higher correlation
with the experimental data than the flexible (rrig=0.91, r f lex=0.54, z=3.3,
p=0.0005).

When applied to the non-validated set, the predictions correlated
with the experimental data with r=0.30, compared to r=0.21 for the
DComplex potential (see Figure 7.2B). This drop in correlation highlights
the importance of using high quality experimental data. When applied
to the whole data set, as shown in Figure 7.4, the correlation of 0.53 was
significantly higher than for DComplex (r=0.33, z=2.05, p=0.022). For
this larger test set, the consensus model performed noticeably better than
the MARS, RBF, RF and M5’ models on their own (r=0.45, r=0.42, r=0.47
and r=0.46 respectively). The fact that the bottom right corner of Figure
7.4 is considerably less populated than the top left demonstrates that the
model is overestimating the strength of the interaction more frequently
than underestimating it. Coupled with the fact that this effect is most
prevalent for the flexible cases, this suggests that the deficiency lies in the
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modelling of configurational entropy changes and/or enthalpy changes
associated with conformational rearrangement. As a further test of the
consensus model, the performance of the leave-one-out cross-validated
predictions was compared to the performance of AffinityScore (Audie and
Scarlata, 2007) and the PyDock scoring function (Cheng et al., 2007a) tested
on the 14 complexes which overlap the validated set and the complexes
tested by Kastritis and Bonvin (2010) (Figure 7.2C), and the 37 complexes
which overlap with the whole data set (Figure 7.2D). The consensus score
performed better than all other methods tested on both sets.
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Figure 7.5: MARS feature contribution across the affinity range for the 10 most important
features. The contribution, shown on the y-axis, is normalised such that a negative value
signifies disruption and vice versa, relative to the mean. The parameter range, on the
x-axis, is normalised between 0.0 and 1.0.
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7.3.2.2 Model Details

All four of the models allow their internal workings to be scrutinised. For
instance, for each complex in the RF model, the various features which
are used as the decision trees are navigated can be ascertained. Upon
doing this, it was shown that a descriptor relating to the unbound-bound
transition was one of the 5 most frequently used features for 16 of the 29
flexible cases (55.2%), as opposed to just 3 of the 28 rigid complexes (10.7%),
demonstrating that the method was selecting the correct features for the
cases in hand.

The MARS method allows different features to make different contribu-
tions to the binding affinity depending on their value, with the importance
of each feature varying across the range in which it is used. The degree of
contribution across the parameter range for the 10 most important features
in shown in figure 7.5.

The significance profile of S_VIB, the vibrational entropy change, is in-
teresting. The method used is approximate and noisy (Carrington and Man-
cera, 2004). The MARS algorithm chooses to ignore this feature when it is
low, in the lowest 10% of the range of the training set, but its contribution
to the binding free energy increases approximately linearly as its magnitude
increases beyond this point. Presumably, this signifies that the algorithm
uses this feature when the benefit of including it outweighs the detrimental
effect of introducing noise into the calculation.

The change in electrostatic solvation free energy (ACE19_SOLV), is
closely related to the change in electrostatic self energy, the feature which
was of most significance in CAPRI round 21 (see section 5.3.2.3). The influ-
ence of this term is approximately linear over most of its range. Interestingly,
the contribution at low values is constant; most of this region contains only
a single outlier, 1ZM4. Similar plots, linear over most the range, and some-
times with a constant, or neglection, at extreme values, are seen for most
the other descriptors. The plot for the SKOA pair potential is difficult to
rationalise, as is the exact form the interface RMSD descriptor, which is in-
volved in two hinge functions. However, for the latter, it does makes sense
that the degree of conformational change makes little contribution for the
rigid cases, and that increasing flexibility corresponds to destabilisation of
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Figure 7.6: Correlation coefficient when the consensus model is trained with feature
subsets. The UB features are those derived using the unbound structure. The ENS
features are those calculated using the CONCOORD ensembles. The EBU features are
those which are calculated on both the ensembles and the unbound structures. The BASIC
feature are all the features that are neither UB, ENS, nor EBU.

the final complex; most of the data set is concentrated in the leftmost 20% of
the plot.

7.3.2.3 Feature Subsets

The consensus model was retrained four times with different feature sub-
sets (see Figure 7.6). The consensus model still outperforms the PMF and
DComplex methods when the information relating to the unbound-bound
conformational change is omitted, and thus the superiority of the current
approach cannot be explain solely by the inclusion of this data. As expected,
the removal of all details pertaining to the unbound-bound transition had
no effect on the correlation of the rigid cases; it remained around 0.9 for all
the sets. Surprisingly, however, the features relating to the unbound-bound
transition only aided the flexible cases noticeably when they were calculated
on the structural ensembles; adding these features resulted in a reduction of
RMS error of 2.1 kcal mol−1 for the flexible cases, compared to only 0.2 kcal
mol−1 for the rigid.

One of the most interesting results is that for the interaction between MK2
and p36 MAPK (PDBid 2OZA). Upon binding MK2 undergoes a significant
disorder-order transition at both the C-terminus and a large loop (Figure
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Figure 7.7: The interaction between p38 MAPK (silver) and MK2 (blue). The unbound
crystal strucutre of MK2 is shown superimposed (red), revealing the two large regions
which undergo a disorder to order transition upon binding.
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7.7), by far the largest disorder-order transition in the data set, and has a
very large surface area. For these reasons, it is usually omitted from binding
free energy calculations (Pons and Fernandez-Recio, 2011; Bai et al., 2011).
Indeed, the inability to account for the loss of configurational entropy when
the descriptors pertaining to the unbound-bound transition were omitted
meant that the affinity was greatly overestimated (17.4 kcal mol−1 compared
to the experimental value of 11.7 kcal mol−1). However, when these data
were included, the descriptors for the entropy change due to disorder to
order transitions were picked up, and could be correctly extrapolated to an
affinity much closer to the experimental (10.9 kcal mol−1).

7.3.3 Discussion

Accurate energy functions are important for a wide variety of purposes, from
protein engineering and interaction design to designing peptide inhibitors
and docking. Their construction is predicated upon ascertaining the factors
that influence binding and their relative importance. Machine learning tech-
niques were used to combine a large set of molecular descriptors covering
a wide variety of physical features describing the affinity benchmark, for
the prediction of binding affinities. Leave-one-out cross-validation shows
that this method performs better than other empirical free energy functions.
In particular, the correlation of the prediction of rigid cases was around
0.9, signifying that their affinity can be predicted within experimental lim-
itations and the inherent approximations used in descriptor calculation.
Whilst the inclusion of a number of features relating to the unbound-bound
transition aided the prediction of affinity for interactions involving flexible
proteins when descriptors were averaged over structural ensembles, this
group of complexes still poses significant challenges. Evidently, either ener-
getic factors associated with conformational change are not included in the
descriptor set, or these were not being detected in the models.

