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Entanglement Reciprocation between Qubits and Continuous Variables
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We investigate how entanglement can be transferred between qubits and continuous-variable (CV)
systems. We find that one ebit borne in maximally entangled qubits can be fully transferred to two CV
systems which are initially prepared in a pure separable Gaussian field with high excitation. We show that
it is possible to retrieve the entanglement back to qubits from the entangled CV systems. The deposition of
multiple ebits from qubits to the initially separable CV systems is also pointed out. We show that the
entanglement transfer and retrieval are done at a quasisteady state.
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Quantum information processing (QIP) has been exten-
sively studied for a qubit system which is a quantum
extension of a bit, spanning two-dimensional Hilbert
space. A qubit is realized by a spin, a two-level atom, the
polarization of a photon, and a superconductor among
others. A two-dimensional system is mathematically handy
and logically easy to treat. On the other hand, many
continuous-variable (CV) physical systems such as a har-
monic oscillator and a light field, which are defined in
infinite-dimensional Hilbert space, have also attracted con-
siderable attention for other practical reasons. While qubit
and CV systems are nearly always treated separately, there
is a good reason to believe that a study of their interface
may result in synergy for the implementation of QIP. There
have been some pilot works on how to entangle two
separate qubits by an entangled Gaussian field [1–3]. In
this Letter, we ask the interesting questions of how easy it
is to deposit the entanglement of two qubits to two coher-
ent states and retrieve quantum entanglement back to the
qubits.

When two maximally entangled two-level atoms are
sent to two respective cavities initially prepared in vacuum,
after the Rabi time the maximal entanglement is fully
transferred to the cavity fields [4,5]. Here the interaction
is assumed resonant and the cavities are lossless.
Essentially, in the above transfer the cavity does not behave
as a true CV system, as only cavity states j0i and j1i play a
part. Adding an extra excitation in a cavity initially in
vacuum will be noticeable. However, if the cavities are
prepared with coherent fields of large amplitudes, will the
atom’s depositing extra excitation still be visible to show
the entanglement of ebit? Can the entanglement be re-
trieved by the next set of atoms? Answering the questions,
we find that it is possible to perfectly deposit entanglement
to initial coherent fields and retrieve them back at a qua-
sisteady state. We also show the possibility to extend the
memory to multidimensional states. The cavities thus act
as a memory for entanglement, differently from the usual
perspective where the atoms are designed to memorize the
quantum state. Our approach is based on the use of the
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resonant Jaynes-Cummings (JC) model [6]. This is not a
limitation, as this model has been proven to be naturally
valid in many physical situations in which coherent ex-
change of excitations between spinlike particles and bo-
sons are involved [7].

Model.—Let us consider two atoms in the triplet state

j �0�ia �
1���
2
p �jei1jgi2 � jgi1jei2�; (1)

where jei and jgi stand for the excited and ground states of
the atom. This state is maximally entangled and is said to
carry one ebit of entanglement. The two atoms enter their
respective cavities which are initially prepared with coher-
ent states. For convenience, we assume that the ampli-
tudes of the coherent states are � 2 R throughout the
Letter. The initial state for the atoms and fields is
j��0�iaf � j �0�iaj�i1j�i2.

We consider how much of the atomic entanglement, in
units of ebit, is transferred to the infinite-dimensional
cavity fields by their resonant interaction. Under the rotat-
ing wave approximation, the interaction Hamiltonian Ĥ �
@��âyjgihej � âjeihgj�, where the bosonic creation and
annihilation operators are denoted by ây and â, respec-
tively, and the coupling between the field and the atom by
�. The evolution of the atom and field state is then deter-
mined by the propagation operator Û � Û1 � Û2, where,
in atomic basis hej � �1; 0� and hgj � �0; 1�, Ûi �

ffÛ�i�11; Û
�i�
12g; fÛ

�i�
21; Û

�i�
22gg. The operators at the interaction

time t read [8]
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q
:

(2)

After the interaction, the atom-field state evolves to
Ûj��0�iaf. Here, we postselect the cavity field conditioned
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on two atoms leaving the cavities in their ground states.
The main reason of the postselection is to bring the cavity
field to a pure state, whose measure of entanglement is the
von Neumann entropy of the reduced density operator.
While in this Letter we are interested in a possibility for
qubits to deposit one complete ebit to a large CV system,
there is no measure or criterion of entanglement for a
general CV state. The field state after postselection is

j �1�if �
N���

2
p �Û�1�21 Û

�2�
22 � Û

�1�
22 Û

�2�
21 �j�i1j�i2: (3)

The normalization constant is denoted by N , and the
coherent state is expanded [9] such as j�i �

P
mCmjmi,

where Cm � �me��
2=2=

������
m!
p

gives a Poissonian weight
with the average photon number �n � �2. Substituting
these into Eq. (3), we find j �1�if�

P
1
n;m�0Cn;mjni1jmi2

with Cn;m �
�iN e��

2

�
��
2
p ��

n�m sin��t
��
n
p
� cos��t

���
m
p
����������������

m!�n�1�!
p � n$ m�.

