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Abstract

Water pollution is a global problem that is more serious in developing countries. This work was

motivated by the need to understand water pollution and quality in Nigeria and specifically in the

city of Ibadan. Initially, data were obtained consisting of multivariate monthly water chemistry

measurements between 2003 and 2007 from two reservoirs in the city, and admissions to three

nearby hospitals for several water-borne diseases between 1997 and 2008. Also used are monthly

rainfall data over a fifteen-year period from a nearby weather station. An initial analysis revealed

that the quality of the water chemistry data was poor. In particular, many of the monthly time

series contained abrupt changes and breaks. This thesis therefore focuses on the detection of

change-points with particular application to hydrological time series. Additional data-sets with

a simpler structure, United Kingdom Blackwater rainfall proportion and Haemolytic Uraemic

Syndrome (HUS) disease data are used to estimate and explain positions of change-points. An

extensive literature review is given including a theoretical demonstration showing why some

standard statistical theories fail some regularity conditions for this problem. A wide variety of

techniques to detect change-points are considered, with illustrations on different hydrological

data-sets using profile likelihood and Markov Chain Monte-Carlo (MCMC) to estimate change-

points. A conclusion is that although the sample size may hinder the accurate change-point

detection in some series, state-space models provide a promising framework for the analysis of

complex series in which multiple change-points may be present. This will help in detecting the

potential presence of changes indicating data quality problems and signifying the direction of

solutions towards future work.

Keywords : Water pollution, Change-points, Regularity, Markov Chain Monte Carlo, Profile

likelihood, State-space model.
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Chapter 1

Introduction

This research is motivated by an analysis of water quality data from Ibadan, Nigeria with

suspicion of abrupt breaks in their behaviour. Water pollution is a global problem that is

very serious worldwide with devastating consequences in developing countries especially due to

its health-related effects. Adequate access to safe drinking water and sanitation is important

worldwide and this necessity is part of the Millennium Development Goals (MDGs) of the

United Nations (UN). It is listed in Target 7 of the United Nations’ report, UN (2010). Efforts

at reducing the proportion of people without access to safe drinking water and basic sanitation

has brought some improvements but unfortunately the rural-urban gap access to safe drinking

water is still wide in some developing countries. The improvements to halving the people without

access to safe drinking water is still too low to reach this objective by the year 2015 (UN, 2008,

2010).

1.1 Background of the Research

The main background of the research can be linked to the fact that water pollution is a major

problem in Nigeria and that there seem to be no clear incentives for good adoption of pollution

abatement regulations and little disincentives for polluting the environment (Adelegan, 2004).

Ibadan is the third largest city in Nigeria with a population of about 3 million people (NPC,

2006). Eleyele and Asejire reservoirs are the main sources of drinking water in Ibadan while 60%

of households in Ibadan municipality are linked to piped water supply from reservoirs and other

1



CHAPTER 1. INTRODUCTION 2

sources. Decomposed solid waste from open dump sites run through the reservoirs (Omoleke,

2004). There exist high levels of Total Coliform (E.coli) in lakes. Water-borne diseases such as

dysentery, are leading causes of morbidity (Adelegan, 2004). It is known that water supply and

sanitation monitoring are vulnerable to climate change. In particular, increased precipitation

intensity and high temperatures contribute to water pollution (Kundzerwicz, 2007). However,

inadequate and poor water quality data with very weak collaboration (leading to duplication

of efforts and waste of resources) among relevant agencies such as, the Standards Organisation

of Nigeria (SON) and the World Health Organisation (WHO) are other problems of concern.

There is therefore the need to have appropriate scientific regulations for monitoring the effects

of water pollution. It includes the need to build statistical models for evaluating water pollution

and the need to determine water quality and its pollution levels in Nigeria. Moreover we need

to determine pollutants with the strongest and weakest effects.

1.2 Datasets

In this study, we investigate the quality of water supplied for human consumption in Ibadan,

Nigeria. Data-sets to be discussed consist of multivariate monthly water chemistry data from

two reservoirs, Asejire and Eleyele, in Ibadan Nigeria over a 5-year period (obtained from the

Water Corporation of Oyo State Nigeria). We also have data for Eleyele reservoir from the

Oyo State Ministry of Environment and Water Resources Ibadan for about a 5-year period (50

months between May 2003 and June 2007).

In subsequent exploratory analysis on the water chemistry data, Tur is used to stand for

Turbidity measured in Nephelometric Turbidity Units (NTU), Col for Colour measured in Hazen

Units (HU), PH for pH measured in Logarithmic Units (LU), DO for Dissolved Oxygen measured

in milligram per litre(mg/l), Alk stands for Alkalinity in mg/l, TH for Total Hardness in mg/l,

CaH for Calcium Hardness in mg/l, Cl for Chloride in mg/l, Fe for Iron in mg/l. Also used here

is Si for Silica measured in mg/l, Sol for Total Solid in mg/l, DS for Total Dissolved Solids in

mg/l, SS for Total Suspended Solids in mg/l, NITRT for Nitrate measured in parts-per-million

(ppm), COD for Chemical Oxygen Demand in mg/l, and BOD for Biochemical Oxygen Demand

measured in mg/l.

For clarity purposes, Table 1.1 lists the variables together with their units of measurement
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and corresponding abbreviations. Table 1.2 tabulates the maximum concentration levels for

some selected variables as listed in SON (2007) and World Health Organisation (2008) and in

using the listed standards, Table 1.3 shows some indication of pollution in Eleyele reservoir.

The values on Table 1.3 refer to months and it can be seen that there exists some indication of

pollution since Turbidity, Colour and Iron show that some of the sixty monthly samples contain

substances that go above standards and can therefore render the water polluted or contaminated.

Variables Units of Measurements

Turbidity (Tur) Nephelometric Turbidity Units (NTU)

Colour (Col) Hazen Units (HU)

PH (pH) Logarithmic Units (LU)

Dissolved Oxygen (DO) milligram per litre (mg/l)

Alkalinity (Alk) milligram per litre (mg/l)

Total Hardness (TH) milligram per litre (mg/l)

Calcium Hardness (CaH) milligram per litre (mg/l)

Chloride (Cl) milligram per litre (mg/l)

Iron (Fe) milligram per litre (mg/l)

Silica (Si) milligram per litre (mg/l)

Total Solids (Sol) milligram per litre (mg/l)

Dissolved Solids (DS) milligram per litre (mg/l)

Total Suspended Solids (SS) milligram per litre (mg/l)

Chemical Oxygen Demand (COD) milligram per litre (mg/l)

Biochemical Oxygen Demand (BOD) milligram per litre (mg/l)

Nitrate (NITRT) parts per million (ppm)

Table 1.1: Variables and corresponding units of measurement.

The graphs in Figure 1.1 to Figure 1.4 display the data. Figure 1.1 shows data from Eleyele

Reservoir emanating from the Ministry of Environment and Water Resources (MEWR) between

May 2003 and June 2007. Figure 1.1 show some unexpected and irregular behaviours for some

variables. In particular, the BOD and COD series show some seasonality behaviour over the

same period and the Nitrates series exhibit a significant change towards the 25th month. Figure
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Attribute SON WHO

Colour 15HU 15HU

Turbidity 5NTU 5NTU

Chloride 250mg/l 250mg/l

Total Hardness 150mg/l 200mg/l

Iron 0.3mg/l 0.3mg/l

pH (6.5-8.5)LU (6.5-8.0)LU

Total Dissolved Solids 500mg/l 600mg/l

Table 1.2: Maximum chemical concentrations based on SON (2007) and WHO (2008) reports.

Variables Safe Polluted Contaminated

Turbidity 18 31 11

Colour 57 2 1

Chloride 60 0 0

Total Hardness 60 0 0

Iron 0 0 60

Total Dissolved Solids 60 0 0

Table 1.3: Chemical concentrations from Eleyele: The values refer to month(s) out of a total of

sixty months considered where the determinand levels fall within safe, polluted or contaminated.

Turbidity and Iron show indications of pollution based on SON and WHO reports.

1.2 also shows patterns for variables from Asejire but noticeably repeated colour concentrations

of 5HU. In Figure 1.3 we see irregular patterns for variables from Eleyele and occasional extreme

values of Dissolved Oxygen. Although there are extreme values evident in other variables, Colour

and DO are very important indicators of pollution. Colour indicates the physical appearance

and DO supports aquatic organisms in water. In Figure 1.4 we see a bar-plot comparing the

average chemical profile from the two reservoirs. The average has been obtained from the raw

and final water samples taken from the two reservoirs over the same period of sixty months.

This shows that Eleyele reservoir, which is in the city centre, is more polluted than the Asejire

reservoir. Therefore, Eleyele is prone to receiving more pollution from various major sources
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such as industries in the city. We therefore need to understand these behaviours as as to build

appropriate statistical model to capture and explain the structure of the series.

Moreover, based on SON (2007) and World Health Organisation (2008) we can check for

conformance using some of the pollutants discussed. Due to the available data selecting Turbid-

ity, Colour, Chloride, Total Hardness, Iron and Total Dissolved Solids we can understand the

thresholds set for pollutants. For example, levels of Turbidity below 5 NTU, between 5 NTU and

10 NTU and above 10 NTU might be considered as safe, polluted and contaminated respectively.

Also Colour concentrations below 15 HU, between 15.1HU and 20HU and 20.1HU upwards can

be categorised as safe, polluted and contaminated respectively. Considering each units in each

case, we can do the same for Chloride: below 250mg/l (safe), between 250.1mg/l and 300mg/l

(polluted) and 300.1mg/l upwards (contaminated). In the same direction we might have Total

Hardness below 150mg/l as safe, between 150.1mg/l and 200 mg/l as polluted and 200.1 upwards

as contaminated. Iron concentrations below 0.3mg/l can be safe, between 0.31mg/l and 0.5mg/l

polluted, and 0.51 upwards(contaminated) and Total Dissolved Solids below 600mg/l may be

safe, between 600.1mg/l and 800mg/l may be polluted, and 800.1mg/l upwards contaminated.

Considering these thresholds we tabulate in Table 1.3 concentration levels for Eleyele reservoir.

The values in the table refer to month(s) out of a total of sixty months considered. The table

shows some indication of pollution in Eleyele reservoir while the same comparison for Asejire

reservoirs indicate standard conformance for many variables.

In summary, the exploratory analysis shows some irregular behaviour such as occasional

suspect values of chemical data and the dissimilarity of reservoirs is also confirmed by different

changes in values for the reservoirs. However due to irregular suspect behaviour of the data

such as for BOD, COD and DO discussed, we can identify some priorities for the statistical

analysis of such data. Specifically, methods for identifying change-points in time-series are

required. Multivariate methods that are robust to data errors and outliers should be considered

and methods involving the use of multivariate time-series models for non-normal data may also

be required. The specific objectives of the thesis can therefore be stated as:

(a) Development of statistical methods for assessing and monitoring water quality data

(b) Use of non-standard statistical methods such as the identification of change-points in a

time-series.
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Figure 1.1: Time plots of monthly data from Eleyele Reservoir between 2003 and 2007, obtained

from the Ministry of Environment and Water Resources in Oyo State Ibadan for BOD, COD,

and Nitrate respectively.

For further illustration in subsequent work, two other data sets will be used to illustrate some

of the techniques discussed. These data sets have been chosen because they seem to have

simpler structure than the water quality data described above. The first is obtained from the

United Kingdom Meteorological Office (UKMO) consisting of measurements from one of three

sites (site 283424). Specifically, the data-sets refer to the annual proportions of wet-days from

1908 to 2000 from the Blackwater region of the United Kingdom. The data are displayed in

Figure 1.5. From preliminary analysis noted in Yang et al. (2006), it can be viewed that after

around 1970 the record becomes rather less complete and a substantial change in the resolution

of the recordings can be observed. Yang et al. (2006) noted further that the resolution of values

was 0.3mm and in the early 1970s the resolution was improved to 0.1mm for most sites except

for some tipping bucket gauges for which the highest resolution was 0.2mm. To detect the effect

of change in resolution over a fairly long period, the authors selected the three longest sequences

from the Blackwater data-set in the United Kingdom. Annual amounts and numbers of wet

days are computed using a threshold of 0.3mm to compare with 0.1mm. The authors calculated
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Figure 1.2: Time plots of monthly concentrations between 2003-2007 for Asejire Reservoir: Data

supplied by the Water Corporation of Oyo State.

the annual amounts and numbers of wet days for the recorded series and then re-computed the

quantities applying a threshold of 0.3mm so that the effect of recording to a resolution of 0.3mm

could be known. Plotting values over the resolutions indicate that the improvement in recording

resolution may introduce an illusory increasing trend in rainfall occurrences. Therefore, the

rainfall proportion data could be used to illustrate suspect changes. It should be noted that

Figure 1.5 shows the Black water data-set annual proportion over time with abrupt changes in

the early 1970s.

The second data-set for illustration refers to the number of cases of Haemolytic Uraemic

Syndrone (HUS) in Birmingham and Newcastle-upon-Tyne (1970-1989), United Kingdom. HUS

is a life-threatening diarrhoea-related disease that causes severe illness primarily for infants

and young children. It is linked with levels of E.coli in the environment (Lindsey, 2001). In

Figure 1.6, cumulative counts of Haemolytic Uraemic Syndrome for two centers (Newcastle and

Birmingham) are shown. The Newcastle data indicate an increase in slope around 1984 while

the Birmingham series tends to change around 1980. There are some suspicion of changes that

need to be understood in the data-sets and the times of changes in the HUS data sets could

be interesting. Relevant applications of changes in the HUS data sets can also be found in

Henderson and Mathews (1993) and Lindsey (2001).
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1.3 Structure of Dissertation

In this Chapter, we have described three different data-sets in order to study their character-

istics thereby allowing the data-sets to suggest suitable models that may best explain their

structures. The exploratory data analysis done in this Chapter has therefore motivated the

need to investigate change-point problems. Chapter 2 discusses change-point problems and the

implications of the failure of the standard theory of likelihood asymptotics. Also discussed is

the consistency and distribution of the maximum likelihood estimators. Chapter 3 discusses

off-line methods of change-point problems which have a change in the mean level. Change-point

problems are discussed with examples using normally distributed random variables. Simulation

is also used to show the change-point problem with respect to the likelihood function. Bayes

factors for normal model were also computed with applications to the United Kingdom rainfall

data. Computation of Bayes factors for a Poisson model are also computed with applications to

the HUS data sets. We then discuss more literature change-point methods with applications to

non-parametric methods, regression, and time series. Examples on multiple change-points are

also discussed. In Chapter 4 on-line procedures are discussed with examples. Univariare and

multivariate state-space models are explained using Kalman filtering equations. A multivariate

state-space model is proposed for the water chemistry data. Chapter 5 gives a summary of

findings and recommendations with respect to future work.