This work also demonstrates the utility of approximate methods of calcu-
lating entropy changes, such as using an elastic network model to calculate
vibrational entropy changes (Carrington and Mancera, 2004) and the worm-
like-chain and Gaussian polymer models of the conformational entropy of
disordered loops (Zhou, 2004). These approximation techniques will play an
increasingly important role now that it has become clear that proteins with
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high flexibility are significantly under-represented amongst those for which
structural details are known at atomic resolution (Marsh and Teichmann,
2011). A manuscript outlining this work is in preparation.

7.4 Kinetic Rate Functions

To date, only one group have attempted to predict dissociation rate con-
stants from structure (Bai et al., 2011). However, an incongruous feature set,
and the fact that feature selection, training and validation were performed
on the same set of complexes, suggest that the reported correlations highly
overstimate the predictive value of their model. Additionally, spurious
parameter values render their KD and ko f f models unreproducible. Using
their log10 kon function, for which they report a correlation of 0.73, results
in a correlation of 0.10 when applied to the 44 complexes in the affinity
benchmark for which kinetic data is available.

The approach taken by us was to use the descriptor set outlined in
section 7.2 for the 44 complexes which had kinetic data, or a subset of these
complexes. For these, feature selection and linear regression was used to
derive a series of descriptor subsets of increasing cardinality for both kon

and ko f f . From these sets of feature sets, a pair was chosen on the basis
of their combined ability to predict binding affinity on a separate set of
complexes, by using equation 1.62 which equates ∆G with a function of kon

and ko f f . Finally, the selected kon and ko f f models were used to predict the
binding affinities for a third set of complexes, none of which were used in
the previous stages. As feature selection, model selection and model testing
are applied to separate subsets, the final affinity estimate is believed to be an
accurate representation of the predictive power of the kon and ko f f models
when combined for affinity prediction. This work was implemented in
Python, using the rpy package.

This approach can be seen not only as the derivation of two kinetic func-
tions, but as a divide-and-conquer approach to affinity prediction; the bind-
ing free energy problem is decomposed into two kinetics prediction prob-
lems, which are solved independently and then combined. The procedure
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outlined here was also repeated by splitting the affinity prediction problem
into enthalpy and entropy prediction problems, using experimental data
derived from isothermal titration calorimetry (results not shown). How-
ever, experimental entropy and enthalpy data could only be gathered for 28
complexes, which was insufficient for the generation and selection of a good
model.

7.4.1 Methods

7.4.1.1 Feature Selection

The feature selection and regression routine used was identical to that out-
lined in section 5.3.2.2, only with a population size of 20, up to 10 speculative
rounds and 5-fold cross-validation as the internal estimator of predictive
value. The regression model was not used to predict kon and ko f f directly,
but their base-10 logarithm.

7.4.1.2 Model Selection

Model selection was performed using a type of early stopping. Early
stopping is a technique used with feature selection in order to determine
when to stop adding features so as to minimise overfitting (see Figure 7.8A).
The data is split into a training and a test set. Feature selection is performed
with the training set, and the performance on the test set is evaluated each
time a new feature is added. Initially, the performance of both the training
and the test set decrease as features are added. However, as more features
are added, the error of the training data continues to decrease whilst the
error of the test set starts to increase, due to the model being overfit to the
training data. The feature set which performs best on the test data is selected.

Due to only a limited number of complexes available with kinetic data,
splitting it into test and training data was undesirable. Hence, a variation
of early stopping was used for model selection, in which the feature sets
for the x-axis and y-axis correspond to the models for kon and ko f f . For
every pair of models, the results are combined using equation 1.62 to predict
the binding affinity. Thus, the model selection set can consist of complexes
for which kinetic data is not available. The performance measure used for
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Figure 7.8: (A) A fictitious early stopping curve for model selection. Features are added
by a greedy algorithm and trained on a training set. The model which corresponds to
the best performance on the test set is selected. (B) An early stopping surface. A pair of
feature sets are chosen, one for kon and one for ko f f . This pair is the one which produces
the best performance when combined to predict the affinity of the test set, in this case two
features are selected for kon and two for ko f f . The curve shown corresponds to scheme 2
(see Figure 7.9).
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Figure 7.9: Venn Diagrams showing the four different combinations of feature selection,
model selection and validation sets. The rectangle corresponds to all 137 complexes in
the affinity benchmark. The circle on the left corresponds to the set of 44 complexes for
which kinetic data is available. The circle on the right corresponds to the 57 complexes
in the validated set (see section 7.3.1.5). The intersection of these two sets consists of 26
interactions.

model selection is the RMS error. An early stopping surface is shown in
Figure 7.8B.

7.4.1.3 Subset Combinations

Although the feature selection set must be trained on the kinetic data, it
wasn’t clear whether to use all the data for which kinetic details were known,
or just those in the validated set. Further, it wasn’t clear how to separate the
data for training and validation. To test the trade off between the number of
complexes used for feature selection and the quality of that data, and how
to split the data which isn’t used for feature selection, four different schemes
were devised as shown in Figure 7.9.

7.4.2 Results

Feature selection, model selection and validation were performed. The
results are summarised in Table 7.1. Scheme 1 shows that empirical
kinetic functions trained on the kinetic data in the validated set, with two
descriptors for the kon model and five for the ko f f , can be combined and
predict the affinities of the remainder of the validated set with a correlation
of 0.69, considerably higher than both PMFs in Figure 7.2A. However, it
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Table 7.1: Results for feature selection, model selection and validation. The number
of features for the kon and ko f f models is shown, alongside their leave-one-out cross-
validation correlations and RMSE. The RMSE and correlation of the ∆G values used for
selecting these models is also shown, as are the those when applied to the validation set.
RMSEs are accordingly reported in either kcal mol−1 or as dimensionless numbers.

log10 kon log10 ko f f ∆Gsel ∆Gval
Scheme # Corr. RMSE # Corr. RMSE RMSE Corr. RMSE Corr.

