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Abstract

Prion disease incubation time in mice is determined by many factors including PrP expression level, Prnp alleles, genetic
background, prion strain and route of inoculation. Sex differences have been described in age of onset for vCJD and in
disease duration for both vCJD and sporadic CJD and have also been shown in experimental models. The sex effects
reported for mouse incubation times are often contradictory and detail only one strain of mice or prions, resulting in broad
generalisations and a confusing picture. To clarify the effect of sex on prion disease incubation time in mice we have
compared male and female transmission data from twelve different inbred lines of mice inoculated with at least two prion
strains, representing both mouse-adapted scrapie and BSE. Our data show that sex can have a highly significant difference
on incubation time. However, this is limited to particular mouse and prion strain combinations. No sex differences were
seen in endogenous PrPC levels nor in the neuropathological markers of prion disease: PrPSc distribution, spongiosis,
neuronal loss and gliosis. These data suggest that when comparing incubation times between experimental groups, such as
testing the effects of modifier genes or therapeutics, single sex groups should be used.
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Introduction

Prion diseases or transmissible spongiform encephalopathies

involve the conversion of the normal host PrPC to an abnormal

form, PrPSc. They are a group of fatal neurodegenerative diseases

that affect both humans and animals and include sheep scrapie,

bovine spongiform encephalopathy (BSE) in cattle and Creutz-

feldt-Jakob disease (CJD) in humans [1]. Human prion diseases

have three distinct aetiologies: sporadic, inherited and acquired.

Sporadic CJD is the most common form of human prion disease

accounting for ,85% of all cases and to date there is no known

cause. 15% of cases are inherited or familial and are caused by

mutations in the prion gene (PRNP). Prion diseases are also

infectious and are therefore transmissible (acquired). Human prion

diseases have been transmitted through medical procedures

(iatrogenic) such as the administration of contaminated pituitary

hormones and the use of infected neurosurgical electrodes.

Following human exposure to BSE contaminated material, a

new acquired prion disease, variant CJD (vCJD), was recognised.

Irrespective of aetiology and host, prion diseases are distin-

guished by long, clinically silent incubation periods and charac-

teristic neuropathology such as PrPSc accumulation, spongiform

change (vacuolation), gliosis and neuronal death. Prion disease

incubation time in experimental models such as inbred mice is

highly reproducible under standard conditions. However, there is

also considerable variation that is determined by several factors

including host genetic background, prion strain and route of

inoculation. The main genetic determinant is variation in Prnp

itself that results in two major isoforms of PrP: Prnpa (108L, 189T)

and Prnpb (108F, 189V) that are associated with short and long

incubation times respectively [2–5]. Comparison of incubation

times from Prnpa inbred lines shows a difference of over 100 days

between the shortest and longest incubation time strains suggesting

the involvement of additional genetic loci [6]. Several quantitative

trait loci mapping studies have identified regions of the genome

that contain genetic factors that influence incubation time in mice

[7–10] and further fine mapping has identified individual

candidate genes [11–13].

Prion strains are associated with conformational and glycosyl-

ation differences in PrPSc and result in different incubation times

even in the same host [14]. Indeed, the characteristic incubation

period, neuropathology and biochemistry form the basis on which

different prion strains are defined [15,16].

The most common route for the inoculation mice with prions is

either intracerebral or intraperitoneal. Delivery of prions directly

to the central nervous system rather than to the periphery results

in shorter incubation times [17,18].

Sex has also been implicated in influencing prion disease

incubation time in mice. This effect has been suggested by a few

studies, however, these have not been comprehensive and have

largely focused on only one strain of mice or prions [19–22].

Variation in the choice of model and prion strain have also

compounded the difficulty of replicating these findings resulting in

equivocal data and a confusing picture. Sex effects have also been

described in human prion diseases with females exhibiting a two

year earlier age of onset than males for vCJD after stratification by

birth cohort [19]. Survival times for females in both CJD and

vCJD have also shown to be longer increasing from four to five

months and twelve to fourteen months respectively [23].

In order to address the effect of sex on prion disease incubation

time in mice we have compared transmission data for males and

females gathered at the MRC Prion Unit over the last ten years.

