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Abstract
 

 

Abstract 
 

A high throughput method for the study of normal flow microfiltration operations has 

been established using a custom designed 8-24 well filter plate (0.8 cm2) and a 

commercial 96-well Multiscreen filter plate (0.3 cm2).  Integration of this new 

approach with a typical robotic platform has enabled automation of the experimental 

procedure. 

 

Membrane resistance data can be quantified using either filter plate.  The accuracy of 

these measurements has helped to determine that plate position does not affect 

experimental results and applied pressure difference does not vary across either plate.  

Each of the two filter plate designs has been used to demonstrate that cell condition 

following fermentation, buffer type and media composition are all important factors 

influencing the specific cake resistance of E.coli TOP10 cells.  The microscale 

method therefore allows parallel quantification of the impact of upstream process 

conditions on microfiltration performance.  The custom filter plate, optimised for 

bioprocess studies, allows multiple membrane types to be evaluated on a single plate 

and the measurement of both permeate and retentate masses to ensure against cross-

contamination or loss.  Lower variation in specific cake resistance values is seen in 

the custom filter plate compared with the commercial filter plate. 

 

These automated microscale normal flow microfiltration techniques have also been 

combined with factorial experimentation to identify the key factors and interactions 

which influence the protein transmission and specific cake resistance during filtration 

of an E.coli and protein mixture.  Results indicated pH and ionic strength were 

important factors.  The pH and ionic strength interaction was further investigated 

using response surface methodology and a window of operation was generated 

showing the pH (5.5 ± 0.1) and ionic strength (153 ± 8 mM) values necessary to 

achieve a protein transmission above 95% and a specific cake resistance below 80 × 

1012 m.kg-1.  The custom microwell filter plate cake resistance and transmission data 

from the response surface models scaled up by a factor of 17 to conventional 

 3



Abstract
 

 4

laboratory scale equipment, showing that the optimum conditions achieved in the 

microwell could be replicated at a larger scale.  In addition to this, experiments at the 

laboratory scale confirmed the optimum indentified by the custom microwell filter 

plate.  This demonstrated that the combination of experimental design and the custom 

microwell filter plate is capable of investigation, optimisation and scale-up of a 

complex separation process. 

 

Finally, the approaches established here have been expanded to a whole process 

sequence for the purification of plasmid DNA.  A non-chromatographic process 

sequence, which might be used in industrial practice, involving 7 consecutive 

processes (4 filtration steps) has been run with 72 combinations of 8 different factors 

in parallel, collecting hundreds of scaleable data points.  The key filtration challenges 

were identified as the lysis clarification and the removal of lipid removal agent 

(LRA).  Once again the important interactions and trends were identified using 

microscale experimentation.  A major discovery was the filter aid effect of the 

adsorbent; increasing LRA concentration showed a dramatic reduction in specific 

cake resistance.  This trend was repeated in larger scale devices with different filter 

formats at high area (150X) and volumetric (2000X) scale-up factors.  This shows that 

the microscale techniques developed in this thesis are capable of determining 

quantitative, scaleable data for early stage evaluation of whole microwell process 

sequences. 
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DoE design of experiments  

DSW deep square well 

E.coli Escherichia coli 

EDTA ethylenediaminetetraacetic acid 

HPLC high pressure liquid chromatography 

LRA lipid removal agent 

NaCl sodium chloride 

NFF normal flow filtration 

OD optical density 

pDNA plasmid deoxyribonucleic acid 

PVDF polyvinylidene fluoride 

RNA ribonucleic acid (RNA)  

RNAseA ribonuclease A 

RO reverse osmosis  

RSM response surface methodology 

RVLF rotating vertical leaf filter 

TFF tangential flow filtration 

USD ultra-scale down 

v/v volume by volume 

w/v weight by volume 
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1.0 Introduction 
 

 

1.1 Overview 
 

This chapter includes introductions to the key aspects of this thesis: microfiltration 

(Section 1.3), microscale approaches to bioprocessing (Section 1.4) and experimental 

design (Section 1.5).  Firstly, a brief and general summary of bioprocessing is 

included to place these key aspects into context and explain some of the test systems 

used throughout this thesis in detail. 

 

 

1.2 Bioprocessing 
 

Bioprocessing is the use of living cells or their components to generate desirable 

products.  It is a very broad ranging discipline which incorporates science and 

engineering techniques to harness, manipulate and optimise natural processes.  In 

general biological processes will have environmental advantages over comparable 

chemical processes.  It is the ability to faithfully generate the complex target 

molecules that are present in nature, however, which necessitates the use of 

bioprocesses. 

 

1.2.1 Target molecules 

 

There is an almost endless variety of biomolecules that can be generated by 

harnessing bioprocesses.  The greatest interest is in complex macromolecules such as 

proteins and nucleic acids which can have beneficial therapeutic or diagnostic use in 

healthcare (Ho and Gibaldi, 2003).  Recent advances in bioprocess have led to even 

more complex products such as viral vectors for gene delivery (Walther and Stein, 

2000) and stem cells for regenerative medicine (Placzek et al.., 2009). 
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1.2.1.1 Proteins 

 

Proteins comprise of one or more polypeptide chains of amino acids.  Their structure 

and properties are largely defined by the amino acid sequence which influences the 

way the protein folds.  Covalent post translational modifications such as glycosylation 

and phosphorylation can also contribute the structure and biological activity of the 

protein (Walsh, 2002).  These complexities in folding and additional modifications 

make the production of fully biologically active proteins difficult to reproduce outside 

of the original expression system (Baneyx and Mujacic, 2004).  The choice of an 

appropriate expression system is therefore key to the proper balance between 

productivity and activity. 

 

Proteins make up almost all biopharmaceuticals which have been approved.  The 

established categories of biopharmaceuticals are still the most common among new 

approvals (hormones) and the highest selling (erythropoietins) (Walsh, 2005).  The 

market is however expanding with newer innovations in the industry such as 

monoclonal antibodies (Reichert and Pavlou, 2004).  More complex proteins will be 

introduced to the market as technologies advance but it is clear proteins of all varieties 

will continue to be important target molecules within bioprocessing. 

 

1.2.1.2 Plasmid DNA 

 

Nucleic acids are macromolecular chains of nucleotides which encode genetic 

information.  Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are the 

building blocks of gene expression systems throughout living organisms and vital 

tools for the expression of recombinant proteins in bioprocessing. 

 

Two oligonucleotides (small nucleotide polymers) have received drug approval as 

target molecules in their own right (Jabs and Griffiths, 2002; Ng et al., 2006).  Beyond 

this, plasmid DNA is finding increasing applications in gene therapy (Alton, 2007; 

Griesenbach 2007) where there is significant but as yet unrealised potential.  Even 

once gene therapy approaches become a proven therapeutic option there will be 

significant challenges of scale (Prazeres et al., 1999), especially in potential target 
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diseases such as influenza where a rapid response to pandemics at scale increases the 

need for novel approaches to plamid DNA bioprocessing (Hoare et al., 2005). 

 

1.2.2 Upstream processes 

 

A variety of diverse systems can be harnessed for bioprocessing, some very different 

in their approaches.  It is the growth and utilisation of these biological systems as 

production factories for complex target molecules that constitutes the upstream 

bioprocesses.  The generic approach is the growth of cells in a bioreactor which are 

used to generate the desired product. 

 

This thesis does not consider in detail the complex optimisation and operation of this 

stage in the bioprocess, but does reference the importance of integrating upstream 

processes in to a study of the whole process.  Upstream and downstream processes 

should not be treated in isolation otherwise unwanted interactions may not be detected 

(Kelly and Hatton, 1991; Russotti et al., 1995).  The nature of the upstream process 

will effectively determine the separation duty of subsequent downstream steps. 

 

1.2.2.1 Recombinant expression systems 

 

A vast variety of expression systems can be used in bioprocessing (Higgins and 

Hames, 1999).  Selection is dictated by the particular target molecule of interest and 

how to achieve the best yields whilst still faithfully reproducing the molecule 

correctly (Baneyx and Mujacic, 2004).  Table 1.1 contains a summary of some 

important expression systems. 

 

Escherichia coli (E.coli) became the host organism of choice for the expression of 

many biopharmaceuticals due to long term study and use since the early inception of 

biotechnology (Russo, 2003).  E.coli is a common host for both protein expression 

(Baneyx, 1999) and plasmid DNA production (Carnes, 2005).  More recently the 

commercial success of monoclonal antibodies (Reichert et al., 2005) has seen a rise in 

CHO cell host systems to achieve faithful reproduction of this complex protein. 
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Table 1.1.  Various expression systems and their characteristics. 

Expression 
System 

Cell 
Classification 

Secretion 
Capability 

Post-Translational 
Limitations 

Example 

Escherichia 
coli 

Gram-negative 
prokaryotic 
bacterium 

Into 
periplasm 

No glycosylation, 
disulphide bonds 
limited in cytoplasm 

Goeddel et 
al., 1979 

Saccharomyces 
cerevisiae 

Eukaryotic 
yeast 

Yes, often 
in periplasm

Hyper-glycosylation Shusta et al., 
1998 

Pichia pastoris Methylotrophic 
eukaryotic 
yeast 

Yes No terminal α1,3 
mannose. 

Cregg et al., 
2000 

Chinese 
Hamster Ovary 

Mammalian 
higher 
eukaryote 

Yes Almost none CMC Biotech 
Working 
Group, 2009 

NS0 Mammalian 
higher 
eukaryote 

Yes Almost none Zhou et al., 
1997 

Tobacco Plant higher 
eukaryote 

Yes, size 
restrictions 

Almost none Staub et al., 
2000 

Insect Insect higher 
eukaryote 

Yes Almost none Maiorella et 
al., 1988 

 

 

1.2.3 Downstream processes 

 

Downstream processing is a diverse and organic field.  Processes can vary 

considerably depending upon the nature of the expression system (see references in 

Table 1.1).  The use of each particular product, its required dosage and therefore 

required product purity will also determine the level of purification required and 

impact on the selected process (Wheelwright, 1989).  The preferences and experience 

of the production company can also play a part.  Generic, or platform, processes are 

favourable for companies with a portfolio of similar products in their pipeline (Shukla 

et al., 2007).  

 

The methods may be different as technologies emerge and progress, but the general 

progression remains the same since similar impurities need to be sequentially removed 

regardless of the type of expression system or complexity of the upstream process: 

 29



1.0  Introduction
 

biomass, insoluble solids, soluble components and trace impurities.  Belter and co-

authors (1988) split the stages of downstream processing into four main categories: 

removal of insolubles, isolation of products, purification and polishing.  The majority 

of processes still fall into these categories as shown in Table 1.2.  A wide variety of 

unit operations are shown with examples for their different functions. 

 

 

Table 1.2.  Example unit operations at the various stages of downstream processing. 

Stage Unit Operation Function Example 
Centrifugation Solids removal based on 

relative size and density using 
a centrifugal force. 

Jin et al., 1994 

Depth filtration Fine solids removal based on 
size and adsorption 

Singhvi et al., 1996 

Microfiltration Solids removal by size  Riesmeier et al., 
1990 

Removal of 
insolubles 

Homogenisation Product release by cell 
disruption 

Ling et al., 1998 

Liquid-liquid 
extraction 

Product partitioning by 
relative solubility 

Abbott and Hatton, 
1988 

Ultrafiltration Product concentration and 
contaminant removal by size 

van Reis and 
Zydney, 2001 

Isolation of 
products 
 

Protein 
Precipitation 

Product isolation by relative 
solubility 

Hoare et al., 1983 

Affinity 
Chromatography

Selective product binding to 
affinity ligands 

Roque and Lowe, 
2008 

Hydrophobic 
Interaction 
Chromatography

Selective product binding 
based on hydrophobicity 

Queiroz et al., 2001

Purification 

Ion Exchange 
Chromatography

Selective product binding 
based on charge 

Ishihara and 
Yamamoto, 2005 

Crystallisation Selective crystal formation 
based on solubility 

Klyushnichenko, 
2003 

Lyophilisation Water removal by freeze 
drying 

Carpenter et al., 
1997 

Polishing 

Virus Filtration Removal of viruses by size 
exclusion 

Carter and Lutz, 
2002 

 

 

Some operations seek to combine multiple stages of separations in order to shorten the 

process and improve process simplicity and yield (small yield losses will compound 

with high numbers of processes).  Expanded bed adsorption provides both insoluble 
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removal and product isolation in one step (Hansson et al., 1994).  Protein A 

chromatography is primarily an isolation step but provides the specificity and 

impurity removal consistent with purification processes (McCue et al., 2003). 

 

The overall design and structuring of downstream processes is a complex task with 

much literature available on the subject.  The key aspects of importance to this thesis 

are as follows: the presence of membrane processes, particularly microfiltration, 

throughout the production process (Table 1.2) and the importance of process 

integration.  As previously discussed the interface between upstream and downstream 

processes must be carefully evaluated to ensure changes upstream do not adversely 

effect the performance downstream (Kelly and Hatton, 1991; Russotti et al., 1995).  It 

is also important to take a holistic approach to the downstream process (Chhatre et al., 

2006). 

 

 

1.3 Microfiltration 
 

Microfiltration is a separation process where a selective synthetic barrier (a 

membrane, usually but not exclusively polymeric) is used to permit passage or reject 

different feed stream components (Zeman and Zydney, 1996).  The characteristic sizes 

involved (pore diameter, retained particle diameter) are usually used to differentiate 

microfiltration from other membrane processes.  There are also many further ways to 

add detail to this definition, without full agreement in the literature.  Microfiltration is 

best fully defined in comparison to other membrane processes. 

 

1.3.1 Membrane processes 

 

Membrane processes (microfiltration, ultrafiltration, nanofiltration, reverse osmosis) 

are widely used in many bioprocess manufacturing routes.  Frequently they are also 

used at multiple points in a given process to carry out different functions (e.g. solid-

liquid separation, fractionation, buffer exchange and sterilisation).  Membranes are 

often defined by pore size ranges, but figures vary with differing data and opinions 

available (Zeman and Zydney, 1996; Cheryan, 1998; American Water Works 
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Association, 2005).  A more useful definition is achieved by looking at the types of 

particles retained or permeated through the membrane.  Table 1.3 summarises particle 

size range, types of particles and typical process operations. 

 

 

Table 1.3.  Typical particles retained by different membrane processes.  Derived 
from various sources (van Reis and Zydney, 2007; Zeman and Zydney, 1996; 
Cheyran, 1998). 
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Microfiltration R R/P P P P P P P 

Ultrafiltration R R R R/P P P P P 

Nanofiltration R R R R R R R P 

Reverse Osmosis R R R R R R R R 

 

Other membrane processes exist such as gas separation (Baker, 2002) and 

pervaporation (Feng and Huang, 1997), which are more commonly utilised in 

chemical processes and not relevant to this thesis.  Nanofiltration (Hilal et al., 2004) 

and reverse osmosis (Fritzmann et al., 2007) membranes are primarily used for water 

purification.  Whilst important to the bioprocess industry, they are not directly used in 

downstream processing applications.  The applications of microfiltration and 

ultrafiltration specific to bioprocessing are summarised in Table 1.4.  Virus filtration 

is an important normal flow ultrafiltration process that is often incorrectly termed as a 

nanofiltration step (Burnouf and Radosevich, 2003) despite transmitting proteins such 

as antibodies which would be retained by nanofiltration membranes. 
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Table 1.4.  Example bioprocess applications of microfiltration and ultrafiltration. 

Membrane Process Applications Example References 

Cell removal Foley, 2006. 

Cell debris removal Bailey and Meagher, 
2000. Microfiltration 

Product sterilisation Jornitz et al., 2002. 

Concentration Rosenberg et al., 2009.Concentration 
Mode Purification Kahn et al., 2000. 

Buffer exchange Diafiltration 
Mode Salt removal 

Kumik et al., 1995. 
Ultrafiltration 

Normal Flow Virus Filtration Kuriyel and Zydney, 
2000. 

 

 

 

Microfiltration membranes permeate soluble product and retain the solid 

contaminants.  In some cases they will retain product in the form of precipitates 

(Bentham et al., 1988) or inclusion bodies (Batas et al., 1999).  Ultrafiltration 

membranes typically act to concentrate the feed by retaining particles and permeating 

the carrier buffer and small molecules.  Diafiltration is typically used in ultrafiltration 

steps and involves the continuous addition of new buffer directly into the feed and 

thus the feed volume and concentration can be maintained while some or all of the 

buffer and salts can be exchanged for the new buffer. 

 

1.3.2 Filter media 

 

1.3.2.1 Polymeric membranes. 

 

A variety of methods exist for casting polymeric membranes: air casting, immersion 

casting, melt casting, track etching, stretching and radiation induced polymerization 

(Zeman and Zydney, 1996).  Membranes, from these various casting conditions and 

disparate techniques, give the bioprocessor an array of not only pore sizes, but also 

pore size distributions and pore shapes (Baker, 2004).  Membranes are often classified 

as isotropic (literally uniform in all directions), anisotropic or a composite mixture of 
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the two (van Reis and Zydney, 2007).  Isotropic membranes are often visualised by 

the simplistic model of uniform cylindrical pores, but are practically membranes with 

little difference in pore size and structure through the depth of the membrane.  

Anisotropic membranes change in pore structure from one side to another, often by 

reducing pore size.  A simplistic view is of a tapering pore, but the true structures of 

membranes are more complex.  Different degrees of isotropy (Ulbricht et al., 2007) or 

membrane morphology (Zydney and Ho, 2003) generate very different performance 

characteristics. 

 

Modification of polymeric membranes further enhances performance, for example by 

increasing hydrophilicity to decrease protein binding (Yamagishi et al., 1995) or 

adding charge for increased retention or even membranes capable of chromatographic 

separation (Ghosh, 2002). 

 

1.3.2.2 Depth filters 

 

Depth filters have been used to effectively clarify cell debris by removing particles 

throughout the filter depth and maintaining flux (Singhvi et al., 1996).  Depth filters 

for the bioprocess industry contain cellulose or polypropylene fibers bound with an 

appropriate filter aid such as diatomaceous earth (van Reis and Zydney, 2007) and can 

be charge modified to enhance electrostatic removal of contaminants (Charlton et al., 

1999).  Filter aids such as diatomaceous earth can be used with a guard filter to build 

up a retentive layer before filtration and also fed into the body of the feed to deposit a 

retentive layer during the course of filtration (Reynolds et al., 2003). 

 

1.3.3 Tangential flow microfiltration 

 

Where fouling of microfiltration membranes is severe and high solids content is 

present it may be economically advantageous to use tangential flow microfiltration 

(TFF).  Continuously pumping the feed solution across the membrane surface 

provides shear that removes foulant particles from the surface of the membrane.  

Many studies have been made into the nature of the shear forces involved (Zydney 
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and Colton, 1986; Belfort et al., 1994) and novel filter designs to enhance shear (Light 

and Tran, 1981; Luque et al., 1999). 

 

This is often an approach used with ultrafiltration due to the retention of smaller 

particles which can concentrate at the membrane surface (Sablani et al., 2001) and 

form gel layers on the surface of the membrane (Song, 1998). 

 

Figure 1.1 simplistically visualises the differences between TFF and normal flow 

filtration, which is the focus of this thesis. 

 

1.3.4  Normal flow microfiltration 

 

In normal flow filtration (NFF) a pressure difference is applied to pass the feed 

directly through the membrane.  Flow is therefore normal to the membrane surface.  

NFF is also known as ‘dead-end’ filtration, since the retained feed has nowhere to go 

except to block the membrane or build up at the membrane surface. 

 

1.3.4.1  Normal flow filtration theory 

 

Fundamental NFF theory derives largely from work by Henry Darcy in the 19th 

century (Darcy, 1856).  The filtration of pure water obeys the following equation, 

based on Darcy’s Law on flow through porous media:  

 

 
mR
AP

dt
dVQ

μ
.Δ

==  (1.1) 

 
mR

P
dt
dV

A
J

μ
Δ

==
1  (1.2) 

 

Where Q is the filtrate flowrate (m3.s-1), J is filtrate flux (m.s-1), V is filtrate volume 

(m3), t is time (s), A is filter area (m2), ΔP is pressure difference (Pa), µ is viscosity 

(Pa.s) and Rm is resistance of the media (m-1).  Also of importance is the Hagen-

Poiseuille equation (Poiseuille, 1840) which calculates the filtrate flowrate through a 

membrane consisting of N cyclindrical pores of equal radius r (m) and length L (m). 
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Figure 1.1:  Schematic demonstrating the differences between tangential flow 
filtration (TFF) and normal flow filtration (NFF).  The upstream of the membrane is 
the feed or retentate side.  The downstream of the membrane is the filtrate or permeate 
side. 
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Early work on the laws governing normal flow filter fouling concentrated on cake 

filtration (Ruth et al., 1933a; Ruth et al., 1933b; Ruth 1935).  Hermans and Bredée 

(1935, 1936) first studied blockage by plugging and constriction and applied analysis 

methods calculating the first and second derivatives of time with respect to volume 

which would eventually define a general equation for all the laws.  The laws were 

further studied during the 1950s (Gonsalves, 1950; Grace, 1956).  It was Hermia who 

finally derived a physical model for intermediate blockage (Hermia, 1966) to 

complete all four laws and he later combined all the derivations into one paper 

(Hermia, 1982).  Hermia demonstrated that each law could be defined by a general 

equation for the resistance coefficient which is the rate of change of the instantaneous 

resistance (the inverse of the flowrate) with respect to volume.  This equates to the 

second derivative of time with respect to volume and when calculated for all the laws 

leads to an equation of the following form: 
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21  (1.4) 

 

Where K is a constant (see Table 1.5) and n is the fouling exponent, which indentifies 

the fouling mechanism: 

 

• Complete blocking (n = 2) is where the pores are plugged and sealed, 

preventing flow and reducing the effective area. 

• Standard blocking (n = 1.5) describes the constriction of pores, reducing the 

effective pore diameter and hence increasing the resistance. 

• Intermediate blocking (n = 1) is another plugging law, but unlike complete 

blocking particles can continue to fill a pore even after it is blocked. 

• Cake filtration (n = 0) is the build up of a cake layer on the membrane which 

provides an additional resistance to that of the membrane. 
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The derivations of these laws for the application of a constant pressure driving force 

are briefly outlined in the following sections and all the relevant equations are 

summarised in Table 1.5.  All derivations are based on the assumption of a 

homogeneous feed solution providing a constant challenge of fouling species per unit 

volume of feed throughout the filtration. 

 

1.3.4.1.1 Complete blocking filtration law 

 

The equations defining complete blockage are based on the area projected onto the 

membrane by the particles in a filtrate volume, V.  The area blocked by this filtrate 

volume is σbV, where σb (m-1) is a constant evaluated by calculating the number of 

particles in the filtrate volume and the area projected by a single particle.  The area 

remaining for flow is therefore VAA bσ−= 0 , where A0 is the initial effective 

filtration area.  Substituting this into Equation 1.1 yields: 

 

 V
R

PQQ
m

b

μ
σΔ

−= 0  (1.5) 

 

Where Q0 is the initial filtrate flowrate (m3.s-1).  The constant preceding the volume in 

Equation 1.5 is defined as the blocking constant, Kb (s-1) and hence the linear form of 

the equation can be written, showing that flowrate declines linearly for increasing 

volume: 

 

 0QVKQ b +−=  (1.6) 

 

This can be rearranged to give ( )Vf
Q
Q

=
0

 and integrated by substitution to generate 

the ( )tf
Q
Q

=
0

 relationship.  Combining these gives the ( )tfV =  relationship. 

 

Strictly speaking the volume throughout the derivations is not the filtrate volume, but 

the corresponding volume of feed (including the filtered particles).  Hermia assumed  
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the mass fraction of solids in the feed was negligible in his derivations and the filtrate 

and feed volumes were equivalent.  The two volumes are directly proportional, 

however, and if the solids mass fraction is significant then this would only alter the 

constant Kb and the derived forms of the equations all still hold. 

 

1.3.4.1.2 Standard blocking filtration law 

 

To derive the standard blocking law it is assumed that the membrane consists of N 

uniform cylindrical pores of equal initial radius r0 (m) and length L (m).  The pores 

are constricted by even deposition of foulant over the inner surface of all the pores, 

keeping them uniform and cylindrical with flow declining since the area available 

reduces due to the decreased pore radius ( drrr += 0 ).  A volume balance on the 

deposited particles yields the following relationship: 

 

 CdVLrdrN =− π2  (1.7) 

 

Where C is the volume of solids per unit volume of filtrate.  Integrating this equation 

gives: 

 

 ( ) CVrrLN =− 22
0π  (1.8) 

 

Based on the Hagen-Poiseuille equation (Equation 1.3) the flowrate is proportional to 

the radius to the fourth power.  Rearranging Equation 1.8 to give the ratio of radii to 

the fourth power the ( )Vf
Q
Q

=
0

 relationship can be determined: 
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Where the standard blocking constant, Ks (m-3), is: 
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 2
0

2
LrN
CKs π

=  (1.10) 

 

Integrating Equation 1.9 yields the following expression which is the linear form and 

also the ( )tfV =  relationship: 

 

 
0

1
2 Q

tK
V
t s +=  (1.11) 

 

The ( )tf
Q
Q

=
0

 function can then be derived by combining Equations 1.9 and 1.11. 

 

Standard blocking is commonly used for sizing estimation and forward prediction of 

protein solution filtration.  By rearranging Equation 1.11 it can be shown that as 

 the maximum volume of feed that can be filtered before the membrane is 

completely blocked, Vmax (m3), is given by: 

∞→t

 

 
sK

V 2
max =  (1.12) 

 

The Vmax approach to filterability testing is to collect time and volume data over short 

periods, reducing the requirements for high value feed solutions (Badmington et al., 

1995).  Vmax is evaluated from the linear form of the standard blocking law using a 

plot of 
V
t  vs t and the other forms are used to forward predict and scale-up the 

process performance (Zydney and Ho, 2002). 

 

The same approach can obviously be implemented using the other blocking laws, but 

they are not so commonly employed and the filtration constants cannot be 

manipulated into a constant that has a clear physical significance such as Vmax. 
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1.3.4.1.3 Intermediate blocking filtration law 

 

The derivation of the intermediate blocking law is similar to that of complete 

blocking.  The area projected onto the membrane per unit filtrate volume V is again 

equal to σbV.  The difference is that the projected area has an equal chance to fall upon 

already blocked pores – filling up pores blocked to flow.  Therefore the effective 

filtration area decreases at a rate reduced by the ratio of current (A) to initial (A0) areas 

(the probability that particles fall upon non-blocked pores).  Over a small time (dt) 

and filtrate volume ( ): QdtdV =

 

 
0A

AQdtdA bσ−=  (1.13) 

 

Incorporating Darcy’s Law (Equation 1.1) and integrating yields ( )tf
A
A
=

0

 which is 

equivalent to ( )tf
Q
Q

=
0

. 
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Where the intermediate blocking constant, Ki (m-3), is equal to: 
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The linear form can be generated by rearranging Equation 1.14: 

 

 
0

11
Q

tK
Q i +=  (1.16) 

 

Integrating this yields the ( )tfV =  relationship: 
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 ( tQK
K

V i
i

01ln1
+= )  (1.17) 

 

Which can then be combined with Equation 1.14 to give the ( )Vf
Q
Q

=
0

 function. 

1.3.4.1.4 Cake filtration law 

 

Cake filtration theory is central to this thesis and application of the equations derived 

here is discussed in more detail in Section 3.4.1 in relation to microscale approaches.  

Forward prediction and scale-up using the equations are also detailed in Section 

2.8.11. 

 

During cake filtration the membrane maintains its properties of effective area (A) and 

resistance (Rm).  A cake layer is deposited on the membrane which provides an 

additional increasing resistance, Rc (m-1).  It is assumed that these resistances in series 

are additive and therefore after a filtration volume V is processed the total resistance 

at a given volume, R (m-1) can be given as: 

 

 cm RRR +=  

 
A

VRR m
0αρ

+=  (1.17) 

 

Where α is the specifc cake resistance per unit dry cake mass (m.kg-1) and ρ0 is the 

mass of dry solids per unit volume of filtrate (kg.m-3).  Defining the cake filtration 

constant, Kc (s.m-6), as: 

 

 
PA

Kc Δ
= 2

0μαρ  (1.18) 

 

Equation 1.17 can be rewritten: 

 

 ( )VQKRR cm 01+=  (1.18) 
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Since Darcy’s law (Equation 1.1) shows that resistance is inversely proportional to 

flowrate this can be rearranged to give the ( )Vf
Q
Q

=
0

 relationship: 

 

 
VQKQ

Q

c 00 1
1

+
=  (1.19) 

 

Integrating Equation 1.19 yields the linear form of the cake filtration law: 

 

 
0

1
2 Q
VK

V
t c +=  (1.20) 

 

This can also be rearranged to give ( )tfV =  and combined with Equation 1.19 to 

determine ( )tf
Q
Q

=
0

, both of which are summarised in Table 1.5. 

 

For the application of this theory to quantification of microscale filtration, the linear 

relationship (Equation 1.20) is rewritten using Equation 1.2 and Equation 1.18 to give 

the unabbreviated form in terms of flux rather than throughput as quoted in Section 

3.4.1.  The focus is on the evaluation of the specific cake resistance, which is an 

intrinsic value of the resistance to flow of the cake and is effective for use in 

prediction of flux performance and scale-up (Section 2.8.11).  

 

The theory of cake filtration is often extended to incorporate the effect of pressure on 

specific cake resistance.  Under pressure some cakes will collapse and compress, 

leading to smaller void spaces and therefore increased restriction to flow.  There are a 

variety of different expressions correlating the effect of pressure on specific cake 

resistance data (Foley, 2006). 

 

1.3.4.1.5 Cake filtration law for constant flow operation 

 

The derivations in the preceding four sections have considered the case of a constant 

applied pressure as the driving force.  Pumping of the feed through a filter at constant 
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flow is also a common approach to normal flow filtration, especially at large scale 

(Ball, 2000).  The approach to generating equations describing the pressure increase is 

similar to the constant pressure derivations.  For cake filtration the same expression 

for resistance is used (Equation 1.17) and here Darcy’s law (Equation 1.1) shows that 

resistance is directly proportional to pressure difference, hence: 

 

 
mAR
V

P
P 0

0

1 αρ
+=

Δ
Δ  (1.21) 

 

With the knowledge that the flowrate, Q, is constant throughout the experiment and 

simply equal to volume over time and incorporating Darcy’s Law at initial conditions 

the following expressions for pressure increase as a function of volume or time can be 

developed: 

 

 ( ) 200 A
QVPP μαρ+Δ=Δ  (1.22) 

  ( ) V
A
QPP

2

00 ⎟
⎠
⎞

⎜
⎝
⎛+Δ=Δ μαρ  (1.23) 

 

The cake filtration constant for constant pressure operation, Kc (Equation 1.18), can 

no longer be incorporated here since it includes the now variable term for pressure 

difference.  The same is true of the intermediate and complete blocking constants.  

Only the standard blocking constant can be used to describe both constant pressure 

and constant flow behaviour.  The forms of these other constant flow relationships are 

not derived here but are available in the literature (van Reis and Zydney, 2007). 

 

1.3.4.1.6 Combined filtration models 

 

The extension of the classical laws derived above to consider multiple filtration 

mechanisms is a natural progression.  Bolton and co-workers (2006) derived constant 

pressure and constant flow equations for combinations of blocking laws occurring 

simultaneously throughout the course of the filtration.  Improved levels of fit were 

obtained with these combined models, especially the cake-complete model.  However 
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the authors concede that this is not necessarily proof the mechanisms in the model are 

both occurring and that the improved fit could be due to the additional fitted 

parameter. 

 

Evidence of mechanisms changing during filtration has been published for BSA 

(Tracey and Davis, 1994) and latex particles (Kosvintsev et al., 2002) showing 

standard or complete blocking models fitting early data, transitioning into data that 

fits a cake filtration model.  Plots of the derivatives in Equation 1.5 have been used to 

demonstrate the variation in the fouling exponent, n, over the course of BSA filtration 

(Bowen et al., 1995), again showing a transition from complete blockage (n ≈ 2) to 

cake filtration (n ≈ 0).  A single model describing the smooth transition from pore 

blockage to cake filtration was developed by Ho and Zydney (2000).  The model 

includes three fitted parameters, but they all have a clear physical definition and could 

theoretically be determined independently, although not by simple methods.  Ho later 

published a model that also incorporated internal fouling by pore constriction 

(Duclos-Osello et al., 2006). 

 

Whilst interesting from an academic perspective, the combined models are not simple 

to implement in practice and forward prediction of transition from one mechanism to 

another is not possible from early data.  The complexities of filtration mechanisms are 

acknowledged when scaling up industrial filtration processes but the variability is 

simply accounted for in safety factors for the fitted parameters of the single 

mechanism models (Lutz, 2009). 

 

1.3.5 Microfiltration of E.coli 

 

The microfiltration of E. coli fermentation broths is known to be influenced by several 

upstream factors. Previous studies have demonstrated that cells harvested after 

glucose depletion within a fermentation lead to increases in cake resistance as the 

cells begin to lyse and degrade (Okamoto et al., 2001). For other organisms, 

decreasing the medium pH has been shown to make Corynebacterium cells become 

more hydrophobic leading to their aggregation.  During filtration this results in filter 

cakes with larger void spaces and hence a reduced cake resistance (Ohmori and Glatz, 

 46



1.0  Introduction
 

1999). Fermentation media components can also increase the specific cake resistance 

whether using complex oil based media (Davies et al., 2000) or soluble complex 

media with nutrients, such as tryptone (Russotti et al., 1995).  Factors, such as cell 

morphology (McCarthy et al., 1998) and cell size and shape (Nakanishi et al. 1987) 

have also been shown to have an impact on microfiltration performance.  The 

presence of extracellular matrices can also change the specific cake resistance 

(Hodgson et al., 1993).  

 

1.3.6 Microfiltration of plasmid DNA 

 

The increase in promising gene therapy applications (Verma and Weitzman, 2005) is 

driving the need for large scale DNA processing.  Although not well established at 

process scale, a typical downstream process for plasmid DNA purification could 

incorporate microfiltration and ultrafiltration after lysis and precipitation and before 

chromatography (Ferreira et al., 2000).  Research has been carried out using 

microfiltration membranes to remove contaminants by size and adsorption while 

permeating the plasmid DNA (Kendall et al., 2002) in contrast to concentrating the 

plasmid DNA (Kahn et al., 2000).  Normal flow sterilization of plasmid DNA 

solutions depends strongly on the plasmid size and solution ionic strength with higher 

fluxes generating increased damage (Kong et al., 2006). 

 

The high costs of chromatographic separation due to poor binding capacity (Prazeres 

et al., 1999; Diogo et al., 2005) has led to the development of non-chromatographic 

adsorption processes for purifying plasmid DNA (Lander et al., 2002).  This process 

involves a variety of key filtration steps for solids recovery and removal. 

 

 

1.4  Microscale bioprocessing 
 

Small scale devices that allow process evaluation and optimisation with the lower 

volumes available in early stage product development have long been a vital tool for 

bioprocessing.  Researchers have sought to reduce this scale further to allow studies to 
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be conducted earlier or in more detail.  Microscale bioprocessing (Micheletti and Lye, 

2006) applies scale down methods to microlitre quantities of feed. 

 

1.4.1 Scale-down of bioprocesses 

 

By scaling down a process large scale performance can be predicted without incurring 

the financial and timescale costs of full scale operation.  Scale-down in its simplest 

form is the generation of a geometric mimic at a smaller scale to generate equivalent 

performance data to the large scale. Such geometric approaches are often used for 

fermentors or other reaction vessels, but even here there are significant affects of 

smaller scale operation that must be accounted for.  For example, the key aspects for  

scale-down of fermentation are maintaining sufficient oxygen transfer and efficient 

mixing (Humphrey, 1998).  In small scale geometric mimics the same impeller 

rotational speed will generate lower actual linear velocities and lower shear, leading to 

different oxygen transfer and mixing characteristics.  The established scale-down 

techniques used are to maintain a constant tip velocity, Reynold’s number, calculated 

power input per unit volume, oxygen mass transfer coefficient or mixing time (Junker, 

2004). 

 

For some processes geometric similarity is not beneficial.  In chromatography the bed 

height determines the pressure drop across the column and can even affect separation 

performance (Carta and Jungbauer, 2010).  Hence scale-down is often carried out at a 

constant bed height, by reducing the column diameter which vastly alters the aspect 

ratio (Cutler, 2004). 

 

Knowledge of the key process drivers is required and any scale-down approach must 

focus on keeping the relative effects of these process drivers constant at both scales. 

 

1.4.1.2 Microfiltration scale-down 

 

Scale-down of microfiltration involves reduction in the filtration area and maintaining 

the correct flux (flow per unit area).  The different modes of operation and filter 

format used at full scale can influence the accuracy of flux scalability. 
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1.4.1.2.1 Scale-down of normal flow filtration 

 

In its simplistic form scale-down of normal flow filtration can be carried out by 

linearly scaling area.  However the format of large scale filtration devices can be very 

different.  Common formats include pleated membrane packed into a cylindrical 

housing.  Adaptations of the technology are allowing higher membrane densities to be 

packed into the standard 10” cartridge format (van Reis and Zydney, 2007).  The full 

impact of the pleating processs is not fully understood, but observations have been 

made with sterile microfiltration media suggesting a loss in flux for pleated devices 

(Chandler and Zydney, 2004) and fluid dynamics studies published for pleated 

cartridges in other applications (Nassehi et al., 2005). 

 

Full scale normal flow filtration of feeds with high solids content include the use of 

candle, plate and frame, tubular and leaf filters (Sutherland, 2008).  Again these 

formats differ from the simple cylindrical vessel and disc filter used in the laboratory 

and scale-up is not straight forward (Reynolds et al., 2003). 

 

1.4.1.2.2 Scale-down of tangential flow filtration 

 

Scale-down or scale-up of TFF devices cannot be easily achieved.  Because of the 

complex variation in conditions at different positions along the membrane, this path 

length must be kept constant at different scales.  Many other factors need to be kept 

constant, although this is not possible at all scales.  Good scale-up data has usually 

been achieved by keeping path length constant (van Reis et al., 1997; Ball, 2000).  

Membrane area and hence capacity are scaled-up by increasing the number of 

channels in parallel. 

 

1.4.1.3 Ultra scale down of bioprocesses 

 

The approach of ultra-scale down (USD) was outlined by Boychyn and co-workers 

(2004).  It allows a combination of two different small scale operations to mimic the 

full scale process: customised shear treatment to mimic cell breakage in the centrifuge 

feed zone and laboratory scale centrifugation.  The key is to both predict the large 
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scale performance and ensure that the final output feedstream is equivalent to a 

sample taken from the full scale process.  This not only secures process information 

but also allows subsequent USD steps to be carried out with the correct feed. 

