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Extension to the Quantum Langevin Equation in the Incoherent Hopping Regime.
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An extension to the quantum Langevin equation is derived, that is valid in the incoherent hopping
regime, and which allows one to incorporate quantum tunneling events. This is achieved by the
inclusion of additional stochastic variables in the Langevin equation representing the tunneling
events. A systematic derivation of this extension and of its regime of validity is presented. The
study is motivated by efforts to determine the error in reading the state of a super-conducting
quantum bit.
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The quantum Langevin equation[1, 2] provides a phys-
ically appealing and numerically simple description of the
dynamics of a system coupled to a heat bath. It describes
the system’s non-linear semiclasical dynamics and the ef-
fects of coupling to quantum and thermal fluctuations in
the heat bath. It does not, however, describe quantum
tunneling of the system. Instanton approaches[3, 4, 5]
provide a powerful framework in which to describe these
latter effects. Here, we synthesize these two methods
within an extended quantum Langevin equation that in-
cludes quantum tunneling. We focus upon two effects;
quantum tunneling through or reflection from an energy
barrier. These may be incorporated into the Langevin
equation by the inclusion of additional stochastic vari-
ables, representing the tunneling and reflection events.
This is valid in the regime of incoherent hopping.

Specifically, we concentrate upon the case of the
Josephson junction. Quantum Langevin equations have
been used extensively in the study of such systems. Re-
cent experiments[6, 7] have probed Josephson junctions
in regimes where current analytical tools do not provide
a full description. In the experiments of Refs.[6, 7], a
Josephson junction was used to read out the state of
a charge/phase quantum bit. The most recent[7] made
novel use of the non-linear, semi-classical dynamics of
the junction through its vicinity to a classical bifurcation
instability. Readout incurred errors due to quantum ef-
fects (tunneling between phase-space trajectories[8]) and
thermal and quantum fluctuations in the transmission
line. Here, we consider an experimentally realisable al-
ternative scheme where the junction absorbs energy from
a chirped microwave pulse with frequency modulated to
match the response of the junction (whose frequency falls
as the amplitude of its response increases). Depending
upon the state of the qubit, the junction will either ab-
sorb enough energy to surmount the barrier— leading to
a π phase-shift in the reflected signal— or not. The read-
out incurs errors due to the effect of the bath and due to
quantum tunneling/reflection at the barrier.
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In order to fully understand such systems one must de-
scribe the non-linear semi-classical dynamics and quan-
tum tunneling in concert with coupling to thermal and
quantum fluctuations in the bath. One approach is to
follow the evolution of the density matrix through its
master equation. This is numerically extremely inten-
sive when the Josephson junction contains more than a
few levels. An extension of the Langevin equation is,
therefore, highly desirable[9]. We first give a heuristic
justification for such an extension, before turning to a
derivation within a Keldysh field theory. We describe
how this extended Langevin equation may be used to
estimate errors in the chirped pulse readout scheme.

Consider a Josephson junction coupled by a transmis-
sion lead of impedance Z to measurement apparatus.
The quantum Langevin equation is given by[3]

(

~

2e

)

CJ φ̈ + IJ sin φ(t) +
1

Z

(

~

2e

)

φ̇(t) = IN (t) + ID(t)

〈IN (ω)IN (−ω)〉 = 2~ω
1

Z
coth[~ω/2T ], (1)

φ(t) is the phase difference of the superconducting order
parameter across the junction, CJ is the junction capac-
itance and IJ is the Josephson current (IJ = (2e/~)EJ ,
where EJ is the Josephson energy). Fluctuations in the
transmission line produce a current noise IN (t). ID(t) is
a drive current produced by the microwave source.

It is useful to explicitly introduce the charge, n(t), on
the junction and re-write the quantum Langevin equation
(1) as a pair of coupled equations;

(

~

2e

)

φ̇ − n

CJ
= 0

ṅ −
(

~

2e

)

φ̇

Z
+ q̇ + IJ sin(φ) = ID(t)

〈q(ω)q(−ω)〉 =
2~

ωZ
coth(~ω/2T ) (2)

The noise is now given in terms of fluctuations in the
charge on the transmission lead, q(t). Eliminating n from
Eqs.(2) and substituting q̇ = IN recovers Eq.(1).