PLoS ONE | www.plosone.org 1 December 2011 | Volume 6 | Issue 12 | e28741



This includes data from twelve different inbred lines of mice

inoculated with at least two prion strains representing both mouse

adapted scrapie (Chandler/RML) and mouse adapted BSE. We

show that sex can have a profound influence on incubation time,

however, this is not a general effect and is not seen in all mouse

strains but rather is highly specific for given combinations of

mouse model and prion strain.

Results

Prion transmissions to inbred lines
Groups of males and females from twelve different inbred lines

of mice (including two sub-strains of C57BL/6) were inoculated

intra-cerebrally with various strains of prions. All mouse lines were

challenged with a strain of mouse-adapted scrapie and mouse-

adapted BSE. These were generally Chandler/RML scrapie

prions (I856) and C57BL/6 passaged BSE (I874), however, ME7

scrapie prions (I9459) and mouse-passaged BSE (MRC2, I9468)

were also transmitted in some cases (Table 1). The inbred lines of

mice represent a range of genetic backgrounds and incubation

times ranging from a ‘‘short’’ incubation time strain such as

NZW/OlaHsd to a ‘‘long’’ incubation time strain such as MAI/

Pas. Most strains are Prnpa allele mice, however, JU/FaCt is a

Prnpb strain and MAI/pas is a Prnpc strain [6]. Most mouse lines

are standard laboratory inbred lines with the exception of PERA/

Kamei, CAST/Ei, PWK/Pas and MAI/Pas that are derived from

wild-trapped animals [24].

Incubation times for all transmissions are shown in table 1. For

8 of the 12 mouse lines no significant differences were seen

between males and females with either Chandler/RML or mouse-

passaged BSE prions. For SM/J and NZW/OlaHsd significant

differences were seen between males and females (p,0.0001 and

p = 0.006 respectively) with Chandler/RML, but not mouse-

passaged BSE, prions. For SM/J mice the mean incubation time

was 6% longer in females as compared to males, however, the

situation was reversed for NZW/OlaHsd where the mean

incubation time in females was 3% shorter than in males.

Two lines of mice, C57BL/6 and FVB/NHsd, showed

significant sex differences with multiple prion strains (Table 1,

Figure 1). For C57BL/6 (C57BL/6JOlaHsd or C57BL/6J) highly

significant sex differences were observed for all four prion strains.

For both mouse-adapted scrapie prion strains the mean incubation

time in females was 4 or 2% (Chandler/RML and ME7

respectively) shorter than in males (p = 0.05 and p = 0.001) while

for both mouse-passaged BSE prion strains this was reversed with

the female mean incubation time being longer than for males (4

and 2%, p = 0.0002 and p = 0.0001 for I874 and MRC2-I9468

respectively). FVB/NHsd displayed a significant sex effect with

Chandler/RML (p = 0.0007), ME7 (p = 0.037) and MRC2-I9478

(P = 0.013) but not for mouse passaged BSE (I874). These effects

are in the same direction as for C57BL/6 with the mean

incubation time in females being shorter for mouse-adapted

scrapie strains (7 and 3% for Chandler/RML and ME7

respectively) and the mean incubation times in females being

3% longer with MRC2-I9468.

PrPC levels
In experimental mouse models, the level of PrPC expression is

inversely correlated to incubation time. The shortest incubation

times are seen in transgenic models over-expressing mouse PrP

[25]. While Prnp null mice are resistant to prion disease, one copy

of Prnp restores susceptibility but with an increased incubation time

relative to wild type controls [26]. To determine whether

differences in endogenous PrPC levels could explain the sex effects

seen in C57BL/6 and FVB/N mice, we measured total PrPC in

10% brain homogenates for both males and females using a PrP

specific ELISA [27]. No differences were seen between the sexes or

between mouse strains (Figure 2).

Table 1. Prion incubation times.

RML/Scrapie (I856) ME7 (I9459) Mouse Passaged BSE (I874) MRC2 (I9468)

Male Female p-val Male Female p-val Male Female p-val Male Female p-val

C57BL/6JOlaHsd 14661 (20) 14061 (21) 0.005 17361 (22) 18061 (20) 0.0002

C57BL/6J 16861 (10) 16460 (13) 0.001 17361 (5) 17760 (10) 0.0001

FVB/NHsd 13662 (15) 12761 (18) 0.0007 15461 (14) 14962 (9) 0.037 15562 (13) 15762 (19) ns 14763 (8) 15262 (14) 0.013

