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Abstract

This thesis reports on the development of a laser system for the manipulation of

molecules using the optical dipole force. The centre-of-mass motion of molecules

within the deep optical lattices created by the laser system, was probed using coher-

ent Rayleigh scattering (CRS) and compared with simulations of these processes.

The laser system was constructed to produce two, temporally coincident, pulsed

beams with durations of hundreds of nanoseconds. The frequency difference between

the two beams was controlled to be on the order of 1 GHz. This frequency control

was produced by the construction of a low power ( 20 mW) Nd:YVO4 microchip-

type laser which was frequency chirped by rapidly changing cavity length via an

intra-cavity electro-optic crystal. The deleterious effects of intensity modulation in-

duced by this process, were overcome by the design of an injection locking system

with a free running semiconductor diode laser. This master slave laser system was

pulse amplified to the required intensity in a fibre amplifier and a Nd:YAG flash-

lamp pumped amplifier system with a total gain of 109 maintaining the frequency

characteristics of the low power laser system.

The motion of molecules trapped in the optical lattice produced by the laser

system was probed using CRS. Long pulse CRS was performed on xenon and octane

gases utilising 100-200 ns pulses with a flat-top profile.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Introduction

The creation of trapped cold and ultra cold molecules is of great interest as they

offer the potential to observe properties and interactions normally masked at higher

temperatures. There is no strict definition for the cold regime, however it is typically

1 K > T > 1 mK and the ultra cold is T ≤ 1 mK [1, 2, 3].

Cold and ultra cold molecules have many possible applications including high

resolution spectroscopy which may allow for measurements of parity violation and

time variation of the fundamental constants. They also allow experiments which may

put limits on the magnitude of the electron electric dipole moment. Cold trapped

molecules offer the possibility of studying many interactions and at temperatures

where the de Broglie wavelength becomes comparable to the molecular size and

therefore where quantum effects may dominate intermolecular interactions. High

resolution collision experiments made possible by the ability to control collision en-

ergies at low temperatures are also starting to provide information on the molecular

structure, including collisional cross sections at well defined energies.

1.1.2 High Resolution Spectroscopy

Often, spectroscopic resolution is limited by the interaction time between the parti-

cles being studied and the laser field used to probe them. The use of slowed molecules

to resolve hyperfine transitions has been demonstrated [4]. Measurement of the flu-

orescent decay of Stark decelerated and electrostatically trapped CO molecules has

been used to measure the difference in the lifetimes between rotational states [5]

and in a similar way precision measurements have been made of the vibrationally
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Chapter 1: Introduction

excited OH radicals [6]. Photoassociative spectroscopy [7] of cold molecules, enables

observation of small vibrational and rotational spacings of long range molecular in-

tervals [8, 9]. In all these cases it is primarily the longer interaction time made

possible with cold trapped molecules that enables the higher resolution measure-

ments.

Electron electric dipole moment and parity violation

There is great potential to use cold molecules for precision spectroscopic measure-

ments that put limits on the magnitude of the electron electric dipole moment. A

large non-zero dipole moment of the electron implies through CPT theory both

violation of time reversal symmetry and parity [10, 11].

To measure the electron dipole moment (e.d.m.), unpaired electrons are required,

since otherwise the e.d.m.’s will cancel and cannot be observed. The ability to

measure the e.d.m. is limited by the size of the applied electric field (ǫ), and more

importantly, the effective electric field (ǫeff) from the molecule, as experienced by

the unpaired electron. The ratio of these fields, ǫ/ǫeff is known as the enhancement

factor. This enhancement factor is proportional to the degree of polarisation by the

external field which for cold heavy polar molecules can be up to 103 times greater

than for atoms where the magnitude is limited by the external field. Thus the energy

shift in the levels due to the e.d.m. and the applied field can be up to 103 times

greater in molecules.

High resolution spectroscopy of cold chiral molecules [12] may allow for detection

of parity violation by the measurement of the small energy conversion (10−11 J mol−1)

between the R and S enantiomers of the ground state [13]. This measurement could

be improved by the use of cold, trapped molecules.

Internal state interferometry (Stückelberg Interferometry) with ultra cold Cs2

molecules has been demonstrated by Mark et al. [14] with a possible application

to detecting parity violation. This has allowed the precise determination of the

difference in energy between two states of the molecule. This technique can measure

energy scales below h × 1 Hz, where h is Planck’s constant, which is in the region

of the feeble interactions between molecular states, such as non-conserving parity

interactions.

Time variation of fundamental constants

The consensus is that the physical constants do not change with time. However

it has been theorised that this may not be the case [15] within the context of the

Kaluza-Klein models [16]. These suggest that there may be more than the usual
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Chapter 1: Introduction

four dimensions that we observe (space and time) which allow for the variation of

the physical constants in our own four-dimensional world.

The use of high resolution spectroscopy to measure the difference between closely

spaced levels between, for example vibronic and a fine structure level, offers the

possibility of measuring the fine structure constant α and the ratio mp/me to high

precision [17]. It has also been proposed to use laser spectroscopy on ultra cold

molecules to test the time dependence of the electron and nuclear mass by comparing

the frequencies of different transitions in the ground electronic state [18].

High precision measurement of the Λ-doublet microwave transitions in Stark

decelerated OH molecules could, if compared to measurements of OH megamasers

in interstellar space, give a sensitivity of 1 part per million for changes in the fine

structure constant over a time of 1010 years [19].

1.1.3 Many body interactions

At cold temperatures dipole-dipole interactions which are both spatially anisotropic

and long range can become significant. There have been many studies of magnetic

dipole-dipole interactions between atoms [20, 21] however these interactions are con-

siderably weaker than in electric-dipoles in cold molecules, which can be tuned by

an applied electric field.

The creation of a quantum degenerate molecular gas requires the production of

ultra cold molecules at sufficient phase space densities, since dipole-dipole interac-

tions scale as 1/r3. Whilst samples of molecular gases have been produced which

approach quantum degeneracy [22, 23], dipole-dipole interactions between molecules

have not yet been observed.

A dipolar molecular gas would provide a quantum mechanical model of solid

state materials, including investigations of spin waves, quantum phase transitions

and large interaction strengths.

Cold atoms have led to the observation of the first Bose Einstein condensate [24],

the first Fermi gas [25] and the first observation of a phase transition from an in-

compressible superfluid to Mott insulator [26]. Exotic quantum phases have been

demonstrated with cold atoms loaded into a 3D optical lattice [27] and proposed for

cold polar molecules [28, 29] including quantum magnetism [30] which involves long

range dipole-dipole ordering of polar molecules.

Molecular Bose Einstein condensates have also been produced more recently

using Feshbach resonances [31, 32], which will be discussed in detail later. This

has been achieved by creating ultra cold Fermi gases of atoms, and then tuning an

external magnetic field over a Feshbach resonance where a weakly bound molecule
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Chapter 1: Introduction

can form from constituent atoms. Qian et al. describe a scheme to produce a polar

molecular BEC from ultra cold atoms [33] by tuning a laser over a photoassociative

resonance, which offers the advantage of greater flexibility and control than magnetic

fields.

1.1.4 Cold chemistry

At ultra cold temperatures, chemical reactions can become quantum mechanical in

their nature. Instead of the reaction rate continuing to drop with lower temperatire,

the reaction rate may increase as quantum tunnelling can overcome the repulsive

barrier [34]. At cold and ultra cold temperatures, complete control over chemical

reactions is possible [35], where control of the quantum state, such as the spin state

can allow or prevent a reaction from taking place [36]. This contrasts with ‘normal

chemistry’ where reactions are due to the average of many-particle interactions.

The high resolution offered by cold trapped molecules also enables a more precise

measurement of the Stark shifts by weak electric fields where hyperfine effects must

be incorporated. Such measurements could be used to assess first and second-order

perturbation theory approximations to Stark shifts [37].

1.1.5 Collisions

Control over the velocity of cold molecules allows high resolution studies of collisional

processes, and the testing of potential energy surfaces (PES’s) with high precision,

especially at long range [38, 39, 40]. Early experiments involving crossed beams of

molecules tuned the collisional energy by varying the intersection angle between the

beams. This allowed studies of the reaction barrier for reactive scattering [41, 42] and

measurement of the threshold behaviour of rotational energy transfer [43, 44, 45].

The resolution was limited by the relatively large spread in velocities of the beams

(∆v/v ≈ 10 %) [46]. Sawyer et al. describe an experiment where Stark decelerated

OH molecules were trapped in a permanent magnetic trap at a temperature of

70 mK [47]. They were then collided with velocity-tunable supersonic beams of

atomic He and molecular D2 at tunable, collisional center of mass energies of between

60 cm−1 - 230 cm−1 and 145 cm−1 - 510 cm−1. The resolution was still limited by the

velocity spread of the supersonic beams of atomic He and molecular D2, (T > 1 K).

Resonant and quantum threshold effects were demonstrated.

Comparison of these high resolution experiments with theory increases our in-

sight into elastic and inelastic scattering in the presence of applied fields. This is

important in predicting collisional cooling in electromagnetic traps as well as calcu-
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Chapter 1: Introduction

lating trap loss [48], and for testing molecular structure calculations [49, 50].

1.2 Techniques for producing cold molecules

1.2.1 Introduction

There are a variety of techniques that have been employed or are being pursued to

produce cold and ultra cold molecules. These can be grouped broadly into the two

main categories of associating cold atoms to form molecules [51] and phase space

filtering which involves selecting a small region of phase space, corresponding to a

small energy spread [52]. These can then be trapped and cooled to the cold and

ultra cold regime, where further cooling may take place [53]. The production of cold

molecules from ultra cold atoms is currently able to reach the lowest temperatures,

in the < 1 mK regime, however, these techniques are limited to particular species

where their exists a Feshbach or photoassociative resonance.

1.2.2 Laser cooling

Conventional laser cooling is not generally applicable to molecules, due to a lack

of a closed cycle laser transition. This type of dissipative cooling requires many

cycles of excitation via a pump laser and then spontaneous emission to the same

state. However, a molecule may decay into many rotational or vibrational channels,

causing the species to fall out of resonance with the pump laser and therefore prevent

further cooling of the molecule unless other pump lasers are available to re-pump

into an excited state. The practical difficulties in having many lasers operating at a

variety of frequencies generally prohibit this.

There are however some schemes that overcome this problem. For example Bahns

et al. [54] describe a novel scheme in which a single laser generates a spectrum of

stimulated Raman sidebands which are sequentially amplified and selected in order

to continue to cool the molecules as they change state and the resonant frequency

changes. More recently, Shuman et al. [55] describe direct laser cooling of SrF

molecules to the mK regime, choosing excited states where the vibrational and

rotational decay channels are restricted or eliminated. Just three lasers are required,

including a primary pump and two vibrational re-pumping lasers making this method

experimentally feasible.
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1.2.3 Feshbach resonances and photoassociation

Resonant laser fields, and external magnetic and electric fields can be used to induce

Feshbach resonances and control reactions and scattering lengths between colliding

atoms or molecules [56, 57, 58, 59]. This occurs due to the modification of the

internal energies of the species due to the interaction with the external optical or

electric/magnetic fields. In this way Feshbach resonances can be used to produce a

bound state from two colliding atoms to form a weakly bound molecule [60]. Here

the translational temperature of the molecules is comparable to the temperature

of the constituent atoms, and therefore can be in the µK regime in the case of

Cubizolles et al. who produced ultra cold Li2 dimers [61].

Photoassociation has been extensively used with a laser tuned to a resonance

such that two or more atoms may form a bound, excited state molecule [62] with a

translational temperature comparable to the initial temperature of the constituent

atoms. For example Haimberger et al. produced NaCs molecules in an excited

state, at a few hundred µK which decayed into their electronic ground state through

spontaneous emission [63]. The technique has been developed using additional lasers

to produce ground state molecules. For example Nikolov et al. produced potassium

molecules in the X1Σ+
g electronic state by first using photoassociation to produce

a weakly bound excited state, and then to shorter range Rydberg states using an

additional laser and eventually by radiative decay to the final ground state [64].

Other similar techniques for obtaining molecules which are in a ground state have

been described. These usually involve photoassociation of atoms to form an excited

molecule and often via an intermediate stage, to a ground state molecule via radiative

decay [65, 66].

1.2.4 Photodissociation

A novel technique developed in Durham called ‘Photostop’ uses the recoil velocity

of NO when dissociated from NO2 to cancel out the molecular beam velocity [67]

for a portion of the molecules. Estimated densities of 107 cm−3 per quantum state,

and translational temperatures of 1.6 K have been observed. A dye laser which can

be tuned between 380 and 400 nm is used to dissociate the NO2 molecules and a

second laser is used to ionise for detection and measurement of the velocity spread

of the ensemble.
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1.2.5 Buffer gas and sympathetic cooling

The use of a buffer gases such as helium, is often used to bring a molecular sample

down to the 100 mK - 1 K regime [68, 69]. Elastic collisions between the buffer gas

and the atomic/molecular sample dissipates translational, vibrational and rotational

energy from the hotter species where they can be trapped in a conservative field,

for example in a magnetic trap [70]. The effectiveness of this method and the

time required for thermalisation depends on the elastic collisional cross-section of

the cooling species with the buffer gas as well as the buffer gas density. It is not

dependent on the particular energy levels of the system [70], except where this affects

the ratio of inelastic and elastic collisions, and the elastic collisional cross-section. It

is therefore a relatively general technique for a great variety of atoms and molecules.

This technique is accompanied by effective cooling of the rotational and vibrational

degrees of freedom [70, 68, 71]. Weinstein et al. have demonstrated the magnetic

trapping of calcium monohydride molecules which were first cooled through elastic

collisions with a buffer gas of He [72].

Sympathetic cooling is essentially an extension of the buffer gas cooling tech-

nique but using colder, laser cooled atoms, in the µK regime, to thermalise another

atomic or molecular species. This is suitable for species which may not be cooled

using standard laser cooling techniques. For example 6Li fermions [73] have been

evaporatively cooled with the 7Li boson isotope and 41K [74] has been evaporatively

cooled with rubidium. To achieve thermalisation, the two species must be trapped

together for a long enough time that sufficient collisions occur between the ultra cold

species and the hotter species. Both species will therefore tend towards the same

common temperature.

There are several schemes for using sympathetic cooling to produce cold and

ultra cold molecules which may allow the production of cold molecules below the

usual limit of > 10 K. One of the most important calculations for these schemes

is the collisional cross section between potential candidates for cooling [75, 53, 76],

which determine the thermalisation time. This must be within the lifetime of the

trap.

1.2.6 Cavity cooling

Atoms which are strongly coupled to a high finesse cavity can be subjected to a

dissipative friction force which dampens the motion and results in cooling [77, 78, 79].

This arises from the finite time needed for a cavity to adjust to a change in optical

path length due to the motion of an atom within it. Dissipation of kinetic energy
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is via cavity loss of blue shifted photons rather than spontaneous emission, making

this an attractive prospect for molecules, since no closed laser transition is required.

It also avoids or reduces other problems associated with laser cooling, such as atom

recoil and photon re-absorption.

The use of cavity assisted cooling has also been proposed for atoms and molecules

[78, 80, 81]. Wallquist et al. compare various schemes for electrostatically trapped

polar molecules, which are strongly coupled to a microwave cavity. This enhances

spontaneous emission of the excited rotational states and cools the molecule.

1.2.7 Zeeman and Stark deceleration

Time varying, inhomogeneous electric fields can be used to decelerate polar molecules

[82, 83, 84]. Bethlem et al. describe the deceleration of metastable CO molecules

from 225 ms−1 to 98 ms−1 and have since decelerated a number of molecules to rest.

This technique employs the Stark effect which is induced by the applied electric

field. Since it is not possible to create an electrostatic maximum in free space [85], it

is generally weak field seekers that can be efficiently decelerated, although there are

some techniques to avoid this problem [86, 87, 88]. As a weak-field seeker approaches

the electrodes, the Stark shift in the energy levels causes a gain in potential energy

and a resultant loss in kinetic energy. If the field was kept on, then the particle

would lose potential energy and regain its kinetic energy as it exited the electrodes.

Instead, the electric field is switched off at the maximum gain in potential energy.

Since the amount of kinetic energy that can be extracted in each stage is limited,

many stages are required [89].

The principle limitation of this technique is that only molecules with a permanent

dipole moment can be slowed. Also, as all ground state molecules are high-field

seeking, for the simplest configuration of Stark deceleration the molecules must first

be excited into a low-field seeking state. The first implementation of the Stark

effect was to decelerate CO molecules which had been excited into the metastable

state [89].

Rydberg molecules are of great interest since their large dipole moment made

them ideal candidates for Stark deceleration [90]. This has been implemented with

supersonic beams of Ar [91, 92] and H in the Rydberg state with principle quantum

number in the 15-25 range. The advantage of the larger dipole moment is that the

fields required are much smaller, for example a few kV/cm are required to decelerate

H from 750 ms−1 to rest. Tunable microwave electric fields for Stark deceleration

have also been proposed by Enomoto et al. [93]. A wider range of polar molecules

could be made available with tunable microwave sources.
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The Stark effect has also been employed in velocity selection of molecules, for

example using an electrostatic quadrupole to filter out molecules with smaller trans-

verse and longitudinal velocities [94, 95]. In this way, slow ND3 and H2CO molecules

with a longitudinal velocity of a few K have been guided in a vacuum chamber from

a room temperature reservoir.

The use of pulsed magnetic fields and the Zeeman effect is analagous to the use

of electric fields and Stark effect. In this technique, paramagnetic molecules gain

potential energy as they approach each stage of the magnetic coils, losing kinetic

energy. The fields are then switched off in sequence, so that the molecules do not

regain their potential energy. Most molecular radicals have a permanent magnetic

moment, however molecular oxygen is unique in being paramagnetic in the ground

state. It is partly for that reason that it was chosen as a candidate by Narevicius et

al. [96] who used pulsed electromagnetic coils to decelerate molecular oxygen from

389 to 83 ms−1.

1.2.8 Optical Stark deceleration

The use of the optical Stark effect for deceleration [52, 97, 98] and focusing [99, 100]

of neutral molecules in a molecular jet, including benzene, NO and xenon, has been

demonstrated by Fulton et al [97]. This uses the deep (E/kB > 100 K) periodic

potentials (optical lattice) produced by interfering two intense far off-resonance op-

tical fields in the 1016 W m−2 range which induce a dipole moment in a polarisable

species. This in turn interacts with the applied optical field. Up until now, a con-

stant velocity lattice, set at half the speed of the jet has been used to decelerate

benzene molecules to rest.

Like Stark and Zeeman deceleration, molecules must first be cooled from room

temperature before they can be manipulated by the optical fields. They are first

cooled by a supersonic expansion into a primary vacuum chamber (2 × 10−7 Torr)

via a pulsed valve with a 500 µm orifice. This supersonic jet has a mean velocity of

≈ 400 ms−1, for example and a translational temperature of ≈ 1− 2 K. A skimmer

then selects the central portion of the molecular beam with minimal radial velocity

where they then enter the secondary chamber, which is kept at 4 × 10−7 Torr. In

this chamber, they interact with the laser beams used to form an optical lattice,

which decelerates them.

Molecules which interact in such a lattice undergo oscillations in phase space, in

terms of their position and velocity. The pulses are temporally shaped such that

they switch off after molecules have undergone a half rotation in phase space and

therefore experience greatest deceleration. More recently the technique was refined
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to decelerate benzene from a xenon-backed jet velocity of 420 ms−1 to rest [101].

The main advantage of this technique is that it is entirely general since any

molecule is polarisable and is limited only by the polarisability to mass ratio of the

species and the available intensities/energies of the laser beams used to create the

optical lattice.
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Chapter 2

Modelling deceleration of atomic

and molecular species

2.1 Introduction

Optical Stark deceleration uses intense optical fields to induce a dipole moment

which then interacts with the field that created it to produce an optical potential.

The gradient in the optical potential has sufficient force to manipulate the centre-of-

mass motion of molecules and atoms which can be used to slow atoms and molecules

in a molecular beam. In an inhomogeneous optical field ǫ the instantaneous optical

potential U experiences by molecules, with polarisability α is given by [97],

U = −1
2
αǫ2. (2.1)

We consider that our beams, which are at λ = 1064 nm, are far detuned from any

transitions in our molecular species and therefore the interaction is due only to the

static polarisability of the species.

The force that can be applied to molecules is therefore proportional to the inten-

sity gradient such as exists in a tightly focused laser beam [100]. A larger gradient

can be created by the interference pattern formed by two near counter-propagating

laser beams. The optical potential formed by the interaction of the interference

pattern with the polarisability of the molecules, produces a periodic potential called

an optical lattice.

For two counter-propagating beams with wave vectors k1,k2 where we only con-

sider the wave vectors as being in the x direction, with a radial intensity profile

in the r direction, the two optical fields, ǫ1 and ǫ2 that form the optical lattice are
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given by,

ǫ1(r,x, t) = E1(r, t) sin (k1 · x− φ1(t))

ǫ2(r,x, t) = E2(r, t) sin (k2 · x− φ2(t)) , (2.2)

where E1 and E2 are the amplitudes of the electric fields, φ1,2(t) =
∫

ω1,2(t)dt are

the instantaneous phases of the beams that create the lattice, and ω1,2(t) are the

instantaneous angular frequencies of each beam.

For simplicity we also assume here that the instantaneous phases are constant,

such that φ1,2(t) = ω1,2(t).The total electric field ǫ = |ǫ1 + ǫ2| is therefore given by,

|ǫ|2 = 1

2

(

E2
1 + E2

2 + E2
1 cos [2k1 · x− 2ω1t] + E2

2 cos [2k2 · x− 2ω2t]
)

+ E1E2 cos [(k1 + k2) · x− (ω1 − ω2)t] + E1E2 cos [(k1 − k2) · x− (ω1 + ω2)t] .

(2.3)

We simplify this by removing the terms which are oscillating at twice the optical

and spatial frequencies, 2k1,2 and 2ω1,2 to give,

|ǫ|2 = 1

2

(

E2
1 + E2

2

)

+ E1E2 cos [(k1 + k2) · x− (ω1 + ω2) t]

+ E1E2 cos [(k1 − k2) · x− (ω1 − ω2) t] . (2.4)

We are only interested in the slowly varying optical potential for molecular trans-

port, therefore we can also neglect the second term which will be oscillating more

than the optical frequency to give,

|ǫ|2 = E2 (1 + cos [(k1 − k2) · x− (ω1 − ω2) t]) , (2.5)

where we have also assumed that E1 = E2 = E.

More generally, the (ω1 − ω2) t term can be replaced by the instantaneous phase

difference φ1(t)− φ2(t) = φ(t) such that,

|ǫ|2 = E2 (1 + cos [(k1 − k2) · x− φ(t)]) , (2.6)

Finally this can be substituted into equation (2.1) to give the slowly varying optical

lattice potential UL, produced by the interaction of the optical lattice produced by

fields ǫ1 and ǫ2, with a molecule of polarisability α as [97],
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UL(r, x, t) = −1

2
αE2(r, t) cos [qx− (φ(t))] , (2.7)

where q is the amplitude of the lattice wave vector also defined as q ≡ |k1 − k2| and
x = |x|. We have also neglected the constant term which is an offset to the optical

lattice.

It is assumed here, and throughout this thesis that the wave vector q is a constant.

In order to verify this note that,

q ≡ |k1 − k2| = 2π sin

(

θ

2

)(

1

λ1
+

1

λ2

)

, (2.8)

where θ is the angle of separation between the two counter propagating beams that

create the optical lattice and λ1, λ2 are the respective wavelengths. This can be

rewritten, considering that the lattice wave vector and frequencies of the beams

may have a time dependence as,

q(t) =
2π sin

(

θ
2

)

c
(f1(t) + f2(t)) , (2.9)

where f1, f2 are the frequencies of each beam. This implies that ∆q/q = ∆f/f ,

where ∆q = q(t = t0) − q(t = tchirp) and ∆f = f(t = t0) − f(t = tchirp). Here

tchirp is the duration of the frequency sweep. For a maximum required chirp of

≈ 1 GHz, ∆q/q = 1 × 109/2.8 × 1014 ≈ 10−6. This justifies the assumption that q

remains essentially constant for the duration of the chirp, and therefore has no time

dependence. Therefore q = 4π sin(θ/2)
λ

, λ1 ≈ λ2.

Using equation (2.7), the dipole force, F (x, t) = −∇UL(x, t) is given by [101],

F (x, t) = −F0 sin [qx− φ(t)] , (2.10)

where F0 is the maximum force that is applied to the molecules and is given by

[101],

F0 ≡
1

2
αqE2. (2.11)

In the case of a simple linear chirp from an initial frequency difference ω0 and a

chirp rate β(t) = dω(t)/dt, where ω(t) = 2πf(t), the force is given by,

F (x, t) = −F0 sin

[

qx−
(

ω0t−
1

2
βt2

)]

. (2.12)

As we are generally interested in the motion of an ensemble of molecules, one way

to model the motion of the ensemble is by solving the Boltzmann equation. In

1-dimension this is given by [102],

19



Chapter 2: Modelling deceleration of atomic and molecular species

∂g

∂t
+ v

∂g

∂x
+
F (x, t)

m

∂g

∂v
=

(

∂g

∂t

)

c

, (2.13)

where the velocity distribution function g = g(x, v, t), (∂g/∂t)c is the collision inte-

gral (the rate of change of the distribution function), F (x, t) is substituted by the

optical dipole force in equation (2.12) and m is the molecular mass. In the colli-

sion free regime, (∂g/∂t)c = 0 and this can be numerically integrated to predict the

dynamics of an ensemble of molecules using, for example, the MacCormack finite

difference method [102, 103]. The measurements of laser intensity and measured

temporal profile can be input into the scheme.

A fixed frequency difference between the two beams will create a constant velocity

lattice which has been used to decelerate molecules, using a half oscillation of the

molecules in phase space which are trapped in the deep optical lattice [97]. The

lattice velocity, vL created by two beams with an angular frequency difference ∆ω

and wave vector q is given by,

vL =
∆ω

q
. (2.14)

2.2 Constant velocity optical lattice deceleration

In previous deceleration experiments, constant velocity lattices were used to slow

nitric oxide (NO) and benzene (C6H6) molecules in a molecular jet to rest in a

backing gas of xenon [97, 52, 104]. The formation of such an optical lattice is

shown in figure 2.1. To produce the optical lattices, two single-mode injection-

seeded, Q-switched, Nd:YAG lasers were used. The two beams were focused down

to a full-width half maximum (FWHM) of 60 µm and intersected at θ = 167.5◦ to

produce a periodic potential with a period of approximately 532 nm and intensities

of approximately 1012 W cm−2. The FWHM duration of the lattice pulse was 5.8

ns.

In order to produce a constant velocity lattice, the lasers were temperature tuned

to produce the required frequency difference. It was found that a lattice velocity

set at half the molecular beam velocity (≈ 400 ms−1) could produce a proportion of

stationary molecules in the laboratory frame. Since molecules in a periodic potential

will undergo oscillatory motion, to slow molecules, the field is switched off when the

molecules have undergone a half rotation or a half rotation plus an integer number

of oscillations. In the case of benzene molecules with mass 78 a.m.u. and static

polarisability of α = 11.6 × 10−40 cm2 V−1 , and an optical lattice created by two

fields of intensity I = 2.2×1012 W cm−2, this created an oscillation period of 2.0 ns.
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Figure 2.1: Formation of optical lattice with intense infrared laser beams with angle
of intersection θ

This scheme, although successful, is limited to creating slowed molecules ensem-

bles with an energy spread that is comparable to the initial spread of the molecular

beam, while the required fast switching of the optical field is technically challeng-

ing. A narrower energy spread centered at 0 ms−1 can be created by trapping these

molecules with a lower trap depth than the decelerating potential, however it is not

suitable for high resolution collision studies at arbitrary velocities which require a

narrower energy spread.

In this thesis, I explore the creation of ensembles with energy spreads that are

much narrower, using chirped optical Stark deceleration.

