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Abstract

An Aggregated Dead Zone (ADZ) model is presented for longitudinal dispersion of tracer in river channels, in which the channel
cross-section is divided into two parallel regions: the bulk flow and dead zone storage. Tracer particles in the bulk flow are assumed
to obey plug-flow advection at the discharge velocity U without any mixing effects. The dispersive properties of the model are
completely embodied in the residence time for tracer storage in the dead zone. The model provides an excellent description and
prediction of empirical concentration-time distributions, for times ¢ > x/U. Its physical realism is demonstrated by using it to
describe the evolution of a tracer cloud in the River Severn, UK., and by comparing it with a more complex model which
incorporates the additional effects of shear flow dispersion within the bulk flow. The ADZ model is a potentially useful tool for

practical prediction of dispersion in natural channels.
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An Aggregated Dead Zone model of
dispersion in natural channels

The relative roles of shear-dispersion and dead zones as
mechanisms causing longitudinal dispersion in natural
channels were considered by Davis ez 4l (2000). They
show that shear-dispersion is unimportant compared to
tracer retention in dead zones except during and shortly
after an initial period during which cross-sectional mixing is
established over the bulk flow region. Indeed, it seemed
from their study of empirical data from the River Severn,
UK., that the later evolution of a tracer cloud might be
predicted accurately by excluding the shear-dispersion term
from the governing partial differential equations. This paper
tests this idea by deriving firstly an analytical expression for .
longitudinal dispersion by dead zone storage processes
alone, and then fitting it to the data from the River Severn
presented by Atkinson and Davis (2000).

Model formulation

An Aggregated Dead Zone (ADZ) model may be defined by
considering the river channel to be divided into two
interconnected regions — a central core of moving water,

termed the bulk flow region, and dead zones consisting of
stationary water around the perimeter of the channel (Davis
et al., 2000). Both regions are considered to be internally
well mixed at any one cross-section. Tracer particles may be
exchanged between the two regions at a rate proportional to
the difference in concentrations between them. Thus, the
following coupled partial differential equations will apply,
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for tracer in the dead zones. Symbols are defined in the list
at the end of this paper and in Davis ez /. (2000). Note that
the third term in Eqn. (1) expresses the effects of turbulent
shear on dispersion in the bulk flow via the shear-dispersion
coefficient K| as originally suggested by Taylor (1954). A
pure ADZ model represents the limiting case as K tends to
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Previous work

Equations similar to (3) have been applied to various
processes that are conceptually similar to the mass transport
problem in natural channels. In chemical engineering such
models have been termed ‘continuously stirred tank reactor
models’ or ‘cell models’ (MacMullin and Weber, 1935;
Danckwerts, 1953; Aris and Amundson, 1957; Popovic and
Deckwer, 1976). A second application has been in mass
transport studies in porous media such as the capacitance
models developed by Deans (1963) and Coats and Smith
(1964). A third is in modeling of dissolved oxygen and
biochemical oxygen demand in rivers, e.g. Young and Beck
(1974), Beck and Young (1975). Solutions of (3) for a variety
of boundary conditions were studied by Goldstein
(1952a,b) and applied to transport of sorbing solutes in
porous media by Carnahan and Remer (1984).

The earliest contribution to foreshadow the dead zone
concept as the sole mechanism causing longitudinal
dispersion in natural channels was by Banks (1974) who
derived an analytical solution to a ‘cells-in-series’ model.
Subsequently, Stefan and Demetracopoulos (1981) and
Beltaos (1982) have considered discrete-time models with a
‘cells-in-series’ approach. In these models, the river reach is
divided into a number of mixing cells of equal volume, each
obeying differential equations of the form (2). The output
from an upstream cell then forms the cascaded input for the
next cell. Stefan and Demetracopoulos (1981) report that
this model “reproduces bulk features of the mass transport
(mean travel time and variance) without necessarily
particular success in the prediction of instantaneous
concentrations”, when applied to a 17.2 km reach of the
Upper Mississippi River. The most important subsequent
contributions are by Beer and Young (1983) and Wallis ez al.
(1989) who formulated a discrete-time, aggregated dead
zone model and applied it with considerable success to
tracer data from four short reaches (100—150 m) in rivers in
north-east England. They used as an initial condition the
measured concentrations as a tracer cloud entered the
upstream end of a test reach, and fitted the aggregated dead
zone model to the cloud leaving the test reach. In all four
reaches, a first-order model structure (i.e. a single

aggregated dead zone element) was found to be adequate.

