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Spin densities in pseudoclassical kinetic theory
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It is shown that pseudoclassical many-particle systems allow for observable consequences of the spin
degrees of freedom, in contrast to the one-particle system, where a consistent formulation of spin space density
is impossible. After quantization, this density can then be directly compared to the decomposition of the
Wigner operator in terms of spin matrices, in both the nonrelativistic and the relativistic context. From an
expansion of the Dirac spinors in terms of large and small components it is seen that in the nonrelativistic limit
the pseudoscalar, the timelike component of the axial-vector current, and the spatial components of the vector
current vanish. The spatial components of the axial-vector current vanish in the pseudoclassical limit. The
pseudoclassical appearance of spin is due to the spin-tensor contribution.@S1050-2947~97!00606-9#
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I. MOTIVATION

In recent years the prospect of identifying a quark-glu
plasma in nucleus-nucleus or heavy-ion collisions h
aroused great interest in the theoretical description of ch
symmetry restoration under nonequilibrium condition
Much of the effort in understanding the basic physics of t
problem has gone into the formulation of a transport the
for the relevant degrees of freedom, quarks, gluons, and
sons. Traditionally these transport theories have been se
for on-shell particles within the framework of a semiclassi
approximation. By the methods of field theory similar equ
tions can be derived@1#, although the physical interpretatio
then remains partly obscured due to the difficulty of int
preting the classical limit of quantum field theory in terms
particles. The classical field is dominated by coherent st
with an indefinite particle number@2#. One way out is to
stick to field theory concepts and to try to go beyond
semiclassical and on-shell approximations@3#. In this paper
we rather do the reverse.

The details of the transition from classical to quantu
physics, apart from its formal mathematical context, are
general not well understood@4#. In particular, there seems t
be no classical analog of the quantum-mechanical spin
fundamental fermions, like quarks and leptons. This sho
be contrasted with the orbital angular momentum and e
the spin 1 of vector bosons, which, apart from their qu
tized nature, can be accounted for classically. Although
is an intriguing problem by itself, it will not be of concer
here. Instead we will focus on a closely related question

In transport theories for relativistic fermions the classi
limit appears to contain a spin density@5#. As spin is consid-
ered to be a purely quantum-mechanical effect this stat
affairs is at least confusing. The goal of this paper is
analyze this ‘‘classical’’ appearance of spin in detail. W
will take the approach of introducing anticommuting coor
nates in order to obtain a pseudoclassical description

*Present address.
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particle with spin 1
2. The kinetic theory derived from the

underlying pseudoclassical system no longer contains the
ticommuting coordinates due to the statistical averaging
herent to any kinetic theory. Within the framework of th
paper we identify this resulting kinetic theory, containin
only commuting quantities with the physically meaningf
one. We hope that a proper treatment of spin eventually
proves our understanding of the\→0 limit of relativistic
quantum transport theories for fermions.

In this paper we treat two questions, closely related
each other. First of all we will briefly discuss the role of sp
in pseudoclassical systems. In Sec. II, we will introduce
this end the formalism of pseudoclassical mechanics rela
to N51 supersymmetry.

It is well known that classical particles with spin12 can be
described in terms of anticommuting variables and that
spin is unobservable in the one-particle system@6#. This con-
struction can be used to discuss various dynamical prope
of such particles@7# and it can be generalized to includ
spin-1 fields such as Yang-Mills bosons@8#. Similarly, one
expects a direct relation between the results presented in
paper, and a world line reformulation of quantum fie
theory @11# is, although extremely interesting, not discuss
here. In Sec. III, we will reconsider the question of measu
billity in a many-particle system and set up a transport the
including the spin degrees of freedom. The physical nat
of the anticommuting variables seems questionable. In qu
tum theory, however, we restrict their physical meaning
the expectation values of their products. Here we simila
overcome this problem within a many-particle context.

In Sec. IV we will disentangle the nonrelativistic and cla
sical limiting procedures in the quantum-mechanical appe
ance of spin. We discuss the spinor decomposition of qu
tum Wigner functions in both relativistic and nonrelativist
settings. We argue there is no simple Foldy-Wouthuys
transformation that will yield the nonrelativistic Wigne
function when applied to the relativistic free theory. An e
pansion of the relativistic Wigner function in terms of larg
and small components of the Dirac spinors allows an an
sis of the nonrelativistic limit. It can be seen that in th
4093 © 1997 The American Physical Society
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4094 55F. M. C. WITTE
classical limit the axial-vector contribution vanishes and
spin-tensor contributions survive. Pseudoscalar contribut
vanish due to the nonrelativistic limit. Finally, we summari
the main conclusions.