2.3 Motivation and requirements for chirped op-

tical Stark deceleration

The creation of a narrower energy spread of molecules is required to improve the

resolution of collisional experiments, as well as producing a colder distribution of

decelerated molecules, making them more suitable for trapping and sympathetic

cooling. A scheme that uses a decelerating optical lattice has been described theo-

retically [105, 102]. The dynamics in this scheme occur over a much longer period

(20-1000 ns) when compared to the constant velocity scheme, allowing for slower

switching of fields. Despite the lower intensities required, relatively large energies

are still required, (up to 0.5 J per pulse), due to the longer pulse durations.

The slowly varying lattice potential UL(x, t) for a linearly decelerating/accelerating

lattice from equation (2.7), without the constant offset, can also be written as [52],

UL(r, x, t) =
−α
ǫ0c

√

I1(r, t)I2(r, t) cos(qx− (ω0t− 1
2
βt2)), (2.15)

where α is the polarisability of the species, I1(r, t) and I2(r, t) are the intensities

of the two laser beams which create the lattice, q =
4π sin(

θ
2
)

λ
is the wave vector,

21



Chapter 2: Modelling deceleration of atomic and molecular species

ω0 = 2πf0 is the initial angular frequency difference. The chirp rate, β = ∆ω/∆t,

is determined by the angular frequency excursion ∆ω and the chirp duration is ∆t.

A decelerating lattice would be represented by −β and an accelerating lattice by β.

The optical lattice velocity is controlled by sweeping the relative frequency of

the two beams (chirping). For deceleration from a molecular beam of xenon, the

lattice velocity must change from 400 ms−1 to zero velocity. Since the difference in

frequency as a function of time of the lattice is, fL(t) =
2vL(t) sin(θ/2)

λ
, where vL(t) is

the instantaneous lattice velocity, λ is the wavelength of the laser beams, and θ is

the angle between them, this implies that we need to start with an initial frequency

difference of ≈ 750 MHz for near counter-propagating beams. Given that other

backing gases such as argon may be used where jet velocities may be up to 560 ms−1,

this frequency difference can be even larger. For deceleration times in the range 20-

1000 ns, the required chirping rate is therefore in the range of 1− 40 GHz µs−1.

Another major requirement for the laser pulses is that they ideally have a flat

temporal profile, with a relatively fast rise and fall time. The depth of the potential

experienced by a molecule is proportional to the square root of the product of the

intensities of the laser, as shown by equation (2.15), therefore any decrease would

cause a loss of population from the optical wells. An increase in intensity over

the duration of the pulse would also be sub-optimal, because you would simply

deepen the potential well of already confined molecules. This would waste the finite

amount of energy available in the amplifying rods and due to the increased width of

the potential, there would be unwanted heating of the decelerated distribution.

As the required laser system for chirped decelerating was not available commer-

cially, a significant part of this thesis is dedicated to its design and construction.

In chapters 3-5 I will describe the development of this unique, high energy,

chirped laser system suitable for the deceleration of molecules in a molecular jet.

2.4 Phase space diagrams

To investigate the trajectories of accelerated or decelerated particles within an op-

tical lattice we consider their motion relative to a moving lattice. We work in the

reference frame of the lattice, since for the purposes of this thesis, we are only inter-

ested in trapped molecules which move at the same centre of mass velocity as the

optical lattice and not the molecules which just have their velocities perturbed by

it.

Using equation (2.12) the equation of motion for a particle in a linearly chirped

lattice is given by [105],
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ẍ(x, t) = −a(t) sin
(

qx+
1

2
βt2 − qv0t

)

, (2.16)

where a(t) = 1
2
αqE0(t)

2/m is the maximum force per unit mass supplied by the

lattice, v0 is the initial lattice velocity and β(t) = dω2(t)/dt is the frequency chirp.

In the reference frame of a decelerating lattice, we replace position and velocity,

with the dimensionless quantities of phase, θ and phase velocity η, where θ = qx+

(β/2)t2 − qv0t and η = (qẋ + βt − qv0)/
√

β/2. The critical points are found from

the equations of motion for the particles where [102],

dη

dT
= 2− 2

ψ
sin θ,

dθ

dT
= η, (2.17)

where T ≡
√

β/2 t is the dimensionless time and ψ ≡ β/aq which physically is a

measure of the effective depth of the potential well of the lattice. The two critical

points of this system are given by [102], [θ1, η1] = [2nπ− sin−1 ψ, 0], which are stable

points where n is an integer, and [θ2, η2] = [(2n− 1)π + sin−1 ψ, 0] which are saddle

points.

The potential as a function of the phase in the moving reference frame is U(θ) =

−
∫

m/q2d2θ/dt2dθ [105], which from equation (2.17) gives,

U(θ) = −mβ
2q2

(

2

ψ
cos θ + 2θ

)

. (2.18)

The depth of a potential well, ∆U , is the difference between a saddle point and

the stable equilibrium given by [102],

∆U =
ma

q

[

2 cos
(

sin−1 ψ
)

− ψ
(

π − 2 sin−1 ψ
)]

. (2.19)

Equation 2.19 shows that no potential can exist for ψ ≥ 1 since mathematically,

there is no value for sin−1 x,where x > 1. Physically this implies that no potential

well exists when the chirp rate is too high compared to the maximum force per unit

mass supplied by the optical lattice to the polariseable particle. Since ψ = β/aq,

β

aq
< 1 (2.20)

The potential U(θ) is plotted in figure 2.2 for three values of ψ = 0.3, 0.5, 0.8,

presenting three depths of the optical potential for a decelerating lattice. In the case

of 0.8 the potential is relatively shallow, which would therefore trap the smallest

proportion of molecules. At the opposite extreme, where ψ = 0.3 represents a

decelerating lattice with a lower chirp rate, or one with larger intensity beams,
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Figure 2.2: This plot is the potential as a function of phase, U(θ), for three ratios of
chirp rate to intensity, (a) ψ = 0.8, (b) ψ = 0.5 and (c) ψ = 0.3. It can be seen that
the effective well depth decreases as the parameter ψ increases, which represents
either an increasing chirp rate or decreasing laser beam intensity. This is calculated

using the relationship, U(θ) ∝
(

2
ψ
cos θ + 2θ

)

.

where the chirped lattice potentials are much deeper.

The equations of motion given by (2.17) can be solved numerically to produce

phase space plots that map out trajectories of phase velocity and phase position,

as shown by figure 2.3. Here the trajectories of 15 particles are mapped out in the

phase space, with the x-axis representing the phase relative to the reference frame,

θ of the lattice and the y axis representing dimensionless phase velocity η which

can be related to the actual velocity as v = η

√
β/2

q
. The particles start with a

variety of initial velocities and phases. The tear drop shaped trajectory, which is

almost a closed orbit maps out the separatrix between particles which are trapped

by the optical lattice and the un-trapped particles. In dimensional units this critical

velocity is given by [102],

vc(θ) = V
[

cos θ − cos
(

π − sin−1 ψ
)

+ ψ
(

θ + π + sin−1 ψ
)]1/2

, (2.21)

where V = 2
√

(β/2)/ψ/q.

The particles mapped out by the closed, elliptical trajectories are particles start-

ing with zero velocity relative to the lattice, and sufficiently close to the centre of

the lattice site to remain confined. They also indicate the positions of the centres

of the lattice sites, where two lattice sites can clearly be seen. The rest of the par-
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Figure 2.3: Trajectories of molecules over two lattice sites, for various initial phase
positions and phase velocities for ψ = 0.735. The tear drop shaped, almost closed
trajectory represents the separatrix between molecules which are trapped by the
optical potential. Outside this region, are the trajectories of particles which are just
perturbed by the lattice.

ticles shown start with velocities of η = −4 and various phase positions. They are

perturbed by different degrees according to how close they pass to the centre of the

lattice sites.

The dimensionless phase velocity as a function of time can be converted back

to dimensionless units, according to η = vq/(β/2)0.5. The evolution of velocity

over the duration of the chirp for various benzene molecules with different initial

velocities is shown in figure 2.4 and 2.5. Their initial phase position is chosen so

that the molecules are at the centre of a lattice site, where vc has its maximum

value. Figure 2.4 shows the trajectories of 5 particles with different initial speeds,

that remain trapped over the duration of the pulse. The turquoise trace represents

a weakly confined molecule, and the pink and lime traces represent more strongly

confined molecules. It can be seen that the period of oscillation decreases for stronger

confinement. The black trace shows the evolution of a decelerating lattice velocity.

The blue and red traces show the limits of the minimum and maximum velocity that

a molecule may have in order to be confined by the lattice. For ψ = 0.5 the critical

velocity is ± 25.71 ms−1. This is the maximum/minimum initial velocity a benzene

molecule can have relative to the velocity of the optical lattice .

Figure 2.5 shows the trajectories of molecules which are not confined by the

optical lattice, but have their velocities perturbed. Once again the lattice velocity is
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Figure 2.4: A plot of the trajectories of the benzene molecules initially at different
velocities but with the same phase so that they are at the centre of the potential
well, for ψ = 0.5, representing a chirp of 750 MHz in 140 ns, decelerating from
400 ms−1 to rest. The blue and red lines represent the velocity spread of confined
benzene molecules at ± 25.7 ms−1 compared to the lattice velocity. These lines
represent the maximum and minimum initial velocities at t = 0 to be confined by the
optical potential. The turquoise trace represents a molecule which is just confined
by the potential. The pink and lime green trace represents more strongly confined
molecules, where the period of oscillation decreases, for greater confinement, that is
where the initial velocity is closer to the velocity of the optical lattice.
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Figure 2.5: Trajectory of benzene molecules initially at different velocities but with
the same phase so that they are at the centre of the potential well, for ψ = 0.5 for a
chirp of 750 MHz down to 0 MHz in 140 ns, decelerating from 400 ms−1 to rest over
140 ns. The blue and red lines represent the velocity spread of confined benzene
molecules at ± 25.7 ms−1 compared to the lattice velocity, which also represents
the maximum and minimum initial velocities at t = 0 to be confined by the optical
potential. The turquoise trace represents a molecule which escapes the optical po-
tential after 40 ns because its initial velocity is slightly above the upper limit. This
initial perturbation creates a small oscillation in velocity which damps out over the
duration of the pulse. The lime green trace represents a molecule with an initial
velocity much lower than the optical lattice velocity, which remains largely unper-
turbed in terms of mean velocity, other than a small oscillation in velocity. The
pink and navy traces represent molecules which are strongly perturbed, the former
decelerated by approximately 60 ms−1 and the latter accelerated by 40 ms−1.

shown by the black trace, and the critical velocities by the red and blue traces. The

turquoise trace shows the trajectory of a molecule with an initial velocity slightly too

high and escapes the optical lattice after ≈ 40 ns. The other traces show trajectories

of particles with initial velocities that are much lower than the lattice velocity. They

are perturbed as the lattice velocity approaches their own. It is interesting to note

that the period of oscillation of the molecules, caused by the interaction with the

optical lattice, changes before and after the strong interaction which occurs when

the lattice velocity decelerates to be comparable to that of the molecule.

The fraction of particles (capture efficiency), κ which can be trapped and decel-

erated by the optical field is given by the number of particles, initially in thermal

equilibrium which overlap the trapped region as shown by the phase space plot in
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Figure 2.6: Proportion of trapped benzene molecules, κ, for various values of ψ ≡
β/aq.

figure 2.3 is given by [102],

κ =
1

2π

∫ Θ2

Θ1

∫ vc(θ)

0

√

m

2πkT
e−mv

2/2kTdvdθ, (2.22)

where Θ1 , Θ2 are critical points of equation (2.17) and vc is given by equation (2.21).

For benzene, with mass 78 a.m.u. with polarisability of α = 11.6×10−40 Cm2 V−1

with intensities in both beams of 0.75× 1014 W m−2, with a chirp of 750 MHz, over

140 ns and parameter ψ = 0.962 gives a capture efficiency κ = 0.67 % according to

equation (2.22). Figure 2.6 shows the capture efficiency κ for various values of ψ.

2.4.1 Radial motion in lattice beams

Trapped molecular motion in an optical lattice is not only in the direction along

the optical lattice wave vector. Transverse motion is created by the radial inten-

sity gradient in a Gaussian beam. This potential takes the form [106], U(r) =

1/2αI0/ǫ0c exp [−2r2/ω2
0], where I0 is the maximum intensity and ω0 is the beam

waist, and the force is given by, F (r) = −∇U(r), therefore the force can be written

as,

F (r) = −2αI0r/(ǫ0cω
2
0) exp

[

−2r2/ω2
0

]

(2.23)
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Assuming small oscillations and therefore simple harmonic motion we perform a

second order Taylor expansion of this to give the force near the centre of the beam,

F (r) = (−2αI0r)/(cǫ0ω
2
0).

Since the period oscillation of a simple harmonic oscillator experiencing a force

F (r) = −kr, is P = 2π
√

m/k [107], the period of oscillation in our beams is given

by,

P = 2π

√

mcǫ0ω2
0

2αI0
(2.24)

For deceleration experiments with intensities of I0 = 1 × 1014 W m−2, beam waist

ω0 = 50 µm and using benzene as an example, with mass 78 a.m.u and polarisability

α = 11.6×10−40 C m2 V−1, this gives P = 9.7µs. This is several orders of magnitude

longer than the duration of the decelerating pulse which validates the approximation

of our quasi 1-dimensional model for most situations. To estimate the acceleration

of particles in the radial direction and the distance they may move over the duration

of the pulse, we consider that the maximum force occurs at,

∇ · F (r) = F (r)/r − 4r/ω2
0F (r) = 0 (2.25)

Maximum force is therefore at r = ± ω0/2, where Fmax = I0α/(cǫ0ω0) exp(−1/2).

For the worst case scenario, we consider a particle with twice the most probable speed

at 1 K, where vp =
√

2RT/M , where T is the temperature, M is molar mass and

R is the gas constant.

For benzene, and with the same intensity, I0 = 1 × 1014 W m−2 as before and

given 2×vp = 0.9 ms−1 then this gives the maximum force as Fmax = 5.37×10−19 N,

and the corresponding maximum acceleration amax = 4.1 × 106 ms−2. For a 140 ns

pulse , the change in velocity is 0.57 ms−1 and total distance traveled is 170 nm.

This distance is relatively small compared to the interaction region.

2.5 Numerical modelling of deceleration and ac-

celeration

The simulations up to this stage are for the simplest case of constant intensity beams

and linear chirps, however we may also want to simulate the transport of atomic

and molecular species using realistic and actual experimental parameters, such as

the temporal profile of the laser beams and non-linear chirps.

We therefore performed numerical simulations by solving two coupled equations
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of motion for each individual particle,

dv(x, t)

dt
= −F0 sin(qx− φ(t))

dx

dt
= v(x, t), (2.26)

where F0 = αqI(t)/(mǫ0c) and φ(t) is the relative phase between the two beams.

The Runge-Kutta method was used to solve these equations, which was implemented

using the ODE45 function in Matlab with variable time steps to optimise the calcu-

lation time.

The calculation was then performed for each of a large number of particles (e.g.

20000) to build up a distribution of positions and velocities, since we assume that

the particles do not interact with each other over the duration of the pulse.

We assumed various initial conditions, such as an initial Maxwell Boltzmann

velocity distribution associated with a temperature input by the user and a random

distribution in position over 20 µm. The program then read in the measured tem-

poral profile of a typical pulse (code therefore assumes both pulses have the same

temporal profile) and measurement of the instantaneous phase φ(t) and frequency

f(t).

In all of our simulations we have assumed a 1-dimensional problem. Although

we have calculated that the radial forces are negligible for typical pulse durations in

terms of motion in the transverse direction, our simulation does not take into account

the particles which are trapped or perturbed in the region outside the central region

of maximum intensity. Since these particles will be trapped in a smaller potential,

the overall final temperature of the decelerated/accelerated ensemble may actually

be lower than simulated.

2.6 Numerical modelling of cold stationary

molecules

2.6.1 Idealised temporal intensity profile and linear chirp

For an idealised case, with a perfectly linear chirp from 750 to 0 MHz in 140 ns,

molecules can in principle be decelerated from 400 to 0 ms−1.

Figure 2.7 illustrates a linear chirp, represented by the blue trace, with flat top

temporal profiles represented by the black trace. This pulse has an artificially square

temporal profile, and has been modelled with a super-Gaussian function of the form

I(t) = exp [−((t0 + t)/∆t)100]. This pulse has a rapid rise time, from zero to half
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Figure 2.7: Constant linear chirp from 750 to 0 MHz, represented by the blue trace,
corresponding to a lattice acceleration from 380 ms−1 to rest in 140 ns for near
counter propagating beams which have a simulated, super-Gaussian temporal profile
of the form I(t) = exp [−((t0 + t)/∆t)100], with a half maximum rise time of ≈ 2 ns.

maximum in ≈ 2 ns and a flat profile for a duration of ≈ 170 ns. In this idealised

situation, initially both beams have the same frequency, and therefore the optical

lattice is stationary until the intensities of the beams have reached their maximum

value. The frequency chirp then begins after maximum intensity has been reached

and is maintained for the duration of the chirp.

We study the deceleration of molecules in a molecular beam with an initial

temperature of 2 K, and a corresponding FWHM velocity spread according to v =
√

8 ln 2 kBT
m

as shown by figure 2.8.

Figure 2.9 shows the final distribution of velocities when the decelerating optical

lattice is applied to an ensemble of 20000 benzene molecules, with polarisability

α = 11.6× 10−40 C m2 V−1, and mass m = 80 a.m.u..

We study deceleration using maximum intensities in the (0.75−1.4)×1014 Wm−2

range. The simulations show that as the intensity is reduced, the final velocity spread

generally decreases along with the number of particles captured. The mean velocity

for the decelerated molecules is, ≈ −15 ms−1 which is probably due to the sudden

change in potential that they experience on switch off. This will be explored in

the next set of simulations, where a temporal profile will be modelled with a slower

rise time. The lowest intensity for successful deceleration of benzene molecules is

≈ Imax = 0.75× 1014 W m−2. Here, approximately 140 (0.7 %) molecules have been

decelerated, with a FWHM velocity spread of ≈ 7 ms−1 representing a tempera-
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Figure 2.8: Initial distribution of benzene molecules, with an initial temperature of
2 K, and a corresponding FWHM velocity spread of 34 ms−1.

ture of ≈ 0.2 K. This is not actual temperature, but represents an energy spread

in K according to ∆T = 1
2
m(∆v)2/kB and will be given in subsequent deceler-

ated/accelerated decelerations.

For Imax = 1 × 1014 W m−2, where approximately 1900 (9.6 %) molecules were

decelerated, the FWHM of the velocity spread was ≈ 34 ms−1 representing a tem-

perature of ≈ 5.5 K. For Imax = 0.9 × 1014 W m−2 approximately 2400 (11.9 %)

molecules were decelerated, the FWHM of the velocity spread was ≈ 21 ms−1 repre-

senting a temperature of ≈ 2.1 K. For Imax = 0.8× 1014 W m−2 approximately 400

(2 %) molecules were decelerated, the FWHM of the velocity spread was ≈ 12 ms−1

representing a temperature of ≈ 0.7 K. For Imax = 0.7× 1014 W m−2, no molecules

were decelerated.

For Imax = 1.0 × 1014 W m−2, figure 2.6 which showed the theorectical capture

efficiency κ for benzene for various values of the parameter ψ, predicts ≈ 8 %

of molecules which would be trapped and decelerated by the optical lattice. This

compares well with the simulation, where ≈ 9.6% were decelerated. For comparison,

at Imax = 0.8 × 1014 W m−2, figure 2.6 predicts ≈ 1.8 % which also compares well

with the 2 % which were decelerated in the simulations.
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Figure 2.9: The resultant distribution of velocities when the decelerating optical
lattice described in figure 2.7 is applied to an ensemble of 20000 benzene molecules
for various maximum intensities for each beam. (a) Imax = 1.0 × 1014 W m−2, (b)
Imax = 0.9×1014 W m−2, (c) Imax = 0.8×1014 W m−2, (d) Imax = 0.75×1014 Wm−2,
(e) Imax = 0.7× 1014 W m−2.
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Figure 2.10: Constant linear chirp from 750 to 0 MHz, represented by the blue
trace, corresponding to a lattice deceleration from 400 ms−1 to rest in 140 ns, for
near counter propagating beams which have a simulated, super-Gaussian temporal
profile of the form I(t) = exp [−((t0 + t)/∆t)30], with a half maximum rise time of
≈ 10 ns, comparable to typical rise times achievable with our laser system.

2.6.2 Slower rise time intensity and linear chirp

In order to investigate the effect of a slower rise time, a super-Gaussian pulse, of the

form I(t) = exp [−((t0 + t)/∆t)30] with a half maximum rise time of ≈ 10 ns was

modelled and used in the simulation. This is closer to typical rise times achievable

in a laser system. This profile is shown, overlaid with the same linear chirp, as in

figure 2.10.

Figure 2.11 shows the resultant distribution of benzene molecules at 2 K with

this new temporal intensity profile, but with the same maximum intensity as before.

The mean velocity of the decelerated molecules is now approximately 0 ms−1 indi-

cating that it was indeed the rapid switch off that caused an undesirable ’kick’ to

the velocity spread of the particles. For the threshold intensity for deceleration of

≈ Imax = 0.75× 1014 W m−2, approximately 250 (1.3 %) molecules were decelerated

with a FWHM velocity spread of approximately ≈ 10 ms−1 representing a tempera-

ture of ≈ 0.5 K. This is more particles than in the previous case, with a slightly wider

velocity spread. The number of particles and their energy spread (K) is very sensi-

tive to the intensity. A 10 % decrease in intensity from Imax = 1.0−0.9×1014 W m−2

results in a 35 % decrease in temperature.

For Imax = 1 × 1014 W m−2 approximately 3700 (18.5 %) molecules were decel-

34



Chapter 2: Modelling deceleration of atomic and molecular species

erated, the FWHM of the velocity spread was ≈ 22 ms−1 representing a temper-

ature of ≈ 2.3 K. For Imax = 0.9 × 1014 W m−2, approximately 2300 (11.3 %)

molecules were decelerated, the FWHM of the velocity spread was ≈ 18 ms−1

representing a temperature of ≈ 1.5 K. For Imax = 0.8 × 1014 W m−2, approx-

imately 770 (3.8 %) molecules were decelerated the FWHM of the decelerated

molecules was approximately ≈ 14 ms−1 representing a temperature of ≈ 0.9 K. For

Imax = 0.75 × 1014 W m−2 approximately 250 (1.3 %) molecules were decelerated,

the FWHM of the decelerated molecules was approximately ≈10 ms−1 representing

a temperature of ≈ 0.5 K. For Imax = 0.7×1014 W m−2 no particles were decelerated

except for some deposited at higher velocites and spread over a large velocity range.
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Figure 2.11: The resultant distribution of velocities when the decelerating optical
lattice described in figure 2.10 is applied to an ensemble of 20000 benzene molecules
with a temperature of 2 K (FWHM 34.3 ms−1) for various maximum intensities for
each beam. (a) Imax = 1.0× 1014 W m−2, (b) Imax = 0.9× 1014 W m−2, (c) Imax =
0.8× 1014 W m−2, (d) Imax = 0.75× 1014 W m−2 and (e) Imax = 0.7× 1014 W m−2.
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The temporal intensity profile and linear frequency chirp shown by figure 2.10 is

then applied to NO molecules, with polarisablity α = 1.9× 10−40 C m2 V−1, mass,

m = 30 a.m.u. and an initial temperature of 2 K (FWHM 55.3 ms−1). This distribu-

tion will be similar to that shown in figure 2.8 however with a slightly wider FWHM.

The resultant distribution is shown in figure 2.12 when applied to an ensemble of

20000 NO molecules, with a maximum intensity in the 1.7 − 1.9 × 1014 W m−2

range. As expected, the number and velocity spread of particles which are deceler-

ated decreases with decreasing intensity. Approximately 320 particles (1.6 %) with a

velocity spread of 9 ms−1 are decelerated (0.15 K) for Imax = 1.75×1014 Wm−2. This

is the threshold intensity for successful deceleration of molecules. This is lower but of

the same order of magnitude as achieved with benzene (Imax = 0.75× 1014 W m−2).

The ratio of these threshold intensities is comparable to the ratio of α/m for nitric

oxide versus benzene, as one would expect since the potential well is proportional

to both the intensity and α/m. The larger threshold intensity required in this case

when compared to the ideal Gaussian pulse is consistent since there is the same

frequency excursion over a shorter duration, i.e. a faster deceleration. A greater de-

celeration reduces the effective well depth, and therefore the required laser intensity

is higher.

For Imax = 1.9 × 1014 W m−2 approximately 650 (3.2 %) molecules have been

decelerated, the FWHM of the velocity spread was ≈ 15 ms−1 representing a tem-

perature of ≈ 0.41 K. For Imax = 1.8×1014 Wm−2, where approximately 270 (1.3 %)

molecules were decelerated, the FWHM of the velocity spread was ≈ 11 ms−1 rep-

resenting a temperature of ≈ 0.22 K. For Imax = 1.7 × 1014 W m−2, there were es-

sentially no decelerated molecules which have been decelerated, (the inset indicates

just 12 molecules at small negative velocities, or < 0.1 % of the initial distribution).

As with benzene, small changes in intensity result in large changes in the ve-

locity spread of the decelerated particles. A 9 % decrease in intensity from Imax =

1.9 − 1.75 × 1014 W m−2 results in a decrease in energy spread (K) of 60 %. This

relationship is comparable to benzene.

We cannot compare to the confinement efficiency κ shown in figure 2.6, since

this contained physical parameters relating only to benzene. Similar modelling for

NO predicts κ ≈ 0.8 %, which compares well to the 1.3 % of NO molecules that

were decelerated in the numerical simulations for Imax = 1.8 × 1014 W m−2. For

comparison, for Imax = 1.9 × 1014 W m−2, we would predict that κ ≈ 1.6 % of NO

molecules would be trapped, which is the right order of magnitude as the 3.2 %

which were decelerated in the simulation. It would be expected that the decelerated

number of particles could be greater than the predicted proportion which are trapped
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Figure 2.12: The resultant distribution of velocities when the decelerating optical
lattice described in figure 2.10 is applied to an ensemble of 20000 NO molecules
with a temperature of 2 K (FWHM 55.3 ms−1) for various maximum intensities
for each beam. (a) Imax = 1.9 × 1014 W m−2, (b) Imax = 1.8 × 1014 W m−2, (c)
Imax = 1.75× 1014 W m−2, (d) Imax = 1.7× 1014 W m−2.

by the optical lattice, since some particles can be significantly perturbed without

being trapped.

2.7 Conclusions

The variety of idealised simulations that have been modelled gives us some greater

insight into requirements of our laser system, such as minimum laser intensity and
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the temporal profile of the pulses. A fast rise time (or fall), whilst convenient for

timing of a continuously varying chirp can cause an unwanted ‘kick’ to the particles,

resulting in a less than ideal deceleration.

If working close to threshold intensity, precise timing of the beginning of the

chirp relative to the beginning of the pulse will also clearly be important. If, for

example a linear chirp is allowed to start too soon, before the optical potential is

sufficient to trap a proportion of the particles, then by the time the intensity has

reached its maximum level, the velocity of the optical lattice will already be too

different from the initial velocity of the particles. Ideally we would create a voltage

waveform which had a flat region before the linear ramp, which would ensure overlap

with the beginning of the pulse. This would manifest in a region of constant or zero

lattice velocity at the beginning and end of the chirp and pulse. Otherwise precise

and systematic adjustment of the phase of the chirp may be necessary to optimise

the experiment.
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Microchip laser

3.1 Introduction

Optical Stark deceleration requires intense optical fields whose frequency and inten-

sity can be well controlled. Of particular importance to chirped acceleration and

deceleration is to have the frequency difference between the fields rapidly chirped

over 1 GHz while maintaining a flat top temporal profile over 100’s of ns.