A more theoretical approach was taken by Smith (1981,
1987) who derived an ADZ model from detailed hydro-
dynamics with the minor change that the dead zone storage
region has a non-zero velocity.

Model solution

Consider an instantaneous, well-mixed injection of tracer
into a channel providing pure advection (plug-flow) in the
bulk flow region combined with storage and release of tracer
from dead zones. For this situation, Eqn. (3) may be solved
rapidly by considering the appropriate solution to Eqns. (1)
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and (2), then setting K = 0. Following Davis et al. (2000),
the solution to Eqns. (1) and (2) for boundary conditions

~ appropriate to an instantaneous injection of mass M of

conservative tracer at x =0, t =0 is,

; :
C = Cr(x,t)e™/* + X/ / Cr(x, v).e"zv/’.%.e_u/T
0

'\/;/;v'll [2% v(t—v)].dv
(32)

where 7, is a modified Bessel function of first order and first
kind, and

M (x — Ut)?

To derive the solution for a pure ADZ model from this
result, note that as K tends to zero, from (3b):

CT(x, t) =

Lim{Cr(x,)] = 7:(— £/U) 4)
Applying (4) to (3a) together with
[ o0 =s1vy0rav =6~ 510y 6/0) )
0
then:
Clx, 1) = AﬁUa(t — & U)e

M 2 X
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x/U \* x
'(; _/x/U) 4 [2% =—x/U)|  (©
Equation (6) describes the evolution of a tracer cloud from
an instantaneous well-mixed injection at x=0, =0,
provided that the tracer is subject only to plug-flow along
the stream, plus first-order exchange with well-mixed dead
zones. An alternative derivation of Eqn. (6) using a Laplace
transform approach is given by Davis (1991).

Properties of the ADZ model

The right hand side of Eqn. (6) consists of two terms. The
first represents a Dirac delta function that travels down-
stream at the discharge velocity, U. The mass in this term
decays as a function of longitudinal distance and time
according to ¢*/ as tracer is exchanged with the dead
zones. The second term describes tracer that has returned to
the bulk flow after storage in the dead zones. Dispersion
arises from the exponential distribution of residence time
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for tracer in dead zones, which accords to e *"*/*. This term
represents mass that has been ‘stripped off’ the Dirac delta
function as the latter is advected downstream. The first term
approaches zero for large times and distances from the point
of tracer injection and the second term then becomes the
asymptotic solution to the ADZ model.

The Heaviside function H(t-x/U) is a step function that
has a value of zero for # < x/ U and a value of 1 for # > »/U.
This is the arrival time at x of the Dirac delta function which
is advected downstream with velocity U. Thus, the ADZ
model predicts zero concentrations for < x/U and an
indeterminate concentration for ¢ = x/U. In the model, no
tracer particles can arrive ahead of the 6(z — x/ U) function.
Thus, Eqn. (6) is useful in practice only for the later stages
of cloud evolution, when almost all of the tracer particles
have passed through a dead zone at least once and are,
therefore, travelling more slowly than the rate of advection
in the bulk flow. The model expresses this situation for
times #>>1, when the coefficient of the first term
approaches zero. The fraction of tracer mass accounted
for by the second term is given by (1 — ¢~*'U%). Figure 1
shows how this fraction increases with the distance that the
leading edge of the cloud has been advected downstream,
and asymptotically approaches unity, for parameter values
of U,y and 7 which are discussed later.