II. N51 PSEUDOCLASSICAL MECHANICS

The purpose of this section is to introduce the main t
used in this analysis:N51 pseudoclassical mechanics. W
will start out by assigning both commuting and anticomm
ing coordinates to a single particle. Next we write down
supersymmetric action principle that yields the free-parti
equations of motion for the commuting coordinates. Af
explicitly demonstrating that a particular bilinear form of th
anticommuting coordinates represents an intrinsic ang
momentum, we will show that it is unobservable. Since t
section deals with a rather well documented system, our
sentation will resemble earlier works@6#.

Let us introduce a supertime variable consisting of a p
(t,t) of which t is commuting andt satisfiest250. A par-
ticle’s position is specified by a commuting three-vec
XW (t,t), which has the decomposition

XW ~ t,t!5xW~ t !1uW ~ t !t, ~2.1!

because a Taylor expansion int truncates after the first or
der. SinceXW is a commuting object, so isxW , whereasuW must
be anticommuting. A small translation in (t,t) space has the
following effect onXW :

XW ~ t1et,t1e!5XW ~ t,t!1d
]

]t
XW ~ t,t!1euW ~ t !, ~2.2!

wheree is an infinitesimal anticommuting parameter.
The generators of these ‘‘supertranslations’’ are

Q5t
]

]t
2

]

]t
, H5

]

]t
, ~2.3!

and they span the algebra

@Q,H#5@H,H#50, @Q,Q#5H. ~2.4!

The square brackets in this equation are supercommuta
i.e., they are commutators~also denoted@A,B#2) when at
least one of the entries is commuting and they are antic
mutators (@A,B#1) when both entries are anticommutin
The transformation rules for the components ofXW are given
by

dxW5auW , duW 5axẆ , ~2.5!

wherea is infinitesimal. If P is the parity transpormation
then we will assume thatuW transforms like a vector unde
parity, i.e.,P(uW )52uW . The reason for doing so is obviou
from Eq. ~2.5!. The supersymmetry transformation mixesuW

andxW and so giving them different parity would lead to ve
tor and axial-vector component mixing. This is undesirab
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u45
1

6
eabcuaubuc ~2.6!

is a pseudoscalar under the integration measure to be de
later.

If we want to construct a supersymmetric action fun
tional, we need to use derivativesD that are covariant with
respect to these translations, that is,D must satisfy

@Q,D#150. ~2.7!

It is straightforward to check that

D5t
]

]t
1

]

]t
~2.8!

satisfies this requirement.

A. Free particles

The general form of a supersymmetric action functiona

S@XW #5E dt dtL~XW !, ~2.9!

where the integration is standard over the ‘‘normal’’ timet
and Berezin integration over the anticommuting variablet.
Due to the fact that the integration measuredt dt is anticom-
muting, the minimal number ofD ’s in a nontrivial Lagrang-
ian is 3. The simplest nontrivial choice therefore is

S1@XW ~ t,t!#5E dt dt
1

2
DXaD~DXa!, ~2.10!

where we introduced the latin indicesa51,2,3. By working
out the two factors

DXa~ t,t!52ua~ t !1t ẋa~ t ! ~2.11!

and

DDXa5 u̇a~ t !t1 ẋa~ t !, ~2.12!

one finds after performing the Berezin integration overt

S15E dt
1

2
$ẋaẋa2uau̇a%. ~2.13!

The equations that follow from extremizing this action ar

ẍa50,
~2.14!

u̇a50,

indeed, forxW , the free-particle equations of motion.



he

th

ng

g
i
on

sfy
he
ts

-

n

t

s an
an
,

nt
ng
pin

nce
om-
nce
,
m-

s.
we
te-
he
tly,
is-
ish-

ir
the

e

55 4095SPIN DENSITIES IN PSEUDOCLASSICAL KINETIC THEORY
B. Interaction with an external field

In order to obtain insight in the physical content of t
anticommuting variablesuW we add the following interaction
term to the action:

V5
1

2
eabcBaubuct, B5const. ~2.15!