Chapter 2

Asymptotic Change-point Problem

As indicated in Section 1.2 of Chapter 1, the water chemistry series contain some abrupt changes

in behaviour. Such abrupt changes or discontinuities are referred to as change-points (Chen and

Gupta, 2000). Possible causes of change-points include changes in locations of observations,

equipment, measurement methods, environmental effects, regulations, standards and so on. We

sometimes need to investigate the potential presence of possible changes in the data set indicating

data quality problems that should be resolved prior to any subsequent analysis. However,

changes do occur even in the best regulated system as noted in Yang et al. (2006); these authors

emphasise that discrepancies in records, occasional disagreement between documentation and

data, abnormal data entry, changed units of measurement and other problems require adequate

attention. Most of the time we are faced with the problems of detecting the number of change-

points or jumps and their locations. The change-point problem is much easier if the point of

change is known and this leads to intervention analysis (Manly, 2001).

The applications of change-point analysis are huge: we find relevant literature in many

fields including: Biology, Chemistry, Environmental Sciences and Climate Change, Engineering,

Econometrics, Medicine, Behavioral Sciences and also in Political Science, Finance, Image Anal-

ysis and Security. This list is not exhaustive in any way. The earliest work in this area seems to

be that by Page (1954, 1955, 1957) who developed cumulative sum (CUSUM) methods. How-

ever since the 1950s many more papers have emerged. Reviews of many techniques are given by

Jandhyala and MacNeil (1986) and Jandhyala et al. (1999). The reason for such a large body of

literature on change-points is that the standard theory breaks down where the time of change is

11
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unknown. Further details with respect to the standard theory on change-points can be found in

Easterling and Peterson (1995), Chen and Gupta (2000), Lu et al. (2005), Hanesiak and Wang

(2005) and Wang (2006). In the general case when a single change-point occurs at a time δ say

we consider a sequence of random variable X1, ..., Xδ with distribution function F1 and another

sequence of random variables Xδ+1, ..., Xn with distribution function F2.

In this thesis, before reviewing the literature on change-point problems, the standard theory

of likelihood asymptotics will be summarised paying attention to the role of assumptions and

figuring out the consequences of their failure (especially Assumptions 1-4 in Section 2.1 and

Section 2.2) in change-point problems. The likelihood theory will be linked to change-point

problems to illustrate why change-point they are difficult.

2.1 Standard Techniques of Likelihood Asymptotics

To study inference in change-points and understand why inferences in change-point problems

are non-standard, some properties of likelihood based inference will be reviewed. The likelihood

function for a scalar parameter θ based on data X = X1, ..., Xn as a collection of independent

observations is defined to be

L(θ|X) = f(X; θ) =
n∏
i=1

f(Xi; θ)

which is simply the joint density of the data, regarded as a function of the parameter (Rice,

2007). For convenience we study the log-likelihood function lnL(θ|X) = l(θ) and write

l(θ) = lnL(θ|X) = ln f(X1; θ) + ln f(X2; θ) + ...+ ln f(Xn; θ) =
n∑
i=1

ln f(Xi; θ).

The maximum likelihood estimate of θ, is θ̂ which is a value of θ that maximises the log-

likelihood function. If the likelihood function is a differentiable function of θ then θ̂ will be the

root of ∂l(θ)
∂θ

= 0. Moreover, for a local maximum we need ∂2l(θ)
∂θ

< 0 at θ̂. The main assumptions

here can be stated simply as

Assumption 1: The log-likelihood is a twice differentiable function.
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Assumption 2: The second derivative ∂2l(θ)
∂θ2 < 0 at θ̂ .

2.2 The Score Function

Under Assumption 1 of Section 2.1, the first derivative is usually called the score function:

U(θ,X) = ∂ lnL(θ)
∂θ

=
∂[
∑n
i=1 ln f(Xi;θ)]

∂θ
and is regarded as a function of θ for fixed X. This function

plays a central role in maximum likelihood theory. We can also define the observed information

as

J(θ) = −∂
2(l(θ)

∂θ2
= − ∂2

∂θ2

n∑
i=1

li(θ) = −
n∑
i=1

∂2 ln f(Xi; θ)

∂θ2

which is a sum of n components. Also the Fisher information is defined as

I(θ) = E

{
−∂

2l(θ)

∂θ2

}
= E{J(θ)}

and

I(θ) = E

{
− ∂2

∂θ2

n∑
i=1

ln f(Xi; θ)

}
which can be written

I(θ) =
n∑
i=1

−E
{
∂2 ln f(Xi; θ)

∂θ2

}
= nif (θ), say

where if (θ) refers to single observation information.

Now we show some characteristics of the score function when data are assumed generated

from f(.; θ0) so that θ0 (assumed true value of θ) is the parameter to be estimated. If we have

an independent and identically distributed sample of size n, the log-likelihood is written as

l(θ) =
n∑
i=1

ln f(Xi|θ). (2.1)

A careful illustration of the behaviour of the score function is given in Figure 2.1. This shows

the sampling variation of score functions for different models (Normal, Poisson, Binomial and

Cauchy) for samples of size n=10 (taken only for illustrative purposes). Figure 2.1(a) shows 20
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score functions, each based on independent and identically distributed samples of size n = 10

from N(4, 1). Each function is exactly linear and the score varies around 0 at the true parameter

θ = θ0 = 4. Figure 2.1(b) shows score functions for 20 independent samples of size 10 from a

Poisson distribution with mean 4 (Near θ = 4, each function looks approximately linear) and

at the true parameter θ = 4, the score function also varies around 0. Figure 2.1(c) shows score

functions of 20 independent samples of size n = 10 from binomial(10,0.4) where θ = 0.4. In

Figure 2.1(d), the score functions for Cauchy(θ = 4) distributions are rather irregular and fail

to behave as the previous models (although the score function also varies around 0 at θ = 4,

but there is the potential for multiple roots to the score equation). This case indicates problems

with a complicated likelihood.
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Figure 2.1: Sampling variation of score functions for different distributions.
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In all examples in Figure 2.1, the score varies around zero at the true parameter value. We

now show this is generally the case. Recall that the score is the first derivative of the log-

likelihood function where we set U(θ,X) = ∂l(θ)
∂θ

, then at the true value of θ which is θ0 we

have

E(U(θ0,X)) =

∫ ∞
−∞

u(θ0, x).f(x|θ0)dx

=

∫
x:f(x|θ0)>0

∂l(θ)

∂θ|θ=θ0
f(x|θ0)dx

=

∫
x:f(x|θ0)>0

1

f(x|θ0)

∂f(x|θ)
∂θ|θ=θ0

f(x|θ0)dx

=
∂

∂θ

∫
f(x|θ)dx =

∂

∂θ
[1] = 0.

A major assumption here is needed to justify interchanging the order of differentiation and

integration and can be stated as the third assumption as in

Assumption 3: The range of integration of the variable does not depend on θ

Therefore using the stated assumptions we have E(U(θ0,X)) = 0 as required. We can also find

the variance of the score function as

V (U(θ0; X)) = E(U2(θ0; X))− (E(U(θ0; X)))2 = E[U2(θ0,X)]

since E(U(θ0,X)) = 0 as seen above. We can rewrite U(θ0,X) as say

U(θ0,X) =
n∑
i=1

{
∂ ln f(xi, θ)

∂θ|θ=θ0

}
=

n∑
i=1

Si(θ0).

This implies that

E(U(θ0,X)) = E

[
n∑
i=1

Si(θ0)

]
= nE(Si(θ0)).

Now

E(Si(θ)) =

∫ ∞
−∞

∂ ln f(x; θ)

∂θ
f(x; θ0)dx (2.2)

and E(Si(θ0)) = 0. Differentiating Equation 2.2 with respect to θ
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we have
∂

∂θ
E(Si(θ)) =

∫ ∞
−∞

∂2 ln f

∂θ2
f(x; θ0)dx.

Therefore

∂

∂θ
E(Si(θ)) =

∫ ∞
−∞

∂

∂θ

[
∂ ln f

∂θ

]
f(x; θ0)dx

=

∫ ∞
−∞

∂

∂θ

[
1

f

∂f

∂θ

]
f(x; θ0)dx

=

∫ ∞
−∞

[
1

f

∂2f

∂θ2
− 1

f 2
(
∂f

∂θ
)2

]
f(x; θ0)dx.

At θ0 therefore, we have

∂

∂θ|θ=θ0
E(Si(θ)) =

∫ ∞
−∞

{
1

f(x; θ0)

∂2f

∂θ2
|θ=θ0

− 1

f 2(x; θ0)

{
∂f

∂θ|θ=θ0

}2
}
f(x; θ0)dx

=

∫ ∞
−∞

∂2f

∂θ2
|θ=θ0

dx−
∫ ∞
−∞

[
1

f(x; θ0)

∂f

∂θ |θ=θ0

]2

f(x; θ0)dx.

The score function is a sum of n independent random variables, the equation above shows

that

V (U(θ0; X)) = E(U2(θ0,X)) = −nE
[
∂2 ln f(x; θ)

∂θ2

]
θ=θ0

since

E(U(θ0,X)) = E

[
n∑
i=1

Si(θ0)

]
= nE(Si(θ0)).

Next we see how U(θ0,X) behaves by studying 1
n
U(θ0,X). As n→∞ we have,

E

[
U(θ0,X)

n

]
=

1

n
E(U(θ0,X)) = 0

and also that (assuming ∂2 ln f/∂θ2 <∞)

V

[
U(θ0,X)

n

]
= − 1

n
E

[
∂2 ln(f(x; θ))

∂θ2

]
θ=θ0

→ 0 (2.3)

as n→∞. Hence, n−1U(θ0,X)→ 0 in probability as n→∞.
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The discussion so far has dealt with the behaviour of the score function at θ0, the true

parameter value. We now consider its behaviour at other values of θ. In general for θ 6= θ0 we

find that there may be need for another assumption.

Assumption 4: For θ 6= θ0 the density f(x, θ) differs from f(x, θ0) on a set of nonzero measure.

Note that E(U(θ,X)) 6= 0 unless ∂f
∂θ

= 0 for all x (which itself contradicts Assumption 4).

Then for an arbitrary value of θ 6= θ0

E(U(θ,X)) =

∫
u(θ, x)f(x|θ0)dx =

∫
1

f(x|θ)
∂f(x, θ)

∂θ
f(x|θ0)dx (2.4)

Now consider V (U(θ; X)) = V
[∑n

i=1
∂ ln f(X|θ)

∂θ

]
= nV

[
∂ ln f(X|θ)

∂θ

]
∝ n if V

[
∂ ln f(X|θ)

∂θ

]
is finite

for all θ. Therefore for a case when θ 6= θ0 we have E(U(θ,X)) = E(∂ ln f(X;θ)
∂θ

) 6= 0 and

V
[
n−1U(θ; X)

]
=

1

n2
nV

[
∂ ln f(X, θ)

∂θ

]
→ 0

and so n−1U(θ,X) → E
[
∂ ln f(X,θ)

∂θ

]
6= 0. Therefore as n → ∞ the function U∗(θ) =

n−1U(θ,X) tends to a deterministic function with a root at θ0.

2.3 Consistency of Maximum Likelihood Estimators

We now consider whether θ̂ is a consistent estimator of θ0. Using a Taylor expansion for U(θ)

around θ0 we have

U(θ) = U(θ0) + (θ − θ0)
∂U

∂θ |θ=θ†

for some θ† ∈ (θ0, θ) and so we can write

θ − θ0 =
U(θ)− U(θ0)

∂U
∂θ |θ†

.

In particular, when θ = θ̂ then we have (noting that U(θ̂) = 0 )

θ̂ − θ0 = −U(θ0)
∂U
∂θ |θ†

, (2.5)
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which can be rewritten as

θ̂ − θ0 = −n
−1U(θ0)

n−1 ∂U
∂θ |θ†

. (2.6)

Note that the numerator of Equation (2.6) approaches 0 as n → ∞. If we assume that the

denominator is guaranteed nonzero, then Equation (2.6) implies that θ̂ − θ0 → 0 and therefore

θ̂ → θ0. This requires the following assumption which can be seen as a strengthened version of

Assumption 2.

Assumption 5: ∂U
∂θ

is non-zero in an interval containing θ0

2.4 Limiting Distribution of θ̂

As well as demonstrating the consistency of the maximum likelihood estimator θ̂, Equation (2.5)

allows us to establish its distribution when n is large. Recall again that

V (U(θ0)) = E(U2(θ0,X)) = −nE
[
∂2 ln f(x; θ)

∂θ2

]
θ=θ0

.

Moreover, U(θ0) is a sum of independent and identically distributed contributions. Hence

from the central limit theorem we have asymptotically,

U(θ0)√
−nE

[
∂2 ln f
∂θ2
|θ0

] ∼ N(0, 1).

Now write Z = U(θ0)√√√√−nE[
∂2 ln f

∂θ2|θ0

] . Then from Equation (2.6) we have

θ̂ − θ0 =

Z

√
−nE

[
∂2 ln f/∂θ2

|θ0

]
∂U/∂θ|θ†

.

Hence we write,

(θ̂ − θ0)

√
−nE

[
∂2 ln f/∂θ2

|θ0

]
= Z
−nE

[
∂2 ln f/∂θ2

|θ0

]
∂U/∂θ|θ†

= Z
−E

[
∂2 ln f/∂θ2

|θ0

]
n−1∂U/∂θ|θ†

. (2.7)
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Now, as n → ∞, n−1∂U/∂θ|θ† → E
[
∂2 ln f/∂θ2

|θ†

]
and θ† → θ0 since it lies between θ̂ and

θ0. Also, if ∂2 ln f/∂θ2 is continuous in θ then as θ† → θ0,

E
[
∂2 ln f/∂θ2

|θ†

]
→ E

[
∂2 ln f/∂θ2

|θ0

]
.

In this case, the final term in Equation (2.7) tends to 1 and we have

(θ̂ − θ0)

√
−nE

[
∂2 ln f

∂θ2
θ0

]
→ Z

which has a standard normal distribution asymptotically.