The effect of variations in y and 7 on the ADZ model
(strictly speaking the second term only) is illustrated in Fig.
2 for arbitrary values of U=1ms~' and 4 = 10 m’. Figure
2a shows the effect of variations in 7 from 1000 s to 5000 s
with ¥ = 1. The effect of increasing 7 is seen to be:

(i) To attenuate the peak concentration.
(ii) To increase the variance and time base of the distribu-
tions.
(iii) To increase the skewness of the distributions.
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Fig. 1. The fraction of tracer mass accounted for by the second term of
the ADZ model, with appropriate values for the River Severn of
U =0.66 m.s™! and T = 2300 s, plotred against-longitudinal distance.
The locations of the sampling stations A to G are shown.

(iv) To lessen the time to the peak concentration.

The enhanced retentive effects of an increased residence
time of storage (7/%%) account for observations (i), (i) and
(iii). The parameter 7 is a characteristic time for exchange of
tracer between the bulk flow and the dead zones and hence
governs the ratio of the first and second terms. A second
effect of an increase in 7 is therefore to lengthen the time
before tracer particles exchange with the dead zones. With
lower values of T tracer particles are stripped off the
(t — u/U) function within a relatively short time and
consequently more of the injected mass is accounted for by
the second term. With higher values of 7, particles initially
spend more time being advected downstream in the bulk
flow before entering dead zone storage for the first time.
Consequently, the time to the peak concentration is less for
higher values of 7, accounting for observation (iv) above.

The asymptotic condition in which the first term has
declined to zero is achieved for 7 = 1000 s. Figures 2b and
2¢ show that the influence of T remains much the same
regardless of the value of y, but that the latter parameter
strongly influences the time-to-peak in the asymptotic case.

Figure 2d shows the effects of varying y from 1 to 5 with
7 set to 1000 s. The output concentration distributions are
much more sensitive to changes in y than to 7. The effect of
decreasing y from 5 to 1, equivalent to increasing the
effective cross-sectional area of dead zone storage from 4%
to 100% of the value for the bulk flow, is seen:

(v) to attenuate rapidly to the peak concentration.
(vi) to increase rapidly the variance and the time-base of the
concentration distributions.
(vii) to lengthen the time to the peak concentration.

These features are explained by the increase in residence
time in storage for lower values of y.

Figures 2e and 2f show the same variations of y for
constant values of 7 of 3000 s and 5000 s respectively. These
solutions are sub-asymptotic, but illustrate the ability of
dead zone storage to produce pronounced tailing of the
cloud behind the é-function spike (which is not shown but
lies at ¢ = 12,000 s).

Once the asymptotic condition has been reached, the
average particle resides for a period 7 in the bulk flow
between leaving and re-entering dead zones. Average
residence time within a dead zone is 7/, so each particle
spends a proportion $2/(x* + 1) of time in deadzones with
zero streamwise velocity. Thus, the nett migration rate of
the cloud centroid will be Uy®/ ()(2 + 1) during the
asymptotic period. The effects of y on retardation can be
seen in Fig. 2d in which the time-to-peak varies from about
4% more than the advection time for y =5 up to almost
twice as much for y = 1. The overall retardation of the peak
will be less than the asymptotic value for so long as the pre-
asymptotic period remains a significant fraction of the total
time elapsed, i.e. for < ~12 1.

375



P.M. Davis and T.C. Atkinson

100 -
- a
g
a
2
e
e
s
]
[
Q
e
]
Q
0 10000 - 20000 30000 40000 50000
Time (s)
A
8
[
s
s
c
@
o
8
(5]
10000 12000 14000 16000 18000 20000
Time (s)
250 ]
1 c
200
- 1
o
a
g )
e 1 50'_
° J
® J
4 1 T=50008
3 1007 7240008
1=
5 ]
O
T=30008
50 ]
] 7=20008
Orrrr ]
10000 11000 12000 13000 14000 15000

Time (s)

250

Laa
a

200

Concentration (ppb)

] X=1

25000 30000 35000 40000
Time (s)

10000 - 15000 20000

Concentration (ppb)

T T T

T T T—r—Tr—r—T-T
10000 15000 20000 25000 30000 35000 40000

Time (s)
250
f

200
o
2 ]
~ 1504
= V7]
o
s
£ 1004 {
g 1997
c
[=3
o -4

50-_

1 x=1
04 T T T T T T P e ————
10000 15000 20000 25000 30000 35000 40000
Time (s) '

