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"So she was considering in her own mind […], whether the 

pleasure of making a daisy-chain would be worth the trouble of 

getting up and picking the daisies..." 

Alice in "Alice's Adventures in Wonderland",  

Lewis Caroll, 1865, p.11 
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Abstract 

 

In the literature on healthy humans, effort is poorly studied and 

an extension from an animal literature is just emerging. I tested 

an hypothesis that physical effort is a non-trivial aspect of 

motivated behaviour; it serves as a cost and interacts with 

outcomes. To do this I conducted four experimental studies and 

extended the range of costs to include pain. In my first 

experiment, I develop a functional Magnetic Resonance Imaging 

(fMRI) task assessing willingness to expend effort. I show that 

physical effort discounts value of actions and that activity in 

dorsal striatum is associated with effort of selected actions. In 

addition to influencing choice, effort may be influenced by 

affective outcomes. In my second experiment, I develop a 

behavioural instrumental learning task examining how reward 

and punishment influence learning about effortful response. I 

show that it is easier to expend effort to gain reward and to 

withdraw effort to avoid punishment, but not the other way 

around; in other words it is more difficult to expend effort to 
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avoid punishment and to withdraw effort to gain reward. Results 

from reinforcement learning modelling account for this tendency 

in terms of a pavlovian influence on effort. On the one hand, 

outcome has an influence in effort while, on the other, effort may 

modulate neural signalling of action anticipation and outcome 

delivery. In my third experiment, I develop an fMRI cue-

predictive instrumental task investigating brain responses for 

effort anticipation and outcome evaluation. I show that activity 

in anterior cingulate cortex and dorsal striatum is sensitive to 

anticipated effort and highlight an effort modulation on activity 

in ventromedial prefrontal cortex and ventral striatum 

associated with expected outcomes. Finally, I extend my 

investigation of costly behaviour in effort to pain by showing an 

influence of context effects in pain avoidance behaviour.       

 

In summary, within this thesis I demostrate that physical effort 

as a cost is non-trivial in that it i) discounts value, ii) is sensitive 

to pavlovian influences, iii) is neurally anticipated and iv) 

modulates outcome signalling. I show the viability of various 

experimental paradigms to assess costly behaviours driven by 

effort and extend this endeavour by studying cost-driven pain 

avoidance. These experiments forge new research directions for 

understanding action and decision making as well as show 

promise for testing aberrant populations that often present with 

pathology that may reflect under- and over-motivated actions 

(e.g., apathy and perseveration).    
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Chapter 1  Introduction 

 

Understanding healthy cognition, which affords motivated behaviour and the 

neuropathologies, is a central interest of cognitive neuroscience. A crucial 

component of motivated behaviour in the contexts of learning and decision making, 

that is often overlooked, is action cost. Indeed, humans consider the potential costs 

of an action, as well as their possible rewards, in order to select the best action. 

Inherent effort costs may also be influenced by outcomes and in turn, may have 

influence on outcome evaluation. Human basal ganglia and prefrontal cortex are 

thought to be the crucial substrates in such effort processing. 

 

This thesis aims to dissect the role of physical effort in biasing healthy individuals‘ 

choices away from actions which require greater effort, how outcomes influence 

learning about effortful responses, how basal ganglia-prefrontal circuitry is 

sensitive to effort anticipation, effort choice and outcomes of effortful responses. 

The research reported in this thesis provides several new contributions to the field 

including:1) development of viable experimental paradigms for effort 

manipulations and measurements, 2) provision of converging evidence for previous 

non-human animal and clinical work on effort in healthy humans, 3) utilisation of 

reinforcement learning principles which capture a pavlovian influence on effort, 4) 

examination of effort processing in affective contexts provided by rewards and 

punishments and 5) extension of the range of paradigms to another characteristic 

cost-driven behaviour; that involving pain evasion.    

 

The underlying assumption with which I commenced this work was that effort is 

costly. With this, one may envision operationalising ‗costly‘ as a subjective 

hindrance, such that an action is called to be ‗effortful‘ only if it stops being chosen 

due to its excessive perceived ‗cost‘. However, this intuition imposes a great 

limitation in studying effort as it results in a binary output of whether an action is 

always chosen (not effortful) or never chosen (effortful). An alternative is to 

operationalise ‗costly‘ as an objective parameter set by the experimenter (such as 

fixed squeezing force levels). Although the most effortful experimental parameter 

may never mimic subjective maximal effort, this intuition is experimentally 

parsimonious as it allows testable hypotheses, for example that different effort or 
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force levels have differental effects on choice or learning. It is highly likely that the 

objective manipulation and subjective perception of ‗cost‘ are monotonically related, 

such that more objective effort, in most cases, would invoke higher subjective 

effort. I use the latter intuition as the framework in my experiments by using a 

handgrip to manipulate and measure effort and show that actions with different 

force requirements have different effects on behavioural and neural measures. 

 

There are two advantageous features in the paradigms developed in this thesis. 

First, unlike previous work in healthy humans (except Prevost, Pessiglione, 

Metereau, Clery-Melin, & Dreher, 2010), I employed physical effort, rather than 

mental effort. Studying how effort is conceptualised in other fields, namely clinical 

neurology and behaviour ecology, allowed me to determine the likely critical 

variables in relation to how effort influences behaviour. Auto-activation deficit 

(AAD), the most severe form of apathy, quantitatively reduces the initiation and 

execution of actions and this contrasts with a ‗cognitive inertia‘ observed in less 

severe forms of apathy (Lévy & Dubois, 2006). A foraging literature in animals is 

concerned with the computation of physical effort costs such as metabolic rates 

(e.g., Marsh, Schuck-paim, & Kacelnik, 2004) in determining choice of foraging 

methods (e.g., walking or flying). These observations provided a principled 

motivation for manipulating physical rather than mental effort.  

 

Secondly, in daily life expending more effort often requires more time. Indeed 

temporal discounting can be confounded by effort discounting, since effortful 

actions invariably involve greater time investment (but see Floresco, Tse, & Ghods-

Sharifi, 2008 for effort discounting in rodents after controlling for time effects). 

While it is often experimentally difficult to disentangle the two, I was able to 

examine effort costs whilst controlling for time effects by equating the grip 

duration in high, low, and no effort conditions. 
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1.1 Thesis Summary 

 

In study 1, I seek to extend animal research on effort-based decision making in 

healthy humans. Here, I validate an effort discounting paradigm where 

participants choose between effortful gripping which entail varying effort and 

reward levels and a no effort option with minimum reward. Using fMRI, I show 

that action choice is influenced by amount of gripping and that activity in dorsal 

striatum at the time of choice is associated with how much effort the selected 

action requires. Effort in the context of choice is also associated with a persistence 

trait which refers to personality tendencies to meet daily challenges.  

 

Having established viability of this effort manipulation in a relatively established 

choice context, I then explore effort in instrumental learning and manipulate 

affective context by including appetitive and aversive outcomes. In study 2, I 

explored a pavlovian impact upon effortful actions in the context of different 

affective outcomes i.e. rewards and punishments. I extend the orthogonalisation 

between action and outcome valence (Boureau & Dayan, 2011) by using hand grip 

actions which reflect either a behavioural activation (squeeze) or withdrawal 

(release), to either gain reward or avoid punishment. Using this instrumental 

learning paradigm I demonstrate that it is easier to squeeze to gain reward and to 

release to avoid punishment than to squeeze to avoid punishment and to release to 

gain reward. My data is best captured by a reinforcement learning model which 

characterises this differential action-outcome association as a pavlovian influence 

of reward and punishments on effort response.  

 

This new paradigm offers a way to assess the role of effort in neural signalling of 

action anticipation and outcome delivery. In study 3, I investigated modulation of 

effort during action anticipation and outcome delivery in both reward and 

punishment contexts. In this fMRI task, participants completed an overlearnt cue-

predictive task by squeezing at either low or high effort levels to either win reward 

or avoid punishment. Supporting an animal literature, I show that activity in the 

anterior cingulate and dorsal striatum attunes to the level of effort needed for an 

upcoming action. Moreover, effort that has just been expended modulates activity 
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during outcome delivery in the ventromedial prefrontal cortex and ventral 

striatum.   

 

The findings from these studies prove the feasibility of studying physical effort free 

of temporal contamination. I show support for a natural extension of previous non-

human and human findings on neural correlates for effort choice, pavlovian effects 

on effort learning and neural correlates for effort-outcome interplay. In study 5, I 

highlight the importance of extending work on effort to pain avoidance. I explore 

this connection by assessing how magnitude manipulations, such as pain context, 

influence how our motor system avoids pain.    

 

In summary, my data provide a basic experimental and neuroanatomical 

framework for human effort-based learning and decision making and an extension 

to a broader category of costs. I demonstrate the experimental validity of effort-

related behaviour, extend previous knowledge about effort and actions in healthy 

humans, and discover unprecedented potential of effort (instrumental) learning in 

punishment avoidance. I discuss the implications and contributions of this doctoral 

work for the field of cognitive and decision neuroscience. 

 

1.2 Literature review  

 

Effort is commonly experienced as a burden, and yet we readily expend effort to 

reach a desired goal. Many classical and contemporary studies have assessed the 

effect of effort expenditure on response rates, by varying experimental parameters 

such as the weight of a lever press, the height of a barrier to scale, or the number of 

handle turns needed to generate a unit of reward (Collier & Levitsky, 1968; Collier, 

Hirsch, Levitsky, & Leshner, 1975; Kanarek & Collier, 1973; Kool, Mcguire, Rosen, 

& Botvinick, 2010; Lewis, 1964; Walton, Kennerley, Bannerman, Phillips, & 

Rushworth, 2006). There is general agreement that animals, including humans, 

are disposed to avoid effortful actions. It is paradoxical then that effort is not 

always treated as a nuisance, and there are instances where its expenditure 

enhances outcome value as observed in food palatability (Johnson & Gallagher, 

2010), likeability (Aronson, 1961) and indeed the propensity to choose a previously 

effortful option (Friedrich & Zentall, 2004). What is most surprising is the 
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observation that effort often biases future choice towards effortful actions 

(Eisenberger, Weier, Masterson, & Theis, 1989).  

 

Laboratory results show that if reward magnitude is held constant then high effort 

tasks tend to be avoided (Kool et al., 2010). Yet, in daily life most organisms seem 

superficially indifferent to the varying costs of action and readily choose 

challenging tasks to achieve a desired goal (Duckworth et al., 2007). Such 

observations point to the presence of a mechanism that integrates effort costs with 

benefits in order to implement desired actions (see Floresco, St Onge, Ghods-

Sharifi, & Winstanley, 2008 for review on various cost-benefit analyses and 

Salamone, Correa, Farrar, & Morris, 2007 for an earlier review on dopamine and 

effort). This perspective has been addressed by optimal foraging theory.  It is 

known that animals will strive to maximise gain whilst minimising energy 

expenditure (Bautista, Tinbergen, & Kacelnik, 2001; J. R. Stevens, Rosati, Ross, & 

Hauser, 2005). Thus, ducks choose between walking or flying depending on optimal 

solution of net gain between energy requirements in walking or flying and the food 

gained (Bautista et al., 2001).   

 

In what follows I discuss a literature that has endeavored to understand the neural 

mechanisms of effort and reward integration, including the involvement of 

dopamine (DA) in effort-based behaviour. This literature points to the basal 

ganglia (BG), particularly dorsal and ventral striatum, and anterior cingulate 

cortex (ACC) as the principal substrates in both representing and integrating effort 

and action implementation.  

 

The regulatory role of dopamine in effort 

 

Over the past three decades, theories concerning the role of midbrain DA on 

behaviour have changed dramatically. The hedonic hypothesis of DA (Wise, 1980) 

is now challenged by empirical evidence revealing that global DA depletion 

(including within the accumbens, a major recipient for DA) does not impair hedonic 

responses to primary rewards (‗liking‘, TABLE 1-1 for terms) such as orofacial 

reactions, the preference for sucrose over water, or discrimination among 

reinforcement (Berridge, Venier, & T. E. Robinson, 1989; Cannon & Palmiter, 2003; 
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Cousins & Salamone, 1994). On the other hand the same lesions profoundly impair 

performance of instrumental tasks necessary to obtain rewards that are liked 

(Berridge & T. E. Robinson, 1998). These observations have led to a formulation 

that the contribution of DA includes an effect on motivated behaviours towards 

desired goals, a concept referred to as ‗wanting‘ (Berridge & T. E. Robinson, 1998). 

‗Wanting‘ can be expressed in simple instrumental responses, such as button or 

lever presses or in a more expanded form of behaviours which require an agent to 

overcome action costs (TABLE 1-1). As demonstrated unequivocally by Salamone 

and colleagues (Salamone & Correa, 2002; Salamone et al., 2007; Salamone, 

Correa, Mingote, & Weber, 2003), accumbens DA depletion disrupts instrumental 

responding if the responses require an energetic cost such as climbing a barrier 

(Salamone, Cousins, & Bucher, 1994), but leaves reward preference intact when 

effort is minimal. This has led to an hypothesis that DA plays a role in overcoming 

―costs‖ (Phillips, Walton, & Jhou, 2007; Salamone & Correa, 2002).  

 

Alternative views on the role of dopamine in decision -making 

 

There are several alternative views to DA which I summarise in Figure 1-1. Aside 

from a role in the expression of motivated behaviour, DA is also involved in its 

acquisition through learning. An influential view on how DA influences behaviour 

comes from reinforcement learning (Sutton & Barto, 1998). Reinforcement learning 

offers ways to formalise the process of reward maximisation through learned 

choices and has a close resonance with the neuroscience of decision-making (Daw & 

Doya, 2006; Montague & Berns, 2002; Montague, Dayan, & Sejnowski, 1996; Niv, 

Daw, & Dayan, 2005). In particular, phasic responses of macaque and rodent 

midbrain dopaminergic neurons to rewards, and reward-associated stimuli, are 

akin to a reward prediction error signal within reinforcement learning algorithms,  

responding to unexpected rewards and stimuli that predict rewards but not to fully 

predicted rewards (Bayer & Glimcher, 2005; Morris, Nevet, Arkadir, Vaadia, & 

Bergman, 2006; Roesch, Calu, & Schoenbaum, 2007; W. Schultz, Dayan, & 

Montague, 1997). Moreover, fMRI studies report that the BOLD signal in the 

striatum, a major target of the dopaminergic system, correlates with the prediction 

error signals derived from fitting subject‘s behaviour to a reinforcement learning 

model (McClure, Berns, & Montague, 2003; O‘Doherty, Dayan, Friston, Critchley, 
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& Dolan, 2003; O‘Doherty et al., 2004). In support of such a role for DA in 

reinforcement learning processes, stimulation of the substantia nigra (using 

intracranial self-stimulation paradigm) has been shown to induce a potentiation 

within corticostriatal synapses at the site where nigral output cells terminate, with 

these effects in turn being blocked by systemic administration of a DA D1/D5 

antagonist (J. N. Reynolds, Hyland, & Wickens, 2001). Importantly, the magnitude 

of potentiation is negatively correlated with the time taken by an animal to learn 

the self-stimulation paradigm.  