Entanglement transfer from qubits to CV system.—The
atoms initially have one ebit as they are maximally en-
tangled. We would like to know how much ebit is trans-
ferred to the cavity fields by the resonant interaction. As
the cavity fields are in a pure state j �1�if, the amount of
ebit E is calculated by E � �Tr�̂f1log2�̂f1 where the
reduced density operator for the cavity field 1 is

�̂ 1 � Tr2�̂f �
X
m;n;n0

Cn;mC
	
n0;mjnihn

0j: (4)

In Fig. 1(a) we plot E against � and the interaction time �t
(unit of �). For � � 0, we know E can be 1 for sure.
Figure 1(b) shows the probability of the atoms leaving
the cavities in the ground states. When �< 1, an oscillat-
ing behavior is observed in the degree of entanglement as
well as in the atomic population. On the other hand, it is
interesting to note that when � is large the cavities are with
complete ebit whenever the atoms leave the cavities in
their ground states except the first moments of oscillations.
We can analyze this by showing that j�1i 
 Û21j�i is

orthogonal to j�2i 
 Û22j�i in Eq. (3), i.e., v0 


jh�1j�2ij �
e��

2

2

P
n

��
n
p

�
�2n

n! sin2�t
���
n
p
� 0. If so, state (3)

becomes a maximally entangled qubit state as it will be an
equally weighted superposition of two orthogonal com-
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FIG. 1 (color online). (a) Degree of entanglement for the cav-
ity field depending on the interaction time �t (in units of �) and
the amplitude � of the initial coherent state. (b) Probability of
finding the atoms leaving the cavities in their ground states.
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posite states. In the limit of �2 � 1, the Poissonian distri-
bution is replaced by a Gaussian distribution over the
variable n with mean value and variance equal to �2 [9]
so that C2

n 
 e��
2 �2n

n! �
1���������

2��2
p e��n��

2�2=2�2
. Taking into

account the largely contributing terms of
���
n
p

, i.e., those

of n near the peak �2, we have
���
n
p
�

�������������������������������
�2 � �n� �2�

p
�

��1� n��2

2�2 �. Finally, the summation over n is replaced by
an integration in terms of x � �n� �2�=� and the integra-
tion region is extended to ��1;1�. We then immediately
recognize v0 as a Fourier transformation of a Gaussian
function:

v0 /

�
sin2��t�

�t
2�

cos2��t
�
e��

2t2=2; (5)

which decreases exponentially to zero and the two states
become orthogonal to each other exponentially with regard
to the interaction time. This shows the transfer of a com-
plete ebit from two qubits to a CV system of a large
amplitude. It is easy to show that the postselection proba-
bility is 25% for the limit considered here.

Using the same analogy to prove their orthogonality, we
can show that h�1j�1i � h�2j�2i for the same limit.
Suppose the initial atomic state was prepared not in the
perfect triplet state (1) but in a partially entangled mixed or
pure state. If we again assume the case of postselecting
atoms in their ground states, from the earlier analysis we
know that the atom initially in jei will take the initial
coherent field to j�1i and jgi to j�2i. As the two field
state bases are orthogonal with the same weight, it is
straightforward to show that the field state collapses to
the state which bears the same amount of entanglement
as in the initial atomic qubits. This shows the perfect
transfer of initial entanglement to a CV system [10].

In order to see the transfer of the ebit, we took a limit to
ignore the discrete nature of photons. However, it is inter-
esting to note that we need to recover the discrete nature to
explain the revival of the oscillatory behavior in entangle-
ment as shown in Fig. 1(a). The revival occurs when the
sinusoidal functions v0 are in phase. The significant con-
tributions of the sinusoidal functions come from around the
peak of the Poissonian distribution. At the peak of the
revival time, tr: 2�tr�

������
�2
p

�
���������������
�2 � 1
p

� � 2�. Taking
only the first two terms of the binomial expansion of the
square root, we find the revival time tr � 2��=�. In fact,
the dynamics of entanglement follows the well-known
collapse-revival dynamics of JC model.

