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Scaling arguments imply that quantum-critical points exhibit universal nonlinear responses to external
probes. We investigate the origins of such nonlinearities in transport, which is especially problematic since
the system is necessarily driven far from equilibrium. We argue that for a wide class of systems the new
ingredient that enters is the Schwinger mechanism—the production of carriers from the vacuum by the
applied field—which is then balanced against a scattering rate that is itself set by the field. We show by
explicit computation how this works for the case of the symmetric superfluid-Mott insulator transition of
bosons.
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The notion of quantum criticality provides one of the
few general approaches to the study of strongly correlated
quantum many-body systems [1]. The scale invariance that
characterizes the zero-temperature critical point leads to
characteristic universal power law dependences for various
quantities in its proximity; these dependences can be com-
puted within a continuum field theory.

While the power law dependences can generally be
related to an underlying set of (possibly unknown) expo-
nents by scaling arguments, establishing the actual mecha-
nism that gives rise to them—in the sense of prescribing a
controlled computation—is not always a trivial task. For
example, much attention has focused on understanding the
real-time dynamics at nonzero temperatures [2] where the
textbook procedure of analytic continuation from
Matsubara expressions typically yields incorrect answers
and no insight.

Here, we address another such question, that of transport
at finite fields. Specifically, consider a quantum-critical
point between an insulator and a metal or superconduc-
tor/superfluid characterized by a correlation length that
diverges as �� ��� and an energy scale that vanishes as
�� ��z, where � is a measure of the distance to the
transition. Dimensional analysis implies that the zero-
temperature conductivity obeys the scaling form

���; E� � E�d�2�=�z�1��
�

�

E��z�1�

�
(1)

in d spatial dimensions. Thus, generically, the system
exhibits a nonlinear current-voltage characteristic at criti-
cality. The question of interest to us is how the system
might produce such a response. Evidently, linear response
theory or naive perturbation theory to higher orders is no
help. Physically, the system must set up a steady state
whose properties depend in singular fashion on E with
no expectation that it resembles the steady state obtained
in thermal equilibrium.
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We show that the properties of such weakly interacting
fixed points may be understood as follows: The application
of an electric field leads to a biased growth of current
carrying fluctuations by an analogue of the Schwinger
mechanism [3], by which an electric field produces
electron-hole pairs from the vacuum. This process is non-
perturbative in the electric field. The fluctuations produced
in this way scatter from one another due to the interactions
at the fixed point, thus producing current relaxation, which
is again nonperturbative in the electric field at the fixed
point. Together, these effects establish a steady-state dis-
tribution that carries a current [4]. We implement this idea
for the simplest quantum phase transition with singular
transport—the symmetric superfluid to Mott insulator
transition of bosons in a periodic potential—and recover
the dependence (1) with z � 1. In d � 2 we find a linear
conductivity � � ��=4�e�2=h, different from those calcu-
lated previously [2,5]. The difference between these results
arises due to the different regimes of frequency, tempera-
ture, and electric field (!; T; E) to which they apply and the
different physical process important in each case. The
linear response calculated at zero temperature [5] amounts
to the limit (!! 0, T � 0, E � 0), while the finite-
temperature, linear response [2] corresponds to (! � 0,
T � 0, E � 0). Our result follows from taking the fre-
quency and temperature to zero at finite field (! � 0, T �
0, E � 0). The noncommutativity of the limits !! 0 and
T ! 0 was first recognized in [2]. Our result suggests that
similar care should be taken with the electric field. Next,
we outline our computation, which builds upon the impor-
tant work by Damle and Sachdev [2] on the finite-
temperature transport of the same model; see also the
interesting, but rather different, work of Dalidovich and
Phillips [6].

Field theory.—The critical region of the superfluid to
Mott insulator transition with particle hole symmetry is
described by a charged scalar field with a quartic interac-
tion [1,2]:
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H �
Z
ddx��y��r�yr��m2�y�� ���y��2	;

(2)

where � is the complex scalar field and � is its conjugate
momentum. These satisfy the usual commutation relations
���x; t�;��y; t�	 � i��x� y�. We choose the bare inter-
action � to have its fixed point value u��3�d with momen-
tum cutoff � [1] although we do not need the precise,
regularization-dependent, value. At the zero-temperature
critical point, the renormalized mass is zero corresponding
to a particular choice m� of the bare mass. The effects of
applying an electric field, E, are included by minimally
coupling to a vector potential; r�! D� � �r� iA��.
We choose the gauge A � Et for initial convenience, and
later we switch to a scalar potential.

