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Abstract 
                                                                                   

This thesis presents the results of computer simulation studies of impurity 

incorporation in calcite and the aggregation of calcite particles, using a combination 

of classical computational techniques based on interatomic potentials, namely 

molecular mechanics and molecular dynamics simulations. 

Firstly, the atomistic simulation techniques have been employed to investigate 

the thermodynamics of mixing in calcite with seven divalent cationic impurities 

(Mg
2+

, Ni
2+

, Co
2+

, Zn
2+

, Fe
2+

, Mn
2+

 and Cd
2+

), based on the calculation of all 

inequivalent site occupancy configurations in 2 × 2 × 1 and 3 × 3 × 1 supercells of 

the calcite structure. In addition to the enthalpy of mixing, the configurational 

entropy and mixing free energy have also been calculated, providing an insight into 

the mixing behaviour as a function of the temperature for a series of carbonate solid 

solutions. The calculations have revealed that the solubility of the cationic impurities 

in calcite is largely related to the cationic coordination distance with oxygen. 

Secondly, the aggregation process has been investigated implementing classical 

computational techniques, and especially the interaction of a calcite nanoparticle 

with the major calcite surfaces, where the adhesion energy and optimised geometries 

of a typical calcite nanoparticle on different surfaces in vacuum and aqueous 

environment have been calculated. The results show the orientation of a nanoparticle 

is a key factor that effects the interactions, besides the size and structure of the 

nanoparticle. The most stable aggregated configuration occurs when the lattices of 

the nanoparticle and the surface are perfectly aligned. 



Abstract 

4 

Finally, a number of symmetric calcite tilt grain boundaries have been 

constructed to act as models of two calcite nanoparticles, after collision has occurred 

but before growth has a chance to commence. Molecular dynamics simulations were 

then employed to study the stability of these tilt grain boundaries and the growth of a 

series of calcium carbonate units at the contact points in the pure and hydrated calcite 

tilt grain boundaries. The calculation have proved that the initial incorporation of a 

CaCO3 unit is preferential at the obtuse step in a grain boundary, and the growth 

velocity of the acute step is 1.3 to 2.1 times higher than that of the obtuse step, once 

the initial growth unit has been deposited on the steps. This study has evaluated the 

conditions required for the growth of new calcium carbonate materials in the calcite 

tilt grain boundaries. 
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1 
Introduction 
                                                                                   

 

Calcium carbonate is one of the most abundant minerals in our environment. It 

has been studied for more than a century because of its important role in geochemical, 

biological and industrial processes. This chapter gives a brief description of two 

important topics: the incorporation of cationic impurities in calcium carbonate and 

the growth and dissolution of calcium carbonate, where both experimental studies 

and computer modelling investigations are included. It also introduces the objectives 

of this thesis and provides an overview of the subsequent chapters. 
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1.1 Calcium carbonate 

Calcium carbonate (CaCO3) is one of the most abundant materials found in 

sedimentary rock in all parts of the Earth surface. CaCO3 makes up 4% of the earth's 

crust and forms the rock types like limestone and chalk. Limestone makes up about 

10% of all sedimentary rocks and is composed largely of the minerals calcite and 

aragonite (different crystal forms of CaCO3). Chalk is a white sedimentary rock, a 

form of limestone composed of the mineral calcite (Frye, 1981; Deer et al., 1992). 

CaCO3 is also an important component in biological systems, such as shells of 

marine organisms, pearls and egg shells (Beruto and Giordani, 1993).  

CaCO3 has been the subject of extensive and varied research because of its 

fundamental applications in industrial, pharmaceutical and environmental fields. 

CaCO3 is a common raw substance in the construction industry, both as a building 

material (e.g. marble) and as an ingredient of cement. Because of its antacid 

properties, CaCO3 is also used to neutralize acidic conditions in both water and soil 

in industrial fields (BCCF, 2007; IMANA, 2010). CaCO3 is widely used as fillers in 

paper, rubber, plastics and paints to improve relevant mechanical properties of 

industrial materials (Zuiderduin et al., 2003; Rocha et al., 2005). It is also used as a 

carbon isotope counter in marine carbonates, with a view to assessing the 

relationship between carbon-induced emission and climate change (Romanek et al., 

1992). As a dietary supplement, CaCO3 is an inexpensive calcium source or gastric 

antacid in the pharmaceutical industry (Lieberman et al., 1990; Gabriely et al., 2008). 

Furthermore, CaCO3 has been shown to chemically interact with various solvated 

heavy ions, such as Fe
2+

, Cd
2+

 and Mn
2+

 (Stipp and Hochella, 1991; Stipp, 1998; 

Park et al., 1996), and some organic molecules when exposed to aqueous solutions 

(Lebron and Suarez, 1998; Hoch et al., 2000). Hence CaCO3 can be applied in water 
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treatment because of its strong surface interaction with heavy metals in the 

environment. 

CaCO3 exists in nature as several polymorphs: amorphous calcium carbonate, 

ikaite (CaCO3·6H2O), vaterite, aragonite and calcite. Both amorphous CaCO3 and 

ikaite are metastable in the environment and change easily to the more stable 

polymorph calcite (Deer et al., 1992; Chang et al., 1996). Vaterite (µ-CaCO3) is also 

a metastable phase of CaCO3 at ambient conditions at the surface of the Earth. Once 

vaterite is exposed to water, it converts to aragonite or calcite (Palache et al., 1951).  

 

 

 

 

 

 

 

(a)                        (b) 

Figure 1.1: Illustration of orthorhombic double cells of aragonite, (a) side view, and 

(b) top view, (Ca = green, O = red, C = grey). 

Aragonite is one of the two common, naturally occurring polymorph of CaCO3. 

It is formed by biological and physical processes, including precipitation from 

marine and freshwater environments. In particular, aragonite is the major constituent 

of coral reefs, shells, pears and other biominerals, where it grow preferentially at 

ambient conditions due to the effect of organic templates (Morse and Mackenzie, 
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1990). Aragonite is thermodynamically unstable at standard temperature and pressure, 

and tends to alter to calcite over geologic time (Chang et al., 1996). Aragonite has an 

orthorhombic crystal structure with space group Pmcn. The experimental structure 

found by Dickens and Bowen (1971) is a = 4.960 Å, b = 7.964 Å, and c = 5.738 Å 

and α = β = γ = 90º, containing four CaCO3 (Figure 1.1). 

 

 

 

 

 

(a)                           (b) 

Figure 1.2: Hexagonal representation of a calcite unit cell, (a) side view, and (b) top 

view (Ca = green, O = red, C = grey). 

Calcite is the most common and stable form of CaCO3 in the environment. It is 

stable at atmospheric pressure and temperature and only decomposes at 973 K, 

becoming calcium oxide (Kuriyavar et al., 2000). The rhombohedral crystal structure 

of calcite was firstly determined using X-ray diffraction (XRD) by Bragg in 1914. 

The rhombohedral crystal structure can be defined using hexagonal axes and calcite 

surface are usually referred to using hexagonal indices, where four Miller indices are 

used instead of three and this convention is followed in this thesis. The hexagonal 

unit cell of calcite has a = b = 4.990 Å, c = 17.061 Å, and α = β = 90
o
, γ = 120

o
 (Deer 

et al., 1992), shown in Figure 1.2. The CO3
2-

 groups in calcite are arranged 
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differently to the corresponding groups in aragonite. Unlike in aragonite, the CO3
2-

 

groups do not lie in two layers that point in opposite directions. Instead they lie in a 

single plane pointing in the same direction, showing alternating layering of planar 

CO3
2-

 groups and Ca
2+

 ions. Each oxygen atom in CO3
2-

 group is surrounded by two 

Ca
2+

 ions in the calcite and three in aragonite (Bragg, 1924). 

The Ca
2+

 and CO3
2-

 ions in calcite are held together through ionic bonding and it 

is easy to cleave the crystal, as an external force can cause a plane of atoms to shift 

into a position where ions with the same charge are next to each other, causing 

repulsive and cleavage (Frye, 1981; Lardge, 2009). Figure 1.3 illustrated a series of 

possible cleavage planes. The {1 0    4} plane contains both Ca
2+

 and CO3
2-

 ions, 

making it charge neutral. It also has a higher density of ions compared to other 

possible neutral planes, leading to its stability (de Leeuw and Parker, 1997; 1998). 

The {0001} plane is terminated by either Ca
2+

 or CO3
2-

 groups, leading to a 

positively or negatively charged surface respectively. 

 

 

 

 

 

 

Figure 1.3: Illustration of {10  4} and {0001} planes of calcite. The {0001} plane 

has two terminations, i.e. a Ca
2+

 termination and a CO3
2-

 termination. 
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1.2 Incorporation of impurities in calcium carbonate 

1.2.1 Heavy metals in nature 

The incorporation of impurities into calcite in natural water is of interest to a 

variety of geochemistry and environmental applications. Some heavy metals, such as 

Cd, Mn, Cu, Pb and Ni, are toxic to human health when they are present in high 

concentrations in water (Nriagu, 1980, 1981; Alloway, 1995; Järup, 2003). In the 

natural aquatic environment, the toxic metals usually come from soil and rocks 

through weathering and microbial activity. Some heavy metals are also produced by 

human activities from industrial and agricultural wastes, which then contaminate the 

groundwater.  

Calcite is an abundant carbonate mineral in sedimentary terrains, since the 

dissolution and precipitation of calcite occurs quickly relative to most natural flow 

rates. Calcite is not a closed system under standard conditions; it can absorb ions 

originating from fluid inclusions when groundwater is in contact with calcite during 

their flow paths in sedimentary terrains (Stipp et al., 1998). Therefore calcite is 

usually used as a perfect sorbent to decrease the concentration of heavy metals in the 

groundwater. 

During this process, calcite can take up the dissolved ions via a 

dissolution-recrystallization process to form stable carbonate phases. Some divalent 

cations, such as Mg
2+

, Ni
2+

, Fe
2+

, Co
2+

, Zn
2+

 Cd
2+

 and Mn
2+

, are smaller than Ca
2+

 

and hence are energetically favoured to became part of the rhombohedral (calcite) 

polymorph, while bigger cations such as Sr
2+

, Pb
2+

 and Ba
2+

 are included in the 

orthorhombic (aragonite) polymorph. The explanation for this behaviour concerns 

the coordination numbers of Ca
2+

. The coordination numbers of Ca
2+

 in calcite and 
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aragonite are six and nine, respectively. This would lead us to expect that the calcite 

arrangement (less dense packing of atoms) would be preferred where the ionic radius 

is fairly small, and that the aragonite arrangement (more densely packed atoms) 

would be preferred where the ionic radius is fairly large. The maximum solubility of 

heavy metals in CaCO3 is mostly controlled by their reaction with relevant sorbent. 

Understanding this incorporation process of heavy metals that occurs in nature could 

greatly reduce the environmental pollution. 

1.2.2 Carbonate solid solutions 

The incorporation of impurity ions in calcite has been found to be a process of 

sorption, which is the change of mass of a chemical in the solid phase as a result of 

mass transfer between fluid and solid. It includes three steps: (i) true adsorption on 

the surface; (ii) absorption or diffusion into the bulk, and (iii) surface precipitation to 

form an adherent phase that may consist of chemical species derived from both the 

aqueous solution and dissolution of the solid (Prieto et al., 2003). Studies of the 

sorption rate of dissolved metals with calcite have consistently observed a rapid 

initial removal from the solution followed by a much slower uptake. The fast initial 

removal is frequently interpreted as being the result of chemisorption, whereas the 

following slow uptake is assumed to present surface precipitation or coprecipitation. 

A solid solution occurs when the impurity ions partition into calcite and 

substitute Ca
2+

 in the lattice during deposition, forming a single crystal phase. Such 

solid solution partitioning is favoured in many geologic environments both at the 

high temperatures and ambient temperatures. For example, a MnCO3-CaCO3 solid 

solution is formed when Mn
2+

 (r = 0.83 Å) substitutes Ca
2+

 (r = 1.00 Å) in calcite. 

This solid solution can be presented as MnxCa1-xCO3, where x is the fraction of metal 



Chapter 1: Introduction 

28 

ion sites occupied by Mn
2+

. The natural (Mn,Ca)CO3 solid solution, namely 

manganocalcite, is widely distributed around the world. Its colour becomes redder 

with a higher proportion of manganese, as illustrated in Figure 1.4. 

 

 

 

 

 

Figure 1.4: Photographs of crystals of (a) manganocalcite (MnxCa1-xCO3) from 

Yunnan, China and (b) rhodochrosite (MnCO3) from Chihuahua, Mexico. 

Although some divalent cations can fully substitute for Ca
2+

 in calcite to retain 

the equivalent rhombohedral structure, only magnesite (MgCO3), rhodochrosite 

(MnCO3), siderite (FeCO3) and dolomite (Ca0.5Mg0.5CO3) typically occur in nature. 

Their structure is also comprised of alternating metal cation layers and planar CO3
2- 

group layers normal to the c-axis. Some rhombohedral carbonates can occur with 

significant solid solutions in nature, but pure end members are only produced 

synthetically. For example, the transition metal carbonates CdCO3, ZnCO3, CoCO3, 

and NiCO3. Divalent cations with ionic radius larger than Ca
2+

 usually prefer the 

orthorhombic structure, for example the naturally occurring compounds strontianite 

(SrCO3) and witherite (BaCO3). The solubility of cationic impurities in calcite is 

generally controlled by the thermodynamics and reaction kinetics of the 

incorporation of the impurities into calcite (Zachara et al., 1991; Stipp et al., 1998). 

Experimental and computational techniques are being developed to gain a full 

understanding of the incorporation of cationic impurities into calcite. 

(b) (a) 
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1.2.3 Experimental studies of carbonate solid solutions 

A large number of publications have been concerned with carbonate solid 

solutions. In most experiments, mechanical mixtures of specific carbonates and pure 

calcite are used. The synthesized intermediate samples are then characterized by 

various experimental techniques, such as X-ray photoelectron spectroscopy (XPS) 

(Stipp et al., 1992), X-ray diffraction (XRD) (Capobianco and Navrotsky, 1987; 

Fenter et al., 2000; Lee et al., 2002; Katsikopoulos et al., 2009), Low energy electron 

diffraction (LEED) (Stipp et al., 1992) and atomic force microscopy (AFM) 

(Hausner et al., 2006; Stack and Grantham, 2010), in an attempt to determine the 

composition, structure and in situ surface analysis. XPS uses X-rays of known 

wavelength to eject the electrons from the core and valence levels of atoms in the 

near surface of a solid. An element in a monolayer on the surface may be visible 

whereas the same amount of materials somewhere in the near-surface may not (Stipp 

et al., 1992). The X-ray diffraction techniques can detect clear ordering patterns in 

mixed compounds; however, they are not well suited to assess the level of disorder in 

poorly ordered samples. LEED patterns can be used to determined atomic order in 

the top-most layers in a solid and have been used to determine the size and shape of 

the surface (for more details, see Hochella et al., 1990). Although the technique of 

AFM can provide spectacular imagery of equilibrium and growing surfaces of calcite 

in the presence or absence of different impurities, AFM is limited in that it does not 

provide compositional information, does not see below the surface, and has relatively 

poor atomic scale resolution (Chiarello et al., 1997). On the other hand, in situ 

measurement synchrotron X-ray scattering can give exact information of the 

structure at the atomic scale, microtopography and composition of single crystal 

mineral-water interfaces (Gratz et al., 1993; Chiarello et al., 1997; Teng et al., 1998; 

Brown et al., 1999). 



Chapter 1: Introduction 

30 

In spite of the rapid development of the experimental techniques, the 

thermodynamic properties of the carbonate solid solutions from experiments are still 

difficult to determine, because it usually involves a three-phase system: a carbonate 

solid, a solution and CO2 gas (Rock et al., 1994; McBeath et al., 1998). Several 

aspects must be considered in advance of any interpretation of the experimental 

results: (i) the complete series precipitated at ambient temperatures do not prove 

complete miscibility. Under some conditions, the slow rate of solid state diffusion 

and the presence of high activation energy barriers may kinetically impede the 

precipitated solids from unmixing (Katsikopoulos et al., 2009); (ii) the presence or 

absence of compositional and structural heterogeneities must be clarified; (iii) 

unmixing and ordering are not necessarily incompatible. Some solid solutions tend to 

both order and unmix in the same system, and the two processes cannot be regarded 

as mutually exclusive (Carpenter, 1980; Putnis, 1992). When cooling such kinds of 

solid solutions, both exsolution and ordering are possible and the final structure is 

determined by the relative kinetics of the two processes under the cooling conditions. 

For example, the dolomite-type intermediate Cd0.5Mg0.5CO3 solid solution is 

thermodynamically stable with the negative enthalpy of formation. Meanwhile, the 

enthalpy of mixing is positive (Katsikopoulos et al., 2009). 

The factors controlling cations sorption and adsorption selectivity on calcite are 

not fully understood, because individual investigators have studied single metal 

sorbates. Comparisons between these studies are difficult because of the use of 

different calcite sorbates, electrolyte solutions, and experimental procedures, all of 

which can exert a strong influence on the reactions responsible (adsorption, diffusion 

and precipitation) for cation sorption to calcite. Thus, trends have not been 

established between sorption behaviours, sorbate properties, and the solution 

composition that could be used to determine the sorption mechanism and the 
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chemical basis for surface selectivity. The development of computational theory, 

such as the distribution coefficient model (Tesoriero, 1996) and its application to this 

problem was an important milestone. These methods provided a scheme for 

predicting carbonate assembly, but since this model does not explicitly characterize 

the microscopic growth unit, predicting how inhibitors interfere with the terraces, 

ledges and kinks is not purely intuitive. 

1.2.4 Theoretical studies of carbonate solid solutions 

Knowledge of the thermodynamic properties of cationic impurities in carbonate 

minerals are necessary to evaluate order and disorder relations, deformation and 

crystal growth, but slow transport rates and decomposition of carbonate phases at 

high temperatures limit further experimental investigations. The application of 

computer modelling in the geological and materials sciences can demonstrate the 

mechanisms on an atomistic scale and extend the capability to evaluate materials 

properties to the regime, where direct experimental measurements are difficult or 

impossible to perform. Computer simulations do not replace the role of experimental 

measurements, but provide a solid framework for evaluating mechanisms and 

properties under conditions which are not accessible to the experiments.  

The computational simulations can roughly be divided into two techniques. 

Firstly, atomistic simulations based on the description of interatomic forces by pair 

potential functions, the accuracy of which dictates the quality of the simulation 

results (Voter, 1996). These methods are often used for materials, for which at least 

some experimental properties, such as lattice structure, elastic constants and bulk 

modulus, are already known. Secondly, density functional theory (DFT), which is a 

quantum mechanical modelling method used in physics and chemistry to investigate 
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the electronic structure of many-body systems. With this method, the properties of a 

many-electron system can be determined by using the wave functions. DFT is one of 

the most popular and versatile methods in condensed-matter physics and 

computational chemistry (Vitek, 1996). 

Although the developing quantum mechanical calculation methods in recent 

years can provide highly accurate results of the electronic structure of a many-body 

system; in some cases, the details of electronic structure are less important than the 

long-time phase space behavior of large molecule systems, e.g. the thermodynamic 

and kinetic properties, which can be modelled successfully by atomistic simulations 

while avoiding quantum mechanical calculations entirely. 

Atomistic simulation techniques are widely used to investigate the complex 

minerals at atomic level and can be extended to include the full range of impurity 

proportions to evaluate thermodynamic properties at some temperatures. Many 

computational investigations have been carried out on calcite bulk and surfaces. 

Parker et al. (1993) used an atomistic model for calcite to study surface precipitation 

and dissolution processes. De Leeuw et al. (1999, 2000 and 2002) have completed a 

series of simulation studies of calcite surfaces based on the carbonate potential of 

Pavese et al. (1996). Noteworthy in this work is the incorporation of an adsorbed 

water layer onto the calcite surfaces, leading a more realistic model of the calcite 

surfaces. The dominant {1 0    4} cleavage surface of calcite remains the most 

stable surface in both vacuum and aqueous environment. Various theoretical 

investigations of the structures and physical properties of calcite-like carbonates have 

also been published (Catti and Pavese, 1997; Cygan, 2000; Dove et al., 1992; Fisler 

et al., 2000; Austen, 2005). Their works focused on parameterization for a series of 

carbonates; extensive testing of both rigid ion and shell models of the lattice; and 

calculating properties, such as elastic and optical properties. These studies on 



Chapter 1: Introduction 

33 

calcite-like carbonates demonstrate the importance of atomic simulations in 

providing a theoretical description of complex surface processes for carbonates, and 

how the theoretical models assist the experimentalist in evaluating competing models 

to understand mechanisms and explain experimental observations.  

Nowadays the approaches to model the solid solutions rely on the assumption 

that the thermodynamics effects of mixing and ordering can be predicted by 

investigating the enthalpy of sufficiently supercell structures with different ly 

arranged exchangeable atoms. To reflect the properties of an infinite large system, 

the supercell should be adequately large, bringing a huge number of possible 

configurations. It is difficult to perform a direct study of the complete configurations 

for a large supercell even if interatomic potential methods are employed. Several 

approaches have been developed to treat these large numbers of configurations. For 

example, the thermodynamics of the (Mn,Ca)CO3 system (and also of the tertiary 

system including Mg besides Ca and Mn) have been discussed in recent papers by 

Vinograd et al. (2009 and 2010), where a simplified pair-wise interaction model is 

employed to perform Monte Carlo (MC) simulations in a very large supercell (12 × 

12 × 3) of the structure, allowing full convergence of the calculations with respect to 

cell size. Another different approach, which reduces the number of site occupancy 

configurations to be calculated when modelling site disorder in solids, by taking 

advantage of the crystal symmetry of the lattice (Grau-Crespo et al., 2007), has been 

applied in this thesis. Within this approach, only a series of inequivalent 

configurations are to be considered to model the cationic disorder in binary carbonate 

solid solutions. Although this approach cannot afford a large supercell size, but 

instead allows us to obtain explicitly the energy of each configuration, using a 

physically meaningful interaction model and including relaxation effects. Details of 

this approach are described in Chapter 4. 
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1.3 The growth and dissolution of calcium carbonate 

When the concentration of CaCO3 in natural water exceeds the saturation level, 

precipitation/crystallisation of CaCO3 occurs. The growth and dissolution of CaCO3 

from supersaturated solutions have been studied for many years, as it represents an 

important role in geochemical, biological and industrial fields. The organisms control 

the growth of CaCO3 crystals for strengthening their structures and functionality 

(Belcher et al., 1996; Meldrum, 2003). For many technological applications a precise 

control over the particle size, morphology and specific surface area during 

precipitation and dissolution would be highly desirable (Aschauer et al., 2010). 

1.3.1 Nucleation and growth of calcium carbonate 

In contrast with many other crystals, the rate of formation of CaCO3 in solution 

is fast and increases with temperature. A considerable number of experimental and 

computational studies have investigated the nucleation of CaCO3 in different 

solutions and found this nucleation is far more complicated than the classical 

nucleation theory (Coelfen and Mann, 2003; Rieger et al., 2007), which assumes 

there is an activation barrier to form an initial crystalline nucleus followed by a 

step-by-step addition of further atoms (Mullin, 1992). Recent experimental works 

(Gebauer et al., 2008; Pouget et al., 2009) have suggested that the nucleation 

pathway of CaCO3 depends on the Ca
2+

/CO3
2- 

supersaturation.  

Many experimental studies have found that small clusters of CaCO3 play a role 

in the pre-nucleation of calcite in highly supersaturated Ca
2+

/CO3
2- 

solutions. For 

example, Ogino et al. (1987) have shown that amorphous CaCO3 particles precipitate 

rapidly but convert to a mixture of all three dehydrated phases in the order of a few 



Chapter 1: Introduction 

35 

minutes before being converted eventually to crystalline calcite. Subsequent 

investigations have shown that the amorphous particles, which are formed firstly, are 

strongly hydrated (Rieger et al., 1997; Bolze et al., 2002). Recently, investigations 

using TEM, SEM, and in situ WAXS (Rieger et al., 1997; Wolf, 2008) have 

examined the growth of CaCO3 in highly supersaturated solutions. Again, an initial 

amorphous, hydrated precursor phase is observed, which quickly converts to a 

mixture of both calcite and vaterite particles. One possible explanation is that the 

amorphous CaCO3 particle has a lower surface energy than calcite nanoparticle, and 

hence a much lower nucleation barrier (Kerisit et al., 2005).  

The study of CaCO3 precipitation from solution and growth by computer 

simulation is hampered because simulations of large numbers of atoms over long 

time-scales are required. Recently, two important developments have allowed 

simulation techniques to be applied to the study of nucleation and growth of CaCO3. 

The first is the process from experimental techniques in understanding the 

relationship between the CaCO3 structure and its morphology, which can provide 

high quality results to compare with simulations. The second development is the 

considerable increase in the computational resources which make the modelling of 

complex systems possible, especially in the investigation of the material structures 

and the thermodynamic properties of complex phases. For example, a simulation 

(Martin et al., 2006) starting from small nanoparticles (d = 1.6 nm, 18 CaCO3 units) 

of amorphous CaCO3 in water has shown that these nanoparticles agglomerate to 

form larger amorphous particles. A recent study (Lamoureux et al., 2008) used 

metadynamics to explore the conformational space available to an amorphous CaCO3 

nanoparticle containing 75 CaCO3 units. Molecular dynamics (MD) simulations of 

CaCO3 precipitation in water by Tribello et al. (2009) support that the first step in the 

mineralisation is the homogeneous nucleation of amorphous particles, which present 
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a transient precursor phase of more stable crystalline polymorphs like calcite. 

On the contrary, at lower Ca
2+

/CO3
2-

 supersaturation, the diffusion controlled 

growth of amorphous CaCO3 particles is slowed and there is sufficient time for the 

small clusters to rearrange to a structure that more resemble calcite. Recent 

experiments have observed calcite crystals very early in the reaction mixture at low 

supersaturation (Gebauer et al., 2008; Pouget et al., 2009). 

 

 

 

 

Figure 1.5: Growth morphology of calcite as a function of the Ca
2+

/CO3
2-

 ratio. (a) 

At low Ca
2+

/CO3
2-

 ratio, the obtuse steps do not advance. Both step orientations have 

a high kink density, as evidenced by their roughness. (b) At intermediate ratios, both 

obtuse and acute step orientations are straight and advance. (c)At high ratios, the 

obtuse step orientation continues to grow, whereas the acute step has become pinned 

and etch-pits are observed, (Stack and Grantham, 2010). 

When the calcite nanoparticles are stable in solution, the growth of CaCO3 is 

found to occur through steps (Gratz et al., 1993) and dislocations (Hiller et al., 1993), 

often in monolayer from the step as observed by Liang et al. (1996) in their AFM 

study of the calcite {1 0    4} surface under aqueous conditions. Gratz et al. (1993) 

studied calcite growth at two monomolecular steps by in situ AFM techniques and 

found the growth velocity of calcite at the obtuse step is 1.5 - 2.25 times of that at the 

acute step depending on the supersaturation. A theoretical study of calcite growth by 
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de Leeuw et al. (2002) also established that the activation energy required to create 

the first kink site at the acute step is 1.5 times of that at the obtuse step. Furthermore, 

the growth rates of monolayer steps on the {1 0    4} plane have been measured as a 

function of the aqueous Ca
2+

/CO3
2-

 ratio by Stack and Grantham (2010). They found 

that the response of obtuse and acute steps to the Ca
2+

/CO3
2-

 ratio is variable, and the 

growth rates will be a maximum at a Ca
2+

/CO3
2-

 ratio of 1:1. The growth of CaCO3 

becomes kinetically inhibited and dissolution features are observed at high ratios. 

AFM images of this process are shown in Figure 1.5. 

1.3.2 Dissolution of calcite 

The dissolution of calcite has been the subject of various experimental and 

computational modelling studies. The understanding of this process would shed light 

on a system, where calcite is an unwanted nuisance. For example, limescale, which 

has a main component of calcite, precipitates out from the hot water in heating 

devices. Hard water contains calcium bicarbonate (Ca(HCO3)2) and similar salts. 

Ca(HCO3)2 is soluble in water, but the soluble bicarbonate converts to poorly-soluble 

carbonate at temperatures above 70ºC, leading to deposit of calcite in places where 

water is heated. Accruing limescale can impair heat transfer and damage the heating 

element. Limescale can also be found on old pipes where hard water has been 

continually running through and has deposited calcite. This can build up and reduce 

water flow, eventually block the water pipes. 

Experimental studies have examined the dissolution of calcite under aqueous 

environment using AFM techniques (Stipp et al., 1994; Liang and Baer, 1997). 

Shallow pits were observed during the initial dissolution stage with a depth of 3 or 6 

Å, the approximate depth of one or two layers of calcite. Observation of the deep pits 
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clearly indicated the presence of two different types of steps, namely acute and 

obtuse steps, which retreated at different velocities, with the obtuse step retreating 

2.3 times faster than the acute step. 

The dissolution process of calcite has also been investigated by MD simulations. 

It is found that the energy barrier to dissolution at both steps and for both ions were 

considerably less than for dissolving the ions directly from a flat surface. Dissolving 

a CO3
2-

 group from a step was found to be more energetically favourable than a Ca
2+

 

ion (Kerisit and Parker, 2004; Spagnoli et al., 2006).  

Another study of MD simulations by de Leeuw et al. (1999) also looked at the 

dissolution of CaCO3 units from the acute stepped {3 1    8} surface and obtuse 

stepped {3       16} surface. The results showed that the formation of the double 

kinks on the obtuse step cost less energy than dissolution from the acute step, 

probably due to the lower stability of the obtuse surface. This simulation also 

suggested that formation of the kink sites on the dissolving edge of the obtuse step of 

calcite is the rate determining step and this edge is predicted to dissolve 

preferentially, which is in agreement with experimental findings of calcite 

dissolution under aqueous conditions. 

1.4 Aggregation of calcite nanoparticles 

Calcite particles on the micro-scale (i.e. nanoparticles) have gained increasing 

attention due to their fundamental role in calcite crystal growth, where the controlled 

growth of calcite can lead to the formation of materials with different morphologies 

(Colfen, 2003; Domingo, 2004). 