 

Similar approaches have been attempted for TFF (Lee et al., 1995; Bouzerar et al., 

2000).  A rotating disc generates shear above a small membrane disc allowing 

operation with millilitre quantities and mimicking the estimated shear within 

conventional TFF devices. 

 

 

1.4.2 Microscale automation  
 

Microscale processing techniques, the combination of automated experimentation and 

bioprocess studies carried out in microwell plate formats (Lye et al., 2003), are now 

emerging as a means to obtain bioprocess design information early for multiple drug 

targets. The ability to perform representative process studies early, at small scale and 

with minimal human intervention also helps to reduce costs. To date the majority of 

microwell studies have focused on upstream operations in particular fermentation 

(Duetz et al., 2000; Duetz and Witholt, 2001; Elmahdi et al., 2003; John et al., 2003) 

and bioconversion (Doig et al., 2002). This is also true of related work on miniature 

stirred bioreactors (Kostov et al., 2001; Lampling et al., 2002; Puskeiler et al., 2005; 

Gill et al., 2008a) and automated shake flask systems (Anderlei et al., 2004). For 

microscale processing techniques to be most effective, however, it will be necessary 

to integrate these upstream studies with appropriate downstream processing sequences 

also operated in microwell formats (Lye et al., 2003). There have been initial reports 

on adsorption studies in microwell formats (Lye et al., 2003; Welch et al. 2002) and 

the operation of linked process sequences (Ferreira-Torres et al., 2005) but at present 

the principles of more microscale downstream processing operations need to be 

established. 

 

Established automation equipment exists for microwell formats and is well established 

in the field of drug discovery (Gribbon and Andreas, 2005).  These robotic platforms 

also allow high throughput operation of assays, even with filtration processes involved 
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(Zhang and Lynch, 2005).  However the filter is there to simply perform a separation 

and its performance is not characterised.  There is much development in the 

microscale automation of chemical synthesis for process development (Harre et al., 

1999; Pollard, 2001) and these existing platforms represent a starting point to begin 

development of microscale bioprocessing and start to reap similar rewards. 

 

 

1.5 Design of experiments 
 

Traditional experimentation focuses on exploring the effects of one factor at a time 

and, as we are taught early in our school science lessons, all other factors must be kept 

constant to ensure a fair scientific test.  There are two main drawbacks of such an 

approach.  Firstly we would not allow identification of interactions where different 

levels of one factor influence the measured behaviour of another factor.  Secondly we 

would be limiting the experimental space that we test to straight lines when there are 

planes, cubes and even higher dimensions of experimental space to consider. 

 

Design of Experiments (DoE) has evolved to ensure that the maximum amount of 

information from all the relevant experimental space is generated from the minimum 

resource expenditure.  What is generally considered as modern experimental design 

derives from many of the principles developed at the Rothamsted Experimental 

Station founded by John Lawes in 1846.  Lawes and Joseph Gilbert carried out many 

arrays of experiments on agricultural yields incorporating experimental designs that 

were factorial in nature (Yates and Mather, 1963).  They employed Sir Richard Fisher 

to collate and analyse many of these experiments and whilst at Rothamsted he 

published many key texts (Fisher, 1925; Fisher, 1935).  Significant developments in 

analysis (Yates, 1937) and designs (Plackett and Burman, 1946) and continuous 

refinement and study have led to the methodology summarized in key modern DoE 

texts (Box et al., 2005; Montgomery, 2008 – both originally published in the 1970’s). 

 

 

 

 

 51



1.0  Introduction
 

1.5.1 Factorial  experiments 

 

Factorial experimentation is an effective and mathematically elegant approach to 

systematically exploring the correct regions of experimental space and defining the 

major variations within that space.  It identifies the main effect of varying a factor and 

the interactions between all the factors. 

 

A full factorial design simply incorporates all combinations of k factors at a fixed 

number of evenly spaced levels for each factor.  Scouting using two level factorial 

designs is a common approach to evaluating the important factors in an experimental 

system.  There are 2k combinations in a full two level factorial design and this 

expression is often used to define.  Table 1.6 contains the example of a two level, 

three factor (23) factorial design.  The high and low levels are represented by +1 and 

-1 in the table.  These levels for each factor are carefully selected to ensure that the 

range is not too narrow (variation is too small to measure) or too wide (includes 

variation outside of the typical operating range).  Selection of the factor levels is the 

key to successful factorial design. 

 

 

 

 

Table 1.6.  The coding for a full 23 factorial experiment. 

Main Effects Interactions Experiment 

Run Number A B C AB AC BC ABC 

1 −1 −1 −1 +1 +1 +1 −1 

2 +1 −1 −1 −1 −1 +1 +1 

3 −1 +1 −1 −1 +1 −1 +1 

4 +1 +1 −1 +1 −1 −1 −1 

5 −1 −1 +1 +1 −1 −1 +1 

6 +1 −1 +1 −1 +1 −1 −1 

7 −1 +1 +1 −1 −1 +1 −1 

8 +1 +1 +1 +1 +1 +1 +1 
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1.5.1.1 Analysis of factorial experiments 

 

Simple analysis of factorial experiments involves evaluating the main effect of each 

factor.  This is an estimate of the change in the measured response variable going 

from the low level to the high level of the factor.  Main effects are calculated by 

subtracting the average of all the responses from the low level runs from the average 

of the high level runs for a given factor.  The calculation is visualised in Figure 1.1 

and also in the coding in Table 1.6. 

 

More complex is the evaluation of the interactions.  Once again the coding in Table 

1.6 shows which runs are averaged and substacted (–1) from the other runs (+1).  Here 

Figure 1.1 visually demonstrates the interactions and explains them.   

 

The relative magnitude of effects and interactions is a good measure of how important 

the various factors are to the result of the measured response.  Care should be taken, 

however, since this relies on the range of the factors being well chosen.  If a very 

strong factor is chosen with high and low values that are too close, it could appear to 

be less important than minor factors.  

 

1.5.1.2 Centre points in factorial experiments 

 

The addition of multiple runs at the mean point of 2k factorial experiments is of 

significant use for factorial designs.  By comparing the arithmetic mean of the 

factorial design points to that of the centre points it can be determined if the main 

effects and interactions are likely to be linear.  Centre points can also be used to 

estimate the error in the response variable to allow statistical analysis without 

replicating the factorial points.   

 

If attempting to fit a linear predictive model to the factorial design it is essential to 

have multiple replications of the centre point.  Firstly the average centre point 

response can be statistically compared to the arithmetic mean of the factorial points to 

assess if a linear model is valid.  Secondly the centre points ensure that the model is 

not being used to predict the middle of the experimental space using measurements at 
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the extreme.  A set number of centre points can be defined that ensures an even 

distribution of information throughout the experimental space and gives more 

confidence in the model prediction. 

 

1.5.1.3 Qualitative factors 

 

The coding and mathematics of the factorial experiment imply that only quantitative 

factors can be employed in such analyses.  However the use of qualitative factors in 

entirely possible and mixtures of both qualitative and quantitative factors are possible.  

On the simplest level the main effect becomes the change in the response switching 

from one qualitative choice to the other. 

 

Restrictions appear when taking centre points or fitting a model to the experimental 

space.  The centre points can potentially be a mixture of the two qualitative options or 

two separate sets of centre points can be performed.  Fitting a model (e.g. linear) can 

be carried out where data can be isolated at one or other of the qualitative choices.  

Otherwise a fitted model would assume that intermediate values exist between the 

discrete +1 and –1 qualitative options. 

 

1.5.1.4 Error analysis in factorial experiments 

 

The key analysis step in factorial experiments is the evaluation of the error, which 

identifies which effects and interactions are statistically significant and are therefore 

relevant.  Error estimation is often a simple comparison of the means of two groups 

(the +1 and –1 coding from the design matrix) using replication of each experimental 

condition.  Other options exist including partial replication (especially replicating only 

the centre points) and assuming the higher order interactions are negligible and 

provide an estimate of the experiment variability (Montgomery, 2008). 

 

1.5.1.5 Fractional factorial analysis 

 

In order to reduce the number of experimental runs in a factorial design it is possible 

to run fractional repeats.  The fractional experiments are denoted 2k-p, where the 
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Figure 1.2.  Visual representation of the main effects and interactions for a 23 
factorial experiment.  The vertices of the cube represent the high and low factorial 
combinations of the three factors (A, B and C).  The magnitude of the effect or 
interaction is the average of the white points minus the average of the shaded points. 
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fraction of the full factorial experiment is p2
1 .  The designs are constructed by using p 

groups of factors which when multiplied together equal to the identity function.  This 

confounds main effects and interactions together.  Confounded effects and interactions 

can not be separated and a result only a single value can be calculated sum.   

 

For example in a 24-1 half factorial experiment the coding for the fourth factor (D) is 

constructed from the multiplication of other factor codings (D = ABC).  The defining 

relationship for this example is denoted as I = ABCD and involves more terms for 

quarter or smaller fractional designs.  This leads to all two factor interactions being 

confounded in pairs and the result generated is the addition of these factors: AB + CD, 

AC + BD, AD + BC.  If any of the three calculated interaction combinations are 

statistically significant it will not be possible to determine which one of the 

interactions is causing the change in the response without additional information.  In 

the most extreme example the two confounded interactions could potentially be of 

similar magnitude and opposite sign, thus cancelling out and appearing insignificant. 

 

The resolution of a fractional factorial experiment is defined as the minimum number 

of letters other than the in the defining relationship.  Therefore resolution III designs 

have some main effects confounded with two factor interactions, resolution IV 

designs have main effects confounded with three factor or higher order interactions 

and resolution V and above designs have two factor interactions confounded with 

three factor or higher order interactions.  This restriction still allows significant 

resource savings, especially when investigating higher numbers of factors.  For 

example a 28 full factorial would take 256 runs to complete, however a 28-2 quarter 

factorial would be completed with only 64 runs at resolution V.  Even when 

unfavourable confounding is necessary due to run limitations there are designs which 

can be found to minimise the number of low order interactions or main effects that are 

confounded (Fries and Hunter, 1980). 
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1.5.1.6 Blocking in factorial analysis 

 

When carrying out factorial experiments it is important not to bias the results based on 

restrictions to experimental operations.  For example, if only the low value factor A 

runs were carried out in the first day of a two day trial, it would not be certain if the 

main effect of A was caused by varying the factor or variability from day to day.  

Similarly if raw material batch changes are not properly planned for there are risks the 

results will be biased.  It is almost as if an additional factor is introduced which is not 

accounted for in the original design. 

 

The simplest form of blocking is to confound the change in a block factor (e.g. 

different days, different raw materials) with a higher order interaction.  Therefore any 

effects of the block factor on the response will show up in what was otherwise 

expected to be an insignificant interaction.  Many blocking designs have been 

published to assist experimenters (Wu and Hamada, 2000) and modern statistical 

packages can be used to select the appropriate blocked designs. 

 

Blocking is very effective in mitigating the influence of known restrictions or 

variations that cannot otherwise be controlled.  Inside each block, or where no 

blocking is used the whole experiment, the runs should be randomised in order to limit 

the effect of any unforeseen trends or step changes in the response variable.  

Randomising the run order for factorial experiments is recommended where it is 

possible and does not complicate the execution of the runs (Box, 1990). 

 

 

1.5.2 Response surface methodology 

 

Response surface methodology (RSM) is simply ‘a collection of statistical and 

mathematical techniques useful for developing, improving and optimizing processes’ 

(Myers et al., 2009).  The whole approach is sequential in nature and requires a build 

up of experimental information before using sequences of experiments to ensure a 

response surface covers the right experimental space around the process optimum.  

Myers and co-authors (2009) separate RSM into three phases: 
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Phase Zero: Carry out a screening experiment to assess the important factors and 

interactions (see Section 1.5.1 on factorial experiments). 

Phase One: Assess whether the optimum is close to the current factor values being 

investigated and, if necessary, change these using the ‘method of 

steepest ascent’ to determine the most likely direction to locate the 

process optimum. 

Phase Two: Select and execute an appropriate response surface design in the 

location of the process optimum. 

 

By following these approaches the response surface will not only give a good 

prediction of the relationship of multiple factors and responses, but also ensure that 

behaviour at and around the optimum is understood.   

 

1.5.2.1 Types of response surface 

 

Different response surface designs with subtle variations can be selected at for 

different objectives.  George Box was instrumental in developing effective response 

surface designs, including the Box-Behnken designs (Box and Behnken, 1960; 3 

factors or more) and central composite designs (Box and Wilson, 1951).  Central 

composite designs have the factorial points at their centre, with augmented star points 

at extended values of one factor and the centre of the other(s). 

 

Maintaining the rotatability of the response surface design is important (Box and 

Hunter, 1957).  This means that the predictive power of the model at any point will 

depend on the distance from the centre point and not the direction, essentially 

maintaining the symmetry of the design. 

 

1.5.3 Windows of operation 

 

There are multiple responses that must be traded off during optimisation of 

bioprocesses.  For example required product quality must be maintained whilst 

keeping costs at a minimum.  Overlaying different response surfaces for the same 

variable factors can indicate the process factor ranges which will achieve the desired 

 58



1.0  Introduction
 

balance between these responses.  Such windows of operation (Woodley and 

Titchener-Hooker 1996; Zhou and Titchener-Hooker, 1999) define where to operate a 

process.  The relative size of the window can indicate how stable the process is and 

how easy it is to control within the required limits.  The windows of operation concept 

has been applied to the measurement of bioprocess kinetics in high throughput robotic 

platforms (Nealon et al., 2005) 

 

 

1.6 Project significance 
 

Recent advances in the life sciences and the establishment of ultra-high throughput 

screening technologies have led to the identification of large numbers of potentially 

important biopharmaceuticals.  Many of these are now in the later stages of product 

development (Werner, 2004) and there is greater pressure than ever before on 

bioprocess development groups. The challenges being faced are how to deal with the 

larger number of new drug candidates being identified while constraining increasing 

bioprocess development costs which can be considerable (DiMasi et al., 2003).  The 

need is to create more efficient manufacturing routes more quickly. 

 

Research at microscale is moving towards the goal of automated whole process 

sequences on the deck of a robot at microlitre scale (Lye et al., 2003; Micheletti and 

Lye, 2006) in order to provide for this need.  This is a natural progression from 

established principles of unit operation scale-down which have been shown to predict 

pilot scale performance when linked with process models (Ayazi Shamlou et al., 

1998).  The generation of microscale downstream processing techniques is clearly 

vital if microscale whole process sequences are to become a reality. Some progress 

has been made on equilibrium-based separation techniques such as liquid-liquid 

extraction and solid-liquid adsorption (Lander, 2002).  These have the advantage that 

their design is based on equilibrium parameters that are independent of the scale at 

which they are determined. The need now is to create microscale approaches to the 

more complex downstream processing techniques widely used in the 

biopharmaceutical sector such as microfiltration, ultrafiltration and chromatography. 
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1.7 Aims of the project 
 

The primary objectives of the investigations in this thesis are summarized below: 

 

• To develop an automation friendly technique for the parallel quantification 

of flux during normal flow microfiltration at the microscale.  The technique 

must rapidly quantify key parameters capable of describing the filtration 

that are of specific use for scaling up.  Currently available commercial 

equipment is analysed and adapted for operation of the methods where 

appropriate.  In addition, a custom filter plate is designed, optimised for 

bioprocessing, to enable the most accurate assessment of microfiltration 

performance.  Experiments relating water flux to the membrane resistance 

are used to indicate the initial suitability of the equipment and methods.  

Subsequent work tackles the more complex filtration of biological 

suspensions, specifically E.coli fermentation broth.  The technique should 

be able to differentiate between feed samples in parallel and quantify 

filtration performance differences due to process changes.  This work is 

described in Chapter 3. 

 

• To demonstrate how automated microscale normal flow microfiltration 

methods developed can fully characterise a filtration process by quantifying 

protein transmission in addition to flux.  This will utilise microscale 

techniques in conjunction with design of experiments methodology to 

optimise the filtration of an E.coli and protein mixture.  In addition the 

scalability of microscale data to conventional laboratory scale equipment at 

optimal and non-optimal conditions is established.  This work is described 

in Chapter 4. 

 

• To operate an automated whole process sequence at the microscale and 

demonstrate that the results are scaleable.  An industrially relevant and 

appropriate bioprocess for plasmid DNA is selected in order to investigate a 

significant process sequence.  This will prove that such a sequence can be 

carried out at the microscale and demonstrate that the data generated can be  
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scaled in both size and format of filtration device.  This work is described in 

Chapter 5. 

 

This will complete the major aim of developing microscale microfiltration operations 

that can be incorporated into whole process purification sequences on the deck of an 

automation robot. 
 



                                                                            2.0  Materials and Methods
 

 

2.0 Materials and methods 
 

 

2.1  Introduction 
 

This chapter includes the details of materials, equipment, analytical techniques and 

experimental methods that have been used in the preparation of this thesis.  The only 

exceptions are details of the design of a custom microwell filter plate and methods for 

data treatment of automated microscale microfiltration results.  These were developed 

during the project and are described in detail in Chapter 3 and further adapted in 

Chapter 5.  The newly developed microscale equipment and methods are integral to 

this thesis and directly relate to the discussion of the data in Chapter 3 which proves 

their capability. 

 

 

2.2  Chemicals 
 

The yeast extract and tryptone used in the fermentation media were obtained from 

Oxoid Ltd. (Basingstoke, Hampshire, UK) and different batches were used in 

Chapters 3 and 4.  All other chemicals were obtained from Sigma-Aldrich Chemical 

Co. (Poole, Dorset, UK) and were of analytical grade or better. Ultra-pure de-ionised 

water (Milli-Q Gradient, Millipore, Billerica, MA, USA) was used for the all water 

flux experiments and as a buffer for HPLC assays.  Reverse osmosis (RO) water was 

used in all other experimentation (Elix 10, Millipore, Billerica, MA, USA). 

 

 

2.3  Microfiltration materials and equipment 
 

2.3.1  Microfiltration membranes and filters 

 

The majority of membranes used in this study were Millipore 0.22 µm PVDF 
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(polyvinylidene fluoride) Durapore membranes in the form of 25 mm discs, 

Multiscreen® 96-well filter plates, or inserts from Ultrafree-CL centrifugal filters 

(Millipore, Billerica, MA, USA)  which were used in the custom filter plate.  The 

custom filter plate also used 0.2µm cellulose nitrate membranes cut to size from 47 

mm discs (Whatman, Middlesex, UK). 

 

For experiments involving filter aid a 22-26 µm wire mesh (Betamesh 25, G Bopp & 

Co Ltd, Derbyshire, UK) was cut to the appropriate size in order to retain a Celpure® 

(Advanced Minerals, CA, USA) filter aid pre-coat.  Two different grades of Celpure 

filter aid were used (P65 and P300).  The numbers for each grade relate to the 

permeability of the filter aid in millidarcies and the approximate ratings of the Celpure 

are 0.2-0.3 µm and 0.45-0.6 µm respectively. 

 

2.3.2  Tecan automation robot 

 

The automated system used in this thesis is a customised Tecan Genesis Freedom 

liquid handling robot (Tecan, Männedorf, Switzerland).  This is capable of 

manipulating microwell plates and associated equipment, automated pipetting of 

liquids, agitation, centrifugation and vacuum filtration.  The Tecan automation robot 

used here is shown in Figure 2.1, with various important components highlighted. 

 

2.3.2.1  Vacuum manifold 

 

The automated microscale normal flow filtration (NFF) technique established here is 

based on the use of a Tecan VacS two-position vacuum filtration manifold (Figure 

2.1(b) and (d)).  This was located on the deck of the Tecan Genesis Freedom liquid 

handling robot with Gemini software being used to control pipetting actions, plate 

movements and filtration manifold operation. 

 

The system is capable of generating a vacuum up to approximately 750 mbar.  The 

vacuum is generated and monitored in a separate vacuum chamber.  Once the desired 

pressure is reached a valve is automatically switched connecting the vacuum chamber 
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e

d

f
  
Figure 2.1.  Two photographs of different configurations of the Tecan Genesis 
Freedom liquid handling robot used in this work housed inside a laminar flow cabinet.  
(a) Integrated plate mixer, (b) VacS two-position vacuum filtration manifold, (c) 8-tip 
liquid handling arm, (d) VacS manifold with with 8-well custom filter plate, (e) 
separate RoMa robotic arm for plate manipulation, (f) entry port for integrated 
centrifuge (below deck). 
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to the vacuum manifold via tubing of approximately 0.75 m in length.  The vacuum 

pump is turned on and off when the vacuum pressure is 5 mbar lower or higher than 

the set value.  Hence the actual pressure profile at the vacuum manifold is variable 

around a set point, which is slightly lower than the requested value maintained in the 

vacuum chamber. 

 

In order to allow measurements of specific cake resistance, two microwell filter plates 

were run in parallel on the VacS vacuum filtration manifold (Figure 2.2).  A detailed 

cross-section of the manifold, filter plate and collection plate assembly is shown in 

Figure 2.2(a).  A three way valve was used to vent one plate before the other as shown 

in Figure 2.2(b).  Both plates start filtering at the same time with the same applied 

pressure profile.  Beneath each filter plate there was a collection plate consisting of 96 

removable tubes (96-well Cluster Tubes, Corning Life Sciences, Acton, MA) or 6 to 

24 cuvettes (4.5 mL macro cuvette, Brand, Wertheim, Germany) so that 

measurements of the permeate mass from each well can be determined once filtration 

has stopped.  This gives a single time and volume data point from each of the wells on 

a single plate. Vacuum pressure was monitored on one of the manifold positions by a 

digital manometer (Manometer 840082, SPER Scientific, Scottsdale, AZ) and logged 

on a PC to give the actual pressure profile seen by the microwell plates during an 

experimental run.  The approach to the collection of flux versus time data and the 

calculation of membrane or specific cake resistance is developed later in Section 3.1.  

For water flux experiments with the Multiscreen plate, a plastic reservoir was attached 

above the plate in order to enable use of larger filtration volumes and hence higher 

pressure differences. 

 

Once collected and weighed, the samples from both plates were stored and where 

required, analysed using the analytical methods detailed in Section 2.6. 

 

To reduce measurement errors associated with the use of standard small volume 

Multiscreen filter plates a prototype custom microwell filter plate was designed.  

Details and rationale for the design are given in Section 3.2.1.  All stages of the 

microwell filtration processes have been automated apart from the weighing 

operations, however many automation solutions for this are readily available.  For
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Figure 2.2.  Detail of the Tecan vacuum manifold system showing: (a) cross-section 
of a single vacuum filtration manifold showing the Multiscreen filter plate on top and 
a deep-well collection plate below (inside) the manifold, (b) vacuum manifold 
equipment for parallel microscale filtration experiments using either commercial 96-
well Multiscreen filter plates or the custom filter plate described in Section 3.2.1. 
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example, the Tecan robotic arm is able to pick up the cuvettes, filter inserts and 

removable tubes and could weigh them on a balance connected to the system if higher 

throughput operation were required. All microwell microfiltration experiments in 

Chapter 3 were performed at least in triplicate.  Replication for the experimental 

designs used throughout the rest of the thesis are detailed in Section 2.7. 

 

2.3.2.2  Mixing 

 

Any mixing or temperature control of feeds required was carried out by a 

Thermomixer (Eppendorf, Hamburg, Germany; see Figure 2.1(a)) which can 

accommodate a variety of microwell plate formats.  When experiments were limited 

by Thermomixer numbers (in Section 2.5.2.7 where multiple plates need to be mixed 

for a prolonged period of time) the plates were shaken in an incubator with a 

microwell plate adapter (ISF-1-W, 25 mm shaking diameter, Kühner AG, Birsfelden, 

Switzerland).  When limited by the shaking speed range of the Thermomixer, 

Variomag multi-position microplate mixers (Thermo Scientific, Loughborough, UK) 

were used. 

 

2.3.2.3  Liquid handling 

 

All liquid handling during automated microscale processing was carried out using the 

Tecan’s own liquid handling system consisting of an automated eight-channel 

pipetting system.  The exception was feeds where the solids concentration is too high 

for the Tecan, in which case manual pipetting was used utilising pipette tips adapted 

with wider openings.  Options do exist for handling high solids concentration samples 

with the Tecan, but were unavailable at the time. 

 

2.3.2.4  Plate handling 

 

The TECAN RoMa arm was programmed to move all filter plates, collection plates 

and the vacuum manifold components so as to allow programs to be generated that are 

capable of running complete sequences of automated filtration and mixing steps. 
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2.3.3  Membrane cell 

 

Standard laboratory scale microfiltration experiments in Chapter 3 were carried out 

using an unstirred normal flow membrane cell (3.8 cm2, Amicon 8010, Millipore, 

MA, USA) as shown in Figure 2.3(a).  Nitrogen of variable pressure controlled by a 

regulator valve provided the driving force and permeate mass and time were logged 

on a PC and used to calculate water flux or specific cake resistance as necessary.  This 

method of applying a positive gauge pressure to the feed is in contrast to the 

microwell scale experiments which use a vacuum pump to generate a negative gauge 

pressure (below atmospheric) on the permeate side of the membrane.  In order to 

elucidate the differences of applying a positive pressure or negative pressure to drive 

the filtration process, the Tecan VacS vacuum pump was also used with the membrane 

cell as shown in Figure 2.3(b). For the negative pressure experiments, the filtration 

process has to be stopped and the permeate collected weighed to give a data point of 

time and volume, in a similar fashion to the filter plate experiments. The water flux 

was determined by timing the permeation of a known volume of water once a constant 

pressure had been reached. All pressures were monitored by a digital manometer 

(Manometer 840082, SPER Scientific, Scottsdale, AZ) and manually adjusted and 

recorded.  All membrane cell experiments in Chapter 3 were performed in triplicate. 

 

The scale-up experiments carried out in Chapter 4 used a larger membrane cell 

(13.2cm2, Amicon 8050, Millipore, MA, USA) and the same ancillary equipment as in 

Figure 2.3(a).  Only the optimum condition run was duplicated, all other experiments 

were single evaluations. 

 

The effective filtration areas quoted for the Amicon stirred cells were determined by 

measurement of E.coli filter cake diameters and are in close correlation to values in 

the literature (Wutzel and Samhaber, 2009; Akbari et al., 2002) which contradict the 

claims of the manufacturer.  This indicates that the effective filtration area may vary 

with the type of membrane used and the potential use of any support layers (no 

additional support layers were used in this thesis). 
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Figure 2.3.  Experimental set-ups for membrane cell operation: (a) using nitrogen to 
generate a positive gauge pressure on the feed side of the membrane (b) applying a 
vacuum to generate a negative gauge pressure on the permeate side of the membrane. 
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2.3.4  Rotating vertical leaf filter (RVLF) scale-down device 

 

Most simple laboratory scale filtration units consist of batch, pressure driven 

apparatus with a horizontal filter.  Industrial filters such as the rotating vertical leaf 

filter (RVLF) have a vertical configuration and are also rotated on an axis 

perpendicular to the filter. The RVLF is also continuously fed suspension via a pump, 

rather than operating in batch mode. The ultra scale-down (USD) RVLF device 

(9cm2) was created to mimic this operation (Reynolds et al., 2003).  A diagram of the 

USD device is shown in Figure 2.4, including details of the experimental set-up.  The 

device was rotated by means of a rubber wheel connected to a motor, which enables 

the filter to rotate at 10 ± 3 rpm. 

 

A peristaltic pump was connected to the inlet and used to deliver feed at a flowrate of 

0.28 mL.s-1, based on prior work showing this is preferable for scale-up of complex 

solutions (Reynolds et al., 2003).  The filter device was filled with RO water before 

use, removing air from the system and ensuring the chamber was full.  A wire mesh 

disc was used to retain the pre-coat (0.5 g of solid in 50mL of RO water) which was 

pumped through until finished (leaving a 0.55 kg.m-2 pre-coat layer) and then the inlet 

tube was manually switched to the feed solution.  Constant flow operation was 

maintained until the pressure reached 1.5 bar.  Thereafter the flowrate was manually 

reduced in order to maintain a constant pressure.  All feeds were kept homogeneous 

by the use of a magnetic stirrer. 

 

Product was collected after the dead-volume of the system and the 50mL pre-coat 

water had permeated.  A small amount of product can be lost with this method due to 

mixing in the chamber, but purity and concentration should be maintained. 

 

2.3.5  Candle filter 

 

A pilot scale candle filter (0.012 m2, Dr Muller AG, Mannedorf, Switzerland) was 

used for scale-up experiments during the pDNA work in Chapter 5.  The same 

ancillary equipment was used as for the RVLF scale-down device in Figure 2.4(c).  

The candle filter was operated in a similar fashion to the USD RVLF device.  The 
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Figure 2.4.  The rotating vertical leaf filter (RVLF) scale-down laboratory filter: (a) 
view of filter exterior, (b) view of filter cross section (both reproduced from Reynolds 
et al., 2003), (c) experimental set-up used in this work. 
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system was filled with RO water and then the precoat (5g solids in 500mL water) was 

pumped through until finsished and then the inlet tube was manually switched to the 

feed solution.  The support which retained the solids was a PTFE cloth perforated with 

10 × 30 μm openings. 

 

 

2.4  E.coli fermenation feed preparation 

 

Escherichia coli TOP10 pQR239, which expresses the recombinant enzyme 

cyclohexanone monooxygenase (CHMO) upon induction with L-arabinose (Doig et 

al., 2001), was used for the studies described in Chapters 3 and 4 of this thesis. 

 

2.4.1  Fermentation conditions 

 

The soluble complex growth media used for each fermentation consisted of yeast 

extract, tryptone, glycerol and NaCl all at 10 g.L-1. The media solution was sterilised 

at 121°C for 30 min after which 0.2 μm filter sterilised ampicillin was added to a final 

concentration of 50 mg.L-1. Glycerol stocks generated and stored as previously 

described (Doig et al., 2001) were used to inoculate 40 mL of media in 250 mL 

baffled shake flasks, grown in an orbital shaker (ISF-1-W, 25 mm shaking diameter, 

Kühner AG, Birsfelden, Switzerland) at 37ºC and 200 rpm for 14 h. These cells were 

then used as a 10% v/v inoculum for fermentations in 1 L baffled shake flasks (200 

mL liquid volume) at 37ºC and 200 rpm. These flasks, harvested after 4.5 h of growth, 

provided the feed stream used in the subsequent microfiltration studies. For cell 

ageing experiments, fermentations were extended maintaining the same incubation 

conditions with additional harvests made after a further 4 h and 24 h. 

 

2.4.2  Dry cell weight measurement 

 

For all shake-flask fermentations, the dry cell weight concentration (DCW) of E. coli 

TOP10 cells was determined by optical density measurement at 600 nm wavelength 

and 10mm path length (4.5 mL macro cuvette, Brand, Wertheim, Germany; U-2001, 

Hitachi, Tokyo, Japan), which had been previously correlated to known DCW values 
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(Figure A.1 of Appendix A).  These DCW measurements were determined from the 

weight difference between empty 1.5 mL centrifuge tubes (Eppendorf, Hamburg, 

Germany) dried at 100ºC for 16 h and the same tubes containing dried cell pellets 

generated by centrifuging 1.5 mL of cell broth at 13000 rpm for 5 min followed by 

drying at 100°C for 16 h to achieve a constant weight.  The maximum standard 

deviation in DCW values determined from triplicate OD600 measurements was ± 0.3 

gDCW.L-1. 

 

2.4.3  Sample preparation 

 

Experiments in Chapter 3 examining harvest time effects on microfiltration 

performance used whole broth without any pre-treatment.  In all subsequent 

experiments examining the effects of pH, ionic strength and media composition on 

microfiltration performance, other cell broth components were removed to eliminate 

the confounding effect of their interactions.  Cell suspensions were centrifuged as 6 

mL aliquots in Rohre centrifuge tubes (Sarstedt, Nümbrecht, Germany) at 4000 rpm 

and 4ºC for 6 min (5810R Centrifuge, Eppendorf, Hamburg, Germany) and washed 

twice with 180 mM NaCl solution.  The cell pellets were then stored at 4ºC for a 

maximum of 4 h and resuspended by vortex mixing in the appropriate buffer solution 

prior to use.  The volume that was added to each microwell is detailed in Table 3.1.  

All buffers used in Chapter 3 had 100 mM buffer strength and were prepared at a 

constant ionic strength of 180 mM with the addition of NaCl based on calculations at 

the buffer pH (Beynon and Easterby, 1996). 

 

In Chapter 4 samples were prepared in a similar way.  Buffers were made up using 

piperazine (pH 5.00, pH 5.05, pH 5.29, pH 5.50 and pH 5.95), bis-tris (pH 6.71 and 

pH 7.00) and MES (pH 6.00) and lysozyme from chicken egg white (approximately 

50,000 units/mg protein, Sigma-Aldrich, Poole, Dorset, UK) was added to 2 g.L-1 

before resuspension of the cells.  The volume added to each filter insert was 2mL. 
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2.5  Plasmid DNA feed preparation 
 

The plasmid DNA (pDNA) purification process sequence examined in Chapter 5 of 

this thesis is outlined in Figure 2.5.  This process was carried out at three different 

scales from lysis clarification through to adsorbent removal.  This section is split into 

four, first describing the process in general and then describing the experimental 

methods for the microscale, laboratory scale and pilot scale processes. 

 

2.5.1  Plasmid DNA process overview 

 

The following sequences correspond to the numbered process steps indicated in 

Figure 2.5.  Details of buffers and key chemical solutions used are also included in 

this section.  Experimental methods for the different scales investigated are desribed 

in Section 2.5.2 (microscale), Section 2.5.3 (laboratory scale) and Section 2.5.4 (pilot 

scale) 

 

2.5.1.1  Fermentation conditions 

 

The pDNA (pQR150, 20k base pairs) was transformed and propagated into 

Escherichia coli DH5α as previously described (Levy et al., 2000).  The E.coli was 

grown in a 450L Chemap bioreactor (Chemap AG, Maenndorf, Switzerland) under 

previously published conditions (Levy et al., 2000).  The cells were then harvested by 

centrifugation and frozen at -80ºC in bags of approximately 1kg wet cell paste. 

 

2.5.1.2  Resuspension 

 

The clarified cells were resuspended by gentle mixing in a Tris EDTA buffer (10 mM 

Tris, 2 mM EDTA, pH 8) which is appropriate for subsequent cell lysis (Levy et al., 

2000b). 

 

2.5.1.3  Cell lysis 

 

Chemical lysis was used to disrupt the cells and release the DNA.  The alkaline-SDS 
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Figure 2.5. Overview of the non-chromatographic process for the production and 
purification of pDNA studied in this thesis. 
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solution (200mM NaOH, 1% w/v sodium dodecyl sulphate) destroys the cell surface 

and liberates the contents of the cell.  All the nucleic acids (pDNA, genomic DNA and 

RNA) are denatured and thus come out of solution.  A very dense potassium acetate 

neutralisation buffer (3M potassium acetate, 2M acetic acid, pH5.5)  is used, 

renaturing the nucleic acids and making them soluble.   

 

2.5.1.4  Lysate clarification 

 

The lysate is next clarified to remove solid contaminants from the nucleic acids, 

which are in solution.  In this thesis a filtration step utilising filter aids is investigated 

to carry out this initial clarification step.  At the largest scale centrifugation was used 

due to the limited availability of filter aid. 

 

2.5.1.5  CTAB precipitation 

 

Precipitation of the target of pDNA is facilitated by the cationic surfactant 

cetyltrimethylammonium bromide (CTAB) binding to the negatively charged DNA 

phosphate backbone.  A stock solution of 2% w/v CTAB in RO water was used for all 

scales.  This stock solution was added to clarified lysate to a volume ratio of 1:4, 

giving a final CTAB concentration of 0.4% w/v.  This is in excess of that required for 

complete DNA precipitation presented by Lander and co-workers (2002), who have 

also demonstrated that contaminants can be removed by careful control of this 

concentration and use of an initial low CTAB concentration removal step.  These 

variables were not investigated in this study. 

 

2.5.1.6  Precipitate recovery 

 

The solid precipitate was recovered by filtration (or centrifugation at the largest 

scale), removing soluble contaminants within the liquid phase. 

 

2.5.1.7  Precipitate dissolution 

 

The precipitate was then dissolved to facilitate recovery of the pDNA into the aqueous 
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phase by the addition of salt.  With careful control of this dissolution, contaminants 

can be left in the solid phase for subsequent removal, even unwanted conformations of 

pDNA.  For the purposes of this microscale study a single concentration of 0.7M 

NaCl was chosen to recover the pDNA during all experiments.  As detailed in Chapter 

5, many options surround the precipitation and subsequent dissolution steps, but study 

of these factors in detail was beyond the scope of this work. 

 

2.5.1.8  Precipitate removal 

 

The remaining contaminants in the precipitate and the Celpure were removed by 

filtration (or centrifugation at the largest scale) in order to give a clarified solution for 

polishing with the adsorbent. 

 

2.5.1.9  LRA adsorption 

 

Following CTAB precipitation and precipitate re-dissolution in a sodium chloride 

solution there are still contaminants such as residues of CTAB and SDS, undesirable 

conformations of pDNA, genomic DNA, RNA and endotoxins (Lander et al., 2002).  

Nucleic acid contaminants can be selectively adsorbed onto hydrated calcium silicate 

lipid removal agent (LRA) since they have a greater affinity than the conformationally 

constrained supercoiled pDNA (Winters et al., 2003). The adsorption is a complex 

process in which some pDNA is initially bound but is displaced by other components 

(Winters et al., 2003).  The LRA used in this thesis was the pharmaceutical grade 

LRA II (Advanced Minerals, CA, USA). 

 

2.5.1.10   LRA adsorbent removal 

 

The final step investigated is the removal of the LRA adsorbent and all the bound 

contaminants by the fourth and final filtration step in this process sequence, studied in 

detail at all scales. 
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2.5.2  Microscale plasmid DNA purification methods 

 

The experimental design used to investigate the pDNA process at microscale is 

described in Section 2.7.1.2.  The chosen factors and levels are shown in Table 5.2 

and full details of experimental parameters, raw data and calculated responses are 

summarised in a series of tables in Appendix D. 

 

2.5.2.1  Lysis for microscale filtration 

 

Mixing of the very viscous lysate cannot be effectively carried out with current 

microscale techniques, although miniature stirred bioreactors (Lamping et al., 2002; 

Kumar et al., 2004; Gill et al., 2008b) have the potential to be effective in the future 

when integrated with automated microscale solutions.  For this study a total of  

3 × 180 mL of lysate was produced as described below at laboratory scale using three 

different stirrer speeds to provide feed for all microscale lysate experiments in Section 

5.3.1. 