1 2 0.70 0.89 5 0.79 1.17 2.45 0.69 3.59 0.09
2 2 0.70 0.89 2 0.56 1.58 3.36 0.10 2.61 0.59
3 8 0.77 0.86 2 0.45 1.47 2.50 0.60 3.67 0.19
4 2 0.52 1.14 2 0.45 1.47 3.26 0.17 2.80 0.51

performs poorly when tested on the non-validated set. Scheme 2, in which
the non-validated complexes are used for model selection, performs badly
on this poor quality set. Despite this, the selected models, both of which
have only two terms, can be combined to predict the binding affinities
of the validation set with a correlation of 0.59, again considerably higher
than the two methods in Figure 7.2A. Scatter plots for these kon and ko f f

models are shown in Figure 7.10, along with their combined ∆G prediction.
The fact that such a simple model, with few adjustable parameters, can be
selected using poor quality data and perform well on the validated test set,
demonstrates the power of the approach taken here. Results for schemes
3 and 4, in which all the kinetic data was used for feature selection, are
similar to those for schemes 1 and 2.

In scheme 2, the two descriptors selected for the kon model are NUM_HB
and DFIRE_EBU, and the descriptors for the ko f f model are ROS_CG_BETA
and OPUS_CA_ENS. These descriptors are telling, although they must be
considered in the context of potential confounding factors. For the ko f f

model, the first is a pair potential calculated on the crystal structure of the
complex. It strongly correlates with other pair potentials in the descriptor set
(0.8-0.9). The second is also a pair potential, only averaged over the structural
ensembles. This also correlates with the other pair potentials calculated
over ensembles (0.7-0.8). It is interesting to note that, in theory, these pair
potentials should correlate with binding affinity. In principle, the binding
affinity can be exactly decomposed into a the sum of − log kon and log ko f f ,
and these pair potentials appear to be capturing the latter; it is reasonable to
assume that these are properties associated with the interface, accounting for
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effects such as tight packing, which prevent the complex from dissociating
once formed. The kon descriptors, however, are more telling. The first is the
number of interfacial hydrogen bonds. H-bonds are largely electrostatic in
nature, and indeed this feature correlated with the continuum electrostatic
models in the descriptor set (0.5-0.6). Electrostatics has long been known
to be important for association due to its long range of action (Zacharias,
2010b). The second descriptor is the most interesting. It is the average energy
difference between the structural ensembles of the complex, excluding the
intermolecular term, and the unbound proteins, as calculated with DFIRE.
It correlates well with the other unbound-bound pair potential energies
calculated over the ensembles (up to 0.86). This provides strong support
for the conformational sorting and population shift mechanism (see section
1.4.4.5). The rate of association is proportional to the concentration of the
binding partners, and can be factorised into concentration and association
rate constant (equation 1.37). The DFIRE_EBU term is the average difference
in energy between the proteins in their bound conformational state and their
unbound state, both in the absence of their binding partners. When under
thermodynamic control, the population of a state is governed by its energy
and the temperature, as quantified by the Boltzmann distribution (equations
1.47). Thus the ratio between the number of unbound proteins in the bound
conformation and the unbound conformation is the ratio of their Boltzmann
factors, exp −∆E

kBT , in which the difference in energy appears in the exponent.
Finally, the kon and ko f f models of scheme 2 were applied to the whole

affinity benchmark, to see if any patterns emerged regarding the functional
classes of the interactions. The results for this are shown in Figure 7.11. As
expected from the experimental data, the enzyme-inhibitor interactions are
the strongest. However, it is observed that receptor/accessory chain inter-
actions share a feature with the enzyme-inhibitor interactions; phenomena
related to dissociation contributes more to the binding affinity than phenom-
ena relating to association, relative to the other functional types. This is not
seen, however, for the enzyme-substrate interactions, presumably due to the
fact that were the substrate to dissociate slowly, it would act as an inhibitor.
The classes which appear to dissociate the quickest, given their affinity, are
the complexes containing G-proteins and, surprisingly, the miscillaneous
complexes. It was expected that the receptor complexes would have fast as-
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sociation kinetics, due to their general role in signal transduction, however,
this was not observed.

7.4.3 Discussion

The prediction of kinetic constants is imperative for understanding the dy-
namics of biological systems. Here we have presented a method of deriving
a‘simple empirical function for the prediction of these constants using a
divide-and-conquer approach. Combined, the kon and ko f f models can suc-
cessfully predict binding affinities with greater accuracy than the methods
outlined in section 1.4.4.8. Additionally, the features which were selected
offer insights into the mechanism of protein association, giving strong evid-
ence for the conformational shift scheme. Just like the binding affinity pre-
diction methods previously presented, the quality of the data is important
for parametrisation and validation. Should a larger amount of high qual-
ity kinetic data become available, it would become possible to add more
features without overfitting, and derive further insights into the binding
process. Further, this method can be applied to the derivation of empirical
enthalpy and entropy functions using ITC data, and as more interactions
become structurally and thermodynamically characterised, this approach
will become viable. A manuscript outlining this work is in preparation.
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Figure 7.10: The kon and ko f f models derived from scheme 2, applied to the intersection
of the validated set and the set of complexes with kinetic data. The predictions for the
combined binding affinity score, applied to the rest of the validated set, is also shown.
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Figure 7.11: The kon and ko f f models derived from scheme 2 applied to the entire
affinity benchmark. Categories are enzyme/inhibitor (EI), enzyme/substrate (ES), en-
zyme/accessory chain (ER), antibody/antigen with (A) and without (AB) the unbound
structure of the antibody, interactions with receptors (OR), G-protein (OG) and miscel-
laneous interactions. Affinity isolines are shown, running from bottom left to top right.
Thus, points in the top left correspond to high affinity complexes whilst those in the
bottom right correspond to low affinity complexes. Isolines for the kon.ko f f product are
also shown running from top left to bottom right, which signify the relative contribution
of association related and dissociation related phenomena to the overall binding affinity.
Thus, complexes in the top right corner are dominate by association forces, whilst those
near the dotted blue line in the bottom left corner have binding free energies which can
be equally attributed to association and dissociation forces.