The aggregation of calcite nanoparticles, which is a common phenomenon in the 
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synthesis, has primarily been studied experimentally by electron microscopy and 

kinetic analysis, for example scanning electron microscopy (SEM) and transmission 

electron microscopy (TEM), as shown in Figure 1.6 (Söhnel and Mullin, 1982; 

Tohda et al. 1994; Collier et al. 2000). When investigating the alignment between 

calcite particles in crystalline aggregates at low ionic solution using SEM and TEM, 

Collier et al. (2000) found that about 40% of the samples are in perfect alignment. 

They proposed that the alignment is induced by an ability of the crystallites to 

re-align into a more favourable energy state before they are fixed into place. Liew et 

al. (2003) confirmed that the rate of aggregation between crystals in a supersaturated 

solution depended on the rate of collision, as well as the probability of that collision 

surviving, which suggested that the probability depends on the strength of the newly 

formed neck between the crystals and the hydrodynamic force acting to pull them 

apart. Other authors (Rieger et al. 2007; Wolf et al. 2008) have pointed out that the 

adhesion of small clusters of CaCO3 onto the large surface plays a key role in the 

initial stages of CaCO3 growth. However, quantitative information on the driving 

forces that leads to the aggregation of nanoparticles is sparse. 

 

 

 

Figure 1.6: SEM images of micro-sized aggregated CaCO3 particles, (Collier et al., 

2000). 

Computational studies have been used extensively to study nanoparticles in a 

wide variety of situations, including modelling the stability, crystal nucleation and 

the interaction with water (Sayle et al., 2004; Kerist et al., 2005; Feng et al., 2006). 
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The structures and stabilities of a single nanoparticle (e.g. ZnS or TiO2 nanoparticle), 

are dependent upon environment conditions (Zhang and Banfield, 2004; Koparde and 

Cummings, 2005). Huang et al. (2004) were one of the first to show that the MD 

simulations can be used to describe aggregation of nanoparticles and predict 

experimentally observed phase driven by aggregation. Kerisit et al. (2005) used MD 

simulations to study the stability of calcite nanoparticles of different sizes, both in 

vacuum and aqueous environment. Their work revealed that the water molecules in 

the first hydration layer complete the coordination shell of the surface ions, 

preserving structural order even in the smallest of the nanoparticles (d = 1.0 nm). 

Close to the particle surface, the structure of the water itself shows features similar to 

those on planar {1 0    4} surfaces, although the molecules are far less tightly bound. 

Spagnoli et al. (2008) carried out MD simulations to calculate the free energy change 

of aggregation of MgO and calcite nanoparticles. Their calculations indicated that 

there was a free energy barrier to aggregation and the aggregation can occur as the 

result of fluctuations in orientation where different orientations may drive the crystal 

growth via oriented aggregation. 

Even though much progress have been made toward a fundamental 

understanding of the aggregation process of calcite nanoparticles, many important 

questions remain, including the mechanisms of aggregation of nanoparticles, which 

is where computer modelling at the atomic level will be able to provide detailed 

information. 
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1.5 Aims and overview of the thesis 

In view of the importance of CaCO3 in geochemical, biological and industrial 

processes, a range of computer simulation techniques have been employed to 

perform a comprehensive and quantitative study of CaCO3, where the focus is split 

into two parts, namely the cationic impurity incorporation in calcite and the 

aggregation of calcite nanoparticles. The main objectives of the thesis are as follow: 

(i) To provide thermodynamic and structural details of the complete solid 

solutions of calcite with a series of divalent cations. 

(ii) To establish the key factors that affect the interaction of a CaCO3 

nanoparticle and major calcite surfaces at the atomic level. 

(iii) To gain insight into the structure and stability of the calcite tilt grain 

boundaries and further explore the growth of newly-formed joints during the 

aggregation process of calcite particles. 

Chapter 2 will introduce the computational methods used in this thesis to explore 

the calcium carbonate system. Both molecular mechanics and molecular dynamics 

will be discussed in this section. Chapter 3 will present a summary of the potential 

model functions and parameters used in this study, including a new set of potential 

parameters for some divalent cations, which were derived with existing calcite 

potential model. 

In Chapter 4 atomistic simulation techniques have been applied to investigate the 

mixing thermodynamics of calcite with a series of divalent cations, where results are 

compared to available experimental data. In Chapter 5, molecular mechanics 

simulations of the interaction between calcite nanoparticles and calcite surfaces will 
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be discussed. The adhesion energy and optimized geometries of the nanoparticle on 

major surfaces in vacuum and aqueous environment will be investigated. Chapter 6 

will introduce molecular dynamic simulations performed on calcite tilt grain 

boundaries. The growth of a series of CaCO3 units at contact points between two 

colliding nanoparticles in aqueous environment is explored. 

Finally, Chapter 7 will summarise the findings of this study and draw 

conclusions about impurity incorporation in calcite and the aggregation of calcite 

nanoparticles, based on the results presented in this thesis. 
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2 
Computational Methodology 
                                                                                   

 

Molecular mechanics is one common method applied in computational 

simulations, calculating the potential energy of any arrangement of atoms or 

molecules in the material system by a potential function or force field. Molecular 

dynamics is another specialised discipline of computer simulations based on classic 

Newton‟s law of motion, allowing insight into the molecular motion on an atomic 

scale. This chapter gives a brief description of these computational methodologies 

used in this thesis and the analysis of the results of these simulations. Finally, some 

key components of the simulation codes applied in this thesis are also presented. 
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2.1 Molecular mechanics 

Molecular mechanics (MM) was first used in the 1970s to describe the 

application of classical mechanics to model small molecules or large material 

assemblies with more than thousands of atoms. In MM each atom is treated as a 

single ball, assigned a radius, polarisability and a constant charge. Bonded 

interactions are treated as “springs” with an equilibrium distance equal to the 

experimental or calculated bond length (Andrews, 1930). The potential energy of the 

system is then made up of the electrostatic interactions and the short range 

interactions, such as the Van der Waals attractions and repulsions. These interactions 

are calculated using force fields, which are described in Chapter 3. One 

representative application of MM is energy minimisation, where the force field is 

used as an optimisation criterion and the local minimum is searched by an 

appropriate algorithm.  

2.1.1 Potential energy surface 

The potential energy of some molecules or large material assembly is a 

complicated and multi-dimensional function of the atomic coordinates. Changes of 

the potential energy of a system with the coordinates can be represented as 

movement on a curve or multidimensional surface, which is called a potential energy 

surface (PES). The visualization of a two dimensional PES would be like a landscape, 

where X and Y directions are equivalent to two geometrical parameters of the system 

and Z, the height of the land, would be the energy associated with a given value of 

variables. Especially interesting points on the PES in MM are the stationary points, 

where the first derivative of the energy with respect to the atomic coordinates is zero. 

A minimum point will be one type of stationary points. The minimum with the 
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lowest energy on the whole PES is the global energy minimum, whereas other 

minima with higher energies are local energy minima (Figure 2.1). At the global 

energy minimum, the arrangement of the atoms corresponds to the stable state of the 

system and any movement away from a minimum gives a configuration with a higher 

energy, while the local minima may represent metastable phases. 

     

Figure 2.1: Local minimum and global minimum on a potential energy surface. 

2.1.2 Energy minimisation algorithm 

Energy minimisation, which is also called energy optimisation, is simply used to 

find the local energy minimum of a system by iteratively adjusting the coordinates of 

the atoms in the system. Starting from a non-equilibrium configuration, energy 

minimisation employs the mathematical procedure of optimisation to move atoms so 

as to reduce the net forces (the gradients of potential energy) on the atoms until they 

become zero and the second derivatives are positive: 

0
U

r





; 

2

2
0

U

r





.                       (2.1) 

where U is the internal energy of a system and r is the coordinate of the system (the 
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Cartesian or internal coordinates). The term zero force is used since the first 

derivative of the internal energy with respect to distance is force. If the internal 

energy of a system with coordinates r, is U(r), then the internal energy at a new set of 

coordinates r + dr, is:  

2
2

2

1
( ) ( ) ( ) ...

2

U U
U r dr U r dr dr

r r

 
    

 
            (2.2) 

The first derivative can be collectively written as the gradient vector g and the 

second derivative matrix is referred to as the Hessian matrix H.  

Derivatives are useful in energy minimisation as they provide information about 

the shape of the PES and significantly enhance the efficiency with where the 

minimum is located. The direction of the gradient vector g indicates where the 

energy minimum lies and the magnitude indicates the steepness of the local slope. 

The second derivative indicates the curvature of the function, predicting where the 

function will change direction. The gradient-based algorithms are the most popular 

methods for energy minimisation, and they can be classified according to the 

highest-order derivative used. For example, first-order algorithms use the first 

derivative and second-order algorithms use both first and second derivatives. 

To find an energy minimum by first-order algorithms, the gradient vector g is 

used to determine the direction of movement and a line search is used to determine 

the magnitude of the step length. In Steepest-Descent algorithm, this process is then 

repeated until convergence. However, a disadvantage of this method is that many 

small steps may be performed when proceeding down a long narrow valley. The 

Steepest-Decent algorithm is forced to make a right angled turn at each point, even 

though that might not be the best route to the energy minimum. Conjugate-Gradients 

algorithm is far more efficient, where subsequent steps are made orthogonal to the 
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previous search vectors. For a quadratic energy surface, this will converge to the 

minimum in a number of steps equal to the number of variables. 

If we use the second-order algorithms, for example Newton-Raphson algorithm, 

then the displacement vector Δr, from the current position to the minimum is given 

by the equation: 

1r H g                            (2.3) 

For a realistic energy surface, equation 2.3 becomes increasingly approximate 

when the starting position is far away from the minimum and there is the possibility 

that we achieve some other stationary point, such as a transition state. Consequently, 

the expression is modified to be: 

1r H g                             (2.4) 

where λ is a scalar quantity determined by performing a line search along the search 

direction to find the one-dimensional minimum and the procedure becomes iterative 

again, as per conjugate gradients. The key step of Newton-Raphson algorithm is the 

inversion of the Hessian matrix H in large system, which may vary slowly from one 

step to the next. It is therefore wasteful and undesirable to invert this matrix in every 

step of the optimisation. This can be avoided by using the Quasi-Newton method, 

where the Hessian matrix H does not need to be computed and is updated by 

analyzing successive gradient vectors instead. One of the most widely employed 

Quasi-Newton methods is the BFGS method (suggested independently by Broyden, 

Fletcher, Goldfarb and Shanno in 1970). The Hessian matrix H is initialized by 

performing an exact inversion of the second derivatives and is then subsequently 

updated for a number of cycles. 
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The most appropriate algorithm or combination of algorithms for a given 

problem depends on the size of the system, number of variables and the memory 

requirement. Most minimisation algorithms can go downhill or uphill on the PES and 

locate the minimum or maximum, respectively, that is near to the starting point, 

which is likely to be a local energy minimum, thus we require a means of generating 

different starting points to locate more than one local minimum. In this thesis, a 

combination of Conjugate-Gradients and Newton-Raphson algorithms is used during 

the energy minimisation. 

2.1.3 Static lattice optimisation 

The static lattice energy of a crystal, UL, is defined as the energy released when 

different gaseous ions making up the crystal are brought to their lattice positions. The 

lattice energy may also be defined as the energy required to completely separate one 

mole of a solid ionic compound into gaseous ionic constituents. The lattice energy of 

the simulated crystal will be at a minimum when the ionic distances exactly match 

the observed crystal structure. In practice the lattice is always relaxed until it reaches 

a minimum energy configuration, even though there may be some error from the 

observed structure. In a constant pressure minimisation, the lattice is minimised with 

respect to both atomic coordinates and the bulk strains acting upon the cell 

dimensions.  

The system can be minimised by iteratively adjusting the atomic coordinates 

until the forces on the atoms are zero in equation 2.1. The lattice energy of the new 

set of coordinates r' is related to the old coordinates r by the second-order expansion: 

(Catlow and Macrodt, 1982) 

1
( ) ( ) ( )

2

T T

L LU r U r H     g δ δ δ                   (2.5) 
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where g
T
 is the transpose of the vector g and δ is a generalized strain vector with 3N 

orthogonal displacement components dr and six bulk strain components dε. The 

vector g corresponds to the first derivative of the lattice energy with respect to the 

atomic displacements and bulk strains, and vector H is the Hessian matrix: 
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The new coordinates r' are related to the original coordinates r by: 

( )d   r ε r r                         (2.8) 

where Δε is the Voight matrix representation of the vector dε: 
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                    (2.9) 

When minimising under constant pressure, the bulk strain must also be 

minimised by relaxing the cell vectors. The bulk strains are defined such that they 

transform each vector r in the lattice to r', where 

( )   r I ε r                         (2.10) 

where I is known as the identity matrix and ε is the strain matrix discussed 

previously. The strains are calculated assuming Hooke‟s Law, with a constant of 
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proportionality given by the elastic constant tensor. New positions and lattice vectors 

can then be calculated. 

The computer code GULP (The General Utility Lattice Program) (Gale, 1997) 

was used in this thesis to optimise the lattice structures of calcite-type carbonates and 

obtain the bulk properties, such as lattice energy, elastic constants, bulk modulus and 

lattice vectors. All the optimisations were performed under constant pressure by the 

Conjugate-Gradients and Newton-Raphson algorithms. The optimised lattice 

structure was then used in the calculation of the thermodynamics of pure and doped 

carbonates. 

2.1.4 Surface simulations 

All surface simulations in this thesis have been carried out using the computer 

code METADISE (Minimum Energy Techniques Applied to Defects, Interfaces and 

Surface Energies) (Watson et al., 1996), which is designed to model dislocations, 

interfaces and surfaces. Following the approach of Tasker (1979), the simulation 

model consists of a series of planes parallel to the surface and periodic in two 

dimensions. Tasker identified three different types of surfaces:  

(I) Type I surface (Figure 2.2.a) comprises a stack of uncharged planes, where 

cations and anions are in stoichiometic ratio. 

(II) Type II surface (Figure 2.2.b) comprises a stack of charged planes, but the 

repeat unit is charge-neutral and there is no net dipole perpendicular to the surface;  

(III) Type III surface (Figure 2.3) consists of a stack of charged planes where the 

repeat unit has a dipole moment perpendicular to the surface. 
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(a) Type- I 

 

 

 

 

(b) Type- II 

 

 

 

 

 

Figure 2.2: Side view of two types of surfaces as classified by Tasker. (a) Type I 

surface consisting of charge neutral layers, and (b) Type II surface consisting of 

positive and negative charged planes but with a charge neutral and non-dipolar repeat 

unit. The dashed line representatives the two dimensional periodicity. 

When a dipole moment perpendicular to the surface is present (Type III surface), 

the surface energy diverges and is infinite (Bertaut, 1958). In this case, the surface 

needs to be reconstructed to remove the dipole, which is often achieved by removing 

half the ions from the surface layer at the top of the repeat unit and transferring them 

to the bottom (Figure 2.3). Following this method, the surface is partly vacant, either 

in cations or anions, and then the surface energy can be calculated. 
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               (a)                           (b) 

Figure 2.3: Stacking sequences showing (a) a Type III surface, consisting of 

alternating positive and negative ions giving rise to a dipolar repeat unit, and (b) a 

reconstructed Type III surface, where half the surface ions have been moved to the 

bottom of the surface in order to remove the net dipole. The dashed line 

representatives the two dimensional periodicity. 

When generating the surfaces, the crystal is divided into two blocks each 

comprising two regions, region I and region II, as shown in Figure 2.4. Region I 

contains those atoms near the surface, which are allowed to relax to their mechanical 

equilibrium, while region II contains those atoms further away, which represent the 

rest of the crystal and are kept fixed at their bulk equilibrium position. Inclusion of 

region II is necessary to ensure that the potential energies of atoms in region I are 

modelled correctly. Both region I and region II need to be sufficiently large for the 

potential energy to converge. The bulk of the crystal is modelled by the two blocks 

together while the surface is represented by a single block with the top of regionⅠas 

the free surface. Interfaces such as stacking faults and grain boundaries can be 

studied by fitting two surface blocks together in different orientations. 
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(a)                      (b)                     (c) 

Figure 2.4: The two region approach used in METADISE, (a) a crystal; (b) a 

complete crystal containing two blocks and (b) half a crystal, exposing a surface. 

The surface energy is a measure of the thermodynamic stability of the surface, 

with a low positive value indicating a stable surface. The surface energy γs is 

calculated as follows: 

surf bulk

s
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
                        (2.11) 

where Usurf is the energy of the surface block, Ubulk is the energy of the bulk crystal 

containing the same number of atoms as the surface block, and A is the surface area.  

Because of the presence of water in the environment, the surface energies of the 

surfaces with different layers of water were also considered, which is achieved by 
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adsorbing water one-by-one onto the surface with the most energetically favourable 

configuration used as the input for the adsorption of further water. Many experiments 

and computer simulations have indicated that water molecules organize into very 

ordered layers at the mineral-water interface. For example, Ghose et al. (2010) 

reported crystal truncation rod results of the hydrated goethite surface, showing the 

presence of adsorbed water layers above the surface. Spagnoli et al. (2011) studied 

MgO nanoparticles in a box of water using MD simulations, which indicated that 

water above the {100} faces mimics the flat surfaces of the nanoparticle and 

produces highly structured, ordered layers of water that extend to approximately 8 Å 

above the surface. Similar behaviour was also identified at MgO (de Leeuw and 

Parker, 1998) and α-quartz surfaces (Du and de Leeuw, 2006), thus it is expected to 

be a general effect at ionic surfaces. The adsorbed water layers are shown to affect 

the structure and energy of the underlying surface, and this study therefore has 

considered several adsorbed water layers above the calcite surface (up to 8 Å above 

the surface). A full monolayer coverage, is meant that no more adsorbents can be 

adsorbed onto the surface without the formation of a second layer or adsorption 

becoming endothermic. The surface energy of the hydrated surface is defined by: 

hydrated water bulk

hydrated

U nU U

A


 
                 (2.12) 

where Uhydrated is the energy of the surface with adsorbed water, Uwater is the energy 

of a water molecule and n is the number of water molecules adsorbed to the surface. 

The energy of a water molecule is made up of two parts; its internal energy, which is 

the energy of an isolated gaseous molecule; and its solvation energy, which is the 

energy required to remove the molecule from its hydration shell in the aqueous 

solution. 
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2.1.5 Construction of CaCO3 nanoparticles 

The program METADISE was also used to construct the CaCO3 nanoparticles 

from the relaxed bulk structure of calcite. The approach involves the use of Wulff 

construction methodology (1901), based on the surface energies of different two 

dimensional surfaces. For a crystal consisting of a given number of atoms, the 

equilibrium shape is that which minimizes the surface energy. In the three 

dimensional Wulff construction, for a spherical coordinate system, a vector is drawn 

parallel to the normal of the surface, with its length proportional to the surface energy. 

At the end point of the vectors, tangent planes are drawn. If repeated for all surfaces, 

the tangents limit the equilibrium shape. If a particular surface has a higher surface 

energy, it will grow faster resulting in a small area or complete disappearance from 

the final shape, while the face with the lower surface energy grows more slowly, 

resulting in a large surface area, which hence will be expressed in the polyhedron. 

This method of predicting calcite morphologies on the basis of thermodynamic 

factors has been very successful when compared with experimentally obtained 

calcite shapes, where the equilibrium morphology of pure calcite expresses the 

dominant {1 0    4} surface, as shown in Figure 2.5. 

The morphology is then used to carve out the structure from bulk calcite, thus 

generating an initial structure for a nanoparticle. However, if the origin of the 

nanoparticle is at the crystallographic origin, where an ion is at the corner of the 

crystal lattice, the outer surfaces of the nanoparticle would have an overall net charge 

which may result in the energy of the nanoparticle diverging during the structure 

optimisation. In order to create a charge-neutral particle, a suitable centre of the 

particle is selected by a scanning technique, where the points on a grid are defined at 

0.1 Å intervals along each of the Cartesian axes. The different origins are tested 
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which generate different configurations. Native origin is assumed to adapt the lowest 

configurational energy and the charge of the crystal. This method has been applied 

successfully in simulations of calcite (Kerisit et al., 2005; Cooke and Elliott, 2007) 

and MgO (Spagnoli et al., 2011) particles. 

                                 

 

 

 

Figure 2.5: (a) Calcite crystal growing from the aqueous solution (Didymus et al., 

1993) and (b) equilibrium morphology of calcite particle constructed by the Wulff 

construction method. 

2.2 Molecular dynamics 

Molecular dynamics (MD) is an approach to simulate time-dependent behaviour 

of molecular systems. All forms of molecular dynamics simulations are based on the 

behaviour of the molecular systems according to Newton‟s law of motion, where the 

force applied to an atom in the system is proportional to its acceleration, or variation 

in speed over time. 
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where mi is the mass of an atom in the system, ri is the position of this atom at time t; 

and Fi is the force acting on it, from a potential energy U created by their interaction 

with all other atoms in the system in an instant of time Δt. 
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1 2( , ,..., )i i NF U r r r                      (2.14) 

Under the influence of continuous interactions, the motions of all particles are 

coupled together, giving rise to a many-body problem that cannot be solved 

analytically. The equations of motion are then solved in a finite difference 

approximation at successive time steps (Δt), where the velocities and positions of the 

atoms are calculated at each time step and used for successive interactions. 

2.2.1 Finite difference methods 

There are many algorithms for integrating the equation of motion using finite 

difference methods, several of which are commonly used in MD calculations. All 

algorithms assume that the positions and dynamical properties, such as velocities and 

accelerations, can be approximated as Taylor expansion series: 
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Where r and v are the positions and velocities respectively, a is the acceleration and b 

is the third derivative of the position with respect to time. The Verlet algorithm 

(Verlet, 1967) is one of the most widely used method for integrating the equations of 

motion, which uses the positions r(t) and accelerations a(t) at time t, and the position 

from the previous step, r(t-Δt), to predict the new position at t+Δt, r(t+Δt). The idea 

for this integration algorithm is based on a third order Taylor expansion series of the 
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position: 

2 3 41 1
( ) ( ) ( ) ( ) ( ) ( )

2 6
r t t r t v t t a t t b t t O t          ;       (2.19) 

2 3 41 1
( ) ( ) ( ) ( ) ( ) ( )

2 6
r t t r t v t t a t t b t t O t          .       (2.20) 

where O(Δt
4
) is the error associated with the truncation of the expression at the third 

order. Then the addition of equation 2.19 and 2.20 gives: 

2 4( ) 2 ( ) ( ) ( ) ( )r t t r t r t t t a t O t                   (2.21) 

and the velocities can be calculated from the previous and new positions by: 

( ) [ ( ) ( )]/ 2v t r t t r t t t                      (2.22) 

However, this equation is subject to errors in Δt
2
, and this may lead to a loss of 

precision in the calculation of the velocities compared with the position. Several 

variations on the Verlet algorithm have been developed, one of which is the 

Leap-Frog algorithm (Hockney, 1970), which uses the following algorithm: 

1
( ) ( ) ( )

2
r t t r t tv t t     ,                 (2.23) 

1 1
( ) ( ) ( )

2 2
v t t v t t ta t      .                 (2.24) 

where the velocities v(t+Δt/2) are calculated firstly from the velocities at time (t-Δt/2) 

and the accelerations at time t. The positions r(t+Δt) are then deduced from the 

velocities just calculated, together with the positions at time r(t) using equation 2.23. 

The velocities at time t can be calculated as the average of the velocities at (t+Δt/2) 

and (t-Δt/2). 

Two advantages of the Leap-Frog algorithm over the Verlet algorithm are that 
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the Leap-Frog algorithm includes the velocity and it does not need the calculation of 

the differences of large numbers. However, it is not possible to calculate the kinetic 

energy contribution to the total energy at the same time as the positions are defined, 

because the positions and velocities are not synchronised. 

An alternative Verlet algorithm that does store positions, velocities and 

accelerations at the same time, which minimises rounding errors, has also been 

proposed (Swope et al., 1982). This Velocity-Verlet algorithm has the form: 

21
( ) ( ) ( ) ( )

2
r t t r t tv t t a t     ,                 (2.25) 

1 1
( ) ( ) [ ( ) ( )]

2 2
v t t v t t a t a t t       .               (2.26) 

This algorithm has three stages. In the first stage it requires values of position r, 

velocity v and acceleration a at time t and (t+Δt). The first stage is to advance the 

velocities to (t+Δt/2) by integration of the force and then to advance the positions to a 

full step (t+Δt) using the new half-step velocities. Alternative algorithms are the 

Beeman algorithm and the Predictor-Corrector method, which are more complex and 

time consuming than Verlet algorithm (Sadus, 2002). 

The choice of the time step in MD simulation is also important. Choosing it too 

small will waste computer time. Using a too large time step leads to a bad integration 

of the equation of motion and no conservation of the total energy, and the molecular 

vibrations need to be sampled at small enough intervals to ensure that they are 

sampled properly. The magnitude of the time step is therefore limited by the 

maximum frequency, γmax of the vibrations between the component particles and 

must be smaller than γmax in order to sample the fastest vibrational motion during the 

simulation.  
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2.2.2 Ensembles 

The concept of ensemble was first introduced by J. Willard Gibbs in 1878. A 

statistical ensemble is a finite collection of all possible systems which have different 

microscopic states but identical thermodynamic state. The simplest ensemble is the 

micro-canonical (NVE) ensemble, in which the number of particles (N), volume (V) 

and the energy (E) are all kept constant, although the pressure and temperature are 

allowed to fluctuate. Further ensembles can be generated by modifying the equations 

of motion. 

The canonical ensemble (NVT) keeps constant the number of particles, the 

volume and the temperature by regulating the temperature with an external heat bath. 

The energy and pressure are allowed to fluctuate. The temperature of the heat bath is 

set to the desired internal temperature and the system is regulated by a thermostat. 

The NVT ensemble is appropriate choice when isolated nanoparticle is modelled in 

vacuum without periodic boundary conditions. If pressure is not a significant factor, 

the NVT ensemble provides the advantage of less perturbation of the trajectory, due 

to the absence of coupling to a pressure bath. 

In a model with variable cell size, maintaining a constant pressure (NPT) 

requires the addition of a barostat coupled to the thermostat. In a similar method to 

the addition of a thermostat, the equations of motion are modified further to include a 

friction coefficient that regulates the pressure of the system against a constant set 

pressure.  

NST ensemble is an extension of the constant pressure (NPT) ensemble. In 

addition to the hydrostatic pressure, which is applied isotropically, NST ensemble 

allow us to control the xx, yy, zz, xy, yz and xz components of the stress tensor. This 
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ensemble is particularly useful if the study of stress-strain relationship in polymeric 

or metallic materials. 

2.2.3 Periodic boundary conditions 

The size of any simulated system is generally limited by the available storage of 

the host computer (e.g. 10 ≤ N ≤ 10,000 atoms) and execution speed of the program, 

because each atom can interact with other atoms, causing the time required to 

evaluate the forces on the atoms to be proportional to N
2
. No matter how large the 

system is, its number of atoms N would be negligible compared with the number of 

atoms contained in a macroscopic piece of matter, and the ratio between the number 

of surface atoms and the total number of atoms would be much larger than in reality, 

causing surface effect to be much more important than it should be. Furthermore, the 

force evaluation loop remains the principal factor limiting the size of the system that 

can be simulated.  

When modelling an isolated molecular system containing a small number of 

atoms, clearly an appreciable fraction of atoms would lie close to the periphery of the 

system, and significant surface effects would be evident. A solution to this problem is 

to use periodic boundary conditions (PBC). When using PBC, particles are enclosed 

in a box, and this box is replicated to infinity by rigid translation in all the three 

Cartesian directions, completely filling the space and forming an infinite 

macro-lattice. In other words, if one of the atoms is located at position r in the box, it 

is assumed that this atom really represents an infinite set of atoms located at 

(r+la+mb+nc), where l, m, n are integer numbers and a, b, c are cell vectors. A 

two-dimensional version of such a periodic system is shown in Figure 2.6. As a 

particle moves through a boundary, all its corresponding images move across their 
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corresponding boundaries in exactly the same way. The central box simply forms a 

convenient coordinate system for measuring locations of the N molecules. However, 

when simulating an isolated nanoparticle in vacuum, where no periodic boundary 

conditions are applied, direct summation of the Coulomb pair interaction is adequate 

and the real space cutoff is chosen in order to incorporate all pairs of atoms within 

the simulation box. 

 

 

 

 

 

 

Figure 2.6: A two dimensional periodic system. Molecules can enter and leave each 

box across each of the four edges. In a three dimensional system, molecules would 

be free to across any of the six cube faces (Allen and Tildesley, 1999). 

2.2.4 Running MD simulations 

The first step in a MD simulation is to establish an initial configuration of the 

system. It is advisable to do an energy minimization of the structure. This removes 

any strong repulsive or attractive forces that may exist, which might otherwise lead 

to local structural distortion and result in an unstable simulation. Initial velocities at a 

low temperature are assigned to each atom of the system and are often adjusted so 
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that the total momentum of the system is zero, thus avoiding unnecessary 

displacement of the whole system. 

Having setup the system and assigned the initial velocities, the simulation can 

commence. At each step the force on each atom must be calculated by differentiating 

the potential functions. Newton‟s equations of motion are integrated to propagate the 

system in time. Periodically, new velocities are assigned at a slightly higher 

temperature and the simulation is allowed to continue. The initialization step is 

terminated when the temperature stabilizes (the energy of the system is constant) and 

no longer needs renormalization for this purpose because it has reached steady state. 

The next step is to carry out the simulations in a given virtual time, which 

contains a significant number of time steps Δt. In this process the positions and 

velocities of the atoms in selected steps are recorded and stored. Generally, the MD 

simulations are performed under conditions of constant number of atoms, 

temperature and volume, but its trajectory can be modified to sample other 

ensembles. Even in a constant NVE simulation it is usually desirable to perform a 

simulation at a particular temperature and it is common practice during the 

equilibration phase to adjust the temperature to the desired values. 

When the system has achieved equilibrium, then the production phase can 

commence. At the start of the production phase all counters are set to zero and the 

system is allowed to evolve. In a micro-canonical ensemble (NVE) no velocity 

scaling is performed during the simulation and the temperature becomes a calculated 

property of the system. Various properties are routinely calculated and stored during 

the production phase for subsequent analysis and processing. Careful monitoring of 

these properties during the simulations can show whether the system is well behaved 

or not. It may be necessary to restart a simulation if problems are encountered. It is 
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also usual to store the positions, forces and velocities at regular intervals, from which 

other properties depending on these quantities can be determined at the end of the 

simulation.  

