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Abstract 
 

The E6 protein from high-risk Human Papillomaviruses (HPVs) has previously 

been shown to be necessary for the persistence of viral episomes in cells, 

however, the mechanism for this remains unclear. High-risk E6 proteins have 

many activities including the ability to degrade p53 and the ability to bind to and 

degrade PDZ proteins. In this study I aimed to further elucidate the role of E6 in 

the persistence of viral episomes.  

 

I used two HPV16 mutant genomes with mutations in the E6 open-reading 

frame; one that is unable to degrade p53 (16E6p53m), and one that lacks the 

PDZ-binding motif (16E6PDZ). I found that both are unable to persist episomally 

in cells thereby implicating these two activities of E6 in HPV episomal 

persistence.   

 

Upon closer investigation of the two mutant genomes, I found that the 

16E6p53m genome does not replicate as efficiently as the wild-type genome. 

This result suggests a function for p53-degradation in genome replication, and 

consequently in genome persistence. Furthermore, by carrying out a more 

detailed analysis of the relationship between E6 and the PDZ protein hScrib, I 

showed that the wild-type E6 protein is stabilised by virtue of the PDZ-binding 

motif, present on its C-terminus. On the other hand, the mutant E6 protein that 

lacks the PDZ-binding motif (E6PDZ) is more susceptible to proteasomal 

degradation. These findings provide evidence for a previously unknown 

outcome of the E6-PDZ protein interaction, in stabilising wild-type E6 protein. In 

addition to the implications of this stabilisation in the persistence of viral 

episomes, it is also significant when considering the activities and properties of 

E6 that contribute to the development of neoplasia.  

 

Finally, I have also found that wild-type HPV16 genomes cannot persist in cells 

that constitutively express E6 protein, suggesting that the correct regulation of 

E6 expression is crucial.  
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Chapter 1: Introduction 

 

1.1. Introduction to papillomaviruses 

Papillomaviruses (PVs) are small, non-enveloped viruses and consist of a 

circular, double-stranded DNA molecule, within an icosahedral protein capsid. 

PVs are epitheliotropic viruses, infecting both mucosal and cutaneous epithelial 

tissues, and their life-cycle is tightly linked to the differentiation of their host cells 

(Favre et al., 1997). The viruses infect the basal layer of the epithelium and 

production of mature virions at the end of the viral life-cycle is confined to the 

upper, most differentiated layers of the tissue (reviewed in Doorbar, 2006). 

Many PVs have been shown to cause a range of diseases, from benign 

proliferative skin or genital warts to cancer. Human PV types (HPVs) that cause 

benign disease are classified as low-risk viruses, whereas the types that can 

cause cancer, such as HPV types 16 and 18, are classified as high-risk types 

(Favre et al., 1997; Laimins, 1993; Walboomers et al., 1999). 

 

The first PV to be identified in animals was the cottontail rabbit PV (CRPV), 

which was shown to cause cutaneous lesions that sometimes progressed to 

malignancy (Shope & Hurst, 1933). PVs are now known to infect a variety of 

different animal species including ungulates, cetaceans, birds (Bernard et al., 

2010; de Villiers et al., 2004) and more recently, reptiles (Herbst et al., 2009) 

and have been shown to be very species-specific, suggesting that they have 

been co-evolving with their host species through time (Bernard et al., 2006). 

More recently the first PV to naturally infect laboratory mice was identified and 

was shown to be transmissible to both nude and immunocompetent laboratory 

mice (Ingle et al., 2010). This discovery has opened new doors and has 

provided an important tool for the future of PV research. 

 

1.2. Classification of papillomaviruses 

PVs were initially classified under the family of Papoviridae, together with 

polyomaviruses, based on their similarities in structure (non-enveloped capsids) 

and circular, double-stranded DNA genome. However, sequencing of the PV 

genome revealed many differences between PVs and polyomaviruses, such as 
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the size and organisation of their genomes (de Villiers et al., 2004). Another 

difference is that PV transcription is unidirectional that is, all transcripts are 

expressed from one strand of DNA (Amtmann & Sauer, 1982; Danos et al., 

1983). This led to PVs being designated as a separate family, the 

Papillomaviridae.  

 

To date, over 180 PV types have been identified (Bernard et al., 2010). 

Sequencing of PV genomes has led to a phylogenetic analysis based on the 

homology of the L1 open reading frame (ORF) that encodes the major capsid 

protein and is the most conserved PV ORF. PVs are broadly categorised in 

genera, and types within the same genus share more than 60% identity in their 

L1 DNA. Genera can be sub-categorised into species, types, subtypes and 

variants. Types within the same species have 71% - 89% identity to each other 

(de Villiers et al., 2004). 

 

1.3. Human papillomaviruses (HPVs) 

Using the classification system described above, HPVs are found in five out of 

twenty-nine genera (Apha, Beta, Gamma, Mu and Nu) with the animal and bird 

PVs comprising the other twenty-four genera. The genus with the greatest 

medical importance is Alpha, which includes the HPVs associated with genital 

cancers (the high-risk types) such as HPV16 and HPV18. This genus also 

includes the low-risk HPV types causing genital warts, for example HPV11, as 

well as those causing cutaneous, non-genital warts, such as HPV2 (Bernard et 

al., 2010). 

 

Members of the Beta genus, such as HPV5 and 8, infect cutaneous skin. They 

are typically associated with mild skin lesions, but can spread widely in patients 

suffering from a rare hereditary skin condition called Epidermodysplasia 

Verruciformis (EV). In these patients, infections by Beta PVs are associated 

with the development of non-melanoma skin cancer (Harwood & Proby, 2002; 

Pfister, 2003). The Gamma, Mu and Nu PVs generally infect cutaneous sites 

and cause skin lesions such as verrucas (de Villiers et al., 2004).  
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1.4. HPVs and disease 

Detailed studies of different types of HPVs have found a correlation between 

the ability of HPVs to immortalise cells in culture, and the degree of disease 

caused. For example, the high-risk types HPV16, 18, 31 and 33 are able to 

immortalise primary epithelial cells whereas the low-risk types HPV1a, 5, 6b 

and 11 are not (Pecoraro et al., 1989; Schlegel et al., 1988; Woodworth et al., 

1989). Moreover, the HPV E6 and E7 proteins have been shown to be able to 

immortalise cells independently (Band et al., 1991; Halbert et al., 1991), 

although their immortalisation efficiency is increased when both are expressed 

together in cells (Halbert et al., 1991). 

 

1.4.1. Low-risk and cutaneous HPVs 

Low-risk HPVs are infrequently linked to cancer, but can cause a wide-range of 

benign diseases. Anogenital warts are prevalent amongst the sexually active 

population and are most commonly caused by HPV6 and 11 (Greer et al., 

1995). These two low-risk types are also the cause of most benign HPV-related 

oral lesions (Praetorius, 1997). Cutaneous warts are caused by a large number 

of HPV types, including HPV1 (Egawa et al., 1993) and HPV2, which is also 

able to infect mucosal epithelia (Chan et al., 1997; de Villiers et al., 2004).  

 

Although benign to the majority of the population, low-risk and cutaneous HPVs 

are sometimes associated with rare but severe diseases such as EV and 

recurrent respiratory papillomatosis (RRP). As mentioned above, EV patients 

have a higher susceptibility to infections by HPVs from the Beta genus, and 

develop skin lesions that may progress to cancer (Harwood & Proby, 2002; 

Pfister, 2003). RRP is typically caused by the Alpha-PVs HPV6 and HPV11 

(Gissmann et al., 1982; Mounts et al., 1982) and patients develop papillomas in 

their respiratory tracts (particularly the larynx), which lead to obstruction of the 

airway. It is thought that PVs persist in these patients in a latent state, and their 

re-activation causes the recurrent disease (Steinberg et al., 1983).  
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1.4.2. High-risk HPVs 

The best-studied malignancy caused by HPVs is cervical cancer and it is now 

believed that over 99% of cervical cancers are caused by HPVs. HPV16 and 18 

are thought to account for over 60% of these, with other HPV types, including 

31, 33, 39, 45, and 58, accounting for the rest (Bosch et al., 1995; Clifford et al., 

2003; Munoz et al., 2003; Walboomers et al., 1999). Cervical cancer is the 

second most common cancer in women worldwide, with approximately 500,000 

newly diagnosed cases and 250,000 deaths every year (World Health 

Organisation). Most cervical cancers are squamous cell carcinomas, with the 

rest being adenocarcinomas and a small number being small cell 

neuroendocrine tumours. HPV16 is more commonly associated with squamous 

cell carcinomas whereas HPV18 is more commonly associated with 

adenocarcinomas (Clifford et al., 2003). 

 

The majority of cervical cancers are thought to occur in the transformation zone 

of the cervix, which is an area of metaplastic change, from columnar cells to a 

stratified squamous epithelium (Burghardt & Ostor, 1983; Sun et al., 1992). The 

higher susceptibility of the transformation zone may be due to better access of 

the virus to the basal layer of the epithelium, as well as reduced immune 

surveillance compared to other sites of the cervix (Giannini et al., 2002).  

 

Genital HPV infection is a sexually transmitted infection and the highest 

prevalence is seen in women in their late teens or early 20s. However, the 

incidence of cervical cancer is highest in older women. This delay between 

infection and onset of disease suggests that cervical cancer may arise after 

persistent infection. In such persistent infections, disease is thought to ensue 

due to the prolonged expression of the viral oncoproteins (Schiffman & Kjaer, 

2003). 

 

High-risk HPVs can also cause pre-cancerous cervical disease, which can 

precede the development of cancer. These pre-cancerous lesions are 

histologically classified based on their severity, with cervical intraepithelial 

neoplasia (CIN) - 1 exhibiting the lowest form of dysplasia, and CIN-3 exhibiting 

severe dysplasia (Woodman et al., 2007). In addition to accounting for almost 

all cases of cervical cancer, HPVs are thought to cause a variety of other 
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anogenital cancers such as anal, vulvar and penile cancers, as well as head 

and neck cancers, such as those of the pharynx, larynx and tonsils (zur 

Hausen, 2009).   

 

1.5. The HPV16 genome 

The HPV16 genome is a 7.9 kb circular, double-stranded DNA genome (Fig. 

1.1) and is divided into three regions by two polyadenylation (poly (A)) sites; the 

early region, the late region, and a non-coding region called long-control region 

(LCR) (Zheng & Baker, 2006). The E1, E2, E4, E5, E6 and E7 non-structural 

proteins are the early proteins and are expressed from the early promoter (p97), 

which lies within the LCR. The L1 and L2 capsid proteins are the late proteins 

and are thought to mainly be expressed from the late, differentiation-dependent 

promoter (p670). This promoter lies within the E7 ORF and can also be used to 

express E1, E2, E4 and E5, depending on the differentiation stage of the 

epithelium (Grassmann et al., 1996; Hummel et al., 1992; Smotkin & Wettstein, 

1986). 

 

The LCR of HPV16, which lies upstream of the E6 ORF also contains regulatory 

elements involved in viral transcription. These cis elements include binding sites 

for various cellular transcription factors, including Sp1, AP-1, Oct-1, and YY1, 

which can both positively and negatively regulate transcription. It has further 

been suggested that regulatory sequences in the LCR may play a role in the 

tissue- or cell-specificity of HPVs (Chan et al., 1990; Gloss & Bernard, 1990; 

Lace et al., 2009; Marshall et al., 1989; Morris et al., 1993, Offord et al., 1993). 

For example, the HPV promoter has been shown to be active in keratinocytes 

but not in fibroblasts (Bernard et al., 1989) and this correlates with higher levels 

of the AP-1 transcription factor in keratinocytes compared to early passage 

fibroblasts (Offord et al., 1993).  

 

Moreover, the LCR contains binding sites for the viral protein E2 (Androphy et 

al., 1987), and the HPV16 LCR contains four such E2-binding sites. Binding of 

E2 has been shown to regulate viral gene transcription (Bernard et al., 1989; 

Bouvard et al., 1994; Phelps & Howley, 1987; Romanczuk et al., 1990; Spalholz 

et al., 1985; Spalholz et al., 1987). E2 has been reported to have both positive 
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and negative regulatory effects on transcription and recent studies have 

suggested that this differential transcriptional regulation may be determined by 

the amounts of E2 viral protein present (Steger & Corbach, 1997), or by the 

physical state and conformation of the viral genome in the cells, (Bechtold et al., 

2003; Schmidt et al., 2005).  Moreover, the LCR contains the viral origin of 

replication (Chiang et al., 1992a), and a binding site for the viral replication 

protein E1, a DNA helicase that is recruited to the viral origin of replication by 

E2 (Desaintes & Demeret, 1996), to initiate viral replication. 
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Figure 1.1: The HPV16 genome 

The HPV16 genome is a 7.9 kb, circular, double-stranded DNA genome and 

consists of 8 main ORFs. These encode for 6 non-structural, early proteins, E6, 

E7 (red), E1, E2, E4 and E5 (green) and 2 structural, late proteins, L1 and L2 

(yellow). The 2 main viral promoters p97 and p670 are shown, as are the early 

and late poly (A) sites (PAE and PAL respectively). The early proteins are 

expressed from both promoters, whereas the late proteins are thought to be 

expressed from the late, differentiation-dependent promoter (p670). Three 

recently identified promoters (p3392 at the 5’ of the E4 ORF, p4062/4 at the end 

of the E5 ORF and p-60 in the LCR), which were found to be active in 

differentiating cells, are shown in purple (Milligan et al., 2007). The LCR is a 

non-coding region and contains cis-acting elements involved in viral replication 

and transcription, including binding sites for transcription factors and for the E1 

and E2 proteins, as well as the viral origin of replication. (The figure has been 

modified from Doorbar, 2006). 
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1.6. HPV16 transcription 

The study of different HPV16 mRNA species in cells that harbour HPV 

episomes has been carried out mostly in W12 cells (Doorbar et al., 1990; 

Milligan et al., 2007). This cell line is a cervical keratinocyte line isolated from a 

low-grade cervical lesion and has been shown to contain predominantly 

episomal forms of the HPV16 genome (Stanley et al., 1989). As such it presents 

a better candidate for the study of viral transcripts than the cervical cancer cell 

lines, such as CaSki and SiHa, as these lines contain only integrated copies of 

the viral genomes and do not support the viral life-cycle. 

 

HPV16 transcripts are divided into early and late transcripts and are 

polyadenylated by an early and two late poly (A) sites respectively (Milligan et 

al., 2007). The early promoter, p97, is regulated by the binding of E2 and 

cellular transcription factors to their binding sites in the LCR (Zheng & Baker, 

2006). Regulation of expression from the late promoter, p670, is less well 

understood but studies suggest that it may be activated by differentiation 

signals within the cell and its activation appears to be independent of viral 

genome amplification (Spink & Laimins, 2005). Transcription from the early 

promoter appears constant throughout the life-cycle of the virus, whereas 

transcription from the late promoter, p670, is greatly enhanced upon 

differentiation (Grassmann et al., 1996; Hummel et al., 1992).  

 

HPV16 transcripts have also been identified that initiate at positions other than 

the abovementioned early and late promoters (p97 and p670). This suggests 

the existence of additional promoters on the HPV genome (see Fig. 1.1). One 

such promoter was mapped to the 5’ of the E4 ORF (p3392), another one at the 

end of the E5 ORF (p4062/4) and a third in the LCR (p-60). These were 

described in W12 cells (Milligan et al., 2007). A promoter in the E4 ORF has 

been previously described in HPV31 genomes, as have promoters in the LCR 

(Ozbun & Meyers, 1997; Ozbun & Meyers, 1999), suggesting that these may be 

conserved across different HPV types.   

 

Almost all HPV transcripts are polycistronic and gene expression is regulated by 

alternative splicing, which generates different mRNA products (Zheng & Baker, 

2006). One example is the alternative splicing of the E6/E7 polycistronic or 
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bicistronic transcripts. High-risk E6 ORFs contain an intron sequence, and 

several splice sites and the excision of the intron has been shown to generate 

alternatively spliced E6 products (Zheng & Baker, 2006). In addition to mRNAs 

containing the full-length E6 sequence, at least 2 spliced species have been 

described, E6*I and E6*II, both of which have the same N-terminal sequences 

as full length E6, but lack the intron sequence and have different C-terminal 

truncations (Doorbar et al., 1990; Schneider-Gadicke & Schwarz, 1986; Smotkin 

et al., 1989). It has been suggested that mRNAs carrying the spliced forms of 

E6 (E6*) are more abundant in cervical cancer lines than ones carrying the full-

length E6 form (Smotkin et al., 1989; Zheng & Baker, 2006). Although this 

splicing would prevent the production of full-length E6 protein, it appears that 

the spliced transcripts favour the expression of E7 protein. (Smotkin et al., 

1989; Tang et al., 2006a; Zheng et al., 2004). Earlier studies have also 

identified a protein product thought to be expressed from the spliced E6* 

species (Schneider-Gadicke et al., 1988). More recent studies have attempted 

to elucidate the activities of the E6* protein compared to the full-length E6 

protein (Pim et al., 2009; Storrs & Silverstein, 2007) but its precise function and 

role in the viral life-cycle remains unclear.  

 

Little is known about the regulation of E6 splicing in cells. Interestingly, a recent 

study suggested that in the presence of epidermal growth factor (EGF), full-

length E6 is expressed, whereas the absence of EGF favours the expression of 

E6* and E7 (Rosenberger et al., 2010). This may suggest a mechanism for the 

regulation of this splicing process in the differentiated epithelium, where growth 

factors are depleted.  

 

Another example of splicing of HPV transcripts, is the generation of the E8^E2 

protein, which is derived from 2 viral ORFs. E8 is an ORF found within the E1 

ORF and is spliced with the C-terminus of E2, to generate E8^E2 protein. 

E8^E2 mRNA species have been identified in a variety of HPVs (they are 

sometimes called E2C), including HPV16 (Doorbar et al., 1990; Sherman et al., 

1992), HPV31 (Stubenrauch et al., 2000) and the low-risk type HPV11 

(Rotenberg et al., 1989). HPV16 and 31 E8^E2 proteins are thought to repress 

viral gene transcription and viral replication (Lace et al., 2008; Stubenrauch et 

al., 2000). Moreover, the HPV31 E8^E2 protein was suggested to inhibit 
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episomal persistence of HPV31 genomes (Stubenrauch et al., 2000). In contrast 

HPV16 E8^E2 did not appear to have an inhibitory effect on the persistence of 

HPV16 genomes (Lace et al., 2008).  

 

Alternative splicing is also essential for the expression of late viral proteins from 

late viral transcripts. Splicing of late transcripts takes place in the differentiated 

layers of the epithelium. The levels of splicing factors, such as SR (serine-

arginine-rich) proteins, in the differentiated layers of uninfected epithelia are 

decreased (compared to the levels in undifferentiated cells) (McPhillips et al., 

2004; Mole et al., 2009a). Recent studies have shown that the viral E2 protein 

up-regulates the expression of different SR proteins, one of which being 

SF2/ASF (splicing factor 2/alternative splicing factor) (McPhillips et al., 2004; 

Mole et al., 2009a; Mole et al., 2009b). Furthermore, the expression of these 

proteins increases upon differentiation of HPV-positive cells, suggesting that E2 

may play a role in altering the cellular environment in differentiated cells, to 

facilitate late viral gene expression (McPhillips et al., 2004; Mole et al., 2009a). 

Interestingly, there also appears to be a correlation between the expression of 

SF2/ASF and the severity of cervical disease, suggesting a potential use of this 

protein as a biomarker for disease (Mole et al., 2009a). 

 

1.7. HPV16 viral life-cycle 

Most work on HPVs has been carried out using the high-risk types and in 

particular HPV16, due to their clinical importance. From this work, a general 

pattern of the HPV life-cycle has been elucidated (Fig. 1.2). HPVs are 

exclusively epitheliotropic viruses, and their life-cycle is dependent on the 

differentiation of the epithelium for its completion. As such, the levels and 

pattern of viral gene expression are tightly regulated and change during the 

differentiation of the epithelium. Different stages of the life-cycle are often 

categorised into early and late events. Early events take place in the basal and 

parabasal layers of the epithelium and comprise the viral entry into cells and the 

establishment of the viral episomes in the nucleus. Late events occur in the 

upper, differentiated layers of the epithelium and comprise the amplification of 

the viral genome, the production of the capsid proteins, and the assembly and 

release of new virions (reviewed in Doorbar, 2005).  
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Figure 1.2: The HPV life-cycle 

Papillomaviruses infect the epithelium by gaining entry to the cells in the basal 

layer (BL), where they establish themselves as low copy number 

extrachromosomal episomes in the nucleus of the cell. Early events in the life-

cycle require expression of the E1 and E2 replication proteins, and E6 and E7 

oncoproteins by the early promoter, p97. When infected cells exit the basal 

layer, they remain in cycle through the activities of E6 and E7. In the middle and 

upper layers, the cells differentiate, and expression from the late promoter p670 

is activated. In these layers, E1, E2, E4 and E5 expression increases, leading to 

viral genome amplification. Following amplification, L1 and L2 are expressed, 

the viral DNA is packaged, and new infectious virions are shed from the surface 

of the epithelium. (The figure has been modified from Doorbar, 2006). 
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1.7.1. Site of infection – basal layer of the epith elium  

The site of infection of HPVs is the basal layer of the epithelium. As mentioned 

earlier, neoplasia usually arises in the transformation zone of the cervix, where 

the squamous epithelium tapers down towards the columnar cells. This 

metaplastic change is thought to afford the virus easy access to the basal cells 

to initiate its life-cycle, and also has reduced immune surveillance compared to 

other cervical sites (Giannini et al., 2002).    

 

Basal cells are the only cells in the epithelium that are capable of division and 

are thought to be comprised of epithelial stem cells and transit amplifying (TA) 

cells. Epithelial stem cells are considered to be undifferentiated cells with 

enhanced proliferative capacity. These cells give rise to TA cells but can also 

self-renew and are thought to persist throughout the lifetime of the epithelium. 

TA cells on the other hand have a finite life-span and continue to differentiate 

(Potten & Loeffler, 1990). It has been suggested that for an infection to be 

persistent, an epithelial stem cell must be infected (Egawa, 2003; Schmitt et al., 

1996), although this has not been proven to date.  

 

A model for how PVs gain entry to epithelial cells has recently been proposed 

by Schiller et al., and implicates both L1 and L2 capsid proteins in the process 

(Schiller et al., 2010). This model suggests that L1 first binds to heparan sulfate 

proteoglycans on the basement membrane, once this has been exposed by a 

micro-lesion in the tissue (Johnson et al., 2009; Joyce et al., 1999). This 

interaction brings about a conformational change, which subsequently exposes 

sites on the L2 capsid protein to being cleaved by enzymes, one of which being 

furin (Richards et al., 2006). This is then thought to expose an L1 site that can 

bind to a cell-surface receptor, mediating the attachment of the virion to 

keratinocytes. The cell-surface receptor involved in this process has not yet 

been identified, but studies have implicated alpha-6 integrin (Evander et al., 

1997) in this process. Following attachment to the cell-surface receptor, PVs 

enter cells by endocytosis. However, which pathway is involved in this remains 

unclear as studies have implicated both clathrin- and caveolae-mediated 

pathways. These discrepancies may reflect differences between the various 

HPV types (Bousarghin et al., 2003).   
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1.7.2. Early events 

1.7.2.1. Establishment and maintenance of HPV episo mes 

Following infection, HPV genomes establish themselves as episomes in the 

nucleus of the infected basal cell. It is generally believed that for establishment 

to take place, the viral genome first undergoes a transient replication phase, 

whereby its copy numbers are amplified. Following the initial establishment 

phase, genomes are thought to replicate along with the cellular DNA and divide 

equally into the two daughter cells during cell division, thus maintaining a more 

or less constant copy number in the cells of the basal layer (reviewed in Kadaja 

et al., 2009). 

 

1.7.2.2. Early proteins 

Viral transcripts have been detected in the basal cells of epithelia (Stoler & 

Broker, 1986), although which viral proteins are actually expressed in these 

cells remains unclear. It is widely believed that the viral replication proteins E1 

and E2 are expressed in basal cells from the early promoter, p97, and both of 

these proteins are necessary for the persistence of HPV16 viral episomes (Ken 

Raj, unpublished data). The role of these proteins in replication is well 

established. E2 binds to regions near the viral origin of replication and is able to 

recruit the E1 viral helicase, which in turn recruits the cellular replication 

proteins that are necessary for viral replication (reviewed in Kadaja et al., 2009). 

In addition to its role in viral replication, E2 has also been shown to have an 

important role during cell division by anchoring the viral episomes to mitotic 

chromosomes or the mitotic spindle, thus ensuring their correct segregation and 

localisation into the nucleus of daughter cells (Feeney & Parish, 2009). 

Episomal replication and segregation will be discussed in more detail later.  

Interestingly, several HPVs, as well as BPV1, were also found to be able to 

replicate in yeast, a process that was shown to be independent of both E1- and 

E2-expression (Angeletti et al., 2002).  

 

It is not clear which other viral proteins are expressed in the basal layer of the 

epithelium and this is partly due to the low levels of protein expressed, as well 

as to the lack of sensitive detection methods. However, studies in monolayer 

cell cultures have suggested that both the E6 and the E7 proteins are 
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necessary for the episomal persistence of HPV31 genomes in primary cells 

(Thomas et al., 1999), and that E6 but not E7 is necessary for persistence of 

HPV16 episomes in the immortalised cell line, NIKS (Flores et al., 2000; 

Laurson et al., 2010; and Ken Raj, unpublished data).These studies imply that 

both of these proteins are expressed in the basal layer, as the monolayer cell 

culture system is considered to be a good model for the study of the early 

events of the life-cycle (see section 1.8). 

 

1.7.2.3. Cell proliferation 

In the uninfected epithelium basal cells are eventually pushed to the suprabasal 

layers and exit the cell cycle. This would be detrimental to the virus as the virus 

relies on the cell’s replication machinery in order to replicate its own genome. In 

an HPV infected epithelium, the normal differentiation program of the tissue is 

delayed, and cells in the suprabasal layers are pushed to cycle. This is thought 

to be caused by the combined activities of the E6 and E7 proteins, which push 

cells into S-phase (Cheng et al., 1995; Dollard et al., 1992). The activities of E6 

and E7 that are thought to be responsible for driving suprabasal cell 

proliferation have been extensively studied and the most well characterised 

ones are the degradation of tumour suppressors p53 and pRb respectively 

(Boyer et al., 1996; Scheffner et al., 1990).  Moreover, high-risk E6 is able to 

bind to and degrade PDZ proteins, such as hScrib and hDlg, via a PDZ-binding 

motif on its C-terminus. This motif has been linked to the development of 

epidermal hyperproliferation in transgenic mice (Nguyen et al., 2003) and raft 

cultures (Lee & Laimins, 2004).  

 

Both E6 and E7 have several other activities which can contribute to driving 

cells to proliferate and these will be discussed later. 

 

1.7.3. Late events 

In productive HPV infections, the suprabasal cells do eventually enter terminal 

differentiation and this is required for the induction of the late promoter, p670, 

and consequently the expression of the late proteins. It is not yet clear what 

causes the switch from early to late promoter, but it is believed to occur via 

changes in cell signalling. 
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1.7.3.1. Genome amplification 

As the infected cell approches the upper layers of the epithelium, it becomes 

necessary for the viral genome to be amplified in preparation for packaging into 

the new virions. The switch from early to late promoter leads to an increase in 

the expression of the proteins necessary for genome amplification, E1, E2 (for 

replication) (Klumpp & Laimins, 1999), and E4 and E5 (Hummel et al., 1992).  

 

The roles of E4 and E5 in genome amplification are not very clear. E5 has been 

shown to contribute to the maintenance of a replication competent environment 

in the upper epithelial layers, and to facilitate genome amplification and 

transcription from the late promoter (Fehrmann et al., 2003). E4 on the other 

hand has been shown to arrest cells in the G2 phase (Davy et al., 2002). The 

current model suggests that amplificational replication takes place in cells that 

express E4 as well as E7. These cells are thought to be in a pseudo-S phase 

state, where cellular replication proteins are available for viral DNA replication 

but the cells themselves are not dividing (Davy & Doorbar, 2007) 

 

1.7.3.2. Virus assembly and release 

At the end of the viral life-cycle the two capsid proteins, L1 and L2, are 

expressed and localise to the nucleus (Day et al., 1998; Doorbar & Gallimore, 

1987; Florin et al., 2002). This is followed by the encapsidation of the newly 

replicated viral DNA, and studies have suggested that this process may be 

enhanced by E2 (Day et al., 1998; Zhao et al., 2000). As HPVs are not lytic 

viruses the release of progeny virions relies on the natural shedding of dead 

skin cells (Bryan & Brown, 2001). Viral release from cells may be facilitated by 

the E4 protein which has been shown to disrupt the keratin network of the cells 

thereby making the cells more fragile (Doorbar et al., 1991; Wang et al., 2004).  

 

1.7.4. Abortive infections 

Abortive infections arise in situations where the viral life-cycle is not completed 

and if left untreated, these infections can develop into cancer. It is thought that 

abortive infections occur at specific sites where productive PV infections are not 

supported. An example of this is CRPV infections, which can cause productive 
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infections in the virus’s natural host (the cottontail rabbit), but cause abortive 

infections when inoculated in another host, the domestic rabbit. Similarly 

cutaneous HPVs, which usually cause benign skin lesions, occasionally cause 

cancers when they infect a mucosal site. It has been considered that the 

transformation zone of the cervix may be a sub-optimal site for the completion 

of the life-cycle of high-risk HPV types, thereby making it more prone to the 

development of neoplasia (reviewed in Doorbar, 2006).  

 

CIN-1 lesions closely resemble productive infections, as the life-cycle of the 

virus, although delayed, is eventually completed. In CIN-2 and CIN-3 lesions 

however, the tissue shows higher degree of deregulation and CIN-3 lesions 

closely resemble abortive infections. It has been found that the severity of a 

lesion is reflected in the pattern of viral protein expression. As lesions become 

less productive, there is less expression of the late viral proteins (Middleton et 

al., 2003). Of particular importance is the deregulation of the expression of the 

two viral oncoproteins, E6 and E7, seen in abortive infections. This leads to 

cells in the upper-most layers of the epithelium (which would have normally 

exited the cell cycle during a productive infection) being pushed to cycle 

(Middleton et al., 2003). Aberrant expression of E6 and E7 can lead to genomic 

instability. One way in which deregulation of E6 and E7 expression is achieved 

is by the integration of the viral genome into the cellular chromosomes, which is 

frequently observed in cancers (Durst et al., 1985).   

 

1.8. Papillomavirus models  

The dependence of PVs on the stratified epithelium for the completion of their 

life-cycle has made the study of the life-cycle difficult. It is generally accepted 

that monolayer cell cultures of keratinocytes are good models for the study of 

the events that occur in the basal layer of the epithelium. HPV DNA (isolated 

from plantar warts) was first shown to replicate and persist episomally in 

cultured epidermal keratinocytes in 1982 (LaPorta & Taichman, 1982). Since 

then, many studies have used monolayer cell cultures as systems to study the 

early events in the viral life-cycle such as episomal persistence. Different cell 

isolates have been used, including primary foreskin keratinocytes (Thomas et 

al., 1999) as well as immortalised cell lines, such as NIKS (Flores et al., 1999).  
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However, monolayer cell cultures do not provide good models for the study of 

the late events in the viral life-cycle, such as genome amplification and virion 

production. Clinical samples are sometimes used to study HPV infections but 

these are difficult to obtain and may not contain a productive infection, as these 

samples are often isolated from patients with high-grade disease. Another 

hindrance to the study of PVs is the species specificity which makes several 

animal models unsuitable for the study of the human viruses. In addition to this, 

until very recently no PV that naturally infects laboratory mice had been 

isolated, making the most common laboratory animal model unavailable for 

studies. The recent isolation of such PV (Ingle et al., 2010) promises to provide 

an important tool for PV research, with more reagents and more expertise being 

available for the mouse than any other laboratory animal model. 

 

The study of the HPV life-cycle has been aided by the development of the 

organotypic raft culture system, a three-dimensional system in which 

keratinocytes are allowed to differentiate in culture to form a complete stratified 

epithelium, supported by a collagen dermal equivalent. These rafts support the 

viral life-cycle and have been used in studies aimed at characterising the 

different stages of the life-cycle (Flores et al., 1999) as well as identifying 

factors that may affect it (Flores et al., 2000; Lee & Laimins, 2004). Other 

methods that have been used to induce the differentiation of keratinocytes are 

the culturing of cells in medium with high calcium concentration (Hennings et 

al., 1980) or in semi-solid medium such as methylcellulose (Ruesch et al., 

1998).  

 

Raft cultures can also be used for the production of mature infectious viral 

particles (McLaughlin-Drubin et al., 2004). Alternatively virions can be made by 

co-transfecting viral genomes with L1- and L2-expressing plasmids in 

monolayer cultures of 293T cells (Buck et al., 2005). Production of infectious 

viruses to be used for infectivity studies, is still in early stages. Hence most 

studies employ other means for introducing viral genomes into cells, such as 

tranfections.   
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1.9. The E7 protein  

The HPV E7 protein is a small protein (11 kDa for HPV16) and is one of the 

oncoproteins expressed by HPVs. It has been shown to be able to immortalise 

keratinocytes (Halbert et al., 1991), and when expressed together with E6, can 

also transform them (Munger et al., 1989a). Furthermore, HPV16 E7 was found 

to be able to induce hyperplasia when expressed on its own in the skin of 

transgenic mice (Herber et al., 1996). Many studies have shown that E7 can 

interact directly with several cellular proteins and its biological effects are 

thought to be conferred by its protein-protein interactions. Interestingly, the HPV 

E7 protein shares many similarities with the SV40 large T antigen and the 

adenovirus E1A protein (DeCaprio et al., 1988; Massimi et al., 1996; Whyte et 

al., 1988).  

 

In a normal epithelium, the basal cells are the only cells capable of undergoing 

cell division. HPVs are dependent on the cellular replication machinery in order 

to replicate their DNA. Therefore, in an infected epithelium, it is essential that 

the suprabasal cells are kept in cycle, in order to support viral replication. A 

major role of E7 is to delay the terminal differentiation of the suprabasal cells, 

thereby keeping them in cycle (reviewed in McLaughlin-Drubin & Munger, 

2009). The main activities of E7 are outlined below. 

 

1.9.1. Association with retinoblastoma proteins and  effects on cell cycle 

regulators 

The best characterised activity of E7 is its ability to bind to the retinoblastoma 

family of proteins. E7 binds to pRb and pRb-related proteins p107 and p130 and 

targets them for proteasomal degradation (Boyer et al., 1996; Davies et al., 

1993; Dyson et al., 1989; Jones & Munger, 1997; Munger et al., 1989b). 

Interactions with pRb appear to be a common feature of tumour virus proteins, 

as the SV40 large T antigen and the adenovirus E1A protein also bind to it 

(DeCaprio et al., 1988; Whyte et al., 1988). E7 preferentially degrades the 

hypophosphorylated form of pRb (Boyer et al., 1996) and this is the form that 

interacts with the E2F transcription factor (Chellappan et al., 1991.) Binding of 

hypophosphorylated pRb to E2F prevents the transactivation activities of E2F 

and when pRb gets phosphorylated, E2F is free to activate the transcription of 
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genes that promote entry into S-phase (reviewed in Donjerkovic & Scott, 2000). 

Targets of E2F include cyclins A and E, the proliferating cell nuclear antigen 

(PCNA), minichromosome maintainance proteins (MCMs) and DNA polymerase 

α (Cheng et al., 1995; Chien et al., 2000; Dyson, 1998; Leone et al., 1998). By 

interacting with pRb, E7 interrupts the pRb-E2F binding, thus causing the 

release of free E2F. As a result, E7 is able to promote S-phase progression in 

suprabasal cells, which would have otherwise exited the cell cycle. This was 

demonstrated in the analysis of wild-type and E7-deficient HPV16 raft cultures 

which demonstrated a clear need for E7 in the induction of PCNA expression 

and DNA synthesis in suprabasal cells (Flores et al., 2000).   

  

The E7 proteins of low-risk viruses interact with pRb with a much lower 

efficiency than the E7 proteins of high-risk viruses and this correlates with their 

lack of transforming ability (Gage et al., 1990; Heck et al., 1992). Despite this, 

low-risk HPVs can also cause hyperproliferative lesions, suggesting that they 

too have a mechanism for causing aberrant entry into S-phase. It has been 

shown that whereas the E7 protein from the high-risk type HPV16 can degrade 

pRb as well as the related p107 and p130 proteins, the E7 protein from the low-

risk type HPV6 can only degrade p130. Interestingly, in the uninfected 

epithelium, p130 is more abundant in differentiating cells, as opposed to pRb 

and p107, which are more abundant in undifferentiated cells (Zhang et al., 

2006). These observations suggest a mechanism by which both the high- and 

low-risk HPVs can promote the replication of their genomes in the 

undifferentiated epithelium.  

 

Furthermore, both high- and low-risk E7 proteins have been shown to augment 

the activities of the cdk2/cyclin A and cdk2/cyclin E complexes, by directly 

binding to them (Arroyo et al., 1993; He et al., 2003; Nguyen & Munger, 2008; 

Tommasino et al., 1993). The cdk2/cyclin E complex controls entry into S-phase 

whereas the cdk2/cyclin A complex controls progression through S-phase, and 

the G2/M transition (reviewed in Sherr, 1993). E7 also affects the activities of 

these complexes indirectly, by abrogating the activities of cyclin-dependent 

kinase inhibitors (CKIs), p21CIP1 and p27KIP1 (Funk et al., 1997; Jones et al., 

1997; Zerfass-Thome et al., 1996).  
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1.9.2. Association with other cellular binding part ners  

In addition to the above, E7 interacts with a variety of other cellular proteins, 

many of which have effects on cellular gene transcription. One of these 

interactions is with histone deacetylase 1 (HDAC-1) (Brehm et al., 1999), which 

results in increase of E2F2-mediated transcription in differentiating 

keratinocytes (Longworth et al., 2005).  E7 also binds to AP-1 transcription 

factors, such as c-Jun, and up-regulates their transcriptional activities (Antinore 

et al., 1996). Furthermore, E7 binds to the TATA box binding protein (TBP), 

another activity that it shares with the adenovirus E1A protein (Massimi et al., 

1996). This interaction was shown to inhibit TBP’s ability to bind to DNA 

(Maldonado et al., 2002), suggesting the inhibition of TBP’s transcriptional 

activity, and has also been shown to correlate with E7’s transforming ability 

(Massimi et al., 1997). 

 

1.9.3. Role in episomal persistence  

In addition to its role in maintaining a replication-competent environment in the 

suprabasal layers of the epithelium, E7 has also been implicated in the 

persistence of viral episomes in the basal layer. This was suggested for HPV11 

as well as HPV31, using monolayer cultures of primary cells (Oh et al., 2004; 

Thomas et al., 1999). Interestingly, studies using HPV16 showed that this is not 

true when an immortalised keratinocyte cell line (NIKS) is used instead (Flores 

et al., 2000; Laurson et al., 2010). This suggests that E7 may not have a direct 

role in episomal persistence, but its effect may instead be a consequence of its 

role in cellular immortalisation. 