 

DA is also proposed to signal stimulus salience, as opposed to reward prediction 

error (Redgrave, Prescott, & Gurney, 1999). Redgrave and co-authors have 

discussed the stereotypical latency and duration of phasic bursts of nigral 

dopaminergic neurons, as well as the connectivity between nigral dopaminergic 

neurons and sensory subcortical structures such as the superior colliculus. They 

argue that activity of DA neurons can be interpreted as reporting biological salient 

events, either due to novelty or unpredictability. From this perspective, salient 

events generate short-latency bursts of dopaminergic activity that reinforce actions 

occurring immediately preceding the unpredictable event. This signal allows an 

agent to learn that an action caused the salient event (see Redgrave & Gurney, 

2006 for an elegant discussion on signal transmission in tecto-nigral and cortico- 

subcortical pathways for learning of action–outcome associations). According to this 

view, unpredictable rewarding events are just one among many exemplars of a 

salient event. 

 

Table 1-1 Useful key terms. 

Effort Strenuous physical or mental exertion typically with the aim of achieving a 
desired outcome or goal.  

Liking A set of behaviours driven by hedonic or pleasurable properties of a stimulus, 
such as the smell or taste of a valued food item. Typical liking responses in 
rodents include orofacial reactions while in humans likeability is 
operationalised through degrees of attractiveness measured on a Likert scale. 
A characteristic of likeability is that it needs not be motivational nor sensitive 
to devaluation procedures. 

Wanting A set of behaviours driven by salient properties of a stimulus often manifests 
in a disposition to overcome costs in order to obtain an incentive. Wanting 
often entails actions such as lever pressing in rodents or non-human primates 
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to obtain a goal object. One influential hypothesis regarding DA function 
highlights a role in mediating wanting, but not liking. 

Apathy A mental or behavioural state devoid of motivation with a core feature of lack 
of self-initiated actions. 

Cost-benefit 
integration 

The process of deriving a value of an action based on a combination between 
potential utility in attaining and disutility incurred in so doing. There is 
evidence that this type of integration takes place when one is judging whether 
an action is worth taking, although the mechanisms by which costs and 
benefits are integrated remain unclear.   

Invigoration To vitalise or increase strength. One hypothesis regarding the role of DA  
formalises its role as facilitating motivated behaviour by invigorating an 
organism when faced with increasing demands of effort. This is supported by 
studies that highlight the effects of a dopaminergic manipulation on effort 
expenditure.  

 

Finally, Nicola recently suggested that DA is required to flexibly initiate goal-

directed instrumental responses (Nicola, 2010). This view is based on observations 

that the effects of DA depletion in the rat nucleus accumbens (NAc) are dependent 

on inter-trial interval, such that instrumental responses with short inter-trial 

intervals are not affected by DA depletion but depletion effects increase as a 

function of increasing time between responses. Detailed behavioural analysis 

shows these effects of time are explained by the fact that as the duration between 

responses increases animals tend to engage with behaviours different from the 

required instrumental response, with depleted animals unable to flexibly reinitiate 

execution of the instrumental responses. On the other hand, depleted rats can 

perform complex sequences of behaviour in situations where these are not 

interrupted. Such findings suggest that rather than impairing lever presses, DA 

depletion disrupts an animal‘s ability to flexibly re-engage with a task after 

engaging in a task irrelevant behaviour. 

 

Extending reinforcement learning to account for dopamine 

involvement in effort 

 

The most compelling attempt to link the known role of DA in reward learning to 

effort is that of Niv and colleagues (Niv, Daw, Joel, & Dayan, 2007) who have 

developed a model that specifies the vigour (defined as the inverse latency) of 

action. This model realises a trade-off between two costs: one stemming from the 
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harder work assumed necessary to emit faster actions and the other from the 

opportunity cost inherent in acting more slowly. The latter arises out of the 

ensuing delay to the next, and indeed to all subsequent, rewards. Niv et al. (2007) 

suggested that agents should choose latencies (and actions) to maximise the rate of 

accumulated reward per unit time, and showed that the resulting optimal latencies 

would be inversely proportional to the average reward rate. Based on a review of 

experimental evidence, Niv et al. (2007) proposed that tonic levels of DA report the 

average rate of reward, thus tying together prediction error (McClure et al., 2003; 

Montague et al., 1996; W. Schultz et al., 1997), incentive salience (Berridge & T. E. 

Robinson, 1998) and invigoration (Salamone & Correa, 2002) theories of DA. As 

defined by Niv et al. (2007), vigour can be thought of as a specific manifestation of 

effort expenditure in the time domain. Future work might usefully extend this 

temporal computational concept of vigour into other aspects of physical effort. 

 

 

Figure 1-1 The figure illustrates a range of views regarding the role of DA in facilitating 

motivated behaviour. Clockwise from top left corner: A wealth of evidence shows that DA 

acts to invigorate an agent‘s  effortful action, integrating ideas about overcoming effort 

costs, agents‘ choice for high effort options as well as modelling work on vigour. Another 

influential view pertains to DA acting as a signal for a prediction in reward as exemplified 

by its role in reinforcement learning. An alternative view interprets this signal as a 

saliency signal which allows agents to implement associative learning. Finally, DA may 

facilitate flexible switching and re-engagement in relation to reward-driven behaviour. The 

summarised perspectives are not mutually exclusive, nor do they represent the entire 

literature on DA, but are useful in understanding what support motivated behaviour. 
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Dopamine and its role in overcoming effort costs  

 

Considerable evidence points to midbrain DA depletion discouraging animals from 

choosing effortful actions (Aberman & Salamone, 1999; Cousins & Salamone, 1994; 

Denk et al., 2005; Phillips et al., 2007). A series of experiments in rats has pointed 

to the crucial role of cortico-subcortical networks for cost-benefit decision making 

as highlighted in depletion effects (Aberman & Salamone, 1999; Cousins & 

Salamone, 1994). In these experiments, rats are trained on a T-maze that requires 

choosing between two actions; one yields high reward (4 pellets of food) but 

requires higher effort (climb a 30-cm barrier or higher lever press fixed-ratio 

schedule), the other yields low reward (2 pellets of food) but requires less effort. DA 

depletion in the NAc changes a rat‘s preference away from the high effort/high 

reward option, but does not impact on reward preference when it is readily 

available, nor does it alter response selection based on reward alone (Cousins & 

Salamone, 1994; Salamone et al., 1994). This finding has been replicated in other 

laboratories with a variety of depletion methods (Denk et al., 2005; Floresco, et al., 

2008), where some studies point to a stronger effect from depletion in the core as 

opposed to shell of the NAc (Ghods-Sharifi & Floresco, 2010; Nicola, 2010).  

 

The impact of DA elevation on effort is much less conclusive. Enhancing DA 

function is commonly realised through injection of amphetamine, an indirect DA 

agonist that increases synaptic DA levels (but also that of other neuromodulators). 

Floresco and colleagues (Floresco, Tse, et al., 2008) revealed a dose-dependent 

effect of amphetamine such that low-doses of amphetamine increased effortful 

choice, but high dose decreased it. This dose dependent effect is difficult to 

interpret. First of all, it is unclear what the precise effect of a high dose of 

amphetamine is on DA concentration level since amphetamine also results in 

increased extracellular serotonin (5HT) and noradrenaline (Salomon, Lanteri, 

Glowinski, & Tassin, 2006). Moreover, it is unclear whether a low dose of 

amphetamine acts by increasing the value of the reward, decreasing the cost of an 

action, modifying the integration of both, or by affecting other components of 

behavioural control such as impulsivity (see Pine, Shiner, Seymour, & Dolan, 2010 

in relation to the latter). Nevertheless, the data suggest that increasing DA levels 
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per se does not invariably enhance preference for a high reward/high effort option, 

ruling out a simple monotonic relationship between DA and effort.  

 

Another study showed an interactive effect of haloperidol, a DA receptor blocker, 

and amphetamine. While an injection of haloperidol 48 hours before treatment, 

followed by saline 10 minutes before test, significantly reduced preference for high 

reward/high effort arm, giving the same haloperidol injection followed by 

amphetamine 10 minutes before testing blunted the effect of haloperidol, and 

completely recovered preference for high reward/high effort arm (Bardgett, 

Depenbrock, Downs, Points, & Green, 2009). Evidence therefore points to 

amphetamine‘s ability to overcome the effects of DA blockade induced by 

haloperidol. However, as indicated amphetamine also increases the levels of 5HT 

and noradrenaline as well as DA levels making it difficult to completely outrule a 

possibility that the effect might relate to elevations of other amines aside from DA. 

We also know that amphetamine increases locomotor activity (Salomon et al., 

2006) and it is impossible to dismiss the possibility that a recovered preference for 

the high-effort arm found might be due to enhanced locomotion.  

 

Recent advances in neurochemical assay techniques, particularly in vivo fast scan 

cyclic voltammetry, allow detection of DA transients with a temporal resolution of 

milliseconds in awake behaving animals (D. L. Robinson, Venton, Heien, & 

Wightman, 2003; Roitman, Stuber, Phillips, Wightman, & Carelli, 2004). Gan and 

colleagues performed in vivo voltammetry while rats selected between two options 

in a task where there was an independent manipulation of the amount of reward 

and effort (Gan, Walton, & Phillips, 2010). These authors found that rats had the 

expected preference for higher magnitude of reward when costs were held constant 

and higher preference for options which require less effort when reward magnitude 

was constant. This study also included a separate set of trials which offered rats 

either option, while measuring the amount of DA released in the core of the NAc 

elicited by cues predicting reward and effort. By having this set of non-choice trials 

the authors ensured that the dopaminergic response was not confounded by the 

presentation of the second option. Whereas DA release reliably reflected the 

magnitude of the reward available in these trials, the amount of effort required to 

obtain the goal was not coded in the amount of DA released in the core of the NAc. 

This lack of evidence for an effort-dependent dopaminergic signal was surprising 
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given the extent of prior evidence (discussed above) pointing to a link between DA 

and the expenditure of effort in overcoming costs. 

 

Overall, there is evidence that DA is required to overcome costs when high levels of 

effort are necessary to obtain a desired goal. However, the precise mechanism by 

which DA supports a cost-overcoming function, and how effort is integrated into a 

dopaminergic modulation of the striatum and prefrontal cortex, is much less clear. 

In addition, DA depleted animals can engage in high-effort responding given a 

limited, inflexible set of possible responses but exhibit  difficulties and are slower 

in re-engaging with simple one-lever presses where multiple responses are allowed 

(Nicola, 2010). Whilst DA may be key to the computation and execution of highly 

effortful tasks, its role in strategic flexibility (Nicola, 2010) suggests it exerts a 

more subtle contribution to the complex relationship between task demands and 

the integration of task-relevant and task-irrelevant behaviour. 

 

I next consider the likely contribution of BG and ACC, and the formation of action-

outcome association necessary for motivated behaviour. 

 

Basal ganglia: Anatomy and physiology  

 

The basal ganglia are a set of subcortical nuclei comprising dorsal (putamen and 

caudate nucleus) and ventral aspects (often synonymous with NAc), the internal 

(GPi) and external (GPe) segments of globus pallidus, substantia nigra pars 

compacta (SNc) and reticulata (SNr) as well as the subthalamic nucleus (STN). The 

BG receives afferents from almost all cortical areas, especially the frontal lobe. 

Information processed within the BG network is sent via output nuclei (GPi and 

SNr) to the thalamus, which eventually feeds back to frontal cortex (Alexander & 

Crutcher, 1990; Bolam, Magill, & Bevan, 2002). This basic circuitry is reproduced 

in different parallel and integrative corticostriatal loops, with their origin in 

different frontal domains, and is held to play a critical role in cognitive functions 

that span motor generation to more cognitive aspects of causal learning, executive 

function and working memory (Frank, 2005; Frank, Loughry, & R. C. O‘Reilly, 

2001; Haber & Knutson, 2010; Vitay & Hamker, 2010). 
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Neurons in the striatum project either to output nuclei of the BG (GPi and SNr) or 

to an intermediate relay involving GPe neurons which ultimately project to BG 

output nuclei. These two populations provide the origin of BG direct and indirect 

pathways which funnel information, conveyed in parallel to striatum by cortical 

afferents, to BG output nuclei (Alexander & Crutcher, 1990; Frank, 2005; Frank & 

Fossella, 2011; Frank, Seeberger, & R. C. O‘Reilly, 2004). Under basal conditions, 

the output nuclei of the BG have a high level of firing and maintain thalamic 

inhibition that serve to dampen activity in corticostriatal loops (Frank, 2005). The 

distinct connectivity of direct and indirect pathways (FIGURE 1-2) results in 

opposite effects: the direct pathway promotes inhibition of BG output nuclei and 

release of inhibition in thalamic activity whereas the indirect pathway promotes 

excitation of BG output structure and drives thalamic inhibition. 

 

Anatomical and functional gradients in the striatum  

 

The functional organisation of BG along the direct and indirect pathways, as 

described above, applies to the full extent of the striatum, forming an integral re-

iterated processing matrix which performs common operations across different 

subdivisions (Wickens, Budd, Hyland, & Arbuthnott, 2007). Although there are 

suggestions of a dorsal-ventral segregation, the consensus favours a dorsolateral- 

ventromedial gradient (Voorn, Vanderschuren, Groenewegen, Robbins, & Pennartz, 

2004) with no sharp anatomical distinction between dorsal-ventral areas. Indeed, 

based on the cytology of spiny projection neurons, dopaminergic inputs, and DA-

modulated plasticity and inhibition, dorsal and ventral striatum are strikingly 

similar (Wickens et al., 2007). However, there is evidence for a functional 

segregation such that dorsolateral striatum, receiving sensorimotor afferents, 

supports habitual, stimulus-reward associations. This contrasts with ventromedial 

striatum, receiving afferents from orbito and medial prefrontal cortex, 

hippocampus and amygdala, which supports formation of stimulus-action-reward 

associations (Haber & Knutson, 2010; Voorn et al., 2004).  
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Figure 1-2. A schematic model of direct and indirect pathways of BG (adapted from Frank 

et al., 2004). The principal input of BG is the striatum, receiving excitatory inputs from 

most cortical areas. The output nuclei of BG are GPi/SNr, which direct processed 

information to the thalamus to eventually feed back an excitatory projection to the cortex. 

Within this circuitry, there are two pathways: a direct pathway expresses D1 receptors and 

indirect pathway expresses D2 receptors. D1 striatal neurons inhibit GPi/SNr cells forming 

the direct pathway. D2 striatal cells inhibit an intermediate relay, the GPe which 

ultimately provides inhibition to GPi/SNr. Under basal conditions, GPi/SNr cells fire at 

high level and maintain inhibition of the thalamus which in turn dampen corticostriatal 

loops activity. The different direct/indirect connectivity results in opposite effects: 

inhibitory effect on GPi/SNr and release of inhibition in thalamic activity by the direct 

pathway and excitatory effect on GPi/SNr and inhibitory effect on thalamus by the indirect 

pathway. 