There are many available computer codes to run MD simulations depending on 

the potentials used and the target applications. One of them is the DL_POLY code 

(Smith and Forester, 1996), which is designed to facilitate MD simulations of 

macromolecules, polymers, ionic systems and solutions on a distributed memory 

parallel computer. DL_POLY allows almost any functional form of interatomic 

potential to be used in the MD simulations. For the two-body terms, the standard 

harmonic term is available as well as the Buckingham, Morse and Lennard-Jones 

potential functions. It is also relatively easy to adapt forcefields from other libraries 

to DL_POLY. The details of above interatomic potential functions will be discussed 

in Chapter 3. 

The integration algorithms in DL_POLY are based on the Verlet Leap-Frog 

scheme discussed above, and the Nosé-Hoover algorithm is used for the thermostat, 

as it can generate trajectories in both NVT and NPT ensembles, thus keeping the 

simulations consistent. The thermostat parameters are set at 0.1 ps and the barostat 

relaxation time is set at 0.5 ps. The simulations performed for this thesis are initially 

performed using NVE and NVT ensembles to equilibrate the systems for a period, 

and followed by both equilibration and the final data production run at NPT or NST 

for another period of some time. A time step of 0.1 fs is applied to maintain the 

stability of the simulations. The production phase produces a range of properties at 

each time step, including structure, temperature, volume and energies. The energies 

reported in the MD simulations in this thesis are the average configurational energies 

obtained over each production phase, whereas the structures shown in the figures are 

usually snapshots. 
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2.2.5 Analysis 

The simplest way to analysis the results of the MD simulations is to visualise the 

trajectory and animate the time evolution of the system. It is possible to observe the 

growth and dissolution of crystals and phase transitions. Furthermore, a variety of 

other properties can be calculated from the MD simulations, including 

thermodynamic properties, radial distribution functions and diffusion coefficients. 

The internal calculations in the simulation keep tracking of a number of 

thermodynamic properties from which the instantaneous and ensemble average 

values may be extracted. The total instantaneous potential energy for a time step is 

calculated as the sum of the values from the evaluation of the interatomic potential 

functions. Additionally, the instantaneous kinetic energy, at a time t, can be 

calculated from the velocities of atoms in the system as 

21
( ) ( )

2

N

k i i

i

U t m v t                         (2.27) 

where vi(t) is the velocity of an atom with the mass mi. This equation gives the 

instantaneous kinetic energy and so the total energy is the sum of the potential and 

kinetic energies. All of these quantities may be averaged over the length of the 

simulation to give the ensemble averages or plotted with respect to time to observe 

changes in the system. 

The instantaneous temperature of the system is related to the kinetic energy of 

the atoms. There is a contribution to Uk of kBT/2 for each degree of freedom in the 

system, so for any time step the temperature becomes 
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                        (2.28) 
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kB is the Boltzmann constant and f is the number of degrees of freedom. A complete 

system is described by a maximum of 3N independent Cartesian coordinate degrees 

of freedom (as an aside, each of these may be treated entirely independently in 

calculations, enabling the calculations to be vectorised to increase speed). 

Constraints and boundaries imposed on the system will reduce the number of degrees 

of freedom. 

The radial distribution function (RDF), g(r), is a useful measure of the 

surroundings of an atom. For each atom type the distances to other atoms are sorted 

into shells.  

2

( ) 1
( )

( ) 4

n r
g r

r r r 
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
                     (2.31) 

where n(r) is the occupancy of a shell of width Δr at a radius r from the atom. The 

factor of the mean atom density ρ(r), ensures that the distribution is normalized. 

Values are averaged from all atoms in the sample and over each time step. For a fixed 

ideal lattice, g(r) will be zero except at neighbour separation distances. At increased 

finite temperatures the atomic vibrations cause movement away from these ideal 

positions and the peaks in the function broaden.  
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   3 
Potential models 
                                                                                   

 

An interatomic potential model refers to a collection of parameters of 

mathematical functions used to describe the interatomic interactions of a system. An 

accurate potential model is essential to obtain reliable results. This chapter presents a 

summary of the interatomic potential functions and parameters used in this thesis. In 

addition, a new set of potential parameters for divalent cations Co
2+

, Zn
2+

, Mn
2+

 and 

Ni
2+

 were derived with the existing calcite potential model. Details of the derivation 

of these parameters are also presented in this chapter.  
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3.1 The Born model of solids 

The atomic simulations in this thesis are based on the Born model of solids 

(Born and Huang, 1954), which assumes that the interactions between the ions in the 

system are a combination of long-range electrostatic forces and short-range forces, 

including both the repulsions and the Van der Waals attractions between 

neighbouring electron clouds. The potential energy of the system is the sum of the 

interactions between all ions, and can be described by the equation: 

0

( ) ( )
4

i j

ij ij ij

ij ijij

q q
U r r

r
                      (3.1) 

The left term of equation 3.1 is the long-range electrostatic interactions between the 

ions, where qi and qj are the charges of the ions i and j respectively, rij is the distance 

between ions i and j, and ε0 is the permittivity of free space. The right term represents 

the short-range forces, which are described below and include primarily two-body 

interactions. For example, the variation of the interaction of Ca-O in modelling of the 

CaCO3 is shown in Figure 3.1.  

 

 

 

 

 

Figure 3.1: Plots showing the variation in the long-range, short-range and total 

potential energies as a function of rij for a Ca
2+

-O
2-

 ion pair. 
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Other contributions are also considered, such as bond bending terms to convey 

the directionality of certain bonds in the crystal, for instance in the modelling of the 

covalent bonds in the carbonate group of CaCO3, and four-body interactions such as 

dihedral terms. 

3.2 The Ewald method 

The internal energy equation of the Born model seems deceptively simple. 

However, the long-range electrostatic part of the potential energy is too slow to 

converge as a function of rij in real-space. This problem has been solved by using the 

Ewald summation method (Ewald, 1921), which replaces the summation of potential 

energies in real space with an equivalent summation in Fourier space. The advantage 

of this approach is the rapid convergence of the Fourier space summation compared 

to its real-space equivalent when the real-space interactions are long-range. Because 

it is maximally efficient to decompose the interaction potential into a short-range 

component summed in real space and a long-range component summed in Fourier 

space. 

Each point charge in the system is viewed as being surrounded by a Gaussian 

charge distribution of equal magnitude and opposite sign, with charge density: 

3
2 2

3/ 2
( ) exp( )i

i i i

q
r r


 


                      (3.2) 

where α is a positive parameter that determines the width of the distribution, and ri is 

the position relative to the centre of distribution. This introduced charge distribution 

screens the interaction between neighbouring point-charges, effectively limiting them 

to a short range. Consequently, the sum over all charges and their images in real 

space converges rapidly, which is now given by: 
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where erfc(x) is defined as the complimentary error function: 
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A second Gaussian charge distribution of the same sign and magnitude as the 

original distribution is added in order to maintain the neutrality of charges. This time 

the sum is performed in the Fourier space to solve the resulting Poisson's equation.  
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where m are the reciprocal vectors and V is the volume of the unit cell of the crystal. 

A correction self-term needs to be subtracted in order to cancel out the interaction of 

each of the introduced artificial counter-charges with itself. Finally, the total 

electrostatic energy per unit cell can then be calculated as: 

2

1/ 2ij sr fr i

i

U U q



                         (3.6) 

3.3 Electronic polarisability  

One simple way to include the electronic polarisability of the atoms is to use the 

core-shell model (Dick and Overhauser, 1958), where the polarisable ion is 

represented by a massless shell connected to a core containing all the mass. The total 

charge of the ion is the sum of the charges of the core and shell. The position of the 

core represents the position of the ion in the crystal lattice and the position of the 

shell shows the electronic polarisability of the atom. The core and shell are connected 

by a harmonic spring, as shown in Figure 3.2. The spring constant K and the charge 
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of the shell Ye then determine the polarisability of the ion as follows: 

2

04
p

Ye

K



                           (3.7) 

Both K and Ye can be fitted empirically to reproduce experimental properties, 

such as dielectric and elastic constants. The short-range forces are assumed to act 

between the shells while the Coulombic forces act between all shells and cores, 

except between the core and shell of the same ion. The core-shell model has been 

successful in modelling various properties and it has been used in all static energy 

minimisation calculations in this thesis to describe the polarisability of the oxygen in 

the CO3
2-

 group and water. 

 

 

 

 

 

Figure 3.2: Schematic representation of the core-shell model: (a) no displacement, 

unpolarised. (b) displacement, polarised. The blue sphere, representing the core, has 

the charge Xe. The open grey sphere, representing the shell, has the charge of Ye. The 

core and shell are connected by a spring of force constant K, (Murphy, 2009). 

The core-shell model of electronic polarisability employed in MD simulations is 

slightly different, because the massless shells do not obey the normal dynamic laws. 

In DL_POLY, a small mass is assigned to the shell following the approach introduced 

by Mitchell and Fincham (1993). For example, the oxygen shell in this thesis is given 

a mass of 0.2 a.u., which is small enough, compared to the mass of hydrogen atom 

(a) Unpolarised (b) Polarised 
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(1.0 a.u.), in order to minimise energy exchange between the vibrations of oxygen 

core and shell and the oxygen and hydrogen vibrations. Due to the use of a shell 

model, a time step of 0.1 fs is applied to maintain the stability of the simulations. 

3.4 Short-range potential functions 

The two-body potential functions act between neighbouring charge clouds, the 

shells of the polarisable anions and the cores in the case of cations. They come in a 

number of analytical forms, all describing the potential energy as a function of 

interionic separation. These potential functions act without taking into account 

directionality of any bonds. Three-body potential function acts between three ions 

and is used when covalent bonds are present in the system. The terms define angles 

and dihedrals between the ions and as such convey directionality to the bonds. The 

short-range potential functions used in this thesis are described below. 

3.4.1 Buckingham potential function 

The Buckingham potential (Buckingham, 1938) is one of the most widely used 

functions for the interaction of two bodies which are not directly bonded. 

6
( ) exp( )

ij ij

ij ij ij

ij ij

r C
r A

r
                        (3.8) 

where Aij, ρij and Cij are the parameters to describe the interaction between two atoms 

i and j and rij is the interatomic distance. Aij and ρij are related to the number of 

electrons and the electron density respectively. The first term of the function 

describes the short-range repulsive interaction between the atoms, which originates 

from the Pauli Exclusion Principle (1925), while the second represents the attractive 

Van der Waals forces. Since the exponential term converges to a constant as the 
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distance rij approaches to zero, while the second term diverges, it runs the risk of an 

un-physical “Buckingham catastrophe”, when used in simulations of charged 

systems. This occurs when the electrostatic attraction artificially overcomes the 

repulsive barrier (White, 1997). Minimizing the energy of a structure which 

accidentally has a very short distance between two atoms will thus result in “nuclear 

fusion”. Special precautions have to be taken to avoid this problem (Jensen, 2007). 

Occasionally, the second term of the Buckingham potential used in this thesis is 

omitted altogether and the Aij parameter is adjusted to take into account both the 

long-range attractive forces and short-range repulsions. 

3.4.2 Morse potential function 

The Morse potential (Morse, 1929) is used for modelling covalent bonds and 

capable of modelling anharmonicity. As such interatomic distances away from the 

equilibrium bond distance can be simulated reliably with this potential function, for 

example the carbon-oxygen bond in the CO3
2-

 group.  

0( ) 2( ) (1 e )ijr r

ij ij ijr D
 

                       (3.9) 

where Dij is the depth of the potential well, i.e. the thermodynamic dissociation 

energy of the bond, r0 is the equilibrium bond length, and α is a constant controlling 

the “width” of the potential. The form of the Morse potential function ensures that at 

infinite separation of the two atoms the potential energy is zero while the potential 

energy is at a minimum at the equilibrium bond distance. Sometimes the Morse 

potential is used with subtraction of the Coulombic interaction and as such it is the 

only potential function describing a bond between two nearest neighbours. 

Interactions between second and further nearest neighbours can be described by 

Coulombic interactions and another short-range potential function. 
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3.4.3 Lennard-Jones potential function 

The Lennard-Jones potential (Lennard-Jones, 1924), of which the commonest 

form is also referred to as the 6-12 potential, is one of the most widely used potential 

functions to approximate the interaction between a pair of atoms. It has the following 

simplified form: 

12 6
(r )ij ij

ij ij

A B

r r
                          (3.10) 

with A = 4εσ
12

 and B = 4εσ
6
, where ε is the depth of the potential well and σ is the 

finite distance where the inter-particle potential is zero. The repulsive part is 

dependent on r
-12

 and thus acts at close range, while the attractive part is proportional 

to r
-6

 and becomes dominant at longer range. The parameters can be fitted to 

reproduce experimental data or accurate quantum chemistry calculations. Due to its 

computational simplicity, the Lennard-Jones potential is used extensively in 

computer simulations even though more accurate potentials exist. For example, it is 

often used for modelling oxygen-oxygen interactions in water potential models, such 

as the SCP and TIP5P models (Jorgensen et al., 1983; Rick, 2004). 

3.4.4 Many body potential function 

The three-body harmonic potential is used to describe the partial covalency in 

the CO3
2-

 group and maintain the bond angle between two carbon-oxygen bonds. 
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( ) ( )

2
ijk i jk ijk ijkk                         (3.11) 

where kijk is the force constant and (θijk-θ0) is the deviation from the equilibrium 

angle θ0. The function acts between a central ion i and two ions j and k bonded to i 

making the bond angle θijk (see Figure 3.3). 
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Figure 3.3: The three-body interaction in a carbonate group. 

The four-body out of plane potential is applied to planar arrangements of three 

bonds or torsional angles (Figure 3.4). The four-body potential function for the CO3
2-

 

group is described as follows by Pavese et al. (1996). 

[1 cos( )]ijkl ijklk s N                       (3.12) 

where kijkl is the force constant, s is ±1 and N is an integer which gives the periodicity 

of the torsion, which is 2 in the case of the planar CO3
2-

 group. The above functional 

form means that the energy has a minimum vale when θ is 0 or π radians and all 

atoms lie in the same plane in the CO3
2-

 group. 

 

Figure 3.4: The four-body interaction of four atoms lying in two planes with a 

torsional angle θ. 

 

j 
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3.5 Potentials of carbonates and water 

The potential parameters of calcite used in this thesis are from Pavese et al. 

(1996), who derived them empirically in a study of the thermal dependence of 

structural and elastic properties of calcite. The oxygen-oxygen and calcium-oxygen 

interactions are modelled by a Buckingham potential. The covalency within the 

CO3
2-

 group is modelled by a Morse potential plus a three-body potential and a 

torsional potential function to restrain the planar CO3
2-

 group from folding. Although 

Pavese et al.‟s potential model was fitted to bulk structure; it has been applied 

successfully to the accurate representations of calcite surfaces (de Leeuw and Parker, 

1998, 2000, 2001). The potential parameters used for CdCO3, MgCO3 and FeCO3 

were derived by de Leeuw (2002), which were fitted to reproduce the unit cell 

volumes of relative carbonates with respect to calcite, as well as relative energies of 

formation of these carbonates, using on the same potential parameters of CO3
2-

 

group. 

The water potential model is that of de Leeuw and Parker (1998) with the added 

hydrogen-bonding modification of Kerisit and Parker (2004). For the interactions 

between water and calcite, the potential parameters come from de Leeuw et al. 

(1999). The potential parameters used in the thesis are summarised in Table 3.1. 
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Table 3.1 Potential parameters used in this thesis (short-range cutoff 20 Å). 

(Parameters for CaCO3 are from Pavese et al., 1996; Parameters for Mg, Fe, Cd are 

from de Leeuw, 2002; parameters for water are from de Leeuw and Parker, 1998 and 

Kerisit and Parker, 2004). 

ions 
Charge core-shell 

Interaction / eVÅ
-2

 core shell 

Ca, Mg, Fe, Cd +2   

C +1.135   

H +0.400   

O +0.587 -1.632 507.4 

Owater +1.250 -2.050 209.449602 

Buckingham Potential 

Ion pair A / eV ρ / Å C / eVÅ
6
 

Ca-O 1550.0 0.297 0.0 

Mg-O 1092.2 0.27926 0.0 

Fe-O 14600.0 0.2055 0.0 

Cd-O 747097.4 0.1549 0.0 

Ca-Owater 1186.6 0.297 0.0 

H-O 396.3 0.23 0.0 

H-Owater 396.3 0.25 10.0 

O-O 16732.0 0.213 3.47 

O-Owater 12533.6 0.213 12.09 

Lennard-Jones Potential 

 A / eVÅ
12

 B / eVÅ
6
 

Owater-Owater 39344.98 42.15 

Morse Potential 

 D / eV α / Å
-1

 R0 / Å 

C-Ocore 4.71 3.8 1.18 

H-Owater-shell 6.203713 2.22003 0.92376 

Three Body Potential 

 k / eVrad
-2

 Θ0 

Ocore-C-Ocore 1.69000 120.0 

H-Owater-shell-H 4.19978 108.69 

Four Body Potential 

 k / eVrad
-2

 Θ0 

C-Ocore-Ocore-Ocore 0.11290 180.0 
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3.6 Derivation of potentials for Ni, Co, Zn and Mn carbonates 

There are two ways to derive the potential parameters for the short-range 

potential functions. One is a non-empirical method which is based on ab initio 

calculations to obtain the data for the parameterization, such as the equilibrium 

geometry and the energy surface corresponding to a particular structural distortion. 

The other is an empirical method which determines the parameters of the pair 

potential functions to reproduce specific experimental properties, such as 

crystallographic data, unit cell dimensions and elastic constants. The empirical 

method often produces a series of values, which can repeat the lattice parameters for 

a given structure. However, it is much more desirable and accurate to consult as 

many observable properties as possible.  

The potential parameters for NiCO3, CoCO3, ZnCO3 and MnCO3 in this thesis 

were derived using GULP (Gale, 1997) by a penalty minimisation scheme. In this 

scheme, the total penalty of a system is the sum of the deviations of calculated 

properties, such as atomic positions or elastic parameters, from measured values 

weighted according to accuracy. During fitting, the parameters of the interatomic 

potentials are adjusted so as to minimize the penalty value of the system until it has 

converged. The following options were used when fitting the potential parameters in 

GULP. (i) Constant pressure and relaxed fitting algorithm where both cores and 

shells of ions are allowed to move within the cell during fitting. (ii) Newton-Raphson 

algorithm was applied during energy optimisation. (iii) Parameters were generally 

fitted one at a time, except where a material had a well-defined structure and known 

elastic constants. 

The primitive rhombohedral cell was used in the simulation of the bulk structure 

of calcite-type carbonates, although lattice parameters are reported here in hexagonal 
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coordinates as the two representations are mathematically equivalent. The potential 

parameters for NiCO3, CoCO3, ZnCO3 and MnCO3 were derived by GULP to be 

compatible with the potential model of calcite by Pavese et al., where the calculated 

hexagonal unit cell volume is 348.3 Å
3
 (a = 4.797 Å, c = 17.482 Å, α = 90

o
 and γ = 

120
o
). During fitting, the potentials were required to retain the relative hexagonal 

unit cell volumes in the experimental ratio: 

: : : : 1.34 :1.12 :1.02 :1.02 :1Ca Mn Co Zn NiV V V V V            (3.13) 

The only degree of freedom allowed in fitting the potentials was in the 

cation-oxygen Buckingham potential. Due to the non-directional natural of the metal 

cation as described by the Buckingham potential of equation 3.8, there is no explicit 

term that addresses the d-electrons of the transition metal cations. The transition 

metal cations are represented as spherical rigid ions with no electronic polarization, 

as in Ca
2+

, and therefore magnetic effects are ignored. Fortunately, magnetism is 

unlikely to affect the issues, such as the enthalpy and free energy of mixing, which 

are interested in exploring in this thesis.  

In order to obtain the reliable enthalpies for cation substitutions, the relative 

enthalpies of formation are required to be sensible. Therefore the enthalpy of the 

following reaction is required to be reproduced accurately: 

2 2

( ) 3( ) ( ) 3( )g s g sCa MeCO Me CaCO                  (3.14) 

where Me is Ni, Co, Zn or Mn. The potential parameters were therefore derived such 

that the calculated enthalpies of reaction 3.14 agree to within 2.2% of the 

experimental enthalpies. In this calculation the vibrational effects (both zero-point 

and heat capacity) were included in the enthalpies, although they contribute very 

little to the reaction enthalpy, for example, only 1.3 kJ/mol (0.5%) of the reaction 
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enthalpy for MnCO3. Table 3.2 provides the optimized interatomic potential 

parameters of these four carbonates obtained through this process, and a comparison 

of calculated and experimental parameters for the various carbonates is listed in 

Table 3.3.  

Table 3.2 Interionic Buckingham potentials obtained from fits to NiCO3, CoCO3, 

MnCO3 and ZnCO3 structures and enthalpies of reaction 3.14. 

Ion pair A / eV ρ / Å C / eVÅ
6
 

Ni-O 1103.38 0.26661 0.0 

Co-O 1561.50 0.26740 0.0 

Mn-O 1704.60 0.27400 0.0 

Zn-O 1506.62 0.26903 0.0 

No interatomic potential model is perfect, and usually the description of some 

properties can only be improved at the expense of worsening the description of 

others. For example, the parameters of Buckingham potential for Co
2+

 and Zn
2+

 

introduced in this thesis are less well reproduced the experimental bulk modulus, and 

the calculated bulk modulus of ZnCO3 is bigger than that of CoCO3, which is 

contradict with experiments. However, both the ratio of the cell parameters and 

calculated enthalpies of reaction 3.14 are reproduced very well, therefore these 

parameters should provide an adequate description of the incorporation of single kind 

of cationic impurity in calcite. 
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Table 3.3 Calculated and experimental properties of NiCO3, CoCO3, ZnCO3, MnCO3 

and CaCO3. (Experimental lattice parameters are from Deer et al., 1992; bulk 

modulus are from Zhang and Reeder, 1999; the enthalpies of formation of carbonates 

are from Lide, 2000). 

Carbonates 
Volume 

/Å
3
 

a / Å c / Å c/a 

Bulk 

modulus 

/ GPa 

ΔHEq-3.14 

/ kJmol
-1

 

CaCO3 
experiment 367.8 4.99 17.06 3.42 76.1 / 

literature 348.3 4.80 17.48 3.64 80.4 / 

ZnCO3 
experiment 281.01 4.67 14.88 3.19 123 462.5 

this work 264.42 4.46 15.35 3.44 216 454.4 

CoCO3 
experiment 281.22 4.67 14.89 3.18 124 426.7 

this work 269.07 4.48 15.48 3.46 213 416.3 

MnCO3 
experiment 307.89 4.78 15.56 3.26 126 279.3 

this work 285.24 4.55 15.91 3.49 135 275.2 

NiCO3 
experiment 274.65 4.64 14.73 3.17 131 440.2 

this work 236.25 4.33 14.55 3.36 150 432.9 
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4 
Mixing thermodynamics of calcite with 

divalent cation impurities 
                                                                                   

 

In this chapter atomistic simulation techniques have been employed to 

investigate the thermodynamics of mixing calcite with divalent cation impurities 

Me
2+

 (Cd
2+

, Mn
2+

, Fe
2+

, Co
2+

, Zn
2+

, Mg
2+

 and Ni
2+

), based on the calculation of all 

inequivalent site occupancy configurations in relevant supercells of calcite structure. 

The simulations predict that the miscibility of calcite and other carbonates is largely 

related to the cationic coordination distance with oxygen. Detailed comparisons of 

the simulations with available experimental results are also provided in this chapter. 
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4.1 Introduction 

Metal cations, such as Cd
2+

, Mn
2+

, Zn
2+

, Fe
2+

, Co
2+

 Ni
2+

 and Mg
2+

, are 

commonly present in calcite, which can take up the impurity cations via a dissolution 

recrystallisation process. The solubility and migration of divalent cations in calcite is 

largely limited by the phase equilibrium of two carbonates, many of which form 

calcite-type solid solutions. For example, studies by Tesoriero and Pankow (1996) 

showed that in the presence of calcite, precipitation of Cd
2+

 as a carbonate solid 

solution will always occur, even when Cd
2+

 is present at trace levels, due to the 

strong tendency of this cation to partition into calcite. It is therefore very useful to 

investigate the thermodynamics of these extensive solid solutions to gain insight into 

the flux of divalent cations in aquifers and soil. 

Although the mixed carbonate solid solutions have been widely studied using 

experimental techniques, such as solution calorimetry, seemingly contradictory 

results are still reported in the literature, particularly with respect to the range of the 

miscibility at different temperatures and the thermodynamics of the mixing 

properties at intermediate compositions, since the slow kinetic rate at high 

temperatures and pressure limits further progress in experiments. One of the most 

straightforward theoretical models for predicting the thermodynamics of binary 

carbonate solid solutions is the electrostatic model from Lippmann (1980). However, 

some assumptions in this model limit its power of prediction. For example, 

Lippmann‟s model assumes all calcite-type carbonates should have the same 

Madelung constant. 

As an effective complementary technique to experiment, computer modelling 

can be used to study complex mineral structures and processes at the atomic level, 



Chapter 4: Mixing thermodynamics of calcite with divalent cation impurities 

84 

including the formation of solid solutions, where it is possible to access the 

thermodynamic properties without the effect of unknown kinetic factors. Interatomic 

potential models, in particular, have been used extensively to simulate the structures 

and properties of rhombohedral carbonates (Cygan, 2000; de Leeuw and Parker, 

1996, 1997; Austen, 2005). These studies have demonstrated the suitability of 

molecular simulations in providing a theoretical description of complex bulk and 

surface processes in carbonates, and how the theoretical models assist experiment in 

the evaluation and interpretation of experimental observations. 

For a carbonate solid solution, the number of possible configurations for each 

composition increases rapidly with the size of the simulation supercell, leading to 

concomitant computational cost. Several approaches have been developed to treat 

these large numbers of configurations. For example, the thermodynamics of the 

binary (Mn,Ca)CO3 system and tertiary (Mg,Mn,Ca)CO3 system have been discussed 

in recent papers by Vinograd et al. (2009 and 2010), where a simplified pair-wise 

interaction model is employed to perform Monte Carlo simulations in a very large 

supercell of the structure, allowing full convergence of the calculations with respect 

to cell size. An alternative approach, which has been adopted in this study, is to 

reduce the complete set of configurations to the symmetrically inequivalent 

configurations by taking advantage of the crystal symmetry of calcite. This method 

keeps an accurate description of the interatomic interactions and relaxation effects 

explicitly in the simulations, based on the calculation of all inequivalent site 

occupancy configurations in a smaller supercell of the calcite structure. It also makes 

possible to calculate effective properties, beyond the energy, based on 

configurational averages (for example, effective cell parameters as a function of 

composition), and to evaluate easily the contribution of vibrational effects. 
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In this chapter atomistic simulation techniques have been applied to investigate 

the thermodynamic properties of the entire compositional range of a series of binary 

carbonate solid solutions (Me,Ca)CO3 (Me = Cd
2+

, Mn
2+

, Zn
2+

, Fe
2+

, Co
2+

, Ni
2+

, 

Mg
2+

), following the above approach. In addition to the enthalpy of mixing, the 

calculation of the configurational entropy and free energy has also been included; 

therefore it is possible to study the mixing behaviour as a function of temperatures 

for these binary carbonate solid solutions. The results were then compared with 

experimental measurements from calorimetric methods. 

4.2 Configurational statistics 

The distribution of cationic impurities in the hexagonal calcite lattice was 

investigated utilizing the SOD (Site Occupancy Disorder) program (Grau-Crespo, 

2007), which generates the complete configurational space for each composition of 

one supercell and then extracts the symmetrically inequivalent configurations by 

considering the symmetry operators of the parent structure. Typically this procedure 

significantly reduces the number of configurations to be calculated in the GULP code 

(Gale, 1997). Once the configurational spectrum is obtained, it is possible to derive 

configurational entropies and enthalpies, based on the assumption that the extent of 

the occurrence of one particular configuration in the disordered solid can be 

described by a Boltzmann-like probability which is calculated, assuming zero 

external pressure and ignoring vibrational contributions, from the energy Um of the 

configuration (the minimum energy of the optimised structure at constant pressure), 

and its degeneracy Ωm (the number of times that the configuration is repeated in the 

complete configurational space): 

exp( / )m
m m BP U k T

Z


                       (4.1) 
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where m = 1, …, M (M is the number of inequivalent configurations), kB = 

8.6173×10
-5

 eVK
-1

 is the Boltzmann‟s constant, and Z is the configurational partition 

function. 

1

exp( / )
M

m m B

m

Z U k T


                        (4.2) 

In this study, the enthalpy of each configuration is simply its lattice energy, as 

any external pressure has not been considered in the calculations, and the vibrational 

contributions to the enthalpy have been ignored, which were shown in a previous 

study on (Fe,Cr)2O3 solid solution to be negligible (Benny et al., 2009). Then the 

enthalpy per formula H at each composition is calculated as an average in the 

configurational space: 

1 1

1 1M M

m m m m

m m

H P H P U
N N 

                     (4.3) 

where N is the number of formula units in the supercell, while the configurational 

free energy G and the entropy S can be obtained from the partition function Z: 

1
lnB

N
G k T Z  ;                        (4.4) 

1

1
ln

M
m

B m

m m

PH G
S k P

T N 


  


 .                (4.5) 

It is worth noting that the calculated enthalpies of the disordered systems tend to 

converge very rapidly with the size of the simulation cell, although the convergence 

of entropies is much slower (Todorov, 2004). Therefore, the calculations, which are 

based on relatively small supercells, can provide precise enthalpies, while the 

calculated entropies are only used to qualitatively access the degree of disorder in the 

solid solutions. The degree of convergence of the entropies with the size of the 

supercell is discussed below based on the difference between the full-disorder 
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entropy for the given supercell: 

max

1 !
( , ) ln

[ ]![ (1 )]!
B

N
S x N k

N Nx N x



.              (4.6) 

and the exact full-disorder result: 

max( ) lim ( , ) [ ln (1 ) ln(1 )]ideal B
N

S x S x N k x x x x


      .       (4.7) 

Any property Am defined for each configuration m can be averaged over the 

configurational ensemble as: 

1

M

m m

m

A P A


                           (4.8) 

But the interpretation of this average should be done carefully. When the averaging 

of system properties is performed in the reduced space of inequivalent configurations, 

each configuration m represents a set of Ωm equivalent configurations, and therefore 

the property Am must be the same for all configurations in that set. For example, if am 

and bm are the equilibrium cell vectors for each inequivalent configuration m, the 

average value of the cell parameters a corresponding to the disordered crystal cannot 

be calculated as the direct average of the |am| values, as this result could be different 

from the direct average of the |bm| values, breaking the rotational symmetry of the 

hexagonal cell. Therefore we have calculated the cell parameter a by equation: 

1

2

1

( )
M

m m m

m

a P


  a b                       (4.9) 

Since the absolute value of the vector product am×bm is invariant within a set of 

equivalent configurations. The cell parameter c was obtained directly by 

configurational averaging of the |cm| values.  
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In order to interpret the thermodynamic properties of the binary solid solutions 

in an appropriate way, the size of the simulation cell in the calculations must be 

clarified. The cation substitutions in 2 × 2 × 1 and 3 × 3 × 1 supercells have been 

considered, which contain 24 and 54 cation sites respectively. The extension along 

the x/y-axes is studied, as a < c in the unit cell and the interactions of cations in 

neighbouring cells thus could have more effect in x/y-axes. The total number of 

configurations and symmetrically inequivalent configurations for two supercells are 

listed in Table 4.1, where x is the molar fraction of the impurity cations in the solid 

solutions.  