This interaction term breaks supersymmetry; it leaves
equation forxW unaffected, while for theuW we find

u̇a5eabcBbuc . ~2.16!

The solution to Eq.~2.16! represents a vector precessi
around theBW axis with a frequencyuBu. Of course this looks
like the precession of an angular momentum in a homo
neous magnetic field. To identify this angular momentum
detail we allowBW to bexW dependent. In this case the equati
for ẍa is modified to read

ẍa5¹aBbSb , ~2.17!

where we defined the vectorSW by

Sa5
1

2
eabcubuc . ~2.18!

Obviously,SW acts as an effective magnetic dipole in theBW

field. ForSW to be a proper angular momentum it must sati
the SO~3! commutation relations. To check this we insert t
expression forSW into the supersymmetric Poisson bracke
defined as

@ f ~ua!,g~ub!#5S ]

]uaR
f ~u! D S ]

]uaL
g~u! D , ~2.19!

where the subscriptsL andR denote left and right deriva
tives, respectively. The vector defined in Eq.~2.18! indeed
satisfies the SO~3! commutation relations under Poisso
bracketing

@Sa ,Sb#5eabcSc , ~2.20!

identifying it as an angular momentum. Using Eq.~2.18! we
obtain for the time derivative of the spin vector

Ṡa5eabcu̇buc . ~2.21!

When we substitute Eq.~2.16! in Eq. ~2.21!, and use the fac
that u250, we find the equation of motion forSW to read

Ṡa5eabcBbSc . ~2.22!

We can complete the algebra by noting that

@ua ,ub#5dab ~2.23!

and

@ua ,Sb#5eabcuc . ~2.24!
e

e-
n

So we conclude that the pseudoclassical particle carrie
intrinsic angular momentum, i.e., spin. In particular, one c
see from its definition~2.18! that spin is an axial vector, i.e.
under the parity operationP we have for the vectorsxW ,uW , and
SW that

P$xW ,uW ,SW %5$2xW ,2uW ,SW %. ~2.25!

Note that this fixesBW as an axial vector as well. A consiste
formulation of the quantum theory of these anticommuti
quantities will indeed force us to assume the spin to be s
1
2.

C. Measurement on anticommuting quantities

Since all measurements yield real numbers, the existe
of an experiment that measures some effect of the antic
muting degrees of freedom is closely linked to the existe
of a mapF that mapsuW onto the real numbers. In practice
this boils down to some kind of averaging over the antico
muting degrees of freedom

F:^g&5E d3ug~uW ! f ~uW ,t !, ~2.26!

with some weight functionf . Our conventions imply that
*d3uu1u2u351 as a scalar under parity transformation
This choice may deviate from standard notations, but
believe it is more natural. Upon quantization Berezin in
gration goes over into the Tr operation of taking traces. T
latter is obviously a scalar under parity. Consequen
^u4&5*d3xd3uu4 is a pseudoscalar. For the sake of cons
tency, only commuting objects should generate a nonvan
ing average. This constraint onf implies it is of the form

f ~ua!5u1u2u31
1

2
Caua . ~2.27!

The first term here allows purec numbers to be equal to the
average. We must distinguish between the unit 1 and
pseudoscalar unitu4, i.e.,

E d3uu1u2u351, ~2.28!

E d3u
1

6
eabcuaubuc5^u4&. ~2.29!

The second term in Eq.~2.26! yields an average value for th
spin vectorSW by

^Sa&5E d3ueabcubucCdud5Ca^u4&. ~2.30!

Obviously,CW must be a vector sinceSW is an axial vector.
Since we have chosenuW to be a vector in the introduction to
this section, we see thatf is a scalar operator.

An additional requirement is@6#

^g~uW !g* ~uW !&>0. ~2.31!
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4096 55F. M. C. WITTE
Yet by inserting the functions

g6~ua!5u16ıu2 , ~2.32!

we obtain

^g6g6* &572C3 . ~2.33!

Depending on the sign ofC3, Eq.~2.31! fails either forg1 or
for g2 . ChoosingCW 50 entirely trivializes f (ua), so we
must conclude that in the one-particle system no experim
i.e., nontrivial f (uW ), can detect the presence of the antico
muting degrees of freedom. In particular this means, by
ing Eq. ~2.27! with CW 50 in Eq. ~2.17!, that

^ẍa&50. ~2.34!

The interaction ofBW with SW causes no observable effect o
the equations of motion of the particle.

