PHYSICAL REVIEW A VOLUME 55, NUMBER 6 JUNE 1997
Spin densities in pseudoclassical kinetic theory
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It is shown that pseudoclassical many-particle systems allow for observable consequences of the spin
degrees of freedom, in contrast to the one-particle system, where a consistent formulation of spin space density
is impossible. After quantization, this density can then be directly compared to the decomposition of the
Wigner operator in terms of spin matrices, in both the nonrelativistic and the relativistic context. From an
expansion of the Dirac spinors in terms of large and small components it is seen that in the nonrelativistic limit
the pseudoscalar, the timelike component of the axial-vector current, and the spatial components of the vector
current vanish. The spatial components of the axial-vector current vanish in the pseudoclassical limit. The
pseudoclassical appearance of spin is due to the spin-tensor contri8td@s0-29477)00606-9

PACS numbeps): 03.65.Pm, 03.65.Sq

[. MOTIVATION particle with spini. The kinetic theory derived from the
underlying pseudoclassical system no longer contains the an-

In recent years the prospect of identifying a quark-gluonticommuting coordinates due to the statistical averaging in-
plasma in nucleus-nucleus or heavy-ion collisions haderent to any kinetic theory. Within the framework of this
aroused great interest in the theoretical description of chirgbaper we identify this resulting kinetic theory, containing
symmetry restoration under nonequilibrium conditions.only commuting quantities with the physically meaningful
Much of the effort in understanding the basic physics of thisone. We hope that a proper treatment of spin eventually im-
problem has gone into the formulation of a transport theoryproves our understanding of the—0 limit of relativistic
for the relevant degrees of freedom, quarks, gluons, and mejuantum transport theories for fermions.
sons. Traditionally these transport theories have been set up In this paper we treat two questions, closely related to
for on-shell particles within the framework of a semiclassicaleach other. First of all we will briefly discuss the role of spin
approximation. By the methods of field theory similar equa-in pseudoclassical systems. In Sec. Il, we will introduce to
tions can be derivefll], although the physical interpretation this end the formalism of pseudoclassical mechanics related
then remains partly obscured due to the difficulty of inter-to N=1 supersymmetry.
preting the classical limit of quantum field theory in terms of It is well known that classical particles with spjrcan be
particles. The classical field is dominated by coherent statedescribed in terms of anticommuting variables and that this
with an indefinite particle numbef2]. One way out is to  spin is unobservable in the one-particle sysiéin This con-
stick to field theory concepts and to try to go beyond thestruction can be used to discuss various dynamical properties
semiclassical and on-shell approximatidB8$ In this paper of such particled7] and it can be generalized to include
we rather do the reverse. spin-1 fields such as Yang-Mills bosof&]. Similarly, one

The details of the transition from classical to quantumexpects a direct relation between the results presented in this
physics, apart from its formal mathematical context, are inpaper, and a world line reformulation of quantum field
general not well understodd]. In particular, there seems to theory[11] is, although extremely interesting, not discussed
be no classical analog of the quantum-mechanical spin dfiere. In Sec. Ill, we will reconsider the question of measura-
fundamental fermions, like quarks and leptons. This shouldillity in a many-particle system and set up a transport theory
be contrasted with the orbital angular momentum and eveincluding the spin degrees of freedom. The physical nature
the spin 1 of vector bosons, which, apart from their quan-of the anticommuting variables seems questionable. In quan-
tized nature, can be accounted for classically. Although thisum theory, however, we restrict their physical meaning to
is an intriguing problem by itself, it will not be of concern the expectation values of their products. Here we similarly
here. Instead we will focus on a closely related question. overcome this problem within a many-particle context.