Fig. 2. Sensitivity of the ADZ model output to different values of parameters y and t. For all graphs the value of U = 0.66 m.s~! and cross sectional
avea A = 10 m°. The lines indicating model output begin at t = 12000 s which is the translation time of the reach for the chosen values of U and A.
The model has no definite solution at this time and gives values of zero for concentration at earlier times. (a) Effect of varying T from 1000 to 5000 s
with x = 1; (b) Effect of varying © from 1000 to 5000 s with x = 3; (c) Effect of varying © from 1000 to 5000 s with x = 5; (d) Effect of varying x
from 1 to § with ©=1000s; (e) Effect of varying y from I to 5 with v =3000 s; (f) Efféct of varying j from 1 1o 5 with T = 5000 s.

Application to the River Severn

The performance of the ADZ model may be tested against
data from the River Severn (Atkinson and Davis, 2000) in
three ways.. Firstly, the model’s ability to describe tracer
concentration curves at individual stations can be tested.
Secondly, the degree of constancy-in the fitted parameters
can be assessed over the 8500 m of river between stations D
and G in which the ADZ model can be expected to apply
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(see below). Since the channel has essentially constant
hydraulic properties in this reach, it might be expected that
an accurate model would also show constant parameter
values. This is a powerful test of physical realism. Thirdly,
the model’s ability to predict the form of all the observed
tracer clouds from average values of fitted parameters
provides a test of its overall usefulness. This test is, of
course, only semi-independent of the first two.

The fraction of mass in the second term of the ADZ
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model is shown as a function of longitudinal distance with
U=0.66m.s"' and 7=2300s in Fig. 1. These values of U
and 7 are appropriate to the River Severn data as analysed
by Davis ez al. (2000) using a dispersion-dead zone model

which incorporates the effects of shear-dispersion. The .

positions of the sampling stations described by Atkinson
and Davis (2000) are shown. For downstream distances
close to the point of injection only a relatively small pro-
portion of the mass is accounted for in the second term.
However, the second term’s fractional mass increases
rapidly towards its asymptote and, for stations D through
G, the second term is an adequate approximation to Eqn.

).

Optimal solutions and goodness-of-
fit

Initially, the ADZ model was calibrated to the seven tracer
concentration curves from the River Severn by the
parameter fitting method described by Davis er al. (2001).
The parameters U, M and A were fixed from field
measurements, and the sum of squares of residuals F(cx),
a = (), 7) was minimized. The optimal values y, 7, are given
in Table 1 and shown graphically in Fig. 3.

The fractions of mass in the first terms for stations A, B
and C, are 0.428, 0.423 and 0.262 respectively. This explains
the high values of the objective function (i.e. poor fits) given
in Table 1 for these stations, since the values include the
predicted concentrations of zero for + < x/U. The more
complex Dispersion-Dead Zone (D-DZ) model presented
by Davis ez al. (2000) demonstrated that dispersion at these
stations does not result solely from the effects of tracer
storage and it would be physically inappropriate to interpret
the tracer cloud as if they did. Therefore, the fits of the
ADZ model to stations A, B and C are ignored.

For stations D, E, F and G, the fractions of mass in the
second term of the ADZ model are 0.997, 0.989, 0.999 and

Table 1. Optimal solutions (a,) of the ADZ model with
corresponding sums of squares of residuals F(a,) for the
River Severn.

Station X0 Tols) Fxo,%0)
A 2.736 359 0.5336
B 3.046 1870 0.7357
C 2.720 3019 0.5434
D 2123 1257 0.0025
E 2.364 2654 0.0098
F 2.178 2131 0.0125
G 2.267 2362 0.0087

1 The values of F(e,) include the zero concentrations predicted for
t<ux/u.

0.999 respectively. The asymptotic form of the model is,
thus, appropriate for the whole tracer curve at each of these
stations. Because they are not given an explicit treatment,
any contributions made by shear flow dispersion are
included in the fitted residence times of the ADZ model,
but for stations D to G this mechanism is known to be
relatively unimportant (Davis ez al., 2000).