Entanglement retrievals.—We have seen that the qubits
can transfer a complete ebit to a CV system conditionally.
The next question is this: Will it be possible for the qubits
to retrieve the ebit from the CV system? In order to solve
this problem, we take the second set of atoms initially
prepared in their ground states to send through the respec-
tive cavities which are in j �1�if. According to the earlier
discussions, after the interaction time of t0, the atom-field
state becomes
1-2
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j��2�ia�f �

Û�1�12 Û�2�12

Û�1�12 Û�2�22

Û�1�22 Û�2�12

Û�1�22 Û�2�22

0
BBBB@

1
CCCCAj �1�if �

X1
n;m�0

Vajni1jmi2;

(6)
with the matrix

V a �

� sin��t0
������������
n� 1
p

� sin��t0
�������������
m� 1
p

�Cn�1;m�1

�i sin��t0
������������
n� 1
p

� cos��t0
����
m
p
�Cn�1;m

�i cos��t0
���
n
p
� sin��t0

�������������
m� 1
p

�Cn;m�1

cos��t0
���
n
p
� cos��t0

����
m
p
�Cn;m

0
BBB@

1
CCCA:

(7)
In order to investigate how much of the field entanglement
deposited by the first set of atoms would be transferred to
the second set, we trace j��2�iaf over the field variables
and find the state of the atoms: �̂a �

P
n;mVaVya . The

degree of entanglement for the two atoms is found using
the log negativity [11] of the partial transposition of the
density operator �̂a and plotted in Fig. 2(a) as a function of
the interaction times �t0. It is seen that, for nonzero �, the
CV fields are not able to transfer the complete ebit to the
atoms. However, we cannot simply say that it is possible to
transfer an ebit from a qubit system to a CV system while
the converse is not true. The reason is that the qubit! CV
transfer of an ebit was conditioned on the qubits in their
ground states, having lost their entanglement.

In order to improve the degree of entanglement trans-
ferred to the atoms, we consider an orthogonal measure-
ment of fP̂�i�� ; Q̂

�i�
� � 1� P̂�i�� g, where P̂�i�� is the projection

onto the coherent state of its amplitude �. In Fig. 2(b), the
degree of entanglement for the atoms is plotted, condi-
tioned on the fields in P̂�1�� P̂

�2�
� for interaction times t0 � t.

It is interesting to see the complete entanglement transfer
for a CV system to a qubit system. We analyze this as
follows. By postselecting the event of ��;�� after the
interaction time t0 � t, the atomic state becomes
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FIG. 2 (color online). (a) Degree of entanglement for the
second pair of atoms depending on � and the interaction time
�t0 � �t. (b) Analogous plot for the postselected event ��;��.
Note that the shape resembles Fig. 1(a), the degree of entangle-
ment for the cavity field.
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j �2�ia �
N 0���

2
p

2v1v2

v1v4 � v2v3

v3v2 � v4v1

2v3v4

0
BBB@

1
CCCA; (8)

where v1 � h�jÛ12Û21j�i, v2 � h�jÛ12Û22j�i, v3 �

h�jÛ22Û21j�i, and v4 � h�jÛ22Û22j�i. N 0 is the
new normalization factor. Using the same approxi-
mation leading to Eq. (5), we find that v1;4 �

1
2 

��1� cos�2��t�e���t�
2=2�, where the � sign is for v1

and the � sign is for v4, and v2 � v3 � O�t�e���t�
2=2,

where O�t� is a linear sum of sinusoidal functions. In
the long time limit �t� 1, v2 � v3 ! 0 while v1 �

�v4 � �
1
2 . We can see that state (8) is now a maximally

entangled triplet state (1), which has been perfectly re-
trieved after the interactions with the cavity fields. This
can be inferred from the analysis of the entanglement
between the second pair of atoms shown in Fig. 2(b).
Surprisingly, the probability of getting the coherent state
is as high as 50%, in this limit.

We sketch a scheme to project the field state to P̂� �
j�ih�j as follows. Observing the identity j�ih�j �
D̂���j0ih0jD̂y��� with D̂��� the displacement operator
[9], we suggest to project the field to the vacuum after
displacing it by the amplitude ��. After the interaction
with the qubit pair, a coherent field of amplitude can be
injected into the cavities, thus implementing an effec-
tive displacement operation [12]. We then electrically
release one of the mirrors of a cavity (by effectively
lowering its quality factor) so to allow the field to leak
out. By considering the events in which no photon is
detected out of the cavities, the effective projection is
implemented, which realizes the measurement �2

j�1P̂
�j�
� .