In transport theories for relativistic fermions the classical In Sec. IV we will disentangle the nonrelativistic and clas-
limit appears to contain a spin densjfy]. As spin is consid- sical limiting procedures in the quantum-mechanical appear-
ered to be a purely quantum-mechanical effect this state aince of spin. We discuss the spinor decomposition of quan-
affairs is at least confusing. The goal of this paper is totum Wigner functions in both relativistic and nonrelativistic
analyze this “classical” appearance of spin in detail. Wesettings. We argue there is no simple Foldy-Wouthuysen
will take the approach of introducing anticommuting coordi- transformation that will yield the nonrelativistic Wigner
nates in order to obtain a pseudoclassical description of function when applied to the relativistic free theory. An ex-

pansion of the relativistic Wigner function in terms of large
and small components of the Dirac spinors allows an analy-
*Present address. sis of the nonrelativistic limit. It can be seen that in the
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classical limit the axial-vector contribution vanishes and the 1
spin-tensor contributions survive. Pseudoscalar contributions 02= 5 €anctalblc (2.6
vanish due to the nonrelativistic limit. Finally, we summarize

the main conclusions. . ) . )
is a pseudoscalar under the integration measure to be defined

later.
lIl. N=1 PSEUDOCLASSICAL MECHANICS If we want to construct a supersymmetric action func-
The purpose of this section is to introduce the main toofional, we need to use derivativés that are covariant with

used in this analysisN=1 pseudoclassical mechanics. We respect to these translations, thatDsmust satisfy
will start out by assigning both commuting and anticommut-
ing coordinates to a single particle. Next we write down a [9,D],=0. (2.7
supersymmetric action principle that yields the free-particle
equations of motion for the commuting coordinates. After; js straightforward to check that
explicitly demonstrating that a particular bilinear form of the
anticommuting coordinates represents an intrinsic angular
momentum, we will show that it is unobservable. Since this D=r—+4 — (2.9
section deals with a rather well documented system, our pre- gt - dr
sentation will resemble earlier works].

Let us introduce a supertime variable consisting of a paisatisfies this requirement.
(t,7) of whicht is commuting and- satisfiesr?=0. A par-
ticle's position is specified by a commuting three-vector

- ) . A. Free particles
X(t,7), which has the decomposition

The general form of a supersymmetric action functional is

X(t,7)=x(t)+ 6(t) 7, (2.1 A A
S[XJ:f dtdrL(X), (2.9

because a Taylor expansion intruncates after the first or-

der. SinceX is a commuting object, so i whereass must
be anticommuting. A small translation im, {) space has the

following effect onX:

where the integration is standard over the “normal” time
and Berezin integration over the anticommuting variable
Due to the fact that the integration measdtalr is anticom-

P muting, the minimal number dD’s in a nontrivial Lagrang-
X(t+er, 7+ €)= X(t,7) + 552“,7” eb(t), (2.2 ian is 3. The simplest nontrivial choice therefore is

- 1
wheree is an infinitesimal anticommuting parameter. Sl[X(t,T)]Zf dtdrEDXaD(DXa), (2.10
The generators of these “supertranslations” are
Jd 9 9 where we introduced the latin indices=1,2,3. By working
Q=1 — -, H=—, (2.3 out the two factors
and they span the algebra DX,(t,7)=— 0,(t) + 7x4(t) (2.11
[QH]=[H,H]=0, [Q,Q]=H. 249 and

The square brackets in this equation are supercommutators, : :

i.e., they are commutator@lso denoted A,B]_) when at DDXa= 04(t) T+ X,(1), (212

least one of the entries is commuting and they are anticom-

mutators [A,B].) when both entries are anticommuting. one finds after performing the Berezin integration over

The transformation rules for the componentsXoéire given

by 1. . :
Sﬁf dtz{xaxa— 0.0,}. (2.13

X=ab, 66=ax, (2.5

e . . _ The equations that follow from extremizing this action are
where « is infinitesimal. If P is the parity transpormation

then we will assume thaf transforms like a vector under
parity, i.e.,P(6)=— 6. The reason for doing so is obvious (2.14
from Eq. (2.5. The supersymmetry transformation mixes

andx and so giving them different parity would lead to vec-
tor and axial-vector component mixing. This is undesirable. R
The quantity indeed, forx, the free-particle equations of motion.