Mode expansion.—The normal modes of this
Hamiltonian (in the absence of interaction) are charge
density fluctuations. These occur with positive and nega-
tive charges, corresponding to an increase or a decrease in
charge density from the average. The first step in our
analysis is to reexpress (2) in terms of creation and anni-
hilation operators for these normal modes. The transfor-
mation is standard for the Klein-Gordon theory. Using ay

and a to represent the creation and annihilation of posi-
tively charged density fluctuations and by and b for nega-
tively charged fluctuations, the noninteracting part of the
Hamiltonian reduces to

H 0 �
Z d2k

�2��2
�ay�k; t�; b��k; t�	



�k � Bk Bk

Bk �k � Bk

 !
a�k; t�

by��k; t�

 !
; (3)

where �k �
������������������
k2 �m2
p

is the mode energy and Bk �
��Et�2 � 2k �Et	=2�k. The Hamiltonian has an explicit
time dependence arising from our choice of gauge. This
time dependence is responsible for the production of fluc-
tuations by the electric field.

Schwinger mechanism.—Let us ignore the interaction
between the normal modes of the system. This allows us to
describe the pair production process, after which we will
put back the interactions. Our first step is to diagonalize the
Hamiltonian (3) using a Bogoliubov transformation.
Because of the time dependence of the Hamiltonian, the
transformation used to carry out this diagonalization must
itself be time dependent. This has important consequences
for the equations of motion. In the instantaneously diago-
nal basis, or adiabatic particle basis, the Heisenberg equa-
tions of motion for operators pick up extra terms from the
time dependence of the Bogoliubov transformation matrix.
We are concerned with the equations of motion for the
regular and anomalous distribution functions; f�k; t� �
hay�k; t�a�k; t�i � hby��k; t�b��k; t�i and g�k; t� �
hb��k; t�a�k; t�i, where the angular brackets indicate aver-
ages over the state of the system [7]. After transforming to
the adiabatic particle basis, the equations of motion for
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these reduce to

df�k; t�
dt

�
_�k�t�
�k�t�

Reg�k; t�;

dg�k; t�
dt

�
_�k�t�

2�k�t�
�2f�k; t� � 1	 � 2i�k�t�g�k; t�;

(4)

where �k�t� �
������������������������������������
��k � Bk�

2 � B2
k

q
� �k�Et is the mode

energy in the adiabatic particle basis. These equations
contain all of the ingredients necessary to describe the
Schwinger mechanism [3]. The terms proportional to
_�k�t� result from the time dependence of the Hamiltonian

and are responsible for pair creation. The second equation
can be solved explicitly for g�k; t� and substituted back
into the first. The resulting equation contains a source term
for the production of fluctuations, which includes oscilla-
tory behavior coming from the quantum coherence of the
pair production. If we ignore these transients, the source
term may be replaced by a delta function with the appro-
priate weight. The equation of motion for f�k; t� then
reduces to

df�k; t�
dt

� ��t� k � E=E2�e���k?
2�m2�=E: (5)

The pair production described in this way may be under-
stood by analogy with Landau-Zener tunneling [8] as
follows: under the action of the electric field, the momen-
tum of a charged excitation increases linearly in time as
k�Et. The energy of the charged excitation changes in
time accordingly; at large momenta it is proportional to
jk� Etj, and at a time t � �k �E=E2 it passes though a
minimum equal to m. This is very similar to the energy
dependence of modes in the Landau-Zener model. Except
for the Bose enhancement factor 2f�k; t� � 1 the pair
production Eq. (4) has precisely the same form as in
Landau-Zener tunneling.