Chapter 8

Epilogue

In this thesis, I have approached two main problems; flexible docking and
binding affinity prediction. As theoretical problems, they are interesting and
test our understanding of the fundamental physics governing biomolecular
recognition. However, it is the practical implications of their resolution
which prompts interest from both the physical and biological sciences. In
an ideal world, a molecular biologist would be able to select a protein and
quickly find a structure, either experimental or modelled, and use it to locate
and characterise binding partners. In turn, this may immediately reveal
the biological processes in which that protein is involved. Atomic details
regarding the structure of the protein and its binding partners can shed light
on its function within that process; a tight interaction with a reactive site on
an enzyme would imply inhibitory function. A more transient interaction
with a kinase, with an appropriately positioned threonine or serine, would
suggest a role in signal transduction. The possibilities for quickly obtaining
such details, without ever having to leave a desktop computer, would
hugely enrich the vast wealth of information being generated by cancer
genomics and other initiatives which flag up disease-related genes. Such a
vision for the future of biomedicine is no pipe dream; the computational
power available to each generation dwarfs that of the previous, algorithms
are becoming more sophisticated and, as more data become available,
theoretical considerations ever more nuanced. The confluence of these
forces cannot fail to provide incremental improvements in our ability to
model molecular interactions.

248
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8.1 Protein-Protein Docking

Protein-protein docking is a long-standing problem in molecular biology.
Some complexes can be modelled with reasonable accuracy by treating the
protein as rigid bodiess. However, for many interactions, such a treatment
is untenable. Attempts to model flexibility explicitly requires additional
degrees of freedom to be incorporated into the docking protocol. As low
frequency elastic network normal modes have been shown to correspond
to a wide variety of protein motions, their ability to capture the conform-
ational changes across the whole fold and at the interface was evaluated
(Chapter 2.1). Following this analysis, a protein-protein docking algorithm
called SwarmDock was developed which incorporates flexibility using nor-
mal modes in linear combination (Chapter 3). The efficient particle swarm
optimisation metaheuristic, in combination with a local search, was used
to navigate search space. When tested on bound-bound docking, its per-
formance is near perfect, although unbound-unbound docking still presents
a challenge. The algorithm was tested with three different scoring func-
tions, one of which, DComplex, could locate a complex within 5Å of the
native for around 80% of cases, although less than a third of the complexes
which did bind were ranked in the top 10 structures. The algorithm was
shown to be enhanced when information derived from rigid-body Langevin
dynamics simulations of encounter complex formation was used (Chapter
4), and it also performed competitively in the CAPRI experiment (Chapter
5). However, despite these modest successes, the algorithm requires much
work. Future developments which are expected to further improve per-
formance include the testing of other energy functions, such as statistical
pair potentials trained on interactions as opposed to protein structures (Su
et al., 2009), the inclusion of a refinement and re-ranking stage, and methods
of dealing with side-chain and/or loop flexibility. The incorporation of side-
chain flexibility can be made possible using mean-fielding or other methods
(Lindahl and Delarue, 2005). Further, conformational sampling methods for
flexible loops, which keep the bond lengths and angles within physically
plausible ranges, have been developed and could be incorporated as part of
a Monte Carlo move set or, possibly, as variables in the PSO search space
(Dinner, 2000; Betancourt, 2005; Go and Scheraga, 1970; Dodd, 1993; Vitalis
and Pappu, 2009).
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8.2 Binding Affinity Prediction

A large database which links the structures of unbound proteins and com-
plexes to experimental data on binding affinities has been constructed
(Chapter 6). From these structures, a large number of molecular descriptors
were calculated to describe the physical and geometrical properties of the in-
teractions, including some features relating to pH, conformational changes,
disorder to order transitions and descriptors calculated on structural en-
sembles. These were then combined using a number of machine learning
techniques in order to derive empirical binding free energy functions which,
after testing with leave-one-out cross-validation, have shown to outperform
previous empirical energy functions, even when the playing field is leveled
by the removal of all descriptors pertaining to the unbound-bound conform-
ational change (Chapter 7). The internal workings of these models was also
shown to shed light on the relative importance of the various descriptors.

In addition, 44 of the complexes had kinetic data available for them
in the scientific literature. A divide-and-conquer approach to binding
affinity prediction was taken, in which the association and dissociation
rate constants were first determined and then combined to derive the
dissociation constant and the binding free energy. This revealed that the
energetics of the unbound to bound conformational change was important
for association, but not dissociation, lending support to the conformational
sorting and population shift mechanism of protein binding.

Both the binding affinity prediction and the kinetic constant prediction
methods highlight the use of approximate approaches, such as using
pseudo-NMR restraints for deriving structural ensembles, and the calcu-
lation of disorder to order transitions entropy changes and vibrational
entropy changes. Although the binding affinity of rigid proteins can be
predicted with accuracy, work still needs to be done in order to account for
the energetics of conformational changes. As more data become available,
the divide-and-conquer approach shown here should be able to shed light
on the problem by partitioning the binding free energy into entropy and
enthalpy, or association energy and dissociation energy, and bringing into
clearer focus the phenomena needing to be modelled.
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8.3 Future Work

A number of projects have been undertaken as part of this thesis, and there
is much scope for further work. In particular, the SwarmDock program
should benefit significantly from being embedded within a pipeline, as
typifies the most successful docking approaches today. One possibility
is to employ a re-ranking method similar to that taken for the prediction
of binding affinity; a descriptor set can be evaluated for all the generated
structures and fed into machine learning models which either perform
binary classification or generate scores which allows re-ranking of the
structures. Between docking and re-ranking, a refinement step could be
employed in order to nudge structures closer to the native. As only 200
or so clusters are generated by SwarmDock, as opposed to thousands
of structures generated using Fourier transform methods, significant
computational time could be allocated to each structure. Monte Carlo
simulations or torsion angle dynamics could be employed for this purpose.
Finally, the inability for normal coordinate flexibility to allow side-chains
to swap rotamer, or rotate around bonds, suggests that the algorithm
could benefit from only applying normal modes to backbone motions, and
handling side chain motions with a method such as the mean field approach.

Much further work can also be made to the prediction of binding
affinities, and in the application of this approach further afield. The
descriptor set described in section 7.2 should be automated, so that they can
be easily determined and used for other purposes. These include re-ranking
of docked poses, the identification of biological interfaces from crystal inter-
faces in x-ray structures, and computational mutagenesis. Ultimately, these
applications and the selection of de novo designed complexes are related
to binding free energy calculation, and the learners employed will likely
contain mutually useful information which can be transferred from one
problem to the other. Recent developments in the field machine learning,
such as hierarchical Bayesian models, are beginning to allow such transfer
of information, a development which could greatly benefit these problems.
Further, highly efficient versions of the binding affinity models could allow
an unprecedented study of interaction evolution by extensively mapping
out how binding affinity changes with sequence. Not only could ancestral
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protein sequence reconstruction methods be used to study the evolution of
interactions by determining the affinity of intermediates connecting modern
proteins that bind to ancestral proteins that do not, but it would also be
possible to map out the functionally viable paths connecting orthologs and
locate the pathways though which protein interactions can change over time.