Table 4.1 Total number of configurations (W) and number of symmetrically 

inequivalent configurations (M) for each composition MexCa1-xCO3 in 2 × 2 × 1 and 

3 × 3 × 1 supercells (A and B stand for either Ca or impurity). 

Cell composition x or 1-x W M 

A24(CO3)24 0 1 1 

A23B(CO3)24 0.042 24 1 

A22B2(CO3)24 0.083 276 7 

A21B3(CO3)24 0.125 2024 20 

A20B4(CO3)24 0.167 10626 102 

A19B5(CO3)24 0.208 42504 317 

A18B6(CO3)24 0.250 134596 1033 

A17B7(CO3)24 0.292 346104 2467 

A16B8(CO3)24 0.333 735471 5330 

A53B(CO3)54 0.019 54 1 

A52B2(CO3)54 0.037 1431 11 

A51B3(CO3)54 0.056 24804 86 

A50B4(CO3)54 0.074 316251 1051 
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For the 2 × 2 × 1 supercell, the full spectrum of configurations was not 

calculated for Me
2+

 composition 0.333 < x < 0.667 due to the still prohibitive 

computational cost. For example, for the intermediate composition x = 0.5, it leads to 

a total of almost three million configurations, which is computationally too 

expensive to calculate directly. Instead, a random sampling method was employed 

and the convergence of the calculated properties with respect to the sample size was 

checked. The 3 × 3 × 1 supercell was only employed at low concentrations to test the 

convergence of enthalpies with respect to cell size. 

4.3 Structure and configurational entropy 

Firstly, the equilibrium geometries and energies of the divalent cation substituted 

configurations in a 2 × 2 × 1 supercell of the calcite structure were calculated using 

the methods above. As calcite and other rhombohedral carbonate minerals are 

iso-structural, the introduction of impurity cations in either material does not 

significantly affect the structure beyond local relaxations.  

In order to understand the driving force towards the cationic ordering in the 

calcite-type structure, the most stable (lowest energy) configuration has been 

identified. Figure 4.1 shows the lowest-energy configurations for x = 0.167, x = 

0.333 and x = 0.5. A clear pattern emerges here: cationic dopants prefer to 

concentrate on the same layer perpendicular to the hexagonal cell main axis (c-axis), 

and at the same time, these full impurity layers prefer to be as far as possible from 

each other. These ordered patterns are consistent with a simple interaction model 

where Mn
2+

-Mn
2+

 interactions are favourable within (0001) planes but unfavourable 

between planes, as suggested recently by Katsikopoulos et al. (2009) based on 

empirical evidence. This tendency is quite strong and remains valid for all 
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compositions in the solid solutions, as will be discussed below. 

 

 

 

 

           (a)                  (b)                   (c)  

Figure 4.1: The structures of the most stable configurations for x = n/6 (n = 1, 2, 3). 

The lowest-energy structures for n = 4 and 5 can be obtained from the ones with n = 

2 and 1, respectively, if Ca
2+

 and impurity Me
2+

 positions are swapped. The n = 3 

case (x = 0.5) corresponds to the ordered dolomite-type structure. (Ca = green, C = 

grey, O = red, Me = blue). 

Figure 4.2 shows the calculated lattice energy Um of the mixed systems for Me
 

composition x = 0.25, where the black line is the lowest lattice energy, the blue line is 

the highest lattice energy, and the red line is the average in the complete 

configurational space for this composition. A simple inspection of the results shows 

that the difference between the lowest and highest lattice energies Um generally 

declines with increasing Me-O coordination distance, namely ΔUNi > ΔUMg > ΔUZn > 

ΔUCo > ΔUFe > ΔUMn > ΔUCd. For the mixed carbonate system containing either Ni
2+

, 

Mg
2+

, Zn
2+

, Co
2+

 or Fe
2+

, the average lattice energy approximately equals the lowest 

lattice energy; therefore a large degree of cation ordering should be expected in these 

systems, at least when temperature is not included in the calculations.  

 

c 

a 
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Figure 4.2: The lowest (black line) and highest (blue line) lattice energies of mixed 

systems for Me
2+

 composition x = 0.25, compared to the average lattice energy in the 

configurational space (red line). 

 

 

 

 

 

 

 

 

Figure 4.3: Configurational spectrum of lattice energies corresponding to the 

composition of Cd0.25Ca0.75CO3 at 300 K, as calculated in a 2 × 2 × 1 supercell. 

0.000 0.003 0.006 0.009

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

U
m

 / 
K

J
m

o
l-1

Pm

-251.0

-250.5

-250.0

-249.5

-249.0

-248.5

-248.0

 Cd
2+

Mn
2+

Fe
2+

Zn
2+

Co
2+

Mg
2+

Ni
2+

 

 

U
m

 /
 k

J
m

o
l-1



Chapter 4: Mixing thermodynamics of calcite with divalent cation impurities 

92 

On the contrary, there should be a certain degree of cationic ordering in the cases 

of Mn
2+

 or Cd
2+

. The spectrum of configurations corresponding to Cd
2+

 composition 

x = 0.25 at 300 K is shown in Figure 4.3, where the zero-level (ground state) is 

defined as the lattice energy of the most stable configuration. The number of 

configurations with more homogeneous Cd
2+

 distribution is larger than those with 

cation ordering, and the entropic effect is much stronger than the weak stabilization 

yielded by the interaction between the impurities. Thus a great deal of cation disorder 

should be present in the Cd
2+

 distribution at moderate temperatures. 

The configurational entropy provides a quantitative measure of the degree of 

cation ordering in the mixed systems. As the impurity cation composition x = 0.042 

corresponds to one Me
2+

 substitution of any of the 24 equivalent Ca
2+

 in a 2 × 2 × 1 

supercell, all 24 configurations are therefore equivalent and the configurational 

entropy remains at its maximum value, Smax, for this supercell with an increase in 

temperature. For other impurity compositions, where there are a number of possible 

inequivalent distributions of the cations, the configurational entropy is not constant 

and gradually approaches the maximum value at high temperatures. Figure 4.4 shows 

the variation of the configurational entropy of the solid solutions with temperatures 

at Me
2+

 composition x = 0.333. For Cd
2+

, the entropy curve quickly reaches 96% of 

its maximum value at 300 K, and 98% at 700 K, which means the solid solution is 

almost ideally disordered even at relatively low temperatures of around 300 K. For 

Mn
2+

, the configurational entropy reaches 16% of its maximum value at 300 K, and 

74% at 1000 K, indicating that some level of ordering can be present at low 

temperatures (<1000 K), if there is full configurational equilibrium. For other cations, 

Ni
2+

, Mg
2+

, Zn
2+

, Co
2+

 and Fe
2+

, the configurational entropy deviates from its 

maximum value even at relevant high temperature (e.g. ~1900 K), which means that 

a great deal of cation ordering should be expected in these solid solutions. 
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Figure 4.4: Variation of the configurational entropy corresponding to the 

composition of Me0.33Ca0.67CO3 at 300 K, as calculated in a 2 × 2 × 1 supercell. 

 

 

 

 

 

Figure 4.5: Variation of the maximum configurational entropy (in the full disorder 

limit) with the supercell size. 

It is important to note here that the absolute entropy values are not well 

converged with respect to the supercell size 2 × 2 × 1 for N = 24. To illustrate this 
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point, the variation of the maximum entropy Smax for different cell sizes in 

comparison with the exact results in the full disorder limit, for which an analytical 

expression exists (equation 4.7), is shown in Figure 4.5. For the 2 × 2 × 1 supercell 

(N = 24) the high temperature limit is in significant error (e.g. by 12% for x = 0.25). 

Although the calculated configurational entropies are not fully converged, they are 

still useful to assess the level of order to be expected in the systems. 

4.4 MnCO3-CaCO3 solid solutions 

Manganese carbonate (MnCO3) occurs naturally as the mineral rhodochrosite, 

which is iso-structural with calcite. The significant difference in ionic radius between 

Ca
2+

 (1.00 Å) and Mn
2+

 (0.83 Å) for six-fold coordination suggests that a fully 

disordered solution is unlikely to occur in the mixed carbonate. The variation of the 

configurational entropy of the (Mn,Ca)CO3 system with temperature also indicates 

that a random distribution of Mn
2+

 can only be present in calcite at high temperatures, 

as we have discussed before. 

Although (Mn,Ca)CO3 solid solutions have been widely studied using 

experimental techniques, seemingly contradictory results are still reported in the 

literature, particularly in respect of the range of the miscibility gap at different 

temperatures and the thermodynamics of the mixing properties at intermediate 

compositions. Several researchers have proposed the existence of a wide miscibility 

gap in the MnxCa1-xCO3 solid solution. For example, Goldsmith and Graf (1957) 

reported the existence of a miscibility gap for 0.6 < x < 0.75 at ambient temperatures, 

and suggested that complete miscibility only occurs above 823 K. De Capitani and 

Peters (1981) studied the solvus in the (Mn,Ca)CO3 system and found that the critical 

point lies at 813 K with a miscibility gap for 0.5 < x < 0.9 at 623 K. In contrast, other 
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studies that have analyzed samples of natural and synthetic origin, have found that 

the miscibility gap covers most of the Mn
2+

 compositional range at room temperature 

(Winter et al., 1981; Pedersen, 1982; McBeath et al., 1998). 

The intermediate composition Mn0.5Ca0.5CO3 and the stability of the ordered 

phase with this composition (kutnahorite) at different temperatures also leave a 

number of unanswered questions. For example, Capobianco and Navrotsky (1987) 

reported a positive free energy of mixing for the Mn0.5Ca0.5CO3 system at high 

temperature. Similarly, Katsikopoulos et al. (2009) also determined from 

calorimetric measurements a positive enthalpy of mixing for the Mn0.5Ca0.5CO3 

system at 298 K, although McBeach and co-workers (1998) measured a negative 

value at 298 K. Furthermore, whereas the ordered kutnahorite structure has been 

found in previous work, Katsikopoulos et al. (2009) indicated that it is not likely to 

precipitate at ambient temperatures, and the X-ray diffraction experiments do not 

show the clear superstructure reflections typical of kutnahorite ordering. They argue 

that these incompatible results are probably due to kinetic factors, such as 

precipitation rate and phase equilibrium at high supersaturation, which are difficult to 

control in experiments. 

In order to study the thermodynamic stabilities of the solid solutions, including 

the contribution from the configurational entropy, it is useful to evaluate the enthalpy 

of mixing and free energy of mixing as a function of composition at a range of 

temperatures:  

1 3 3 3

1 1
[ ] (1 ) [ ] [ ]mix x xH H Mn Ca CO x U CaCO x U MnCO

N N
        (4.10) 

1 3 3 3

1 1
[ ] (1 ) [ ] [ ]mix x xG G Mn Ca CO x U CaCO x U MnCO

N N
        (4.11) 

where H[MnxCa1-xCO3] is the enthalpy per formula unit of the solid solution, 



Chapter 4: Mixing thermodynamics of calcite with divalent cation impurities 

96 

G[Ca1-xMnxCO3] is the free energy per formula unit of the mixed system, and 

U[CaCO3] and U[MnCO3] are the lattice energies of the pure calcite and 

rhodochrosite, as there are no configurational entropy contributions to the free 

energy of the pure carbonate systems. 

The negligible errors associated with using the internal energies U (instead of 

the proper enthalpies H, which include both zero-point and heat capacity 

contributions) have been found. For example, for Mn1/24Ca23/24CO3 at 298 K, the 

enthalpy of mixing changes from ∆Hmix = 0.707 kJmol
-1

 to 0.699 kJmol
-1

 when 

vibrational contributions are considered, which is change of ~1% only. This is not 

surprising, as vibrational contributions to mixing enthalpies tend to be very small 

(Benny et al., 2009; Ruiz-Hernandez et al., 2010). This simplification is a significant 

advantage to the simulation, as the free energy minimisation costs much more 

computational time and requires a separate set of energy minimisation at each 

temperature. Conversely, the same set of configuration energies can be used for the 

statistics at any temperature if the vibrational contribution is ignored. 

At first the fully disordered MnxCa1-xCO3 system for compositions x < 0.33 was 

investigated. All the equilibrium geometries and energies of the Ca-rich 

configurations were calculated, and the average energy was taken in the high 

temperature limit (T→∞), i.e., configurations were only weighted by their 

degeneracies, regardless of their energies. Figure 4.6 shows the enthalpies of mixing 

ΔHmix as a function of Mn
2+

 composition, together with experimental findings by 

other authors. The calculated ΔHmix of the fully disordered system is clearly positive, 

which is also seen in experiments. The consideration of a larger simulation cell (3 × 

3 × 1, red empty squares in Figure 4.6), does not seem to alter significantly the 

values of the mixing enthalpy. However, the theoretical values seem to be too high 
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when compared with the calorimetric measurements by Katsikopoulos et al. (2009) 

and Capobianco & Navrotsky (1987).  

 

 

 

 

 

 

Figure 4.6: Calculated and experimental mixing enthalpies for the Ca-rich 

MnxCa1-xCO3 solid solution. The empty squares in red colour correspond to 

calculations in the full disorder limit with the 3 × 3 × 1 supercell. 

This discrepancy can arise from systematic errors in either the simulations or the 

experiments. However, it is also possible to explain this discrepancy by considering 

that there may be some degree of ordering in the experimental samples, which 

reduces their mixing enthalpies with respect to the full disorder limit. It is notable 

that although Katsikopoulos et al. (2009) were able to rule out kutnahorite type (see 

Figure 4.1c) of ordering in their samples, based on the absence of superstructure 

reflections in the X-ray diffraction (XRD) patterns, diffraction techniques are not 

well suited to assess the level of disorder in poorly ordered samples, say, in 

comparison with the ideal disorder limit. Therefore, the suggestion of imperfect 

disorder in the samples does not conflict with the available experimental information. 

Figure 4.6 also illustrates the enthalpies of mixing for the calcium-rich mixed system 
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considering full equilibration at 300 K and 1000 K. The theoretical values of ΔHmix 

of the partially ordered systems are lower as a result of higher weighting of the 

lower-energy configurations. In this case, the theoretical prediction agrees much 

better with the experimental results, especially when considering the wide error bars 

of the experimental data points. 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Calculated and experimental mixing enthalpies for the Mn-rich 

MnxCa1-xCO3 solid solution. The empty squares in red colour correspond to 

calculations in the full disorder limit with the 3 × 3 × 1 supercell. 

Similar trends of mixing enthalpies were also found in the case of Ca-substituted 

rhodochrosite, i.e. MnxCa1-xCO3 solid solutions with high concentrations of Mn
2+

. 

Figure 4.7 shows the enthalpies of mixing as a function of Mn
2+

 composition (x > 

0.66), again compared with experiments. As for the Ca-rich compositions, the 

consideration of a larger 3 × 3 × 1 supercell does not change significantly the values 

of the mixing enthalpies. The ΔHmix for the incorporation of Ca
2+

 in rhodochrosite is 

somewhat higher than for Mn
2+

 impurities in calcite, i.e. it is energetically more 
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expensive to substitute Ca
2+

 into rhodochrosite than Mn
2+

 into calcite, due to the 

larger ionic radius of Ca
2+

 compared to Mn
2+

. It is generally found that smaller 

cations can substitute more easily in positions normally occupied by larger cations, 

which causes less elastic strain in the lattice than the opposite scenario (McLean, 

1957; de Leeuw and Parker, 2000). Similar to the incorporation of Mn
2+

 in calcite, 

the positive values of the calculated ΔHmix in the fully disordered (Mn,Ca)CO3 

systems are somewhat higher than the experimental measurements. Again when 

partial cation ordering is considered in the systems, the enthalpy of mixing decreases 

and becomes closer to the experimental measurements by Katsikopoulos et al. (2009). 

It is interesting to note that earlier experiments by Capobianco & Navrotsky (1987) 

had reported negative values of ΔHmix for these Mn-rich compositions. Our 

calculated mixing enthalpies, as well as those obtained in the simulations by 

Vinograd et al. (2010), are positive for these compositions, in agreement with the 

most recent experiments. As pointed out by Katsikopoulos et al. (2009),
 
it seems 

likely that these measurements were performed on samples with significant level of 

ordering. 

The structure, cation ordering behaviour and stability in Mn0.5Ca0.5CO3 at 

different temperatures have also been investigated. The fully ordered Mn0.5Ca0.5CO3 

structure has been detected in the natural mineral kutnahorite (Frondel, 1955), which 

exhibits dolomite-type cation ordering, where Mn
2+

 and Ca
2+

 layers alternate with 

layers of CO3
2-

 groups along the crystallographic c-axis, as displayed in Figure 4.8. 

When simulating the cation disorder in a 2 × 2 × 1 supercell, this composition (x = 

0.5) leads to a total of almost three million configurations, which are computationally 

too expensive to calculate directly. Therefore, a random sampling method has been 

employed to generate a series of groups, where the number of configurations 

increases in successive groups from 1,000 to 10,000. The enthalpy of mixing ΔHmix 
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based on the equilibrium geometries and energies of all the configurations in each 

group were then calculated. The results show that the configurational spectrum is 

very dense, with many configurations having very similar energies. However, in all 

cases, the lowest energy arrangement of cations corresponds to the dolomite-like 

kutnahorite structure. The least stable configuration found in the random sampling 

had lattice energy of 56 kJmol
-1

 (2.3 kJmol
-1

 per formula unit) higher than the 

ordered kutnahorite structure. 

 

 

 

 

 

Figure 4.8: The structure of kutnahorite, showing Mn
2+

 and Ca
2+

 occupy alternating 

interlayers. (Ca = green, Mn = purple, C = grey, O = red). 

In order to test the convergence of the results with respect to the configuration 

sample size, it has been checked that the calculated mixing enthalpy at high 

temperature does not depend on the inclusion of the kutnahorite configuration in the 

sample (Figure 4.9). In the limit of full disorder (T→∞), the exclusion of the 

kutnahorite configuration does not make any difference on the average enthalpy even 

for relatively small sample sizes (e.g. 1,000 configurations). However, if 

equilibration at a finite temperature (e.g. 3000 K) is allowed, much more 

configurations are required to produce a robust result. For ~10,000 configurations, 

the average is practically independent of the presence of the kutnahorite 
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configuration. Therefore, a sample of this size can be assumed to provide a good 

representation of the energy distribution in the full configurational spectrum at this 

temperature. 

 

 

 

 

 

Figure 4.9: The variation of enthalpy of mixing with different number of 

Mn0.5Ca0.5CO3 configurations at 3000 K and infinitely high temperature. 

Figure 4.9 also shows that there is a significant difference in the average 

enthalpy between the fully disordered solid solution, where all the configurations 

enter with the same weight, and one with some level of ordering, where the 

lowest-energy configurations have increased weights. The temperature of 3000 K in 

this case does not represent a real thermal effect, but it is introduced to show the 

increasing presence of lower-energy cation arrangements, which is possible even in a 

sample that is not in configurational equilibrium. As in the cases of Ca-rich and 

Mn-rich solid solutions, the assumption of such a moderate degree of cation ordering 

leads to better agreement of the calculations with experimental results. The transition 

temperature of kutnahorite to disordered Mn0.5Ca0.5CO3 has been evaluated, by 

computing the free energy difference between the disordered and ordered phases: 
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disordered disordered kutnahoriteG H TS H                  (4.12) 

where Hdisordered is the enthalpy of the disordered Mn0.5Ca0.5CO3 solid solution, 

Hkutnahorite is the enthalpy of the ordered kutnahorite phase and Sideal is the ideal 

entropy of the Mn0.5Ca0.5CO3 system, which is calculated theoretically:  

3 1 1

ideal [ ln (1 )ln(1 )] ln 2 5.763 10B BS k x x x x k kJmol K              (4.13) 

The enthalpy of the disordered Mn0.5Ca0.5CO3 solid solution was evaluated in 

equation 4.12 both in the limit of full disorder and in the case of some incipient 

ordering, corresponding to the 3000 K calculation explained above.  
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Figure 4.10: The different in free energy G between the disordered Mn0.5Ca0.5CO3 

and kutnahorite as a function of temperature. The negative G indicates the 

disordered Mn0.5Ca0.5CO3 is more stable than ordered kutnahorite at this temperature. 

Figure 4.10 illustrates that the disordered phase is predicted to become stable at 

849 K if the full disorder enthalpy is used. However, allowing for some degree of 

ordering in the solid solution reduces the transition temperature to 695 K, which is in 
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better agreement with the experimental disordering temperature of kutnahorite (723 

K) given by Goldsmith and Graf (1957). Thus, again, agreement between theory and 

experiment is better if it is assumed that disordered solid solutions are not really fully 

disordered but contain some small bias towards lower energy configurations. 

Due to the positive enthalpy of mixing of the (Mn,Ca)CO3 solid solution, the 

system can only form a full disordered phase at high temperature (e.g. 849 K). 

Therefore, the free energy of mixing ΔGmix was then calculated using equation 4.11 

to study the thermodynamic stability of the disordered (Mn,Ca)CO3 solid solution, 

including the contribution from the configurational entropy. In order to compare with 

experiment, where the mixed system is thought to be disordered, the free energy of 

the system G[MnxCa1-xCO3] at the relevant temperature was estimated from the 

enthalpy of the fully disordered system and the ideal entropy. 

 

 

 

 

 

 

Figure 4.11: Calculated free energy of mixing with full range of Mn
2+

 compositions 

at 900 K. 

Figure 4.11 displays the calculated free energy of mixing ΔGmix at 900 K. The 

ΔGmix is negative for the whole Mn
2+

 composition at 900 K with the curve exhibiting 
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two local minima at xc = 0.12 and xs = 0.92, which indicates the formation of a 

metastable solid solution with respect to separation into a Ca-rich and Mn-rich phase 

in the range of 0.12 < x < 0.92. This miscibility gap is similar to the reports by 

Katsikopoulos et al. (2009), where a miscibility gap in disordered (Mn,Ca)CO3 solid 

solution was found for a Mn
2+

 composition of 0.13 < x < 0.98. 

 

 

 

 

 

Figure 4.12: Variation of the lattice parameters of MnxCa1-xCO3 as a function of 

composition, in comparison with experiment (Katsikopoulos et al., 2009). 

The average lattice parameters of the fully disordered MnxCa1-xCO3 systems 

were calculated through equation 4.9. The variation of the lattice parameters a 

(where a = b) and c with Mn
2+ 

composition is plotted in Figure 4.12, which shows 

that both lattice parameters decrease with increasing Mn
2+

 substitution, as expected 

from the smaller ionic radius of Mn
2+

 compared to Ca
2+

, and in agreement with 

experiments. The small deviation from the linear Vegard‟s law reported in the paper 

by Katsikopoulos et al. (2009) for intermediate compositions was not obtained in the 

calculations in the full disorder limit, suggesting that the non-linear behaviour is 

most likely associated with a deviation from perfect disorder in the experimental 

samples, consistent with the discussion above. 
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4.5 CdCO3-CaCO3 solid solutions 

Otavite (CdCO3) is a rare mineral in nature as Cd is usually a trace element in 

other minerals, and it is iso-structural with calcite. The ionic radii of Ca
2+

 and Cd
2+

 in 

octahedral coordination to oxygen are 1.00 Å and 0.97 Å (Shannon and Prewitt, 

1969). Therefore, a complete miscibility in (Cd,Ca)CO3 solid solution could be 

conjectured due to the similarity in ionic radii of two metals. 

The CdxCa1-xCO3 systems have been studied in various experiments, which have 

showed high values of the distribution coefficient of Cd
2+

 in calcite. The relatively 

rapid initial uptake of Cd
2+

 at the calcite surface has been interpreted as 

chemisorption, and the long-term uptake by calcite occurs via surface precipitation of 

(Cd,Ca)CO3 solid solutions. Most sorption experiments have been carried out with 

extremely low concentrations of Cd
2+

 and in the presence of complexing ligands to 

avoid saturation with respect to pure otavite. However, a study by Tesoriero and 

Pankow (1996) has shown that if calcite is present, precipitation of Cd
2+

 as a 

carbonate solid solution will always occur, even when Cd
2+

 is present at trace levels, 

due to the strong tendency of this ion to partition into calcite. 

To estimate the thermodynamic properties of (Cd,Ca)CO3 solid solutions,  

Königsberger et al. (1991) overcame partial disequilibrium by achieving states that 

successively approximate equilibrium and they concluded that the mixing in the 

(Cd,Ca)CO3 solid solution was ideal. Stipp et al. (1992) also report nearly ideal 

mixing between an otavite layer grown epitaxially over calcite. However, Davis et al. 

(1987) and Rock et al. (1994) suspected that the mixing was non-ideal on the basis of 

the discrepancies between the measured distribution coefficient and the distribution 

coefficient predicted from ideal mixing, although the discrepancies are sensitive to 

uncertainties in the estimates of the free energy of formation, ΔGf[CdCO3(s)]. 
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Firstly, we have investigated the structure, cation ordering behaviour and 

stability of the intermediate composition, Cd0.5Ca0.5CO3, at different temperatures. 

The random sampling method was also employed here to generate a series of groups, 

where the number of inequivalent configurations increases in successive groups from 

1,000 to 10,000. The enthalpy of mixing ΔHmix based on the equilibrium geometries 

and energies of all the configurations were calculated in each group. The results 

showed that the fully ordered Cd0.5Ca0.5CO3 structure exhibits dolomite-type cation 

ordering. Additionally, the configurational spectrum of Cd0.5Ca0.5CO3 in the 2 × 2 × 1 

supercell is very dense, with many configurations having very similar energies.  

 

 

 

 

 

 

Figure 4.13: The variation of enthalpy of mixing with different number of 

inequivalent Cd0.5Ca0.5CO3 configurations at 300 K and1000 K. 

Figure 4.13 shows the convergence of enthalpy of mixing, ΔHmix, with respect to 

the configuration sample size, which indicates that the calculated mixing enthalpy at 

high temperature (e.g. ~1000 K) does not depend on the inclusion of the ordered 

dolomite-type configuration in the sample. The mixing enthalpy is practically 

dependent on the sample size and the presence of the ordered configuration at 300 K. 
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Although the enthalpy of mixing starts to converge when the number of 

configurations is larger than 5,000, a sample size of ~10,000 configurations can 

provide a more precise representation of the energy distribution in the full 

configurational spectrum at this temperature (300 K). 

The calculated enthalpy of mixing of the CdCO3-CaCO3 solid solution is small 

and positive, as it is shown in Figure 4.14. Therefore the mixing is a slightly 

exothermic process. The thermodynamic stability of the solid solutions is given by 

the free energy of mixing, which is calculated by equation 4.11. The mixing free 

energies are negative at all temperatures of interest, indicating the formation of stable 

solid solutions and Cd
2+

 is soluble in calcite throughout the fully composition range 

in calcite under moderate conditions. The calculated results agree with previous 

experimental findings, which proved the CaCO3-CdCO3 solid solutions are 

thermodynamic stable under moderate conditions (Königsberger et al., 1991; Stipp et 

al., 1992). 
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Figure 4.14: Calculated mixing enthalpy and mixing free energy of the CdxCa1-xCO3 

system as a function of Cd
2+

 composition, as calculated for a 2 × 2 × 1 supercell. 
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Besides the free energy of mixing ΔGmix, it is common to report the excess free 

energy G
E
 of the solid solution, defined as: 

E ideal

mix mixG G G                         (4.14) 

ideal

mixG  is the free energy of mixing in an ideal solid solution, where the only 

contribution comes from the ideal entropy corresponding to a fully disordered solid.  

[ ln (1 )ln(1 )]ideal

mix BG k T x x x x                    (4.15) 

The excess free energy G
E
 therefore contains all the non-ideal contributions to the 

mixing free energy: an enthalpy part (ΔHmix) and an entropy part, which contains 

both the deviation of the configurational entropy from ideality and a contribution 

from the vibrational entropy of mixing. 
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Figure: 4.15: Comparison between theoretical and experimental excess free energies 

G
E
 findings for CdxCa1-xCO3 at 300 K. 

Figure 4.15 shows a comparison of the calculated excess free energy G
E
 for 

CdxCa1-xCO3 at 300 K with the theoretical G
E
 prediction of Lippmann‟s electrostatic 
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model (1980), Mandell et al.‟s (1999) lattice energy model and Rock et al.‟s (1994) 

experimental findings, which are based on electrochemical cell-voltage measurement. 

The positive excess free energy indicates the mixing in CdCO3-CaCO3 solid solution 

is non-ideal. The calculated theoretical values are not far from the G
E
 results by 

Lippmann (1980). The experimental results by Rock et al., on the other hand, 

contrast significantly with the theoretical results. The difference of excess free 

energy between theoretical calculation and experimental measurement is expected 

because the magnitude of the estimated G
E
 is sensitive to the choice of free energy of 

formation of CdCO3, which is uncertain in the experiments.  

4.6 FeCO3-CaCO3 solid solutions 

Siderite (FeCO3) is commonly found in hydrothermal veins and at shallow burial 

depths in sedimentary rocks. It also has the calcite-type structure, but as the ionic 

radius of Fe
2+

 (0.75Å) is only three quarters of that of Ca
2+

 in six-fold coordination, 

there should be obvious effect on the local structure of calcite. The variation of the 

configurational entropy of the (Fe,Ca)CO3 system with temperature also indicates 

that some degree of cation ordering should be expected in the FeCO3-CaCO3 solid 

solutions (see Figure 4.4).  