B. Interaction with an external field

In order to obtain insight in the physical content of the

anticommuting variable$ we add the following interaction
term to the action:

1
V==

5 B=const.

(2.19

€abcBabpbcT,
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So we conclude that the pseudoclassical particle carries an
intrinsic angular momentum, i.e., spin. In particular, one can
see from its definitior{2.18 that spin is an axial vector, i.e.,
under the parity operatioR we have for the vectors, 6, and

S that

P{X,0,S'={—x,—6,S}. (2.29

This interaction term breaks supersymmetry; it leaves the\ote that this fixe® as an axial vector as well. A consistent

equation forx unaffected, while for the we find

(2.19

ba: €abcBplc -

The solution to Eq.(2.16 represents a vector precessing

around theB axis with a frequencyB|. Of course this looks

like the precession of an angular momentum in a homoge
neous magnetic field. To identify this angular momentum in

detail we allowB to bex dependent. In this case the equation

for X, is modified to read

Xa=V.BpSy, (2.17
where we defined the vect& by
1
Sa=§ €ancOnlc - (2.18

Obviously,§ acts as an effective magnetic dipole in tBe

formulation of the quantum theory of these anticommuting

quantities will indeed force us to assume the spin to be spin
1

2.

C. Measurement on anticommuting quantities

Since all measurements yield real numbers, the existence
of an experiment that measures some effect of the anticom-
muting degrees of freedom is closely linked to the existence

of a mapF that mapsé onto the real numbers. In practice,
this boils down to some kind of averaging over the anticom-
muting degrees of freedom

f:<g>=f d3ag(6)f(6,1), (2.26)

with some weight functiorf. Our conventions imply that

fd%00,0,6,=1 as a scalar under parity transformations.
This choice may deviate from standard notations, but we
believe it is more natural. Upon quantization Berezin inte-

field. ForS to be a proper angular momentum it must satisfygration goes over into the Tr operation of taking traces. The
the S@3) commutation relations. To check this we insert thelatter is obviously a scalar under parity. Consequently,

expression forS into the supersymmetric Poisson brackets

defined as

J J
[f(6a),9(6p)] (mf(e)ﬂﬂg(a)), (2.19

where the subscripts and R denote left and right deriva-
tives, respectively. The vector defined in Eg.18 indeed
satisfies the S@) commutation relations under Poisson
bracketing

[Sa:S0]= €ancSe s (2.20

identifying it as an angular momentum. Using E2.18 we
obtain for the time derivative of the spin vector

(2.21

When we substitute E¢2.16) in Eq. (2.21), and use the fact
that #2=0, we find the equation of motion f& to read

Sa: 6abc.0b 0.

S,= €abBb S - (2.22
We can complete the algebra by noting that
[0a.0p]= Sap (2.23
and
[6a.Sp]= €apche - (2.24

(0,)=[dxd%06, is a pseudoscalar. For the sake of consis-
tency, only commuting objects should generate a nonvanish-
ing average. This constraint dnimplies it is of the form

1
f(0,)=0.,0,65+ Ecaea- (2.27

The first term here allows purenumbers to be equal to their
average. We must distinguish between the unit 1 and the

pseudoscalar uni,, i.e.,

J d%06,6,6;=1, (2.28

1
f d39geabceaebec=<a4>. (2.29
The second term in E@2.26) yields an average value for the
spin vectorS by

(Sa)= f dsefabcebﬁccd 04=Ca(04). (2.30

Obviously, C must be a vector sincg is an axial vector.

Since we have chosehto be a vector in the introduction to
this section, we see thétis a scalar operator.
An additional requirement ig5]

(9(6)g*(6))=0. (2.30
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Yet by inserting the functions , _ _
J 8(6—6)do=1, J 08(0—6")do=1¢',
9+(6a)=61%16, (2.32

we obtain 36— 6)=5(6,—6)8(6,—6,)5(03— 65 (3.3

(g+0%)=7F2Cs. (2.33 we can rewrite Eq(3.1) as a two-particle spin space density

Depending on the sign @3, Eq.(2.3)) fails either forg, or Fa,

for g_. ChoosingC=0 entirely trivializesf(6,), so we 2 2

must conclude ttlat in the one-particle system no experiment, = §)=H 86— 6+ 2 Ciagab\’%(é_ §i)H 91191291 ,
i.e., nontrivialf(8), can detect the presence of the anticom- i=2 =1 1#1

muting degrees of freedom. In particular this means, by us- (3.4

ing Eq.(2.27) with C=0 in Eq.(2.17), that
(Xa)=0. (2.39

The interaction o8 with S causes no observable effect on
the equations of motion of the particle.