 

Tris-EDTA buffer was added to 9 g of frozen E.coli cell paste to a total volume of 60 

mL, making up a concentrated cell suspension of 150 g.L-1 wet cell weight.  This was 

added to a 250 mL glass beaker with four 8 mm wide stainless steel baffles and stirred 

using an overhead stirrer and a 25 mm diameter 6-blade ruston impeller at various 

speeds from 400 rpm to 1200 rpm.  The impeller disc was initially set level with the 

top of the cell suspension. 

 

The lysis mixture was continuously stirred during addition of 60 mL of alkaline-SDS 

lysis solution at a rate of 10 mL.min-1 using a 5 mL pipette.  Once the system was well 

mixed (visually determined) a further 5 minutes of mixing was carried out before 

neutralisation.  A total of 60 mL of neutralisation buffer was then added at the same 

rate using fresh pipette tips.  Following the final neutralisation a further 5 minutes of 

mixing was carried out.  The lysate was carefully pipetted into separate conical flasks 

whilst vigorously stirring by hand to maintain homogeneity.  Then the appropriate 

grade and concentration of Celpure was added before the final lysate solution was 

ready for clarification. 

 78



                                                                            2.0  Materials and Methods
 

2.5.2.2  Microscale lysate clarification 

 

The clarification of lysate at microscale was carried out using the 24-well custom 

microwell filter plate (Figure 3.1) using a wire mesh support (22 – 26 µm).  A pre-

coat was placed on the wire mesh by pipetting 2 mL of a 10 g.L-1 aqueous solution of 

the appropriate grade of Celpure into each well.  A 30kPa vacuum was then applied 

for 2 minutes in order to ensure removal of excess water and to leave a 0.25 kg.m-2 

pre-coat layer on the mesh.  The collection cuvettes were then replaced. 

 

In order to ensure the lysate did not settle during filtration, the custom filter plate was 

held at 30kPa vacuum before pipepetting of the lysate, which was stirred with a 

magnetic stirrer at all times during the filtration.  1mL of lysate was added into each 

well in order, followed by a further 1mL starting again at the first well and finally a 

third 1mL of lysate starting at the first well again.  This gave a total of 3mL lysate 

feed volume in each well.  With a differential pressure applied immediately upon 

sample addition, the filtration commenced rapidly and allowed the formation of a 

homogeneous cake without stratification.  This is in contrast to conventional 

laboratory filtration techniques where layering of such a complex cake can occur 

(Reynolds et al., 2003). 

 

Collection plates were then removed and replaced.  Following this some of the 

clarified lysate samples were recycled through the filter cake for further solids 

removal, according to the experiment design described in Section 2.7.1.2.  Lysate was 

pipetted into the feed side of the lysate cakes in the custom microwell inserts and 

filtered using a 30 kPa vacuum. 

 

A 1:1:1 (v/v) mixture of Tris-EDTA buffer, alkaline-SDS lysis solution and 

neutralisation buffer was used to flow through the lysate cakes and determine the 

overall filter cake resistance at 30kPa vacuum followed by 60kPa vacuum.  The same 

method is used as outlined in Chapter 3 for determination of membrane resistance, but 

in this case generating the total resistance of a pre-deposited filter cake.   The 

calculation details are shown in Section 5.2.2. 
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Foaming of the filtrate did occur due to the presence of SDS in the lysate and flow-

through buffer and the vacuum on the permeate side.  However, outlet extensions 

(pipette tips cut at both ends to ~5 mm in length with a 1 – 2 mm outlet) were placed 

on the bottom of all custom filter plate inserts and these were delivered to the middle 

of the collection cuvette where any foam broke on the side of the cuvette, preventing 

cross contamination or loss of material.  The clarified lysate samples were then frozen 

at -20°C for 36 h before being reused. 

 

Due to the potential variability of this step and to ensure sufficient material was 

available to repeat the subsequent microscale unit operations if errors occurred, the 72 

separate lysate clarification experiments outlined in the factorial design (Section 

2.7.2.1) were duplicated.  Only one set of samples were used for the following 

microscale operations, but the duplicate data set were used for lysis clarification 

calculations. 

 

2.5.2.3  Microscale CTAB precipitation 

 

Clarified lysate samples (any more than 1.6 mL per microwell experimental run was 

discarded) were pipetted into 24 deep square well (24-DSW) microtitre plates 

(Sarstedt, Nümbrecht, Germany) and mixed in a Thermomixer (Eppendorf, Hamburg, 

Germany) at 300 rpm.  40 μL of CTAB stock solution was added every three minutes 

up to a total liquid volume of 2.0 mL.  Mixing continued for at least 10 more minutes 

for each well after the final addition of CTAB. 

 

2.5.2.4  Microscale precipitate recovery 

 

The appropriate grade and concentration of Celpure was added to the precipitate 

solution before using the same method as in Section 2.5.3.1 was used to filter the 

precipitate.  In this case no permeate recycles were used, since the contaminant is in 

the waste stream, and a water wash was used to flow through the cake and determine 

the flux data.  The treatment of the data collected during precipitate recovery has been 

described separately in Appendix E, since the resistance to flow was so low a custom 

technique was developed in an attempt to measure specific cake resistance. 
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Once the precipitate was recovered the inserts were manually taken apart and the cake 

removed.  Tests were carried out demonstrating that the cake could potentially be 

removed by centrifugation, but not safely or at high throughput with the equipment 

available.  If a well designed custom insert holder was manufactured then the high 

throughput automation of this step would be possible. 

 

2.5.2.5  Microscale precipitate dissolution 

 

The precipitate cakes were placed into the individual wells of several 24-DSW  

microtitre plates (Sarstedt, Nümbrecht, Germany).  To each well 1.6 mL of water was 

added and the plates were mixed in Variomag multi-position microplate mixers 

(Thermo Scientific, Loughborough, UK) at a high speed setting for approximately 30 

minutes until the contents were homogenous.  Then, while mixing at either high, 

medium or low speed settings, 0.4 mL of 3.5 M NaCl was pipetted into each of the 

wells to give a final concentration of 0.7 M NaCl.  The plates were continually mixed 

for a further 20 minutes. 

 

The Variomag multi position microplate mixers were used in this case because they 

had fine control at lower speeds.  A low mixing speed was chosen to intentionally 

perturb the results by generating bad mixing – even at it’s lowest setting the 

Thermomixer may have given sufficient mixing and hence it was not used during this 

step.  The Variomag mixer speeds were not calibrated and are given as low  

(~100 rpm), medium (~650 rpm) or high (~1200 rpm) depending on the position of 

the dial (note high is not full scale deflection of the dial and therefore not the 

maximum 2000 rpm speed that the Variomag mixers can acheive).  Precipitate 

dissolution speed is therefore a semi-qualitative factor since it does have a definable 

centre-point value, but not a quantitative scale. 

 

2.5.2.6  Microscale precipitate removal 

 

The un-dissolved precipitate is next removed using the same method as described in 

Section 2.5.2.2, except that no recycle is carried out and a fresh 0.7 M NaCl solution 

was used to flow through the cake and determine the flux.  The fresh solution is used 
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rather than the permeate, since the clarified permeate is the product taken on to the 

LRA adsorption step.  The treatment of the data collected during precipitate recovery 

has been described separately in Appendix E. 

 

2.5.2.7  Microscale LRA adsorption 

 

Small amounts of LRA adsorbent were next added to the individual wells of several 

24-DSW microtitre plates (Sarstedt, Nümbrecht, Germany) to achieve the desired 

final concentration of LRA.  The clarified permeate samples from the previous step 

were then transferred to the wells and the plates were mixed in an incubator with a 

microplate adapter (ISF-1-W, 25 mm shaking diameter, Kühner AG, Birsfelden, 

Switzerland) at 100 rpm and 4°C for the allocated time. 

 

2.5.2.8  Microscale LRA removal 

 

The LRA solution was then filtered by the same method as in Section 2.5.3.1.  The 

LRA was used as a pre-coat and the permeate itself was recycled in order to flow 

through the cake and determine the flux data.  This ensured the viscosity during cake 

deposition and flow through specific cake resistance determination matched, allowing 

accurate scale-up calculations.  The recycling of the product stream through the waste 

LRA is not expected to affect the product quality by additional adsorption since the 

experimental time (a matter of minutes) is small in comparison to the elapsed 

absorption time already completed (≥2 hours). 

 

2.5.2.9  Further microscale LRA removal 

 

Initial experiments into microscale LRA removal showed that the pre-coat of LRA 

was not being effectively retained by the wire mesh (22 – 26 µm).  Feed generated in 

Section 2.5.3.6 during the laboratory scale precipitate removal was used to repeat the 

microscale LRA tests (Section 2.5.2.7 and Section 2.5.2.8).  Repeated experiments 

were carried out using P300 as a pre-coat instead and these were used as scale-up to 

large scale experiments.   
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2.5.3  Laboratory scale plasmid DNA purification methods 

 

2.5.3.1  Lysis for laboratory scale filtration 

 

The same scale and methods as in Section 2.5.2.1 were used for generation of lysate 

for laboratory scale-up RVLF experiments in Section 5.4.1, using a stirrer speed of 

1200 rpm.  Then 9 g of Celpure P300 was added to the 180 mL lysate solution to give 

a final concentration of 50 g Celpure solids per L of lysate. 

 

2.5.3.2  Laboratory scale lysate clarification 

 

The RVLF scale lysate clarification was carried out using the method described in 

Section 2.3.4 using Celpure P300 as a pre-coat and the feed generated in Section 

2.5.3.1. 

 

2.5.3.3  Laboratory scale CTAB precipitation 

 

The equipment for lysis described in Section 2.5.2.1 was used to mix the clarified 

lysate throughout precipitation at 400 rpm.  40 mL of CTAB stock solution was added 

to 160 mL of clarified lysate in 4 mL aliquots every 3 min.  Mixing was continued for 

10 more minutes after the final addition of CTAB. 

 

2.5.3.4  Laboratory scale precipitate recovery 

 

Firstly, 0.4 g of Celpure P300 was added to the 200mL of precipitate solution from 

Section 2.5.4.2 to give a final concentration of 2 g of Celpure solids per L of liquid.  

Then the rotating vertical leaf filter was used as described in Section 2.3.4, with 

Celpure P300 as a pre-coat. 

 

2.5.3.5  Laboratory scale precipitate dissolution 

 

The dissolution was carried out in the same vessel as the lysis and CTAB precipitation 

described in Section 2.5.2.1.  160mL of water was added to the recovered cake of 
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precipitate and Celpure.  The subsequent solution was mixed for approximately 10 

minutes until visually homogeneous.  Then 40mL of 3.5 M NaCl was poured into the 

vessel whilst mixing throughout.  The pDNA solution was mixed for a further 20 

minutes. 

 

2.5.3.6  Laboratory scale precipitate removal 

 

The RVLF precipitate removal was carried out using the method described in Section 

2.3.4, using Celpure P300 as the pre-coat.  This feed was then used to generate 

repeated microscale LRA data as described in Section 2.5.2.9. 

 

2.5.3.7  Laboratory scale LRA removal 

 

The RVLF LRA removal was carried out using the method described in Section 2.3.4, 

using Celpure P300 as the pre-coat.  For the easier to filter LRA suspensions the flow 

was increased to 0.7 mL.s-1.  RVLF LRA removal experiments were carried out on the 

following day to the candle filter work.  The feed was generated in the same way as 

the pilot scale experiments (Sections 2.5.4.1 to 2.5.4.6) using half the volumes and 

masses. 

 

2.5.4  Pilot scale LRA adsorbent removal feed preparation 

 

In order to carry out pilot scale studies of the LRA adsorbent removal step, 2L of 

purified pDNA was generated from the cell paste using the following steps. 

 

2.5.4.1 Lysis for pilot scale filtration 

 

For the preparation of pDNA solution for pilot scale candle filter tests in Section 

5.4.4.2, the DNA lysis was carried out at 2 L scale in a glass bottle.  100 g of E.coli 

cell paste was made up to 667 mL with Tris-EDTA buffer and mixed at 300 rpm for 

approximately 1 hour in an orbital shaker (ISF-1-W, 25 mm shaking diameter, Kühner 

AG, Birsfelden, Switzerland) to resuspend the cells.  Next 667 mL of alkaline-SDS 

lysis solution was rapidly added to the cell suspension and then mixed by inversion 
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until no changes in lysate appearance were observed.  Finally 667 mL of 

neutralisation buffer was rapidly added to the lysate mixture until no changes in 

neutralised lysate suspension were observed. 

 

2.5.4.2  Lysate clarification for pilot scale filtration 

 

For the pilot scale candle filter experiments in Section 5.4.4.2, the lysate was clarified 

using centrifugation.  The lysate was separated into 4 aliquots of 500mL and then 

centrifuged at 4000 rpm and 4°C for 20 minutes (JA-10 rotor, J2-MI centrifuge, 

Beckman Instruments, High Wycombe, UK).  The supernatant was then decanted and 

pooled. 

 

2.5.4.3  CTAB precipitation for pilot scale filtration 

 

For the pilot scale candle filter experiments in Section 5.4.4.2, the clarified lysate (1.6 

L) and CTAB stock solution (0.4 L) were mixed together rapidly in a 2 L glass bottle 

which was then mixed at 300 rpm for 30 minutes in an orbital shaker (ISF-1-W, 25 

mm shaking diameter, Kühner AG, Birsfelden, Switzerland). 

 

2.5.4.4  Precipitate recovery and dissolution for pilot scale filtration 

 

For the pilot scale candle filter experiments in Section 5.4.4.2, the precipitate was 

recovered using centrifugation.  The precipitate was separated into 4 aliquots of 500 

mL and then centrifuged at 4000 rpm and 4°C for 10 minutes (JA-10 rotor, J2-MI 

centrifuge, Beckman Instruments, High Wycombe, UK).  The supernatant was then 

decanted off and discarded, retaining the pDNA in the precipitate pellets.  

Approximately 250mL of NaCl solution was next used to dislodge the precipitate 

pellet from each centrifuge tube using a vortex mixer.  This suspension was then 

decanted, pooled and made up to 2 L in total with NaCl in a 2 L glass bottle, which 

was then mixed at 300 rpm for 30 minutes in an orbital shaker (ISF-1-W, 25 mm 

shaking diameter, Kühner AG, Birsfelden, Switzerland). 
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2.5.4.5  Precipitate removal for pilot scale filtration 

 

For the pilot scale candle filter experiments in Section 5.4.4.2, the remaining 

precipitate was removed using centrifugation.  The partially re-dissolved precipitate 

was separated into 4 aliquots of 500mL and then centrifuged at 4000 rpm and 4°C for 

10 minutes (JA-10 rotor, J2-MI centrifuge, Beckman Instruments, High Wycombe, 

UK).  The supernatant was then decanted off and pooled to give a solid-free pDNA 

solution. 

 

2.5.4.6  LRA adsorption for pilot scale filtration 

 

1667 mL of the pDNA solution generated in Section 2.5.4.5 was decanted into a 2 L 

glass bottle and 16.67 g of LRA was added to give a final LRA concentration of  

10 g.Lliquid
-1.  The remaining 333 mL of pDNA solution was decanted into a 1 L glass 

bottle and 16.67 g of LRA was added to give a final LRA concentration of  

50 g.Lliquid
-1.  Both LRA suspensions were mixed at 150rpm and 4°C for 2 hours in an 

orbital shaker (ISF-1-W, 25 mm shaking diameter, Kühner AG, Birsfelden, 

Switzerland). 

 

2.5.4.7  Pilot scale LRA removal 

 

The pilot scale LRA removal process follows the candle filter method detailed in 

Section 2.3.5, using Celpure P300 as the pre-coat and a feed flow rate of 2.4 mL.s-1. 

 

2.6  Analytical methods 
 

2.6.1  Lysozyme assay 

 

The lysozyme assay used in Chapter 4 for quantification of protein transmission is 

based on a previously established method (Mannall et al., 2006; Lee et al., 2002).  A 

150 mm × 4.6 mm reversed phase column with a particle diameter of 5 µm and a pore 

size of 300 Å (Jupiter C5, Phenomenex, Macclesfield, UK) was used on a System 

Gold High Pressure Liquid Chromatography (HPLC) system (126 Pump Unit, 166 
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Detector unit, 507e Autosampler unit, System GOLD software, Beckman Coulter, 

High Wycombe, UK).  A linear acetonitrile/water gradient with 0.1% trifluoroacetic 

acid (v/v) 30 to 46% acetonitrile over 12 minutes at a flow rate of 1 mL.min-1 was 

used and the sample injection volume was 200 µL.  The column was then washed in a 

46% to 100% acetonitrile/water gradient over 1 minute followed by a return gradient 

from 100% to 30% over 1 minute and equilibration at 30% for a further minute.  A 

standard curve was created using lysozyme in water to ensure linear response in the 

concentration range used (Figure A.2, Appendix A) and the original lysozyme buffers 

(Section 2.4.1.3) were tested and used as the initial concentration from which to 

calculate the transmission. Lysozyme had a retention time of 7.94 ± 0.35 min, whilst 

UV adsorbing species from any residual cell broth or the yeast extract were eluted 

during the 100% acetonitrile wash step. 

 

2.6.2  Isopropanol precipitation 

 

For sample separation prior to gel electrophoresis (Section 2.6.3), DNA was removed 

by precipitation with alcohol. Isopropanol was used in preference to ethanol due to its 

higher precipitation efficiency (Mülhardt, 2007). 

 

Samples of 1 mL were added to 2.2 mL centrifuge tubes (Eppendorf, Hamburg, 

Germany) at room temperature.  Then 0.7 mL of isopropanol was added and mixed 

with a vortex mixer.  The samples were then centrifuged for 10 min at 13000 rpm in a 

microcentrifuge and decanted carefully without disturbing the pellet.  Following this 1 

ml of 70% ethanol was added to wash the pDNA pellet, removing the co-precipitated 

salt and replacing the isopropanol with the more volatile ethanol, making the pDNA 

easier to redissolve. A further centrifugation step was carried out at 13000 rpm for 15 

minutes in the microcentrifuge. After the supernatant was decanted, the washed pellet 

was then air dried for 10 minutes.  Finally the pDNA pellet was redissolved in 50 µl 

Tris-EDTA buffer (10 mM Tris, 2 mM EDTA, pH 8) containing 100 µg/ml RNaseA 

and incubated at 37°C for 30 minutes.  Samples were frozen at -20°C to be loaded 

onto gels the following day. 
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2.6.3  DNA agarose gel electrophoresis 

 

5µL from each of the samples prepared as described in Section 2.5.2 were mixed with 

5µL of a 0.05% (w/v) bromphenol blue and 0.05% (w/v) xylene cyanole loading 

buffer.  These samples were then loaded onto 0.8% (w/v) agarose gels containing  

0.05 µg.ml–1 ethidium bromide and electrophoresed at 40V, 220 mA for 8 h in Tris-

borate electrophoresis buffer (9 mM Tris, 9 mM boric acid, 1 mM EDTA).  Gels were 

scanned using UVP 5000 Gel Documentation System and GelBase™ analysis 

software (Ultra Violet Products Ltd, Cambridge, UK). 

 

 

2.7  Experimental design 
 

2.7.1  Factorial design 

 

2.7.1.1  E.coli filtration factorial design 

 

The design for the lysozyme transmission experiments for Chapter 4 is based on a half 

repeat of a five factor, 2-level factorial design using the design generator I=ABCDE.  

This 25-1 experiment allows the investigation of 5 factors and their interactions 

without aliasing main effects or two factor interactions together.  Table 2.1 shows the 

details of the factorial experiment.  Each experimental run is duplicated and the 16 

mid-points are separated into 4 separate groups of 4, since Factor E is qualitative and 

Factor D is fixed at a single value for each microwell plate.  The selection of factors 

and their levels is discussed later in Section 4.2.2.1. 

 

2.7.1.2  Plasmid DNA purification factorial design 

 

The eight factors of the pDNA purification design are incorporated into a quarter 

repeated 28-2 design with the error estimated from the centre points.  The  

generator for this design is I = ABCDG = ABEFH.  The coding for each experiment is 

detailed in Table 2.2.  The chosen factors, their levels and the analysis of individual 

responses at different stages through the process are given in Section 5.2.3. 
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Table 2.1.  Summary of the 25-1 factorial experiment design coding for the lysozyme 
transmission experiments in Chapter 4.  Coding shows whether the particular factor 
was set at the high (1), low (-1) or centre point (0) of the experimental range. 
Factors and their chosen values are detailed in Section 4.2.2.1.  Plate position refers 
to the row (A-D) and column (1-6) of the well used in each of two separate pairs of 
custom filter plates (subscripts 1-2) and shows the randomization of experimental 
runs across the plates. 
 

Factorial Coding Experimental 
Run 

Plate 
Position Factor A Factor B Factor C Factor D Factor E

1 A51, C21 –1 –1 –1 –1 +1 

2 B11, C61 +1 –1 –1 –1 –1 

3 A31, C41 –1 +1 –1 –1 –1 

4 B21, D51 +1 +1 –1 –1 +1 

5 B61, D31 –1 –1 +1 –1 –1 

6 A11, D41 +1 –1 +1 –1 +1 

7 A61, D21 –1 +1 +1 –1 +1 

8 B31, C51 +1 +1 +1 –1 –1 

9 A62, C42 –1 –1 –1 +1 –1 

10 A42, D12 +1 –1 –1 +1 +1 

11 B22, D52 –1 +1 –1 +1 +1 

12 B42, C62 +1 +1 –1 +1 –1 

13 A12, D32 –1 –1 +1 +1 +1 

14 B52, C22 +1 –1 +1 +1 –1 

15 A32, D62 –1 +1 +1 +1 –1 

16 B12, C52 +1 +1 +1 +1 +1 

Midpoints  
M1-M4 

A21, A41, 
D11, D61 0 0 0 –1 –1 

Midpoints 
M5-M8 

B41, B51, 
C11, C31 0 0 0 –1 +1 

Midpoints 
M9-M12 

B62, C12, 
C32, D22 

0 0 0 +1 –1 

Midpoints 
M13-M16 

A22, A52, 
B42, D42 0 0 0 +1 +1 
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Table 2.2.  Summary of the 28-2 factorial experiment design coding for the plasmid purification experiments in Chapter 5  Coding shows whether the particular factor was set at the high (+1), low (-1) or centre-

point (0) of the experimental range.  Factors and chosen values are detailed in Section 5.2.3. 
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2.7.2  Response surfaces 

 

The response surfaces generated in Chapter 4 were based on an inscribed central 

composite design with the modifications outlined below.  This type of design allows 

for very good predictive power, but reduces the quality of the information at the 

corners of the response surface.  Traditional designs would have 8 centre points to 

give both a rotatable design and greater average information function (inverse of the 

design variance).  However existing data has been generated at the factorial points, 

especially the centre, which suggests that the optimum is within the design space, but 

not at the centre.  Therefore only 4 centre point replicates were used and the design 

augmented with face-centred design points (Figure 2.6).  The response surface repeats 

many of the factorial design points, but since significant error was seen in the use of 

E.coli broths from different preparations, the two experiments were run stand-alone. 

 

The adjustments do not significantly affect the rotatability of the design as seen in 

Figure 2.7.  There is some variation in the information function (inverse of the design 

variance) depending on the direction travelled from the centre point, but not 

dramatically.  A plot of design variance, Var(ŷ), was generated using Design Expert 

(Version 7, Stat-Ease, MN, USA) and then the ranges were converted into the 

information function manually. 

 

 

2.8  Data analysis 
 

2.8.1  General error estimation 

 

The error estimated in all replicated experiments during this thesis is plus or minus 
one standard deviation as calculated by Microsoft Excel software (Microsoft 
Corporation, USA) using the following equation: 
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Figure 2.6.  Details of the levels of pH and ionic strength used to generate the 
response surfaces described in Section 4.4.  The design is an inscribed central 
composite design augmented with face centred points.  The values next to each point 
represent the number of replicates carried out at that particular combination of pH and 
ionic strength. 
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Figure 2.7.  Effect of the face centre points on the rotatability of the response surface 
design.  The contour plots show the variation of the information function (the inverse 
of the design variance): (a) with the face-centred points (b) without the face-centred 
points.  Variance calculated as described in Section 2.7.2. 
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where xi is the ith of n sample measurements with a mean of x  and a sample standard 

deviation of σ. 

 

2.8.2  Comparison of means 

 

When comparing mean values to determine if there is a statistically significant chance 

two measurements are different, a two tailed, unequal variance t-test was used as 

calculated by Microsoft Excel software (Microsoft Corporation, USA).  This tests the 

null hypothesis that the means are equal, assuming that they are both normally 

distributed.  Although the higher mean may be clear from the data, no prediction of 

this could be made prior to data collection and therefore the two-tailed test is used.  

This makes the test more stringent for disproving the null hypothesis. 

 

2.8.3  Lines of best fit 

 

Linear mathematical relationships to describe the trends observed in the experimental 

data were determined by linear least squares regression using Microsoft Excel 

software (Microsoft Corporation, USA).  A corresponding coefficient of 

determination (R2 value) is calculated based of the following equation: 
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where xi is the ith of n selected independent variable levels yielding a dependent 

variable measurement of yi and x  and y  are the respective averages of the 

independent and dependant variables.  This is equivalent to the following expressions: 
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where SSerr is the sum of squares of the residuals, SStot is the total sum of squares, and 

fi is the predicted model for the dependent variable.  These expressions show how the 

coefficient of determination is often interpreted as the proportion of variation that can 

be described by the model. 

  

2.8.4  Factorial experiments 

 

2.8.4.1  Estimation of main effects and interactions 

 

In order to estimate the main effects and interactions an analysis matrix, XA, is 

generated from the design coding (e.g. Table 2.1).  The analysis matrix has columns 

2k-p rows high, where k is the number of factor, p denotes the size of the fractional 

repeat ⎟
⎠
⎞

⎜
⎝
⎛

p2
1  and 2k-p is the number of individual factorial runs carried out (excludes 

centre-points).  The first column is used for calculating the mean and is therefore all 

populated with +1 values.  Each subsequent column contains +1/–1 coding for either a 

main effect or an interaction.  The following equation can then be used to generate 

effects matrix, E, containing the mean (EI), main effects (e.g. EA) and interactions 

(e.g. EAB) for two different responses: 
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where Y is the response matrix with ymn being the value of the mth response measured 

for the nth factorial run.  More responses can be added by extending the number of 

rows in E and Y, but the specific case of two responses is shown here since this is the 

maximum number of responses calculated during this thesis for a given number of 

experimental runs.  

 

2.8.4.2  Error estimation for replicated factorial experiments 

 

For replicated factorial experiments, the error estimate for factorial experiments is 

based on a t-test comparing the means of two halfs of the experimental data.   

 

If each of 2k-p factorial runs is replicated r times then s2 is an unbiased estimate of the 

variance for the individual runs with v = r – 1 degrees of freedom: 
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where yi is the individual response replicate and y  is the mean response for that 

factorial run.  Since all these estimates have the same degrees of freedom then they 

can be pooled together to provide a single estimate of the variance for any individual 

replicate, : 2
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The effects and interactions are simply the difference between the averages of two 

halves of the data (as defined by the +1/–1 coding of the design matrix) with 2k-p-1.r 

experimental observations each.  The variance of each half is the replicate variance 

divided by the number of experimental observations in that half.  The standard error 
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of the effect or interaction, seff, can therefore be evaluated from the sum of the 

variances of these two halves of data since the degrees of freedom match: 
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The standard error, seff, is used to calculate a 95% confidence interval, CI95%, for all 

the effects and interactions is calculated as follows: 

 

  05.0,%95 == αveff tsCI  (2.8) 

 

where tv,α=0.05 is the student’s t-test statistic with v = 2k-p(r – 1) degrees of freedom for 

a significance level, α, of 0.05.  If a main effect or interaction is greater than this 

confidence interval then it is statistically significant. 

 

For the factorial experiments in Chapter 4, where two different methods were used to 

calculate the volume permeated in a given time (increase in cuvette volume and 

decrease in filter insert volume) there were four different specific cake resistances 

generated for a given duplicate run.  However the results for the two different 

measurement techniques must first be averaged before being treated as above, 

otherwise the degrees of freedom would be over-estimated.  Hence the degrees of 

freedom are the same as for any other duplicated factorial experiment analysis. 

 

The approach outlined in this section does not take into account any error introduced 

by the fit to the centre points.  In this thesis there is no model or response surface 

generated by the initial screening analysis and therefore the fit to a linear model is not 

considered.  The statistical test is only being used to compare the factors (or 

interactions thereof) at their extremes in order to determine if there is an effect of 

changing them by the specified ranges. 
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2.8.4.3  Error estimation for non-replicated factorial experiments 

 

Equations 2.7 and 2.8 are used to determine a confidence interval, as with the 

replicated factorial design, but the replicate variance and degrees of freedom are 

determined from the replicated centre-points.  The following is an unbiased estimator 

of the variance from c centre-points with v = c – 1 degrees of freedom: 
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where yi is the individual centre point replicate and y  is the mean of the centre points.  

The above variance is used as an estimate of replicate variance, sr
2, and used to 

calculate the standard error for the factorial analysis, seff, using Equation 2.7.  This is 

then used in Equation 2.8 with v = c – 1 degrees of freedom to determine the 

confidence interval. 

 

2.8.5  Response surfaces 

 

Responses of cake resistance and lysozyme transmission were generated at various 

values of ionic strength and pH as described in Section 4.4.  The responses were 

modelled using both linear and quadratic models calculated using multiple linear 

regression with least squares fit.  The linear and quadratic models were then 

compared for fit in order to determine the most appropriate model (Section 2.8.5.1). 

 

Ionic strength (I) and pH are used in the following linear equation to model a given 

response (y): 

 

  IpHbIbpHbby .12210 +++=  (2.10) 

 

where b0 – b3  are the constant regression coefficients.  The regression is performed on 

n different data points using the following equation and matrices to yield a vector of 

all the regression coefficients: 
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where yn is the response from the nth experiment carried out with buffer conditions of 

pHn and In.  The quadratic model is defined as follows: 
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Equation 2.11 is again used for the linear regression with the following vectors and 

matrix: 
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2.8.5.1  Response surface error estimation 

 

Error for the response surface is represented by a coefficient of determination (R2 

value) that is adjusted to account for the use of two variables to predict the response, 

which reduces the degrees of freedom.  The following equation is used: 
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where dferr are the degrees of freedom for estimating the error, dftot are the total 

degrees of freedom, n is the data point sample number and pm is the number of 

predictors in the model (not including the constant, so 5 for the quadratic models used 

in the response surfaces).  Equation 2.3 is used to calculate the unadjusted R2 value to 

insert into Equation 2.13.  

 

2.8.6  Clarification 

 

The clarification of lysate is determined by the following equation using optical 

density (OD) measurements: 

 

  % clarification 100×
−
−

=
BF

PF

ODOD
ODOD  (2.14) 
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Where ODF is the optical density of the feed, ODP is the optical density of the 

permeate after filtration clarification, and ODB is the optical density of the blank (flow 

through buffer described in Section 2.5.2.2).  All OD values were measured at 600 nm 

wavelength and in a Sapphire II microplate reader (Tecan, Männedorf, Switzerland).  

An estimate for the OD of the lysate feeds was attempted from serial dilutions of the 

lysate in the blank buffer.  Significant error was seen due to variation in the amount of 

flocs carried over in each serial dilution.  The final value used for all calculations was 

fixed as the OD of the high neutralisation stirrer speed (finest flocs) to the nearest OD 

unit: 50.  This is not an accurate estimation and trends of different factors are more 

important than absolute values. 

 

2.8.7  Calculating flux 

 

Flux, J, is defined as the flowrate, Q, per unit area, A: 

 

  
dt
dV

AA
QJ ⋅==

1  (2.15) 

 

where V is the permeate volume and t is the filtration time.  Using SI units  

(Q [=] m3.s-1, V [=] m3, t [=] s, A [=] m2), flux has units of m.s-1 and can be considered 

as a superficial velocity.  Commonly in the literature fluxes are calculated from a 

mixture of units (Q [=] L.h-1, V [=] L, t [=] h, A [=] m2) leading to values of flux in  

L.m-2.h-1.  This has the advantage that typical fluxes are >> 1 L.m-2.h-1, as opposed to 

<< 1 m.s-1.  In this thesis fluxes in SI units are used for calculations, but all quoted 

fluxes are converted into L.m-2.h-1 by multiplying by 3.6 × 106 L.s.m-3.h-1. 

Many methods can be employed to evaluate 
dt
dV .  For this thesis 

dt
dV  at time t is 

evaluated as the linear slope of the volume and time data in the range t ± Δt, where Δt 

is up to 10 seconds and is selected based on the rate of change in flux and general 

variability of the data.  The slope is a simple and good approximation of the gradient 

where the flux decay rate during the time interval t ± Δt is low.  For constant flow 

tests this data is then smoothed by averaging flux data over a time period of up to 15 
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seconds, selected to be greater than the period of the peristaltic pump and therefore 

smooth out the fluctuations. 

 

2.8.8  Smoothing pressure data 

 

During constant flow tests in this thesis the pressure fluctuates due to the peristaltic 

pumps used.  In order to smooth this pressure data, the pressure is averaged over a 

time period of up to 15 seconds, selected to be greater than the period of the pump and 

therefore reduce fluctuations in pressure and reveal the true trend. 

 

During all calculations, SI units of pressure (N.m-2 or Pa) are used.  When the data is 

reported in text or graphs, units of kilopascals (kPa) are used to reduce the number to 

a manageable number of digits. 

 

2.8.9  Viscosity 

 

2.8.9.1  Water viscosity correlation 

 

All water viscosities are calculated as follows, according to the following correlation 

which has < 1% error in the range 0 – 100°C (Gray, 1972): 
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where µT is the dynamic viscosity of water (N.s.m-2) at temperature T (°C).  Water 

fluxes can then be normalised (as in Section 3.3.2) to 25°C as follows: 
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2.8.9.2  Permeate viscosity 

 

The viscosities of permeates do not have literature correlations and are difficult to 

measure accurately, especially during high throughput experimentation.  They are 

approximated to that of water for the purposes of cake resistance calculations.  A 

fixed value of 0.001 N.s.m-2 is used for all permeate viscosities, rounding up the value 

of water viscosity at typical laboratory temperatures (22 ± 2°C) to one significant 

figure since the soluble components will, if anything, act to raise the viscosity of 

water.  Since the correlation in Section 2.8.9.1 can only be asserted as valid for pure 

water, no temperature correction is applied to permeate viscosity.  This will lead to 

slight inaccuracies in the absolute values of specific cake resistances, but the 

comparative differences and measures of precision will remain relatively accurate. 

 

2.8.10  Density 

 

For all solutions the permeate density is assumed to be 1.00 g.mL-1.  This 

overestimates the literature values for the density of water by less than 1% in the 

range 0.0 to 45.2 °C (Perry and Green, 1997).  For scale-up calculations any 

inaccuracies in the assumed density are eliminated since permeate volume is 

quantified by mass at all scales. 

 

2.8.11  Filtration scale-up predictions 

 

To scale up and account for pressure variations between scales or for using constant 

pressure derived data to predict constant flow experiments, an adaptation of the cake 

filtration constant from established cake filtration theory (Equation 1.18) is required. 

By eliminating the terms for pressure and area the modified cake filtration constant, 

Kc' (N.s.m-4), is generated: 

 

   (2.18) 0
2' μαρ=Δ= PAKK cc

 

where µ is the dynamic permeate viscosity (N.s.m-2), α is the specific cake resistance 

per dry cake mass (m.kg-1), and ρ0 is the dry mass of cake solids per unit volume of 
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permeate (kg.m-3).  To evaluate Kc' from constant pressure data the cake resistance 

fouling model is used as described in Section 1.3.4.1.4.  Combining Equations 1.18, 

1.20 and 2.18 and then rearranging to include flux in the expression yields: 

 

  
0

1
2

'
JPA

VK
V
At c +

Δ
=  (2.19) 

 

where t is the measurement time (s), V is the collected permeate volume (m3), A is the 

effective filtration area (m2), ΔP is the pressure drop across the filter (N.m-2), and J0 is 

the the initial flux (m.s-1).  Equation 2.19 shows that a plot of 
V
At  vs 

PA
V
Δ2

 yields a 

linearised plot of the data where the gradient is equal to the modified cake filtration 

constant. 

 

2.8.11.1  Predicting flux in constant pressure filtration 

 

For constant pressure experiments the modified cake filtration constant, Kc', is used 

for scale up since it is theoretically independent of scale where filter format does not 

restrict the formation of the cake layer.  The main assumption in the scale-up 

prediction is that the cake is not significantly compressible between the pressure of 

the larger scale filtration run and the pressure at which Kc' is evaluated during smaller 

scale studies.  Larger scale flux, J (m.s-1), is predicted using the following equation, as 

modified from the ( )tf
Q
Q

=
0

 expression in Table 1.5: 
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which gives the predicted flux at any chosen time for a specified ΔP.  SI units are 

used throughout the calculations for simplicity and then the flux is converted to L.m-

2.h-1 as described in Section 2.8.7.  For experiments in Chapter 3, where predictions 

are made up to completion of the larger scale filtration run, the time (tfinal) to process 

that volume (Vfinal) is predicted by rearranging Equation 2.19:  
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2.8.11.2  Predicting pressure in constant flow filtration 

 

To predict the increase in pressure drop across the filter during constant flow filtration 

the following base equation is used, modified from Equation 1.23 in Section 1.3.4.1.5 

to incorporate the modified cake resistance constant and change flowrate for flux: 

 

   (2.22) tJKPP c
2

0 '+Δ=Δ

 

where ΔP0 is the initial pressure at the start of filtration (N.m-2).  Predictions are made 

on the assumption that there is plug-flow in the filter device and therefore the pre-coat 

and feed solutions are filtered one after the other with the resistances additive.  

Therefore the final pressure when the total volume of pre-coat, Vprecoat (m3) has been 

filtered becomes ΔP0 for the feed solution.  It is assumed that the original resistance 

provided by the wire mesh and cloth supports is negligible. 

 

  tJK
A

JV
KP feedc

precoat
precoatc

2'' +=Δ  (2.23) 

 

In reality there will be mixing in the pump, tubing and filter housing which will lead 

to a curved transition between the pre-coat and feed solution slopes.  This has not 

been accounted for in these simple scale-up predictions.  It is also assumed that there 

is no variation in cake resistance within the pressure range.  The validity of this 

assumption is raised in Chapter 5 during discussion of the scale-up data.  This allows 

data determined at constant pressure to be used.  The method outlined in Section 3.3.1 

is adapted to calculate Kc' for a pre-deposited filter cake as detailed in Section 5.2.2. 

 

In order to determine the data for the pre-coat an experiment was carried out to 

determine the water flux through a fully deposited pre-coat layer. 
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A value of 2.5 × 108 N.s.m-4 was determined for Celpure P300 tested at a variety of 

fluxes.  When scaling from the RVLF scale-down device to the pilot scale candle 

filter the modified cake resistance constant from the RVLF is determined from the 

pressure and time data using Equation 2.20. 