2.5 Limiting Chi-square Distribution: Likelihood Ratio

Statistic

Now we discuss the basic test statistic used for testing hypothesis using the principles of likeli-

hood functions. Suppose that l(.) is the log-likelihood established from the probability density

f . Then the consistency of θ̂ implies that we can write

l(θ0) = l(θ̂) + (θ0 − θ̂)l′(θ̂) +
(θ0 − θ̂)2

2
l′′(θ†)

where θ† is between θ̂ and θ0.

Then representing the likelihood ratio statistic with Lr = 2(l(θ̂)− l(θ0)) gives

Lr = 2(θ̂ − θ0)l′(θ̂)− (θ̂ − θ0)2l′′(θ†)

and since l′(θ̂) = 0 by definition we can write that

Lr = nif (θ0)(θ̂ − θ0)2 × l′′(θ†)

l′′(θ0)
× l′′(θ0)

−nif (θ0)
= nif (θ0)(θ̂ − θ0)2 × l′′(θ†)

l′′(θ0)
× l′′(θ0)/n

−if (θ0)
(2.8)

Referring to the standard normal derived in Section 2.4, it is clear that the first part of

Equation (2.8) is asymptotically the square of a standard normal random variable and it is

therefore a χ2
1 distribution. In addition, the last two ratios l′′(θ†)

l′′(θ0)
and l′′(θ0)/n

−if (θ0)
tend to 1 using

similar arguments to those applied in the previous subsection. In the same direction, we can

obtain the χ2 distribution for a case when θ is vector (without proof) in that as above we
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write Lr(θ0) = 2[l(θ̂)− l(θ0)] = (θ̂ − θ0)T if (θ0)(θ̂ − θ0). It is therefore noted that Lr(θ0) has an

approximate chi-square distribution on p (say) degree(s) of freedom for repeated sampling of

data from the model. We can therefore write Lr(θ0)
D→ χ2

p. More can be found in Paul et al.

(2002).

2.6 Likelihood Theory for Change-point Problems

In starting to review methodologies used in the analysis of change-point problems in the litera-

ture, it is helpful to consider a simple change-point problem and demonstrate that some of the

standard asymptotic theory do not hold in this problem. Specifically, we show that Assump-

tion 1 and Assumption 4 from the previous sections may fail. We discuss single change-points

under different classifications and methods with respect to two-mean levels.

2.6.1 Simple examples: The two-mean model

David Hinkley’s contribution to change-point analysis is a central research that should be re-

viewed in detail. Hinkley (1970) considered sequences of random variables and discussed the

point at which the probability distribution changes using a normal distribution with changing

mean. The asymptotic distribution of the maximum likelihood estimate discussed in this paper

is particularly relevant to change-points in the study of the likelihood ratio statistic for testing

hypotheses about the change-point. The author indicated the simplest model over a whole range

of data as Xt = θ(t) + εt for t = 1, ...T where θ(t) is a mean function and εt refer to error terms.

Hinkley (1970) computed the asymptotic distribution in the normal case when θ0 and θ1 are

unknown. The asymptotic distribution is found to be the same when the mean levels are known.

The two-mean model to be considered supposes that there exists a mean θ0(t) and mean θ1(t) for

t = 1, ..., δ and t = δ+1, ..., T respectively. He also computed the asymptotic distribution of the

likelihood ratio statistic for testing hypothesis on the change-point δ. The maximum likelihood

estimate of the change-point δ̂ (where θ0 and θ1 are known and δ is unknown) is obtained from

a sample x1, ..., xT by simply maximising the likelihood function of the form

L(δ, θ0, θ1) =
δ∏
i=1

f(xi, θ0)
T∏

i=δ+1

f(xi, θ1)
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which can be written in form of the log-likelihood as

l(δ, θ0, θ1) =
δ∑
i=1

ln f(xi, θ0) +
T∑

i=δ+1

ln f(xi, θ1). (2.9)

Given that the variance of the independent observations is σ̂2, consider the case where the

mean levels θ0 and θ1 are not known. The log-likelihood of the observed sequence (x1, ..., xT ) is

l(δ, θ0, θ1, σ
2|x1, ..., xT ) = −T

2
lnσ2 − 1

2σ2

{
δ∑
i=1

(xi − θ0)2 +
T∑

i=δ+1

(xi − θ1)2

}
(2.10)

If we assume that δ is known, therefore the maximum likelihood estimators of θ0 , θ1 and σ2

respectively are θ̂0 =
∑δ
i=1 xi
δ

, θ̂1 =
∑T
i=δ+1 xi
T−δ and σ̂2 =

∑δ
i=1(xi−θ0)2+

∑T
i=δ+1(xi−θ1)2

T
.

Particularly for convenience Hinkley (1970) substituted σ2 = 1 as known so that Equation

(2.10) becomes

l(δ, θ0, θ1, 1, |x1, ..., xT ) = −1

2

{
δ∑
i=1

(xi − θ0)2 +
T∑

i=δ+1

(xi − θ1)2.

}
(2.11)

Putting the maximum likelihood estimates of θ0 and θ1 back in to the log-likelihood in

Equation (2.11) and re-arranging the emerging sums of squares conditional on t, Equation

(2.11) becomes

l(t) = −1

2

{
T∑
i=1

(xi − x̄T )2 − t(T − t)(x̄t − x̄?t )2/T

}
, (2.12)

for which x̄T =
∑T
i=1 xi
T

, θ̂0 = x̄t , θ̂1 = x̄?t and δ̂ is the value of t that maximises the observed

value z2
t of Z2

t where

Z2
t = t(T − t)(X̄t − X̄?

t )2/T.

Now suppose that σ2 is unknown then we can use Equation (2.10) above to obtain a profile

log-likelihood function for δ by substituting all maximum likelihood estimates of the other pa-

rameters except the change-point into Equation(2.10) to obtain the profile log-likelihood function

of the change-point lp(t) as in

lp(t) = −T
2

ln

[∑T
i=1(xi − x̄T )2

T
− t(T − t)(x̄t − x̄?t )2

T 2

]
− T

2
(2.13)
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For illustration of the change-point problem using the United Kingdom rainfall data sets

described in Section (1.2), plots of the log-likelihood function in Equation (2.12) and that of

profile log-likelihood in Equation (2.13) can be seen below in Figure 2.2. The (a) part of Figure

(2.2) shows the log-likelihood function as used by Hinkley (1970) when σ2 = 1 and the (b) part

shows the profile log-likelihood function for the change-point δ when the variance is unknown.

They both have similar rough shape and are both step functions. The (b) part also shows the

maximum with a vertical line indicating the change-point at point 65 corresponding to the early

1970s as noted in Yang et al. (2006). The failure of Assumption 1 discussed in Section (2.1)

is indicated by the step function. Moreover by setting lp(t) = lp(δ) and plotting the profile

log-likelihood function described in Equation (2.13) for which f(x/θ0) = f(x/θ1) for changing δ

produces a constant function for a reasonable range of the change-point. However checking all

assumptions, the constant function will indicate the failure of Assumption 4 in Section (2.2).
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Figure 2.2: Log-likelihood functions: (a): Represents log-likelihood function in Equation (2.12)

as used by Hinkley with known variance and (b): Represents the profile log-like-lihood function

of δ in Equation (2.13) with unknown variance σ2. The two are step functions showing the

problem of change-points.
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Moreover, in a bid to illustrate the change-in-mean level problem we may use simulation to

study the distribution of the log-likelihood ratio statistic. To obtain a suitable likelihood ratio

statistic under the hypotheses H0 : θ0 = θ1 against H1 : θ0 6= θ1. Using Equation (2.10) and

setting δ = t, we can derive the log-likelihood ratio statistic as

Lh = −T × ln

[∑t
i=1(xi − θ̂0)2 +

∑T
i=t+1(xi − θ̂1)2∑T

i=1(xi − θ̂)2

]
(2.14)

or equivalently

Lh = −T × ln

[∑T
i=1(xi − x̄T )2 − t(T − t)(x̄t − x̄?t )2/T∑T

i=1(xi − x̄T )2

]
Showing the quantile plot of likelihood ratio statistic Lh in Equation (2.14) observed in 10000

simulated normal samples each of size 1000 in comparison with the χ2
1 distribution, Figure 2.3

on the left indicates very high discrepancy between the distribution of the likelihood ratio

statistic Lh and that of a χ2
1 distribution. On its right Figure (2.3) shows conformance with

the distribution of χ2
1 (regular case). This clearly shows that when the position of the change-

point is known the problem is that of a regular case conforming to the χ2
1 distribution. We can

therefore conclude that the likelihood ratio method may not produce a test statistic with known

probability distribution such as the square of a standard normal.

Additionally giving an example on testing hypothesis on the existence of change-point, we

again use the Hinkley (1970) method described earlier on the United Kingdom rainfall data set.

We use bootstrapping to test the hypothesis on the existence of a change-point in the data set.

We can bootstrap the rainfall proportion 10000 times and obtain the likelihood ratio statistic Lh

(to check the existence of a change in the rainfall series). The bootstrapping procedure is done

considering the rainfall data as the population from which we draw samples. The procedure

involves taking 10000 samples each of the same size as the rainfall data with replacement and

computing the likelihood ratio statistic Lh in each iteration. Doing this a very small pvalue of 0

is obtained and this indicates strong evidence against the suggestion of no change-point hence

the change-point needs to be investigated. At the maximum, point 65 is detected as the position

of change-point corresponding to changes in 1973 where the mean level seem to have changed.

This also supports the claim in Yang et al. (2006) as point 65 coincides with 1973. We can

see the position of the change-point in Figure (2.4) where the likelihood ratio and the rainfall

proportion are plotted on two different vertical axes. This is done by plotting the likelihood
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Figure 2.3: 10000 simulations of the Log-likelihood Ratio Statistic Lh with Quantiles of a χ2
1

distribution. Left: Irregularity when the change-point is unknown then distribution of the

Log-likelihood is not regular. Right: The distribution of the Log-likelihood Ratio Statistic Lh

conforms to the chi-square 1 distribution when the position of the change is known.

Lh = W on the right side (red line) and the rainfall proportion on the left side (blue line). Both

are plotted against the Year and the vertical line indicates the position of change in 1973.

However Hinkley (1970) tested hypotheses directly on the change-point (and also investigated

the differences between θ0 and θ1 when both are unknown and when one of them is known)

instead of checking for the existence of the change-point in the first instance. Applying the

Hinkley model to the Turbidity concentrations from Asejire (also Eleyele for comparison) with

an underlying assumption of normality gives the estimates in Table 2.1. The year of change is

estimated to be 2007. It is interesting that the data collection agencies witness a lot of changes

in the year 2007. Government and personnel changes took place in 2007 and also the units of

measurements are not standardised and the agency lack measurement facilities and qualified

personnel. Suspicous values of concentration are also mixed up in records and the sample size

is small for change detection. The Hinkley model suggests that there might be more changes

in the series taking place between year 2006 and year 2007 rather than year 2005 suggested in

Figure 2.5. For both reservoirs, the points of change are close.
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Figure 2.4: Fitted Model of change-point Using Hinkley (1970) method indicate change at point

65 around 1973: Proportion of Rainfall (blue line) and Likelihood Ratio Statistic: W(red-line)

on different axes. The vertical lines shows the position of change in 1973.

Hinkley δ θ0 θ1 σ2 lp(δ) W Year

Asejire 51 2.562 3.36 0.563 -12.77 7.97 2007

Eleyele 48 9.2 4.3 27.16 -129 7.77 2006

Table 2.1: Hinkley Model Application to Turbidity Concentration from Asejire and Eleyele

Reservoirs. The points of change in the reservoirs are close.

Moreover, suppose that θ0 and θ1 are the means before and after δ where lp(δ) is the profile

log-likelihood function of the change-point. The Hinkley normal model can be fitted to the

rainfall data set. Table 2.2 shows the same fit and hence the Hinkley model is appropriate for

the rainfall data as the model detects the position of change at δ = 65.

Model δ θ0 θ1 lp(δ) Year of Change

Hinkley 65 0.47 0.58 223.59 1973

Table 2.2: Estimates of: Change-point(δ), Mean before the change(θ0), Mean after the

change(θ1) and the Profile log likelihood for the change point(lp(δ)) using Hinkley methods.

Important works on the asymptotic theory for inference of the change-point based on sam-

pling theory can be found in Hinkley (1970, 1971, 1972). Also a similar example of change in

parameter (proportion) of a binomial variable has also been investigated by Hinkley and Hinkley
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Figure 2.5: Eleyele shows significantly higher concentrations of Turbidity(NTU) and both reser-

voirs show changes close to the 30th month corresponding to June, 2005.

(1970). In this paper, the maximum likelihood estimate of the change-point was obtained by

maximising the function Rq below as

Rq =

q∑
i=1

{
Xi(ln(

θ0

θ1

)) + (1−Xi) ln(
1− θ0

1− θ1

)

}
where q = 1, ..., n− 1 and

P (Xi = 1) =

 θ0 for i = 1, ..., δ

θ1 for i = δ + 1, ..., n.

The estimate of δ, δm say is the value of q that maximises the sequence Rq. It is noted that

here θ0 and θ1 both refer to proportions before and after δ. Moreover, changes in means in a

sequence of normal random variables are also considered by Severini (2006) where the sequence of

independent normally distributed random variables X1, ..., Xn is considered such that X1, ..., Xδ

have mean µ and variance σ2 and Xδ+1, ..., Xn have mean µ + β and variance σ2 where µ, β, δ

are all unknown parameters for β 6= 0 and δ ∈ {1, 2, ..., n}. Severini (2006) therefore computed

the likelihood ratio test statistic to test the hypotheses H0 : δ = n against H1 : δ < n. This is

basically the same model discussed by Hinkley (1970) apart from the different parameterisation.
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2.7 Summary of Chapter Two

In this Chapter we discussed the regular asymptotic likelihood theory with connections to reg-

ular assumptions. We also discussed the likelihood asymptotics of change-point problems with

emphasis on standard likelihood asymptotics. The score function is used to show the sampling

variation for different models and simple examples of two-mean models are considered. Hypothe-

ses are formulated to test the existence of change-points and simulation is used to study the

distribution of the profile log-likelihood statistic function of the change-point model in Hinkley

(1970) therefore providing links to the failure of Assumption 1 and Assumption 4 estab-

lishing the change-point problem. The main issue established in this Chapter is the failure of

regular assumptions possed by change-point problems justifying why change-point problems are

difficult. In Chapter 3, we will discuss the off-line methods for change-point problems . This

will consider the change-point problem under different models in the literature with little or no

facility for information update.