This may at first sight seem an unavoidable consequenckhese averages now behave well. A direct consequence of
of including degrees of freedom that have an “unphysical” this reformulation is that the equations of motion fobe-
anticommuting nature. Yet upon quantization it can becgme nontrivial
shown that Eq(2.31) can be fulfilled [6]. We will postpone
the discussion of this to _Sec. IV, where we treat a quantized (X)=—(V,BpS), i=12. (3.6
system. In the next section we set out to show that the con-
sequences of Eq2.34 can be avoided. Many-particle sys-
tems will allow for observable consequences of spin.

and averages are calculated from

<g<é>>=f d30U H d®6'g(6)F,(6) . (3.5

We have achieved that the averaging procedure is now

well behaved with respect to linear complex functionsdof
Furthermore, we notice that the anticommuting variables en-
ter the equations of motion fo?ronly through their quadratic

In this section we will investigate the properties of the compination inS. In Sec. 11l B we will see how this can be
spin vectorS defined in the preceding section, in a many- exploited.
particle system. In the case of orbital angular momentum the The basic idea is to generalize to &hparticle system
limit #—0 implies that only large quantum numbers will Fy, include the commuting dergrees of freedom, and show
survive. In the case of spin this is obviously no remedy. Yetthat the density obtained in this way satisfies a Klimontovich
from physical experience we know that systems containingquation. It can then be identified with @xactphase-spin

an extremely largenumber of spins allow for observable space density by reexpressing all the dependencé @m

consequences of the interactions among the spins. So Eims of the spin §. Suitably averaging this exact

Seems natural to Co‘r(15|der_ a Tany-pamcle system as a poﬁ'-particle density then yields a kinetic equation for the av-
sible way to study a “classical” appearance of spin. Further-

: : X eraged phase-spin space density.
more, as we will now show, in a two-particle system one can gedp pin sp y

satisfy Eq.(2.3D.

. N=1 MANY-PARTICLE SYSTEM

B. The pseudoclassical many-particle system
A. The two-particle system The purpose of this subsection is to show that for a
pseudoclassicdll-particle system an exact phase-spin space
system was its inabillity to handle complex functions of thedensity satisfying a Liouville-type evolution equation can be

9, correctly. A two-particle system offers the opportunity to cOnstructed. Thé\-particle generalization of E3.4), in-
evade this problem at the expense of restricting the possibf@uding the commuting degrees of freedom, is given by

The main problem with the densitlyin the one-particle

values for the total spin. Consider a distribution function of N
the form Fu(XGp, 85t = 2, 63 (k=X (1)8*(p—p'(1))
i=1
f(6%,6%) = 0103602026262+ C,0620263+ D L6201 6363 oL Lo
1v2¥3Y1Y2Y3 ava”1v2%3 aalZ(%.l) X{bg(e—0')+C;(t)0a§(0—0|)}
When taking the average % H 86— 3 3.7

. . . . J#i
(9(6Mg* (6" +9(6%)g* (6°))=+{C3+Dg} (3.2
we see that Eq(2.31) can be satisfied if the total spin van- @S & function of the coordinate momentunp, ¢, and time
ishes and if we restrict our attention to averages. We are thus The time dependence &y originates from the particle
lead to the formulation of measurability in a statistical sensecordinates that depend on time and from the time-
In particular, by using the delta functions dependent vector€!. In order to fix this time dependence
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we resort to the so-called Klimontovich equation for exact i