The dynamics of the Josephson junction is equivalent
to that of a rigid pendulum; the superconducting phase

http://arxiv.org/abs/cond-mat/0508261v1
mailto:andrew.green@st-andrews.ac.uk


2

difference plays the role of the angle of the pendulum
and the Josephson potential the role of the gravitational
potential. If the pendulum does not quite have enough
energy to perform a complete revolution, classically, it
will momentarily stop at some angle short of the vertical
and then reverse its motion. Quantum mechanics allows
the pendulum to tunnel through the remaining potential
barrier. If the pendulum does have sufficient energy to
pass through the vertical, the pendulum may be quan-
tum mechanically reflected from the barrier and its mo-
tion reversed. These two processes can be represented
by boundary conditions for the phase of the junction;
φ → −φ at t(φ̇ = 0) and φ̇ → −φ̇ at t(φ = ±π) or,
re-expressing these using the first of Eqs. (2)

φ → −φ at t(n = 0)

n → −n at t(φ = ±π) (3)

At each juncture where the junction/pendulum is mo-
mentarily stationary short of the vertical or passing
through the upwards vertical, with some probability, φ
and n are modified by quantum processes according to
Eqs. (3). We may heuristically modify the Langevin
equation in order to incorporate these effects by the ad-
dition of suitable δ-functions as follows:

(

~

2e

)

φ̇ − n

C
= −2

(

~

2e

)

∑

a

ηaφ(ta)δ(t − ta)

ṅ −
(

~

2e

)

φ̇

Z
+ q̇ + IJ sinφ

= −2
∑

b

ηbn(tb)δ(t − tb) + ID(t)

〈q(ω)q(−ω)〉 =
2~

ωZ
coth(ω/2T ). (4)

ta are times such that n(ta) = 0 and tb such that
φ(tb) = ±π. ηa and ηb are additional stochastic vari-
ables accounting for the probability of quantum tun-
neling/reflection. They take the values η = 0 or 1
with a probability P (η) that is a function of the en-
ergy of the junction at the stationary point, E =
EJ (1 + cosφ(t)) + n2/2C. Without a bath, P (η =

1) = 1/(e2πE/Ω + 1), where Ω = (2e/~)
√

EJ/C is the
curvature at the top of the junction potential. Cou-
pling to the bath renormalizes the potential[3] giving

Ω = (2e/~)
√

EJ/C
[

1 − (2e/~)
√

EJ/Z2C3

]

. Further

corrections occur due to the finite drive[4, 5] and may
be incorporated via additional modifications to P (η). In
the case of the chirped drive, the potential is zero at the
stationary points and these corrections are not required.

In a chirped readout, the junction will gradually absorb
energy from the microwave drive and go through a num-
ber of stationary points at which it approaches within
an (decreasing) energy E of the top of the junction po-
tential. Coupling to fluctuations in the transmission line
leads to an energy uncertainty ∆E = T at high tempera-
tures; this may be seen by linearizing Eq.(4) around the

classical, zero-noise solution with a chirped drive. The
error probability at each stationary point is given by the
convolution of the distribution of arrival energy with the
tunneling probability. The total error probability is given
by

∑n=nmax

n=1
[
∏n−1

i=1
(1−pi)]pn, where pn is the error prob-

ability at the nth stationary point. When the chirped
drive takes only a few cycles to bring the junction to the
top of its potential, only the error probability pnmax

will
be significant. In this case, analytic approximations to
the error probability may be made. In the more general
case, numerical integration of Eq.(4) provides an elegant
way of calculating the cumulative effect of errors.

Next, we derive the modified Langevin Eq.(4) from a
Keldysh field theory. The kernel for propagation of the
density matrix may be expressed as a Schwinger-Keldysh
field theory[11, 12, 13, 14]. In essence, the Keldysh field
theory expresses the propagation of the right and left
projections of the density matrix in terms of fields which
propagate forwards and backwards in time[14]. It is use-
ful to make a change of basis to the sums and differ-
ences of these fields. Since classical field configurations
take the same value for both forwards and backwards
propagation in time, the sum is known as the classical
component (denoted below with a subscript c) and the
difference is known as the quantum component (denoted
with a subscript q). In certain circumstances (discussed
below) the effective theory of the classical components
can be expressed as a quantum Langevin equation[1].