8.4 Concluding Remarks

The normal processes of life and the misregulation of these processes in
cancer boil down to molecules influencing one another; the machinery of
morphogenesis, cell signalling and adhesion, apoptosis, DNA repair and
the cell cycle are but a few examples for which a lot is known, yet a lot
remains to be discovered. DNA and protein sequencing, along with NMR,
crystallography and other physical techniques, have acquainted us with
the molecules of life. Genetics and cellular biology have told us something
of their roles in living systems. With the information gleaned from these
disciplines and others it is possible, in principle, to put the pieces of the
puzzle together and build a network which would act as a circuit diagram
connecting the genes and molecules for any living cell, be it healthy or
cancerous, and to use that knowledge to improve the human condition
and relieve suffering. It is physics which can determine the exact nature
of the molecular interaction, and physical models will play a key role in
turning a list of parts into a model of life processes, and in the structural,
thermodynamic and kinetic annotation of interaction and transcription
networks.

We live imprisoned within our heads; all that we touch, smell, see and
hear is a reconstruction of reality based on the meagre information for
which the blind search of evolution has endowed us the ability to detect; the
light that enters our eyes, the vibrations passing our ears and the molecules
whose stochastic meanderings have lead them to our nostrils. Beyond our
perceptions lies a seemingly unfaltering external reality. This reality is the
stage within which all of our lives are played out. It is the stage in which
atoms in flux make the temporary associations which choreograph all life
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processes from the transit of sperm to the egg, to the final electrical impulse
which marks our last heartbeat. Physics is the art of making sense of this
stage, uncovering the rules which govern it, and showing how reality
extends far beyond what is immediately discernible by our senses. It is my
intent to use the knowledge of this stage, and the relationship between free
energy and molecular structure, to shed light on life and disease. I hope that
at least some of the ideas which underpinned the design of SwarmDock
will play a part in determining the role of proteins in their cellular context
and in reconstructing the circuitry of life. I hope that one day the approach
taken to binding affinity prediction, or the affinity benchmark, will play a
role in the characterisation of interactomes.



Appendix A

EEF1 Results

Performance of bound-bound docking with and without EEF1 desolvation
are shown. The lowest ligand RMSD after superimposing the bound recept-
ors (RMSD), the best ranked structure with a ligand RMSD below 5Å (Rank),
and the number of times a structure was found with ligand RMSD below
5Å (# found), are shown. For each complex and for each performance met-
ric, the better performance is highlighted in bold. A discussion of these
results appears in section 3.3.3.

Table A.1: Performance of bound-bound docking with
and without EEF1 desolvation

VDW + Elec VDW + Elec + EEF1

Complex Rank # found RMSD Rank # found RMSD

1a2k 1 17 0.11 1 14 0.19
1acb 1 2 0.59 N/A 0 7.68
1ahw 1 23 0.39 N/A 0 17.61
1ak4 1 7 0.35 1 14 0.20
1akj 1 6 0.07 N/A 0 18.47
1atn 1 2 0.85 1 10 0.41
1ay7 1 54 0.26 1 19 0.36
1b6c 1 2 0.47 N/A 0 16.80
1bj1 1 3 0.30 1 2 1.62
1buh 1 55 0.11 1 37 0.24
1bvk 1 38 0.15 12 5 0.31

Table A.1 continued on next page
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Table A.1 continued

1bvn 1 14 0.31 N/A 0 14.81
1cgi 1 3 0.47 1 4 0.62
1dfj 1 1 0.66 N/A 0 25.75
1dqj 1 29 0.32 N/A 0 15.51
1e6e N/A 0 8.62 N/A 0 6.72
1e6j 1 15 0.09 1 37 0.11
1e96 1 29 0.16 1 54 0.24
1eer 1 1 0.20 N/A 0 23.99

1ewy 116 12 1.58 N/A 0 15.05
1f34 1 21 0.08 1 2 1.19
1f51 1 9 0.29 1 2 0.86
1fc2 5 18 0.22 2 17 0.31
1fq1 1 24 0.75 1 6 0.79
1fqj 1 25 0.31 1 1 0.48
1fsk 1 15 0.17 1 3 0.54
1gcq 1 26 0.19 1 18 0.29
1ghq 169 5 0.62 66 8 0.22
1gp2 1 13 0.24 1 4 0.32
1grn 1 9 0.14 1 1 0.27
1h1v 1 12 0.17 1 10 0.43
1he1 1 21 0.12 1 10 0.06
1he8 1 18 0.13 1 12 0.32
1i2m 1 31 0.21 1 4 0.69
1i4d 1 25 0.33 1 40 0.52
1i9r 1 30 0.26 1 14 0.38
1ib1 1 3 0.15 1 1 0.47
1ibr 1 1 0.45 N/A 0 24.52
1ijk 1 26 0.25 1 16 0.59
1jps 1 25 0.23 1 4 1.03
1k4c 1 40 0.07 1 22 0.22
1k5d 1 9 0.24 N/A 0 20.86
1kac 1 61 0.13 1 21 0.22
1kkl 32 20 0.18 121 4 0.84

Table A.1 continued on next page
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Table A.1 continued

1klu 1 23 0.11 1 22 0.31
1ktz 1 37 0.07 1 23 0.15
1kxp 1 3 0.29 1 1 0.33
1kxq 12 6 2.93 94 3 3.57
1m10 1 30 0.40 1 5 0.49
1mah 1 13 0.32 1 8 0.41
1ml0 1 35 0.05 1 20 0.11
1mlc 1 25 0.33 2 27 0.45
1qa9 6 48 0.69 N/A 0 18.72
1qfw 1 18 0.21 31 9 0.87
1rlb 15 6 0.34 165 2 1.22

1tmq 1 2 0.11 N/A 0 19.22
1udi 1 29 0.22 1 48 0.25
1vfb 1 46 0.21 1 27 0.28
1wej 1 51 0.21 1 19 0.35
1wq1 1 6 0.33 N/A 0 13.53
2btf 1 34 0.12 1 3 0.59