 

1.10. The E6 protein  

The HPV E6 proteins are small proteins and for HPV16 approximately 18 kDa 

and 151/158 amino acids long (Foster et al., 1994). E6 proteins contain two 

zinc-finger motifs which have been suggested to play a role in protein stability 

and localisation (Kanda et al., 1991) (Fig.1.3). No enzymatic activity of E6 is 

known and, as with E7, most of its activities are thought to occur through 

protein-protein interactions, although E6 has also been shown to have DNA-

binding abilities (Ristriani et al., 2000). Recent studies have demonstrated that 
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E6 can dimerise or oligomerise in vivo, however, whether or not the monomeric 

and oligomeric forms have different functions remains unclear (Garcia-Alai et 

al., 2007; Zanier et al., 2010).  

 

Studies of the E6 protein have been hindered due to the low levels of protein 

thought to be expressed, as well as the lack of sensitive antibodies. However, 

E6 is still one of the best studied HPV proteins and many of its activities have 

been well characterised. Similarly many cellular binding partners of E6 have 

been identified and these include proteins that E6 targets for proteasomal 

degradation. These interactions implicate E6 in a variety of cellular pathways 

the consequences of which include blocking of apoptosis, evasion of immune 

surveillance and chromosomal instability. In fact, HPV16 E6 has been shown to 

be able to induce cancers when expressed alone in the skin of transgenic mice 

(Song et al., 1999) and interestingly, its PDZ-binding motif was found to be 

necessary for this (Nguyen et al., 2003). 

 

Not much is known about the regulation of the levels of E6 in HPV-infected 

cells. The levels of high-risk E6 proteins are regulated by the proteasome, 

however results vary with regards to low-risk E6 proteins (Kehmeier et al., 2002; 

Stewart et al., 2004). Moreover, a recent study has shown that HPV16 and 18 

E6 proteins are stabilised by their interactions with the E6-associated protein 

(E6AP) (Tomaic et al., 2009b). The main activities of E6 are outlined below.   
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Figure 1.3: Sequence of the 158 amino acid product of the HPV16 E6 ORF 

The E6 protein of HPV16 is 151/158 amino acids long, depending on which of 

the two ATG codons is used in translation. The two methionines that could 

potentially represent the first amino acid of E6 are shown in red and are marked 

as amino acids 1 and 8. The 2 zinc-finger motifs are shown in the boxes. The 

PDZ-binding motif at the C-terminus is shown in blue.  
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1.10.1. Binding to E6AP 

E6 proteins from both high- and low-risk HPV types have been shown to bind to 

E6AP, which is a cellular E3 ubiquitin ligase (Brimer et al., 2007; Huibregtse et 

al., 1991). Through its interaction with E6AP, E6 is able to direct the 

degradation of many of its cellular binding partners, for example p53.  

 

More recently, it has been shown that E6-E6AP binding promotes the 

ubiquitination and proteasomal degradation of E6AP (Kao et al., 2000).  As the 

catalytic activity of E6AP was found to be necessary for this, it has been 

suggested that through its interaction with E6, E6AP ubiquitinates itself and 

targets itself for degradation. Contributing further to the understanding of the 

interaction between E6 and E6AP, a recent study found that E6AP is able to 

stabilise E6, in a manner independent of the former’s catalytic activity (Tomaic 

et al., 2009b). Taken together, these results demonstrate the complex 

relationship between E6 and its binding partners, the outcome of which is 

probably influenced by many factors, including signalling, differential protein 

localisation in the cell and differences in the levels of each protein at various 

stages of the viral life-cycle and disease progression. Many cellular proteins 

have been shown to be destabilised by the presence of E6, however, the 

Tomaic et al. paper is the first report of a protein that alters the stability of E6 

itself. This opens new doors for studying possible effects of other cellular 

proteins on E6.    

 

1.10.2. Association with p53  

The best characterised activity of E6 is its ability to bind to p53 (Werness et al., 

1990). p53 is  a transcription factor as well as one of the key signal transducers 

during times of cellular stress. It is usually present at low levels, and kept in an 

inactive state. It is activated when cellular stress is detected, and initiates a 

cascade of events leading to cell cycle arrest, DNA repair and even apoptosis, if 

the damage is too large to repair (reviewed in Gottlieb & Oren, 1996). 

Interaction with p53 appears to be a common feature amongst proteins from 

different DNA tumour viruses, as both the SV40 large T antigen and the 

adenovirus E1B 55 kDa protein have also been shown to bind to this protein 

(Lane & Crawford, 1979; Sarnow et al., 1982). Interestingly though, whereas the 



Chapter 1: Introduction 

 41 

SV40 large T antigen and the adenovirus E1B 55 kDa protein stabilise p53, the 

high-risk HPV E6 proteins degrade it (Oren et al., 1981; Scheffner et al., 1990; 

van den Heuvel et al., 1993).  

 

Due to p53’s essential functions in preventing replication of damaged DNA, it is 

not surprising that over 50% of cancers have mutations in the p53 gene 

(Vogelstein et al., 2000). p53 is also activated when cells inappropriately enter 

the cell cycle. As mentioned earlier, one of the functions of E7 is to push 

suprabasal cells to divide. As this is not a “natural” occurrence, p53 is activated 

in order to prevent it, and it has been shown that cells that express E7 alone 

have higher levels of p53 than control cells (Demers et al., 1994; Laurson et al., 

2010). HPVs therefore need to circumvent this check-point and they do so by 

the E6-mediated degradation of p53. As such, most HPV-induced cancers 

actually harbour wild-type p53 genes (Crook et al., 1991; Scheffner et al., 

1991).  

 

In HPV-negative cells the levels of p53 are kept tightly regulated and the protein 

is degraded by the ubiquitin-proteasome, and via interaction with the cellular E3 

ubiquitin ligase Mdm-2 (Haupt et al., 1997; Honda et al., 1997). Interestingly, in 

HPV-positive cells the degradation of p53 by E6 is mediated though the binding 

of E6 to p53 and E6AP (Huibregtse et al., 1991; Scheffner et al., 1993). E6AP 

does not target p53 in the absence of a high-risk E6 protein (Huibregtse et al., 

1991). By binding to both E6AP and p53, E6 alters the target specificity of 

E6AP, and causes the proteasomal degradation of p53 by a new pathway. 

Although the role of E6AP in E6-mediated p53-degradation by the ubiquitin-

proteasome pathway seems well established, more recent reports suggest that 

E6AP-independent (Massimi et al., 2008) and even ubiquitin-independent 

(Camus et al., 2007), pathways may also be involved.  

 

E6 proteins from high- and low–risk HPVs bind to p53, however, only high-risk 

types degrade p53 (Foster et al., 1994; Scheffner et al., 1990). The difference is 

thought to lie in the specific regions of p53 that interact with E6 and it had been 

suggested that E6 proteins from high- and low-risk types can bind to the C-

terminus of p53, while only high-risk types can bind to its core DNA-binding 

region (Li & Coffino, 1996). A recent study showed that upon expression of low-
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risk HPV11 E6 protein, p53 is predominantly present in the cytoplasm (Sun et 

al., 2008), suggesting that even without inducing the degradation of p53, low-

risk viruses may still have an effect on its function.  

  

High-risk E6 proteins also employ other approaches to inhibit the activities of 

p53, which do not involve its degradation. For example, they interact with 

histone acetyltransferases CBP/p300 and hADA3, the latter of which they also 

degrade, (Kumar et al., 2002; Patel et al., 1999) which are p53 co-activators.  

 

Several studies have used mutants of the E6 protein in an attempt to identify 

the precise region of E6 necessary for the degradation of p53. One such study 

found that most N-terminal mutations of E6, as well as mutations in either of the 

two zinc-fingers, inhibit the degradation of p53, whereas mutations in the C-

terminus of E6 do not. This study also showed that wild-type E6 and E6 mutants 

that retained the ability to degrade p53, showed abrogation of actinomycin D-

induced growth arrest. On the other hand, E6 mutants that were unable to 

degrade p53 responded to actinomycin-D (low levels of which cause DNA 

breaks) by inducing growth arrest (Foster et al., 1994). This highlights the 

importance of p53-degradation by E6 in overcoming cellular stress. 

Interestingly, the truncated form of E6, E6*, has been shown to bind to full-

length E6 and inhibit E6-mediated degradation of p53 (Pim et al., 1997). The 

same authors also reported that exogenous expression of E6* has been shown 

to inhibit proliferation of HPV-positive cells (Pim et al., 1997). These findings 

suggest a dominant negative role for E6* over full-length E6 with rergards to 

p53-degradation and cell proliferation.  

 

1.10.3. Inhibition of apoptosis 

A consequence of E6-mediated p53-degradation is bypass of apoptotic 

signalling and subsequent death of HPV-infected cells. E6 proteins from low-

risk types are unable to degrade p53, however, results from a recent study 

suggest that low-risk E6 proteins may bypass the p53-induced apoptotic 

response by degrading the acetyltransferase TIP60 (Tat-interacting protein 60 

kDa) (Jha et al., 2010). TIP60 has been shown to be necessary for the p53-

dependent activation of the proapoptotic factor Puma (p53 up-regulated 
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modulator of apoptosis) (Tang et al., 2006b) and Jha et al. reported that in the 

presence of high- or low-risk E6 in cells Puma expression was not induced (Jha 

et al., 2010). 

 

E6 is also able to bypass apoptosis by interfering with both the intrinsic and the 

extrinsic apoptotis pathways. The extrinsic apoptotic pathway is activated by 

viral infections, and E6 has been shown to inhibit this signalling cascade by 

interacting with and degrading key components of the pathway, such as the 

Fas-associated death domain (FADD) and procaspase 8 (Filippova et al., 2004; 

Garnett et al., 2006). The intrinsic apoptotic pathway senses signals from within 

the cell, such as from DNA damage and oxidative stress. Activation of the 

intrinsic pathway results in the activation of pro-apoptotic proteins and 

subsequent release of mitochondrial proteins, such as cytochrome c and 

apoptosis-inducing factor (AIF) into the cytosol (reviewed in Elmore, 2007). E6 

proteins from high-risk, low-risk and cutaneous HPVs have been shown to 

induce the proteasomal degradation of Bak, the protein that forms the 

mitochondrial pores during apoptosis (Jackson et al., 2000; Thomas & Banks, 

1998; Thomas & Banks, 1999). As a result of this, there is no disruption of the 

mitochondria, no release of mitochondrial proteins and no activation of the 

effector caspases. By targeting both the intrinsic and extrinsic apoptotic 

pathways, E6 can ensure that the infected cell circumvents any apoptotic 

signals it may receive.  

 

1.10.4. Disruption of cell-cell adhesion and polari ty  

The stratified epithelium is made up of many layers of cells, each at a different 

stage of differentiation. Therefore, it is important that the cellular organisation of 

the epithelium is very tightly regulated to ensure that the correct signals for 

proliferation and differentiation reach the correct cells. This involves the 

establishment of correct contacts between neighbouring cells, as well as 

between cells and the extracellular matrix (ECM) and also, the regulation of 

apico-basal polarity of epithelial cells (Bilder, 2004). For example only basal 

cells are attached to the extracellular matrix of the basement membrane and 

receive proliferation signals. Once a cell exits the basal layer, it stops receiving 

proliferation signals, and starts receiving signals for differentiation. As discussed 
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earlier, HPVs have many ways in which to keep suprabasal cells in cycle so that 

the viral DNA is able to keep replicating. Some of these involve the disruption of 

cell adhesion and polarity by E6. 

 

1.10.4.1. The PDZ proteins – hScrib, hDlg and MAGI 

The PDZ-domain containing proteins (PDZ proteins) are a large group of 

cellular proteins that contain one or more of the structural PDZ domains (named 

after PSD95, DlgA and ZO-1 proteins) involved in protein-protein binding. Some 

PDZ proteins have been shown to interact with viral oncoproteins, such as the 

E6 protein of high-risk HPVs, via the PDZ-binding motifs of the latter. Certain 

PDZ proteins have been implicated in the regulation of epithelial polarity or are 

scaffold proteins that are involved in the organisation of multi-protein membrane 

structures (Thomas et al., 2008). These include hScrib, hDlg and MAGI-1, -2 

and -3, which are the best characterised PDZ proteins with respect to their 

interaction with E6 and have been shown to be targeted for proteasomal 

degradation, by way of this interaction (Gardiol et al., 1999; Glaunsinger et al., 

2000; Kiyono et al., 1997; Lee et al., 1997; Nakagawa & Huibregtse, 2000; 

Thomas et al., 2002).  

 

hScrib and hDlg are human homologues of the well studied Drosophila 

melanogaster genes scribble and discs large respectively (Dow et al., 2003; Lue 

et al., 1994). They are members of the Scribble polarity complex, which 

localises to the basolateral membrane and is implicated in the formation of 

adherens junctions (Bilder & Perrimon, 2000; Firestein & Rongo, 2001; Woods 

et al., 1996). As such, they are involved in keeping the ordered structure of the 

epithelium as well as in signal transduction (Humbert et al., 2003). Importantly, 

loss of cell polarity is a common feature in human cancers (Gardiol et al., 2006; 

Javier, 2008) and it is thus not surprising that these polarity proteins have been 

shown to interact with proteins from various oncogenic viruses such as the HPV 

E6 protein, the Human T-lymphotropic virus Type 1 (HTLV-1) Tax protein and 

the Adenovirus 9 E4ORF1 protein (Glaunsinger et al., 2000; Lee et al., 1997).  

 

In addition to their role in polarity, hScrib and hDlg (and their Drosophila 

counterparts) are important in controlling cell proliferation and have been 
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classified as tumour suppressors (Bilder et al., 2000; Dow et al., 2003; Woods & 

Bryant, 1989). Mutations of these proteins in both Drosophila and mammals 

have been shown to cause aberrant growth and loss of tissue morphology and 

differentiation (Bilder et al., 2000; Woods & Bryant, 1989; Zhan et al., 2008). 

Suggested ways in which loss of polarity proteins could affect growth include 

deregulation of signalling pathways and loss of contact inhibition (Bilder et al., 

2000). 

 

hScrib and hDlg are also implicated as tumour suppressors in studies that have 

shown them to bind to the adenomatous polyposis coli (APC) protein, via the 

PDZ-domains of the former and the PDZ-binding motif of the latter (Matsumine 

et al., 1996; Takizawa et al., 2006). APC is a tumour suppressor that regulates 

cell cycle progression (Baeg et al., 1995) and is part of the Wnt pathway, where 

its role is to keep the levels of free β-catenin low in the absence of Wnt signals 

(reviewed in Logan & Nusse, 2004). Binding of both hScrib and hDlg to APC 

has been shown to contribute to the negative regulation of the cell-cycle 

(Ishidate et al., 2000; Nagasaka et al., 2006). Disruption of this interaction by E6 

(Kiyono et al., 1997; Takizawa et al., 2006) would be expected to result in 

deregulated growth.  

 

The recruitment of both hScrib and hDlg to sites of cell-cell contact appears to 

be dependent on E-cadherin (Navarro et al., 2005; Reuver & Garner, 1998). 

Non-membrane forms of hDlg have also been identified, including nuclear and 

cytoplasmic forms (Garcia-Mata et al., 2007; McLaughlin et al., 2002; Roberts et 

al., 2007). These seem to be at least in part regulated by cellular differentiation, 

suggesting different functions of hDlg at different stages of differentiation or 

even a role for hDlg in the differentiation process (Roberts et al., 2007; Watson 

et al., 2002). Moreover, different phosphorylated forms of hDlg have been 

identified (Mantovani et al., 2001; Massimi et al., 2006) some of which exhibit 

differential cellular localisation. For example, hDlg that is phosphorylated 

following osmotic stress localises to sites of cell-cell contact (Massimi et al., 

2006). Interestingly, phosphorylated forms of hDlg were found to be more 

susceptible to degradation by HPV E6 proteins (Massimi et al., 2006; Narayan 

et al., 2009b). Moreover, hDlg was shown to be a substrate for phosphorylation 

by CDKs 1 and 2 (Narayan et al., 2009a) and its localisation appears to change 
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during the cell-cycle with one study showing it to be predominantly on the 

membrane during G1, and on the mitotic spindle in mitosis (Narayan et al., 

2009a). Together these studies suggest the existence of distinct cellular pools 

of hDlg, with different modifications and functions and hint at the complexity of 

this multifunctional protein.  

 

Loss of polarity has been linked to the development of a more invasive 

phenotype (Humbert et al., 2003) and this is supported by observations that 

aggressive cancers harbour lower levels of hDlg (Watson et al., 2002). Studies 

using mutants of Drosophila Scribble or hScrib have shown that its deregulation 

alone is not enough to cause an invasive phenotype, and additional mutations 

in oncogenes, such as Ras or Notch, are thought to be necessary for this 

(Brumby & Richardson, 2003; Dow et al., 2008). One way in which hScrib has 

been shown to regulate cell migration is by blocking the Ras-activated MAPK 

signalling pathway. Loss of hScrib in conjunction with activation of Ras, 

activates this pathway and promotes cell invasion (Dow et al., 2008).  

 

Another group of PDZ proteins that have been shown to interact with E6 are the 

MAGIs (Glaunsinger et al., 2000; Thomas et al., 2002). E6 targets two pools of 

MAGI, a nuclear and a membrane pool, suggesting that both may be 

detrimental for the viral life-cycle (Kranjec & Banks, 2010). Not much is known 

about the nuclear pool of MAGI, however the membrane pool is involved in tight 

junction formation (Ide et al., 1999; Thomas et al., 2008). Tight junctions 

regulate important signalling pathways that are involved in both cell proliferation 

and differentiation (Matter & Balda, 2003). Loss of MAGI in HPV-infected cells 

may thus deregulate these pathways.  

 

Membrane bound MAGI plays a role in the localisation of the tumour suppressor 

protein PTEN, by interacting with it via the PDZ domains of the former and the 

PDZ-binding motif on the latter (Kotelevets et al., 2005; Wu et al., 2000b; Wu et 

al., 2000c). Interestingly, PTEN is also stabilised via its interaction with MAGI 

(Valiente et al., 2005; Wu et al., 2000b). PTEN down-regulates signalling 

pathways that promote cell growth (Marte & Downward, 1997; Stambolic et al., 

1998) and PTEN mutations have been shown to lead to a decrease in apoptosis 

or an increase in cell growth (Stambolic et al., 1998), both of which can result in 
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tumorigenesis. Therefore, the disruption of the interaction between MAGI and 

PTEN is another way in which E6 can promote malignancy. 

 

In addition to the above, other PDZ proteins have also been shown to bind to 

(and sometimes be degraded by) high-risk E6. These include PATJ (Storrs & 

Silverstein, 2007), which is involved in tight junction formation, and MUPP-1 

(Lee et al., 2000), which localises to tight junctions and is involved in signalling. 

Other targets include TIP-1 (Hampson et al., 2004), TIP-2 (Favre-Bonvin et al., 

2005), PTPN3 (Jing et al., 2007), PTPN13 (Spanos et al., 2008), which are 

involved in signalling pathways, and CAL (Jeong et al., 2007), which is involved 

in trafficking of membrane proteins. 

 

1.10.4.2. Degradation of PDZ-proteins by E6  

The high-risk E6 oncoproteins have a class I PDZ-binding motif (X-S/T-X-V/L) at 

their extreme C-terminus (Kiyono et al., 1997; Lee et al., 1997). Several high-

risk HPV E6 proteins have been shown to possess a PDZ-binding motif, and 

binding to PDZ proteins has been implicated in E6’s tumorigenic activities 

(Nguyen et al., 2003). Furthermore, this C-terminal motif is shared by 

oncoproteins of other tumour viruses such as the Adenovirus E4 ORF1 protein 

and the HTLV-1 Tax protein (Lee et al., 1997) as well as by the NS1 proteins of 

influenza viruses (Obenauer et al., 2006). 

 

The low-risk HPV E6 proteins lack a PDZ-binding motif and consequently are 

unable to bind to PDZ proteins (Kiyono et al., 1997; Lee et al., 1997; Nakagawa 

& Huibregtse, 2000). Intriguingly, recent studies have suggested the 

degradation of PDZ proteins by the E6* splice variant of E6 (which lacks the 

PDZ-binding motif) in the absence of full-length E6 (Pim et al., 2009; Storrs & 

Silverstein, 2007). Some controversy exists with respect to whether or not E6* 

can directly bind to the PDZ proteins, however this may be reflective of the 

different PDZ proteins that were investigated in each study.  

 

Different studies have also looked at whether E6AP is involved in the 

degradation of PDZ proteins by E6, and the results vary. One study suggested 

that the E6-E6AP complex is involved in the degradation of hScrib (Nakagawa 
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& Huibregtse, 2000) whilst others suggested that the degradation of hDlg, 

hScrib, MAGI and PATJ may be E6AP-independent (Grm & Banks, 2004; 

Massimi et al., 2008; Pim et al., 2000; Storrs & Silverstein, 2007). It is probable 

that different mechanisms may be involved in the E6-mediated degradation of 

cellular proteins. This is also supported by data showing E6AP-independent 

degradation of p53 (Massimi et al., 2008). E6 may therefore interact with other 

ubiquitin ligases, apart from E6AP and a recent report has identified the 

ubiquitin ligase EDD as a novel cellular binding partner of E6 (Tomaic et al., 

2011).  

 

E6 proteins from different high-risk HPV types have been shown to have 

varying affinities to PDZ proteins. HPV16 E6 preferentially binds to and 

degrades hScrib, with minimal effect on hDlg, whereas the contrary is true for 

HPV18. This is due to the single amino acid variation in the PDZ-binding motifs 

of the two E6 proteins (Thomas et al., 2005). Interestingly MAGI was found to 

be targeted for degradation efficiently by both HPV16 and HPV18 (Kranjec & 

Banks, 2010).  

 

Most studies looking at the effect of high-risk E6 proteins on PDZ proteins have 

been carried out using the E6 proteins from HPV16 or 18. Whether other high-

risk E6 proteins have the same effects, needs to be determined. Moreover, 

most such studies have been carried out in vitro or using over-expression 

systems. Whether endogenous PDZ proteins are targeted for degradation by 

episomally-expressed E6 remains unclear. In fact, a study using HPV31-

transfected keratinocytes, reported that there was no significant difference in 

the levels of PDZ proteins between un-transfected and transfected cells (Lee & 

Laimins, 2004). However, the authors did report lower viral copy numbers and a 

slower growth rate of cells harbouring a PDZ-binding mutant HPV31 genome, 

compared to cells harbouring the wild-type HPV31 genome (Lee & Laimins, 

2004). 

 

Although the potential tumorigenic effects of the interaction between E6 and 

PDZ proteins have been discussed, the role of this interaction in the viral life-

cycle remains unclear. One role however may be in the persistence of viral 

genomes in the basal layer of the epithelium (Lee & Laimins, 2004). 
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1.10.4.3. Interaction with focal adhesion molecules  

In addition to PDZ proteins, E6 from different PVs have been shown to interact 

with paxillin and zyxin, which are focal adhesion proteins and are involved in 

signal transduction (Degenhardt & Silverstein, 2001; Tong & Howley, 1997). 

Binding of E6 to these proteins results in breakdown of the actin cytoskeleton 

and consequently the cell structure, and could contribute to cell transformation.  

 

1.10.5. Induction of telomerase activity 

Expression of high-risk E6 protein can lead to cell immortalisation (Band et al., 

1991) and one of the mechanisms employed is activation of telomerase. 

Telomerase is a ribonucleoprotein whose function is to extend the telomeric 

ends of chromosomes. It is inactive in most cells and the continuous shortening 

of the telomeres with each cell division eventually leads to cell senescence. 

Telomerase is made up of an RNA template (TERC) and a catalytic subunit 

(hTERT). hTERT activity can be detected in the majority of immortalised cells 

and cancers (reviewed in Wai, 2004).  

 

E6 induces telomerase activity in different cells including human keratinocytes 

and this is independent of E6’s ability to degrade p53 (Klingelhutz et al., 1996). 

Telomerase activity is induced by up-regulation of hTERT transcription 

(Veldman et al., 2001) as well as by direct interaction of E6 with telomerase and 

with telomeric DNA sequences (Liu et al., 2009).  

 

It has also been suggested that E6-mediated activation of telomerase may be 

E6AP-dependent (Liu et al., 2005), however, other studies have suggested that 

there may also be an E6AP-independent pathway (Sekaric et al., 2008). 

Moreover, E6 and E6AP have been shown to promote histone acetylation of the 

hTERT promoter, as well as affect many of its activators and repressors (Howie 

et al., 2009; James et al., 2006). 

 

1.10.6. Association with other cellular binding par tners  

In addition to its more well-characterised binding partners mentioned above, E6 

also interacts with other cellular proteins. Some of these interactions correlate 
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with the oncogenic potential of the E6 protein, thus suggesting roles in HPV-

mediated cancer progression. One protein that E6 binds to is E6-targeted 

protein 1 (E6TP1), a GTPase-activating protein that E6 has been shown to 

degrade by means of E6AP (Gao et al., 1999; Gao et al., 2002). Only high-risk 

E6 proteins were found to degrade E6TP1 (Gao et al., 1999).  

 

Other interactions of E6 have more defined implications for cancer progression, 

and these include proteins involved in maintaining chromosome stability. One 

such protein is minichromosome maintenance 7 (MCM7), which both high- and 

low-risk E6 proteins have been shown to bind to (Kukimoto et al., 1998) and 

HPV18 E6 has been suggested to degrade (Kuhne & Banks, 1998). MCM7 has 

a role in ensuring that cellular DNA only replicates once per cell cycle (reviewed 

in Chong et al., 1996), thus disruption of this control is thought to contribute to 

genomic instability. Furthermore, E6 interacts with proteins involved in DNA 

repair, such as XRCC1 (Iftner et al., 2002), and O(6)-methylguanine-DNA 

methyl-transferase (MGMT) (Srivenugopal & Ali-Osman, 2002), the latter of 

which E6 also degrades. These activities of E6 have therefore been suggested 

to sensitise HPV-positive cells to DNA damage and consequently promote 

genetic instability. 

 

As mentioned earlier, E6 interferes with the interaction of APC with PDZ 

proteins (Kiyono et al., 1997; Takizawa et al., 2006), and this may in turn affect 

signalling via the Wnt pathway. Interestingly, a recent study has shown that E6 

expression can also affect the Wnt pathway in a manner that is independent of 

APC (Lichtig et al., 2010). Furthermore, E6 has been shown to down-regulate 

the levels of E-cadherin, which can also deregulate the Wnt pathway (Matthews 

et al., 2003).  

 

Although these activities of E6 have potential implications for cancer 

development, their roles in the viral life-cycle remain unclear.  

 

1.10.7. Effects on viral transcription  

In section 1.10.3 I mentioned the E6-mediated degradation of TIP60 (Jha et al., 

2010). TIP60 is involved in cellular transcription, apoptosis and activation of 
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DNA-damage pathways. (Sun et al., 2005; Sykes et al., 2006; Tang et al., 

2006b). Experiments in HeLa cells showed TIP60 to be a repressor of the viral 

early promoter (measured by the levels of E6 mRNA) (Jha et al., 2010). This led 

the authors to suggest that by degrading TIP60, E6 may be able to counteract 

this repression, thus promoting its own expression as well. It is important to note 

however that the viral promoter is regulated differently depending on the 

physical state and conformation of the viral DNA (Bechtold et al., 2003; Schmidt 

et al., 2005). Therefore, these results may be true for cancer cell lines but may 

not hold true for cell lines in which the HPV DNA is episomal.  

 

1.10.8. E6 localisation 

E6 has been shown to have activities in the cytoplasm, such as binding to 

E6AP, as well as in the nucleus, such as binding to transcriptional regulators. 

Several studies have looked at the localisation of E6 in cells however their 

results differ. E6 has been reported to be primarily nuclear, or nuclear and 

membrane-associated, when expressed in COS cells (Kanda et al., 1991; 

Sherman & Schlegel, 1996) or insect cells (Daniels et al., 1998; Grossman et 

al., 1989). In contrast, it has also been shown to be both nuclear and 

cytoplasmic in cervical lesions (Tosi et al., 1993) and perinuclear in the HPV16-

positive cervical cancer line SiHa (Daniels et al., 1998). In yet another study, E6 

was reported to be primarily cytoplasmic in the HPV16- or 18- integrated 

cervical cancer lines HeLa, CaSki and SiHa, where it was shown to co-localise 

with p53 (Liang et al., 1993), but primarily nuclear in transiently transfected 

COS cells, where it was again shown to co-localise with p53 (Lechner et al., 

1992). More recently, Tao et al. identified three nuclear localisation signals 

(NLSs) on the HPV16 E6 protein, which they authors suggest play an active 

role in driving the protein to accumulate in the nucleus (Tao et al., 2003). It is 

not yet clear if the inconsistency between these studies is due to the different 

cell lines or techniques used. 
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1.11. Immune response and infection clearance  

 

1.11.1. Regulation of the immune response   

The HPV life-cycle has some important features that “protect” the virus from 

being cleared by the immune system. One such feature is the lack of 

inflammation following HPV infection. This is because the virus is not lytic, and 

also because the infected keratinocytes are cells that are already destined to 

die. Moreover, there is no viraemia, as both the infection and the shedding of 

the progeny virions takes place away from the blood and lymphatic systems 

(reviewed in Stanley, 2009).  

 

Moreover, HPVs have been shown to interfere with interferon- (IFN) signalling. 

E7 has been shown to interfere with the transcriptional activity of the IFN-

stimulated gene factor 3 complex (Barnard & McMillan, 1999) and to also bind 

to IFN regulatory factor-1 (IRF-1) and abrogate its transcriptional activity (Park 

et al., 2000). E6 has been shown to do the same to IRF-3 (Ronco et al., 1998). 

Microarray analysis of HPV31-positive cells has indicated a significant down-

regulation of IFN-inducible genes, such as Stat-1, compared to HPV-negative 

cells (Chang & Laimins, 2000) and a similar study using HPV16 suggests that 

this may be at least in part due to expression of E6 (Nees et al., 2001). 

Moreover, E6 has been shown to interact with Tyk2 thereby reducing Jak-Stat 

activation by IFN-α (Li et al., 1999) and E6 and E7 inhibit transcription of toll-like 

receptor 9 (TLR9) and consequently abrogate its signalling pathway (Hasan et 

al., 2007).  

 

Furthermore, in HPV-induced lesions there is a decrease in the levels of E-

cadherin, compared to normal epithelium, and this correlates with reduced 

infiltration of antigen-presenting Langerhans cells (Hubert et al., 2005). The 

depletion of E-cadherin by HPV has been attributed to the activities of both E6 

(Matthews et al., 2003) and E7 (Laurson et al., 2010). Interestingly, down-

regulation of E-cadherin is a feature that HPVs share with other tumour viruses, 

such as Epstein-Barr virus (EBV) (Fahraeus et al., 1992), Hepatitis B (Liu et al., 

2006) and Hepatitis C (Iso et al., 2005) viruses (HBV and HCV). Importantly, a 

potential consequence of this is the reduction of the anti-viral immune response.   
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In addition to E6 and E7, E5 is also involved in immune evasion, as it has been 

shown to decrease the levels of MHC I molecules on the surface of W12 cells. 

As a result, antigen presentation is inhibited, and cell recognition by the immune 

system is reduced (Campo et al., 2010).  

 

1.11.2. Infection clearance  

HPV infections are thought to occur very frequently, seen in as much as 80% of 

some adolescent populations (Brown et al., 2005), yet the incidence of high-

grade disease is considerably lower. It is thought that neoplasias of even the 

highest grade (CIN-3) can naturally regress, however the probability that a 

lesion progresses to cancer increases with the severity of the neoplasia. It has 

been suggested that, if not treated, 40% of CIN-3 lesions may eventually 

develop into cancer (Peto et al., 2004). 

 

Despite the abovementioned methods that HPVs use to evade immune 

responses, it is widely thought that most HPV infections are naturally cleared. 

This is believed to occur either via the self-limiting nature of the viral life-cycle, 

or via the mounting of an immune response (Schiffman & Kjaer, 2003). The role 

of the immune system in infection clearance is also highlighted by the higher 

incidence of infection and disease progression in immunocompromised 

individuals, such as HIV patients and organ transplant patients who are given 

immune-supressants (Palefsky et al., 2006).  

 

Histological analyses of genital warts have revealed infiltration of both T cells 

and macrophages into the wart, which undoubtedly contribute to the eventual 

regression of the wart (Coleman et al., 1994). Furthermore, CD4+ T cell 

responses to HPV E2 and E6 have been implicated in viral clearance, and 

these were found to be reduced in patients with high-grade lesions (Welters et 

al., 2003; Welters et al., 2006). Importantly, the L1 capsid protein has been 

found to be very immunogenic, allowing the development of two HPV 

prophylactic vaccines. These make use of L1 virus-like particles (VLPs) to 

generate anti-L1 antibodies, thereby conferring protection to future HPV 

infection (Stanley, 2009). 
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1.12. Persistence 

Despite the successful clearance of most HPV infections, in some cases the 

infection can persist, and there appears to be a correlation between this 

persistence and the development of high-grade disease or cancer (Remmink et 

al., 1995; Schiffman & Kjaer, 2003). This is thought to occur due to the 

prolonged expression of E6 and E7, whose combined activities can lead to the 

accumulation of mutations and genomic instability.  

 

As mentioned earlier, the combined activities of E6 and E7 cause aberrant cell 

proliferation and also block several important cell-cycle check-points, all of 

which can promote the accumulation of mutations in the cell. In addition, the 

expression of E6 and E7 has been shown to cause abnormal centrosome and 

mitotic spindle formation in HPV-positive cells thereby promoting genomic 

instability and aneuploidy (Duensing et al., 2000; Duensing et al., 2001; 

Heselmeyer et al., 1996). 

 

Persistence of viral DNA in the tissue may be accompanied by a continuing 

productive infection. Alternatively, viral DNA may persist in the basal layer of the 

epithelium as a latent infection, without any signs of disease (Abramson et al., 

2004; Maglennon et al., 2011). Persistence of viral episomes in the basal layer 

of the epithelium is necessary whether for lasting and symptomatic infections, or 

for latent infections. Several studies have identified the need for the expression 

of specific viral proteins in order for episomes to persist. Both of the replication 

proteins, E1 and E2 have been found to be necessary (Ken Raj, unpublished 

data) and, for E1, it has been suggested that its export from the nucleus may 

also be necessary for this (Fradet-Turcotte et al., 2010). Furthermore, E6 and 

E7 were found to be necessary for the persistence of both low- and high-risk 

HPV episomes (Laurson et al., 2010; Oh et al., 2004; Thomas et al., 1999), 

although it appears that, for E7, this may not be the case in immortalised cells 

(Flores et al., 2000; Laurson et al., 2010). E4 and E5 were found to be 

dispensable for episomal persistence (Fehrmann et al., 2003; Genther et al., 

2003; and Ken Raj, unpublished data). 
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In order for extrachromosomal episomes to persist in dividing cells, they must 

both replicate and actively segregate into the two daughter cells upon cell 

division and subsequently localise to the newly formed nuclei. 

 

1.12.1. Replication 

Apart from expressing E1 and E2, HPVs rely entirely on the cellular replication 

machinery to replicate their DNA. The replication for PVs has been proposed to 

consist of three different phases. In the first phase following infection the PV 

episomes replicate faster than cellular DNA resulting in an increase of viral 

genomes per cell (Lusky & Botchan, 1986). This initial amplification phase is 

often referred to as establishment, and is followed by a maintenance phase, 

during which the viral genomes remain at a more or less constant number per 

cell. Both the establishment and maintenance phases are thought to take place 

in the basal cells. In the upper layers of the epithelium, the cells stop dividing 

and the viral genomes undergo amplificational replication again, where their 

copy numbers increase dramatically. 

 

The initial establishment phase is thought to require the presence of two viral 

proteins, E1 and E2, and the viral origin of replication including the E1- and E2-

binding sites (Chiang et al., 1992b; Del Vecchio et al., 1992; Frattini & Laimins, 

1994; Remm et al., 1992; Sverdrup & Khan, 1994). E2 binds to its binding sites 

in the LCR and recruits E1 to its own binding site within the replication origin. 

Following E1 recruitment, E2 is thought to dissociate from its binding sites 

(Desaintes & Demeret, 1996). The role of E1 in viral replication is varied. It is a 

DNA helicase, so is actively involved in the unwinding of DNA (Hughes & 

Romanos, 1993), and is also involved in the recruitment of members of the 

cellular DNA replication machinery to the viral origin of replication. These 

include replication protein A (Han et al., 1999), topoisomerase (Clower et al., 

2006) and polymerase α-primase (Park et al., 1994). 

 

The maintenance phase of DNA replication is characterised by a relatively 

stable HPV copy number per cell following successive rounds of cell division. 

Some controversy exists in terms of the mechanism employed in this phase, 

with a study suggesting that BPV1 DNA replicates once in every cell cycle 
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(Roberts & Weintraub, 1988), and another suggesting a more random 

replication, with some episomes replicating several times and some not 

replicating at all (Piirsoo et al., 1996). A recent investigation of HPVs however 

reported that the mode of replication varies depending on the cell type as well 

as the HPV type studied (Hoffmann et al., 2006). Interestingly, one study also 

proposed that the E1 protein may not be required for this phase of viral 

replication (Kim & Lambert, 2002) whereas another proposed that neither E1 

nor E2 may be required (Pittayakhajonwut & Angeletti, 2010). Therefore, there 

appear to be different mechanisms that regulate the establishment and 

maintenance phases of DNA replication. In fact, it has also been suggested that 

p53 expression down-regulates establishment replication but not maintenance 

replication, further hinting at two different modes of replication (Ilves et al., 

2003; Lepik et al., 1998). 

 

The last phase of DNA replication is the differentiation-dependent 

amplificational replication, which occurs in the upper layers of the epithelium 

and coincides with an increase in E1 and E2 transcripts, generated from the late 

promoter (Klumpp & Laimins, 1999). E4 expression is also up-regulated in this 

phase, and E4 has been shown to be important for this phase of replication 

(Nakahara et al., 2005; Peh et al., 2004; Wilson et al., 2005; Wilson et al., 2007) 

although this may not be true for all HPV types (Fang et al., 2006).  

 

There appear to be differences between the control of viral replication in 

undifferentiated and differentiated cells. It appears that E7 is not required for the 

establishment and maintenance phases of replication but is required for the 

amplification phase (Flores et al., 2000) and this is reflective of the need for E7 

in the induction of the cellular replication machinery in the suprabasal cells. 

Moreover, it has been suggested that E6 inhibits viral replication in 

undifferentiated cells (Grm et al., 2005), but is necessary for DNA amplification 

in differentiated cells (Wang et al., 2009). Furthermore, HPVs have been shown 

to activate the ATM (ataxia-telangiectasia mutated) DNA damage response 

pathway and this is necessary for DNA amplification in differentiated cells but 

not establishment and maintenance replication (Moody & Laimins, 2009). 

Therefore, it appears that different mechanisms may be at play to promote viral 

replication across the various stages of the life-cycle.  
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Interestingly, the replication of viral DNA is targeted by IFN-signalling and it has 

recently been shown that, for HPV replication, one mechanism of this is the 

binding of p56, an interferon-inducible protein, to E1 (Terenzi et al., 2008).  