 

A functional gradient in DA signalling is also described in BG (Wickens et al., 

2007). DA release is determined by density of DA innervation (densities reduce the 

distance between release and receptor sites), such that higher innervation densities 

are necessary for rapid DA signalling. DA clearance is regulated by density of DA 

transporters (DAT), hence affecting distance and time course of volume 

transmission. Wickens et al. (2007) have documented greater DA innervation and 

higher DAT densities in dorsolateral striatum with these densities decreasing 

along a ventromedial gradient (also Haber & Knutson, 2010). High densities of 

release sites and DAT result in fast clearance in dorsolateral striatum, which may 

be related to encoding of discrete events involving reinforced responding, or even 

automatised and habitualised behaviours. Ventromedially, lower densities of DA 

innervation and DAT result in slow clearance in NAc core, and even slower 



Effort KURNIAWAN 2011 

25 

 

clearance in NAc shell, which may be related to slower time course of action-

outcome evaluation (Humphries & Prescott, 2010; Wickens et al., 2007). 

 

Moreover, it is noteworthy that within the ventromedial subdivisions of the 

striatum, the NAc has interesting particularities. The NAc is subdivided, on the 

basis of anatomical and histochemical features, into the core and the shell, with the 

latter more medial and ventral in location than the former (Humphries & Prescott, 

2010; Ikemoto, 2007; Voorn et al., 2004). This core/shell distinction is particularly 

important when considering the role of BG in motivated behaviour. 

 

The NAc core is similar to dorsal striatum (Humphries & Prescott, 2010; but see 

Nicola, 2007 on role of dorsal-ventral striatum in temporal predictability). 

Functionally, NAc core seems critical in the translation of raw, unconditioned 

stimulus value, into a conditioned response. Thus, NAc core plays an important 

role in conditioned behaviour (Ikemoto, 2007), such as autoshaping in classical 

conditioning paradigms and conditioned reinforced responses in instrumental 

learning paradigms. On the other hand, the NAc shell, the most ventromedial 

aspect of striatum, has unique features compared to the rest of striatum. First, it is 

involved in unconditioned responding in the appetitive and aversive domains , 

spanning  feeding (Kelley, Baldo, Pratt, & Will, 2005) and maternal behaviour (Li 

& Fleming, 2003) to defensive treading (S. M. Reynolds & Berridge, 2002).  

Moreover, the NAc shell is involved in invigorating effects of DA on conditioned 

behaviours controlled by the NAc core (Parkinson, Olmstead, Burns, Robbins, & 

Everitt, 1999). Second, the shell is the only striatal subdivision projecting to lateral 

hypothalamus (Pennartz, Groenewegen, & Lopes da Silva, 1994, and reviewed by 

Humphries & Prescott, 2010), a key structure in an ‗action-arousal‘ network. Note 

lateral hypothalamus also exerts an influence over autonomic function and 

contains orexin-producing cells which influence arousal and energy balance control 

(see Ikemoto, 2007 for a comprehensive review). Third, whereas amygdala has 

extensive projections to both the core and shell (Humphries & Prescott, 2010), the 

NAc shell is the only recipient of hippocampal afferents within the striatal complex 

(Haber & Knutson, 2010; Wickens et al., 2007). This restricted projection from 

hippocampus has generated extensive discussion concerning the unique role of 

ventral BG in spatial navigation, fear-modulated free-feeding, and acquisition of 

stimulus value through stimulus-outcome pairings (Humphries & Prescott, 2010). 
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These lines of evidence point to the shell as critical in forming linkages between an 

object/event in the environment and the agent‘s natural response towards it.  

 

An alternative interpretation of the anatomical and physiological organisation of 

the BG is a selection and control model (Gurney, Prescott, & Redgrave, 2001). In 

this model inputs for selection and control are received separately by striatal D1 

receptors and D2-like receptors, respectively. D1 transmission is then projected as 

inhibition to GPi/SNr which acts as an action selection output, whereas D2 

transmission inhibits GPe which acts as an output layer for a control mechanism. 

The control output layer, in turn modulates action selection: GPe inhibits activity 

in GPi/SNr output nuclei. Akin to inhibitory mechanisms described in the 

direct/indirect BG model, this selection/control BG model also describes inhibitory 

relationships between nuclei in BG. It is not clear what the thalamic 

inhibitory/excitatory impacts are on movement. Nevertheless this model highlights 

an important role for BG in action selection and control. More recently, Nicola 

(2007) has discussed the potential role of NAc in such a model, particularly in 

disinhibiting motor efferents for one action and inhibiting motor efferents for 

another, thereby allowing action selection. 

 

Basal ganglia and effort-related processes  

 

To facilitate execution of motivated behaviour, one needs to internally represent 

action costs and benefits. While the animal literature significantly informs our 

knowledge about brain structures subserving motivated behaviour, it is unknown 

how effort processing is supported in the human brain. Using fMRI, Croxson and 

colleagues investigated where in the human brain effort and reward are 

represented (Croxson, Walton, J. X. O‘Reilly, Behrens, & Rushworth, 2009). 

Participants saw a discriminative stimulus signaling an action with a particular 

cost and benefit and then completed a series of finger movements using a computer 

mouse, to gain secondary reinforcers. The cost, in terms of effort and time, 

increased as more finger movements were completed, whilst the benefit increased 

as the secondary reinforcer was larger. When anticipating these actions, striatum 

activity correlated with both anticipated costs and anticipated reward of effortful 

actions.   



Effort KURNIAWAN 2011 

27 

 

 

More recent fMRI studies have replicated an involvement of striatum in effort-

related processes, reporting higher dorsolateral striatal activity for choosing low 

compared to high effort options in a physical effort task (Kurniawan et al., 2010; 

chapter 3) and higher ventral striatal activity in a low cognitive demand block 

compared to a high cognitive demand block in a mental effort task (Botvinick, 

Huffstetler, & McGuire, 2009). Whilst, it is still unclear whether physical and 

cognitive mechanisms of effortful actions reflect similar psychological and neural 

processes, together these studies provide support for the importance of striatum in 

effort-related processes. In the following section, I assess the type of association 

formed when an organism performs a motivated, goal-directed, behaviour. 

 

Encoding action and its outcomes  

 

Linking a chosen action to its outcome is central for optimal goal-directed 

behaviour. When a monkey travels a distance to forage for food, not only does it 

need to link contextual cues to food consumption, for example associating a tree full 

of ripe fruits with eating fruits, it also needs to associate the action (climbing a 

tree) with the consequences of the action, namely the energetic cost of climbing. 

Neurons in primate dorsal striatum, can be categorised into those that encode the 

action made by the monkey (direction of saccade made) and neurons sensitive to 

the outcome of the monkey‘s choice (reward/ unrewarded) (B. Lau & Glimcher, 

2007). However, these neurons do not appear to support the kind of action-outcome 

association required for goal-directed behaviour.  

 

Using reinforcement learning models, similar to those used to characterise activity 

in DA neurons, Samejima and colleagues reported neurons in the striatum whose 

activity correlated with the value of an action (Samejima, Ueda, Doya, & Kimura, 

2005). These action value neurons are important because they track the value of 

say, a left handle turn in a probabilistic two-choice task, independent of whether 

the monkey ultimately selects the action, and thus provide input information for 

action selection. Furthermore, in a subsequent study, Lau and Glimcher found 

action value neurons, including neurons which traced the value of the chosen 

action, in the striatum (B. Lau & Glimcher, 2008). These chosen value neurons 



Effort KURNIAWAN 2011 

28 

 

show enhanced activity when the tracked action has a higher value and, on this 

basis, was subsequently chosen. Using similar reinforcement learning models, 

human fMRI studies also report that BOLD signal in the dorsal striatum correlate 

with the relative advantage of taking one action over an alternative (O‘Doherty et 

al., 2004). 

 

Effortful action and its outcomes: implication of the ACC  

 

These action and chosen value representations in the striatum are precisely the 

kind of association between action and outcome required for goal directed 

behaviour. However, the unanswered question is where does the information 

needed for this computation come from? One possibility is ACC, a region suggested 

to represent this action-outcome association (Rushworth, Behrens, Rudebeck, & 

Walton, 2007). For example, Hadland and co-workers trained macaque monkeys to 

pull a joystick upward after receiving a type of food, say a peanut, in order to 

obtain a second peanut and to turn a joystick to the side after obtaining a different 

food type, say a raisin, to receive a second raisin (Hadland, Rushworth, Gaffan, & 

Passingham, 2003). They found that while control monkeys could select an action 

based on this reward-response association, monkeys with a lesion to ACC were 

impaired in selecting the correct response. Interestingly, the impairment was not 

due to an inability to make an association between visual cues and reward as 

tested in a second visual discrimination task, but instead was specific to an 

inability to utilise reward-action association to make the correct response. In a 

different experiment, monkeys with ACC lesion were impaired in selecting a set of 

response when the correct responses were determined by an integration across past 

contingencies between action and reward (Kennerley, Walton, Behrens, Buckley, & 

Rushworth, 2006). In addition, using fMRI, human ACC was found to be most 

active when participants had to simultaneously internally generate a sequence of 

actions whilst monitoring the outcome of their actions (Walton, Devlin, & 

Rushworth, 2004).  

 

Lesions studies with rodents using the T-maze consistently show impairments in 

effort-based decision making following removal of ACC. As with DA depletion 

experiments, these lesions result in a shift of preference away from an option with 
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a larger food reward that requires scaling a high barrier, thus requiring more 

effort. This reduced preference for larger/effortful arm was not due to lethargy or 

immobility as it is immediately restored when both arms have equal effort costs 

(Denk et al., 2005; Floresco & Ghods-sharifi, 2007; Walton et al., 2009 but see 

Floresco et al., 2008 for a discussion the extent to which ACC plays a role in effort-

based tasks).   

 

Human ACC lesions provide a more subtle interpretation for the role of ACC in 

effort processing. Naccache and colleagues tested a patient with a large lesion to 

left mesial frontal region including the left ACC using a, cognitively demanding, 

Stroop task (Stroop, 1935). This patient could not verbally recognise nor express 

discriminatory skin conductance responses in difficult trials where greater mental 

effort was required, but could perform as well as healthy controls. This case study 

suggests dissociability of objective cognitive performance from a physiological 

response and from the subjective appraisal of mental effortfulness (Naccache et al., 

2005, but see McGuire & Botvinick, 2010 for the involvement of lateral prefrontal 

cortex, instead of ACC, in a closer inspection of subjective experience of mental 

effort through intentional and behavioural avoidance from mentally challenging 

tasks). 

 

The ACC is implicated in a host of cognitive processes, ranging from cognitive 

control to suppression of prepotent responses such as in Stroop or go-nogo tasks, 

tasks that induce negative emotions, and tasks that predict delivery of painful 

stimuli. In a recent review (Shackman et al., 2011), the authors discussed a 

challenge in advancing knowledge of its functional organisation being the 

complexity of its anatomical organisation and variability across individuals. For 

example, a tertiary sulcus in dorsal ACC, the paracingulate sulcus, is present in 

one-third of the population, and its presence causes location change of architectonic 

Brodmann area 32‘, and a volumetric reduction of Brodmann areas 24a‘ and 24b‘. 

Consequently, spatially normalised cingulate premotor regions differ across 

subjects, and an unmodeled cingulate sulcal variability may inflate the spread of 

activation clusters found across studies, rendering complex a clear functional 

dissociation within ACC. 
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Bush and co-authors proposed the rostro-ventral cingulate could be functionally 

segregated into cognitive and affective components located to dorsal and ventral 

ACC, respectively (Bush, Luu, & Posner, 2000). This segregation seems too broad. 

Shackman and co-authors (2011) using a sample of almost 200 neuroimaging 

experiments that included negative affect, pain and cognitive control reported 

strongly overlapping activation clusters in dorsal ACC, or what they termed as 

middle cingulate cortex (MCC), challenging a strict segregationist view of ACC (see 

FIGURE 1-3). These authors also pointed to evidence that the dorsal ACC might be 

involved in affective control, including autonomic regulation (Critchley et al., 2003) 

and pain processing, suggesting these findings may reflect an agent‘s need for 

behavioural control when habitual responses are not sufficient under uncertain 

action-outcome contingencies. 

Anatomically, the ACC projects to striatum, particularly the caudate 

nucleus and portions of ventral striatum (Haber & Knutson, 2010). Moreover, ACC 

has bilateral connections to motor and prefrontal cortex fulfilling a role as a hub 

where action and outcome associations might be represented. In human and non-

human primates, the ventral cingulate has strong interconnections with ventral 

striatum including the NAc, whilst the dorsal cingulate connects more strongly to 

dorsal striatum including putamen and caudate (Beckman, Johansen-Berg, & 

Rushworth, 2009; Kunishio & Haber, 1994), potentially facilitating transmission of 

reward-related information. Furthermore, dorsal ACC is interconnected with 

premotor cortex and a more posterior part constitutes the cingulate motor area 

(Beckman et al., 2009) implicated in action selection (Picard & Strick, 2001). Shima 

& Tanji (1998) reported that cingulate motor areas in monkeys respond to selection 

of voluntary movement based on reward, supporting a role in linking internally-

generated action to reward. Indeed, a working hypothesis is that ACC could 

support adaptive control, integrating aversive, biologically relevant information in 

order to bias motor regions towards a contextually appropriate action (Shackman 

et al., 2011). 
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Figure 1-3. Views on the psychological function of ACC. Left: ACC function has been 

suggested as anatomically segregated into a dorsal cognitive division and a ventral affective 

division (Bush et al., 2000). Right: More than a decade later, a meta-analysis on almost 200 

fMRI experiments suggested a strong overlap in clusters of activation in studies of cognitive 

control, negative affect, and pain (Shackman et al., 2011). Figures adapted from Shackman, 

et al. (2011). 

 

This wide-ranging anatomical connectivity between BG, ACC and other cortical 

regions provide a neuroanatomical foundation for establishing action and outcome 

representations, of a type needed for motivated behaviour. Normal function of this 

circuitry can be inferred to facilitate willingness to execute effortful actions. On the 

other hand, disruption of this circuitry, as in people with apathy (see TABLE 1-1), 

would discourage execution of such actions. This account has a resemblance to 

phenomena in a case study of a patient with a lesion to mesial prefrontal cortex 

(which included ACC) that led to profound apathy (Eslinger & Damasio, 1985). 