This may at first sight seem an unavoidable conseque
of including degrees of freedom that have an ‘‘unphysica
anticommuting nature. Yet upon quantization it can
shown that Eq.~2.31! canbe fulfilled @6#. We will postpone
the discussion of this to Sec. IV, where we treat a quanti
system. In the next section we set out to show that the c
sequences of Eq.~2.34! can be avoided. Many-particle sys
tems will allow for observable consequences of spin.

III. N51 MANY-PARTICLE SYSTEM

In this section we will investigate the properties of t
spin vectorSW defined in the preceding section, in a man
particle system. In the case of orbital angular momentum
limit \→0 implies that only large quantum numbers w
survive. In the case of spin this is obviously no remedy. Y
from physical experience we know that systems contain
an extremely largenumberof spins allow for observable
consequences of the interactions among the spins. S
seems natural to consider a many-particle system as a
sible way to study a ‘‘classical’’ appearance of spin. Furth
more, as we will now show, in a two-particle system one c
satisfy Eq.~2.31!.

A. The two-particle system

The main problem with the densityf in the one-particle
system was its inabillity to handle complex functions of t
ua correctly. A two-particle system offers the opportunity
evade this problem at the expense of restricting the poss
values for the total spin. Consider a distribution function
the form

f ~uW 1,uW 2!5u1
1u2

1u3
1u1

2u2
2u3

21Caua
1u1

2u2
2u3

21Daua
2u1

1u2
1u3

1.
~3.1!

When taking the average

^g~uW 1!g* ~uW 1!1g~uW 2!g* ~uW 2!&57$C31D3% ~3.2!

we see that Eq.~2.31! can be satisfied if the total spin van
ishes and if we restrict our attention to averages. We are
lead to the formulation of measurability in a statistical sen
In particular, by using the delta functions
t,
-
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E d~u2u i !du51, E ud~u2u i !du5u i ,

d3~uW 2uW i !5d~u12u1
i !d~u22u2

i !d~u32u3
i ! ~3.3!

we can rewrite Eq.~3.1! as a two-particle spin space densi
F2,

F2~uW !5)
i52

2

d3~uW 2uW i !1(
i51

2

Ca
i uad

3~uW 2uW i !)
jÞ i

u1
j u2

j u3
j ,

~3.4!

and averages are calculated from

^g~uW !&5E d3uH E )
i
d3u ig~uW !F2~uW !J . ~3.5!

These averages now behave well. A direct consequenc
this reformulation is that the equations of motion forxW be-
come nontrivial

^ẍa
i &52^¹aBbSb

i &, i51,2. ~3.6!

We have achieved that the averaging procedure is n
well behaved with respect to linear complex functions ofuW .
Furthermore, we notice that the anticommuting variables
ter the equations of motion forxW only through their quadratic
combination inSW . In Sec. III B we will see how this can be
exploited.

The basic idea is to generalize to anN-particle system
FN , include the commuting dergrees of freedom, and sh
that the density obtained in this way satisfies a Klimontov
equation. It can then be identified with anexactphase-spin
space density by reexpressing all the dependence onuW in
terms of the spin SW . Suitably averaging this exac
N-particle density then yields a kinetic equation for the a
eraged phase-spin space density.

B. The pseudoclassical many-particle system

The purpose of this subsection is to show that for
pseudoclassicalN-particle system an exact phase-spin spa
density satisfying a Liouville-type evolution equation can
constructed. TheN-particle generalization of Eq.~3.4!, in-
cluding the commuting degrees of freedom, is given by

FN~xW ,pW ,uW ;t !5(
i51

N

d3„xW2xW i~ t !…d3„pW 2pW i~ t !…

3$d3~uW 2uW i !1Ca
i ~ t !uad

3~uW 2uW i !%

3)
jÞ i

d3~uW 2uW j ! ~3.7!

as a function of the coordinatexW , momentumpW , uW , and time
t. The time dependence ofFN originates from the particle
coordinates that depend on time and from the tim
dependent vectorsCW j . In order to fix this time dependenc
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55 4097SPIN DENSITIES IN PSEUDOCLASSICAL KINETIC THEORY
we resort to the so-called Klimontovich equation for exa
phase-space densities. LetK be the super-Liouville operato
defined by

K5
]

]t
1 ẋa

]

]xa
1 ṗa

]

]pa
1 u̇a

]

]ua
; ~3.8!

then it is easy to show thatFM satisfies the Klimontovich
equation

KFN~xW ,pW ,uW ;t !50. ~3.9!