Chapter 3

Off-line Procedures

In this Chapter, we shall consider off-line methods of change-point detection in time series. The

main feature of these methods is that they require processing of all available observations each

time we need to detect a change-point. They can be applied many times to the same data-

sets to detect multiple change-points. They can be applied to change detection in time series,

regression, non-parametric models and so on.

3.1 Change in Mean levels: Bayes Factor Applications

In the previous section, we explained a simple change-point model involving changes in the mean

level of independent observations. We now present an alternative strategy for the analysis of

such models using Bayes factors which are very useful in comparing hypotheses and statistical

models (Jim, 2008). We give a short description of the method of Bayes factors and thereafter

provide its application in testing for a change-point. Suppose we have two hypothesis H0 and

H1, for i = 0, 1, the prior probabilities for models under each of the hypotheses have posterior

probabilities

Pr(Hi|x) =
Pr(x|Hi)Pr(Hi)

Pr(x|H0)Pr(H0) + Pr(x|H1)Pr(H1)
.

In this case, as against the frequentist approaches, the alternative hypothesis H1 is restricted

to be fully specified in a Bayesian setting. However for many applications such as testing

hypothesis on the existence of change-point, it is valuable to use the odds in favour of H1

28
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(Davison, 2003). The odds in favour of H1 can be written as

Pr(H1|x)

Pr(H0|x)
=
Pr(x|H1)

Pr(x|H0)
× Pr(H1)

Pr(H0)
.

The change in prior to posterior odds for H1 relative to H0 will depend on data through the

Bayes factor

B10 =
Pr(x|H1)

Pr(x|H0)
.

Davison (2003) further noted the simplest case when both H0 and H1 are simple hypotheses.

He indicated that the hypotheses involve the mean levels θ0 and θ1 and computed for i = 0, 1,

P (x|Hi) =
∫
f(x|Hi, θi)π(θi|Hi)dθi where π(θi|HI) is the prior for θi under Hi. This integral is a

combination of the likelihood function and the prior density. However interpreting Bayes factor

B10 can be done in favour of H0 over H1 noting that computing B10 is the same as computing

B−1
01 . Therefore −2 lnB10 provides us with evidence against H1. Analogously with the likelihood

ratio statistics, 2 lnB10 is often used to summarize the evidence for H1 compared to H0. Some

rough interpretations as given by Davison (2003) are shown in Table 3.1. This interpretation is

done in contrast to that of the likelihood ratio statistic having a null χ2 distribution for nested

models depending on the difference in their degrees of freedom.

B10 2 lnB10 Evidence in support of H1

1− 3 0− 2 Hardly worth mentioning

3− 20 2− 6 Positive

20− 150 6− 10 Strong

> 150 > 10 Very strong

Table 3.1: Rough interpretation of Bayes factor B10 in favour of H1 over H0 given by Davison

(2003).

In this Section, we shall compute Bayes factors for the existence of a change-point in the

mean levels of Poisson, Normal and Exponential models. In the context of the two-mean model,

suppose that the hypotheses to be tested for example are H0 : θ1 = θ2 = θ against Hδ of θ

changing after a fixed time δ. If x1, ..., xn are independent realisations of X under Hδ, then

we can derive the Bayes factor for a change-point at time δ as the ratio Pr(x|Hδ)
Pr(x|H0)

. Details on

Bayesian analysis of change-point can be seen in Gelfand et al. (1990) and Rasmussen (2001).
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3.1.1 Normal Model

Assuming we have normal realisations we may consider the computations of Bayes factors for

a Normal change-point model. Under Hδ we may easily consider a situation where we suspect

a fixed change-point δ that the series possess different means and variances. Considering some

data vector x of length T being an independent and identical realisation of normal random

variables we might suspect a change-point δ such that

xi ∼

 N(µ1, σ
2
1) for 1 ≤ i ≤ δ

N(µ2, σ
2
2) for δ < i ≤ T.

Letting Qn(x) =
∫
π(θ)πn(x|θ)dθ, a combination of the prior density π(θ) and the likelihood

function πn(x|θ) denote the predictive posterior density for a sequence x of n independent

observations from a normal distribution with parameters θ = (µ, σ2)′. Then given a time series

x = (x1, ..., xT ) we can compute the Bayes factor for a change-point at δ as

BF = Qδ(x1:δ)QT−δ(xδ+1:T )/QT (x). (3.1)

Equation (3.1) is the product of the components for the two-parts of the series divided by the

Bayes factor component for the full series. It should be noted here that we can only factorise the

numerator of Equation (3.1) this way when both the mean and variance change. We therefore

proceed to find a generalising Bayes factor for Normal change-point model. Finding a general

expression for Qn(x) we write ψ = σ2. For mathematical convenience Gelman et al. (2000) used

the scaled Inverse Chi-square distribution for π(ψ) and following their lead, we take π as scaled

Inv-χ2 as in Inv-χ2(v, σ2
0) and we also take π(µ|ψ) ∼ N(µ0, ψ/k). Therefore we have

π(θ) = π(ψ)π(µ|ψ) =
(v/2)v/2

Γ(v/2)
σv0ψ

−(v/2+1)e−vσ
2
0/2ψ ×

√
k

σ
√

2π
e
−k(µ−µ0)2

2ψ

and then

π(θ) = Aψ−(v/2+1) e
− [vσ2

0+k(µ−µ0)2]

2ψ

σ
.

where A =
(v/2)v/2σv0

√
k

Γ(v/2)
√

2π
. The likelihood function for µ and ψ based on n independent obser-

vations is
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πn(x|θ) = (2πψ)−n/2e−
∑n
i=1(xi−µ)2

2ψ = (2πψ)−n/2e−
1

2ψ
((n−1)s2+n(x̄−µ)2),

where x̄ and s2 are the sample mean and variance respectively. On this basis to compute

the components in Equation (3.1), we can write the integrand π(θ)πn(x|θ) as

π(θ)πn(x|θ) = (2π)−n/2Aψ−(v+n+3)/2 × e−
1

2ψ
[vσ2

0+k(µ−µ0)2+(n−1)s2+n(x̄−µ)2].

This integrand can be rewritten as

(2π)−n/2Aψ−(v+n+3)/2 × e−
1

2ψ
[(n−1)s2+vσ2

0)] × e−
1

2ψ
[k(µ−µ0)2+n(x̄−µ)2].

After some rearrangement and completing the square, the exponent in the final term here can

be written as

−k + n

2ψ
[(µ− η)2 + λ(1− λ)(x̄− µ0)2]

where λ = k/(k + n) and η = λµ0 + (1− λ)x̄. We thus write

Qn(x) = (2π)−n/2A

∫
ψ

ψ(v+3+n)/2e−
1

2ψ
[(n−1)s2+vσ2

0+(k+n)λ(1−λ)(x̄−µ0)2] ×
∫
µ

e[− k+n
2ψ

(µ−η)2]dµdψ.

Clearly, the µ-integrand here is a scaled N(η, ψ/(k + n)) density therefore µ-integrand is

equal to
√

2πψ/(k + n). Thus

Qn(x) = (2π)−(n−1)/2(k + n)−1/2A

∫
ψ

ψ−( v+n
2

+1)e−
1

2ψ
[(n−1)s2+vσ2

0+(k+n)λ(1−λ)(x̄−µ0)2]dψ.

or equivalently

Qn(x) = (2π)−(n−1)/2(k + n)−1/2A

∫
ψ

ψ−( v+n
2

+1)e−Bn(x)(v+n)/2ψdψ

where Bn(x) =
(n−1)s2+vσ2

0+(k+n)λ(1−λ)(x̄−µ0)2

v+n
. This is a scaled density of Inv-χ2(v+n,Bn(x)).

Hence the ψ-integral is

Γ(v+n
2

)

(v+n
2

)(v+n)/2[Bn(x)](v+n)
,

and finally we obtain
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Qn(x) =
(2π)−(n−1)/2(k + n)−1/2AΓ((v + n)/2)

(v+n
2

)(v+n)/2[Bn(x)](v+n)
. (3.2)

Further variations to Equation (3.1) can be investigated for example when the two parts of

the series x1:δ and x(δ+1):T have different means µ1 and µ2 but the same variance σ2. The model

here is such that

xi ∼

 N(µ1, σ
2) for 1 ≤ i ≤ δ

N(µ2, σ
2) for δ < i ≤ T.

In this case, following a similar setting and assuming the same prior distribution for the

variance, the prior distribution for which θ = (µ1, µ2, σ
2)′ then is

π(θ) = π(σ2)π(µ1|σ2)π(µ2|σ2).

We suppose that π(µ1|ψ) ∼ N(µ0, ψ/k) and that π(µ2|ψ) ∼ N(µ∗0, ψ/k). For a similar result

as in Equation (3.2) we can obtain the prior distribution as

π(θ) =
(v/2)v/2

Γ(v/2)
σv0

k

2π
ψ−( v+4

2
)e−

1
2ψ [k[(µ1−µ0)2+(µ2−µ∗0)2]+vσ2

0].

Then by writing A2 =
(v/2)v/2σv0k

Γ(v/2)2π
we can write π(θ) in this case as

π(θ) = A2ψ
−(v+4)/2 × e−

[vσ2
0+k[(µ1−µ0)2+(µ2−µ

∗
0)2]]

2ψ .

The complete likelihood to be combined with this prior is therefore

(2πψ)−n/2e
−
[∑δ

i=1(xi−µ1)2+
∑n
i=δ+1(xi−µ2)2

2ψ

]
.

Using x̄1, x̄2, s2
δ , s

2
a as the sample means and variances before and after the change δ we can

rewrite the likelihood and combine it with the stated prior as in

(2π)−n/2A2ψ
−(v+4+n)/2e−

[vσ2
0+k[(µ1−µ0)2+(µ2−µ

∗
0)2]]

2ψ × e
−[(δ−1)s2δ+δ(x̄1−µ1)2+(n−δ−1)s2a+(n−δ)(x̄2−µ1)2]

2ψ .

Re-arranging carefully and integrating with respect to µ1, µ2 and ψ we have

λ1 = k/(k+ δ), λ2 = k/(k+ (n− δ)) ,η1 = λ1µ0 + (1− λ1)x̄1 and η2 = λ2µ
∗
0 + (1− λ2)x̄2 and

then the final component is
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A2(2π)−(n−2)/2(k + δ)−
1
2 (k + n− δ)−

1
2

∫
ψ

ψ−((v+n)/2+1)e(B(v+n))/2ψdψ

where B =
(δ−1)s2δ+(n−δ−1)s2a+vσ2

0+(k+δ)λ1(1−λ1)(x̄1−µ0)2+(k+n−δ)λ2(1−λ2)(x̄2−µ∗0)2

v+n
. We can therefore

compute the numerator of BF in Equation 3.1 as

(2π)−(n−2)/2(k + δ)−
1
2 (k + n− δ)− 1

2A2Γ(v + n)/2

(v+n
2

)(v+n)/2Bv+n
. (3.3)

These results can be implemented the same way as done with Equation (3.2) given an additional

value of µ∗0.

3.1.2 Normal Model: Application to Rainfall Data

To check how Equation (3.2) and Equation (3.3) work we use the rainfall data set to compute

Bayes factors in each case. In the first case where the series experience a change in mean

along with a change in variance we shall compute 2 lnBF using Equation (3.2) with reference

to Equation (3.1). Also for the second case where we expect change in mean levels but same

variance we simply use the numerator of the Bayes factors BF obtained in Equation (3.3) to

compute 2 lnBF .

An important issue in computing Bayes factors involves the selection of an appropriate

prior distribution for the parameter of interest. It is therefore necessary that we rightly choose

the hyper-parameters of the prior distribution for example to reflect our prior beliefs about

the parameter θ say. The rainfall observations are proportions whose distributions are being

approximated as normal. It may seem reasonable to set the prior mean µ0 as centred on 0.5

and with a variance that is as large as possible subject to the mass being concentrated in (0,1);

and the prior for ψ (variance) to give an expectation of roughly 1/365 (the variance would

be 1/(4 × 365) if the daily rainfall occurrences were independent and identically distributed

Ber(1/2), but in practice the variance will be inflated by seasonality). Since the expectation of

Inv-χ2(v, σ0) is (v × σ0)/(v − 2), take v = 3 (smallest possible) and σ0 = 1/(365× 3). If we are

taking the variance of π(µ|ψ) = ψ/k a priori then we want (say) 3 standard deviations of µ to be

equal to 0.5. Since ψ is around 1/365, we therefore want something like 3×
√

(1/365×k) = 0.5.

Then k = 365 × 0.25/9 = 10. In the first case where both mean and variance change, we
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therefore select µ0 = 0.5, v = 3, σ0 = 1/(v × 365), k = 10. On the other hand we select an

additional value µ∗0 by setting µ0 = 0.5, µ∗0 = 0.5, v = 3, σ0 = 1/(v × 365), k = 10. What is

plotted on the vertical axis in Figure 3.1 is 2 lnBF referred to as Bayes factors. The two cases

as indicated by Equation 3.2 and Equation 3.3 show positive values of Bayes factors in favour

of Hδ (see Table 3.1). There is therefore very strong evidence of change in the year 1973. This

result is very similar to what has been obtained in Figure 2.4 Chapter 2, where scaled likelihood

ratio statistic were plotted.
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UK Rainfall: Bayes factors from Equations 3.2 and 3.3
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Equation 3.2 Equation 3.3

Change at point 65 refers to 1973

1908 1917 1925 1933 1941 1949 1957 1965 1973 1981 1989 1997

Figure 3.1: Strong evidence in favour of Hδ suggests changes in the year 1973 and vertical line

shows the point of change since Bayes factors indicates positive values of 2 lnBF as shown on

Table 3.1.

3.1.3 Poisson Model

In change-point detection, the underlying distribution of the data sets does not have to be

normal. Davison (2003) treated change-in-mean levels with the Birmingham HUS counts data

with an underlying Poisson distribution and computed Bayes factors to investigate the change.

Suppose x1, ..., xn are independent realisations of X, then if under the Hδ, θ1 and θ2 are mean

levels each treated as a variable possessing independent gamma prior densities with means γ/τ
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and variance γ/τ 2 we can write

Pr(x|Hδ) =

∫ ∞
0

δ∏
i=1

θxi1

xi!
e−θ1 × τ γθγ−1

1

Γ(γ)
e−τθ1dθ1

∫ ∞
0

n∏
i=δ+1

θxi2

xi!
e−θ2 × τ γθγ−1

2

Γ(γ)
e−τθ1dθ2

as the conditional probability of x given the alternative hypothesis. Noting that

Pr(x|H0) =

∫ ∞
0

n∏
i=1

θxi

xi!
e−θ × τ γθγ−1

Γ(γ)
e−τθdθ,

then in a compact form we can write

Pr(x|Hδ) =
τ 2γ

Γ(γ)2
∏n

i=1 xi!