2hmi N/A 0 23.12 53 3 1.09
2mta 27 27 0.22 1 43 0.34
2pcc 218 8 0.56 N/A 0 16.53
2sic 1 3 0.38 N/A 0 8.11
2sni 1 4 0.27 1 1 0.70
2vis 1 6 0.19 1 8 0.28
7cei 1 34 0.19 5 8 0.44



Appendix B

Rigid-Body Unbound-Unbound
Results

The performance of rigid-body unbound-unbound docking using the elec-
trostatics and Van der Waals energy function, clustering at 3.5Å resolution,
is shown. All structures in the benchmark v2.0 are docked (Mintseris et al.,
2005). A number of performance metrics are evaluated. For the lowest
IRMSD first cluster member, the cluster rank (Rank), the cluster size (#
found), interface RMSD (IRMSD), ligand RMSD (LRMSD), fraction of native
contacts (FNat), fraction of non-native contacts (FNNat), and whether this
is the largest cluster (bCluster) are shown. Also, the best IRMSD (bIRMSD),
LRMSD (bLRMSD), FNat (bFNat) and FNNat (bFNNat) found, with the
their corresponding cluster rank and size in parentheses, are reported, as is
the best ranked high, medium and acceptable solution (bRank). All metrics
are evaluated per the CAPRI standards (see section 1.5.10 or Mendez et al.
(2003)).
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Table B.1 continued from previous page
Complex Rank # found bCluster IRMSD LRMSD FNat FNNat bIRMSD bLRMSD bFNat bFNNat bRank

1TMQ 83 1 no 3.19 8.27 0.17 0.64 3.19(83/1) 3.19(83/1) 0.17(83/1) 0.64(83/1) -/-/83
1UDI 179 1 no 7.27 17.55 0.00 1.00 7.27(179/1) 8.59(35/1) 0.03(35/1) 0.94(35/1) -/-/-
1VFB 150 1 no 1.33 2.57 0.55 0.04 1.29(98/4) 1.29(98/4) 0.57(98/4) 0.04(98/4) -/98/98
1WEJ 115 2 no 4.85 10.57 0.05 0.90 4.85(115/1) 6.57(9/4) 0.21(132/1) 0.73(132/1) -/-/-
1WQ1 31 6 yes 2.97 6.46 0.20 0.38 2.79(31/6) 2.79(31/6) 0.20(31/6) 0.37(31/6) -/-/31
2BTF 131 1 no 6.72 18.06 0.02 0.96 6.72(131/1) 6.93(4/3) 0.08(172/1) 0.79(172/1) -/-/-
2HMI 146 1 no 8.64 36.37 0.00 1.00 8.64(146/1) 9.79(4/1) 0.03(4/1) 0.98(4/1) -/-/-
2JEL 79 1 no 4.55 17.09 0.09 0.79 4.55(79/1) 8.38(6/2) 0.11(11/1) 0.79(79/1) -/-/-

2MTA 38 3 no 4.65 14.11 0.17 0.77 4.53(38/3) 11.07(5/4) 0.17(38/3) 0.77(38/3) -/-/-
2PCC 37 4 no 3.79 8.16 0.21 0.76 3.77(37/4) 3.77(37/4) 0.21(37/4) 0.75(37/4) -/-/37
2QFW 109 3 no 1.33 3.48 0.63 0.17 1.29(109/3) 1.29(109/3) 0.63(109/3) 0.11(109/3) -/109/109
2SIC 60 1 no 6.14 22.60 0.01 0.96 6.14(60/1) 6.47(30/1) 0.03(8/2) 0.93(134/1) -/-/-
2SNI 49 1 no 4.49 15.05 0.21 0.33 4.49(49/1) 8.70(1/5) 0.21(49/1) 0.33(49/1) -/-/-
2VIS 129 1 no 3.16 16.11 0.18 0.76 3.16(129/1) 3.16(129/1) 0.18(129/1) 0.76(129/1) -/-/129
7CEI 21 1 no 1.38 3.49 0.50 0.13 1.38(21/1) 1.62(5/22) 0.50(5/22) 0.07(7/1) -/5/5



Appendix C

Flexible Unbound-Unbound
Results

The performance of flexible unbound-unbound docking using the electro-
statics and Van der Waals energy function, clustering at 3.5Å resolution,
is shown. The five lowest frequency non-trivial normal modes were used
in both the receptor and ligand. All structures in the benchmark v2.0 are
docked (Mintseris et al., 2005). A number of performance metrics are eval-
uated. For the lowest IRMSD first cluster member, the cluster rank (Rank),
the cluster size (# found), interface RMSD (IRMSD), ligand RMSD (LRMSD),
fraction of native contacts (FNat), fraction of non-native contacts (FNNat),
and whether this is the largest cluster (bCluster) are shown. Also, the best
IRMSD (bIRMSD), LRMSD (bLRMSD), FNat (bFNat) and FNNat (bFNNat)
found, with the their corresponding cluster rank and size in parentheses,
are reported, as is the best ranked high, medium and acceptable solution
(bRank). All metrics are evaluated per the CAPRI standards (see section
1.5.10 or Mendez et al. (2003)).
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Table C.1 continued from previous page
Complex Rank # found bCluster IRMSD LRMSD FNat FNNat bIRMSD bLRMSD bFNat bFNNat bRank

1TMQ 72 3 no 2.59 6.29 0.21 0.57 2.59(72/3) 2.59(72/3) 0.21(72/3) 0.57(72/3) -/-/72
1UDI 85 2 no 5.77 13.38 0.13 0.69 5.47(85/2) 9.09(50/1) 0.16(85/2) 0.65(85/2) -/-/-
1VFB 118 1 no 1.40 4.23 0.57 0.04 1.40(118/1) 1.40(118/1) 0.57(118/1) 0.04(118/1) -/118/118
1WEJ 120 1 no 2.75 5.44 0.40 0.32 2.75(120/1) 2.75(120/1) 0.40(120/1) 0.32(120/1) -/-/120
1WQ1 14 1 no 2.92 4.98 0.21 0.41 2.92(14/1) 2.92(14/1) 0.21(14/1) 0.41(14/1) -/-/14
2BTF 95 1 no 3.62 5.76 0.15 0.70 3.62(95/1) 3.62(95/1) 0.15(95/1) 0.70(95/1) -/-/95
2HMI 217 1 no 4.72 7.84 0.18 0.70 4.72(217/1) 4.72(217/1) 0.18(217/1) 0.70(217/1) -/-/217
2JEL 184 1 no 4.36 15.40 0.18 0.58 4.36(184/1) 5.76(41/3) 0.18(184/1) 0.58(184/1) -/-/-