NZW/OlaHsd 11061 (16) 10762 (22) 0.006 13361 (15) 13261 (13) ns

RIIIS/J 13661 (17) 13461 (17) ns 16462 (18) 16962 (21) ns

SJL/OlaHsd 12161 (19) 12261 (18) ns 15263 (15) 15862 (22) ns

SWR/OlaHsd 13561 (19) 13562 (17) ns 15362 (13) 15861 (14) ns

SM/J 12961 (27) 13761 (20) ,0.0001 17161 (17) 17361 (12) ns

CAST/Ei 19365 (5) 18663 (3) ns 18469 (3) 18066 (6) ns

PERA/Kamei 14861 (13) 15362 (13) ns 19166 (5) 206610 (12) ns

PWK/Pas 22465 (8) 214610 (4) ns 18163 (5) 18564 (8) ns

JU/FaCt 31764 (9) 31064 (15) ns 354613 (6) 398683 (2) ns

MAI/Pas 37264 (10) 34864 (9) ns 32969 (4) 32167 (7) ns

Incubation times are given for prion transmissions following intra-cerebral inoculation and are displayed as the mean 6 sem given in days with the number of animals
per group given in parentheses. RML and Me7 represent two distinct strains of mouse-passaged scrapie and mouse BSE and MRC2 represent two different preparations
of mouse passaged BSE. For all prion strains, all groups of mice were inoculated with 1% brain homogenate made from the same stock of 10% brain homogenate. All
RML/scrapie and mouse passaged BSE transmissions were carried out in a conventional animal facility and ME7 and MRC2 transmissions were carried out in a specific-
pathogen-free facility. Where data were normally distributed groups were analysed statistically using a t-test. Where one or both of the groups did not pass a normality
test, a non-parametric Mann-Whitney test was used. ns denotes not significant (P.0.05).
doi:10.1371/journal.pone.0028741.t001

Sex Effects in Prion Disease
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Neuropathology
To establish whether regions of the brain showed differential

susceptibility between males and females we compared the

pattern of PrPSc deposition, spongiosis, gliosis and neuronal loss

in groups of males and females (5–14 per group) for C57BL/6

and FVB/NHsd for Chandler/RML, ME7 and MRC2 prion

strains. Endocrine differences have been implicated as determi-

nants of sex effects in prion disease [19]. The pituitary was

unavailable for analysis as this is generally lost during the

removal of the brains, however, the hypothalamus was looked at

in detail. For all groups no significant differences were seen

between males and females or between the mouse strains

(Figure 3 and figures 4 and S1). For both males and females the

patterns of neuropathology were characteristic of the prion

strains used.

Prion strain typing
In addition to neuropathological differences, the other important

feature for strain discrimination are the molecular characteristics of the

protease-resistant prion protein (PrPSc) as shown by immunoblotting.

We compared the pattern of PrPSc in end stage brains from males and

females (3 per group) for C57BL/6 and FVB/NHsd for Chandler/

RML, ME7 and MRC2 transmissions. In all cases the characteristic

PrPSc pattern for the prion strain was preserved and no differences

were observed between males and females (Figure 5, S2 and S3).

Materials and Methods

Mice
Commercially available inbred mouse lines were obtained from

Harlan, UK (Bicester, UK) or the Jackson Laboratory (Bar

Figure 1. C57BL/6 and FVB/N survival curves. Survival curves for prion transmissions to C57BL/6J (A–D) and FVB/NHsd (E–H) mice. A and E, Chandler/
RML prions; B and F, mouse passaged BSE prions; C and G, ME7 prions; D and H, MRC2 prions. % survival is shown on the y-axis and days post inoculation is
shown on the x-axis. All data are significant (P,0.05) except for mouse-passaged BSE transmission to FVB/NHsd. Detailed values are given in Table 1.
doi:10.1371/journal.pone.0028741.g001

Sex Effects in Prion Disease
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Harbor, Maine, USA). MAI/Pas and PWK/Pas mice were a gift

from Jean-Louis Guénet (Institute Pasteur, Paris); JU/FaCt were a

gift from Bruce Cattanach (MRC Harwell, UK) and CAST/Ei

were obtained from the Mary Lyon Centre (MRC Harwell, UK).