 

It is assumed that there is a maximum allowable pump pressure (150 kPa) during 

constant flow operation, beyond which the flow is reduced to maintain constant 

pressure (at 150 kPa).  The time at which this maximum pressure is reached was 

calculated from Equation 2.23, thereafter Equation 2.20 was used to predict the 

decline in flux. 

 

2.8.12 Protein transmission 

 

The observed protein transmission, Tp, is calculated using the following equation: 

 

  
b

p
p c

c
T =  (2.25) 

 

where cp is the protein concentration of the filtrate (g.L-1) and cb is the initial bulk 

feed protein concentration (g.L-1).  All samples are taken from the pooled filtrate and 

are therefore the overall transmission at the time the sample is taken.  All transmission 

values are converted from fractions to percentages for data presentation by 

multiplying by 100.  



3.0  Results
 

 

3.0 Design and evaluation of an automated microscale 

microfiltration technique* 

 

 

3.1  Aim of the chapter 
 

The aim of this chapter is to develop an automation friendly technique for the rapid 

and parallel quantification of permeate flux during microfiltration operations at the 

microscale.  The specific objectives are as follows: 

    

• To establish an automated technique that can rapidly quantify key process 

parameters, such as permeate flux, which are capable of describing filtration 

performance and are of specific use for scale-up. 

• To calculate water fluxes and clean membrane resistances in addition to 

determination of the flux behaviour of more complex biological 

suspensions.  These measurements need to differentiate between feed 

samples in parallel and quantify filtration performance differences due to 

process changes. 

• To quantify the precision and accuracy of the automated technique and 

demonstrate that these are at least equivalent to laboratory scale approaches. 

 

 

3.2  Custom filter plate design and microscale operation 
 

Conventional approaches to laboratory scale microfiltration use an applied “positive 

pressure” (i.e. greater than atmospheric pressure, achieved by the application 

compressed air or nitrogen delivered to the feed side of the membrane) to enable the 

continuous collection of data on the volume/mass of permeate over time.  This is the 

                                                           
* Part of the work presented in this chapter has been published as: N.B. Jackson, J.M. Liddell, G.J. Lye 
(2006) An automated microscale technique for the quantitative and parallel analysis of microfiltration 
operations, J. Membr. Sci. 276, 31-41. 
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advantage of the microwell filtration technique first described by Chandler and 

Zydney (2004), who used a manifold designed to seal around and pressurise each well 

of a conventional filter plate from above.  It also enables larger pressure differences to 

be obtained (Vandezande et al., 2005).  For high throughput operation, however, such 

an approach is currently difficult to implement in an automation friendly and cost-

effective manner.  Consequently, the approach adopted here involves the use of a 

microplate vacuum filtration manifold already widely used for solid phase extraction 

steps in high throughput screening applications (Harrison and Walker, 1998).  While 

such devices are readily integrated into the operation of any liquid handling robot, 

filtration occurs under an applied “negative pressure” (i.e. a vacuum is generated on 

the permeate side of the membrane leading to a pressure below atmospheric).  The 

initial steps taken in this work to allow flux measurement and improve the accuracy of 

data collection have been described in Section 2.3.2.  In order to enable quantitative 

measurements on the filtration performance of complex biological suspensions, two 

microwell filter plates need to be run in parallel on the automation platform, providing 

two different data points of time and volume.  The treatment of this data to yield 

useful parameters describing filtration performance is presented in Sections 3.3 and 

3.4. 

 

3.2.1  Custom microwell filter plate design 

 

To reduce measurement errors associated with the use of standard small volume  

(300 µL maximum) Multiscreen filter plates, a prototype 8-well microwell filter plate 

was initially designed during this work.  The filter block is based on a standard 

microwell plate footprint, as shown in Figure 3.1(b), containing holes for removable 

membrane inserts.  The inserts used here were taken from Ultrafree-CL centrifugal 

filters as shown in Figure 3.1(a).  The choice of membranes available in each of 

Millipore’s Multicreen, Ultrafree-CL and disc formats restricted comparative work to 

their Durapore membrane and a 0.22 µm rating was selected as it lies within the range 

of pore sizes used in similar studies (30 kDa, Okamoto et al., 2001; 0.45 µm, 

Nakanishi et al. 1987).  Silicone rubber o-rings are used to seal the filter inserts once a 

vacuum is applied.  A collection block, similar to that shown in Figure 2.1(a), located 

in the base of the VacS manifold holds removable tubes for collecting the permeate 
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from each individual insert.  This custom filter plate design is able to accommodate a 

variety of membrane types on a single plate and also enables both permeate and 

retentate masses to be measured independently neither of which is possible with 

existing filter plate designs.  The ability to measure permeate and retentate masses 

independently for each well also makes it possible to mass balance each 

microfiltration process in order to verify there has been no cross contamination or 

notable measurement errors. 

 

Further design improvements were made after initial proof of concept studies and a 

full 24-well custom filter plate was constructed (Figure 3.1(c)), increasing 

experimental throughput by three-fold compared to the previous design.  A ledge to 

tightly hold the silicone o-ring for each individual well is countersunk into the top of 

the plate and a 2mm high edge is added to the base, giving a smaller area of contact 

with the rubber seal of the manifold and improving plate sealing.  In addition the 

inserts were modified so that they could be taken apart and allow any membrane or 

filter that could be cut to size to be used.   This removes the constraints of using only 

Millipore membranes, allowing the direct comparison of membranes from different 

manufacturers (Chapter 4) and the use of a wire mesh filter and filter aids (Chapter 5). 

 

For the custom filter plate, as with the commercial Multiscreen filter plate (Section 

2.3.2), all stages of the microwell filtration processes have been automated apart from 

the weighing of the removable collection tube and filter inserts.  Many automation 

solutions for this are already available, however they were not explored during this 

study.  For example, the Tecan RoMa arm is capable of picking up the filter inserts 

and removable collection tubes and could weigh them on a balance connected to the 

system if higher throughput operation were required. 

 

3.2.2  Verification of microscale performance 

 

For verification of microscale data, comparable experiments were carried out using a 

small laboratory scale membrane cell (described in Section 2.3.3).  In order to 

elucidate the differences of applying a positive pressure or negative pressure to drive 

the filtration process, the same TecanVacS vacuum pump was also used for the 
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Figure 3.1.  Detail of the custom filter plates designed during this work showing: (a) 
the commercially available removable membrane inserts; (b) plan and elevation views 
of the 8-well custom filter plate housing (capable of holding eight separate inserts); 
(c) plan and elevation views of the 24-well custom filter plate housing designed to 
maximise experimental throughput and improve sealing of the inserts. Note that each 
housing has the footprint of a standard microwell plate. Further details are given in 
Section 3.2.1.  
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membrane cell studies.  For the negative pressure experiments, the filtration process 

has to be stopped and the collected permeate weighed to give a single data point of 

time and volume, in a similar fashion to the filter plate experiments.  The four 

different experimental set-ups compared in this chapter are summarised in Table 3.1. 

 

 

3.3  Water flux and membrane resistance measurement 
 

In order to validate the automated microscale filtration concept, initial experiments 

focused on the measurement of water flux data for experiments performed under both 

positive and negative applied pressures at microwell and conventional laboratory 

scales.  A numerical approach to the quantification of membrane resistance was also 

established. 

 

3.3.1  Quantification of membrane resistance at microscale 

 

The basic equation for flow through a filtration membrane is described by a variation 

of Darcy’s law (Section 1.3.4.1.4) relating flux behaviour to the membrane resistance, 

Rm (m-1): 

 

 
mR

P
dt
dV

A μ
Δ

=
1  (3.1) 

 

where A is the effective filtration area (m2), V is the permeate volume (m3), t is the 

filtration time (s), ΔP is the transmembrane pressure drop (N.m-2) and µ is the is the 

dynamic permeate viscosity (N.s.m-2).  Integrating Equation 3.1 over a variable 

pressure range allows the membrane resistance to be expressed in terms of the integral 

of transmembrane pressure difference with respect to time: 
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where Vt is the cumulative permeate collected (m3) over the filtration time. 

 

By determining the total volume of liquid permeated and monitoring the variation in 

pressure difference over time it is possible to accurately determine the membrane 

resistance, since the integral is by definition the area under a pressure versus time 

profile.  This area can easily be evaluated from a sufficiently detailed pressure profile. 

 

Figure 3.2(a) shows a typical pressure profile for a water flux experiment using the 

custom filter plate in which the total volume of water permeated was an average of 

3.57 mL for 8 filter inserts.  From Equation 3.2 this corresponds to a membrane 

resistance of 5.12 × 1010 m-1.  The permeate viscosity used for calculating membrane 

resistances was determined using correlations from the literature (Section 2.8.9.1) 

accounting for any changes in laboratory temperature (±1°C) between individual 

filtration experiments. 

 

3.3.2  Comparison of water flux data at different scales 

 

Water flux data for the Multiscreen filter plate, custom filter plate and the membrane 

cell operated using both positive and negative applied pressure is shown in Figure 

3.2(b).  For the two filter plate designs, average pressure and water flux are used to 

plot the data points.  Each data point is an average generated from experiments using 

all 96 or 8 wells on the Multiscreen and custom filter plates respectively.  In the case 

of the membrane cell each data point is an average from three experiments using 

different membrane discs.  All flux values are normalised to correspond to the flux at 

25ºC.  The flux versus transmembrane pressure data for each format is seen to be very 

linear (R2>0.993) demonstrating a constant membrane resistance over the pressure 

range investigated.  Since all experiments used the same 0.22 µm PVDF membranes 

there is also a close correlation between the flux values determined for all the 

membrane formats and scales of operation.  Closer inspection of the membrane cell 

data suggests that there is a small reduction (~3%) in permeate flux when operating 

under negative as opposed to positive pressure.  This slight discrepancy could be due 

to pressure losses along the connecting tubing from the vacuum flask to the membrane 

cell or could be simply a difference associated with applying a pressure below 

 113



3.0  Results
 

 

 

 
 

Figure 3.2. (a) Typical pressure profile for a water flux experiment using the custom 
filter plate and (b) temperature normalised water flux data determined for the different 
membrane geometries using 0.22 µm Durapore PVDF membranes: (□) Multiscreen 
filter plate (0.3 cm2) under negative pressure, (Δ) custom filter plate (0.8 cm2) under 
negative pressure, (●) membrane cell (3.8 cm2) under positive pressure, (○) membrane 
cell (3.8 cm2) under negative pressure. Solid line in (b) fitted by linear regression of 
all data. Membrane equipment as described in Table 3.1 and experiments performed 
as described in Sections 3.3.1 and 3.3.2. 
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atmospheric on the permeate side of the membrane.  Similarly, the water flux values 

for the 96-well filter plate are seen to be slightly higher than for all the other formats.  

The water flux data shown in Figure 3.2(b) can be translated into membrane resistance 

values for each membrane format using Equation 3.2.  As shown in Table 3.1, very 

similar Rm values of the order of 5 × 1010 m-1 are calculated for the custom filter plate 

and membrane cell operated under both positive and negative pressure.  With the 96-

well Multiscreen filter plate the calculated membrane resistance is around 7% lower  

than for the other three membrane formats (statistically significant difference by two 

tailed t-test, unequal variance, p<0.05).  This overall variation in Rm for the 

Multiscreen filter plate could arise from the methods involved in securing the 

membranes to the base of each acrylic well and small differences in the effective 

membrane area. 

 

3.3.3  Variation of membrane resistance across the filter plates 

 

While the membrane resistance for the Multiscreen filter plate given in Table 3.1 is an 

average value across all 96 wells, the variation in Rm values between individual wells 

on a single plate is shown in Figure 3.3(a).  This pattern was obtained from 96 

simultaneous water flux experiments and is representative of experiments performed 

on a number of different plates.  It indicates that membrane resistance is relatively 

constant along each row (letters A – H) but is more variable along columns (numbers 

1 – 12).  This might suggest that strips of membrane from different sources are used 

along each row during filter plate construction or may be representative of the 

variability across larger sheets of membrane.  Figure 3.3(b) shows the membrane 

resistances generated from a separate experiment where the same filter plate was 

rotated 180º on the vacuum manifold.  The arrows on Figure 3.3 show the position of 

the vacuum source relative to the Multiscreen filter plates.  An almost identical pattern 

of membrane resistances can be seen.  This means that the position of a well in 

relation to the vacuum source does not affect the measured membrane resistance and 

that the applied pressure difference is uniform across the Multiscreen filter plate.   

Discrepancies occur at the edge columns where higher incidences of droplets hitting 

the edges of the collection tubes were observed experimentally.  Despite 

improvements seen by decreasing the distance between filter plate and collection  
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Figure 3.3. (a) Membrane resistance variation between individual wells on a single 
Multiscreen filter plate (0.3 cm2). Plan view of a filter plate where the shading of each 
well corresponds to the scale of measured membrane resistances on the right hand side 
of the figure. (b) Repeat experiment with the same filter plate rotated through 180º. 
Arrows represent the relative position of the vacuum source. Experiment performed as 
described in Section 3.3.3, using a 0.22 µm Durapore PVDF membrane. 
 
  
 
 
 
 
 

 116



3.0  Results
 

tubes, this discrepancy continued for the 96-well Multiscreen filter plate.  

Consequently, for this commercial filter plate design, the edge columns were not used 

in subsequent experiments. 

 
Similar control experiments were carried out with the custom filter plate.  Data from 

hundreds of individual measurements of membrane resistance determined using the 

custom filter plates was analysed.  It was shown that no row, column or type of well 

(corner, edge, centre) gives an average membrane resistance significantly different 

from the overall mean (one sample t-test, p>0.05).  It should be noted that these 

statistical conclusions are not due to poor accuracy in the experimental technique.  In 

a series of 5 experiments, 8 filter insert positions were randomly changed.  No 

significant variation occurred due to plate position, but the average calculated 

membrane resistance for each individual insert was significantly different from the 

overall mean (one sample t-test, p<0.05) since each had its own distinct average 

membrane resistance.  This shows that the measurement of membrane resistance is 

accurate enough to discover any meaningful variation.  It can be concluded that the 

position of a filter insert within the plate does not have a significant effect on the 

calculated membrane resistance and that the applied pressure difference is uniform 

across the entire custom filter plate. 

 

3.3.4  Importance of membrane resistance data 

 

It should be noted that although interesting with respect to the consistency of filter 

plate manufacture, the impact of these variations in membrane resistance on 

subsequent determinations of specific cake resistance can generally be neglected.  

Theory predicts that specific cake resistance is independent of membrane resistance, 

as shown in Equation 3.3 (and explained in Section 1.3.4.1.4).  In the experiments 

described here this is likely to be true since the membrane resistance is always a small 

part of the total resistance to flow.  However, changes in membrane resistance may 

affect the high flux values during the initial part of a filtration run and so comparison 

of volume and time data from membranes of similar resistance is the best option.  

Measurement of membrane resistances may also be important when considering 

transmission of a target molecule, as discussed later in Chapter 4.  Overall, the results 
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presented in this section show that membrane resistance can be rapidly and accurately 

determined in microplate formats and that the results obtained are comparable to 

laboratory scale processes performed using both positive and negative applied 

pressures. 

 

 

3.4  Flux behaviour during microfiltration of E.coli fermentation 

   broths 
 

Although it was shown in Section 3.3 that comparable membrane performance was 

obtained as when using positive applied pressures, the amount of permeate flux data 

that can be collected from each well during negative pressure operation is limited.  

During the normal flow filtration of complex biological suspensions there is a variable 

flux due to the increase in resistance to flow over time as a filter cake is deposited.  A 

more sophisticated approach is required to determine the specific cake resistance of 

the filter cake.  Specific cake resistance is an intrinsic measurement of the resistance 

to flow generated by a particular solid-liquid suspension (Section 1.3.4.1.4).  It can be 

used to predict the flux throughout a normal flow filtration experiment (Section 

2.8.11).  This section details the approach to the automated and parallel measurement 

of specific cake resistance at the microscale and then shows how this is used to 

explore the changes in E.coli filtration performance due to several process changes. 

 

3.4.1  Quantification of specific cake resistance at microscale 

 

As described previously in Section 2.3.2 and illustrated in Figure 2.1(b), the method 

established here collects permeate data from two identical filter plates run in parallel 

from the same vacuum source.  One manifold is vented before the other to give two 

permeate masses at two different filtration times.  These can then be used to estimate 

specific cake resistance of broth derived E.coli TOP10 cells.   

 

Established cake filtration theory (Section 1.3.4.1.4) links the measurement time (t) 

and collected permeate volume (V) data in a linearised equation: 
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where α is the specific cake resistance per dry cake mass (m.kg-1) and ρ0 is the dry 

mass of cake solids per volume of permeate (kg.m-3) which is determined from the 

following equation: 
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where s is the mass fraction of solids in the feed, ρp is the permeate density (kg.m-3) 

and m is the mass ratio of wet cake to dry cake.  Alternatively, ρ0 can be expressed in 

terms of the dry solids concentration as: 
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where cf is the dry solids concentration in the feed (kg.m-3) and ρf is the feed density 

(kg.m-3).  For the E.coli filtration feeds used during this work, the product of solids 

fraction and mass ratio is very low and the feed is only slightly denser than the 

permeate.  Hence the term ρ0 approximates to the dry solids concentration in the feed.  

This assumption allows specific cake resistance to be calculated from data obtainable 

in high throughput operation. 

 

For each experiment performed in the filter plate, a plot of t/V versus V produces a 

linear portion following initial pressure application and cake build-up.  By controlling 

the time over which each plate is filtered it is possible to ensure that the two data 

points collected lie on the straight line portion of the t/V versus V plot as shown 

schematically in Figure 3.4.  The selected times will give a measureable range of 

specific cake resistance which will typically cover up to two orders of magnitude.  

The times can be selected based on initial trial experiments at a typical feed 

composition, published cake resistance values, prior process knowledge or acceptable 

process boundaries. 
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Figure 3.4. Illustration of the method used for determination of specific cake 
resistance from microscale and negative pressure experiments. The solid lines 
represent the progress of a filtration process up to the collection of the data points (●, 
■) from two identical, parallel experiments. The dotted lines represent what would 
have been the course of each filtration process if the pressure had not been released to 
take a measurement of permeate (and retentate) volume. A gradient can then be 
determined from these two points on the straight line portion of the graph and used to 
calculate the cake resistance as described in Section 3.4.1. 
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Experimentally, it is necessary to ensure that filtration occurs for a sufficient time that 

the pressure difference has reached steady state and cake formation is in the linear 

region.  Using this approach, real volume and time data during cake deposition from 

whole fermentation broths can be quantitatively analysed. 

 

By using the two data points collected to generate the gradient of a straight line, an 

equation for specific cake resistance can be formed: 
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The numeric subscripts represent data from the separate microwell filter plates where 

plate 1 is the first to have the applied pressure vented at time t1.  Equation 3.6 will be 

valid for feeds that demonstrate a constant cake resistance and which do not filter to 

completion before t2.  If this does occur, the second data point will be easily identified 

as being above a critical volume and thus not valid for analysis.  This would, however, 

require a reduction in cake resistance of at least an order of magnitude to what was 

expected.  In addition, any feed where the calculated cake resistance increases during 

the filtration process, such as when pore blocking also occurs (Ho and Zydney, 2000), 

can be identified from a high x-intercept. 

 

For scale up predictions of permeate flux described in Section 2.8.7.1 and 

implemented in this chapter in Figure 3.7, the modified cake filtration constant, Kc' 

(N.s.m-4), is required and is readily calculated from the same data set: 
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In the following sections the variation of specific cake resistance of E.coli TOP10 

cells is explored as a function of medium composition and microfiltration conditions.  

All specific cake resistance values reported for the Multiscreen plate, custom filter 
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plate and the membrane cell under negative pressure were calculated using Equation 

3.6.  Values for the Multiscreen filter plate are derived from 8 replicate experiments 

while values for the custom filter plate are derived from 3 replicate experiments.  In 

both cases replicates were performed in parallel on the same plate.  For the membrane 

cell, 3 replicates for specific cake resistance calculation were carried out in sequential 

experiments.  Example specific cake resistance calculations showing the progression 

of raw data to calculated values and through to flux prediction are shown in  

Appendix B. 

 

3.4.2  Influence of harvest time and broth age 

 

An important consideration in the development of every process is timing and 

scheduling between each unit operation.  Delays within a single process step can lead 

to consequential scheduling problems.  Equipment may still be in use or tied up in 

turnaround tasks such as cleaning or sterilisation.  By simulating such delays 

microscale filtration techniques demonstrate an ability to test the robustness of a 

process to scheduling changes as well as enabling the optimum filtration conditions to 

be identified for a given broth.  Figure 3.5 shows three different sets of specific cake 

resistance data for fermentations in which harvesting is delayed by 0 h, 4 h or 24 h.  

Fermentations were performed as described in Section 2.4.  At each harvest time 

identical fermentation broth samples were filtered using the Multiscreen filter plate, 

custom filter plate and the membrane cell under positive and negative applied 

pressures.  The results in Figure 3.5 clearly indicate the expected increases in specific 

cake resistance with broth ageing time and also show very similar results for each of 

the filtration devices.  Even allowing for the variation seen in the microwell 

experiments, t-tests (two-tailed, unequal variance, p<0.05) show that the mean 

specific cake resistance is significantly different for cells harvested on time (t = 4.5 h) 

compared to cells harvested 4 h later (t = 8.5 h).  These results further demonstrate 

that comparable filtration performance is achieved between both the microwell filter 

plate designs and the conventional laboratory membrane cell.  They also show that the 

microwell filtration techniques are able to quantitatively distinguish the performance 

of different feed streams with different properties. 
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Figure 3.5. Specific cake resistance determined for an E.coli TOP10 fermentation 
broth after various broth ageing times: ( ) Multiscreen filter plate (0.3 cm2) under 
negative pressure, ( ) custom filter plate (0.8 cm2) under negative pressure, ( ) 
membrane cell (3.8 cm2) under positive pressure, ( ) membrane cell (3.8 cm2) under 
negative pressure. Membrane equipment described in Table 3.1 and experiments 
performed as described in Section 3.4.2: pressure difference 60 kPa. Error bars 
represent one standard deviation about the mean (n = 8 for the Multiscreen filter plate, 
n = 3 for other formats). 
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Previous work with E.coli (Okamoto et al., 2001) has shown that the measured 

increase in cake resistance of aged cells is due to their deterioration and the release of 

intracellular components caused by insufficient nutrients.  The values of specific cake 

resistance generated here for the broth aged 24 h are of a similar order of magnitude to 

other literature values.  Cake resistance values for freshly harvested cells however, are 

considerably lower than those previously quoted in the literature for NFF at the same 

pressure difference of 60 kPa (Okamoto et al., 2001; Nakanishi et al., 1987).  This is 

probably a consequence of the previous studies having used different media for the 

culture of wild type E.coli strains and cultivation times up to 10 times longer than 

used here in the case of freshly harvested broth.  The extended fermentation times 

would tend to increase the proportion of older or lysed cells in the broth while the 

strong influence that complex media components can have on E.coli cake resistance 

values is described later in Section 3.4.5. 

 

3.4.3  Influence of broth pH and specific buffers 

 

The interaction of solid particles in the feed stream can be significantly affected by 

their pH and ionic environment.  These, in turn, are known to influence microfiltration 

performance (Ohmori and Glatz, 1999).  Buffers at a constant ionic strength of 100 

mM were used to control the pH of the E.coli TOP10 suspension during filtration 

studies.  These would avoid the use of strong acids or bases which might otherwise 

damage the cells and obscure the true behaviour. 

 

Certain buffers used to control the pH of the feed stream (phosphate, citrate, 

succinate, piperazine, MES, and tris-bis) showed no change in measured specific cake 

resistance values when used to vary the pH over a range of 2 – 7.  There was also no 

observed lysis of the cells.  During the experiments, however, it was discovered that 

the use of acetate as a buffer resulted in an approximately 3-fold reduction in specific 

cake resistance as shown in Table 3.2.  The introduction of this small molecule can be 

seen to have an emphatic effect on the cake resistance, most likely from the result of 

aggregation of larger particles.  For all the other buffers used, the specific cake 

resistance of the E.coli TOP10 cells was of the order of 2 × 1014 m.kg-1.  Compared to 
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the membrane cell experiments that were carried out sequentially, all the microscale 

experiments investigating pH could be conducted in parallel on the same plate. 

 

 

Table 3.2.  Specific cake resistance of E.coli TOP10 cells determined in the presence 
or absence of 100 mM acetate buffer. Cake resistances determined as described in 
Section 3.4.3.  Experimental variation indicated represents one standard deviation 
about the mean,  n = number of individual wells or experiments. 
 

Specific Cake Resistance, α (× 10-12 m.kg-1) 
Filtration Equipment 

Without Acetate With Acetate 

Multiscreen Filter Plate 176 ± 42 (n = 48) 63 ± 7 (n = 8) 

Custom Filter Plate 186 ± 26 (n = 18) 61 ± 1 (n = 3) 

Membrane Cell 
(Positive Pressure) 

179 ± 52 (n = 18) 62 ± 4 (n = 3) 

 

 

3.4.4  Influence of media composition 

 

The optimisation of microbial fermentation processes routinely involves the 

evaluation of many different types and concentrations of media components to 

enhance cell growth rates and/or product titre (Demain and Davies, 1999; Doig et al., 

2006).  For the efficient optimisation of the overall process sequence, which is of 

most relevance to industry, the influence of these different media components, 

especially on the early product recovery stages (Davies et al., 2000) must also be 

considered.  Previous published data has suggested a reduction in E.coli specific cake 

resistance when cells are washed and resuspended in buffer (Okamoto et al., 2001).  

In contrast our initial experiments indicated an increase in the specific cake resistance 

using E coli TOP10 cells.  To examine this in more detail, along with the influence of 

individual medium components on microfiltration performance, washed cell pellets 

were resuspended in the original supernatant, buffer alone or buffer containing 

10 g.L-1 of either tryptone, yeast extract or glycerol.  The buffer species used in these 
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experiments was piperazide which, at pH 5.5, matches the final pH of the whole cell 

broth at harvest.  By washing the cells and resuspending them in the original 

supernatant, any effects due to the processing of the cells before the microfiltration 

experiments are removed from the comparison. 

 

Figure 3.6 shows the previously noted increase in specific cake resistance for the cells 

resuspended in buffer compared to cells resuspended in the original supernatant.  

When the resistance of the cells in solutions of all the individual media components is 

examined, it can be seen that glycerol and tryptone have no significant effect when the 

pH is maintained constant.  By comparison, when the E.coli TOP10 cells are 

resuspended in a 10 g.L-1 yeast extract solution the specific cake resistance of the cells 

is determined to be approximately 3 times lower than when cells are resuspended in 

buffer alone and about half that of the whole supernatant.  The mechanism by which 

the yeast extract reduces the specific cake resistance is unclear but is likely to be a 

specific interaction with the cells leading to a more open cake structure through 

cellular aggregation (the yeast extract itself is completely soluble so will not in itself 

contribute to the cake composition). 

 

The variation in flux over time for single replicates of the membrane cell is shown in 

Figure 3.7 comparing results from 4 mL of cells resuspended in freshly prepared yeast 

extract to 4 mL of cells resuspended in the original broth supernatant (V/A ratio of 

1.05 mL.cm-2).  The data is included up to the completion of each filtration and 

highlights a 1.8-fold difference between membrane cell processing times.  Specific 

cake resistance data collected from Multiscreen filter plates and custom filter plates 

are used to generate predicted flux data up to the same V/A ratio based on cake 

filtration theory (Section 2.8.7.1).  The predictions for both microwell formats show 

good agreement with the membrane cell flux data.  In addition, similar differences in 

processing time are predicted by both the Multiscreen (2.1-fold) and custom filter 

plates (1.7-fold).  Similar figures can readily be produced for every feed composition 

presented in this chapter (not shown). 

 

The influence of media components on microfiltration performance was again found 

to be the same for all three membrane configurations studied and, as with the pH 
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Figure 3.6. Specific cake resistance of washed E.coli TOP10 cells resuspended in 
various media components: ( ) Multiscreen filter plate (0.3 cm2) under negative 
pressure, ( ) custom filter plate (0.8 cm2) under negative pressure, ( ) membrane cell 
(3.8 cm2) under positive pressure. Membrane equipment as described in Table 3.1 and 
experiments performed as described in Section 3.4.4: pressure difference 60 kPa. 
Error bars represent one standard deviation about the mean (n = 8 for the Multiscreen 
filter plate, n = 3 for other formats). 
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Figure 3.7. Variation of permeate flux over time for washed E.coli TOP10 cells 
resuspended in original broth supernatant (●) and freshly prepared yeast extract 
solution (▲) using the membrane cell (3.8 cm2) under positive pressure.  Lines show 
the predicted flux generated from specific cake resistance data determined using the 
Multiscreen filter plate (0.3 cm2) under negative pressure (dashed) and the custom 
filter plate (0.8 cm2) under negative pressure (solid). Membrane equipment as 
described in Table 3.1 and experiments performed as described in Section 3.4.4: 
pressure difference 60 kPa.  Flux predictions calculated using Equation 2.20 as 
described in Section 2.8.11. 
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studies described in Section 3.4.3, both microwell filter plate designs enabled the 

influence of the different media components to be examined in parallel.  This also 

improved the experimental methodology in that any variation of the feed stream due 

to ageing of the cells between sequential experiments, as with the membrane cell 

studies, was removed. 

 

 

3.5  Evaluation of microscale methods and custom filter plate  

  design 

 

The microscale experiments investigating the influence of harvest time (Section 

3.4.2), buffers (Section 3.4.3) and media composition (Section 3.4.4) on micofiltration 

performance have shown how several different feeds can be analysed in parallel, 

usually on a single plate.  The ability to process all these feeds in parallel, rather than 

in series as with the membrane cell, leads to many advantages in terms of 

experimental throughput and the range of process variables it is possible to investigate 

in a given time.  The results in all the previous sections for both filter plate designs 

have shown that membrane resistance and specific cake resistance data are similar to 

those obtained in the conventional lab scale NFF experiments.  Figure 3.8 shows 

parity plots of the specific cake resistance values generated in this study.  A small 

number of outlying results are evident for both the Multiscreen filter plate (Figure 

3.8(a)) and the custom designed filter plate (Figure 3.8(b)).  Analysis of these 

particular values showed them to be from the media component experiments where 

sample variation when preparing the resuspended cell solutions resulted in a large 

degree of variability.  The lines of best fit to the experimental data (solid lines) 

indicate that both filter plate designs generate slightly higher cake resistances, by 

about 10%, compared to the membrane cell.  This is a consequence of the outlying 

media component results and probably also small errors in determination of the 

membrane area which, being a squared term in Equation 3.6, can have a large 

influence on the calculated cake resistance values.  The one limitation in the use of a 

vacuum manifold for these microscale membrane studies is that only transmembrane 

pressure differences up to approximately 75 kPa can be studied unlike the values of up 

to 200 kPa reported when positive pressure is applied (Chandler and Zydney, 2004).  
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Overall, however, the agreement between the filter plate and membrane cell 

experiments is very good and would result in identical interpretations with regard to 

membrane process performance. 

 

Finally, comparing the two filter plate designs, Figure 3.8 shows that there is more 

variation in the cake resistance values determined with the commercial Multiscreen 

filter plate (Figure 3.8(a)) than with the custom designed filter plate (Figure 3.8(b)).  It 

 should also be remembered here that the data and errors generated using the 

Multiscreen filter plate are from 8 separate replicates compared to only 3 replicates 

with the other membrane formats.  This greater variation is perhaps not surprising in 

that the design of the Multiscreen filter plate is optimised for high throughput 

screening applications rather than bioprocess studies.  For each well the applied 

sample volume is very small (Table 3.1) and any problems in the collection and 

gravimetric analysis of the permeate fractions can have a significant impact on 

calculation of the specific cake resistance.  In contrast the custom filter plate shown in 

Figure 3.1 has been specifically designed for bioprocess studies.  The applied sample 

volume is up to 8 times larger than for the commercial plate (Table 3.1) minimising 

analysis errors and giving the best correlation with the laboratory scale membrane cell 

results (Figure 3.8(b)).  The removable membrane inserts (Figure 3.1 (a)) enable 

analysis of individual retentate samples and calculation of a process mass balance.  

Additionally they would facilitate study of different types of membrane in a single 

experiment something that is not possible with the commercial Multiscreen plate.  

Although the experimental throughput of the custom plate is 4-fold less than with the 

commercial plate (Table 3.1) the number of experiments required in bioprocess 

studies is considerably less than for drug screening and requires the collection of more 

precise and quantitative data (Lye et al., 2003; Micheletti and Lye, 2006). 
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Figure 3.8. Parity plots of all the specific cake resistance data generated from the 
membrane cell under positive pressure (3.8 cm2) against data generated from: (a) the 
Multiscreen filter plate (0.8 cm2) under negative pressure and (b) the custom filter 
plate (0.3 cm2) under negative pressure. Solid lines fitted by linear regression while 
dashed line denotes parity.  Error bars represent one standard deviation about the 
mean (n = 8 for the Multiscreen filter plate, n = 3 for other formats). 
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3.6  Summary 

 

In this chapter a high throughput method for the study of normal flow microfiltration 

operations has been established using a custom designed 8 to 24 well filter plate and a 

commercial 96-well Multiscreen filter plate.  Integration of this new approach with a 

typical robotic platform has enabled automation of virtually all the experimental 

procedure (Section 2.3.2). 

 

Membrane resistance values can be accurately quantified using either filter plate 

design (Table 3.1).  The accuracy of these measurements has helped to determine that 

plate position does not affect experimental results and applied pressure difference 

does not vary across either plate (Figure 3.3, Section 3.3.3). 

 

Each of the two filter plate formats has been used to demonstrate that cell condition 

following fermentation, buffer type and media composition are all important factors 

influencing the specific cake resistance of E.coli TOP10 cells (Figure 3.5, Table 3.2 

and Figure 3.6).  The microscale method therefore allows parallel quantification of the 

impact of upstream process conditions on microfiltration performance. 

 

The custom filter plate designed here, specifically optimised for bioprocess studies, 

allows multiple membrane types to be evaluated on a single plate and the 

measurement of both permeate and retentate masses to ensure against cross-

contamination or material losses.  Lower variation in specific cake resistance values is 

seen in the custom filter plate compared with the commercial filter plate (Figure 3.8).  

Having established the microscale method here, its application to the optimisation of 

permeate flux and soluble protein transmission is considered in Chapter 4. 
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4.0 Microfiltration optimisation using automated 

microscale experimentation coupled with statistical design of 

experiments 

 

 

4.1  Aim of the chapter 
 

The aim of this chapter is to demonstrate how the automated microscale 

microfiltration technique established in Chapter 3 can be used to fully characterise 

filtration process performance by quantification of both permeate flux and protein  

transmission.  The specific objectives of this chapter are: 

 

• To use the automated microwell technique described in Chapter 3 for the 

simultaneous collection of both permeate flux and protein transmission 

data. 

• To demonstrate the utility of combining microwell scale experimentation 

with statistical Design of Experiments (DoE) techniques for rapid process 

optimisation and analysis of process trade-offs. 

• To illustrate the scale-up of microwell data to conventional laboratory scale 

for the prediction of permeate flux and protein transmission over time. 

• To demonstrate that the optimum design space location is equivalent 

between microscale and conventional laboratory scale techniques. 

 

 

4.2  Introduction 
 

The results described previously in Chapter 3 focused solely on the quantification of 

permeate flux.  Here the additional measurement of protein transmission during 

automated microscale microfiltration and the concept of experimental design for high 

throughput bioprocessing are introduced.  
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4.2.1  Product transmission 

 

The transmission of extracellular products and impurities can be assessed during 

automated microscale microfiltration in a very similar way as for conventional 

filtration experiments.  Quantification of transmission levels is important since they 

vary with process operating conditions (Persson et al., 2003) and will impact on 

product yield and therefore the performance requirements of subsequent downstream 

processing operations.  Permeate and retentate samples from identical wells run for 

different times (already necessary for the analysis of permeate flux as described in 

Section 3.4.1) can also be assayed to give an indication of the cumulative observed 

transmission of extracellular material over time.  The assays required for this duty 

should be rapid, robust and suitable for working with the small sample volumes 

generated using the microwell approach.  They should also be capable of integrated 

automation in order to ensure that analysis does not become a bottleneck for high 

throughput bioprocess investigation. 

 

4.2.1.1  Potential influence of membrane resistance 

 

Solute transmission through a membrane can theoretically be influenced by the 

membrane pore size (Zeman and Zydney, 1996).  Variations in water flux that can be 

effectively measured in parallel at microscale (Section 3.3.3) could represent 

differences in the average pore size of a membrane but may also be due to variations 

in porosity or thickness.  Protein transmission can also depend on more subtle 

membrane differences, which can vary despite constant water flux measurements 

(Fane et al., 1983).  In addition, the size of the model protein to be used in this chapter 

is small compared to the membrane pore size and so small variations in membrane 

resistance are unlikely to have a significant impact on transmission.  In order to 

confirm this, membrane resistances were determined for every individual membrane 

used during the work described in this chapter.  No correlation could be found 

between the transmission values and the corresponding membrane resistance.  

Transmission values presented here have therefore not been normalised by membrane 

resistance in this chapter, although this remains an option for other combinations of 

feed and membrane type in other applications. 
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4.2.1.2  Model system 

 

The model system chosen for investigation in this chapter is an E.coli TOP10 

fermentation broth (average dry cell weight of 7.4 ± 0.4 g.L-1) spiked with 2 g.L-1 of 

lysozyme.  Lysozyme is used since it is cheap, has a quantitative assay available and 

may be likely to interact with the E.coli, thus producing interesting effects to 

challenge the experimental design and methods.  The optimisation procedure is 

carried out as if the protein of interest is a high value product and good yield is 

imperative for success of the separation.  The method of feed preparation for all the 

samples used in this chapter is detailed in Section 2.4.3.   

 

Lysozyme acts by breaking up peptidoglycans in bacterial cell walls.  The gram 

negative E.coli cells can still be susceptible to lysis by lysozyme, but only if the outer 

membrane can be weakened by, for example, mild osmotic shock in the presence of 

EDTA (Witholt et al., 1976; Pierce et al., 1997).  Control experiments carried out 

using a membrane cell showed no change in the filtration characteristics of the model 

system over a 2 h period indicating little or no lysis occurs.  All experiments reported 

here were began almost immediately after resuspension of the cells and each 

experiment was concluded within a 2 h time window. 