 

1.12.2. Segregation of episomes 

Segregation of viral episomes has been studied in different DNA tumour viruses 

and common features have been identified. Segregation is thought to be 

controlled by the tethering of viral episomes to cellular chromosomes before or 

during mitosis. This is mediated via a DNA-binding viral protein, which binds to 

the viral episomes, and a DNA-binding cellular protein, which binds to the 

cellular chromosomes. The viral and cellular proteins interact, thereby tethering 

the viral episomes to cellular chromosomes (Feeney & Parish, 2009). 

 

E2 proteins from a variety of PVs have been shown to associate with cellular 

chromosomes during mitosis (Bastien & McBride, 2000; Ilves et al., 1999; 

Lehman & Botchan, 1998; Oliveira et al., 2006; Skiadopoulos & McBride, 1998) 

or with the mitotic spindle (Van Tine et al., 2004). This proposes a role for E2 in 

ensuring proper segregation of viral episomes, and also suggests that PVs may 

employ different mechanisms for episomal segregation. 

 

Several cellular proteins have been implicated in this process and these include 

Brd4, a member of the bromodomain protein family (Abbate et al., 2006; Baxter 

et al., 2005; You et al., 2004; You et al., 2005) and ChlR1 (Parish et al., 2006a), 

a DNA helicase involved in the cohesion of sister chromatids (Parish et al., 

2006c). More recently, the topoisomerase II-binding protein 1, TopBP1, was 

also suggested as a possible mediator of episomal segregation as it was shown 

to interact with HPV16 E2 in mitosis (Donaldson et al., 2007). The elucidation of 

this process has been made more difficult by the fact that these cellular proteins 

are also known to be involved in other viral processes, such as transcription and 

replication and therefore care must be taken when trying to dissect these roles. 

Moreover, studies suggest that the mechanisms for the segregation of viral 

episomes (McPhillips et al., 2006; Oliveira et al., 2006) may vary between 

different PVs. 
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Studies of other tumour viruses have revealed similar mechanisms for episomal 

persistence. The viral protein involved in tethering of EBV episomes to cellular 

chromosomes was shown to be EBNA1 (EBV nuclear antigen 1) (Petti et al., 

1990), whereas for Kaposi’s sarcoma-associated herpesvirus (KSHV), it was 

found to be LANA (latency-associated nuclear antigen) (Cotter & Robertson, 

1999). Moreover, both histone H1 (Marechal et al., 1999) and EBNA binding 

protein 2 (EBP2) (Wu et al., 2000a) have been proposed as the cellular proteins 

that mediate the binding of EBV episomes to cellular chromosomes, whereas 

for KSHV possible candidates include Brd4 (You et al., 2006) and histones H2A 

and H2B (Barbera et al., 2006).  

 

It is interesting to note the various similarities between these three tumour 

viruses in that E2, EBNA1 and LANA have all been implicated in viral 

replication, viral transcription and tethering of viral episomes for segregation.  

 

1.13. Aims of thesis 

The general aim of this study was to elucidate the role of the viral E6 protein in 

the persistence of HPV episomes in cells. The specific objectives are outlined 

below: 

 

1) To investigate specific activities of E6 that are necessary for the persistence 

of HPV16 episomes; 

 

2) To determine how these activities of E6 may be regulating viral episomal 

persistence; 

 

3) To further characterise the interaction of the E6 protein with PDZ proteins. 
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Chapter 2: Materials and Methods 

 

2.1. Commonly used buffers and reagents 

Table 2.1: Buffers and reagents 

Name Components 

1x Phosphate buffered 

saline (PBS) 

1% NaCl, 0.025% KCl, 0.14% Na2HPO4,  

0.025% KH2PO4 

SDS electrophoresis 

buffer 

25 mM Tris base, 250 mM glycine, 0.1% sodium 

dodecyl sulfate (SDS); pH 8.3 

Luria Broth 1% Bacto-Tryptone, 0.5% Bacto-yeast extract,   

1% NaCl 

Luria Agar LB medium plus 1.5% Difco agar 

SOC medium 2% Bacto-Tryptone, 0.5% Bacto-yeast extract, 

0.06% NaCl, 0.02% KCl, 0.2% MgCl2.6H2O, 

0.25% MgSO4.7H2O, 0.36% Glucose 

Transfer buffer 48 mM Tris, 39 mM Glycine, 20% Methanol 

RIPA protein extraction 

buffer 

150 mM NaCl, 1% Triton X, 0.5% Sodium 

Deoxycholate, 0.1% SDS, 50 mM Tris pH 8.0, 

0.005 mM EDTA. Protease Inhibitor cocktail was 

added prior to use (3 µl per 1 ml buffer) 

RIPA 6% SDS protein 

extraction buffer 

Same as RIPA Protein Extraction buffer but with 

6% SDS instead of 0.1% SDS. 

Urea protein extraction 

buffer 

8M urea, 0.1M NaH2PO4, 0.01M Tris; pH 7.0 

Trypsin-versene 0.8% NaCl, 0.02% KCl, 0.12% Na2HPO4,  

0.02% KH2PO4, 0.01% EDTA, 0.13% trypsin, 

0.001% phenol red. pH 7.8  

20x SSC 3 M NaCl, 300 mM sodium citrate; pH 7.0 

5x SDS gel-loading 

buffer 

250 mM Tris-Cl (pH 6.8), 500 mM dithiothreitol 

(DTT), 10% SDS, 0.5% bromophenol blue, 50% 

glycerol 

50x Tris acetate  

EDTA (TAE) 

242 g Tris base, 57.1 mL glacial acetic acid,    

18.6 g EDTA 
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2.2. Cell culture methods 

 

2.2.1. Cell lines 

2.2.1.1. J2-3T3 mouse fibroblast cells 

J2-3T3 cells are immortalised mouse fibroblasts, originally isolated from Swiss 

mouse embryos (Todaro & Green, 1963). Irradiated J2-3T3 cells were used as 

a feeder layer for the growth of NIKS cells. 

 

2.2.1.2. Normal Immortalised Keratinocytes (NIKS) 

Most of the experiments described in this study were carried out using NIKS 

cells. NIKS cells are an HPV-negative, spontaneously immortalised keratinocyte 

cell line, which arose from the serial passage of primary cells isolated from 

neonatal foreskin and designated BC-1-EP (Allen-Hoffmann et al., 2000). 

 

2.2.1.3. 293T and HT1080 cells 

293 cells are human embryonic kidney cells that were transformed using 

adenovirus type 5 DNA (Graham et al., 1977). The 293T cell line is a variant of 

the 293 cell line into which the gene for the SV40 T-antigen has been inserted 

(DuBridge et al., 1987). The HT1080 cell line was derived from a biopsy of a 

fibrosarcoma (Rasheed et al., 1974).  

 

2.2.2. Media and supplements 

The media used for the maintenance of the cell lines as well as for the freezing 

of cells for long-term storage are described in Table 2.2. The supplements used 

in cell culture media were prepared as 1000x stocks and filter-sterilised using a 

0.2 µm filter unit. The supplements were frozen at -20 ºC.  
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Table 2.2: Cell culture media and freeze media 

Cell type Medium type  Medium components 

NIKS F-medium  375 ml F12-Ham’s (PAA; E15-817), 125 ml high 

glucose DMEM (PAA; E15-843), 5% (v/v) FBS 

(Hyclone; CH30160.03), 5 ml pen/strep (Sigma; 

P0781), 24 µg/ml adenine (Sigma; A2786),     

8.4 ng/ml cholera toxin (Sigma; C8052), 5 µg/ml 

insulin (Sigma; I4011) and 0.4 µg/ml 

hydrocortisone (Sigma; H0888). Epidermal 

Growth Factor (EGF) was added to the medium 

immediately prior to use at a concentration of   

10 ng/ml (Sigma; E9644) 

NIKS F - freeze 

medium 

80% v/v F-medium, 10% v/v FBS, 10% v/v 

DMSO (Sigma; D2650) 

J2-3T3, 

293T, 

HT1080 

10% DMEM 500 ml high glucose DMEM, 10% v/v FBS and   

5 ml pen/strep  

J2-3T3 3T3 - freeze 

medium 

42% v/v 10% DMEM, 50% v/v FBS and 8% v/v 

DMSO 

293T 293T - freeze 

medium 

40% v/v 10% DMEM, 50% v/v FBS and 10% v/v 

DMSO 

 

2.2.3. Maintenance of monolayer cells 

All cells were cultured at 37 oC and 5% CO2.  

 

2.2.3.1. J2-3T3, 293T, HT1080  

J2-3T3 cells were cultured in 140 mm plates (NUNC; 168381). 293T and 

HT1080 cells were cultured in 90 mm plates (NUNC; 150350). All cell lines were 

split twice a week at a ratio of 1:20 for J2-3T3 and 293T cells and 1:10 for 

HT1080 cells. To harvest, the cells were washed once with trypsin-versene and 

then incubated with trypsin-versene for 1 minute at 37 oC. Medium was then 

added and an aliquot of the cells was transferred to a new plate.  
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2.2.3.2. NIKS 

The NIKS cells (and NIKS containing HPV or NIKS-LXSN cells) were cultured 

on a layer of γ–irradiated J2-3T3 cells (feeder cells). Prior to splitting the NIKS 

cells, J2-3T3 cells were irradiated at a dose of 60 Grays using a Caesium 

source. Feeder cells were plated on 90 mm plates (1.8 x 106 per plate) in 10 ml 

F-medium and left to attach for 1-2 hours at which point the NIKS cells were 

plated over them. The NIKS cells were split 1:5 twice a week. For harvesting, 

NIKS cells were washed twice with trypsin-versene and then incubated in 3 ml 

trypsin-versene at 37 oC for 2 minutes, in order to remove the feeder layer. The 

keratinocytes were then incubated in 3 ml trypsin-versene at 37 oC for 5-10 

minutes. When the cells detached from the plate, 5 ml F-medium was added 

and they were centrifuged at 240 x g for 4 minutes. The cells were re-

suspended in F-medium and an appropriate amount was plated over the feeder 

layer.  

 

2.2.4. Long-term storage of cells 

For long-term storage, a confluent layer of cells was harvested as above, 

pelleted at 240 x g for 4 minutes, re-suspended in 1 ml freeze medium (see 

Table 2.2) and transferred to a cryogenic vial (NUNC; 366656). The vials were 

stored at -80 oC overnight and then transferred to liquid nitrogen.  

 

2.2.5. Transfection of cells 

For transient transfections, the cells were plated 1 day prior to the transfection. 

NIKS cells were harvested as above and plated on 6-well plates (NUNC; 

140675) at a density of 5.5 x 105 per well and over a layer of 1 x 105 feeder 

cells. 293T cells were harvested as above and plated at a density of 6.5 x 105 

per well. Transfections of NIKS cells were carried out using the Effectene® 

Transfection Reagent Kit (QIAGEN; 301425) following the manufacturer’s 

instructions. Cells were transfected with a total of 1 µg of DNA, which was 

purified using the QIAGEN® Plasmid Midi Kit (QIAGEN; 12143) or the QIAGEN® 

Plasmid Maxi Kit (QIAGEN; 12162). For experiments in which the transfection 

efficiency was assessed, the transfection mix was “spiked” with 50 ng of the β-

galactosidase- (β-gal) expressing plasmid, pMV10. The transfection mix was left 
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on the cells for 7 hours. The cells were then washed once and fresh medium 

was applied. Transfections of 293T and HT1080 cells were carried out in the 

same way as described in section 2.5.2 for the Phoenix cells. 

 

2.2.6. Treatment with proteasome inhibitor 

At 46 hours post-transfection, cells were treated with either 40 µM MG-132 

(Sigma; C2211) or DMSO in a total volume of 2 ml of medium for 2 hours. Cells 

were then harvested for protein analysis as described in section 2.9.1. 

 

2.2.7. Treatment with cycloheximide 

At 46 hours post-transfection, cells were treated with either 50 µg/ml 

cycloheximide (Sigma; C4859) or DMSO in a total volume of 2 ml of medium, 

for 60 or 120 minutes. Cells were then harvested for protein analysis as 

described in section 2.9.1. Cells that were not treated with the drug were also 

harvested to serve as the “0 minutes” time-point. 

 

2.3. Persistence assays 

 

2.3.1. Setting-up the population experiments 

For population experiments, NIKS cells were plated on 6-well plates 1 day prior 

to the transfection and at a density of 5 x 105 per well on a layer of 1 x 105 

feeder cells. The transfection was carried out as described in section 2.2.5. The 

cells were transfected with 800 ng of re-circularised HPV16 genome (prepared 

as described in section 2.8.2) and 200 ng pcDNA6 plasmid, which carries a 

blasticidin-resistance gene). The following day, one quarter of the transfected 

cells were plated on a 90 mm plate with 1.8 x 106 feeder cells and the remaining 

three quarters was plated on another plate with 1.8 x 106 blasticidin-resistant 

feeder cells. The following day, DNA was extracted from the one quarter of the 

transfected cells. This was used in a qPCR assay (described in section 2.8.9), 

to determine the number of HPV copies that entered the cells during 

transfection and this was used as a measurement of the transfection efficiency. 

The plate with the three quarters of transfected cells was treated with 8 µg/ml 
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blasticidin antibiotic (Invitrogen; R210-01). A control plate of un-transfected cells 

was also given the same treatment with blasticidin and was used to determine 

the end-point of the antibiotic-treatment. The treatment lasted 3-6 days with a 

change of medium and antibiotics every 2 days. When all control cells were 

dead, the surviving transfected cells were trypsinised and plated onto a new 90 

mm plate with 1.8 x 106 feeder cells. The new plate was labelled “passage 1” 

(p1). 

 

2.3.2. Passing cells for long-term analysis 

After passage 1 the cells were split 1:5 - 1:6 twice a week. When possible, the 

cells were allowed to reach confluence before splitting them. Each time the cells 

were passed to new plates, genomic DNA was extracted from the remaining 

cells using the method described in section 2.8.6. The DNA was always 

extracted fresh on the day the cells were harvested. The cells were passed in 

this way for several passages, depending on the experiment. 

 

2.3.3. Setting-up the clonal experiments 

The plating and transfection of the NIKS cells for clonal experiments is the 

same as for the population experiments described in section 2.3.1. In the clonal 

experiments however, the cells were trypsinised 48 hours post-transfection and 

counted. An equal number of cells from the different transfections, 

approximately one quarter of the total number of cells, was then divided into ten 

90 mm plates each with 1.8 x 106 blasticidin-resistant feeder cells. (i.e. 

approximately one fortieth of the total number of transfected cells was plated in 

each plate). The following day, the cells were treated with blasticidin at a 

concentration of 8 µg/ml. As with the population experiments, this treatment was 

continued until the control cells were dead (3-6 days) with medium changes 

every 2 days. At the end of the antibiotic selection, new medium was added to 

the cells (without blasticidin). One million new feeder cells were also added to 

replenish any feeder cells lost during the selection. The cells were left to grow 

with medium changes every 2 days, until individual clones became visible and 

large enough to pick. This process took 2-3 weeks.   
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2.3.4. Picking individual clones 

When the clones were large enough on the 90 mm plates, they were transferred 

individually into 6-well plates, one clone per well, with 3 x 105 feeder cells. To 

pick the clones, the medium was aspirated off the plate and the plate was 

washed twice with trypsin. The clone was then outlined with the aspirator and 

trypsin was pipetted directly onto the clone. Clones to be picked were chosen 

based on how isolated they were, so as to avoid mixing two or more clones 

together. No more than 7 clones were picked from each 90 mm plate so as to 

avoid the drying of the cells. Figure 2.1 shows a clonal plate that was stained 

with methylene blue solution (1% methylene blue in 50% methanol and 50% 

PBS).  

 

 

 

 

 

 

 

 

Figure 2.1: Methylene blue staining of plate from c lonal experiment 
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2.3.5. Growing clones and harvesting for analysis 

When the clones became confluent in the 6-well plates, they were trypsinised 

and passed on to a 90 mm plate (one clone per 90 mm plate) with 1.8 x 106 

feeder cells. The clones were left on the 90 mm plates until they became 

confluent at which point they were harvested and divided into 2 samples. One 

sample was frozen (as described in section 2.2.4) while the other sample was 

used for DNA extraction.  

 

2.4. Transient replication assay 

The method for the transient replication assays was modified from a previously 

described protocol (Taylor & Morgan, 2003). Briefly, NIKS cells (5.5 x 105) were 

seeded onto feeder cells (1 x 105) and transfected the following day with 

equimolar amounts of re-circularised wild-type or mutant HPV16 DNA (1 µg) or 

pET-28 plasmid carrying the E1^E4 cDNA (700 ng, plus 300 ng of pMV11 

plasmid), made by Dr. Pauline McIntosh (NIMR, London) and described in 

McIntosh et al., 2008. Four days post-transfection the cells were trypsinized and 

re-suspended in 0.5 ml PBS at a concentration of 1.8 x 106 cells/ml. Episomal 

DNA was extracted as previously described (Hoffmann et al., 2006). Following 

ethanol precipitation, 3 µl of DNA were digested with Dpn I for 3 hours, and then 

Exonuclease III for 30 minutes, followed by enzyme inactivation at 70 oC for 30 

minutes. Another 3 µl of DNA were treated in the same way, but without any 

enzyme, and these represent the undigested samples. Numbers of E4 copies 

were measured in both Dpn I-digested and undigested samples by qPCR (as 

described in section 2.8.9), using primers against the E4 ORF of HPV16 (Table 

2.8). The former was divided by the latter to give the percentage of replication. 

 

2.5. Retroviral expression system 

A retroviral expression system was used for the stable expression of E6 protein 

or E6 and E7 proteins in NIKS cells, or for the delivery of shRNA constructs. 

This system utilises Phoenix cells, a 293T-based cell line which is capable of 

producing the gag-pol and envelope proteins for amphotropic viruses.   
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2.5.1. Culture of Phoenix cells  

The Phoenix cells were kindly provided by Dr. Garry Nolan (Stanford University, 

Stanford). These cells were cultured in the same way as 293T cells (see section 

2.2.3.1). Phoenix cells were plated in 90 mm plates 1 day prior to transfection at 

a density of 6.5 x 106 cells per plate.  

 

2.5.2. Transfection of Phoenix cells and harvesting  of retroviruses 

Phoenix cells were transfected using polyethylinimine (PEI). The medium was 

first removed from the cells and 5 ml of high glucose DMEM without any FBS or 

antibiotics (plain DMEM) was added to the cells. Two mixtures were then 

prepared: A) 655 µl plain DMEM + 45 µl PEI (1 mg/ml) and B) 15 µg plasmid 

DNA (pLXSN  or pRETROSuper plasmids) topped up to 700 µl with plain 

DMEM. Mixtures A and B were combined, vortexed and incubated at room 

temperature for 15-30 minutes. The medium was then removed from the cells, 

3.6 ml of plain DMEM was added to the A + B mixture, and this was added to 

the cells. The transfection mix was left on the cells for 7 hours. The cells were 

then washed once and the medium was replaced with 10 ml 10% DMEM. The 

medium was changed again the following day. At 48 hours post-transfection, 

the medium, which contains retroviruses, was collected and centrifuged at    

240 x g for 4 minutes. The supernatant was collected and 1 ml aliquots were 

either used directly to infect NIKS cells or stored at -80 ºC.  

 

2.5.3. Infection of NIKS and NIKS + HPV16 cells 

NIKS cells were plated 1 day prior to infection, at a density of 5 x 105 per well 

with 1 x 105 feeder cells in 6-well plates. For infection, 1 ml of virus medium was 

mixed with 3 ml plain F12-Ham’s medium (without FBS or antibiotics), with 

supplements in the concentrations described in Table 2.2 for the F-medium. 

Polybrene was also added at a final concentration of 10 µg/ml. The existing 

medium on the cells was replaced with the virus mixture and the cells were 

incubated at 37 ºC for 7 hours, at which point the cells were washed once and 

the medium was replaced with F-medium. The following day the cells were 

passed from the 6-well plates to 90 mm plates with 1.8 x 106 antibiotic-resistant 

feeder cells, and the day after they were treated with neomycin at a 
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concentration of 300 µg/ml (for the infections with LXSN retroviruses) or 

puromycin at a concentration of 1 µg/ml (for the infections with shp53 and 

shScrib retroviruses). This treatment was continued until the control plate 

(uninfected cells) was completely dead (3-6 days), with a medium change every 

2 days.  

 

2.6. Monolayer growth assays  

 

2.6.1. Seeding cells for growth assays 

For the growth assays the cells were plated in 6-well plates. Three wells were 

set up for each cell type and each time-point, in order to obtain triplicate cell 

counts for each time-point. The feeder cells were first plated in each well and 

allowed to attach (3 x 105 per well). The keratinocytes were then trypsinised and 

counted and 1 x 105 cells were plated over the feeder cells. At this point the 

cells were plated in F-medium without any EGF. The day of plating was denoted 

as “day 0”. The following day, the cells were counted for time-point “day 1”. The 

medium was replaced on all the remaining wells with F-medium containing 

EGF. From that point onwards, the medium was changed every 2 days and the 

new medium always contained EGF.   

 

2.6.2. Counting cells for growth assays 

The cells were harvested for counting on days 1, 3, 4, 5 and 7. For harvesting, 

each well was first washed with 2 ml of warm PBS, followed by 1 ml of trypsin. 

To dislodge the feeder cells, 0.5 ml of trypsin was added to each well, and the 

cells were incubated at 37 ºC for 2 minutes. The trypsin was then aspirated and 

the well was washed with PBS to ensure the removal of the feeder cells. To 

remove the keratinocytes, 1 ml of trypsin was added and the cells were 

incubated at 37 ºC for a further 3–5 minutes. To count the cells, 1 ml of medium 

was added to the cells and 0.5 ml of the mix was used for counting on a 

Beckman Coulter Z1 Coulter® Particle Counter.  
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2.7. Generating p53- and hScrib-knockdown cells 

NIKS or NIKS + HPV16 cells were infected with retroviruses carrying shRNA 

constructs against p53, hScrib or a Scrambled sequence (shScramble) as 

described in section 2.5.3.  Following selection with puromycin, the cells were 

passed onto new plates. Once the cells had recovered, they were harvested for 

protein analysis or frozen for future use. Two shRNA constructs were used to 

knock-down hScrib in NIKS cells. These were kindly provided by Dr. Patrick 

Humbert. They are labelled shScrib 1 and 2 in this study and refer to shScrib 

constructs 6 and 7 respectively in Dow et al, 2007 (Dow et al., 2007).  

 

2.8. DNA and RNA techniques 

 

2.8.1. DNA constructs used 

Table 2.3: List of plasmids used in this study  

Name of plasmid Use Reference and/or source  

pSPW12 Plasmid used in 

generating  re-

circularised HPV16 

genomes 

Kindly provided by Dr. 

Margaret Stanley 

(University of Cambridge, 

Cambridge) 

pSPW12E6p53m 

and 

pSPW12E6PDZ 

Plasmids used in 

generating  re-

circularised mutant 

HPV16 genomes 

Made by site-directed 

mutagenesis as described 

in section 2.8.5 

pcDNA6  Used for the expression 

of the blasticidin-

resistance gene 

(Laurson et al., 2010) 

pLXSN, pLXSN-

E6WT and pLXSN-

E6WT/7  

Retrovirus vectors used 

for the stable expression 

of HPV16 E6 and E7 

proteins 

Kindly provided by Dr. 

Denise Galloway (Fred 

Hutchinson Cancer 

Research Center, Seattle) 

(Halbert et al., 1991) 
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pLXSN-E6p53m 

and pLXSN-E6PDZ 

Retrovirus vectors used 

for the stable expression 

of HPV16 E6SAT and 

E6PDZ proteins 

Made by site-directed 

mutagenesis as described 

in section 2.8.5 

pMV11-E6WT, 

pMV11-E6p53m 

and pMV11-E6PDZ 

Used for the transient 

expression of wild-type 

and mutant HPV16 E6 

proteins 

Made by cloning the E6 

ORF in the pMV11 plasmid 

as described in section 

2.8.8 

pRETROSuper-

shScrib 1 and 2 

and 

pRETROSuper-

shScramble 

Used for knocking-down 

hScrib protein 

Kindly provided by Dr. 

Patrick Humbert (Peter 

MacCallum Cancer Centre, 

Melbourne). The shScrib 

constructs 1 and 2 

correspond to shScrib 6 and 

7 respectively (Dow et al., 

2007; Dow et al., 2008) 

pRETROSuper-

shp53 

Used for knocking-down 

p53 protein 

(Brummelkamp et al., 2002) 

pET-28 Used in transient 

replication assay. 

Carries 16E1^E4 cDNA 

Made by Dr. Pauline 

McIntosh (McIntosh et al., 

2008) 

pMV10 Used for the expression 

of β-gal protein 

(Forrester et al., 1992) 

pcDNA-HA-hScrib Used for the transient 

expression of HA-hScrib 

protein 

Kindly provided by Dr. 

Lawrence Banks (ICGEB, 

Trieste) (Thomas et al., 

2005) 

pcDNA-HA-

hScrib∆PDZ 

Used for the transient 

expression of HA-hScrib 

protein that lacks the 

PDZ domains 

Kindly provided by Dr. 

Lawrence Banks (Thomas 

et al., 2005) 

pGWI-HA-Dlg Used for the transient 

expression of HA-Dlg 

protein 

Kindly provided by Dr. 

Lawrence Banks (Gardiol et 

al., 1999) 
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pGWI-HA-11E6 Used for the transient 

expression of HPV11 E6 

Kindly provided by Dr. 

Lawrence Banks 

(Glaunsinger et al., 2000) 

pcDNA-FLAG-

MAGI-1c 

Used for the transient 

expression of FLAG-

MAGI-1c protein 

Kindly provided by Dr. 

Lawrence Banks 

(Glaunsinger et al., 2000) 

pCI-EGFP Used for the expression 

of GFP  

(Tuting et al., 1999) 

 

2.8.2. Preparation of re-circularised DNA 

The HPV16 genome used to transfect cells was obtained by digesting the 

HPV16 DNA out of the pSPW12 plasmid and re-circularising it. The PB, PE and 

EB buffers as well as the QIAprep spin columns mentioned in this section are all 

included in the QIAprep® Spin Miniprep Kit (QIAGEN; 27106). The re-

circularisation was carried out by first digesting 5 µg of pSPW12 plasmid with    

2 µl BamH I enzyme in a total volume of 30 µl for 2.5 hours at 37 oC. The 

enzyme was then deactivated by incubating the mix at 85 oC for 20 minutes. 

The ligation reaction was carried out in a 16 oC water-bath overnight and was 

set up as shown in Table 2.4. To purify and concentrate the re-circularised 

DNA, the ligation reaction was mixed with 10 ml PB buffer and then put through 

a QIAprep spin column. The column was then washed once with 750 µl PE 

solution and the DNA was eluted in 50 µl EB buffer. The quality of the re-

circularised DNA was determined by running 3 µl of the DNA on an agarose gel. 

The re-circularised preps were considered to be of high enough quality if the 

band representing the HPV16 genome was the strongest band on the gel. 

Figure 2.2 shows a picture of one such gel. 

 

Table 2.4: Set-up of the ligation reaction to 

prepare re-circularised HPV16 genomes 

Digested DNA                                               30 µl 

Water                                                        1765 µl 

10x T4 DNA ligase buffer                           200 µl 

T4 DNA Ligase (NEB; MO202S)                    5 µl 



Chapter 2: Materials and Methods 

 72 

 

 

 

Figure 2.2: Agarose gel showing quality of re-circu larised HPV16 genomes 

The re-circularised and purified DNA was analysed on a 1% agarose gel to 

check its quality. The band representing the re-circularised HPV16 genomes is 

indicated by the arrow. The other bands represent other re-circularised species 

present in the mix, such as re-circularised pSP plasmid (the smallest band) or 

multimeric species (the largest bands). The supercoiled marker is indicated (M) 

and the three lanes (1, 2 and 3) correspond to re-circularised 16WT, 16E6p53m 

and 16E6PDZ genomes respectively, from one such experiment. 
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2.8.3. Transformation of E. coli with DNA 

Plasmid DNA was transformed into competent XL1-Blue cells (grown and made 

competent by Rachel Chung at the NIMR). Plasmid DNA was mixed with 50 µl 

of competent cells and incubated on ice for 30 minutes before heat-pulsing at 

42 oC for 90 seconds. The cells were then cooled on ice and 800 µl of SOC 

medium was added and the cells were incubated at 37 oC for 45 minutes with 

constant shaking. Transformed cells were plated on LB agar plates containing 

ampicillin (100 µg/ml) and incubated overnight at 37 oC.  

 

2.8.4. Plasmid purification 

Three commercial kits were used for plasmid purification, depending on the 

amount of purified plasmid needed. The QIAprep® Spin Miniprep Kit (QIAGEN; 

27106) was used for small-scale preps, from 2–5 ml of bacterial cultures. The 

QIAGEN® Plasmid Midi Kit (QIAGEN; 12143) and the QIAGEN® Plasmid Maxi 

Kit (QIAGEN; 12162) were used for larger-scale preps, from 100 ml and 500 ml 

of bacterial cultures respectively. The purification was carried out according to 

the manufacturer’s instructions. Plasmid DNA was quantified using a Nanodrop 

ND-1000 Spectrophotometer. 

 

2.8.5. Site-directed mutagenesis  

For the purpose of this study, it was necessary to introduce the E6STOP, 

E6p53m and E6PDZ mutations into several plasmids. This was done by site-

directed mutagenesis. The primers used to introduce these mutations are 

shown in Table 2.5.  The mutagenesis reaction was carried out in a total volume 

of 50 µl, by adding 0.2 mM dNTPs, 1x Pfu Ultra Buffer, 0.2 mM of forward or 

reverse primer (individual PCR reactions were set up for each of the two 

primers), 0.15 µg template plasmid and 1 µl Pfu Ultra enzyme (Stratagene; 

600380). The conditions of the PCR reaction are outlined in Table 2.6. The 

template plasmids mutagenised in this way were pSPW12, pLXSN-E6WT and 

pLXSN-E6WT/7. Following the individual PCR reactions, 25µl of each of the 

forward and reverse PCR reactions were combined, 1 µl Pfu Ultra enzyme was 

added and an additional PCR reaction was carried out as shown in Table 2.6 

but with 18 repeats of steps 2–4 instead of 4 repeats. Following this, the 
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template DNA was removed by incubation with 10 U of DpnI (NEB; R0176S) at 

37 oC for 2 hours and 2 µl of this reaction were transformed into XL1-Blue 

bacteria.  

 

Table 2.5: Primers used for site-directed mutagenes is 

E6STOP 

mutation 

Forward:  ATGTTTCAGGACCCATAGGAGCGACCCAGAAAG     

Reverse:  CTTTCTGGGTCGCTCCTATGGGTCCTGAAACAT 

E6p53m 

mutation 

Forward:  

GCAATGTTTCAGGACCCACAGGAGAGCGCCACAAA 

GTTACCACAGTTATGCACAGAGCTGC 

Reverse:  

GCAGCTCTGTGCATAACTGTGGTAACTTTGTGGCGCT 

CTCCTGTGGGTCCTGAAACATTGC 

E6PDZ 

mutation 

Forward:   

GCAGATCATCAAGAACACGTAGATAAACCCAGCTGTA 

ATCATGCATGG 

Reverse:  

CCATGCATGATTACAGCTGGGTTTATCTACGTGTTCT 

TGATGATCTGC 

 

 

Table 2.6: PCR conditions for site-directed 

mutagenesis 

1) 94oC for 30 seconds 

2) 95oC for 30 seconds 

3) 55oC for 1 minute 

4) 68oC for 18 minutes 

Repeat steps 2–4 four times  

 

2.8.6. Extraction of total genomic DNA 

For the extraction of genomic DNA, cell pellets were first re-suspended in 200 µl 

PBS with 2 mg/ml RNase A (Sigma; R5500) and incubated at 37 oC for 5 

minutes to remove RNA. DNA was then extracted from cells using the QIAamp® 

DNA Mini Kit (QIAGEN; 51306) following the instructions for the Blood and 
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Body Fluid Spin Protocol. Genomic DNA was quantified using a Nanodrop ND-

1000 Spectrophotometer.  

 

2.8.7. Agarose gel electrophoresis 

To check the presence and quality of plasmid DNA, genomic DNA or PCR 

products, the DNA was separated on a 1% agarose gel (1% w/v agarose in 

TAE) containing 0.5 µg/ml Ethidium Bromide.  

 

2.8.8. Cloning of pMV11-E6 plasmids 

For the purpose of this study, the wild-type and mutant E6 ORFs were cloned 

into the pMV11 plasmid, downstream of the cytomegalovirus (CMV) promoter. 

The pSPW12, pSPW12E6p53m and pSPW12E6PDZ plasmids served as 

templates for the amplification of the respective E6 ORFs. The primers used to 

amplify the E6 ORFs are shown in Table 2.7. The forward primer had a BamH I 

restriction site whilst the reverse primers had an EcoR I restriction site. The E6 

ORFs were amplified by PCR, and the PCR products were first purified using 

the QIAquick® PCR Purification kit (QIAGEN; 28104) and then digested over-

night with BamH I and EcoR I restriction enzymes. The pMV11 plasmid was 

also digested with BamH I and EcoR I restriction enzymes. The digestion 

mixtures were then separated on an agarose gel and the bands were excised 

and purified using the QIAquick® Gel Extraction kit (QIAGEN; 28704). For the 

ligation reaction, the vector and inserts were mixed in a ratio of 1:5 and 

incubated with T4 DNA ligase and T4 DNA ligase buffer (NEB; MO202S) in a 

total volume of 10 µl for 6 hours at room temperature and 5 µl of the ligation 

reaction were then transformed into XL1-Blue bacteria as described in section 

2.8.3. 
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Table 2.7: Primers used for the cloning of wild-typ e and mutant E6 

ORFs into the pMV11 plasmid 

pMV11-

E6WT and 

pMV11-

E6p53m 

Forward:  

GCTGGGATCCATGCACCAAAAGAGAACTGCAATG 

Reverse:  

AGGCGAATTCTTACAGCTGGGTTTCTCTACGTGTTC 

pMV11-

E6PDZ 

Forward:  

GCTGGGATCCATGCACCAAAAGAGAACTGCAATG 

Reverse:  

AGGCGAATTCTTACAGCTGGGTTTATCTACGTGTTC 

 

2.8.9. Quantitative PCR (qPCR) 

Quantitative PCR was carried out on genomic DNA, cDNA or plasmid DNA, 

depending on the assay. When genomic DNA was used as a template, primers 

detecting part of the E4 ORF were used to detect the presence of HPV16 DNA. 

In this case GAPDH was used as a control. When cDNA was used as a 

template, primers that amplify part of the E6 ORF were used to detect the 

presence of E6 transcripts and primers against β-actin were used as a control. 

The E6 primers used will only detect full-length E6 transcripts, and will not 

detect the spliced variants. A list of the primers used in qPCR is shown in Table 

2.8. Figure 2.3 shows the location of the E6 qPCR primers on the E6 ORF.  

 

Table 2.8: Primers used for qPCR 

E4 primers Forward:  GACTATCCAGCGACCAAGATCAG  

Reverse:  CTGAGTCTCTGTGCAACAACTTAGTG 

GAPDH primers Forward:  CGAGATCCCTCCAAAATCAA 

Reverse:  CATGAGTCCTTCCACGATACCAA 

E6 primers Forward:  AGCGACCCAGAAAGTTACCA 

Reverse:  GCATAAATCCCGAAAAGCAA 

β-actin primers 

 

Forward:  TGGGCATGGGTCAGAAGGAT 

Reverse:  CGGCCAGAGGCGTACAGGGA 
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Figure 2.3: Sequence of HPV16 E6 ORF showing locati on of qPCR primers 

The DNA sequence of the E6 ORF of HPV16 (GeneBank accession number: 

AF125673, region: 83-559). The forward (FOR) and reverse (REV) qPCR 

primers used to amplify E6 transcripts are indicated, as are the splice donor 

(SD) and splice acceptor (SA) sites.   
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2.8.9.1. Reagent cocktails and cycle parameters  

For qPCR, the ABsolute™ QPCR SYBR® Green ROX mix was used to amplify 

and detect the DNA (ABgene; Ab-1163/a). The samples were first plated in 96-

well plates and these were read using an ABIPrism 7000 Sequence Detection 

System (Applied Biosystems). Prior to each qPCR analysis, a fresh master mix 

was prepared containing 1x SYBRgreen ROX mix and 70 nM of each primer. A 

separate master mix was prepared for each primer set. To set up the reaction,  

75 ng of template (3 µl total) was first pipetted into each well followed by 22 µl 

of the master mix. Each sample was amplified in triplicate for each primer set 

(i.e. 6 wells per sample). The cycle parameters for the qPCR are outlined in 

Table 2.9. The parameters include a dissociation programme at the end of the 

amplification steps. This was set up due to the fact that SYBRgreen can also 

bind to unspecific double stranded DNA, such as primer-dimers, and this 

unspecific binding can interfere with the results. From the dissociation curve 

obtained, the detection of single or multiple products can be determined.    

 
 

 

 

 

2.8.9.2. Standard Curves 

For each set of qPCR primers used in this study, a standard curve was 

generated in order to establish the sensitivity and efficiency of the primers. To 

generate each standard curve, a DNA plasmid containing the sequence that is 

amplified by the primers was chosen as a template. For example, to generate a 

standard curve for the E4 primers, the pSPW12 plasmid was used as a 

Table 2.9a: qPCR cycle parameters 

1) 50oC for 2 minutes                  x1 

2) 95oC for 15 minutes                x1 

3) 95oC for 15 seconds               x40 

    60oC for 1 minutes       

Table 2.9b: Dissociation parameters 

1) 95oC for 15 seconds               x1 

2) 60oC for 20 seconds               x1 

3) 95oC for 95 seconds               x1 
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template. Serial dilutions of the plasmid were prepared, starting from 60 pg/µl 

down to 0.6 fg/µl. These dilutions served as the template for the qPCR reaction 

and 3 µl of the diluted DNA was plated in triplicate wells. To generate the 

standard curves, the amount of DNA in each dilution sample was first converted 

to the number of DNA molecules in that reaction. To use the E4 primers as an 

example, the number of pSPW12 molecules in the dilution samples ranged from 

1.5 x 107, 1.5 x 102. The logs of these values were then plotted on a graph, 

against the Ct value given by the qPCR machine for each sample, and an 

equation was obtained in the form of y = mx + c. The y-value in these equations 

is the Ct value that the qPCR machine measures. The ideal standard curve 

would have a slope of -3.33 as that would represent an increase of 3.33 Cts for 

every 10-fold dilution of sample. The standard curves generated for each primer 

set are shown in Table 2.10 and were prepared in collaboration with Dr. Ken 

Raj. 

 

Table 2.10: Standard curves for primers used for qP CR 

E4 primers y = -3.39x + 37.29 

GAPDH primers y = -3.473x + 35.932 

E6 primers y = -3.387x + 36.577 

β-actin primers  y = -3.387x + 37.204 

 

2.8.9.3. Determination of copy numbers 

To determine the number of E4 copies in each sample, the y-value from the 

equation was replaced by the Ct value and the equation was solved for x. The 

number of copies is the inverse log of x (i.e. 10^x). The samples to be analysed 

by qPCR were always plated in triplicate wells and three Ct values were 

obtained and the standard deviation determined. When standard deviations 

were greater than 0.3, the reactions were repeated.  