A well established technology [106, 108, 109] based on Nd:YAG or Nd:YVO4

exists which, through pulsed amplification, can provide the high intensities

(1010 − 1011 W cm−2) over pulse durations of 20-1000 ns with the narrow linewidth

that we require at a wavelength of λ = 1064 nm. This wavelength also full-fills the

other requirement that the fields are far off resonance, in order to prevent excitation

or ionization of the species. We also require a system with a relatively small cavity

(mm), such that the free spectral range (FSR) is >> 1 GHz to ensure single mode

operation while scanning across frequencies (chirping).

3.2 Rapidly chirped laser systems

There are basically three main methods for changing the frequency of a laser. These

are a change in the gain profile or cavity length as a function of time [110]. We can

select the frequency which is reflected back into the cavity using a wavelength specific

mirror, for example, a diffraction grating [111]. The frequency of the laser can also be

changed by modulating the phase of the output as a function of time [112]. Examples

of these techniques can be found below. Of course, combinations of these techniques

can also be employed to combine the speed and range of different methods.

40



Chapter 3: Microchip laser

3.2.1 Phase modulation of laser output

Conceptually speaking, the most straightforward technique to frequency chirp a

laser is to modulate the phase. For example, this can be performed with a fibre-

based phase modulator and self-injection-locked diode laser as described by Troger

et al. [112]. This was further developed using an electro-optic (e.o.) waveguide based

element by Rogers et al. [113]. In the latter, light at λ = 780 nm is passed through

a fibre based phase modulator and a fibre delay line before being used to frequency

lock a free running diode laser. Some of the output of this laser is passed through

the fibre modulator/delay line again and re-injected into the diode laser. Large

changes in phase can be accumulated through multiple passes through the fibre

based modulator, and the output power of the laser maintained by the free running

laser diode. Chirp excursions of ≈ 2 GHz at rates ≈ 40 GHz /µs are demonstrated.

One of the biggest challenges with this technique is the precise timing of the phase

modulation that is required due to the accumulation of any error during every cycle.

3.2.2 Cavity length change

The use of an intra-cavity e.o. crystal to modulate the optical cavity length in an

extended cavity diode laser has been described many times [110, 114, 115, 116]. The

advantage of an e.o. crystal within the cavity of a laser to change the cavity length

rather than to modulate the phase of the laser output is that voltage requirements

are much less. The use of an e.o. device to modulate the phase and amplitude is

described by Bakos et al. [117] who describes chirps at 780 nm and chirp modulations

of 50-150 MHz over nanosecond durations [118].

Electro-optic modulation of an optically pumped NdYVO4 microchip-type laser

is described at modulation frequencies of 1-100 GHz over periods of 17 ps to 1000 ps

by Li et al. [119]. Here a voltage is applied to a LiNbO3 crystal which causes a

change in the refractive index, and consequently a change in the resonant frequency

of the cavity. Linear voltage ramps are investigated and also sinusoidal modulation

at various frequencies. The tunability, fV ≡ ∆f/∆V , where ∆f is the frequency

excursion and ∆V is the total voltage change, was found to be a function of fre-

quency. The tunability increased considerably when the voltage applied to the e.o.

crystal was modulated with an amplitude of 40 V at frequencies around the FSR of

the cavity compared to modulation frequencies far from the FSR. For example, at

modulations of 50-60 GHz, the tunability fV = 28 − 45 MHz/V representing chirp

rates of (1.1− 2.2)× 105 GHz/µs. The tunability decreased to fV = 16 MHz/V at

modulation frequencies far from the FSR. For a modulation at 1 GHz for example,
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this represented a chirp rate of 1.3 × 103 GHz/µs. The use of e.o. tuning will be

discussed further in section 3.3 for our laser system.

The use of current modulation to chirp a diode laser was used by Wright et

al. [120] to investigate ultra cold collisions with atoms at a range of internuclear

separations and its use in photo-association of cold atoms was discussed by Luc-

Koenig et al [121].

3.2.3 Frequency selective feedback

The use of a diffraction grating for frequency selective feedback is normally achieved

in the Littrow configuration [111, 122, 123, 124], where the first order diffracted light

is coupled back into the laser diode, and the zeroth order used as the output beam.

Since the angle of diffraction is wavelength dependent, there are various techniques

used to compensate for changes in the output angle of the beam [111]. Another

commonly used technique is the Littman technique, which uses a rotating mirror to

tune the cavity length and the grating feedback wavelength simultaneously [125].

Repasky et al. [126] describe an external cavity diode laser which can be me-

chanically tuned by up to 20 nm by rotation of an external feedback grating and

then rapidly tuned through the application of a voltage on an e.o. crystal. Chirps

of 800 MHz over durations of between 3 and 337 µs at a wavelength of 793 nm are

demonstrated. This has applications in optical coherent transient (OCT) processing

and computer memory. Frequency chirping for OCT requires a linear chirp, on the

µs time scale. This is so that there is sufficient time, at a particular frequency, for

the material to interact and react to [127, 128].

Frequency tuning of a AlGaAs/GaAs diode laser with an external cavity is de-

scribed by Kazharsky et al. [129]. Here excursions of more than 200 GHz, and a

chirp rate of 11.1 × 104 GHz s−1 at 850 nm was achieved. Here piezo-actutators

are used to change the length of the external cavity. A cavity grating was used

to separate out the correct cavity mode. The pumping current was simultaneously

modulated to achieve continuous tuning greater than the external cavity eigenmode

interval alone.

3.2.4 Combination of these methods

Current modulation of diode lasers

Rapid frequency modulation of external cavity diode lasers, where changing the

current has the effect of changing the operating temperature and therefore the stable

operating frequency of the diode, has been implemented to produce chirp excursions
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of 1 GHz and chirp rates of 15 GHz/µs [130]. For higher frequencies, above 10 MHz,

modulation of the refractive index by modification of the carrier density [131] is the

dominant frequency modulation mechanism.

Modulation of the pump power of a microchip solid state laser can cause a change

in the frequency of the laser output [132]. Changing the current to the pump diode

causes a change in the heating of the gain medium, which can cause a change in

refractive index and physical cavity length. Both these effects cause a change in the

optical path length of the cavity, and therefore a change in the resonant frequency

of the cavity, and therefore the output frequency of the laser.

Pump power modulation has generally been considered too slow for applications

such as frequency locking a laser, due to the finite time it takes for the gain medium

to thermalize after a change in the heating due to a change in current. It also

has the un-desireable effect of causing a simultaneous modulation in the amplitude

of the output. Zayhowski et al. [132] has investigated the frequency response of

this method of frequency chirping and found that for sufficiently small cavities, this

method of frequency chirping of microchip lasers (in this case Nd:YAG) was suitable

for many applications which require a relative fast frequency chirp. Modulation

frequencies from 1 Hz to 10 kHz were tested with frequency excursion of between

0.6 and 150 MHz for an applied pump power modulation of 8 mW.

As discussed, mechanical manipulation of gratings can be used to tune over large

ranges, i.e. many nm, developed for atomic-spectroscopy applications, however they

are necessarily slow. Faster tuning can be obtained through piezo-actuators however

the range is much reduced and still not fast enough. The use of e.o. crystals gives

the ability to rapidly tune with a high degree of reproducibility, not obtainable with

mechanical means. The maximum frequency excursion is however limited to the

free spectral range of the cavity, which can be increased by making the cavity as

short as possible. Ménager et al. [133] describes a design whereby the e.o. crystal

is cut into the shape of a prism. When light hits the prism at an angle, it is

refracted onto a grating which transmits a particular wavelength, depending on the

incident angle. When a voltage is applied to the e.o. crystal, the optical path length

changes, causing the laser cavity frequency to chirp, however the incident angle of

the light to the grating also changes and thus the grating feedback frequency changes

simultaneously. Frequency excursions of over 10 GHz were achieved over ms to µs

chirp durations, which is greater than several free spectral ranges of their cavity. A

total chirping range of 14 nm using a chirped grating fabricated with holographic

techniques is described by Duval et al. With this configuration, chirping is achieved

by translation of the grating [134].
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3.2.5 Summary

In this work we chose to used a neodymium based microchip laser, which is attrac-

tive for two main reasons. Firstly they are compact, with cavity lengths typically of

a few mm or less. This ensures a large theoretical cavity free spectral range, which

we require in order for our laser to remain single mode over a chirp of over 1 GHz.

Secondly since our pulsed amplification consists of Nd:YAG flash-lamp pumped rods,

then good overlap between the seed wavelength and the gain curve of the amplifica-

tion system should be assured. Frequency chirping using an intra-cavity e.o. crystal

offers the required frequency excursion in excess of 1 GHz, with realistic voltages

(< 100 V) producing the required chirp rates of 10’s GHz / µs. Although such laser

systems have been demonstrated [119], they are not commercially available.

3.3 Microchip laser

To provide a chirped master laser for amplification to the energies required for optical

Stark deceleration, we have built a short cavity (4.5 mm), single frequency Nd:YVO4

laser, operating at a wavelength of 1064 nm as shown in figure 3.1 and detailed in the

schematic in figure 3.2. The cavity consists of a 500 µm thick Nd:YVO4 microchip

(CASIX) with a high reflecting reflective coating for 1064 nm and an anti-reflection

coating for the pump wavelength of 808 nm on one side of the microchip and an

anti-reflection coating for 1064 nm and 808 nm on the other. The microchip was

thermally attached to a copper block, the temperature of which was controlled to

within 10 mK by a Peltier cooler. A 94 % reflective plane mirror forms the output

coupler of the cavity. An intra-cavity e.o. (LiTaO3) crystal (n=2.2) of length 3 mm

is placed in the centre of the cavity. When a voltage is applied, the change in optical

path length allows a rapid change in the frequency.

Figure 3.3 is an image of the output of the microchip beam ≈ 50 cm from the

cavity. The 1/e2 radius at this point was 0.64 ± 0.02 mm. The profile is relatively

poor, however this will be decoupled from the beams used to make the optical

lattice due to the various stages of injection locking and fibre coupling which will

be described in due course. However, the effect of this profile may be poor mode

matching during injection locking.
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Figure 3.1: Photo of the microchip system. The cavity is located in the region
between the electrodes which provide the voltage for chirping. To the left is the
lens which focuses 808 nm light onto the Nd:YVO4 chip and on the right the output
coupler can be seen on the mirror mount. The copper block, to which the cavity is
thermally attached, is controlled by a Peltier cooler to within 10 mK.

Figure 3.2: A schematic of the microchip type laser. The cavity is formed by a
500 µm thick Nd:YVO4 microchip with a high reflecting coating for 1064 nm and
anti-reflection coating for the pump wavelength of 808 nm. A 94 % reflective output
mirror forms the output coupler of the cavity. An intra-cavity e.o. crystal
(LiTaO3), with a refractive index, n1=2.2 of length 3 mm is used to rapidly change
the optical path length.
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Figure 3.3: The beam profile of the Nd:YVO4 beam. 1/e2 radius of 0.64± 0.02 mm.

3.3.1 Cavity optimisation

The lens used to focus the pump onto the Nd:YVO4 crystal is a 3 x objective lens,

mounted onto a translation stage. The output coupler is mounted on a mirror

mount, allowing the angle to be adjusted. By adjusting these in turn, the output

can be optimized. The temperature of the pump can also be adjusted to optimize

the pump with the absorption profile of the Nd:YVO4 gain medium.

The system was also further optimized further by tuning the temperature of both

the pump diode to optimize the wavelength and also of the microchip, to maximize

the position and overlap with the Nd:YVO4 gain curve [135], [136].

Figure 3.4 is a plot of the output power at 1064 nm as a function of applied

pump power at 808 nm. The linear fit indicates a slope efficiency (gradient of

output power versus pump power) of 7.5 %. Efficiencies of approximately 30 % have

been achieved in similar Nd:YVO4 microchip-type lasers, [137, 138, 139]. Normally,

it is the short length of the Nd:YVO4 crystal, required to ensure a large FSR,

and therefore single mode operation, that limits the efficiency of these systems due

to excessive thermal lensing and therefore satuaration effects. Our low efficiency

may indicate poor alignment of the cavity or poor overlap of the pump wavelength

with the Nd:YVO4 crystal absorption band which has a laser gain bandwidth of

≈ 250 GHZ [140]. However, it is believed to be due to greater losses in the cavity

than estimated.
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Figure 3.4: The output power at 1064 nm as a function of 808 nm pump power. The
line of best fit has a gradient of 0.0745 ± 0.0003 with an intercept of −13.4 ± 0.09.
This implies a slope efficiency of ≈ 7.5 % (gradient of pump power, versus output
power) and a threshold pump power of 180 mW. At a typical operating power of
7 mW, with a pump power of 270 mW, the optical conversion efficiency is 2.6 %.
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3.3.2 Electro-optic tuning

The frequency change δf of the laser with an applied voltage δV to the electrodes

of the intracavity LiTaO3 crystal is given by [126],

δf =
ηn2

1r33fopt
2d

n1l1
n1l1 + n2l2 + n3l3

δV (3.1)

where l1, l2 and l3 are the respective lengths of the LiTaO3 crystal, the Nd:YVO4

crystal and the air gap. The overlap efficiency between the electric field and laser

cavity mode is given by η and d is the thickness of the LiTaO3 crystal, which is 1 mm

for our system. The refractive index of the extraordinary wave in the LiTaO3 crystal

is n1 = 2.2 and the refractive index of the π polarisation component Nd:YVO4 is

n2 = 2.2. The refractive index of air is n3. The e.o. coefficient of the LiTaO3 crystal

along the cavity axis is r33 (30.4 pm/V at 1064 nm) and fopt is the frequency of the

optical wave. Using equation (3.1), and the known values for our microchip laser

and assuming η = 1 we predict a tunability of 15.7 MHz/V.

As we require a continuous tuning range of approximately 1 GHz for molecular

deceleration and operation on a single longitudinal and transverse mode, the shortest

possible cavity length maximizes the mode hop free tuning range. Having a larger

e.o. crystal which forms the majority of the cavity length (n1l1 >> n2l2 + n3l3)

increases the frequency change per voltage which is applied to the crystal (tunability,

fV). The maximum value tends toward, δf/δV = (ηn2
1r33fopt)/(2d), which for our

laser is 20.7 MHz/V. Increasing the length of the crystal also reduces the mode hop

free tuning range for a particular pump intensity. The only way to increase this

tunability further would therefore be to decrease the thickness of the e.o. crystal.

We determine the tunability of the laser by measuring the change in laser fre-

quency as a function of applied voltage for three different temperatures. Whilst the

temperature controller is connected primarily to control the NdYVO4 microchip,

the LiTaO3 crystal is in thermal contact and is therefore affected by the operating

temperature.

The tunability fV was measured for three temperatures in the range at which

the cavity is normally operated. A Fabry-Perot interferometer (FPI) was used to

measure the relative frequency of the single mode peak of the operating master,

and its movement in response to the applied voltage recorded, and analyzed to

deduce the frequency change. This was achieved by measuring the horizontal shift

of the single mode peak relative to the known FSR of the interferometer. Figure 3.5

indicates some variation in the tunablity, from fV = (14.0 ± 0.2) MHz / V at

18 ◦C, fV = (15.2 ± 0.2) MHz / V at 17.5 ◦C and fV = (14.7 ± 0.1) MHz / V at
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Figure 3.5: The relative frequency as measured by position of single mode peak on
a Fabry-Perot interferometer for three temperatures. Linear fits are applied to the
data indicating fV = (14.0± 0.2) MHz/V at 18.0 ◦C, fV = (15.2± 0.2) MHz/V at
17.5 ◦C and fV = (14.7± 0.2) MHz/V at 16.95 ◦C.

16.95 ◦C. This variation may be due to temperature induced stress on the clamped

e.o. crystal [139].

We find that our cavity with a 3 mm e.o. crystal remains single mode up to

≈ 1100 V which corresponds to a d.c. frequency shift of 16.8 GHz and a tunability,

fV of 15.4 MHz/V. This is within the theoretical mode hop free F.S.R. = c/2l for

our cavity of ≈ 22 GHz. We have not measured the linewidth of our laser since it is

below the resolution of our Fabry-Perot interferometer (7 MHz).

3.4 Pump power and temperature tuning

The cavity can also be tuned by varying its temperature and also the power (current)

of the pump diode which has the same effect. In general, heating may cause the op-
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tical path length of the cavity to change, due to a temperature dependent refractive

index, a thermal, stress-induced change in refractive index and a physical change in

the length of the crystal caused by thermal expansion. It has been shown that the

stress induced refractive index change is much less than the other two effects [132].

It is also the case that for large current modulation frequencies, above 10 MHz, a

fourth frequency modulation effect can become significant, due to modulation of the

carrier density [131].

The tuning rate with temperature, δfc/δT , where fc is the resonant frequency of

the cavity and T is the cavity temperature, can therefore be approximated by [139],

δfc
δT

= −fc
(δn/δT ) lrod + α1nlrod

nlrod + lair
, (3.2)

where α = (1/lrod(δlrod/δT ) is the thermal expansion coefficient of the laser rod, lrod

is the physical length of the laser medium, n is the refractive index of the laser rod,

and lair is the length of the air spacing between the laser medium and the coupling

mirror. We assume the change in cavity length is small compared to the total cavity

length. Hansen et al. investigates the frequency tuning and stability of a Nd:YVO4

laser in a dual coupled cavity [139], and studies the theoretical configuration ratio

of air gap to Nd:YVO4 rod length for continuous tuning without mode hops.

They find for Nd:YVO4, that n = 2.165, α = 4.43 × 10−6 K−1, and δn/δT

= 3.0 ×10−6 K−1 [139]. Lithium tantalate has an α of 1.6 × 10−5 [141], δn/δT =

-3.27 × 10−5 K−1 and n = 2.2 [142]. These values predict a relative tuning rate of

6.9 GHz/ ◦C for our system.

Figure 3.6 indicates a tuning rate of (9.28 ± 0.08) GHz/ ◦C which is comparable

to the predicted rate and confirms that an increase in temperature causes an increase

in frequency. As the temperature changes, the centre of the gain curve, f0, will also

change. For Nd:YVO4, δf0/δT = −0.53× 109 Hz K−1, therefore, if the temperature

change is large enough, the laser may jump onto a neighbouring longitudinal mode, if

the gain of that mode is larger. Even without a mode jump, the operating frequency

of the laser will always be pulled away from the natural cavity frequency and towards

the middle of the gain curve of the gain medium. This process is known as mode

pulling [106, 143].

In a similar way, by considering the absorption of the pump power, and the

resultant heating, the tuning rate due to the heating could be predicted [132]. For

a continuous modulation of the pump power, the tuning rate is a function of the

modulation frequency because of the finite time to heat the medium.

Figure 3.7 indicates a tuning rate of (64.6 ± 0.6) MHz/mW of pump power. This
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Figure 3.6: The relative frequency change as a function of cavity temperature as
measured by a Fabry-Perot interferometer. A linear fit indicates a tuning rate of
(9.28 ± 0.08) GHz / ◦C.

data was taken by manually changing the power output of the pump laser and then

measuring the relative frequency of the single mode peak on the FPI. The tuning rate

as function of pump power is also dependent on the modulation frequency [132]. In

this paper the tuning rate is 18.75 MHz/mW for 1 Hz power modulation dropping to

0.070 MHz/mW for 10 kHz power modulation. This dropped at higher frequencies

because the heating mechanism is too slow and cannot keep up with the modulation

of the pump power. Given that our modulation frequency needs to be > 1 MHz, this

method appears to be too slow for our purposes without prohibitively large pump

power modulations.

51



Chapter 3: Microchip laser

210 220 230 240 250 260

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
el

at
iv

e 
fre

qu
en

cy
 (G

H
z)

Pump Power (mW)

Figure 3.7: The relative frequency change as a function of pump power. A linear fit
indicates a tuning rate of (64.6 ± 0.6) MHz / mW of pump power, for the case of
d.c power modulation.

3.5 Rapid chirping

We then tested the ability of the laser to be rapidly chirped over 1 GHz frequencies,

on a time scale of 100’s of ns. Initially we used a frequency generator to produce a

sinusoidally changing voltage with a frequency of 1.82 MHz. This gives the maximum

voltage change over 275 ns, which is of the right time scale required for our chirp.

The maximum output of the frequency generator was 20 V which given a tunability

of ≈ 15 MHz/V, would only give us a chirp of 300 MHz. We used a tank circuit to

amplify this to ≈ 70 V. This circuit is shown in figure 3.8.

As with previous measurements of our laser system, in order to investigate the

rapid chirp of the laser we used a Fabry-Perot interferometer (FPI). When the

sinusoidally changing voltage was applied, the single peak indicating single mode

operation of the laser widened to the characteristic ‘bat-wing’ shape as observed

by Troger et al. [112]. This shape is due to the FPI scanning at a constant rate

and the voltage/frequency at the top and bottom of a sine wave changing at a

slower rate; the FPI therefore spends more time on average at the extremes of the

frequency excursion. The result of applying a 1 GHz sinusoidal voltage with a peak

to peak amplitude of 67.5 V is shown in figure 3.9. This indicates a tunability

of ≈ 14.8 ± 0.4 MHz/V, in reasonable agreement with the d.c tunability already

calculated for 16.95 ◦C.
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Figure 3.8: A tank circuit, designed to amplify a sinusoidal voltage from 20 to 70 V
at ≈ 1.82 MHz.
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Figure 3.9: The signal from the Fabry-Perot interferometer when the laser is rapidly
chirped with a sinusoidal voltage with modulation frequency 1.82 MHz, and peak
to peak amplitude of 67.5 V. The x-axis has been calibrated by measurement of
the distance between two identical points on adjacent ‘bat-wings’ and comparing it
to the known free-spectral range which was 1.5 GHz. The frequency excursion is
measured to be ≈ 1.00± 0.03 GHz indicating a tunability fV of 14.3± 0.4 MHz/V.
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3.6 Intensity oscillations
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Figure 3.10: Instantaneous Fourier transform of the signal on a photodiode. (a) The
unchirped relaxation oscillation peak centred at ≈ 1.1 MHz. (b) Background signal
taken by blocking the photodiode.

We have now demonstrated that our microchip laser can be rapidly chirped by up

to 1 GHz, as required for deceleration of molecules in a molecular jet. We also require

the microchip laser to have a constant intensity as a function of time, particularly

over the 100’s of nanosecond range which will be amplified later, in order to produce

the required intensities for optical Stark deceleration.

After measuring the output power of our microchip laser, it was immediately clear

that there were small (< 5 %) oscillations at around 1.1 MHz, as shown by figure 3.10

which is the instantaneous Fourier transform of the signal on a photodiode. After

investigation of similar systems it was found that a common source of intensity noise

is from relaxation oscillations. These can arise, in the case of a system like ours, from

the large difference between the lifetime of the cavity (ps) and laser transition (ms).

This can be better understood mathematically through analysis of two, coupled,

single-mode, single-atomic-level rate equations.

The cavity photon number n(t) in the oscillating mode, which is proportional to

the intensity I(t), can be written as [106],

dn(t)

dt
= KN(t)n(t)− γcn(t), (3.3)
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and for the population inversion N(t),

dN(t)

dt
= Rp − γ2N(t)−KN(t)n(t), (3.4)

where γc, γ2 are the cavity and atomic decay rates respectively, and Rp is the pump

rate of the 808 nm diode and K is a measure of the off-resonance coupling efficiency

between the two levels, which increase to a maximum where the resonant frequency

of the cavity ωi is equal to the atomic transition frequency ωa. This is given by [106],

K(ωi) = K0 ×
1

1 + [2(ωi − ωa)/∆ωa]2
, (3.5)

where K0 is the on-resonance coupling efficiency, given by K0 ≡ K(ωa) ≡ 3∗γrad/p.

γrad is the purely radiative decay rate, and the cavity mode number p is given by,

p ≡ 4π2Vc
λ3

∆ωa

ωa
, (3.6)

where Vc is the cavity volume and λ is the wavelength of the transition. The cavity

mode number is the effective number of laser cavity modes which lie within the

atomic transition linewidth ∆ωa.

There are no simple analytic solutions to these equations, but they can be solved

numerically. Figure 3.11 shows an example of typical evolutions of n(t) and N(t)

for γc ≈ 105 γ2, which is similar to our system, where the atomic decay rate is ≈
1.1×104 s−1, and the cavity lifetime based on a cavity of length L = 4.5 mm cavity,

with a reflectivity a of 94%, is calculated from the cavity decay rate, γc =
c(1−a)
L

=

4× 109 s−1.

When the laser is initially switched on there is a build up in N(t). As the popula-

tion inversion N(t) approaches the threshold population, Nth, the cavity population

n(t) begins to rise as the laser gain exceeds losses. The build up time for photons is

typically much faster (τc ≈ 100’s ps), than the build up of the excited population

(100’s µs) and may reach an observable photon output of 108 to 1010 in less than 10

ns [106]. As soon as the cavity photon number exceeds the steady state oscillation

level nss, the cavity photons begins to induce stimulated decay of the excited popu-

lation at a faster rate than it is being re-populated by the pump diode. The cavity

population still rises rapidly due to stimulated emission until the population N(t)

falls to the threshold level Nth. This corresponds to the maximum cavity population

number n(t) which begins to fall rapidly until the nss cavity photon population is

reached. At this point the re-population of the excited state exceeds the stimulated

emission, and N(t) begins to rise.
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After a certain time, characterised by a relaxation oscillation decay rate γsp ≡
rγ2/2, where r is the ratio of the pump rate to threshold pump power for lasing, an

unperturbed cavity will reach a steady state value for the excited state population.

This is equal to the threshold population, Nth and the steady state cavity photon

number nss. It can be shown that the threshold population is given by,

Nth = γc/K and nss = Rp/KNth − γ2/K = (r − 1)γ2/K, (3.7)

where K is the coupling coefficient of the laser transition and Rp is the pump rate.

In our system, the cavity was observed not to reach a steady state value. Due to the

very large difference in time scales between our cavity lifetime and excited atomic

state lifetime, i.e. τc/τ2 ≈ 4 × 105, it is extremely difficult to model the relaxation

oscillations using all the experimental parameters required such as the pumping rate.

By making some approximations we can deduce some analytical relationships which

give some insight into the behaviour or the laser system. The relaxation oscillation

frequency (ωsp) is given by the geometric mean of the atomic lifetime τ2 ≡ 1/γ2 and

the effective build up time of the cavity (r − 1)/τc as [106],

ωsp =

√

r − 1

τc
× 1

τ2
. (3.8)

This equation predicts a relaxation oscillation frequency of 750 kHz for r = 1.5 for

our laser. This represents a period of ≈ 1.3 µs. This is the right order of magnitude

as the observed relaxation frequency of 1.1 MHz.
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Figure 3.11: The dynamics of a diode pumped microchip-type laser after the pump is
instantaneously switched on and the cavity photon population. N(t) is the evolution
of the excited state population, and n(t) is the cavity photon number. The excited
state builds up initially, past the threshold value Nth, at which point the cavity
photon number n(t) begins to build up exponentially and the gain exceeds cavity
losses. The population inversionN(t) reaches a maximum, at which point stimulated
emission caused by the large cavity photon population exceeds the re-population
from pumping and N(t) rapidly decreases. The population n(t) continues to rise
rapidly due to stimulated emission, until N(t) falls below the threshold population
Nth at which point n(t) falls rapidly. The two populations will continue to oscillate
around the steady state values, Nth and nss.
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Figure 3.12: The tunable electronic feedback circuit for suppression of relaxation
oscillations [144]. The + and - which connect to each amplifier in the circuit were
connected to 9 V batteries, in order to avoid power line noise.
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Figure 3.13: (a) A Fourier transform of the intensity output from the laser without
feedback. We can observe a dominant intensity oscillation peak at 1.05 MHz. (b)
Fourier transform of the output of the master laser with electronic feedback switched
on. The oscillation peak has been suppressed by ≈ 30 dB, which is equivalent to
99.9 % suppression.

