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The coherent quantum evolution of a one-dimensional mamgige system after slowly sweeping the Hamil-
tonian through a critical point is studied using a geneealiguantum Ising model containing both integrable
and non-integrable regimes. It is known from previous wdrt tuniversal power laws of the sweep rate ap-
pear in such quantities as the mean number of excitatiorgeddy the sweep. Several other phenomena are
found that are not reflected by such averages: there are aliogcegimes of the entanglement entropy and a
relaxation that is power-law in time rather than exponénfiaie final state of evolution after the quench is not
characterized by any effective temperature, and the Logltleoho converges algebraically for long times, with
cusplike singularities in the integrable case that are ohjcally broadened by nonintegrable perturbations.

A many-particle quantum system evolving at zero temper- A
ature can demonstrate various forms of approach to equilib-
rium even with no loss of phase coherence. This phenomenon
has been studied in most detail experimentally [1] and the-
oretically [2,[3,/4]5]16[17] for systems prepared by a quan- £ TATTR ) ;
tum quench across a phase transition. A system is prepared in -[¥o( gi)) [vo( g7))
the ground state for certain parameter values, which are the gi Je gf
rapidly changed to values for which the ground state is in a
different phase. Ultracold atomic systems are especially-v ~ FIG. 1: The panel shows the energy level¢g) and gaps of eigen-
able for experiments in this area because they can be trastedStates|vs (9)). The energy density; (g, I') of a wave function
closed quantum systems on rather long time scales compar e(g;OI:J)ri drgf;‘tlé'g%ef;om dznlfsnﬁiﬁr ;‘;Vr%eghg\tlvﬁ i(;orr;sgant rtend
to the basic dynamical time scales of the system. Two basic g 9y g '
notionsin the literature are that many properties equitiaf-
ter the quench exponentially in time and that the system ther

malizes (the final state can be described by an effective tenyest a sharp dynamical probe of these differences.
perature). The notion of thermalization is generally notedl w We consider a system with a tunable parametérat be-
defined one for integrable systems and only non-integrablgomes critical at a valug, and study the dynamics as the
systems in the thermodynamic limit can be described by amamiltonian is swept from one side of the critical point te th
effective temperature after a quench [8]. Non-integrabili other. A particular example of such a system is the genexliz
alone may not be a sufficient condition for thermalization inquantum Ising model in a field described by the Hamiltonian
finite systems|[9].

This paper concerns the coherent zero-temperature dynam-
ics of states prepared through a different process thatlbas a
attracted recent attentioh 10,111, 12] 14]: rather than
guenching instantly across a quantum phase transition, thEhe system is critical aj = g. = 0 for any value ofp. For
Hamiltonian is changed smoothly across the transition at @ = 0, the model Hamiltonian is the Ising model in a purely
constant rat&. For a second-order transition (critical point), transverse field (the “quantum Ising model”) which is inte-
various averaged physical quantities such as the exaitatiograble. For anyy # 0, the lattice model is no longer inte-
density and energy show power laws in rBtasI” — 0, with  grable (except at the critical point whege= 0). We fix the
exponents determined by the quantum critical point’s urive value of¢ and do not write the dependence of the quantities
sal physics. The system evolves after such a sweep to a steaeyplicitly in the discussion below. The correlation lengties
state for some quantities, such as the Loschmidt echo defineé(g) ~ |g—g.|7” andthe gap aA(g) ~ % ~ |g—g.|*",
below, but its energy distribution remains non-thermale Th close to the critical point, whereis the dynamical exponent
main result of this Letter, using a generalized quantunglsin andv the correlation length exponent (there are two values of
model as an example, is that many features of the resulting depending or, v = 1 for ¢ = 0,7 andv = 8/15 other-
evolution including the approach to equilibrium differ fino  wise). At eacly, the system has a ground stétg(g)) with
the case of an instant quench and are not captured by thenergye,(g) and excited stateg),(g)); the lowest excited
simple averaged quantities studied previously. Integrabl  state|+; (¢g)) has energy\(g) (FIG.[I).
non-integrable systems evolve differently and our results We study the dynamics of energy, entanglement entropy,

1(95))

€,(9)-€0(9)
=
S

Eo(9.1)-Eo(9)

N
H = JZ l0f — o707 + g (cosgof +singo;)]. (1)
i=1


http://arxiv.org/abs/0907.3206v3

AE/J

2 -1 — — — theory

1 2

AR 10 10
72

FIG. 2: The differenceA E between the energy densify; (g, ') ¢=0,g=0.4 - g=-0.4
of the final state after sweeping with a rdtethrough the critical (b) :
point and the ground state energy densityg;). The dashed lines
show the expected asymptotic behavidk& ~ T (¢ = 0) and 1
AE ~ T8/ (¢ > 0) resulting from different correlation length
exponents in the “thermal” and “magnetic” directions.