Scattering and steady state.—The steady creation of
pairs from the vacuum will, in the absence of scattering,
lead to a secular divergence of the current. Thus, consid-
eration of the scattering is essential for understanding the
steady-state transport. Below d � 3, the critical behavior is
controlled by the interacting, Wilson-Fisher fixed point. If
we access the properties of this fixed point in a weak
coupling expansion, such as the 1=N expansion, which
we use in this Letter, then the leading order description
of the critical, steady state can be obtained by considering
the scattering of the particles produced via the Schwinger
mechanism. Heuristically, the pair production in (5) leads
to a growth in the current with a rate proportional to
E�d�1�=2, while scattering with a coupling of order 1=N to
N channels is expected (on dimensional grounds) to lead to
a current relaxation rate of order �1=N�

����
E
p

; together these
will reproduce (1) with z � 1. In the remainder of this
Letter we shall see how this insight can be turned into a
computation within the quantum Boltzmann equation
framework.
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Generally, 1=N expansions extend the number of modes
of the model from its initial value to some large number N,
allowing all of these modes to interact with one another. If
N is taken to be very large, the interaction may be ex-
panded perturbatively in 1=N. Crucially, in the present
case, we couple the electric field to just two modes of our
extended theory (i.e., one of the N=2 copies of the model).
The field induces fluctuations in these two modes via the
Schwinger mechanism. These fluctuations scatter into the
remaining N � 2 modes, thus allowing the modes that are
coupled to the electric field to reach a steady state. We dis-
cuss moving beyond leading order later in the Letter. The
details of how this 1=N expansion is set up are given in [9].

The scattering integrals in our Boltzmann equations may
be determined using several methods. In the case where
only regular distribution functions are required, it is pos-
sible to use Fermi’s golden rule. Since we also have to
consider anomalous distributions, this simplest approach
does not work. It is, however, possible to determine the
scattering integrals by using Heisenberg’s equations of
motion with the 1=N Hamiltonian and time-dependent
perturbation theory; this is after all how Fermi’s golden
rule is derived in the first place.

One-loop scattering integrals.—The one-loop correc-
tion is particularly simple to calculate. After calculating
the Heisenberg equations of motion including the interac-
tion Hamiltonian and then using mean field theory, one
finds that the only modification is to replace Bk with Bk �
�k, where the self-energy �k � m�E�2=�2�k�. An expres-
sion for the one-loop renormalized mass m�E� is given to
lowest order in a 1=N expansion in Eq. (7) below [10]. By
making a new Bogoliubov transformation to the one-loop
renormalized adiabatic particle basis, one may reduce the
Heisenberg equations for the distribution functions to the
same form as (4), replacing the adiabatic mode energy
�k�t� everywhere with the renormalized mode energy,

�k;m�t� �
����������������������������������������
�k� Et�2 �m�E�2

p
. This modification points

to a feedback between the production of fluctuations and
the scattering between them. Since the rate of production
depends exponentially upon the energy gap, it is sup-
pressed by scattering—although its functional dependence
on E is not changed. Of course, this scattering is not
sufficient to establish a steady state and, indeed, can be
ignored at leading order in 1=N altogether as will be clear
below.

Two-loop scattering integrals.—The next order scatter-
ing integral is deduced from the Heisenberg equations of
motion for the various mode operators followed by time-
dependent perturbation theory to lowest order in 1=N. To
lowest order in 1=N and at zero temperature, the dominant
scattering is due to processes where the modes coupled to
the E field scatter off one another and into the N � 2
uncoupled modes of the extended theory. At this juncture,
it is useful to make the change of variables t, q! t, k,
where k � q� Et is the instantaneous momentum of the
quasiparticle. Rather than label the normal modes by their
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initial momentum and keep the label fixed in time, we
choose to label them with their instantaneous momen-
tum. This is equivalent to changing gauge to a scalar
potential. With this change of variables all explicit time
dependence is removed, except for in the distribution
functions. In particular, �q�t� � �k �

������������������
k2 �m2
p

. The re-
sulting Boltzmann equations are

�@t � E � @k	f�k; t� � �
E � @k�k

�k
Reg�k; t�

� 	k�t��Reg�k; t� � f�k; t�	;

�@t � E � @k	g�k; t� � �2i�kg�k; t� �
E � @k�k

�k


 �2f�k; t� � 1	 � 	k�t�f�k; t�

(6)

with the supplementary definitions

	k�t� �
8

N

������������������
jkj � kk

q
�k

Z dk0

�2��2

�������������������
jk0j � k0

k

q
�k0

f�k0; t�;

m�E; t� �
16�
N

Z dk
�2��2

f�k; t�
�k

��:

(7)

The damping factor 	�k; t� is derived allowing for the
zero-temperature, critical propagation of the N � 2 un-
coupled modes.