Prion strains
All inocula were prepared as 1% (weight/volume) prion infected

brain homogenate in PBS made from the brains of terminally sick

mice. The mouse adapted scrapie prion strain Chandler/RML

(gift of A. Aguzzi, Institute of Neuropathology, University of

Zurich, Zurich) was generated by a single passage in CD-1 Swiss

mice [7]. A source of the ME7 mouse adapted prion strain was

obtained from the Institute of Animal Health, UK and further

passaged once in C57BL/6JOlaHsd mice. BSE tissues were

originally obtained from the Veterinary Laboratories Agency, UK

and passaged in inbred mice as previously described [28]. In brief,

both BSE preparations were derived from a pool of five brainstems

from naturally occurring cases of BSE. This material was passaged

twice in C57BL6/JOlaHsd mice to produce the inoculum I874.

This was further passaged in SJL/OlaHsd mice to produce the

strain MRC2 (I9468) [28].

Prion inoculation and phenotyping
Mice were anaesthetized with isofluorane/O2 and inoculated

intra-cerebrally into the right parietal lobe with 30 ml of a 1%

prion infected brain homogenate as previously described [7]. Mice

were examined daily for neurological signs of prion disease and

were culled once a definitive diagnosis had been made or earlier if

showing signs of distress or loss of up to 20% of body weight.

Diagnostic criteria for clinical prion disease were as previously

described [29]. Non-specific early signs include agitation,

aggression, unusual gait and slight weight loss and more specific

early indicators include erect ears, rigid tail, un-groomed

appearance, slight hunched posture and clasping of hind limbs

when lifted. Definitive diagnosis was made on observation of one

confirmatory sign of prion disease and animals were culled at this

point. Confirmatory signs included ataxia, generalised tremor, loss

of righting reflex, limb paralysis, extensive pilo-erection or

sustained hunched posture. Incubation time was calculated

retrospectively and defined as the number of days from inoculation

to the onset of clinical signs. All sex difference comparisons were

from experiments that were performed at the same time with the

same inoculum with the same technicians recording neurological

observations. All procedures were conducted in accordance with

institutional and national regulations and standards on animal

welfare. Experiments were approved by the MRC Prion Unit

Animal Ethical Review Committee and carried out under UK

Home Office licences PPL 80/1639 and PPL 70/6454.

Immunohistochemistry
Mouse brains were fixed in 10% buffered formal saline (BFS)

and prion infectivity was inactivated by incubation in 98% formic

acid for one hour. Tissues were paraffin wax embedded, sectioned

Figure 2. PrPC levels for male and female C57BL/6 and FVB/N
mice. PrPC levels (ug/ml) were determined in triplicate using 10%
(weight/volume) brain homogenate for male (n = 3) and female (n = 3)
mice of each strain in a PrP specific ELISA. Data are shown normalised
by total protein content (ug/ml and 61000) as determined by a BCA
assay (mean 6 standard deviation). No significant differences were seen
between males and females or between strains.
doi:10.1371/journal.pone.0028741.g002

Figure 3. Histological features of Chandler/RML inoculated male and female FVB/N mice. Comparison of histological features between
male FVB/N (left panel, A–D) and female FVB/N mice (right panel, E–H) inoculated with Chandler/RML prions. Panels A and E show the PrPSc

distribution in a cross section of the brain and panels B–D and F–H are higher power views of the hypothalamus (boxed area). (B and F) mild
spongiosis (C and G) synaptic deposition of PrPSc (D and H) gliosis. Overall, the pattern of PrPsc distribution, spongiosis or gliosis, shows no difference
between both groups. Scale bar corresponds to 2 mm (A, E), 80 mm (B, F) or 160 mm in all other panels.
doi:10.1371/journal.pone.0028741.g003

Sex Effects in Prion Disease
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and stained as previously described [29]. In brief, sections were

stained with haematoxylin and eosin (H&E) for general examina-

tion and determination of spongiosis and neuronal loss. Prion

deposition was visualised with anti-PrP monoclonal antibody

ICSM35 (D-Gen Ltd, UK) and gliosis was determined with an

anti-glial fibrillary acid protein (GFAP) antibody (Dako UK, Ltd).

Western blotting
10% w/v brain homogenates in D-PBS were prepared by

ribolysing, benzonase treated, proteinase K digested (50 mg/ml of

proteinase K for 1 h at 37uC) and western blotted as described

previously [30]. Blots were probed with the anti-PrP monoclonal

antibody ICSM-35 (D-Gen Ltd, UK) in conjunction with an

alkaline-phosphatase-conjugated anti-mouse IgG secondary anti-

body (Sigma) and developed in chemiluminescent substrate (CDP-

Star; Tropix Inc).