The Keldysh Lagrangian for the Josephson junction is

L(n, φ, Q, V )

=
~

2e
nσqc

x φ̇ − nσqc
x n

2CJ
+ EJ (cos(φc + φq) − cos(φc − φq))

+Qσqc
x

(

~

2e
φ̇ − V

)

+
1

2
V (t)

∫ ∞

−∞

dt′D−1(t, t′)V (t′).(5)

The fields n, φ, Q and V are vectors in the Keldysh
(quantum/classical) space, e.g φ ≡ (φc(t), φq(t)), except
where the indices q or c are given explicitly. Q is a
Lagrange multiplier that imposes the Josephson relation
V = ~φ̇/2e and V is the voltage across the junction. The
first term expresses the fact that φ and n are conjugate,
the second term gives the charging energy and the third
term the Josephson energy (or non-linear inductance en-
ergy). The final term describes voltage fluctuations at
the end of the transmission line. The correlation matrix
is given, in the Keldysh basis, by

D(t1, t2) = −i〈Vα(t1)Vβ(t2)〉 =

(

DK(t12) DR(t12)
DA(t12) 0

)

.

where the subscripts K, R and A refer to Keldysh, re-
tarded and advanced correlators, respectively. These are
calculated for a transmission lead in thermal equilibrium;

DR(t12) = DA(t21) = − i

2
θ(t1 − t2)〈[V (t1), V (t2)]〉

DK(t12) = − i

2
〈{V (t1), V (t2)}〉
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Their Fourier transforms are DR(ω) = i(ω − iδ)Z and
DK(ω) = 2iωZ coth(ω/2T ). The quantum Langevin
equation (2) can be derived from Eq. (5) as follows[1, 2]:

After integrating over Q, V is replaced by ~φ̇/2e in the
final term. The Josephson potential term is linearized
in φq, reducing it to 2φqEJ sinφc. This assumes that
the quantum mechanical spread of the phase difference
is small[15]. The term quadratic in φq is decoupled
via a Hubbard-Stratonovich transformation with a field
q̇. The resulting theory is linear in φq and nq. Inte-
grating over these fields leads to δ-functionals that im-
pose Eqs.(2). The remaining quadratic Lagrangian for
q(t) determines its correlation function; 〈q(ω)q(−ω)〉 =
DK(ω)/[DR(ω)DA(ω)]. After these manipulations, the
Keldysh partition function reduces to

Z =

∫

DφcDncδ

[(

~

2e

)

φ̇ − n

C

]

×δ

[

ṅ −
(

~

2e

)

φ̇

Z
+ q̇ + 2IJ sin(φ)

]

× exp

[

− ~

ωZ
coth(~ω/2T )q(ω)q(−ω)

]

(6)

which is equivalent to Eqs.(2).
This derivation ignores instantons; imaginary-time di-

versions of the Keldysh contour. These describe the
quantum tunneling and reflection discussed in our heuris-
tic derivation of the extended Langevin Eq.(4). Instan-
tons occur on both the outgoing and return parts of the
Keldysh contour, as shown in Fig.1. Each dot corre-
sponds to an imaginary time excursion in the evolution of
the fields in the path integral. During the imaginary-time
evolution, the potential is inverted and the equations of
motion are such that the particle can travel between min-
ima of the potential in a classically forbidden way[16].

Consider the effect of a single instanton at time t0 on
the upper part of the Keldysh contour that takes the for-
ward propagating φ+ to −φ+. This instanton leads to
boundary conditions φ+(t0 − 0+) = −φ+(t0 + 0+) in the
path integral for the real-time evolution of the fields φ(t)
and n(t). The probability of this instanton is given by the
exponential of its classical action[16], possibly modified
by finite drive currents[4, 5]. The full path integral in-
cludes a sum over all possible configurations and numbers
of instantons, weighted with the appropriate probability.
In the absence of a bath, these instantons are positioned
independently on the Keldysh contour each occurring at
a stationary point of the classical evolution[16].

Coupling to bath fluctuations induces interactions be-
tween instantons, tending to bind them in pairs. Pair-
ing occurs both between instantons and anti-instantons
on the same part of the Keldysh contour and on oppo-
site parts of the the Keldysh contour. Consider one in-
stanton and one anti-instanton both on the upper con-
tour. In the time between these two instantons, the fields
on the upper and lower contour are very different and
φq is large. A large cost is incurred in the action due

FIG. 1: Schematic Diagram of the Real Time Integra-

tion Contour Including Instantons. a) Shows the regime
of coherent hopping where instantons are unbound. b) Shows
the regime of incoherent hopping, where instantons are bound
in pairs.

to the term (~/2e)2φ̇q(ω)φ̇q(−ω)DK(ω)D−1
R (ω)D−1

A (ω),
causing an attractive interaction between the instan-
ton and anti-instanton. Similar arguments apply for an
instanton/anti-instanton pair on opposite parts of the
Keldysh contour. The transition between the bound
and unbound phase of the instantons is the diffu-
sion/localisation transition of Ref.[17]. A large value of
φq implies that the system is in a coherent superposition
of very different classical states. Coupling to a heat bath
causes this coherence to decay; in a sense the heat bath
measures the state of the system.