Figure 3 shows clearly that the ADZ model provides an
accurate description of the measured tracer distributions for
stations D, E, F and G. The predicted mean residence times
of tracer in dead zone storage (t/y* from Table 1), are 279 s,
4755, 449 s and 460 s respectively, which are comparable
with the values found from the more complex D-DZ model
(Davis et al., 2000).

Sensitivity analysis and downstream
constancy of parameters

A sensitivity analysis was undertaken at stations D, E, F and
G in the manner described by Davis ez al. (2000). The
optimal solutions and sensitivities of the objective function
to y and 7 are shown in Figs. 4a and 4b respectively,
together with the values and sensitivities obtained for the D-
DZ model for comparison. There is no significant down-
stream variation in the values of y for the ADZ model. This
shows that the effective cross-sectional areas of dead zones
are not a function of downstream distance, suggesting a
uniform storage over the entire reach length from station D
through to station G. The weighted mean value of y is 2.23,
which as expected is approximately the same as the value of
2.26 from the D-DZ model of Davis et al. (2000).

Although the ADZ model’s sensitivity to 7 is not as
pronounced as for y, there is no significant downstream
trend. Figure 4b shows that.there is less uncertainty
associated with 7 in the ADZ than in the D-DZ model, with
the former producing slightly lower values of t. Together
with its slightly higher values of y (Fig. 4a), this gives the
ADZ model a more rapid exchange of tracer between bulk
flow and dead zones and a shorter dead zone residence time.
The weighted mean value of 7 from the ADZM is 1877 s
compared to 2220 s for the D-DZ model, while the mean
residence times in dead zones are 377s and 435s
respectively.

Constant parameter predictions of
cloud evolution

It is now possible to assess the ADZ model’s ability to
describe the evolution of the dispersing cloud, which is a
much more rigorous test than cloud shape at a single station.

The model treats the whole reach as possessing a single
longitudinally distributed dead zone. If this structure is an
adequate description of the dispersing mechanisms actually
operating in the river, then the values of y and 7 should be
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constant between stations. It is a future goal to relate the
dead zone dispersive parameters to the hydraulic properties
of the channel reach. At present, it is difficult to suggest any
strong physical reasons why y and 7 should be constant over
the 8500 m reach from station D through to station G.
However, considering the uniformity of the hydraulic
parameters over the reach, the dead zone storage regions
might have fairly uniform properties also. It is the
simplification of the longitudinal mixing process to a single
dead zone element that requires y and 7 to be constant if the
approximation is to be valid.

Constancy in model parameters has been demonstrated in
Table 1 and Fig. 4. The values of y and 7 are now set to the
weighted means for stations D to G of 2.23 and 1877s
respectively. For these values, the calculated fractions of
mass in the second term are 0.981, 0.998, 0.999 and 0.999,
confirming the applicability of the asymptotic solution. The
constant-parameter predictions for tracer concentrations are
shown in Fig. 5. The ADZ model describes the overall
evolution of the cloud well for these four distal stations. The

ratio of the dead zone cross-sectional area to that of the bulk
flow region is given by 1/ %*. The chosen value of 2.23 for X
corresponds to dead zones equivalent to 20% of the channel
cross-sectional area or approximately 2 m?.