The intermediate composition Fe0.5Ca0.5CO3 has never been detected in the 

natural environment. The enthalpy of mixing ΔHmix was calculated in successive 

groups from 1000 to 10,000 configurations by the random sampling method. The 

lowest energy arrangement of cations corresponds to the dolomite-type structure, and 

its lattice energy is 110 kJmol
-1

 (4.6 kJmol
-1

 per formula unit) lower than the least 

stable configuration found in the random sampling. Although the number of 

configurations with more homogeneous Fe
2+

 distributions is larger than the ordered 
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dolomite-type structure, this entropic effect is weaker than the stabilization provided 

by the interaction in ordered dolomite-type structure. The calculated enthalpy of 

mixing ΔHmix does not depend on the sample size below 1500 K. Therefore, only 

1000 configurations including ordered dolomite-type structure are assumed to be 

representative of the energy distribution in the configurational spectrum below 

1500K. 
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Figure 4.16: Calculated enthalpy of mixing in the FexCa1-xCO3 system. The solid 

lines show the enthalpy isotherms between 300 K and 1500 K with a step of 300 K. 

The dashed lines show the enthalpy at an infinitely high temperature. 

Figure 4.16 shows the enthalpies of mixing as a function of Fe
2+

 composition, as 

calculated in a 2 × 2 × 1 supercell. The calculated ΔHmix for the incorporation of Ca
2+

 

in siderite is slightly higher than for Fe
2+

 in calcite, i.e. it is energetically more 

expensive to substitute Ca
2+

 into siderite than Fe
2+

 into calcite, due to the larger ionic 

radius of Ca
2+

 compared to Fe
2+

. The ΔHmix of the mixed system is positive, 

indicating that the formation of the (Fe,Ca)CO3 solid solution from pure calcite and 

siderite is endothermic except in the intermediate range of compositions. For the 
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intermediate compositions, the ΔHmix curves overlap each other below 1200 K as a 

result of higher weighting of the lower-energy configuration (dolomite-type 

structure). These results do not completely coincide with the native enthalpy of 

mixing of the mixed systems at low temperatures, as other mixed layered ordering 

structure like the dolomite-type structure, may also be present in the whole 

configurational spectrum. 
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Figure 4.17: Calculated free energy of mixing of the FexCa1-xCO3 system as a 

function of Fe
2+

 compositions. 

The thermodynamic stability of (Fe,Ca)CO3 solid solution is given by the free 

energy of mixing calculated by equation 4.11 between 300 K and 1400 K, as 

illustrated in Figure 4.17. The maximum solubility of Fe in calcite is very close to x 

= 0.4 at 1000 K. The free energy of mixing is negative for full Fe compositions 

above1400 K, and there are two minima at xc = 0.33 and xs = 0.96, which define a 

miscibility gap between calcite and siderite. The solid with composition between xc < 

x < xs is thermodynamically metastable with respect to a mechanical mixture of 

xc xs 
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phases with composition xc and xs. The prediction of a miscibility range in the 

FexCa1-xCO3 solid solutions is in agreement with experimental studies. Goldsmith 

(1959) reported that the lower limit of the miscibility gap is 0.37 at 973 K, whereas 

Rosenberg (1963) predicted the miscibility gap between 0.17 < x < 0.85 at 823 K. It 

is noteworthy that the intermediate compositions are metastable and could not 

precipitate below 1400 K, which also confirmed the experimental findings. The 

dolomite-type Fe0.5Ca0.5CO3 has never been reported as a natural mineral and it is not 

a stable phase in the temperature range from 573 K to 823 K. 
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Figure 4.18: Comparison between theoretical excess Gibbs free energies G
E
 for the 

FexCa1-xCO3 solid solutions at 823 K. 

The results of excess free energy G
E
 for the FexCa1-xCO3 system are displayed in 

Figure 4.18, together with theoretical finding by other authors. The positive excess 

free energy indicates the mixing in the FexCa1-xCO3 solid solution is non-ideal. 

Davies and Navrotsky (1983) obtained positive G
E
 for the FexCa1-xCO3 system from 

573 K to 1073 K using a sub-regular solution model containing empirically 
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thermodynamic interaction parameters. Mandell et al. (1999) used an extending 

lattice energy calculation model to investigate the pure carbonate minerals and also 

predicted positive excess free energy at 823 K. The theoretical excess energies 

addressed in this work are consistent with these theoretical results by other authors. 

4.7 Uptake of Zn
2+

 and Co
2+

 to calcite 

The ionic radii and coordination distances to oxygen of Zn
2+

 and Co
2+

 in six-fold 

coordination are very similar. Smithsonite (ZnCO3) is commonly found in the natural 

environment, whereas cobalt calcite (CoCO3) is rare in nature. Smithsonite can form 

limited solid solutions with rhodochrosite and siderite. However, substitution of Co
2+

 

in the structure of the common rhombohedral carbonates is not observed to any 

significant extent in nature, unlike the commonly observed substitutions of Zn
2+

.  

Various studies have used kinetic-spectroscopic techniques to investigate the 

interaction of Zn
2+

 with calcite. All experimental findings have shown a strong 

adsorbing behaviour of Zn
2+

 on the calcite surface, which can be described best by a 

Langmuir model (Zachara et al., 1988; Temmam et al., 2000; El-Korashy, 2003). For 

example, a spectroscopy study of synthetic and natural calcite samples containing 

traces of Zn
2+

 by Reeder et al. (1999) confirmed the substitution of Zn
2+

 for Ca
2+

 in 

octahedral coordination occurs via exchange with Ca
2+

 in a surface-adsorbed layer. 

The presence of large amounts of Zn
2+

 in a Ca
2+

/CO3
2-

-bearing fluid reduces the 

growth rate of calcite, hinders the crystallisation of calcite and favours the formation 

of hydrozincite or aragonite (Glasner et al., 1980; Meyer, 1984; Wada et al., 1995). 

Freij et al. (2004) used AFM and batch sorption experiments to study the interaction 

of Zn
2+

 with calcite {1 0    4} surfaces during growth and dissolution. Their results 

showed that the growth of calcite in the presence of Zn
2+

 occurs by two-dimensional 
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nucleation, the growth rate decreasing with the development of each subsequent layer. 

All these studies provided significant information on the strong interaction of Zn
2+

 

with calcite under different conditions, using various techniques. However, none 

dealt with the thermodynamic properties of the (Zn,Ca)CO3 solid solutions at the 

atomic level, which are needed to understand the mechanism of adsorption and 

substitution.  

At first the mixing enthalpies ΔHmix of intermediate composition Zn0.5Ca0.5CO3 

and Co0.5Ca0.5CO3 in a 2 × 2 × 1 supercell have been calculated, based on the random 

sampling method. Because of the strong stabilization provided by the interaction in 

the ordered dolomite-type structure, the mixing enthalpies ΔHmix of both systems do 

not change with increasing sample size below 1500 K, which are similar to that of 

the (Fe,Ca)CO3 system. Again, only the ordered dolomite-type configuration has 

been used in the calculation of the mixing free energy rather than the average of the 

whole configuration spectrum of Zn0.5Ca0.5CO3 and Co0.5Ca0.5CO3 below 1500 K. 

 

 

 

 

 

 

Figure 4.19: Calculated free energy of mixing with full range of Co
2+

 or Zn
2+

 

compositions; (a) CoxCa1-xCO3, (b) ZnxCa1-xCO3. 
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The mixing free energy of the ZnxCa1-xCO3 and CoxCa1-xCO3 systems are 

calculated by equation 4.11 between 300 K and 1500 K, respectively. For the 

CoxCa1-xCO3 system (see Figure 4.19a), CoCO3 is soluble in calcite below the Co
2+

 

composition x = 0.06 at 1000 K, and the solubility is close to x = 0.34 at 1500 K. The 

solubility of ZnCO3 in calcite (see Figure 4.19b) is x < 0.04 at 1000 K and x < 0.35 at 

1500 K, which is similar to that of CoCO3. The free energy of mixing ΔGmix for Co
2+

 

or Zn
2+

 is positive for the compositions x > 0.6 indicating Ca
2+

 can be soluble in 

neither CoCO3 nor ZnCO3 below 1500 K.  

The calculated miscibility range is not far from the experimental findings. 

Goldsmith and Northrop (1965) reported that the limit of the miscibility of 

CoxCa1-xCO3 is x = 0.04 at 873 K and x = 0.15 at 1073 K. Limited coprecipitation of 

Zn
2+

 with CaCO3 has also been observed between 300 K and 523 K (Crocket and 

Winchester, 1966; Tsusue and Holland, 1966). Furthermore, although the free 

energies of mixing of the intermediate composition Co0.5Ca0.5CO3 and Zn0.5Ca0.5CO3 

are negative, these mixed systems are metastable and tend to change into a Ca-rich 

phase below 1500 K, which also confirms that the dolomite-type Co0.5Ca0.5CO3 or 

Zn0.5Ca0.5CO3 does not exist in synthesis or nature (Goldsmith and Northrop, 1965).  

4.8 Uptake of Mg
2+

and Ni
2+

 to calcite 

The ionic radii of Mg
2+

 (0.65 Å) and Ni
2+

 (0.72 Å) are much smaller than Ca
2+

 

(1.00 Å). Former studies indicate that it is energetically favourable for Mg
2+

 to 

substitute Ca
2+

 in calcite due to the smaller ionic radius (Fork, 1974; Davis et al., 

2000). Magnesite (MgCO3) and dolomite (MgCa(CO3)2) typically occur in nature, 

but nickel carbonate (NiCO3) has never been known as a mineral. Comparing with 

one of the best studied carbonate system (Mg,Ca)CO3, the (Ni,Ca)CO3 system is still 
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less researched by experiment due to the decomposition of carbonates.  

The (Mg,Ca)CO3 system is one of the best studied metal calcite systems. 

Magnesium is considered as an important modifier of CaCO3 growth and 

morphologies in aqueous solution. Although the presence of Mg
2+

 in CaCO3 is 

studied increasingly, the physical basis by which Mg
2+

 modifies calcite growth has 

yet to be discerned. Bulk studies have suggested that the growth of calcite is 

inhibited through either step-blocking by Mg
2+

 adsorption and slow dehydration 

(Lippman, 1960; Gutjahr et al., 1996) or enhanced mineral solubility associated with 

lattice strain caused by the incorporated Mg
2+

 (Fork, 1974; Berner, 1975). Davis et al. 

(2000) used AFM to resolve the mechanism of calcite inhibition by Mg
2+

 at the 

molecular scale and determine the thermodynamic and kinetic controls of Mg
2+

 on 

calcite formation. Their experiments demonstrated that Mg
2+

 inhibits calcite growth 

by incorporation into the calcite lattice. The resultant increase in the mineral 

solubility forms the underlying physical basis for the reduced calcite growth rates 

observed in the presence of Mg
2+

. Hence a further understanding of the (Mg,Ca)CO3 

solid solution requires an accurate assessment as to how Mg
2+

 modifies the calcite 

growth via solubility. 

The structure and cationic ordering behaviour for the intermediate composition 

of dolomite (Mg0.5Ca0.5CO3) and Ni0.5Ca0.5CO3 were initially investigated at different 

temperatures based on the random sampling method. The lowest energy arrangement 

of cations in the whole configurational spectrum corresponds to the dolomite-type 

structure. The least stable configuration found in the random sampling had a lattice 

energy of 148.5 kJmol
-1

 (6.2 kJmol
-1

 per formula unit) higher than the ordered 

dolomite structure. The lattice energy of dolomite-type Ni0.5Ca0.5CO3 is 279.5 

kJmol
-1

 (11.6 kJmol
-1

 per formula unit) lower than that of the least stable 

configuration. The stabilization provided by the interaction within the ordered 
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dolomite structure is so strong that there will be no configurational entropy 

contributions to the free energy of mixing ΔGmix of the intermediate compositions 

below 1500 K. Therefore, the lattice energy of the dolomite-type configuration can 

be assumed to be equal to the average enthalpy of intermediate compositions 

Mg0.5Ca0.5CO3 and Ni0.5Ca0.5CO3 below 1500 K. 

The solubility of Mg
2+

 in calcite was then evaluated by calculating the free 

energy of mixing ΔGmix between calcite and ordered dolomite phase (equation 4.16, 0 

< x <0.5), or between dolomite and magnetite (equation 4.17, 0.5 < x < 1) as a 

function of Mg
2+

 compositions at a range of temperatures: 

1

1 3 3 0.5 0.5 3[ ] (1 2 ) [ ] 2 [ ]
mix x xG G Mg Ca CO x U CaCO xU Mg Ca CO    

   
 (4.16) 

2

1 3 3 0.5 0.5 3[ ] (2 1) [ ] (2 2 ) [ ]
mix x xG G Mg Ca CO x U MgCO x U Mg Ca CO     

 
(4.17) 

where G[MgxCa1-xCO3] is the free energy of the mixed system, and U[Mg0.5Ca0.5CO3] 

is the lattice energy of the pure dolomite, as there is no configurational entropy 

contributions to the free energy of the stable dolomite. 

Figure 4.20 displays the calculated free energy of mixing ΔGmix in the binary 

systems of calcite-dolomite and dolomite-magnetite from 500 K to 1500 K. The 

solubility of Mg
2+

 in calcite is up to x = 0.04 at 1000 K. The ΔGmix is negative for the 

Mg
2+

 composition 0 < x < 0.33 at 1500 K, which suggests magnesian calcite and 

dolomite can form stable solid solutions at this temperature, where the Mg
2+

 

compositions in the stable phase is at least up to 0.33. This miscibility between 

magnesian calcite and dolomite agrees with the experiments by Goldsmith and Heard 

(1961), where the top of the solvus outlining the two-phase field is at Mg
2+

 

composition x = 0.43 at 1348 K, and above the solvus a single-phase region extends 

from calcite to dolomite. Conversely, the miscibility gap between dolomite and 
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magnesite is considerably wider and the solubility of Ca
2+

 in magnesite is up to 0.04 

at 1500 K. 

 

 

 

 

 

Figure 4.20: Calculated free energy of mixing of the binary (Mg,Ca)CO3 system as a 

function of Mg
2+

 composition, (a) calcite-dolomite, (b) dolomite-magnetite. 

Subsequently, the solid solubility in (Ni,Ca)CO3 solid solutions has been 

evaluated by calculating the free energy of mixing ΔGmix between calcite, ordered 

dolomite-type Ni0.5Ca0.5CO3 and NiCO3. The dolomite-type Ni0.5Ca0.5CO3 was 

assumed to be a stable phase below 1500 K in this calculation, although it does not 

exist in nature. The calculated free energy of mixing ΔGmix in the binary systems of 

CaCO3 - Ni0.5Ca0.5CO3 and Ni0.5Ca0.5CO3 - NiCO3 from 500 K to 1500 K are showed 

in Figure 4.21. A simple inspection of the results shows that in both cases the free 

energies of mixing are positive from 500 K to 1500 K. As such there can be neither 

Ni
2+

 substitution in calcite nor Ca
2+

 substitution in NiCO3 even at high temperatures 

(e.g. ~1500 K). Furthermore, the dolomite-type structure Ni0.5Ca0.5CO3 is not stable 

due to the limit substitution of Ni
2+

 in calcite and vice versa. 
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Figure 4.21: Calculated free energy of mixing of the binary systems as a function of 

Ni
2+

 composition. (a) CaCO3-Ca0.5Ni0.5CO3, (b) Ca0.5Ni0.5CO3-NiCO3 

4.9 Chapter summary 

The mixing thermodynamics of binary CaCO3-MeCO3 solid solutions (Me = Mg, 

Ni, Co, Zn, Fe, Mn and Cd) in the whole range of Me
2+

 compositions have been 

investigated by atomistic simulation techniques. The ionic radius, coordination 

distance and solubility of divalent cations in calcite are summarised in Table 4.2.  

The calculations show that CdCO3 and CaCO3 form a continuous stable solid 

solution in the whole Cd
2+

 compositions at moderate temperatures. While there is a 

miscibility gap at Mn
2+

 composition 0.12 < x < 0.92 in the (Mn,Ca)CO3 system, 

which contains a small degree of cationic ordering rather than the expected 

completely random distribution. A higher abundance of cation ordering is present in 

the (Fe,Ca)CO3, (Co,Ca)CO3, (Zn,Ca,)CO3, (Mg,Ca)CO3 and (Ni,Ca)CO3 systems, 

and the solubility of these cations in calcite is thus very limited. All investigated 

carbonate systems show higher solubility of the smaller ions in calcite than that of 

Ca
2+

 in the other end-member carbonates. The dolomite-type compounds 
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Me0.5Ca0.5CO3, are not observed to form with Cd
2+

, Fe
2+

, Co
2+

, Zn
2+

 and Ni
2+

. For 

Mn
2+

, the ordered kutnahorite is metastable and behaves disorder above 695 K. 

According to the calculations, the solubility of impurity cations in calcite, which is in 

good agreement with available experimental results, is largely related to the cationic 

coordination distance with oxygen. Ionic radius is clearly not the controlling factor in 

these binary carbonate solid solutions. 

Table 4.2 Some data on rhombohedral carbonates. 

Cations 
Radius 

/ Å 

Me-O 

/ Å 

Solubility in 

calcite 

(calculation) 

Solubility in 

calcite 

(experiment) 

Dolomite 

type 

structure 

Ca
2+

 1.00 2.40 complete (300 K) complete (298 K) / 

Cd
2+

 0.97  2.26 complete (300 K) complete (298 K) No 

Mn
2+

 0.83 2.16 x < 0.12 (900 K) x < 0.13 (298 K) Yes 

Fe
2+

 0.75 2.12 x < 0.4 (1000 K) x < 0.35 (1023 K) No 

Co
2+

 0.72 2.10 x < 0.06 (1000 K) x < 0.13 (1023 K) No 

Zn
2+

 0.75 2.09 x < 0.04 (1000 K) x < 0.2 (1023 K) No 

Mg
2+

 0.65 2.08 x < 0.04 (1000 K) x < 0.12 (1023 K) Yes 

Ni
2+

 0.72 1.99 no x < 0.05 (1023 K) No 
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5 
Investigation of the interaction between 

calcite nanoparticle and calcite surfaces 
                                                                                   

 

When two calcite particles collide in the solution, the interaction between the 

particles holds them together for a short while before they are separated by the fluid 

shear force. If the interaction is strong, or the particles are growing quickly, the 

particles will remain bound together to form an aggregate. In this chapter atomic 

simulation techniques have been applied to establish the key factors that affect the 

interaction between a calcite nanoparticle and some major calcite surfaces. Both 

planar and stepped surfaces in vacuum and aqueous environment have been 

considered. This study provides quantitative information for experimental studies of 

the aggregation of calcite nanoparticles during the crystal growth process. 
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5.1 Introduction 

Recently, the growth of calcite has been studied extensively both in experiments 

(Dobson et al. 2005; Wasylenki et al. 2005) and computational modelling (de Leeuw 

et al. 1999; de Leeuw 2002), and calcite particles on the micro-scale (i.e. 

nanoparticles) have gained increasing attention due to their fundamental role in 

calcite crystal growth, where the aggregation of nanoparticles can lead to the 

formation of crystals with different morphologies (Colfen, 2003; Domingo, 2004). 

Aggregation of calcite particles could arise from a combination of many effects: 

solid-state properties, growth habit and crystallization conditions, such as solution 

supersaturation and flow rate. However, it is still not fully understood how we can 

achieve control over this process. 

The aggregation between a small nanoparticle and a larger nanoparticle can be 

approximated as the adhesion of a small nanoparticle onto a substrate, namely a large 

surface. In this chapter the epitaxial matching of calcite nanoparticles to a number of 

common calcite surfaces has been investigated by using computer modelling at the 

atomic level. By separately modelling calcite nanoparticle with different morphology 

and substrate, it is possible to comment on the effect of lattice matching on the 

adhesion energy and explain experimental findings during the calcite crystal 

aggregation process. 

5.2 Calcite surfaces 

The rhombohedral structure of calcite, which has a space group R  c, hexagonal 

lattice vectors a = b = 4.990 Å, c = 17.061 Å (Deer et al., 1992), was used as the 

starting bulk structure. The computer code METADISE (Watson et al., 1996) was 
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then employed to optimise the bulk structure and resulting structure was used to 

create the planar and stepped surfaces. Two planar surfaces {1 0    4}, {0001} and 

two stepped surfaces {3 1   8}, {3       16} are considered in this study. A series 

of simulations were carried out to determine the optimised structures and surface 

energies of the cleaved surfaces in vacuum. The results are listed in Table 5.1. 

Table 5.1 Surface energies of pure calcite surfaces (Jm
-2

) 

surface unrelaxed surface relaxed surface 

{1 0    4} 0.64 0.57 

{0001}-CO3
2-

 1.59 0.98 

{0001}-Ca
2+

 2.39 0.99 

{3 1    8} 1.15 0.88 

{3       16} 0.91 0.72 

The {1 0    4} surface is the most stable surface of calcite and dominates its 

observed morphology. It consists of layers of calcium, carbon and one oxygen atom 

in a plane with the other two oxygen atoms above and below this plane, as shown in 

Figure 5.1a. It has a higher density of ions compared with other possible charge 

neutral planes, leading to its low surface energy and stability. The {0001} surface is a 

common twinning plane, which according to Pastero‟s statistical work (2004) occurs 

to almost 17% in natural calcite samples. The {0001} surface contains alternating 

planes of Ca
2+

 and CO3
2-

 groups, which produces a dipole moment perpendicular to 

the surface. Polar surfaces are unstable by themselves and will either reconstruct to 

neutralize the dipole moment or adsorb ions to remove the dipole moment. In this 

study, the dipole moment is removed by moving half the ions from the top layer of 

the surface to the bottom, creating surface vacancies in the process. As a result two 

{0001} surfaces with different terminations have been created, namely a CO3
2-
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terminated surface (Figure 5.1b) and a Ca
2+

 terminated surface (Figure 5.1c). 

  (a) 

 

(a)  

   

 (b) 

 

 

 

 (c)  

 

 

 

 

Figure 5.1: Top view and side views of pure planar surfaces, (a) {10  4} surface, (b) 

CO3
2-

 terminated {0001} surface and (c) Ca
2+

 terminated {0001} surface. The second 

plane in the top view has been omitted for clarity. (Ca = green, C = grey, O = red). 

Stepped surfaces are usually present in natural and synthesized calcite crystals 

and experimental systems. Steps on the calcite cleavage face are common along the 

crystallographic directions defined by cleavage plane intersections. Because calcite 

has a rhombohedral lattice, two non-equivalent steps are produced by each of the 

cleavage planes that intersect at the surface. These steps differ in their local atomic 

arrangement and are named the acute and obtuse step by the angle they make with 
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the surface (Kristensen and Stipp, 2004). There are many surfaces that include these 

steps, but the surfaces on which the steps are closest together are the {3 1   8} and 

{3       16} surfaces, as illustrated in Figure 5.2, describing a plane with acute and 

obtuse steps, respectively. On the acute stepped {3 1   8} surface, the CO3
2-

 groups 

on the edge overhang the plane below, forming an angle of 80
o
 with the lower plane. 

On the obtuse stepped {3       16} surface, the CO3
2-

 groups on the step edge lean 

backwards with respect to the below plane, forming an angle of 105
o
 with the lower 

plane. Both {3 1   8} and {3       16} surfaces contain {1 0    4} terraces and 

monatomic steps. The side walls of the steps are also {1 0    4} planes and the step 

edges of the two stepped surfaces are identical to the two different edges of the 

calcite rhomb. 

 

 

 

 

Figure 5.2: Side view of pure stepped surfaces, (a) acute {3 1   8} surface and (b) 

obtuse {3       16} surface. (Ca = green, C = grey, O = red). 

As calcite is usually present in an aqueous environment, it is essential to include 

water in the simulations. Many experiments and computer simulations have indicated 

that water molecules organize into ordered layers in the mineral-water interface. For 

example, a classic molecular dynamics study by Kerist and Parker (2004) has found 

that there are three ordered layers of water on the calcite {1 0    4} surface. The 

existence of this arrangement is supported by experimental X-ray scattering data 

(Geissbühler et al., 2004), which found two water layers on the calcite surface in 
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bulk water. This is expected to be a general effect at ionic surfaces. Previous studies 

of water adsorption at surfaces have shown that there is a clear difference between 

the water adsorbed at the mineral surface and bulk water, and only the adsorbed 

layering water molecules were shown to affect the structure and energy of the 

underlying surface. For these reasons, both monolayer and multi-layer water on the 

calcite surfaces were considered in this study. 

At first, only a full monolayer of water molecules was added to the surface, 

which is defined as the maximum number of water molecules adsorbed at the surface 

in a single layer without formation of a second layer. Ca
2+

 sites at the top plane were 

selected as initial positions for adding the water molecules and the oxygen atoms in 

water molecules were placed at a distance of 2.0 Å above the Ca
2+

 sites. Surface 

calculations were carried out to determine the surface energies of the hydrated 

surfaces, which are listed in Table 5.2. It is clear that the surface energies of the 

hydrated surfaces are smaller than those of corresponding pure surfaces. It is evident 

that the adsorbed water molecules have a stabilizing effect on the surfaces. 

Table 5.2 Surface energies of hydrated calcite surfaces (Jm
-2

) 

surface surface energy 

{1 0    4} 0.16 

{0001}-CO3
2-

 0.42 

{0001}-Ca
2+

 0.63 

{3 1    8} 0.78 

{3       16} 0.60 

Figure 5.3 shows a top view of the structures of the hydrated planar surfaces, 

where a very regular pattern of adsorbed water molecules presents on the planar 
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surfaces. The adsorbed water molecules lie flat on the {1 0    4} surface, which 

agrees with experimental and other computational findings on adsorption of water on 

calcite surfaces (Chang et al., 1995; de Leeuw and Parker, 1997). Adsorption of 

water on the {0001} surface is more complicated. The water molecules show a clear 

tendency to cluster around the surface CO3
2-

 groups (Figure 5.3b) or the surface Ca
2+

 

atoms (Figure 5.3c) relaxing into the vacancies created by shifting half the CO3
2-

 

groups or Ca
2+

 ions to the bottom of the surface as described in the chapter 2.  

(a) 

 

 

(b) 

 

 

 

 

(c) 

 

 

 

 

Figure 5.3: Top view and side view of hydrated planar surfaces with monolayer of 

water, (a) {1 0    4} surface, (b) CO3
2-

 terminated {0001} surface and (c) Ca
2+

 

terminated {0001} surface. (Ca = green, C = grey, O = red, H = white, Owater = blue). 
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In the cases of stepped surfaces, the presence of a step does not greatly affect the 

regular arrangement of water molecules that was in direct contact with the terraces. 

However, the arrangement of water molecules right next to the step was disrupted. At 

the acute step, the water molecules initially coordinated with Ca
2+

 at the step edge 

delocalize the possible adsorption sites, implying the water molecules are less 

strongly bound to the stepped surface than a planar surface. On the contrary, as Ca
2+

 

at the step edge of the obtuse step creates new adsorption sites, the water molecules 

are much strongly bound to the obtuse step than the acute step (Figure 5.4). 

 

 

 

 

Figure 5.4: Side view of hydrated stepped surfaces with monolayer of water, (a) 

acute {3 1    8} surface and (b) obtuse {3       16} surface (Ca = green, C = grey, O 

= red, H = white, Owater = blue) 

More layers of water were then introduced in a similar manner and each time an 

extra layer of water (24 molecules) was placed at a distance of 2.0 Å above the top of 

existing hydrated surfaces. In total, four layers of water (96 molecules) were added 

onto each surface, which build about 8 Å water layers above the pure surface. The 

calcite-water interfacial systems were then equilibrated by molecular dynamics 

simulations, using the DL_POLY 2.20 code (Smith and Forester, 1996), where a 

combination of NVE and NVT ensembles were used in sequence at a temperature of 

300 K. The Nosé-Hoover thermostat was set at 0.1 ps and the relaxation time of 

barostat was set at 0.5 ps in the calculations. The trajectories were generated using 

(a) (b) 

Z 

X 

Z 

Y 
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the Verlet Leap-Frog algorithm using a time step of 0.2 fs. The simulation cell was 

equilibrated for 100 ps, after which data were collected for another 200 ps. The final 

hydrated structure was then used as the substrate for the adhesion of the calcite 

nanoparticle. 

5.3 CaCO3 nanoparticle 

The CaCO3 nanoparticle is constructed from the optimised bulk structure of 

calcite using the METADISE code as described in the methodology chapter. The 

morphology of the calcite particle is determined by the intersection of the cleavage 

planes, and surfaces with low surface energy lie on the outside of the polyhedron. 

The volume enclosed by this polyhedron is then filled with atoms based on periodic 

repeats of the lattice motif, thus generating an initial structure for a nanoparticle.  

Due to the low surface energy (0.57 Jm
-2

) of the {1 0    4} surface, the most 

stable calcite nanoparticle should consist of {1 0    4} surfaces. However, some 

experimental studies (Rajam and Mann, 1990; Pastero et al. 2004) have suggested 

that the morphology of calcite does not only consist of {1 0    4} surfaces, but also 

contains the {0001} surface, when Li
+
 is present in the aqueous solution. Therefore, 

three CaCO3 nanoparticles with different morphologies were considered in this study, 

by using the surface energy of the {1 0    4}, {0001}-Ca
2+

 and {0001}-CO3
2-

, 

respectively, as shown in Figure 5.5. In this thesis, nanoparticle104, nanoparticle001-Ca 

and nanoparticle001-CO3 are used to label three CaCO3 nanoparticles, consisting of 

{10  4} surface, {0001}-Ca
2+

 surface and {0001}-CO3
2-

 surface, respectively. The 

nanoparticle104 is constructed as a 1.0 nm rhombohedra with {1 0    4} surfaces on 

the outside, which contains 18 CaCO3 units. The nanoparticle001 is constructed as a 

multi-prism with {0001} surface on both top and bottom of the prism, where both 
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Ca
2+

 and CO3
2-

 terminated {0001} surfaces are considered. The 1.0 nm 

nanoparticle001-Ca contains 38 CaCO3 units, while the 1.2 nm nanoparticle001-CO3 

contains 61 CaCO3 units. 

 

 

 

            (a)                    (b)                   (c) 

Figure 5.5: Morphology of CaCO3 nanoparticle, showing (a) {1 0    4} surface (b) 

{0001}-Ca
2+

 surface and (c) {0001}-CO3
2-

 surface. 