2MTA 21 1 no 4.95 15.55 0.11 0.86 4.95(21/1) 5.68(132/1) 0.11(21/1) 0.86(21/1) -/-/-
2PCC 49 2 no 4.01 8.89 0.21 0.76 3.71(49/2) 3.71(49/2) 0.21(49/2) 0.76(49/2) -/-/49
2QFW 152 1 no 1.27 2.27 0.62 0.14 1.27(152/1) 1.27(152/1) 0.62(152/1) 0.14(152/1) -/152/152
2SIC 41 2 no 3.94 20.52 0.13 0.74 3.94(41/2) 12.26(1/1) 0.13(41/2) 0.74(41/2) -/-/41
2SNI 180 1 no 2.80 6.59 0.24 0.41 2.80(180/1) 5.17(23/3) 0.24(180/1) 0.41(180/1) -/-/180
2VIS 62 1 no 5.34 10.93 0.04 0.95 5.34(62/1) 5.34(62/1) 0.04(62/1) 0.95(62/1) -/-/-
7CEI 12 9 yes 1.68 4.07 0.54 0.22 1.31(12/9) 1.31(12/9) 0.54(12/9) 0.07(12/9) -/12/12



Appendix D

Ligand Density Scoring Schemes

A number of different scoring schemes were used rank the SwarmDock
starting positions based on the ligand density surrounding them (see section
4.3.2).

1. For each trajectory point, the score of the nearest starting point is
incremented by 1.

2. For each trajectory point, the score of the nearest 5 starting points are
incremented by 1.

3. For each trajectory point, the score of the nearest starting point is
incremented by 2. The score of the next 4 nearest starting points in
incremented by 1.

4. For each trajectory point, the score of the nearest 7 starting points are
incremented by 1.

5. For each trajectory point, the score of the nearest starting point is
incremented by 2. The score of the next 6 nearest starting points in
incremented by 1.

6. For each trajectory point, the score of the nearest starting point is
incremented by 3. The score of the next 2 nearest starting points in
incremented by 2. The score of the next 4 nearest starting points is
incremented by 1.
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7. For each trajectory point, the score of every starting point is incremen-
ted by the reciprocal of the distance between the trajectory point and
the starting point.

8. For each trajectory point, the score of every starting point is incremen-
ted by the reciprocal of the square of the distance between the trajectory
point and the starting point.

9. For each trajectory point, the score of every starting point is incremen-
ted by the reciprocal of the root of the distance between the trajectory
point and the starting point.

The following tables show the Wilcoxon rank-sum one-tailed P-values
for whether the scores of the 10 SwarmDock starting positions nearest the
binding site are significantly higher or lower than the scores of the other
starting positions, using the 9 different scoring schemes, for simulations
with (c) and without (u) external crowding proteins. Values below the 0.05
significance level are highlighted in bold.
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Table D.1: Binding region greater scoring than non-binding region
Complex c1 u1 c2 u2 c3 u3 c4 u4 c5 u5 c6 u6 c7 u7 c8 u8 c9 u9

1GRN 0.081 0.027 0.039 0.014 0.042 0.013 0.026 0.009 0.032 0.010 0.040 0.014 0.004 0.002 0.003 0.000 0.004 0.003
1HE8 0.015 0.447 0.016 0.335 0.015 0.332 0.018 0.281 0.017 0.292 0.014 0.314 0.461 0.617 0.304 0.838 0.522 0.563
1QFW 0.155 0.238 0.169 0.256 0.173 0.247 0.185 0.280 0.178 0.271 0.178 0.262 0.060 0.064 0.066 0.102 0.062 0.064
1GCQ 0.013 0.388 0.005 0.621 0.005 0.535 0.005 0.648 0.006 0.621 0.006 0.605 0.098 0.771 0.019 0.659 0.384 0.768
1AY7 0.433 0.236 0.366 0.050 0.390 0.072 0.359 0.051 0.382 0.057 0.397 0.060 0.329 0.386 0.296 0.162 0.355 0.506
1KTZ 0.082 0.001 0.050 0.000 0.053 0.000 0.066 0.001 0.066 0.001 0.062 0.001 0.149 0.086 0.147 0.021 0.151 0.112
1VFB 0.564 0.035 0.491 0.026 0.491 0.022 0.451 0.018 0.476 0.019 0.494 0.023 0.185 0.070 0.171 0.005 0.195 0.119
7CEI 0.510 0.151 0.386 0.036 0.403 0.052 0.431 0.047 0.452 0.058 0.444 0.056 0.741 0.515 0.734 0.284 0.730 0.614
1QA9 0.007 0.287 0.006 0.361 0.005 0.342 0.005 0.373 0.006 0.369 0.007 0.361 0.021 0.128 0.010 0.160 0.027 0.113
1FSK 0.020 0.091 0.047 0.029 0.041 0.027 0.035 0.020 0.034 0.019 0.031 0.019 0.020 0.018 0.029 0.042 0.016 0.015
1FQJ 0.002 0.007 0.003 0.002 0.003 0.002 0.002 0.001 0.002 0.002 0.002 0.002 0.001 0.000 0.000 0.000 0.001 0.001
1I9R 0.998 0.989 0.995 0.998 0.995 0.998 0.995 0.999 0.995 0.998 0.996 0.998 0.998 0.999 0.998 0.998 0.998 0.999

1ML0 0.065 0.343 0.041 0.221 0.045 0.216 0.050 0.161 0.050 0.196 0.051 0.219 0.028 0.038 0.019 0.059 0.033 0.036
1BUH 0.078 0.102 0.037 0.016 0.042 0.026 0.025 0.018 0.029 0.022 0.040 0.021 0.004 0.006 0.005 0.003 0.004 0.004
1NCA 0.119 0.793 0.138 0.856 0.136 0.864 0.094 0.862 0.098 0.848 0.106 0.858 0.188 0.398 0.248 0.886 0.166 0.219
1JPS 0.044 0.100 0.050 0.094 0.047 0.092 0.037 0.083 0.038 0.084 0.042 0.081 0.015 0.022 0.015 0.026 0.013 0.015