This patient was severely impaired in execution of real-life events such as holding 

a job, although various measures of logical reasoning, general knowledge, planning, 

and social and moral judgments proved intact. The authors discussed how the 

lesion did not impact on pure action execution, but on the analysis and integration 

of the costs and benefits pertaining to real-life situations. 
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Conclusion 

 

I provide evidence for an intimate interplay between ACC, BG, and dopaminergic 

pathways in enabling animals, including humans, to choose and execute effortful 

action. I suggest that effort may act as a discounting factor for action value, and 

that integrative mechanisms between cost and benefit facilitate a willingness to 

incur costs. Our review of reinforcement learning, empirical findings on the 

relationship between dopaminergic coding and cost-benefit parameters of an action, 

and the organisation of BG and ACC point to these latter structures as critical in 

linking a stimulus to an action and the consequences of that action. Notably, 

patients with apathy often manifest a pathology that disrupts this ACC-BG 

network. This fractures a link between action and outcomes resulting in lack of 

drive to execute potentially valuable actions.  

 

My review highlights the psychological and neural mechanisms through which an 

organism is willing and capable of executing an effortful act to attain a goal. The 

core process appears to involve coding of specific action requirements, an analysis 

and integration of costs and benefits, and a decision to expend effort and to 

implement an action. I do not dissect a potentially important distinction between 

cognitive and physical types of effort (Kool et al., 2010; Kurniawan et al., 2010; 

Prevost et al., 2010). Future research might usefully endeavor to examine how one 

makes a trade-off between both effort types and examine how we determine when 

investing in one type of effort (mental) is more appropriate than investing in the 

other (physical).    
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Chapter 2  General methods 

 

Two studies in this thesis used functional imaging and thus I briefly describe and 

discuss the basic principles of fMRI and specific behavioural and fMRI methodology 

used in studies 1-4 on effort. To maintain completeness of study 5 on pain, methods 

for it are separately described in CHAPTER 6. 

 

2.1 Basic principles of fMRI  

 

Blood-oxygenation level dependent (BOLD) contrast  

BOLD contrast is ubiquitously used in cognitive neuroscience as a proxy for neural 

activity associated with cognitive functions. However, BOLD signal does not 

measure brain activity directly and measure neuronal processes by assuming a 

tight relationship between brain regional perfusion and neuronal changes. How is 

this so? Neuronal activity due to information processing such as sensory, motor, or 

cognitive processes causes changes in metabolic demand, in this case oxygen 

consumption. A change in oxygen consumption is physiologically indicated by a 

change in de-oxygenated haemoglobin concentration which translates into a change 

in magnetisation properties. Deoxyhaemoglobin is paramagnetic and so changing 

the concentration of it will change the magnetic resonance (MR) signal picked up 

by a magnetic resonance (MR) scanner. The change in MR signal caused by altered 

deoxyhaemoglobin concentration is what is refered to as BOLD contrast.  

 

Metabolic consumption and neuronal activity  

We know that energy source in the brain mostly comes from adenosine triphospate 

(ATP). The ATP budget in the rodent brain is allocated more for restoring unequal 

distributions of ions caused by action potentials, and depolarisation and 

hyperpolarisation of cell membranes postsynaptically (respectively termed 

excitatory and inhibitory postsynaptic potentials; EPSP and IPSP) than for things 

like protein synthesis. In other words, events related to information processing tax 

brain metabolic energy much more than cellular housekeeping functions (Huettel, 

Song, & McCarthy, 2009). This supports the assumption that an MRI brain 

metabolic index (i.e. BOLD) tells us something about cognition; it also gives 
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support for the use of BOLD signal as a proxy for neural mechanisms underlying 

cognitive functions.  

 

Strengths  

Today fMRI is by far the most widely used cognitive neuroscientific method for 

whole-brain investigation in humans. With its progressive development, it can 

provide images with a sub-millimetre voxel resolution, giving it a much better 

spatial resolution compared to other methods e.g. electroencephalography, 

magnetoencephalography, and positron emission tomography (PET) (Logothetis, 

2008). Its advantage over PET include its non-invasive nature and the absence of a 

need for radioactive tracers, a feature that endows it with an ability to test a much 

wider population than equivalent methods.  

 

Weaknesses 

As described, fMRI provides an indirect measure of neuronal activity which 

constrains interpretation of the relationship between BOLD increase and stimulus-

related events.  

Commonly, increase in BOLD signal in a region such as the striatum invokes the 

interpretation that this region is ‗active‘ for that cognitive event. One caveat to this 

‗language‘ is that although an increase in BOLD signal could be driven by an 

overall increased spiking rate of cells in the relevant microcircuit, it could also 

occur as a result of a balanced, proportional increases in excitatory and inhibitory 

conductance, a net excitation, or even an increased inhibition (Logothetis, 2008).  

A finding that BOLD signal increases as a function of a stimulus parameter 

(e.g. reward magnitude) may not lend as strong a basis as findings that a cellular 

measure (e.g. single-cell spike rate), in which case the interpretation would be that 

these cells positively track the size of potential reward. What we know from single-

cell recordings is that there may be roughly a 50:50 ratio between neurons in the 

same region which have positive and those with negative correlation between their 

firing rate and a stimulus property, say, effort size (e.g., Kennerley, Dahmubed, 

Lara, & Wallis, 2008). Therefore, a macro method like fMRI which reflects 

metabolic demand over averaged neuronal activity in a region may not be able to 

selectively pick up a pure population of neurons which have positive correlation 

with effort size. What could potentially be interpreted from an fMRI finding is that 
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the relevant region is sensitive to a stimulus parameter, and that the direction of 

this ‗tracking‘ is to be adjudicated based upon convergent methods and findings.  

An important limitation to fMRI is its susceptibility to motion artefacts. This 

becomes critical in my attempt at imaging the brain while subjects perform a motor 

vigour task in the scanner. I addressed this issue by i) minimising motion during 

scanning through (almost excessive) padding around subjects‘ head and the arm 

used for squeezing and (almost excessive) explicit instructions and constant 

reminders, ii) by correcting any deformed images through unwarping (see imaging 

analysis section below), and iii) by taking into account motion-related BOLD signal 

through entering motion parameters as parameters in all brain analyses.  

 

2.2 Specific methodology  

 

2.2.1 Image acquisition  

In studies 2 and 4, I used a 3T Siemens TRIO system (Siemens, Erlangen, 

Germany) with 12-channel head coil to acquire both T1-weighted anatomical 

images and T2*-weighted MRI transverse echoplanar images (EPIs) (64x64mm, TE 

= 30 ms, TR study 2/ TR study 4 = 2.72 s/ 3.36 s) with BOLD contrast. The EPI 

sequence was optimised for maximising signal in inferior brain regions (Weiskopf, 

Hutton, Oliver Josephs, & Deichmann, 2006). Each EPI comprised forty (study 2) 

or forty-eight (study 4) 3-mm-thick contiguous axial slices taken every 3 mm, 

positioned to cover the whole orbitofrontal cortex, striatum, up to the anterior 

cingulate and motor cortices. In total, 180 - 212 (study 2) or 212-220 (study 4) 

volumes were acquired for each participant in one session. The first five (study 2) 

or four (study 4) volumes were discarded to allow for T1 equilibration effects. The 

field maps were acquired between the second and third scanning sessions. For the 

structural images I acquired a standard high-resolution T1-weighted anatomical 

image with acquisition matrix 256x240, TR/TE/Flip Angle = 7.92ms/ 2.48ms/ 16°, 

voxel size 1 x 1 x 1 mm, 176 axial slices (Deichmann, Schwarzbauer, & Turner, 

2004). 
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2.2.2 Imaging analysis  

Data were analysed using Statistical Parametric Mapping (SPM8b; Wellcome 

Trust Centre for Neuroimaging, London, UK, http://www.fil.ion.ucl.ac.uk/spm). 

Five preprocessing steps involved intra-modal realignment and unwarping, inter-

modal co-registration, segmentation, normalisation, and smoothing.  

 

Realignment and unwarping 

All EPI volumes were re-aligned to the first volume to correct for inter-scan 

movement. Images were unwarped using fieldmaps to remove unwanted gripping-

related variance without removing variance attributable to the motor task 

(Andersson, Hutton, John Ashburner, Turner, & Friston, 2001).  

 

Co-registration 

The mean motion-corrected image was co-registered to individual‘s T1 images 

using a 12-parameter affine transformation. To correct for different acquisition 

times, the signal measured in each slice was shifted relative to the acquisition of 

the lower slice using sinc interpolation in time.  

 

Segmentation 

Individual T1 images were  segmented based on grey and white matter, a method 

fairly robust and accurate in creating spatial normalisation parameters for the EPI 

and anatomical images (John Ashburner & Friston, 2004).  

 

Spatial normalisation 

To allow across-subject comparison, the co-registered EPI and T1 volumes were 

normalised using segmentation parameters, based on the Montreal Neurological 

Institute (MNI) reference brain in Talairach space (Talairach & Tournoux, 1988) 

and re-sampled to 3 x 3 x 3 mm3 and 1x1x1 mm3 voxels, respectively.  

 

Spatial smoothing and filtering 

All normalised images are smoothed with an isotropic 8 mm full-width half-

maximum Gaussian kernel to account for inter-subject differences and allow valid 

statistical inference according to Gaussian random field theory (K. J. Friston, J 

Ashburner, et al., 1995; K. J. Friston, Holmes, et al., 1995). The time series in each 
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voxel were high-pass filtered at 1/128 Hz to remove low-frequency confounds and 

scaled to a grand mean of 100 over voxels and scans within each session.  

 

Statistical modelling 

I performed random-effect, event-related, statistical analyses. In every General 

Linear Model (GLM), I convolved each regressor (described in the relevant 

chapters) with a canonical hemodynamic response function and its temporal 

derivatives. Motion parameters from pre-processing were entered into the design 

matrix to further account for BOLD noise related to gripping.  

In studies 2 and 4, a separate GLM for each participant was specified by 

creating separate regressors representing different events for each of the scanning 

sessions. In study 2, I ran simple t-tests between regressors testing the contrasts of 

interest (main effects and interaction) at first level for each individual. Consistency 

across the resulting maps of sensitivity for each participant was tested in a series 

of one-sample t-test as group analyses. In study 4, each regressor-of-interest was 

contrasted against baseline activity at first level for each individual, and these t-

contrasts were brought over into the second level and entered into a series of F 

tests as group analyses to assess for main effects and interactions. 

 

2.2.3 Effort manipulations and measurements 

 

Grip device   

In studies 1-4, I utilised a pneumatic handgrip device as effort manipulation. 

Participants either used their dominant hand when completing a behavioural task, 

or their right hand when being scanned (all fMRI participants were right-handed). 

The handgrip device was molded from two plastic cylinders that compressed an air 

tube that was connected to a transducer (Honeywell, Morristown, NJ) to convert 

air pressure into a voltage output. Thus, variation in air compression within the 

cylinders due to the force applied resulted in different voltage signals, and these 

are linearly proportional to exerted grip force. The signal was recorded (Spike2, 

Cambridge Electronic Design) and transmitted to MATLAB 6.5 

(www.mathworks.com).  

Visual stimuli were presented using Cogent 2000 

(http://www.fil.ion.ucl.ac.uk/ and http://www.icn.ucl.ac.uk/) and Cogent Graphics 

http://www.mathworks.com/
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(John Romaya at the LON at the Wellcome Trust Centre for Neuroimaging, at 

UCL). I constructed a squeeze stimulus in a red vertical bar which was a direct 

translation of the recorded grip force signal as veridical, real-time visual feedback 

for squeezing. 

To estimate the reliability of the two grip devices used in studies 1-4, I 

asked eight local staff in the department to simply grip as hard as they could using 

their dominant hand on two days, separated by one week. Participants gave verbal 

consent to participate, no financial reimbursement was provided. Participants were 

asked three times to produce maximum force, each time for a period of 3-5 secs 

during which the highest value was taken as one data point. The highest of the 

three measurement times was treated as the maximum force for the day. The 

difference between their maximum force between days 1 and 2 for both devices 

were non-significant. This suggests reliability of the grip devices across days, and 

gives validation for my instruction to ‗squeeze as hard as you can‘.  

At the start and end of each study, I asked participants to produce maximum 

forces, and calibrated grip levels based on the pre-task maximum value. The 

difference values between maximum force at beginning and end were not 

significant, suggesting that behaviour in the tasks was not influenced by fatigue. 

Before completing the experimental blocks, participants were shown the calibrated 

squeeze stimulus and had the opportunity to try squeezing guided by the vertical 

bar. Participants were explicitly instructed to only use one hand, to never switch 

hands or use both hands when squeezing. All associated t values are in TABLE 2-1.  
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Table 2-1 T values for calibration of grip device show no difference between maximum force 

on day 1 and 2, or before and after experimental tasks. 

No. Device/ Study T values (max start – max end) 

1. Grip device 1 (study 1-2) t(7) = 1.99, p = 0.08 

2. Grip device 2 (study 3-4) t(7) = 0.46, p = 0.65 

3. Study 1  t(13) = 1.84, p = 0.08 (eleven  missing data) 

4. Study 2 behavioural task t(16) = 0.04, p = 0.96 

5. Study 2 scanning task t(17) = 0.68, p = 0.50 

6. Study 3 t(18)= .76, p = .45 

7. Study 4 training day t(20)= 1.74, p = .09 

8. Study 4 scanning day t(19)= 1.08, p = .29 (one missing data) 

   

 

2.2.4 Statistics  

Throughout studies 1-5, I conducted two- or three-way within-subjects Analysis of 

Variance (ANOVA) using SPSS 11.5, 13.0 or 19.0. F values were calculated under 

the assumption of sphericity, and I report Greenhouse-Geisser F values when 

sphericity was violated. To allow for comparison with other studies, I report effect 

size of all F tests in partial eta squared ( p
2), a way to gauge the strength of 

association between the independent and dependent variables by partialling out 

other factors from the total non-error variance (Pierce, Block, & Aguinis, 2004).  
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Chapter 3  Effort and Choice (study 1 & 2) 

 

 

Abstract 

 

The possibility that we will need to invest effort influences our future choice 

behaviour. Indeed deciding whether an action is actually worth taking finds its 

pathological expression in human apathy or inertia. There is a well- developed 

literature on brain activity related to anticipation of effort, but how effort impacts 

on actual choice is less well understood. Here, I investigated choice behaviour and 

brain activity, using fMRI, in two studies where healthy participants are required 

to make decisions between effortful gripping, where the factors of force and reward 

were varied, and an option of merely holding a grip device for a minimal monetary 

reward. Behaviourally, I show that force level influences the likelihood of choosing 

an effortful grip. I observed greater activity in the putamen when participants opt 

for a low effort option compared with when they opt for high effort option. The 

results suggest that effort discounts the value of an action, and second, over and 

above a nonspecific role in movement anticipation and salience, the putamen plays 

a crucial role in choice computations that entail effort costs. 
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3.1 Introduction  

 

The cost involved in an action is an important determinant of choice behaviour 

(Kennerley, Dahmubed, Lara, & Wallis, 2009). A number of animal and human 

experiments have examined how effort determines choice, and crucially, how the 

brain integrates effort into an action value (Croxson et al., 2009; Floresco & Ghods-

sharifi, 2007; Floresco, Tse, et al., 2008; Kennerley et al., 2009; Rudebeck et al., 

2008; Salamone et al., 1994; Walton, Croxson, Rushworth, & Bannerman, 2005; 

Walton et al., 2009). Other costs are better understood as, for example, discounting 

prospects whose outcomes entail possible pain or loss (Pessiglione, Seymour, 

Flandin, Dolan, & Frith, 2006; Seymour, Daw, Dayan, Singer, & Dolan, 2007; 

Talmi, Dayan, Kiebel, Frith, & Dolan, 2009; Talmi, Seymour, Dayan, & Dolan, 

2008), and temporal delay (Kable & Glimcher, 2007; McClure, Ericson, Laibson, 

Loewenstein, & J. D. Cohen, 2007; Pine et al., 2010; Rudebeck, Walton, Smyth, 

Bannerman, & Rushworth, 2006). The neurobiology of effort choice remains 

relatively underexplored.  