Γ(γ + sδ)Γ(γ + sn − sδ)
(τ + δ)γ+Sδ(τ + n− δ)γ+sn−sδ

where as before sδ = x1 + ... + xδ. Accordingly we can then write the Bayes factor Bδ0 for a

change-point in year δ as

Bδ0 =
Γ(γ + sδ)Γ(γ + sn − sδ)τ γ(τ + n)γ+sn

Γ(γ)Γ(γ + sn)(τ + γ)γ+sδ(τ + n− δ)γ+sn−sδ

where δ = 1, ..., n− 1.

3.1.4 Poisson Model: Application to HUS data

For the HUS data-set from Birmingham, we compute 2 lnBδ0 to test the hypothesis of no change-

point using four different priors. Following the lead in Davison (2003) the prior density for θ

is chosen so that it has unit mean and the variances 1, 102, 103, 104 indicating increase in prior

uncertainty. The results obtained in Table 3.2 indicate negative values of 2 lnBδ0 corresponding

to evidence in favour of H0. There exists evidence of change in any year from 1976 to 1986 since

values obtained in this range are positive values that cannot be ignored as shown in Table 3.1.

Figure 3.2 shows 2 lnBδ0 as Bayes factors on the vertical axis using different priors on Table 3.2.

They all have same shape indicating the same time of change occurring between 1976 and 1986.



CHAPTER 3. OFF-LINE PROCEDURES 36

Years 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979

HUS Data 1 5 3 2 2 1 0 0 2 1

2logBδ0, γ = τ = 1 4.9 -0.5 0.6 3.9 7.5 13 24 35 41 51

2logBδ0, γ = τ = 0.01 -1.3 -5.9 -4.5 -1.0 3.0 9.7 20 32 39 51

2logBδ0, γ = τ = 0.001 -5.9 -10.4 -9.0 -5.5 -1.5 5.2 15.5 27.7 34.8 46.3

2logBδ0, γ = τ = 0.0001 -10 -15 -14 -10 -6.1 0.6 11 23 30 42

Years 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

HUS Data 1 7 11 4 7 10 16 16 9 15

2logBδ0, γ = τ = 1 63 55 38 42 40 31 11 -2.9 -5.3 0

2logBδ0, γ = τ = 0.01 64 57 40 47 46 38 18 1.8 1.2 0

2logBδ0, γ = τ = 0.001 59.4 52.4 36.1 42.2 41.3 33.7 13.4 -2.5 -3.1 0

2logBδ0, γ = τ = 0.0001 55 48 31 38 37 29 8.8 -7.1 -7.7 0

Table 3.2: Bayes factors computed to detect change-points in Birmingham HUS data. The

negative values suggest evidence of change between 1976 and 1986.
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Year

B
ay

es
 fa

ct
or

s

1970 1972 1974 1976 1978 1980 1982 1984 1986 1988

γ1 = τ1 γ0.01 = τ0.01 γ0.001 = τ0.001 γ1e−04 = τ1e−04

Figure 3.2: Bayes factors 2 lnBδ0 for different priors. The subscripts on the legend equals the

values for which γ = τ in each case as seen on Table 3.2. There is evidence of change between

1976 and 1986.
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3.1.5 Exponential Model

Suppose now that in using the Bayes factor to test the hypothesis of change against no change

we have x1, ..., xn as realisations of other distributions rather than normal or Poisson we compute

the Bayes factor using the one parameter exponential density f(x) = λe−λx for x > 0 as the

underlying distribution of the realisations x1, ..., xn describing the random variables X1, ..., Xn.

We obtain the Bayes factor assuming independent gamma prior densities for λ1 and λ2 say. If

the parameters of the gamma prior has mean γ/τ and variance γ/τ 2 then we write

Pr(x|Hδ) =

∫ ∞
0

δ∏
i=1

λ1e
−λ1(xi) × τ γλγ−1

1 e−τλ1

Γ(γ)
dλ1

∫ ∞
0

n∏
i=δ+1

λ2e
−λ2(xi) × τ γλγ−1

2 e−τλ2dλ2

Γ(γ)
dλ2.

The λi integral can be written as

fp =
τ γ

Γ(γ)

∫ ∞
0

λδ+γ−1
1 e−λ1(

∑δ
i=1 xi+τ)dλ1.

Using a change of variable and recognising the appropriate gamma function we set k =

λ1(sδ + τ) where sδ =
∑δ

i=1 xi to obtain

fp =
τ γ

Γ(γ)

Γ(δ + γ)

(sδ + τ)δ+γ
.

Then we can write for the full series

Pr(x|Hδ) =
τ γ

Γ(γ)

Γ(δ + γ)

(sδ + τ)δ+γ
× τ γ

Γ(γ)

Γ(n− δ + γ)

(sn − sδ + τ)n−δ+γ
(3.4)

Noting that under the null hypothesis of no change we have Pr(x|H0) = τγ

Γ(γ)
Γ(n+γ)

(sn+τ)n+γ so

that we obtain the Bayes factor for testing a change-point in period δ to be

BδO =
τ γ

Γ(γ)

Γ(γ + δ)Γ(γ + n− δ)(sn + τ)γ+n

Γ(n+ γ)(τ + sδ)δ+γ(sn − sδ + τ)n−δ+γ.
(3.5)

Although the Bayes factor derivation for the exponential distribution could not be appropri-

ate for detecting changes in the available data, it could be applied to several other environmental

mechanisms.
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3.2 Full Conditional Distribution for δ using Gibbs sam-

pling.

In Section 3.1, we considered Bayes factors which involves posterior densities which may end up

becoming a difficult expression such that we may not be able to integrate out some or all of the

variables. We therefore need a way of understanding posterior densities which may not rely on

being able to analytically integrate the posterior density. Wilkinson (2006) stated that given any

complex non-standard multivariate probability distribution, we need ways to understand it so

as to obtain measures such as moments and conditional marginal distributions. A well known

Markov chain monte-carlo (MCMC) method such as the Gibbs sampling provides a possible

solution. The Gibbs sampling procedure provides a way of simulating from multivariate distri-

butions based on the ability to simulate from conditional distributions. It is more appropriate

when sampling from marginal distributions seems difficult or impossible. Moreover, there also

exist cases when it is difficult to simulate from the full conditional distribution. In this case

the Gibbs sampler is combined with another MCMC method called the Metropolis-Hastings

algorithm (Wilkinson, 2006). Praha and Praha (2008) combined both the Gibbs sampler and

the Metropolis-Hastings algorithm to estimate change-points in temperature data using three

models. The first model assumes a normal distribution with the same variance for the series

before and after δ, the second model assumes a two-phase linear model with a jump at δ and

the third assumes a two-phase linear model with a gradual change. The posterior distribution

of the change-point and other parameters are found using the combination of the Gibbs sampler

and the Metropolis Hastings algorithm.

In this section, we will consider the two-mean models using Gibbs sampling to obtain full

conditional distributions for parameters. Assuming that δ is unknown, Davison (2003) suggested

an example using Bayesian analysis for independent observations. It is assumed that we have

consecutive independent normal random variables with variance σ2 and means λ1 for i = 1, ..., δ

and λ2 for i = δ+1, ....n. If we take uniform prior densities for λ1 and λ2 and that σ2 ∼ IG(a, b)

for specified a and b are the parameters of an inverse-gamma distribution such that δ is assumed

uniform on {1, ..., n−1} a priori, then the posterior density of the parameters can be represented

as
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π(λ1, λ2, σ
2, δ|x) ∝ (σ2)−n/2−a−1 × e

−
[∑δ

i=1(xi−λ1)2+
∑n
i=δ+1(xi−λ2)2

2σ2 + b
σ2

]
(3.6)

and then for each parameter we can simply derive the full conditional distribution from Equation

3.6 as follows

π(λ1|x, λ2, σ
2, δ) ∝ e−

1
2σ2

∑δ
i=1(xi−λ1)2

∝ e−
1

2σ2 [δ(λ1−x̄1)2]

where δ = 1, ..., n−1, δx̄1 =
∑δ

i=1 xi, (n−δ)x̄2 =
∑n

i=δ+1 xi. Then we can write λ1|x, λ2, σ
2, δ ∼

N(x̄1, σ
2/δ) and also λ2|x, λ1, σ

2, δ ∼ N(x̄2, σ
2/(n − δ)). From Equation 3.6 we derive the full

conditional distribution of σ2 in the following way. Start by writing

π(σ2|x, λ1, λ2, δ) ∝ (σ2)−n/2−a−1e−b/σ
2

e−1/2σ2
∑δ
i=1(xi−λ1)2

e−1/2σ2
∑n
i=δ+1(xi−λ2)2

?? which can be re-arranged as

π(σ2|x, λ1, λ2, δ) ∝ {
1

σ2
}a+n/2+1e−

1
σ2 [b+ 1

2

∑δ
i=1(xi−λ1)2+ 1

2

∑n
i=δ+1(xi−λ1)2]

indicating that

σ2|x, λ1, λ2, δ ∼ IG(a+ n/2, b+ 1/2[
δ∑
i=1

(xi − λ1)2 +
n∑

i=δ+1

(xi − λ2)2]).

Finally, we have

P (δ = k|λ1, λ2, σ
2,x) ∝ e−

1
2σ2 [

∑δ
i=1(xi−λ1)2+

∑n
i=δ+1(xi−λ2)2].

The Gibbs sampler will then simulate from each of these conditional distributions. The normal

procedure is that a starting value is chosen and the sampler iteratively updates by sampling

from each parameter in turn from its conditional distribution given the current values of the

remaining parameters. An important issue in running the Gibbs sampler is the choice of initial

values for the parameters. Wilkinson (2006) indicated that for a posterior distribution π(θ|x)

say, simulation is possible from π(θ|x) by first initialising the sampler somewhere in the support

of θ and then running the Gibbs sampler. Afterwards the resulting chain could be observed

for convergence after which the ’burn-in’ period is discarded for further analysis. We can then

see after convergence that the simulated values are approximately from π(θ). Wilkinson (2006)
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indicated further that the sampler can be initialised anywhere in the half-plane where the pos-

terior and the prior has support. However convergence may be faster if the chain is not started

in the tails of the distribution. He suggested the possibility of starting the sampler near the

posterior mode or at a point simulated from the prior distribution or better still at the mean of

the prior distribution.

3.3 Gibbs sampling: Application to rainfall data-sets

To illustrate the use of the Gibbs sampler in this context, it is now used to fit the two-mean

normal model to the rainfall data discussed in Section 1.2. The data-sets as earlier indicated

represent proportions of wet days. Assuming a normal distribution, we now apply the full

conditional distribution derived in Section 3.2. As indicated in the last section suppose we

specify that values a = 2 and b = 0.06 then the initial values for λ1, λ2 σ
2 and δ can be obtained

using the means of their prior distributions which gives values 0.5, 0.5, 0.06, 46 for λ1, λ2, σ2 and

δ respectively. Running Gibbs sampler and repeating the process for R iterations where R is

500, 1000, 2000, 5000 and 10000, we find the results in Table 3.3 and in Figure 3.3. Table 3.3

shows for each set of iterations, the means, variances and the 95% credible intervals for δ. Figure

3.3 shows the Gibbs sampler for all parameters and noticeably column 4 shows concentration

on point 65 (In each row the horizontal axis refers to the number of iterations performed while

the vertical axis refers to the sampled values). There is overwhelming evidence that indicates

changes in the early 1970s since all the credible intervals include points 65, 66, 67 and 68. This

result supports the change in the early 1970s noted in Yang et al. (2006). Yang et al. (2006)

indicated that some substantial change in the resolution of the rainfall recordings were observed

by a careful check on the data. They noted that the resolution was 0.3mm before the 1970s and

that in the early 1970s the resolution was improved to 0.1mm. The result therefore suggests that

there are some changes reacting to the change in measurement resolution in the early 1970s.

We investigate convergence by running 11000 iterations on the Gibbs sampler for each pa-

rameter starting at five different initial points spanning the range of the priors shown in Table

3.4. Provided we discard the first 1000 iteration as burn-in in each case for each parameter all

the 10000 iterations are represented with green, blue, red, yellow and black lines respectively in

Figure 3.4 (In each row the horizontal axis refers to the number of iterations performed while
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the vertical axis refers to the sampled values). We can see that there exist some fairly general

overlaps suggesting general convergence for all parameters.

Iterations(R) Mean(δ) Variance(δ) Credible Interval for δ

R=500 65.4960 11.5531 (64,68)

R=1000 65.0870 29.3748 (64,68)

R=2000 65.4915 8.6224 (65,68)

R=5000 65.5516 1.7689 (65,68)

R=10000 65.5589 2.6958 (65,68)

Table 3.3: UK rainfall Data: Gibbs Sampling Iterations for R = 500, 1000, 2000, 5000 and 10000

with means, variances and credible intervals for δ. The initial starting values used for the

parameters are λ1 = 0.5, λ2 = 0.5, σ2 = 0.06 and δ = 46.

Initial Values λ1 λ2 σ2 δ

First:10000 iterations(Green line) 0.5 0.5 0.06 46

Second:10000 iterations(Blue line) 0.05 0.95 0.057 44

Third:10000 iterations(Red line) 0.95 0.05 0.003 2

Fourth:10000 iterations(Yellow line) 0.3 0.7 0.03 23

Fifth:10000 iterations(Black line) 0.7 0.3 0.036 28

Table 3.4: Five different initial values spanning the range of the priors for the Gibbs sampler in

testing parameter convergence for λ1, λ2, σ
2, δ. In each case 10000 iterations are represented by

green, blue, red, yellow, and black lines as shown in Figure 3.4.
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Figure 3.3: UK rainfall data: Matrix plot shows by row respectively Gibbs Sampling for parame-

ters λ1, λ2, σ
2, δ with initial values 0.5, 0.5, 0.06, 46 for λ1, λ2, σ

2 and δ respectively. Rows 1 to

5 each represents respectively iterations R = 500, 1000, 2000, 5000 and 10000. The distribution

of δ in column 4 shows clearly the existence of a change-point clustering around point 65 in all

cases.
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Figure 3.4: Convergence plots for λ1 and λ2 (first row) also σ2 and δ (second row). Starting from

five different initial values as observed in Table 3.3. Each plot is obtained from 10000 iterations

each represented by green, blue, red, yellow and black lines after a burn-in of 1000 iterated

values have been discarded. Each plot shows signs of overlapping suggesting convergence. .