Inserting Eq. ~3.7! into the Klimontovich equation,~3.9!
yields the expression

(
i51

N

Ċa
i ~ t !uad

3~uW 2uW i !)
jÞ i

d3~uW 2uW j !

5(
i51

M

Ca
i ~ t !u̇ad

3~uW 2uW i !)
jÞ i

d3~uW 2uW j !, ~3.10!

from which to solve forCW j (t). Equating each summand se
erately and using Eq.~2.16! gives

Ċa5eabcBbCc , ~3.11!

the equation of motion for the vectorsCW j . It coincides with
the equation for the spin vectorSW , as expected.

FN(xW ,pW ,uW ;t) is an exact phase-spin space density satis
ing an evolution equation~3.9!. Yet the dynamics of the
system is still rather simple and will not lead to an interest
kinetic equation because the interactions among the part
are missing. Improving this state of affairs will require us
introduce anxW -dependent vector fieldBW . Furthermore, the
vectorsCW j will then also become dependent on the parti
position and hence the spin density, i.e., the second term
Eq. ~3.7!, will become a local quantity. Consequently, w
would once more face the problem of satisfying Eq.~2.31!,
knowing that it will be violated locally anyhow. Howeve
now the situation is different. We are working in a man
particle enviroment and we will proceed towards a statist
description of the system. In particular, the question of
measurability of the coordinatesuW is no longer of interest
since it represents microscopic information. The relev
physical observable relating to the anticommuting degree
freedom has now become the macroscopic expectation v
of SW .

C. Pseudoclassical transport theory

In this section we want to take the final step in our arg
ment. We will assume some kind of averaging of the ex
densityFN and show how the resulting smoothed densityf
satisfies a transport equation. Let us decomposeFN into an
averaged part and a fluctuation part as

FN~xW ,pW ,uW ;t !5^FN~xW ,pW ,uW ;t !&av1dFM~xW ,pW ,uW ;t !.
~3.12!

The exact nature of the averaging is immaterial; one sho
note, however, that any averaging over the anticommu
t

-

g
es

in

l
e

t
of
ue

-
t

ld
g

uW i will removeall the dependence on these variables due
the nature of Berezin integration. The expectation value
the exact density will only depend on the expectation val
of the unit and the spin vectorSW . So

f ~xW ,pW ,SW ;t !5^FN~xW ,pW ,uW ;t !&av ~3.13!

will only depend on the spins, through theirCW j , lying within
the volume elements of phase space averaged over.

We add particle interactions by relating the vector fie
BW with f through the electrodynamics relation

Ba~xW ,t !
av5

m0

2pE d3x8
eabcebde$¹dMe~xW8!av%~xc2xc8!

uxW2xW8u3
,

~3.14!

where the magnetizationMW is given by

Ma~xW !av5E d3pWd3uWSaf ~xW ,pW ,uW ;t !. ~3.15!

From Eq.~3.12! we see that the exact quantities are related
their averages by adding fluctuations

BW 5BW av1dBW ,

MW 5MW av1dMW . ~3.16!

By observing that

u̇b
]

]ub
Sa5Ṡa , ~3.17!

we may interpretf (xW ,pW ,SW ;t) as a function ofSW and use

u̇b
]

]ub
f ~xW ,pW ,SW ;t !5Ṡb

]

]Sb
f ~xW ,pW ,SW ;t !. ~3.18!

Since the quantitySW is commuting and appears at most li
early in all expressions we replace it by itsc-number repre-
sentation, its expectation value. All reference to the a
commuting variables has disappeared. Averaging
Klimontovich equation~3.9! now yields

H ]

]t
1 ẋa

]

]xa
2

]~Bk
avMk

av!

]xa

]

]pa
1~eabcBb

avMc
av!

]

]Sa
J

3 f ~xW ,pW ,SW ;t !

5H ]~dBkdMk!

]xa

]

]pa
1~eabcdBbdMc!

]

]Sa
J

3dF~xW ,pW ,SW ;t !. ~3.19!

The collisions term can be extracted from the right-hand s
of this equation. If we assume that asN→` the fluctuations
can be neglected and if we remove the explicit notation fr
the averaged quantities, we find
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4098 55F. M. C. WITTE
H ]

]t
1 ẋa

]

]xa
2

]~BW •MW !