3.6.1 Suppression of relaxation oscillations

Initially, we tried to suppress these oscillations using electronic feedback to the

current of the pump diode described in [144]. The circuit for this is shown in

figure 3.12. A photodiode was used to monitor a portion of the output of the laser

and an inverted signal was sent back to the RF input of the laser diode. In other

words, an increased current was output to the laser diode if the intensity decreased

and vice-versa. This was successful in suppressing an intensity modulation of up to

10 %. Figure 3.13 indicates a suppresion of the 1.1 MHz relaxation oscillation peak

by 30 dB, equivalent to 99.9 % suppression.
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3.7 Intensity oscillations during chirping

It was found that when we chirped the microchip laser, the intensity modulation

increased dramatically. At 1.82 MHz frequency modulation for example, the ampli-

tude modulation was ≈ 30 %. This is shown in figure 3.14a. Figure 3.14b show the

frequency of the intensity oscillation as 1.82 MHz, equal to the modulation frequency

of the chirp demonstrating the direct effect of our perturbation of the cavity. It was

found that electronic feedback was not sufficent to suppress this larger intensity

modulation.

As this method was insufficient to remove these oscillations, a different tech-

nique was required. Suppression of intensity oscillations in diode laser systems was

reported by Wright et al. [130] which used a free running ‘slave’ diode, which was

injection locked to a ‘master’ laser, and therefore we have developed a similar system

for λ = 1064 nm light.

In this system, the frequency is determined by the master laser but the intensity

is determined by the slave. To avoid inducing the relaxation oscillations in the slave,

we also choose a free running semiconductor diode laser which had typical relaxation

oscillation frequencies in the GHz regime [106]. These are much larger than those

at MHz frequencies in the Nd:YVO4 master laser. To get this scheme to work so

that the slave locks to the master, they must be operating within a few GHz of each

other [145]. The intensity oscillations of the slave have been shown to be several

orders of magnitude less than the oscillations of the master using this scheme [130].

3.7.1 Injection locking to the slave laser

A detailed schematic of the injection locking section our laser system is shown in

figure 3.15. The output of the microchip laser (master), which is operated in con-

tinuous wave (cw) mode and output intensity of ≈ 10 mW, is directed via mirrors

1-3 into a free running, semiconductor (slave) diode laser. Good spatial overlap can

be achieved by overlapping the master and collimated output of the slave over a

distance of several metres. Both the microchip laser (master) and slave are oper-

ating at approximately 1064 nm, however for injection locking, they must operate

within a few GHz of each other [145]. A half wave plate (h.w.p.) 1 is used to rotate

the polarisation of the master to horizontal polarisation such that it is transmitted

through the polarising beam splitter into the slave. H.w.p. 2 and Faraday isolator

1, (E.O.T., CR1064, 30 dB extinction) are used such that in one direction the polar-

isation of light ends up rotated to the orthogonal linear polarisation (i.e. the h.w.p.

adds to the rotation of the isolator) and in the other direction ends up unaffected
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Figure 3.14: (a) The signal from the microchip laser when chirped with a modulation
frequency of 1.82 MHz, with amplitude 67.5 V. There is a periodic modulation of
30 %. (b) The Fourier transform of (a) showing the relaxation oscillation peak at
1.82 MHz.

Figure 3.15: Detailed injection locking setup
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(i.e the h.w.p. rotates in the opposite sense to the isolator). In this way the output

of the slave is rotated to the vertical polarisation and is reflected by the polarising

beam splitter. The slave output (≈ 20 mW) is then directed onto mirror 6 and 7

which are used to couple the beam into the fibre amplifier. The input of the fibre

amplifier is mounted on a translation stage, which can be moved relative to a 50 x

objective lens to a resolution of a few µm. This is also mounted on the translation

stage. Optical isolators 2 and 3 (OFR, IO-2.5-1064-VLP, 40 dB extinction) are re-

quired to provide further isolation of the master from the slave and ensure that light

cannot travel back to the master from the slave, since the efficiency of the extinction

of the polarising beam splitter was not 100 %. In total there is 110 dB of isolation.

Approximately 1% of the output of the slave and the master are directed onto a

Fabry-Perot interferometer (SA201) with a free spectral range of 1.5 GHz, a resolu-

tion of 7.5 MHz and a finesse of 200. This is used in order to provide information

on the mode output and locking status.

Once the spatial overlap was achieved, the lasers were spectrally overlapped.

Using a wave-meter (WavePro 7300) we tuned the wavelengths of the master laser

and the slave laser to the same wavelength, limited by the 0.1 nm resolution of the

wave-meter. This was done by adjusting the temperature of the Nd:YVO4 microchip

and the slave diode laser as well as fine tuning of the slave current. In order to re-

optimise the spectral overlap of the master pump wavelength and the absorption of

the microchip, the temperature and current of the master pump diode laser were

re-adjusted.

The frequency of the free running slave still needed to be brought within a few

GHz of the master’s frequency [145] by systematically adjusting the slave and mas-

ter current. If a stable, single mode locking position could not be found then the

temperature of the slave and master could be adjusted. In order to know when

locking was achieved, several techniques were employed at various times. For exam-

ple, observing the output of the slave through the interferometer on an oscilloscope

(Lecroy 5500) the position of the mode(s) of the slave could be measured. When the

slave injection locked to the master, the mode jumped to the position of the master.

When the master was then blocked and unblocked the mode position jumped back

and forth. Another technique involved reducing the slave current close to threshold

for lasing. When injection locking occurs, the output of the slave as viewed through

a ‘viewer’ would immediately brighten and lase.

It will also be necessary to overlap the frequency of the master/slave system with

the gain curve of the Nd:YAG pulsed amplification in order to maximise the output

energies of the pulses. This will be described in chapter 5.
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Figure 3.16: The signal on a photodiode of the slave and master when unchirped.
(a) Master, (b) unlocked slave, (c) locked slave, (d) background noise, when the
diode is blocked.

3.8 Results with injection locking

3.8.1 Unchirped master laser

We first tested the injection locking technique for the unchirped case. Figure 3.16a

shows the relaxation oscillations of the master laser when unchirped, indicating a

relaxation oscillation frequency of (1.08± 0.01) MHz. Figure 3.16b is the unlocked

slave for reference. The 3 GHz limit of the oscilloscope was insufficient to observe the

oscillations which we would expect to exist in a semiconductor laser and therefore

scans at the 3 GHz range are not shown here. Figure 3.16c is the locked slave

showing that the peak at 1.08 MHz has been removed completely, to the limit of

the noise of the measurement. Other features, such as the small peak at ≈ 120 kHz

are found to be due to electronic noise in the detection system, rather than a real

signal from the light. This was verified by blocking the detector from the light, as

shown by figure 3.16d where the peak is still evident.
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3.8.2 Chirped operation with injection locking

We then tested the injection locking techniques for various chirp modulation fre-

quencies with an amplitude of 67.5 V, since, as will be discussed in due course, the

magnitude of the intensity oscillations can change dramatically depending on the

modulation frequency. The results with injection locking are shown in figures 3.17,

3.18, 3.19, 3.20.

Figure 3.17a represents the Fourier transform of the master signal, for data taken

up to 3 MHz. There are three peaks, a 32 dB peak at 900 kHz, 33 dB peak at

1.8 MHz, and 17 dB peak at 2.7 kHz. The induced intensity oscillations therefore

follow the driving voltage modulation frequency, and its 2nd and 3rd harmonic. It

is possible that these higher order harmonics are due to the non-linearity of the

photodiode and not a real intensity oscillation [146, 147]. Figure 3.17b represents

the Fourier transform of the injection locked slave. The three peaks have been

removed to below the level of the noise, representing an improvement of at least

1600 times for the 900 kHz, at least 2000 times for the 1.8 MHz peak and at least 50

times for the 2.7 kHz peak. The background noise with detector blocked is shown

in Figure 3.17c. This was used to ensure that only intensity oscillations were being

analysed.

Figure 3.18a represents the Fourier transform of the master taken with a voltage

modulation frequency of 1.82 MHz. There is a large, 42 dB peak at 1.82 MHz.

Figure 3.18b represents the Fourier transform of the injection locked slave. The

1.82 MHz peak has been reduced by 25 dB, representing a reduction of at least 320

times. The background is shown in figure 3.18c.

Figure 3.19a represents the Fourier transform of the master signal taken with a

voltage modulation frequency of 2.3 MHz. There is a 41 dB peak at 2.3 MHz and

a 10 dB peak at 1.24 MHz, and a 5 dB peak at 1.06 MHz. Figure 3.19b represents

the Fourier transform of the injection locked slave. The 2.3 MHz peak has reduced

by by 18 dB, however the other two peaks appear to have joined to form a peak at

1.15 MHz, 100-400 times larger. The competition between these two peaks in the

master is why in the slave, the oscillations have increased in magnitude. In fact,

the single new peak seen in the slave is a combination of the other two observed in

the slave. This is also the frequency of the unchirped, natural relaxation oscillation

frequency. Once again, the background is shown in Figure 3.19c.

Figure 3.20a represents the Fourier transform of the master signal taken with a

voltage modulation frequency of 1.0 MHz. There are many peaks, the major ones

being a 50 dB peak at 1.0 MHz, 41 dB at 2.0 MHz, 30 dB at 3.0 MHz, 17 dB at

4.0 MHz, 14 dB at 5.7 MHz, and 15 dB at 7.7 MHz. Figure 3.20b represents the
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Fourier transform of the injection locked slave. The 1 MHz peak has been reduced

by 27 dB, or 500 times, and the other peaks have been reduced into the noise,

representing improvements of between 25 and 4000 times for the 5.7 MHz peak and

2 MHz peak respectively. Once again the background is shown in Figure 3.20c.

In all cases the intensity of the slave diode was approximately ten times that of

the master laser. Therefore the reduction in the absolute intensity oscillations in

the slave are actually even higher.
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Figure 3.17: (a) The upper trace represents the Fourier transform of the master
signal, for data taken up to 3 MHz, taken with a voltage modulation frequency of
900 kHz. There are three peaks, a 32 dB peak at 900 kHz, 33 dB peak at 1.8 MHz,
and 17 dB peak at 2.7 MHz. (b) The Fourier transform of the injection locked slave.
The three peaks have been removed to below the level of the noise, representing
an improvement of at least 1600 times for the 900 kHz, at least 2000 times for the
1.8 MHz peak and at least 50 times for the 2.7 kHz peak. (c) Background noise,
when the diode is blocked.
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Figure 3.18: (a) The Fourier transform of the master taken with a voltage modula-
tion frequency of 1.82 MHz for data taken up to 3 MHz. There is a large, 42 dB peak
at 1.82 MHz. (b) The Fourier transform of the slave output, where this peak has
reduced by 25 dB, representing a reduction of at least 320 times. (c) Background
noise with detector blocked.
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Figure 3.19: (a) The Fourier transform of the master signal taken with a voltage
modulation frequency of 2.3 MHz for data taken up to 3 MHz. There is a 41 dB
peak at 2.3 MHz and a 10 dB peak at 1.24 MHz, and a 5 dB peak at 1.06 MHz.
(b) The Fourier transform of the slave output, where the 2.3 MHz peak has reduced
by 18 dB, however the other two peaks appears to have joined to form a peak at
1.15 MHz, 100-400 times larger. (c) Background noise with detector blocked.
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Figure 3.20: (a) The Fourier transform of the master signal taken with a voltage
modulation frequency of 1.0 MHz. There are many peaks, the major ones being a
50 dB peak at 1.0 MHz, 41 dB at 2.0 MHz, 30 dB at 3.0 MHz. (b) The Fourier
transform of the slave output, where the 1 MHz peak has been reduced by 27 dB,
or 500 times, and the other peaks have been reduced into the noise, representing
improvements of between 25 and 4000 times for the 5.7 MHz peak and 2 MHz peak
respectively. (c) Background noise with detector blocked.
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Figure 3.21: The variation of relaxation oscillation frequency fsp with pump power
of 808 nm light. r is the ratio of pump power/threshold pump power. A linear fit
gives fsp = ωsp/2π = 3.52± 0.02 (r − 1)0.5 MHz.

3.8.3 Variation of relaxation oscillation frequency with pump

power

Equation (3.8) indicates that there is also a dependence of the relaxation oscillation

frequency on the pump power, where ωsp ∝
√

(r − 1). Figure 3.21 shows the relax-

ation oscillation frequency ωsp/2π as a function of
√

(r − 1). The linear fit indicates

that ωsp is 2π × 3.52 ± 0.02 MHz, which according to equation (3.8) implies that

τcτ2 = 2.04 × 10−15 s2. This technique can therefore be used to give a lifetime of

one of the quantities if the other is already known. In this case, the lifetime of the

transition τ2 is known to be ≈ 90 ± 8 µs however the lifetime of the cavity was

estimated to be 250 ps, based on a 4.5 mm cavity with a reflectivity of 94 %. In fact

this data implies that tc = (23± 2) ps, an order of magnitude lower. This suggests

that there are greater losses than included in the calculation.

3.9 Chirped intensity oscillations

To better understand the intensity oscillations when chirping the laser, it was de-

cided to extend Siegman’s treatment of relaxation oscillations [106] to take into

account changes in the laser modulation frequency (chirping) which induce large os-
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cillations. For our deceleration experiments, the laser will be chirped continuously,

i.e. a modulated voltage will be applied to the crystal, rather than a d.c. volt-

age. When chirping at 1.82 MHz, we are perturbing the cavity on comparable time

scales ≈ 1 µs, to the natural relaxation oscillation frequency, and much less than

the time to reach steady state. This further complicates finding solutions to the

rate equations. In Siegman’s treatment of this system [106], a frequency response

due to pump power modulation is deduced. This shows a resonance when the mod-

ulation frequency approaches the un-modulated oscillation frequency, ωm ≈ ωsp. A

similar relationship can be deduced for chirping the laser. Changing the frequency

of the laser is equivalent to modulating the coupling coefficient K since it depends

on the detuning of the cavity frequency ωi from the atomic frequency ωa, as shown

in equation (3.5).

We extend the approach developed by Siegman [106] which assumes the modula-

tion of the cavity population from its steady state value nss and the threshold excited

state population Nth are small, to include a modulation in the coupling coefficient

K(t). This is equivalent to changing the resonant frequency of the cavity (chirping)

since coupling coefficient K depends on the detuning of the cavity frequency ωi from

the atomic frequency ωa, as shown in equation (3.5). Therefore assuming all are

modulated at the angular frequency ωm,

n(t) = nss +Re
[

ñ1e
iωmt

]

where, |ñ1| << nss

N(t) = Nth +Re
[

Ñ1e
iωmt

]

where,
∣

∣

∣
Ñ1

∣

∣

∣
<< Nth (3.9)

K(t) = K0 +Re
[

K̃p1e
iωmt

]

where,
∣

∣

∣
K̃p1

∣

∣

∣
<< K0,

where ñ1, Ñ1 are the amplitudes of the modulations of the cavity photon population

and population inversion respectively and K̃p1 is the amplitude of the modulation of

the coupling coefficient K(t) from its un-modulated value K0. By substituting these

into equations (3.3) and (3.4) and by dropping small product terms such as ñ1Ñ1,

and using the steady state values in (3.7), we can obtain a linear transfer function of

the frequency response of the modulation of K and the amplitude of the modulation

of the cavity population, ñ1, to give

ñ1

K̃p1

=
n0N0 − (r − 1)γ2n0N0

ω2
sp − ω2

m + irγ2ωm

. (3.10)

The calculated frequency response and phase relationship is shown by figure 3.22. As

with pump power modulation, when the modulation frequency, ωm approaches the
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Figure 3.22: (a) The frequency response forK modulation, (b) the phase relationship
with frequency as calculated by equation (3.10).

unchirped relaxation oscillation frequency ωsp, there is a resonance in the magnitude

of the intensity oscillation. In this regime, the phase between the driving frequency

and the intensity oscillation also changes.

Equation (3.10) can also be used to deduce a relationship between the power

modulation and the effect on the population. For our system it can be shown that

for just 2 % modulation of the coupling coefficient, i.e. K̃p1/K0 = 0.02, the ratio

of the modulated cavity population to its steady state value, ñ1/nss = 0.52 when

ωsp = ωm. This confirms the observed effect that when our laser was chirped at

1.82 MHz, the intensity modulation of the master was greatly increased in magnitude

compared to unchirped modulation and why the modulation can increase further

when, ωm ≈ ωsp, which in the case of our cavity is ≈ 1.1 MHz.

Figure 3.22a assumes that there is equal modulation of the optical path length

at all frequencies, however there are many piezo-electric acoustic resonances in the

e.o. crystal where the mechanical response at particular well defined frequencies is

greatly enhanced [108]. The piezo-electric effect causes a physical length change in

the material proportional to the applied voltage which therefore also changes the

optical path length. This modulation is much greater at the acoustic resonances

than due to the electro-optic effect alone. This would manifest in figure 3.22a as

narrow spikes on top of the predicted frequency response. These acoustic resonance

typically occur above 80 kHz and have been observed up to 25 MHz [108].
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Figure 3.23 shows data taken at three modulation frequencies where such acous-

tic resonances were observed and demonstrates that the modulation of the voltage

applied to the e.o. crystal to frequency chirp the laser does indeed have a big effect

on the magnitude of the intensity oscillations. At these frequencies, the intensity

modulations due to relaxation oscillations were up to 100 % of the output intensity.

We can reduce the effect of these intensity modulations by choosing a modulation

frequency that does not overlap with these resonances. On these resonances, the

voltage induced refractive index changes, and therefore the tunability, exceeds that

induced by the electro-optic effect alone. A variation in tunabilty fV is shown by

figure 3.24, where for voltage modulations above 2.2 MHz, the tunablity increases

from ≈ 15 MHz/V, to ≈ 28 MHz/V. This data was taken by measuring the width

of the spectrum (‘bat-wings’) taken with the Fabry-Perot interferometer, as shown

in figure 3.9. These data were taken by applying a sinusoidally varying voltage to

the e.o. crystal, with a peak to peak amplitude of 67.5 V for various modulation

frequencies around 1 MHz. These frequencies are in the regime of what is required

to chirp the laser for deceleration experiments.
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Figure 3.23: The intensity oscillation data taken at three frequencies where acoustic
resonance were observed, when the voltage was modulated at (a) 2.3 MHz, (b)
900 kHz, where the intensity modulation was ≈ 100 % and (c) 1.82 MHz where the
intensity modulation was ≈ 30 %.
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Figure 3.24: The tunability fV for various modulation frequencies based on mea-
surements of width of spectrum taking with a Fabry-Perot interferometer. For mod-
ulations between 1.3 and 2.2 MHz, fV is in good agreement with d.c. operation
≈ 15 MHz / V. Above 2.3 MHz, the tunability increases to 28 MHz/V, perhaps due
to overlap with a fundamental acoustic resonance within the crystal.

3.10 Summary

We have described a low power, continuous wave (cw) laser system, with a con-

stant intensity output of approximately 20 mW, at λ = 1064 nm, where intensity

oscillations have been suppressed by injection locking to a slave diode laser. This

system is single mode and can be tuned up to ≈ 1 GHz, and remain single mode, by

the application of a voltage across an electro-optic crystal within the cavity of our

microchip laser. We can also rapidly tune up to 1 GHz by applying a sinusoidally

varying voltage with a modulation frequency of 1.82 MHz, which is generated by a

frequency generator, before being amplified by a tank circuit. This laser was then

amplified to 1 W in a commercial fibre based amplifier.
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Low power CW heterodyning

4.1 Introduction

In the previous chapter, the development of a Nd:YVO4 based continuous wave

(CW) laser system was described, which could be rapidly chirped in excess of 1 GHz

over durations of 100’s ns. In this chapter I will describe how the output of this

laser system was split into two, which we require in order to create the two beams

which produce our optical lattices. A time delay was introduced between the two

arms, in order to create a frequency difference as a function of time which allowed us

to create stationary and accelerating/decelerating optical lattices for optical Stark

deceleration.

4.2 Generating a frequency difference

The time delay between the two arms was produced by coupling the output beams

into two fibres of different lengths (10 m and 65 m) which were then fed into our

Nd:YAG pulsed amplification system. This scheme is summarised in figure 4.1.

The operation of this pulsed amplification system will be described in the following

chapter.

The time delay between each arm of the laser system therefore creates a frequency

difference between the high energy outputs of arm A and B when the master laser is

chirped. If a square wave voltage was applied to the master, there would only be a

frequency difference for a maximum of the total time delay introduced by the 55 m

difference in length between the two fibres, i.e. 275 ns before the frequency from the

longer fibre changes to match the shorter one.

Apart from creating a time delay, the fibres also enabled us to physically isolate

the Nd:YVO4 master/slave lasers from the pulsed amplification system by mounting
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Figure 4.1: A microchip laser (master) injection locks a free running ‘slave’ laser
diode. Isolators are used to ensure that the output of the slave laser cannot reach
the master. The output is then coupled into a fibre amplifier where it is amplified
up to 1 W. A pulse shaper creates pulses in the 10-1000 ns range and then the beam
is split into two ‘arms’ and coupled into two optical fibres of different lengths. These
outputs are fed into each arm of our pulsed amplification scheme.
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it on a separate table. Initially, when the master was set up on the same table, the

vibrations caused by the 10 Hz flashlamps destabilised the NdYVO4 cavity.

For coupling into the fibres, we used a translation stage and a fibre port, both

with µm resolution. We found that whilst the translation stage was much more

intuitive to couple light into the fibre, the fibre port was more stable over time. In

both cases coupling efficiencies of up to 50 % were achieved, providing 200-250 mW

of power at the exit of each fibre for ≈ 500 mW input into each fibre. The fibres

(Thorlabs - 1060XP) used were single mode, designed for use with wavelengths of

λ = 980−1600 nm. One end of each fibre was supplied with an angled face, in order

to prevent back reflection coupling into the system. Since they were not polarisation

maintaining, we had to correct the polarisation to make it linear, and of the correct

orientation for introduction of the light into the pulsed amplifier system. For this

we used a 3-paddle polarisation controller (Thorlabs - FPC560 ) for each fibre,

which adjusted the polarisation through stress induced birefringence. By iteratively

adjusting each paddle, any arbitrary output polarisation could be produced from an

arbitrary input polarisation state.

4.3 Rapid chirping

To measure an induced chirp we heterodyned the output of the two fibres. Due

to the difference in their length, there was a time delay, and therefore a frequency

difference, between the two beams at the fibre outputs when the master laser was

chirped. To illustrate this, figure 4.2 shows the theoretical frequency shift induced

by the applied voltage at the output of each fibre. This chirp was simulated by

considering a sinusoidal voltage of amplitude 67.5 V applied to the electro-optic

crystal at a frequency of 1825 kHz. Due to the time delay (275 ns) introduced by

the difference in fibre lengths, there is a π phase shift between these waveforms. The

third trace represents the frequency difference between these two beams that would

be observed by heterodyning the two outputs. The maximum frequency difference

between the two outputs is 1040 MHz based on a tunability of 16± 0.5 MHz/V. At

approximately 140 ns and 420 ns, the relative frequency between the two arms goes

to zero.
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Figure 4.2: A theoretical rapid frequency chirp of 1040 MHz is shown, which would
be produced from a sinusoidally varying voltage with amplitude 67.5 V and mod-
ulation frequency 1.82 MHz, applied to the e.o. crystal. A π phase delay between
the sinusoidally varying frequency of each arm results from the difference in fibre
length.

4.3.1 Heterodyning the laser outputs

To heterodyne (beat) the outputs from each fibre, we combined both beams onto

a beam-splitter and focused these overlapped beams onto a fast photodiode with a

bandwidth of 2 GHz, as shown in figure 4.3. In low power CW operation (up to

1 W), the half wave plates in the pulse shaping section and the custom amplifier

system are adjusted to allow light to pass through. Flip mirrors m1a and m1b are

raised to direct the beam onto photodiodes (p.d.) 1 and 2 for measurement of their

individual temporal profile or the combined heterodyne signal. Similarly p.d. 2

allowed for the measurement of the pulse amplified beam, which is extracted via

the 5 % beam splitters bs3 and bs4. This allowed for continuous and simultaneous

measurement of the high power pulsed beam heterodyne signal during experiments.

A camera (Thorlabs DCC1545M) allowed for measurement of the spatial profile of

both beams. Both beams were attentuated further using neutral density filters,

before heterodyning and before the camera, to ensure they were of similar and safe

intensities to avoid damage to the sensors or saturation of the signals.

The photodiode signal was recorded on an oscilloscope with a 3 GHz bandwidth.

A frequency difference between the two beams, which changed as a function of time if

chirped, was manifested in the heterodyne (beat) frequency, ωm(t) = |ω2(t)− ω1(t)|.
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Figure 4.3: The optical setup at output end of Nd:YAG system for heterodyning.
Photodiode (p.d) 1 allows for the measurement of the CW beam profile when one
of mirrors, m1a or m1b, is raised to redirect the beam. When both are raised,
the heterodyne can be measured. P.d 2 receives light from the 5 % beam splitters,
bs3 and bs4 for measurement in the pulse amplified case. This is used because
during amplification mirrors m1a and m1b would direct too much light onto p.d. 1
causing damage. The camera allows the spatial profile of each beam to be measured.
Attenutation of the beams before the photodiodes and camera is also necessary to
prevent saturation of the signal or damage to the sensors.

Maximum modulation depth would occur where the two intensities of the two beams

are the same and where, at least over the area of detection, both beams were of equal

size.

This signal is shown in figure 4.4a and the sinusoidal voltage which was applied

to the electro-optic crystal, with a peak-to-peak amplitude of 74 V and frequency

1.82 MHz, as shown by the overlaid black line. The maximum beat frequency

occurred at minimum (or maximum) applied voltage corresponding to 0 and 280 ns

where the amplitude modulation is at a minimum. The variation in modulation

contrast as a function of frequency was due to the non-linearity of the frequency

response of the photodiode. This was determined by measuring the modulation

depth as a function of a fixed frequency difference.
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Figure 4.4: (a) The heterodyne signal measured on a photodiode between the two
arms when a sinusoidal voltage is applied to the e.o. crystal of 74 V. (b) The
derived instantaneous frequency differencef(t) overlaid with a red trace which is a
fit of function, f = fVV | cosωt|. This indicates a tunablity fV of 14.3± 0.2 MHz/V
at a modulation frequency of 1825 kHz.
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4.3.2 Extraction of the instantaneous frequency difference

as a function of time, f(t).

Measuring the instantaneous frequency as a function of time, f(t), which is the time

derivative of the instantaneous phase of the complex amplitude, φ(t), is not straight-

forward. Usually pulsed lasers are simply characterised in terms of their temporal

and spectral intensity profiles. Fluctuations in the frequency of pulsed lasers are

measured in order to quantify their effect on the shape and spectral position of two

photon spectra [148]. They showed that the variation in the laser frequency (chirp)

over the duration of a measurement is the principle uncertainty in their measurement

of the hydrogen 1S Lamb shift [149].

Generally such fluctuations are observable only through the broadening of spec-

tral lines above the Fourier transform limit. However, this does not give the dy-

namics of such frequency changes (or chirping). In our case we want to measure a

controlled frequency chirp, and also to verify that no additional chirp was introduced

during the pulsed amplification stage. This problem was demonstrated in the work

of Fulton [150]. His results showed that the Nd:YAG laser, used as one of the beams

to create the constant velocity lattice for molecular deceleration, exhibited a chirp

of up to 100 MHz over the duration of the pulse (≈ 20 ns). These were caused by

temperature and gain variations in the Nd:YAG amplifying rods. It was important

to quantify these frequency variations, as they would cause fluctuations in the lattice

velocity, and therefore the dynamics of the molecules trapped in the optical lattice.