 

4.2.2  Application of design of experiments 

 

Initially the use of Design of Experiments (DoE) techniques with high throughput 

processes may seem counter-intuitive.  Once techniques are developed to allow 

multiple experiments to occur in parallel then it appears not to be necessary to use 

methods that reduce the number of experiments that are carried out.  There are several 

reasons, however, that demonstrate how automated microscale experimentation and 

DoE methodology complement each other very well in order to facilitate rapid 

bioprocess development and support a quality by design approach (Rathore and 

Mhatre, 2009).  DoE seeks to expand the experimental space that can be explored, by 

considering multiple factors and their interactions.  When considering only a few 

factors from one or two processes, traditional experimental approaches may be 

adequate in conjuction with high throughput automation systems.  However, when 
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whole process sequences with several factors for each unit operation are studied then 

the required number of experiments increases far beyond that which can be explored 

using conventional experimentation, even with high throughput capabilities.  DoE is 

also sequential in nature, focusing on the important areas of experimental space and 

progressively seeking optimal conditions.  Automated processes are ideally suited to 

this due to their ability to easily repeat experiments with only slight variations to the 

operating conditions.  It is important that any automated microscale process is capable 

of application to DoE methodology in order for whole process sequences to be 

effectively studied at the microscale. 

 

 

4.3  Factorial experiments 
 

This section analyses the important process factors that determine high protein 

transmission and low specific cake resistance (high flux) during microfiltration of an 

E.coli fermentation broth containing an extracellular protein.  It also determines the 

significance of each factor for the process as a whole and how analysis of initial 

results can be used to focus further experiments to determine optimum processing 

conditions. 

 

4.3.1  Factorial experiment design and implementation 

 

The factorial experiment presented in this Chapter is a half repeat of a 2-level factorial 

experiment examining five factors (design detailed in Section 2.7.1.1) affecting flux 

behaviour and transmission during the filtration of an E.coli fermentation broth 

containing an extracellular protein.  The factors and their chosen levels are 

summarised in Table 4.1. 

 

The high and low levels for pH are chosen to match the range over which pH may 

vary during batch fermentation, as observed in shake flask fermentations.  The ionic 

strength is varied relatively closely around the salt concentration used in the standard 

growth media.  The change in pH and ionic strength will influence charge based 

interactions between the cell, membrane and protein.  This may lead to changes in the 
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filter cake structure (Ohmori and Glatz, 1999) and influence protein transmission 

through the microfiltration membranes (Persson et al., 2003).  The yeast extract 

concentration is studied at the levels previously shown to significantly reduce cake 

resistance in Chapter 3.  A varying pressure difference will show any potential change 

in filter cake compressibility (Nakanishi et al., 1987; Foley, 2006) and the levels are 

chosen within the range achievable using the available vacuum manifold.  The two 

membranes are chosen due to their similar pore size allowing different manufacturers 

and different membrane polymers to be compared. 

 

All experiments at a given pressure were carried out in parallel using the 24-well 

custom microwell filter plate (Section 3.2.1) according to the method described in 

Section 3.4.1.  Samples were prepared as described in Section 2.4.  In addition to this 

method, the permeate samples collected were assayed as described in Section 2.6.1 

and protein transmissions calculated as described in Section 2.8.12.  Each factorial run 

was duplicated and 4 repeats of the centre-point values for pH, ionic strength and 

yeast extract concentration were carried out at each combination of pressure and 

membrane type as prescribed by the design in Section 2.7.1.1.  Separate centre-points 

are required for each membrane type since this is a qualitative factor and no centre-

point pressure was used since this would require a separate plate to be run.  

 

 
 

Table 4.1.  Summary of the factors and levels selected for the 25-1 factorial 
experiment described in Section 4.3.1. 
 

Factor Factorial 
Code Low Value High Value 

pH A 5 7 

Ionic Strength B 100 mM 200 mM 

Yeast Extract 
Concentration C 0 g.L-1 10 g.L-1 

Transmembrane 
Pressure Difference D 40 kPa 70kPa 

Membrane Type E Cellulose nitrate 
(0.2µm) PVDF (0.22µm) 
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The measured raw data, protein transmission and calculated specific cake resistance 

responses for each individual experiment are summarised in Table C.1 of Appendix C.  

These response data were then used to calculate the main effects and interactions 

using the methods described in Section 2.8.4. 

 

4.3.2  Factorial results analysis of protein transmission 

 

Protein transmission levels were initially shown to be lower during microscale 

filtration when measured over short time periods (t ≤ 90 s).  This was attributed to the 

presence of water in the hold-up volume of each filter insert that would dilute the 

permeate sample and also to low levels of protein adsorption that can rapidly occur in 

the early stages of microfiltration (Bowen and Gan, 1991).  Time points towards the 

end of the filtration experiments (t ≥ 300 s) showed higher transmission levels and 

clearer variation between experiments.  The single values of transmission quoted in 

this chapter are therefore from the latest time point available within the experiment. 

 

Figure 4.1 shows the calculated effects and interactions for the measured protein 

transmission response during filtration.  Each effect or interaction greater in 

magnitude than the dashed lines (95% confidence interval)  is statistically significant.  

Whilst the magnitude can indicate the relative importance of an effect or interaction it 

is also dependant on the factor ranges investigated.  The main effects, which quantify 

the influence of each individual factor on the calculated protein transmission, are 

summarised below. 

 

•  Increased pH (A) reduces the protein transmission considerably.  This is a 

dominant effect since the magnitude is high. 

•  High ionic strength (B) improves protein transmission. 

•  The presence of yeast extract (C) acts to reduce the level of protein 

transmission.  The magnitude of the effect is also high compared to the 

confidence intervals. 

•  Pressure (D) has no significant effect on protein transmission, as would be 

expected if the cake is not compressible over the range of transmembrane 

pressures investigated. 
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Figure 4.1.  Effect and interaction plot for measured protein transmission levels in a 
25-1 factorial experiment.  Factors investigated are as follows: A = pH, B = ionic 
strength, C = yeast extract concentration, D = transmembrane pressure difference, E = 
Membrane Type.  Factor levels detailed in Table 4.1.  Experiments performed using a 
custom microwell filter plate (0.8 cm2) as described in Section 4.3.1.  The dashed 
lines represent 95% confidence intervals inside which effects and interactions are not 
statistically significant. 
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•  The PVDF membrane gives better transmission than the cellulose nitrate 

membrane (E).  This is easily explained since the cellulose nitrate 

membrane is specified as high protein binding by the manufacturer. 

 

The interactions shown in Figure 4.1 give an indication of more complicated 

relationships between the individual factors.  The AD and AE interactions are 

comparatively small in magnitude to the other main effects and interactions and are 

not significant at a 99% confidence interval.  The DE interaction (transmembrane 

pressure / membrane type) is unexpected since the pressure does not influence 

transmission.  Due to the half repeat in the factorial experiment design this interaction 

is also combined with the 3-factor interaction between pH, ionic strength and yeast 

extract (ABC).  This rare three factor interaction is seen to be present when the raw 

data is examined.  Two extreme outlying results (30.6%, 42.5%; as shown in Table 

C.1 of Appendix C) occur at pH 7 and 100 mM ionic strength only in the presence of 

yeast extract.  These outliers also influence the individual interactions between yeast 

extract, pH and ionic strength (AB, AC, BC) which are shown to be clearly significant 

in Figure 4.1.  The presence of yeast extract always acts to reduce protein 

transmission and does so to a much greater detriment at certain combinations of other 

factors. 

 

In summary, optimal protein transmission should be achieved when the process is 

operated in the absence of yeast extract.  Since pressure and membrane type do not 

interact with any other factors it can be concluded that the best transmission can be 

achieved anywhere within the pressure range 40 kPa – 70 kPa using the PVDF 

membrane.  This leaves the ionic strength and pH interaction (AB) for further 

investigation and optimisation.  This interaction is discussed in more detail in Section 

4.3.4 with reference to the electrostatic forces that both factors will influence. 

 

4.3.3  Factorial results analysis of specific cake resistance 

 

The calculated effects and interactions for the measured specific cake resistance 

response are summarised in Figure 4.2 in the same fashion as for the protein 

transmission results described in the previous section.  High specific cake resistances  
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Figure 4.2.  Effect and interaction plot for measured specific cake resistance values in 
a 25-1 factorial experiment.  Factors investigated are as follows: A = pH, B = ionic 
strength, C = yeast extract concentration, D = transmembrane pressure difference, E = 
membrane type.  Factor levels detailed in Table 4.1.  Experiments performed using a 
custom microwell filter plate (0.8 cm2) as described in Section 4.3.3.  The dashed 
lines represent 95% confidence intervals inside which effects and interactions are not 
statistically significant. 
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are undesirable as they lead to reduced fluxes and longer overall processing times, as 

described in Section 1.3.4.1.4.  The main effects, which quantify the influence of each 

individual factor on the calculated protein transmission are summarised below. 

 

•  pH (A) acts to increase the specific cake resistance at higher levels. 

•  High ionic strength (B) clearly increases the cake resistance and this effect 

has the highest magnitude. 

•  As described in Section 3.4.4, high yeast extract concentration (C) 

decreases the cake resistance and clearly allows higher permeate fluxes. 

•  The E.coli filter cakes formed during the experiments are compressible, but 

not to an excessive extent since high pressures (D) lead to only a moderate 

increase in specific cake resistance and collected volumes are always higher 

overall at the higher pressure. 

•  The main effect of membrane type (E) is the lowest in magnitude and 

shows that the PVDF membrane gives slightly lower specific cake 

resistance. 

 

All of the interactions shown in Figure 4.2 exceed the confidence intervals and 

require interpretation.  Despite the main effect of pH not being strong, there is a clear 

interaction with ionic strength (AB).  Again yeast extract concentration interacts 

clearly with ionic strength (BC) which is likely to be due to a contribution to the 

overall ionic strength from components in the yeast extract.  High ionic strengths and 

the absence of yeast extract lead to more compressible cakes (BD, CD) although 

compression is never severe enough to prevent the highest pressure in the range 

giving the highest permeate fluxes.  Despite generally reducing cake resistance, the 

best filtration performance measured here is achieved in the absence of yeast extract 

at a particular combination of pH and ionic strength values (pH 7, 100mM), reversing 

the general trend and causing the three factor interaction (ABC = DE). 

 

There is also another three factor interaction (BCD = AE) likely to be important.  

Given the three strongest main effects are ionic strength (B), yeast extract 

concentration (C) and pressure (D) this is also likely to be a three factor interaction.  

Examining the data it can be seen that the cakes appear to be more compressible at 
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combinations of high ionic strength and low yeast extract concentration.  Data at this 

combination (factorial runs 3, 4, 11 and 12) dominates the interaction.  For this 

interaction to be explained by a pH and membrane type (AE) it would require an 

explanation of why the specific cake resistance for cellulose nitrate increases at high 

pH.  Since only a small portion of the cake is in contact with the membrane such a 

change is most likely to result from additional fouling at the surface or within the 

membrane.  However, checks on the t/V against V intercept values from high pH and 

cellulose nitrate runs show no significant variation from other factorial runs and 

therefore suggests that no significant plugging or constriction is taking place (see 

Section 3.4.1) and the BCD interaction is more likely. 

 

The remaining interactions (AC, AD, CE, BE) are all marginally significant and small 

in magnitude in comparison to the others discussed. 

 

For optimal permeate flux performance the PVDF membrane should be used at the 

upper pressure limit.  There is a more complex relationship between pH, ionic 

strength and yeast extract concentration and it is not obvious from the factorial 

experiment what the optimal conditions are for these factors.  In a process where 

product recovery is important, high transmission will be essential.  The improvements 

in flux from the presence of yeast extract are not studied further, due to its detrimental 

effect of transmission.  Just as with the measured protein transmission response, the 

interaction between pH and ionic strength on specific cake resistance requires more 

examination and is described further in Section 4.3.4. 

 

4.3.4  Ionic strength and pH interactions 

 

With the dramatic changes in filtration performance that are possible by manipulating 

the electrostatic environment (van Reis et al., 1999) it is not surprising that there is 

significant interaction between the pH (which can vary the charge on a species) and 

the presence of ionic species (which can mediate charge interactions) for this factorial 

study.  The pI of lysozyme is at pH 10.7 (Walsh, 2002) and it will retain a net positive 

charge at all pH values used here.  Millipore’s Durapore PVDF has a slightly negative 

zeta-potential over the pH range of this study which increases in magnitude with 
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increasing pH (Raghavan et al., 1996).  The cellulose nitrate membranes also 

typically exhibit negative zeta-potentials over a wide pH range (Tarleton and 

Wakeman, 1994).  Electrostatic interactions between the membrane and target protein 

are possible but there are also the complex E.coli cells to consider. 

 

The interaction plots shown in Figures 4.3 and 4.4 provide a graphical representation 

of the interaction values for pH and ionic strength summarised in the earlier effects 

plots (Figures 4.1 and 4.2).  There is a clear interaction for the protein transmission 

response as similar transmissions measured at low pH reduce to different extents 

depending upon the ionic strength level (Figure 4.3).  The worst transmission is at the 

combination of high pH and low ionic strength.  This appears as if it could be 

explained by an interaction between lysozyme and the membranes, but later data 

(Section 4.4) will link the poor lysozyme transmission to an interaction with a 

component within the cake layer.  The centre-point value, which lies away from the 

linear interpolations, also suggests this is a non-linear interaction.  More data points 

are required to show the behaviour of protein transmission over the entire range of pH 

and ionic strength combinations. 

 

As previously discussed, the interaction for transmission is strongly influenced by the 

outlying data at pH 7, 100mM ionic strength and 10g/L yeast extract concentration.  

Examining the data for PVDF membrane and 0g/L yeast extract shows that the two 

lowest protein transmission values are the replicates for pH 7 and 100mM and the 

same interaction as shown in Figure 4.3 is indicated, however statistical significance 

cannot be proved.  These factors may still interact in the absence of yeast extract with 

the PVDF membrane, with the centre-point variation still suggesting an interesting 

non-linear response. 

 

Figure 4.4 demonstrates the effect of the pH and ionic strength interaction on the 

measured specific cake resistance.  At low ionic strength the cake resistance reduces 

with increasing pH, yet at high ionic strength it increases with increasing pH.  Once 

more the centre-point of the experiments indicates a non-linear relationship and 

further experiments must be performed to determine the full shape of the interaction.   
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Figure 4.3.  Interaction plot showing the measured variation of protein transmission 
with pH at ionic strengths of 100mM (●) and 200mM (■).  Data points represent the 
average from runs during a 25-1 factorial experiment.  The centre-point of the factors 
in the experiment is also included (×).  Solid lines indicate assumed linear 
relationships which should pass close to the centre point if this assumption holds.  
Experiments performed using a custom microwell filter plate (0.8 cm2) as described in 
Section 4.3.4. 
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Figure 4.4.  Interaction plot showing the measured variation of specific cake 
resistance with pH at ionic strengths of 100mM (●) and 200mM (■).  Data points 
represent the average from runs during a 25-1 factorial experiment.  The centre-point 
of the factors in the experiment is also included (×).  Solid lines indicate assumed 
linear relationships which should pass close to the centre point if this assumption 
holds.    Experiments performed using a custom microwell filter plate (0.8 cm2) as 
described in Section 4.3.4. 
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It is notable that from the factorial data it appears that the best filtration performance 

coincides with the worst transmission at the combination of pH 7 and 100 mM ionic 

strength.  A trade-off is thus likely to be required between the differing optimum 

values for protein transmission and permeate flux. 

 

 

4.4  Response surface experiments 
 

The factorial experiments described in Section 4.3 have focused in on the pH and 

ionic strength interaction as the important experimental space for further examination.  

The previous interaction plots from the screening experiments (Figures 4.3 and 4.4) 

suggest that whilst these areas may be of interest for the individual protein 

transmission and specific cake resistance responses, a trade-off between the two 

giving optimal process performance is unlikely to be located in the corners of the 

response surfaces.  Consequently an inscribed central composite design (CCD) design 

was selected to give more predictive power in the centre of the design space 

compared to the edges.  Response surfaces of protein transmission and specific cake 

resistance were generated using an inscribed CCD as described in Section 2.6.2. 

 

Based on the earlier factorial data, experiments here were operated in the absence of 

yeast extract, using the 0.22µm PVDF membrane under a 60 kPa transmembrane 

pressure difference. 

 

All experiments were carried out in parallel using the 24-well custom microwell filter 

plate (Section 3.2.1) according to the method described in Section 3.4.1.  Samples 

were prepared as described in Section 2.4.  In the same way as for the factorial 

experiments, the longer time permeate samples collected were assayed as described in 

Section 2.6.1.  The response surface was replicated with samples in the absence of 

lysozyme. 

 

The measured raw data, protein transmission and calculated specific cake resistance 

responses for each individual well are summarised in Tables C.2 and C.3 of 
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Appendix C.  These response surface data were then fitted to linear or quadratic 

models using the methods described in Section 2.8.4. 

 

4.4.1  Response surfaces for pH and ionic strength 

 

The measured variation in protein transmission due to pH and ionic strength changes 

within the CCD experimental space is shown in Figure 4.5.  The response surface 

shows a broad optimal transmission level (>95%) occurs at low pH and mid-range 

ionic strengths.  A clear interaction is shown since a large drop in transmission occurs 

(to <70%) at the combination of low ionic strength and high pH as previously 

suggested in the screening experiments (Figure 4.3).  The following quadratic model 

is used in Figure 4.5 to describe percentage protein transmission (Tp) as a function pH 

(pH) and ionic strength (I, mM) in the range pH 5 – 7 and 79.3 mM – 220.7 mM:  
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The corresponding specific cake resistance response surface from data collected in 

parallel in the same automated microwell experiments is shown in Figure 4.6(a).  

Again a clear interaction can be seen similar to that predicted from the factorial data 

(Figure 4.4).  At high ionic strength increasing pH increases cake resistance, whereas 

the opposite is true at low ionic strength.  Cake resistance decreases sharply towards 

low ionic strengths and high pH values where an area of low cake resistance and 

consequently high permeate flux can be seen.  The values of cake resistance here 

(some lower than 1013 m.kg-1) are much lower than those seen in Chapter 3 and 

correspond to the poorest transmission levels.  It is likely that the lysozyme is 

influencing the low cake resistance by forming part of the cake itself or influencing 

cake structure, which explains the low transmission.  This is confirmed by Figure 

4.6(b), which shows the variation in specific cake resistance with pH and ionic 

strength in the absence of lysozyme.  Little or no variation occurs due to pH (as 

described in Section 3.4.3) and cake resistance decreases with ionic strength.  No 

interaction is evident, since the response surface is mostly constant across the pH axis.    

The data is described by a linear model, since it gives a better fit than the quadratic  
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Figure 4.5. Response surface plot of a model describing protein transmission as a 
function of pH and ionic strength. Surface generated using an inscribed central 
composite design and applying a quadratic model fitted by multiple regression  
(R2

adj = 0.508).  Response surface model calculated as described in Section 2.8.5.  
Experiments performed using a custom microwell filter plate (0.8 cm2) as described in 
Section 4.4. 
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Figure 4.6. Response surface plots of models describing specific cake resistance as a 
function of pH and ionic strength. Surfaces generated using central composite designs 
and fitted by multiple regression: (a) in the presence of 2 g.L-1 protein (quadratic 
model, R2

adj = 0.901) and (b) in the absence of protein (linear model, R2
adj = 0.531).  

Response surface models calculated as described in Section 2.8.5. Experiments 
performed using a custom microwell filter plate (0.8 cm2) as described in Section 4.4. 
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model according to the adjusted R-squared values (Section 2.8.5.1).  Values of cake 

resistance in the absence of lysozyme are also consistent with the results in Chapter 3.  

Clearly the lysozyme is required to reach the low cake resistances seen in Figure 

4.6(a) and must directly influence the cake formation.  The following quadratic model 

is used in Figure 4.6(a) to describe specific cake resistance (α) in m.kg-1 as a function 

pH (pH) and ionic strength (I, mM) in the range pH 5 – 7 and 79.3 mM – 220.7 mM: 
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Comparing Figures 4.5 (protein transmission) and 4.6(a) (specific cake resistance) 

there are conflicting trends between the optimum operating conditions for high 

protein transmission and low specific cake resistance (high permeate flux).  A process 

trade-off is therefore required between high protein transmission at an acceptable 

permeate flux. 

 

4.4.2  Microfiltration window of operation 

 

By overlaying the two-dimensional contour plots derived from the response surfaces 

shown in Figure 4.5 and Figure 4.6(a) it is possible to visualise a window of operation 

(Woodley and Titchener-Hooker 1996; Zhou and Titchener-Hooker, 1999) where 

certain trade-off conditions are satisfied.  This overlay plot is shown in Figure 4.7.  

Excellent recovery of the target protein is a high priority in most bioprocess 

applications and so a minimum 95% transmission is chosen.  An acceptable specific 

cake resistance is considered to be below 8 × 1013 m.kg-1, corresponding to an average 

permeate flux of approximately 30 L.m-2.h-1 for a 1 h process.  The Window of 

Operation in which both these criteria are satisfied is highlighted in purple on Figure 

4.7.  In terms of experimental space it is small, but the pH and ionic strength are 

factors that can be accurately controlled.  Feed streams having an ionic strength of 

153 ± 8 mM and a pH of 5.5 ± 0.1 thus represent the optimum conditions for 

operation of the microfiltration process. 
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Figure 4.7. Overlay of the specific cake resistance (blue) and protein transmission 
(red) contour plots derived from the individual response surface models (Figures 4.5 
and 4.6).  Shaded area indicates feasible Window for Operation for the chosen 
optimum trade-off conditions (purple). Further discussion in Section 4.4.2. 
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4.5  Scale-up of optimum microfiltration conditions 
 

To demonstrate the scalability of the microwell data, experiments were carried out in 

and around the Window of Operation identified in Section 4.4.2 using a membrane 

cell with a filtration area of 13.2 cm2.  This is approximately 17 times the area of the 

custom microwell filter plate insert used in the previous response surface 

experiments.  Figure 4.8 shows the 5 chosen experimental verification conditions 

tested at laboratory scale labelled A-E.  If the microscale data are correct they will 

accurately predict the performance of the laboratory scale equipment and in addition 

the membrane cell will show that experiment C (pH 5.5, 153 mM) gives the optimum 

balance between protein transmission and specific cake resistance.  No point outside 

the window of operation should give both better transmission and flux behaviour than 

the optimum conditions (C).  Experiments were carried out as described in Section 

2.3.3, using feeds prepared as described in Section 2.4.  The custom microwell filter 

data are derived from the quadratic models fitted to the response surface data in 

Section 4.4 (Equations 4.1 and 4.2). 

 

Figure 4.9 shows the percentage improvement in the measured protein transmission 

and specific cake resistance for each experiment with reference to experiment C for 

the membrane cell and the same data predicted from the response surface models.  

The results clearly show that when the conditions deviate from the optimum levels the 

performance of the microfiltration process declines.  Where the transmission increases 

(B) there is a corresponding increase in the resistance to filtration and a decrease in 

flux.  Where the specific cake resistance and flux improves (A) there is an 

unacceptable reduction in transmission.  These results confirm that the process is best 

carried out within the Window of Operation defined by Figure 4.7. 

 

Figure 4.9 also shows that the microwell predictions show a close correlation to the 

membrane cell experiments and although variations are seen, it should be noted that 

the data shown here depends heavily on the values of transmission and cake resistance 

at C, against which the other data is compared.  The prediction of the optimum levels 

of pH and ionic strength are thus considered scalable from microwell to laboratory 

scale. 
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Figure 4.8.  Overlay plot of factor ranges in and around the optimum pH and ionic 
strength trade-off conditions (purple shaded area) tested at laboratory scale using a 
membrane cell (13.2 cm2).  Experiments described in Section 4.5 and subsequent 
results presented in Figure 4.9.  Contours as indicated on Figure 4.7. 
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Figure 4.9. Analysis of membrane cell experiments carried out in and around the 
optimum trade-off conditions.  Figures indicate the percentage improvement of (a) 
lysozyme transmission and (b) specific cake resistance in comparison to the predicted 
optimum, C.  Dark bars are the membrane cell (13.2 cm2) data and light bars are the 
custom microwell filter plate (0.8 cm2) predictions. Conditions for experiments A-E 
shown in Figure 4.8 and experiments performed as described in Section 4.5.  Pressure 
difference 60 kPa. 
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Figure 4.10 shows more detailed filtration characteristics for the optimum conditions 

of pH 5.5 and 153mM ionic strength using a Millipore 0.22µm PVDF membrane in 

the absence of yeast extract operated at 60kPa pressure difference.  Scale-up data 

from the membrane cell is presented alongside microscale predictions, calculated 

using Equations 4.1 and 4.2 and the scale up equations in Section 2.8.7.1.  The 

transmission starts low, as previously noted at the microscale in Section 4.3.2, and 

then rises above 95% to the levels predicted by the custom microwell filter plate.  The 

flux shows close correlation between the two scales and is above the values 

corresponding to the maximum specific cake resistance of 80 × 1012 m.kg-1.  In 

addition to the close  agreement of the dynamic variation of process performance at 

the optimum shown in Figure 4.9, the optimum conditions predicted at the microscale 

also scale-up to predict the protein transmission and flux during a laboratory scale 

membrane cell experiment. 

 
 

4.6  Summary 
 

The automated microscale normal flow microfiltration techniques eastablished in 

Chapter 3 have been combined here with factorial experimentation to identify the key 

factors and interactions which influence protein transmission and specific cake 

resistance during filtration of an E.coli-protein mixture.  Both permeate flux and 

protein transmission could be determined in parallel from the same microwell 

experiments, increasing the process insight that can be gained from each experiment. 

 

The initial factorial scouting experiments (Section 4.3) identified pH and ionic 

strength to be the most significant factors and showed the exisitance of a strong 2-

factor interaction (Figures 4.3 and 4.4).  The pH and ionic strength interaction was 

further investigated using response surface methodology (Section 4.4) and a Window 

of Operation was generated showing optimum operating conditions (Figure 4.7).  The 

pH and ionic strength values necessary to achieve a transmission above 95% and a 

specific cake resistance below 80 × 1012 m.kg-1 were pH 5.5 ± 0.1 and 153 ± 8 mM.    

The ability to rapidly perform the necessary experiments using only millilitres of feed 

material (288mL in total for scouting of 5 factors and response surface optimisation) 
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Figure 4.10. Scale-up of optimum microfiltration conditions showing permeate flux 
(●) and protein transmission (▲) during a membrane cell (13.2 cm2) experiment.  
Solid lines represent predictions from custom microwell filter plate (0.8 cm2) data 
using Equation 2.20. Dashed lines represent the minimum acceptable values selected 
for successful operation of the process. Experiments performed as described in 
Section 4.5. Pressure difference 60 kPa. 
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further confirms the utility of parallel microscale experimentation.  The application of 

DoE methodology enables a reduction in the number of experiments to be performed 

and also identifies factor interactions which are missed in conventional experimental 

approaches. 

 

Finally, the custom microwell filter plate specific cake resistance and protein 

transmission values predicted from the response surface models were shown to scale 

up by a factor of 17 to conventional laboratory scale equipment.  The results showed 

that the optimum permeate flux and protein transmission conditions achieved in the 

microwell could be replicated at a larger scale (Figure 4.10).  In addition, drops in 

process performance predicted at the microscale when process conditions deviated 

from the optimum were also observed at laboratory scale (Figure 4.9). 

 

In summary, the combination of experimental design and automated microwell 

experimentation has been shown to be capable of investigation, optimisation and 

scale-up of a complex separation step.  In Chapter 5, this utility of the combined DoE-

microwell microfiltration approach is applied to the investigation of a whole process 

sequence using multiple filtration operations and an industrially relevant product. 
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5.0 Automated microscale plasmid DNA purification 

process sequence 

 

 

5.1 Aim of the chapter 
 

The aim of this chapter is to illustrate the operation of an automated microscale 

process sequence and demonstrate that the results obtained are scaleable.  The specific 

objectives are as follows: 

 

• To apply the combination of statistical experimental design and automated 

microwell experimentation demonstrated in Chapter 4 to a whole 

bioprocess sequence. 

• To quantify the interdependancies and effects of multiple factors spread 

throughout 7 consecutive stages of an appropriate non-chromatographic 

process for plasmid DNA purification that might be used in industrial 

practice. 

• To illustrate that performance and key process trends in laboratory and pilot 

scale filtration equipment can be predicted from data generated at 

microscale.  

 

 

5.2 Plasmid DNA purification 
 

The potential application of plasmid DNA (pDNA) in the area of gene therapy and 

DNA vaccination has led to the need for scalable recovery and purification strategies.  

Large-scale purification of pDNA from clarified cell lysate has been attempted by a 

wide range of chromatographic techniques, such as ion-exchange, reverse-phase and 

affinity resins (Ferreira et al., 2000).  However, at large manufacturing scale (>10 m3) 

such chromatographic techniques might be prohibitively expensive due to the low 
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binding capacity of most resins for large pDNA molecules (Prazeres et al., 1999; 

Diogo et al., 2005). 

 

The continued threat of a bird flu pandemic (Abbott and Pearson, 2004) is driving the 

need for rapid production of a vaccine in sufficient quantities.  One viable option is 

the use of a pDNA vaccine which could be produced in large quantities using existing 

facilities (Hoare et al., 2005).  Investigating different pDNA purification operations 

along with their scale-up characteristics is of importance to gain insight into 

alternative process routes and the likely purity and yield of pDNA that could be 

obtained.  A suite of scaleable microscale unit operations would allow the rapid 

evaluation of multiple process options if coupled with appropriate liquid handling 

robotic platforms (Micheletti and Lye, 2006). 

 

This chapter will evaluate precipitation and adsorption based processes for the 

isolation of a pDNA vaccine, such as H5NI (Claas et al., 1998), using microscale 

normal flow filtration (NFF) as the solid-liquid separation method of choice.  Scale-up 

studies to investigate the ability of microwell filtration to predict up to pilot scale will 

also be carried out. 

 

5.2.1 Non-chromatographic process 

 

A typical process for a non-chromatographic pDNA purification strategy is shown in 

Figure 5.1.  More details about the individual unit operations are listed in Section 

2.4.2.  One of the main characteristics of the process is that the volume of process 

fluid remains relatively constant throughout, allowing the entire process sequence to 

be run at microscale without sample volumes falling to a level from which it is 

impossible to obtain accurate and reliable quantification of key process variables. 

 

The high purification duties carried out by chromatographic systems is achieved by 

using selective cetyltrimethylammonium bromide (CTAB) precipitation to capture the 

pDNA (Lander et al., 2002) and by polishing using hydrated calcium silicate lipid 

removal agent (LRA) to remove contaminants (Winters et al., 2003).  
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Figure 5.1. Overview of a non-chromatographic process for the production and 
purification of plasmid DNA.  The shaded area represents the process sequence 
examined in this chapter using microwell filtration (blue) and microwell mixing (red) 
operations.  CTAB = cetyltrimethylammonium bromide, LRA = lipid removal agent. 
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5.2.2 Automated microwell process 
 

A summary of the individual processes involved in the whole plasmid purification 

sequence is shown in Table 5.1.  Available methods for mimicking the large scale 

process using automated microscale techniques are also listed.  At the heart of the  

7-step process are the CTAB precipitation and LRA adsorption steps.  Both of these 

can be investigated using the microscale microfiltration technique established in 

Chapter 3 to determine the flux performance of solids removal / recovery steps and 

the yield and purity of the purified pDNA.  Along with microscale mixing operations, 

this allows a whole process sequence to be automated on the deck of the Tecan robotic 

platform (Section 2.3.2). 

 

One difficulty in adapting automated microwell operations to the purification process 

is the recovery of precipitate.  Separation of the precipitate by filtration is simple, 

subsequent recovery of the cake, however, is not easily achieved in an automated 

manner.  During the studies described in this chapter, the automated experiment was 

stopped and the cake was carefully removed manually.  Test experiments have been 

carried out demonstrating that the removal of these filter cakes is simply achieved by 

inverting the custom filter inserts and gently centrifuging.  Design and construction of 

appropriate centrifuge holder plates could allow the safe, automated and integrated 

removal of filter cake in the future.  This precipitate recovery stage also requires a 

flow through of buffer for quantification of cake resistance, but this is not a large 

departure from the full scale process since a washing step may often occur here to 

remove excess waste entrained in the cake. 

 

Cake resistance calculations developed in Chapter 3 are not directly applicable here 

when adapting the pDNA process to microscale.  This is due to the settling nature of 

the feeds involved which would skew the filterability profiles due to a higher solids 

challenge at earlier times, leading to inaccurate results.  The method adopted in this 

chapter therefore involves completion of the filtration and measurement of flux 

through a pre-deposited cake to determine the specific cake resistance.  The technique 

outlined in Section 3.3.1 for the quantification of membrane resistance is used to 

calculate the total cake, pre-coat and wire mesh resistance.  Assuming that the mesh 
 

 162



5.0  Results
 

Table 5.1.  Summary of the individual unit operations involved in a typical non-
chromatographic purification process for plasmid DNA showing factors and 
process decisions that need to be investigated.  Chosen factors to investigate in this 
chapter are shown in bold. 
  

Unit 
Operation 

Automated Microscale 
Process Mimic 

Factors and Process Decisions 
Requiring Investigation 

Fermentation Incubated, shaken microwell 
plate 

Temperature, media composition, 
feed strategy, time, oxygen transfer, 
mixing conditions, inoculation 
conditions. 

Cell Recovery Centrifuged microwell plate or 
custom filter plate 

Choice of operation, centrifuge type, 
rotational speed, flowrate, additions, 
concentration factor, washing.  

Resuspension Difficult to achieve due to 
handling of cell pastes. 

Buffer conditions, mixing conditions, 
final concentration. 

Lysis Difficult to achieve due to high 
viscosities involved and 
mixing requirements 

Lysis buffers, mixing speed, addition 
rates, mixing times. 

Lysate 
Clarification 

Custom filter plate Filter aid type, filter aid 
concentration, permeate recycling, 
pre-coat thickness and type, settling. 

CTAB 
Precipitation 

Shaken microwell plate Mixing speed, CTAB concentration 
and solution conditions, addition rate, 
mixing time, two cut process. 

Precipitate 
Recovery 

Custom filter plate and 
centrifugation for solids 
recovery 

Filter aid type, filter aid 
concentration, washing, pre-coat 
thickness and type. 

Precipitate 
Dissolution 

Shaken microwell plate Salt concentration, salt type, addition 
rate, mixing speed, mixing time. 

Precipitate 
Removal 

Custom filter plate Cake washing, extra filter aid 
addition, pre-coat thickness and type. 

LRA Adsorption Shaken microwell plate or 
packed adsorption plate 

LRA concentration, time, buffer 
conditions, addition rate, temperature, 
mixing conditions, batch or flow-
through. 

LRA Removal Custom filter plate Filter aid additions, pre-coat thickness 
and type, partial settling. 

Final Polishing Limited solutions Factors dependant on process choices 
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and pre-coat resistances are negligible compared to the cake resistance, Equation 1.17 

for the cake resistance can be combined with Equation 3.2 to calculate the specific 

cake resistance, α (m.kg-1): 

 

 
ctVV

dtPA

0

2 .

μρ
α ∫Δ=  (5.1) 

 

The following symbols relate to the properties of the feed during deposition of the 

cake: ρ0 is the mass of solids per unit volume of liquid (kg.m-3), Vc is the liquid 

volume in the original feed sample (m3).  The following symbols relate to the 

properties during flow-through evaluation of the cake resistance:  is the area 

under the pressure-time profile generated (N.s.m-2), µ is the viscosity of the solution 

used for flow through the deposited cake (N.s.m-2) and Vt is the flow-through 

permeate volume.  A is the effective filtration area, common to both cake deposition 

and flow-through (m2).  If the viscosity of the permeate generated during cake 

deposition and the viscosity of the flow-through solution are approximately equal then 

the modified cake filtration constant, Kc' (s.m-2), can be used for scale-up when 

evaluated as follows: 

∫ Δ dtP.
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Details of the appropriate flow-through solutions used at the various microscale 

filtration steps are given in Section 2.5.2.  The difficulties in evaluating ρ0 for the 

complex lysate feed necessitates the use of average flow-through flux, normalised to 

the equivalent flux at 60 kPa, as the measured response for lysate clarification.  This 

does not interfere with accurate scale-up since Equation 5.2 does not require 

determination of the solids mass content. 

 

The approach adopted for sample collection is to only assay the final product material 

at the end of the entire process sequence.  This allows volumes to be maintained 

during the whole process sequence and prevents the need for sacrificial experiments 

run only up until a specific point in the process.  This also has the advantage that it 
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limits the analysis burden and total number of experiments significantly.  There is 

some risk that certain process combinations might cause significant reductions in 

product in the middle of the process that might be difficult to pick up.  However, the 

coding of the experiments (described in Section 2.7.1.2) will be likely to reveal the 

exact factor responsible for a failure, even if it occurs in the middle of the process. 

 

Finally, selections of some of the factors or process decisions that can be investigated 

in this whole process sequence are also listed in Table 5.1.  This is by no means a 

comprehensive list and there are over 50 items listed to investigate.  Experimental 

design (as used in Chapter 4) coupled with high-throughput automated microscale 

techniques (as established in Chapter 3) will be key to enabling the investigation of all 

these variables and their interactions across individual unit operations in the sequence.  

Prior process knowledge must also play a part to focus these designs and to select the 

most appropriate factors and ranges at each step. 

 

5.2.3 Factorial design 

 

The large number of experiments necessary to investigate a whole process sequence 

clearly calls for Design of Experiments (DoE) methods to be employed.  The chosen 

factors highlighted in Table 5.1 for investigation are detailed, with their coding and 

selected factor ranges in Table 5.2.  The fractional factorial design employed is 

described in Section 2.6.1.2.  The chosen ranges expand on existing experience of 

pilot scale work (Hoare et al., 2005) and try to vary the nature of the process streams 

to demonstrate that the microwell approach can correctly identify quantitative 

differences in process performance.  The Celpure filter aid used in this design is 

available in discrete grades corresponding to the coarseness of the particles.  The 

Celpure grade number is a quantification of permeability in millidarcies, but there is 

no intermediate grade and therefore the factor is qualitative, with the centre-point 

using a 50/50 mixture of each grade. 

 

As can be seen in Table 5.3, a factorial design for a process sequence forms an 

approximately pyramidal structure.  The key responses measured throughout the 
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Table 5.2. Summary of the factors and their chosen levels for the plasmid DNA 
process sequence 28-2 factorial experiment.  Experiments performed as described in 
Section 2.5.2, according to the factorial design in Section 2.7.1.2. 