In CHAPTER 1, I have described an extensive literature based upon animal 

studies which implicates regions such as NAc and ACC in effortful choice, but very 

limited human studies have examined the neural representation of physical effort 

to choose an action. In non-choice contexts, the striatum and the ACC are activated 

when participants anticipate an upcoming action that entails effort (Croxson et al., 

2009). More specifically, activity in the striatum is correlated with the anticipated 

effort for an action.  

To the best of my knowledge, the only other empirical work investigating 

human choice to invest in physical effort is that of Prevost et al. (2010). In their 

study, Prevost and colleagues conducted a careful delineation of neural regions 

subserving effort and delay costs. In line with previous animal work and that of 

Croxson et al. (2009), they report that BOLD signal in the ACC negatively tracks 

the subjective value of actions that require the investment of physical effort. In 

their study, effort hyperbolically discounts the subjective value such that larger 

effort gives lower subjective value. Thus, in light of growing evidence for 

involvement of the striatum and ACC in value based decision-making and effort 

anticipation, here I hypothesised ACC and striatal involvement in action choice, 

where a neural computation entails an integration of effort as a cost.  
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In this chapter I report behavioural and neuroimaging data on effort-based 

decision making. I employed a simple effort-based choice task where participants 

decide between holding a grip device and effortful gripping. The holding option 

entailed no effort and a minimal reward. The gripping option varied across two 

factors, namely monetary reward and force levels (percent of individual maximum 

force) indicated by a visual stimulus. In study 1, I report behavioural evidence for 

effort-discounting using parametric levels of effort and reward. In study 2, I 

reduced the effort and reward levels and adapted the paradigm to look for striatal 

and ACC involvement when humans make choices which entail physical effort. In 

the imaging analysis, brain activity was time-locked to events at the time of choice, 

in order to index activity associated with, and effort modulation on, the decision to 

grip. I hypothesised activity in striatum and ACC would be associated with biasing 

choice away from actions that entail greater physical effort. 

 

3.2 Methods  

 

Participants  

All participants were recruited through the psychology participant database at 

Univesity College London (UCL) and the study was approved by the UCL ethics 

committee.  

Sixty-six healthy individuals participated in the behavioural experiments. I 

excluded data from twenty-four participants as these were tested during pilot 

phase under various experimental designs. I report data from 25 and 17 

participants for behavioural data in study 1 and 2, respectively (M age = 26 (SD = 6 

years) for 17 participants). All sixty-six participants were paid £10 - £20 depending 

on duration of experiment.  

Eighteen right-handed healthy individuals (five females, M age = 27 (SD = 

3) years) participated in the fMRI experiment. One participant was excluded from 

the analysis of brain activity due to excess motion artifact, but was included in the 

behavioural analysis. These participants were paid £25 - £30 depending on 

duration of experiment.  
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Stimuli 

The stimuli potentially requiring effortful gripping is referred as ‗grip‘ stimuli; and 

the stimulus requiring non-effortful holding of the hand-grip device as the ‗hold‘ 

stimulus. As with the visual stimuli used in Croxson et al. (2009), ‗grip‘ stimuli 

comprised of red circles with two black lines (see FIGURE 3-3). Where the vertical 

lines are located in the circle indicated effort with two levels (leftmost is lowest 

effort, rightmost is highest effort), while the location of the horizontal lines 

indicated reward levels (bottom is lowest reward, top is highest reward). The ‗hold‘ 

(no grip) stimulus is a red circle with a horizontal line at the bottom representing a 

fixed low reward and no vertical line.  

I used a similar squeeze stimulus described in CHAPTER 2 in the shape of a 

thermometer with a yellow horizontal line to indicate the squeezing target, set at a 

thermometer height corresponding to the chosen effort level (e.g., 80% of 

thermometer height for 80% effort level; FIGURE 3-3). This moving thermometer 

was presented after a ‗grip‘ choice whilst a ‗frozen‘ thermometer was presented 

after a ‗hold‘ choice. 

  

3.3  Study 1: 5 x 5 Effort by Reward design  

 

As I did not know the optimal experimental parameters for this task, I trialed 

various reward and effort parameters ranging between 1 to 20 pence and 30% to 

90% of maximum force, respectively, with a fixed 1 or 2 pence reward level for the 

‗hold‘ option. I first report choice data from 25 subjects with changing parameters 

across subjects (FIGURE 3-2A). Within these 25, I report data from 10 subjects who 

underwent the same experimental parameters of 2, 3, 6, 9 and 12 pence reward 

(and 1 pence for ‗hold‘ option), and 50, 60, 70, 80 and 90% effort levels (FIGURE 

3-2B). See APPENDICES for precise effort and reward values for the first 15 subjects.  

 

Procedure 

Participants undertook, successively, force calibration, training and experimental 

blocks, and completed post-scan questionnaires before being debriefed, and 

reimbursed for their participation.  

The experimental task comprised of 150 trials, which were split into 3 

blocks of 50 trials and this gave 6 repetitions of each of the 25 unique choices 
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between ‗grip‘ vs. ‗hold‘ action, the order of presentation for these 25 stimuli pairs 

is pseudo-random. 

There were two training blocks. In the first, participants learned how to use 

the gripper, by pressing a spacebar to commence the trial, squeezing and reaching 

the yellow target line during presentation of the thermometer cue. Subjects trained 

to reach the line within 2 secs and stay at that effort level for another 4 secs 

(FIGURE 3-1A). The trial is aborted every time participants gripped too slow, too 

fast, or released the gripper before 6 secs have elapsed. This approach was 

motivated by a need to have tight control of the amount of effort exerted at each 

trial, and to control for time differences between low and high effort levels. 

Participants completed 15 practice trials (3 grips in each effort level) to ensure that 

that they were able to complete the gripping successfully.  

In the second training block, participants learned the values of each ‗grip‘ 

and ‗hold‘ action by completing single-stimulus training trials which comprised of a 

cue presentation and a button press before squeezing, and a reward outcome 

presentation after squeezing. There were 52 trials (2 repetitions for 1 ‗hold‘ action 

and 25 ‗grip‘ actions from 5x5 effort and reward levels).  

At the beginning of each training trial, either a ‗hold‘ or ‗grip‘ cue was 

randomly presented on either side of the screen until participants made a button 

press with their non-dominant hand. Following a ‗hold‘ cue, they saw a ‗frozen‘ 

thermometer for 6 secs (participants typically just held the hand-grip), whereas 

following a ‗grip‘ cue, they saw the thermometer for 6 secs while squeezing to reach 

the target. FIGURE 3-1A depicts grip trajectory for one subject in trials with varying 

levels of effort. As seen here, subject 1 is able to commit to the squeezing criteria 

for each effort level. Once 6 secs elapsed, participants saw the corresponding 

reward outcome as indicated by the cue. For the ‗grip‘ trials, if they fail to squeeze 

as trained, the outcome is zero pence and the trial is aborted. Participants were not 

informed about the precise effort and reward amounts, but learned the stimulus-

effort-reward contingencies from experience (Hertwig et al. 2004). 

Behavioural Choice Task. At the start of each experimental trial, a fixation 

cross appears for 200 ms, followed by ‗grip‘ and ‗hold‘ cues, randomly presented on 

left and right of the fixation cross. Participants choose one of these cues with a 

button press, using their non-dominant hand. They have up to 4 secs to respond, 

otherwise they miss that trial and the next trial then commences immediately. The 

two cues remain on the screen for 1 sec before a ‗GET READY‘ message appears for 
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500 ms. The thermometer appears and subjects have to squeeze for 6 secs before 

the next trial begins. Participants do not see the monetary outcome in every trial, 

but only at the end of a block. FIGURE 3-1B depicts behaviour of two participants in 

the first 50 trials; subject 1 is able to commit to his/her choices, while subject 2 

received several aborted trials due to failure to squeeze according to criteria.   

Recalibration. Around halfway through the second block, the grip force was 

recalibrated unobtrusively. This is done by measuring the baseline force on a trial 

when subjects chose the ‗hold‘ option. For all subjects (except two subjects) this 

took place between the 80th-85th trial. Then immediately after this trial, there was 

a surprise trial wherein subjects are told to get ready to grip for £2 reward. They 

then saw the thermometer with the yellow line at the top of the meter, telling them 

to grip as maximum. The experiment continued as usual with the new baseline and 

maximum force values. We did not implement recalibration in study 2 to avoid 

mistaken recalibrated values unnecessarily.  

 

Results 

Throughout this chapter, the main behavioural measure is how often participants 

accepted the ‗grip‘ action in percentages (% choice to ‗grip‘). I averaged across 25 

participants with slightly varying effort and reward parameters and entered ‗grip‘ 

choice into a 5 (effort) x 5 (reward) ANOVA. As seen in FIGURE 3-2A, I found 

significant effects of effort, F(1.92,46.24) = 34.01,  p < .00001, p
2  = .58, reward, 

F(1.37,32.97) = 15.12,  p = .0001, p
2  = .38, and effort by reward interaction, 

F(7.30,175.32) = 2.67,  p = .01, p
2  = .10.  

Because effects might be driven by non-systematic effort and reward 

manipulations, I separated the last 10 participants who experienced the same 

experimental manipulations and ran two-way ANOVA on their % ‗grip‘ choice 

(FIGURE 3-2B), revealing significant effects of effort and reward, F(1.82,16.39) = 

13.83,  p = .0003, p
2  = .60; F(1.25,11.31) = 7.73,  p = .013, p

2  = .60, respectively, 

but a non-significant interaction, p = .07. This parametric design provides evidence 

for effort discounting. Put simply, a willingness to exert effort is not only governed 

by a reward manipulation, but also by an effort manipulation.  
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Figure 3-1 a) Example of squeezing time course for one subject for trials with different 

effort levels. To successfully execute the squeeze, subjects have to reach the target line 

within 2 secs and then maintain that squeeze level within a margin for another 4 secs. 

Black dotted line indicates the time the target level is reached. b) Example of choice-

execute match/mismatch for the first 50 trials from two subjects. Blue circle indicates 

participants‘ chosen effort level; red line indicates actual squeeze level for that trial, 

averaged over the last 4 secs of thermometer presentation. Top: Subject 1 shows a good 

match between choice and squeeze execution. Bottom: Subject 2 failed to execute their 

chosen effort levels in the first twenty trials, decided to go for the no-grip option for 

subsequent trials, but managed to match their effortful choices in the later trials.      

 

 

 

Figure 3-2 Proportion of ‗grip‘ choices across reward and effort levels. a) I tested 25 subjects 

with parametric levels, but actual values were changing across subjects. Nevertheless I 

show significant effects of effort and reward and effort by reward interaction. b) Within 

these 25, 10 participants received the same effort and reward parameters, and effort and 

reward effects were significant, but interaction was n.s.  
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Discussion 

In study 1, I demonstrated the viability of the effort-based choice paradigm which 

tightly manipulates hand force and controls for temporal confounds. In this task, 

participants were able to distinguish different effort and reward parameters, make 

and execute choices based on these parameters. It was important that the choices 

participants made were genuine and that they reflected an approximation of their 

ability to execute their selected actions. Only two out of 25 participants in study 1 

had more than 10% aborted trials due to failure to squeeze according to the 

criteria, and this assured choices based on effort integration. Having established 

feasibility I then adapted this task to an fMRI environment to allow recording of 

BOLD responses that reflect sensitivity to effortful choices.     

 

3.4 Study 2: 2 x 2 Effort by Reward design  

 

In study 2, I used two levels of effort and two levels of reward. To avoid monotony I 

varied the effort and reward levels, trial-by-trial, by adding a pseudo-random value 

to base values of effort (40% and 85% maximum force) and reward (3 and 11 pence) 

of each stimulus. These values were drawn from a normal distribution with mean 

zero and one unit of standard deviation, ranged from -5.2 to 5.4% for effort and -2.6 

to 2.7 pence for reward. I used a fixed, 2 pence, reward for the ‗hold‘ option.  

 

Procedure 

Behavioural subjects entered the testing room, and completed the tasks while 

sitting upright, whereas fMRI subjects lay on the scanner bed to undergo, 

successively, force calibration, training, four experimental blocks and a final 

structural scan. Calibration and training blocks were completed as participants lay 

on the scanner bed outside the magnet, while experimental blocks and the 

structural scan were completed as participants lay inside the magnet. While BOLD 

data is recorded, participants completed the experimental task with a rest period 

(up to 3 mins) between the blocks. Participants completed post-scan questionnaires 

outside the scanner at end of experiment. 

Here, I adapted the choice task to the fMRI set up by separating the choice 

and squeeze events into CHOICE and EXECUTE mini blocks (clearly prompted at 

the start each period) to remove motor preparatory brain activity in anticipation of 
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gripping. In CHOICE periods, participants made a series of twelve consecutive 

choices between a ‗grip‘ and ‗a hold‘ cue (FIGURE 3-3). In EXECUTE periods, 

participants executed their preceding selected actions by gripping (or simply 

holding) a hand device at the corresponding effort level to receive the 

corresponding reward amount. To further de-correlate brain signal for choice from 

that for execution, the fMRI participants only executed 75% of the choices, 

randomly selected from the preceding twelve CHOICE trials. A pair of the 

CHOICE and the EXECUTE periods was repeated five times in each block. 

 

 

Figure 3-3 Left-top: Grip and hold stimuli. Grip stimulus: a horizontal line indicates reward 

levels (in pence), a vertical line indicates effort levels (in % maximum grip). In study 2, I 

added a random value to effort and reward levels of each grip stimulus; values in brackets 

show the averages. Hold stimulus: a horizontal line indicates a fixed reward value in pence. 

Middle: A schematic of the task. CHOICE period: in each CHOICE trial, a fixation cross 

appears, followed by a ‗grip‘ and a ‗hold‘ stimulus. Participants had to make a decision to 

grip or to hold. There were twelve CHOICE trials; each grip stimulus was presented 

pseudo-randomly. At the end of each CHOICE period, the computer randomly selects nine 

out of twelve participants‘ choices from the preceding CHOICE period to be executed. 