We assume the electric fields of arm A and B of our low power CW and pulse

amplified beams are given by, EA,B(t) = EA0,B0(t) exp [i (φA,B(t) + ωt)], where EA0,B0

are the electric field amplitude of each arm oscillating at the same optical frequency

ω, with a time dependent phase φA,B(t) whose derivative with time gives the in-

stantaneous frequency change. To determine the frequency difference between the

two beams as a function of time, we used the method of Fee et al. [148], where the

heterodyne (beat) signal from the two beams recorded by the photodiode can be

written in the time domain form as,

V ∝ |EA(t)|2 + |EB(t)|2 + EA(t)E
∗

B(t) exp [i (φA(t)− φB(t))] + c.c. (4.1)

Our aim is to separate out the third ’mixing’ term from the first two intensity terms,

in order to extract and measure how the phase is changing with time, on top of its

oscillation every 2π. Once we can measure how the instantaneous phase as a function

of time φ(t) is changing we can find the rate of change to find the instantaneous

frequency f(t).
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In order to separate the terms we Fourier transform the time domain data into

frequency space. When the beat frequency between the two beams is higher than

the Fourier components of the first two terms in the equation above, we can apply

a bandpass filter to extract only the higher frequency Fourier components of the

third term in the equation above. This filtered signal in the frequency domain is

transformed back into the time domain and the instantaneous phase is obtained

by finding the phase angle of this term to give φ(t). The instantaneous frequency

difference f(t) is determined from its time derivative, 2πf(t) = dφ(t) dt. This was

implemented with Matlab using the ‘fft’ and ‘ifft’ functions to Fourier transform

and reverse transform the data, ‘angle’ to extract the phase angle of the third term

and ‘gradient’ to find the gradient of the phase term φ(t) to give f(t).

To understand this better, figures 4.5 and 4.6 show the different steps used in the

Matlab program. Figure 4.5a shows a simulated signal with an initial heterodyne

frequency of 100 MHz chirping up to 600 MHz after 240 ns. Some white noise has

also been applied. The form of noise was random, with a normal distribution, and a

maximum amplitude of ± 5 % applied to the signal, I(t). This data is Fourier trans-

formed and then multiplied by a bandpass filter (the mask) which separates out the

lower frequency components. When this is reverse Fourier transformed, if the mask

has been applied correctly, we obtain the EA(t)E
∗

B(t) exp [i (φA(t)− φB(t))] ‘mixing’

term. Figure 4.5b shows the extracted temporal profile of the pulse calculated by

taking the absolute value of the mixing term. The heterodyne signal with the first

two components in equation 4.1 removed is shown in figure 4.5c.

The phase angle of this is then calculated by the program in order to obtain

the instantaneous phase difference φ(t), as shown in figure 4.6a. This is shown as

being periodic, since Matlab assumes phase to be periodic between −π and π. We

therefore have to unwrap this to reflect the fact that we know the phase is continuing

to change in one direction, this is shown in figure 4.6b. Finally the gradient of this

function is taken and scaled to give the instantaneous frequency difference f(t) in

figure 4.6c.
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Figure 4.5: (a) Input signal, (b) Extracted temporal intensity profile I(t), (c) Ex-
tracted heterodyne signal.
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Figure 4.6: (a) Periodic phase (φ(t) obtained by extracting the angle from the
’mixing term’ of equation (4.1), (b) Unwrapped phase (φ(t)), (c) Frequency f(t)
obtained by taking the gradient of (b).
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4.3.3 Bandpass filters

The type of bandpass filter used is important, as it determines how well we can

separate out the frequency chirp components. In most cases we found that a ‘super-

Gaussian’ of the form, exp [−1× ((−f0 + f)/∆f)x>>2] is effective since the large

power ensures an extremely sharp rise and fall in the bounds of the mask, and good

exclusion of lower intensity components.

Figure 4.4b represents the instantaneous frequency difference as a function of

time determined from the data shown in figure 4.4a. We cannot determine the in-

stantaneous frequency difference when the beat frequency components of the Fourier

transform cannot be well separated from the low frequency components that result

from the finite sampling window. At frequencies above 100 MHz, the instantaneous

frequency difference can be determined within ± 10 MHz. A chirp in excess of

1000 MHz is more than sufficient for our purposes since it is equivalent to a lat-

tice velocity of > 530 ms−1 for counter propagating beams. This velocity is greater

than the initial velocity of cold molecules produced by a xenon buffer gas jet. We

then fit the function f = fVV | cosωt| to the derived instantaneous frequency dif-

ference, as shown by the red trace in figure 4.4b, and determined a tunability of

fV = 14.3 ± 0.2 MHz/V at a modulation frequency of 1825 kHz which is in rea-

sonable agreement with d.c. measurements for 16.95 ◦C, as shown in chapter 3.

White et al. [151] uses a similar Fourier transform method (FTM) devised by

Fee et al. which we have employed, and compares it to two additional techniques for

determining the instantaneous, time dependent frequency. The first of these extracts

the time dependent phase from the amplitude and intensity components using the

least squares fit method. This reconstructs the temporal profile of the pulse, and then

subtracts it from the beat pattern of the waveform to leave only the phase term. The

other method uses a matched pair of electronic mixers to introduce the modulation

and beat frequencies into the mixer inputs. The inter-modulation output gives the

quadrature phase information from which the instantaneous frequency difference is

derived.

In the FTM, it was found that the Tukey filter yielded the smallest error, when

compared to two types of Blackman filter.
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4.4 Analysis of bandpass filters using simulated

chirped data

Whilst a super-Gaussian bandpass filter was used to produce figure 4.4, other fil-

ters were investigated, including a standard Gaussian or in the simplest case, a

rectangular filter. In order to investigate the effectiveness of different masks, sim-

ulated constant frequency difference (constant velocity) and linear chirps (linear

deceleration/acceleration) were modelled. A constant frequency difference has the

functional form I(t) ∝ sin (f0t), and a linearly chirped frequency difference has the

form I(t) ∝ sin
(

f0t− β
2
t2
)

, where f0 is the initial or fixed frequency difference, and

β = ∆f/∆t is the chirp rate, ∆f is the frequency excursion and ∆t is the pulse/chirp

duration. A 1 GHz linear chirp over 137.5 ns was modelled.

4.4.1 Applying analysis to simulated data

It was found that a super-Gaussian (a Gaussian raised to the power 20) was the

best compromise in terms of efficient cut-off of the chirp frequencies and the low

frequencies which derive from the temporal profile of the pulse. It was important to

capture the lowest range of the frequency chirp however this increased the likelihood

of overlap with the temporal intensity components. Oscillations over the duration

of the chirp, known as Gibb’s oscillations [152], are due to the discontinuity and

cut-off of the mask in Fourier space, which restricts the range of frequencies. This

phenomenon is commonly discussed in Fourier analysis [151, 148, 153, 154].

To simulate a pulsed heterodyne signal we apply a Gaussian mask to a beat signal

with a super-Gaussian intensity envelope in the time domain as shown in figure 4.7a.

This is done in order to reduce the sharp edges created by the finite width of the

data window. Sharp edges are known to induce Gibb’s oscillations in the Fourier

transform [153, 154]. In order to inform our understanding of our spectral analysis

of the beat signals we also added white noise to the simulated data. The form of

noise was random, with a normal distribution, and a maximum amplitude of ± 5 %

applied to the signal, I(t). This is not necessarily of the same form as the real noise

in data taken in the laboratory, but will give us some greater understanding of the

effects of noise on this analysis.

Our simulated data was sampled over 300 ns which gives a frequency resolution

of 1/(300 × 10−9 s) = 3.3 MHz. Given that the FWHM of the frequency peak is

< 1 MHz, then it is not going to be well resolved by our Fourier transform and

therefore the centre of the peak will also not be well mapped out, which is why the
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Figure 4.7: Simulations of the process for determining the instantaneous frequency
difference f(t). (a) i: The simulated heterodyne signal with a random normal dis-
tribution of noise with a maximum amplitude of 5 % , ii: black trace represents
the Gaussian temporal intensity profile overlaid with the red trace which is the ex-
tracted intensity profile extracted from the beat signal. This shows modulation of
< ± 5 % due to the added noise. (b) The Fourier transform of signal with overlaid
super-Gaussian mask, including frequencies between ≈ 75 and 525 MHz (FWHM
of mask). (c) The derived instantaneous frequency difference f(t). After an initial
overshoot, after 20 ns the oscillations in f(t) are < ± 20 MHz.
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peak is off centre to the mask which is centred on 300 MHz. The sampling rate,

given that the simulated data had a data-interval of 0.1 ns, which was also the data

interval of data taken with the oscilloscope, gives a Nyquist sampling frequency limit

of 5 GHz. This is well above frequencies of interest to us.

Figures 4.7 demonstrates the use of a super-Gaussian mask which cuts off fre-

quencies below ≈ 75 MHz. The the noise added to the data can be seen in the

time domain (a) i, the extracted pulse shape (a) ii, and also in the Fourier do-

main (b) and the derived instantaneous frequency difference f(t) (c). For example

figure 4.7b shows many low amplitude frequency components over the displayed fre-

quency range due to the presence of noise. The mask used included frequencies from

75 to 525 MHz. The oscillation of f(t) around the actual value of 300 MHz in fig-

ure 4.7c is approximately ± 10-20 MHz, after an initial overshoot of approximately

170 MHz, and an undershoot of 70 MHz at the end of the data window.

The oscillation of f(t) in figure 4.8c has been reduced to approximately ± 2 MHz,

within the expected limit of certainty, due to the width of the data window. The

modulation in the extracted intensity in figure 4.8a (ii) has been reduced from≈ 10 %

in figure 4.7a (ii) to 5 %, due to the narrower mask suppressing the noise and included

frequency range.
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Figure 4.8: Simulations of the process for determining the instantaneous frequency
difference f(t) with a different mask applied in the Fourier domain. (a) i: The
heterodyne signal as in figure 4.7, ii: black trace represents the Gaussian temporal
intensity profile overlaid with the red trace, which is the intensity profile extracted
from the heterodyne signal showing a reduction to 5 % modulation. (b) The Fourier
transform of signal overlaid with super-Gaussian mask including frequencies between
≈ 250 and 360 MHz (FWHM of mask). (c) The derived instantaneous frequency
difference f(t). For the majority of the chirp the oscillation is ≈ ± 0.2 MHz.
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4.4.2 Summary

A super-Gaussian mask offered the best compromise between ease of implementa-

tion, having a rising edge which is not too steep, and having a good cut-off between

beat frequencies and frequencies due to the temporal profile of the pulse. Having a

clear separation is important since we need to isolate the instantaneous phase term,

φ(t), as given in equation (4.1) in order to differentiate to derive the instantaneous

frequency difference, f(t). It clear at this stage, that noise has a significant effect

on the uncertainty of the derived f(t). Any high frequency noise in the phase φ(t)

will be greatly magnified when differentiated, leading to large modulations in f(t).

Other bandpass filters such as Blackman and Tukey can also be employed, which

can be used to correctly separate the frequency term [148, 151] from the intensity

components in Fourier space. The simplest, rectangular filter has the advantage

that there is zero attenuation in the region of interest, and the cut-off is optimal,

however the sharp edges cause significant spectral leakage, which become apparent

in the time domain, due the higher frequency components contained in a sharp rising

edge which can overlap with the chirp frequency components. There is therefore a

trade off in the smoothness and flatness of a band-pass filter used.

Our analysis shows however, that for our purposes, a super-Gaussian provides

sufficient accuracy to derive the instantaneous frequency difference as a function of

time, and it is other sources of error, such as noise and data window width that will

be of greater significance.

4.4.3 Linear chirp simulations

In order to test the method for extracting the instantaneous frequency difference as

a function of time, f(t) for a linear chirp, a Gaussian envelope was applied as before

in the time domain, with a half maximum rise time of ≈ 50 ns. The chirp phase was

adjusted so that the maximum chirp occurs at 50 ns and chirps down to 0 frequency

difference at 190 ns as shown by the dashed red trace in figure 4.9c. Outside this

range the mathematical function used to generate the simulated chirp continues, as

shown by the beat pattern in figure 4.9a (i). However, as we are only interested in

how well the derived instantaneous frequency difference is extracted over a particular

time range we only plot it in the range from 50-190 ns as shown in figure 4.9c. The

mask used in Fourier space is shown in figure 4.9b. In the first case this included

all low frequencies close to 0 MHz up to the maximum. The extracted pulse shape

shown in figure 4.9a (ii) shows modulation of the amplitude which implies that we

have not correctly separated the Fourier components. The derived f(t) shows very
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Figure 4.9: Simulations of the process for determining the instantaneous frequency
difference f(t) using a simulated linear chirp. (a) i: The simulated heterodyne signal,
ii: black trace represents the Gaussian temporal intensity profile overlaid with the
red trace which is the intensity profile extracted from the heterodyne signal. It shows
a good extraction of the smooth intensity profile with some larger modulation of up
to 10 % at the end of the pulse. (b) The Fourier transform of signal overlaid with
super-Gaussian mask including frequencies down to the minimum of ≈ 10 MHz up
to 380 MHz. (c) The derived instantaneous frequency difference f(t). Oscillations
around the predicted frequency are ± < 0.5 MHz until after 175 ns when f(t)
deviates more.

little modulation, ± < 0.5 MHz around the predicted frequency. The penalty for this

is the limit on the extraction of lower frequencies, where after 175 ns, f(t) deviates

sharply away from the predicted value, with a final value of ≈ 35 MHz above the

predicted 0 MHz value for the end of the chirp.
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4.4.4 Offset and noise

To overcome the difficulty of accurately resolving higher frequencies, without com-

promise on extracting lower frequencies, we can simulate an offset in the frequency

of one the arms our our laser system, resulting in a chirp which does not approach

0 MHz, which in an experimental situation could be achieved by the use of an A.O.M.

in one of the arms in the heterodyning. The extracted Gaussian temporal profile

in figure 4.10a has modulation of up to 5 % is without unwanted modulation and

the derived instantaneous frequency difference in figure 4.10c follows the predicted

frequency accuracy to less than 10 MHz limit down to the minimum value of the

offset of 100 MHz. The Fourier components due to the temporal profile are not

visible in figure 4.10b.

4.4.5 Conclusions

Determining frequencies from the beat (heterodyne) pattern of the two laser beams

using the mathematical algorithm detailed in section 4.3.2 requires the careful sep-

aration in Fourier space of the chirp and temporal intensity components in order

to give the accurate measurement of the instantaneous phase φ(t) and frequency

f(t) as a function of time. Issues arise with the extraction of low frequencies, where

if you need to resolve below 50 MHz, the uncertainty of the derived instantaneous

frequency difference f(t) increases over the whole chirp. We found that it is better

to cut off lower frequencies, and infer them by applying a fit, or by splitting the

data and analysing higher and lower frequencies separately. Alternatively an A.O.M

could be used to offset the frequency of one of the beams before heterodyning and

therefore avoid the problem of deriving these lower frequencies.

A high signal to noise is also important since it can introduce uncertainties in

φ(t), which when differentiated are magnified to introduce large uncertainties in

f(t).
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Figure 4.10: Simulations of the process for determining the instantaneous frequency
difference f(t) using an offset to the initial frequency. (a) i: The heterodyne signal
of a 400 MHz down to 100 MHz chirp with a normal random distribution of noise,
with a maximum amplitude of 5 % to the heterodyne signal, ii: the red trace is the
extracted intensity temporal profile which shows a smooth intensity profile as shown
by the overlaid black trace which is the input Gaussian profile. (b) The Fourier
transform of signal overlaid with super-Gaussian mask including frequencies down to
the minimum of ≈ 40 MHz up to 530 MHz. (c) The derived instantaneous frequency
difference f(t). Oscillations around the predicted frequency are < ± 10 MHz.
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4.5 Constant velocity lattice heterodyne signals

We have now analysed the implementation of masks to separate the phase compo-

nents from the temporal intensity components in Fourier space for simulated data.

Once we have extracted the instantaneous phase difference as a function of time φ(t)

we can derive the instantaneous frequency difference as a function of time f(t) and

therefore infer the lattice velocity v(t). This method was then implemented with

experimental heterodyne data for a constant velocity lattice, since it is the simplest

case to begin with. Although the primary aim of our laser system is to produce a

decelerating lattice with the two arms of the system, constant velocity lattices may

also be created by applying a periodic square wave voltage to the e.o. crystal.

Applying a single square voltage pulse to the e.o. crystal would obviously only

create a frequency difference between the two arms for the time delay due to the

difference in length in the two fibres. After this point, the frequencies would be

the same, since the frequency of the longer fibre would ‘catch up’ to the frequency

of the shorter fibre. Instead, a periodic square wave was applied using a arbitrary

waveform generator (TTi: TGA12101), which was limited to providing waveforms

with 20 V peak to peak. It was set so that the voltage is on for 275 ns, and then

off for 275 ns. After switch on, this caused a delayed shift in the frequency in each

arm, as illustrated by figure 4.11. Figure 4.11a shows a simulated periodic square

pulse, and figures 4.11b and c show the resultant relative frequency that would be

observed at the end of each fibre. The outputs are π radians out of phase with each

other due to the time delay introduced by the difference in lengths between the two

fibres.

If the output of each of the fibres in this situation were interfered to create

an optical lattice, a constant velocity lattice would be produced, due to the fixed

frequency difference. After 275 ns, the direction of the moving lattice will swap,

but with the same magnitude of velocity, given by the voltage, multiplied by the

tunability fV. To create a lattice moving at, for example half the velocity of the

molecular jet, we would have to ensure that the right part of the cycle was used,

otherwise the relative difference in velocity would be one and a half times the jet

velocity and the lattice would be moving in the opposite direction to the jet. As

discussed, a linear voltage ramp will eventually be the desirable waveform in order

to create a constantly decelerating lattice. Whilst not of sufficient amplitude to

produce the required frequency sweep to decelerate molecules in a molecular beam, a

triangular waveform can be programmed to produce a linear ramp, with a maximum

amplitude of 20± 0.5 V over a duration of 137.5 ns.
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Figure 4.11: Creating a constant velocity lattice. (a) Shows the required input pulse
from the voltage source. The period is such that the voltage is applied for 275 ns
before switching off for 275 ns. This is the maximum use of the available fibre length.
Even if the period was longer, the output of the longer fibre would catch up with
the output of the shorter fibre after 275 ns which is the time delay induced by the
55 mm meter difference. (b) and (c) show the relative frequency which would be
observed at the output of the two fibres compared to the normal output for zero
volts. They are out of phase by π radians due to the time delay.
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4.5.1 Square pulse: experimental data

Figure 4.12 shows the trace of a square wave voltage with amplitude 20 V pro-

grammed to be on for 275 ns, and then off for the same duration on the arbitrary

waveform. The noise is probably due to the mis-match in the impedences of the

scope and chirping crystal. The slope indicates that the half maximum rise time is

≈ 5 ns. The slope means that for a finite time, the frequencies on each arm approach

each other during the part of the sequence where the voltage swaps from maximum

to minimum voltage, or from minimum to maximum. Figures 4.13a-d shows the

result of heterodyning the output of each fibre when a 20 ± 0.5 V periodic square

pulse applied is applied to our laser system, with the voltage on for 275 ns and off

for the same duration.

The area of ill-defined frequency in the middle of the pulse is due to the finite

rise time of the square pulse. It was hoped that, if this was sufficiently rapid, i.e.

the voltage generator generated a square pulse very accurately, with close to zero

rise time, that it would be possible to measure the time it takes for the cavity to

change to a new frequency. It has been found that the time that a cavity can follow

an applied modulation is in the regime of the inverse of the cavity free spectral

range [119]. In our case this is 22 GHz, which means that we would have to have a

resolution in our analysis of the derived instantaneous frequency difference f(t) of

< 0.1 ns, which is unrealistic based on our analysis of simulated chirps in section 4.4.

The area of ill-defined frequency is much larger, indicating that the limiting factors

are the analysis technique, and also the finite time for the voltage to swap from

maximum to minimum.

Figure 4.13a shows the voltage applied to the e.o. crystal (i), the heterodyne

beat pattern recorded on the photodiode (ii) and the extracted intensity profile (iii).

There is a great deal of intensity modulation up to 10 % increasing to 20 % close to

the areas of ill-defined frequency at 110 and 380 ns. Figure 4.13b shows the Fourier

transform of the heterodyne signal, overlaid with the mask which included frequen-

cies from 70 to 230 MHz. Figures 4.13c (i) and (ii) shows f(t) and φ(t) respectively.

The instantaneous frequency difference f(t) shows modulation of ≈ ± 10 MHz over-

laid with a linear fit which implies a tunablity fV = 14.6 ± 0.40 MHz/V. The fit

is applied to the data, omitting regions of ill defined frequency at 110 and 380 ns,

and the edges of the data window. φ(t) is much smoother and is linear to a slope

error of < 0.1 %, although there are some discontinuties evident at the times which

f(t) deviates greatly from predicted. The instantaneous phase φ(t) is shown for this

data to demonstrate the effect that small discontinities result in large oscillations

in f(t). As previously explained, one of the important issues with any error due to
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Figure 4.12: Measuring the output of the arbitrary waveform generator set to pro-
duce a periodic square pulse. (a) The periodic square pulse output of arbitrary
waveform generator with output set to 20 V. Magnitude of output is 20±0.5 V with
some noise on the ’flat’ sections of the pulse evident in (b) which is the same data
with a different x-scale. There is a finite half maximum rise time of ≈ 5 ns.

noise in the instantaneous phase φ(t), is that taking the time derivative of phase will

amplify any error when converting to frequency, f(t).

Figure 4.13d shows the derived f(t) when the analysis is applied to the middle

section of the data in figure 4.13 between the two sections of ill-defined frequency.

The same range of frequencies was included by the mask.
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Figure 4.13: Analyzing heterodyne signal measured on a photodiode when a periodic
square pulse is applied to the e.o. crystal, to determine the instantaneous frequency
difference f(t) (a) i: The periodic square voltage applied to the e.o. crystal, ii:
The heterodyne signal, iii: extracted intensity temporal profile. There is intensity
modulation of up to 10 % for most of the chirp, increasing to 20 % close to the
areas of ill-defined frequency at 110 and 380 ns. (b) The Fourier transform of signal
overlaid with super-Gaussian mask including frequencies down to the minimum of ≈
70 MHz up to 230 MHz. (c) i: The derived instantaneous frequency difference f(t)
overlaid with a linear fit (applied to central data) which implies, given a voltage
of 20 ± 0.5 V, a tunablity of fV = 14.6 ± 0.4 MHz/V. Oscillations around the
predicted frequency are ≈ ± 10 MHz. ii: The instantaneous phase φ(t) is linear
and modulation is < 0.1 % althought there are some discontinuities evident at the
times at which f(t) deviates greatly from the fit. (d) As with (c) however when the
analysis was applied to the middle section of (a). The applied fit implies a tunablity
of fV = 14.6 ± 0.4 MHz/V, with oscillations around the fit of ≈ ± 10 MHz.
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4.6 Linear chirps

4.6.1 Introduction

Up to this point the required linear chirps have been investigated up to ≈ 400 MHz

equivalent to a lattice velocity of 213 ms−1. This is much less than required to cap-

ture molecules in a molecular jet (400 ms−1) and is limited by the maximum voltage

output of the arbitrary waveform generator. The practical difficulty with producing

the linear frequency sweep is in producing a linear voltage sweep of approximately

70 V in ≈ 140 ns. A linear change over this period will contain high frequencies, and

therefore place high demands on a voltage amplifier. In this regime the design and

construction of a circuit is crucial where inductive effects from the wiring can play

a dominant role. We investigated a tank circuit, as described in chapter 3, to verify

that the maximum required chirp can be achieved with our microchip laser, which

can amplify a sinusoidal waveform with a resonance centred around a particular

frequency.

A linear circuit is still the ultimate goal. A linear ramp from the maximum

frequency difference, equivalent to the optical lattice being equal to the jet velocity

down to zero, is the optimum use of the pulse energy. In a sinusoidal ramp, the

function changes more slowly at the beginning and the end of a downward change

from maximum to minimum. We therefore investigated the linear voltage ramp up

to 20 V, whilst considering that in the future further amplification may be needed

to reach the required lattice velocity.

4.6.2 Triangular waveform data

We applied a triangular waveform to the arbitrary waveform generator to investigate

a continuous linear frequency change. The measured input to the crystal is shown

in figure 4.14. There is some rounding off at the top of the function, due to the

intrinsic difficulties with producing such discontinuous waveforms, and noise up to

± 0.25 V.
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Figure 4.14: (a) The triangular, linear pulse output of the arbitrary waveform gener-
ator with output set to 20 V. The magnitude of output is just 18 V however there is
some additional, random noise evident in (b) which is the same plot with a different
x-scale, along the linear ramps and therefore the error is estimated to be ± 0.5 V.

4.6.3 Linear chirp analysis

Figures 4.15a (ii) shows the result of heterodyning the output of each fibre when the

waveform described in figure 4.14 and 4.15a (i) is applied to the e.o. crystal of our

laser system. There is a lot of modulation in the extracted intensity profile shown by

figure 4.15a (iii), indicating overlap of the intensity and chirp frequency components

in Fourier space. The mask applied in Fourier space included frequencies between

25 and 300 MHz is shown in figure 4.15b. The derived instantaneous frequency

difference f(t) and the instantaneous phase φ(t) is shown in figure 4.15c (i) and (ii)

respectively. The modulation in f(t) is < ± 10 MHz at lower frequencies and up to

20 MHz at higher frequencies. The phase φ(t) is much smoother. Once again, a small

error or noise in the extracted phase is greatly magnified in the derived f(t). A linear

fit is overlaid on each individual section of the triangular waveform. The maximum

frequency was approximately 276 ± 10 MHz. Given that the maximum voltage

applied during the linear ramp was 18± 0.5 V according to figure 4.14 this implies

that fV = 15.3± 0.7 MHz/V. There is no statistically significant difference between

this value and the one derived from the sinusoidal waveform shown in figure 4.4 where

fV = 14.3 ± 0.2 MHz/V. The crystal temperature at which this data was taken

(16.95 ◦C) was the same in both cases, although a period of time had elapsed. It

may be that the crystal characteristic had changed slightly over the period between

which the data was taken. The other possibility is that the difference is due to
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the different modulation frequencies contained within each waveform. Whilst the

period of the waveforms are equivalent, a triangular waveform contains much higher

frequencies, as discussed in chapter 3. This demonstrated that the tunability fV

can vary greatly for different frequencies. This could be an issue for a linear chirp

if the tunability changes over the course of the ramp, however within the limits of

the noise which are discussed, this does not appear to be the case. If this is actually

responsible for this noise it may be an argument for using a sinusoidal wave-form,

despite the disadvantages.
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Figure 4.15: Analyzing heterodyne signal measured on a photodiode when a periodic
linear ramp pulse is applied to the e.o. crystal, to determine the instantaneous fre-
quency difference f(t). (a) i: The triangular, linear pulse voltage which was applied
to the e.o. crystal, ii: The heterodyne signal, iii: extracted intensity temporal pro-
file. There is intensity modulation of up to 20 %. (b) The Fourier transform of signal
overlaid with super-Gaussian mask including frequencies down to the minimum of
≈ 25 MHz up to 300 MHz. (c) i: The derived instantaneous frequency difference
f(t) overlaid with a linear fit, with phase adjusted for fit and a chirp duration of
137.5 ns. The modulation around this fit is within ± ≈ 10 MHz at lower frequencies
and up to 20 MHz at higher frequencies, ii: the instantaneous phase φ(t) has no
modulation to the limits of the accuracy of the plot.
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4.7 Conclusions

We have demonstrated that our laser system can be chirped using a variety of

waveforms. A constant frequency difference was created using a periodic square

voltage applied to the e.o. crystal as well as rapid chirps using linear and sinusoidal

waveforms. In all cases, the frequency of our laser system follows the applied voltage.

Therefore, by simply shaping the applied voltage pulse, we can produce any form of

chirp required for our deceleration and acceleration experiments. This is only limited

by the speed and amplitude limitations of our voltage source, which we apply to the

e.o. crystal.