5.4 Adhesion energy of a nanoparticle on the surface 

A nanoparticle-surface interfacial system consists of a calcite nanoparticle and a 

pure or hydrated calcite surface. To ensure a large number of interfacial 

configurations are sampled in the study, a comprehensive range of positions of the 

nanoparticle with respect to the calcite surface was examined, including a series of 

heights and orientations as well as lateral displacement of the nanoparticle. The 

vertical distance of the nanoparticle with respect to the surface has been investigated 

from 1 Å to 10 Å, and for each height, different orientations of the nanoparticle have 

been considered, where the angle of the rotation θ (θ is the rotation angle in x/y 

axles), was varied by 30
o
 in turn. The initial orientation of the nanoparticle of θ = 0

o
 

is assumed, where the lattices of the nanoparticle and the pure surface are perfectly 

aligned. Figure 5.6 shows a calcite nanoparticle104 with a rotation of θ = 0
o
 and θ = 

60
o
 with respect to the {1 0    4} surface.  

{10  4} 

{0001}-Ca
2+

 {0001}-CO3
2-

 



Chapter 5: Investigation of the interaction between calcite nanoparticle and calcite surfaces 

131 

 

 

 

(a) θ = 0
o
                         (b) θ = 60

o
  

Figure 5.6: Examples of a calcite nanoparticle104 on the top plane of planar {1 0    4} 

surface. (Ca = green, C = grey, O = red). 

Prior to energy minimisation of the interfacial systems, the calcite nanoparticle is 

kept at a constant height above the surface, but moved systematically in two 

directions over the surfaces without relaxation of the surface or the nanoparticle. The 

interfacial energy for the unrelaxed system is calculated for a series of points on a 

grid. The grid was determined by the surface lattice vectors of the systems in two 

directions at intervals of 0.5 Å. This scan supplies the information of interfacial 

energy at each point on the grid, hence identifying the lowest energy lateral 

displacement of the nanoparticle with respect to the surface in the unrelaxed system. 

The configuration with the lowest energy is then used as the starting point and a full 

geometry optimisation is performed to obtain the energy for the relaxed system. 

Newton-Raphson optimisation algorithm is used for the full geometry optimisation. 

During the geometry optimisation, both the nanoparticle and surfaces are completely 

unconstrained. 

The adhesion energy per CaCO3 group in the bottom plane of the nanoparticle 

was calculated using the equation below:  

int

1
[ ( )]adhesion erfacial surface particleU U U U

n
                 (5.1) 

 
[1014][1014]
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where Uinterfacial is the energy for the interfacial system, Usurface is the energy of calcite 

surface, Uparticle is the energy of the nanoparticle and n is the number of CaCO3 units 

at the bottom of the nanoparticle. The adhesion energy for the hydrated system was 

calculated as following: 

int

1
[ ( )]adhesion hy erfacial hy surface particleU U U U

n
               (5.2) 

where Uhy-interfacial is the energy for the hydrated interfacial system and Uhy-surface is the 

energy of the hydrated surface. 

5.5 Interaction between a nanoparticle104 and calcite surface 

In this part atomic simulation techniques have been employed to establish the 

key factors that affect the interaction between a calcite nanoparticle104 and calcite 

surfaces, including both planar (e.g. {1 0    4} and {0001} surfaces) and stepped 

surfaces (e.g. {3 1    8} and {3       16} surfaces) in vacuum and aqueous 

environments. For each surface, firstly, scanning of the nanoparticle over the surface 

is carried out, taking into account a combination of different heights and orientations 

with respect to the surface. For each orientation, the interfacial system with the 

lowest energy from the scanning process is then used as starting configuration for a 

full geometry optimisation. The lowest unrelaxed and relaxed adhesion energies for 

the planar systems are presented in Table 5.3 and Table 5.4. 
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Table 5.3 Unrelaxed adhesion energies of a calcite nanoparticle104 on the calcite 

planar surfaces in vacuum and aqueous solution. 

adhesion energies / kJ mol
-1

 

rotation 
{1 0    4} {0001}-CO3

2-
 {0001}-Ca

2+
 

pure hydrated pure hydrated pure hydrated 

θ=0
o
 -55.1 -13.7 -39.3 -15.1 -51.9 -9.6 

θ=30
o
 -12.0 -5.0 -10.5 -6.4 -13.9 -3.9 

θ=60
o
 -15.8 -7.9 -16.7 -9.8 -17.5 -6.0 

θ=90
o
 -31.1 -7.8 -26.5 -17.5 -29.1 -7.2 

θ=120
o
 -17.4 -8.4 -13.4 -11.5 -23.8 -5.8 

θ=150
o
 -12.1 -6.0 -14.5 -9.1 -17.5 -5.5 

θ=180
o
 -50.9 -13.1 -28.5 -18.2 -51.4 -8.0 

θ=210
o
 -13.3 -5.0 -9.1 -5.6 -11.5 -4.7 

θ=240
o
 -20.8 -6.3 -14.2 -11.2 -24.4 -6.2 

θ=270
o
 -29.5 -6.9 -23.7 -15.8 -30.8 -6.4 

θ=300
o
 -13.8 -6.2 -15.9 -14.1 -21.4 -6.0 

θ=330
o
 -14.0 -7.2 -16.3 -6.8 -19.2 -4.7 

Table 5.4 Relaxed adhesion energies of a calcite nanoparticle104 on the calcite planar 

surfaces in vacuum and aqueous solution. 

adhesion energies / kJ mol
-1

 

rotation 
{1 0    4} {0001}-CO3

2-
 {0001}-Ca

2+
 

pure hydrated pure hydrated pure hydrated 

θ=0
o
 -137.0 -51.2 -186.4 -119.7 -168.3 -105.9 

θ=30
o
 -119.8 -47.4 -159.4 -106.2 -152.4 -70.4 

θ=60
o
 -121.9 -48.9 -151.3 -107.4 -139.2 -62.8 

θ=90
o
 -134.8 -41.3 -156.8 -109.9 -151.0 -89.5 

θ=120
o
 -123.4 -49.4 -168.0 -108.1 -156.4 -63.7 

θ=150
o
 -117.6 -46.3 -162.1 -106.3 -147.4 -81.9 

θ=180
o
 -133.4 -49.6 -181.1 -121.5 -167.6 -91.9 

θ=210
o
 -120.8 -45.7 -158.7 -107.1 -155.8 -69.5 

θ=240
o
 -119.9 -43.6 -154.1 -108.1 -142.3 -84.6 

θ=270
o
 -135.3 -39.6 -160.5 -105.8 -140.3 -91.3 

θ=300
o
 -125.5 -46.6 -152.1 -104.1 -164.1 -72.4 

θ=330
o
 -127.4 -47.1 -163.2 -107.8 -150.1 -79.4 
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5.5.1 Nanoparticle104 and pure {10  4} surface 

Firstly the interaction between a calcite nanoparticle104 and the pure calcite 

{10  4} surface was investigated. The variation of unrelaxed adhesion energies with 

height between the surface and the nanoparticle104 for a various orientations is 

plotted in Figure 5.7. It is very clear from the figure that all the plots have a very 

similar curvature with an energy minimum at round 2.5 - 2.8 Å of the distance 

between the nanoparticle and the surface. The plots show that the unrelaxed adhesion 

energies are highly dependent on the rotation of the nanoparticle with respect to the 

surface. The 0
o
 and 180

o
 rotations lead to the energetically favourable interfacial 

configuration. The adhesion energy contours of the unrelaxed interfacial systems, as 

shown in Figure 5.8, reveal that the surface Ca
2+

 sites form the low adhesion energy 

positions when the nanoparticle has a rotation of 0
 o
 whereas for a rotation of 180

o
 

the low adhesion energy sites are at the surface CO3
2-

 positions.  

 

 

 

 

 

 

 

 

Figure 5.7: The variation of unrelaxed adhesion energies with distance between pure 

{1 0    4} surface and a calcite nanoparticle104 in vacuum. Results for some 

orientations have been omitted for clarity. 
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(b)                               (d) 

 

 

 

 

 

 

 

 

Figure 5.8: 3-D and 2-D adhesion energy contour of the nanoparticle104 on the pure 

{1 0    4} surface with a rotation of (a) and (b) θ = 0
o
, (c) and (d) θ = 180

o
. (Ca = 

green, C = grey, O = red). 

Further detailed structure analysis indicates that in both cases either a „row‟ of 

Ca
2+ 

ions of the nanoparticle104 is aligned perfectly with a row of surface CO3
2-

 

groups or vice versa. The results agree well with those of Read and Shockley (1950) 

who used the dislocation model of grain boundaries, to show that the system energy 

sharply decreases when two adjacent crystals have their lattices perfectly aligned and 

this provides the driving force for the re-alignment of the crystallites within an 

aggregate.  

While the adhesion energies of the relaxed systems (see Table 5.4) seem less 

orientation dependent, although the interfacial system with 0
o
 rotation remains the 

(c) (a) 
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lowest energy configuration among all. The reason behind the relaxed energies are 

less dependent on the orientation may be due to the fact that during each structure 

optimisation, the nanoparticle rotates and re-align with respect to the surface to reach 

an energy minimum position. The final vertical distance between the nanoparticle 

and the surface is about 2.5 Å, which is only slightly larger than the standard Ca-O 

bond distance (2.4 Å).  

5.5.2 Nanoparticle104 and hydrated {10  4} surface 

In order to study the influence of water on the interaction between the 

nanoparticle and surface, the {1 0    4} surface is firstly hydrated by adding a 

monolayer of water molecules onto the surface, where the distance between the water 

molecules and pure surface is about 2.0 Å. Again, a comprehensive scanning and 

energy minimisation procedure is conducted.  

 

 

 

 

 

 

 

Figure 5.9: Adhesion energy as a function of the distance between the monolayer 

hydrated {1 0    4} surface and a nanoparticle104. Results for some orientations have 

been omitted for clarity. 
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It is found that the general character of the plots of the energy vs. height is 

similar to those obtained in vacuum, but all the plots reach their lowest values when 

the nanoparticle is about 4.0 Å away from the surface regardless of the orientation of 

the nanoparticle (see Figure 5.9). This is different from the pure surface, where the 

location of the adhesion energy minimum varies somewhat with the orientation of 

the nanoparticle.  

 

 

 

 

 

 

 

 

Figure 5.10: Adhesion energy as a function of the orientation of a nanoparticle104 on 

pure (black triangle) and hydrated (red circle) {1 0    4} surface. 

Although the adhesion energies of the unrelaxed hydrated systems are less 

dependent on the orientation compared to the pure {1 0    4} interfacial system, as 

shown in Figure 5.10, the 0
o
 rotation still remains the energetically most favourable 

interfacial configuration. All these observations could be explained by the fact that 

the monolayer of water molecules has unified the surface structure, which makes the 

system less sensitive to the position of the nanoparticle. It is also notable that both 

unrelaxed and relaxed adhesion energies of the hydrated systems (see Table 5.3 and 

5.4) are less negative than those of the corresponding pure systems. For example, in 
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the case of a rotation of 0
o
, the adhesion energy has lessened by more than 50% (85.8 

kJmol
-1

) compared to that of the corresponding pure system, indicating that the 

interfacial water layer reduces the interaction between the nanoparticle104 and the 

surface. 

Figure 5.11(a) has demonstrated that the energy surface of the monolayer 

hydrated {10  4} interfacial system is much smoother than that of the pure surface at 

a rotation of 0
o
. Further analysis indicated that the location of the strong interaction 

positions has changed compared to the corresponding pure system, namely, the CO3
2-

 

sites become relatively low energy sites while Ca
2+

 sites interact more weakly no 

matter the rotations of the nanoparticle104, as it can be seen from Figure 5.11(b). The 

reason for such a change is probably due to the involvement of water molecules.  

 

 

 

 

 

 

Figure 5.11: 3-D and 2-D adhesion energy contours of the nanoparticle104 on the 

hydrated {1 0    4} surface with a rotation of θ = 0
o
. (Ca = green, C = grey, H = 

white, O = red, Owater = blue). 

Figure 5.12 showed that the monolayer of water molecules act like a „screen‟, 

which prevents the surface Ca
2+ 

ions to directly interact with the CO3
2-

 groups of the 

nanoparticle, leading to significantly reduce the attractive interaction between the 

surface Ca
2+ 

ions and CO3
2-

 groups of the nanoparticle through the intercalated water 

(a) (b) 
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molecule‟s oxygen atom. However, the water layer only partially blocks the 

interaction way between surface CO3
2-

 groups and the Ca
2+ 

ions of the nanoparticle, 

which makes the water layer less impact on the interaction between surface CO3
2-

 

groups and the Ca
2+ 

ions of the nanoparticle. As a result, the overall interaction 

pattern has altered. 

 

 

 

 

 

Figure 5.12: Side view of the unrelaxed interfacial system of the monolayer hydrated 

{1 0    4} surface/calcite nanoparticle104 at a rotation of 0
o
. (Ca = green, C = grey, O 

= red, Owater = blue, H = white). 

Next, the interaction between the nanoparticle104 and hydrated {1 0    4} surface 

with multilayer water was examined. A complete energy scanning procedure was 

carried out for double, triple and quadruple water layers, respectively, where the 

nanoparticle104 is positioned at 0
o
 rotation only. The adhesion energy surface for the 

system with double layers of water is smoother than that of the monolayer hydrated 

system. The energy surfaces for the hydrated system with triple and quadruple layers 

of water are rough and uneven, meaning the water molecules are starting to interact 

strongly with each other through hydrogen bonds. 

The variation of adhesion energy of a nanoparticle104 was then investigated, 

when it approaches the hydrated surface through multilayer water. Figure 5.13 

Z 

X 
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displays the variation of adhesion energy with the distance between a nanoparticle104 

and the hydrated {1 0    4} surface with multilayer water. Four energy minimum 

positions P1, P2, P3 and P4 for each layer of water were determined. It can be seen 

from Figure 5.13 that the addition of water molecules onto the surfaces gradually 

reduces the adhesion energy.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13: Adhesion energy as a function of the distance between the hydrated 

{10  4} surface with multilayer water and the nanoparticle104 at a rotation of 0
o
. 

 

 

 

 

 

 

 

 

 

Figure 5.14: The twist pathway of a nanoparticle104 through the multilayer water, 

where Pi (i = 1, 2, 3 and 4) is the position of local energy minimum. 
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The calculated results also suggest when the nanoparticle104 approaches the 

{10  4} surface through the multiple water layers in a manner of a twist pathway 

rather than a straight perpendicular down pathway in order to follow a energetically 

favourable path, and to overcome a series of energy barriers through the water layers, 

as it is illustrated in Figure 5.14 (from P1 to P4). 

5.5.3 The effect of the size of a nanoparticle104 

Having considered the role of the orientation of the nanoparticle on the adhesion 

energy, the effect of the size of a nanoparticle on the interactions was inspected, by 

considering a bigger calcite nanoparticle104 with a diameter of 1.3 nm. There are 32 

CaCO3 units in this nanoparticle and 8 units in the bottom plane. Again the initial 

orientation of the nanoparticle104 (θ = 0
o
) is assumed in the position where the lattices 

of the nanoparticle104 and the {1 0   4} surface are matching perfectly. Then a 

comprehensive scanning procedure on the planar {1 0    4} was carried out.  

 

 

 

 

 

 

Figure 5.15: Unrelaxed adhesion energies as a function of the orientations of the 

nanoparticle104 for the pure (triangle) and monolayer hydrated (circle) {1 0    4} 

interfacial systems, (d = 1.0 nm: black line, d = 1.3 nm: red line). 
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The adhesion energies for the systems with a nanoparticle104 sized of 1.3 nm are 

displayed in Figure 5.15, comparing with those of the smaller nanoparticle104 (d = 1.0 

nm). In the case of the bigger nanoparticle104, the adhesion energies for both pure and 

monolayer hydrated {1 0    4} interfacial systems are also dependent on the 

orientation of the nanoparticle, which is same as the case for the smaller 

nanoparticle104. The 0
o
 and 180

o
 rotations still lead to the energetically most 

favourable interfacial configurations.  

Furthermore, the variation in the adhesion energies of the pure interfacial surface 

becomes larger when the size of the nanoparticle104 increases. For example at a 

rotation of 0
o
, the adhesion energy decreases from -55.1 kJmol

-1
 to -73.5 kJmol

-1
. 

The reason behind these differences may be due to the stability of bigger calcite 

nanoparticle104. The small nanoparticle104 can become slightly disordered due to both 

rotation and translation of the under-coordinated CO3
2-

 groups at the edge of the 

particle. As the nanoparticle size increased, the influence of the fully coordinated 

bulk ions begin to dominate and the long-range order in the particle increases (Cooke 

and Elliott, 2007), making the lattices of the nanoparticle104 and calcite surface align 

much more perfectly. Although the consideration of a bigger nanoparticle104 in the 

calculations leads to much stronger interaction between the nanoparticle104 and pure 

surfaces in some cases, it does not contradict our findings for the smaller 

nanoparticle104, namely the adhesion energy is highly dependent on the orientation of 

the nanoparticle. Moreover, the size of the nanoparticle104 does not have an apparent 

effect on the adhesion energy of the hydrated {1 0    4} interfacial system (Figure 

5.15). Therefore, the nanoparticle104 with a diameter of 1.0 nm has been used to 

further study its interaction with other calcite surfaces. 
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5.5.4 Nanoparticle104 and pure {0001} surface 

The next object is to inspect the interaction of the calcite nanoparticle104 with the 

pure {0001} surface, which is less stable than the {1 0    4} surface (de Leeuw and 

Parker, 1998). Both CO3
2-

 and Ca
2+

 terminated surfaces have been considered. It is 

found that the shape of the plots of the unrelaxed adhesion energy vs. the height of 

the nanoparticle104 with respect to the surface (Figure 5.16) is similar to those 

obtained from the pure {1 0    4} system, but the locations of the adhesion energy 

minima have shifted towards the left to 1.5 - 1.9 Å in the case of the {0001}-CO3
2-

 

system and 1.9 - 2.3 Å for the {0001}-Ca
2+

 system. The change in the positions of 

the energy minima could be due to the unique feature of the surface structure of both 

CO3
2-

 and Ca
2+

 terminated surfaces, namely the vacancies at the top of the surfaces, 

which allows the nanoparticle to position itself deeper into the surface rather than 

attach on the top of the surface. 

 

 

 

 

 

 

Figure 5.16: Adhesion energy as a function of the distance between the pure {0001} 

surface and a nanoparticle104. Results for some orientations have been omitted for 

clarity. 

The unrelaxed adhesion energies for both {0001} interfacial systems with 
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5.17. Like the pure {1 0    4} interfacial system, the adhesion energies of the 

unrelaxed systems are highly dependent on the orientation of the nanoparticle104. It is 

notable that for the {0001}-Ca
2+

 surface, both 0
o
 and 180

o
 rotation configurations 

lead to low energy configurations, although the configuration at 0
o
 rotation is 

energetically more favourable. This phenomenon has also been observed in the pure 

{1 0    4} system. However, for the {0001}-CO3
2-

 surface, the energy difference 

between these two rotations is about 10.8 kJmol
-1

.  

 

 

 

 

 

 

 

 

 

 

Figure 5.17: Adhesion energy as a function of the orientation of a nanoparticle104 on 

pure {0001} surfaces. 

The reason behind the distinct difference is probably due to the fact that both 

{10  4} and {0001}-Ca
2+

 surfaces have a similar surface atoms arrangement of 

CO3
2-

-Ca
2+

-CO3
2-

-Ca
2+

, while for the {0001}-CO3
2-

 surface, the arrangement has 

changed to CO3
2-

-CO3
2-

-CO3
2-

-CO3
2-

. In addition, detailed structure analysis 

indicated that in the case of {0001}-CO3
2-

 surface, when the nanoparticle104 at a 

rotation of 180
o
, the distance between the CO3

2-
 groups at bottom plane of the 

nanoparticle104 and those CO3
2-

 groups of the surface plane is smaller (2.84 Å) 
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compared to that of 0
o
 rotation (3.04 Å), which leads to a relatively more repulsive 

force between the nanoparticle104 and the surface. The adhesion energy contours of 

the unrelaxed {0001} interfacial systems, displayed in Figure 5.18, show that the 

Ca
2+

 sites close to the surface form low energy pathway at a rotation of 0
o
 in both 

cases. 

 

 

 

 

 

Figure 5.18: 2-D adhesion energy contour of the nanoparticle104 on the pure {0001} 

surface with a rotation of θ = 0
o
, (a) CO3

2-
 termination and (b) Ca

2+
 termination. 

As shown in Table 5.4, the adhesion energies for the relaxed {0001} interfacial 

systems have slightly lower energies than those of the {1 0    4} interfacial system. 

For almost all orientations studied, except 300, the order of the relaxed adhesion 

energy of the pure systems is {0001}-CO3
2-

 system < {0001}-Ca
2+

 system < {10  4}
 

system. Structure analysis suggests that this energy order may relate to the distance 

between the rows of CO3
2-

 groups at the top plane of surfaces. As it is shown in 

Figure 5.19, the distance between adjacent CO3
2-

 groups for these three systems is 

8.71 Å for the {0001}-CO3
2-

 system, 5.03 Å for the {0001}-Ca
2+

 system and 4.07 Å 

for the {1 0    4} system. The bigger gap at the CO3
2-

 terminated {0001} surface 

allows the nanoparticle104 to be more easily accommodated in the surface, which 

leads to an energetically more favourable configuration. 

(a) (b) 
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Figure 5.19: Side view of the top plane of (a) {0001}-CO3
2-

 surface, (b) {0001}-Ca
2+

 

surface and (c) {1 0    4} surface, (Ca = green, C = grey, O = red). 

5.5.5 Nanoparticle104 and hydrated {0001} surface 

The effect of hydration on the interaction of the {0001} interfacial systems was 

then studied. The results reveal that the main feature of the curves of the unrelaxed 

adhesion energy vs. the height of the nanoparticle104 with respect to the surface of 

both hydrated {0001} systems has been kept but the positions of the energy minima 

have changed, moving away from the surface (see Figure 5.20 for details). In the 

case of the hydrated {0001}-Ca
2+

 interfacial systems, the adhesion energy minima 

are at around 3.9 Å, e.g. very similar to those in the hydrated {1 0    4} system. 

However, the adhesion energy minima for the hydrated {0001}-CO3
2-

 systems are 

located at approximately 2.8 Å, which is smaller compared to those of {0001}-Ca
2+

 

and {1 0    4} systems. This could be attributed to the surface atom arrangement 

mentioned before. The calculated results also indicate that like the monolayer 

hydrated {1 0    4} system, the interaction between the nanoparticle104 and the 

monolayer hydrated {0001} surfaces is weaker than those of the corresponding pure 

(a) 

(b) 

(c) 
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systems (see Table 5.3 and Table 5.4), including both relaxed and unrelaxed systems. 

The strength of the interactions is relatively isotropic with the orientation of the 

nanoparticle, compared to the corresponding pure systems. The rotations of 0
o
 and 

180
o
 still lead to the energetically favourable interfacial configurations. 

 

 

 

 

 

 

Figure 5.20: Adhesion energy as a function of the distance between the monolayer 

hydrated {0001} surface and a nanoparticle104. Results for some orientations have 

been omitted for clarity. 

 

 

 

 

 

 

Figure 5.21: Adhesion energy as a function of the distance between the multilayer 

hydrated {0001} surface and the nanoparticle104 at a rotation of 0
o
. 
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Like {1 0    4} system, the {0001} systems with multilayer water were also 

examined, where four layers of water molecules (4 × 24) have been sequentially 

added onto the surfaces layer by layer, where only the 0
o
 rotation of nanoparticle104 is 

considered. Figure 5.21 shows the variation of adhesion energy vs. the distance 

between the surface and nanoparticle104 as the nanoparticle104 approaches the {0001} 

surfaces through interfacial multiple water layers.  

(a) 

 

 

 

 

 

(b) 

 

 

 

 

 

Figure 5.22: The twist pathway of a nanoparticle104 through the multilayer water, 

where Pi is the position of local energy minimum, (a) {0001}-CO3
2-

 surface, from P1 

to P4; (b) {0001}-Ca
2+

 surface, from P1 to P3. 
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The figure illustrates that there are energy barriers between the energy minima at 

different heights, and the adhesion energy gradually reduce with the increasing of 

water layers, as observed in the {1 0    4} interfacial system. However, there are 

only three energy minima for the {0001}-Ca
2+

 system. This could be due to more 

Ca
2+

 atoms from sub-layers exposure to the surface (see surface structure of 

{0001}-Ca
2+

 surface in Figure 5.1), which results to adsorb more water molecules to 

form the first layer than CO3
2-

 terminated surface. The possible pathway of a 

nanoparticle104 to approach the {0001} surface through interfacial multilayer water is 

showed in Figure 5.22. 

5.5.6 Nanoparticle104 and stepped surfaces 

The interaction of a nanoparticle104 with two stepped surfaces, namely {3 1    8} 

and {3       16} surfaces, have been considered in this part. As mentioned before, 

these surfaces consist of {1 0    4} planes. The study of the interaction between a 

nanoparticle104 and the planar {1 0    4} surface has indicated that the most stable 

interfacial configuration occurs when the lattices of the nanoparticle104 and planar 

{10  4} surface are perfectly aligned. Therefore a nanoparticle104 has been placed at a 

similar position, namely, a rotation of 0
o
 with respect to the terraces of the stepped 

surfaces, which leads to the lattices of the nanoparticle aligned with those of the 

terraces, as shown in Figure 5.23. However, the nanoparticle is not necessarily 

aligned with the lattice of step wall in both stepped surfaces. A comprehensive 

scanning procedure was then conducted, where the nanoparticle104 is allowed to 

move along the x-axis and y-axis (e.g. step wall) on the terraces, as well as different 

heights above the terraces. The lowest adhesion energies for both stepped surfaces 

together with those of the planar {1 0    4} system are recorded in Table 5.5. 
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Figure 5.23: Side view of the unrelaxed interfacial systems of a nanoparticle104 on 

the pure stepped surface, (a) acute stepped {3 1    8} surface and (b) obtuse stepped 

{3       16} surface, where the nanoparticle is at a rotation of 0
o
 with respect to the 

terraces of the stepped surfaces (Ca = green, O = red, C = grey). 

Table 5.5: The lowest unrelaxed adhesion energy of a nanoparticle104 to the planar 

{10  4} and stepped {3 1    8}, {3       16} surfaces. 

surface adhesion energy (kJmol
-1

) 

pure {1 0    4} surface  -55.1 

pure {3 1    8} surface -59.6 

pure {3       16} surface -57.6 

hydrated {1 0    4} surface -13.7 

hydrated {3 1    8} surface -11.8 

hydrated {3       16} surface -13.2 

The results shows that for the {3 1    8} interfacial system, the profile of 

adhesion energy along the step wall (y-axis) is very similar to that of the planar 

{10  4} systems (Figure 5.24), which features periodic fluctuation. The difference in 

adhesion energies between two systems is fairly small (~ 4.5 kJmol
-1

). These 

evidences indicate that the step wall has very limited impact on the nanoparticle. The 

reasons for such a result may be two folds. Firstly, the step wall is shallow and 

(a) (b) 

Z 

X 

Z 

Y 
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secondly, the lattice of the step wall is not perfectly aligned with that of the 

nanoparticle.  

 

 

 

 

 

 

 

 

 

Figure 5.24: The variation of adhesion energy as the nanoparticle104 moving along 

the step wall of pure {3 1    8} surface (black line) and planar {1 0    4} surfaces 

(red line). 

Like the acute stepped {3 1    8} system, the obtuse stepped {3       16} system 

also has the periodic feature of its adhesion energy profile along the y-axis. The 

adhesion energy difference between the planar and the obtuse stepped systems is 

even smaller (~ 2.5 kJmol
-1

). The variation of adhesion energy with distance between 

the nanoparticle104 and the terrace has a curvature with an energy minimum at 2.3 Å 

for {3 1    8} system and 2.5 Å for {3       16} systems, which is very similar to 

that of the planar {1 0    4} system (~2.5 Å). In addition, the shape of the curves is 

identical to that of planar system. As indicated in Table 5.5, the order of the adhesion 

energy for the pure systems studied here is {1 0    4} > {3       16} > {3 1    8}.  

In other words, under vacuum conditions, calcite nanoparticle aggregation would 

preferentially occur at acute stepped surface rather than obtuse stepped surface or 

planar surface.  
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In reality, aggregation process often takes place in aqueous solution rather than 

in vacuum. It is therefore essential to take the effect of water on the process into 

account. For this reason, the calculations have also been performed under the 

aqueous conditions, where the stepped {3 1    8} and {3       16} surfaces were 

covered by a monolayer of water molecules. A comprehensive scanning procedure 

was repeated on the hydrated stepped surfaces.  

It is discovered that the most stable interfacial configuration occurs when the 

distance between the nanoparticle104 and terrace is at 4.2 Å for both acute surface and 

obtuse surface, which is a little higher than that of the planar {1 0    4} system 

(~4.0Å). The variation of adhesion energies with the distance between the 

nanoparticle104 and the terrace is plotted in Figure 5.25. It is clear from the figure that 

the plots have the same profile as that of hydrated planar surface (black line). The 

calculated adhesion energies for the hydrated stepped surfaces are less negative than 

those of the corresponding pure stepped surfaces.  

 

 

 

 

 

 

Figure 5.25: Adhesion energy as a function of the height between a nanoparticle104 

and the hydrated planar and stepped surfaces. 
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It is also very interesting to note that under aqueous condition, the order of the 

adhesion energies for three systems studied has altered to {1 0    4} < {3        16} 

< {3 1    8}, where the hydrated planar {1 0    4} surface becomes the most 

attractive to the nanoparticle104 compared to the stepped surfaces. The main reason 

for such a change may be due to the fact that the water molecules are highly ordered 

and tightly bound to the planar surface in the {1 0    4} system, leading to a strong 

interaction between the nanoparticle104 and the planar surface. The steps on the 

obtuse {3       16} surface creates new adsorption Ca
2+

 sites along the step edge, 

making the water molecules strongly bound to Ca
2+

 ions along the step edge; so the 

distribution of water molecules on the terraces of the obtuse stepped surface is 

similar to that of the {1 0    4}surface. However, the presence of the acute step on 

the {3 1    8} surface largely affects the distribution of water molecules, especially 

at the step edge, where water molecules are less ordered and a large number of the 

water molecules „stand up‟ rather than „lie flat‟, as shown in Figure 5.4a. This leads 

to the positively charged hydrogen atoms present on the top of acute stepped surface, 

making the interaction between nanoparticle104 and the surface weaker. These results 

suggest the aggregation is most likely to take place between calcite nanoparticle104 

and planar surface rather than the stepped surface. 