3.4 Change-point in Regression

Another set of models common in the literature estimate change-points in a regression frame-

work. Following Hinkley (1971) the change-point problem was formulated as a two-phase model

written in the form

Yi =

 θ + β1(xi − δ) + εi for i = 1, 2, ..., k

θ + β2(xi − δ) + εi for i = k + 1, ..., n

where Yi is the response variable and ε refer to the random errors in each segment for

x1 < · · · < xk ≤ δ < xk+1 < · · · < xn, θ is the mean value and k is the unknown to be

estimated. In this paper, maximum likelihood estimation was used to estimate δ, θ, β1,β2 and

k. Relevant treatment can be found in Hudson (1966), Hinkley (1969a) and Hinkley (1969b).

There is also a generalisation of Hudson’s method in Williams (1970). Particularly, Hinkley

provides approximate large sample confidence intervals for the parameters and also large sample
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tests for the hypotheses β1 = β2(no change in slope) and β2 = 0. Another method for testing

β1 = β2 is given by Farley and Hinich (1970).

Julious (2001) formulates the two-line model in a slightly different way writing the regression

function f(xi) = E[Y |X = xi] as

f(xi) =

 α1 + β1xi for X0 < xi ≤ δ

α2 + β2xi for δ ≤ xi < X1

In this paper the design matrix X for the estimation of the parameters β = (α1, β1, β2)′ is

written as

X =



1 δ x1 − δ

1 δ x2 − δ
...

...
...

1 δ xt − δ

1 xt+1 0

1 xt+2 0
...

...
...

1 xT 0


where the estimate obtained here is the usual β̂ = (X′X)−1X′Y and δ = α1−α2

β2−β1
indicating

a constant slope until a point along the x-axis, δ. The function f(x) is continuous but not

differentiable at δ. For the interval (X0, X1), each half of the model is treated such that a sum

of squares Q needs to be minimised where

Q = (Y1 −X1β1)′(Y1 −X1β1) + (Y2 −X2β2)′(Y2 −X2β2) (3.7)

Q is minimised subject to another linear constraint of the form

g(β̂′1, β̂
′
2) = (β̂′1, β̂

′
2)q = d (3.8)

and here for two straight lines q = (1, δ,−1,−δ)′ and g(β̂′1, β̂
′
2) = α1 + β̂1δ−α2− β̂2δ = d. Note

that the implication of the constraint is that we have a continuous regression with no break

when d = 0 although in the general case d 6= 0.
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To minimise Equation 3.7 subject to the contraint in Equation 3.8, introduce a Lagrange

multiplier k and minimize Q(β) + kg(β). This leads to the following three equations, the last

of which is clearly the constraint

−X′1Y1 −Y′1X1 + (X′1X1 + X1X
′
1)β1 + kδ (3.9)

−X′2Y2 −Y′2X2 + (X′2X2 + X2X
′
2)β2 + kδ (3.10)

α1 + β̂1δ − α2 − β̂2δ − d = 0. (3.11)

The resulting estimates of β̂1 and β̂2 are obtained from

 β̂1

β̂2

 =

 β̂∗1

β̂∗2

+
d− s
t

(C−1q)

where β∗′1 = (X′1X1)−1X1Y1 and β∗′2 = (X′2X2)−1X2Y2 are the unrestricted or unconstrained

respectively. The matrix C is derived as

C−1 =

 C−1
1 0

0 C−1
2


having C1 = X′1X1 and C2 = X′2X2 , s = (β∗′1 , β

∗′
2 )q and t = q′C−1q. It is noted that s and t

follow the notation of Hudson (1966). Then the least squares estimates in the general case where

(β̂′1, β̂
′
2)q = d as given in Seber and Wild (1989) is used by setting d = 0 for which (β̂′1, β̂

′
2)q = 0.

Estimates for which α1 + β̂1δ = α2 + β̂2δ are therefore derived as

 β̂1

β̂2

 =

 β∗1

β∗2

− s

t
(C−1q)

which allows the estimation of the parameters in the two-line regression model by using the

unconstrained estimates for the slopes. The regression can then be adjusted to ensure that the

two-lines meet at a particular point. Julious (2001) proposes an algorithm to overcome non-

linearity when δ is unknown. It leads to some numerical optimisation which attempts to select

the best model. The protocol suggests that all possible unconstrained models should be fitted
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first. Then if two lines meet such that xt ≤ δ ≤ xt+1 we compute the total restricted residual

sums of squares otherwise we compute the total unrestricted residuals sums of squares. The next

step is to check for the minimum residual sums of squares. This algorithm takes the model with

the smallest restricted residual sums of squares as the best so as to obtain the change-point. An

important contribution in this work is that a non-parametric bootstrapping method was used to

overcome the problem posed by the failure of the F-test to conform to its expected parametric

form as against the problems in Hinkley (1970). In Hinkley (1970), change-point problem led

to highly intractable function leading to the failure of the F distribution.

For the same two-line regression model, Seber and Lee (2003) computed a confidence interval

for δ while Chen (1998) used the Schwartz Information Criterion(SIC)to estimate δ. The method

of Chen (1998) uses the minimum information principle to select a model which minimises the

SIC in the regression framework. The SIC is written as

SIC = −2logL(θ̂) + λlog(n) (3.12)

where L(θ̂) refers to the maximum likelihood function for the model, λ refers to the number

of free parameters of the model and n is the sample size. The decision rule used is to select the

model with no change-point (accept the null hypothesis) if SIC(n) ≤ SIC(δ) for all δ. That is

we select a model with a change at δ̂ if SIC(δ̂) = min{SIC(δ) : 1 < δ < n−1} < SIC(n) where

δ̂ = 2, ..., n − 2. Enhancing the concepts of single change point problem Chen (1998) further

estimated the change point δ in a multivariate sense. He simply repeated and extended the

same method described in a determined number of times. This however may involve estimating

many parameters and also takes more time when the sample size n is large. It is therefore

necessary to develop methods that can simultaneously detect changes. Further details on the

applications of change-point in regression models with some fairly different applications can be

found in Chia-Shang and White (1992), Bang et al. (2006), Bellera et al. (2008a), Bellera et al.

(2008b) and Bellera et al. (2009).
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3.4.1 Changepoint in Regression: Application to Ministry of Envi-

ronment Data

In Figure 1.1 of Chapter 1, we presented Biochemical Oxygen Demand(BOD), Chemical Oxygen

Demand(COD) and Nitrates(NITRT) obtained from the Ministry of Environment and Water

Resources in Ibadan over fifty months. A critical look at Figure 1.1 gives an impression of some

seasonality behaviour for the concentrations.

We now discuss an amendment of the methods in Julious (2001) as applied to data sets from

the Ministry of Environment and Water Resources in Ibadan. To estimate and test hypotheses

on the existence of a change-point we suppose that each concentration is treated as a response

variable Y and months as factors (so that we can investigate possible differences in the levels of

the factor. In this case, for each concentration from the ministry we simply write

Yij = µ+ αi + εij (3.13)

where αi refers to a factor occurring at i = 1, 2, ...I levels with j = 1, ..., Ji observations per

level and µ and ε refer respectively to the overall mean and the error process respectively. We

then suspect a change point δ such that Equation 3.13 becomes

Yij =

 µ(0) + α
(0)
ij + ε

(0)
ij for y ≤ δ

µ(1) + α
(1)
ij + ε

(1)
ij if y > δ

(3.14)

The position of change both before and after δ is indicated in Equation 3.14. The superscripts

in brackets (0) and (1) refer to effects before and after δ respectively. Julious (2001) applied

bootstrap methods to identify change-points by first obtaining the best fitting two-line model

and then sampling with replacement from the set of residuals from the best fitting line (with

the smallest residual sum of squares). Using Equation 3.14 and following the lead in Julious

(2001) as applied to the COD data and obtaining a 1000 bootstrap distribution of the F-statistic

indicates a small p-value of 0.003 at point 39 as evidence for the existence of change in the series.

Point 39 supports a change in COD concentration in the year 2006. An advantage in using this

computing intensive method is that it overcomes the failure of the F-statistic noted by Hinkley

(1970) as the distribution takes its appropriate form after several iterations.
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3.5 Change-point in Time Series

We have so far been concerned with attempts to model independent series by a sequence of

random variables described by a number of structural parameters which can change abruptly

at known and unknown change-points, we now concentrate on time-dependent series. Change-

points mostly refer to time as we always plot series in order to look for change-points, trend,

seasonality, outliers, extreme values or erroneous values that may cause some abrupt changes in

series. Considering the time of change, Chandler and Scott (2011) defined a change-point as a

point in time at which the properties of a process change abruptly. This might involve abrupt

shifts in means, variances or the autocorrelation structure of the process. This might lead to

erroneous implications arising from serious data errors as noted in Yang et al. (2006). Such

errors among others might arise from faulty equipment, observer practise and unstandardised

measurement resolutions. There is a huge literature on change-point problems in time series

both for known and unknown change-point.

Intervention analysis is usually performed when the position of a change-point is known.

Commandeur and Koopman (2007) used a local linear trend model with intervention variable

δt and wrote the response Yt = µt + βXt + wδt + εt for εt is white noise, and estimated the

parameters θ = (β, w, µt)
′. The effects of intervention may lead to recovery taking a bit of time

as against instantaneous and permanent effects. Representing these effects with an intervention

model, Chandler and Scott (2011) proposes a plausible parametric intervention model (where

Xt refers to abundance of some affected species due to a case of an oil-spill intervention)

Xt =

 µ+ εt if t ≤ δ,

µ+ ζ + ξe[−λ(t−δ)] + εt if t > δ,

where εt is random white noise, µ is the mean level before intervention at δ. Also ζ is the

long-term change in the mean level, ξ is the additional immediate change at time δ and λ > 0 is

the rate of recovery after the intervention at δ. This model can be fitted with non-linear least

square methods since it is intrinsically non-linear in some of the parameters.

On the other hand, cases of unknown change-points are more complicated as the standard

F test may not be valid as shown in Chapter 2. However Hinkley (1970) derived approximate

methods to be used in this case for which the process seems highly intractable and as indicated in
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section 3.4, Julious (2001) used modern computing intensive methods to overcome the difficulties

noted in Hinkley (1970).

3.5.1 Structural Changes in Time Series

It is important to consider the structure of time-series so that we detect the time of changes.

Many papers on structural changes in time-series can be found in the literature. McCulloch and

Tsay (1993) used a likelihood based approaches and simulation techniques for detecting changes.

These methods are later extended by Ray and Tsay (2002) using autoregressive fractionally

integrated moving average models (ARFIMA) to study structural breaks using the Nile River

minima data for illustration. Pfaff (2006) considered the model Xt = µ + τDt + Xt−1 + εt

where Dt = 1 when t = δ ( δ assigns the structural break date and it will be indicated as a

subscript to indicate the change time) and D = 0 otherwise. He then presented a drift equation

as Xt = τSt + X0 +
∑t

i=1 εt where St = 1 for t ≥ δ, St = 0 otherwise and τ quantifies both D

and S. Relevant works on this include the papers by Perron (1989, 1990); Perron and Vogelsang

(1992). Particularly in Perron (1989), three models were used and the structural break has been

assumed known. The models respectively are

Xt = µ+ d?D(Tδ) +Xt−1 + εt

Xt = µ1 + (µ2 − µ1)DUt +Xt−1 + εt

Xt = µ1 + d?D(Tδ) + (µ2 − µ1)DUt +Xt−1 + εt

where 1 < Tδ < T refers to a priori known break point; D(Tδ) = 1 if t = Tδ + 1 and 0 otherwise

and DUt = 1 for t > Tδ and 0 otherwise. Also d? is the coefficient of D(Tδ). The author in

the first of the three models above allowed a one-time shift in the levels of the series and in the

second model he allowed a change in the rate of growth and combined the effects of the previous

two models in the third model. He later used a test statistic that is dependent on fraction of

the structural break point with respect to the total sample size T , W ∗ = Tδ
T

and provided the

critical values for the test. Zivot and Andrews (1992) used the same data-set as used in Perron

(1989) and found less evidence of rejecting the assumption of a unit root process. The approach

chooses the date of the structural shift for that point with the least favorable result for the null
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hypothesis of a random walk with drift.

Also Lutkepohi et al. (2004) proposed a procedure for estimating a vectorised error correction

model (VECM) for a case of a simple shift. The paper assumes that the N × 1 vector process

{Yt} is generated such that

Yt = µ0 + µ1t+ τdtδ + Xt,

for dtδ is a dummy variable and dtδ = 0 for t < δ and dtδ = 1 for t ≥ δ. Here the

assumption is that δ is unknown and it is fixed fraction of the sample size such that δ = [Tλ]

with 0 < λ ≤ λ ≤ λ < 1 where λ and λ are real numbers and [·] refers to integer part and the

shift might neither occur at the beginning or the end of the sample. Another assumption here is

that the process {Xt} is represented as a vector autoregression V AR(p). Then the estimation

of the break point is based on the following equations.

Yt = v0 + v1t+ τdtδ + A1Yt−1 + ...+ ApYt−p + εtδ,

for t = p + 1, ..., T and Ai with i = 1, ..., p assign the N × N coefficient matrices and εt is the

N -dimensional error process so that the estimator of δ can be defined as

δ̂ = arg minδ∈T det(
T∑

t=p+1

ε̂tδε̂
′
tδ)

for T = [Tλ, Tλ] and ε̂′tδ are least-square errors. Once the least squares estimator δ̂ is

estimated the data are adjusted using the relationship X̂t = Yt − µ̂0 − µ̂1t − τ̂ dtδ̂. Instead of

using the test in Lutkepohi et al. (2004) a new test Lr(r) = T
∑N

j=r+1 ln(1 + λ̂j) with critical

values supplied in Trenkler (2003) could be used. The advantage here is that the critical values

are extensive and more precise.