EXECUTE period: immediately following the 12th CHOICE trial, the EXECUTE period 

comprising of nine trials; either a grip or a hold trial, commences. In the grip trials, a 

thermometer with a target level was displayed to guide squeezing. In the hold trials, a 

‗frozen‘ thermometer was presented. Each participant carried out five sets of CHOICE and 

EXECUTE period in total. Bottom-right: A thermometer stimulus is used to guide 

squeezing during EXECUTE period. The red ‗mercury‘ indicates current force level; yellow 

horizontal line indicates target level. Figure taken from Kurniawan et al., JNeurophysiol, 

2010, Am Physiol Soc, used with permission. 

 

Overall, the behavioural participants completed 180 ‗choice‘ and ‗execute‘ 

trials, split in three blocks of 60 ‗choice‘ and 60 ‗execute‘ trials. The fMRI 
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participants completed 240 ‗choice‘ trials and 180 ‗execute‘ trials, split in four scan 

sessions of 60 ‗choice‘ trials and 45 ‗execute‘ trials.   

To improve fMRI efficiency, I shortened the choice event, such that 

participants only had 1800 ms to select either ‗grip‘ or ‗hold‘ stimulus. At the 

beginning of each EXECUTE trial, a fixation cross appeared for 200 ms, followed 

by a message to get ready to grip in the case of a ‗grip‘ execution trial, and the 

thermometer for 6 secs. As before, the trial aborts if participants do not reach the 

target within 2 secs after thermometer onset or if they release the hand-grip before 

6 secs expire with a reward outcome of zero pence. On average in the fMRI 

experiment, 2% (SD = 0.7%) of all trials were aborted; these trials were included in 

the fMRI analysis. To reduce noise caused by no-go signal during a ‗hold‘ execution 

trial, participants did not see any prompt message, and instead were immediately 

presented with a ‗frozen‘ thermometer for six seconds.  

Questionnaires. Immediately after the experimental task, participants 

completed a 20-item persistence scale that measures individual propensity to work 

harder when facing daily challenges (e.g., ‗I usually push myself harder than most 

people do‘; APPENDICES) (Cloninger et al. 1993) and made ratings of how much they 

like the effort-reward combinations of the ‗hold‘ and ‗grip‘ cues. Participants also 

responded to two manipulation check questions for reward and effort on paper.  

 

Imaging analysis 

To highlight activity correlating with anticipated effort, and with the choice to grip 

or hold, I defined four regressors-of-interest representing four event types that 

varied in effort level and participants‘ choice (low effort vs. high effort and grip vs. 

hold) at choice onset: grip-low effort (gripLE), grip-high effort (gripHE), hold-low 

effort (holdLE), and hold-high effort (holdHE). Furthermore, to assess activity 

correlating with reward, I entered a trial-by-trial reward value (3 or 11 pence + a 

random value) as a parametric modulator for each of the four regressors. I entered 

two regressors-of-no interest from the ‗grip‘ and ‗hold‘ trials in the EXECUTE 

periods at thermometer onset with 6 secs duration; suprathreshold activity for grip 

> hold contrast in execute periods is found in left primary motor cortex (see 

APPENDICES).  

I computed a set of contrasts for each participant, testing the main effects of 

choice, effort, and an interaction. As I found persistence correlated with 
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behavioural choice in the scanner (reported below), I entered persistence score as a 

covariate at the second level and ran a whole-brain analysis, thresholded at p = 

.001 uncorrected, >5 voxels, to search for areas active in response to choice (grip vs. 

hold), effort (low vs. high), choice-effort interaction, and simple effects of effort at 

both choices (gripHE vs. gripLE and holdHE vs. holdLE).  

 

3.4.1 Behavioural Results 

 

I first report behavioural data from behavioural (N = 17) and fMRI participants (N 

= 18). 

 

 

Figure 3-4 Choice and subjective ratings from behavioural participants (N =17) (mean + 

SEM). LELR = Low effort-low reward, LEHR = Low effort-high reward, HELR = High 

effort-low reward, HEHR = High effort-high reward. 

 

Choice. I replicate the behavioural choice effects seen in study 1. In both 

sets of subjects (FIGURE 3-4 (left) & FIGURE 3-5A (dark shade)), acceptance rate for 

gripping is significantly higher for actions with low than high effort and for actions 

with high than low reward.  An effort by reward interaction for behavioural 

subjects was significant, but not for fMRI subjects. For the same low reward, the 

behavioural subjects chose low effort significantly more than high effort actions, 



Effort KURNIAWAN 2011 

53 

 

whereas choice difference between low and high effort actions for high reward is 

n.s. Statistical values are shown in TABLE 3-1.  

 

  

Figure 3-5 Behavioural choice, subjective rating, and RT‘s. a) Proportion of trials where 

participants chose to grip (dark shade) and their subjective rating (light shade) for each 

option. Participants chose to grip more often when the reward offered was high than when 

it was low, and when the effort anticipated was low than when it was high. The interaction 

was non-significant. Liking (light shade) was higher for options with high reward than for 

options with low reward, higher for options with low effort than for options with high effort, 

and comparable between ‗hold‘ and low effort-low reward. The interaction was non-

significant. b) The same liking data to (a), showing that on average, the order of rating from 

lowest to highest is: high effort-low reward, low effort-low reward, high effort-high reward, 

and low effort-high reward. c) RT‘s were slower for choice to hold than for choice to grip. 

(Mean + SD). Figure taken from Kurniawan et al., JNeurophysiol, 2010, Am Physiol Soc, 

used with permission. 

 

Subjective rating. As seen in FIGURE 3-4 (right) and FIGURE 3-5A (light 

shade), participants rated the ‗hold‘ and low effort-low reward option comparably. I 

computed a difference score between liking for ‗hold‘ (as baseline) and each of the 

‗grip‘ options for each participant, and found effort and reward main effects; 
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subjective liking was significantly higher for high than low reward and for low than 

high effort.  

 

Table 3-1 Two-way effort by reward ANOVA results for behavioural (N = 17) and fMRI (N = 

18) participants in study 2. LELR = Low effort-low reward, LEHR = Low effort-high 

reward, HELR = High effort-low reward, HEHR = High effort-high reward. 

No. Effect F / t values N 

1. Choice: Low > High Effort F(1,16) = 87.41,  p < .00001, p
2  = .84 17 

2. Choice: High > Low Reward F(1,16) = 5.50,  p = .03, p
2  = .25. 17 

3. Choice: Effort x Reward F(1,16) = 4.50,  p = .04, p
2  = .21. 17 

4. Choice: LELR > HELR t(16) = 2.26, p = .03. 17 

5. Choice: LEHR = HEHR t(16) = 1.22, p = .23. 17 

6. Choice: Low > High Effort F(1,17) = 13.07, p = .002, p
2  = .43.  18 

7. Choice: High > Low Reward F(1,17) = 105.08, p < .0001, p
2 = .86. 18 

8. Liking: Low > High Effort F(1,16) = 14.82, p = .001, p
2 = .48. 17 

9. Liking: High> Low Reward F(1,16) = 52.74, p < .00001, p
2 = .76. 17 

10. Liking: Effort x Reward F(1,16) = 5.84, p = .02, p
2 = .26. 17 

11. Liking: LELR > HELR t(16) = 3.64, p = .002. 17 

12. Liking: LEHR > HEHR t(16) = 3.26, p = .004. 17 

13. Liking: High > Low Reward F(1,17) = 173.41, p < .0001, p
2 = .91 18 

14. Liking: Low > High Effort (F(1,17) = 86.61, p < .00001, p
2 = .83 18 

 

  Again, effort by reward interaction for liking in behavioural subjects was 

significant, but not in fMRI subjects. In behavioural subjects, a reduced likeability 

for high compared to low effort action is greater when the reward is low than when 

it is high. Based on the fMRI group-averaged liking scores, I could describe the 

order of subjective liking for these actions, from lowest to highest: high effort-low 

reward, low effort-low reward, high effort-high reward, and low effort-high reward 

(see FIGURE 3-5B). These findings suggest a fair generalisability to common views 

on effortful and rewarding actions whereby actions with more effort and less 

reward are less liked. 
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Response times. Overall, fMRI participants took significantly longer in 

choosing to grip than to hold (t(17) = 28.95, p < .0001; FIGURE 3-5C). I ran a 

separate ANOVA to formally test the effects of effort and reward on response times 

(RTs). A 2 x 2 (effort x reward) ANOVA revealed that, regardless of choice (grip/ 

hold), RTs were slower for low (M = 994 (SD = 25 ms)) than high reward (M = 764 

(SD = 60 ms)), F(1,17) = 566.59, p <.0001, p
2 = .97; and for high (M = 882 (SD = 

126 ms)) than low effort (M = 876 (SD = 125 ms)), F(1,17) = 4.61, p < .046, p
2 = .21.  

There was no significant interaction. Participants represented each option by 

taking account of both its effort and reward. I ran a separate imaging analysis with 

RTs as a covariate of-no-interest at the first level analysis, and this analysis did 

not change the main findings reported below. I found no difference in RTs from 

behavioural participants, Fs < .7, ps > .30.  

 

 

Figure 3-6 Persistence, behavioural choice, and dACC signal. a) Persistence is negatively 

correlated with the effect of effort on choice (N = 18). Regardless of reward, low persistence 

is associated with a higher preference for options with low effort, whereas high persistence 

is associated with indifference between options with low effort and options with high effort. 

b) Activity in the dACC when the rejected option entailed low effort is positively correlated 

with persistence (p <.001 unc., 11 voxels; N = 17). Figure taken from Kurniawan et al., 

JNeurophysiol, 2010, Am Physiol Soc, used with permission. 

Persistence. A persistence trait is linked to self-directedness (Cloninger et al. 

1993), a characteristic especially lacking when an individual suffers from apathy. I 

calculated a correlation between persistence scores and the effects of effort, reward, 

and interaction on choice. In the fMRI participants, I found that the main effect of 

effort on choice, regardless of reward level, was negatively correlated with 

persistence, r = .59, r2 = 34%, p = .01. As persistence score decreases, there was a 

greater difference between choice to grip an option with low effort compared to 

choice to grip an option with high effort: i.e., less persistent participants much 

preferred low compared to high effort, while those with high persistence (or less 

apathy) chose to grip options with low and high effort equally often (FIGURE 3-6A). 
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Correlations with reward and interaction effects on choice and those in behavioural 

subjects were non-significant.  

Manipulation checks. In the fMRI experiment, I checked whether 

participants understood the reward and effort amounts indicated by the cues, by 

presenting isolated visual markings for reward and effort. For reward, participants 

were shown two red circles each with a horizontal line, one at the top and one the 

bottom, and responded to the question ‗how much money does the horizontal line 

on the circle mean?‘ For effort, participants were presented with two thermometer 

cues each with a yellow line, one at the top and one at the bottom, and responded to 

the question ‗how much money do you think is considered a fair pay for gripping at 

the yellow line 10 times in a row?‘  

Responses to the reward item show the desired effect: participants estimate 

the amount of reward for high and low reward cues reasonably accurately (FIGURE 

3-7A) and the difference is significant, t(17) = 18.93, p = .00001). Likewise, the 

effort manipulation check also show that high and low effort levels are perceived 

differently: the estimate for an expected fair pay to squeeze ten times in a row at 

high effort was significantly greater than that for low effort, t(17) = 2.80, p = .012 

(FIGURE 3-7A). 

Additionally I checked if the decision to accept an action with low reward 

was largely driven by a simple reward comparison between reward in  the ‗grip‘ cue 

and the fixed reward of the ‗hold‘ cue (2 pence), regardless of effort levels. If this is 

so, then by looking at the trial-by-trial random values added to the ‗grip‘ cue, it 

should be possible to detect that the greater the random value that is subtracted 

from the ‗grip‘ reward value, the more likely the action is to be rejected. To do this I 

looked specifically at both low reward conditions (LELR and HELR) and calculated 

the average random values associated with accepted and rejected trials. FIGURE 

3-7B shows that the random values associated with accepted and rejected low 

effort-low reward and high-effort-low reward trials do not differ significantly, ps > 

.30 (FIGURE 3-7B). 
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Figure 3-7 Additional behavioural measures for fMRI subjects (N = 18). a) Successful 

manipulation for effort and reward. b) Proportion of acceptance and rejection rate of low 

effort-low reward (LELR; left) and high effort-low reward (HELR; right) cues as a function 

of trial-by-trial random values added to reward. Random values do not affect acceptance 

rate for both LELR and HELR.  

    

3.4.2 fMRI results 

 

I sought to extend my findings regarding the influence of effort on behavioural 

measures and look for brain regions where activity reflects a bias in choice away 

from effortful actions. To do this, I examined BOLD response when participants 

chose to grip or to hold, and when the required effort was high or low. I added trial-

by-trial reward level as a parametric modulator for each regressor and persistence 

score as a subject-by-subject parametric regressor at second level. 

 

Choice-related activity  

The main effect of choice (choice to grip > choice to hold) was associated with 

activity in the anterior part of right superior frontal gyrus (Z = 3.49, x = 18, y = 53, 

z = -2, 7 voxels; TABLE 3-2). I did not find any suprathreshold activity for choice to 

hold > choice to grip. No supra-threshold clusters were evident for the main effect 

of effort or interaction between choice-effort.  
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Effort-related activity 

I next explored activity modulated by effort level for trials where participants chose 

to grip, chose grip trials, and for trials where participants chose to hold, chose hold 

trials, separately. Particularly, using a whole-brain analysis, I looked for striatal 

and ACC activity associated with effort information of the option. I also explored 

contrasts that were modulated by persistence trait. 

 

Table 3-2 MNI coordinates of regions the activity of which is correlated with choice 

(thresholded at p = 0.001, unc., > 5 voxels).  

Region Nearest 

Brodmann 

Areas 

Coordinates (mm) Z 

value 

No. of 

voxels 

P 

x y z 

Contrast: Choice to Grip > Choice to Hold 

Superior Frontal 

Gyrus 

10 +18 +53 -2 3.49 7 .0001 

(unc.) 

Middle Parietal Lobe 7, 19 +21 -52 +25 3.32 5 .0001 

(unc.) 

        

 

Figure 3-8 Activity in left putamen is higher when participants chose to grip an option 

which involved low effort than when they chose to grip an option which involved high effort 

(cluster-corrected FWE p <.01, 51 voxels). Bar graph depicts the parameter estimates for 

this contrast for visual illustration. Figure taken from Kurniawan et al., JNeurophysiol, 

2010, Am Physiol Soc, used with permission. 
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Table 3-3 MNI coordinates of regions the activity of which is correlated with effort 

(thresholded at p = 0.001, unc., > 5 voxels).  

Region Nearest 

Brodma

nn 

Areas 

Coordinates 

(mm) 

Z 

value 

No. of 

Voxels 

P 

x y z  

Contrast: GripLE > GripHE 

Putamen N/A -27 +8 +4 4.04 51 .01 

(corr.) 

      Putamen N/A -21 +20 -2 3.81   

Primary Somatosensory   

Cortex 

1 -57 -19 +43 3.64 13 .0001 

(unc.) 

Primary Motor Cortex 4p -33 -19 +49 3.60 32 .0001 

(unc.) 