 
 

Factor Factorial 
Code 

Low Value 
(-1) 

High Value 
(+1) 

Centre-Point 
(0) 

Celpure Grade A P65 P300 50% P65 / 
50% P300 

Lysis 
Neutralisation 
Mixing Speed 

B 400 rpm 1200 rpm 800rpm 

Celpure 
Concentration for 
Lysis Clarification 

C 30 g.Llysate
-1 50 g.Llysate

-1 40 g.Llysate
-1 

Number of 
Permeate Recycles 

During Lysis 
Clarification 

D 0 2 1 

Celpure 
Concentration for 

Precipitate 
Removal 

E 2 g.Lliquid
-1 10 g.Lliquid

-1 6g.Lliquid
-1 

Dissolution Mixing 
Speed F Low High Medium 

LRA Concentration G 6.7 g.Lliquid
-1 33.3 g.Lliquid

-1 20.0 g.Lliquid
-1 

LRA Adsorption 
Time H 2 h 24 h 13 h 
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Table 5.3.  Summary of measured responses and illustration of the pyramidal nature 
of the factorial design used within the plasmid DNA process sequence study.  
Experiments performed as described in Section 2.5.2, according to the factorial design 
in Section 2.7.1.2. 
 
 

Response Active Factors Factorial Analysis Error Estimate 

Lysis Clarification 
Flux ABCD 24 4 Replicates 

Lysate Clarification ABCD 24 4 Replicates 

Precipitate 
Recovery Specific 
Cake Resistance 

ABCDE 25 Duplicates 

Precipitate 
Removal Specific 
Cake Resistance 

ABCDEF 26 Centre points 

LRA Removal 
Specific Cake 

Resistance 
ABCDEFGH 28-2 Centre points 

Plasmid Yield ABCDEFGH 28-2 Centre points 

Plasmid Purity ABCDEFGH 28-2 Centre points 
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process sequence are: the flux and percentage clarification for the lysis clarification 

step; the specific cake resistance during precipitate recovery, precipitate removal and 

LRA removal; and the plasmid process yield and purity.  The early stage responses are 

governed by simple factorial designs with a high number of repeats producing the 

necessary material for the later stages in the sequence.  As the process continues the 

number of replicates reduces and the complexity of the factorial analysis increases.  A 

greater understanding of variation is generated towards the start of the process, where 

there are more degrees of freedom for error estimation.  In the case of pDNA this 

helps due to the variable nature of the lysate feed which is at high solids concentration 

and difficult to accurately manipulate.  The larger number of repeats required for 

upstream processes in a factorial design for process sequences would be conducive to 

the use of miniature bioreactor technologies (Lamping et al., 2002; Kumar et al., 

2004; Gill et al., 2008a) to feed the microwell downstream processes sequence. 

 
 

5.3 Results of microscale factorial process sequence experiments 

 

5.3.1 Lysis clarification 

 

Following fermentation the cell lysis step (Figure 5.1(a)) requires a delicate balance 

between high stirrer speed to maintain homogeneity in a complex, viscous solution 

and a low tip speed to limit damage to the shear labile plasmid (Hoare et al., 2005).  

The cell lysis experiments and subsequent clarification tests are described in Section 

2.4.2.2 and the raw data is detailed in Appendix D.  Visual observations highlighted 

that changes in the lysis mixing speed also impacted very noticeably on the nature of 

the solid flocs that were collected.  At the lower stirrer speed (400 rpm) the flocs were 

large and a substantial amount floated to the liquid surface when given time to settle.  

In contrast the higher mixing speed (1200 rpm) caused smaller, more defined 

spherical flocs to form which mainly settled at the bottom of the liquid.  The centre-

point speed generated a mixture between these situations with a variation in floc 

density.  The clear difference in floc size and density would obviously impact on the 

filtration characteristics of the lysate.  The filter aid used is denser than water, so it 

settles in a similar fashion to the flocs obtained at the medium and high stirrer speeds. 
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In order to ensure settling did not occur during microscale filtration to form a layered 

cake, lysate feed was mixed using a magnetic stirrer to maintain homogeneity and 

then pipetted as three separate 1 mL aliquots into the wells whilst a vacuum was 

already applied.  Instantaneous filtration, separated into three additions, helped to 

reduce the time available for settling and create an even cake.  This is a distinct 

advantage of the custom filter plate combined with the Tecan robot in comparison to 

traditional small scale laboratory equipment such as the membrane cell which has 

been shown to poorly predict industrial normal flow filtration equipment due to an 

uneven distribution of solids along the axis of flow (Reynolds et al., 2003). 

 

Figure 5.2 shows the effects and interactions for the response detailing permeate flux 

through the filter cake generated during the lysate clarification step.  Each effect or 

interaction greater in magnitude than the dashed lines is statistically significant.  

Whilst the magnitude can indicate the relative importance of an effect or interaction it 

is also dependant on the chosen factor ranges just discussed.  The interpretation of the 

main effects is summarised below: 

 

• A higher Celpure permeability grade (A) generates a much better flux and is 

therefore more suited as a filter aid for the solids generated in the lysis 

experiments. 

• High stirrer speed during neutralisation (B) gives a clear higher flux which 

is due to the defined and dense nature of the flocs described above. 

• A high concentration of Celpure (C) gives a small increase in flux.  This 

may be due to excess Celpure merely increasing the thickness of the cake 

and no longer contributing to the reduction in specific cake resistance. 

• Recycling the permeate (D) causes a limited reduction in flux which must 

be compared to any improvement in clarification or subsequent processes. 

 

In summary it is clear that the key factors are Celpure grade and neutralisation stirrer 

speed.  The use of Celpure P300 and a high stirrer speed during lysis neutralisation is 

important to generate high fluxes during lysis clarification. 
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Figure 5.2. Effect and interaction plot for measured permeate flux during the lysis 
clarification step of a plasmid DNA recovery process. Factors investigated are as 
follows: A = Celpure grade, B = neutralization stirrer speed, C = Celpure 
concentration, D = number of permeate recycles. Experiments performed using a 
custom microwell filter plate (0.8 cm2) as described in Section 5.3.1. The dashed lines 
represent 95% confidence intervals inside which effects and interactions are not 
statistically significant. 
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The clearly significant AB and BC two-factor interactions shown in Figure 5.2 are 

described in more detail in Figures 5.3 and 5.4.  The interaction between Celpure 

grade and lysis neutralisation speed (AB) is a simple combination interaction as 

shown in Figure 5.3.  The positive effects on flux of each factor are increased at their 

highest levels.  This demonstrates that Celpure P300 shows a greater improvement in 

compatibility compared with Celpure P65 for the morphology of the flocs from the 

high lysis neutralisation stirrer speed.  Celpure P300 is the more appropriate grade for 

lysis clarification at all process combinations. 

 

The interaction of lysis neutralisation stirrer speed and Celpure concentration (BC) is 

more interesting.  Figure 5.4 shows that an increase in Celpure concentration increases 

the flux for the more complex low stirrer speed lysate due to the need for more filter 

aid to reduce the specific cake resistance.  At the high stirrer speed, however, the 

smaller, more defined and rigid flocs that are formed mean that increased Celpure 

concentration shows limited change in flux performance.  It is likely that the filter aid 

is both decreasing the specific cake resistance and also increasing the amount of total 

cake mass, with these opposing changes balancing out to give a similar flux.  These 

results clearly demonstrate the impact of process variables in one operation impacting 

on the performance of subsequent steps, specifically the material requirements for it. 

 

Interactions BD and CD and ABD are only marginally significant and small in 

comparison to the major effects.  They are therefore not examined further here.  The 

interactions do not overturn the overall trends of the main effects and as suggested in 

Figure 5.2, the best flux data point is achieved with 50 g.Lliquid
-1 of Celpure P300, a 

lysis mixing speed of 1200 rpm and no permeate recycle (see Table D.1 in Appendix 

D). 

 

Figure 5.5 shows the calculated effects and interactions for the percentage lysate 

clarification response.  Percentage clarification was calculated as detailed in Section 

2.8.6.  Again, ignoring those that are marginally significant, the major effects and 

interactions greater in magnitude than the confidence intervals (dashed lines) are the 

number of recycles (D) and its interaction with Celpure concentration (CD).  The 

impact of recycling is greater at the lower concentration of Celpure, where there is  
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Figure 5.3.  Interaction plot showing the variation of measured permeate flux at lysis 
clarification as a function of mixing speed during lysis neutralisation, using Celpure 
P65 (●) and Celpure P300 (■) filter aids. Data points represent the average from 
replicated runs during a factorial experiment.  The centre-point of the factors in the 
experiment is also included (×).  Solid lines indicate assumed linear relationships 
which should pass close to the centre point if this assumption holds.  Experiments 
performed using a custom microwell filter plate (0.8 cm2) as described in Section 
5.3.1. 
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Figure 5.4.  Interaction plot showing the variation of measure permeate flux at lysate 
clarification with Celpure filter aid concentration following a lysis neutralisation step 
at mixing speeds of 400rpm (●) and 1200rpm (■).  Data points represent the average 
from replicated runs during a factorial experiment.  The centre-point of the factors in 
the experiment is also included (×).  Solid lines indicate assumed linear relationships 
which should pass close to the centre point if this assumption holds.  Experiments 
performed using a custom microwell filter plate (0.8 cm2) as described in Section 
5.3.1. 
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Figure 5.5. Effect and interaction plot for measured percentage clarification during 
the lysis clarification step of a plasmid DNA recovery process. Factors investigated 
are as follows: A = Celpure grade, B = lysis neutralization stirrer speed, C = Celpure 
concentration, D = number of recycles. Experiments performed using a custom 
microwell filter plate (0.8 cm2) as described in Section 5.3.1.  The dashed lines 
represent 95% confidence intervals inside which effects and interactions are not 
statistically significant. 
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less total filter aid in the cake.  Recycling permeate at the lower Celpure concentration 

does lead to a statistically significant increase in clarification, however the average 

magnitude of this increase is only 0.01% at the lower Celpure concentration.  Unless 

the small increase in solids caused by not recycling the permeate effects subsequent 

filtration steps, then the process already achieves adequate clarification throughout the 

experimental space investigated and will operate quicker without the decrease in flux 

and extra throughput required to recycle the permeate. 

 

5.3.2 Precipitation process operations 

 

The CTAB precipitation process (Figure 5.1(b)) was successfully carried out in 

microwells and microwell filtration was used to recover the precipitate (Figure 

5.1(c)).  The precipitate was then selectively redissolved in microwells (Figure 5.1(d)) 

and microwell filtration was used a second time to remove unwanted precipitate 

(Figure 5.1(e)).  The details of these methods are described in Sections 2.4.2.3 and 

2.4.2.4. 

 

The testing of filtration performance for these two steps was not possible due to the 

extremely low resistance of the precipitate cakes.  The cake was not capable of 

holding any test fluid in place before a vacuum was applied since the force of gravity 

alone was capable of relatively fast permeate rates, ensuring that measurement of flux 

under an applied pressure was not possible.  The level of the cake resistance is 

therefore so low that processing the precipitate becomes more a question of solids 

content as the back pressures generated will not be significant.  The possibility also 

exists that the precipitate can be processed without the need for filter aid.  In any case, 

the process knowledge gained by microwell evaluation of CTAB precipitation 

suggests this is a robust process and will not cause filtration problems at large scale.  

This is useful as it allows development effort to be focused on the more challenging 

unit operations. 

 

A method for the determination of precipitate cake resistance was subsequently 

developed and tested for the precipitation recovery phase.  The results of that analysis 

are detailed in Appendix E. 
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5.3.3 LRA removal 

 

Host cell DNA contaminants generated during the cell lysis step can be selectively 

adsorbed onto hydrated calcium silicate LRA (Figure 5.1(f)) since the linear 

fragments have a greater affinity than the conformationally constrained supercoiled 

pDNA (Winters et al., 2003).  Once this purification step has taken place the LRA, 

loaded with the contaminant DNA, is removed by filtration (Section 5.1(g)) to give a 

purified pDNA solution.  These experiments are described in Section 2.4.2.5. 

 

The DNA-laiden LRA suspensions proved to be much more difficult to filter than the 

protein precipitates described in Section 5.3.2.  Despite being rigid particles in a 

comparatively clean solution, they displayed modified cake filtration constants of the 

same order of magnitude to the lysate, suggesting similar flux characteristics.  The 

factorial analysis of the measured specific cake resistance response is shown in Figure 

5.6. 

 

It shows that almost all effects and interactions are significant.  Before assigning 

conclusions to these values, the analysis as a whole should be considered.  There are 

multiple 2-factor interactions that appear to be higher in magnitude than the relevant 

main effects.  A more plausible explanation is that variability at the factorial 

combinations is underestimated by the centre points.  There are at least 23 different 

two or three-factor interactions that are higher in magnitude than all the main effects 

except F and G.  Pooling the higher order interactions to estimate error is an accepted 

approach – although this must be an a priori decision based on process knowledge.  

However, were this approach to be used then it is clear that all interactions and 

effects, except for LRA concentration (Factor G), would no longer be significant.  

Regardless of the level of error, the concentration of LRA dominates process 

performance in comparison to the conditions used in the previous processing steps (as 

represented by Factors A-F) since the main effect for LRA concentration is 4.4 times 

greater in magnitude compared to the nearest other effect.  The negative value of this 

main effect shows that specific cake resistance decreases significantly with increasing 

LRA concentration.  This suggests that the LRA is acting as a filter aid.  Either 

fouling particles still present in the feed are further dispersed throughout a rigid LRA 
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cake, or the LRA with bound nucleic acid has a greater resistance to flow and this is at 

a lower proportion the higher the LRA concentration. 

 

Problems were caused in this experiment by the use of LRA as a pre-coat.  There was 

some unexpected passage of LRA through the 22-26 µm wire mesh (see section 2.3.1) 

during the main filtration run and this may have led to the variation seen as well as the 

poor assay performance outlined in the following section.  Some wire mesh discs 

appeared to be clogged with LRA after filtration.  This observation was made after the 

custom inserts were dismantled for cleaning and it was not possible to assign these 

observations to particular experiments.  It is possible that this added to the variability 

of the process and may potentially not have been seen with the 8 out of 72 

experiments that were run at the centre-points used for error estimation.  These centre-

points were carried out at intermediate time (Factor H) and were therefore carried out 

in a separate block to the other data. 

 

The use of LRA as a pre-coat may have influenced the results of the factorial analysis, 

but it did not prevent discovery of a clear reduction in specific cake resistance at 

higher concentrations of LRA.  This response was further investigated during scale-up 

studies (Section 5.4.2) using Celpure P300 as a pre-coat. 

 

5.3.4 Overall process performance: analysis of final product quality 

 

The quantification of product yield and purity was difficult.  The isopropanol 

precipitation method employed is unable to remove the small levels of dissolved LRA 

that had permeated through the final filtration step (see Section 5.3.3).  This may have 

caused the low quality of agarose gels generated.  Other contributing factors may have 

led to the resulting poor gels such as the concentration of standards and general 

quality of the gel cast.  There is therefore limited data and a full factorial analysis of 

product pDNA yield and purity responses could not be performed.  pDNA is certainly 

present following the isopropanol precipitation in all samples since a visible pellet 

was formed, but the gels did not show clearly the relative content or intensity of the 

DNA species expected (genomic DNA, supercoiled pDNA, open-circular pDNA, 
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linear pDNA).  Details of these analytical techniques are in Sections 2.5.2 and 2.5.3.  

Example gels and further discussion can be found in Section D.3 of Appendix D. 

 

Reliance on a robust assay technique makes microscale automated experiments 

subject to failure when the assay does not work as expected.  Spare samples can not 

easily be kept due to the small volumes involved.  Improvements and tests, or 

alternatives to the assay such as anion exchange HPLC (Winters et al., 2003), are 

required in the future.  A sacrificial approach to the microscale process could have 

been used where many more experiments are performed in parallel but some 

sacrificed for analysis throughout the process.  This would have given more 

opportunity for successful analysis but also increased the burden on the number of 

experiments (1224 individual microscale operations as opposed to 504) and especially 

the assay numbers (432 as opposed to 72).  In such a detailed and long process 

sequence it is important to avoid putting strain on the analytical methods and causing 

the assay to be a bottleneck for microscale operations. 

 

 

5.4 Scale-up of the key filtration steps 
 

Scale-up experiments were carried out for the key filtration steps of lysis clarification 

and LRA removal, as determined by microscale (0.8 cm2) filtration.  Two devices 

were used: a scaled down rotating vertical leaf filter (RVLF) device (9 cm2) which is 

detailed in Section 2.3.4 and a pilot scale candle filter (120 cm2) which is detailed in 

Section 2.3.5. 

 

All scale-up calculations are made using the modified cake filtration constant, Kc', 

calculated as described in Section 5.2.2 and applying the scale-up equations detailed 

in Section 2.8.7. 

 

5.4.1 Lysis clarification scale-up 

 

The microwell approaches adopted to limit settling of the filter cake and layering that 

were detailed in Section 5.3.1 ensure that the resistance to filtration is not 
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overestimated and accurate scale-up can be achieved based on microscale results.  

Figure 5.7 shows how the data carefully generated from the custom microwell filter 

plate (Appendix D, Equation 5.2, Equations 2.23 and 2.20) can both scale-up and 

predict different formats that are better suited to dealing with high solids 

concentration feeds.  The lysis carried out for both microscale and RVLF experiments 

used the same equipment and scale, as detailed in Section 2.4.2.2. 

 

The permeate flux data shown is taken from a filtration run using the rotating vertical 

leaf filter (RVLF) scale-down device and predictions from the custom microwell filter 

plate data.  The best conditions from the microscale scouting experiments (Section 

5.3.1) were used for scale-up studies.  The lysis neutralisation speed used was 1200 

rpm, with 50 g.Lliquid
-1 of Celpure P300.  The permeate was not recycled.  A constant 

flux is maintained, as predicted by the microscale data, for the majority of the 

filtration until it begins to drop off at approximately 600 seconds.  This is due to 

fluctuations in pressure which caused the peak pressure to exceed 150 kPa and the 

control method employed which reduced the flowrate to compensate.  This is 

therefore an artefact of the pump used and not an indication of poor scalability. 

 

The pressure rises more quickly than predicted in the initial phase of the experiment 

until about 250 seconds.  This is due to the mixing in the RVLF device which causes 

the transfer from filtering pre-coat to filtering lysate feed to become gradual rather 

than immediate.  The microscale prediction shown is made on the assumption of no 

mixing between the fronts of the two feed solutions.  After this period the custom 

filter plate prediction shows very good correlation with the RVLF pressure profile all 

the way until the reduction in flowrate previously explained which overcompensates 

for the increase in pressure. 

 

5.4.2 LRA removal scale-up 

 

Experiments performed in the microscale factorial experiment used LRA as a precoat, 

although this was not properly retained by the mesh support as described previously in 

Section 5.3.3.  Large scale experiments switched to the use of Celpure 300 as a filter 

aid and additional experiments were carried out at the microscale to use for scale-up 
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Figure 5.7. Flux and pressure profiles for lysis clarification in a rotating vertical leaf 
filter scale-down device (9 cm2).  Solid lines represent the custom microwell filter 
plate (0.8 cm2) predictions according to Equations 2.23 and 2.20. Error bars for the y-
axis represent one standard deviation (n>x) over the range denoted by the x-axis bars. 
Experiment carried out as described in Sections 2.5.3.2 and 5.4.1. 
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evaluation.  Different values of LRA concentration were chosen for study and the 

microscale data is compared in Figure 5.8.  Note that the factorial run data is averaged 

from all different combinations of the other factors listed in Table 5.2, which explains 

the high variability.  The two sets of results match well and show a relationship 

between cake resistance and LRA concentration which is consistent with the action of 

LRA as a filter aid.  Also included in Figure 5.8 is the modified cake filtration 

constant (Kc'), which is used to calculate the rate of pressure increase for scale-up 

calculations (Section 2.8.7).  The decrease in specific cake resistance is not sufficient 

to give a meaningful reduction in Kc' over the range tested during the factorial 

scouting experiments, but the factorial data predict the potential reduction which is 

indeed seen at 50g.Lliquid
-1.  This suggests that a slower increase in pressure will be 

seen at large scale at the higher concentration and is the reason that 10 g.Lliquid
-1 and 

50 g.Lliquid
-1 concentrations were selected.  Details of the generation of feed for the 

LRA scale-up experiments are given in Section 2.5.3 (RVLF) and Section 2.5.4 

(candle filter).  The filtration equipment was operated as described in Section 2.3.4 

(RVLF) and Section 2.3.5 (candle filter). 

 

5.4.2.1 RVLF scale-up 

 

Figure 5.9 shows the RVLF scale down filter device performance for 10 g.Lliquid
-1 of 

LRA adsorbent in a plasmid DNA solution.  The data shows excellent correlation with 

the predictions from the custom microwell filter plate, especially considering that the 

volumetric scale up factor is 250.  The LRA is filtered to a throughput in excess of  

800 L.m-2 and the pressure increases to the set upper limit of 150 kPa after 

approximately 200 seconds of filtration.  After this point the flux decays according to 

filtration theory and the microwell predictions. 

 

The corresponding data for 50 g.Lliquid
-1 of LRA in the feed suspension is shown in 

Figure 5.10.  The microscale filter plate underpredicts the increase in pressure at the 

higher concentration, however it still predicts the distinct difference in cake resistance 

between the two concentrations.  Since the rate of pressure rise is not predicted, the 

corresponding time that the RVLF reaches 150 kPa and the flowrate is reduced to 

compensate is much shorter than predicted. 
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Figure 5.8. Measured specific cake resistance (■,●) and modified cake filtration 
constant (---) values for LRA removal from a plasmid DNA solution at varying LRA 
concentrations. Data is taken from two different sources for comparison: a factorial 
experiment with many other different factors using LRA as a pre-coat (■,) and 
separate experiments carried out with Celpure P300 as a pre-coat (●, ). Solid line is an 
exponential line of best fit of the form y = aebx (R2 = 0.91).  Experiments carried out 
as detailed in Section 5.4.2 and Section 5.3.3. 
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Figure 5.9. Flux and pressure profiles for LRA adsorbant (10 g.Lliquid

-1) removal from 
a plasmid DNA solution in a rotating vertical leaf filter scale-down device (9 cm2).  
Solid lines represent the custom microwell filter plate (0.8 cm2) predictions according 
to Equations 2.23 and 2.20. Error bars for the y-axis represent one standard deviation 
(n=11) over the range denoted by the x-axis bars. Experiment carried out as described 
in Sections 2.5.3.7 and 5.4.2.1. 
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Figure 5.10. Flux and pressure profiles for LRA adsorbant (50 g.Lliquid

-1) removal 
from a plasmid DNA solution in a rotating vertical leaf filter scale-down device 
(9 cm2).  Solid lines represent the custom microwell filter plate (0.8 cm2) predictions 
according to Equation 2.23 and 2.20. Error bars for the y-axis represent one standard 
deviation (n=11) over the range denoted by the x-axis bars.  Experiment carried out as 
described in Sections 2.5.3.7 and 5.4.2.1. 
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The scale-up factor in terms of filtration area is just over 11, however in terms of 

volume the process has been scaled by a factor of 65 (50 g.Lliquid
-1) and 250 

(10g.Lliquid
-1).  In addition the data has been scaled from a simple constant pressure 

vertical flow through NFF process to a horizontal constant flow system with a rotating 

chamber. 

 

5.4.2.2 Candle filter scale-up 

 

Both the custom microscale filter plate and the RVLF data were used for comparison 

to the candle filter performance.  Scale-up calculations were carried out using 

Equation 2.23.  For the RVLF the same equation was applied to the straight line 

portions pressure profiles in Figures 5.9 and 5.10 in order to calculate the necessary 

modified cake filtration constant values for the feeds required to complete the scale-up 

calculations. 

 

Figure 5.11 shows the candle filter device performance for 10 g.Lliquid
-1 of LRA 

adsorbent in a plasmid DNA solution.  An initial drop in flux is seen in all the candle 

filter data since there is dead volume on the filtrate side.  The flux recovers well 

before significant product filtration begins and the pump was fully calibrated.  The 

pressure data shows excellent correlation with the predictions from the custom 

microwell filter plate at a volumetric scale up factor of over 2000.  At this 

concentration the RVLF scale-down device appears to not scale particularly well but 

the calculated cake resistances are still relatively close. 

 

The corresponding data for 50 g.Lliquid
-1 of LRA is shown in Figure 5.12.  Once again 

there is drop in flux caused by the large dead volume.  Due to the high amount of 

solids the candle filter cannot process as much volume of feed, making cake volume 

more important than pressure or time in limiting the process.  At this LRA 

concentration it is the RVLF device that shows more accurate scale up compared to 

the microscale data.  Note should be taken that the candle filter runs required larger 

volumes than the other scales and were carried out on different dates using larger 

scale equipment during mixing steps as described in Section 2.5.4 (compared to 

Sections 2.5.2 and 2.5.3). 
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Figure 5.11. Flux and pressure profiles for LRA adsorbant (10g.Lliquid

-1) removal from 
a plasmid DNA solution in a candle filter (120 cm2).  Solid lines represent the custom 
microwell filter plate (0.8cm2) predictions and dashed lines represent the RVLF 
(9 cm2) predictions, both according to Equation 2.23. Error bars for the y-axis 
represent one standard deviation (n=11) over the range denoted by the x-axis error 
bars. Experiment carried out as described in Sections 2.5.4.7 and 5.4.2.2. 
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Figure 5.12. Flux and pressure profiles for LRA adsorbant (50g.Lliquid

-1) removal from 
a plasmid DNA solution in a candle filter (120cm2).  Solid lines represent the custom 
microwell filter plate (0.8cm2) predictions and dashed lines represent the RVLF 
(9 cm2) predictions, both according to Equations 2.23. Error bars for the 
y-axis represent one standard deviation (n=11) over the range denoted by the x-axis 
error bars. Experiment carried out as described in Sections 2.5.4.7 and 5.4.2.2. 
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The scale-up factors in terms of filtration area for the microscale custom filter plate to 

the candle filter is 150, however in terms of volume the process has been scaled by a 

factor of 600 (50 g.Lliquid
-1) and 2040 (10g.Lliquid

-1).  In addition the data has been 

scaled from a simple constant pressure vertical flow through NFF process to an 

upflow candle filter with a more complicated flow pattern. 

 

5.4.3 Scale-up summary 

 

The trend for reducing cake resistance at higher concentration is repeated at all the 

scales.  Figure 5.13 shows the striking difference in specific cake resistance between 

the two concentrations tested and the agreement of all three scales of filtration 

equipment.  Scale-up of flux and pressure behaviour is not shown to be perfect at such 

large scale-up factors, but this figure illustrates that the trend is repeated upon scale-

up allowing small scale results to focus future large scale tests. 

 

The complexity of the lysate feed would have caused problems for conventional 

laboratory scale normal flow filtration devices due to the settling nature of the feed 

(Reynolds et al., 2003).  In this work both the lysate and LRA results from the 

microscale are scaled successfully without any issues relating to the settling of the 

feeds under gravity and stratification of the cake formed. 

 

The lysate clarification and LRA removal steps are the key filtration problems posed 

by this process sequence.  Further investigation to optimising these steps is required at 

both microscale and pilot scales.  The sizing and costing of filtration equipment for 

this process will be dominated by these two processes. 

 

 

5.5 Summary 

 

A whole process sequence involving 7 individual process steps (4 filtration based) has 

been run using automated microscale techniques using experimental design to focus 

the experiments. A total of 72 combinations of 8 different process parameters in 

parallel, collecting several hundred scaleable data points and highlighting the
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Figure 5.13. Specific cake resistance values for LRA removal at concentrations of 
10g.Lliquid

-1 (dark bars) and 50g.Lliquid
-1 (light bars).  Results from various scales 

compared: custom microwell filter plate (0.8cm2), RVLF (9 cm2), candle filter 
(120cm2). Experiments carried out as described in Section 5.4.2. 
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important factors and most difficult processing steps required to generate purified 

plasmid DNA through a non-chromatographic process (Figures 5.2 to 5.6, Appendix 

D). 

 

Microscale tests were able to predict large scale performance at volumetric scale-up 

factors up to 2040 (Figures 5.9 to 5.12).  Scale up predictions were made from the 

custom microwell filter plate (0.8 cm2) to a rotating vertical leaf filter (9 cm2) and a 

candle filter (120 cm2) where the flow is directed upwards.  All these represent a 

significant change in format as well as scale. 

 

The general trends of performance highlighted by the microwell techniques are shown 

to be scaleable through laboratory scale to pilot scale filtration (Figure 5.13).  This 

illustrates that the microscale techniques developed in this thesis are capable of 

determining quantitative, scaleable data from whole microwell process sequences. 



6.0  Conclusions
 

 

6.0  Overall conclusions and future work 
 

 

6.1 Overall conclusions 
 

A high throughput method for the study of normal flow microfiltration operations has 

been established using a custom designed 8-24 well filter plate (0.8 cm2) and a 

commercial 96-well Multiscreen filter plate (0.3 cm2).  Integration of this new 

approach with a typical robotic platform has enabled automation of the experimental 

procedure and led to the following main conclusions: 

 

•  Membrane resistance values can be accurately quantified using either filter 

plate design (Table 3.1).  The accuracy of these measurements has helped to 

determine that plate position does not affect experimental results and 

applied pressure difference does not vary across either plate (Figure 3.3, 

Section 3.3.3). 

•  Each of the two filter plate formats has been used to demonstrate that cell 

condition following fermentation, buffer type and media composition are all 

important factors influencing the specific cake resistance of E.coli TOP10 

cells (Figure 3.5, Table 3.2 and Figure 3.6).  The microscale method 

therefore allows parallel quantification of the impact of upstream process 

conditions on normal flow microfiltration performance. 

•  The filter plates both generate comparable data to conventional laboratory 

scale equipment (Figure 3.8).  The custom plate, optimised for bioprocess 

studies, demonstrates approximately 25% lower variation in specific cake 

resistance values compared with the commercial filter plate. 

 

•  Automated microscale microfiltration techniques have been combined with 

factorial experimentation to identify the key factors and interactions which 

influence protein transmission and specific cake resistance during filtration 

of a model E.coli-lysozyme mixture.  The initial factorial scouting 

experiments (Section 4.3) identified pH and ionic strength to be the most 
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significant factors and showed the exisitance of a strong 2-factor interaction 

(Figures 4.3 and 4.4) between them. 

•   The pH and ionic strength interaction was further investigated using 

response surface methodology and the custom microwell filter plate.  A 

window of operation was generated showing optimum operating conditions 

(Figure 4.7).  The pH and ionic strength values necessary to achieve an 

optimum transmission above 95% and a specific cake resistance below 80 × 

1012 m.kg-1 were pH 5.5 ± 0.1 and 153 ± 8 mM. 

•  The microscale flux and protein transmission values calculated from 

microscale data were shown to scale-up (17X) to conventional laboratory 

scale equipment.  The results confirmed that the optimum permeate flux and 

protein transmission conditions developed at microscale are valid. 

 

•  A whole process sequence for pDNA purification involving 7 individual 

process steps (4 filtration based) has been run using automated microscale 

techniques using experimental design to focus the experiments. A total of 

72 combinations of 8 different process parameters in parallel, collecting 

several hundred scaleable data points and highlighting the important factors 

and most difficult processing steps required to generate purified plasmid 

DNA through a non-chromatographic process (Figures 5.2 to 5.6, Appendix 

D). 

•  Microscale tests were able to predict large scale performance at volumetric 

scale-up factors up to 2040 (Figures 5.9 to 5.12).  Scale up predictions were 

made from the custom microwell filter plate (0.8 cm2) to a rotating vertical 

leaf filter (9 cm2) and a candle filter (120 cm2) where the flow is directed 

upwards.  All these represent a significant change in format as well as scale. 

•  The general trends of performance highlighted by the microwell techniques 

have been shown to be scaleable through laboratory scale to pilot scale 

filtration (Figure 5.13).   

 

This illustrates that the microscale techniques developed in this thesis are capable of 

determining quantitative, scaleable data for early stage evaluation of whole microwell 

process sequences. 

 193



6.0  Conclusions
 

6.2 Future work 

 

There are several evident improvements on this work that could be carried out to 

complete this phase of the microscale filtration development: 

 

•  Strengthen the plasmid DNA analysis and repeat the experiments from 

Chapter 5, evaluating the process sequence for all responses. 

•  Study flux and transmission for an industrially relevant extracellular 

protein. For example antibody fragment producing E.coli strains (García-

Arrazola et al., 2005) or monoclonal antibody producing mammalian cell 

cultures (CMC Biotech Working Group, 2009).  Incorporate a full mass 

balance to determine the amount of protein bound to the filter and the 

plastic surfaces used. 

•  Demonstrate the full utility of the custom microwell filter plate to screen 

multiple membrane types by investigating a wider range of membrane types 

than seen in Chapter 4. 

•  Develop similar methods to quantify the standard blocking behaviour of a 

protein solution, for example in virus filtration (Kuriyel and Zydney, 2000). 

 

The techniques and custom filter plate developed in this thesis provide a strong 

framework for the automated operation of microscale filtration.  However, 

progressions of the current design could further enhance the strengths and remove 

some of the limitations: 

 

•  The existing custom filter plate design improves the volume to area ratio 

over existing commercial designs.  This remains an area for improvement as 

it still does not match full scale process volume to area ratios and high flux 

processes will be too quick to easily quantify.  Improvements to the filter 

insert design could reduce filter area (smaller disc diameter, e.g. 0.3 cm2) 

while maximising reservoir volume (24 deep square well format), allowing 

a potential increase of more than 6-fold to the volume to area ratio. 

•  Developing an automated seal system to allow positive pressure to be 

applied and thus increasing the upper range of pressure differences 
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available would limit current restrictions and increase the design space that 

can be investigated.  This would lead to improved capabilities for 

investigating cake compression phenomena. 

•  Increase in the data confidence and quality should be investigated by using 

a three point method instead of the existing two point method.  

Modifications to the vacuum manifold to allow three plates in parallel could 

easily be made.  This would increase sample throughput, but would also 

generate an extra data point and allow a more sensitive detection of 

curvature and deviation from the model. 

•  Further improvement in the data quality could be achieved by collecting 

continuous data from the microscale work.  This would allow improved 

data analysis and model fitting without restrictions imposed by a low 

number of data points.  Potential methods for this include the use of 

individual minature load cells to measure continuous mass over time or 

monitoring the pressure of sealed individual collection wells to estimate the 

increase in permeate volume in real time as attempted by Chandler and 

Zydney (2004). 

•  Constant flow operation, which is the mode of operation at industrial scale 

for many filters (Ball, 2000), would allow continuous data collection since 

the performance could be tracked with individual pressure sensors on each 

well.  As with applying positive pressure, significant obstacles would need 

to be overcome in order to seal the wells when changing plates, allowing 

full integration of a constant flow approach into an automated robotic 

platform. 

 

In addition this work has helped to lay the foundation for more progressive microscale 

bioprocess research which will expand the ability to investigate a wider variety of 

process sequences: 

 

•  Expand the microscale microfiltration work from normal flow to tangential 

flow format, enabling parallel and automated study of tangential flow 

filtration processes. 
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•  Develop a suite of microscale unit operations, right through to the 

purification and polishing steps, all capable of integration on the deck of an 

automation robot. 

 

With these improved capabilities in place then the overall target of automated 

microscale process development will move closer to a reality. 
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A.0  Appendix
 

 

A.0 Appendix A: Calibration curves 

 

 

A.1 Dry cell weight 
 

As described in Section 2.4.2 the optical density (OD) at 600nm and 1cm path length 

was calibrated to calculated E.coli dry cell weight (DCW).  Figure A.1(a) shows that 

the early stages of fermentation provide a different ratio of OD to DCW.  To calibrate 

the OD to DCW for completed fermentations the data from after 4 h was used.  

Several dilutions ranging from 1:10 to 1:30 were used to get the data into the linear 

range of the detector.  It was assumed that the open circle data points were not within 

the linear range and these were not used to correlate the data.  

 

A.2 Lysozyme concentration 
 

For each set of samples run on the reverse phase HPLC column as described in 

Section 2.6.1, a standard curve was generated using a 2g.L-1 standard solution four 

times serially diluted 1 in 2.  A typical plot of the integrated lysozyme peak area 

against the concentration of lysozyme is shown in Figure A.2.  The very strong linear 

response is always seen with coefficient of determination (R2) values close to unity, 

showing the accuracy of the HPLC injection volume, HPLC method and serial 

dilution technique. 
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a) 

 
b) 

 
 
Figure A.1. (a) Typical E.coli shake flask fermentation growth curve and (b) the 
calibration of optical density to E.coli dry cell weight.  Only growth curve data after 
4h were used to generate the calibration curve.  Open circles represent data outside the 
calibration range which were not used to generate the line of best fit.  Experiments 
carried out as described in Section 2.4.1 and Section 2.4.2.  Further details discussed 
in Section A.1. 
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Figure A.2. Typical Lysozyme HPLC calibration curve showing the strong linear 
response over the concentration range tested.  Assay carried out as described in 
Section 2.6.1.  Further details discussed in Section A.2. 
 
 
 
 
 
 

 

 



B.0  Results
 

 

B.0 Appendix B: Microscale calculation examples 

 

 

B.1 Example E.coli specific cake resistance calculation 
 

Using the equations developed in Section 3.4.1 the raw mass and time data generated 

from the custom microwell filter plate can be used to estimate specific cake resistance 

and predict laboratory scale flux performance.  Figure B.1 shows the example data 

progression from (a) the raw data to (b) linearised plots to (c) specific cake resistances 

and to (d) flux predictions.  It demonstrates the data treatment for two data sets 

comparing E.coli cells resuspended in either freshly prepared yeast extract solution or 

the original broth supernatant.  This section details the calculations required for the 

sample data in Figure B.1. The full data set for this experiment is summarised in 

Section 3.4.4. 

 

B.1.1 Raw data 

 

The shared raw data as well as specific data for yeast extract solution and cell broth 

supernatant are given in this section.  The key raw data of mass and time is shown in 

Figure B.1(a). 

 

B.1.1.1 Shared raw data 

 

Time interval 1    t1  = 60 s 

Time interval 2    t2  = 300 s 

Dynamic permeate viscosity    µ  = 0.001 N.s.m-2 

Effective filtration area    A  = 7.85 × 10-5 m2 

Dry solids concentration    c  = 4.4 g.L-1 = 4.4 kg.m-3 

Transmembrane pressure  ΔP  = 60.0 kPa = 6.00 × 104 N.m-2 

Permeate density   ρp  = 1.00 g.mL-1 = 1000 kg.m-3 
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B.0  Results
 

a) 

 
 

b) 

 
 

c) 

 
 

d) 

 
 

Figure B.1. The data progression from (a) example custom microwell filter plate raw 
mass and time data, to (b) linearised cake formation plots, through (c) specific cake 
resistance data, to (d) predicted laboratory scale flux decay curves.  Data compares 
E.coli resuspended in (○) original broth supernatant compared to (Δ) freshly prepared 
yeast extract solution.  Grey lines (b) represent laboratory scale membrane cell (3.8 
cm2) results.  Solid lines in (d) show the custom microwell filter plate (0.8 cm2) 
predictions of the membrane cell data.  Described in detail in Appendix Section B.1. 
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B.1.1.2 Yeast extract solution 

 

Measured mass 1  m1 = 0.293 g 

Measured mass 2  m2 = 0.640 g 

 

B.1.1.3 Cell broth supernatant 

 

Measured mass 1  m1 = 0.262 g 

Measured mass 2  m2 = 0.527 g 

 

B.1.2 Linearised cake formation data 

 

In order to fit the data to a linearised plot, as shown in Figure B.1(b), the data is 

manipulated into the form indicated by Equation 1.20. 