3.6 Multiple change-points

There exists situations where the changes occur at many points in the series. In this case it

may not be practicable to repeat the previous methods in a number of times especially when

the sample size is large. This means we have to think of methods on multiple change detection

that seek to estimate multiple changes simultaneously. There are many authors interested
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in multiple change-point analysis. Inclan (1993) and Stephen (1994) focused on detection of

multiple changes using Bayesian methods. Also in Chib (1998) multiple change-point were

estimated using a Bayesian approach by formulating latent discrete state variables indicating

the regimes from which a particular observation has been drawn. He used a discrete-state Markov

process and estimated the model by Markov chain monte carlo methods (MCMC). His method

is useful in that it can fit many complex change-point models. He proposes Xt = {x1, x2, ..., xn}

time series and that the density of Xt given Xt−1 depends on a parameter ξ changing at unknown

times Υm = {δ1, δ2, δ3, ...δm} and remain constant otherwise. Also if δ1 > 1 and δ < n then the

model to capture many changes is

ξt =



θ1 if t ≤ δ1

θ2 if δ1 < t ≤ δ2

...
...

...

θm if δm−1 < t ≤ δm

θm+1 if δm < t ≤ n,

However the problem here is that we need to estimate the parameter vector Θ = {θ1, ...θm+1}

along with the detection of unknown multiple change-points Υm = {δ1, δ2, δ3, ...δm}. Also we may

have to compare models with different numbers of change-points. The approach formulates the

change-point problem in terms of a latent discrete state variable that indicates the regime from

which a particular observation has been drawn. The state variable is specified to evolve according

to a discrete-time discrete-state Markov process with transition probabilities constrained so that

the state-variable can either stay at the current value or jump to the next higher value. This

process is based on the MCMC method discussed in Chib and Greenberg (1996) and it is valuable

since it fits more complex models.

3.7 Nonparametric Methods in Change-point

In non-parametric analysis it is recognised that assumption of a particular parametric distribu-

tion may not hold for regular independent observations. These methods are sometimes called

distribution free methods. In Bhattacharyya and Johnson (1968) a linear rank statistic with

score function was used in a Bayesian framework to estimate shifts at an unknown time-point.
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The use of ranks in testing hypothesis of change normally assumes that Xt has unknown distri-

bution functions

F0(x), t = 1, ..., δ

and

F1(x), t = δ + 1, ..., n.

The null hypothesis of no-change corresponds to δ = n or F0(x) = F1(x) and for change

F0(x) 6= F1(x) where 1 ≤ δ ≤ n. To study change in mean levels under non-parametric methods

let Wt represent the common Mann-Whitney-Wilcoxon two sample test statistic for X1, ..., Xt

and Xt+1, ..., Xn and µt and σ2
t are the mean and variance of Wt. Sen and Srivastava (1975)

used Ss = Max1≤t<n|(Wt − µt)|/σt while Pettitt (1979) also used Pt = Max1≤t<n|Wt − µt| as

test statistics for no-change null hypothesis and the rejection is based on large values. Again

papers by the same authors Pettitt (1979, 1981) discussed the exact and approximate results

for testing the null hypothesis of no change. Pettitt defined for each δ = 1, 2, ..., n, Uδ,n =∑δ
i=1

∑n
j=δ+1 sgn(Xi−Xj) and used Bernoulli random variables to obtain a Kolmogorov-Smirnov

two-sample statistic. A follow-up to this can be seen in Schechman (1982). In this paper, a

normalised type of the statistic used by Pettitt was used.

Also for a shift at an unknown point, a linear rank statistic similar to the one used by

Bhattacharyya and Johnson (1968) was used by Hsieh (1984). Moreover Lombard (1987) used

the statistic St (for which R is a variable)

St =
n∑
i=1

[
δ∑
i=1

S(Ri)

]2

for a single abrupt change where S(Ri) for i = 1, ..., n are normalised rank scores and similar

rank statistics were also suggested for multiple change model and smooth change model.

Parameter estimation problems are treated among others in Pettitt (1980), Darkhovskii

(1980) and Carlstein (1988). Particularly Pettitt (1980) used a Mann-Whitney type statistic

to obtain an estimate of δ and Darkhovskii (1976) had earlier used a Mann-Whitney statis-

tic by dividing a sequence of n independent random variables into two samples of sizes δ and

n− δ. He then considered the values of δ that minimise or maximise the statistic as the possible
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change-points and showed that the estimator is consistent. Similar to the work of Darkhovskii

(1976) is that of Carlstein (1988) where strongly consistent estimators were proposed for a

single change-point. Many other authors include Eastwood (1993) who used a test statistic

that converges in distribution to a corresponding Gaussian function under the assumption of no

change in distribution (null hypothesis H0). He used the test under a single change-point detec-

tion framework. Also Brodsky and Darkhovsky (1993) integrated most change-point estimation

techniques with focus on non-parametric techniques by investigating segments of homogeneity

and non-homogeneity of sample observations. Details of non-parametric analysis of change-point

problems can be found in the book by Chen and Gupta (2000). The book considered methods

that do not possess heavy reliance on assumptions for the parameters in the model. In addition,

Chu (2002) used non-parametric bootstrap methods to determine the frequency distribution of

the mean annual cyclones in the Central North Pacific (CNP) from 1966 to 2000. This is based

on the application of change-point analysis which shows the existence of shifts in 1982 and 1995.

The shifts favour some cyclone incidences and indicate that the tropical cyclones in the Eastern

North Pacific possess a better chance to enter CNP. Correct estimation of such shifts is therefore

important for safety. This is because tropical cyclones are one of the most dangerous natural

disasters that can cause loss of lives and properties around the world.

A report under the World Climate Programme on hydrological data which summarised the

contributions of a conference held in the United Kingdom in 1998 is published in WMO (2000).

This report indicated that most hydrological series are non-normally distributed and that it

makes sense to employ more non-parametric methods. The report discussed rank-based tests,

normal scores transformation and resampling methods with emphasis that the series are inde-

pendent.

In a regression framework, Dempfle and Stute (2002) proposed a nonparametric method to

estimate discontinuity in regression. They obtained the optimal rate of convergence n−1 under

minimal assumptions when no smoothing is needed. Reeves et al. (2006) proposed nonparametric

methods to detect undocumented change-points in climate data series. They used the standard

normal homogeneity (SNH) test, Wilcoxon’s nonparametric test, two-phase regression (TPR)

methods, information criteria and inhomogeneity tests. They compared all the methods and

showed that TPR and a Bayes criteria method seem to be optimal for most climate time series

and submitted that the SNH and its non-parametric variant are best when trend and periodic
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effects are diminished by using a homogeneous reference series. Most recently, Hoffman et al.

(2010) used a joint-point two-regime regression of a broken line model composed of one regression

line and a horizontal ray. The method used does not depend on the assumption of normality,

independence and identically distributed error terms. Hoffman et al. (2010) also compared

their methods with those of Quandt (1958) in a simulation study showing that the new model

performs adequately in the normal error term and is therefore preferable in small samples where

error terms are correlated with non constant variance.

3.8 Summary of Chapter Three

In this Chapter, we looked deeper into the change-point literature considering various off-line

methods with applications to the available data-sets. Bayes factors for normal, poisson and

exponential models were shown for testing hypothesis of change. Using the rainfall data-sets,

the Bayes factors assuming a normal model were computed based on cases when the variances

of the series before and after δ are different and when the variance is constant. A full Bayesian

conditional distribution of change-points is also derived using Gibbs sampling and there seem

to be convergence for the change-point parameter estimated to be 65 corresponding to 1973 as

indicated in Yang et al. (2006) using the rainfall datasets. Evidence of change is also noted in the

COD data from the Ministry of Environment. This is done by following the lead in Julious (2001)

to overcome the problem of the failure of the F-statistic noted in Hinkley (1970). The main

categories of models discussed are regression and time-series change-point models with special

application to structural changes. We also discussed change-point detection in non-parametric

models and concluded with discussion on multiple change-point estimation. However, it could

be noted that most models discussed could not be applicable to the Ministry of Environment

water chemistry data, the bootstrapping method detected a change in the COD data around

the year 2006. Another difficulty that can militate against change-point detection in these data

is the small sample size worsened by unregulated units of measurements. We therefore require

other sophisticated methods that could detect changes in data sets that have the characteristics

discussed and can estimate changes as soon as they occur. In the next Chapter, we discuss

on-line methods with respect to quality control techniques and state-space modeling.



Chapter 4

On-line Procedures

These methods, also called real-time methods, involve the development of models that allow data

to be processed as soon as they are collected. They allow for rapid processing by not requiring

a complete reanalysis of the entire data set each time a new observation is collected. Common

applications of online methods include sequential analysis and recursive Bayesian methods able

to take care of false alarm and wrong-detection rate (Poor and Hadjiliadis, 2009). Further

applications of on-line methods can also be found in Lai (1995a) and Moreno et al. (2005) and

Mei (2010). In this Chapter we give some brief discussion on quality control methods, and

recursive state space modelling for detecting on-line changes in parameter levels.

4.1 Quality Control Methods

Suppose there is a continuous production procedure. The quality of a product is usually mon-

itored and often should ideally be maintained as constant for some time. Unfortunately the

quality can drop or deteriorate to an unsatisfying level at a particular time. This may be due to

a problem at a stage of the process yielding defective products. Identification of such a change-

point is extremely critical so that instant solutions at the right time can be provided. Page (1954,

1955, 1957) considered a normal mean µ0 changing to µ1 and it is suggested that the whole pro-

cess is not in statistical control when Sn −Min1≤δ≤nSδ becomes large for Sδ =
∑δ

i=1(Xi − µ∗)

where µ0 < µ∗ < µ1. Thereafter more explanations on the sequential control methods were

discussed by Khan (1978). Since the attempts of the 1950s several models of change-points

55
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have been developed in the framework of statistical quality control. Lai (1995b) conducted a

survey of a large variety of sequential detection procedures on fault detection and signal pro-

cessing using sequential techniques for on-line implementation. Also Lorden and Pollak (2005)

considered independent observations with a known parameter value θ0 when the process seems

to be in statistical quality control and the parameter changes when the process is out of control.

This is then applied to the problem of detecting changes in the shape parameter of a Gamma

distribution in both univariate and multivariate cases. Furthermore, Chicken et al. (2009) noted

that many industrial processes are only capable of generating rich and complex data records

that could not allow the use of standard quality control methods. A semi-parametric wavelet

method is proposed for monitoring changes in sequences of non-linear profiles. Monte Carlo

simulation is used in this paper to indicate quick changes in in-control profiles.

4.2 State-Space Modeling: Recursive Bayesian Methods

We now describe state space models as applied to continuous changes in model parameters using

recursive Bayesian methods. State space models are general linear models that can capture the

structural behaviour of most time series. The real interest is that attempts are made to capture

the underlying structure of time series’ behaviour as the parameters change (Chandler and

Scott, 2011). These models can capture sudden changes in time series and have been used

in Engineering since the 1950’s. The applications of these models can be traced back to the

works of Plackett (1950) and Kalman and Bucy (1961). The latter used filtering methods to

estimate parameters while the former used adaptive regression methods. The main objective of

the Kalman filter used in state space modelling is to infer values for the state variables from

noisy measurements so as to use the estimated values to evaluate the system.

In a recursive context we suppose a two-equation linear model, adopting the model described

by Pole et al. (1994) as

Xt = F ′tθt + vt (4.1)

θt = Gtθt−1 + wt. (4.2)

where θ0 ∼ N(m0, C0), vt ∼ N(0, Vt) and wt ∼ N(0,Wt) and we describe F ′t and Gt below.
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Values of the state at time t are in a column matrix θt and are linear combinations of the

values of the state at time t − 1 together with a random variation wt for the system from

a multivariate normal distribution. In this two-equation linear model, Gt defines the linear

combination of values of the state at time at t−1. The variance-covariance matrix of the system

noise will be represented by Wt. The observation at time t is a column vector Xt which is a linear

combination of the states computed by a matrix Ft. The random variation or the measurement

error vt are assumed to have a normal distribution with mean 0 and variance-covariance matrix

Vt and be uncorrelated over time. In this model all matrices can vary with time but Gt mostly

is constant. The two-equation model in Equations 4.1 and 4.2 is often referred to as a Dynamic

Linear Model(DLM). The DLM involves states as unknown coefficients in the linear model and

other equations allowing the change. The main feature of dynamic linear models is that they

allow parameters to vary rather than being fixed and therefore generalise linear models for

varying parameters. The system is said to be observable if it is possible to infer the values of

all components of the state from the noisy observations.

For illustration, suppose an Environmental Statistician is interested in knowing the influence

of general pollution level α and Total Solid P on Turbidity pollution concentration X ′t in a

reservoir. A simple model for his interest is proposed as

X ′t = αt + βtPt + et

αt = αt−1 + ∆αt

βt = βt−1 + ∆βt

It is easy to see that these equations can be written as

X ′t =
(

1 Pt

) αt

βt

+ et

and

 αt

βt

 =

 1 0

0 1

 αt−1

βt−1

+

 ∆αt

∆βt


where et, ∆αt and ∆βt are all independent random deviations with mean 0. It is clear that
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the intercept or the general pollution level αt and the coefficient of total solid βt are allowed to

vary over time. In the notations of Equations (4.1) and (4.2), wt =

 ∆αt

∆βt


and Ft =

 1

Pt

, also Gt =

 1 0

0 1

, and Xt = X ′t.

Furthermore, multivariate DLMs can be used to handle changes in levels of many variables

at a time. For example, if we have to observe two variables Y
(1)
t and Y

(2)
t then using a bivariate

model with the same explanatory variable X in each case we can write (µ,vt, β refer to the

parameters and the superscripts indicate the series)

Y
(1)
t = µ

(1)
t + β

(1)
t Xt + ε

(1)
t

Y
(2)
t = µ

(2)
t + β

(2)
t Xt + ε

(2)
t

and the state equations reflecting the changes in parameters can be written as follows

µ
(1)
t = µ

(1)
t−1 + v

(1)
t−1 + e

(1)
t

v
(1)
t = v

(1)
t−1 + ζ

(1)
t

β
(1)
t = β

(1)
t−1

µ
(2)
t = µ

(2)
t−1 + v

(2)
t−1 + e

(2)
t

v
(2)
t = v

(2)
t−1 + ζ

(2)
t

β
(2)
t = β

(2).
t−1

In this case we then have a state-space form for the observed equation as

 Y
(1)
t

Y
(2)
t

 =

 1 0 Xt 0 0 0

0 0 0 1 0 Xt





µ
(1)
t

v
(1)
t

β
(1)
t

µ
(2)
t

v
(2)
t

β
(2)
t


+

 ε
(1)
t

ε
(2)
t



and the state-space form for the states-equation can be written as
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

µ
(1)
t

v
(1)
t

β
(1)
t

µ
(2)
t

v
(2)
t

β
(2)
t


=



1 1 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 1 0

0 0 0 0 1 0

0 0 0 0 0 1





µ
(1)
t−1

v
(1)
t−1

β
(1)
t−1

µ
(2)
t−1

v
(2)
t−1

β
(2)
t−1


+



e
(1)
t

ζ
(1)
t

0

e
(2)
t

ζ
(2)
t

0


The final columns of the last two matrix equations refer to the matrices of uncorrelated errors

in each case.