The analysis on experimental data shows that the type of mask used is still

very important in the extraction of the instantaneous frequency difference f(t). The

greater amount of noise present in the real data, compared to simulated data, means

that there are many more components in Fourier space, making separation from the

chirp components both more difficult, and therefore more critical. It seems relatively

easy to reduce oscillations to within ± 10 MHz and this we believe demonstrates

that the chirp of the laser follows the waveform of the applied voltage to this degree

of accuracy.

To reduce oscillations further, we can exclude lower frequencies more, however

this is at the expense of a higher limit to the lowest frequency that can be analysed.

Once again, shifting the frequency of one of the arms for heterodyning, using a device

such as an A.O.M., would be one way of ensuring that the minimum frequency has

less overlap with the other components in Fourier space. Given that the limit of

accuracy of the frequency given by the width of the data window is ≈ 3.3 MHz,

there is little to gain in restricting the window to reduce oscillations below this.

It is very clear that maximising the signal to noise ratio is also crucial in enabling

better separation in frequency space of the chirp and temporal intensity components.

This could be achieved by ensuring a larger amount of optical signal. In addition,

ensuring maximum modulation due to heterodyning by ensuring good spatial overlap

of the two beams and matching of beam size will improve the signal. Reducing

electronic noise by using double shielded co-axial cable would also help.

In the next chapter, this analysis will be used to derive the instantaneous fre-

quency difference f(t) for the pulse amplified data and compared to CW data, in

order to verify that no additional chirp is imparted during pulsed amplification in

the Nd:YAG rods.
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Pulsed Amplification

5.1 Introduction

The output from the slave diode laser is coupled into a fibre amplifier (IPG: YAR-1K-

LP-SF), where it is amplified from 100-1000 mW, depending on requirements. This

part of the laser system is described in chapters 3 and 4. As we require intensities on

the order 1014−1015 W m−2 for deceleration and acceleration of molecules, we must

amplify the output of the fibre amplifier in a pulsed amplifier for pulse durations

in the 100’s ns regime and pulse energies of ≈ 300-500 mJ per pulse as shown in

figure 5.1. Before pulsed amplification, the output of the fibre amplifier is passed

through a pulse shaper, consisting of a Pockels cell and polariser, which will later

be used to chop the beam up into pulses for pulsed amplification.

5.2 Producing pulses from the continuous wave

(cw) laser

We only need to amplify for the duration of the pulse (20 - 1000 ns). To do this we

chop the cw beam into pulses of the required duration using a pulse shaper consisting

of a Pockels cell (Kentech, provided by Continuum Lasers) and a polarising beam

splitter, as shown by figure 5.1. The Pockels cell is used to rotate the polarisation

of the light by an amount which depends on the voltage applied. The pulse shaper

is set up so that the polarisation of the light that is output from the fibre amplifier

is rejected by the polariser, sending it into a beam dump. When a larger voltage

is applied, the polarisation rotates such that an increasing amount of light is able

to pass through the polariser up to a maximum value of > 99 % of the total input

power. A computer is used along with software provided by Continum, (Pulse

16.exe) to program the pulse shaper to apply a continuous range of voltages to the
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Pockels cell in the pulse shaper. This rotates the polarisation from its original state

to an orthogonal or any intermediate state, allowing almost continuous attenuation.

Since for most purposes we require flat-top temporal profiles at the output of the

pulsed amplification system, we must shape the input pulses to compensate for the

non-linear gain of the Nd:YAG amplifying rods.

In some situations for example, alignment of the laser system, or monitoring of

cw beams without pulsed amplification, the half-wave plate must be rotated so that

light is transmitted by the polarising beam splitter when the Pockels cell is switched

off.

Figure 5.1: Detailed schematic of the laser system after cw amplification in the
fibre amplifier up to the pulsed amplification stage. This includes the pulse shaping
section and paddles which use stress induced birefringence to correct the polarisation,
scrambled during passage through the fibre, for correct operation in the Nd:YAG
amplifier system.
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5.3 Pulsed amplification

5.3.1 Introduction

There are three stages of amplification in each arm, each one consisting of 100 mm

long, 6 mm diameter Nd:YAG rods. These are flash lamp pumped at 10 Hz, which

are triggered from an internal clock in the power supplies provided by Continuum.

When seeded by our cw system, there is large amplification caused by the stimulated

emission from the Nd:YAG gain medium at the same frequency as the seed (master

microchip laser). Before the first stage of amplification there are two high power

isolators in each arm (EOT: CR1064, and EOT: 04-00842, both with ≈ 30 dB

extinction) which prevent light from traveling backwards from the amplifiers to the

seed, which would cause considerable damage to the fibre ends, or to preceding

optical apparatus. After the second stage of amplification there is a high voltage

Pockels cell (≈ 1.5 kV) and polariser combination which is used to prevent light from

passing through the third stage of amplification, except when triggered to do so. This

serves the primary purpose of preventing the build up of spontaneous emission, and

stopping amplified light traveling in the opposite direction, back through the other

amplifiers and causing run away amplification. We can also use the Pockels cell to

sharpen the rise time of the pulses.

5.3.2 Pulse shaping requirements

Due to the time varying gain G(t) in the Nd:YAG amplifying rods during amplifi-

cation, we must shape the input pulses Iin(t) in order to produce output pulses of

the correct shape and length Iout(t). The relationship between the input and output

temporal profiles, assuming large signal can be written as

Iout(t) = Iin(t)×G(t), (5.1)

where the time dependent gain can be described by [106],

G(t) =
G0

G0 − (G0 − 1) exp [−Uin(t)/Usat]
, (5.2)

and Uin,out(t) ≡
∫ t

t0
Iin,out(t)dt. G0 and Usat are constants for the initial gain and a

saturation intensity respectively. If we require a flat top output intensity then this

means that Iout is a constant k and therefore Uout = k t.

If we want to specify the required gain profile G(t) for a given output pulse shape,
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then this can be alternatively written in the presence of saturation as [106]

G(t) = 1 + (G0 − 1) exp [−Uout(t)/Usat] . (5.3)

Since all other variables are constant this implies that

G(t) = 1 + (G0 − 1) exp [−k t/Usat] . (5.4)

The gain is therefore at a maximum at t = 0 when G(t) = G0.

Substituting this into (5.1) implies that we need to provide an exponentially

increasing intensity of light Iin(t) in order to produce a constant Iout(t) in order to

compensate for the exponentially decreasing gain.

By adjusting the shape and controlling the switch-on of the Pockels cells to

nanosecond resolution, the output intensity profile can then be fine tuned.

5.3.3 Overlapping of two pulses

Due to the time delay in the two arms of the laser, caused by the difference in

fibre lengths, two pulses must be produced before the beam is split, and two sent

into each fibre in such a way that the first pulse exiting the long fibre overlaps

with the second pulse exiting the shorter fibre. The first pulse from the short fibre

is blocked by the Pockels cells in the pulsed amplification system, and therefore

not amplified. The second pulse from the longer fibre is discarded as it does not

temporally overlap with the beams which form the optical lattice. Since the gain

in each arm is not necessarily the same, due to the Nd:YAG rods and flashlamps,

the two pulses can, and may need to be shaped differently in order to create the

required flat-top temporal profile of the amplified pulses.

5.3.4 Modeling the gain of our system

By measuring the input pulse on a photodiode, and calibrating it according to the

total energy as measured by a power meter, we calculated the temporal profile of

the input beam Iin(t). By comparing it to the output pulse that has been measured

and calibrated in the same way, we can calibrate the gain G(t) using equation (5.1).

Figure 5.2a is a plot of the flat top temporal profile Iin(t) and figure 5.2b shows

the resultant amplified Iout(t). Figure 5.2c shows the calculated G(t). For a given

input/output pulse there will be a unique G(t) since there is a dependence implicit

on the input intensity as shown by equations (5.2) and (5.3).

By applying an iterative fit using the program Origin, with the function given
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Figure 5.2: (a) The flat top temporal profile of the low power input beam, Iin(t)
calibrated for the power axis by dividing the total measured energy per pulse (power
of cw beam over the time of the pulse) by the integrated signal as measured by the
photodiode. (b) The measured amplified pulse Iout(t) and (c) the calculated time
dependent gain profile G(t) with overlaid red trace which is an exponential fit of
the form given by equation (5.4). It was found that for this case, G0 = 4.6 × 107,
Usat = 0.11 J m−2.

by equation (5.3), the constants G0 and Usat can be estimated. This fit is shown

by the red trace in figure 5.2c. In this case it was found that G0 = 4.6 × 107 and

Usat = 0.11 J m−2. Now, by reversing this process we can calculate the required

G(t) needed to give a flat top Iout(t) from equation (5.3), since as already stated

Uin/out(t) ≡
∫ t

t0
Iin/out(t)dt. Finally from the inverse of equation (5.1) we can calculate

Iin(t) from the required Iout(t) and the G(t) just calculated.
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Figure 5.3: (a) The required flat top temporal profile of the amplified pulse, Iout(t),
(b) the gain profile G(t) require to give Iout(t) and (c) the input pulse shape Iin(t)
required to produce the amplified output beam.

Figure 5.3a shows the desired flat top temporal profile of the amplified beam,

Iout(t), figure 5.3b the associated G(t) which would be required to give this output

temporal profile and figure 5.3c the calculated temporal profile of the low power input

beam, Iin(t) which would produce the required output temporal profile. Of course

the instantaneous power as function of time must be converted to the arbitrary

values in the pulse shaping software, which can be calibrated using a power meter

and photodiode.
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Figure 5.4: Detailed schematic of the Nd:YAG (Continuum) pulsed amplification
system, showing both arms used to create the optical lattice.

5.3.5 Alignment Procedures

The output from the optical fibres enters the pulsed amplification stage as shown

in figure 5.1. In order to maintain safe and efficient operation, the Nd:YAG pulsed

amplification system must be regularly aligned and the output beam profile checked.

Small misalignment of the beam through the Nd:YAG rods will result in a reduction

in output power and a non-symmetric output beam profile. Larger misalignment is

potentially extremely dangerous and could cause damage to the rods or other optics.

This can occur because if the beam is clipped by an optic, such as the edge of a rod,

it can create a sharp edge to the beam profile. This can cause unwanted diffraction

effects, and areas of extremely high intensity at points further down the optical path

or at the point of origin due to small back reflections.

Figure 5.4 details the Nd:YAG amplification system. The original custom system

designed by Continuum included, in place of the fibre inputs, a single microchip laser

(Elforlight) which operated at λ = 1064.1 nm which was split and then coupled into

arms A and B. Since we now require two inputs, which allow us to create a frequency

difference between the two arms, the first stage of the system had to be redesigned.

As mentioned before, two adjustable lenses (1A, 1B) are fixed to the ends of the

fibres in order to create a near collimated, slightly diverging beam and the fibre ends
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fixed securely to the optical bread board of the laser. The lenses were chosen so as

to create the correct size beam to adequately fill the volume of the Nd:YAG rods,

and ensure that the beam does not focus anywhere along the optical path, which

given the high intensities involved, could cause damage to the optics.

The rest of the optical path will be described for arm A only since the optical

path is essentially identical in arm B. In arm A, the beam is directed by mirrors

m1, and m2 through two Faraday isolators (2A, 3A). The paddles are adjusted to

correct the polarisation of the light of the fibres using stress induced birefringence,

and maximise transmission through the isolators. In total two isolators are required

for each arm, to ensure that light can only travel in one direction through the system.

A pinhole (10A) is also used before the final stage of amplification to ensure that

only light focused at exactly the right spot and on-axis can pass through. This

prevents off-axis back reflections, which would focus in a different plane. It also

blocks light off-axis.

Mirrors m3 and m4 direct the beam through the first Nd:YAG rod (5A) via

polarising beam splitter 4A which allows the light to pass through. The first pair

of irises, one after 4A and the other after rod 5A are used for alignment purposes.

Firstly, m3 is adjusted to centre the beam on the first iris, then mirror m4 is adjusted

to centre the beam on the second iris. This is repeated over many iterations until

the beam is aligned centrally through both irises simultaneously. This should ensure

that the beam is centred through the amplifying rod. The beam then passes through

a quarter wave plate (6A) which rotates the polarisation from linear to circular and is

then reflected by a normal incidence mirror m5 where it undergoes another rotation

back to linear, however orthogonal to the original polarisation. The beam then

passes for a second time through rod 5A, and due to the different polarisation is

then reflected by beam splitter 4A where it is directed by mirror m6 through the

high voltage Pockels cell (7A).

Mirrors m5 and m6 are then used with the next pair of irises, located after mirror

m6 and after polarising beam splitter 8A in the same manner as described before to

ensure that the beam is correctly aligned along this path. The high voltage Pockels

cell (≈ 1.5 kV), shown as component 7A combined with the polarising beam splitter

(8A) ensure that light can only pass once the cell is triggered by a high voltage on

the Pockels cell which rotates the polarisation such that the light can pass through

the beam splitter. Otherwise, it is rejected on to a beam dump. This ensures that

there cannot be a large buildup of amplified spontaneous emission.

Mirrors m7 and m8 direct the beam through the second Nd:YAG rod (9A),

where another pair of irises are used to ensure correct alignment. A lens (10A)
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with a long focal length (f ≈ 50 cm) causes the beam to focus at pinhole 11A.

Mirrors m9 and m10 direct the beam through pinhole 11A and through the final

Nd:YAG rod (12A) which is the final stage of amplification. Another pair of irises

are used to ensure correct alignment, where initially pinhole 11A is first removed.

Once centrally aligned on both irises, the pinhole is replaced and a piece of white

card or lens tissue placed just before the rod (12A). A circular diffraction pattern

should appear, caused by the diffraction of the focused beam through the pinhole.

The horizontal and vertical position of the pinhole can be finely adjusted with two

screws to create a symmetric diffraction pattern, thus ensuring that transmission of

the beam waist is maximised. The pulse amplified output is held back by a manually

operated shutter to ensure that the high intensity beams are not emitted from the

system when not required.

This alignment procedure must then be repeated for arm B, using components

1B to 12B, using the equivalent mirrors and irises. On a weekly basis, one only

needs to check the output power, and beam profile to check for misalignment. Often

a slight adjustment of the final stage, with mirrors m9 and m10 and pinhole 11A

(and the equivalent for arm B) is sufficient to maintain a good Gaussian beam profile

and normal operating pulse energies 300-500 mJ / pulse. Generally full alignment

of the whole arm was only necessary on a monthly basis.

5.3.6 Beam profile

A typical beam profile is shown by figure 5.5. The vertical diffraction lines and

spots on the image are due to the many neutral density filters that had to be placed

in front of the camera. This was verified by moving them around and checking

which part of the image moved. The unfocused beams are approximately 4-5 mm

in diameter at the exit of the pulsed amplifier.

5.4 Timing

One of the major parameters which had to be controlled in this laser system was

the timing of the pulses. Firstly, as described in section 5.3.3 on pulse shaping, two

pulses were sent through each fibre in such a way that two of the four pulses were

temporally overlapped. The high voltage Pockels cells were timed to trigger at the

right moment to allow these pulses to be transmitted at the correct time. Their rise

time of ≈ 5 ns also allowed for the sharpening of the rising edge of the pulses from

each arm.
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Figure 5.5: A typical beam profile of the pulse amplified output. Beam is ≈ 4 − 5
mm in diameter at exit of pulsed amplifier.

A timing diagram for the various triggering events is shown in figure 5.6. All

timing for the laser operations and subsequent experiments were carried out with

two pulse/delay generators (DG535, Stanford Research Systems Inc.). These devices

operate from an internal trigger or can be externally triggered as in our case and

can then provide up to four single outputs, A, B, C, D or triggered output pulses

of fixed length, A-B, C-D or fixed ‘always on’ voltages with controllable ‘switch-off’

pulses of length A-B or C-D. The master trigger t0 was the 10 Hz timing signal from

the power supply unit of the Nd:YAG amplification system. An output trigger 108

µs after t0 was used to trigger the Kentech pulse shaper,which is in order to coincide

with the build-up in gain of the amplifiers. Approximately 400 ns after this the high

voltage Pockels cells were then triggered, which takes into account the time delay

for light to pass from one end of the fibres to the other and through approximately

2 m of the pulse amplifier.

5.5 Pulsed outputs for a constant velocity lattice

We now need to verify the behaviour of our pulsed laser system when chirped.

Figures 5.7 and 5.8 show the heterodyne (beat) signal, the derived intensity profile,

as well as the Fourier transform and mask used to extract the instantaneous phase

components and derive the instantaneous frequency of time f(t). The data was taken

when a constant velocity lattice was created by the application of a periodic square

voltage of 20 V to the e.o. crystal, for the pulsed amplified output. Also shown is

the frequency as a function of time f(t) derived from the Fourier transform analysis.

In the first case a wider mask is applied which includes frequencies between 220 and

112



Chapter 5: Pulsed Amplification

Figure 5.6: Visualisation of the various events that have to be co-ordinated for
operation of the laser system and synchronisation of the output laser pulses.

380 MHz. The tunability was calculated to be fV = 14.4 ± 0.4 MHz/V, given an

applied voltage amplitude of 20± 0.5 V and a linear fit (applied to central data) to

the derived frequency f(t). There is intensity modulation in figure 5.7a (ii) up to

10 % for most of the chirp, comparable to the actual pulse, increasing to 20 % at

the beginning of the pulse indicating some overlap between the Fourier components.

Oscillations around the predicted frequency in figure 5.7c (i) are, < ± 10 MHz.

The instantaneous phase, φ(t) shown in figure 5.7c (ii) is without modulation and is

linear, as we would expect for a constant frequency f(t), to a slope error of < 0.1%.

There are however discontinuties at the beginning and end of the pulse, coinciding

with the points at which f(t) deviates greatly from the fit.

The linear fit applied to figure 5.8c (i) implies a tunability of fV = 14.6 ±
0.4 MHz/V, which is in good agreement with figure 5.7. These are both in good

agreement with the tunablities calculated for the low power cw case, where the

tunablity was calculated to be 14.6± 0.4 MHz/V.

Figure 5.8a (ii) shows intensity modulation up to 10 % for most of the chirp,

increasing to 20 % at the beginning of the pulse indicating overlap between the

Fourier components. Figure 5.8c (i) shows oscillations of f(t) around the predicted

frequency are much smaller, < ± 2 MHz between 50 and 175 ns than in figure 5.7c

(i). The instantaneous phase, φ(t) shown in figure 5.7c (ii) is without modulation

and is linear, as expected for a constant frequency f(t), with slope error of < 0.1 %.
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Figure 5.7: The heterodyne signal measured on a photodiode when a periodic square
pulse is applied to the e.o. crystal, to determine the instantaneous frequency differ-
ence f(t). (a) i: Heterodyne signal, ii: Extracted intensity temporal profile. The
red trace shows the input temporal profile of the beams used to heterodyne. (b)
Fourier transform of signal overlaid with super-Gaussian mask including frequencies
down to the minimum of ≈ 220 MHz up to 380 MHz. (c) i: Derived instanta-
neous frequency f(t) overlaid with a linear fit (applied to central data), indicating
fV = 14.4± 0.4 MHz/V. ii: Extracted instantaneous phase φ(t).
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Figure 5.8: The heterodyne signal measured on a photodiode when a periodic square
voltage pulse is applied to the e.o. crystal, to determine the instantaneous frequency
difference f(t) with a different width mask. (a) i: Heterodyne signal, ii: Extracted
intensity temporal profile. The red trace shows the input temporal profile of the
beams used to heterodyne. (b) Fourier transform of signal overlaid with super-
Gaussian mask including frequencies down to the minimum of ≈ 270 MHz up to
340 MHz. (c) i: Derived instantaneous frequency f(t) overlaid with a linear fit
(applied to central data) of 14.6 ± 0.4 MHz/V. ii: Extracted instantaneous phase
φ(t).
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5.6 Linear chirped pulses

Figure 5.9 shows the beat signal, the derived intensity profile, as well as the Fourier

transform and mask used to extract the instantaneous phase components, when a

periodic triangular voltage with a maximum excursion of 20 V is applied to the e.o.

crystal, for the pulsed amplified output. Also shown is the derived frequency as a

function of time f(t) derived from the Fourier transform analysis.

Figure 5.9a shows the intensity profile of one of the pulsed beams used to produce

the heterodyne signal in Figure 5.9b. The timing is adjusted so that the maximum

frequency occurs at the half maximum intensity (24 ns), and zero frequency (162 ns).

The instantaneous frequency f(t) is shown in figure 5.9c with a linear fit applied

between 27 and 130 ns, omitting the region where the analysis fails due to poor

extraction of low frequencies, and at the beginning of the pulse where the intensity

is not at maximum. This fit is then extrapolated to include the full range of the chirp.

Given that the applied voltage is estimated to be of magnitude 18 ± 0.5 MHz/V, the

tunability is calculated to be, fV = 15.3 ± 0.7 MHz/V. This is in good agreement

with that calculated for the low power cw case.

5.7 A comparison between the pulse amplified and

low power cw beam during chirp

Figure 5.10 shows the data taken with a sinusoidal chirp for the pulsed laser, to

demonstrate that our laser can be chirped up to the required excursion of ≈ 1 GHz,

with figures 5.10a and figure 5.10b showing the intensity profile and heterodyne

signal respectively. Figure 5.10c shows the extracted frequency f(t) for the pulsed

signal. A fit applied to this data gives a tunability, fV = 14.4 ± 0.2 MHz/V. For

comparison figure 5.10d shows f(t) for the low power cw, where a fit indicates a

tunability fV = 14.3± 0.2 MHz/V. These are consistent with each other within the

error bounds, demonstrating once again that no additional chirp is imparted during

pulsed amplification.
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Figure 5.9: The heterodyne signal measured on a photodiode when a periodic tri-
angular voltage pulse is applied to the e.o. crystal, to determine the instantaneous
frequency difference f(t). (a) Measured intensity profile of the amplified pulsed used
with 50 point adjacent averaging. (b) The heterodyne (beat) pattern when a linear
ramp is applied, with the phase of the voltage applied adjusted so that high fre-
quency and zero frequency occur at the half maximum intensity of the pulse, at 24
and 161 ns respectively. (c) The extracted frequency f(t) for the area of interest,
from high to zero frequency. A linear fit is applied for the region between 27 and
130 ns before the oscillations. This fit is then extrapolated from 130 - 161 ns, to
include the full chirp period of 137 ns. This indicates a relative frequency of -13 MHz
at 161 ns and 275 MHz at 24 ns. Given applied voltage of 18± 0.5 V, tunability is
estimated to be fV = 15.3± 0.7 MHz/V.
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Figure 5.10: The heterodyne signal measured on a photodiode when a sinusoidal
voltage pulse is applied to the e.o. crystal, to determine the instantaneous fre-
quency difference f(t). (a) The input profile of one of two pulse amplified laser
beams which are heterodyned on a photodiode with 20 point adjacent averaging. (b)
The heterodyne beat patten produced by the two pulse amplified beams, detected
on a photodiode due to sinusoidal chirp with frequency 1.82 MHz and amplitude
74.0 ± 0.05 V. (c) Instantaneous frequency as a function of time determined from
the data in (b) determined to within an uncertainty of ± 10 MHz. Applying a fit
to this data indicates a tunability of, fV = 14.4 ± 0.2 MHz/V. (d) Instantaneous
frequency as a function of time for identical un-amplified continuous wave case for
comparison. The same fit indicates fV = 14.3 ± 0.2 MHz/V.

118



Chapter 5: Pulsed Amplification

5.8 Summary of tunability measurements for low

power and pulse amplified cases

Overall, the data taken at a Nd:YVO4 temperature of 16.95 ◦C, for the constant

and linear ramp lattices, are in good agreement between their respective cw and

pulse amplified data and also for the d.c. tunability at the same temperature where

fV = 14.7 ± 0.2 MHz/V. In summary, for a constant velocity lattice, the tunabil-

ity was calculated to be, fV = 14.6 ± 0.4 MHz/V, and 14.4 ± 0.4 MHz/V for low

power cw and pulse amplified cases respectively. For a linear ramp, fV = 15.3 ±
0.7 MHz/V, 15.3 ± 0.7 MHz/V for low power cw and pulse amplified cases respec-

tively. The sinusoidal chirp, which also demonstrates the largest frequency excursion,

is also in good agreement with the constant velocity case, fV = 14.3± 0.2 MHz/V,

14.4 ± 0.2 MHz/V for low power cw and pulse amplified respectively, however

is noticeably lower than the linear case. The bounds for the linear case indicate a

slightly higher tunability however it is possible that this is due to the increased error

in estimating the tunability for the linear chirping case, where both the frequency

sweep and voltage applied are less certain. The other possibility, given that the

the crystal characteristics are unlikely to have changed in the time between data

readings, is that the response to the voltage of the e.o. crystal is different due to

different frequency components in a linear chirp, compared to the d.c. operation or

sinusoidal operation. It has already been shown in chapter 3, that the modulation

frequency of the applied voltage affects the tunabliity.

The evidence is certainly that, within the limits of accuracy of our data, the very

important result that no additional chirp is introduced during pulsed amplification.

Our laser system can produce two laser beams which can be chirped to produce

in excess of 1 GHz between them over durations of 100’s ns, for a sinusoidally applied

voltage with an amplitude of ≈ 70 V and modulation frequency of 1.82 MHz. For

other frequency modulations, the tank circuit used to amplify the voltage supplied

by the arbitrary frequency generator (limited to 20 V) would need to be adjusted in

order to have the appropriate response at the required frequency. We are to produce

intensities in the 1014 − 1015 W m−2 range and are able to control their temporal

profile to a resolution of ≈ 7 ns and use this to produce near flat top pulses which

are the most suitable for deceleration or acceleration of molecules.

A linear chirp up to 200 MHz can be produced, with further amplification needed

to extend this to the required frequency excursion.
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5.9 Non periodic linear chirps

5.9.1 Voltage ramp

We also investigated other linear voltage ramps in order to produce the ideal sit-

uation which would include ‘flat regions’ of no chirp at the beginning and end of

the pulse, to allow for the finite rise and fall time of the laser beam intensity. For

example, for deceleration we require a region where the lattice velocity, and there-

fore frequency difference is constant at the beginning so the lattice is moving at the

same speed as the molecules as the intensity increases from zero to maximum. We

also require a time period after the frequency difference has chirped down to zero,

where the chirp has stopped and this ‘zero’ velocity is maintained whilst the lattice

beams are switched off.

We therefore used the arbitrary frequency generator to create a voltage pulse

which was not periodic but creates regions of fixed frequency difference at the be-

ginning and end of the pulses. This allows the pulses to switch on and off, similar

to that modeled earlier, for example in chapter 2. This was due to the fact that

simulations have indicated the importance that the beam intensity has reached the

maximum value before the chirp starts, and should then finish, before the beams

switch off.

Figure 5.11a shows the voltage trace which was designed for a decelerating lattice,

showing the voltage pulse that was applied to the electro-optic crystal (e.o.). The

offset in time for arm B is created by the time delay in the fibres. In reality there is

only one voltage pulse applied, however as these traces are also proportional to the

relative frequency of the two arms, these traces demonstrate the relative frequency

between each arm. Up to the start of region 1, the voltage of arm B rapidly rises

where it remains flat for ≈ 100 ns, which would create a fixed frequency difference

to allow the laser beams to switch on. In region 2, the frequency (voltage) of arm B

rapidly chirps down over a duration of 70 ns towards the frequency of arm A, which

creates a decelerating lattice. In region 3, the frequencies of the two arms are equal

which would represent a stationary lattice, to allow the laser beams to switch off.