 

B.1.2.1 Yeast extract solution 
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B.1.2.2 Cell broth supernatant 
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B.1.3 Specific cake resistance 

 

The mean specific cake resistance data is shown in Figure B.1(c) and the specific 

values for the example data sets are calculated in this section.  Equation 3.6, described 

and developed in Section 3.4.1, is used as follows to calculate the specific cake 

resistance, α (m.kg-1): 
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B.1.3.1 Yeast extract solution 
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B.1.3.2 Cell broth supernatant 
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B.1.4 Flux predictions 

 

The scale-up and prediction of larger scale flux is detailed in Section 2.8.11.  Using 

the modified cake filtration constant, Kc' (N.s.m-4), Equation 2.20 predicts the flux up 

until the time (calculated by Equation 2.21) that a fixed volume has been filtered.  The 

modified cake filtration constant is calculated as follows using Equation 3.7: 
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The detailed flux decline predictions over time are shown in Figure B.1(d) and in 

more detail in Figure 3.7.  For example flux calculations here, Equation 2.21 is 

adapted to calculate the average flux, Javerage (m.s-1), required to process a fixed 

volume. 
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The following values are taken from Table 3.1 and Figure 3.2(b): 

 

A
V final  = 1.05 mL.cm-2 = 1.05 × 10-7 m 

     J0  = 4820 L.m-2.h-1 = 1.34 × 10-3 m.s-1 
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B.1.4.2 Cell broth supernatant 

 

( )
( )

411

33

1313
24

N.s.m 10499
m 10333m 10716

s.m 10018s.m 10744N.m 100062

−

−−

−−
−

×=

×−×
×−×

×××=

.'K

K

c

c ..
...'

 

 

 220



B.0  Results
 

1-2-

1-5

13
2

24

411

.hL.m 043

m.s 10191

 10341
1 10051

N.m 100062
 10499

1

.

.

..
.

.
...

=

×=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

+××
××

×
=

−

−−
−

−

−

average

average

average

J

J

sm
mmsN

J

 

 

B.1.5 Summary 

 

The calculations outlined in this section take the raw data from Section B.1.1 through 

to quantitative, scalable flux predictions that successfully forecast a 40 % decrease in 

average flux for the cells resuspended in yeast extract solution compared to cell broth 

supernatant. 

 

 

B.2 Example LRA specific cake resistance calculation 
 

To evaluate the specific cake resistance of complex suspensions with low resistance 

and a propensity to form stratified cakes a different approach was required, as detailed 

in Section 5.2.2.  Figure B.2 shows the data progression for example data sets of  

10 g.L-1
liquid vs 50 g.L-1

liquid LRA suspensions from (a) the raw mass data and (b) the 

pressure profile to (c) the specific cake resistance.  Calculations are completed using 

Equation 5.1 and Equation 5.2. 

 

B.2.1 Shared raw data 

  

The following data is common to both concentrations, which were tested in parallel on 

the same plate and therefore subjected to the same pressure profile. 

 

Effective filtration area           A  = 7.85 × 10-5 m2 

Integrated pressure ∫Δ dtP.   = 6.69 × 105 Pa.s 

Dynamic permeate viscosity           µ  = 0.001 N.s.m-2 

Permeate density          ρp  = 1.00 g.mL-1 = 1000 kg.m-3 
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a)

 

b)

 

c)

 

 

Figure B.2. The data progression from (a) example custom microwell filter plate 
flow-through permeate mass and (b) pressure profile during flow-through to (c) 
specific cake resistance data comparing the custom microwell plate calculated trend to 
laboratory scale rotating vertical leaf filter (RVLF) and pilot scale candle filter results.  
LRA specific cake resistance compared at concentrations of 10g.Lliquid

-1 (dark bars) 
and 50g.Lliquid

-1 (light bars).  Described in detail in Appendix Section B.2. 
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B.2.2 10g.L-1
liquid LRA 

 

Measured flow-through mass m  = 0.507 g 

   = 0.507 g × 10-3 kg.g-1 = 5.07 × 10-4 kg 

Mass of solids per unit 

volume of liquid ρ0 = 10 g.L-1 = 10 kg.m-3 

Flow-through volume 37
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B.2.3 50g.L-1
liquid LRA 

 

Measured flow-through mass m  = 1.340 g 

   = 1.340 g × 10-3 kg.g-1 = 1.34 × 10-3 kg 

Mass of solids per unit 

volume of liquid ρ0 = 50 g.L-1 = 50 kg.m-3 

Flow-through volume 36
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Liquid in original feed sample Vc = 2.14 mL × 10-6 m3.mL-1 = 2.14× 10-6 m3 

Specific cake resistance: 
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Modified cake filtration constant: 
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B.2.4 Summary 

 

The example data progression here shows that more permeate mass flows through the 

cake formed by the higher concentration LRA suspension (Figure B.2(a)) under the 

same applied pressure (Figure B.2(b)) leading to a predicted 10-fold decrease in the 

specific cake resistance which is a trend replicated at laboratory and pilot scales 

(Figure B.2.(c)). 
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C.0 Appendix C: Chapter 4 data 

 

 

C.1 E.coli and lysozyme factorial data 
 

Table C.1 contains all of the specific cake resistance and lysozyme transmission raw 

data and calculations from each individual custom microwell filtration experiment 

carried out during the factorial screening experiments in Chapter 4.  The detailed 

explanations of the experimental methods are found in Section 2.4.3, Section 2.7.1.1 

and Section 3.4 and the results are examined and presented in detail in Section 4.3. 

 

C.2 E.coli and lysozyme response surface data 
 

Table C.2 contains all of the specific cake resistance and lysozyme transmission raw 

data and calculations from each individual custom microwell filtration experiment 

carried out during the response surface experiments in Chapter 4.  In addition the 

specific cake resistance data for the response surface in the absence of lysozyme is 

shown in Table C.3.  The detailed explanations of the experimental methods are found 

in Section 2.4.3, Section 2.7.2 and Section 3.4 and the results are examined and 

presented in detail in Section 4.4. 
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Table C.1.  Raw data and calculations for the factorial screening experiments described in detail in Section 4.3.  Specific cake resistance, α, and lysozyme transmission are quoted as the mean ± one standard 
deviation.  Data is given for each individual well including duplicates of the 16 factorial runs and the 4 sets of 4 centre point combinations.  Plate positions on the two custom microwell filter plate layouts used 
are given in the form MXY where M is the row (A-D), X is the column number (1-6), and Y is the plate number (1-2). 

 
Factorial Run Number

A = pH

B = Ionic Strength (mM)

C = YE Concentration (g.L-1)

D = Pressure Difference (kPa)

E = Membrane Type Qualitative

Optical Density (OD600nm)

Dry Cell Weight (gDCW.L-1)

Plate Position A51 C21 B11 C61 A31 C41 B21 D51 B61 D31 A11 D41 A61 D21 B31 C51 A62 C42 A42 D12 B22 D52 B42 C62

t1 (s)

Cuvette Before1 (g) 2.131 2.131 2.130 2.131 2.131 2.130 2.130 2.131 2.130 2.131 2.130 2.130 2.131 2.130 2.131 2.130 2.130 2.131 2.131 2.131 2.131 2.130 2.130 2.131

Cuvette After1 (g) 2.595 2.585 3.123 3.118 2.522 2.526 2.425 2.406 2.696 2.706 2.777 2.793 2.613 2.614 2.560 2.524 2.658 2.659 3.171 3.131 2.452 2.463 2.450 2.473

Cuvette V1 (mL) 0.464 0.455 0.993 0.987 0.392 0.396 0.295 0.276 0.566 0.575 0.646 0.663 0.481 0.483 0.429 0.394 0.528 0.529 1.039 1.001 0.322 0.334 0.320 0.343

Insert Before1 (g) 7.682 7.658 7.751 7.658 7.676 7.698 7.744 7.664 7.771 7.676 7.734 7.685 7.641 7.675 7.729 7.724 7.639 7.648 7.630 7.649 7.669 7.671 7.674 7.691

Insert After1 (g) 7.195 7.193 6.724 6.656 7.272 7.284 7.435 7.383 7.198 7.083 7.053 7.008 7.143 7.168 7.291 7.325 7.124 7.103 6.582 6.653 7.352 7.358 7.347 7.337

Insert V1 (mL) 0.488 0.464 1.027 1.002 0.404 0.414 0.309 0.281 0.573 0.592 0.681 0.677 0.498 0.507 0.439 0.399 0.515 0.545 1.049 0.996 0.317 0.313 0.327 0.355

t2 (s)

Cuvette Before2 (g) 2.130 2.130 2.131 2.130 2.131 2.131 2.131 2.130 2.130 2.130 2.130 2.131 2.131 2.130 2.131 2.130 2.130 2.130 2.130 2.130 2.130 2.131 2.130 2.131

Cuvette After2 (g) 2.912 2.910 3.822 3.768 2.739 2.737 2.592 2.564 3.116 3.114 3.244 3.265 3.056 2.991 2.859 2.791 2.976 2.961 3.898 3.804 2.645 2.671 2.589 2.623

Cuvette V2 (mL) 0.781 0.780 1.692 1.638 0.609 0.606 0.462 0.433 0.986 0.984 1.114 1.135 0.925 0.861 0.728 0.661 0.846 0.831 1.768 1.674 0.516 0.540 0.459 0.493

Insert Before2 (g) 7.690 7.696 7.751 7.719 7.776 7.733 7.684 7.669 7.697 7.686 7.676 7.652 7.682 7.666 7.676 7.646 7.695 7.739 7.653 7.648 7.689 7.617 7.656 7.655

Insert After2 (g) 6.891 6.906 6.062 6.071 7.159 7.116 7.204 7.230 6.700 6.699 6.544 6.510 6.745 6.797 6.921 6.990 6.863 6.888 5.892 5.966 7.162 7.077 7.202 7.168

Insert V2 (mL) 0.798 0.790 1.689 1.648 0.617 0.617 0.479 0.439 0.997 0.987 1.132 1.141 0.937 0.869 0.756 0.655 0.832 0.850 1.761 1.681 0.527 0.540 0.454 0.486

ΔP (Average t1 → t2) (mbar)

Cuvette α (Eq. 3.6) × 10-12 (m.kg-1) 45.1 43.3 9.4 10.7 91.4 95.8 155.8 175.4 26.1 27.5 21.0 20.6 23.4 32.4 51.0 63.7 68.2 74.5 13.4 15.6 183.1 162.3 315.2 271.8

Insert α (Eq. 3.6) × 10-12 (m.kg-1) 46.5 43.1 10.3 10.8 93.2 99.5 148.7 174.1 25.6 29.0 22.2 21.2 24.0 35.0 45.8 68.2 69.2 72.4 14.0 15.1 159.3 138.9 357.3 325.0

α (Average of Cuvette and 
Insert Values) × 10-12 (m.kg-1) 45.8 43.2 9.8 10.7 92.3 97.7 152.3 174.8 25.8 28.2 21.6 20.9 23.7 33.7 48.4 66.0 68.7 73.4 13.7 15.4 171.2 150.6 336.2 298.4

Average α × 10-12 (± 1 SD) (m.kg-1)

Feed (Integrated Area)

Permeate (Integrated Area) 385.8 419.9 330.1 343.2 314.4 344.0 391.9 392.1 318.3 353.7 171.4 187.4 357.1 402.7 280.1 256.8 385.5 377.5 369.7 380.1 385.9 406.1 289.3 303.9

Transmission (± 1 SD) (%)

71.1 ± 3.4 14.5 ± 1.2 160.9 ± 14.6 317.3 ± 26.8

668.5 668.5 668.5 668.5

300 300 300 300

90 90 90 90

7.00 7.00 7.00 7.00

14.5 14.5 14.5 14.5

Cellulose 
Nitrate PVDF PVDF Cellulose 

Nitrate

70 70 70 70

0 0 0 0

100 100 200 200

5 7 5 7

9 10 11 12

27.0 ± 1.7 21.2 ± 0.5 28.7 ± 7.1 57.2 ± 12.4

428.6 428.6 428.6 428.6

300 300 300 300

90 90 90 90

7.00 7.00 7.00 7.00

14.5 14.5 14.5 14.5

Cellulose 
Nitrate PVDF PVDF Cellulose 

Nitrate

40 40 40 40

10 10 10 10

100 100 200 200

5 7 5 7

5 6 7 8

44.5 ± 1.8 10.3 ± 0.6 95.0 ± 3.8 163.5 ± 15.9

428.6 428.6 428.6 428.6

300 300 300 300

90 90 90 90

7.00 7.00 7.00 7.00

14.5 14.5 14.5 14.5

PVDF Cellulose 
Nitrate

Cellulose 
Nitrate PVDF

40 40 40 40

0 0 0 0

100 100 200 200

5 7 5 7

1 2 3 4
Fe

ed
R

aw
 D

at
a

α 
C

al
cu

la
tio

ns
D

es
ig

n 
Fa

ct
or

s
Ly

so
zy

m
e 421.9 421.9 421.9 421.9 421.9 421.9 421.9 421.9 421.9 421.9 421.9 421.9

90.4 ± 1.3 88.9 ± 1.7 93.9 ± 3.4 70.3 ± 2.495.5 ± 5.7 79.8 ± 2.2 78.0 ± 5.0 92.9 ± 0.0 79.6 ± 5.9 42.5 ± 2.7 90.0 ± 7.6 63.6 ± 3.9

Continued on page 227…
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Table C.1 continued from page 226. 
 

Factorial Run Number C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16

A = pH

B = Ionic Strength (mM)

C = YE Concentration (g.L-1)

D = Pressure Difference (kPa)

E = Membrane Type Qualitative

Optical Density (OD600nm)

Dry Cell Weight (gDCW.L-1)

Plate Position A12 D32 B52 C22 A32 D62 B12 C52 A21 A41 D11 D61 B41 B51 C11 C31 B62 C12 C32 D22 A22 A52 B32 D42

t1 (s)

Cuvette Before1 (g) 2.131 2.130 2.130 2.130 2.130 2.130 2.131 2.131 2.131 2.131 2.131 2.131 2.131 2.130 2.130 2.130 2.131 2.131 2.130 2.131 2.130 2.130 2.130 2.130

Cuvette After1 (g) 2.672 2.708 2.797 2.758 2.648 2.663 2.525 2.521 2.815 2.819 2.875 2.887 2.794 2.802 2.749 2.794 2.853 2.837 2.828 2.842 2.760 2.817 2.765 2.786

Cuvette V1 (mL) 0.541 0.578 0.667 0.628 0.518 0.533 0.394 0.390 0.685 0.688 0.744 0.756 0.663 0.672 0.619 0.664 0.723 0.707 0.698 0.711 0.630 0.687 0.635 0.656

Insert Before1 (g) 7.681 7.658 7.672 7.668 7.655 7.620 7.630 7.654 7.681 7.758 7.650 7.784 7.674 7.713 7.702 7.748 7.666 7.649 7.664 7.658 7.702 7.651 7.651 7.647

Insert After1 (g) 7.132 7.070 7.011 7.019 7.122 7.090 7.246 7.267 6.972 7.045 6.883 6.996 6.994 7.025 7.051 7.065 6.935 6.940 6.944 6.939 7.056 6.948 7.024 6.978

Insert V1 (mL) 0.548 0.588 0.661 0.648 0.533 0.530 0.384 0.388 0.708 0.712 0.767 0.788 0.680 0.689 0.651 0.683 0.731 0.709 0.720 0.719 0.646 0.704 0.627 0.670

t2 (s)

Cuvette Before2 (g) 2.131 2.130 2.131 2.131 2.130 2.131 2.130 2.131 2.130 2.131 2.130 2.131 2.130 2.131 2.130 2.130 2.130 2.131 2.131 2.130 2.130 2.130 2.131 2.131

Cuvette After2 (g) 3.148 3.171 3.265 3.210 3.030 3.063 2.863 2.826 3.226 3.221 3.344 3.364 3.229 3.281 3.214 3.261 3.316 3.311 3.311 3.307 3.266 3.317 3.272 3.281

Cuvette V2 (mL) 1.017 1.041 1.134 1.079 0.900 0.933 0.733 0.694 1.097 1.091 1.214 1.233 1.099 1.150 1.084 1.131 1.185 1.180 1.180 1.177 1.136 1.186 1.142 1.150

Insert Before2 (g) 7.690 7.665 7.692 7.644 7.632 7.702 7.659 7.701 7.677 7.706 7.691 7.653 7.691 7.705 7.662 7.719 7.712 7.723 7.655 7.646 7.716 7.625 7.728 7.722

Insert After2 (g) 6.644 6.609 6.546 6.537 6.720 6.769 6.900 7.013 6.544 6.605 6.438 6.400 6.577 6.536 6.549 6.574 6.514 6.520 6.459 6.464 6.565 6.428 6.592 6.559

Insert V2 (mL) 1.045 1.057 1.146 1.108 0.912 0.934 0.759 0.688 1.133 1.102 1.252 1.253 1.113 1.169 1.113 1.146 1.198 1.203 1.196 1.182 1.151 1.198 1.137 1.163

ΔP (Average t1 → t2) (mbar)

Cuvette α (Eq. 3.6) × 10-12 (m.kg-1) 31.9 33.7 32.7 35.2 49.0 45.0 62.8 77.8 26.1 27.0 20.3 19.7 23.8 20.0 21.4 20.9 32.7 31.6 30.5 32.4 28.2 28.7 28.2 29.5

Insert α (Eq. 3.6) × 10-12 (m.kg-1) 29.1 32.9 30.5 33.9 49.7 44.2 50.3 79.9 24.4 28.3 19.0 20.3 23.9 19.8 21.5 21.2 32.1 29.2 31.2 32.7 28.3 29.2 27.9 29.5

α (Average of Cuvette and 
Insert Values) × 10-12 (m.kg-1) 30.5 33.3 31.6 34.5 49.4 44.6 56.6 78.8 25.3 27.7 19.6 20.0 23.8 19.9 21.4 21.1 32.4 30.4 30.9 32.6 28.2 29.0 28.0 29.5

Average α × 10-12 (± 1 SD) (m.kg-1)

Feed (Integrated Area)

Permeate (Integrated Area) 391.2 405.2 128.4 129.5 361.4 361.1 348.0 345.9 243.1 241.9 260.4 244.7 310.0 302.1 297.7 317.0 239.1 238.0 242.3 223.2 290.4 300.0 276.1 297.0

Transmission (± 1 SD) (%)

6

150

5

70

6

150

5

40

6

150

5

70

5

200

10

6

150

5

5

100

10

Cellulose NitrateCellulose 
Nitrate

7

200

10

70

PVDF

7

100

10

70

14.5

7.00

70 70

PVDF Cellulose 
Nitrate

40

PVDF Cellulose Nitrate PVDF

14.5

7.00

14.5

7.00

14.5

7.00

14.5

7.00

14.5

7.00

14.5

7.00

14.5

7.00

23.1 ± 4.0 21.6 ± 1.6 31.6 ± 1.1 28.7 ± 0.731.9 ± 2.0 33.1 ± 2.1 47.0 ± 3.4 67.7 ± 15.7

428.6 428.6 668.5 668.5668.5 668.5 668.5 668.5

300 300 300 300300 300 300 300

90 90 90 9090 90 90 90

13 14 15 16
Fe

ed
R

aw
 D

at
a

α 
C

al
cu

la
tio

ns
D

es
ig

n 
Fa

ct
or

s
Ly

so
zy

m
e 421.9 421.9 421.9 421.9 421.9 421.9

94.4 ± 2.3 30.6 ± 0.2 85.6 ± 0.1

421.9 421.9

55.9 ± 2.0 68.9 ± 2.582.2 ± 0.3 58.7 ± 2.0 72.7 ± 2.0
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Table C.2.  Raw data and calculations for the response surface experiments described in detail in Section 4.4.  Specific cake resistance, α, and lysozyme transmission are quoted as the mean ± one standard 
deviation.  Data is given for each individual well including replicates at the same pH and ionic strength.  Plate positions on the two custom microwell filter plate layouts used are given in the form MX where M 
is the row (A-D) and X is the column number (1-6). 

 
Plate Position A2 D3 A5 C3 B2 B1 C4 B3 D5 C6 A3 B4 D1 D4 A4 C1 D6 C2 A6 B5 B6 D2 A1 C5

pH 5.29 6 6 6.71

Ionic Strength (mM) 150 100 200 150

Optical Density (OD600nm) 16.1 15.4 16.7 17.4 16.0 15.7 15.5 16.1 14.7 16.5 16.6 17.2 16.0 15.6 16.5 15.9 16.0 14.6 16.3 16.5 15.9 16.5 15.4 15.0

Dry Cell Weight (gDCW.L-1) 7.77 7.44 8.09 8.39 7.74 7.59 7.48 7.80 7.12 7.98 8.03 8.31 7.72 7.54 7.98 7.69 7.71 7.03 7.87 7.96 7.67 7.98 7.43 7.24

t1 (s) 90 90 90 90

Cuvette Before1 (g) 2.131 2.131 2.130 2.131 2.131 2.131 2.131 2.131 2.130 2.132 2.131 2.131 2.131 2.131 2.130 2.131 2.131 2.131 2.131 2.132 2.131 2.131 2.131 2.132

Cuvette After1 (g) 2.487 2.411 2.530 2.578 2.479 2.471 2.392 3.337 3.285 3.036 2.694 2.704 2.710 2.706 2.536 2.430 2.421 3.065 3.276 2.655 2.415 2.480 2.616 2.611

Cuvette V1 (mL) 0.356 0.280 0.400 0.447 0.349 0.340 0.261 1.207 1.155 0.904 0.563 0.573 0.579 0.575 0.406 0.300 0.290 0.934 1.145 0.524 0.283 0.349 0.486 0.479

Insert Before1 (g) 7.714 7.674 7.701 7.726 7.710 7.666 7.623 7.679 7.706 7.644 7.664 7.680 7.679 7.648 7.605 7.690 7.649 7.704 7.647 7.684 7.665 7.678 7.701 7.684

Insert After1 (g) 7.379 7.318 7.293 7.255 7.330 7.301 7.332 6.427 6.495 6.709 7.096 7.071 7.071 7.055 7.214 7.366 7.379 6.708 6.451 7.146 7.319 7.318 7.186 7.177

Insert V1 (mL) 0.335 0.356 0.408 0.471 0.380 0.365 0.291 1.252 1.211 0.934 0.568 0.609 0.607 0.593 0.391 0.324 0.270 0.996 1.196 0.538 0.346 0.360 0.515 0.507

t2 (s) 270 270 270 270

Cuvette Before2 (g) 2.130 2.131 2.130 2.131 2.131 2.131 2.130 2.131 2.130 2.131 2.130 2.130 2.130 2.131 2.130 2.130 2.130 2.130 2.131 2.131 2.130 2.130 2.130 2.131

Cuvette After2 (g) 2.683 2.683 2.736 2.750 2.718 2.634 2.557 4.037 4.030 3.544 3.079 3.047 2.992 3.061 2.728 2.565 2.554 3.673 3.908 2.991 2.594 2.607 2.940 2.875

Cuvette V2 (mL) 0.553 0.552 0.606 0.619 0.587 0.504 0.428 1.905 1.899 1.413 0.949 0.917 0.862 0.930 0.598 0.435 0.424 1.543 1.777 0.860 0.464 0.477 0.810 0.744

Insert Before2 (g) 7.742 7.747 7.719 7.651 7.695 7.647 7.759 7.736 7.653 7.667 7.670 7.682 7.652 7.739 7.671 7.726 7.711 7.697 7.692 7.686 7.723 7.689 7.727 7.705

Insert After2 (g) 7.203 7.163 7.078 6.999 7.083 7.152 7.300 5.773 5.696 6.237 6.732 6.728 6.792 6.775 7.084 7.265 7.296 6.107 5.865 6.802 7.245 7.199 6.886 6.928

Insert V2 (mL) 0.539 0.585 0.641 0.652 0.612 0.495 0.459 1.964 1.957 1.429 0.939 0.954 0.860 0.964 0.586 0.460 0.415 1.589 1.827 0.884 0.478 0.490 0.840 0.777

ΔP (Average t1 → t2) (mbar) 574.2 574.2 574.2 574.2

Cuvette α (Eq. 3.6) × 10-12 (m.kg-1) 109.1 59.0 94.2 115.0 77.9 155.4 162.4 8.7 8.6 15.9 28.5 34.1 51.1 35.4 106.8 219.2 223.0 13.0 10.4 37.6 135.3 215.6 43.6 64.9

Insert α (Eq. 3.6) × 10-12 (m.kg-1) 103.2 86.9 75.4 104.2 80.5 215.2 157.3 8.4 8.5 16.6 30.7 33.5 60.2 32.5 104.5 208.9 201.0 13.5 10.4 35.6 214.3 204.2 43.0 61.7

α (Average of Cuvette and 
Insert Values) × 10-12 (m.kg-1) 106.1 72.9 84.8 109.6 79.2 185.3 159.8 8.5 8.5 16.3 29.6 33.8 55.6 34.0 105.7 214.0 212.0 13.3 10.4 36.6 174.8 209.9 43.3 63.3

Average α × 10-12 (± 1 SD) (m.kg-1) 79.2 16.3 105.7 36.6

Feed (Integrated Area) 753.0 753.0 753.0 753.0

Permeate (Integrated Area) 733.0 663.5 723.9 734.6 725.8 717.4 722.3 557.4 507.7 660.0 700.6 702.5 697.0 681.9 721.4 692.4 651.5 615.0 642.4 690.4 709.5 694.6 590.8 606.9

Transmission (± 1 SD) (%) 95.8 90.3 93.9 93.0

α 
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574.2

38.2 ± 11.8

5 5.29 5.29

150 100 200

90 90 90

270 270 270

574.2 574.2 574.2

89.5 ± 23.5 97.2 ± 17.6 172.6 ± 18

574.2 574.2

6

79.3 220.7

90 90

6

150

6

8.5 ± 0 213 ± 1.4

6.71 6.71

90 90

574.2 574.2

270 270

7

100 200 150

90

270 270 270

574.2

11.8 ± 2 192.4 ± 24.8 53.3 ± 14.1

753.0

92.7 ± 6.5

753.0

96.8 ± 1.0

753.0

95.6 ± 0.5

753.0

70.7 ± 4.7

753.0

79.5 ± 1.5

753.0

89.2 ± 3.8

753.0

83.5 ± 2.6

753.0

92.4 ± 1.2

753.0

93.2 ± 1.4
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Table C.3.  Raw data and calculations for the response surface experiments in the absence of lysozyme described in detail in Section 4.4.  Specific cake resistance, α, is quoted as the mean ± one standard 
deviation.  Data is given for each individual well including replicates at the same pH and ionic strength.  Plate positions on the two custom microwell filter plate layouts used are given in the form MX where M 
is the row (A-D) and X is the column number (1-6). 

 
Plate Position A1 B5 B3 D6 A3 C2 D5 B1 C5 A2 B4 C1 A4 D4 D3 A5 C3 B2 C6 C4 B6 D2 D1 A6

pH 5.29 6 6 6.71

Ionic Strength (mM) 150 100 200 150

Optical Density (OD600nm) 15.5 16.0 16.3 16.3 15.7 15.1 16.0 16.8 16.5 16.9 16.3 15.9 16.3 16.0 15.3 15.4 15.8 16.9 16.9 16.9 16.5 16.8 15.4 16.2

Dry Cell Weight (gDCW.L-1) 7.49 7.72 7.86 7.89 7.57 7.31 7.75 8.12 7.99 8.16 7.89 7.67 7.89 7.72 7.41 7.46 7.62 8.15 8.16 8.15 7.95 8.13 7.45 7.81

t1 (s) 90 90 90 90

Cuvette Before1 (g) 2.131 2.131 2.130 2.130 2.130 2.130 2.131 2.131 2.130 2.131 2.130 2.130 2.131 2.131 2.131 2.130 2.130 2.131 2.129 2.130 2.130 2.131 2.130 2.130

Cuvette After1 (g) 2.456 2.447 2.461 2.434 2.467 2.406 2.408 2.489 2.474 2.487 2.436 2.441 2.462 2.423 2.390 2.398 2.377 2.456 2.452 2.426 2.375 2.378 2.403 2.443

Cuvette V1 (mL) 0.326 0.317 0.331 0.303 0.337 0.275 0.277 0.358 0.344 0.356 0.305 0.310 0.331 0.292 0.259 0.268 0.246 0.325 0.323 0.296 0.245 0.247 0.273 0.313

Insert Before1 (g) 7.755 7.730 7.752 7.761 7.749 7.721 7.704 7.703 7.745 7.712 7.705 7.762 7.768 7.732 7.673 7.688 7.757 7.764 7.659 7.708 7.766 7.695 7.668 7.681

Insert After1 (g) 7.404 7.360 7.373 7.396 7.376 7.394 7.376 7.305 7.349 7.338 7.347 7.378 7.394 7.371 7.361 7.387 7.474 7.396 7.293 7.376 7.482 7.409 7.346 7.352

Insert V1 (mL) 0.351 0.370 0.379 0.365 0.372 0.327 0.328 0.398 0.396 0.373 0.358 0.384 0.374 0.361 0.313 0.301 0.283 0.369 0.367 0.332 0.284 0.286 0.322 0.329

t2 (s) 360 360 360 360

Cuvette Before2 (g) 2.131 2.131 2.130 2.131 2.130 2.131 2.131 2.131 2.130 2.130 2.131 2.130 2.131 2.130 2.131 2.131 2.130 2.131 2.131 2.131 2.130 2.130 2.131 2.131

Cuvette After2 (g) 2.671 2.709 2.702 2.748 2.712 2.655 2.605 2.798 2.802 2.729 2.722 2.697 2.630 2.677 2.599 2.623 2.589 2.734 2.730 2.701 2.594 2.607 2.648 2.671

Cuvette V2 (mL) 0.541 0.578 0.572 0.618 0.582 0.524 0.474 0.667 0.672 0.599 0.591 0.567 0.499 0.547 0.469 0.492 0.458 0.603 0.599 0.571 0.464 0.477 0.518 0.540

Insert Before2 (g) 7.707 7.721 7.710 7.675 7.799 7.786 7.724 7.781 7.682 7.717 7.697 7.691 7.703 7.678 7.711 7.716 7.793 7.721 7.763 7.739 7.748 7.675 7.700 7.699

Insert After2 (g) 7.162 7.090 7.099 6.986 7.199 7.218 7.206 7.038 6.962 7.088 7.071 7.068 7.139 7.068 7.195 7.216 7.280 7.073 7.116 7.123 7.248 7.168 7.140 7.136

Insert V2 (mL) 0.545 0.632 0.611 0.689 0.600 0.568 0.518 0.743 0.720 0.629 0.626 0.623 0.564 0.610 0.515 0.500 0.513 0.648 0.647 0.616 0.500 0.508 0.561 0.563

ΔP (Average t1 → t2) (mbar) 574.2 574.3 574.3 574.3

Cuvette α (Eq. 3.6) × 10-12 (m.kg-1) 171.4 118.9 133.8 81.9 134.7 140.4 202.0 81.8 74.0 124.3 98.9 124.3 239.9 125.8 192.4 168.1 184.4 100.2 101.3 103.1 166.0 148.3 142.1 152.1

Insert α (Eq. 3.6) × 10-12 (m.kg-1) 196.3 114.9 136.4 76.2 147.1 144.6 201.9 65.3 74.4 112.5 108.2 132.5 189.1 125.8 193.7 200.7 154.7 96.9 96.4 95.9 165.9 155.7 144.8 141.5

α (Average of Cuvette and 
Insert Values) × 10-12 (m.kg-1) 183.8 116.9 135.1 79.0 140.9 142.5 202.0 73.6 74.2 118.4 103.5 128.4 214.5 125.8 193.1 184.4 169.5 98.6 98.8 99.5 165.9 152.0 143.5 146.8

Average α × 10-12 (± 1 SD) (m.kg-1) 140.9 118.4 193.1 99.5

574.3

98.7 ± 0.2 159.0 ± 9.8 145.1 ± 2.3

90

360 360 360

6 7

100 200 150

574.3 574.3

360

574.3

6.71 6.71

90 90

220.7

90 90

177.0 ± 10.5

6

150

6

360

79.3

150.4 ± 47.3 107.1 ± 39.7 172.2 ± 42.0

574.3

73.9 ± 0.5

360 360 360

574.3 574.3 574.3

150 100 200

90 90 90

α 
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90

360

574.3

143.0 ± 48.9

5 5.29 5.29
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D.0 Appendix D: Chapter 5 data 

 

 

D.1 Lysis clarification data  
 

Table D.1 contains all of the raw data and flux calculations from each individual 

custom microwell filtration experiment carried out during the factorial screening 

experiments in Chapter 5.  The detailed explanations of the experimental methods are 

found in Section 2.5.2.2 and the results are examined and presented in detail in 

Section 5.3.1.  In addition, flux data were taken from flow-through tests run at lower 

pressures is included.  These were intended to be used to investigate compressibility, 

but the random nature of the results indicated that no compressibility could be 

quantified within this range.  In Chapter 5 only the high pressure flow-through data is 

considered and only this data has been included in this appendix.  The lack of 

compressibility of the feed is confirmed in the slope of the scalability data in Figure 

5.7. 

 

 

D.2 LRA removal data  
 

Table D.2 contains all of the specific cake resistance raw data and calculations from 

each individual custom microwell filtration experiment carried out during the factorial 

screening experiments in Chapter 5.  The detailed explanations of the experimental 

methods are found in Section 2.5.2.8 and the results are examined and presented in 

detail in Section 5.3.3. 
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Table D.1.  Raw data and calculations for the lysis clarification factorial screening experiments described in detail in Section 5.3.1 according to the methods in Section 2.5.2.2.  Flux and clarification 
percentages are quoted as the mean ± one standard deviation.  Data is given for each individual well including duplicates of the 64 factorial runs and the 8 centre points.  Plate positions on the six custom 
microwell filter plate layouts used are given in the form MXY where M is the row (A-D), X is the column number (1-6), and Y is the plate number (1-6). 
 

Subset Analysis Factorial Run 
Number
Main Factorial Run Number
A = Celpure Grade (P grade)
B = Lysis Neutralisation Mixing 
Speed (rpm)

C = Celpure Concentration for Lysis 
Concentration (g.Llysate

-1)

D = Number of Permeate Recycles 
During Lysis Clarification (#)

Plate Position A36 C36 A46 C46 B36 D36 B46 D46 A34 C34 A44 C44 B34 D34 B44 D44 A55 C55 A65 C65 B55 D55 B65 D65

Cuvette Before (g) 2.175 2.172 2.170 2.172 2.172 2.171 2.176 2.176 2.172 2.171 2.172 2.173 2.172 2.173 2.172 2.172 2.174 2.176 2.172 2.171 2.171 2.176 2.172 2.173
Cuvette After (g) 4.473 3.920 4.590 3.821 3.470 3.986 4.574 3.917 4.064 4.049 4.067 3.583 3.951 4.013 4.036 4.052 3.260 3.574 3.515 3.690 3.471 3.272 4.267 3.939
Cuvette V (mL) 2.299 1.748 2.419 1.649 1.298 1.814 2.398 1.741 1.892 1.878 1.895 1.411 1.779 1.840 1.865 1.879 1.086 1.398 1.343 1.519 1.301 1.097 2.096 1.766
t (s)
ΔP (Average over t) (mbar)

Optical Density ×103 (OD600nm) 7.2 - 7.5 - 7.2 - 6.4 - 4.2 - 5.2 - 5.1 - 7.1 - 5.2 - 7.5 - 8.1 - 7.1 -
Flux normalised to 60kPa (Eq. 2.?) (L.m-2.h-1) 2124 1615 2235 1523 1199 1676 2216 1609 617 612 617 460 580 599 608 612 644 829 796 901 771 650 1242 1047
Average Flux (± 1SD) (L.m-2.h-1)
Clarification (%)
Average Clarification (± 1SD) (%)

1 17 33 49 2 18 34 50 3 19 35 51

61 61 61 61

588 ± 53 860 ± 202

141 141 141 141 84
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598.6 598.6 598.6 552.3 552.3
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99.986 ± 0.001

1 2 3

1775 ± 375

P300 P300 P300 P300

1200 1200 1200 1200

50 50 50 50

2 2 2 2

488.0 488.0 488.0 488.0
84 84

552.3 552.3

99.989 ± 0.002 99.986 ± 0.003
99.992

P65 P65

1200

50

2

P65

12001200

50

P65

1200

50

P300

400

50

2 2

50

22

P300

400

50

2

P300

598.6

400

50

2

400

50

2

P300

99.986 99.985 99.986 99.987 99.990 99.990 99.986 99.990 99.985 99.984 99.986

 
 

Subset Analysis Factorial Run 
Number
Main Factorial Run Number
A = Celpure Grade (P grade)
B = Lysis Neutralisation Mixing 
Speed (rpm)

C = Celpure Concentration for Lysis 
Concentration (g.Llysate

-1)

D = Number of Permeate Recycles 
During Lysis Clarification (#)

Plate Position A54 C54 A64 C64 B54 D54 B64 D64 A16 C16 A26 C26 B16 D16 B26 D26 A35 C35 A45 C45 B35 D35 B45 D45

Cuvette Before (g) 2.171 2.173 2.171 2.171 2.172 2.173 2.173 2.173 2.171 2.171 2.170 2.173 2.171 2.171 2.173 2.175 2.172 2.174 2.172 2.176 2.170 2.173 2.171 2.177
Cuvette After (g) 3.642 3.376 3.360 3.648 3.590 3.274 3.501 3.662 3.709 4.533 4.473 3.730 4.339 4.084 4.135 4.540 3.413 3.340 3.402 3.229 3.265 3.373 3.344 3.239
Cuvette V (mL) 1.470 1.203 1.189 1.477 1.418 1.100 1.328 1.489 1.538 2.362 2.303 1.557 2.168 1.912 1.962 2.365 1.241 1.166 1.230 1.053 1.096 1.200 1.174 1.062
t (s)
ΔP (Average over t) (mbar)

Optical Density ×103 (OD600nm) 6.3 - 7.3 - 5.8 - 6.7 - 7.8 - 7.9 - 4.5 - 6.7 - 2.5 - 6.6 - 5.5 - 8.0 -
Flux normalised to 60kPa (Eq. 2.?) (L.m-2.h-1) 479 392 387 481 462 359 433 485 1421 2182 2128 1438 2003 1767 1813 2185 736 691 729 624 649 711 696 630
Average Flux (± 1SD) (L.m-2.h-1)
Clarification (%)
Average Clarification (± 1SD) (%)

4 20 36 52 5 21 37 53 6 22 38 54

435 ± 50 1867 ± 312 683 ± 44
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4 5 6

141
598.6

99.987 ± 0.001

141 141 141 61 61 61 61 84 84

P65

400

50

2

P65

400

50

2

P65

400

50

2

P65

400

50

2

P300

1200

30

2

P300

1200

30

2

P300

1200

30

2

P300

1200

30

2

P65

1200

30

2

P65

1200

30

2

P65

1200

30

2

P65

1200

30

2

99.987 ± 0.003 99.989 ± 0.005

84 84
488.0 488.0 488.0 488.0598.6 598.6 598.6 552.3 552.3 552.3 552.3

99.987 99.985 99.988 99.987 99.984 99.984 99.991 99.987 99.995 99.987 99.989 99.984
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Table D.1 continued from page 231. 
 