 

For this study, a “number of HPV copies per cell” was often calculated. To do 

this, the number of HPV copies per reaction was first calculated (using the E4 

primers) as was the number of GAPDH copies per reaction (using the GAPDH 

primers). The number of GAPDH copies was then divided by 20 to obtain the 

number of cells in the reaction, as previous work in the laboratory (carried out 
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by Dr. Ken Raj) had determined that the GAPDH primers recognised 20 copies 

per cell. The number of HPV copies was then divided by the number of cells to 

obtain a “number of HPV copies per cell”.  

 

2.8.10. Southern blot analysis 

Southern blot analysis was carried out on the DNA extracted from the 

population and clonal persistence assays in order to determine the physical 

state of the HPV genomes present in the cells. Southern blots were adjusted for 

brightness and contrast using Photoshop, and a white line is sometimes used to 

denote a portion of the gel that has been cropped.  

 

2.8.10.1. Restriction enzyme digestion and gel elec trophoresis 

The cellular DNA used for Southern blotting was extracted as described in 

section 2.8.6. Genomic DNA (6–10 µg) was left undigested or was digested with 

Hind III, BamH I or Xba I overnight at 37 oC. The DNA was then separated on a 

1% agarose gel in TAE with 0.5 µg/ml ethidium bromide. The gel was 

electrophoresed at 100 V.  

 

2.8.10.2. Southern blot transfer 

Before transferring, the gel was washed once with distilled water and then 

soaked in denaturation solution (0.5 N NaOH, 1.5 M NaCl) for 30 minutes. The 

gel was then rinsed with distilled water and soaked in neutralisation solution    

(1 M Tris.Cl pH 8, 1.5 M NaCl) for 30 minutes. A capillary transfer stack in 20X 

SSC was used to transfer the DNA from the gel onto a piece of Millipore 

Immobilon™-NY+ Transfer Membrane (Millipore; INYC00010). The transfer was 

carried out overnight at room temperature. The membrane was then washed 

once in 6x SSC and left to dry completely at room temperature before it was UV 

cross-linked at 5000 µJ/cm2.  

 

2.8.10.3. Probe labelling 

The probe used in all Southern blots was undigested pSPW12 plasmid. The 

probe was labelled with 32P-dCTP using the Amersham™ Ready-To-Go™ DNA 
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Labelling Breads (-CTP) (GE Healthcare; 27-9240-01) following the 

manufacturer’s instructions. Following the labelling reaction, the probe was 

cleaned by passing it through a DyeEx™ column (QIAGEN; 63204). It was then 

denatured and applied to the membrane. 

 

2.8.10.4. Pre-hybridisation, hybridisation, washing  and exposure 

Following cross-linking, the membrane was re-hydrated with distilled water. It 

was then rolled up and placed in a tube and pre-hybridised in 10 ml 

hybridisation buffer (5x SSPE, 5x Denhardt’s, 100 µg/ml ssDNA, 0.5% SDS) for 

1–2 hours at 68 oC. In the meantime, the probe was prepared (see section 

2.8.10.3). Denatured probe was then mixed with another 10 ml of hybridisation 

buffer. The hybridisation buffer in the tube was discarded, and was replaced 

with the new 10 ml of buffer containing the denatured probe. The membrane 

was left overnight in a rotating oven at 68 oC. The following day, the 

hybridisation buffer was carefully removed and discarded. The membrane was 

washed twice for 5 minutes at room temperature with 2x SSC, 0.1% SDS. This 

was followed by two 15 minute washes at 68 oC with pre-warmed solution of 

0.2x SSC and 0.1% SDS. The membrane was then exposed using a 

Phosphorimager cassette or X-ray film.  

 

2.8.11. Extraction of total RNA 

For extraction of total RNA, cells were harvested and washed once with PBS. 

Pelleted cells were kept on ice at all times. Total RNA extraction was carried out 

using the RNeasy® Minikit (QIAGEN; 74104) and QIAshredder™ kit (QIAGEN; 

79654) following the manufacturers’ protocol. RNA samples were stored at        

-80 oC. 

 

2.8.12. Reverse transcription 

Prior to carrying out reverse transcription, 4 µg of extracted RNA was cleared of 

any genomic DNA using the DNA-free™ kit (Ambion; AM1906) following the 

manufacturer’s instructions. Clean RNA (5 µl) was then added to a tube 

containing 6 µl nuclease-free H2O and 1 µl random primers (Roche; 

11034731001) or 1 µl Oligo(dT)20 primers (Invitrogen; 18418-020). The mixture 
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was incubated at 70 oC for 10 minutes and immediately transferred to ice for 5 

minutes. Reverse transcription was carried out using the SuperScript™ II 

Reverse Transcriptase kit (Invitrogen; 18064-022). The samples were incubated 

at 42 oC for 1 hour followed by 70 oC for 15 minutes. For each RNA sample a  

“+ reverse transcriptase” (+RT) and a “- reverse transcriptase” (-RT) sample 

were prepared. The +RT samples included 1 µl of the reverse transcriptase in 

the reaction whereas the –RT samples included 1 µl of nuclease-free H2O in the 

reaction. The latter were used as a control for the absence of genomic DNA 

from the samples. 

 

2.9. Protein methods 

 

2.9.1. Cell lysis for western blot analysis 

Keratinocytes were first washed with PBS and incubated at 37oC for 5 minutes 

to remove the feeder layer. They were then scraped off the plates using a cell 

scraper (Corning; 3010) and pelleted. When the RIPA 6% SDS or the Urea 

protein extraction buffers were used, 1 µl of Benzonase® Nuclease (Sigma; 

E1014) was first added to each pellet and the pellet was then re-suspended in 

120 µl–150 µl of the protein extraction buffer. The lysates were boiled at 95 oC 

for 7 minutes and centrifuged at 16100 x g for 5 minutes. The supernatant was 

collected and stored at -80oC. When the RIPA extraction buffer (with no 

additional SDS) was used, the pellets were re-suspended in 120 µl–150 µl of 

buffer and incubated on ice for 20 minutes. They were then centrifuged at 

16100 x g for 10 minutes at 4 oC and the supernatant was collected and stored 

at -80oC. 

 

2.9.2. Protein quantification 

For protein quantification, the DC Protein Assay Kit (Bio-Rad; 500-0111) or the 

Bio-Rad Protein Assay Kit (Bio-Rad; 500-0006) were used following the 

manufacturer’s instructions. Bovine γ-Globulin standards (Bio-Rad; 500-0208) 

were used to make a standard curve. 
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2.9.3. SDS-PAGE 

Following protein quantification, equal amounts of protein were prepared in 5x 

SDS gel-loading buffer, containing DTT (final concentration 100 mM). The 

samples were mixed, boiled at 95 oC for 8 minutes and loaded directly on the 

gel.   

 

2.9.3.1. Preparation of gels 

Different percentage gels were prepared depending on the size of the protein to 

be analysed. Table 2.11 shows the composition of the gels used in this study. 

The resolving gels were prepared first (10 ml per gel) and left to set for 

approximately 30 minutes The stacking gels were then prepared and poured 

over the resolving gel (2 ml per gel). The combs were also put in place and the 

gels were left to polymerise for 30 minutes.  

 

For some experiments, the 16% Novex® Tricine gels from Invitrogen were also 

used, following the manufacturer’s instructions. 

 

Table 2.11: Composition of 6% , 10% or 15% Tris-gly cine SDS-

polyacrylamide resolving gels and 5% stacking gel 

Resolving Gels (10 ml) 

H2O  5.3 ml or 4 ml or 2.3 ml 

30% acrylamide mix 2 ml or 3.3 ml or 5 ml 

1.5M Tris (pH 8.8) 2.5 ml 

10% SDS 0.1 ml 

10% ammonium persulphate 0.1 ml 

TEMED 8 µl or 4 µl or 4 µl 

Stacking Gel (2 ml) 

H2O  1.4 ml 

30% acrylamide mix 0.33 ml 

1 M Tris (pH 6.8) 0.25 ml 

10% SDS 0.02 ml 

10% ammonium persulphate 0.02 ml 

TEMED 0.002 ml 
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2.9.3.2. Membrane transfer 

All 15% gels were transferred onto 0.2 µm PVDF membranes (Bio-Rad; 162-

0176). All other gels were transferred on to 0.45 µm PVDF membranes 

(Millipore; IPVH00010). Prior to transferring, the membranes were soaked in 

methanol and then left to soak in transfer buffer for at least 30 minutes. The 

transfer was carried out using the Bio-Rad Trans-Blot SD Semi-Dry Transfer 

Cell, at 20 V for 2 hours.   

 

2.9.3.3. Blocking, antibody incubations and washing  

Following transfer, the membranes were rinsed twice with dH2O and then 

blocked in 5% milk in PBS-0.1% Tween for 1 hour at room temperature or 

overnight at 4 oC. In the case of the anti-DYKDDDDK Tag antibody, the 

membrane was blocked in 5% BSA in PBS-0.1% Tween. The membranes were 

then incubated with primary antibody for 1–2 hours at room temperature or 

overnight at 4 oC. The antibodies were diluted in 5 ml of 5% milk in PBS-0.1% 

Tween and are outlined in Table 2.12. The membranes were washed in PBS-

0.1% Tween with several changes of wash buffer. The amount of washing 

depended on the antibody. When the E6 antibody was used, the membranes 

were washed for at least 1.5 hours with a change of wash buffer every 10 

minutes. The membranes were then incubated with secondary antibody diluted, 

as stated in Table 2.13, in 10 ml of 5% milk in PBS-0.1% Tween for 1–2 hours. 

This was followed by a second round of washing. Table 2.14 outlines the 

different anti-E6 primary antibodies that were tested in an attempt to reduce the 

background of the western blots. 
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Table 2.12: Primary antibodies used for western blo tting 

Antibody name Dilution Catalogue number 

p53 (DO-1) 1:2000 (2 hours) Santa Cruz; sc-126 

E6 (2E-3F8) - (C-terminus) 1:1000 (overnight) Euromedex; 2E-3F8 

E6 (1E-6F4) - (N-terminus) 1:1000 (overnight) Euromedex; E6-6F4 

Beta-galactosidase (β-gal) 1:2000 (overnight) Abcam; ab616 

HSP-70 (W-27) 1:2500 (1 hour) Santa Cruz; sc-24 

E7 (NM2) 

E7 (716-325) 

(used together, as a cocktail) 

1:500 each 

(overnight) 

Santa Cruz; sc-

65711 and sc-51951  

HA  1:1000 (overnight) Sigma; H6908 

Scrib (C-20) 1:2000 (2 hours) Santa Cruz; sc-

11049 

DYKDDDDK Tag (FLAG tag) 1:1000 (overnight) Cell Signalling; 2368 

(in 5% BSA) 

Histone H2B 1:600 (1 hour) Upstate; 07-371 

HSP-90α/β (H-114) 1:1000 (1 hour) Santa Cruz; sc-7949 

GFP (B-2) 1:750 (overnight) Santa Cruz; sc-9996 

 

 

Table 2.13: Secondary antibodies used for western b lotting 

Antibody name Dilution Catalogue # 

Anti-mouse IgG-HRP (from sheep) 1:2500 GE Healthcare; NA931V 

Anti-mouse IgG-HRP (from rabbit)  1:10000 Pierce; 31450 

Anti-rabbit IgG-HRP (from donkey) 1:5000 GE Healthcare; NA934V 

Anti-goat IgG-HRP (from donkey) 1:5000 Santa Cruz; sc-2020 

 

 

Table 2.14: Additional anti-E6 primary antibodies t ried  

Antibody name Catalogue number 

HPV16 E6/18 E6 (C1P5) Santa Cruz; sc-460  

HPV16 E6 (N-17) Santa Cruz; sc-1584 
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2.9.3.4. Signal detection 

To detect the proteins, 1 of 3 ECL kits were used, depending on the level of 

sensitivity needed: the Amersham ECL™ Western Blotting Detection kit (GE 

Healthcare; RPN2106) was used for very abundant proteins, the Immobilon 

Western Chemiluminescent HRP Kit (Millipore; WBKLS0500) was used for 

medium sensititivity (such as the detection of E6) and the Amersham™ ECL 

Advance™ kit (GE Healthcare; RPN2135) was used to detect low levels of 

protein. 

 

2.9.4. Detecting E6 expressed from the HPV16 genome  

 

2.9.4.1. Transfection of cells 

For the detection of E6 expressed from the HPV16 genome, NIKS cells were 

plated 1 day prior to transfection, as described in section 2.2.5. Thirty-five wells 

were prepared for each transfection. The 16WT and 16E6PDZ genomes were 

prepared using the method described in section 2.8.2. and the cells were 

transfected with 800 ng of re-circularised genome and 200 ng of pCI-EGFP 

using the method described in section 2.2.5. Master mixes were prepared for 

the transfection of each genome.  

 

2.9.4.2. Harvesting cells 

Forty-eight hours post-transfection the cells were harvested for cell sorting. The 

medium was first removed from the cells and the cells were washed once in 1x 

DPBS (bought as a 10x stock from PAA; H15-011). DPBS was added to the 

cells (2 ml), and the cells were incubated at 37 oC for 4 minutes in order to allow 

the feeder cells to detach. The cells were washed once more with DPBS and 

1.5 ml of Accutase™ solution (Millipore; SCR005) was added to each well. The 

cells were then placed at 37 oC until all the keratinocytes had detached and 

were in a single-cell suspension. Once the cells were in a single-cell 

suspension, the enzyme was deactivated by addition of F-medium, and the cells 

were centrifuged at 240 x g for 4 minutes. They were then washed once in 

buffer (1x DPBS, 0.5% FBS, 5 mM EDTA) and finally re-suspended in buffer to 

be analysed. Immediately prior to the sorting, the cells were passed through a 
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40 µm cell strainer (BD Biosciences; 352340) to ensure that only single cells will 

be analysed.  

 

2.9.4.3. Cell sorting 

The cells were sorted on a Becton Dickinson FACS ARIA II Cell Sorter and the 

sorting was carried out by Graham Preece at the Flow Cytometry Facility at the 

NIMR. An initial sort using cells that had not been transfected with GFP was 

carried out in order to set the gate for the forward- and side-scatter as well as 

the negative gate for FITC. This was followed by a quick sort using the “16WT + 

pCI-EGFP”-transfected cells in order to set-up the positive gate. To avoid 

getting many GFP-negative cells in the GFP-positive sort, the negative and 

positive gates were set so that there was a gap between them. The purity of 

both the GFP-positive and GFP-negative sorted cells was then checked. The 

cells were collected in a small volume of F-medium. Once all the “16WT + pCI-

EGFP”-transfected cells had been sorted, the same was repeated with the 

“16E6PDZ + pCI-EGFP”-transfected cells. Once both cell populations had been 

sorted, the cells were centrifuged at 240 x g for 4 minutes, washed once with 

PBS and the pellets were frozen at -80 oC. For protein analysis, the cells were 

lysed in RIPA 6% SDS protein extraction buffer, as described in section 2.9.1. 

and the lysates were quantified as described in section 2.9.2. 
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Chapter 3: Investigation of E6 activities necessary  for 

episomal persistence  

 

3.1. Introduction  

 
The E6 oncoprotein of high-risk HPVs has been shown to interact with multiple 

cellular proteins, such as E6AP (Huibregtse et al., 1991), p53 (Werness et al., 

1990) and several PDZ proteins (Kiyono et al., 1997; Lee et al., 1997; 

Nakagawa & Huibregtse, 2000). Moreover, many of E6’s activities have been 

characterised, including its ability to degrade p53 (Scheffner et al., 1990) and 

PDZ proteins (Gardiol et al., 1999; Nakagawa & Huibregtse, 2000) as well as its 

ability to activate human telomerase (Klingelhutz et al., 1996). These activities 

interfere with important cellular check-points and induce cellular immortalisation 

and aberrant proliferation, all of which contribute to the accumulation of cellular 

mutations and the induction of genomic instability. Although these activities of 

E6 can contribute to the malignant phenotype that sometimes results from a 

prolonged HPV infection, their role in the viral life-cycle is less clear.  

 

Most HPV infections are cleared, either by the natural physiology of the tissue, 

whereby cells from the bottom layer continuously move up towards the surface 

and are sloughed off, or by immune responses mounted by the host against 

HPV-containing cells (Schiffman & Kjaer, 2003). It is the failure to clear an HPV 

infection, therefore permitting persistence of viral episomes and expression of 

viral genes, that is thought to bring about accumulation of mutations, induction 

of genetic instability and eventual development of cancer (Remmink et al., 

1995; Schiffman & Kjaer, 2003). 

  

Ectopically-introduced DNA, such as plasmids, is not known to persist as un-

integrated extrachromosomal DNA in cells upon successive cell divisions. 

Hence it stands to reason that HPV must actively participate in its successful 

persistence as extrachromosomal DNA in the nucleus of its host cell. Numerous 

studies have attempted to elucidate the nature and extend of HPV’s contribution 

in episomal persistence in the basal layer of the epithelium. In these studies, 



Chapter 3: Investigation of E6 activities necessary for episomal persistence 

 89 

mutant viral genomes were introduced into monolayer cultures of keratinocytes 

(which are taken to represent the basal layer of the epithelium) and the ability of 

the mutant episomes to persist in the population of cells several weeks post-

transfection was assessed using Southern blotting. These studies have indeed 

yielded some unexpected results. The E6 and E7 genes, which were only 

known to possess oncogenic properties, were both found to be necessary for 

persistence of HPV DNA in primary human foreskin keratinocytes (HFK). That 

this was reportedly the case for both the high-risk type HPV31 (Thomas et al., 

1999) as well as the low-risk type HPV11 (Oh et al., 2004) suggested that it was 

the non-oncogenic properties of E6 and E7 that were needed for episomal 

persistence. However, this notion was challenged by observations made by 

Thomas et al. who demonstrated that HPV31 p53-degradation mutant genomes 

were unable to persist in HFKs (Thomas et al., 1999). Another study supporting 

this observation was carried out using hybrid HPV genomes, in which the E6 

ORF of HPV31 was substituted for that of HPV16 (Park & Androphy, 2002). 

Furthermore, a third study investigated the role of the PDZ-binding motif in 

different aspects of the HPV life-cycle, including episomal persistence, using 

mutant HPV31 genomes and primary HFKs (Lee & Laimins, 2004).  

 

However, several unresolved issues need to be highlighted when considering 

the conclusions from these studies. In all of these studies, primary HFKs were 

used in the persistence assay. This point is significant, as mutations within the  

HPV31 E6 or E7 ORF that disrupt the immortalisation activity of the virus will 

produce a negative result for viral episome persistence as the primary cells will 

not survive indefinitely to sustain the persistence of the viral genomes. Indeed 

Thomas et al. pointed out that the HPV31 p53-degradation mutant genomes 

that reportedly failed to persist, were also incapable of immortalising the 

recipient primary HFKs (Thomas et al., 1999). In the study by Park et al., where 

hybrid genomes were used, it is important to consider that such a strategy is 

susceptible to unintentional effects of the E6 ORF substitution, which may 

impinge on the replication/persistence of the viral episomes. For example, it is 

not known if this substitution has inadvertently interfered with the splicing 

pattern of the HPV transcripts, which can in turn affect the quality and quantity 

of viral proteins in the cells. The fact that HPV16 is associated more frequently 

with cancer than HPV31 (Clifford et al., 2003), as well as observations that the 
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HPV16 E6 protein degrades p53 more efficiently than the HPV31 E6 protein 

(Lee & Laimins, 2004), suggest that the two E6 proteins do in fact have different 

quantitative effects. 

 

Interestingly, the need for E7 in episomal persistence was challenged by a 

study that carried out persistence assays in an immortalised cell line, NIKS, 

instead of in primary HFKs (Flores et al., 2000). NIKS are a spontaneously 

immortalised keratinocyte cell line (Allen-Hoffmann et al., 2000) which has been 

shown to support the HPV life-cycle (Flores et al., 1999). In these cells, HPV16 

E7 was found to be dispensable for the episomal persistence of HPV genomes 

(Flores et al., 2000). This suggests that E7 may have been necessary in the 

previous studies only in so far as to immortalise the cells to allow the 

persistence of viral episomes, rather than because it is directly required for 

persistence itself.  

 

As genome persistence is vital for the development of cancer (Remmink et al., 

1995; Schiffman & Kjaer, 2003), it is important to take a closer look at the viral 

requirements that drive this process. Previous work in the laboratory, carried out 

by Dr. Ken Raj, focused on identifying which viral proteins are necessary for the 

episomal persistence of HPV16. HPV16 was chosen as it is the most important 

type from a medical perspective, and no study had looked at how these 

episomes persist in cells in detail before. NIKS cells were chosen so as to be 

able to identify proteins that are necessary for persistence alone, without the 

need for cellular immortalisation interfering with the results. Furthermore, unlike 

primary cells, NIKS provide an isogenic cell background for all the experiments. 

Persistence was measured by the number of HPV-positive clones that could be 

isolated from the transfection of the HPV genomes into the cells, as was 

determined by quantitative PCR (qPCR). This method differs from previous 

studies in two respects: firstly, qPCR is more sensitive than Southern blotting 

and secondly, the cellular cloning method allowed for the analysis of mutations 

that may have otherwise conferred a growth disadvantage to the cells. These 

cells would have potentially been lost from the population, giving the false 

impression that the mutation had a direct effect on episomal persistence. 
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As part of this work, mutant HPV16 genomes were generated, each with a 

STOP codon inserted in a different ORF. The results from this study showed 

that E7 was dispensable for episomal persistence (Laurson et al., 2010), 

thereby confirming the results from the Flores et al. study (Flores et al., 2000), 

as were E4 and E5 (Ken Raj, unpublished data). On the other hand, E1, E2 and 

E6 were found to be necessary for episomal persistence (Laurson et al., 2010; 

and Ken Raj, unpublished data). The need for E1 and E2 was clear, as these 

are the viral replication proteins. However, the role of E6 in episomal 

persistence is less apparent. 

 

The aim of the investigation described in this chapter is to determine which 

activities of the E6 protein are necessary for the persistence of HPV16 

episomes in NIKS cells. Two of the best characterised activities of E6, 1) 

degradation of p53 and 2) binding to PDZ proteins, will be dissected and 

analysed for their role in episomal persistence. I will assess persistence both 

quantitatively by qPCR, as well as qualitatively, using Southern blotting, to 

determine whether the viral genomes persist episomally, are absent or are 

integrated into the host cell’s DNA.       
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3.2. Results 

 

3.2.1. Three different mutations of the E6 ORF are introduced into the 

HPV16 genome 

To investigate the role of the p53-degradation and PDZ-binding activities of E6 

in episomal persistence, I constructed mutants of the HPV16 genome, with 

different mutations in the E6 ORF. Three different mutant genomes were made; 

the first has a one base-pair change which introduces a premature STOP codon 

in the E6 ORF, and was denoted 16E6STOP. The second has a three amino 

acid substitution mutation, which abolishes E6’s ability to degrade p53 (Kiyono 

et al., 1998; Klingelhutz et al., 1996). This mutant was denoted 16E6p53m. The 

third has a four amino acid deletion on the extreme C-terminus of E6, which 

corresponds to the protein’s PDZ-binding motif (Kiyono et al., 1997; Lee et al., 

1997). This mutant was denoted 16E6PDZ. The mutations are shown in the 

context of the E6 ORF in Figure 3.1 and outlined in Table 3.1. 

 

The p53-degradation and PDZ-binding mutations have been previously used in 

the literature and have been well characterised. Table 3.2 lists publications in 

which these two mutants have been used. Most PDZ-binding mutations of E6 in 

the literature have been either six amino acid deletions or single amino acid 

deletions/substitutions. The E6 mutation used in this study is a four amino acid 

deletion, which corresponds to the exact PDZ-binding motif (Kiyono et al., 1997; 

Lee et al., 1997). It should also be noted that most of the available data 

regarding mutations of E6 have been obtained from studies in which E6 was 

over-expressed in cells. Very little information is available with regards to the 

activities of these mutant E6 proteins when they are expressed in the context of 

the whole HPV genome. 
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Figure 3.1: Sequence of HPV16 E6 ORF highlighting i ntroduced mutations 

The DNA sequence of the E6 ORF of HPV16 (GeneBank accession number: 

AF125673, region: 83-559). The regions that have been mutated for this study 

are shown in boxes. The splice donor (SD) and splice acceptor (SA) sites are 

also indicated.   
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Table 3.1: Outline of the base-pair mutations intro duced into the E6 

ORF and the resulting amino-acid mutations  

 Base-pair mutation Amino-acid mutation 

E6STOP cag   to     
tag 

Introduction of STOP 
codon: 
Q to STOP codon 

E6p53m  cgacccag   to  
agcgccac 

Three amino acid 
substitution: 
RPR to SAT 

E6PDZ gaaacccagctgtaa   
to  
taaacccagctgtaa 

Four amino acid deletion: 
ETQL to STOP codon 
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Table 3.2: Summary of the information available in the literature about 

the E6 mutants used in this study 

 E6p53m (or E6SAT) E6PDZ 

Degradation of p53?  No; (Kiyono et al., 1998; 

Klingelhutz et al., 1996) 

Yes; (Kiyono et al., 

1998; Klingelhutz et 

al., 1996)1 

Binding/degradation 

of PDZ proteins? 

Yes; (Nakagawa & 

Huibregtse, 2000)  

No; (Gardiol et al., 

1999; Glaunsinger et 

al., 2000; Kiyono et 

al., 1997; Nakagawa 

& Huibregtse, 2000)2 

(Lee & Laimins, 

2004)3  

Binding to E6AP? Yes; (Gewin & Galloway, 

2001; Nakagawa & 

Huibregtse, 2000) 

N/A 

Activation of 

telomerase? 

Yes; (Kiyono et al., 1998) 

(for human mammary 

epithelial cells - HMEC) 

(Gewin & Galloway, 2001; 

Klingelhutz et al., 1996) 

(for human foreskin 

keratinocytes – HFKs) 

Yes; (Kiyono et al., 

1998) (for human 

mammary epithelial 

cells - HMEC)1 

(Klingelhutz et al., 

1996) (for human 

foreskin keratinocytes 

– HFKs)1 
 

1 The mutant in these studies was an HPV16 PDZ-binding E6 mutant protein 

with a six amino acid deletion in the C-terminus.  
2 The mutants in these studies were HPV16 or HPV18 PDZ-binding E6 mutant 

proteins with deletions/substitutions of single amino acids within the PDZ-

binding C-terminal motif.  
3 The mutant in this study was an HPV31 PDZ-binding E6 mutant protein with 

deletion of the last 4 amino acids of the E6 protein.  

N/A – No information was available for direct binding of a PDZ-binding mutant 

E6 to E6AP. However, this interaction may be inferred by the ability of the 

mutant E6 protein to degrade p53.  
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3.2.2. The 16WT genomes persist in NIKS cells where as the 16E6STOP 

genomes do not 

Before addressing the persistence of the 16E6p53m and 16E6PDZ mutant 

genomes, it was important to confirm the need for E6-expression in HPV16 

episomal persistence in NIKS cells. To do this, NIKS cells were transfected with 

16WT or 16E6STOP genomes (the latter being unable to make E6 and 

described in Table 3.1). The two genomes were excised from the pSPW12 

plasmid, re-circularised and co-transfected with the pcDNA6 plasmid that 

carries a blasticidin-resistance gene. Following transfection and antibiotic 

selection, the cells were cultured for ten passages and DNA was collected at 

each passage. The DNA was then analysed by qPCR (using primers against 

the E4 region of the HPV genome and against GAPDH as a control) to measure 

the number of HPV copies present per cell (Fig. 3.2A i and ii). It is important to 

note that in these experiments, where a population of cells was analysed, the 

term “HPV copies per cell” actually refers to the mean number of “HPV copies 

per cell” for the cells in the population. 

 

It is clear that the 16WT genomes can persist in NIKS cells, as the number of 

copies per cell remained constant at first and then even increased at later 

passages. The increase in copy numbers is not very surprising as cells 

harbouring the viral genomes may be expected to have a growth advantage. In 

contrast to 16WT genomes, 16E6STOP genomes did not appear to persist and 

the number of copies per cell dropped to zero within three passages. These 

results confirm previous observations (Laurson et al., 2010) and verify that E6 is 

necessary for viral persistence in this system.  
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(legend on page 99) 
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Figure 3.2: 16WT genomes persist in NIKS cells wher eas 16E6STOP and 

16E6p53m genomes do not; 16E6PDZ genomes persist in  NIKS cells but 

at lower numbers than 16WT genomes  

In two independent transfection experiments (A and B), NIKS cells were co-

transfected with 16WT, 16E6STOP, 16E6p53m or 16E6PDZ genomes, and the 

pcDNA6 plasmid. Following antibiotic selection, the cells were grown as 

populations for ten passages, and DNA was extracted at each passage. The 

DNA was analysed by qPCR to determine the number of HPV copies per cell. 

The error bars represent the standard deviation of the qPCR triplicates. 
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3.2.3. E6WT and E6PDZ proteins degrade p53 but E6p5 3m does not 

Although previously characterised in other systems, it was important to confirm 

that the mutant E6 proteins are indeed defective in their respective activities in 

the system used in this study, before assessing their role in episomal 

persistence. Firstly, I wanted to assess the ability of the wild-type and mutant 

proteins to degrade p53. To do this, I used a retroviral expression system to 

express wild-type and mutant E6 proteins in NIKS cells. Briefly, I took a pLXSN 

retroviral vector that has the HPV16 E6 ORF cloned into it (LXSN-E6WT), kindly 

provided by Dr. Denise Galloway, and used it as a template to make LXSN-

E6p53m and LXSN-E6PDZ vectors by site-directed mutagenesis. These 

vectors, along with the empty LXSN vector, were used to make retroviruses 

which were then used to infect NIKS cells. Infected cells would express the E6 

protein from the retroviral promoter and would also be resistant to neomycin. 

 

After infection and antibiotic selection, the cells were lysed and levels of p53 

protein were assessed by western blotting. Figure 3.3 shows one such blot. As 

expected, the wild-type E6 protein and the E6PDZ mutant protein degrade p53, 

although it appears that they do so with different efficiencies. In contrast, the 

E6p53m protein does not degrade p53, and in fact, the levels of p53 appear to 

increase when E6p53m protein is expressed.  

 

3.2.4. The E6WT and E6p53m proteins degrade hScrib but E6PDZ does not 

I next wanted to assess the ability of the wild-type and mutant E6 proteins to 

degrade the PDZ protein hScrib. hScrib was chosen as a target of E6 because 

it has been shown to be preferentially degraded by HPV16 E6. Other PDZ 

proteins such as hDlg on the other hand, were shown to be preferentially 

degraded by HPV18 E6 (Thomas et al., 2005). 

 

To address this, the levels of hScrib protein were analysed in cell lysates from 

the stable E6-expressing cells described in the previous section. The levels of 

hScrib protein in the E6-expressing cells were not lower than in the absence of 

E6 expression (Fig. 3.4A), which is contrary to is expected based on previous 

publications.  
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This result prompted me to have a closer look at the literature. I noticed that the 

available data regarding the degradation of PDZ proteins by HPV E6, were 

obtained either from in vitro degradation assays, from the analysis of cancer cell 

lines, or from experiments in which both E6 and the relevant PDZ proteins were 

over-expressed in cells, from heterologous promoters (Gardiol et al., 1999; 

Kranjec & Banks, 2010; Nakagawa & Huibregtse, 2000; Thomas et al., 2005). I 

therefore decided to use a similar assay to look at the degradation of hScrib by 

the HPV16 E6 protein in this system. 

 

To do so, I sub-cloned the E6WT, E6p53m and E6PDZ ORFs down-stream of 

the immediate early CMV promoter in the pMV11 plasmid. These vectors were 

used to co-express the E6 proteins in NIKS cells, together with an HA-hScrib 

protein expressed from the pcDNA-HA-hScrib plasmid (Thomas et al., 2005), 

kindly provided by Dr. Lawrence Banks. The cells were harvested 48 hours 

post-transfection and lysed for protein analysis. The transfection was carried out 

in triplicate and the levels of HA-hScrib were assessed by western blotting (Fig. 

3.4B and C). The levels of HA-hScrib appear to be lower in the presence of 

E6WT and E6p53m proteins (Fig. 3.4B). However, this was not the case when 

E6PDZ protein was co-expressed instead (Fig. 3.4C), indicating that the E6PDZ 

mutant protein is indeed unable to degrade PDZ proteins.  
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Figure 3.3: Degradation of p53 induced by wild-type  and mutant E6 

proteins 

NIKS cells were infected with retroviruses bearing wild-type or mutant E6 

genes. Following antibiotic selection, cell lysates were collected and the levels 

of p53 in the cells were determined by western blotting. HSP70 was used as a 

loading control. The levels of p53 protein were measured using ImageJ 

software and normalised to the loading controls. The bar graph shows the mean 

levels of p53 protein (in arbitrary units) in cells infected with LXSN-E6WT, 

LXSN-E6p53m and LXSN-E6PDZ viruses, normalised to the levels of p53 in 

cells infected with control LXSN viruses for two independent experiments. 
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Figure 3.4: Degradation of hScrib induced by wild-t ype and mutant E6 

proteins  

A) NIKS cells were infected with retroviruses bearing wild-type or mutant E6 

genes. Following antibiotic selection, cell lysates were collected and the levels 

of hScrib in the cells were determined by western blotting. Actin was used as a 

loading control. B) NIKS cells were transiently co-transfected with pcDNA-HA-

hScrib, and pMV11 control plasmid, pMV11-E6WT or pMV11-E6p53m or C) 

pMV11-E6PDZ. Whole-cell extracts were prepared 48 h post-transfection. The 

western blots show the levels of HA-hScrib. HSP70 was used as a loading 

control. 



Chapter 3: Investigation of E6 activities necessary for episomal persistence 

 104 

3.2.5. Wild-type E6 protein is able to degrade endo genous hScrib protein 

when expressed from stable clonal cell lines 

Having demonstrated that the E6PDZ mutant protein is indeed deficient in 

degrading hScrib when both are expressed exogenously, I also wanted to 

determine whether the wild-type E6 protein is able to degrade endogenous 

hScrib protein. From the results presented in Figure 3.4A, using stable LXSN-

E6WT cells, it appeared that, at least in these cells, endogenous hScrib protein 

was not degraded by wild-type E6 protein. Interestingly, a study by Lee and 

Laimins showed that the levels of endogenous PDZ proteins (in this case hDlg, 

hScrib and MUPP1) were not significantly different in cells transfected with 

HPV31 genomes compared to un-transfected cells (Lee & Laimins, 2004).  

 

I therefore hypothesised that the levels of E6 present in the population of LXSN-

E6WT cells may not be high enough to cause significant degradation of PDZ 

proteins. To test this, I isolated individual clones of LXSN-E6WT cells with the 

intention of obtaining some that express high levels of the E6 protein. Such 

clones would provide me with the opportunity to test my hypothesis. As a quick 

means of identifying such high E6-expressing clones, I screened clones of 

LXSN-E6WT cells for the p53 protein. The rationale for this approach is based 

on the fact that HPV16 E6 degrades p53 protein (Scheffner et al., 1990), and 

clones with very low p53 levels are likely to express high levels of E6 protein. I 

chose two clones that had very low levels of p53 compared to control cells, and 

western blotting of extracts from these revealed that they were indeed 

expressing readily detectable level of the E6 protein (Fig. 3.5). Assessment of 

the levels of endogenous hScrib by western blotting showed that, when E6 was 

present, the levels of hScrib were clearly decreased (Fig. 3.5). This supports the 

notion that the inability to detect hScrib reduction in a population of E6-

expressing cells was owed to the heterogeneity of E6 expression within the 

cells in the population.  

 

Interestingly, the difference in the levels of p53 protein was much more 

pronounced than the difference observed in the levels of hScrib protein, 

suggesting that more E6 protein may be required to degrade hScrib than to 

degrade p53. Nonetheless, this experiment confirms that wild-type E6 protein is 

able to degrade endogenous hScrib protein.  
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However, the levels of E6 in this experiment are likely to be higher than those 

expressed during a natural HPV infection. This is because protein expression 

from the HPV promoter is kept under tight control by the activities of other viral 

proteins. This control is absent in the LXSN-E6WT cells. Therefore, whether the 

amount of E6 protein expressed in an HPV infection is sufficient to induce the 

degradation of endogenous hScrib protein remains to be established.  
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Figure 3.5: E6WT expressed from stable clonal cell lines can degrade 

endogenous hScrib 

NIKS cells were infected with retroviruses bearing the wild-type E6 gene, and 

the cells were cloned. Cell lysates were collected and the levels of p53, hScrib 

and E6 in two individual clones were determined by western blotting. HSP70 

was used as a loading control.  

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3: Investigation of E6 activities necessary for episomal persistence 

 107 

3.2.6. The wild-type and mutant HPV16 genomes have similar transfection 

efficiencies in NIKS cells 

Having characterised the mutant E6 proteins, I next wanted to determine 

whether the mutant genomes are able to persist in NIKS cells. It was first 

important to assess whether the genomes have similar transfection efficiencies 

in NIKS cells, as major differences could potentially affect the results of the 

persistence assays. The transfection efficiencies of the 16WT, 16E6p53m and 

16E6PDZ genomes were assessed in two different ways.  

 

In the first, the cells were co-transfected with the viral genomes and the 

pcDNA6 plasmid (which carries a blasticidin-resistance gene) in the same way 

as they would be for the persistence assays, and DNA was extracted from them 

48 hours post-transfection. The DNA was then analysed by qPCR to determine 

the number of HPV copies per cell. In this assay, the cells were first trypsinised 

and passed onto new plates 24 hours prior to the DNA extraction, to minimise 

the chances of having any Effectene-DNA complexes attached on the outside of 

the cells and interfering with the results. The trypsinisation process of these 

cells involved one quick wash with trypsin-versene, a 2 minute incubation to 

remove the feeder cells and a 5-10 minute incubation to remove the NIKS cells, 

followed by neutralisation of the trypsin and centrifugation of the detached cells. 

The copy numbers for the transfection of the two mutant genomes were 

normalised to those for the transfection of the wild-type genome, for three 

independent experiments (Fig. 3.6A). The transfection efficiencies of the three 

genomes were found to be comparable.  

 

The second method I used to compare the transfection efficiencies of the three 

genomes was to co-transfect the genomes with the pMV10 plasmid that 

expresses β-galactosidase (β-gal). Comparing the protein levels of β-gal in 

these cells confirmed that the transfection efficiency of the 16WT genome was 

not higher than that of the mutant genomes, and therefore would not affect the 

results of the transfection experiments (Fig. 3.6B).  
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Figure 3.6: There are no major differences in the t ransfection efficiencies 

of the wild-type and mutant HPV16 genomes  

A) NIKS cells were co-transfected with wild-type or mutant HPV16 genomes, 

and pcDNA6 plasmid and the HPV copies per cell were measured by qPCR at 

48 hours post-transfection. The copy numbers for the transfection of the two 

mutant genomes were normalised to those for the wild-type genome. The bar 

graphs show the average of three experiments and the error bars show the 

range. B) NIKS cells were co-transfected with wild-type or mutant HPV16 

genomes and the pMV10 plasmid and lysates were collected at 48 hours post-

transfection. The levels of β-gal were determined by western blotting. HSP70 

was used as a loading control. 
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3.2.7. 16E6p53m genomes do not persist in NIKS cell  populations 

Having confirmed the need for E6 in the persistence of viral DNA in NIKS cells 

(section 3.2.2), I wanted to assess the ability of the E6 mutant genomes to 

persist. The first mutant genome to be analysed was 16E6p53m. As described 

in section 3.2.2. NIKS cells were co-transfected with the viral genomes and the 

pcDNA6 plasmid and treated with blasticidin. Surviving cells were subsequently 

cultured for ten passages, with DNA being collected at each passage. The 

results from two transfection experiments are shown in Figures 3.2A (panels i 

and iii) and Figure 3.2B (panels i and ii).   