Figure 5.11b shows a similar voltage trace applied to the e.o. crystal, designed

to create an accelerating lattice. In region 1 the frequencies are equal, which would

create a stationary lattice. In region 2, the frequency of arm B chirps up, over

a duration of 70 ns which would create an accelerating lattice. In region 3 the

frequency of arm B is kept at a constant offset from A, creating a constant velocity

lattice.
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Figure 5.11: The arbitrary waveforms of the applied voltage to the e.o. crystal. A
single pulse is applied however the offset between arm A and B is to demonstrate the
time delay introduced by the difference in fibre lengths. (a) The function designed
for a decelerating linear chirp during region 2, with a region of fixed and zero fre-
quency difference in regions 1 and 3 respectively. (b) The function designed for an
accelerating linear chirp during region 2, with a region of zero and fixed frequency
difference in regions 1 and 3 respectively.
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5.9.2 Heterodyning: a decelerating lattice

We measured the heterodyne signal with the voltage pulse described applied to the

e.o. crystal, as shown by figure 5.11a, however with a total voltage excursion of 20 V.

Figure 5.12a shows the input temporal profile of one of the pulses, figure 5.12b shows

the heterodyne signal and figure 5.12c shows the derived instantaneous frequency

f(t).

For this data, an A.O.M was used to offset the frequency of one of the output

beams by ≈ 90 MHz. This was done in order to overcome the difficulty in analysing

low frequencies. In this way a zero velocity lattice would be observed by a constant

90 MHz beat signal, and the maximum velocity lattice would be offset by the same

amount. The timing of the pulse was adjusted so that the chirp region occurred

during the flat-top region of maximum intensity and that the regions of constant

low and high frequency were at the beginning and end of this flat region during the

switch-on and switch-off of the laser beams.

As with previous analysis, a mask was used to separate the frequency components

in Fourier space. A linear fit was applied to each region of constant or linearly

changing frequency difference. Within the error bounds, the frequency difference

remained constant in region 1 at 312 ± 10 MHz, and then chirped over 70 ns down

to 98 ± 10 MHz. The fit in region 3 indicates a final frequency difference of 86 ±
10 MHz consistent with the measured A.O.M frequency of 90.7 MHz. This would

represent a lattice velocity which changes from ≈ 120 ms−1 down to ≈ 0 ms−1.

5.9.3 Heterodyning: an accelerating lattice

We heterodyned the two beams for an accelerating lattice, as shown in figure 5.11b,

with a total voltage excursion of 20 V. As before, figure 5.13a and 5.13b show the

input temporal profile and heterodyne signal respectively. Figure 5.13c shows the

derived instantaneous frequency f(t). As with the previous analysis a mask was used

to separate the frequency components in Fourier space. A linear fit was applied to

each region. The noise in region 1 required us to use a different mask to reduce

the noise at lower frequencies. This data indicates an initial frequency difference of

90 ± 10 MHz in region 1, which is chirped up to 313 ± 10 MHz in region 2 where

it remained constant at this value in region 3. This is consistent with the data

taken for the decelerating lattice and, taking into account the offset provided by

the A.O.M, would represent a lattice velocity that changes from ≈ 0 ms−1 up to

≈ 120 ms−1. The tunability for the data taken for the decelerating and accelerating

case was calculated to be ≈ 11± 0.5 MHz/V.
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Figure 5.12: The heterodyne signal measured on a photodiode when a ‘decelerating’
linear voltage ramp is applied to the e.o. crystal. (a) The temporal intensity profile
of one of the beams used for heterodyning. (b) The heterodyne signal when an
arbitrary voltage ramp, as shown in figure 5.11a is applied to the e.o. crystal. (c)
The derived instantaneous frequency f(t). It has been cut up to 20 ns where the
intensity was too low to observe clear fringe modulation, as can be seen in (a) and
therefore there was excessive noise in f(t). In region 1, a fit is applied after the noisy
region, which gives an initial frequency difference from 316 to 308 ≈ ± 10 MHz
over the duration of the range. In region 2, a linear fit indicates a chirp rate of
≈ 3 GHz/µs, and a change from 308 MHz to 98 ± 10 MHz. Region 3 indicates a
final frequency difference of 83 - 89 ≈ ± 10 MHz over the region, consistent with
the A.O.M frequency of 90.7 MHz.
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Figure 5.13: The heterodyne signal measured on a photodiode when an ‘accelerating’
linear voltage ramp is applied to the e.o. crystal.(a) The temporal intensity profile
of one of the beams used for heterodyning. (b) The heterodyne signal when an
arbitrary voltage ramp, as shown in figure 5.11b is applied to the e.o. crystal. (c)
The derived instantaneous frequency f(t). The noise at the beginning of the derived
instantaneous frequency is due to the low intensity and poor fringe modulation as
can be seen in (a). In region 1, a fit is applied after the noisy region using another
mask not shown indicating an initial frequency difference 90 ≈ ± 10 MHz over the
duration of the range which is consistent with the offset provided by the A.O.M in
one of the beams arms. In region 2, a linear fit indicates a chirp rate of ≈ 3 GHz/µs,
and a change from 90 MHz to 313 ± 0.5 MHz. Region 3 indicates a final frequency
difference of 313 ≈ ± 10 MHz over the region, consistent with the A.O.M frequency
of 90.7 MHz.
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This is considerably lower than previously measured. This was based on the

applied voltage having an excursion of 20 V. One of the issues with the laser system

is that the electrical connections suffer from oxidation and therefore the voltage

being applied to the e.o. crystal was lower than indicated by the output of the

arbitrary frequency generator.

5.10 Conclusions

We have demonstrated that we can produce pulses with durations of ≈ 100 ns with

a near flat-top temporal profile and half-maximum rise times of 10-20 ns.

We can produce a chirp function which remains constant at the beginning and

end of the required temporal region, allowing the laser beams to switch on and

off. The frequency can then be rapidly chirped over 220 MHz and 70 ns whilst

the intensity of the pulse is approximately flat. This represents a chirp rate of

≈ 3 GHz/µs. Currently the limitation with these arbitrary excursions and linear

chirps is the maximum voltage excursion of 20 V. Further work is required to amplify

the voltage applied to the e.o. crystal to reach frequency excursions up to 1 GHz.

Using a tank circuit to amplify a sinusoidal chirp, we have shown that our laser

system can be rapidly chirped in excess of 1 GHz, which is the magnitude required

for deceleration from a molecular jet of 400-560 ms−1.

By comparing periodic linear and sinusoidal chirps we have shown the impor-

tant result that no additional chirp is introduced during pulsed amplification in the

Nd:YAG rods.
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Chapter 6

Simulations of

acceleration/deceleration based on

laser system performance

6.1 Introduction

In this chapter we perform numerical acceleration/deceleration simulations based

on the laser performance. We use the temporal profiles of actual laser pulses to

study the effect of variations in the flat-top temporal profile on the manipulation of

molecules and atoms. We also investigated deceleration using non-linear chirps and

how this non-ideal chirp can be compensated for by shaping the temporal profile of

the pulses.

6.2 Simulations with measured temporal profile

and linear chirp

6.2.1 Deceleration of benzene and NO molecules

To improve the accuracy of the simulations in chapter 2, we modelled deceleration

using an actual temporal profile from our pulse amplified laser beams. A pulse with

a FWHM of ≈ 140 ns was incorporated into the simulation program by interpolating

it over the constant time step of our integration.

The linear chirp was modified to have a shorter duration of 100 ns fit within

the flat region of the intensity profile. Since the chirp excursion needed to be the

same, this meant that the chirp rate would increase. We would therefore expect the

minimum (threshold) intensities required for deceleration to increase. The temporal
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Figure 6.1: A typical temporal intensity profile from our pulsed amplification system
and the simulated finite frequency difference between the two lattice beams as a
function of time. All intensity fluctuations are up to ≈ 3 %.

profile of a typical pulse from our amplified laser system along with the applied

frequency chirp is shown in figure 6.1. The temporal profile displays a small variation

in intensity of up to ≈ 3%.

Figure 6.2 shows the resultant molecular velocity distribution after the pulse

shown by figure 6.1, when a typical temporal intensity profile in the range, Imax =

1.2−0.9×1014 W m−2, is applied to an ensemble of 20000 benzene molecules at 2 K.

Imax = 1.0× 1014 W m−2 is the lowest intensity required for successful deceleration,

equivalent to Imax = 0.75 × 1014 W m−2 for the slow Gaussian temporal profile.

This is consistent with the different chirp rate. The energy spread at this threshold

intensity is approximately 4.2 K, much larger than 0.5 K for Gaussian temporal

profile case.

For Imax = 1.2×1014 W m−2, approximately 3000 (15 %) molecules were deceler-

ated. The FWHM of the velocity spread of ≈ 35 ms−1 of all of the simulations is non

Gaussian around 0 ms−1 representing an energy spread of approximately 5.9 K. For

Imax = 1.1 × 1014 W m−2 approximately 1800 (9.0 %) molecules were decelerated.

The velocity spread was ≈ 30 ms−1 representing an energy spread of approximately

4.2 K. For Imax = 0.9 × 1014 W m−2 approximately 0 (< 1.0 %) molecules were

decelerated.

The fluctuation in intensity in the realistic temporal profile is believed to be

responsible for the increased and non-Gaussian velocity/energy spread in the decel-
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Figure 6.2: The resultant distribution of velocities when the decelerating optical
lattice described in figure 6.1 is applied to an ensemble of 20000 benzene molecules
at 2 K. (a) Imax = 1.2 × 1014 W m−2, (b) Imax = 1.1 × 1014 W m−2, (c) Imax =
1.0× 1014 W m−2, (d) Imax = 0.9× 1014 W m−2.

erated distribution. This is due to molecules being lost during deceleration when

the intensity at a particular time drops, and then a heating of the residual molecules

when the intensity increases again during the course of the pulse.

The same chirp and realistic temporal profile shown in figure 6.1 are then applied

to NO molecules at an initial temperature of 2 K and the resultant velocity distribu-

tions shown in figure 6.3. Here the threshold intensity is Imax = 2.25× 1014 W m−2,

compared to Imax = 1.75 × 1014 W m−2 for the Gaussian profile, consistent with

the increased chirp rate due to the reduced chirp time. Once again there is a much
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Figure 6.3: The resultant distribution of velocities when the decelerating optical
lattice described in figure 6.1 is applied to an ensemble of 20000 NO molecules at
2 K. (a) Imax = 2.4 × 1014 W m−2, (b) Imax = 2.3 × 1014 W m−2, (c) Imax =
2.25× 1014 W m−2, (d) Imax = 2.2× 1014 W m−2.

larger velocity spread, with an energy spread of 0.7 K at the threshold intensity,

compared to 0.15 K in the Gaussian temporal profile case.

For Imax = 2.4× 1014 W m−2 approximately 520 (2.6 %) molecules were deceler-

ated. The FWHM of the velocity spread was ≈ 35 ms−1 representing a temperature

of approximately 2.2 K . For Imax = 2.3 × 1014 W m−2 approximately 250 (1.3 %)

molecules were decelerated. The velocity spread was ≈ 30 ms−1 representing a tem-

perature of approximately 1.6 K. For Imax = 2.2× 1014 W m−2 < 10 particles were

decelerated.
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Figure 6.4: Initial velocity distribution of argon atoms at 80 µK. The width of the
peak is even narrower than shown due to resolution limits of the image.

6.2.2 Simulating the acceleration of metastable argon atoms

In parallel experiments in the lab, metastable argon atoms with polarisability α =

47.9 × 10−40 C m2 V−1 are being laser cooled and trapped in a MOT with an

effective temperature ≈ 80 µK and a FWHM velocity spread of ≈ 0.3 ms−1. It

was therefore decided to model the use of the chirped laser system to accelerate

stationary atoms out of the trap. This could have applications in high resolution

collision experiments as mentioned in chapter 1 where a polarisable species could be

collided at an arbitrary velocity by tuning the velocity of the optical lattice. Because

the velocity spread of metastable atoms is much narrower than the benzene and NO

molecules in a molecular jet (≈ 2 K) in the deceleration simulations, much lower

intensities can be used.

We therefore simulated this acceleration, using a realistic temporal profile for

our laser beams. The initial velocity distribution is shown in figure 6.4.

A pulse with a FWHM of ≈ 140ns was again interpolated and incorporated into

the simulation program. After experimenting with the the simulations by adjusting

the relative phase between the chirp and the pulse, it was found that it was important
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Figure 6.5: Realistic temporal intensity profile of a pulse overlaid with the applied
frequency chirp used to simulate the application of an accelerating lattice on the
argon atoms.

to hold off the chirp until the maximum intensity was reached. If not the intensity

would either be too low to capture any atoms/molecules before the lattice velocity

had reached too high a value above the un-accelerated distribution, or if set too

high at the beginning would result in excessive heating of the final distribution. The

linear chirp used before was therefore modified to have a shorter duration of 100 ns.

To ensure the same approximate gradient, the chirp excursion was in turn reduced

to ≈ 215 MHz, equivalent to 114 ms−1 for counter propagating beams, as shown

in figure 6.5. The temporal profile displays a small variation in intensity of up to

≈ 3%. Figure 6.6 shows the resultant distribution for several intensities.

The accelerated distribution generally has an irregular profile around 122 ms−1,

probably due to the longitudinal oscillation time. There is a statistically insignificant

80 atoms (compared to the sample of 20000 in the initial distribution) decelerated

at Imax = 3.6×1012 W m−2, implying a similar threshold intensity. Generally higher

temperatures are observed for the realistic temporal profile, as in the decelerating

case, due to intensity variations over the duration of the pulse. There appears to

be a periodic depositing of atoms at intervals of ≈ 5 ms−1, which is believed to be

due to the oscillation in phase space, and variation in intensity, which cause atoms

to suddenly drop out at regular intervals.

For Imax = 3.9 × 1012 W m−2 approximately 2200 atoms were accelerated with

a velocity spread of approximately 5 ms−1 representing an energy of 60 mK. For
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Figure 6.6: The resultant distribution of velocities when the accelerating optical
lattice described in figure 6.5 is applied to an ensemble of 20000 metastable Argon
atoms. (a) Imax = 3.9 × 1012 W m−2, (b) Imax = 3.8 × 1012 W m−2, (c) Imax =
3.75× 1012 W m−2, (d) Imax = 3.7× 1012 W m−2, (e) Imax = 3.65× 1012 W m−2.
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Imax = 3.8×1012 W m−2 approximately 2100 atoms were accelerated with a velocity

spread of < 5 ms−1 representing an energy of < 60 mK. For Imax = 3.75 × 1012 W

m−2 approximately 1300 atoms were accelerated with a velocity spread of < 5 ms−1

representing an energy of < 60 mK. For Imax = 3.7 × 1012 W m−2 approximately

1000 atoms were accelerated with a velocity spread of < 5 ms−1 representing an

energy of < 60 mK. At threshold, Imax = 3.65 × 1012 W m−2, approximately 80

atoms were accelerated with a velocity spread of < 2 ms−1 representing an energy

of < 10 mK. This is less than 0.5 % of the total number of argon atoms.

6.3 Compensating for non-linear chirps

Since we know that we may not yet be able to produce the required linear voltage

ramp for a linear chirp, we therefore investigated whether the varying potential well

depth that a non-linear chirp produces, can be compensated for by shaping the

temporal profile of the pulses.

We recall from chapter 2 that for a linear chirp we can define the parameter

ψ ≡ β/aq, where β is the chirp rate, a is the maximum force than can be imparted

by the optical lattice, and q is the lattice wave vector. This must meet the condition,

ψ < 1 in order for there to be a potential well which can trap and transport a

polarisable species.

We hypothesised that for a non-linear chirp, we should aim to maintain a constant

value for the parameter ψ and performed numerical simulations to test this. To keep

ψ constant, the intensity of the beams therefore needs to increase if the chirp rate

increases and vice versa.

As indicated by equation (2.11) and using the relationship I(t) = 1/2ǫ0cE
2(t),

the maximum instantaneous acceleration amax(t) is given by,

amax(t) =
αq

mǫ0c

√

I1(t)I2(t). (6.1)

We now suppose that instead of being constant, the chirp rate is a function of

time, such that β(t) = d2φ(t)
dt2

. For a harmonically changing frequency from high to

low which we created using the tank circuit, the frequency difference between the

two arms is given by, ω(t) ≡ dφ(t)/dt = A cos(ωmt) and with corresponding chirp,

β(t) = −Aωm sin (ωmt) . (6.2)
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Figure 6.7: Predicted relative frequency between two arms of a time delayed laser
to predict beat frequency if the two arms were heterodyned. (1) shows the region of
maximum deceleration, and (2) shows the region of maximum acceleration.

In order to keep ψ constant, β must therefore be proportional to the intensities,

implying that,
√

I1I2 ∝ sin (ωmt) . (6.3)

The maximum gradient, β(t) for a sinusoidal-type waveform ω(t) = A cosωmt of

angular frequency ωm, period 2π/ωm, and amplitude A (the frequency excursion),

occurs at t = π/2ωm and has magnitude βmax = ωmA. For deceleration, the chirp

period must occur over a quarter of the period of this waveform, (π/2ωm), where

it changes from maximum to zero frequency. We now compare a linear chirp over

the same period and frequency excursion with the harmonic chirp. The gradient of

the linear chirp, βlinear is given by the frequency excursion A divided by the ‘quarter

period’, π/2ωm which gives, βlinear = A/(π/2ωm) = 2ωmA/π.

The ratio of maximum gradient of the sinusoidally varying function to the con-

stant gradient of the linear case is therefore,

β(t)max

βlinear
=

−ωmA

2ωmA/π
=
π

2
. (6.4)

In the case of a decelerating lattice, the maximum rate of change would occur at

the end, for example between 100 and 140 ns (in figure 6.7) and in the case of an

accelerating lattice at the beginning of the chirped pulse between 140 and 180 ns.

Using equations (6.3) and (6.4), we predict the temporal profile for a pulse to
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Figure 6.8: Intensity profile shown by the blue profile which would be used to
compensate for a non linear chirp shown by the black trace in order to maintain a
constant well depth produced by the interaction of a polarisable species with the
optical lattice.

compensate for a harmonically varying frequency ω(t). Figure 6.8 shows a trace of

the relative frequency (blue), which is proportional to the lattice velocity created by

a sinusoidal voltage applied to the e.o. crystal. Overlaid with this is the temporal

profile for the intensity of a pulse which would compensate for the changing rate

of deceleration. The left hand side of the figure represents a pulse shape and the

portion of the chirp which would be used for the acceleration of particles down to

zero velocity. The right hand side of the figure represents the portion that would be

used for deceleration from zero velocity.

Equation (6.4) indicates that to scale the intensity of the sinusoidal intensity

profile for a sinusoidal chirp to be equivalent to a square temporal profile with a

linear chirp, the maximum intensity Imax should be π/2 times the square temporal

profile intensity I0. The integral over the pulse duration, and therefore the total

pulse energy of such a sinusoidal temporal profile with amplitude Imax/I0 = π/2 will

clearly be the same as a square temporal profile with intensity I0.

Figure 6.9 shows a simulation of a pulse with a temporal profile and frequency

chirp as shown in figure 6.8 with a maximum intensity of π/2 times the minimum

intensity required for deceleration of benzene molecules with an equivalent linearly
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Figure 6.9: A sinusoidal shaped temporal intensity profile applied against a sinu-
soidally varying frequency chirp for a decelerating lattice, in order to compensate
for the changing rate of deceleration and therefore maintain a constant well depth.

chirped pulse, as calculated in chapter 2, i.e. (π/2 × 0.75) × 1014 W m−2. This is

compared with two other cases with the usual super-Gaussian temporal profiles, all

with the same sinusoidally changing frequency chirp. In the first of these cases, the

maximum intensity of the super-Gaussian is 0.75×1012 W m−2 which would require

the same amount of total energy as the sinusoidally shaped pulse described. In the

second case a super Gaussian with a maximum intensity of (π/2×0.75)×1014 Wm−2

is simulated, which for the fastest stage of deceleration at the end of the chirp should

be enough to maintain confinement of the same molecules, however would require

more pulse energy, which for our laser system is limited. At the beginning of the

chirp there would be a greater than threshold well depth, and therefore cause greater

heating of the final, accelerated distribution. The total energy of this pulse is π/2

times the pulse energy in the other two cases.

Figure 6.10 shows the resultant distributions when the pulses described above

are applied to the chirp shown in figure 6.9. In (a), the sinusoidally shaped pulse,

approximately 120 (0.6 %) molecules have been decelerated. The FWHM of the

velocity spread is ≈ 6 ms−1 representing an energy of 170 mK. This compares well

and offers an improvement on the slow Gaussian profile applied to a linear chirp

with the same pulse energy, i.e. Imax = 0.75× 1014 W m−2 where the energy spread

was approxiamtely 500 mK, with just 250 benzene molecules decelerated. This

demonstrates that if a linear chirp is not available, a similarly efficient deceleration

can be achieved by shaping the temporal intensity profile of the pulses accordingly,

in order to maintain a constant well-depth for the duration of the pulse. In (b),
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where we test the application of a pulse with a super-Gaussian temporal intensity

profile with the same pulse energy as (a), no molecules have been decelerated, and

have all been lost out at higher velocites, during deceleration. This is as expected,

since after ≈ 60 ns from the beginning of the chirp (97 ns on the figure 6.9), the

gradient of the chirp exceeds the gradient of the linear chirp, and there is insufficent

intensity to maintain confinement of the particles.

At 60 ns, the frequency chirp has reached about 580 MHz, corresponding to

310 ms−1, which is approximately at the centre of the molecules which have been

decelerated and dropped before the end of the chirp. In (c), where we test the

application of a pulse with a super-Gaussian temporal intensity profile with the

same maximum intensity as (a) but greater pulse energy as described above, there

are two distinguishable distributions which have been decelerated. Approximately

5000 around a mean velocity of 0 ms−1 with a spread of ≈ 90 ms−1 and 4500 around

a mean velocity of 100 ms−1 with a spread of ≈ 60 ms−1, indicating that there has

been greater heating, as predicted, during the deceleration process.

6.4 Conclusions

It is clear from simulations with measured intensity profiles for the pulses, that a

flat top temporal profile is important in order to maximise the number of deceler-

ated/accelerated particles, and to minimise their velocity spread. A slight decrease

causes a loss of population from the optical potential, and then the subsequent

increase results in the final transported distribution being heated up.

It is possible to compensate for a non-linear harmonic chirp by shaping the

temporal profile of the pulses to compensate. This requires further analysis to

determine whether this can be extended more generally to non-linear chirps and

intensities.
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Figure 6.10: Distributions for various intensity profiles. (a) Pulses with temporal
profiles as shown by figure 6.9 with a maximum intensity (π/2) times the minimum
intensity required for deceleration of benzene molecules, as indicated in chapter 2,
i.e (π/2) ×0.75× 1014 Wm−2. (b) Pulses with super-Gaussian profiles as shown by
figure 2.10 with a maximum intensity of 0.75× 1014 Wm−2 and therefore the same
pulse energy as (a). (c) Pulses with same super-Gaussian profiles, however with a
maximum intensity of (π/2)× 0.75× 1014 Wm−2 and therefore the same maximum
well depth as (a) but with (π/2)× the pulse energy as (a).

.
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Lattice alignment by four-wave

mixing

7.1 Introduction

To initially test the pulsed amplification system, we performed a type of four-wave

mixing (FWM) experiment called coherent Rayleigh scattering (CRS) using the de-

generate four wave mixing (DFWM) phase matching configuration. The motivation

for coherent Rayleigh scattering is that to produce a signal requires phase matching

which in turn requires precise angular alignment and overlap of the 1064 nm beam

focii. This therefore would be a useful alignment tool for the creation of the optical

lattice used in proposed acceleration and deceleration experiments.

7.2 Coherent Rayleigh scattering

CRS and stimulated Brillouin scattering(BS) [155, 156, 157, 158, 159] are both non-

linear FWM processes which can be performed in gases and liquids using the dipole

or electrostrictive force [160] imparted by the applied optical fields. The electrostric-

tive force creates a density perturbation from which the probe may coherently Bragg

scatter. CRS is caused by isobaric density fluctuations, and in the case of a station-

ary lattice, is at the frequency of the incident light. Brillouin scattering is caused

by acoustic waves which are induced by the optical field acting on the medium and

therefore the scattered light is shifted in frequency from the incident light by the

Doppler effect [159].

Figure 7.1 shows the two counter propagating pumps which interfere to produce

a standing wave with wave vector q = k1 − k2, where k1,2 is the wave vector of the

pump beams and frequency Ω = ω1−ω2, where ω1,2 are the frequencies of the pump
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Figure 7.1: Schematic diagram of a four-wave mixing process. The two pumps create
a density grating in the distribution of molecules using the optical dipole force. A
portion of the probe is scattered from the grating to form the signal.

beams. The induced optical dipole force on the molecules causes the molecules to

arrange themselves to form a density grating which the probe then scatters from to

create a fourth beam, often called the signal. By conservation of momentum, the

signal will have wave vector k4 = k3 − q, where k3 is the wave vector of the probe

and frequency ω4 = ω3 − Ω [155], where ω3 is the frequency of the probe. For a

stationary velocity lattice, where ω1 = ω2 the signal will have the same frequency

as the incident radiation. We used the laser setup described in chapter 5 with only

one of the arms to produce a constant frequency during the pulse.

7.3 Theory

In order to predict the signal produced we must first consider the one dimensional

non-linear wave equation [161],

∂2E(x, t)

∂x2
− n2

c2
∂2E(x, t)

∂t2
= µ0

∂2PNL(x, t)

∂t2
, (7.1)

where E(x, t) is the electric field, µ0 is the permeability of free space and where PNL

includes the non-linear polarisabilty, the first two terms of which are, ǫ0χ
(2)E(x, t)2+

ǫ0χ
(3)E(x, t)3, where ǫ0 is the permittivity of free space and χ is the electric suscep-

tibility tensor.

The refractive index n can be related to the number density N(m−3), for far

off-resonance fields [161] by,

n =

√

1 +
Nα

ǫ0
, (7.2)

where N is the number density and α is the polarisabilty of the medium interacting

with the optical field. A first order Taylor expansion of this gives, n ≈ 1 + N0α
2ǫ0

+
∆N(x,t)α

2ǫ0
= n0 + ∆n(x, t); |∆n(x, t) << n0| [161] where the linear term is given by
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n0 = 1 + N0α
2ǫ0

≈ 1 and the non-linear change in refractive index due to the optical

field, ∆n(x, t) = ∆N(x,t)α
2ǫ0

.

Given the assumption |∆n << n0|, n2 = n2
0+2n0∆n(x, t), equation (7.1) can be

re-written in terms of the modified refractive index due to an optical field as [161],

∂2E(x, t)

∂x2
− n2

0

c2
∂2E(x, t)

∂t2
=

2n0∆n(x, t)

c2
∂2E(x, t)

∂t2
, (7.3)

which assumes that the scattering process is due only to the density perturbation

due to the linear polarisability and therefore neglects the non-linear polarisability

term given in equation (7.1).

To simplify the problem, we consider that the polarisation of the pumps orthog-

onal to the probe as they do not interfere with each other. The total field, Etot(x, t)

is therefore simply the combination of the probe E3(x, t) and the generated signal

E4(x, t), due to the modified number density of the medium induced due to the

pumps E1(x, t) and E2(x, t),

Etot(x, t) = A0
3e

i(k3x−ω3t) + c.c.+ A0
4e

i(−k4x−ω4t) + c.c., (7.4)

where the amplitudes A0
3, A

0
4 are related to the electric fields according to, A0

3, A
0
4 =

1/2 E0
3 , 1/2 E

0
4 respectively and E0

3,4 are the amplitudes of the electric fields of the

probe and signal respectively.

By substituting (7.4) into (7.3) we produce many terms including first and second

derivatives, and terms oscillating at ω3, ω4, k3, k4, and 2ω3, 2ω4, 2k3, 2k4. We can re-

duce the number by making the slowly varying envelope approximation, ∂
2E(x,t)
∂t2

<<

2ω ∂E(x,t)
∂t

<< ω2E(x, t) [161], and neglecting terms oscillating at 2ω3, 2ω4, 2k3, 2k4.