]xa

]

]pa
1~BW `MW !

]

]Sa
J f ~xW ,pW ,SW ;t !50,

~3.20!

the Vlasov equation for the system. Equation~3.20! de-
scribes the transport phenomena that take place in this m
particle system due to mutual spin-spin interactions. The
lission term can be retrieved from the Klimontovich equati
by giving the right-hand side of Eq.~3.19! a more detailed
treatment@1#.

IV. QUANTUM SPIN

In the previous sections we have established aclassical
kinetic theory explicitly containing spin degrees of freedo
The result of our labor was an equation@Eq. ~3.20!# describ-
ing the nonequilibrium physics of a system containing a v
large number of particles, each carrying a magnetic dip
moment proportional to its spin. In this section we ma
contact with the relativistic formulation of quantum kinet
theory for particles with spin. We proceed by formulating
decomposition of the phase-spin space density that u
quantization grows into the spinor decomposition of the f
mionic Wigner function@5#. The latter is then expanded i
terms of large and small components allowing a careful se
ration between the nonrelativistic and the classical limit.

A. Nonrelativistic spin

If we write down the most general, internally consiste
expansion of the phase-spin space density in terms of p
ucts ofuW , one finds

f5su1u2u31pu41CW •uW . ~4.1!

Let us discuss the terms not appearing in this expansion.
could have added a term proportional to

Tabuaub1
1

2
taeabcubuc ~4.2!

for some vectortW and some antisymmetric tensorTab . They
will generate an expectation value foruW . The vectortW will
give an axial vector contribution tôuW &, but since this is a
vector we must havetW50. The tensorTab will give a vec-
torlike contribution and therefore seems to be accepta
But remember thatuW is an anticommuting quantity. So an
consistently defined average value would have to satisfy

^u1u2&52^u2u1&. ~4.3!

But if we rewrite this in terms of connected and disconnec
contributions we find

^u1u2&con1^u2u1&con52^u1&^u2&. ~4.4!

This equation can only be true for^uW &50 and thusTab50.
Finally, an additional linear contribution of the form

eabcaabuc ~4.5!
y-
l-

.

y
le

on
-

a-

,
d-

e

e.

d

for some antisymmetric tensorai j will give a vectorlike con-
tribution to the average ofSW , which is axial. Soai j50. We
see that Eq.~4.1! is in fact the most general expansion w
can make.

Now consider the quantization of the one-particle syste
Classically, the anticommuting coordinatesuW satisfy the
Poisson bracket

@ua ,ub#P5dab . ~4.6!

Quantization now implies that we make the transition to
anticommutator

@ua ,ub#15ı\dab . ~4.7!

By defining

sa5ıA 2

ı\
ua , ~4.8!

the components ofsW satisfy the anticommutation relations

@sa ,sb#152dab , ~4.9!

defining a Clifford algebra. Note thatsW transforms like a
vector under parity, hence they are not generators of SO~3!
or one of its representations and cannot be identified with
Pauli spin matrices. We will return to this point shortly. Th
sW can be identified with a set of 232 matrices and substi
tuting them into the one-particle spin density@Eq. ~2.27!#
yields

f ~uW !5S 11CW •
2ısW

\
D , ~4.10!

within a factor (\/2ı)3/2. The integration over the anticom
muting variables that yielded averages in the pseudoclas
limit is now replaced by taking traces over the spin indic
In particular, for the spin operator quantization yields

Sa5eabcsbsc5
1

2
eabc@sb ,sc#2 , ~4.11!

directly relating it to the commutator ofs matrices. We iden-
tify the matricesSa with the Pauli matricestW via

Sa5ta . ~4.12!