For an instanton/anti-instanton pair separated by
a real time τ , the quantum component of the junc-
tion phase is given by φq(t) = 2π[θ(t + τ/2) − θ(t −
τ/2)], so that φq(ω) = πτ sin(ωτ/2)/(ωτ/2). Using a
high-momentum cut-off, Λ and in the limit T → 0,
DK/(DADR) = 2|ω|(1 + 2e−~|ω|/kT )/Z and the dissi-
pative contribution to the action is given by SDiss =
i(h/2e2Z)[ln(Λτ) + (kT τ/~)2]. We interpret eiSDiss/~ as
a distribution function for τ . At zero temperature, one
finds that for Z < h/2e2 the instantons are bound and
tunneling is incoherent. At finite temperatures, the in-
stantons are, strictly, always bound on a timescale of
order τ ∼ (2πe/k)

√
2hZ; coherence between tunneling

events is lost on timescales greater than this.

Now let us incorporate these ingredients into an ex-
tended Langevin equation. The Langevin equation is the
effective theory of the classical part of the fields, repre-
sented as a differential equation with noise. Of course,
it is not always (or even usually) possible to represent
a field theory in this way. The key feature above that
allowed the effective theory for the classical components
to be written in Langevin form was that all terms, aside
from the coupling to the bath, could be linearized in the
quantum components. This required that the quantum
components be small, a condition that is satisfied explic-
itly in the incoherent hopping regime [1, 2, 15]. In this
regime, we can decouple the quadratic term in φq as be-
fore. The path integral reduces to a sum over sectors with
different configurations of instanton pairs (we need only
consider pairs between the upper and lower part of the
Keldysh contour; those on the same contour will have
no effect). Each sector is weighted in the sum by the
probability of producing the instanton pairs[3, 16]. After
integrating out nq and φq the partition function reduces



4

to

Z =
∑

{ta,tb}

∏

{ta,tb}

∫

φc(ta − 0) = −φc(ta + 0)
nc(ta − 0) = −nc(ta + 0)

DφcDnc

×δ

[(

~

2e

)

φ̇ − n

C

]

δ

[

ṅ −
(

~

2e

)

φ̇

Z
+ q̇ + 2IJ sin(φ)

]

× exp

[

− ~

ωZ
coth(~ω/2T )q(ω)q(−ω)

]

P (ta)P (tb). (7)

P (ta) is the probability of producing the instanton pair
corresponding to tunneling and P (tb) the probability of a
pair corresponding to reflection. The path integrals over
φc and nc are carried out with the boundary conditions
for the configuration of instantons in that sector. We en-
code these boundary conditions within the δ-functionals
as follows:

Z =
∑

{ta,tb}

∏

{ta,tb}

P (ta)P (tb)

∫

DφcDnc

×δ

[

(

~

2e

)

φ̇ − n

C
+ 2

(

~

2e

)

∑

a

φ(ta)δ(t − ta)

]

×δ

[

ṅ − ~φ̇

2eZ
+ q̇ + 2IJ sin(φ) + 2

∑

b

n(tb)δ(t − tb)

]

× exp

[

− ~

ωZ
coth(~ω/2T )q(ω)q(−ω)

]

(8)

Eq. (8) is equivalent to the extended Langevin equa-
tion(4). The drive current ID(t) on the right-hand side
of the second of Eqs.(4) arises via a term ID(t)φq(t) in
Eq.(5). The drive leads to a modification of the instanton
action and probability due to the possibility of photon
assisted tunneling[4]. The extended quantum Langevin
equation (4) is valid in the regime of incoherent hopping
provided that the constituent steps—the derivation of
the quantum Langevin equation itself [1, 2, 15] and the
instanton calculation [3, 4, 18]— are valid.

To conclude, we have considered an instanton ex-
pansion within the Keldysh field theory of a Joseph-
son junction coupled to a heat bath. Using this ex-
pansion, we have developed extensions to the quantum
Langevin equation, which incorporate quantum features
of the junction dynamics. This extended Langevin equa-
tion represents a synthesis of established techniques for
dealing with semi-classical dynamics in the presence of
environmental fluctuations[1, 2] and tunneling[3, 4]. It
is valid in the regime of incoherent hopping. This ex-
tended Langevin equation allows numerical simulation of
the junction dynamics in response to a time-dependent
drive current, including quantum and thermal effects of
the bath, non-linear classical dynamics and quantum dy-
namics of the junction.
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