4.2.1 Dynamic Linear Model: Kalman Filtering

Applications of DLMs exist heavily in science and engineering, cruise control in automobiles,

autopilots in aircraft and so on. In the chemical sciences for example, Papadopoulous et al.

(1991), Tiwari and Dienes (1994) and Cai and Tiwari (2000) applied DLMs to chemical concen-

trations with interests on time varying parameters to capture seasonality. More theoretically

extensive application of DLMs can be found in Pole et al. (1994), West and Harrison (1997),

Durbin and Koopman (2001) and Commandeur and Koopman (2007).

To apply the DLMs, we can distinguish prediction from filtering and smoothing. Basically

prediction has to do with forecasting future values of the state. Filtering makes the best estimate

of the current values of the state from the record of observation including the current observation

while smoothing is making the best estimates of past values of the state given the record of

observations. Explaining the on-line nature of DLMs we use the Kalman filtering equations to

obtain useful estimates. Suppose data Dt obtained till time t, is represented as Dt = (Dt−1, Xt)

meaning combination of data till time t − 1 and the observation at time t. Using the Bayes’s

formula we can write the following supposing the parameter of interest (state) is θ

π(θt|Dt−1, Xt) =
π(Xt|θt, Dt−1)π(θt|Dt−1)

π(Xt|Dt−1)
.

From the two-equation model identified in Equations 4.1 and 4.2, it is clear that Xt is

independent of Dt−1 given θt. Hence π(Xt|θt, Dt−1) = π(Xt|θt) and then

π(θt|Dt−1, Xt) ∝ π(Xt|θt)π(θt|Dt−1).
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Supposing the prior distribution of the parameter θ and the likelihood (obtained from the

data) are both normally distributed, Bayes Theorem can be used to see the analytic form of the

posterior distribution. In this case the mean of the posterior distribution represents a weighted

mean of the prior distribution and the observation with weights proportional to their precisions

(reciprocal of the variance). It can also be shown that the precision of the posterior distribution

is the sum of the precision of the prior distribution and the precision of the observations (see

Cowpertwait and Metcalfe (2009) and Petris et al. (2009)). Therefore for a multivariate normal

distribution, we can write

θt|Dt ∼ N(mt, Ct)

where mt and Ct are iteratively computed for t = 1, ..., n from the following algorithm called the

Kalman filter algorithm. The initial values m0 and C0 are specified as part of the model. The

Kalman filter algorithm indicates the prior distribution for θt, the likelihood and the posterior

distribution for θt respectively as follows θt|Dt−1 ∼ N(at, Rt) , the likelihood Xt|θt ∼ N(F ′tθt, Vt)

and the posterior distribution for θt as θt|Dt ∼ N(mt, Ct). Then for t = 1, ..., n, the Kalman

filter equations are written as

at = Gtmt−1, ft = F ′tat

Rt = GtCt−1G
′
t +Wt, Qt = F ′tRtFt + Vt

et = Xt − ft, At = RtFtQ
−1
t

mt = at + Atet, Ct = Rt − AtQtA
′
t.

From the algorithm ft is the forecast value of observation at time t, the forecast being made

at time t − 1. In the algorithm, et represents the forecast error, variance of the posterior is a

weighted sum of the prior mean and the forecast error, and the variance of the posterior Ct

is less than the variance of the prior distribution Rt. The equations above are called Kalman

Filter equations and for more information, see Cowpertwait and Metcalfe (2009) and Chandler

and Scott (2011). To start predicting from the posterior estimate of the state from the Kalman

filter on time (day) t on which the forecast is made a one-step-ahead forecast can be done as

follows
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E[Xt+1|Dt] = E[F ′t+1θt+1 + vt+1|Dt] = F ′t+1E[θt+1|Dt] = F ′t+1at+1,

which is equal to ft+1

and also

V [Xt+1|Dt] = V [F ′t+1θt+1 + vt+1|Dt] = F ′t+1V [θt+1|Dt]Ft+1 + Vt+1 = F ′t+1Rt+1Ft+1 + Vt+1,

which is equal to Qt+1. We can then forecast for g-steps ahead generally using

Xt+g|Dt ∼ N(ft+g|t, Qt+g|t),

where

ft+g|t = F ′t+gG
g−1at+1

Qt+g|t = F ′t+gRt+g|tFt+g + Vt+g

Rt+g|t = Gg−1Rt+1(Gg−1)′ +

g∑
j=2

Gg−jWt+j(G
g−j)′.

For smoothing, we need to make the best estimates of past values of the state given the

record of observations. Therefore a one-step back procedure can be used using the rule of total

probability as

π(θt−1|Dt) =

∫
π(θt−1|θt, Dt)π(θt|Dt)dθt

and also

π(θt−1|θt, Dt) = π(θt−1|θt, Dt−1).

Logically Xt will provide no further information once θt is known so that we can write

π(θt−1|θt, Dt−1) =
π(θt|θt−1, Dt−1)π(θt−1|Dt−1)

π(θt)|Dt−1)
.

In this case given θt and Dt−1 the numerator includes the posterior density at time t−1 following

from the Kalman filter. Assuming normal distribution we have
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θt−1|Dt ∼ N(at(−1), Rt(−1))

where

at(−1) = mt−1 +Bt−1(mt − at),

Rt(−1) = Ct−1 −Bt−1(Rt − Ct)B′t−1,

Bt−1 = Ct−1G
′R−1

t .

4.2.2 Dynamic Local Linear Models: Kalman filtering Applications

to Rainfall Data.

Dynamic linear models have an advantage in that model parameters can change over time and

that a change in mean level can be allowed. Many packages exist in the R software for fitting

state space models via the Kalman filtering equations but the informed choice that the user has

to make for Kalman filtering is in terms of the prior distribution. Fernando (2011) reviewed

many of the packages in R including dse, sspir, dlm, FKF and KFAS and assessed the

relative speed of the packages. He estimated parameters in Gausssian models of different sizes

by maximum likelihood. In each package, optimisation of the likelihood is performed using the

R function optim. Therefore the choice of packages to be used depends sometimes on what

is needed. In this Section, we will use the R function StructTS to study the structure of the

rainfall data by fitting a local level model to the data. Studying the change in mean level the

model to be fitted is

Xt = θt + vt

θt = θt−1 + wt.

where vt ∼ N(0, V ) and wt ∼ N(0,W ) such that V andW are estimated by maximum likelihood.

Obtaining some smoothing for the rainfall time series via the local state-space model gives

the best estimate of the state θt at each time point based on the whole observed series. The

smoothing on Figure 4.1 shows the level position as it changes. It shows signs of changes at
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points 15, 40 and 65 indicating multiple changes. Also we can use the residuals obtained from the

local linear model above to study the time when the error process seems to go out of statistical

quality control. Figure 4.2 shows a Cumulative Sum Chart for the error terms obtained from

the local level model and a total of five points are out of the upper decision boundary(UDB)

and the lower decision boundary(LDB) suggesting that the process is out of statistical quality

control at around points 6 and 68. We can also investigate the exact position of the change

deeper if we estimate the variances V and W from the first 40 data points that come in and

use the fitted model to carry out on-line change-point detection in the remainder of the series.

Figure 4.2 shows that 13 points fall outside UDB indicating that the process is outside control

and that the changes occurred almost after point 68. It is therefore reasonable in an on-line

setting to experience such changes since we do not need to consider all data set each time a new

observation is observed.

0 20 40 60 80

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

Smoothing rainfall proportion

Time

P
ro

po
rt

io
n

Rainfall Proportion Smoothing

Figure 4.1: Comparing the local level smoothing (dashed line) with the United Kingdom rainfall

proportion (solid line).
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Figure 4.2: Cumulative Sum Chart for the error terms obtained from the local level model: A

total of five points are out of the upper and lower boundaries suggesting that the process is out

of statistical quality control at around points 6 and 68
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Figure 4.3: Cumulative Sum Chart for residuals from local level model using the rainfall data:

The plot shows the model for the first 40 data points and the remaining data after an initial

model is fitted to the first 40 data points.
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4.2.3 Bivariate Linear Models: Proposed Model for Water Chem-

istry Data

Eleyele and Asejire reservoirs discussed in Chapter 1 are the main sources of urban and rural

water needs in Ibadan. Increasing population and low rainfall jointly make efficient management

of water resources an important priority. Although both reservoirs receive heavy pollution from

many sources, we can justify from the exploratory analysis done in Chapter 1 that Eleyele

reservoir is more polluted with respect to the set standards of the World Health Organisation

(2008) and SON (2007). Envisaging how to evaluate pollution in the reservoirs we can use

the monthly data reported from Eleyele and Asejire on Turbidity (Tt) and Total Solids (Tt).

Turbidity is chosen due to its importance as a pollution variable and Total solid has been

chosen due perceived heavy solid pollution in the reservoirs.

We intend to set up a simple state space model that can adapt to the changing Turbidity

and Total Solid levels. (Harvey, 1989, p 156) discussed non-linearity and non-normality in

state-space models where the system matrix Gt can be stochastic such that they can depend on

information that is available at time t − 1. These models can be susceptible to treatment by

the Kalman filter. He also discussed another kind of non-linearity when the observations in the

measurement equation are no longer a linear function of the state vector.

Allowing the coefficients θ1, ..., θ10 to change over time and letting Tt and St stand for mean

adjusted Turbidity and Total Solid concentration for month t the model to be fitted is

Tt = θ1 + θ2Tt−1 + θ3St−1 + θ4 sin(
2πt

12
) + θ5 cos(

2πt

12
) + vT,t

St = θ6 + θ7Tt−1 + θ8St−1 + θ9 sin(
2πt

12
) + θ10 cos(

2πt

12
) + vS,t

The state-space form therefore can be written as

 Tt

St

 =

 1 Tt−1 St−1 sin(2πt/12) cos(2πt/12) 0 0 0 0 0

0 0 0 0 0 1 Tt−1 St−1 sin(2πt/12) cos(2πt/12)

×K

where K =
(
θ1,t θ2,t θ3,t θ4,t θ5,t θ6,t θ7,t θ8,t θ9,t θ10,t

)′
and then for the varying

parameters we write θi,t = θi,t−1 + wi,t. It is expected that vT,t, vS,t and wi,t will capture the

random components with respect to time in each case.
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4.3 Summary of Chapter Four

In this Chapter, we have discussed quality control methods as regards monitoring and confor-

mance to standards. We discussed dynamic linear models with respect to recursive Bayesian

techniques. Examples of dynamic linear models are given both for univariate and bivariate

models. Kalman filter equations were derived to explain the recursive nature of state-space

models and to explain the change-in-mean levels with filtering showing positions of change. A

seasonality-inclined model is proposed for handling changes in the water chemistry data using

Turbidity and Total Solids. The model will be developed to monitor the abrupt changes in the

Water Chemistry and other data sets with such characteristics.



Chapter 5

Findings and Recommendations

Data suspected with change-point problems need to be carefully studied. When the change-

point is unknown, the problem is complex in that the failure of the regularity conditions leads

to more complicated cases where we have to estimate parameters by iterations and non-linear

algorithms. In this thesis, we have followed the lead in Hinkley (1970) to derive a test statistic

used in testing hypothesis of change. The test-statistic is derived against Hinkleys assumption of

known variance and simulation is used to show the effect of the regularity conditions not holding

when the position of the change is unknown. The profile likelihood function for the change-

point is also derived. Furthermore review applications of frequentist and Bayesian methods for

estimating single change-point distributions are discussed while hypotheses of change are also

tested using Bayes factors for the normal change-point models. State-space models are also fitted

to the available data and changes in levels are noted. Significant changes however have been

noted in the water pollution data and the United Kingdom rainfall data. It seems that there

exist multiple changes in the rainfall data sets. However, the sample size of the turbidity data

may make it difficult to detect changes. It is recommended to build more complex state-space

models that can capture the complete behaviour of the data sets.

5.1 Limitations of the Study

There seem to be a number of limitations to this study. One for example is the small sample size

of the water chemistry data-sets which were part of the motivations leading to the research. The

67
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small sample size can limit the amount of information that can be derived from the observations.

Another is the suspicion of the presence of some abrupt changes in the data sets which may

make it a complex task detecting appropriate changes. The limitations include the presence of

some extreme values and unexpected seasonality behaviours in the water chemistry data-sets.

Therefore considering these disadvantages, most of the off-line methods could not appropriately

explain the water chemistry data.

5.2 Future Work

Change-point problems considered in this dissertation have involved the estimation of single

change-points using different frequentist and Bayesian methods. We intend to extend these

methods to estimate multiple change-points. This will be done by extending both the frequentist

methods and the Bayesian methods of Gibbs Sampling and Metropolis Hastings algorithm to

estimating multiple changes.

Other volatile structures in the data set will be investigated and the existence of change

investigated. For example, we might follow our discussion in Section 3.1.2 to compute Bayes

factors to test hypotheses of change when the variance changes. In this case, we suppose x1:δ

and x(δ+1):T have different variances σ2
1 and σ2

2. Then for x1, ..., xT independent variables we

have the model

xi ∼

 N(µ, σ2
1) for 1 ≤ i ≤ δ

N(µ, σ2
2) for δ < i ≤ T.

More importantly, we will extend the state-space models to further understand the nature

and structure of the available noisy data sets from Nigeria. This will be done by monitoring

change in variable levels in the direction of our discussion in Section 4.2.3. Furthermore attempts

will be made to incorporate interventions in to the state-space models to estimate change-points

in many variables at a time. We shall then use multivariate methods that are robust to outliers

and data errors (for example in Eleyele: DO concentrations have some strange values). This will

be done with the use of multivariate time-series models for non-normal data (most observations

have abrupt changes) in mind.

It is also intended to gather more data sets for longer period (to give better insights in
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to the data structure for better and easy detection of significant changes) so as to link water

pollution data sets to other hydrological data and public heath. This will help to investigate

the connections with environmental systems and climate change.
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