 

In both experiments the 16WT genomes were able to persist, as the number of 

HPV copies per cell either stayed more or less constant or even increased at 

later passages. In contrast, the 16E6p53m genomes were unable to persist as 

the HPV copies per cell dropped to zero within four or five passages. Again this 

is consistent in both experiments. I thus conclude that the 16E6p53m genomes 

are unable to persist in NIKS cells.  

 

The persistence profile for the 16WT genomes appears different in the two 

experiments presented in Figure 3.2. As mentioned earlier, an increase in the 

copy number is not surprising, as the presence of viral genomes might be 

expected to give a growth advantage to the cells. This is what seems to be 

happening in the experiment presented in Figure 3.2A. In the experiment 

presented in Figure 3.2B however, the copy number stayed more or less 

constant. This may indicate that an increase in copy number has already 

occurred, prior to the first analysable time-point for this experiment, after which 

the copy number was stabilised. The apparent difference in the persistence 

profiles of the 16WT genome between the two experiments may also be a 

consequence of the heterogeneity that is expected after the transfection and 

culturing of a population of cells, which will be discussed further later on. As 

experimental variations, which may arise from different cell batches or different 

transfection efficiencies were beyond my control, it was imperative that the 

persistence of the 16WT genomes was always assayed in parallel to that of any 

mutant genome, to serve as a positive control. 
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Importantly however, the 16E6p53m genomes were unable to persist in NIKS 

cells in either of the two experiments presented above. This result suggests that 

the region of the E6 protein that was mutated in this genome has a role in viral 

genome persistence. 

 

3.2.8. 16E6PDZ genomes persist in NIKS cell populat ions 

I next wanted to determine whether the PDZ-binding motif of E6 is necessary 

for viral genome persistence. To do this I transfected NIKS cells with the 

16E6PDZ genomes. This was done as part of the same experiments presented 

in section 3.2.7 and the results are shown in Figures 3.2A (panels i and iv) and 

Figure 3.2B (i and iii).   

 

Unlike the 16E6p53m genomes, these mutant genomes appear to persist in 

NIKS cells. However, the number of HPV copies per cell for the 16E6PDZ 

genomes was lower than for the 16WT genomes and this was consistent in both 

experiments. The 16E6PDZ genomes were in fact present at lower copies than 

the 16WT genomes from passage 1 (p1) and this may be due to a biological 

effect that has already taken place prior to this first analysable time-point. 

Moreover, the copy number of the 16E6PDZ genomes seems to decrease 

initially and then rise again. This is seen in both experiments and is consistent 

with a possible growth advantage for HPV-positive cells in the population. 

 

From the results presented in this section, I conclude that the 16E6PDZ mutant 

genomes can persist in NIKS cells but do so at lower levels than the wild-type 

genomes.  

 

3.2.9. 16E6PDZ genomes do not persist episomally in  NIKS cell 

populations 

In the previous section I concluded that the 16E6PDZ genomes can persist in 

NIKS cells, but appear to do so at lower levels compared to wild-type genomes. 

Wild-type HPV16 genomes have been shown before to persist episomally in 

NIKS cells (Lambert et al., 2005; Laurson et al., 2010). I next wanted to 

investigate whether the 16E6PDZ DNA that was detected in the cells by qPCR 

is in fact episomal DNA or whether it has integrated into the cellular genome.  
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To do this, I analysed the DNA collected from the persistence assay described 

in section 3.2.8 by Southern blotting to look at the physical state of the viral 

DNA. The copy numbers of the 16WT and 16E6PDZ genomes (as measured by 

qPCR) were very low in both experiments presented in Figure 3.2. For this 

assay, I analysed the DNA collected from the experiment shown in Figure 3.2A, 

as these samples contained more HPV DNA per cell, thus increasing my 

chances of detecting viral DNA by Southern blotting. 

 

DNA from one passage of the 16WT-transfected cells was digested with Hind III 

in the first instance, which does not cut the HPV16 genome. In all Southern 

blots, an HPV-positive episomal NIKS cell line was used as a positive control 

(Laurson et al., 2010). The positive controls show the three-band pattern 

expected for episomal DNA. The fastest migrating band represents supercoiled 

DNA, the middle band represents linear DNA and the slowest migrating band 

represents open circular DNA. The 16WT genomes appear to have the same 

band pattern as the positive control, which suggests that these genomes 

persisted in a primarily episomal form (Fig. 3.7A). However, the bands were 

difficult to detect due to the low copy number present in these cells. In order to 

confirm the episomal state of the 16WT DNA in the cells, I repeated the 

Southern blot, but digested the DNA with BamH I which cuts the HPV DNA 

once, linearising it. The positive control was also digested with BamH I (Fig. 

3.7B). Single bands of the same size were obtained for the positive control and 

the 16WT sample and represent the linear 8 kb HPV16 genomes. This result 

indicates again that the 16WT genomes were present primarily in an episomal 

form in these cells.   

 

To look at the physical state of the 16E6PDZ DNA, a DNA sample from one 

passage of the 16E6PDZ-transfected cells was again digested with Hind III in 

the first instance (Fig. 3.7C). In this case, the band obtained, although very 

difficult to detect, was of a different size to any of the bands of the positive 

control. This is indicative of integration of the viral genome into cellular DNA. 

This was confirmed by another Southern blot using samples digested with 

BamH I (Fig. 3.7D). Again, the band obtained from the digestion of the 

16E6PDZ sample, although very faint, was shown to be of a different size to 

that of the positive control. This result suggests that the BamH I digestion did 
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not simply linearise the circular 8 kb mutant HPV genome but that an integration 

event has occurred, which brought the HPV DNA in the proximity of cellular 

BamH I sites.  

 

From these experiments, I conclude that, although the 16E6PDZ genome does 

appear to persist in NIKS cells, it does not persist episomally. 
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Figure 3.7: 16WT genomes persist episomally in NIKS  cells whereas 

16E6PDZ genomes do not  

DNA extracted from cells from the persistence assay was digested with 

restriction enzymes which either cut or do not cut the HPV genome (BamH I or 

Hind III respectively), and subjected to Southern blotting. DNA from cells 

transfected with 16WT (A and B) or 16E6PDZ (C and D) genomes was 

analysed. The positive control was DNA from an episomal HPV16-positive NIKS 

cell line and the negative control was DNA from HPV-negative NIKS cells. The 

positions of linear (L), open circular (OC) and supercoiled (S) episomal 

genomes are indicated, as is the marker (M) and the position of likely integrated 

DNA (*). The middle portion of each gel was cropped and this is indicated by a 

white line. 



Chapter 3: Investigation of E6 activities necessary for episomal persistence 

 114 

3.2.10. 16E6p53m genomes do not persist in NIKS clo nal cell lines 

In the experiments described in the previous sections, the DNA analysis was 

carried out on cells that were transfected and grown as a population. An issue 

that arises in these kinds of experiments is that the results represent an 

average of the entire population of cells and may be inordinately influenced by a 

sub-population of cells with growth advantage over the others. Specifically in 

regards to the population experiments above, it is a concern that 16E6p53m 

genomes could induce growth retardation to cells that harbour them. This is 

because, while the mutant E6 protein expressed cannot target p53 for 

degradation, the E7 protein encoded by this HPV16 genome is wild-type, and 

would be capable of increasing the p53 level above that of the basal level 

(Demers et al., 1994; Laurson et al., 2010). In such a scenario, elevation of p21 

levels (transcriptional target of p53) (Stoppler et al., 1998), could confer a 

growth disadvantage to cells that harbour 16E6p53m genomes. In support of 

this, NIKS cells that express only the E7 protein (in the absence of E6) have 

been observed to grow slower than NIKS cells that do not express any HPV 

proteins (Ken Raj, personal communication). Similar concerns apply to the 

16E6PDZ genomes as Lee et al. observed that cells harbouring HPV31 E6 

mutant genomes, incapable of targeting PDZ proteins, grew slower than control 

cells (Lee & Laimins, 2004). Since abrogation of either of these E6 activities 

within the whole HPV16 genome could potentially result in growth disadvantage 

to cells harbouring the mutant genomes, it is important to employ another 

experimental system that addresses these concerns, to verify the results from 

the population studies.  

    

Hence I decided to carry out the persistence assay by analysing individual 

clones of NIKS that were derived from the population of transfected cells.  In 

these experiments, NIKS cells were transfected with HPV16 DNA and pcDNA6, 

and then plated at very low density, followed by selection with antibiotics. This 

experimental design allowed single clones to be easily isolated and cultured 

individually. This eliminates the risk of cells bearing only the pcDNA6 vector and 

devoid of HPV mutant genomes, or cells that may have spontaneously lost the 

viral episomes (Stewart et al., 1994), outgrowing those that harbour the mutant 

viral genomes. Furthermore, some clones would be expected to have a higher 

number of HPV copies per cell, compared to the average of the population, and 
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these could be used to overcome the issue of the very low average HPV copy 

number within the populations that made Southern blotting analysis very 

difficult.  

 

In the first instance, cells were transfected with either 16WT or 16E6p53m 

genomes. Individual clones were isolated and DNA was extracted and analysed 

by qPCR 2-3 weeks post-transfection (Fig. 3.8). As expected, the populations of 

transfected cells were observed to be heterogeneous, with some clones 

harbouring much higher numbers of HPV copies per cell than others. The 

results show that 100% of the 16WT clones and 91% of the 16E6p53m clones 

were positive for HPV DNA. However, the mean number of HPV copies per cell 

of the 16WT clones was 239 whereas that of the 16E6p53m clones was 101. 

The much reduced mean copy number of the 16E6p53m clones (only 42% of 

that of the 16WT clones), supports my previous conclusions about there being a 

difference between these two genomes (section 3.2.7). Table 3.3 gives a 

summary of the results from this experiment. From these, it is clear that both 

genomes (16WT and 16E6p53m) were able to persist in NIKS (albeit with 

different efficiencies) up to this point in the analysis (2-3 weeks post-

transfection). This observation appears to challenge those from the population 

analyses, and supports the idea that the clonal assay has a higher resolution 

than the population assay.  

 

However, the lower average number of HPV copies per cell for the 16E6p53m 

genomes in the clonal cell lines suggests that the mutant HPV genomes in the 

16E6p53m clones may be on the way to being lost and have already dropped in 

numbers. To test this hypothesis, I took one 16WT and one 16E6p53m clone 

and cultured them for several additional passages, extracting DNA at each 

passage. The DNA was then analysed by Southern blotting to determine 

whether the genomes persist during more long-term culturing, and also to 

establish the physical state of the HPV DNA in the cells. The viral DNA in both 

the 16WT (Fig. 3.9A) and the 16E6p53m clone (Fig. 3.9B) appears to be 

episomal, as the bands were of the same size as the episomal positive control. 

Moreover, the 16WT genomes persisted episomally throughout the ten 

passages. In contrast, the 16E6p53m genomes dropped in copy number over 
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time, which is consistent with my hypothesis that the 16E6p53m genomes may 

not be able to persist. 

 

To verify that the eventual loss of 16E6p53m genomes, is not specific to the 

individual NIKS cell clone that was used in the study above, I repeated the 

experiment from the beginning with a fresh transfection and analysed all the cell 

clones at a later time-point; at 4-5 weeks post-transfection instead of 2-3 weeks. 

Figures 3.10A and B show the results from the transfection of the 16WT and 

16E6p53m genomes. In this experiment, 70% of the 16WT clones were positive 

for HPV DNA, compared to the 100% of positive clones in the previous 

experiment. Strikingly, only 24% of the 16E6p53m clones were positive for HPV 

DNA, compared to 91% in the previous experiments. More importantly though, 

the mean number of HPV copies per cell for all the 16E6p53m clones was only 

5% of that of all the 16WT clones (39 copies per cell for the 16WT clones and 2 

copies per cell for the 16E6p53m clones). Taken together with the results from 

the population experiments, these results suggest that the 16E6p53m genomes 

cannot persist in NIKS cells.  

 

3.2.11. 16E6PDZ genomes do not persist in NIKS clon al cell lines 

The clonal experiment was also carried out using the 16E6PDZ mutant 

genomes, with clones being analysed at 4-5 weeks post-transfection and 

compared to the 16WT clones (Fig. 3.10A and C). Strikingly, only 8% of the 

analysed 16E6PDZ clones were found to be positive for HPV DNA (2 out of 26 

clones) and those 2 positive clones were found to have similar numbers of HPV 

copies per cell as some of the 16WT clones. This was very interesting and 

made apparent the lower sensitivity of the population experiments. Table 3.4 

gives a summary of the results from this experiment, for the transfection of the 

16WT, 16E6p53m and 16E6PDZ genomes.  

 

Having observed that the 16E6PDZ genomes integrated into the cellular DNA in 

the population experiment, I was keen to determine the physical state of the two 

HPV-positive 16E6PDZ clones from the experiment described above. To do 

this, I carried out a Southern blot analyses on DNA from two 16WT clones with 

different copy numbers, together with DNA from the two 16E6PDZ-positive 
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clones, as well as an HPV-negative clone from each transfection (as controls) 

(Fig. 3.11). DNA samples from two 16E6p53m clones were also analysed by 

Southern blotting but no HPV DNA was detected, probably due to the low 

number of HPV copies in these cells (as measured by qPCR). For this Southern 

blot, the DNA was digested with Hind III. 

 

Both HPV-positive 16WT clones analysed by Southern blotting were found to 

harbour episomal HPV DNA. In contrast, both HPV-positive 16E6PDZ clones 

were found to harbour integrated HPV DNA as indicated by the HPV DNA 

bands that were of different sizes compared to the positive control. The higher 

copy numbers in these clones allowed me to clearly confirm the integration by 

Southern blotting and these results confirmed those obtained from the 

population assay (section 3.2.9). 
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Figure 3.8:  16WT and 16E6p53m genomes persist in clonal cell li nes but at 

different levels 

NIKS cells were co-transfected with 16WT or 16E6p53m genomes, and the 

pcDNA6 plasmid and plated at low density post-transfection. Following antibiotic 

selection and further growth, clones were isolated and grown independently. 

DNA was extracted from individual clones 2-3 weeks post-transfection and was 

analysed by qPCR to determine the number of HPV copies per cell.  
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Table 3.3: Summary of the data from the clonal expe riment (analysed 2-3 

weeks post-transfection)  

Mean number of 

HPV copies per cell 

 Percentage of 

HPV +ve 

clones In all clones In +ve clones 

16WT 100% 239 239 

16E6p53m 91% 101 110 
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Figure 3.9: 16WT genomes persist episomally in long -term passaging of 

clonal cell lines, whereas 16E6p53m genomes drop in  copy numbers  

Undigested DNA from different passages of A) a 16WT and B) a 16E6p53m 

clone was analysed by Southern blotting. The positive control was DNA from an 

episomal HPV16-positive NIKS cell line and the negative control was DNA from 

HPV-negative NIKS cells. The position of supercoiled (S) episomal genomes is 

indicated, as is the marker (M). The “p” values above each lane indicate the 

passage number of the cells from which DNA was extracted (e.g. p1 indicates 

“passage 1”). The white lines denote portions of the gels that have been 

cropped. 
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(legend on page 122) 
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Figure 3.10:  16WT genomes persist in clonal cell lines whereas 1 6E6p53m 

and 16E6PDZ genomes do not 

NIKS cells were co-transfected with (A) 16WT, (B) 16E6p53m or (C) 16E6PDZ 

genomes, and the pcDNA6 plasmid and plated at low density post-transfection. 

Following antibiotic selection and further growth, clones were isolated and 

grown independently. DNA was extracted from individual clones 4-5 weeks 

post-transfection and was analysed by qPCR to determine the number of HPV 

copies per cell.  
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Table 3.4: Summary of the data from the clonal expe riment (analysed 4-5 

weeks post-transfection)  

Mean number of 

HPV copies per cell 

 Percentage of 

HPV +ve 

clones In all clones In +ve clones 

16WT 70% 39 55 

16E6p53m 24% 2 9 

16E6PDZ 8% 7 95 
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Figure 3.11: 16WT genomes persist episomally in clo nal cell lines whereas 

16E6PDZ genomes do not  

DNA from one HPV-negative and two HPV-positive 16WT and 16E6PDZ clones 

was digested with Hind III and analysed by Southern blotting to determine the 

physical state of the HPV DNA. The positive control was DNA from an episomal 

HPV16-positive NIKS cell line and the negative control was DNA from HPV-

negative NIKS cells. The positions of linear (L), open circular (OC) and 

supercoiled (S) episomal genomes are indicated, as is the marker (M). 16WT 

clones 17 and 18 and 16E6PDZ clones 1 and 20 were HPV-positive. 16WT 

clone 19 and 16E6PDZ clone 9 were HPV-negative. 
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3.2.12. 16WT genomes persist episomally in NIKS clo nal cell lines in long-

term passaging 

In the previous section I observed that the 16WT genomes were episomal in the 

analysed clones whereas the 16E6PDZ genomes were not. I then wanted to 

confirm that the integration phenotype that I observed with the 16E6PDZ 

genomes was specific to these mutant genomes, and not a result of my 

methodology. To do this, I cultured one of the 16WT clones shown in Figure 

3.11 for a further ten passages, extracting DNA at each passage and analysing 

it by Southern blotting (Fig. 3.12A). The wild-type genomes were observed to be 

episomal irrespective of the time-point analysed. I thus have no reason to 

believe that the loss of the episomal phenotype was a result of my 

methodology, and rather is specific to the 16E6PDZ genomes. To further 

support my results, I also cultured a 16WT clone from an independent 

experiment and analysed its DNA by Southern blotting (Fig. 3.12B). Once 

again, the HPV DNA was found to be episomal and this was consistent over all 

the analysed passages.  

 

I also wanted to verify the integration of the 16E6PDZ genomes analysed in the 

clonal experiment. To do this, I cultured one of the clones shown in Figure 3.11 

for several additional passages, extracted DNA and analysed it by Southern 

blotting (Fig. 3.13A). For this Southern blot, DNA was digested with a different 

enzyme than the one used in the Southern blot in Figure 3.11, to confirm the 

integration event. Xba I, which does not cut HPV16 DNA, was used for the 

digestion. The HPV DNA bands in this clone were again of different size to 

those of the positive control, and in fact appeared as a smear which is indicative 

of multiple integration events. This was consistent for all the analysed 

passages, confirming that it truly represents an integration event. 

 

Intriguingly, the HPV DNA in this clone did not appear to persist even as an 

integrant as the band intensity in the Southern blot decreased over time. This 

suggests that some growth competition may exist within the clone. This would 

be possible if the integration event did not occur in the very first cell from which 

the clone was generated. If this is the case, then the clone would be 

heterogeneous with some cells harbouring integrated copies of the mutant HPV 

genome and some being HPV-negative cells, or even harbouring different 
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integration events. Moreover, it is possible that these cells did not originate from 

a single clone, but maybe from two merged clones that were growing too close 

together. This would again introduce heterogeneity and possible growth 

competition between the cells. It is therefore possible that this specific 

integration event, or the expression of an E6 protein that cannot degrade PDZ 

proteins, may confer a growth disadvantage. However, the precise nature of the 

integration events in these clones, and their effects on the growth of the cells is 

beyond the scope of this study.  

 

Lastly, to confirm that the integration of the 16E6PDZ genome was not specific 

to this experiment, a 16E6PDZ clone from an independent experiment was also 

cultured for several passages and its DNA was analysed by Southern blotting 

(Fig. 3.13B). The HPV DNA from this clone was also found to be integrated into 

the cellular DNA, supporting my previous conclusions that the 16E6PDZ 

genomes cannot persist episomally in NIKS cells.  

 

From these experiments I conclude that neither the 16E6p53m nor the 

16E6PDZ genomes can persist episomally in NIKS cells and this was 

demonstrated by the population as well as the clonal experiments. 
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Figure 3.12: 16WT genomes persist episomally in NIK S cells over several 

passages 

Two 16WT clones (A and B) were cultured for several passages. DNA was 

extracted at each passage, digested with Hind III and analysed by Southern 

blotting. The positive control was DNA from an episomal HPV16-positive NIKS 

cell line and the negative control was DNA from HPV-negative NIKS cells. The 

positions of linear (L), open circular (OC) and supercoiled (S) episomal 

genomes are indicated, as is the marker (M). The “p” values above each lane 

indicate the passage number of the cells from which DNA was extracted (e.g. 

p1 indicates “passage 1”).  
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Figure 3.13: 16E6PDZ genomes do not persist episoma lly in NIKS cells  

Two 16E6PDZ clones (A and B) were cultured for several passages. DNA was 

extracted at each passage, digested with A) Xba I or (B) Hind III and analysed 

by Southern blotting. The positive control was DNA from an episomal HPV16-

positive NIKS cell line and the negative control was DNA from HPV-negative 

NIKS cells. The positions of linear (L), open circular (OC) and supercoiled (S) 

episomal genomes are indicated, as is the marker (M). The “p” values above 

each lane indicate the passage number of the cells from which DNA was 

extracted (e.g. p1 indicates “passage 1”). The white lines denote portions of the 

gels that have been cropped. 
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3.2.13 Cells expressing mutant E6 do not have a gro wth disadvantage 

compared to control cells 

 

3.2.13.1. Generation of wild-type and mutant E6/7-e xpressing cells 

In the experiments described above, I addressed the possibility that the cells 

that carry the E6 mutant genomes may have a growth disadvantage over the 

HPV-negative cells in the population, and may therefore be lost from the 

culture. This potential problem was addressed by carrying out clonal 

experiments, which were aimed at removing the growth competition from the 

population of cells. However, it is possible that the clones themselves may 

eventually become heterogeneous, by spontaneous loss of episomes (Stewart 

et al., 1994), or by un-even segregation of viral genomes. This possibility would 

undoubtedly affect the confidence in my conclusions. Hence, although clonal 

analyses can significantly reduce the influence of potential differential cell 

growth on the outcome of the experiments, it does not eliminate this likelihood 

entirely. 

 

I therefore wanted to determine whether the expression of the mutant E6 

proteins induced a growth disadvantage to cells, compared to control cells that 

express no viral proteins. To do this, I employed a retroviral expression system 

to express E6 proteins in NIKS cells. As the activities of E6 and E7 are closely 

related and often affect each other (for example p53 augmentation by E7 

(Demers et al., 1994; Laurson et al., 2010) and p53-degradation by E6 

(Scheffner et al., 1990)) I considered it important to co-express E6 and E7 in 

these experiments. 

 

To do this, I used a pLXSN retroviral vector that has the HPV16 E6 and E7 

ORFs cloned into it (LXSN-E6WT/7), kindly provided by Dr. Denise Galloway, 

and used it as a template to engineer LXSN-E6p53m/7 and LXSN-E6PDZ/7 

vectors by site-directed mutagenesis. These vectors, along with the empty 

LXSN vector, were then used to make retroviruses with which I infected NIKS 

cells. Infected cells would express the E6 and E7 proteins from the retroviral 

promoter and would also be resistant to neomycin. Following antibiotic selection 

and recovery, the cells were lysed and the lysates were analysed by western 
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blotting which confirmed that the infectants were indeed expressing the HPV16 

E6 and E7 proteins (Fig. 3.14).  

 

 

 

 

 

 

Figure 3.14: Expression of E6 and E7 proteins in LX SN-E6/7 cells 

NIKS cells were infected with retroviruses bearing wild-type or mutant E6 genes 

as well as the E7 gene. Following antibiotic selection, cell lysates were collected 

and the levels of E6 and E7 proteins were determined by western blotting. 

HSP70 was used as a loading control. 
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3.2.13.2. The E6mut/7-expressing cells do not have a growth disadvantage 

compared to the LXSN cells 

To determine whether any of the E6/7-expressing cell populations have a 

growth disadvantage compared to the LXSN cells, a growth assay was 

performed. I considered that by performing a growth assay I would be able to 

observe the consequences of different growth-related variations that may exist 

between the cells. These include differences in the speed of growth and in the 

number of cells that are cycling at any given time, as well as potential 

differences in the levels of cell death. All of these factors would affect the 

number of cells present in each well and would be reflected in the growth curve.  

 

The cells were counted and plated in 6-well plates, so that three wells could be 

counted per sample at various time points. In addition to the 1 x 105 cells 

seeded per well, 3 x 105 feeder cells were plated as well. This is the feeder 

density that the cells have always been grown in, and it was considered 

important to keep this constant, as the speed of growth of the cells may vary at 

different feeder concentrations. The cells were counted at various time-points 

over seven days, when they were at both sub-confluent and confluent stages. 

To ensure that the feeder cells were not counted in this assay, the cells were 

first washed with trypsin-versene and then incubated at 37 oC for 2 minutes to 

allow feeder cells to detach. The cells were then washed with PBS prior to a 

second incubation in trypsin-versene to remove the keratinocytes for counting.  

 

The mean number of cells per sample was plotted on a graph, with error bars 

representing the standard deviation of triplicate wells (Fig. 3.15). The growth 

curves show that neither the LXSN-E6WT/7 cells nor any of the two LXSN-

E6mut/7 cell types grew slower than the control LXSN cells at any stage of the 

assay. This suggests that the expression of the E6p53m or E6PDZ proteins, 

together with E7, does not confer a growth disadvantage to the cells. I thus 

have no reason to think it likely that the lack of persistence of these mutant 

genomes is due to a growth disadvantage of cells harbouring the mutant 

genomes.  
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Figure 3.15: Growth assay of E6/7-expressing cells 

Equal numbers of cells were plated in 6-well plates, and counted in triplicate at 

5 time-points over seven days. The mean number of cells was plotted against 

the time in days. The error bars represent +/- the standard deviation of the 

triplicate counts.    
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3.3. Discussion 

 
In this chapter I presented data that implicate two regions of the HPV16 protein 

in episomal persistence of HPV16 in monolayer cultures of keratinocytes. 

Previous studies have attempted to look at how different activities of E6 may 

affect episomal persistence, by generating E6-mutant genomes (Lee & Laimins, 

2004; Park & Androphy, 2002; Thomas et al., 1999). These studies used 

primary HFKs to study the persistence of either the HPV31 genome (Lee & 

Laimins, 2004; Thomas et al., 1999) or a hybrid HPV31/16 genome (Park & 

Androphy, 2002). In all of these studies, persistence was assessed by the 

detection of HPV DNA by Southern blotting several weeks post-transfection. 

 

Considering that viral persistence in the basal layer of the epithelium is 

considered to be vital for the development of high-grade HPV-related disease 

(Remmink et al., 1995; Schiffman & Kjaer, 2003), I decided that a thorough 

analysis of the requirements for episomal persistence of HPVs would be 

important. To identify factors necessary solely for episomal persistence, without 

any interference from the potential need for cellular immortalisation, I decided to 

study this in NIKS cells instead of primary cells. Furthermore, the HPV16 

genome was chosen for this study, as this is the most significant HPV type with 

respect to cancer development.  

 

The aim of the work presented in this Chapter was to extend the observations 

that the E6 viral protein was necessary for episomal persistence of HPV16 in 

NIKS cells (Laurson et al., 2010), by determining which activities of E6 are 

involved in this function. To this end, two HPV16 mutant genomes were 

constructed, each harbouring a well-characterised mutation in the E6 ORF. The 

first was a p53-degradation mutant genome (16E6p53m) and the second was a 

genome that lacked the PDZ-binding motif of E6 (16E6PDZ).  

 

As part of my studies to characterise these mutations, I showed that the wild-

type E6 protein, when expressed at high levels from a stable clonal cell line, is 

able to degrade endogenous hScrib. More work however is needed in order to 

determine if this degradation also occurs in natural HPV infections, or if this is 
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an effect that is brought about only by abnormally high expression level of the 

E6 protein. 

 

In my assays, the ability of the mutant genomes to persist in NIKS cells was 

always assessed in comparison to that of the wild-type genome (16WT) from 

the same experiment. Two methods for looking at persistence were employed, 

each giving important insight. Firstly, the two genomes were transfected into 

NIKS cells and the cells were grown as a population for several passages. 

Analysis of DNA from these experiments showed that 16E6p53m genomes do 

not persist in NIKS cells whereas 16E6PDZ genomes do persist but not 

episomally. It therefore seems that the p53-degradation activity of E6 may be 

necessary for the persistence of viral DNA in cells and the PDZ-binding activity 

of E6 may be necessary for keeping the episomal state of the genome.  

 

However, these experiments, which resemble the ones carried out by the earlier 

studies mentioned above (Lee & Laimins, 2004; Park & Androphy, 2002; 

Thomas et al., 1999), only give a general idea of what is happening in these 

cells. Therefore, they may be influenced by a small number of atypical 

phenotypes within the population rather than being representative of most cells. 

Even more important however is the fact that some cells in the population may 

carry a growth advantage, which may be unrelated to the ability of the viral 

episomes in those cells to persist. These cells may consequently outgrow the 

others, thus giving a false result with regards to viral DNA persistence.  

 

To avoid such potential problems, I assessed the ability of the mutant genomes 

to persist in individual cell clones instead, which were isolated and grown 

individually so that they would not be subjected to growth competition by other 

cells in the population. An added advantage of this system is the insight gained 

into the degree of heterogeneity that exists within the population of cells. In 

these clonal experiments, the 16E6p53m genomes were again found to be 

unable to persist in cells. Interestingly however, the results from the transfection 

of the 16E6PDZ genomes showed that the phenotype I had observed with the 

population experiments was not the most common across the whole population. 

The analysis of the clones indicated that the 16E6PDZ genomes had in fact 

been lost from the majority of the clones, with a few clones having multi-copy 
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integrations. It should be noted however, that the primers used in the qPCR 

analysis of these clones recognise sequences within the E4 ORF. It is therefore 

possible that other clones may also contain integrated copies of the genome, 

but are not being detected as positive here because their E4 ORF has been 

disrupted. Further analyses with primers to other HPV ORFs can be carried out 

to measure the degree of integration more precisely.    

 

I also considered the possibility that the clones themselves may eventually 

become heterogeneous and therefore decided to directly address the question 

of whether or not the expression of mutant E6 proteins, together with the wild-

type E7 protein, confers a growth disadvantage to the cells. My results indicate 

that cells that express a mutant E6 protein and the E7 protein do not have a 

growth disadvantage compared to control cells, hence conclusively ruling out 

the possible influence of growth competition described earlier.  

 

Taking the results from this chapter together, I conclude that two distinct regions 

of the E6 protein are necessary for the persistence of viral episomes in cells. My 

investigation into episomal persistence went beyond that of previous studies in 

that I have investigated persistence in the absence of the need for cellular 

immortalisation. Furthermore, I have looked at the heterogeneity within 

transfected cells and have taken care to prevent my results from being 

influenced by different growth rates within the cell population. By doing so, I am 

able to conclude that these two regions of E6 are directly involved in episomal 

persistence, and not implicated in it by way of some other function, such as loss 

of HPV-positive cells from the culture.  

 

The two regions of the E6 protein I have been studying were chosen as their 

mutations have been shown to disrupt two key activities of the HPV16 E6 

proteins, the degradation of p53 and the binding to and degradation of PDZ 

proteins. Therefore, the data presented in this chapter would suggest that these 

two activities of E6 are necessary for episomal persistence. However, this has 

not been conclusively proven as the possibility that the introduced mutations 

also disrupt other activities of E6 cannot be dismissed. To determine whether 

degradation of p53 and binding/degradation of PDZ proteins are indeed 

necessary for persistence, it would be necessary to directly interfere with these 
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processes. For example, I could determine whether the 16E6p53m genome is 

able to persist in cells that have constitutively low levels of p53, such as NIKS 

cells that stably express shRNA against p53. Experiments to this end will be 

discussed in Chapter 4. Similar assays could be carried out with the 16E6PDZ 

genomes in NIKS cells in which PDZ proteins have been knocked down. The 

latter however is less straightforward as it is not currently know which specific 

PDZ protein, or combination of proteins, may be implicated in HPV episomal 

persistence.  

 

Intriguingly, my results also indicate that the two mutant genomes I have been 

studying have two different phenotypes with regards to persistence. The 

16E6p53m genomes appear to gradually be lost from the cells, in a similar way 

as the 16E6STOP genomes. On the other hand, the 16E6PDZ genomes are 

either completely lost from the cells, or are occasionally integrated at high copy 

numbers. These observations suggest that the p53-degradation activity and the 

PDZ-binding activity of E6 may affect episomal persistence by different 

mechanisms.   

 

Further work is needed to determine the persistence mechanisms that these 

activities of E6 are involved in. My studies to this end will be the topics of the 

following chapters.  
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Chapter 4: Investigating factors that may affect HP V16 

persistence 

 

4.1. Introduction  

 
As mentioned in Chapter 1, in order for viral episomes to persist in cells, they 

need to be able to replicate as well as segregate correctly into the two daughter 

cells. Both establishment replication and stable maintenance replication are 

necessary for long-term persistence of viral episomes in basal cells. For correct 

segregation, the episomes must segregate equally into the daughter cells, and 

localise to the nucleus of the newly formed cells, in order to be able to undergo 

replication again. The interruption of any of these processes will result in viral 

episome loss. 

 

The mechanisms that regulate the segregation of viral episomes have been 

studied for PVs as well as for some of the other tumour viruses, and common 

features have been highlighted. It is generally thought that viral episomes bind 

to viral proteins which in turn attach the episomes to the cellular chromosomes 

by interacting with a DNA-binding cellular protein (reviewed in Feeney & Parish, 

2009). The only PV-encoded protein that has been identified to play a role in 

this is E2 (Abbate et al., 2006; Bastien & McBride, 2000; Ilves et al., 1999; 

Lehman & Botchan, 1998; Oliveira et al., 2006; Skiadopoulos & McBride, 1998; 

Van Tine et al., 2004). Several cellular proteins, such as Brd4 (Abbate et al., 

2006; Baxter et al., 2005; You et al., 2004; You et al., 2005), Chlr1 (Parish et 

al., 2006a) and TopBP1 (Donaldson et al., 2007), have been suggested to 

mediate the interaction between PV episomes and cellular chromosomes. In 

addition to the cellular chromosomes, E2 has also been reported to tether viral 

episomes to the mitotic spindle to enable segregation (Van Tine et al., 2004) 

and studies suggest that alternative pathways may be used by different PV 

types (McPhillips et al., 2006; Oliveira et al., 2006). Although it is possible that 

other viral proteins, in addition to E2, may also play a role in episomal 

segregation, at this point there is no evidence to suggest a role for E6.  
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On the other hand, a potential role for E6 in viral DNA replication has been 

suggested. p53 binds to members of the cellular DNA replication machinery, 

such as DNA helicases (Sakurai et al., 1994) and replication protein A (RPA), 

the latter of which p53 has been shown to inhibit (Dutta et al., 1993). In addition, 

p53 has been found to localise to sites of viral DNA replication along with 

cellular replication proteins (Wilcock & Lane, 1991).  

 

Moreover, p53 binds to the SV40 large T antigen. This interaction down-

regulates the replication of SV40 DNA (Friedman et al., 1990; Wang et al., 

1989) and it has been shown that p53 prevents the helicase activity of the large 

T antigen (Sturzbecher et al., 1988) and also interferes with its ability to bind to 

DNA polymerase α (Gannon & Lane, 1987).  

 

Importantly, p53 has been implicated in the replication of PVs, having different 

effects at different stages of replication. p53 inhibits the replication of BPV1 as 

well as that of the high-risk HPV type 18 and the low-risk HPV type 11. 

However, this was only found to be true for the amplificational/establishment 

replication that immediately follows infection (Ilves et al., 2003; Lepik et al., 

1998). In contrast, p53 was found to have no effect on the maintenance 

replication of BPV1 that keeps the viral copies at a stable number (Ilves et al., 

2003). These studies provide evidence that establishment replication and 

maintenance replication are regulated by different cellular and viral factors. 

However, it should be noted that in both the Lepik et al. and the Ilves et al. 

studies, p53 was over-expressed in order for it to have an effect on replication. 

Seeing as BPV1 and HPV11 do not encode proteins that have p53-degradation 

activity (unlike HPV16 E6) it is unlikely that physiological levels of p53 would 

inhibit their DNA replication. 

 

Studies have also shown that p53 interacts with the viral replication protein E2 

(Massimi et al., 1999) and that the negative effect of p53 on the replication of 

HPV16 DNA is dependent on this interaction (Brown et al., 2008). These data 

however also hint at a difference between the replication of high- and low-risk 

HPVs. As Brown et al. discuss, HPV11 E2 was unable to bind p53 (Parish et al., 

2006b), and yet p53 has been shown to inhibit HPV11 replication as well (Lepik 
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et al., 1998). This suggests that p53 may down-regulate the replication of high- 

and low-risk HPVs by different pathways.  

 

In this chapter I aim to address possible reasons that may lead to episomal 

loss. I considered that DNA replication was the most obvious to investigate first, 

as cellular targets of E6 (p53) have been directly implicated in it. On the other 

hand, E6 has not been implicated in episomal segregation. 
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4.2. Results 

 

4.2.1. Replication of wild-type and mutant HPV16 ge nomes   
I first wanted to address the possibility that the failure of the 16E6p53m and 

16E6PDZ mutant genomes to persist in NIKS cells was due to their inability to 

replicate. A previous study has shown that certain mutations in HPV31 E6 

protein rendered genomes unable to replicate in transient assays (Thomas et 

al., 1999). These mutations were in the splice-donor or splice-acceptor sites of 

E6 and their effect on replication could have been due to one of two things: 

firstly, it was possible that expression of the E6* splice variant protein was 

necessary for replication. Secondly, it was also possible that the introduced 

mutation inadvertently affected the expression of E1 and E2, thereby inhibiting 

replication. The latter possibility gains credence from the observation that 

ectopic expression of E1 and E2 in the transfected cells rescued the replication 

of the mutant genomes (Thomas et al., 1999). 

 

It was therefore important to determine whether the mutations I have introduced 

into the E6 ORF of HPV16 genomes affect the ability of the genomes to 

replicate, as this would consequently affect their ability to persist. Previous 

studies that addressed the persistence of HPV genomes in cells assessed their 

ability to replicate by carrying out transient replication assays (Lee & Laimins, 

2004; Lee et al., 2007; Park & Androphy, 2002; Thomas et al., 1999). In these 

assays, viral genomes were transfected into cells, and DNA was extracted five 

days post-transfection. The DNA was digested with Dpn I, which digests the 

methylated (input) DNA, and Southern blotting was used to detect any Dpn I-

resistant DNA, which is DNA that has undergone replication in the transfected 

cells (Peden et al., 1980). In the abovementioned studies, the transient 

replication assays were carried out in SCC13 or C33a cells. These were not the 

same cells in which the persistence assays were carried out in these studies, 

which were primary human foreskin keratinocytes (HFKs). Although not 

specifically pointed out in these reports, the SCC13 and C33a cell lines may 

have been used because they are much more amenable to being transfected 

than HFKs. The results from these transient replication assays would reveal 

whether there is something inherently wrong with the mutant genomes, for 
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example an inadvertent effect on the expression of E1 and E2. However, they 

may not accurately reflect how efficient the replication of each genome is in the 

HFKs. For example, viral replication in HFKs may have a requirement for 

expression of intact E6 protein, which may not be similarly necessary in SCC13 

or C33a cells. 