Quantification of PrPc by enzyme linked immunosorbent
assay (ELISA)

Endogenous levels of PrPC were determined in 10% brain

homogenates by ELISA as previously described [27]. PrPC was

captured by anti-PrP monoclonal antibody ICSM18 (D-Gen Ltd,

UK) and detected using biotinylated anti-PrP monoclonal

antibody ICSM35 (D-Gen Ltd, UK) and streptavidin-horseradish

Figure 4. PrPSc distribution in the brains of C57BL/6 and FVB/N mice. Comparison of prion protein staining between male (A, C, E, G) and
female (B, D, F, H) mice inoculated with ME7 prions (A–D) and MRC2 prions (E–H). A, B and E, F represent C57BL/6 mice and C, D and G, H represent
FVB/N mice. Overall, the pattern of PrPSc distribution shows no difference between male and females and is characteristic of the prion strain used.
Scale bar corresponds to 2.5 mm for all panels except for C and D where it corresponds to 3 mm.
doi:10.1371/journal.pone.0028741.g004

Figure 5. Western blot of PrPSc from the brains of C57BL/6 and
FVB/N mice following Chandler/RML transmission. Western blot
of proteinase-K treated 10% w/v brain homogenates (n = 3 for both
males and females) immunoblotted with anti-PrP monoclonal antibody
ICSM-35 (D-Gen Ltd, UK). (A) C57BL/6 mice (B) FVB mice. The PrPSc from
both male and female brains is characteristic of the RML scrapie prion
strain and no sex differences are seen.
doi:10.1371/journal.pone.0028741.g005

Sex Effects in Prion Disease
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peroxidise conjugate (Dako UK, Ltd). Total protein concentration

was determined with a Pierce BCA Protein Assay kit (Thermo

Scientific) according to the manufacturer’s instructions.

Statistical analysis
Statistical tests were carried out using GraphPad InStat

(GraphPad Software, Inc, California, USA). Where the group

incubation times passed a normality test (Kolmogorov-Smirnov),

data were evaluated using a two-tailed t-test. Where the normality

test was not passed the non-parametric Mann-Whitney test was

used.

Discussion

Sex effects have been implicated in prion disease incubation

time for many years, however, to date, these data have been

equivocal with few conclusions drawn. We have now presented a

comprehensive study with 12 different inbred lines of mice all of

which were challenged with a mouse-adapted scrapie strain of

prions (Chandler/RML) and mouse-adapted BSE (I874). In

addition, two mouse lines (C57BL/6 and FVB/N) were challenged

with ME7 and the mouse-adapted BSE strain, MRC2. Our data

show that sex can have a significant effect on incubation in some

instances. However, this is highly specific to the mouse and prion

strain combination. 8 of the 12 mouse strains used showed no sex

differences with either prion strain and two mouse strains (NZW

and SM) only showed a sex effect with the Chandler/RML prion

strain. C57BL/6 and FVB/N were the only mouse strains to show

sex differences with both mouse adapted scrapie and BSE. For

these two mouse lines, females had a shorter incubation time than

males when challenged with either Chandler/RML or ME7 but

this was reversed following inoculation with BSE derived prions.

This is broadly in agreement with previous studies showing that:

female C57BL/6N have a shorter incubation time following

inoculation with ME7 [19]; female Prnpb mice (VM/Dk, IM/Dk

and MB/Dk) have a shorter incubation time than males following

challenge with the mouse adapted scrapie strain; shorter

incubation time for female NZW mice with Chandler/RML but

not ME7 prions [21,22]. The opposite finding was reported by

Abiola et al in C57BL/6J mice inoculated with ME7 [20]. Analysis

of combined data from 117 titration experiments with ten mouse

strains and seven different murine scrapie strains concluded that

female mice had on average a nine day shorter incubation time

[31]. Based on our data, we suggest that it is not appropriate to

pool data from different mouse and prion strains, however, it is

possible that the data of McLean and Bostock broadly agree with

our findings due to the predominance of C57 mice and the ME7

prion strain in their data set [31].