5.6 Interaction between a nanoparticle001 and calcite surface 

Apart from the calcite nanoparticle104, the interaction between the calcite 

surfaces and two calcite nanoparticles with {0001} surface on the outside were 

considered. The diameter of the nanoparticle001-Ca is 1.0 nm and there are 12 Ca
2+

 

atoms at the bottom, while the diameter of the nanoparticle001-CO3 is 1.2 nm and there 

are 12 CO3
2-

 groups at the bottom. The surface scanning method was used initially to 

determine the interaction between the calcite nanoparticle001 and calcite planar 
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surfaces, e.g. {1 0    4} and {0001} surfaces in vacuum and aqueous environments. 

A combination of different heights and orientations with respect to the surface was 

taken into account, as the investigations have been done for the nanoparticle104. Since 

the nanoparticle001 is not stable in the vacuum, the full geometry optimisation of the 

interfacial system was not performed in this case. The lowest unrelaxed adhesion 

energies of the planar surfaces with nanoparticle001 are presented in Table 5.6 and 

Table 5.7. 

Table 5.6 Unrelaxed adhesion energies of a calcite nanoparticle001-Ca on the calcite 

planar surfaces in vacuum and aqueous solution. 

adhesion energies / kJmol
-1

 

rotation 
{1 0    4} {0001}-CO3

2-
 {0001}-Ca

2+
 

pure hydrated pure hydrated pure hydrated 

0
o
 -33.4 -6.5 -42.2 -25.2 -27.8 -7.6 

30
o
 -27.1 -4.6 -12.5 -11.0 -30.4 -0.2 

60
o
 -33.4 -6.6 -42.4 -25.7 -29.9 -7.2 

90
o
 -26.8 -4.5 -7.1 -10.0 -22.1 -0.6 

120
o
 -33.3 -6.5 -42.3 -25.1 -27.5 -7.5 

150
o
 -27.0 -4.6 -12.6 -11.0 -31.5 -0.4 

180
o
 -33.2 -6.5 -42.4 -25.5 -29.9 -7.3 

210
o
 -26.9 -4.5 -7.4 -10.0 -22.2 -0.5 

240
o
 -33.2 -6.4 -42.3 -25.0 -27.8 -7.6 

270
o
 -27.1 -4.6 -12.3 -11.0 -31.1 -0.4 

300
o
 -33.3 -6.5 -42.5 -25.6 -30.1 -7.3 

330
o
 -26.8 -4.5 -7.1 -10.0 -21.7 -0.5 
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Table 5.7 Unrelaxed adhesion energies of a calcite nanoparticle001-CO3 on the calcite 

planar surfaces in vacuum and aqueous solution. 

adhesion energies / kJmol
-1

 

rotation 
{1 0    4} {0001}-CO3

2-
 {0001}-Ca

2+
 

pure hydrated pure hydrated pure hydrated 

0
o
 -10.8 -8.1 -8.4 -7.5 -9.3 -6.4 

30
o
 -5.6 -5.3 -4.2 -5.6 -6.4 -2.9 

60
o
 -6.9 -8.5 -5.9 -8.4 -8.9 -5.4 

90
o
 -6.0 -5.6 -4.9 -6.1 -6.6 -3.0 

120
o
 -10.7 -8.0 -8.4 -7.4 -9.2 -6.2 

150
o
 -5.5 -5.2 -4.2 -5.6 -6.3 -2.8 

180
o
 -6.9 -8.5 -5.8 -8.4 -8.9 -5.4 

210
o
 -6.0 -5.5 -4.9 -6.0 -6.5 -2.9 

240
o
 -10.8 -8.1 -8.3 -7.5 -9.3 -6.3 

270
o
 -5.4 -5.3 -4.2 -5.6 -6.3 -2.9 

300
o
 -6.8 -8.5 -5.9 -8.4 -8.8 -5.3 

330
o
 -6.1 -5.5 -4.7 -6.1 -6.6 -3.1 

5.6.1 Nanoparticle001 and pure {10  4} surface 

At first the interaction between each of the two nanoparticles001 and the pure 

{10  4} surface in vacuum was investigated. The variations of the unrelaxed 

adhesion energies with the height between the nanoparticle001 and the planar surface 

for a various orientations are plotted in Figure 5.26. All the plots have similar 

curvatures with an adhesion energy minimum at 2.4 Å of the distance between the 

nanoparticle001-Ca and the {1 0    4} surface, and around 2.6 - 2.8 Å in the case of 

the nanoparticle001-CO3, which are comparable to the energy minima of the 

nanoparticle104 (2.5 - 2.8 Å). Although the 0
o
 rotation leads to the energetically most 

favourable interfacial configuration, the difference in adhesion energies of 0
o
 and 30

o
 

rotations is only 6.3 kJmol
-1

 for a nanoparticle001-Ca and 5.2 kJmol
-1

 for a 

nanoparticle001-CO3, which are much smaller than that of the nanoparticle104-{1 0    4} 
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interfacial system (43.1 kJmol
-1

). Unlike the nanoparticle104 interfacial system, the 

unrelaxed adhesion energies are less dependent on the orientation of the 

nanoparticle001. 

 

 

 

 

 

 

Figure 5.26: Adhesion energy as a function of the distance between the pure {10  4} 

surface and a nanoparticle001. Results for some orientations have been omitted for 

clarity due to the periodic reiteration. 

In general, the adhesion energy of a nanoparticle001-Ca on pure {1 0    4} surface 

is more negative than that of a nanoparticle001-CO3 for each orientation studied, 

meaning the positive charged nanoparticle is energetically more favourable to adhere 

to the pure {1 0    4} surface than the negative charged nanoparticle. For the most 

stable interfacial configuration (a rotation of 0
o
), the order of the adhesion energy of 

a nanoparticle on the pure {1 0    4} surface is nanoparticle104 < nanoparticle001-Ca < 

nanoparticle001-CO3. Further structure analysis suggests that this energy order may 

relate to the bottom structure of a nanoparticle, as displayed in Figure 5.27. For a 

nanoparticle104, both the rows of Ca
2+ 

ions and CO3
2-

 groups at the bottom of the 

nanoparticle104 are aligned perfectly with the rows of CO3
2-

 groups and Ca
2+

 ions of 

the {1 0    4} surface. However, for a charged nanoparticle001, only the „row‟ of Ca
2+ 
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ions or CO3
2-

 groups of the nanoparticle001 is aligned with the row of CO3
2-

 groups or 

Ca
2+

 ions in the surface. Moreover, strong repulsive force occurs between the CO3
2-

 

groups of nanoparticle001-CO3 and the {1 0    4} surface, which largely counteracts 

the attractive interaction. The periodic variation of the adhesion energy with the 

orientation of a nanoparticle001-CO3 also demonstrates the effect of CO3
2-

 groups in the 

nanoparticle001-CO3 on the adhesion energy. 

 

 

 

 

Figure 5.27: Side view of the most stable interfacial configurations of the pure 

{10   4} surface with a calcite nanoparticle001. (a) nanoparticle001-Ca and (b) 

nanoparticle001-CO3, (Ca = green; C = grey; O = red). 

5.6.2 Nanoparticle001 and hydrated {10  4} surface 

Subsequently, the interactions between the nanoparticle001 and the monolayer 

hydrated {10  4} surface was explored. Again a comprehensive scanning procedure 

was conducted. Figure 5.28 shows the plots of the adhesion energy vs. height from 

the hydrated surface. The general character of these plots is similar to those obtained 

in the case of the nanoparticle104. The plots of nanoparticle001-Ca reach the lowest 

values at 4.0 Å regardless of the orientations; whereas the plots of nanoparticle001-CO3 

have the energy minima at around 3.7 - 3.9 Å, which is a little smaller than those of 

the nanoparticle104 (4.0 Å), due to the effect of hydrogen bonds formed between the 

CO3
2- 

groups in the bottom of nanoparticle001-CO3 and water molecules. 
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Figure 5.28: Adhesion energy as a function of the distance between the hydrated 

{10  4} surface and nanoparticle001. Results for other orientations have been omitted 

for clarity. 

Like the nanoparticle104, the adhesion energies of the nanoparticle001 on the 

hydrated {1 0    4} surfaces are less dependent on the orientation, for example, the 

energy difference between the 30
o
 and 60

o
 rotations is only 2.0 kJmol

-1
 for the 

nanoparticle001-Ca and 3.2 kJmol
-1

 for the nanoparticle001-CO3. All these findings can 

attribute to the fact that the monolayer water molecules have unified the surface 

structure, which makes the interfacial system less sensitive to the orientations of the 

nanoparticle. 

It is also notable that the adhesion energy of the nanoparticle001-CO3 at each 

rotation on the hydrated surface is more negative than that of the nanoparticle001-Ca, 

which is opposite to the energy order for the pure systems. The reason behind this 

contrary is probably due to the fact that the involvement of water molecules has not 

only weaken the interaction between the surface Ca
2+ 

ions and CO3
2-

 groups of the 

nanoparticle001-CO3, but also reduced the repulsive force between the CO3
2-

 groups in 

both the surface and the nanoparticle001-CO3. Moreover, the hydrogen bonds formed 

between the oxygen in the CO3
2-

 groups of nanoparticle001-CO3 and hydrogen atoms of 
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water molecules enhance the interaction between the nanoparticle001-CO3 and hydrated 

surface, as it is illustrated in Figure 5.29. 

 

 

 

 

Figure 5.29: Side view of the most stable interfacial configuration of the hydrated 

{10  4} surface with a nanoparticle001-CO3 (a 0
o
 rotation), where the blue dashes lines 

show the hydrogen bonds, (Ca = green, C = grey, O = red, Owater = blue, H = white). 

5.6.3 Nanoparticle001 and pure {0001} surface 

The interaction of the nanoparticle001 with the pure {0001} surfaces in vacuum 

are discussed in this section, where both CO3
2-

 and Ca
2+

 terminated {0001} surfaces 

have been considered. It is found that the shape of the plots of the unrelaxed 

adhesion energy vs. the height of the nanoparticle001 with respect to the {0001} 

surface has been kept, as displayed in Figure 5.30. For the nanoparticle001-CO3, the 

adhesion energy minima locate at around 2.3 - 2.6 Å on the pure {0001}-Ca
2+

 

surface and 2.4 -2.7 Å on the pure {0001}-CO3
2-

 surface. However, for the 

nanoparticle001-Ca, the adhesion energy minima have shifted towards the left to 1.5 - 

2.1 Å in the case of the {0001}-Ca
2+

 surface, and 1.9 -2.5 Å for the {0001}-CO3
2-

 

surface. The change in the positions of the adhesion energy minima could be due to 

the surface structure of {0001} surfaces. For the nanoparticle001-CO3, the strong 

repulsive force occurs between the CO3
2-

 groups at the bottom plane of the 

Z 

X 
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nanoparticle and CO3
2-

 groups of the {0001} surface regardless of the orientation, 

which keeps the nanoparticle001-CO3 at a higher distance from the {0001} surface. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.30: Adhesion energy as a function of the distance between a nanoparticle001 

and pure {0001} surface. Results for other orientations have been omitted for clarity. 

Figure 5.31 displays two stable interfacial configurations of pure {0001} surface 

with a nanoparticle001-Ca at a rotation of 60
o
. For the {0001}-Ca

2+
 surface, the “stand” 

CO3
2-

 groups in the top plane of the surface point to the Ca
2+

 atoms in the 

nanoparticle. The distance between oxygen in the surface and Ca
2+

 ions in the 

nanoparticle is 2.34 Å, which results to a preponderant attractive force allowing the 
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nanoparticle001-Ca to be more easily accommodated to the {0001}-Ca
2+

 surface. 

Similarly, for the {0001}-CO3
2-

 surface, the distance between oxygen in the surface 

and Ca
2+

 ions in the nanoparticle is around 2.5 - 2.6 Å, which is only slightly larger 

than the standard Ca - O bond distance (2.4 Å), leading to an energetically favourable 

configuration.  

 

 

 

 

 

 

 

 

 

 

Figure 5.31: Side view of the most stable interfacial configurations of the pure 

{0001} surface with a nanoparticle001-Ca. (a) Ca
2+

 termination and (b) CO3
2- 

termination, (Ca = green; C = grey; O = red). 

The unrelaxed adhesion energies for both {0001} interfacial systems with 

different orientations of the nanoparticle001 are illustrated in Figure 5.32. Like the 

cases of the nanoparticle001 on the pure {1 0    4} surface, the adhesion energies of 
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the unrelaxed {0001} interfacial systems are less dependent on the orientation of the 

nanoparticle001, except for the nanoparticle001-Ca on the {0001}-CO3
2-

 surface, which 

forms an energetically favourable configuration when the nanoparticle001-Ca is at a 

rotation of n × 60
o
 (n = 0, 1, …, 5). This particular case is due to the strong attractive 

force between the nanoparticle001-Ca and {0001}-CO3
2-

 surface, which has been 

discussed before. For the nanoparticle001-CO3, the orientation of the CO3
2-

 groups at 

bottom plane of the nanoparticle001-CO3 and top plane of the surface are more or less 

the same; therefore the repulsive force between the CO3
2-

 groups has been 

significantly increased regardless of the orientations. In summary, the positive 

charged nanoparticle001-Ca preferentially adheres to the {0001}-CO3
2-

 surface, while 

there is no preferential adhesion for the negative charged nanoparticle001-CO3. 

 

 

 

 

 

 

Figure 5.32: Adhesion energy as a function of the orientation of the nanoparticle001 

on pure {0001} surfaces. A nanoparticle001-Ca on the {0001}-CO3
2-

 surface (red line 

and circle) and {0001}-Ca
2+

 surface (black line and triangle); a nanoparticle001-CO3 on 

the {0001}-CO3
2-

 surface (green line and circle) and {0001}-Ca
2+

 surface (blue line 

and triangle). 
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5.6.4 Nanoparticle001 and hydrated {0001} surface 

Finally the effect of hydration on the interactions of the {0001} interfacial 

systems was investigated. The calculations prove that the main feature of the curves 

of the unrelaxed adhesion energy vs. the height of the nanoparticle001 with respect to 

the hydrated {0001} surface has been kept and the positions of the inflexion points 

have changed. In the case of the hydrated {0001}-Ca
2+

 interfacial systems, the 

adhesion energy minima are at 4.1-5.0 Å for the nanoparticle001-Ca and 3.8 - 4.2 Å for 

the nanoparticle001-CO3; while for the hydrated {0001}-CO3
2-

 systems, the adhesion 

energy minima have shifted to 2.5 - 3 Å for the nanoparticle001-Ca and 3 - 3.2 Å for 

the nanoparticle001-CO3, which is the same to the case of nanoparticle104 on the {0001} 

surface. This could be attributed to the surface atom arrangement mentioned early.  

 

 

 

 

 

Figure 5.33: Adhesion energy as a function of the orientation of the nanoparticle001 

on hydrated {0001} surface: {0001}-CO3
2-

 surface (circle) and {0001}-Ca
2+

 surface 

(triangle). 

Figure 5.33 displays the variation of unrelaxed adhesion energies for the 

hydrated {0001} interfacial systems with different orientations of a nanoparticle001. 
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In general, the adhesion energies are approximately isotropic with the orientation of 

the nanoparticle001, which are similar to the pure {0001} interfacial system. Again, 

the only special case is the nanoparticle001-Ca on the hydrated {0001}-CO3
2-

 surface 

(red line), where a rotation of n × 60
o
 (n=0, 1…, 5) leads to an energetically 

favourable interfacial configuration. Because the involvement of water molecules 

only partially blocks the interaction way between surface CO3
2-

 groups and the Ca
2+ 

ions of the nanoparticle001-Ca, which makes the water layer has less impact on the 

attractive force between oxygen in CO3
2-

 group and Ca
2+ 

ions of the nanoparticle001-Ca. 

As a result, the positive charged nanoparticle001-Ca energetically prefers to adhere to 

the {0001}-CO3
2-

 surface under aqueous conditions. 

5.7 Chapter summary 

In this chapter, atomistic simulations techniques have been applied to investigate 

the interaction of a calcite nanoparticle with the planar and stepped calcite surfaces in 

both vacuum and aqueous environment, where the size, orientation and structure of 

the nanoparticle have been considered. 

Firstly, the size of a calcite nanoparticle has an apparent effect on the interaction 

between the nanoparticle and pure surfaces. A bigger size nanoparticle leads to 

stronger interaction in vacuum due to its increasing long-range order in the structure 

compared to a small size nanoparticle. However, this effect on the interaction 

between the nanoparticle and hydrated surface is negligible in the aqueous 

environment. 

Secondly, for the nanoparticle104 in vacuum, the interaction is highly dependent 

on the orientation of the nanoparticle104 for both planar and stepped surfaces. The 
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most stable interface occurs when the lattices of the nanoparticle and the surface are 

perfectly aligned. It is energetically more favourable for the nanoparticle104 to adhere 

to acute stepped {3 1    8} surface than planar {1 0    4} surface. Under aqueous 

conditions, the surfaces are stabilized but energy barriers occur as the nanoparticle104 

approaches the surface through the interfacial water layers. When the nanoparticle104 

approaches the hydrated surface through multiple water layers, the nanoparticle will 

move through a zigzag pathway rather than a direct perpendicular approach to 

overcome the energy barriers. Meanwhile hydration makes the interaction of the 

interfacial systems less sensitive to the orientation of the nanoparticle. Our results 

also suggest that the aggregation is most likely to occur at the planar surface rather 

than stepped surfaces in aqueous environment.  

Finally, for the nanoparticle001, the adhesion energy is less dependent on the 

orientation of the nanoparticle001 in both vacuum and aqueous environment, except 

for the positive charged nanoparticle001-Ca on the {0001}-CO3
2-

 surface. In general, 

the positive charged nanoparticle001-Ca preferentially adheres to the {0001}-CO3
2-

 

surface, while there is no preferential adhesion on the planar surfaces for the negative 

charged nanoparticle001-CO3. 
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6 
The growth of calcium carbonate at tilt 

grain boundaries and stepped surfaces 
                                                                                   

 

Surface defects such as steps and kinks are always present on the surfaces of 

natural and synthesized nanoparticles, and the tilt grain boundaries are easy to form 

between two colliding nanoparticles in aqueous environment. In this chapter 

atomistic simulation techniques have been employed to investigate the structure and 

stabilities of a range of tilt grain boundaries of calcite. Molecular dynamics 

simulations were used next to study the growth of a series of calcium carbonates 

units at the contact points of these tilt grain boundaries, which can then be used to 

assess the conditions required for the inter-growth of the crystal to occur. This study 

has given us the opportunity to further explore the growth mechanism of 

newly-formed joints during the aggregation process of nanoparticles. 
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6.1 Introduction 

The crystallisation of calcite is one of the most important processes in the 

calcium carbonate industry in determining the size and morphologies of the solid 

products, which in turn affects their efficacy and applications. The calcite 

nanoparticles on the scale of ~100 nm have attracted increasing attention due to their 

widely applications, for example, as inorganic fillers in plastic, rubber, paper 

industries and as pigments in coating and painting industries (Patton, 1979; 

Schwuger, 1981; Zuiderduin et al., 2003; Gilbert and Banfield, 2005). The dispersion 

of calcite nanoparticles is one of the important parameters from the viewpoint of 

technical applications and influences the properties of composite materials. As a 

filler material, the use of dispersive calcite nanoparticles may yield composite with 

perfect strength and smoothness (Chan et al., 2002). For this reason, researchers are 

working overtime to chemically modify or otherwise force calcite nanoparticles not 

to aggregate or agglomerate. 

When two nanoparticles collide in a suspension, hydrodynamic forces hold them 

together for a short time, before attempting to pull them apart. In a supersaturated 

solution, the nanoparticle will grow and new material will be deposited at the 

particle/particle interface. If the growth of the nanoparticle is fast and the 

hydrodynamic forces are weak, the nanoparticles will remain bound together to form 

an aggregate rather than being separated by the fluid shear forces (Collier et al., 

2000). Therefore, the investigation of the growth of new calcium carbonate at the 

particle/particle interface at the atomic level is essential to gain further understanding 

of the aggregation of calcite nanoparticles. 

 



Chapter 6: The growth of calcium carbonate at tilt grain boundaries and stepped surfaces 

168 

Although the perfect cleavage face {1 0    4} is the most stable surface of 

calcite and dominates the observed morphology, the natural and synthesized surfaces 

are rarely perfect or planar at the atomic scale. They always have defects such as 

steps and kinks. Indeed, calcite growth and dissolution are usually found to occur 

through steps and dislocations because of dangling bonds and local disorder (Putnis, 

1992; Larsen et al., 2010). When two calcite nanoparticles collide in solution, the 

different surfaces join together and form a grain boundary; the new CaCO3 units will 

then grow at these interfaces. 

The grain boundary is the interface between two grains or crystallites in a 

polycrystalline material. They are the defects in the crystal structure and tend to 

decrease the electrical and thermal conductivity of the material. It is convenient to 

separate the grain boundaries by the extent of the mis-orientation between the two 

grains. A tilt grain boundary is that where the rotation axis is parallel to the boundary 

plane. An alternative is a twist grain boundary where the mis-orientation occurs 

around an axis that is perpendicular to the grain boundary planes. 

In this chapter a number of symmetric tilt grain boundaries of calcite containing 

the acute and obtuse steps are modelled, which have been studied extensively both 

experimentally and theoretically (de Leeuw, 2002; Kristensen et al., 2004; Stack and 

Grantham, 2010; Larsen et al., 2010). The tilt grain boundaries are meant to act as 

models of two particles, after collision has occurred but before growth has had a 

chance to commence. The aim of this study is to investigate the structure and 

stability of these tilt grain boundaries of calcite. Also the growth of a series of CaCO3 

units at different sites present on the steps in the tilt grain boundaries, to assess the 

conditions required for the growth of new CaCO3 material. 
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6.2 Methods 

Atomistic simulation techniques are employed to model the geometries and 

energies of the tilt grain boundaries, which consist of large number of atoms. At first 

METADISE (Watson et al., 1996) was used to create the stepped {3 1    8} and 

{3      16} surfaces, both of which contain {1 0    4} planes. The steps on the {31   8} 

surface are acute and the angle between the step wall and the terrace is 80º on the 

relaxed surface, whereas the steps on the {3       16} surface are obtuse with an 

angle of 105º between the step wall and the terrace. In order to form meaningful tilt 

grain boundaries, three different size stepped surfaces for each step direction have 

been modelled by gradually increasing the terrace area from 620.9 Å
2
 to 931.3 Å

2
 

and 1241.8 Å
2
 with the same step wall to terrace ratio. 

The stepped surfaces were then used to generate the tilt grain boundaries through 

the following procedure. The grain boundary was created by mirroring two identical 

unrelaxed stepped surface blocks (3,456 CaCO3 units) leaving a gap of 2.0 Å 

between them. The resulting structure was then allowed to relax by MD simulations 

until the energy settled down. DL_POLY 2.0 (Forester and Smith, 1995) was used for 

MD simulations of the grain boundaries. The equilibration of the pure system was 

achieved using NVE, NVT and NPT ensembles in sequence at 300 K for 150 ps with 

a time step of 0.2 fs. The final data collection simulations were run at NST for 

another 100 ps. The integration algorithms are based around the Verlet Leap-Frog 

scheme (Verlet, 1967) and the Nosé-Hoover algorithm (Nosé, 1984; Hoover, 1985) is 

used for the thermostat. The parameter of the thermostat was set at 0.1 ps and the 

barostat relaxation time was set at 0.5 ps. 

During MD simulations, the movable grain blocks tend to approach each other 

where there is a favourable interaction and the most stable grain boundary 
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configurations have been assumed to be those corresponding to energy minima. For 

ease the tilt grain boundary comprised of acute {3 1    8} surface is referred as 

A-grain boundary, while O-grain boundary is referred to the grain boundary 

comprised of obtuse {3       16} surface, represented schematically in Figure 6.1.  

 

(a) 

 

 

 

 

 

 

 

   (b) 

 

 

 

 

 

Figure 6.1: Side views of the unrelaxed calcite tilt grain boundaries: (a) A-grain 

boundary and (b) O-grain boundary. The surface area of each {1 0    4} terrace 

between the steps is 620.9 Å
2
. (Ca = green, C = gray, O = red). 
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To compare the relative stability of different grain boundaries, two energy 

contributions are considered here: the grain boundary energy γgrain and the cleavage 

energy γcleav. The grain boundary energy is a measure of the thermodynamic stability 

of a grain boundary with respect to the bulk crystal. The cleavage energy is the 

energy required to cleave along the grain boundary to create two stepped surfaces 

and is a measure of the stability of the grain boundary with respect to the surfaces. 

These energies have been calculated for each grain boundary by using equations 6.1 

and 6.2, respectively. 

grain bulk

grain

U U

A



 ,                      (6.1) 

2 surface grain

cleav

U U

A



 .                    (6.2) 

where Ugrain is the energy of the tilt grain boundary block, Ubulk is the energy of equal 

number of atoms in the bulk structure, Usurface is the energy of the stepped surface 

and A is the surface area. 

For the hydrated grain boundaries, the boundary energies γhydr were calculated 

with respect to liquid water and bulk crystal: 

( )hydr grain bulk water

hydr

U U mU

A


  
                 (6.3) 

where Uhydr-grain is the energy of the hydrated grain boundary block, Uwater is the 

energy of a liquid water molecule and m is the number of water molecules. Then the 

hydration energy can be obtained by comparison of the hydrated with the pure grain 

boundaries and water molecules as follows: 

1
[ ( )]hydration hydr grain grain waterU U U mU

m
                (6.4) 
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The growth of CaCO3 unit in the grain boundary systems was also studied using 

MD simulations. For the addition of CaCO3 unit at various sites of the grain 

boundaries in vacuum, the average growth energy per CaCO3 unit, Ugrowth, was 

calculated according to the following equation: 

3
( )growth grain unbound grain grain CaCOU U U U U U                (6.5) 

where U'grain and Uunbound are the energies of the states with CaCO3 unit incorporated 

and far from the stepped surface respectively. As the latter state is difficult to achieve 

in reasonably sized simulation cells, its energy can be expressed as the sum of the 

energy of the grain boundary and the average energy of an isolated CaCO3 unit.  

For the grain boundaries in aqueous solutions, the average growth energy per 

CaCO3 unit Ugrowth was calculated using the following equation: 

3
( )growth hydr grain hydr grain aqueous CaCOU U U U  

               (6.6) 

where U'hydr-grain is the average energy of the grain boundary with the CaCO3 unit 

incorporated under aqueous conditions, and Uaqueous-CaCO3 is the energy of the 

aqueous CaCO3 unit. 

6.3 Tilt grain boundaries of calcite 

All the tilt grain boundaries form a series of open channels in the interfacial 

region with the acute or obtuse angles between the identical step walls and terraces 

preserved, for example, Figure 6.2 shows the quadrilateral channel voids formed in 

the interfacial region of tilt grain boundaries with a terrace area of 1241.8 Å
2
. For the 

A-grain boundary, the mirror step walls form an obtuse angle of 160
o
 while the 
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terraces form an acute angle of 40
o
. For the O-grain boundary, these two angles are 

120
o
 and 30

o
 respectively.  

 

 

 

 

 

                (a)                                (b) 

Figure 6.2: Side view of relaxed calcite grain boundaries: (a) A-grain boundary and 

(b) O-grain boundary. The surface area of the {1 0    4} terrace is 1241.8 Å
2
. (Ca = 

green, C = gray, O = red). 

The boundary energies of the tilt grain boundaries created from the two stepped 

surfaces are listed in Table 6.1. For both grain boundaries, the grain boundary 

energies increase as the terrace area enlarges. The boundary energies of the small 

terrace (620.9 Å
2
) are the lowest for both grain boundaries, indicating that these grain 

boundaries are very stable. It is noteworthy that the boundary energies of the O-grain 

boundaries are lower than those of the A-grain boundaries with a comparable terrace 

area, which is consistent to the evidence from calculated stepped surface energy that 

the obtuse stepped {3       16} surface (0.72 Jm
-2

) is more stable than the acute 

stepped {3 1    8} surface (0.88 Jm
-2

).  
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The cleavage energy (Table 6.1) is a measure of the stability of the grain 

boundaries with respect to the stepped surfaces, where large cleavage energy 

indicates that the grain boundary is more stable with respect to the surfaces. The 

stable grain boundaries with the smallest terrace areas have the largest cleavage 

energies, which is due to the stability of the grain boundaries. As the obtuse stepped 

{3       16} surface is more stable than the acute stepped {3 1    8} surface, the 

O-grain boundary is clearly also more stable than the A-grain boundary, as already 

shown by the boundary energies. 

Table 6.1 Boundary and cleavage energies of the non-hydrated grain boundaries. 

Terrace area / Å
2
 Boundary energy / Jm

-2
 Cleavage energy / Jm

-2
 

A-grain boundary 

620.9  1.07 1.46 

931.3 1.15 1.32 

1241.8 1.31 0.84 

O-grain boundary 

620.9  1.02 1.74 

931.3 1.04 1.49 

1241.8 1.11 1.39 

The grain boundaries in aqueous liquid were then modelled. A number of water 

molecules were introduced in the open channels of the grain boundary by initially 

setting the water density at ρ = 1.0 gcm
-3

. The boundary and hydration energies of 

the hydrated grain boundaries are listed in Table 6.2. For all grain boundaries, the 

boundary energies follow the same trend as those of the non-hydrated grain 

boundaries, with boundary energies increasing as the terrace area increases. The 

hydrated grain boundaries are more stable compared to the non-hydrated grain 
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boundaries due to the stabilization by the water. 

For all grain boundaries, the adsorption of water molecules in the open channels 

is exothermic (see Table 6.2). The grain boundaries with smaller terrace area have 

less negative hydration energies due to the stability of the non-hydrated boundaries, 

as the smaller channels in the interfacial region makes incorporation of water less 

easy. Furthermore, the hydration energies of the A-grain boundaries are more 

negative than those of the O-grain boundaries with comparable terrace areas. The 

acute angle of the channel in the O-grain boundary (30
o
) is smaller than that of the 

A-grain boundary (40
o
), making the water far away from the acute joining point. 