 

For this study it was important to look at the ability of the 16E6p53m and 

16E6PDZ mutant genomes to replicate in NIKS cells. As the transfection 

efficiency of the NIKS cells is relatively low, I did not expect to obtain enough 

cells that harbour replicated viral DNA, to be able to see the DNA by Southern 

blotting. Even the use of antibiotics to select for cells that harboured viral DNA 

would not generate sufficient number of cells for a Southern blot-based 

transient replication assay in such a short period of time. To bypass this 

problem, I decided to use a qPCR-based transient replication assay instead, 

which is more sensitive than Southern blotting, and therefore requires much 

less starting material. This was modified from a previously described technique 

(Taylor & Morgan, 2003), in which a probe and primers were designed to 

amplify an area of the HPV replication origin. In that study, a Dpn I site was 

introduced into the binding site of the probe, so that non-replicated, methylated 

DNA would be digested and therefore not amplified in the qPCR reaction. Newly 

replicated, un-methylated DNA on the other hand, would be resistant to 

digestion, and would consequently be amplified in the qPCR. Taylor and 

Morgan highlighted the advantages of their qPCR-based assay over the 

Southern blotting method by demonstrating its superior sensitivity in detecting 

small differences in replication (Taylor & Morgan, 2003).  

 

My experimental procedure was different to that described by Taylor and 

Morgan in that I have been working with the entire HPV16 genome and could 

utilise Dpn I sites that exist naturally within the viral genome, to distinguish 

between transfected (input) and newly replicated DNA. A similar qPCR-based 

assay has also been used previously to determine the replication of BPV1 

mutant genomes (Parish et al., 2006a).  

 

In the HPV16 genome, a Dpn I site is present in the E4 ORF and lies within the 

target sequence that is amplified by the set of primers I have been using for 
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qPCR. Hence amplification of this region by qPCR in Dpn I-digested and 

undigested samples would allow the measurement of the magnitude of 

replication of the viral DNA, based on the principles described above.  

 

To test this principle pSPW12 plasmid (which contains the entire wild-type 

HPV16 genome in a pSP64 vector and was grown in bacteria) was digested 

with Dpn I, or left undigested. qPCR was then used to measure the amounts of 

pSPW12 DNA. As a control, the DNA was also digested with Mbo I, an enzyme 

that recognises the same restriction site as Dpn I but would only digest un-

methylated DNA, and would therefore be expected to leave the pSPW12 DNA 

intact. Dpn I digestion significantly decreased the levels of E4 detected 

(p=0.0013), whereas the Mbo I digestion did not (p=0.37) (Fig. 4.1A). However, 

there was still a significant amount of DNA amplification detected in the Dpn I-

digested sample, indicating that the qPCR assay has a high background. The 

Taylor and Morgan study suggested that digesting the DNA with Exonuclease III 

in addition to Dpn I, would help reduce the background (Taylor & Morgan, 

2003). To determine whether this would improve the assay, I compared the 

levels of E4 in samples digested with Dpn I with or without Exonuclease III (Fig. 

4.1B). Digestion with Exonuclease III did reduce the background to almost 

undetectable levels. I therefore decided to use both Dpn I and Exonuclease III 

digestions for the actual experiments.  

 

An unfortunate consequence of Exonuclease III digestion however, is the 

complete removal of all digested DNA, which eliminates the possibility of using 

another viral ORF as template for an internal qPCR control. Such a control 

would be useful to ensure that the amount of template loaded on the qPCR is 

comparable between samples. To bypass this problem, I decided to analyse the 

results from the transient replication assay by measuring the number of E4 

copies in the Dpn I-digested and undigested samples and dividing the former by 

the latter. Apart from the presence of the enzyme, these two samples were 

treated identically. This would ensure that any variation between the samples, 

as a consequence of the cell harvesting or DNA extraction process, would not 

interfere with my results.  
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Figure 4.1: Controls for transient replication assa y 

pSPW12 plasmid was digested with A) Dpn I or Mbo I, or left undigested and B) 

Dpn I or Dpn I and Exonuclease III (Exo III), or left undigested. The levels of E4 

were measured by qPCR. The bar charts show the mean E4 copies and the 

standard deviation of three replicates.  
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The controls presented in Figure 4.1 were set up using pure plasmid that was 

isolated from bacteria. I therefore wanted to ensure that the qPCR-based assay 

also works in transient transfections. To do this, I carried out another control in 

which NIKS cells were transfected with either the replication-competent 16WT 

genomes, or a cloning plasmid carrying the E1^E4 cDNA, but no eukaryotic 

promoter or origin of replication (E4 plasmid) (McIntosh et al., 2008). Low 

molecular weight DNA was extracted four days post-transfection, and divided 

into samples that would remain undigested, or would be digested with Dpn I and 

Exonuclease III. The number of E4 copies measured in the digested samples 

was divided by that measured in the undigested samples and multiplied by 100 

to give the percentage of replication. The results are presented in Figure 4.2 

and show that the replication detected in the cells transfected with the 16WT 

genomes was significantly higher that that detected in the cells transfected with 

the replication-deficient E4 plasmid (p=0.048). This indicates that this assay can 

be used to measure DNA that has replicated above background level, as this is 

set by the E4 plasmid.   

 

Having tested the principles of this assay, I set out to determine whether the 

16E6p53m and 16E6PDZ mutant genomes are replication-competent. To do so, 

NIKS cells were transfected with either of the two mutant genomes, the 16WT 

genome or the E4 plasmid. Low-molecular weight DNA was extracted at four 

days post-transfection and samples were either digested with Dpn I and 

Exonuclease III or were left undigested. The transfection was carried out in four 

replicates and Figure 4.3 shows the results.  

 

From these results, I make two important observations. Firstly, the levels of 

replication detected in the cells transfected with any of the three HPV genomes 

were significantly higher than the background level detected with the E4 

plasmid (16WT: p=0.0001, 16E6p53m: p=0.0004 and 16E6PDZ: p=0.017). This 

indicates that, in addition to the 16WT genome, both of the mutant genomes are 

also replication-competent. Secondly, the replication efficiency of the 16E6PDZ 

genomes was found to not be statistically different (p=0.17) to that of the 16WT 

genomes. In contrast, the 16E6p53m genomes were found to replicate less 

efficiently than the 16WT genomes (p=0.0037).     

 



Chapter 4: Investigating factors that may affect HPV16 persistence 

 145 

In light of these results, I can conclude that although they are not able to persist 

in NIKS cells, both the 16E6p53m and 16E6PDZ mutant genomes are 

nevertheless able to replicate in these cells. However, 16E6p53m genomes 

replicate less efficiently than 16WT genomes and this might be significant in 

terms of the inability of these genomes to persist in NIKS cells.  
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Figure 4.2: Transient replication of 16WT genomes a nd control plasmid 

NIKS cells were transfected with 16WT genomes or a control plasmid (E4 

plasmid) that has the E4 ORF without any eukaryotic promoter or origin of 

replication. Episomal DNA was extracted at four days post-transfection and the 

number of E4 copies was measured by qPCR in undigested and digested 

samples. The bar chart shows the mean percentage replication and the 

standard deviation of three replicates. 
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Figure 4.3: Transient replication of wild-type and mutant HPV16 genomes 

NIKS cells were transfected with the 16WT, 16E6p53m or 16E6PDZ genomes, 

or the E4 plasmid. Episomal DNA was extracted at four days post-transfection 

and the number of E4 copies was measured by qPCR in undigested and 

digested samples. The bar chart shows the mean percentage replication and 

the standard deviation of four replicates. 
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4.2.2. HPV DNA cannot persist in E6-expressing cell s 
Having ascertained that the 16E6p53m and 16E6PDZ mutant genomes are 

able to replicate in NIKS cells and yet are unable to persist in them, I wondered 

whether this was due to a cis- or a trans-acting effect of these mutations. In the 

case of the 16E6p53m genome for example, which was shown above to 

replicate less efficiently than the 16WT genome, a cis-acting effect could be one 

where the mutation within the E6 ORF reduces the expression of E1 or E2 

genes. A trans-acting effect would be one where the mutant E6 protein is not 

able to carry-out its normal activities in the cell to facilitate persistence.   

 

To investigate this, I wanted to test whether ectopic expression of wild-type E6 

protein in NIKS cells would restore the persistence capabilities of the mutant 

genomes. This could be done by carrying out the persistence assays in NIKS 

cells that constitutively express E6WT (LXSN-E6WT cells, described in Chapter 

3). If the mutant genomes could persist in these cells at levels similar to the 

16WT genomes, that would imply that the E6 mutations had a trans effect on 

persistence. 

 

Before carrying out these persistence assays using the mutant genomes, it was 

necessary to ensure that the 16WT genomes could persist episomally in the 

LXSN-E6WT cells. To do this, I chose two LXSN-E6WT clonal lines that 

express different levels of E6 (Fig. 4.4A), and transfected them with the 16WT 

genomes, and the pcDNA6 plasmid. In accordance to the method described in 

Chapter 3, following antibiotic selection (4 days), the cells were cultured as a 

population for several passages and DNA was collected at each passage. The 

DNA was then analysed by qPCR to determine the number of HPV copies per 

cell. Importantly, HPV-negative LXSN cells were also transfected in parallel to 

act as a positive control. Figure 4.4B shows the number of HPV copies per cell 

measured at each passage. The graph also includes the copy number at 

“passage zero” (p0) which represents the cells that survived antibiotic selection, 

prior to being passed onto a new plate. The HPV copies detected in the 

different transfectants at p0 are at comparable numbers and they all quickly 

drop to much lower levels within one passage. As expected, within an additional 

four passages, the HPV16 DNA in LXSN cells started increasing in numbers 

and continued to increase, with some stabilisation seen at later passages. 
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Unexpectedly however, the copy numbers of HPV16 DNA in both of the E6-

expressing cell lines never recovered and remained very low, through all the 

passages.  

 

To test whether the difference between the persistence of HPV16 DNA in LXSN 

cells and lack of persistence in E6-expressing cells could be due to differences 

in the transfection efficiencies between cells, I repeated the transfection but 

replaced the pcDNA6 plasmid with the pMV10 plasmid that expresses β-

galactosidase (β-gal). The levels of β-gal in each cell type are shown in Figure 

4.5. The two LXSN-E6WT clonal lines were found to have lower transfection 

efficiencies compared to the LXSN cells. Although this could potentially affect 

the results of the persistent assay, as mentioned above, in the experiment 

described in Figure 4.4B I observed that the copy numbers at p0 and p1 were 

similar between the different transfectants. This suggests that the observations 

regarding the persistence of 16WT genomes in these cells are unlikely to be 

due to differences in transfection efficiencies. This will be addressed further 

below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4: Investigating factors that may affect HPV16 persistence 

 150 

 

 

 

Figure 4.4: 16WT genomes cannot persist in LXSN-E6W T clonal lines 

A) NIKS cells were infected with retroviruses bearing the wild-type E6 gene. 

The cells were selected with antibiotics and cloned. Whole-cell extracts were 

prepared and the levels of E6 in two individual clones were determined by 

western blotting. HSP70 was used as a loading control. B) LXSN cells and two 

LXSN-E6WT clones were co-transfected with 16WT genomes, and the pcDNA6 

plasmid. Following antibiotic selection, the cells were grown as populations and 

DNA was extracted at each passage. The DNA was analysed by qPCR to 

determine the number of HPV copies per cell. The error bars represent +/- the 

standard deviation of the qPCR triplicates.  
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Figure 4.5: Transfection efficiencies of LXSN and L XSN-E6WT clonal lines 

LXSN cells and LXSN-E6WT clones were co-transfected with 16WT genomes 

and the pMV10 plasmid and whole-cell extracts were prepared at 48 h post-

transfection. The levels of β-gal were determined by western blotting. HSP70 

was used as a loading control. 
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The experiment described above yielded some unexpected but interesting 

results as it suggested that viral genomes (even wild-type ones) cannot persist 

in cells that already express the E6 protein. This could have important 

implications when considering what factors contribute to making a permissible 

cellular environment for HPV infections, as well as when looking at the 

possibility of re-infection of HPV-positive cells. Furthermore, it was intriguing to 

find that a protein that is necessary for episomal persistence is in fact also 

inhibitory to it, if expressed prior to the entry of the viral DNA into the cell.  

 

However, there were some caveats in the previous experiment that needed to 

be addressed prior to making any firm conclusions. The first was that the E6-

expressing cell lines used in the experiment were clones, whereas the LXSN 

cells were not. It was possible that the cloning process may have inadvertently 

selected for some characteristics which were not desirable in this experiment. 

Furthermore, as seen in Figure 4.5, both of these cell lines had somewhat lower 

transfection efficiency than the LXSN cells, and this may have affected the 

ability of the viral genomes to persist in these cells.  

 

To address both of these issues, I made new LXSN and LXSN-E6WT cell 

populations (omitting the cloning step), and used early passages of these cells 

for the persistence assay. I repeated the persistence assay in duplicate for each 

cell population (labelled LXSN (1) and (2) or LXSN-E6WT pop. (1) and (2)), and 

also repeated it in one of the LXSN-E6WT clones (clone 2) used in the previous 

experiment, as an additional control. The levels of E6 are shown in Figure 4.6A. 

The levels of p53 were also determined and, as expected, were much lower in 

the E6-expressing cell population and cell clone (Fig. 4.6A) compared to the 

LXSN cells. The transfection efficiencies of the cells were measured as 

described above (Fig. 4.6B) and the transfection efficiency of the LXSN-E6WT 

clone was again found to be lower than that of the LXSN cells. However, the 

transfection efficiency of the LXSN-E6WT cell population was found to be 

comparable to that of the LXSN cells. 

 

As in the previous experiment, the 16WT genomes persisted in the LXSN cells 

but not in the LXSN-E6WT clone (Fig. 4.7A and B). Interestingly, the 16WT 
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genomes were also unable to persist in the LXSN-E6WT cell population (Fig. 

4.7A and B). I was unfortunately unable to follow the LXSN-E6WT pop. (2) 

transfection further than p6. However, up to that point it closely resembled the 

phenotype observed with the LXSN-E6WT pop. (1), that is, it did not appear to 

support the persistence of 16WT genomes.  

 

The HPV copy numbers for this experiment were also determined at p0. This is 

the time-point when antibiotic selection had stopped (cells were treated with 

antibiotics for six days), but prior to passing the cells onto new plates. At this 

time-point the copy numbers were found to be much higher, and therefore could 

not be presented meaningfully on the same graph as the copy number values of 

the subsequent passages. The data from this time-point alone are presented in 

Figure 4.7C. This shows that high levels of HPV genomes were detected in all 

transfected cell types at this time-point, indicating that the transfections were 

successful. Although there was some variation in the copy numbers in the 

different transfectants, there was no consistency between copy number at p0 

and ability to sustain HPV persistence at later passages. This is indicated by the 

fact that the lowest and one of the highest copy number values measured were 

both found in the two LXSN cell populations which were the only cells that 

supported persistence of the viral DNA.  
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Figure 4.6: Expression of E6 in an LXSN-E6WT cell p opulation and LXSN-

E6WT clone and transfection efficiencies of LXSN an d LXSN-E6WT cells 

A) NIKS cells were infected with retroviruses bearing the wild-type E6 gene and 

the cells were grown as a population (LXSN-E6WT pop.). Whole-cell extracts 

were prepared from this cell population as well as from an LXSN-E6WT clone 

and the levels of E6 and p53 were determined by western blotting. HSP70 was 

used as a loading control. B) LXSN and LXSN-E6WT cell populations and an 

LXSN-E6WT clone were co-transfected with 16WT genomes and the pMV10 

plasmid and whole-cell extracts were prepared 48 h post-transfection. The 

levels of β-gal were determined by western blotting. HSP70 was used as a 

loading control. 
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(legend on page 156) 
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Figure 4.7: 16WT genomes cannot persist in LXSN-E6W T cell populations 

LXSN and LXSN-E6WT cell populations and an LXSN-E6WT clone were co-

transfected with 16WT genomes and the pcDNA6 plasmid. Following antibiotic 

selection, the cells were grown as populations and DNA was extracted at each 

passage. The DNA was analysed by qPCR to determine the number of HPV 

copies per cell. The transfection of the LXSN and the LXSN-E6WT cell 

populations was repeated in duplicate. A) The mean number of copies per cell 

between p3 and p10 for all five transfections. B) The mean number of copies 

per cell between p3 and p10 for the transfection of the LXSN-E6WT cell 

populations and LXSN-E6WT clone. C) The mean number of copies per cell 

measured at p0 for all five transfections. The error bars represent the standard 

deviation of the qPCR triplicates. 
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4.2.3. HPV DNA cannot persist in cells that have lo w levels of p53  

The unexpected inability of even wild-type HPV16 DNA to persist in E6-

expressing cells precludes the use of these cells to test whether 

supplementation of E6 in trans will restore the ability of 16E6p53m and 

16E6PDZ genomes to persist in cells. I would therefore need to adopt an 

alternative approach to answer this question.   

 

As mentioned in Chapter 3, the observation that the 16E6p53m genomes do not 

persist in NIKS cells does not conclusively prove that p53-degradation is 

necessary for persistence, as it is conceivable that this mutant may be unable to 

perform some other activity of E6 which has not yet been attributed to this 

region of the E6 protein. To test this, I wanted to compensate for the loss of this 

activity in 16E6p53m genomes, by constitutively knocking down the levels of 

p53 in NIKS cells. If the 16E6p53m genomes were able to persist in these cells, 

it would prove that p53-degradation is necessary for persistence. Moreover, it 

would prove that the mutation exerted a trans-acting effect instead of an 

unexpected cis effect on the viral genome. 

 

To knock down the levels of p53 in NIKS cells, I used the retroviral expression 

system to stably express an shRNA construct against p53 (NIKS-shp53 cells). 

To obtain homogeneous NIKS-shp53 cell lines, I cloned the retrovirus-infected 

cells. The reduced levels of p53 in three such clones are shown in Figure 4.8A. 

Clone 3 exhibited the highest efficiency in reducing levels of endogenous p53 

protein. 

 

Before using the cells in the intended experiment with 16E6p53m genomes, I 

wanted to ascertain that these cells were competent in supporting wild-type 

HPV16 DNA replication and persistence in the first place. To do this, I co-

transfected NIKS-shp53 (3) cells with the 16WT genomes and the pcDNA6 

plasmid. Following antibiotic selection (4 days), the cells were cultured as a 

population for a few passages and DNA was collected at each passage. The 

DNA was then analysed by qPCR to determine the number of HPV copies per 

cell (Fig. 4.8B). Surprisingly, 16WT genomes failed to persist in NIKS-shp53 

cells.  
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This was truly an unexpected outcome as the current understanding of the 

effect of p53 on HPV replication would not have predicted a detrimental effect of 

reduced levels of p53 on HPV DNA persistence. After all, HPV16 E6 naturally 

reduces the levels of endogenous p53 in the cell. This curious observation 

mirrors that described above regarding the inability of wild-type HPV16 DNA to 

persist when introduced into cells that already express the E6 protein 

constitutively. In combination, it would appear that the inability of the E6-

expressing cells to sustain the persistence of ectopically-introduced HPV DNA 

may be due at least in part to the low levels of p53 in these cells (seen in Fig 

4.6A) at the time of HPV DNA entry. This suggestion is intriguing as it implies a 

positive role for p53 in the early stages of HPV16 persistence. Further 

implications of this will be discussed later, but in regards to my experiments, it is 

clear that I cannot use these cells to address the role of p53-degradation in 

HPV16 DNA persistence in NIKS cells.    
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Figure 4.8: 16WT genomes cannot persist in NIKS-shp 53 cells 

A) NIKS cells were infected with retroviruses bearing an shRNA construct 

against p53. The cells were selected with antibiotics and cloned. Cell lysates 

were collected and the levels of p53 in three clones were determined by 

western blotting. Actin was used as a loading control. B) The NIKS-shp53 (3) 

cell line was co-transfected with 16WT genomes and the pcDNA6 plasmid. 

Following antibiotic selection, the cells were grown as populations and DNA 

was extracted at each passage. DNA was analysed by qPCR to determine the 

number of HPV copies per cell. The error bars represent the standard deviation 

of the qPCR triplicates.  
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4.3. Discussion 

 

In this chapter, I aimed to address different factors that could potentially 

contribute to the inability of the 16E6p53m and 16E6PDZ mutant genomes to 

persist in NIKS cells. Previous studies have highlighted the inhibitory effect of 

p53 on the replication of different viruses, including PVs (Brown et al., 2008; 

Ilves et al., 2003; Lepik et al., 1998), suggesting that E6-mediated degradation 

of p53 may be necessary to allow efficient replication of the HPV genomes. This 

effect has been suggested to come about via the interaction of p53 with the viral 

replication protein E2 (Brown et al., 2008). I therefore wanted to determine 

whether the mutant HPV16 genomes were able to replicate in NIKS cells, and if 

so, whether they could replicate with similar efficiency as the wild-type 

genomes.  

 

Data from the qPCR-based transient replication assay is consistent with this 

view as they show that the 16E6p53m genome, which is unable to degrade p53, 

is compromised in replication. Importantly, in my study I investigated replication 

in the context of the entire HPV16 genome, instead of the reporter plasmids 

used in the studies mentioned above, which generally include only the PV origin 

of replication in the presence of ectopically-expressed E1 and E2 proteins. This 

is an important consideration as other viral proteins may have an effect on 

replication by regulating the levels of viral and cellular proteins.  

 

It is important to note however, that in both my study and the ones mentioned 

above, the HPV genomes or reporter plasmids were introduced into the cells by 

transfection and not by infection. Infection with HPV is thought to only introduce 

a small number of genomes into each cell, which are then amplified to 10 - 200 

copies per cell (Doorbar, 2005). When transfection is used to introduce viral 

genomes into cells, a much larger number of genomes is expected to enter 

each cell. It is therefore not known if amplificational/establishment replication 

follows the same mechanism in these transfected cells as it would in cells that 

have been naturally infected. It is worth mentioning however that viral DNA has 

previously been shown to replicate faster than cellular DNA following 

transfection, thus suggesting that amplificational/establishment replication must 

also take place in transfected cells (Lusky & Botchan, 1986). A more detailed 
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analysis would be required to study this in the transfected NIKS cells and to 

determine the timing of the switch between amplificational replication and 

maintenance replication. At this stage it is not clear whether the replication 

levels measured by the qPCR assay solely reflect amplificational replication, or 

if they partly reflect maintenance replication as well. 

 

In any case, my data do show that the 16E6p53m genomes are replication-

competent with reduced efficiency compared to the 16WT genomes. Although 

this difference was found to be statistically significant, this assay cannot tell me 

whether it is also biologically significant and if it is the sole reason for the 

inability of the 16E6p53m genomes to persist in NIKS cells (as observed in 

Chapter 3). The 16E6PDZ mutant genomes are also replication-competent and 

their replication efficiency is not statistically different to that of the 16WT 

genomes.  

 

My transient replication data with regards to the p53-degradation mutant 

genome is consistent with previous studies that also looked at viral genome 

persistence. In the Thomas et al. study, the authors used HPV31 p53-

degradation mutant genomes (with a different mutation than the 16E6p53m 

genomes used in this study) and noted that these do not replicate as efficiently 

as the HPV31 wild-type genomes (Thomas et al., 1999). Moreover, in the Park 

and Androphy study, HPV31/16 E6-mutant hybrid genomes were used that 

carried the same mutation as the 16E6p53m genomes used in this study (Park 

& Androphy, 2002). Like me, these authors concluded that the mutant genomes 

were replication-competent. Although the authors did not comment on this, their 

Southern blot data also suggest that the replication efficiency of the mutant 

genomes was impaired compared to that of the wild-type genomes. This 

observation is again consistent with my results. On the other hand, the data 

available on the transient replication of PDZ-binding mutant genomes are 

different to mine, as reduced replication was observed with HPV31 mutant 

genomes that lack the PDZ-binding motif (Lee & Laimins, 2004). Variations may 

be due to the fact that the abovementioned studies used a different HPV type 

than I did. Moreover, in the earlier studies the replication of the genomes was 

assessed by Southern blotting, which is less sensitive and quantitative than 
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qPCR. A further advantage of my study is that the transient replication assays 

were carried out in the same cell line as the persistence assays, in NIKS cells.      

 

I also wanted to carry out some experiments to determine if the mutations I 

have been working with inhibit persistence in cis or in trans. These yielded 

some very interesting results in that I found that wild-type HPV16 DNA was 

unable to persist in cells that already expressed the E6 protein. Studies in the 

1980s had looked at the ability of BPV1 genomes to persist in cells that already 

harboured viral genomes (Berg et al., 1986a; Berg et al., 1986b). The results 

were fascinating in that wild-type BPV1 genomes failed to replicate when 

introduced into cells that already harboured mutant BPV1 genomes (with 

mutations in the E6 or E7 ORFs). As a result, the newly-introduced wild-type 

genomes persisted at a very low copy number in these cells. However, when 

the two genomes (wild-type and mutant) were introduced into the cells at the 

same time, they were both able to persist at high copy numbers (Berg et al., 

1986a; Berg et al., 1986b). This suggests that the persistence of viral genomes 

is subjected to a very ordered and well timed expression of viral proteins in 

cells. Similarly, my data show that the expression of E6 prior to HPV DNA entry 

into cells is detrimental to persistence. In my experiments I did not use a cell 

line that harboured mutant viral genomes. Rather, I used a cell line that 

expressed one viral protein alone (E6), which represents aberrant expression of 

the protein.  

 

The notion that pre-existing expression of certain viral proteins prevents re-

infection with new virus is very important, as it implies that an already infected 

cell may be refractive to being successfully infected by other HPVs. In support 

of this is a study from the 1990s, that showed that wild-type and mutant BPV1 

genomes were unable to co-exist in the same cells, even though both were able 

to persist independently (Stewart et al., 1994).  

 

What is interesting about my results is that E6, which is necessary for the 

persistence of HPV16, is also detrimental to it when expressed at the wrong 

time (prior to infection) or at the wrong amount. In line with the older studies 

mentioned above, this suggests that the regulation and timing of viral protein 

expression is very important and complex in the viral life-cycle.  
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We do not yet know which activity of E6 causes the inhibition of persistence in 

the LXSN-E6WT cells. However my experiments suggest a role for p53- 

degradation. This is consistent with a hypothesis proposed by Lepik et al. that 

perhaps p53-mediated inhibition of replication may be necessary at the early 

stages of infection in order to ensure that viral replication is kept under control 

and that the genomes do not replicate uncontrolled and cause harm to the cell 

(Lepik et al., 1998). An alternative explanation might be that cells that express 

E6, or have low-levels of p53 (due to the expression of shRNA against p53) 

may grow too quickly for the viral DNA to establish itself. Although little is know 

about the requirements for establishment, it is perceivable that too rapid cell 

proliferation may not allow time for the build up of viral proteins to the required 

level that is crucial for viral DNA replication and segregation. It has to be noted 

however that the persistence assay in the NIKS-shp53 cell line is lacking the 

proper control, which in this case would be the transfection of 16WT genomes 

in cells that express an unrelated shRNA construct such as shGFP. The ability 

of 16WT to persist in these cells would prove that the lack of persistence in the 

NIKS-shp53 cells was due to the low levels of p53, and not an effect of the 

shRNA expression, such as induction of an interferon response (Bridge et al., 

2003). Such a response could inhibit the persistence of HPV DNA, for example 

by inducing the expression of p56, which in turn down-regulates the replication 

of HPV DNA (Terenzi et al., 2008). 

 

In conclusion, the results presented in this chapter show that the 16E6p53m 

genome is compromised in its ability to replicate in NIKS. This suggests a 

mechanism by which p53-degradation may be important for viral genome 

persistence. As no significant impairment of viral DNA replication was observed 

for the 16E6PDZ mutant genome, I hypothesise that the reason why this 

genome cannot persist is due to a different mechanism.  
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Chapter 5: Stabilisation of E6 by PDZ proteins 

 

5.1. Introduction 
 

In Chapter 4 I showed that the 16E6p53m mutant genomes do not replicate as 

efficiently as the 16WT genomes, and I suggested that this could be the reason 

why the 16E6p53m genomes do not persist in NIKS cells. The same was not 

true for the 16E6PDZ mutant genomes, as these were shown to replicate with a 

similar efficiency as the 16WT genomes. Therefore, I concluded that the role of 

the PDZ-binding motif of E6 in persistence is not related to HPV DNA 

replication, but to another process or processes.   

 

As described in Chapter 1, the PDZ-binding motif is found on most high-risk 

HPV types, and is absent from the low-risk types (Kiyono et al., 1997; Lee et al., 

1997; Nakagawa & Huibregtse, 2000). Previous studies have shown that this 

motif mediates an interaction between the scaffolding PDZ proteins and high-

risk E6 proteins, and E6 has been shown to induce the proteasomal 

degradation of some of these PDZ proteins (Gardiol et al., 1999; Glaunsinger et 

al., 2000; Nakagawa & Huibregtse, 2000; Thomas et al., 2002). Interestingly, 

HPV16 and HPV18 E6 proteins have been shown to target PDZ proteins with 

different affinities, with hScrib being a preferential target of HPV16 E6 and hDlg 

being a preferential target of HPV18 E6 (Thomas et al., 2005). The absence of 

a PDZ-binding motif from low-risk HPV types suggests a potential role for this 

motif in the transformation of cells and the oncogenicity of the high-risk E6 

proteins (Howley & Lowy, 2007). However, the role for this interaction in the 

productive life-cycle of HPVs is not well understood. From the work presented in 

Chapter 3 and from the work of Lee and Laimins on HPV31 (Lee & Laimins, 

2004), it is now clear that the PDZ-binding motif of E6 is necessary for viral 

episomal persistence.   

 

The PDZ proteins are members of multi-protein structures in the cell and many 

of their interactions occur via their multiple PDZ domains. Cellular PDZ-binding 

proteins include the tumour suppressor adenomatous polyposis coli (APC), 
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which is an integral member of the Wnt signalling pathway as part of the 

complex that controls the degradation of β-catenin (Logan & Nusse, 2004). This 

protein interacts with both hScrib and hDlg (Matsumine et al., 1996; Takizawa et 

al., 2006).  

 

Another cellular tumour suppressor protein, PTEN, interacts with the PDZ 

proteins MAGI-1, -2 and -3 (Kotelevets et al., 2005; Wu et al., 2000b; Wu et al., 

2000c). Interaction with MAGI-2 has been shown to stabilise PTEN (Valiente et 

al., 2005; Wu et al., 2000b), which provides evidence that binding to PDZ 

proteins can have an effect on the steady-state levels of the PDZ-binding 

protein. In support of this are also data from a study of the Drosophila PDZ 

protein InaD, which has been shown to stabilise other proteins by way of its 

PDZ domains (Tsunoda et al., 1997).  

 

Interestingly, a recent study identified a novel and important feature of E6’s 

interaction with the cellular ubiquitin ligase E6AP; it demonstrated that by 

associating with E6AP, the E6 protein is stabilised (Tomaic et al., 2009b). Until 

this report, the interaction between E6 and E6AP had been studied primarily 

within the context of p53 protein degradation (Scheffner et al., 1993). This new 

finding suggests that the outcomes of E6-E6AP interaction are not confined to 

the use of E6AP’s ubiquitin ligase activity, but also extend to the stabilisation of 

the E6 protein itself. 

 

These studies prompted me to question whether the interactions of E6 with 

other cellular proteins may also have an impact on E6 stability. Recent 

developments in E6 detection by western blotting in the laboratory allowed me 

to address this question and specifically test whether the E6-PDZ protein 

interactions have any effect on the E6 protein. 
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5.2. Results 
 

5.2.1. Detection of E6 protein after transient tran sfection of NIKS cells 

As stated in the introduction, the aim of this part of the study was to investigate 

the relationship of E6 with its binding partners, the PDZ proteins, in light of a 

recent report that suggested that E6 can be stabilised by its binding partners 

(Tomaic et al., 2009b). Previous studies have only investigated this relationship 

from the perspective of the degradation of PDZ proteins by E6. I have also done 

this in Chapter 3, where I characterised the wild-type and mutant E6 proteins in 

terms of their ability to degrade hScrib. To do this I co-transfected NIKS cells 

with plasmids that express E6WT, E6p53m or E6PDZ, and a plasmid that 

expresses HA-tagged hScrib, and analysed the levels of HA-hScrib by western 

blotting. One such experiment was presented in Figures 3.4B and C and the 

results were consistent with the published data (Nakagawa & Huibregtse, 2000) 

in that E6WT and E6p53m proteins were able to degrade hScrib, whereas the 

E6PDZ protein, which lacks the PDZ-binding motif, was not. 

 

Whilst carrying out the abovementioned experiments, I came across some 

unexpected and very interesting results with regards to the levels of E6 in the 

transfected cells. The E6PDZ mutant protein was consistently found to be 

present at significantly lower levels than the E6WT and the E6p53m proteins. 

One such example is shown in Figure 5.1. These observations with regards to 

the levels of E6 protein were novel. Previous studies that focused on the levels 

of PDZ proteins in the presence of wild-type and mutant E6 proteins, did not 

determine the levels of E6 in their experiments. This may be partly due to the 

difficulty in detecting the E6 protein by western blotting.  

 

The difference in the levels of the E6WT and E6PDZ proteins was very 

intriguing as it could imply a role for the PDZ-binding motif of E6 in the stability 

of the protein and consequently in the protein’s role in the viral life-cycle. I was 

thus interested to investigate this further. 
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Figure 5.1: Expression of wild-type and mutant E6 p roteins in NIKS cells  

NIKS cells were transiently co-transfected with pMV11-E6WT, pMV11-E6p53m, 

pMV11-E6PDZ or control pMV11 plasmid, and the pcDNA-HA-hScrib plasmid 

and extracts were prepared 48 h post-transfection. Western blots show the 

levels of the wild-type or mutant E6 proteins as well as the levels of the HA-

hScrib protein. HSP70 was used as a loading control. 
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5.2.2. The difference in the levels of E6WT and E6P DZ proteins is not due 

to variations in their solubilities or in the trans fection efficiencies of the 

plasmids 

We first considered the possibility that the difference in the levels of E6WT and 

E6PDZ proteins may be caused by variations in the solubility of the E6 proteins. 

The lysates analysed in the western blot presented in Figure 5.1 were prepared 

in a RIPA buffer that contained a relatively low concentration of anionic 

detergent. Therefore, these lysates were not whole-cell extracts but were RIPA-

soluble extracts. As mentioned in Chapter 1, E6 has been shown to have 

cytoplasmic binding partners, such as E6AP (Huibregtse et al., 1991), as well 

as nuclear ones, such p53 (Werness et al., 1990). As the solubility of a protein 

can change depending on its localisation in the cell, I hypothesised that there 

may be pools of E6 that are not RIPA-soluble, and may have been excluded 

from the analysis.  

 

To address any potential differences in the solubility of E6WT and E6PDZ, I 

measured the levels of E6 protein in whole-cell extracts (prepared in a RIPA 

buffer containing 6% of SDS). These extracts were of NIKS cells that were co-

transfected with vectors expressing E6 proteins (wild-type or mutant) and HA-

hScrib. Once again the levels of E6WT were found to be significantly higher 

than those of E6PDZ (Fig. 5.2A). The intensities of the three E6WT and three 

E6PDZ bands were measured using ImageJ software and normalised to the 

loading controls (HSP70). An unpaired t-test showed that the levels of the 

E6WT protein were statistically higher than those of the E6PDZ protein 

(p=0.0034), while no significant difference was observed between the levels of 

E6WT and E6p53m proteins (Fig. 5.2B). 

 

To test whether the difference between the levels of E6WT and E6PDZ proteins 

may be caused by variations in the transfection efficiencies of their respective 

plasmids, I repeated the transfections as before but with the inclusion of 

pMV10, a plasmid that expresses β-galactosidase (β-gal) (Forrester et al., 

1992), in the transfection mix. The levels of β-gal protein were analysed by 

western blotting and were found to be similar between the two sets of 

transfections (Fig. 5.2C) indicating that the difference in the levels of the two E6 

proteins was not due to differences in the transfection efficiencies of the 
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plasmids. Furthermore, as in Figure 3.4C, the levels of HA-hScrib were lower in 

the presence of E6WT than E6PDZ, which is consistent with what I would 

expect based on the literature (Nakagawa & Huibregtse, 2000). 
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Figure 5.2: Levels of E6PDZ protein but not E6p53m protein are lower than 

levels of E6WT protein 

NIKS cells were transiently co-transfected with pMV11-E6WT, pMV11-E6p53m, 

pMV11-E6PDZ, or control pMV11 plasmid and pcDNA-HA-hScrib plasmid and 

whole-cell extracts were prepared 48 h post-transfection. Each transfection was 

carried out in triplicate. A) Levels of E6WT and E6PDZ. B) Levels of E6WT and 

E6p53m. The levels of E6 were measured using ImageJ software and 

normalised to the loading controls. The bar charts show the mean levels of E6 

protein (in arbitrary units) and the standard deviation. Unpaired t-tests were 

used to compare the levels of E6 and p values are shown above the graphs. C) 

Levels of E6WT, E6PDZ, HA and β –gal. HSP70 was used as a loading control.  



Chapter 5: Stabilisation of E6 by PDZ proteins 

 171 

5.2.3. The lower levels of the E6PDZ protein are no t cell line dependent or 

antibody-dependent 

To ascertain whether my observation with regards to the lower levels of E6PDZ 

mutant protein was specific to NIKS cells, or if it is an intrinsic characteristic of 

the protein, I repeated the transfections in two different cell lines. The cell lines 

used were HT1080 cells, a human fibrosarcoma cell line, and 293T cells, a 

human embryonic kidney cell line, which expresses the SV40 T-antigen. The 

cells were co-transfected with pMV11-E6WT or pMV11-E6PDZ plasmids, and 

pcDNA-HA-hScrib plasmid and the levels of E6 were assessed (Fig. 5.3A). 

Once again, the levels of E6PDZ protein were much lower than those of E6WT 

protein in both HT1080 and 293T cells, in line with the observations in NIKS 

cells. These results confirm that my previous observations were not specific to 

NIKS cells but were likely to be characteristic of a wide variety of cell types, 

possibly including the cells that HPV normally resides in.  

 

To exclude the possibility that the observations made so far were caused by the 

specific antibody I have been using, which recognises an epitope in the C-

terminal half of E6, I repeated the western blot, using a different antibody (Fig. 