The anticommutation relations of thesW matrices can be use
to show thatSW and thustW still satisfy the SO~3! commutation
relations. By using that (sa)

251 for any a and projecting
SW on sW we find

sa$sbSb%5saebcdsbscsd5sas45ta , ~4.13!

which clearly displays the correspondence between thsW

and tW . The introduction of two sets of matrices may see
clumsy, but consistency demands it. By using Eq.~4.10!
once again we get

^SW &5Tr$SW f ~sW !%5CW ^s4&. ~4.14!



f

an

n
a
o
a
it

p
t
Eq
le
u
r
ob
za
er
e
ivi
-

en
s
o
on

ot

r-
i-

r.
di-
the

e-
e

her

is
at
it

e
-

he

si-
ns
an

ap-
nd
n-
ar-

55 4099SPIN DENSITIES IN PSEUDOCLASSICAL KINETIC THEORY
The quantum spin-density operatorcan satisfy our require-
ment @Eq. ~2.31!# provided

uCW u<
1

2
\; ~4.15!

the equality holds for a pure state.
We now turn to the Wigner functionW(xW ,pW ) defined by

@9#

Wab~xW ,pW ;t !5E d4yK ca* S xW2
yW

2
,t DcbS xW1

yW

2
,t D L

3expH ı\pW •yW J ~4.16!

in terms of the nonrelativistic field operatorca , explicitly
including the spin indices. It is a 232 matrix in spin space
and can thus be decomposed in terms of the generators o
algebra of 232 matrices. These generators are

Ti5$d,s45~s1s2s3!,sW ,s4sW %. ~4.17!

We recognize the scalar, pseudoscalar, vector,
pseudovector contributions in, respectively,T1 , T2, T325,
andT628. In this basis we can decomposeW as

Wab5sd1ps41VW •sW 1AW s4sW . ~4.18!

Although the Wigner function has only four independe
components, using an eight-dimensional basis for the exp
sion does not double this number. The doubling comes fr
the extra splitting caused by including parity transform
tions. Any function can be written as a sum of even-par
and odd-parity functions. Through the relation betweensW

and the anticommuting coordinatesuW given by Eq.~4.10! we
can immediately deduce the naive pseudoclassical form
the distribution functionf (xW ,pW ,uW ;t),

f5s8u1u2u31p8u41VW 8•uW 1AW 8•u4uW , ~4.19!

where the primes denote that these coefficients are only u
a factor equal to those in Eq.~4.18!. Of course, we see tha
this exactly matches the decomposition found earlier in
~4.1!. The axial vectorAW 8 cannot yield a classical observab
due to the fact that for every component of the anticomm
ing uW we haveua

250. So the axial vector in the Wigne
function decomposition is a purely quantum-mechanical
ject and should vanish in the classical limit. The generali
tion of these results to relativistic Wigner operators for f
mions will be the goal of Sec. IV B. In particular, we will se
that a pseudoscalar contribution vanishes in the nonrelat
tic limit, so that we can setp5p850 in the previous equa
tions.

B. Relativistic spin

In the case of relativistic fermions the above treatm
must be modified. In this subsection we will discuss the
modifications without going through the whole derivations
the previous sections again. In particular, we will focus
the

d

t
n-
m
-
y

of

to

.

t-

-
-
-

s-

t
e
f

the decomposition of the Wigner operator and we will n
discuss relativistic pseudoclassical kinetic equations.

First of all we have to introduce an anticommuting fou
vector un. Together with the standard commuting coord
natesxn it forms the commuting object

Xn~s,t!5xn~s!1un~s!t, ~4.20!

where the pair (s,t) is now a super-world-line paramete
Upon quantization the algebra of the anticommuting coor
nates becomes a Clifford algebra and hence we obtain
identification

um→gm. ~4.21!

The pseudoclassicalum can be constructed from the thre
dimensional coordinatesuW in exactly the same way as, in th
quantum-mechanical case, thegm are constructed from the
sW . If we seek a four-dimensional generalization ofSW we find

Sa5eabcdubuc→Sab5eabgrugur , ~4.22!

which it generalizes into an antisymmetric four-tensor rat
than into an axial four-vector. Written out this gives

Sab5S 0 SW

SW eabcu0ucD . ~4.23!

This is in contrast to the existing literature, where spin
rather identified with an axial four-vector. A closer look
the relativistic Wigner function and its nonrelativistic lim
will reveal the origin of this contradiction.

1. Foldy-Wouthuysen transformations
and a small component expansion

The nonrelativistic limit of the Dirac equation can b
found systematically within the framework of Foldy
Wouthuysen transformations@10#. Let C be a Dirac spinor
given in terms of two two-spinor componentsC5(f,x);
then we define a unitary transformation

C→e2ıZC. ~4.24!