      Primary Somatosensory     

      Cortex 

3b -42 -25 +49 3.32   

Cingulate Motor Area 23, 24 +12 -28 +46 3.51 6 .0001 

(unc.) 

Supplementary Motor Area 6, 4a +3 -16 +55 3.31 8 .0001 

(unc.) 

Supramarginal Gyrus 7, 40 -51 -40 +34 3.61 12 .0001 

(unc.) 

      Supramarginal Gyrus 7, 40 -45 -43 +28 3.34  . 

Middle Temporal Gyrus 39 -57 -52 +19 3.36 8 .0001 

(unc.) 

Contrast: HoldHE > HoldLE 

Mid-brain N/A +9 -25 -8 3.57 7 .0001 

(unc.) 

       Putamen N/A -33 -13 -5 3.39 5  

       Mid. Temporal   Gyrus 37 +60 -34 -8 3.32 6  

Contrast: Persistence x HoldLE  

Anterior Cingulate Cortex 24 +3 +26 +25 3.70 11 .0001 

(unc.) 
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Posterior part of Middle 

Temporal Gyrus 

19 +51 -76 +13 3.40 8 .0001 

(unc.) 

 

For the chose grip trials I observed significant striatal activity when 

participants chose to grip a low compared to when they chose to grip a high effort 

option (gripLE > gripHE; FIGURE 3-8). This activity extended dorsally towards the 

caudate with a peak in the left putamen (Z = 4.04,  x = -27, y = 8, z = 4, 51 voxels), 

and survived a more stringent threshold (cluster corrected FWE p .01). Regardless 

of reward level, the dorsal aspect of the putamen signaled effort information of the 

chosen action, with lower effort invoking greater signal. In the same contrast, I 

also found activity in the left motor cortex (Z = 3.6, x = -33, y = -19, z = 49, 32 

voxels), right cingulate motor area (Vogt, 2005) (Z = 3.51, x = 12, y = -28, z = 46, 6 

voxels), and right SMA (Z = 3.31,  x = 3, y = -16, z = 55, 8 voxels). The reverse 

contrast (gripHE > gripLE) did not show any supra-threshold activity. The 

statistics of the activations are summarised in TABLE 3-3 .  

For the chose hold trials, on the other hand, I did not find any 

suprathreshold activity with a contrast of trials where the rejected option involved 

low or high effort (holdLE > holdHE). The reverse contrast (holdHE > holdLE) 

yielded an enhanced activity in midbrain, in the vicinity of ventral thalamus (Z = 

3.57, x = 9, y = -25, z = -8, 7 voxels; TABLE 3-3) for rejecting options with high effort 

compared to rejecting options with low effort.  

 

 

Figure 3-9 Reward level is positively correlated with activity in bilateral nucleus 

accumbens when participants chose to grip an option which involved high effort. Activation 

displayed in pink is thresholded at p < .005 (unc., 5 voxels), activation displayed in yellow is 

thresholded at p < .05 (unc., 582 voxels). Figure taken from Kurniawan et al., 

JNeurophysiol, 2010, Am Physiol Soc, used with permission. 
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Finally, I tested if persistence modulates effort-related activity, using the 

behavioural persistence scale as a covariate. I found no effect on activity associated 

with effort-related choices to grip. However I did find an effect on choices to hold, 

such that persistence significantly modulated activity in right dorsal ACC when 

participants rejected an option with low effort (Z = 3.7, x = 3, y = 26, z = 25, 11 

voxels; TABLE 3-3). Thus, the more persistent a subject is, the greater the 

activation in dorsal ACC when rejecting an option that entailed low effort FIGURE 

3-6B. This was the only significant correlation between persistence and the BOLD 

response to each condition.  

 

Table 3-4 MNI coordinates of regions the activity of which is correlated with reward 

(thresholded at p = 0.001, unc., > 5 voxels, except for the last contrast; thresholded at p = 

0.005, unc., > 5 voxels).  

Region Nearest 

Brodmann 

Areas 

Coordinates 

(mm) 

Z 

value 

No. of 

voxels 

P 

x y z  

Contrast: Reward x Choice to Grip > Choice to Hold 

Inferior Temporal Gyrus 37 -51 -58 -5 4.07 10 .0001 

(unc.) 

Supplementary Motor 

Area 

6 -3 -19 +55 3.61 8 .0001 

(unc.) 

Contrast: Reward x GripHE  

Nucleus Accumbens N/A 0 +11 -11 2.84 5 .002 

(unc.) 

 

Activity reflecting reward modulation  

With reward level as a parametric modulator, I found a significant correlation with 

activity in the supplementary motor area (SMA) (Z = 3.61, x = -3, y = -19, z = 55, 8 

voxels; TABLE 3-4) for the contrast chose grip > chose hold trials. No 

suprathreshold activity was found for reward modulation in other contrasts. 

However, driven by a strong prediction that NAc may be involved in reward 

processing (Knutson, Taylor, Kaufman, R. Peterson, & Glover, 2005), I lowered the 

threshold to p < .005 (unc., >5 voxels) and found a small, but significant cluster at 

the vicinity of NAc (Z = 2.84, x = 0, y = -11, z = 11, 5 voxels) that positively 
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correlated with reward only in trials where they opted an option with high effort 

(FIGURE 3-9).  

 

3.5 General Discussion 

 

The present chapter report behavioural data and brain activations involved in 

choosing an action based on physical effort.  

I show that effort acts on behaviour in a manner that reflects discounting 

the value of an action, an effect reflected in lower ratings and lower preference for 

options with high effort. I also found that effort interacts with reward in 

influencing willingness to choose effortful gripping and participants‘ likeability, but 

this finding did not hold in the fMRI participants. Whether effort has a simple 

subtractive effect or a more complex interactive effect with reward is an empirical 

question. Most studies that attempt to investigate cost-benefit analysis assumes a 

simple or hyperbolic, subtractive effect (Bautista et al., 2001; Croxson et al., 2009; 

Prevost et al., 2010), although recently Talmi and co-workers have demonstrated 

how pain-reward integration, as another form of cost-benefit thinking, could be 

approximated by an interactive model (Talmi et al., 2009).  

My findings support previous laboratory and field experiments with animals 

including humans, highlighting a sensitivity to action costs namely higher fixed 

reinforcement schedule in lever presses, weight of levers, higher metabolic 

requirements, longer travelling distance in foraging, a higher physical response 

requirement of climbing when compared to walking and hand force investment 

(Bautista et al., 2001; Eisenberger et al., 1989; Prevost et al., 2010; Salamone et al., 

1994; J. R. Stevens et al., 2005; Walton et al., 2009, 2006). My behavioural findings 

also accord with a human observation study of pedestrian walking efficiency 

(Bitgood, 2006).  

I expected involvement of ACC in the choice for effortful behaviour. For 

example, rodent experiments report that rats who expend effort for a larger gain 

preoperatively, choose an effortless, small reward, after a lesion in the ACC 

(Floresco & Ghods-sharifi, 2007; Walton, Bannerman, & Rushworth, 2002; Walton 

et al., 2009). Monkey single-cell recordings (Kennerley et al., 2009) and human 

imaging experiments with passive action valuation (Croxson et al., 2009) or mental 

load (Botvinick et al., 2009) also report enhanced ACC activity with increasing 
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effort. I contrast my study with that by Prevost et al. (2010) who found ACC is 

associated with subjective value (roughly the inverse of effort). Both studies 

utilised the investment of physical effort and examined the process of deciding 

whether the offered costly action is worth more than a default option. Nevertheless 

an important distinction is in the possibility that BOLD signal found in ACC 

during ‗choice‘ (i.e. cue presentation) in their study reflects a mixture of a more 

abstract effort computation and a motor anticipatory process. It is true that motor 

anticipation could importantly contribute to the more abstract value comparison or 

effort integration putatively involved when making a choice. Nevertheless through 

the separation of choice and execution events, my study explicitly intended to 

decontaminate motoric processes from a purely abstract decision process. Perhaps 

ACC is important in a situation where the decision to act is accompanied by an 

imminent execution of the selected action, more ubiquitously found in previous 

work.  

I found an association between persistence and the effect of effort on choice, 

which suggests the task captures a tendency to persist in everyday tasks thus 

strengthening interpretability and generalisability. Although this correlation could 

be driven by other traits, such as obedience to experimenter or social desirability, 

there are good reasons to think otherwise. In the task, participants knew that the 

experimenters could not see their actual choices during the experiment, and this is 

likely to eliminate desirability biases. Moreover, the correlation with persistence 

was selective to the effect of effort, not to reward effect, nor did it correlate with 

effort-reward interaction. Nevertheless, the generalisability of the task is subject to 

further testing. 

Overall, choice and reward recruited frontal circuitries. I observed a 

modulation of activity for reward in the supplementary motor area (SMA) when 

participants opted to grip regardless of actual effort levels. SMA region has been 

previously implicated in movement planning (Shima & Tanji, 1998), which 

suggests that the choice to grip may evoke a representation of the outcome of the 

chosen action, which in these instances is correlated with reward expectation.  

Croxson et al (2009) identified activity in the striatum, including the 

putamen, corresponding with net value (cost in terms of time and effort divided by 

reward) of an upcoming action. This led me to hypothesise involvement of striatum 

in effort-based choices in humans. I designed the experiment such that motor 

preparatory activity did not contaminate BOLD response during choice events (see 



Effort KURNIAWAN 2011 

64 

 

FIGURE 3-3). Notably, I found that the putamen was more active during 

anticipation of low relative to high effort, a finding that argues against traditional 

views of the putamen as being solely involved in pure motoric aspects of movement 

execution (e.g., Marchand et al., 2008; Prodoehl, Corcos, & Vaillancourt, 2009), and 

instead points to a role in  higher order aspects of action valuation (Tobler, 

O‘Doherty, Dolan, & W. Schultz, 2007) that in my study pertains to a consideration 

of effort cost.  

Previous rodent studies provide evidence for involvement of NAc (ventral 

striatum) in effort-related responses (Salamone, Correa, Farrar, & Mingote, 2007). 

A direct comparison of the regional anatomy of the striatum is difficult between 

humans and rodents. In humans there is good evidence of anatomical and 

functional dissociation between dorsal (dorsal caudate-putamen) and ventral (NAc, 

ventral putamen/caudate and olfactory tubercle) (e.g., O'Doherty et al., 2004), but 

the connectivity of dorsal and ventral striatum share a similar parallel 

organisation (Haber, Fudge, & McFarland, 2000). The dorsal striatum has a 

stronger role in action learning and choice (as compared to passive prediction), 

which is a central way that effort impacts upon behaviour in my task. Croxson and 

co-workers (2009) found a large cluster of activation spanning across the 

dorsolateral and ventromedial aspects of the striatum that correlated with the net 

value of an upcoming action, consistent with the notion that broad regions of the 

striatum may be sensitive to the cost of an action. My finding of involvement of 

putamen along with previous work, provide converging evidence that the striatum 

is implicated in effort-related choices in human and across species.  

An important caveat to the interpretation of putamen activity as related to 

economic cost is that I do not see positive activity related to financial reward per se 

in this region. First, my imaging analysis was not designed to assess a simple 

difference in activity for high versus low reward. Second, I failed to identify a 

significant modulation of reward in the effort contrasts despite many previous 

demonstrations elsewhere for reward-related activity in this region (Croxson et al., 

2009; Knutson et al., 2005; Pessiglione et al., 2007; Schmidt et al., 2008). One 

possible, and intriguing, explanation for this failure is that it may relate to a 

relative lack of salience of reward, as compared to effort, in the task. Even so, high 

reward still had a strong effect on behaviour in the task, and modulated brain 

activity for other contrasts in the SMA and in the NAc. 
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Choosing to make a physical effort in my study reflects a critical evaluation 

of whether an action is worth taking, a pertinent cognitive process that may be 

lacking in DA-depleted conditions such as Parkinson‘s disease and apathy. Indeed 

evidence in rodents suggests that DA antagonism biases preference away from 

expending effort for a larger gain after controlling for time effects (Floresco et al., 

2008). This evaluation also captures an individual propensity to persist through 

daily challenges.  
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Chapter 4  Pavlovian effects on learning (study 3) 

 

 

 

 

Abstract 

 

People and non-human animals tend to be active when attaining rewards and 

when withdrawing from punishments. How difficult is it for people to learn to 

overcome this tendency through learning, and to learn to be active in order to avoid 

punishment, or to learn to withdraw to obtain a reward? This experiment explores 

this question in the context of vigour of actions, i.e., where activation corresponds 

to a strong response (i.e., squeezing a gripper) and withdrawal corresponds to a 

weak response (i.e., releasing a gripper). A factorial design, in which reward-

punishment was crossed with squeeze-release, showed that learning is poorer when 

people are attempting to overcome their 'natural' tendency to invigorate towards 

rewards and withdraw from punishments. Specifically, we observed i) worse 

performance to squeeze to avoid punishments than to obtain rewards and ii) worse 

learning to release to obtain rewards than to avoid punishments. These results can 

be modelled using a reinforcement learning mechanism, combined with prior biases 

arising from Pavlovian mechanisms. We discuss the nature of actions and how they 

relate to the nature of affective outcomes. The data speak to a wider 

conceptualisation of influences on motivated action beyond that of minimal 

behavioural activation.     
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4.1 Introduction 

 

 Understanding motivated, effortful, behaviour calls for separating actions from 

their reinforcers. In principle, an orthogonality exists between the valence of a 

potential outcome and the nature of action required to realise that outcome 

(Boureau & Dayan, 2011). This orthogonality (FIGURE 4-1)  implies two separate 

continua; stretching from top to bottom on the ordinate is behavioural invigoration 

/ inhibition axis and from right to left on the abscissa is axis for appetitive (reward) 

/ aversive (punishment) outcomes.     

Previous work has suggested asymmetric couplings between invigoration 

and outcome, such that, actions that fall anywhere in the top-right and bottom-left 

quadrants (invigoration/appetitive and inhibition/aversive couplings) seem to be 

more strongly and readily established than do actions that fall under 

inhibition/appetitive and invigoration/aversive pairs. Such an action architecture 

facilitates efficiency in learning the correct action so as to produce the 

appropriately valenced outcome. For example, an appetitive stimulus requires 

some behavioural activation in order to acquire it, whereas an aversive stimulus if 

distal, usually requires withholding an action in order evade it. My aim was to 

carve this affect-effect architecture to include actions that entail an expenditure of 

vigour. 

Traditionally, classical conditioning paradigms (i.e., stimulus-outcome 

pairing) involve pavlovian indices which typically imply engagement of appetitive 

and aversive systems as responses to rewarding and punishing stimuli, 

respectively. Operant, instrumental conditioning paradigms (i.e., response-outcome 

pairing) typically involve behavioural engagement such as an approach response, 

and behavioural withdrawal such as avoid or withhold response.  This predicts an 

overlap and potential interference between pavlovian and instrumental indices 

reflecting behavioural biases for certain actions and outcomes (Boureau & Dayan, 

2011). 