Figure 6.3 shows the structures of two hydrated grain boundaries with terrace area of 

1241.8 Å
2
 after 250 ps MD simulations. Hydration of the open channels of the large 

grain boundaries has little effect on the structure of the grain boundary regions. The 

figure also confirms that there is a high density water layer formed on the step wall 

and terrace. 

Table 6.2 Boundary and hydration energies of the hydrated grain boundaries. 

Terrace area / Å
2
 Boundary energy / Jm

-2
 Hydration energy / kJmol

-1
 

A-grain boundary 

620.9  0.56 -31.43 

931.3 0.58 -35.18 

1241.8 0.72 -40.65 

O-grain boundary 

620.9 0.52 -30.32 

931.3 0.56 -33.68 

1241.8 0.60 -39.65 
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(a) 

 

 

 

 

 

 

(b) 

 

 

 

 

 

Figure 6.3: Snapshot of hydrated grain boundaries after 250 ps MD simulations, 

where four distinct Ca
2+

 sites are labelled in the interfacial regions. The Ca
2+

 in the 

acute step of the joints are labelled Caa-j; the Ca
2+

 in the obtuse step of the joints are 

labelled Cao-j; the Ca
2+

 at the step of original stepped surface are labelled Cac, and 

Cat stands for the Ca
2+

 in the middle of the terraces. (a) A-grain boundary and (b) 

O-grain boundary. (Ca = green, O = red, C = grey, Owater = red, H = white). 
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The structure of water around the Ca
2+

 ions at structurally different positions was 

extracted from the radial distribution functions (RDF), obtained from the MD 

simulations at 300 K, as average for 1000 configurations sampled over 100 ps of the 

production run. The results are shown in Figure 6.4 and Table 6.3. 

Table 6.3 Local environment of Ca
2+

 ions at structurally different positions in the 

hydrated grain boundaries. The distance listed here are from RDF results. 

Ca
2+

 positions Ca-Owater distance / Å Ca-Hwater distance / Å 

A-grain boundary 

Ca
2+

 (o-j) 2.49 3.29 

Ca
2+

 (a-j) 4.20 3.39 

Ca
2+

 (c) 4.65 4.15 

Ca
2+

 (t) 2.39 3.19 

O-grain boundary 

Ca
2+

 (o-j) 2.49 3.29 

Ca
2+

 (a-j) 4.95 3.59 

Ca
2+

 (c) 4.05 3.39 

Ca
2+

 (t) 2.43 3.29 

For the Ca
2+

 ions within the terrace of the gain boundaries (Cat), which lack one 

coordinating CO3
2-

 compared to the Ca
2+

 in the bulk, one water molecule is 

coordinated at an average distance of 2.39 Å in the A-grain boundary system and 

2.43 Å in the O-grain boundary system. For the Ca
2+

 in the obtuse step of the joints 

(Cao-j), which also lack one coordinating CO3
2-

 compared to the bulk Ca
2+

, one water 

molecule is coordinated at a distance of 2.49 Å in both two grain boundary systems. 

These Ca
2+

-Owater distances match closely the experimental determination for 

hydrated planar {1 0    4} surface (2.45 Å) from AFM (Ohnesorge and Binnig, 

1993). This result is not surprising because a large expanse of the {1 0    4} plane is 
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exposed to the channel voids. However, for the Ca
2+

 in the acute step of the joints 

(Caa-j), the narrow gap can only contain limited number of water molecules, as 

discussed before, making a longer Ca
2+

-Owater distance at 4.20 Å for the A-grain 

boundary system and 4.95 Å for the O-grain boundary system.  

(a) 

 

 

 

 

(b) 

 

 

 

 

 

Figure 6.4: Radial distribution functions (RDF) for the local environment in the 

water at structurally different Ca
2+

 surface sites. (a) A-grain boundary and (b) 

O-grain boundary. 
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It is also clear from Figure 6.3 that there are highly ordered water molecules at 

the terraces of the grain boundaries. However, there is slightly disordered in the 

water distribution at the steps. This fluctuation in water distribution could be highly 

significant for the rate of CaCO3 growth and dissolutions, by slowing the transport of 

ions and molecules to the planar terraces. We will now focus on the growth of a 

series of CaCO3 units at the steps in the channel voids of the grain boundaries to 

assess the conditions required for the inter-growth of CaCO3 units.  

6.4 Single CaCO3 unit in aqueous environment 

Theoretical investigations by Di Tommaso and de Leeuw (2008, 2009) have 

shown that, although the pairing of a Ca
2+

 ion with a HCO3
-
 ion in solution is 

thermodynamically favourable, the subsequent addition of further Ca
2+

, HCO3
-
 or 

Ca(HCO3)2 units to the first Ca
2+

-HCO3
-
 pair is endergonic. Bruneval et al. (2007), 

using a combination of MD and umbrella sampling method, also showed that the 

binding of Ca
2+

 to CO3
2-

 in solution is strongly exothermic and there is no energy 

barrier to association of these two ions. Before considering the growth of CaCO3 

units at the tilt grain boundaries of calcite in solution, the formation of single CaCO3 

unit in aqueous environment has been examined using classic MD simulations. 

The distance between the Ca
2+

 and the carbon of the CO3
2-

 in the original system 

was set ~4.5 Å, and classic MD simulations were performed using the NVT 

ensemble at 300 K without periodic boundary conditions. The energy of the CaCO3 

group in vacuum was evaluated after equilibration. To obtain the energy of bulk 

liquid water, a box containing 256 water molecules was simulated at a temperature of 

300 K. The equilibration of the water simulation cell was achieved by initially setting 

the experimental density at ρ = 1.0 gcm
-3

 and using NVE, NVT and NPT ensembles 
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in sequence. The final data collection simulations were run in NPT ensemble. The 

average energies of CaCO3 unit and liquid water at 300 K are listed in Table 6.4. 

Table 6.4 Average configurational energies for the CaCO3 unit in vacuum and water, 

and liquid water following simulations at 300 K for 0.2 ns. 

 configurational energy / eV 

CaCO3 unit -52.62 

bulk liquid water -9.54 

aqueous CaCO3 unit -61.07 

The average energy of the aqueous CaCO3 unit was calculated using a 

simulation box containing 251 water molecules plus the CaCO3 unit. The simulation 

box was equilibrated at NPT ensemble and 300 K for 30,000 time steps of 0.2 fs, 

after which data were collected for another 70,000 time steps. Then comparing the 

average energy of this simulation box with the energy of the 251 water molecules 

without the dissolved CaCO3 unit gave the energy of the hydrated pair. 

 

 

 

 

 

 

 

 

Figure 6.5: Representative snapshot from the MD simulations taken at 10 ps. (Ca = 

green; C = grey; O = red; H = white). 
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The configuration of the CaCO3 group in water after 10 ps is presented in Figure 

6.5, which shows that the CO3
2-

 group has replaced one water molecule in the first 

coordination shell to keep a coordination number of six. This structure agrees with 

the recent MD studies on the hydration structure of CaCO3 in water (Ikeda et al., 

2007; Di Tommaso and de Leeuw, 2008), which showed that the formation of the 

CaCO3 monomer would occur with an associate mechanism. The hydration structure 

of Ca
2+

 in water is highly variable as the 6-fold coordination is only marginally 

preferred over the next lowest minimum, a 7-fold pentagonal bipyramidal 

configurations. Figure 6.6 displays the RDFs of the Ca-Ocarbonate and Ca-Owater pairs 

obtained from the MD simulations. For Ca-Ocarbonate, the first peak is at 2.28 Å, 

which is 0.1 Å shorter than the average Ca-Owater distance. The results indicate that 

the most stable coordination model for the aqueous CO3
2-

 is the monodentate 

configuration. 

 

 

 

 

Figure 6.6: Radial distribution functions (RDF) of the Ca
2+

-Ocarbonate and Ca
2+

-Owater. 
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thermodynamics of different mechanisms, surfaces or impurity inhibition. In this 

section, the MD simulations have been employed to investigate the growth of CaCO3 

units in the tilt grain boundaries, which can then be used to assess the conditions 

required for the inter-growth between the nanoparticle aggregates. A recent 

computational study by Tribello et al. (2009) proposed the binding of Ca
2+

 to CO3
2-

 

is strongly exothermic and energetically more favourable than the binding of Ca
2+

 or 

CO3
2-

 ion to CaCO3 unit. Therefore, only the subsequent addition of neutral CaCO3 

units in the channel voids of the grain boundaries were modelled in this study. 

Moreover, only the large A-grain boundary and O-grain boundary (terrace area: 

1241.8 Å
2
) are considered here in order to ensure that the isolated CaCO3 unit is 

surrounded by a large number of water molecules without interaction with irrelevant 

Ca
2+

 or CO3
2-

 ions in the grain boundary.  

The growth of CaCO3 units in the channel voids of the non-hydrated grain 

boundaries were considered first, simulating the addition of successive CaCO3 units 

to different positions in the large grain boundaries and calculating the energy 

expended or released at each successive addition of a CaCO3 unit. Four different 

growing sites have been considered in this section. Figure 6.7 illustrates the initial 

structure of the large O-grain boundary with CaCO3 units at distinct positions, where 

Position-1 and Position-2 are at obtuse and acute step corner of the joints; Position-3 

is close to the step corner of the original stepped surface, and Position-4 is above the 

middle of the planar terrace. 

After addition of first CaCO3 unit at the Position-I (I = 1, 2, 3 or 4), whereby 

both the grain boundary and the CaCO3 unit were allowed to relax to their new 

positions. The growth energies of CaCO3 units on the step or planar terrace were 

calculated using equation 6.5. Then successive CaCO3 units were added next to the 

adsorbed CaCO3 unit in sequence, as shown in Figure 6.8. The growth energies were 
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calculated again, namely the energies required or released per CaCO3 unit for each 

successive step.  

 

 

 

 

 

 

 

Figure 6.7: Initial structures of the O-grain boundary with single CaCO3 unit in 

vacuum. The CaCO3 unit was added at four different positions (P-I, I = 1, 2, 3 and 4) 

in the channel void, respectively. 

 

 

 

 

 

 

Figure 6.8: Schematic diagram of the incorporation of the first and second CaCO3 

units along the step in the grain boundary. (Ca = green, C = black, O = red). 
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Table 6.5 lists the growth energies of successive addition of CaCO3 units at 

different positions in the grain boundary systems, either isolated or at kink sites next 

to existing CaCO3 units. In all cases, the consecutive growth of CaCO3 units in the 

grain boundaries is exothermic. Incorporation of CaCO3 units along the step is 

energetically more favourable than on the planar terrace as it is much more 

energetically expensive to create a “growth island” than a double kink on the surface 

(Mulline, 1992). The growth of a CaCO3 unit next to an existing unit was found to be 

much more energetically favourable as no new kinks were then introduced to the 

steps.  

Table 6.5 Growth energies of incorporation of CaCO3 units at various growth sites 

on the two non-hydrated grain boundaries (kJmol
-1

). 

Positions Angle 1
st
 CaCO3 2

nd
 CaCO3 3

rd
 CaCO3 4

th
 CaCO3 

A-grain boundary 

P-1  160
o
 -310.5 -597.4 -682.4 -724.3 

P-2 40
o
 -186.8 -724.3 -772.5 -792.3 

P-3 80
o
 -219.1 -819.4 -821.0 -859.0 

P-4 180
o
 -95.4 -579.6 -621.1 -638.1 

O-grain boundary 

P-1  120
o
 -301.3 -652.3 -751.1 -772.9 

P-2 30
o
 -137.1 -794.0 -824.3 -831.3 

P-3 105
o
 -244.9 -782.3 -798.4 -802.5 

P-4 180
o
 -90.3 -611.2 -635.9 -648.7 

Comparing to the growth energies of CaCO3 units along the steps of the joints 

(Position-1 and Position-2) in A-grain boundaries and O-grain boundaries (Figure 

6.9), it shows that introduction of the first CaCO3 unit at the obtuse step (Position-1) 

is much more energetically favourable than at the acute step (Position-2). When the 

second CaCO3 unit was introduced at the kink sites on each step, it is energetically 
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more favourable for further growth to occur at the acute step (Position-2) than the 

obtuse step (Position-1). This tendency retains from the growth next to a kink (2
nd

 

CaCO3) up to formation of a full step edge (4
th
 CaCO3). 

 

 

 

 

 

 

 

 

 

 

Figure 6.9: The growth energies of addition of successive CaCO3 units at the steps of 

the joints (Position-1 and Position-2) in the A-grain boundary and O-grain boundary 

in vacuum. 
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is energetically more favourable compared to consecutive addition of CaCO3 units on 

the planar terrace (Position-4). A comparison of the energies of growing a full CaCO3 

edge at the joints of the grain boundaries shows that larger energies are released for 

the incorporation of CaCO3 at acute step (Position-2) than the obtuse step (Position-1) 

in the successive growth process. Therefore, under conditions simulating ultra-high 

vacuum, isolated CaCO3 unit should initially grow at the obtuse step of the joints and 

1 2 3 4
-1000

-800

-600

-400

-200

0

 P-1 (120
o
) in O-grain boundary

 P-1 (160
o
) in A-grain boundary

 P-2 (30
o
) in O-grain boundary

 P-2 (40
o
) in A-grain boundary

 

 
g

ro
w

th
 e

n
e

rg
y

 /
 k

J
m

o
l-1

 CaCO
3
 unit



Chapter 6: The growth of calcium carbonate at tilt grain boundaries and stepped surfaces 

186 

then prefer to grow at the acute step of the joints. However, the growth of CaCO3 in 

ultra high vacuum is not a sensible process and calcite aggregation and growth occur 

under aqueous conditions. It is therefore needed to consider the effects of water in 

this process. 

 

 

 

 

 

 

 

 

 

Figure 6.10: Bar charts of the average growth energies per CaCO3 unit released upon 

the growth of a full CaCO3 row in the A-grain boundary and O-grain boundary. 
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Table 6.6 Growth energies of incorporation of CaCO3 units at various growth sites in 

the hydrated A-grain boundary and O-grain boundary, as calculated by equation 6.6 

(kJmol
-1

). 

Positions Angle 1
st
 CaCO3 2

nd
 CaCO3 3

rd
 CaCO3 4

th
 CaCO3 

A-grain boundary 

P-1  160
o
 117.7 107.2 -76.9 -126.8 

P-2 40
o
 233.5 84.6 -106.4 -192.3 

P-3 80
o
 162.9 69.3 -95.9 -163.8 

P-4 180
o
 277.4 168.7 30.7 -13.0 

O-grain boundary 

P-1  120
o
 159.9 99.2 -70.4 -145.0 

P-2 30
o
 230.8 48.8 -145.7 -208.6 

P-3 105
o
 138.8 110.3 -13.8 -96.0 

P-4 180
o
 282.9 226.6 75.1 -0.9 

The results show that the additions of the first and second CaCO3 units to all 

positions are endothermic and introduction of the first CaCO3 unit at the acute step of 

the joints (Position-2) is much more energetically expensive than at the obtuse step 

of the joints (Position-1) in both A-grain boundary and O-grain boundary systems. 

For example, the difference in the growth energies between these two steps is 115.8 

kJmol
-1

 for the A-grain boundary system and 70.9 kJmol
-1

 for the O-grain boundary 

system. However, once the activation energy barriers of incorporation of the first and 

second units have been overcome and the kinks have been created at the steps, it is 

energetically more favourable for further growth to occur at the acute step. 

It is worthy to note that the average growth energies per CaCO3 unit are positive 

when growing a complete row of CaCO3 along the steps of the joins in grain 

boundary systems, except for Postiton-2 in the O-grain boundary system, where the 

average growth energy is -14.6 kJmol
-1

. These results contradict experimental 

findings of dissolution/growth processes of calcite, which spontaneously occur under 
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aqueous conditions (Gratz et al., 1993; Stack and Grantham, 2010). 

It is possible that the calculated growth energy is affected by the energy of the 

isolated aqueous CaCO3 unit far from the grain boundary in equation 6.6. Therefore 

we have also calculated the average growth energy Ugrowth using the following 

equation: 

growth hydr grain hydr grain CaU U U  
                   (6.7) 

where U'hydr-grain is the average energy of the grain boundary with the CaCO3 unit 

incorporated under aqueous conditions, and Uhydr-grain-Ca is the energy of the grain 

boundary with the single CaCO3 unit in the centre of the channel voids. 

Table 6.7 Growth energies of incorporation of CaCO3 units at various growth sites in 

the hydrated A-grain boundary and O-grain boundary, as calculated by equation 6.7 

(kJmol
-1

). 

Positions Angle 1
st
 CaCO3 2

nd
 CaCO3 3

rd
 CaCO3 4

th
 CaCO3 

A-grain boundary 

P-1  160
o
 -107.6 -118.1 -127.4 -140.3 

P-2 40
o
 -48.0 -125.1 -146.5 -203.2 

P-3 80
o
 -56.7 -130.3 -145.8 -194.3 

P-4 180
o
 10.9 -17.6 -33.5 -50.7 

O-grain boundary 

P-1  120
o
 -81.9 -122.6 -136.7 -150.5 

P-2 30
o
 -22.8 -123.8 -165.3 -213.9 

P-3 105
o
 -71.0 -89.6 -103.7 -112.3 

P-4 180
o
 23.5 -2.4 -18.9 -43.6 

The growth energies of consecutive CaCO3 units in the hydrated grain boundary 

systems are listed in Table 6.7, calculated by equation 6.7. Now the results show that 
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initial additions of single CaCO3 units onto all positions are exothermic, except on 

the planar terraces (Position-4) in both hydrated grain boundaries. As we have 

discussed in the previous section, the adsorbed water molecules have a stabilizing 

effect on the grain boundaries. On the planar terrace the water molecules form an 

ordered layer, which is disturbed by the presence of steps, as shown in Figure 6.2. 

Therefore, the initial growth of CaCO3 unit could prefer to occur at the steps rather 

than at the terraces. However, once the activation energy barrier of incorporation of 

the initial CaCO3 unit has been overcome, it is exothermic to further grow on the 

terrace. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11: The energies of addition of successive CaCO3 units at the steps of the 

joints (Position-1 and Position-2) in the A-grain boundary and O-grain boundary 

under aqueous conditions. 
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incorporated at the obtuse step (Position-1, 160
o
) is 59.6 kJmol

-1
 lower than that at 

the acute step (Position-2, 40
o
), while the difference in growth energies between two 

steps is 59.1 kJmol
-1

 for the O-grain boundary system. After the incorporation of the 

first CaCO3 unit has created the kink at the step, it is energetically more favourable 

for further growth to occur at the acute step (Position-2). For example, the order of 

the energies of growing the 3rd and 4
th
 CaCO3 units in the grain boundary systems is 

P-2-O < P-2-A < P-1-O < P-1-A, which is same as the order of step angles. The 

results demonstrate that the preferential growth of CaCO3 units at the grain 

boundaries is dependent on the angle of the steps. 

 

 

 

 

 

 

 

 

 

 

Figure 6.12: Bar charts of the average growth energies per CaCO3 unit released upon 

the growth of a full CaCO3 row at the hydrated A-grain boundary and O-grain 

boundary systems. 

The average growth energies per CaCO3 unit released when growing a complete 
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step of the joints (Position-1) during the successive growth process. Therefore when 

the two calcite nanoparticles collide and form a grain boundary in the aqueous 

solution, the growth velocities of the acute step should be higher than the obtuse step, 

once the initial growth unit has been deposited. 

Early theoretical studies of calcite growth and dissolution at the stepped surfaces 

by de Leeuw and co-authors (1999, 2002) established that the activation energy 

required to create the first kink site at the acute edge is 1.5 times higher than that at 

the obtuse edge. Gratz et al. (1993) studied calcite growth at the two monomolecular 

steps by in situ AFM techniques and found an obtuse: acute ratio of growth velocities 

at the steps of 1.5 - 2.25 depending on the supersaturation. The ratio of activation 

enthalpies for the initial growth of acute: obtuse calculated in this study is 1.3 to 2.1, 

which agrees with previous computational and experimental research.  

6.7 Chapter summary 

In this chapter, atomistic simulation techniques have been employed to 

investigate the geometry and stabilities of a range of tilt grain boundaries formed 

from acute stepped {3 1    8} and obtuse stepped {3       16} surfaces of calcite. 

For both A-grain boundaries and O-grain boundaries, the boundary stability 

decreases as the terrace area increases. Furthermore, the O-grain boundary is more 

stable than the A-grain boundary in both vacuum and liquid water. 

Molecular dynamic simulations were then performed to investigate the growth of 

a series of charge-neutral CaCO3 units at the large A-grain boundary and O-grain 

boundary, implying supersaturation conditions. Four different growing positions in 

vacuum and aqueous solution have been considered. The growth process modelled at 
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the non-hydrated grain boundaries is highly exothermic but unrealistic. Under 

aqueous conditions, the preferential growth of CaCO3 units is dependent on the angle 

of the steps formed in the channel voids of the grain boundaries. The initial 

incorporation of a CaCO3 unit is more preferential at the obtuse step of the joints in 

the grain boundary, but it is much more energetically favourable at the acute step of 

the joints when growing from a kink site. When the two calcite nanoparticles collide 

and form a grain boundary in the aqueous solution, the growth velocities of the acute 

step should be higher than the obtuse step, once the initial growth unit has been 

deposited on the steps. 
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   7 
Conclusions and Future works 
                                                                                   

 

This chapter will summarise the findings of this computational study of calcium 

carbonate and draw conclusions about the incorporation of cationic impurities in 

calcite and the aggregation process of calcite nanoparticles, based on the results 

presented in this thesis. Moreover, some possible directions for the future research 

are presented. 
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7.1 Conclusions 

A computer simulation study of calcium carbonate has been presented in this 

thesis, where the incorporation of divalent cationic impurities in calcite and the 

aggregation process of calcite nanoparticles have been included, using both 

molecular mechanics (MM) and molecular dynamics (MD) simulations based on 

interatomic potentials. 

7.1.1 The incorporation of cationic impurities in calcite 

Firstly, the mixing thermodynamics of calcite with a series of divalent cations 

(Mg
2+

, Ni
2+

, Co
2+

, Zn
2+

, Fe
2+

, Mn
2+

 and Cd
2+

) have been investigated by the 

atomistic simulation techniques, based on the calculation of all site occupancy 

configurations in 2 × 2 × 1 and 3 × 3 × 1 supercells of the calcite structure. The 

enthalpy of mixing, configurational entropy and free energy of mixing were then 

calculated to explore the mixing behaviour for a series of carbonate solid solutions.  

The results show that the lowest energy configuration for each cationic impurity 

composition is always the one that maximises the homogeneity of the cations within 

(0001) layers but maximises the heterogeneity across layers. A full disorder is likely 

in (Cd,Ca)CO3 solid solutions at equilibrium conditions. Although the fully 

disordered (Mn,Ca)CO3 solid solutions has positive configurational enthalpies of 

mixing throughout the whole range of Mn
2+

 compositions, partial configurational 

ordering generally lead to better agreement with recent experiments. Our results 

indicate that the experimental “disordered” (Mn,Ca)CO3 solid solutions, which are 

known to be favoured by kinetic factors, are actually not fully disordered, but contain 

a higher abundance of low-energy cation arrangement than that expected from a 

completely random distribution. For other divalent cations, i.e. Fe
2+

, Zn
2+

, Co
2+

, 
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Mg
2+

 and Ni
2+

, a great deal of cation ordering should be expected in the 

corresponding solid solutions at high temperature (e.g. ~ 1900 K). 

In particular, the structure and stability of the intermediate compositions (Mn/Ca 

= 1) were investigated by a random sampling method. The most stable configuration 

corresponds to the ordered dolomite-type structure. The ordered kutnahorite 

(Mn0.5Ca0.5CO3) is metastable and becomes less stable than the fully disordered 

50:50 solid solution at ~ 850 K and this disordering temperature decreases to a value 

in better agreement with experiment (695 K), if a transition to a partially ordered 

structure is considered. 

The calculations have also revealed that the solubility of the cationic impurities 

in calcite is largely related to the cationic coordination distance with oxygen, and the 

solubility of the smaller cations in calcite is higher than that of Ca
2+

 in the other 

end-member carbonates due to less elastic strain in the lattice. For the binary 

carbonate solid solutions, CdCO3 and CaCO3 can form continuous stable solid 

solution in the whole range of Cd
2+

 compositions at moderate temperatures. A 

miscibility gap at Mn
2+

 composition 0.12 < x < 0.92 has been found in the 

MnxCa1-xCO3 system. A higher abundance of cationic ordering are present in the 

(Fe,Ca)CO3, (Co,Ca)CO3, (Zn,Ca)CO3, (Mg,Ca)CO3 and (Ni,Ca)CO3 systems, and 

the solubility of these cations in calcite is extraordinary limited below 1000 K, which 

are in good agreement with available experimental measurements. 

7.1.2 The adhesion of calcite nanoparticles on calcite surfaces 

The aggregation process of calcite nanoparticles has then been investigated by 

atomistic simulations techniques. The adhesion of a calcite nanoparticle on some 

major calcite surfaces has been studied in both vacuum and aqueous environment, 
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where the effects of size, orientation and structure of calcite nanoparticle on the 

interaction between a nanoparticle and a surface have been investigated, respectively. 

The results show that the size of a calcite nanoparticle has an apparent effect on 

the interaction between the nanoparticle and surfaces in vacuum, but this influence 

has not been found in the aqueous environment. For a nanoparticle104 in vacuum, the 

interaction is highly dependent on the orientation of the nanoparticle for both planar 

{1 0    4} and stepped surfaces (e.g. {3 1    8} and {3       16}). The most stable 

interface occurs when the lattices of the nanoparticle and the surface are perfectly 

aligned. The aggregation would preferentially occur at the acute stepped {3 1    8} 

surface rather than the planar {1 0    4} surface. While in the aqueous environment, 

the hydration makes the adhesion energy of the systems less sensitive to the 

orientation of the nanoparticle. Meanwhile energy barriers occur as the nanoparticle 

approaches the surface through the interfacial multiple water layers. When a 

nanoparticle approaches the hydrated surface through multiple water layers, it will 

move through a zigzag pathway rather than a straight perpendicular way to overcome 

these energy barriers. It is energetically more favourable for the nanoparticle to 

adhere to the planar {1 0    4} surface than the stepped surface in aqueous 

environment, although the difference in adhesion energies is negligible. 

The study has also been extended to consider a nanoparticle with different 

structure, namely the nanoparticle001 in this thesis. The interaction between the 

nanoparticle001 and calcite surfaces is less dependent on the orientation of the 

nanoparticle in both vacuum and aqueous environment, except for the positive 

charged nanoparticle001 on the CO3
2-

 terminated {0001} surface. Generally, the 

positive charged nanoparticle001 preferentially adheres to the CO3
2-

 terminated {0001} 

surface, while there is no preferential adhesion on the planar surfaces for the negative 

charged nanoparticle001. 
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7.1.3 The growth of calcium carbonate in tilt grain boundaries 

Finally, atomistic simulation techniques were employed to investigate the 

geometry and stabilities of a range of tilt grain boundaries, which are meant to act as 

models of two calcite nanoparticles, after collision has occurred but before growth 

has had a chance to commence. The stability of the tilt grain boundary decreases as 

the terrace area increases. The grain boundary generating by obtuse stepped surface, 

is more stable than the grain boundary generating by acute stepped surface in both 

vacuum and aqueous environment, which is consistent to the evidence form 

calculated surface energy of stepped surface.  

Molecular dynamic (MD) simulations were then used to investigate the growth 

of a series of charge-neutral CaCO3 units at different positions in the grain boundary. 

It is observed that the growth process modelled in the grain boundary in vacuum is 

highly exothermic but unrealistic. Under aqueous conditions, the preferential growth 

of CaCO3 units is dependent on the angle of the steps formed in the channel voids of 

the grain boundary. The initial incorporation of a CaCO3 unit is preferential at the 

obtuse step of the joints in the grain boundary, while it is much more energetically 

favourable at the acute step of the joints when growing from a kink site. Our results 

suggest that when the two calcite nanoparticles collide and form a grain boundary in 

the aqueous solution, the ratio of activation enthalpies for the initial growth of a 

CaCO3 unit at acute step to obtuse step is 1.3 to 2.1, Furthermore, the growth 

velocities of the acute step should be higher than the obtuse step, once the initial 

growth unit has been deposited on the steps, which agrees with experimental findings 

and other theoretical studies. 
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7.2 Future works 

Having investigated the incorporation of cationic impurities in calcite and the 

aggregation process of calcite nanoparticles, this computational study of calcium 

carbonate is only a start in its expansive and diversity fields and there are still much 

more work to be done to gain a further understanding of this fantastic material. 

One of the possible directions for the future research is to investigate the 

incorporation of double various cationic impurities in calcite and predict the mixing 

thermodynamics of tertiary carbonate solid solutions, for example, the 

(Co,Zn,Ca)CO3 system. However, the set of potential parameters should be improved 

to give a good description of both structural and strain effects in this mixed system 

before considering the substitution of Co
2+

 and Zn
2+

 in calcite. Furthermore, some 

divalent cations with ionic radius larger than Ca
2+

 usually prefer to substitute in 

aragonite structure, i.e. Sr
2+

, Pb
2+

 and Ba
2+

. It is interesting to employ the same 

method to investigate the aragonite-type solid solutions and compare the mixing 

behaviors of these divalent cations in both calcite and aragonite. 

For the aggregation of calcite nanoparticles, another future work should involve 

the investigation of the interaction between a nanoparticle and calcite surfaces in 

order to further investigate more complicated systems in terms of particle size and 

aqueous conditions. It should also include developing and applying free 

energy-based molecular dynamic simulations to study the variation of free energy 

during the aggregation and growth process of calcite nanoparticles, where the 

entropy of water molecules should be considered in the system. 

Furthermore, impurities in a crystallization process have been found to have vast 

effects on the morphology of the resulting crystal, with both possible beneficial and 
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detrimental effects for the resultant product. Modelling of growth rates and how the 

presence of impurities affects the morphology of the crystal will be another 

interesting research direction. Under the premise of the accurate potential parameters 

for cationic impurities, it is possible to study the effect of these impurities on the 

growth of calcium carbonate using molecular dynamics simulations, which could 

give us the opportunity to discover the impurity inhibition mechanism under 

complicated conditions. 
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