1AVX 0.814 0.213 0.842 0.372 0.842 0.298 0.831 0.356 0.849 0.344 0.852 0.348 0.842 0.787 0.868 0.591 0.847 0.834
1AHW 0.146 0.025 0.150 0.010 0.141 0.011 0.134 0.009 0.141 0.008 0.141 0.010 0.069 0.012 0.079 0.006 0.061 0.013
1EWY 0.012 0.031 0.005 0.007 0.005 0.008 0.003 0.004 0.003 0.005 0.004 0.006 0.008 0.014 0.003 0.007 0.015 0.018
1EAW 0.964 0.994 0.990 0.997 0.988 0.997 0.989 0.998 0.987 0.997 0.988 0.997 0.979 0.990 0.976 0.991 0.982 0.988
1KAC 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1PPE 0.683 0.052 0.557 0.051 0.612 0.045 0.532 0.035 0.549 0.039 0.570 0.044 0.515 0.325 0.562 0.186 0.528 0.447
1NSN 0.184 0.130 0.232 0.190 0.226 0.166 0.251 0.204 0.232 0.190 0.232 0.173 0.576 0.498 0.605 0.663 0.576 0.510
1TMQ 0.829 0.956 0.859 0.965 0.855 0.962 0.857 0.972 0.853 0.973 0.855 0.967 0.868 0.909 0.819 0.956 0.886 0.900
1HIA 0.792 0.510 0.810 0.730 0.804 0.695 0.829 0.748 0.821 0.744 0.812 0.741 0.921 0.897 0.893 0.780 0.942 0.937
1E6E 0.048 0.012 0.041 0.004 0.045 0.005 0.037 0.004 0.039 0.004 0.041 0.004 0.041 0.030 0.034 0.008 0.062 0.054
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Table D.2: Binding region lower scoring that non-binding region
Complex c1 u1 c2 u2 c3 u3 c4 u4 c5 u5 c6 u6 c7 u7 c8 u8 c9 u9

1GRN 0.920 0.973 0.961 0.986 0.959 0.987 0.975 0.991 0.969 0.990 0.961 0.987 0.997 0.998 0.997 1.000 0.996 0.997
1HE8 0.985 0.556 0.984 0.668 0.985 0.671 0.983 0.722 0.983 0.710 0.986 0.690 0.543 0.387 0.699 0.165 0.481 0.440
1QFW 0.847 0.764 0.834 0.747 0.829 0.756 0.817 0.723 0.824 0.732 0.824 0.741 0.941 0.937 0.936 0.900 0.939 0.937
1GCQ 0.988 0.617 0.995 0.384 0.995 0.469 0.995 0.356 0.995 0.384 0.994 0.400 0.904 0.232 0.982 0.344 0.621 0.235
1AY7 0.571 0.767 0.638 0.951 0.614 0.930 0.645 0.950 0.622 0.944 0.607 0.941 0.675 0.618 0.707 0.840 0.649 0.498
1KTZ 0.919 0.999 0.951 1.000 0.948 1.000 0.936 0.999 0.936 0.999 0.939 0.999 0.853 0.915 0.855 0.979 0.851 0.890
1VFB 0.440 0.966 0.513 0.975 0.513 0.978 0.553 0.982 0.527 0.981 0.509 0.977 0.817 0.931 0.831 0.996 0.807 0.883
7CEI 0.494 0.852 0.618 0.965 0.602 0.949 0.573 0.954 0.552 0.943 0.560 0.945 0.263 0.489 0.270 0.720 0.273 0.390
1QA9 0.994 0.716 0.995 0.643 0.995 0.662 0.995 0.631 0.995 0.635 0.993 0.643 0.980 0.875 0.990 0.842 0.973 0.889
1FSK 0.981 0.911 0.954 0.972 0.960 0.974 0.966 0.981 0.967 0.982 0.970 0.982 0.980 0.983 0.972 0.959 0.985 0.986
1FQJ 0.998 0.993 0.997 0.998 0.998 0.998 0.998 0.999 0.998 0.999 0.998 0.998 1.000 1.000 1.000 1.000 0.999 0.999
1I9R 0.002 0.011 0.006 0.002 0.005 0.002 0.005 0.001 0.005 0.002 0.004 0.003 0.003 0.001 0.003 0.002 0.003 0.002

1ML0 0.936 0.660 0.960 0.781 0.956 0.787 0.951 0.841 0.951 0.807 0.950 0.784 0.973 0.963 0.981 0.943 0.968 0.965
1BUH 0.923 0.900 0.964 0.984 0.959 0.974 0.976 0.982 0.972 0.979 0.961 0.979 0.996 0.994 0.995 0.997 0.996 0.996
1NCA 0.883 0.209 0.864 0.146 0.865 0.138 0.907 0.140 0.903 0.154 0.896 0.144 0.814 0.605 0.755 0.116 0.836 0.783
1JPS 0.957 0.902 0.951 0.907 0.954 0.909 0.964 0.919 0.963 0.917 0.959 0.921 0.985 0.978 0.986 0.975 0.988 0.986

1AVX 0.189 0.790 0.161 0.632 0.161 0.706 0.172 0.648 0.153 0.660 0.151 0.656 0.161 0.216 0.134 0.413 0.156 0.169
1AHW 0.857 0.976 0.852 0.990 0.861 0.989 0.868 0.991 0.861 0.992 0.861 0.991 0.932 0.988 0.922 0.994 0.940 0.988
1EWY 0.988 0.970 0.995 0.994 0.995 0.992 0.997 0.996 0.997 0.995 0.996 0.994 0.992 0.986 0.997 0.993 0.985 0.982
1EAW 0.037 0.007 0.011 0.003 0.013 0.003 0.012 0.002 0.013 0.003 0.013 0.003 0.022 0.011 0.025 0.009 0.019 0.013
1KAC 0.998 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1PPE 0.321 0.949 0.447 0.950 0.393 0.956 0.472 0.966 0.455 0.962 0.434 0.957 0.489 0.679 0.443 0.817 0.476 0.557
1NSN 0.819 0.873 0.771 0.813 0.778 0.837 0.752 0.799 0.771 0.813 0.771 0.829 0.428 0.506 0.400 0.341 0.428 0.494
1TMQ 0.174 0.045 0.143 0.036 0.147 0.039 0.145 0.029 0.150 0.027 0.147 0.033 0.134 0.093 0.184 0.045 0.116 0.101
1HIA 0.211 0.494 0.193 0.273 0.199 0.309 0.174 0.256 0.182 0.259 0.190 0.263 0.081 0.105 0.109 0.223 0.060 0.065
1E6E 0.953 0.988 0.960 0.997 0.956 0.996 0.964 0.996 0.962 0.996 0.959 0.996 0.959 0.971 0.967 0.992 0.940 0.947
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