Finally, we can produce two sets of coupled differential equations by extracting terms

oscillating at ω3 and ω4 which describe the evolution of the probe and the generated

signal where,

c2k4A
′

4(x, t) = in0∆n(x, t)ω
2
3A3(x, t)

c2k3A
′

3(x, t) = −in0∆n(x, t)ω
2
4A4(x, t), (7.5)

where primes indicate d/dx. This assumes that the dynamics of the gas change

much more slowly than the field amplitudes. These can solved with the boundary

conditions, A3(0) = A0
3, A4(l) = 0 to give the solutions,
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A4(x, t) =
i e−ωoscx

(

−e2ωoscl + e2ωoscx
)

A0
3

1 + e2ωoscl

A3(x, t) =
i e−ωoscx

(

e2ωoscl + e2ωoscx
)

A0
3

1 + e2ωoscl
, (7.6)

where ωosc = ∆n(x,t)n0ωopt

c
, ωopt = 2πc/λ and l = λ/2 is the fringe spacing for two

counter propagating beams. We assume that k3 ≈ k4 and ω3 ≈ ω4. A Taylor

expansion of equation (7.6) implies that,

I4(x, t) ∝
(

∆n(x, t)n0ωopt

c

)2

, (7.7)

where A2
4(x, t) ∝ I4(t). We can relate the change in refractive index ∆n(x, t) to

the change in number density ∆N(x, t) which can be determined from the modified

velocity distribution function g(x, v, t) due to the perturbation g′(x, v, t) from the

equilibrium g0(v) where,

∆N(x, t) = N0

∫ +∞

−∞

g′(x, v, t)dv =
2ǫ0∆n(x, t)

α
. (7.8)

To find the perturbed velocity distribution g(x, v, t), we must solve the 1-D Boltz-

mann equation [155] given by,

∂g(x, v, t)

∂t
+ v

∂g(x, v, t)

∂x
+
F (x, t)

m

∂

∂v
g(x, v, t) =

[

∂g(x, v, t)

∂t

]

(7.9)

where
[

∂g(x,v,t)
∂t

]

= −(g(x,v,t)−g0)
τc

is the collision term, according to the the BGK.

approximation [162], where F is the dipole force due to the interaction of the pump

beams with the medium and m is the molecular mass. This simplification to the

collision integral assumes that over a relaxation time τc, the distribution function

relaxes to the equilibrium value g0. We have made the approximation that we are

in a 1-D regime since transverse forces are much weaker than in the longitudinal

direction, as calculated in chapter 2.

To solve the Boltzmann equation, we make the approximation that −(g(x,v,t)−g0)
τc

=

0 which assumes that densities are sufficiently low that collisions do not occur on

the time scale of the pump/probe pulse. The mean free path of xenon is 5.4 µm at

293 K, 20 Torr, giving a mean collision time of 24.8 ns. This is comparable to the

pulse duration, indicating that there would only be time for one collision to occur

on average, partially justifying the collision free regime at this pressure. The mean

free path of octane is calculated to be 11.2 µm at 293 K and 10 Torr, giving mean
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collision time of 48.0 ns, justifying the collision free assumption, especially as this

was the maximum pressure considered. At 1 Torr this collision time increases to

480 ns.

For two counter propagating beams along the x-axis,

F (x, t) = α
2
∇ (E1(x, t) + E2(x, t))

2. For weak perturbations, where (g′ << g0),

(δg′/δv << δg0/δv) and α |A1A2| << kBT this gives the perturbation to the distri-

bution function [155],

g′(x, v, t) =
αA0

1A
0
2

kBT
g0(v)×

qv cos(qx− Ωt)− cos(qx− qvt)

qv − Ω
, (7.10)

where A0
1, A

0
2 are the half amplitudes of the electric fields of the pump beams E0

1 , E
0
2

and Ω = ω2−ω1, and ω1, ω2 are the frequencies of the pump beams. Equation (7.10)

can then be substituted into (7.8), to derive ∆n(x, t).

To justify the weak perturbation hypothesis we can calculate the well depths

for the molecules investigated (octane and xenon) for typical intensities of I01 ≈
2 × 1014 Wm−2. The maximum well depth in a stationary or constant velocity

optical lattice is given by,

∆Umax =
2ma

q
, (7.11)

where a = 1
2
α
qE2

0

m
. Thus,

∆Umax =
2αI

ǫ0c
(7.12)

For the molecules octane and xenon with polarisabilities 16.8× 10−40 C m2 V−1

and 4.50 × 10−40 respectively, this gives well depths of 28 K and 8 K respectively.

This is relatively small compared to the room temperature (293) K at which the

gases were studied

The evolution of the relative change in refractive index, ∆n/n0 is shown in fig-

ure 7.2, for typical intensities of pump, I01 ≈ 1.7 × 1014 Wm−2, and using gaseous

xenon, with atomic weight 131 and polarisability α = 4.5 × 10−40 C m2 V−1. The

intensity of the pump and probe is assumed to be constant so the dynamics of the

signal can be observed decoupled from the the effects of the temporal profiles of the

pumps/probe that were in fact used. Figure 7.2 indicates a half-maximum induction

time of ≈ 1.3 ns, which is much less than the rise time of our pulses, therefore this

would not be observable in experiments using our laser system. Once again it should

be noted that in this model it is assumed that the force only acts in the x-direction,

since in the radial directions perturbations due to the gradient of the laser beam are

much smaller than in the longitudinal direction.

We predict a steady state value of ∆n/n0 = 3.8×10−6 for xenon, for the intensi-
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Figure 7.2: Calculated evolution of the change in refractive index ratio ∆n/n0 as a
function of time. The half-maximum time for the molecules to form the diffraction
grating after the optical field is switched on is ≈ 1.3 ns at which point ∆n/n0 =
3.8× 10−6.

ties given above. We can substitute n(x, t) at a particular time t into (7.6) to give the

predicted evolution of the probe I3(x) and signal I4(x) across the interaction region

of the laser beams, as shown in figure 7.3. The probe enters the interaction with an

initial intensity 6.9 × 1013 Wm−2. As it passes through the medium, the intensity

is attenuated by < 1 × 10−5 %, indicating how relatively weak this interaction is.

The signal, which is considered to orginate from the opposite side of the interaction

region, increases from its inital value of 0 to a maxium of 4.7× 103 Wm−2 where it

then leaves the interaction region at this steady state value.

7.4 Experimental setup

Our experimental setup is shown in figure 7.4. This configuration was used as it has

the convenience of having a counter propagating probe and pump (pump 2) which

can be overlapped at two far points to ensure good alignment. Pump 1 is then sent

in at a small angle from the probe. In this configuration, phase matching demands

that the signal will be generated with a wave vector k4 = −k1, so that it will travel

along the path of pump 1, in the opposite direction.

A diagram of the experimental setup, including the gas cell and connections

employed to connect the rotary pump, gauge and gas cylinder (xenon) are shown in

figure 7.5. Before readings were taken, the valve to the vacuum pump was opened

to bring the pressure down to the limits of the gauge, (± 0.05 Torr). The valve

was then closed and the gas released into the cell. In the case of octane, which at
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Figure 7.3: (a) The signal at a particular time as a function of position x. We con-
sider the signal to originate from the opposite side of the interaction region to the
probe, where it increases from its initial value of 0 to a maximum of 4.7 × 103 Wm−2

where it then leaves the interaction region at this steady state value. (b) Evolution
of the probe at a particular time, as a function of position x through the inter-
action region. On the far left the probe enters the interaction with its intensity
6.9 × 1013 Wm−2. As it passes through the medium, the intensity is attenuated by
< 6× 10−10 %, indicating how relatively weak this interaction is.

room temperature is a liquid, a few drops are added by removing the top of the cell

and allowing it to form a small reservoir in the bottom of the cell. The top is then

replaced and the valve to the pump opened up to pump out the air as described

before. As the octane vaporised, the pressure could then be observed to rise again

to the vapor pressure of octane (≈ 3.75 Torr), assuming that the pump was not

allowed to pump out all of the reservoir.

To produce our two pumps and probe we beam split the output of one of the

arms of our laser system to create a constant velocity lattice with a probe of equal

frequency. The pulses were attenuated to give energies of 30 − 90 mJ and FWHM

durations of ≈ 37 ns (peak intensity for ≈ 20 ns). Peak intensities for pump 1

and pump 2 were 2.1 × 1014 W m−2 and 1.4 × 1014 W m−2 respectively, giving an

average pump intensity of 1.7 × 1014 W m−2, and the probe had a peak intensity

of 6.9 × 1013 W m−2. The focused spot size (1/e2 radius) of the beams were

≈ 50 µm ± 3 µm, which gives a Rayleigh range of 8 mm. After the beam was

split into three, we used a half wave plate to rotate the polarisation of one of them

to form the probe. The signal was also orthogonal to the pumps, and therefore we

used a polariser to extract the signal from the path of pump 1 and direct it onto a

photodiode.
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Figure 7.4: Experimental setup for non resonant four-wave mixing. In this config-
uration the orthogonally polarised probe is counter propagating to pump 2. Pump
1 is at a small angle from the probe. Phase matching requires that the generated
signal will be along the path of pump 1, i.e. k4 = −k1. The signal is extracted by
taking advantage of the perpendicular polarisation of the probe/signal and using a
polarising beam splitter to direct it onto to a photodiode.

The large intensities of these pulses make small back reflections extremely dan-

gerous, as they can cause runway amplification. To prevent this, an optical isolator

was used at the output of the custom amplified beam, as shown in figure 7.4.

7.5 Four wave mixing signals

7.5.1 Xenon

We first performed a four-wave mixing experiment in xenon since it has previously

been manipulated by using similar optical lattices. It also has a reasonable polaris-

ability to mass ratio (α = 4.50×10−40 C m2 V−1 [100], mass = 131 a.m.u.). Its inert

nature also makes it safe to use in an intensity and pressure regime where electronic

breakdown of air is a possibility.

Figure 7.6 shows the four-wave mixing signal obtained with xenon at 20 Torr

overlaid with the temporal intensity profile of the pulses used to create it. The

average peak pump intensity in this case was 1.7 × 1014 W m−2, with a probe

intensity of 6.9 × 1013 W m−2. All pulses had the same temporal intensity profile,

since they were formed from the same laser beam. To verify that we had a four-wave

mixing signal we checked that the signal was only present when both pumps and

the probe were present, by blocking each beam in turn.
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Figure 7.5: The gas cell used for four-wave mixing in octane and xenon. The windows
for pumps/probe are AR coated for (λ = 1064 nm) and are approximately 15 cm
apart. Xenon was introduced as shown, and octane was added drop wise via the top
and sat in a reservoir in the bottom of the cell.
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Figure 7.6: The signal obtained with xenon at 20 Torr overlaid with the temporal
intensity profile of the pump/probe pulses that were used.
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Our simulation is in good agreement with the experimental data during the rise

time up to the maximum normalised value of 1 at ≈ 25 ns. After this point, the

simulated signal stays flat, mirroring the intensity profile of the pulses. The mea-

sured signal however, drops away rapidly over 17 ns by ≈ 35%, and then continues

as the pulse intensity also decreases. This loss of signal whilst the pulse is of a more

or less constant intensity indicates that there must be some other mechanism that

is attenutating it, or degrading the optical lattice of confined molecules. To study

whether it was collisions that were responsible for the decay in signal, lower pres-

sures were investigated. The signal to noise ratio was, however, too low to measure

at lower pressures to verify this.
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Figure 7.7: The four-wave mixing signals taken with octane, average pump intensi-
ties of ≈ 1.7× 1014 W m−2, and a probe intensity of 6.9× 1013 W m−2, at a variety
of pressures from 9.7 to 3.0 Torr.

7.5.2 Octane

Measurements were also performed with octane gas which has a much higher polar-

isability than xenon and therefore had the potential to offer a better signal to noise

ratio at lower pressures, where the mean time between collisions will be longer.

Due to its flammability, care was taken not to introduce air into the cell to prevent

combustion.

Figure 7.7 show the temporal profile of the pulses overlaid with the four-wave

mixing signal recorded with octane gas at a variety of pressures from 3.0 to 9.7 Torr.

All are normalised to 1 to compare the time dependence of the signal. Pump and

probe intensities were as described before. The figure shows that to within 5% of

the mid range pressure there was no difference in the behaviour of the signal, over

the duration of the pulse, for the pressures shown. The interactions should therefore

be accordingly stronger, with deeper well depths, and therefore a stronger signal to

noise ratio at lower pressures than would be expected for xenon.
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Figure 7.8: The four-wave mixing signals taken with octane, average pump intensi-
ties of ≈ 1.7× 1014 W m−2, and a probe intensity of 6.9× 1013 W m−2, at a variety
of pressures from 0.5 to to 5.0 Torr.

Figure 7.8 shows the recorded four-wave mixing signals at a lower range of pres-

sures, from 5 to 0.5 Torr. There is a much poorer signal to noise ratio but within

these larger error bounds the behaviour of the signal across the duration of the pulse

is independent of pressure. A ten adjacent point averaging has been applied to the

data taken at the lowest pressure to reduce the noise.

7.6 The temporal decay of the four-wave mixing

signal

Having proved the suitability of the four-wave mixing as an alignment tool, we

further studied the decay in the signal beam. To model this, we measured the

temporal profile of the pumps/probe used in the experiment and input this into

the simulation. This is presented along with the probe/signal temporal profile in

figure 7.9 for octane with data taken at 9.7 Torr. Only this pressure is shown here,

since the behaviour of the signal over the duration of the pulse was independent of

pressure after normalisation. Since the signal is a product of the pumps and probe,

which all have the same temporal profile, any change in the pump/probe profile is

associated with a much sharper change in signal. For example, the small reduction
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of ≈ 5 % in the temporal profile at 25-30 ns is accompanied by a reduction in signal

of ≈ 10 %.

It is clear that this model fails to predict the decay in signal after 20 ns. The

assumptions of our model is that there are no collisions over the duration of the

pulse, no saturation effects of the signal at arbitrarily high intensities and that there

is no absorption of the laser pulse energy. We consider that for xenon, at 20 Torr,

the mean free collision time is 25 ns as previously calculated. For octane, at 9.7 Torr

and 1 Torr, the mean free time between collisions is 48 and 480 ns respectively. For

the range of pressures which were studied, a flat top duration of 20 ns, and a FWHM

pulse width of ≈ 35 ns, it seems a reasonable assumption that we are in the collision

free regime, particularly for the lowest pressures studied.

Saturation effects would occur in the regime in which the perturbation due to

the optical lattice cannot be considered small and therefore the velocity distribution

of the medium is strongly perturbed.

It is difficult to include possible absorption, collisions or saturation effects in our

model. Dr. M. Shneider at Princeton University, uses a hydrodynamic model to

study coherent Rayleigh scattering. This uses a series of coupled equations (Navier-

Stokes) for conservation of momentum, energy and mass of the fluid subject to an

optical lattice, in cylindrical symmetry [163],

δr

δt
= u

1

ρ
=

1

2

δr2

δm
δu

δt
= −r δ

δm
(p+ Y ) (7.13)

δǫ

δt
+ (p+ Y )

δ

δt
(1/ρ) = [W (r, t) +Wdipole(r, t)] /ρ,

where r is position, u is velocity, ρ is momentum, Y is the viscosity, ǫ is the

energy of the system, W (r, t) is the laser radiation absorption which is proportional

to I(r, t), and Wdipole is the dipole heating term. This model assumes that we

are in a regime where we can consider our medium to be a fluid, which at the

pressures studied is not necessarily a valid assumption. It does however allow for

the phenomenological inclusion of laser absorption and collisions.

151



Chapter 7: Lattice alignment by four-wave mixing

10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

 Signal (experimental)
 Simulation (no heating)
 Laser pulse

Time (ns)

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e 
in

te
ns

ity
 (a

.u
.)

Si
gn

al
~<

(
N

)2 >
, r

el
.u

ni
ts

Figure 7.9: The signal obtained with octane at 9.7 Torr overlaid with predicted
signal from simulations and temporal intensity profile of pump/probe pulses used.

7.6.1 Comparing the hydrodynamic model with collision free

model

We initially compared the hydrodynamic model with calculations performed by Dr

M. Shneider, with the collision free model with no laser absorption. The comparison

between these simulations is shown in figure 7.10 for octane at 9.7 Torr. The hy-

drodynamic model (simulation 2) decays more slowly than the collision free model

(simulation 1) after 40 ns. This is probably due to the fact that in simulation 2,

saturation effects are taken into account, therefore the signal does not decay as fast

as expected. Since the pumps and probe all have the same temporal intensity profile

I(t), then a drop in intensity at the end of our pulses would in the simplest CRS

model, drop according to the relation, signal ∝ ∆N2 ∝ I2pump. Both simulations

predict that during the relatively flat region between 20-40 ns, the signal should also

be approximately flat. This is contrary to the decay in signal observed in figures 7.6

- 7.9. There must therefore be some other mechanism for the decay of the density

grating.

7.6.2 Heating mechanisms

We then hypothesised that heating, leading to a loss of density modulation would

result in the observed signal decay. Free electron heating was dismissed as negligible,

given the densities involved. On-resonance absorption of the λ = 1064 nm light by
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Figure 7.10: A plot comparing the collision free model (simulation 1) to the hydro-
dynamic model (simulation 2) for octane at 9.7 Torr, with the temporal profile of
the laser beams overlaid.

the gas was dismissed since whilst it is more likely to occur in octane, it should not

in xenon. Water absorption was then considered and modelled since this may be

present in both cases, within the cell as a background gas, perhaps as a contaminant

in the gas cylinder, or adsorbed into the material of the cell itself. We were only able

to pump down the cell to ≈ 0.1 Torr, therefore it is possible that we were unable to

completely remove all of the water which could have been present.

The absorption of the laser by water and the resultant heating, again by collisions,

could cause the observed reduction of signal due to the loss of population in the

optical lattice. This was then included in the hydrodynamic model and by adjusting

the absorption parameters it was possible to find good agreement to the initial drop

off in signal consistent with known absorption lines in water.

Figure 7.11a shows the experimental data overlaid with simulations based on

the hydrodynamic model with and without phenomenological heating. These are

overlaid with the temporal profile of the laser beams. The new hydrodynamic sim-

ulation, which includes heating is in reasonable agreement with the observed signal

up to 40 ns, following the drop in signal from its maximum at 22 ns. The signal

then deviates substantially from the simulation to the end of the pulse.

Figure 7.11b and 7.11c shows similar analysis applied to the data taken with

octane at 9.7 and 1.0 Torr respectively. The agreement between the simulation based
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on the hydrodynamic model with heating and the experimental data is even better

for octane than it was for xenon at both pressures. There is a close relationship

over most of the the duration of the pulse for 1 Torr, with a maximum of ≈ 10%

discrepency between signal and simulation.

7.7 Conclusions

We have obtained a four-wave mixing signal down to pressures as low as 0.5 Torr

with octane and 20 Torr with xenon. This offers the potential as an alignment tool

for molecular and atomic deceleration/acceleration experiments. Potential species

for molecular deceleration or acceleration such as benzene have similarly large polar-

isability to mass ratios as octane, therefore it would be possible to produce a similar

four wave mixing signal at low pressures. Since producing this signal requires care-

ful alignment and overlap within the focii of the two pumps and probe this would

ensure that an optical lattice has been produced and that the third beam, acting as

as detection beam in an ionisation scheme, is also overlapped with this lattice. Once

a four wave mixing signal is produced at these low pressures, the system could be

pumped out further to the required pressures for the deceleration/acceleration ex-

periments. Alternatively, CRS experiments could be performed to produce a 4-wave

mixing signal at much lower pressures using an on-resonant probe beam.

Study of the temporal behaviour of the signal showed an unexpected decay in

the signal over the flat region of the pulse. A heating mechanism was hypothesised,

which may arise from absorption of the pump beams by water which may have been

present in the cell. This could affect the density grating and cause a loss of signal.

This process is not currently properly understood and requires further analysis. One

of the issues with this hypothesis is the lack of time for collisions to occur which

would be necessary to conduct heat between water and the gas in our cell. There

is also not currently experimental evidence of the presence of sufficient water to

account for the laser absorption required for the model to fit the observed signal.
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Figure 7.11: (a) A plot of the observed four wave mixing signal obtained with xenon
at 20 Torr. Overlaid is the temporal profile of the pulses used and simulations from
the hydrodynamic model with and without heating. (b) As before but with data
taken with octane at 9.7 Torr. (c) The same plot but with data taken with octane
at 1 Torr.
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Conclusions

8.1 Conclusions

8.1.1 Summary of the laser system

This thesis has presented the development of a unique, high energy, chirped laser

system for the deceleration of molecules in a molecular jet. It is capable of being

chirped up to 1 GHz over durations of between 20 ns to 10 µs, representing a chirp

rate in excess of 10 GHz / µs. The system is capable of producing two overlapped

pulses of this duration, which are required to create the deep periodic optical po-

tential (> 1 − 20 K) with intensities in the 1014 W m−2 range. Using a Pockel cell

and polarising beam splitter together with computer software, we can produce flat

top temporal intensity profiles to a minimum resolution of ≈ 7 ns to produce flat

top or any other required profile.

A time delay between the two arms of the laser system, created with optical fibers

of different lengths enable the output of a single Nd:YVO4 master microchip laser

to be split and used to produce the two laser beams used to make the optical lattice

with a frequency difference when an a.c. voltage is applied to the e.o. (LiTaO3)

crystal.

We are able to precisely control the frequency excursion within the 0 to 1 GHz

range, its duration and its phase relative to the pulses. This system can therefore be

used to decelerate to a non zero velocity as well as to rest, which would be desirable

for collisions experiments at arbitrary collision energies. It may also therefore be

used for acceleration of a trapped sample of particles to an arbitrary velocity. This

would be useful for collision studies.
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8.1.2 Improvements to the system

The ultimate limit to the duration of the chirp is the rate that energy can be ex-

tracted from the Nd:YAG pulsed amplification system. In our system there is also

limit of the maximum time delay between the two arms of the laser system, deter-

mined by the difference in fiber lengths. This difference was 55 m, giving a maximum

time delay of 275 ns, given a velocity of light of ≈ 2× 108 ms−1. A longer difference

in fiber length would enable us to chirp over a longer time, however will be limited

by the coherence length of the laser.

It would be desirable to have a better voltage amplification system so that we

are able to produce the ideal linear voltage ramps up to the required 70 V over the

required chirp duration. Although non-linear voltage waveforms can be compensated

with a non flat-top temporal intensity profile, a linear change is the simplest to

implement in terms of the timing of the chirp to the pulse and also in the setup by

the operator.

8.2 Recent results

This laser system has recently been used by my colleagues in the acceleration of

metastable argon atoms in a Magneto Optical Trap (MOT).

Figure 8.1 shows the images taken directly from a CCD camera at 30 µs after the

application of the optical lattice, when different sinusoidally varying voltages were

applied to the e.o. crystal. This is used to produce the distribution of displacement

as shown in figure 8.3. It can clearly be seen that as the voltage/frequency increases,

so does the final lattice velocity, shown by the increasing displacement of a packet

of argon atoms. The other effect is a smearing of the distribution which makes the

estimation of the final velocity more difficult for higher values. This is largely due

to the long exposure time of the camera (30 µs). Some widening of the velocity

distribution is predicted to occur since a sinusoidally shaped chirp has been used in

combination with a flat top temporal profile, leading to sub- optimal acceleration.

In theory, for a sinusoidally accelerating lattice, the maximum gradient should

be at the beginning of the chirp if the phase has been set correctly. However if

not, then particles may be lost early in the chirp and some may have been initially

accelerated in the opposite direction. Intensity fluctuation over the duration of the

chirp will also cause a loss of particles, particularly at the early part of the chirp

where the gradient varies very little. As the gradient decreases towards the end of

the chirp, then there will be sub-optimal acceleration and unnecessary heating of

the distribution.
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Figure 8.1: Displacement of metastable argon atoms 30 µs after the application of
an optical lattice with a sinusoidally varying chirp for various chirp voltages with
beams with 20 mJ pulse energy.

Figure 8.2: Displacement of metastable atoms at various times after the optical
lattice was switched off, which were produced with a sinusoidal chirp (5 V amplitude)
with beams of 10 mJ pulse energy.
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Figure 8.3: Displacement of metastable argon atoms as measured by the signal on
a CCD camera taken 30 µs after the switching of an accelerating optical lattice.
While switched on the optical lattice was chirped by applying a sinusoidally varying
voltage to the e.o. crystal from a zero frequency difference up to various voltages.
The red and black traces were taken when the frequency generator was set to 10
and 3 V respectively. An estimation of the final velocity of each accelerated packet
gives 59± 3 ms−1 and 23± 2 ms−1 respectively.

Figure 8.2 shows the displacement at various times after the optical lattice was

switched off. These were produced by a sinusoidal chirp (5 V amplitude). The

motion of the accelerated packet of argon atoms can clearly be seen along with a

steady smearing of the accelerated distribution.

Figure 8.3 shows the distribution of position of argon atoms taken 30 µs after

the switching off of the optical lattice for two different voltage amplitudes applied

to the e.o. crystal.

To estimate the final velocity of the atoms, consider that the point in time at

which the data is taken is much later than the short acceleration time of ≈ 140 ns

therefore the displacement s = 1/2at21 + vt2 ≈ vt2, where t1 is the duration that the

lattice is on and accelerating, and t2 is the time between the switch off of the lattice

and when the CCD data was taken. The approximation is valid for t2 >> t1.

We estimate the displacement of the accelerated packet of particles by comparing

the mid points of the accelerated packet to the mid point of the main distribution.

For 10 V this is ≈ 1790 µm and for 3 V this is ≈ 666 µm. Given the 30 µs delay time

this gives 59±3 ms−1 and 23±2 ms−1 respectively, representing, given near counter-

propagating beams, a chirp from 0 to 111 ± 6 and 43 ± 4 MHz. This indicates a

tunablilty fV = 11.1± 0.6 MHz / V for 10 V and fV = 14.3± 1.2 MHz / V for the
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3 V chirp. In the case of the 10 V chirp, this tunablity seems quite low compared to

other measurements of the laser system. It is known that the tunability is dependent

on the electrical connection. Given the fact this data was taken much later, this may

explain the change.

The maximum frequency of the chirp in both cases was analysed using the

method described in chapter 4 and found to be 90± 10 MHz for 10 V, which would

in theory give a final velocity of 48 ± 5 ms−1. This is just outside the error bars

for the final velocity based on the imaging of the argon atoms. Given the large

uncertainties with the position of the phase of the chirp relative to the beginning of

the pulse, and in estimating the position of the accelerated packet of argon atoms,

this seems a reasonable agreement. These are recent results that have not yet been

finalised.

8.3 Future work

The next step is to apply this system to the deceleration of molecules, for example

benzene, in a molecular jet down to zero velocity. This will require careful alignment

of the optical lattice with the laser required to detect the molecules. A four-wave

mixing type experiment, such as described in chapter 7 may offer a good way of

ensuring overlap of the two lattice beams as well as the probe beam.

The next step is to load decelerated molecules into an optical trap with cold

molecules and then to pursue a sympathetic cooling scheme with rare gas atoms [53,

76] to bring cold molecules closer to the ultra cold regime. Currently metastable

argon atoms have been trapped in a MOT with typical trap temperatures of 10 µK.

Sympathetic cooling between trapped cold molecules (10 mK) and metastable argon

atoms (300 µK) has been modeled using direct Monte Carlo simulations [164]. For

hydrogen-argon and benzene-argon these simulations indicate that thermalisation

would occur in less than ten seconds and reach final temperatures of 330 ± 30 µK

and 600 ± 100 µK

More off-resonance CRS scattering experiments have also been performed re-

cently with this laser system. New spectral features have been observed. These

studies were made possible due to the long flat-top pulses which our laser system

can produce, with a well defined frequency difference between each arm. The ver-

satility of optical Stark acceleration/deceleration to manipulate the motion of any

polarisable species opens up many more areas of research which our group hopes to

pursue.
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