= -4 will remove all the dependence on these variables due to
phase-space densities. Lietbe the super-Liouville operator

the nature of Berezin integration. The expectation value of

defined by the exact density will only depend on the expectation values
g . 4 . 9 . 0 of the unit and the spin vect@®. So
K—E+Xaa—xa+pa&—pa+0a&—0a, (3.8 o L

f(X,p,S;t):<FN(X,p,0;t)>a\, (313

then it is easy to show thd,, satisfies the Klimontovich

equation will only depend on the spins, through thélt, lying within

- a the volume elements of phase space averaged over.
KFn(X,p,6;t)=0. 3.9 We add particle interactions by relating the vector field

Inserting Eq.(3.7) into the Klimontovich equation(3.9 B with f through the electrodynamics relation

yields the expression R ’
eabcfbde{VdMe(X’)av}(Xc_ Xc)

o av:ﬂJ' 3y’
Ba(x,t) 5 d>x

N
CL(t)0,6% 06— )] %(6— 0 x=x"|*
2, Ca0)0,8%(0-]] &°(6-5) (3.1
M here th izatiokl is given b
=S c0)0.8%6— 8 S(6—6), (31 where the magnetizatioM is given by
2, a6 (6= ]I 5*6-8), (310
> v\av_ 3nd32 v D
from which to solve forC!(t). Equating each summand sep- Ma(x)av_j d”pd”8S,f(x,p, 6;). (3.19

erately and using Eq2.16 gives
From Eq.(3.12 we see that the exact quantities are related to

Ca= €abcBbCe (3.1)  their averages by adding fluctuations
the equation of motion for the vecto. It coincides with B=Ba4+ 5B,
the equation for the spin vect& as expected.
Fn(X,p, 6:t) is an exact phase-spin space density satisfy- M =M+ 5M. (3.16

ing an evolution equatiori3.9). Yet the dynamics of the
system is still rather simple and will not lead to an interestingy observing that

kinetic equation because the interactions among the particles

are missing. Improving this state of affairs will require us to . ,

introduce ani—dependent vector fiel@. Furthermore, the 0b(9_0b5a25a' 3.17
vectorsC! will then also become dependent on the particle

position and hence the spin density, i.e., the second term ige may interpref (x,p,S;t) as a function ofS and use
Eq. (3.7), will become a local quantity. Consequently, we

would once more face the problem of satisfying E231), A I 9
knowing that it will be violated locally anyhow. However, Hbﬁf(X,p,S;tFSba—
now the situation is different. We are working in a many- b S

particle enviroment and we will proceed towards a statistical_. Lo . .
description of the system. In particular, the question of the>I"C€ the quantits is commuting and appears at most lin-

. e . rly in all expressions we repl it by ¢shumber repre-
measurability of the coordinate® is no longer of interest early in all expressions we replace it by g umber repre

. ) : o . entation, its expectation value. All reference to the anti-
since it represents microscopic information. The relevan

i . . . ommuting variables has disappeared. Averaging the
physical observable relating to the anticommuting degrees limontovich equation(3.9) now yields
freedom has now become the macroscopic expectation value '

f(x,p,5;t).  (3.18

of S. g . 0 aBEMD) 4 o @
X T %‘*’(eachb e
C. Pseudoclassical transport theory a a a a
In this section we want to take the final step in our argu- X f(x,p,S;t)

ment. We will assume some kind of averaging of the exact

densityFy and show how the resulting smoothed dengity - M i+(6abc58b5Mc)i]
satisfies a transport equation. Let us decomgggento an IXa IPa 39S,
averaged part and a fluctuation part as I
geap P X SF(X,p,§1). (3.19

Fn(X, P, 0;1)=(Fn(X,P, 0;1))ay+ SFu(X,p, 6;1). - , _
NP, 00 = (Fr(XP: 61 )av MO )(3_12, The collisions term can be extracted from the right-hand side

of this equation. If we assume that lds- the fluctuations
The exact nature of the averaging is immaterial; one shouldan be neglected and if we remove the explicit notation from
note, however, that any averaging over the anticommutinghe averaged quantities, we find
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9 . 9 &(é'l\7l) p Y . for some antisymmetric tensay; will give a vectorlike con-
ST X T EHB/\M)E f(x,p,Sit)=0,  tribution to the average d8, which is axial. Sca;;=0. We
a @ a @ (3.20  see that Eq(4.D) is in fact the most general expansion we
can make.
the Vlasov equation for the system. Equatiéhi20 de- Now consider the quantization of the one-particle system.