However, a no-click event could result from a nonunit
quantum efficiency detector missing photons coming out
of the cavity. Assuming an imperfect but highly efficient
detector, we have calculated the effect of missing one
photon by one of the detectors and found that the entangle-
ment of the pair of atoms, in this circumstance, exhibits
a short plateau corresponding to an ebit being shared
between the qubits. This occurs in coincidence of the
collapse part in Fig. 2(b). Thus, by properly choosing the
interaction times, a reliable entanglement retrieval can still
be obtained.

It is worth stressing that the results presented in this
work are a feature of the coherent state used as a memory
for entanglement. Indeed, we have checked that, by con-
sidering initial thermal states for the fields and applying the
protocol in the previous paragraphs, the initial ebit in the
qubit state can never be completely deposited in the CV
state and, consequently, retrieved from it. Obviously, in
order to investigate the entanglement deposit, one faces
the hard problem of quantifying the entanglement in a
two-mode non-Gaussian state. This difficulty has been
bypassed adopting the technique described in Ref. [14]
based on the projection onto a subspace spanned by the
1-3
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bidimensional bases fjni; jn� 1igj with j � 1; 2. The en-
tanglement within the resulting projected state is then
averaged over thermal weighting functions characterized
by their mean photon number �n. This provides us with a
lower bound to the entanglement in the two-mode non-
Gaussian state. It is thus straightforward to see that the
perfect deposit-retrieval process is possible just for the
trivial case of �n � 0 for the initial fields.

An interesting question to ask now is what happens
when a series of atom pairs, each in the state j �0�ia,
interact with the cavity fields (in the usual setting of one
atom with each cavity field). We found that, for example,
for � � 4:5 and if the first pair of atoms had interacted for
a time t1 � 6:47=� (which deposits an ebit of entangle-
ment), then a second pair of atoms interacting for a time
t2 � 11:04=� deposits another ebit, and a third pair inter-
acting for a time t3 � 3:24=� deposits yet another ebit.
Each of these events has a success probability of �25%
and are robust to small variations in ti, as before. This
contrasts the case of the cavities starting in j00i12 where
incommensurate Rabi frequencies prevent the deposition
of more than one ebit. The cavities in our case can thus
serve as ‘‘stationary’’ reservoirs for multiple ebits supplied
by atom pairs in the form of ‘‘flying’’ qubits, which may be
difficult to hold in other situations. In addition, these
multiple ebit entangled cavity states may be directly used
for teleportation of higher dimensional states. Using P̂�,
Q̂� allows the retrieval of 1.82 and 1.91 ebits at optimized
times from the 2- and 3-ebit entangled cavity states,
respectively.

We would like to point out that our approach is quite
setup independent. The very recent progress in micro- and
nanofabrication of integrated cavity-qubit systems in the
semiconductor and superconducting domain [15] and the
readily available sources of coherent states in many ranges
of frequency make our proposal adaptable to different
physical situations. However, considerations related to
the quality of the cavities will decide the most suitable
setup. Obviously, an implementation based on microwave
cavity-quantum electrodynamics (QED) would be the most
natural choice [13]. In this case, indeed, a long photon
lifetime within the cavity (�1 ms) allows for coherent
atom-cavity dynamics lasting many Rabi floppings [13].
For � � 2, about 2 Rabi floppings (each lasting
�10�2 ms) are sufficient to deposit (retrieve) a full ebit,
thus making our protocol robust against cavity losses in a
microwave cavity-QED or a circuit-QED scenario (see
Wallraff et al. in [15]). On the other hand, an important
time scale is given by the waiting time between the deposit
and retrieval processes. During this period, photon losses
could spoil the CVentangled state. The experimental value
for the probability p of losing a photon is � 10% during a
waiting time of about 10 Rabi floppings. In this case
(considering a single photon loss from one of the cavities
and neglecting further losses), we have checked the entan-
08050
glement of the retrieving pair of atoms in a mixed state and
found its log negativity as large as �0:9.

Remarks.—We have considered interfaces between two
heterodimensional systems. An ebit can be transferred to a
CV system from a qubit system and back in a conditional
way. An interesting point is that the transfer happens in the
quasisteady state. We also found an interesting analogy
between the entanglement reciprocation and the collapse
and revival of Rabi oscillations in the JC model. The
perfect entanglement reciprocation is a feature of a coher-
ent state. We have considered a good cavity and detector
limit. A longer memory will need a higher ratio between �
and the cavity decay rate.
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