Subset Analysis Factorial Run 
Number
Main Factorial Run Number
A = Celpure Grade (P grade)
B = Lysis Neutralisation Mixing 
Speed (rpm)

C = Celpure Concentration for Lysis 
Concentration (g.Llysate

-1)

D = Number of Permeate Recycles 
During Lysis Clarification (#)

Plate Position A15 C15 A25 C25 B15 D15 B25 D25 A14 C14 A24 C24 B14 D14 B24 D24 A33 C33 A43 C43 B33 D33 B43 D43

Cuvette Before (g) 2.170 2.172 2.172 2.171 2.169 2.171 2.170 2.174 2.172 2.172 2.172 2.173 2.170 2.173 2.171 2.172 2.172 2.173 2.173 2.167 2.171 2.173 2.172 2.172
Cuvette After (g) 3.198 3.401 3.515 3.360 3.493 2.408 3.070 2.359 2.316 2.852 3.250 2.597 2.632 2.219 3.412 2.689 4.141 4.143 4.206 4.140 4.067 4.288 4.174 4.241
Cuvette V (mL) 1.028 1.229 1.343 1.189 1.325 0.237 0.900 0.184 0.144 0.680 1.077 0.424 0.462 0.046 1.241 0.517 1.968 1.970 2.033 1.973 1.896 2.116 2.002 2.070
t (s)
ΔP (Average over t) (mbar)

Optical Density ×103 (OD600nm) 5.4 - 6.0 - 6.6 - 9.6 - 6.4 - 6.5 - 10.1 - 11.2 - 12.0 - 11.1 - 9.7 - 11.5 -
Flux normalised to 60kPa (Eq. 2.?) (L.m-2.h-1) 609 729 796 704 785 141 533 109 47 221 351 138 151 15 404 168 1851 1853 1912 1856 1783 1990 1883 1946
Average Flux (± 1SD) (L.m-2.h-1)
Clarification (%)
Average Clarification (± 1SD) (%)

7 23 39 55 8

551 ± 277
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24 40 56 9 25 41 57

7 8 9

187 ± 136 1884 ± 64

P65

400

30

2

P65

400

P300

1200

50

0

P300

1200

P300

400

30

2

P300

400

30

2

P300

400

30

2

P300

400

30

2

30

2

P65

400

30

2

P65

400

30

2

50

0

P300

1200

50

0

P300

1200

50

0

99.986 ± 0.004 99.983 ± 0.005 99.978 ± 0.002

84 84 84 84 141 141 141 141 57 57 57 57
598.6552.3 552.3 598.6 598.6 598.6552.3 552.3 513.0 513.0 513.0 513.0

99.989 99.988 99.987 99.981 99.987 99.987 99.980 99.978 99.976 99.978 99.981 99.977

 
 

Subset Analysis Factorial Run 
Number
Main Factorial Run Number
A = Celpure Grade (P grade)
B = Lysis Neutralisation Mixing 
Speed (rpm)

C = Celpure Concentration for Lysis 
Concentration (g.Llysate

-1)

D = Number of Permeate Recycles 
During Lysis Clarification (#)

Plate Position A13 C13 A23 C23 B13 D13 B23 D23 A52 C52 A62 C62 B52 D52 B62 D62 A12 C12 A22 C22 B12 D12 B22 D22

Cuvette Before (g) 2.172 2.172 2.172 2.172 2.172 2.173 2.173 2.172 2.172 2.171 2.172 2.172 2.172 2.171 2.172 2.172 2.173 2.171 2.172 2.171 2.173 2.172 2.172 2.172
Cuvette After (g) 3.156 3.208 3.152 3.131 3.171 3.261 3.150 3.194 4.051 3.936 3.603 3.592 3.967 3.772 3.915 3.522 3.023 3.132 3.039 2.968 2.952 2.921 3.057 2.941
Cuvette V (mL) 0.984 1.037 0.980 0.959 0.999 1.088 0.977 1.022 1.880 1.765 1.432 1.420 1.795 1.601 1.744 1.350 0.850 0.960 0.867 0.797 0.780 0.749 0.885 0.768
t (s)
ΔP (Average over t) (mbar)

Optical Density ×103 (OD600nm) 3.6 - 10.5 - 10.3 - 8.2 - 10.7 - 3.4 - 12.1 - 10.7 - 13.9 - 8.9 - 14.8 - 13.4 -
Flux normalised to 60kPa (Eq. 2.?) (L.m-2.h-1) 926 975 921 902 939 1023 919 961 1629 1529 1240 1231 1556 1387 1511 1169 737 832 751 691 676 649 767 666
Average Flux (± 1SD) (L.m-2.h-1)
Clarification (%)
Average Clarification (± 1SD) (%)C
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10 26 42 58 11 27 43 59 12 28 44 60

10 11

946 ± 39

12

1407 ± 174 721 ± 62
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0 0
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50

0

P65
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0
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0

99.984 ± 0.006 99.982 ± 0.008 99.975 ± 0.005

57 57 57 57 61 61 61 61 61 61 61 61
513.0 513.0 513.0 513.0 520.3 520.3 520.3 520.3 520.3 520.3 520.3 520.3

99.993 99.979 99.979 99.984 99.979 99.993 99.976 99.979 99.972 99.982 99.970 99.973
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Table D.1 continued from page 232. 
 

Subset Analysis Factorial Run 
Number
Main Factorial Run Number
A = Celpure Grade (P grade)
B = Lysis Neutralisation Mixing 
Speed (rpm)

C = Celpure Concentration for Lysis 
Concentration (g.Llysate

-1)

D = Number of Permeate Recycles 
During Lysis Clarification (#)

Plate Position A32 C32 A42 C42 B32 D32 B42 D42 A51 C51 A61 C61 B51 D51 B61 D61 A31 C31 A41 C41 B31 D31 B41 D41

Cuvette Before (g) 2.171 2.172 2.173 2.171 2.172 2.172 2.172 2.172 2.171 2.172 2.173 2.172 2.172 2.172 2.171 2.173 2.173 2.172 2.172 2.171 2.172 2.170 2.172 2.172
Cuvette After (g) 4.309 4.278 4.381 3.960 4.303 4.921 4.219 3.985 3.280 3.279 3.286 3.204 3.372 3.058 3.090 3.078 3.132 2.582 3.627 2.895 3.518 3.259 3.577 3.850
Cuvette V (mL) 2.138 2.105 2.208 1.790 2.131 2.748 2.047 1.812 1.108 1.107 1.113 1.032 1.199 0.886 0.919 0.905 0.959 0.409 1.454 0.725 1.346 1.089 1.405 1.678
t (s)
ΔP (Average over t) (mbar)

Optical Density ×103 (OD600nm) 10.5 - 4.3 - 13.5 - 11.0 - 2.1 - 4.7 - 6.6 - 4.5 - 4.0 - 7.1 - 14.1 - 9.4 -
Flux normalised to 60kPa (Eq. 2.?) (L.m-2.h-1) 1853 1824 1914 1551 1846 2381 1774 1570 799 798 802 744 864 639 663 652 691 295 1048 522 970 784 1012 1209
Average Flux (± 1SD) (L.m-2.h-1)
Clarification (%)
Average Clarification (± 1SD) (%)C
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13 29 45 61 14 30 46 62 15 31 47 63

13 14 15

1839 ± 256 745 ± 84 817 ± 304

P300

1200

30

0

P300

1200

30

0

P300

1200

30

0

P300

1200

30

0

P65

1200

30

0

P65

1200

30

0

P65

1200

30

0

P65

1200

30

0

P300
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0
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400
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99.980 ± 0.008 99.991 ± 0.004 99.983 ± 0.009

61 61 61 61 74 74 74 74 74 74 74 74
520.3 520.3 520.3 520.3 515.7 515.7 515.7 515.7 515.7 515.7 515.7 515.7

99.979 99.991 99.973 99.978 99.996 99.991 99.987 99.991 99.992 99.986 99.972 99.981

 
 

Subset Analysis Factorial Run 
Number
Main Factorial Run Number
A = Celpure Grade (P grade)
B = Lysis Neutralisation Mixing 
Speed (rpm)

C = Celpure Concentration for Lysis 
Concentration (g.Llysate

-1)

D = Number of Permeate Recycles 
During Lysis Clarification (#)

Plate Position A11 C11 A21 C21 B11 D11 B21 D21 A56 C56 A66 C66 B56 D56 B66 D66 A53 C53 A63 C63 B53 D53 B63 D63

Cuvette Before (g) 2.174 2.172 2.173 2.172 2.172 2.171 2.172 2.172 2.175 2.176 2.171 2.171 2.176 2.176 2.172 2.173 2.173 2.173 2.171 2.172 2.172 2.173 2.171 2.173
Cuvette After (g) 2.529 2.705 2.876 2.582 2.311 2.573 2.748 2.851 3.097 3.154 3.039 3.155 3.083 3.221 3.104 3.259 3.392 3.362 3.301 3.372 3.333 3.223 3.435 3.392
Cuvette V (mL) 0.355 0.533 0.703 0.409 0.139 0.402 0.576 0.679 0.923 0.978 0.867 0.983 0.908 1.045 0.932 1.087 1.219 1.189 1.130 1.200 1.161 1.051 1.264 1.219
t (s)
ΔP (Average over t) (mbar)

Optical Density ×103 (OD600nm) 8.0 - 4.4 - 10.2 - 10.3 - 5.3 - 5.4 - 6.9 - 7.0 - 8.9 - 6.6 - 7.7 - 4.9 -
Flux normalised to 60kPa (Eq. 2.?) (L.m-2.h-1) 256 384 506 295 100 290 415 490 852 904 801 909 839 965 861 1004 1146 1118 1063 1128 1092 988 1189 1147
Average Flux (± 1SD) (L.m-2.h-1)
Clarification (%)
Average Clarification (± 1SD) (%)C
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16 32 48 64

16

342 ± 135 1000 ± 128
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P65

400
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99.984 ± 0.006 99.987 ± 0.003

74 74 74 74 61 61

C1 C2 C3

Centre Points

C4 C5 C6 C7 C8

61 61 57 57 57 57
515.7 515.7 515.7 515.7

99.984 99.991 99.980 99.979 99.989 99.989 99.986 99.986 99.982 99.987 99.985 99.990

P65/P300P65/P300 P65/P300 P65/P300 P65/P300 P65/P300 P65/P300 P65/P300

800 800 800 800800 800 800 800

4040 40 40 40 40 40 40

1 1 1 11 1 1 1

513.0 513.0 513.0 513.0488.0 488.0 488.0 488.0
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Table D.2.  Raw data and calculations for the LRA removal factorial screening experiments described in detail in Section 5.3.3 according to the methods in Section 2.5.2.8.  Data is given for each individual 
well including all of the 64 factorial runs and the 8 centre points.  Plate positions on the three custom microwell filter plate layouts used are given in the form MXY where M is the row (A-D), X is the column 
number (1-6), and Y is the plate number (1-3). 
 

Factorial Run Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
A = Celpure Grade (P grade) P300 P65 P300 P65 P300 P65 P300 P65 P300 P65 P300 P65 P300 P65 P300 P65 P300 P65
B = Lysis Neutralisation Mixing Speed (rpm) 1200 1200 400 400 1200 1200 400 400 1200 1200 400 400 1200 1200 400 400 1200 1200
C = Celpure Concentration for Lysis 
Concentration (g.Llysate

-1) 50 50 50 50 30 30 30 30 50 50 50 50 30 30 30 30 50 50

D = Number of Permeate Recycles 
During Lysis Clarification (#) 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 2 2

E = Celpure Concentration for 
Precipitate Removal (g.Lliquid

-1) 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 2 2

F = Dissolution Mixing Speed (rpm) High High High High High High High High High High High High High High High High High High
G = LRA Concentration (g.Lliquid

-1) 33.3 6.7 6.7 33.3 6.7 33.3 33.3 6.7 6.7 33.3 33.3 6.7 33.3 6.7 6.7 33.3 33.3 6.7
H = LRA Adsorption Time (h) 24 2 2 24 24 2 2 24 24 2 2 24 24 2 2 24 2 24
Plate Position A52 A11 A21 A62 B52 A31 A41 B62 C52 A51 A61 C62 D52 B11 B21 D62 B31 A13

Cuvette Before (g) 2.130 2.129 2.130 2.130 2.130 2.129 2.130 2.130 2.129 2.129 2.130 2.129 2.130 2.130 2.130 2.131 2.130 2.129
Cuvette After (g) 2.939 3.382 2.992 2.928 2.788 3.267 2.967 3.868 2.766 2.692 2.777 2.819 2.904 3.999 3.366 2.705 3.001 2.759
Cuvette Vt (mL) 0.809 1.254 0.861 0.798 0.658 1.138 0.837 1.738 0.636 0.563 0.647 0.689 0.774 1.869 1.236 0.575 0.871 0.630
t (s) 27 42 42 27 27 42 42 27 27 42 42 27 27 42 42 27 42 27
ΔP (Average over t) (mbar) 206.4 102.3 102.3 206.4 206.4 102.3 102.3 206.4 206.4 102.3 102.3 206.4 206.4 102.3 102.3 206.4 102.3 206.4
α (Eq. 5.1) × 10-10 (m.kg-1) 8.5 21.2 30.8 8.6 52.3 4.7 6.3 19.8 54.0 9.4 8.2 49.9 8.9 14.2 21.5 12.0 6.1 54.5
Kc (Eq. 5.2) × 10-8 (s.m-2) 28.3 14.1 20.5 28.7 34.9 15.5 21.1 13.2 36.0 31.4 27.3 33.3 29.6 9.5 14.3 39.9 20.3 36.4
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Factorial Run Number 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
A = Celpure Grade (P grade) P300 P65 P300 P65 P300 P65 P300 P65 P300 P65 P300 P65 P300 P65 P300 P65 P300 P65
B = Lysis Neutralisation Mixing Speed (rpm) 400 400 1200 1200 400 400 1200 1200 400 400 1200 1200 400 400 1200 1200 400 400
C = Celpure Concentration for Lysis 
Concentration (g.Llysate

-1) 50 50 30 30 30 30 50 50 50 50 30 30 30 30 50 50 50 50

D = Number of Permeate Recycles 
During Lysis Clarification (#) 2 2 2 2 2 2 0 0 0 0 0 0 0 0 2 2 2 2

E = Celpure Concentration for 
Precipitate Removal (g.Lliquid

-1) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 10 10 10 10

F = Dissolution Mixing Speed (rpm) High High High High High High High High High High High High High High Low Low Low Low
G = LRA Concentration (g.Lliquid

-1) 6.7 33.3 6.7 33.3 33.3 6.7 6.7 33.3 33.3 6.7 33.3 6.7 6.7 33.3 33.3 6.7 6.7 33.3
H = LRA Adsorption Time (h) 24 2 2 24 24 2 2 24 24 2 2 24 24 2 2 24 24 2
Plate Position A23 B41 B51 A33 A43 B61 C11 A53 A63 C21 C31 B13 B23 C41 C51 B33 B43 C61

Cuvette Before (g) 2.130 2.129 2.131 2.129 2.130 2.129 2.130 2.129 2.130 2.130 2.129 2.130 2.130 2.129 2.130 2.130 2.129 2.131
Cuvette After (g) 3.091 3.863 2.542 3.798 3.263 2.480 3.080 2.712 3.404 3.338 3.100 3.654 3.664 2.558 3.406 3.741 3.226 2.747
Cuvette Vt (mL) 0.961 1.733 0.412 1.669 1.133 0.351 0.950 0.583 1.274 1.208 0.972 1.524 1.534 0.428 1.276 1.611 1.097 0.616
t (s) 27 42 42 27 27 42 42 27 27 42 42 27 27 42 42 27 27 42
ΔP (Average over t) (mbar) 206.4 102.3 102.3 206.4 206.4 102.3 102.3 206.4 206.4 102.3 102.3 206.4 206.4 102.3 102.3 206.4 206.4 102.3
α (Eq. 5.1) × 10-10 (m.kg-1) 35.8 3.1 64.4 4.1 6.1 75.6 27.9 11.8 5.4 21.9 5.5 22.6 22.4 12.4 4.2 21.3 31.4 8.6
Kc (Eq. 5.2) × 10-8 (s.m-2) 23.9 10.2 42.9 13.7 20.2 50.4 18.6 39.3 18.0 14.6 18.2 15.0 14.9 41.3 13.9 14.2 20.9 28.7
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Table D.2 continued from page 234. 
 

Factorial Run Number 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
A = Celpure Grade (P grade) P300 P65 P300 P65 P300 P65 P300 P65 P300 P65 P300 P65 P300 P65 P300 P65 P300 P65
B = Lysis Neutralisation Mixing Speed (rpm) 1200 1200 400 400 1200 1200 400 400 1200 1200 400 400 1200 1200 400 400 1200 1200
C = Celpure Concentration for Lysis 
Concentration (g.Llysate

-1) 30 30 30 30 50 50 50 50 30 30 30 30 50 50 50 50 30 30

D = Number of Permeate Recycles 
During Lysis Clarification (#) 2 2 2 2 0 0 0 0 0 0 0 0 2 2 2 2 2 2

E = Celpure Concentration for 
Precipitate Removal (g.Lliquid

-1) 10 10 10 10 10 10 10 10 10 10 10 10 2 2 2 2 2 2

F = Dissolution Mixing Speed (rpm) Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low
G = LRA Concentration (g.Lliquid

-1) 6.7 33.3 33.3 6.7 6.7 33.3 33.3 6.7 33.3 6.7 6.7 33.3 33.3 6.7 6.7 33.3 6.7 33.3
H = LRA Adsorption Time (h) 2 24 24 2 2 24 24 2 2 24 24 2 24 2 2 24 24 2
Plate Position D11 B53 B63 D21 D31 C13 C23 D41 D51 C33 C43 D61 C53 A12 A22 C63 D13 B12

Cuvette Before (g) 2.130 2.129 2.129 2.130 2.129 2.130 2.130 2.130 2.131 2.129 2.129 2.130 2.130 2.131 2.130 2.131 2.130 2.130
Cuvette After (g) 3.098 4.437 3.207 3.505 2.947 3.659 2.941 3.298 2.489 3.714 3.372 3.800 3.721 3.204 3.317 3.411 3.659 2.764
Cuvette Vt (mL) 0.968 2.308 1.078 1.376 0.818 1.529 0.812 1.168 0.358 1.585 1.243 1.670 1.590 1.073 1.187 1.281 1.529 0.634
t (s) 42 27 27 42 42 27 27 42 42 27 27 42 27 42 42 27 27 42
ΔP (Average over t) (mbar) 102.3 206.4 206.4 102.3 102.3 206.4 206.4 102.3 102.3 206.4 206.4 102.3 206.4 102.3 102.3 206.4 206.4 102.3
α (Eq. 5.1) × 10-10 (m.kg-1) 27.4 3.0 6.4 19.3 32.4 4.5 8.5 22.7 14.8 21.7 27.7 3.2 4.3 24.7 22.3 5.4 22.5 8.4
Kc (Eq. 5.2) × 10-8 (s.m-2) 18.3 9.9 21.3 12.9 21.6 15.0 28.2 15.1 49.4 14.5 18.4 10.6 14.4 16.5 14.9 17.9 15.0 27.9
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Factorial Run Number 55 56 57 58 59 60 61 62 63 64 C1 C2 C3 C4 C5 C6 C7 C8

A = Celpure Grade (P grade) P300 P65 P300 P65 P300 P65 P300 P65 P300 P65
B = Lysis Neutralisation Mixing Speed (rpm) 400 400 1200 1200 400 400 1200 1200 400 400
C = Celpure Concentration for Lysis 
Concentration (g.Llysate

-1) 30 30 50 50 50 50 30 30 30 30

D = Number of Permeate Recycles 
During Lysis Clarification (#) 2 2 0 0 0 0 0 0 0 0

E = Celpure Concentration for 
Precipitate Removal (g.Lliquid

-1) 2 2 2 2 2 2 2 2 2 2

F = Dissolution Mixing Speed (rpm) Low Low Low Low Low Low Low Low Low Low
G = LRA Concentration (g.Lliquid

-1) 33.3 6.7 6.7 33.3 33.3 6.7 33.3 6.7 6.7 33.3
H = LRA Adsorption Time (h) 2 24 24 2 2 24 24 2 2 24
Plate Position B22 D23 D33 C12 C22 D43 D53 D12 D22 D63 A32 A42 B32 B42 C32 C42 D32 D42

Cuvette Before (g) 2.130 2.130 2.129 2.129 2.129 2.130 2.131 2.130 2.130 2.130 2.130 2.130 2.131 2.129 2.130 2.129 2.129 2.130
Cuvette After (g) 3.824 3.026 3.561 2.921 3.012 3.564 3.143 3.103 2.698 3.112 2.725 2.864 2.966 2.848 2.840 2.916 2.823 2.861
Cuvette Vt (mL) 1.694 0.896 1.432 0.792 0.882 1.434 1.012 0.973 0.568 0.982 0.595 0.734 0.835 0.720 0.710 0.787 0.694 0.731
t (s) 42 27 27 42 42 27 27 42 42 27 22 22 22 22 22 22 22 22
ΔP (Average over t) (mbar) 102.3 206.4 206.4 102.3 102.3 206.4 206.4 102.3 102.3 206.4 259.5 259.5 259.5 259.5 259.5 259.5 259.5 259.5
α (Eq. 5.1) × 10-10 (m.kg-1) 3.1 38.4 24.0 6.7 6.0 24.0 6.8 27.2 46.7 7.0 19.7 16.0 14.1 16.3 16.5 14.9 16.9 16.1
Kc (Eq. 5.2) × 10-8 (s.m-2) 10.4 25.6 16.0 22.3 20.0 16.0 22.6 18.2 31.1 23.3 39.5 32.0 28.1 32.6 33.1 29.8 33.8 32.1
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D.3 Example plasmid DNA gels  
 

The failed gel results from the post-LRA analysis are shown in Figure D.1.  Also 

included for reference are successful example gels generated during trial runs on 

different salt concentrations for the precipitate dissolution (Figure D.2) and a post 

LRA sample using similar procedures and the same plasmid source during a pilot 

plant study for masters student training (Figure D.3).  These highlight some of the 

likely causes of failure by the differences in the gel performances.  The possible 

interference of LRA particles present in the samples (see Section 5.3.3) may be the 

cause of the dots of staining retained in the wells in Figure D.1.  These are in contrast 

to the random specs present in an imperfectly cast gel (Figure D.2) which still yields 

all the necessary information.  Another clear problem with the pDNA factorial gels is 

the high concentration of the denatured pDNA standard which was clearly not at the 

correct dilution and may have caused lighter bands in the more dilute samples not to 

show up correctly.  It is not known for sure what caused the problems with the gel 

results and even worse errors were unfortunately seen with the spare set of samples 

retained due to errors in the procedure.  There were definite signs of the presence of 

nucleic acids since there were clearly visible pellets in each sample during the 

isopropanol precipitation and the gels generated showed some staining in almost all 

the samples. 
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Figure D.1.  Example gel from the post LRA samples for factorial analysis, showing 
the very light bands and contamination, including poor standards in the first two lanes. 
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Figure D.2.  Example gel from successful scouting tests looking at the effect of 
sodium chloride concentration in precipitate dissolution on the relative concentration 
of supercoiled and open circular plasmid DNA. 
 
 
 

L          Controls       1         2         3     L          Controls       1         2         3     
L - Ladder  λHindIII

1 – 0g/L LRA

2 – 23g/L LRA 

3 – 56g/L LRA

 
 
 
Figure D.3.  Example gel from a pilot plant study including an LRA adsorption step.  
Experiments carried out by masters students in a pilot plant week study under my 
supervision.  Gels were performed by other post-graduate students during the study.  
Controls are supercoiled plasmid standard (first) and denatured plasmid (second). 
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E.0 Appendix E: Quantification of low specific cake 

resistances 
 

 

During the whole microscale plasmid DNA process sequence described in Chapter 5, 

the precipitate recovery and removal steps (Section 2.5.2.4 and 2.5.2.5) generated 

cakes of such low resistance that gravity alone was capable of permeating liquid 

through the cake.  In such circumstances the existing methods will not allow 

quantification of the cake resistance.  Adjustments that could potentially be made to 

allow quantification include increasing the volume per unit area feed challenge (not 

possible with the whole process sequence volumes and the current custom filter plate 

design) or change the flow through solution to a more viscous fluid (deviation from 

process fluids risks possible adverse interactions with the cake components).  The 

solution attempted was quickly thought up during the experimental execution and 

implemented on the precipitate recovery process only. 

 

The amount of water permeated during a fixed time (13 minutes) was measured using 

a starting volume of 2mL added directly to the wells in sequence and the removal of 

these wells from the plate in the same sequence after the elapsed time.  The volume of 

liquid remaining on the feed side of the filter cake is directly proportional to the 

applied pressure at that point in time and will decrease exponentially over time, 

allowing the calculation of a specific cake resistance. 

 

E.1 Method for quantification of low specific cake resistances 
 

Combining equations 1.1 and 1.17 generates the following expression for the flow of a 

solution through a filter cake pre-deposited onto a membrane surface: 
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where V is the flow through filtrate volume (m3), t is time (s), A is filtration area (m2), 

ΔP is pressure difference (Pa), µ is the flow through solution viscosity (Pa.s), Rm is 

resistance of the membrane (m-1), α is specifc cake resistance per unit dry cake mass 

(m.kg-1), ρ0 is the mass of dry solids per unit volume of filtrate (kg.m-3) and Vc is the 

volume of feed added to deposit the cake (m3).  The terms under the subscript 

‘precipitate’ were values during the generation of the precipitate cake.  The membrane 

resistance here is considered to be the applied pre-coat with an appropriate term for its 

cake resistance added.  The wire mesh filter is assumed to provide negligible 

resistance.  The numerator of Equation E.1 is equal to the force applied to the 

membrane which can be represented using the flow through solution density, ρft  

(kg.m-3), the acceleration due to gravity, g (m.s-2) and the volume of the flow-through 

solution remaining above the cake: 
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where Vi is initial flow-through volume above the cake (m3).  Equation E.2 is 

integrated to account for the diminishing force due to the weight of the flow through 

solution as it decays exponentially.  Rearranging the integrated form allows the 

modified cake filtration constant, Kc' (N.s.m-4), or specific cake resistance, α (m.kg-1), 

to be evaluated for the precipitate cake. 

 

  [ ]
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
⎟
⎠
⎞

⎜
⎝
⎛

−

== precoatcc
ft

c
c VK

VVi
Vi
gtA

V
K ''

ln

1
0

ρ
μαρ  (E.3) 

 

  [ ]
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
⎟
⎠
⎞

⎜
⎝
⎛

−

= precoatc
ft

c

V

VVi
Vi
gtA

V 0
0 ln

1 μαρ
ρ

μρ
α  (E.4) 

 

 239



E.0  Appendix
 

 240

E.2 Evaluation of precipitate removal results 
 

The results for the specific cake resistance were difficult to evaluate for the precipitate 

cake alone.  Indications were that the resistances of the precipitate cakes themselves 

were very small and were obscured by the variability in the pre-coat cake resistance.  

A more accurate data set could have been generated if the individual pre-coat 

resistances were calculated using the same method before application of the 

precipitate suspension. 

 

Factorial analysis was carried out for the cake resistance of the pre-coat combined 

with the precipitate cake.  Since the volumes added for cake deposition were the same 

it was possible to combine the cake resistances in Equation E.2 and produce a simpler 

integrated form for specific cake resistance quantification: 
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Where ρ0 is now the sum of both precoat and precipitate values.  The raw data 

generated is detailed in Table E.1.  The factorial analysis (Figure E.1) shows that the 

dominant variable is Celpure grade (A) with the resistance to flow and therefore the 

liquid collected by the force of gravity being dependant on the grade of Celpure used.  

Increasing lysis neutralisation mixing speed (B) increases cake resistance, although it 

is not clear why as higher clarification is achieved at higher mixing speeds (Figure 

5.5).  There is a marginally significant filter aid effect as increasing the Celpure 

concentration (E) gives a slight reduction in cake resistance.  This effect may have 

been clearer if the measurement of pre-coat resistance, which should not be affected 

by the precipitate cake, had been removed from the total result. 

 

In general the factorial analysis indicates that there is merit in this measurement 

method, but does not verify it.  The method was able to distinguish between cakes of 

different Celpure grade and quantity, with the overall resistance at different 

concentration being approximately equivalent. 
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Table E.1.  The raw data and specific cake resistance calculations from evaluation of the low specific cake resistances during the precipitate recovery stage of a plasmid DNA purification step.  Experiments 
carried out as described in Section 2.5.2.4 and Section E.1. 
 

Subset Analysis Factorial Run Number
Main Factorial Run Number 1 33 2 34 3 35 4 36 5 37 6 38 7 39 8 40 9 41 10 42 11 43 12 44
A = Celpure Grade (P grade)
B = Lysis Neutralisation Mixing Speed (rpm)
C = Celpure Concentration for Lysis Concentration (g.Llysate

-1)
D = Number of Permeate Recycles During Lysis 
Clarification (#)

E = Celpure Concentration for Precipitate Removal (g.Lliquid
-1)

Plate Position C33 C43 C13 C23 C52 C62 C12 C22 C32 C42 C51 C61 C31 C41 C11 C21 A33 A43 A13 A23 A52 A62 A12 A22

t (s) 600 600 600 600 780 780 780 780 780 780 780 780 780 780 780 780 600 600 600 600 780 780 780 780
Cuvette Before (g) 2.154 2.155 2.156 2.154 2.155 2.156 2.155 2.154 2.155 2.154 2.159 2.155 2.155 2.155 2.155 2.154 2.155 2.156 2.154 2.157 2.156 2.156 2.156 2.153
Cuvette After (g) 3.056 3.140 2.628 2.752 3.451 3.518 2.893 2.834 3.649 3.731 2.903 2.750 3.658 3.784 2.923 3.006 3.111 2.844 2.772 2.787 3.605 3.582 2.970 2.953
Cuvette Vt (mL) 0.902 0.986 0.472 0.598 1.296 1.363 0.738 0.679 1.494 1.577 0.744 0.595 1.503 1.629 0.768 0.853 0.956 0.688 0.618 0.631 1.449 1.426 0.814 0.800
α (Eq. E.5) × 10-9 (m.kg-1) 19.7 17.4 43.7 33.2 14.7 13.4 33.3 36.9 11.1 9.9 32.9 43.4 11.0 9.1 31.6 27.6 18.1 28.0 31.9 31.1 11.9 12.3 29.3 30.0
Average α × 10-9 (± 1SD) (m.kg-1)
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P300 P65 P300 P65 P300 P65 P300
1200
50

2

10

P65 P300 P65 P300 P65
1200 400 400 1200 1200 400 400 1200 1200 400 400
50 50 50 30 30 30 30 50 50 50 50

2 2 2 2 2 2 2 0 0 0 0

10 10 10 10 10 10 10 10 10 10 10

1 2 3 4 5 6 7 8 9 10 11 12

18.5 ± 1.6 38.5 ± 7.5

R
aw
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a

14.0 ± 0.9 35.1 ± 2.6 10.5 ± 0.9 38.2 ± 7.4 10.0 ± 1.3 29.6 ± 2.9 23.0 ± 7.0 31.5 ± 0.6 12.1 ± 0.3 29.7 ± 0.5  
 

Subset Analysis Factorial Run Number
Main Factorial Run Number 13 45 14 46 15 47 16 48 17 49 18 50 19 51 20 52 21 53 22 54 23 55 24 56
A = Celpure Grade (P grade)
B = Lysis Neutralisation Mixing Speed (rpm)
C = Celpure Concentration for Lysis Concentration (g.Llysate

-1)
D = Number of Permeate Recycles During Lysis 
Clarification (#)

E = Celpure Concentration for Precipitate Removal (g.Lliquid
-1)

Plate Position A32 A42 A51 A61 A31 A41 A11 A21 D33 D43 D13 D23 D52 D62 D12 D22 D32 D42 D51 D61 D31 D41 D11 D21

t (s) 780 780 780 780 780 780 780 780 600 600 600 600 780 780 780 780 780 780 780 780 780 780 780 780
Cuvette Before (g) 2.155 2.154 2.159 2.156 2.160 2.155 2.155 2.158 2.156 2.153 2.156 2.154 2.155 2.156 2.154 2.156 2.156 2.156 2.158 2.156 2.156 2.160 2.155 2.157
Cuvette After (g) 3.617 3.470 2.999 3.056 3.486 3.658 2.957 2.985 3.301 2.926 2.935 2.964 3.691 3.791 3.151 3.395 3.632 3.654 3.205 3.098 3.841 3.847 3.193 3.130
Cuvette Vt (mL) 1.463 1.315 0.840 0.900 1.326 1.503 0.803 0.828 1.145 0.773 0.779 0.810 1.537 1.636 0.997 1.239 1.476 1.499 1.047 0.942 1.685 1.687 1.039 0.973
α (Eq. E.5) × 10-9 (m.kg-1) 11.7 14.3 28.1 25.6 14.1 11.0 29.9 28.7 23.4 40.8 40.3 38.4 17.7 15.2 37.5 26.8 19.3 18.7 34.9 40.6 14.0 14.0 35.3 38.8
Average α × 10-9 (± 1SD) (m.kg-1)
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P300 P65 P300 P65 P300 P65 P300 P65 P300 P65 P300 P65
1200 1200 400 400 1200 1200 400 400 1200 1200 400 400
30 30 30 30 50 50 50 50 30 30 30 30

0 0 0 0 2 2 2 2 2 2 2 2

10 10 10 10 2 2 2 2 2 2 2 2

13 14 15 16 17 18 19 20 21 22 23

R
aw

 D
at

a

24

13.0 ± 1.9 26.9 ± 1.8 12.5 ± 2.2 29.3 ± 0.8 32.1 ± 12.3 39.4 ± 1.4 16.4 ± 1.8 32.1 ± 7.6 19.0 ± 0.4 37.8 ± 4.0 14.0 ± 0.0 37.1 ± 2.5  
 

Subset Analysis Factorial Run Number
Main Factorial Run Number 25 57 26 58 27 59 28 60 29 61 30 62 31 63 32 64
A = Celpure Grade (P grade)
B = Lysis Neutralisation Mixing Speed (rpm)
C = Celpure Concentration for Lysis Concentration (g.Llysate

-1)
D = Number of Permeate Recycles During Lysis 
Clarification (#)

E = Celpure Concentration for Precipitate Removal (g.Lliquid
-1)

Plate Position B33 B43 B13 B23 B52 B62 B12 B22 B32 B42 B51 B61 B31 B41 B11 B21 A53 A63 B53 B63 C53 C63 D53 D63

t (s) 600 600 600 600 780 780 780 780 780 780 780 780 780 780 780 780 600 600 600 600 600 600 600 600
Cuvette Before (g) 2.155 2.156 2.154 2.154 2.156 2.154 2.157 2.157 2.156 2.155 2.154 2.155 2.153 2.154 2.152 2.153 2.156 2.157 2.155 2.155 2.156 2.157 2.156 2.155
Cuvette After (g) 3.159 3.838 2.914 2.860 3.685 3.806 3.264 3.249 3.778 3.599 3.233 3.320 3.586 3.569 3.307 3.283 2.933 2.804 3.020 3.121 2.924 2.969 2.983 3.197
Cuvette Vt (mL) 1.004 1.682 0.761 0.707 1.529 1.652 1.107 1.093 1.622 1.444 1.079 1.165 1.433 1.415 1.155 1.130 0.777 0.648 0.865 0.966 0.768 0.812 0.827 1.043
α (Eq. E.5) × 10-9 (m.kg-1) 28.5 10.8 41.6 45.6 17.9 14.8 32.1 32.7 15.5 20.2 33.3 29.6 20.5 21.1 30.0 31.1 30.1 61.4 42.4 36.4 49.6 46.1 45.0 32.6
Average α × 10-9 (± 1SD) (m.kg-1)
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800
40

1

C7C6C5C4C3C2C1

P300 P65 P300 P65 P300 P65 P300 P65
1200 1200 400 400 1200 1200 400 400
50 50 50 50 30 30 30 30

0 0 0 0 0 0 0 0

2 2 2 2 2 2 2 2

25 26 27 32
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28 29 30 31

19.7 ± 12.5 43.6 ± 2.9 20.8 ± 0.4 30.5 ± 0.7 43.0 ± 10.116.3 ± 2.2 32.4 ± 0.5 17.9 ± 3.3 31.5 ± 2.6
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E.3 Scale-up of precipitate recovery 
 

The RVLF scale-up test was carried out as described in Section 2.5.3.4 using a 

precipitate suspension with P300 grade Celpure filter aid at 2 g.L-1
liquid.  Preparation 

for the RVLF experiments were carried out using Celpure P300, 1200 rpm lysis 

neutralisation mixing speed and a Celpure concentration of 50g.L-1
lysate during lysate 

clarification with no recycles.  Assuming exactly 2mL of Celpure 300 pre-coat 

solution was added at 10g.L-1
liquid, the calculated modified cake filtration constant 

from the microwell data was actually slightly negative at these conditions.  Using just 

a 20% lower value for the celpure pre-coat would turn a negative value into a precise 

prediction of the RVLF results.  This is because the precipitate is so low fouling that 

the pressure only increases approximately one kPa over the course of 10 minutes 

constant flow filtration. 

 

 

E.4 Summary 
 

This appendix puts forward a potential solution to the problem of quantifying the 

specific cake resistances.  It appears that it does a good job of differentiating relative 

performance for some feeds but may have a limited use given the very low impact of 

such feeds on the overall process demands. 
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