scribes the transport phenomena that take place in this manglassically, the anticommuting coordinates satisfy the
particle system due to mutual spin-spin interactions. The colPoisson bracket
lission term can be retrieved from the Klimontovich equation

by giving the right-hand side of Eq3.19 a more detailed [0a,0p]p= Sap- (4.9
treatment 1]. L L .
Quantization now implies that we make the transition to the
anticommutator
IV. QUANTUM SPIN
In the previous sections we have establisheclassical [0a,0p]+ =116y, (4.7

kinetic theory explicitly containing spin degrees of freedom.By defining

The result of our labor was an equatideqg. (3.20] describ-

ing the nonequilibrium physics of a system containing a very 2
large number of particles, each carrying a magnetic dipole o= \/\ﬁaa,
moment proportional to its spin. In this section we make
contact with the relativistic formulation of quantum kinetic
theory for particles with spin. We proceed by formulating a
decomposition of the phase-spin space density that upon
guantization grows into the spinor decomposition of the fer-

mionic Wigner function[5]. The latter is then expanded in qefining a Clifford algebra. Note that transforms like a

terms of large and small components allowing a_carETU|,Sep"’\iector under parity, hence they are not generators o850
ration between the nonrelativistic and the classical limit. o 116 ofits representations and cannot be identified with the
Pauli spin matrices. We will return to this point shortly. The
o can be identified with a set of>22 matrices and substi-

If we write down the most general, internally consistent,tuting them into the one-particle spin densftyq. (2.27)]
expansion of the phase-spin space density in terms of progdelds

ucts of 4, one finds

4.9

the components ofr satisfy the anticommutation relations

[0a,0p]+=2084p, (4.9

A. Nonrelativistic spin

f(9)= -

. 2o
f=560,60,03+p6,+C- 6. (4.1 1+C-—). (4.10

Let us discuss the terms not appearing in this expansion. W&ithin a factor ¢:/21)*2 The integration over the anticom-
could have added a term proportional to muting variables that yielded averages in the pseudoclassical
limit is now replaced by taking traces over the spin indices.
1 In particular, for the spin operator quantization yields
Tapbabp+ Etafabcebec 4.2
- ) . Sa= Eabca'bo'czi €abd 0, 0c] -, (4.1
for some vectot and some antisymmetric tensbg,. They

will generate an expectation value fér The vectort will  gjrectly relating it to the commutator of matrices. We iden-

give an axial vectorﬁcontribution t6), but since this is a tify the matricesS, with the Pauli matrices via

vector we must havé=0. The tensoiT 4, will give a vec-

torlike contribution and therefore seems to be acceptable. Sa=Ta- (4.12
But remember that is an anticommuting quantity. So any

consistently defined average value would have to satisfy The anticommutation relations of tlkematrices can be used

to show thatS and thusr still satisfy the S@3) commutation
(60160,)=—(0,64). 4.3 relations. By using thatd,)?=1 for anya and projecting
. . o . S on o we find
But if we rewrite this in terms of connected and disconnected
contributions we find 0l opSp) = 0a€pcdO b0 0= 0a04=T4, (4.13

(0102) cont(0201) con=2( 61)( 02). (4.4  which clearly displays the correspondence betweendhe

_ _ . and 7. The introduction of two sets of matrices may seem
This equation can only be true f¢)=0 and thusT,,=0.  clumsy, but consistency demands it. By using F4.10
Finally, an additional linear contribution of the form once again we get