Few studies have looked at the effect of sex on prion disease

incubation time following inoculation with BSE. On primary

passage of BSE to C57 and RIII mice no sex differences were

observed although an X chromosome-cytoplasm interaction was

observed in the F1 backcross generation [10]. This contrasts with

the findings of Abiola et al who described a highly significant

increase in C57BL/6J and DBA/2J females on inoculation with

BSE [20]. Although both these studies used C57BL mice they

were a different sub-strain with C57BL/FaBtDk and C57BL/6J

used by Manolakou et al and Abiola et al respectively. The extent of

the similarity between these two sub-strains has not been

characterised but it is possible that this may be sufficient to

explain the contradictory findings. In our present study we looked

at mouse-passaged BSE and where significant differences were

observed, females showed an increase in incubation times relatives

to males. It may not be appropriate to compare data from BSE

primary passages with data from murine BSE strains as the

presence of a species barrier and subsequent strain adaptation may

significantly alter the sex effects.

Sex differences have also been reported for age of onset and

disease duration of the human prion diseases, vCJD and sporadic

CJD [19,23]. Kingsbury et al also reported an increased incubation

time in female B.10.AKM, C3H/SwSn and C3H/D1Sn mice

following inoculation with mouse-passaged sporadic CJD strain

K.Fu [21].

In this study we have used the number of days from inoculation

to the onset of clinical signs as our measure of incubation time. It is

also possible to measure incubation period as the time from

inoculation to the time of death and to measure the duration of the

disease. Using these alternative data it is possible that other sex

differences may be observed.

The reason for the observed sex differences is still unresolved. In

this study we have shown that there is no difference in the

endogenous levels of PrPC between males and females that show

differences in incubation time with a range of prion strains. We

have also shown that there are no detectable differences between

males and females in terms of PrPSc deposition in the brain and

the pattern and extent of spongiosis, gliosis and neuronal loss. No

differences were seen in prion strain types between males and

females as determined by PrPSc pattern by immunoblotting.

Loeuillet et al investigated the effect of androgens on incubation

time by using castrated mice [19]. Castration negated the sex

effect after intracerebral inoculation but not following intraperi-

toneal inoculation suggesting that while androgens may play a role

other factors such as differential inactivation of genes on the X

chromosome are also likely to be important.

For some mouse inbred lines and prion strain combinations

there is a highly significant difference in incubation time with a

mean difference of up to 7%. While this effect is not seen with all

mouse lines, it is of particular importance in C57BL/6 and FVB/

N strains as these are commonly used for the generation of

knockout and transgenic mouse models. We therefore recommend

that when testing the effect of a modifying gene or therapeutic

agent on prion disease incubation time it is essential to use single

sex groups.

Supporting Information

Figure S1 Histological features of Chandler/RML inoc-
ulated male and female C57BL/6 mice. Comparison of

histological features between male C57BL/6/(left panel, A–D) and

female C57BL/6 mice (right panel, E–H) inoculated with

Chandler/RML prions. Panels A and E show the PrPSc

distribution in a cross section of the brain and panels B–D and

F-H are higher power views of the hypothalamus (boxed area). (B

and F) mild spongiosis (C and G) synaptic deposition of PrPSc (D

and H) gliosis. Overall, the pattern of PrPSc distribution, spongiosis

or gliosis, shows no difference between both groups. Scale bar

corresponds to 2 mm (A, E), 80 mm (B, F) or 160 mm in all other

panels.

(JPG)

Figure S2 Western blot of PrPSc from the brains of
C57BL/6 and FVB/N mice following Me7 transmission.
Western blot of proteinase-K treated 10% w/v brain homogenates

(n = 3 for both males and females) immunoblotted with anti-PrP

monoclonal antibody ICSM-35 (D-Gen Ltd, UK). (A) C57BL/6

mice (B) FVB mice. The PrPSc from both male and female brains

is characteristic of the Me7 scrapie prion strain and no sex

differences are seen.

(TIF)

Sex Effects in Prion Disease
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Figure S3 Western blot of PrPSc from the brains of
C57BL/6 and FVB/N mice following MRC2 transmis-
sion. Western blot of proteinase-K treated 10% w/v brain

homogenates (n = 3 for both males and females) immunoblotted

with anti-PrP monoclonal antibody ICSM-35 (D-Gen Ltd, UK).

(A) C57BL/6 mice (B) FVB mice. The PrPSc from both male and

female brains is characteristic of the MRC2 prion strain and no

sex differences are seen.

(TIF)
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