Relationship between ADZ and
D-DZ models

It is evident that for the River Severn at least, the
simplification to a single dead zone element is a valid
approximation since the ADZ model describes the cloud’s
evolution over 8500 m of river satisfactorily with constant
values of y and 7 (and hence a constant residence time for
dead zone storage of 377 s). The properties of the modelled
dead zones show no downstream variation. A similar result
was obtained for the same data by Davis et al. (2000) using
the D-DZ model, which includes the effects of dispersion in
the bulk flow. Davis et al. (2000) showed that the overall
evolution of the tracer cloud could be divided into three
time periods. In the first, pre-Lagrangian period, full
mixing over the cross-section had not occurred and the
longitudinal dispersion was characterised by a shear-
dispersion mechanism depending upon the contrasts in
streamwise velocity between the middle and edges of the
bulk flow. In the second, early post-Lagrangian time period,
full cross-sectional mixing over the bulk flow had been
established but the longitudinal dispersion was effected
roughly equally by two mechanisms — shear flow dispersion
and dead zone storage. In the third time period, most of the
tracer particles have entered a dead zone at least once, as is
demonstrated by the dominance of the second term in both
the ADZ and the D-DZ models. In this period, the
dispersion process is dominated by dead zone storage,
although the part of the tracer cloud which is in the bulk
flow at any time will also be subject to shear-dispersion.
For the third time period (stations D-G), the ADZ model
gives similar values to the parameters y and 7 as the D-DZ
model, confirming the relative unimportance of shear-
dispersion in the latter. Comparing the values of sums of
squares of residuals for the two models (Table 1) it is
evident that the ADZ model gives the better fit of the two at
stations D—G. Visual comparison of Figs. 3 and 5 of this
paper with Figs. 5 and 7 of Davis ez al. (2000) shows that
this superiority extends to constant-parameter predictions
of the cloud evolution. The superiority of the ADZ model in
this regard again suggests that shear-dispersion may have
only a very minor effect compared with dead zones in
locations far enough downstream for #/7 to exceed ca. 3.9
(station D) or ca. 6.4 (station E) during the cloud’s passage.
Wallis ez al. (1989) report that a first-order model structure
(single dead zone storage element) was adequate to describe
the dispersive characteristics of four rivers in north-east
England, but their study is limited to the application of a
numerical dead zone model to short (100-150m) reach
lengths. For the River Severn, it has been shown that a first-
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order model structure is capable of describing cloud
evolution over the much greater distance from c4.5 km to
almost 14 km from the injection point, despite the rather
idealised assumption that at # = 0 the mass is injected in the
form of the Dirac delta function.

Conclusions

As shown by Davis er al. (2000), tracer dispersion in the
River Severn is dominated initially by the effects of shear
flow, but the influence of dead zones becomes noticeable
after a period in which the cloud velocity slows to the
average water velocity in the bulk flow region (the
Lagrangian timescale). Thereafter, dead zones and shear
flow at first contribute equally to the total amount of
dispersion that the tracer cloud undergoes, but the rate due
to dead zones exceeds that of shear flow, and dead zones’
cumulative effects dominate cloud shape at the more distal
stations D-G. In this paper this dominance has been
confirmed by demonstrating that cloud evolution at these
distal stations can be modelled more accurately by
neglecting shear flow dispersion entirely.

This is a significant result since a simplification to a single
dead zone storage element is potentially of great practical

380

importance in engineering. It appears that, for practical
purposes, it may be better to ignore the shear-dispersion
term in the governing partial differential equations for
locations at which all but a very small proportion of tracer
particles have passed through dead zone storage at least
once. Instead, a superior and physically meaningful
description of the longitudinal dispersion can be obtained
by assuming that the tracer obeys pure translational
advection in the bulk flow (sometimes called plug-flow
advection); dispersion is produced by the aggregated effect
of storage and residence time in dead zones along the whole
river reach. The key parameter for deciding the applicability
of such an approach is the value of t which should be such
that ¢*/U" is greater than ca. 4-6. At stations whose
location x is nearer the injection point than this, shear
dispersion will be significant, and the D-DZ model will be
more appropriate than the more simplified ADZ model.

List of Symbols

A cross~sectional area of the bulk flow region of a
v channel

As cross-sectional area of dead zone region of a
. channel

0
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C cross-sectionally averaged concentration of tracer
C, tracer concentration in dead zone
Cr(x,) concentration as defined by Taylor’s solution to

the Advection-Dispersion Equation
flx) function of &

H(x) Heaviside step function of x

I{x¥)  modified Bessel function of x, of first order and
first kind
longitudinal dispersion coefficient in the bulk flow
region

Mass of tracer injected

time elapsed since tracer injection

average streamwise velocity in the bulk flow region
streamwise distance from point of tracer injection
the parameter set [y, 7]

best-fit parameter set [ ¥, 7o)

Dirac delta function of «

variable of integration

characteristic time scale of tracer exchange be-
tween mobile and stationary regions of the channel

ec/:\noggkqﬁg =

X dead zone storage parameter, defined by
2= A/A,
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