€abcAablc (4.9 (S)=Tr{Sf(0)}=C(0s). (4.14
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The quantum spin-density operatcan satisfy our require- the decomposition of the Wigner operator and we will not
ment[Eq. (2.31)] provided discuss relativistic pseudoclassical kinetic equations.
First of all we have to introduce an anticommuting four-

|(f|<}ﬁ- 4.15 vector #”. Together with the standard commuting coordi-
T2 ' natesx” it forms the commuting object
the equality holds for a pure state. X"(o,7)=X"(0)+ 6"(0)T, (4.20
We now turn to the Wigner functiow/(x,p) defined b _ , _
[9] g (x.p) y where the pair &,7) is now a super-world-line parameter.
Upon quantization the algebra of the anticommuting coordi-
y y nates becomes a Clifford algebra and hence we obtain the
Waﬁ(i,ﬁ:t)ZJ d4y< ¢z(§_§'t)¢ﬁ >Z+§,t > identification
| O — y*, (4.2)
xexp[ —p-y} (4.16 )
h The pseudoclassica”* can be constructed from the three-

in terms of the nonrelativistic field operatqr,, explicitly dimensional Cﬁo@n?te@m exactly the same wag ?S’ n :]he
including the spin indices. It is aX@2 matrix in spin space quantum-mec anical case, thé are constructed from the

and can thus be decomposed in terms of the generators of tife If we seek a four-dimensional generalizationSfve find
algebra of X2 matrices. These generators are
Sa: eabcdﬁbﬁcﬂ Saﬁ: eaﬁypﬁyﬁp y (422

— 4 _ 1.2 3\ ~ 4~
Ti={d.0"=(0"0%0"),0,0%0}. .19 which it generalizes into an antisymmetric four-tensor rather
We recognize the Sca|ar, pseudoscajarl Vector, anwan intO an aXiaI fOUI’-VeCtOI’. Wl’itten out '[hIS giVeS
pseudovector contributions in, respectively, , T,, T3_s, R
andTg_g. In this basis we can decompogéas 0 S

Sup=1| & : (4.23
5 5 > N o8 € 0n6
W,5=s8+po*+V-o+Acto. (4.18 S €apctobec

Although the Wigner function has only four independentThis is in contrast to the existing literature, where spin is
components, using an eight-dimensional basis for the expanather identified with an axial four-vector. A closer look at
sion does not double this number. The doubling comes fronthe relativistic Wigner function and its nonrelativistic limit

the extra splitting caused by including parity transforma-will reveal the origin of this contradiction.

tions. Any function can be written as a sum of even-parity

and odd-parity functions. Through the relation between 1. Foldy-Wouthuysen transformations

and the anticommuting coordinatégjiven by Eq.(4.10 we and a small component expansion

can immediately deduce the naive pseudoclassical form of The nonrelativistic limit of the Dirac equation can be

the distribution functiorf (x,p, 6;t), found systematically within the framework of Foldy-
Wouthuysen transformatiorjd0]. Let ¥ be a Dirac spinor

f=5"0,0,03+p 0,+V'-6+A’- 6,0, (4.19  given in terms of two two-spinor componeris= (¢, x);

then we define a unitary transformation

where the primes denote that these coefficients are only up to

a factor equal to those in E¢4.18. Of course, we see that Ve 4y, (4.24

this exactly matches the decomposition found earlier in Eq. o _ _

(4.2). The axial vectoA’ cannot yield a classical observable "€ MatrixZ is now determined by the requirement that the

due to the fact that for every component of the anticommut€W HamiltonianH",

ing 6 we have 62=0. So the axial vector in the Wigner H' =eZHe 'Z (4.25
function decomposition is a purely quantum-mechanical ob- ' '

ject and should vanish in the classical limit. The generalizay |onger mixes the different two-spinor components. Physi-
tion of these results to relativistic Wigner operators for fer-co)y - this implies that particle and antiparticle excitations
mions will be the goal of Sec. IV B. In particular, we will see gecouple. Obviously, only for the free theory can we find an
that a pseudoscalar contribution vanishes in the nonrelativigsy 4t transformation of this type. In this ca&és of the form

tic limit, so that we can sgb=p’=0 in the previous equa-

tions. Z=—17-bo, (4.2

B. Relativistic spin whereb is a unit vector. For some interacting cases an ap-

In the case of relativistic fermions the above treatmenfproximate Foldy-Wouthuysen transformation can be found

must be modified. In this subsection we will discuss thesdor low-energy fermions. A standard result from these con-

modifications without going through the whole derivations ofsiderations is that the relative weight of particle and antipar-
the previous sections again. In particular, we will focus onticle excitations is given by
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X<, 427

wherep is a typical momentuni10].