5.3B). The 1E-6F4 antibody clone, also from Euromedex, was used. This 

recognises an epitope in the N-terminus of E6. The levels of E6PDZ protein 

were again lower than the levels of E6WT protein. This confirms that my 

previous results were not due to differences in the detection of the two proteins 

by the antibody I have been using.  
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Figure 5.3: The difference in the levels of E6WT an d E6PDZ is not cell line 

or antibody dependent 

A) HT1080 and 293T cells or B) NIKS cells were transiently co-transfected with 

pMV11-E6WT, pMV11-E6PDZ or control pMV11 plasmid, and the pcDNA-HA-

hScrib plasmid, and whole-cell extracts were prepared 48 h post-transfection. 

The western blots show the levels of E6WT, E6PDZ and HA-hScrib detected 

with an antibody that recognises an epitope in the A) C-terminus or B) N-

terminus of E6. HSP70 was used as a loading control.  

 

 

 

 

 

 

 



Chapter 5: Stabilisation of E6 by PDZ proteins 

 173 

5.2.4. The difference in the levels of E6WT and E6P DZ proteins is not due 

to differences in their transcription levels 

One process that can affect the turn-over rate of a protein (and thus its steady-

state levels) is the rate at which it is produced. Therefore, the difference in the 

levels of the wild-type and mutant E6 proteins may be a reflection of a 

difference in their respective mRNA levels. 

 

To address this, NIKS cells were again co-transfected in triplicate with pMV11-

E6WT or pMV11-E6PDZ plasmid, and pcDNA-HA-hScrib plasmid and RNA was 

extracted from the cells 48 hours post-transfection. cDNA was made by reverse 

transcription and used as a template for qPCR. Primers against the E6 ORF 

were used to detect full-length E6 transcripts and primers against β-actin were 

used as a control. The levels of E6 transcripts were normalised to those of β-

actin transcripts for each sample (Fig. 5.4). An unpaired t-test showed that the 

difference in the levels of E6WT and E6PDZ transcripts was not statistically 

significant (p = 0.14) and if anything, the E6PDZ transcript levels appear higher.   

 

I thus conclude that the difference in the levels of E6WT and E6PDZ proteins 

cannot be explained by differences in their respective trascription levels.  
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Figure 5.4: E6WT and E6PDZ have similar transcripti on levels 

NIKS cells were transiently co-transfected with pMV11-E6WT or pMV11-E6PDZ 

plasmid, and pcDNA-HA-hScrib plasmid. RNA was extracted 48 h post-

transfection and analysed by RT-qPCR. The transfections were carried out in 

triplicate and the bar chart shows the mean levels of full-length E6 transcripts 

(normalised to β-actin transcripts) and the standard deviation. An unpaired t-test 

was used to compare the levels of E6 transcripts and the p value is shown 

above the graph. 
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5.2.5. The difference in the levels of E6WT and E6P DZ is due to protein 

stability 

Having established that the difference in the levels of E6WT and E6PDZ protein 

is not due to differences in the transcription levels of the two plasmids, I next 

wanted to assess the relative stability of these two proteins. To investigate this, 

NIKS cells were co-transfected with pMV11-E6WT or pMV11-E6PDZ plasmids, 

and the pcDNA-HA-hScrib plasmid. At 46 hours post-transfection the cells were 

treated with 50 µg/ml of cycloheximide, an inhibitor of protein biosynthesis, for 

60 or 120 minutes, and then harvested for protein analysis. The levels of E6 

were assessed by western blotting, and presented relative to the levels at the “0 

minutes” time-point (Fig. 5.5).The rate of loss of the E6PDZ protein is greater 

than that of the E6WT protein, which demonstrates that the wild-type E6 protein 

is more stable than the mutant one. An unpaired t-test analysis showed that the 

levels of the two proteins were significantly different at time-point 120’ 

(p=0.032). Moreover, from these data, the half-lives of the two proteins were 

calculated to be 113 minutes for E6WT and 47 minutes for E6PDZ.  

 

As previous studies have shown that E6 is degraded by the proteasome 

(Kehmeier et al., 2002; Stewart et al., 2004), I hypothesised that the PDZ-

binding motif of E6WT may protect the protein from proteasomal degradation. 

To investigate this, NIKS cells were co-transfected with pMV11-E6WT or 

pMV11-E6PDZ plasmids, and the pcDNA-HA-hScrib plasmid and at 46 hours 

post-transfection were treated with the proteasome inhibitor MG-132 (final 

concentration 40 µM) or with an equivalent volume of DMSO as a control, for 

two hours. Whole-cell extracts were prepared and the levels of E6 protein were 

analysed by western blotting (Fig. 5.6). A paired t-test showed that the levels of 

E6WT protein did not vary significantly in MG-132- or DMSO-treated cells 

(p=0.62). On the contrary, the levels of E6PDZ protein were significantly 

increased in the MG-132-treated cells, compared to the untreated control cells 

(p=0.0046). The accumulation of E6PDZ protein in the 2-hour treatment with the 

inhibitor indicates that this protein is more susceptible to proteasomal 

degradation than the E6WT protein.  

 

Furthermore, the data presented in Figure 5.6 also appear to show a higher 

degree of degradation of HA-hScrib in the presence of E6WT than in the 
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presence of E6PDZ, consistent with the current understanding of degradation of 

the hScrib protein by E6 (Nakagawa & Huibregtse, 2000).  

 

 

 

 

 

Figure 5.5: E6WT protein is more stable than E6PDZ protein 

NKS cells were transiently co-transfected with pMV11-E6WT or pMV11-E6PDZ 

plasmid, and pcDNA-HA-hScrib plasmid. At 46 h post-transfection, cells were 

treated with 50 µg/ml of cycloheximide for 60 or 120 minutes and whole-cell 

extracts were prepared for each time-point. Extracts were also prepared from 

untreated cells to be used as the “0 minutes” time-point. The levels of E6 were 

analysed by western blotting and measured using ImageJ software. The 

transfections were carried out in duplicate and the bar charts show the mean 

levels of E6, relative to the levels at the “0 minutes” time-point, and the standard 

deviation. HSP70 was used as a loading control. 
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Figure 5.6: E6PDZ is more susceptible to proteasoma l degradation than 

E6WT in the presence of HA-hScrib 

NIKS cells were transiently co-transfected with pMV11-E6WT or pMV11-E6PDZ 

plasmid, and pcDNA-HA-hScrib plasmid. At 46 h post-transfection, cells were 

treated with 40 µM of MG-132 or with DMSO as a control, for two hours, and 

whole-cell extracts were prepared. Each transfection was carried out in 

triplicate. The levels of E6 were measured using ImageJ software and the bar 

charts show the mean levels of E6 protein (in arbitrary units) and the standard 

deviation. A paired t-test was used to compare the levels of E6 with and without 

MG-132, and the p values are shown above the graphs. HSP70 was used as a 

loading control.  
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5.2.6. Levels of HPV16 E6WT, but not HPV16 E6PDZ or  HPV11 E6WT 

proteins, are higher in the presence of exogenous h Scrib.   

The data so far showed that the E6PDZ protein is more unstable than the 

E6WT protein. The only difference in primary structure between these two 

proteins is the absence of the PDZ-binding motif on the C-terminus of E6PDZ 

mutant protein. As described above, this is the motif that interacts with the PDZ 

domains of hScrib (Nakagawa & Huibregtse, 2000). As such, it has been 

presumed that the difference in the stability of these two proteins is owed to 

their ability (or not) to interact with PDZ proteins. Hence, all the experiments 

presented so far had been carried out in the presence of exogenously-

expressed hScrib. To test whether this presumption is erroneous or correct, the 

following experiments were carried out.  

 

NIKS cells were transiently co-transfected in triplicate with pMV11-E6WT (Fig. 

5.7) or pMV11-E6PDZ plasmid (Fig. 5.8), and pcDNA-HA-hScrib or control 

pcDNA plasmid. The levels of E6 proteins were measured and normalised to 

those of the loading control (HSP70). The results were very informative from 

two perspectives; firstly, I observed that the levels of E6WT were very much 

higher in the presence of exogenous hScrib compared to the control cells, in 

which the empty pcDNA vector was co-transfected with the E6-expression 

vector (p=0.0013) (Fig. 5.7). This validated the notion that the stability of the E6 

protein is affected by the presence of exogenous hScrib. Secondly, this hScrib-

dependent augmentation of the E6 protein level did not apply to the E6PDZ 

protein, as the levels of this mutant protein remained unaffected by the 

presence of exogenous hScrib (p=0.79) (Fig. 5.8). 

 

From this section I can conclude that the difference in the stabilities of E6WT 

and E6PDZ proteins is due to stabilisation of E6WT by hScrib. Thus, the PDZ-

binding motif of E6 plays a role in stabilising the E6 protein. If this is correct, it 

would stand to reason that hScrib would have no effect on the levels of the low-

risk HPV11 E6 protein, which lacks a PDZ-binding motif (Kiyono et al., 1997; 

Lee et al., 1997; Nakagawa & Huibregtse, 2000). To test this, NIKS cells were 

co-transfected with pGWI-HA-11E6 (a plasmid that expresses HA-tagged 

HPV11 E6), kindly provided by Dr. Lawrence Banks (Glaunsinger et al., 2000), 

or control pMV11 plasmid, and pcDNA-HA-hScrib or control pcDNA plasmid. 
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The transfections were carried out in triplicate and whole-cell extracts were 

prepared. The protein levels of E6 were measured by western blotting and 

normalised to the HSP70 loading controls (Fig 5.9). As expected, the levels of 

low-risk E6 protein were not altered in the presence of HA-hScrib. This confirms 

my prediction that the absence of a PDZ-binding motif in HPV11 E6 prevents 

hScrib-mediated stabilisation of the E6 protein.  
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Figure 5.7: Levels of E6WT protein are higher in th e presence of HA-

hScrib 

NIKS cells were transiently co-transfected with pcDNA-HA-hScrib or control 

pcDNA plasmid, and pMV11-E6WT plasmid and whole-cell extracts were 

prepared 48 h post-transfection. Each transfection was carried out in triplicate. 

The levels of E6 were measured using ImageJ software and normalised to the 

loading control. The bar chart shows the mean levels of E6 protein (in arbitrary 

units) and the standard deviation. An unpaired t-test was used to compare the 

levels of E6 and the p value is shown above the graph. β-gal expression was 

used as a transfection control and HSP70 was used as a loading control.  
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Figure 5.8: Levels of E6PDZ protein are unaffected by the presence of HA-

hScrib 

NIKS cells were transiently co-transfected with pcDNA-HA-hScrib or control 

pcDNA plasmid, and pMV11-E6PDZ plasmid and whole-cell extracts were 

prepared 48 h post-transfection. Each transfection was carried out in triplicate. 

The levels of E6 were measured using ImageJ software and normalised to the 

loading controls. The bar chart shows the mean levels of E6 protein (in arbitrary 

units) and the standard deviation. An unpaired t-test was used to compare the 

levels of E6 and the p value is shown above the graph. β-gal expression was 

used as a transfection control and HSP70 was used as a loading control.  
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Figure 5.9: Levels of low-risk E6 protein are unaff ected by the presence of 

HA-hScrib 

NIKS cells were transiently co-transfected with pGW1-HA-11E6 or control 

pMV11 plasmid, and pcDNA-HA-hScrib or control pcDNA plasmid and whole-

cell extracts were prepared 48 h post-transfection. Each transfection was 

carried out in triplicate. The levels of E6 were measured using ImageJ software 

and normalised to the loading controls. The bar chart shows the mean levels of 

E6 protein (in arbitrary units) and the standard deviation. An unpaired t-test was 

used to compare the levels of E6 and the p value is shown above the graph. β-

gal expression was used as a transfection control and HSP70 was used as a 

loading control. 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5: Stabilisation of E6 by PDZ proteins 

 183 

5.2.7. The PDZ domains of hScrib are involved in th e stabilisation of wild-

type E6 protein 

As E6 has been shown to bind to hScrib via the PDZ domains of the latter 

(Nakagawa & Huibregtse, 2000), I wanted to investigate whether the PDZ 

domains on the hScrib protein are necessary for the stabilisation of E6. To test 

this, I made use of a plasmid that expresses a mutant hScrib protein, pcDNA-

HA-hScrib∆PDZ (Thomas et al., 2005), which was kindly provided by Dr. 

Lawrence Banks. This plasmid encodes an HA-tagged hScrib protein that lacks 

the whole of the PDZ domain region (deleted between amino acids 724 and 

1224) and was shown to not be degraded by HPV16 E6 (Thomas et al., 2005). 

Its localisation was also investigated using a GFP-tagged protein, and the 

mutant protein was found to resemble the wild-type in localising to adherens 

junctions at the basolateral membrane (Thomas et al., 2005).  

 

For my experiments, NIKS cells were co-transfected in triplicate with pcDNA-

HA-hScrib∆PDZ or control pcDNA plasmid, and pMV11-E6WT plasmid. The 

levels of E6WT protein were analysed by western blotting (Fig. 5.10) and were 

found not to increase in the presence of mutant hScrib protein (p=0.28), 

confirming that the PDZ domains of hScrib are necessary for the stabilisation of 

E6WT protein. 

 

5.2.8. Endogenous hScrib cannot stabilise exogenous ly expressed E6 as 

efficiently 

Having observed that exogenously-expressed hScrib increases the levels of 

wild-type E6 protein in a manner that is dependent on the PDZ-binding motif of 

E6 and the PDZ domains of hScrib, I went on to test whether endogenous 

hScrib protein can do the same to E6. NIKS cells were transiently co-

transfected with pMV11-E6WT or pMV11-E6PDZ plasmid, and control pcDNA 

plasmid. The transfections were carried out in triplicate and whole-cell extracts 

were prepared. The levels of E6 were measured by western blotting and 

normalised to the protein levels of HSP70 in the respective lanes (Fig. 5.11).  

 

Although the levels of E6WT protein appeared to be higher than those of 

E6PDZ protein, the difference was much smaller than that observed in the 
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presence of exogenous HA-hScrib. This result may suggest that the effect of 

the endogenous hScrib protein on the levels of E6WT protein is less significant 

than the effect of the exogenous hScrib protein (compare Figure 5.11 to 5.2C). 

However, it is important to note that in the previous experiments, both hScrib 

and E6 were expressed from CMV promoters. In this experiment however, 

hScrib was expressed solely from its own promoter, and the total levels of 

hScrib protein in transfected cells would therefore be lower. The effect of hScrib 

on E6 may thus be masked by the sheer amount of E6 protein present.  

 

To get around this problem, I decided to knock-down the hScrib protein in 

HPV16-positive episomal cell lines, using a retroviral expression system, and to 

observe whether this would have any effect on the levels of the E6 protein. I  

firstly tested two different shRNA constructs against hScrib (Dow et al., 2007) 

and one shRNA construct with a scrambled sequence (Dow et al., 2008) (kindly 

provided by Dr. Patrick Humbert) in NIKS cells. I found that shScrib 1 (shScrib 6 

in Dow et al., 2007) did not knock down hScrib protein levels in these cells 

(compared to the levels of hScrib observed with shScramble). On the other 

hand, shScrib 2 (shScrib 7 in Dow et al., 2007) did so very efficiently (Fig. 

5.12A). Retroviruses expressing the shScrib 2 and shScramble constructs were 

then used to infect an HPV-positive NIKS cell line (in duplicate). However, the 

shRNA did not work as efficiently in these cells as it did in the NIKS cells (Fig. 

5.12B). This was repeated with similar results.  

 

The reason for the above results is not clear. However, at the same time as this 

work was being carried out, our collaborators in Dr. Lawrence Banks’s 

laboratory (ICGEB, Trieste) successfully knocked down hScrib in HeLa cells 

using siRNA, and observed a reduction in the levels of E6 (Nicolaides et al., 

2011). This demonstrates that the E6 protein in HeLa cells is stabilised by 

endogenous hScrib protein. Furthermore, as HeLa cells contain integrated 

copies of HPV18, these results also suggest that the stability of E6 protein by 

hScrib holds true for other HPV types as well. 
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Figure 5.10: Levels of E6WT protein are unaffected by the presence of 

mutant HA-hScrib 

NIKS cells were transiently co-transfected with pcDNA-HA-hScrib∆PDZ or 

control pcDNA plasmid, and pMV11-E6WT plasmid and whole-cell extracts 

were prepared 48 h post-transfection. Each transfection was carried out in 

triplicate. The levels of E6 were measured using ImageJ software and 

normalised to the loading control. The bar chart shows the mean levels of E6 

protein (in arbitrary units) and the standard deviation. An unpaired t-test was 

used to compare the levels of E6 and the p value is shown above the graph. β-

gal expression was used as a transfection control and Histone H2B (H2B) and 

HSP70 were used as loading controls.  
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Figure 5.11: The difference between the levels of E 6WT and E6PDZ 

proteins is marginal in the absence of exogenous hS crib 

NIKS cells were transiently co-transfected with pMV11-E6WT or pMV11-E6PDZ 

plasmid, and pcDNA plasmid and whole-cell extracts were prepared 48 h post-

transfection. Each transfection was carried out in triplicate. The levels of E6 

were measured using ImageJ software and normalised to the loading control. 

The bar chart shows the mean levels of E6 protein (in arbitrary units) and the 

standard deviation. An unpaired t-test was used to compare the levels of E6 

and the p value is shown above the graph. β-gal expression was used as a 

transfection control and HSP70 was used as a loading control.  
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Figure 5.12:  shRNA against hScrib  

A) NIKS cells or B) a NIKS + HPV16 clonal cell line were infected with 

retroviruses expressing shRNA against hScrib or a scrambled sequence. Two 

different shScrib constructs were used to knock down hScrib in NIKS cells (A), 

whilst only the most efficient one (shScrib 2) was used in the HPV-positive NIKS 

cell line (B). In both A) and B) the infections were carried out in duplicate. 

HSP70 was used as a loading control. 
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5.2.9. E6WT protein is also stabilised by other PDZ  proteins 
We were also interested to determine whether other PDZ proteins were able to 

stabilise E6 in the way that hScrib has been shown to do. In addition to hScrib, 

targets of E6 include other MAGUK proteins such as hDlg (Gardiol et al., 1999; 

Kiyono et al., 1997; Lee et al., 1997) and MAGI-1, -2 and -3, (Glaunsinger et al., 

2000; Thomas et al., 2002) as well as the non-MAGUK protein MUPP-1 (Lee et 

al., 2000).  

 

Most of the abovementioned targets of E6 were found to be more efficiently 

targeted by HPV18 than HPV16 E6 (Gardiol et al., 1999; Pim et al., 2000; 

Thomas et al., 2001; Thomas et al., 2002). The reason why I initially chose to 

study the relationship between E6 and hScrib in this study, instead of any of the 

other PDZ proteins, was because hScrib was found to be more efficiently 

targeted for degradation by HPV16 rather than HPV18 E6 (Thomas et al., 

2005). This may indirectly suggest that HPV16 E6 binds more efficiently to 

hScrib than any of the other PDZ proteins.  

 

We decided to look at whether hDlg and MAGI-1, which have also been shown 

in the literature to bind to HPV16 E6 (Glaunsinger et al., 2000; Kiyono et al., 

1997), have the same effect on the steady-state levels of E6 as hScrib does. 

NIKS cells were co-transfected in triplicate with pMV11-E6WT or pMV11-

E6PDZ plasmid, and pGW1-HA-Dlg (Gardiol et al., 1999) or pcDNA-FLAG-

MAGI-1c (Glaunsinger et al., 2000) plasmid, both of which were kindly provided 

by Dr. Lawrence Banks. The levels of E6 protein were assessed by western 

blotting (Fig. 5.13A). The presence of exogenous MAGI-1 had a similar effect as 

hScrib on the levels of E6; that is, the levels of E6WT protein were much higher 

than those of E6PDZ protein. This is not surprising as MAGI-1, like hScrib, has 

been shown to bind strongly to HPV16 E6 (Glaunsinger et al., 2000) and is also 

efficiently targeted for degradation in HPV16-positive cancer cell lines (Kranjec 

& Banks, 2010). In the presence of exogenous HA-Dlg, E6WT protein levels 

were also higher than E6PDZ protein levels; however the difference was not as 

striking as the one observed in the presence of hScrib or MAGI-1. 

 

To verify that these plasmids do indeed express the respective proteins, I 

transfected them into NIKS cells and analysed the lysates by western blotting. I 
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was not able to detect either of these proteins on the blots. A repeat of the 

transfection in 293T cells however demonstrated that these plasmids can 

indeed express the respective PDZ proteins (Figure 5.13B). This apparent 

anomaly is almost certainly due to the poor transfection efficiency of the NIKS 

cells compared to the 293T cells. 

 

These data suggest that the stabilisation of E6 may be a common characteristic 

of several PDZ proteins and not just of hScrib. However, different PDZ proteins 

appear to stabilise E6 to different degrees. This may be simply due to a 

difference in the expression levels of these PDZ proteins from their respective 

plasmids. However, I consider it more likely that this is reflective of the variation 

in the binding affinities of the E6 protein to different PDZ proteins. Whether 

other PDZ proteins have a similar effect on E6 protein levels remains to be 

established. 

 

From the experiments described so far, I can conclude that E6WT protein is 

stabilised by its cellular binding partners, the PDZ proteins. This stabilisation is 

dependent on the PDZ-binding motif of E6 as well as the PDZ domains of the 

PDZ proteins and comes about by the protection of the E6WT protein from 

proteasomal degradation. 
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Figure 5.13:  Multiple PDZ proteins can stabilise E6WT  

A) NIKS cells were transiently co-transfected with pMV11-E6WT or pMV11-

E6PDZ plasmid, and pcDNA-FLAG-MAGI-1c or pGW1-HA-Dlg plasmid and 

whole-cell extracts were prepared. Each transfection was carried out in 

triplicate. The levels of E6 were measured using ImageJ software and 

normalised to the loading control. The bar charts show the mean levels of E6 

protein (in arbitrary units) and the standard deviation. Unpaired t-tests were 

used to compare the levels of E6 and the p values are shown above the graphs. 

Histone H2B (H2B) and HSP70 were used as loading controls. B) 293T cells 

were transfected with FLAG-MAGI-1c or pGW1-HA-Dlg plasmid. HSP70 was 

used as a loading control.  
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All of the experiments carried out so far have looked at the levels of E6 protein 

when expressed from the CMV promoter of the pMV11 plasmid. E6 expressed 

from a CMV promoter is expected to be at much higher levels than E6 

expressed from the HPV genomes. Therefore, the levels of E6 in these 

experiments do not accurately reflect the levels present in the cells following an 

infection with the virus. That being said, the use of the over-expression system 

was deemed necessary as the levels of E6 protein expressed from the HPV16 

genomes when transiently transfected into NIKS cells, have proven very difficult 

to detect by western blotting. This difficulty was compounded by the relatively 

low transfection efficiency of NIKS, as well as the fact that it was imperative to 

assess the levels of E6 shortly after transfection, since I have previously shown 

that the 16E6PDZ genomes are unable to persist in NIKS cells. This highly-

restricted time-frame meant that I could not utilise any antibiotic selection 

method to enrich for cells that contain the HPV genomes. Nevertheless, it was 

important to assess whether the stabilisation of E6 by PDZ proteins holds true 

in the endogenous system as well.  

 

5.2.10. The levels of E6 transcripts are significan tly lower when expressed 

from the HPV16 genomes than the pMV11 plasmid 

Unsurprisingly, the initial attempts, using western blots, to detect the E6 protein 

expressed from the HPV genomes in a population of transfected NIKS cells, 

were unsuccessful. This was attempted using varying amounts of protein on the 

western blots, but when high amounts were loaded on the gel, the blot had 

significant background that made it difficult to detect individual bands. Different 

anti-E6 antibodies were used with similar results (see Chapter 2). I also co-

transfected the pcDNA-HA-hScrib plasmid with the HPV16 genomes in an 

attempt to augment the levels of E6WT in transfected cells, but to no avail as 

the detection of E6 was still unsuccessful (Fig. 5.14).  

 

I then wanted to ascertain the difference in the levels of E6 transcripts that were 

produced from HPV16 genomes and those produced from pMV11-E6WT 

plasmids. NIKS cells were transfected with wild-type HPV16 genomes (16WT) 

or pMV11-E6WT plasmids. RNA was extracted 48 hours post-transfection and 

cDNA was made and used as a template for qPCR in order to detect the levels 
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of full-length E6 transcripts (Fig. 5.15). For the synthesis of cDNA, I chose to 

use oligo-dT as this primer will only initiate reverse-transcription of mature 

mRNAs and will thus give a more accurate indication of the levels of mRNA that 

are “ready” for translation. β-actin transcript levels were used as a control. As 

expected, the levels of E6 transcripts were much lower when expressed from 

the 16WT genomes, compared to the pMV11-E6WT plasmids. Therefore, in 

order to be able to detect the E6 protein when expressed from the HPV 

genomes, I would need to use very sensitive western blotting detection methods 

or to enrich the population of transfected cells for E6-expressing cells. It should 

be noted however that the above results were obtained by measuring the levels 

of E6 transcripts and may not necessarily accurately reflect the difference in the 

protein levels.  

 

I also wanted to determine the time-point post-transfection at which the levels of 

E6 transcripts were highest, as this could in turn indicate the best time-point for 

E6 protein analysis. NIKS cells were transfected with 16WT genomes and RNA 

was extracted every 24 hours for 4 days post-transfection. cDNA was prepared 

(using oligo-dT) and the levels of full-length E6 transcripts were measured and 

normalised to the levels of β-actin transcripts (Fig. 5.16). The highest levels of 

E6 transcripts were detected at 24 and 48 hours post-transfection. This could 

be because after this time-point, the majority of the HPV genomes may be lost 

from the cells, before their number is stabilised. I therefore decided that 48 

hours post-transfection would be the appropriate time-point to assess the levels 

of E6 protein (as I have been doing thus far), as I considered that the 24-hour 

time-point might be too early for the detection of E6 protein. 
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Figure 5.14: Attempts to detect E6 expressed from H PV16 genomes 

NIKS cells were co-transfected with 16WT genomes and pcDNA-HA-hScrib 

plasmid and 120 µg of protein were loaded on a 15% gel. The blot was probed 

with anti-E6 antibody. The positive control is cell extract from cells transfected 

with pMV11-E6PDZ. 
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Figure 5.15: qPCR analysis of E6 transcripts from H PV16 genomes or 

pMV11 plasmids  

NIKS cells were transiently transfected with 16WT genomes or pMV11-E6WT 

plasmids. RNA was extracted 48 h post-transfection and analysed by RT-qPCR. 

The transfections were carried out in duplicate and the bar chart shows the 

mean levels of full-length E6 transcripts (normalised to β-actin transcripts) and 

the standard deviation. The transfection was not carried out in an equimolar 

ratio. The values from the qPCR were adjusted so that the graph represents the 

values expected from the equimolar ratio.  
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Figure 5.16: qPCR analysis of E6 transcripts from H PV16 genomes at 24-

hour intervals post-transfection 

NIKS cells were transfected with 16WT genomes and RNA was extracted at 24-

hour intervals for 96 hours and analysed by RT-qPCR. The transfections were 

carried out in duplicate and the bar chart shows the mean levels of full-length 

E6 transcripts (normalised to β-actin transcripts) and the standard deviation.  
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5.2.11. Optimising the anti-E6 western blot 

From the experiments described in the previous section, it became clear that in 

order to be able to detect E6 expressed from the HPV16 genomes, I would 

need to optimise the western blot to make it more sensitive in detecting much 

lower levels of E6 protein than had been necessary thus far. Loading higher 

levels of protein and using more sensitive ECL reagents resulted in blots with 

very high background and with multiple unspecific bands, including some in the 

15-20 kDa range, which is where the E6 protein runs. Several things were 

tested in order to increase the sensitivity of the western blots whilst decreasing 

the background of the blots. These are outlined in Table 5.1.  

 

 Table 5.1: Outline of attempts to detect E6 express ed from HPV16 

genomes by western blotting 

Reduce background on the western blots 

More stringent washing of western 

blots; added 0.1% SDS and 0.25 M 

NaCl to washing buffer 

No signal detected on the blot 

Lower anti-E6 antibody concentration; 

tried dilutions of 1:2000 to 1:8000 

Decreased overall background but still 

had unspecific bands in the 15-20 kDa 

region with high sensitivity ECL  

Try to eliminate or shift the location of the unspe cific bands 

Used different protein extraction 

buffers; used a urea buffer 

Similar background as with RIPA 6% 

SDS buffer 

Pre-adsorb the antibody with protein 

lysate from NIKS cells; pre-incubated 

the antibody solution with a blot that 

only had NIKS cell lysate on it, or 

added crude NIKS cell lysate together 

with the blot 

Unspecific bands were still visible 

Used gels with different compositions; 

used the 16% Novex® Tricine gels 

from Invitrogen, commonly used to 

separate low-molecular weight proteins 

Unspecific bands were still visible 
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I also considered the possibility that the secondary antibody may be contributing 

to the unspecific bands. Incubating a membrane containing NIKS lysate with the 

GE Heatlhcare anti-mouse secondary antibody alone, I observed that even in 

the absence of primary antibody there is significant background on the blot, 

including in the 15-20 kDa region. To try to eliminate the background 

contributed from the secondary antibody, I repeated the experiment using a 

secondary anti-mouse antibody from Pierce instead. The background was 

similar as with the former secondary antibody.  

 

5.2.12. Enriching the transfected cell population f or E6-expressing cells 

From the results presented above, it became clear that in order to be able to 

detect E6 protein that is expressed from the viral genomes after transient 

transfection of NIKS cells, I would need to enrich from the population of cells, 

those that were successfully transfected. To do this, I decided to co-transfect 

the HPV16 genomes with a GFP-expressing plasmid (pCI-EGFP) (Tuting et al., 

1999) and use Fluorescent Activated Cell Sorting (FACS) to sort cells on the 

basis of their GFP-expression. As co-transfected plasmids are thought to enter 

cells together, I reasoned that the GFP-positive cells would be cells that were 

also transfected with the HPV16 genomes. Therefore the sorted population of 

cells would be enriched not only for GFP-positive cells but also for E6-

expresssing cells.  

 

To test this, and to determine if I could indeed detect E6 in these cells by 

western blotting, I first carried out an experiment in which only the expression of 

E6 from the 16WT genomes was assessed. Cells were co-transfected with 

16WT genomes and the pCI-EGFP plasmid. Alternatively, cells were 

transfected with the pMV10 plasmid to be used for setting up the GFP-negative 

gate for the sorting. A subset of the 16WT+pCI-EGFP-transfected cells was 

used to set the GFP-positive gate (Fig. 5.17A). The cells were sorted 48 hours 

post-transfection and the sorting was carried out by Graham Preece at the Flow 

Cytometry Facility at the NIMR. Both GFP-negative and GFP-positive cells were 

collected, pelleted, washed once with PBS, pelleted again and the pellets frozen 

at   -80oC.  
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For the detection of E6 potein, whole-cell extracts were prepared, quantified 

and used for western blotting (Fig. 5.17B). Un-transfected cells were used as a 

negative control for E6 and cells transfected with pMV11-E6WT and pCI-EGFP 

plasmids were used as a positive control. As can be seen, the GFP-positive 

sorted population had very high levels of GFP whereas the GFP-negative 

sorted population had undetectable levels of GFP, thus confirming that the 

sorting enriched the population for GFP-positive cells. More importantly, the E6 

band was detectable in the GFP-positive cells and no bands were detected in 

the un-transfected cells in the 15-20 kDa region of the gel, thereby suggesting 

that the enrichment for GFP-positive cells worked in enriching for E6-expressing 

cells as well.  

 

This result suggests that this type of experiment could be used to compare the 

levels of E6WT and E6PDZ proteins expressed from the HPV16 genomes. In 

order to improve the quality of the blot, in the following experiment the important 

samples to be analysed were loaded with a separating lane in between, to avoid 

any interference between signals from different samples. In addition, the fact 

that the E6 band in the GFP-positive sample was very faint suggested that more 

sample may need to be loaded on the gel. Hence in the following experiment I 

transfected a larger number of cells in order to obtain a higher concentration of 

enriched protein lysate, and consequently load more protein on the gel.    
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Figure 5.17: Sorted cells are enriched for E6-expre ssing cells  

NIKS cells were transiently co-transfected with 16WT genomes and pCI-EGFP 

plasmid and were subjected to FACS 48 h post-transfection, to sort on the basis 

of GFP-expression. A) The left panel shows the Forward and Side Scatter 

(FSC/SSC) set-up. The right panel shows the FITC set-up. P5 was the GFP-

positive gate and P4 was the GFP-negative gate. B) Whole-cell extracts from 

FACS-sorted GFP-positive and GFP-negative cells were analysed by western 

blot for GFP and E6 expression. HSP70 was used as a loading control. 
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5.2.13. E6WT protein is more stable than E6PDZ prot ein when these are 

expressed from HPV16 genomes 

Having confirmed that the sorting method was able to enrich the population of 

transfected cells for E6-expressing cells, I wanted to use this method to 

investigate the relative stability of the wild-type and mutant E6 proteins when 

these are expressed from their respective HPV16 genomes. 

 

To do this I co-transfected NIKS cells with re-circularised 16WT or 16E6PDZ 

genomes, and pCI-EGFP plasmid. Thirty-five wells of a 6-well plate were 

transfected with each of the genomes and pCI-EGFP. The sorting procedure 

was carried out as described above. Whole-cell extracts were obtained, 

quantified and used for western blotting (Fig. 5.18A). The sorting procedure was 

again able to enrich for E6-expressing cells, as both E6WT and E6PDZ proteins 

were detectable on this gel, with no interfering background bands in the 

negative controls. Most importantly however, the levels of E6WT protein were 

much higher than those of E6PDZ protein. To ensure that the difference in the 

protein levels was not due to a difference in the expression of E6 transcripts, 

these were assessed by RT-qPCR (Fig. 5.18B) and were found not to be 

significantly different (p=0.33). 

 

As no exogenous PDZ proteins were expressed in this experiment, the data 

suggest that the higher levels of E6WT compared to E6PDZ protein are due to 

the stabilisation of the wild-type protein by endogenous PDZ proteins. This is of 

particular importance as it confirms that the results I have presented so far, 

using an over-expression system, also hold true for the endogenous system, in 

which PDZ proteins and E6 are expressed at more physiological levels.  

 



Chapter 5: Stabilisation of E6 by PDZ proteins 

 201 

 
 

 

Figure 5.18: The levels of E6WT protein are higher than those of E6PDZ 

protein when expressed from the HPV16 genomes 

NIKS cells were transiently co-transfected with 16WT or 16E6PDZ genomes 

and pCI-EGFP plasmid. A) At 48 h post-transfection the cells were subjected to 

FACS to sort on the basis of GFP-expression. Whole-cell extracts from the 

sorted GFP-positive and GFP-negative cells were analysed by western blotting 

for GFP and E6 expression. HSP70 was used as a loading control. B) RNA was 

extracted from the total cell population at 48 h post-transfection and analysed 

by RT-qPCR. The transfection was carried out in triplicate and the bar chart 

shows the mean levels of full-length E6 transcripts (normalised to β-actin 

transcripts) and the standard deviation. An unpaired t-test was used to compare 

the levels of E6 transcripts and the p value is shown above the graph. 
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5.2.14. Levels of p53 are similarly diminished in N IKS cells transfected 

with 16WT or 16E6PDZ genomes 

I have shown so far that the E6PDZ protein is unstable compared to the E6WT 

protein when these are expressed from heterologous promoters or from the 

HPV promoter. This is important when considered in the context of my earlier 

findings, as it would suggest that the reason why the 16E6PDZ genomes were 

unable to persist (as presented in Chapter 3) may be because the levels of E6 

protein in these cells were insufficient. In Chapter 3 I also presented data that 

suggested that E6-mediated p53-degradation is necessary for viral genome 

persistence. Therefore, I hypothesised that the reason why the 16E6PDZ 

genomes were unable to persist may be because the E6PDZ protein was 

unable to efficiently degrade p53.    

 

I was thus interested to determine whether the levels of p53 were higher in cells 

transfected with 16E6PDZ genomes compared to cells transfected with 

16E6WT genomes. To do this, I transfected cells with 16WT or 16E6PDZ 

genomes or pMV10 plasmid, and the pCI-EGFP plasmid, and FACS-sorted 

them as described above. Whole-cell extracts from GFP-positive cells were 

analysed for the levels of p53 protein (Fig. 5.19A). Cells transfected with 16WT 

genomes had lower levels of p53 protein than cells transfected with pMV10 

plasmid. Interestingly, the levels of p53 protein in cells transfected with 

16E6PDZ genomes were similar to those in cells transfected with 16WT 

genomes. The bar graph in Figure 5.19A shows the intensities of the p53 bands 

(normalised to the loading control). p53 levels were also measured in the 

samples presented in section 5.2.13. The average of the two experiments is 

presented in Figure 5.19B.  

 

I also wanted to determine whether E6 had any effect on endogenous hScrib at 

this early time-point post-transfection. I therefore analysed the levels of hScrib 

in the transfected and FACS-sorted cells (Fig. 5.19C). The levels of hScrib were 

found not to be different between the cells that had been transfected with 

pMV10 plasmid or either of the HPV16 genomes. This suggests that the E6 

protein, even the wild-type, had no effect on the levels of endogenous hScrib 

protein at this early time-point. 
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In conclusion, despite the difference in their stabilities, E6WT and E6PDZ 

proteins are able to degrade p53 protein with similar efficiencies. Neither 

however seems to have had an effect on endogenous hScrib protein in the 

time-frame in which the testing was carried out. 
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Figure 5.19: p53 and hScrib levels in transfected a nd FACS-sorted cells 

NIKS cells were transiently co-transfected with 16WT or 16E6PDZ genomes or 

pMV10 plasmid, and pCI-EGFP plasmid, and subjected to FACS 48 h post-

transfection, to sort on the basis of GFP-expression. Whole-cell extracts from 

the sorted GFP-positive cells were analysed by western blotting for A) p53 and 

C) hScrib. The levels of p53 and hScrib were measured using ImageJ software 

and normalised to the loading controls and are shown in the bar charts (in 

arbitrary units). HSP70 was used as a loading control. B) The levels of p53 in 

cells transfected with 16WT or 16E6PDZ genomes were measured in two 

experiments. The bar chart shows the mean levels of p53 in cells transfected 

with 16E6PDZ genomes (in arbitrary units), normalised to the levels of p53 in 

cells transfected with16WT genomes, and the range.  
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5.3. Discussion 
 

The experiments presented in this chapter have conclusively shown that the 

HPV16 E6 protein is stabilised by way of its interaction with the PDZ protein 

hScrib. This stabilisation was found to be dependent on the PDZ-binding motif 

of the E6 protein as well as the PDZ domains on the hScrib protein. The 

resulting stabilisation of the E6 protein is brought about by the protection of the 

E6 protein from proteasomal degradation. My data also show that this 

stabilisation of the E6 protein can be afforded not only by hScrib but also by 

other PDZ proteins, namely hDlg and MAGI. Only hDlg and MAGI were 

investigated in this study and it would be interesting to determine if other PDZ 

proteins have a similar effect, as well as whether this effect is true for E6 

proteins from other high-risk types. Different levels of E6 protein stabilisation 

were observed with the different PDZ proteins. This supports previous studies 

that showed that E6 proteins from different HPV types target PDZ proteins with 

varying efficiencies (Thomas et al., 2005).  