and wavefunction overlap during and after an adiabatic pwee 0.60
across a quantum critical point. We derive several analytic
expressions and compare to numerical results for a sweep

through the critical point of the Hamiltoniahl(1). We assume
that the parametey depends on tim¢ asg, = g; — I't/.J FIG. 3: (a) The entanglement entropy as a function of thergave
whereg; is some initial value ofy and% = 1, until some rate. The dashed line in the upper panel shows the expeagtathas

final valueg; is reached, after which the Hamiltonian is con- taostlg ?uenh:tli\gﬁrgfEm;%/fﬁ;%i)hzdcﬁ:iig%)i;?;at%gel%nr;in;mgpy

stant for some “wait period” . We are interested in the adiaing| value of g; = —0.4) has been reached, and the Hamiltonian

batic limitI' — 0. For the numerical calculations, we use the remains unchanged thereafter.

recently introducedhfinite Time-Evolving Block Decimation

(ITEBD) algorithm mS]. This method uses variational wave-

functions based on matrix product states (MPS) and exploits . o .

translational invariance for efficient simulation of infeilD mterprgted as frge domain wall excnauon;, the energgiien

systems. Its errors result from finite entanglement ratieem t of the final state is expected to be proportionaiig so

finite size [16/17]. Away from a critical point, the entan- Af — &} (g,,T) — Eo(g:) ~ nex(ge) ~ T/ GO A (g,).

glement entropy of thexactwave function is finite, and the 2)

ITEBD algorithm becomes very accurate. The gapA(g;) depends only on the instantaneous valug;of
The expected energy densiy (g;,T") of [¢{(g:,T')) ata  and does not scale with Eqn. [2) follows from noting that as

time ¢ (i.e., the expectation value of the Hamiltonian with I" — 0, there are a small number of excitations that exist only

coupling g; in the time-evolved state) when the system hasn a small band of states of vanishing width abdve(g)).

crossed the critical point is a natural quantity to consitldg  Numerical results are shown in FIQ. 2. The energy difference

use a scaling relation for slow sweeps in this model derived\ E between the actual ground state and the state after the

in Refs. [12] 1B]. Let the system be in the statg(g;)) at  sweep for the transverse Ising model € 0) is in a good

t = 0 and change; linearly with ratel’ — 0. Whilst ¢, is  approximation proportional t¢'T. The critical exponents for

on the same side of the critical point as the system will  the transverse Ising model ate= 1 andr = 1 andney

be in state(g;)) with exponential accuracy as guaranteedy/T (see also RefstZ]). Thus the numerical results are

by the adiabatic theorem. However, adiabaticity breaksndow consistent with the scaling in Eqii] (2).

at the critical point since the gap vanishes, and agnds on We now consider the entanglement entropy between the left

the other side, the system is in a statg(g:,I')). Thus, ex- and right halves of the infinite system: the Hilbert space is

citations (well-defined in theé = 0 model) are created in the partitioned so that all sites to the left of some bond are i on

system upon crossing the critical point. The number of exsubsystem and all sites to the right are in the other. We find

citations isnexy = CT%/(zv+1) [IE], whered is the spatial one scaling law immediately after the sweep and another in

dimension. Note that the scaling parameter in the above-equ#he time dependence of the swept state under the final Hamil-

tion is the ratd” and notlg — g.| sincenex is Non-zero only as  tonian, in addition to oscillatory behavior. For criticadipts

a consequence of sweeping across the critical point at a finitwith conformal invariance = 1) in one dimensiond = 1),

rate. Since the excitations in the transverse Ising modaetbea the entanglement entropy of a ground state with large finite




correlation length diverges as = glogé + ..., wherec

is the central charge of the critical poiE[lB]. To obtaie th
entanglement entropy, we have to find the correlation length
of the state|¢,(g:,I")). The process of sweeping generates
a gap in the system\’(g;,T") different from A(g;) just as

[ (g:, ) is different from|«o(g.)). Polkovnikov has cal-
culated the scaling form of the “typical gagX’(¢:, "), which

is A’ ~ T'#¥/(z»+1) Now, combining this with the correlation

r=0.1?
r=0.23
r=0.33

length¢’ ~ A’(=2) and using: = 1, we obtain ~0.15 . theory
cV
S =————1logI'+ const 3
ORI ®)

For the transverse Ising model with central chatrge 1/2,
we find thatS = —1/241n(T") + const, which is consistent
with the overall slope of the numerically calculated entang
ment entropy for the transverse Ising modgk 0) just after
the sweep in FIG.]3(a). A similar expression for the transwer
Ising model can also be obtained for the entanglement entrop
of a finite block embedded in an infinite chdﬂ[lQ].