Now consider the general form of the spinor decomposi-

tion of the relativistic Wigner function for Dirac fermions

W=(WW)=Fo+ 19 P+V,y*+ A, y°y"+8,,0"",
(4.28

. t
where we have scalar, pseudoscalar, vector, axial vector, ang

tensor contributions to the Wigner function. If we apply the

previous Foldy-Wouthuysen transformation to the Wigner

function, we find that it is not sufficient to reduce E4.28

to its nonrelativistic form. For example, the timelike compo-
nent of the axial-vector current® is easily seen to be in-
variant

1Z,.5.0

e y,ye—uz

=y*y°. (4.29
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AaTr{(0%)?) (4.33

and the second to
GaijSijTr{é'bch'bO'CO'd}_ (434)

Now in the classical limit §*)>—(6,)?=0 and hence the
axial-vector contribution vanishes. The tensor contribution
will survive because it is not surpressed by the commutation
relations. The general structure of Eg.32 is like that of

Ee scalar density. We have a sum of different particle and
ntiparticle contributions in which the antiparticle contribu-
tions cancel. In the quantum-mechanical system we may
separate between the magnetic dipole representefl doyd

the spin density represented by the axial vector. In the clas-
sical limit, however, this spin density is destroyed by the
commutation relations and only the magnetic moment sur-
vives. If antiparticles are not present, i.e., in the nonrelativ-
istic limit, the expectation values for spin and magnetic-
dipole densities are of course proportional and so the

However, it is a ¢, x)-mixing quantity and should therefore breakdown of the Clifford algebras anticommutation rela-
be eliminated from the expressions. The simplest and for outions causes no loss of physical information. Yet in the clas-
purposes sufficient method of finding the nonrelativistic limit sical limit nothing prevents us from going to extremely rela-
is by explicitly introducing the large and small components.tivistic energies where the appearance of antiparticles makes

We rewrite the Wigner function in terms @f and y,

<¢* ¢> <¢* X> W¢> Whnix
W= (") (7 x) | | Wi —W, |
(4.30

or in terms of the block matriced/; . These can be explicitly

the spin density and dipole-moment density physically dis-

tinct. In this case the pseudoclassical system still does not
allow for a difference between the spin density and

magnetic-dipole density unless the antiparticles are intro-
duced by hand.

V. CONCLUSION

computed in terms of the coefficients appearing in the expan- From the above elaborations we draw the following con-

sion (4.28 by using the Dirac representation of th¢ ma-

trices in terms of the generators of the Clifford algeﬁra
For the large components we get

W¢:{.7:+VO}5_.AiO'4(Ti+Sij€ijk0'k. (43])

clusions. In the pseudoclassical limit of a quantum transport
theory for spinj fermions spin can make its appearance in
the form of a magnetic-dipole density. In pseudoclassical
many-particle systems spin can become observable in a well-
defined manner. Basically, the most general phase-spin space
density will, in the pseudoclassical limit, reduce to a sum of

Note that the scalar density appearing here is the sum afcalar, pseudoscalar, and vector contributions. An axial-

particle densitywhich is equal to particles plus antiparticles
and fermion-number densityvhich is equal to particles mi-
nus antiparticles in which the antiparticle contributions can-
cel out. The pseudoscalar is @&,(y)-mixing quantity and

vector contribution, as is found in the spin decomposition of
the (nonyrelativistic Wigner function will not survive the
classical limit. This is due to the impossibility of dynami-
cally generating antiparticles in a pseudoclassical vacuum. A

thus is surpressed in the nonrelativistic limit. If we now taketensor contribution to the Wigner function, as is found in

the spin operator defined in terms of the matricesand
calculate its average witW, we find

(Say=[ — ATr{ 0 €apcop0coi} + S € Tr{ oy €apconoct].

Note that the first term reduces to

relativistic quantum transport theory, need not vanish as
h—0.
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