Scaling and current.—The above equations clearly per-
mit a universal, steady-state solution whose properties are
governed only by the electric field and the fixed point value
of the coupling. Writing the scaling forms f=g�k; E� �
f=g�k=

����
E
p
� � f=g�~k�, m � ~m

����
E
p

, and 	 � ~	
����
E
p

, we
see that Eq. (6) reduces to E independent equations for
f=g�~k�. This by itself is sufficient to establish a current
proportional to Ed=2 in dimensions d < 3. For d > 3 the
fixed point is Gaussian and the necessity of including
dangerously irrelevant scattering processes modifies this
scaling.

We can make progress on the actual solution by making
two simplifications valid for the leading order (in 1=N)
computation of the current: we can ignore the mass renor-
malization and eliminate the second equation in favor of a
local source term [11]. With these we find the greatly
simplified and soluble equation

E �
@f�k�
@k

� �	kf�k� � e���
2
k=E��k � E=E2� (8)

with 	k and m�E� given by Eq. (6) in the case of steady-
state distributions.

The current carried in the steady state is given by

j � 2
Z dk
�2��2

kk
�k
f�k�; (9)

with an additional term involving g�k� being subdominant
in 1=N. Upon rescaling, this reduces to a form that, in two
dimensions, is proportional to the electric field. The con-
stant of proportionality is universal and may be calculated
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in the 1=N limit to be � � �N�=8�e�2=h [12], where
N � 2 in the physical system.

Dissipation and higher orders.—The steady state that
we have described involves a balance between pair pro-
duction, their acceleration by the field, and relaxation due
to scattering. The latter processes need to relax the current,
the number of charge carriers, as well as the energy. The
first two require processes present in the Hamiltonian but
energy relaxation is present only at leading order where the
infinitely many orthogonal modes act as a heat sink. In
order that we be able to go to higher orders in 1=N, we need
to understand how that problem is to be dealt with.
Qualitatively we expect to mimic the logic of linear re-
sponse theory, where Joule heating is anO�E2� process that
can be dealt with without invalidating the O�E� result one
computes. In our case the leading current response is
O�Ed=2� but the Joule heating j �E is still down by a factor
of E so the same logic is prima facie applicable. Explicitly,
this can be done by constructing a solution that carries a
heat current to the boundaries of the sample, e.g., trans-
verse to the direction of electric current flow [13]. Roughly,
this can be thought of as a local ‘‘effective temperature’’
Teff�y�, which drives a heat current 
r2Teff�y�. By scaling,
Teff /

����
E
p

. Requiring that the variation in Teff be less than
its mean value and factoring in the scaling form of 
 leads
to the conclusion that such a solution can be constructed
for a system with transverse dimension, Ly, and electric
fields satisfying Ly

����
E
p
 1. Such a restriction is not un-

usual, a similar construction for an ordinary metal at fi-
nite temperature also yields a bound on system size and
electric field [13]. While the estimate that we give would
apply to a generic critical point with z � 1, our particular
system is an even better bet for such a construction as 
 is
infinite at all T due to an absence of energy current
relaxation [14].

Bose gases.—While this work was motivated by the
fundamental question of understanding the nonlinear
quantum-critical states, we would be remiss if we did not
note that the Mott transition described by (1) has been
observed, remarkably enough, in atomic Bose-Einstein
condensates placed in optical lattices of variable depth
[15,16]. In this system, the role of the electric field is
played by an intensity gradient in the optical field, or
alternatively by an acceleration of the optical lattice. The
universal current predicted within our analysis amounts to
a steady flow of matter proportional to the acceleration of
the optical lattice. Field gradients and accelerations in
these systems are easily made large in the sense of our
theoretical discussion. Whether the nonlinear response
discussed here can be observed given the complications
of the confining potential and the differing requirements of
equilibration in these systems appears to be a fit topic for
further theoretical and experimental work.
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