If the swept state continues to evolve in the (now con-
stant) final Hamiltonian, the entanglement entropy ogeidla 0 5 10
around a linearly increasing mean (F[G. 3(b)); this linear i AR
crease is as predicted by Calabrese and Cardy for a “global
guench” |[Zb], but in the swept case the slope depends on theG. 4: Exponentx in the overlap|<z/){)(gf,F)|z/;{)(gf,F,t)>|2 =
number of excitations created during the sweep. In our numekexp(aL). The overlap is taken of the wavefunctipsh (g, I')) (im-
ical study of the weakly nonintegrable model with= 7/32, ~ mediately after the ramping from= g; to g = gy with the rate pa-
entanglement initially grows linearly with time as in thaégn ~ rameterl’) and the wavefunction/s (g, I', )) (after an additional
grable case but then, after a time related to the interagtien  €volution for the time! at fixedg = gy). The dots in the upper
tween “excitations” of the integrable model, rapidly inases (¢ = 0) panel show the analytical results using EG. (9).
and makes convergence much more difficult.

As a consequence of the fact that statg(g;, ")) includes
excited states, botl§' and the expectation values of opera- wait period of timet:
tors that do not commute with the Hamiltonian will oscillate | , 9 CiH o —aL
as a function of the sweep rate and time. While the sys—|<¢0(9f’r)|¢0(9f’F’tm = [e™ " a0 =€ -
tem is on the same side of the critical point@sthe state ] ) _(5)
will evolve adiabatically. Once the critical point is reach Here we have defined(t) because this overlap typically
(at time t.), the expectation value of any observable thatd€S t0 zero exponentially for translation-invariantestain
mixes the ground state with the band of excited states oscith® thermodynamic limit (i.e., when the length of the chain

: : ; L — o0) unless|y)(gs,T)) and |¢(gs,T,t)) are identi-
lates with phasé2") ~ A(g,). Using the scaling of the gap . A 0NIf> o .
A(ge) ~ gt — g¢|?” = T#(t — t.)**, and integrating with cal. This overlap gives a direct probe of the magnitude and

respect to time, we obtain _deca_y of quantum oscillgtions_in the many-body state and it
is suitable for computation using iTEBD [15]. It has been
A(gt)(qurl)/zu shown to determine the statistics of work done in a quan-
SRS —— T (4)  tum quench[[22]. Our main results are that the overlap os-
cillations have an unusual cusp structure, arising from the
These findings are consistent with the numerical simulaintegrability of the transverse Ising model, and decay even
tions of the sweep in the transverse Ising model in EIG. 3in the exact zero-temperature evolution of an infinite syste
The entanglement entrogy shows oscillations in real time (because there is a continuum of excitation energies) alge-
(FIG.[3(b)) which have a constant frequency equal to the gapraically rather than exponentially.
A(g). The oscillations in the rate dependence in EIG. 3(a) are An analytical approach can be developed from independent
consistent with Eqn[{4). Landau-Zener tunneling [2B, [24] at eakj12]. In terms of
In order to study these oscillations and their damping with-the Bogoliubov excitations (see Ref| 12 for details), theeva
out reference to a particular observable, we use a version diinction|(gs,I')) for the transverse Ising modet & 0) is
the Loschmidt echo (see Ref)21 and references therein). We productyg(gr,I')) = 1, (ux|0) + vk |k, —k)), where|0)
square the inner product between the wavefunction immedis the vacuum and the stalle, —&) contains a pair of quasi-
ately after the sweep and the wavefunction after an addition particles with pseudomomenté, —k). The Landau-Zener

O(t) ~ T (t — t.)



4

formula gives, for the smalt’s that dominate the tunneling the energy spectrum. The latter is known to change between
for slow rate, integrable and non-integrable systems: one sharp differen

o J2k2 in spectral properties is revealed through the smearing out
)

(6)  of cusps noted above (FIGL 4(b)). More generally, the mea-
r surement of a Loschmidt echo could be used to probe the dif-
During the wait period, each fixed-k wavefunctign—) has ference ir_1 energy IeveI_ statistics between integrablesgem)
an energyA (k) = 2\/m (this is an approxima- and non-integrable (Wigner-Dyson) systems.
tion for low energies), with lattice spacing= 1. So up to an Local observables are also likely to behave differently in
overall phase integrable and non-integrable systems, e.g., decaypazi

_ observables to a thermal distribution is expected in the non
o (g, T,1)) = [ J(url0) + €27 P |k, k) (7)  integrable case. The dynamical crossover to non-integrabl

log[? = Pp =1 — Jug|* = exp (-

k behavior was observed here as a rapid increase of entangle-
Now, using Eqn.[{6), the squared overlap in Eh. (5) is rewrit ment entropy and the destruction of cusps in the Loschmidt
ten as echo. Accessing the long-time regime and approach to equi-
librium in the non-integrable case is a major challenge ter n
. Ar(k)t i
H 1+ 4sin? f2 Pu(Py —1)] . (8) merical methods.
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In the continuum limit, the logarithm of this product becane
an integral forw (). Taking the momentum cutoff teo,

alt) = x /OOO dk log {1 + 4sin? (@) Py(Py, — 1)} .