The matrixZ is now determined by the requirement that t
new HamiltonianH8,

H85eıZHe2ıZ, ~4.25!

no longer mixes the different two-spinor components. Phy
cally, this implies that particle and antiparticle excitatio
decouple. Obviously, only for the free theory can we find
exact transformation of this type. In this caseZ is of the form

Z52ıgW •bW v, ~4.26!

wherebW is a unit vector. For some interacting cases an
proximate Foldy-Wouthuysen transformation can be fou
for low-energy fermions. A standard result from these co
siderations is that the relative weight of particle and antip
ticle excitations is given by
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x}
p

m
f, ~4.27!

wherep is a typical momentum@10#.
Now consider the general form of the spinor decompo

tion of the relativistic Wigner function for Dirac fermions

W5^C̄C&5Fd1ıg5P1Vmgm1Amg5gm1Smnsmn,
~4.28!

where we have scalar, pseudoscalar, vector, axial vector,
tensor contributions to the Wigner function. If we apply t
previous Foldy-Wouthuysen transformation to the Wign
function, we find that it is not sufficient to reduce Eq.~4.28!
to its nonrelativistic form. For example, the timelike comp
nent of the axial-vector currentA0 is easily seen to be in
variant

eıZg5g0e2ıZ5g5g0. ~4.29!

However, it is a (f,x)-mixing quantity and should therefor
be eliminated from the expressions. The simplest and for
purposes sufficient method of finding the nonrelativistic lim
is by explicitly introducing the large and small componen
We rewrite the Wigner function in terms off andx,

W5S ^f*f& ^f* x&

2^x*f& 2^x* x&D 5S Wf Wmix

2Wmix* 2WxD ,
~4.30!

or in terms of the block matricesWi . These can be explicitly
computed in terms of the coefficients appearing in the exp
sion ~4.28! by using the Dirac representation of thegm ma-
trices in terms of the generators of the Clifford algebrasW .
For the large components we get

Wf5$F1V0%d2Ais
4s i1Si j e i jksk . ~4.31!

Note that the scalar density appearing here is the sum
particle density~which is equal to particles plus antiparticle!
and fermion-number density~which is equal to particles mi
nus antiparticles!, in which the antiparticle contributions can
cel out. The pseudoscalar is a (f,x)-mixing quantity and
thus is surpressed in the nonrelativistic limit. If we now ta
the spin operator defined in terms of the matricessW and
calculate its average withWf we find

^Sa&5@2AiTr$s
4eabcsbscs i%1Si j e i jkTr$skeabcsbsc%#.

~4.32!

Note that the first term reduces to
rt

.

i-

nd

r

ur
t
.

n-

of

AaTr$~s4!2% ~4.33!

and the second to

eai jSi jTr$ebcdsbscsd%. ~4.34!

Now in the classical limit (s4)2→(u4)
250 and hence the

axial-vector contribution vanishes. The tensor contribut
will survive because it is not surpressed by the commuta
relations. The general structure of Eq.~4.32! is like that of
the scalar density. We have a sum of different particle a
antiparticle contributions in which the antiparticle contrib
tions cancel. In the quantum-mechanical system we m
separate between the magnetic dipole represented byS and
the spin density represented by the axial vector. In the c
sical limit, however, this spin density is destroyed by t
commutation relations and only the magnetic moment s
vives. If antiparticles are not present, i.e., in the nonrela
istic limit, the expectation values for spin and magnet
dipole densities are of course proportional and so
breakdown of the Clifford algebras anticommutation re
tions causes no loss of physical information. Yet in the cl
sical limit nothing prevents us from going to extremely re
tivistic energies where the appearance of antiparticles ma
the spin density and dipole-moment density physically d
tinct. In this case the pseudoclassical system still does
allow for a difference between the spin density a
magnetic-dipole density unless the antiparticles are in
duced by hand.

V. CONCLUSION

From the above elaborations we draw the following co
clusions. In the pseudoclassical limit of a quantum transp
theory for spin-12 fermions spin can make its appearance
the form of a magnetic-dipole density. In pseudoclassi
many-particle systems spin can become observable in a w
defined manner. Basically, the most general phase-spin s
density will, in the pseudoclassical limit, reduce to a sum
scalar, pseudoscalar, and vector contributions. An ax
vector contribution, as is found in the spin decomposition
the ~non!relativistic Wigner function will not survive the
classical limit. This is due to the impossibility of dynam
cally generating antiparticles in a pseudoclassical vacuum
tensor contribution to the Wigner function, as is found
relativistic quantum transport theory, need not vanish
\→0.
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