 

Importantly, in this study I was able to demonstrate that the stabilisation of E6, 

observed when E6 and PDZ proteins are over-expressed from heterologous 

promoters, also holds true when E6 is expressed from the HPV16 promoter and 

the PDZ proteins from their endogenous promoters. This is significant as it 

shows that E6 is stabilised by PDZ proteins under physiological conditions. The 

difficulty in carrying out these experiments has been highlighted in this chapter 

and is also reflected by the fact that previous studies have used tags and over-

expression systems in order to study the E6 protein. To the best of my 

knowledge, this is the first time that the levels of un-tagged E6 protein have 

been analysed by western blotting following the transient transfection of 

keratinocytes and prior to any antibiotic selection processes or prolonged cell 

growth. This is important, as I have already shown in Chapter 3 that prolonged 

growth of cells transfected with mutant HPV genomes may result in loss of the 

genomes, which would inevitably influence the results. Furthermore, prolonged 

cell growth may inadvertently select for cells that express higher levels of E6 

protein, as these are expected to have a growth advantage over other cells in 

the population. This selection may mask the differences in the levels of wild-

type and mutant E6 protein.  
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The finding that PDZ proteins stabilise wild-type E6 suggests a way in which the 

PDZ-binding motif of E6 may be involved in viral episomal persistence. Its role 

may be to stabilise enough E6 protein, to facilitate the E6 activities that are 

necessary for persistence. One obvious activity is p53-degradation, the need for 

which in persistence was shown in Chapter 3. The lack of a PDZ-binding motif 

may mean that insufficient E6 protein is present to efficiently degrade p53. If 

this were the case, the levels of p53 would be expected to be higher in E6PDZ-

expressing cells than in E6WT-expressing cells. However, my experiments 

suggest that this is not the case, as the levels of p53 were found to be similarly 

reduced in cells transfected with 16WT or 16E6PDZ genomes. This had also 

been suggested in a previous study, in which an E6 mutant that is deficient for 

PDZ-binding (6 amino acid deletion) was able to induce efficient degradation of 

p53 (Foster et al., 1994). A more recent study also showed that a similar E6 

mutant affected the cellular response to DNA damage in a comparable way as 

the wild-type protein, thus again implying similar reduction in p53 levels in cells 

expressing wild-type or mutant E6 (Nguyen et al., 2003).  However, in both of 

these studies the E6 protein was over-expressed in cells in the absence of 

exogenous expression of hScrib (or other PDZ proteins) and the levels of the 

E6 protein were not assessed. Therefore the levels of wild-type and mutant E6 

proteins in these studies may not actually have been different. My results on the 

other hand show that the efficiency of p53-degradation is similar when E6 is 

expressed from the wild-type or mutant HPV16 genomes, even when the 

steady-state levels of E6WT protein are clearly higher than those of E6PDZ 

protein.  

 

As insufficient p53-degradation does not appear to be the reason why the 

16E6PDZ genomes do not persist, this suggests that other activities of E6, 

apart from p53-degradation must also be necessary. These activities may be 

compromised by the instability of the E6PDZ protein, consequently resulting in 

the lack of viral episomal persistence seen with the 16E6PDZ mutant genomes. 

One such activity which has recently been shown to be necessary for 

persistence is the ability of E6 to bind to and degrade E6TP1 (Lee et al., 2007). 

It is therefore possible that the E6PDZ mutant protein is unable to degrade 

E6TP1 efficiently, due to its lower levels. Moreover, the Lee et al. study 

suggested that the localisation of E6 to the nucleus may also be important for 
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viral episomal persistence (Lee et al., 2007). An earlier study identified three 

nuclear localisation signals on the HPV16 E6 protein, none of which overlapped 

with the PDZ-binding motif (Tao et al., 2003). However, it is possible that 

deletion of the PDZ-binding motif disrupts an as yet unidentified nuclear 

localisation signal of E6 or induces a conformational change in E6 that prevents 

its localisation to the nucleus, thereby inhibiting episomal persistence. More 

ways in which the levels of E6 protein may impact persistence will be discussed 

later. It is important to note however, that my results on the instability of the 

E6PDZ protein do not preclude the possibility that the degradation of PDZ 

proteins is also necessary for viral episomal persistence, in addition to the 

stability of E6.  

 

It is also of interest that hScrib, which has previously been shown to be 

degraded by E6 (Nakagawa & Huibregtse, 2000), is also able to stabilise it. This 

apparent paradox will be further discussed later. As mentioned earlier, this is 

not a novel concept as previous studies have also shown a similar relationship 

between E6 and E6AP. The E6AP protein, which is targeted by E6 for 

degradation (Kao et al., 2000) also stabilises the E6 protein (Tomaic et al., 

2009b). These observations raise interesting questions as to whether E6AP is 

directly necessary for certain activities of E6 (such as for p53-degradation) or 

whether it is needed primarily to stabilise sufficient amounts of E6. Similarly, my 

data indicate that care must be taken when working with E6 mutants that lack 

the PDZ-binding motif, as results could potentially be affected by the lower 

levels of E6 protein instead of by changes in the levels of PDZ proteins. This 

could also be true when looking retrospectively at studies in which such E6 

mutants were used. For example, the binding of E6 to PDZ proteins has been 

attributed roles in cell growth as well as in tissue hyperproliferation (Lee & 

Laimins, 2004). It is possible however that these effects were not due to the 

impact of E6 on PDZ proteins but rather due to the impact of the PDZ proteins 

on the stability of E6. Similarly, the reduced hyperplasia observed in mice that 

express PDZ-binding mutant E6 protein compared to ones that express wild-

type E6 protein, might also be explained by the instability of the mutant E6 

protein (Nguyen et al., 2003). Future studies using such mutants would benefit 

from a thorough investigation of the levels of E6 prior to attributing any effects to 

the degradation of PDZ proteins.    
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Chapter 6: Final Discussion 

 

6.1. Two regions of the E6 ORF are necessary for ep isomal persistence of 

HPVs 

Previous studies have suggested a role for E6 in the persistence of HPV 

episomes (Thomas et al., 1999; and Ken Raj, unpublished data). In this study 

my aim was to build on these observations and investigate what the role of 

HPV16 E6 is in this function. My results show that two regions of the E6 protein 

are necessary for the episomal persistence of HPV16 DNA. The first region has 

been associated with the degradation of p53 (Kiyono et al., 1998; Klingelhutz et 

al., 1996), whereas the second region is the PDZ-binding motif of the E6 

protein, which is found at the C-terminus of the protein (Kiyono et al., 1997; Lee 

et al., 1997; Nakagawa & Huibregtse, 2000). I show that HPV16 genomes that 

harbour mutations in these regions are unable to persist in NIKS cells.  

 

Previous studies have also investigated the ability of mutant genomes (with 

mutations in the E6 ORF) to persist in cells (Lee & Laimins, 2004; Park & 

Androphy, 2002; Thomas et al., 1999). These had various unresolved issues, 

which I took care to address in my study. Firstly, whereas the previous studies 

only used Southern blotting to assess persistence, I also assessed it by qPCR, 

by measuring the number of HPV copies per cell in successive passages. I 

believe that the qPCR analysis provides higher resolution, as it allows me to 

determine smaller and quantitative differences between samples, and to 

analyse earlier time-points post-transfection as it requires significantly lower 

amounts of sample than Southern blotting. 

 

Secondly, I took care to prevent other factors from interfering with the results. 

One such factor is the potential growth competition that may exist in a 

population of cells that was transfected with mutant HPV16 genomes. As 

discussed in Chapter 3, I considered the possibility that cells harbouring the 

16E6p53m or 16E6PDZ mutant genomes may have a growth disadvantage 

compared to cells that do not contain any viral genomes, and may be outgrown. 

This would result in an apparent loss of mutant viral genomes from cells.The 
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experimental approach was designed in a way that would minimise this 

possibility, in that I isolated individual cells soon after transfection (thereby 

removing them from the growth competition), and analysed the resulting clones 

for the presence of HPV DNA. Moreover, I directly assessed potential growth 

differences between cells that express mutant E6 protein (together with E7 

protein) compared to control cells. All of the above led me to conclude that the 

reason why the mutant genomes are unable to persist in NIKS cells is not due 

to a growth disadvantage of the cells that harbour them.  

 

Thirdly, unlike the previous studies, I carried out the persistence assays in an 

immortalised cell line (NIKS) (Allen-Hoffmann et al., 2000), which supports the 

HPV life-cycle (Flores et al., 1999). The decision to use immortalised cells 

instead of primary cells was made because some mutant genomes may be 

unable to immortalise keratinocytes upon transfection (as discussed in Thomas 

et al., 1999). The limited life-span of primary cells would thus prevent long-term 

persistence of the viral DNA and may even interfere with short-term 

persistence. By using the NIKS cells, I hoped to study factors that solely affect 

episomal persistence, without interference from other factors that may be 

required for cellular immortalisation. A further advantage of NIKS cells over 

primary cells is that they provide an isogenic background for all the 

experiments.  

 

In conclusion, I have shown that two regions of the E6 protein are necessary for 

the episomal persistence of HPV16 DNA. As discussed in Chapter 3 however, I 

have not conclusively shown that the activities of E6 that have been associated 

with these regions of the protein (i.e. p53-degradation and binding/degradation 

of PDZ proteins) are necessary for persistence. An experiment aimed at 

determining whether p53-degradation was indeed necessary for viral DNA 

persistence was presented in Chapter 4 (using shRNA against p53). While this 

experiment yielded unexpected and interesting results, it did not prove to be 

suitable for answering the original question. More experiments to this end will 

be discussed in section 6.7.1. 
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6.2. 16E6p53m and 16E6PDZ genomes: two different pe rsistence-defective 

phenotypes   

The aims of this study were not only to investigate which activities of E6 are 

necessary for viral persistence, but also to determine why they are so. To this 

end, I set out to investigate what persistence mechanisms may be affected by 

the mutations I introduced into the HPV16 genome. 

 

My experiments show that the replication efficiency of the 16E6p53m genomes 

is significantly lower than that of the 16WT genomes. Although this result does 

not conclusively show that inefficient replication is the reason why the 

16E6p53m genomes are unable to persist, it suggests that this may be a 

contributing factor. This was not found to be the case for the 16E6PDZ 

genomes, which replicate at a similar efficiency to the 16WT genomes. 

 

My results also show that the E6PDZ mutant protein is unstable, being more 

susceptible to proteasomal degradation than the E6WT protein. Consequently 

its steady-state levels are significantly lower than those of the E6WT protein. 

This is not the case for the E6p53m protein. This suggests that the mechanism 

by which the PDZ-binding motif of E6 is involved in persistence may be through 

stabilisation of the E6 protein, rather than through regulation of the levels of the 

PDZ proteins.  

 

In observing the lower levels of the E6PDZ protein, compared to the E6WT 

protein, my initial hypothesis was that degradation of p53 by the E6PDZ protein 

may be inefficient. This could explain the lack of persistence of the 16E6PDZ 

mutant genomes. However, my results show that, in fact, p53 is degraded at 

similar efficiencies in cells expressing E6WT and E6PDZ proteins, despite the 

much reduced levels of the E6PDZ protein, suggesting that this is not the 

reason why the 16E6PDZ genomes cannot persist. This was in support of the 

observation that the two genomes behave differently in the transient replication 

assay.  

 

Moreover, close analysis of the results from Chapter 3 hint at the existence of 

two different persistence-defective phenotypes. Cells containing 16E6p53m 

genomes exhibit gradual loss of the viral genomes. Cells containing 16E6PDZ 
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genomes exhibit either complete loss of the viral DNA, or loss of the viral 

episomes and integration of the viral DNA into the cellular DNA at high copies. 

All of the above suggest that the E6 protein is involved in at least two processes 

that function in permitting the extrachromosomal persistence of the viral DNA 

during successive cell divisions.  

 

6.3. E6PDZ protein is less stable than E6WT protein  in the endogenous 

system 

A significant aspect of this study was that I was able to demonstrate the 

instability of the E6PDZ protein compared to the E6WT protein, both in an over-

expression system, but more importantly in the endogenous system, when 

these proteins are expressed from the HPV genome. These results suggest that 

endogenous PDZ proteins can stabilise the E6WT protein during a productive 

infection and emphasise the fact that future studies should take care to assess 

the levels of E6 in their experiments, when using mutants of the E6 protein. For 

example, phenotypes that have so far been attributed to the 

binding/degradation of PDZ proteins by E6 may in fact be due to the instability 

of the E6PDZ protein. The importance of these results is also highlighted by the 

difficulty in obtaining them, as described in Chapter 5.  

 

In addition to the importance of studying the stability of E6 in the endogenous 

system, an interesting observation was also made with regards to the detection 

of different E6 species. Although not discussed in the results chapters, several 

of the E6 western blots shown in this study suggest the existence of different E6 

species, as determined by the detection of more than one specific band by the 

anti-E6 antibody. The antibody used in this study is unable to detect the known 

E6* splice variants, as it recognises an epitope in the C-terminus of E6. We thus 

speculate that the alternative E6 species detected in these blots could either be 

as-yet-unidentified splice variants, or full-length E6 protein that has undergone 

post-translational modification (for example, phosphorylation). Post-translational 

modifications of E6 have not been well studied. It would thus be interesting to 

address the presence of these E6 variants in future studies and attempt to 

characterise them and to determine whether they are differentially stabilised by 

interaction with PDZ proteins. 
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6.4. What other activities of E6 may be necessary f or persistence?   

The lower steady-state levels of the E6PDZ protein may have implications on 

the ability of this mutant protein to carry out its activities. In Chapter 5 I 

discussed an activity of E6, that of binding to and degrading E6TP1 (Gao et al., 

1999), that has already been linked to viral DNA persistence (Lee et al., 2007). 

This activity may be compromised by the lower levels of E6PDZ protein. 

However, there may be other activities of E6 that are also important but have 

not yet been identified as being necessary for persistence. These may also be 

compromised by the low levels of E6PDZ protein. Some of these are highlighted 

below. 

 

6.4.1. Interaction of E6 with E2    

A recent study has shown interplay between the E6 protein and the viral 

replication and transcription protein E2 (Grm et al., 2005). The two proteins 

were shown to affect each other’s cellular distribution and activities. For 

example E6 augments E2-mediated viral gene transcription and inhibits E2-

mediated viral DNA replication (Grm et al., 2005). Lower levels of the E6PDZ 

protein may interfere with the regulation of these pathways, potentially leading 

to lower transcription of other viral proteins, and/or uncontrolled replication 

which may consequently result in loss of episomes or integration.  

 

E2 has also been shown to interact with topoisomerase II-binding protein 1 

(TopBP1) (Boner et al., 2002). Topoisomerase II (Topo II) is involved in 

decatenation of DNA following replication, including viral DNA (Snapka et al., 

1988), and it is possible that Topo II is also required for the decatenation of 

HPV episomes. This may be mediated by an interaction between Topo II, 

TopBP1 and E2, and E6 may also play a role by way of its interaction with E2. If 

the above is true, then lower levels of E6PDZ protein may fail to elicit the 

decatenation of HPV episomes. This could affect the equal segregation of the 

genomes into the two daughter cells or result in the integration of multiple 

copies of HPV DNA (as concatamers) in the cellular chromosomes.    

 

Moreover, E2 is the only HPV protein that has so far been attributed a role in 

episomal segregation (Abbate et al., 2006; Bastien & McBride, 2000; Ilves et al., 
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1999; Lehman & Botchan, 1998; Oliveira et al., 2006; Skiadopoulos & McBride, 

1998; Van Tine et al., 2004). It is conceivable that the interaction between E6 

and E2 may facilitate this process, suggesting that lower levels of E6PDZ may 

fail to elicit proper segregation of viral episomes, thus preventing their 

persistence. Moreover, several cellular proteins have been implicated in 

episomal segregation, such as Brd4 (Abbate et al., 2006; Baxter et al., 2005; 

You et al., 2004; You et al., 2005), Chlr1 (Parish et al., 2006a) and TopBP1 

(Donaldson et al., 2007). It is plausible that E6 may affect the expression of 

these proteins (as it does with many other cellular proteins). Alternatively, E6 

may mediate their interaction with the cellular chromosomes and with the 

episome-bound E2. For example, E6 may be a co-factor of segregation by 

facilitating the already demonstrated interaction between E2 and TopBP1 

(Boner et al., 2002). It is worth noting however, that most work on episomal 

segregation has been carried out using BPV1 and studies suggest that 

variations exist between the different PVs (McPhillips et al., 2006; Oliveira et al., 

2006). The mechanism employed by HPV16 has not yet been elucidated.  

     

6.4.2. E6 and replication 

In the transient replication assay the 16E6PDZ mutant genomes were not found 

to replicate significantly less efficiently than the 16WT genomes. However, the 

possibility still exists that even minor or statistically insignificant differences in 

replication efficiency may have a biological effect on the ability of the mutant 

genomes to persist. Moreover, the transient replication assay was a short-term 

assay, carried out over the course of 4 days. It is therefore possible that subtle 

differences in the replication efficiencies of the 16WT and 16E6PDZ genomes 

do exist but were not identified by this assay. Hence, possible ways in which the 

levels of E6 may impact viral DNA replication, and consequently persistence, 

should be considered.   

 

One cellular pathway that has been shown to inhibit viral DNA replication is the 

IFN- signalling pathway, which inhibits the replication of both HBV (Hayashi & 

Koike, 1989) and HPV (Terenzi et al., 2008). HPVs down-regulate the 

expression of IFN-inducible genes, such as Stat-1 (Chang & Laimins, 2000), 

and this is at least in part due to the activities of E6 (Li et al., 1999; Nees et al., 
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2001). It is therefore plausible that E6 functions to reduce the IFN-mediated 

inhibition of viral DNA replication. If the levels of E6 protein are lower, as is the 

case with the E6PDZ mutant protein, the levels of IFN-inducible proteins may 

increase, thereby impeding viral DNA replication, and resulting in the loss of 

viral episomes, as seen with the transfection of 16E6PDZ mutant genomes. 

Interestingly, several studies have looked at the effect of IFN-treatment on BPV- 

and HPV-positive cells (Chang et al., 2002; Herdman et al., 2006; Turek et al., 

1982).  In all studies, treatment with IFN resulted in loss of viral episomes. 

Importantly, Herdman et al. also reported an increase in HPV integrants 

following IFN-treatment of HPV16-positive cells (Herdman et al., 2006).  

 

Another replication-related protein that is regulated by E6 is minichromosome 

maintenance 7 (MCM7), which has a role in ensuring that DNA only replicates 

once per cell-cycle (reviewed in Chong et al., 1996). It has been suggested that 

E6 degrades MCM7 by interaction with E6AP (Kuhne & Banks, 1998). HPVs 

rely on cellular replication machinery to replicate their DNA and it is likely that 

the activities of MCM7 will have an effect on HPV DNA replication as well. It is 

therefore reasonable to consider that E6-mediated degradation of MCM7 may 

be necessary to allow amplificational/establishment replication to take place. 

The lower levels of E6PDZ protein may impinge on this.    

 

6.4.3. E6 and DNA damage  

A recent report identified an interaction between the tight junction protein Par3 

(partitioning-defective 3) and two of the subunits of the DNA-PK complex 

(involved in double-strand break repair), Ku70 and Ku80, and demonstrated a 

role for Par3 in this pathway (Fang et al., 2007). Par3 is a PDZ protein and has 

been shown to interact with the HPV18 E6 protein, as well as the Rhesus 

papillomavirus type 1 E7 protein, which also has a PDZ-binding motif (Tomaic 

et al., 2009a). Interestingly, Ku80 has been suggested to play a role in the 

persistence of extrachromosomal DNA in cells, as transfected plasmids are 

rapidly lost in cells that lack the Ku80 protein (Liang & Jasin, 1996). Moreover, 

depletion of Ku70 in episomal HPV16-positive cells was shown to promote 

episome loss and generation of integrants (Winder et al., 2007). The interaction 

of E6 with Par3, and Par3’s interaction with Ku70 and Ku80 may therefore play 
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a role in Ku70/80-mediated stabilisation of extrachromosomal DNA, thereby 

also supporting the persistence of viral episomal DNA. 

 
 

6.4.4. E6 and the immune response 

In addition to down-regulating IFN-inducible genes (see section 6.4.2.), E6 also 

interferes with the immune system by down-regulating the expression of E-

cadherin (Matthews et al., 2003). Potential consequences of this would be 

reduced recognition of HPV-positive cells by the immune system, lack of 

clearance, and consequent persistence of HPV DNA in cells. Although this 

would be relevant in the persistence of HPV DNA in infected tissues, where an 

immune system is present, it cannot explain the loss of episomes in cultured 

cells in the absence of an immune system, as have been used in this study. 

 

6.4.5. E6* splice variants 

As mentioned earlier, high-risk E6 ORFs contain an intron, the excision of which 

has been shown to generate several alternatively spliced E6 transcripts (Zheng 

& Baker, 2006) collectively referred to as E6*. In addition to the alternatively 

spliced transcripts, an E6* protein product has also been identified, the function 

of which remains unclear. In the study presented here, the role of individual E6 

protein species (full-length or spliced) in persistence was not assessed. It would 

thus be important to determine whether the full-length and splice variants of the 

E6 protein have different roles in persistence, as this could potentially identify a 

role for E6* in the viral life-cycle. Such studies would however involve the 

mutation of the splice donor and acceptor sites within the E6 ORF, which could 

interfere with the splicing of other transcripts and therefore the expression of 

other viral proteins. In fact, one study did try to investigate the role of the E6 

intron in the persistence of HPV31 genomes (Thomas et al., 1999). The authors 

reported that HPV31 splice-donor or splice-acceptor mutant genomes were 

replication-defective, and demonstrated that this was due to disruption of the 

expression of E1 and E2 replication proteins.  
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6.5. E6 cannot be expressed prior to entry of HPV D NA into cells 

One of the more unexpected results obtained from this study is that the E6 

protein, although necessary for persistence, is detrimental to it if expressed 

prior to the entry of HPV DNA into cells, or at abnormally high levels. The 

experiments using cell lines that constitutively express E6 (LXSN-E6WT cells) 

were carried out in order to establish if a cis- or trans-acting factor may 

contribute to the inability of the 16E6p53m and 16E6PDZ mutant genomes to 

persist. However, the results from the experiments show that not even the wild-

type genomes can persist in LXSN-E6WT cells, and suggest an inhibitory role 

for E6 in persistence when it is expressed at this early stage.  

 

The reason for this inhibitory effect is unknown. p53 has been shown to inhibit 

amplificational/establishment replication (Ilves et al., 2003; Lepik et al., 1998). 

We could thus speculate that the levels of p53 need to be kept above a certain 

threshold, so as to prevent uncontrolled replication. This control on replication 

would be beneficial to the virus, as it would ensure that the virus does not harm 

the cell, causing cell death and ending the viral life-cycle. The involvement of 

p53 in the inhibition of viral DNA persistence is supported by the observation 

that 16WT genomes cannot persist in NIKS-shp53 cells either. Importantly, 

these results could have significant implications when considering whether HPV 

virions can infect cells that already harbour HPV DNA (“super-infection”).  

 

Moreover, if very low levels of p53 are detrimental to episomal persistence, this 

may also be true in high-grade lesions. As the lesions become more severe, the 

levels of p53 decrease (Kurvinen et al., 1996). This could lead to an 

environment that is not conducive to episomal persistence, and could promote 

integration of the viral DNA into cellular chromosomes, as is often seen in 

cancers.  

 

6.6. E6 and PDZ proteins: Degradation or stabilisat ion? 

An interesting question that arises from my results is how PDZ proteins, which 

are degraded by wild-type E6 protein (Gardiol et al., 1999; Glaunsinger et al., 

2000; Nakagawa & Huibregtse, 2000; Thomas et al., 2002), are also able to 

stabilise it. As discussed in Chapter 5, this apparent paradox is not a novel 
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concept, as a similar relationship has already been shown for E6 and E6AP 

(Kao et al., 2000; Tomaic et al., 2009b). Although, the mechanism of how this 

degradation and stabilisation is regulated remains unknown, the results imply 

that the relationship of E6 and its binding partners is complex.  

 

One aspect of this question that should be addressed is how does the PDZ-

binding motif of E6 confer stability on the E6 protein? As mentioned in Chapter 

5, the stabilisation of PDZ-binding proteins via interaction with PDZ proteins has 

been shown before, with MAGI-2 stabilising PTEN (Valiente et al., 2005; Wu et 

al., 2000b) and the Drosophila PDZ protein InaD stabilising some of its binding 

partners (Tsunoda et al., 1997). This suggests that a common mechanism may 

exist.  

 

As the mechanism is not known we are free to speculate as to how this is 

brought about. PDZ proteins are generally large proteins (hScrib is >200 kDa) 

that are often found as part of even larger, multi-protein complexes (Thomas et 

al., 2008). The E6 protein on the other hand is small (~15 kDa). It is therefore 

possible that by binding to PDZ proteins, E6 finds itself stabilised as part of a 

large structure. Moreover, the complexes that the PDZ proteins are often found 

in form the adherens or tight junctions (Thomas et al., 2008) at the cell 

membrane. Re-localisation of E6 to these sites, upon binding to PDZ proteins, 

may make it less accessible to the proteasome. Binding to PDZ proteins could 

also change the structure of the E6 protein, making it more stable. In addition to 

interacting with cellular proteins, E6 has been shown to form stable oligomers 

(Garcia-Alai et al., 2007). It may be that oligomerisation is somehow mediated 

by binding to PDZ proteins.  

 

In its discussion, the Tomaic et al. report suggested that the binding of E6AP to 

E6 may conceal the ubiquitination sites of E6 (Tomaic et al., 2009b), thereby 

making E6 refractive to proteasomal degradation. This could also be true for the 

interaction of PDZ proteins with E6. Other possibilities include mediating the 

binding of E6 to the deubiquitylating enzyme USP15, which was recently shown 

to augment the levels of E6 protein (Vos et al., 2009), or preventing the binding 

of E6 to the as-yet-unknown ubiquitin ligase that regulates its levels. 
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What determines whether PDZ proteins are degraded by E6 or whether they 

stabilise E6 remains unclear. We hypothesise that many factors can affect the 

outcome of the interaction of E6 with PDZ proteins and these include the levels 

and localisation of the proteins in the cells. Interestingly, the degradation of PDZ 

proteins by E6 has so far only been shown in cancer cell lines (Kranjec & 

Banks, 2010; Massimi et al., 2004) or using over-expression systems (Gardiol 

et al., 1999; Nakagawa & Huibregtse, 2000 and Chapter 3). In these cases, the 

levels of E6 protein are higher than those found during productive infections. In 

fact, no difference was observed in the levels of PDZ proteins between cells 

harbouring HPV31 episomes and control cells (Lee & Laimins, 2004). Moreover, 

in my experiments I did not observe a difference in the levels of hScrib in cells 

that had been transfected with 16WT genomes or control plasmid (Chapter 5). It 

is therefore possible that during a productive infection, when the levels of E6 

are not high, the interaction of E6 with PDZ proteins leads to stabilisation of the 

E6 protein. This dynamic may change during neoplasia, when the levels of E6 

increase. It is important to note however, that stabilisation of E6 by hScrib was 

also observed in HeLa cells, (Nicolaides et al., 2011), suggesting that the two 

processes may not be mutually exclusive.  

 

Furthermore, it has been shown that PDZ proteins exist in different cellular 

pools (Garcia-Mata et al., 2007; Massimi et al., 2004; McLaughlin et al., 2002) 

and the same appears to be true for E6, as the protein has been reported to be 

nuclear, cytoplasmic and membrane-associated (Grossman et al., 1989; Tosi et 

al., 1993). Interestingly, the cellular localisation of E6 has been shown to affect 

its stability (Grossman et al., 1989). Moreover, the targeting of PDZ proteins by 

E6 is dependent on the cellular localisation of the PDZ proteins, as well as on 

their phosphorylation state (Massimi et al., 2004; Massimi et al., 2006; Narayan 

et al., 2009a). Therefore, the outcome of the interaction between E6 and PDZ 

proteins may depend on the different cellular pools of the proteins that are 

interacting. This hypothesis is supported by the observations that the pool of E6 

that is stabilised by PDZ proteins is not the same as the one involved in p53-

degradation (Chapter 5). Whether the PDZ-bound E6 protein is still able to 

interact with its other binding partners, and perform its known activities, remains 

of interest. 
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6.7. Future experiments 

 

6.7.1. To determine whether p53-degradation is inde ed necessary for 

persistence 

It remains important to conclusively determine whether p53-degradation is 

indeed necessary for persistence. My initial plan of using NIKS-shp53 cells to 

answer this question proved to be unsuitable. Therefore alternative means 

would need to be employed in order to address this. One option would be to use 

chemicals to inhibit p53 in NIKS cells (such as the p53-inhibitor Pifithrin-α 

(Komarov et al., 1999)) and to establish whether 16E6p53m genomes are able 

to persist in treated cells. The inhibitor will need to be applied to the cells after 

transfection with HPV DNA, as my results so far suggest that low levels of p53 

at the time of HPV entry into cells are detrimental for persistence. Before using 

this chemical for such an assay, preliminary experiments to determine whether 

the drug confers inhibitory effects on the persistence of the wild-type genomes 

will be required.  

 

Alternatively we could co-transfect the 16E6p53m genomes with a plasmid that 

expresses a dominant negative form of p53. A similar experiment was 

discussed in a previous study (Thomas et al., 1999). The authors mentioned 

that they co-transfected an HPV31 E6null genome with a plasmid that 

expresses a dominant negative form of p53, to determine whether degradation 

of p53 is sufficient for persistence (Thomas et al., 1999). The E6null genomes 

were unable to persist in this experiment. It is now clear from the work 

presented here (Chapter 3) and that of others (Lee & Laimins, 2004; Lee et al., 

2007), that p53-degradation is not sufficient for persistence. Therefore, the 

experiment proposed here, using 16E6p53m mutant genomes instead of 

16E6null genomes, would be a refined version of the experiment in the Thomas 

et al. study (Thomas et al., 1999), in trying to conclusively determine whether 

p53-degradation is in fact necessary for persistence.  

 

To further elucidate the requirement for E6 in persistence, we could co-transfect 

the two mutant genomes, 16E6p53m and 16E6PDZ, to determine whether they 
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can complement each other. This experiment would determine whether the two 

mutations disrupt a common function of E6 that is necessary for persistence. 

 

6.7.2. What other activities of E6 are necessary fo r persistence? 

The finding that the E6PDZ protein is less stable has opened doors for the 

exploration of other activities of E6 that may be necessary for persistence, and 

which may be compromised by the lower steady-state levels of the E6PDZ 

protein. Several possible activities of E6 were discussed in section 6.4. and 

experiments to address some of these are discussed here. 

 

The ability of E6 to target E6TP1 for degradation has already been shown to be 

necessary for persistence (Lee et al., 2007). It would thus be important to 

determine whether the levels of E6TP1 are different in cells that harbour 16WT 

or 16E6PDZ genomes (using FACS-sorted cells from experiments similar to the 

ones described in Chapter 5). Alternatively, we could assess whether the 

16E6PDZ mutant genomes can persist in cells that have low levels of E6TP1 

(generated using shRNA against E6TP1).  

 

The localisation of E6 to the nucleus, has also been implicated in persistence 

(Lee et al., 2007), and it would therefore be important to determine whether this 

localisation is compromised by the deletion of the PDZ-binding motif. This could 

be addressed by immunocytochemistry, or cell-fractionation followed by western 

blotting, in order to determine whether the localisation of E6PDZ protein is 

different to that of E6WT protein. Aberrant localisation of the E6PDZ protein 

would more likely be due to the deletion of the PDZ-binding motif, rather than to 

the lower steady-state levels of the protein itself. Therefore these experiments 

could be carried out in cells that stably express the wild-type and mutant E6 

proteins (for example the LXSN-E6WT and LXSN-E6PDZ cells), rather than in 

FACS-sorted cells, as the former are easier to obtain. As both the degradation 

of E6TP1 and the nuclear localisation of E6 have been attributed roles in 

persistence (Lee et al., 2007), disruption of either process due to the deletion of 

the PDZ-binding motif would suggest the pathway by which this mutation 

disrupts persistence.  
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The abovementioned activities or properties of E6 have already been linked to 

persistence (Lee et al., 2007), and are therefore important to address. However, 

as discussed earlier, other activities may potentially have a role in persistence 

One such activity that may be significant is interference with the IFN-signalling 

pathway (Nees et al., 2001), as IFN-signalling has been shown to down-

regulate HPV replication (Terenzi et al., 2008) Therefore, looking at the 

expression levels of different IFN-inducible genes, such as Stat-1 or p56, in the 

16E6WT- and 16E6PDZ-positive FACS-sorted cells, could help us identify any 

potential differences that may suggest an interferon-mediated inhibition of viral 

DNA replication.  

 

Moreover, assessing the levels of MCM7 in the FACS-sorted cells could also 

give an indication of whether the degradation of this protein is compromised by 

the lower levels of E6PDZ protein, and suggest a potential pathway for 

persistence. 

 

I have also discussed a potential role for E6 in the segregation of viral 

episomes, although the segregation pathway of HPV16 episomes is not well 

understood. This could be addressed using fluorescence in situ hybridisation to 

look at the segregation of viral episomes in cells that have been transfected with 

16WT or 16E6PDZ genomes. This would allow the detection of differences in 

the localisation of the viral DNA during cell division, and consequently 

potentially identify a role for E6 in viral genome segregation. 

 

6.7.3. Can HPV infections be established in cells t hat already harbour HPV 

episomes? 

My results have also suggested a role for E6 in inhibiting “super-infection” which 

could have potential implications when considering treatments of HPV-induced 

lesions. It would be interesting to investigate whether HPV-positive cells are 

indeed refractive to the establishment of a new infection by a different HPV 

type. To do this we could transfect episomal HPV-positive cell lines with 

genomes of different HPV types and assess the ability of the newly-introduced 

genomes to persist. These experiments would determine whether certain HPV 

types would not be able to persist together in the same cells. 
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6.7.4. Is degradation of PDZ proteins also necessar y for episomal 

persistence? 

Our results suggest that the reason why the 16E6PDZ mutant genomes cannot 

persist may be due to the lower stability of the E6PDZ protein. However, they 

do not preclude a role for the degradation of PDZ proteins in persistence. PDZ 

proteins are signalling proteins involved in the control of cell polarity and cell 

proliferation (Thomas et al., 2008) and may have a role in establishing and 

maintaining a cellular environment that is conducive to the persistence of HPV 

episomes.  

 

PDZ proteins are a large group of proteins and it is not currently know which of 

these may be involved in HPV persistence. To address this, we could 

systematically knock-down individual PDZ proteins, or combinations of proteins, 

that have been identified as targets of E6. We could assess the persistence of 

the 16E6PDZ genomes in stable NIKS cell lines in which these proteins have 

been knocked-down, to identify which, if any, are inhibitory to persistence.  

 

Similarly, we could individually knock-down PDZ proteins in HPV-positive cells, 

to identify which ones are able to stabilise E6 (in addition to hScrib, hDlg and 

MAGI-1, which were identified in this study). In this way, we could also look for 

any variations in the stabilisation of E6 proteins from different HPV types, 

thereby contributing to the current understanding of the different affinities of E6 

proteins for PDZ proteins.      

 

6.7.5. Is there a balance between the stabilisation  of E6 by PDZ proteins 

and the E6-mediated degradation of PDZ proteins 

We hypothesised earlier that the levels and localisation of E6 and PDZ proteins 

in the cell may determine whether PDZ proteins stabilise E6 or are targeted by it 

for degradation. For example, at low levels of E6 (such as in productive 

infections), E6 may be stabilised by PDZ proteins, whereas as at high-levels 

(such as during neoplasia) PDZ proteins may be degraded by E6. Investigation 

of this is important, as it could contribute to the current understanding of the 

molecular events that promote the development of neoplasia. 
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In the laboratory we have NIKS-based cell lines that stably harbour HPV16 

episomes. These could be used in combination with the control NIKS cells in 

order to study the effect of episomally-expressed E6 on PDZ proteins and vice 

versa. In addition, we have an integrated HPV16-positive cell line that was 

made by growing one of the episomal HPV16-positive cell lines without feeder 

cells for multiple passages (made by Dr. Deborah Jackson). This line could 

provide an important tool in this study, as it is isogenic to the NIKS cells and the 

episomal HPV16-positive cell line. As the levels of E6 in the integrated cell line 

are expected to be much higher than those in the episomal cell line, the two 

could be used to compare the effects of low- versus high-levels of E6 on PDZ 

proteins and vice-versa.  

 

Furthermore, to determine whether only some cellular pools of E6 are stabilised 

by PDZ proteins, we could carry out cell fractionation experiments, and assess 

the levels of E6 in the different fractions. Alternatively, it would be interesting to 

use immunofluorescence to visualise the localisation of E6 and PDZ proteins, 

and to determine whether these change when the two proteins are expressed 

together or individually.  

 

6.8. Final remarks  

This study has shed light on the regulation of episomal persistence by the viral 

protein E6. Importantly, I have not only looked at regions of E6 that are 

necessary for the episomal persistence of HPV DNA, but also highlighted that 

regulation of timing and/or amount of E6 expression is critical for persistence. 

 

Most of the current knowledge of the E6 protein has been derived from studies 

of cellular cancer lines, or other systems in which the viral life-cycle is not 

supported. Results from such studies are useful for identifying the oncogenic 

activities of E6. It is however important to recognise that the functions of the E6 

protein are unlikely to have evolved to promote its oncogenicity, as this would 

imply that E6 is fundamentally detrimental to the virus. Rather, E6 has essential 

roles in the viral life-cycle, one of which being episomal persistence. The 

oncogenic effects of E6 are therefore likely to be unfortunate consequences of 

its essential life-cycle functions. 
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Interestingly, low-risk HPVs, whose E6 proteins cannot degrade p53 (Foster et 

al., 1994; Scheffner et al., 1990) and do not have a PDZ-binding motif (Kiyono 

et al., 1997; Lee et al., 1997; Nakagawa & Huibregtse, 2000), do not persist 

very well in cell culture (Oh et al., 2004, and observations of others in the 

laboratory). This suggests that the activities of high-risk E6 proteins may have 

evolved to enable the persistence of viral genomes under certain conditions, 

such as in proliferating basal cells, often seen in high-risk HPV-induced lesions 

(Middleton et al., 2003).   

 

Insights gained from my study also have implications for future studies using 

mutants of the E6 ORF, as I have shown that mutant proteins may have lower 

stability than the wild-type protein. Therefore, interesting phenotypes which may 

be wrongly attributed to the mutated region of E6 may in fact be due to the 

lower steady-state levels of the protein itself. Detailed protein analysis of E6 has 

so far been hindered by the low-levels of the protein and the lack of sensitive 

detection methods. As shown in this study, current methods allow a more 

thorough analyses and this should be taken into consideration in future studies.  

 

Lastly, it would be tempting to propose the inhibition of E6 activities as a 

therapeutic means to rid cells of their HPV episomes. However, care must be 

taken when such methods are put forward. As seen by my results, although 

inhibiting the activities of E6, or causing mutations in the E6 ORF, can indeed 

have the desired effect of eliminating viral episomes, in some cases this could 

result in the integration of viral genomes into the cellular chromosomes. Such 

an event can be even more detrimental to the cell and to the organism as a 

whole.  
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