2w
9)
This is compared to the numerical results in FAIG. 4(a). The
cusplike minima arise from the momentum valkie where
P D. M. Stamper-Kurn, Naturéd43, 312 (2006).

the_ tu_nnellng pro_bablllt)Pk* = 1/2. These give 6.‘ smgu- [2] V. Gritsev, E. Demler, M. Lukin, and A. Polkovnikov, Phys
larity in «(t) at timesAy(k*)t = (2n + 1)m. This sin- Rev. Lett.99, 200404 (2007).

gular behavior is smeared out in the nonintegrable model at[3] A. Lamacraft, Phys. Rev. Let®8, 160404 (2007).

¢ = m/32, which does not have sharp excitations at finite [4] A. Lauchli and C. Kollath, J. Stat. Mech. , P05018 (2008)
energy (FIG[#(b)). This gives a probe of integrable ver- [5] D. Rossini, A. Silva, G. Mussardo, and G. Santoro, Phys.R
sus nonintegrable behavior that could be useful for experi- _ Lett. 102, 127204 (2009).

ments ]_ Asymptotics of Eqnl:l(9) lead to the following [6] A. Faribault, P. Calabrese, and C.-S. Caux, J. Stat. Mech

C ) : P03018 (2009).
results: if we havd’N' < A® for some number of periods [7] M. B. Hastings and L. S. Levitov, arXiv.org:0806.4283(3).

N> 1, then the overlap has peaks shifted from the points (g) . rigol, V. Dunjko, and M. Olshanii, Naturés2, 854 (2008).
At = 7N, with maximaay = —¥2 4L { 7 1—62 NZ. [9] G. Biroli, C. Kollath, and A. Lauchli, arXiv:0907.373(009).

™ JA% 32 -
- - [10] T. W. B. Kibble, J. Phys. /A, 1387 (1976).
At long times,« approaches a constant independent of the fi [11] W. H. Zurek, Nature17, 505 (1985).

nal gap:a(oo) ~ —0.0564vVT/J. _[12] J. Dziarmaga, Phys. Rev. Le8, 245701 (2005).

In the integrable case, the amplitude of oscillations in thg13] A pPolkovnikov, Phys. Rev. B2, 161201 (2005).
Loschmidt echo falls off as/ for large times, which is differ-  [14] K. Sengupta, D. Sen, and S. Mondal, Phys. Rev. L,
ent from the case of a quasithermal initial state whose a&xcit 077204 (2008).
tion probabilities are given by Boltzmann weights. Thedatt [15] G. Vidal, Phys. Rev. Let98, 070201 (2007).
has no cusps and dampingias/z. This power-law decay of [16] IF_J.hTag:i?acogg, g-zﬁl%e(zogs’g;rav S. Iblisdir, and JLAtorre,

e ; : - ys. Rev. B78, .

the o§C|IIat|ons, rather than an exponentlal decay, is goim [17] F. Pollmann. S. Mukeriee, A. M. Turner, and J. E. Moorey®
tant difference between the evolution found here and thaydec Rev. Lett.102, 255701 (2009)
of some observables after a sudden quehlch [5]. We note thaitg) P. Calabrese and J. Cardy, J. Stat. Mech. , P06002 (2004)
the (pure) state als— oo does not resemble a (mixed) ther- [19] L. Cincio, J. Dziarmaga, M. M. Rams, and W. H. Zurek, Phys
mal state at any effective temperature of the final Hamittoni Rev. A75, 052321 (2007).
since the excited state occupation probabilities remaierde [20] P. Calabrese and J. Cardy, J. Stat. Mech. , 10004 (2007)
mined by their tunneling probabiliti?,, while their energy is  [21] C. Venuti and P. Zanardi, arXiv:0907.0683 (2009).
A (k); the final state has more occupation of lavexcited ~ [22] A- Silva, Phys. Rev. Lettl01, 120603 (2008).

- . . [23] L. Landau and E. LifshitzQuantum Mechanicg¢Pergamon,
states than a thermal state. Sweeping can also i I New York, 1958)
oscillations in correlation functions of local operatd2§]. [24] C. Zener, Proc. R. Soc. 237, 696 (1932).

These results are modified in several ways for non{2s] T.Kinoshita, T. Wenger, and D. Weiss, Nat4#o, 900 (2006).
integrable systems. In any system, the Loschmidt echo dg26] R. W. Cherng and L. S. Levitov, Phys. Rev. 78, 043614
pends on both the initial state and the Fourier transform of  (2006).

[1] L. E. Sadler, J. M. Highie, S. R. Leslie, M. Vengalattoesd