In a classical conditioning paradigm where an illuminated key predicts 

reward delivery, pigeons spontaneously peck on the illuminated key and move 

towards this conditioned stimulus (CS). In contrast, pigeons peck less on CS-, 

which predicts reward omission, and move away from the CS- (Wasserman, 

Franklin, & Hearst, 1974). Note this paradigm does not require pigeons to make 
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any response to receive rewards, and the only relevant action is to approach the 

food outlet to consume the grains of food. Nevertheless the appetitive system 

engaged by reward conditioning seems to spill over and engages the instrumental 

system, even inappropriately. This is more clearly demonstrated in a pavlovian-

instrumental transfer (PIT) paradigm where learned stimulus-outcome 

associations (pavlovian) interfere with previously learned stimulus-response 

associations (instrumental). In these paradigms, after separate pavlovian and 

instrumental conditioning sessions, subjects are given an extinction instrumental 

block, along with presentations of the pavlovian CSs previously associated with 

outcomes. What is generally found in extinction block is that subjects tend to emit 

an action that was paired with an outcome more often when the pavlovian CS+ for 

that outcome was presented, even though the CS was never paired with the action.  

 

 

Figure 4-1 The affect-effect plot (adapted from Boureau & Dayan, 2011) appropriated for 

vigorous actions. Vertical axis contains an activation spectrum from behavioural 

withdrawal (bottom) to behavioural invigoration exemplified in squeezing. Horizontal axis 

contains affective results from rewarding (right) to punishing outcomes (left).  

 

This spillover between pavlovian and instrumental indices seems to be 

specific to the valence of both outcomes (e.g. appetitive) and actions (e.g. approach). 

In a conditioning paradigm where food is only obtainable when one locomotes away 

from it, chicks fail to acquire this conditioned avoid response and instead keep 

approaching the food (Hershberger, 1986). In addition, in an atypical instrumental 
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contingency where a cue indicates that pecking would omit reward delivery, 

pigeons are unable to withhold such an approach response. Instead, they show 

persistent, ineffective pecking even for as long as 15 days (D. R. Williams & H. 

Williams, 1969). This demonstrates that an existing stimulus-reward association 

between a CS (illuminated key) and unconditioned stimulus (US) such as food is 

important in generating this maladaptive persistent pecking, even though the 

response-reward association counters the stimulus-reward association. This very 

‗pavlovian‘ stimulus-outcome association may facilitate/interfere instrumental 

learning conditioning where an association between response-outcome is formed in 

a valence-compatible or -incompatible manner.  

More recently, Guitart-Masip and colleagues (Guitart-Masip et al., 2011) 

demonstrated in humans that when anticipating appetitive outcomes such as 

winning money, participants are more prepared to emit (‗go‘) than withhold (‗nogo‘) 

a response,  whereas in anticipation of aversive outcomes such as losing money 

participants are better at withholding than emitting a response.  

Moreover, actions that are instrumental in attaining reward or evading 

punishment often require substantial effort. I extended the behavioural activation 

axis to actions with either effort expenditure or withdrawal. In this task, 

participants underwent an instrumental conditioning paradigm where they learn 

trial-by-trial to discriminate four cues predicting effort expenditure (squeeze) or 

withdrawal (withdraw) to either obtain money (win) or avoid losing money (avoid 

loss). I use a similar action by outcome valence design to that of Guitart-Masip et 

al., (2011). In a squeeze condition, participants do not simply emit a minimal effort 

response but a vigorous one where 80% maximum force is expended. Instead of 

simply withholding an action, in withdraw condition participants intentionally 

reduce the amount of effort currently expended to minimal level. 

If vigorous action learning is governed by pavlovian influence of outcomes, I 

predict an interaction between action and outcome valence. On the other hand, if 

there are equal pavlovian influences on instrumental effort, I predict a simple 

effect of costly effort, that is learning would be more efficient when participants 

withdrew than expend effort. 
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4.2 Method 

 

Participants, stimuli and procedure 

Nineteen participants (12 females, mean age = 25 (4.70) years) were recruited 

through the psychology participant database at UCL. Six participants used reward 

and punishment values of £1 and -£1 hypothetical money, whereas the rest used 

values of £0.20 and -£0.20 real money. No difference was found between these 

groups, thus I collapsed across these groups in all analyses. All participants were 

paid £5 -10 (mostly based on performance). The study was approved by the UCL 

ethics committee.  

Cues were four fractal stimuli, sub-imposed behind the squeeze stimulus at 

the centre of screen. Each fractal stimulus was randomly assigned to one of four 

contingencies, crossing between action (squeeze vs. withdraw) and valence (win vs. 

avoid losing).  

Before the learning task, participants completed two blocks of twelve 

training trials using a practice image, which is a different image from the 

experimental stimuli. During training, subjects were instructed to perform each of 

squeeze and withdraw responses twelve times. No outcome feedback was presented. 

The aim was to train participants to make both responses that satisfy the criteria 

within 1500 msec of cue onset. The criterion for a squeeze response was to reach 

80% maximum force at least once, within 1500 msec, the criterion for a withdraw 

response was to release grip force to minimum level. 

In each experimental trial I present one of four stimuli which participants 

learned trial-by-trial to either squeeze or withdraw, where each correct action 

yielded either a positive outcome 80% of the time or none 20% of the time (win 

condition), or none 80% of the time or a negative outcome 20% of the time (avoid 

loss condition). Incorrect action always yielded nothing in win (and a negative 

outcome in avoid loss) trials.  

Overall, participants underwent 60 continuous, fully-randomised repetitions 

of four conditions, presented with a 5-seconds rest every twelve trials and a 15-

seconds rest after the first and second 100 trials. Overall, there were 240 trials. 
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Figure 4-2 a) A schematic of a single trial. Participants self-initiated a trial by squeezing a 

hand grip to move a visual red bar stimulus to reach a 50% force line on screen and stay on 

that line for 1 sec. Immediately following this, one of four cues is presented which gave 

participants 1500 msec to respond either by squeezing to reach the top level (80%), or by 

completely withdrawing force. The monetary outcome is presented at the end of 1500 msec. 

Correct responses are probabilistically rewarded (gain in win condition and zero in avoid 

loss condition), whilst incorrect responses are never rewarded (zero in win condition and 

loss in avoid loss condition). b) Grip data for one participant in all conditions. Each line 

represents one trial with time on x-axis from onset of ‗Squeeze to line‘ screen until end of 

grip period. Participants start around zero force with natural noise in the grip device, they 

then voluntarily reaches the 50% force and maintains for 1 sec to initiate cue, followed by 

either a squeeze to 80% force (top) or force withdrawal (bottom). As seen here, this 

participant made more incorrect squeeze responses when they were supposed to withdraw 

to avoid loss (bottom right); a.u. = arbitrary units. c) A list of models used to describe the 

hypothesized underlying decision processes and their free parameters. 

 

As seen in FIGURE 4-2A, participants self-initiated a trial by reaching a 

horizontal line on screen (individually-calibrated as 50% of max force) using a hand 

grip. Participants had to maintain force at this line for 1 sec. If participants under- 

or over-squeezed before 1 sec had elapsed, the trial was aborted and re-started, 

which happened < 5% of all trials in all participants, except in one subject who had 

aborted trials 26% of the time. After this level had been maintained for 1 sec, one of 

the four fractal cues was randomly presented which prompts participants to choose 

either to make a squeeze or withdraw response. There was a blank screen for 1 sec, 

followed by a message indicating the monetary outcome of that trial for 1 sec. ITI 
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was 1 sec. Participants saw the total outcome at the end of experiment and were 

paid a maximum of £5 based on their total earning.  

As an example, FIGURE 4-2B shows grip data for one participant in all 

conditions. Each line represent gripping trajectory across time starting from onset 

of instruction screen to self-initiate trial until offset of squeeze stimulus. Grip value 

starts around zero, increases and stays at 50% level for 1 sec followed by either a 

squeeze (80%) or withdraw (around 0%) response to the cue. This participant was 

able to discriminate the cues and only made few incorrect responses when required 

to withdraw to avoid loss; overall accuracy for this participant was above 93%. 

 

Modelling  

I modified a standard reinforcement learning model to capture my behavioural 

data as previously used to model pavlovian to instrumental interactions (Guitart-

Masip, Talmi, & Dolan, 2010; Huys et al., 2011). I first describe the model with the 

lowest Bayesian Information Criterion (BIC) value (Schwarz, 1978), model PBwl 

(pav-bias-win-loss) and then the alternative models (FIGURE 4-2C).  

Let 
ts be stimulus presented at trial t, and 

ta be the action (choice) on that 

trial. An action can be one of two types: squeeze or withdraw. Let also 
tr  

be the 

reinforcement obtained, either positive or zero in win, or zero or negative in avoid 

loss. I define the action weight, ( )t tW a for each action. The weight of a withdraw 

action, ( )t tW withdraw is equal to the action value ( , )t t tQ s withdraw  associated with 

the action withdraw in the presence of stimulus 
ts . The weight of a squeeze action 

( )t tW squeeze , is an update of i) the action value tQ  associated with the squeeze 

action ( , )t t tQ s squeeze  in the presence of stimulus 
ts , and  ii) a fixed, time-invariant 

Pavlovian term, pav, multiplied by stimulus value 
tV associated with stimulus 

ts , 

allowing positive outcomes to boost action value for squeeze and negative outcomes 

to damp down action value for squeeze, and iii) a fixed, time-invariant bias term, 

bias, boosting a squeeze action, constrained in positive numbers. 

 

( ) ( , )t t t t tW withdraw Q s withdraw                                  (1) 

( ) ( , ) . ( )t t t t t t tW squeeze Q s withdraw pavV s bias                       (2) 
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I assume participants‘ choice are based on some comparison between the 

action weights with some stochasticity, based on a softmax distribution, such that 

probability of choosing say a squeeze action given stimulus ts , ( | )t tp squeeze s for 

the winning model is: 

( ( ) ( ))

1
( | )

1 t t
t t W withdraw W squeeze

p squeeze s
e

                               (2) 

 

Outcome was always immediately following the action, thus a Rescorla-

Wagner rule was applied to compute the expectations with a fixed learning rate 

constrained between 0 and 1, . I only update the values associated with the 

chosen action and use the same learning rate for each individual to update action 

and stimulus values tQ
 
and tV . As implemented in Huys et al. (2011), the 

immediate, intrinsic value of rewards and punishments may be different, so I 

added two outcome sensitivity parameters, win and loss . I used these terms to 

update the action and stimulus values.  

1( , ) ( , ) .( . ( , ))t t t t t t t t t t tQ s a Q s a r Q s a                           (3) 

1( ) ( ) .( . ( ))t t t t t t t tV s V s r V s                                  (4) 

Where t is win if tr  >0 and t is loss  if tr  <0 

 

To find the optimal solution for these free parameters, I conducted 

nonlinear optimisation which calculates the smallest negative log likelihood 

function of choice (akin to maximum likelihood estimate (MLE) (Daw, 2009) using 

iterations with 30 different starting points. 

Alternative models are as follows: Model Pwl (pav-win-loss; model 5) 

assumes no bias for squeezing. Model Pav (model 2) assumes no bias and no 

different outcome sensitivity for win and loss, win , loss . Instead, model Pav 

included  as the slope of softmax function to govern choice probability 

(constrained as positive numbers). Note that replacing with  is 

mathematically equivalent; modifying the sensitivity to outcome is simply 

changing the scale of the function to be more stretched/ dispersed (as rho gets 

higher, there is less stochasticity) and this gives the same effect as changing the 

slope of the function. Thus ( | )t tp squeeze s for model Pav is: 
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( ( ) .( ))

1
( | )

1 t t
t t W withdraw W squeeze

p squeeze s
e

                                  (5) 

Model PB (pav-bias; model 4) is an extension of model Pav (model 2) with a 

bias for squeezing. Model Bias (model 3) assumes no pav term, whereas model RW 

(Rescorla-Wagner; model 1) does not assume pav nor bias terms. 

I report negative log likelihoods (-LL; lower values indicate better fit of the 

model), both pure and penalised for number of free parameters (BIC). I also report 

a pseudo-r2 statistic (Camerer & Ho, 1999), defined as (r - l) ⁄ r where r and l are, 

the log values of data likelihood under the model and under purely random choices 

(0.5 for each trial) (TABLE 4-1). 

 

4.3 Results 

 

Raw data: p(correct) 

Learning was evident as revealed in a 2 x 2 x 6 (Action x Valence x Block) repeated 

measures ANOVA on proportion of correct responses. There was a significant main 

effect of block, F(3.05,54.96) = 20.22, p < .0001, p
2 = .52 and a significant action by 

valence interaction, F(1,18) = 7.70, p = .012, p
2 = .30.  There was a consistent 

block-by-block performance improvement, ps < .005 (FIGURE 4-3A). I also found a 

marginally significant action by valence by block interaction at the transition into 

the 4th block, p = .058.  

To find out what drives this (marginally) significant three-way interaction, I 

averaged over each subject‘s proportion of correct trials across the first three blocks 

and compared these against trials in block 4 to test for learning in two-way Valence 

x Block (block 1-3 vs. 4) ANOVAs at squeeze and withdraw actions separately 

(FIGURE 4-3B).  

In squeeze trials, main effects of valence and block were significant. 

Participants were significantly more accurate in win than avoid loss trials, 

regardless of learning, F(1,18) = 9.21, p = .007, p
2 = .34 and they did better in 

block 4 than in previous blocks, regardless of valence, F(1,18) = 18.60, p < .0001, p
2 

= .50. Valence by block interaction was not significant, F < .8, p > .40.  

In withdraw conditions, there was a significant main effect of block, there 

were more correct trials in block 4 than there were in previous blocks, F(1,18) = 

13.61, p = .002, p
2 = .43, and a significant Valence x Block interaction, F(1,18) = 
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6.16, p = .023, p
2 = .25, Valence effect was non-significant, F < 2, p > .18. Following 

up the interaction, I found a significant simple effect of block in avoid loss, but not 

in win trials: subjects significantly improved their performance to make a 

withdraw response to avoid loss, t(18) = 4.57, p < .0001, but not to win, t < 1, p = 

.37.    

 

Figure 4-3.  Group-averaged proportion of successful trials, observed across six blocks (a), 

with follow-up tests between block 1-3 vs. 4 (b), overall (c) and predicted by model PBwl (d) 

and Pav (e). a) There was significant performance improvement at each block, regardless of 

action and valence. I found a significant action by valence interaction and a marginally 

significant action by valence by block interaction. b) Separate follow-up Valence x Block 

ANOVAs for squeeze and withdraw trials show that squeeze performance improved in both 

win and avoid loss trials (valence by block interaction was n.s.). Withdraw performance 

only improved in avoid loss, but not in win trials, valence by block interaction was 

significant, p = 0.023. Solid lines denote squeeze actions, dotted lines denote withdraw 

actions; blue lines denote win, red lines denote avoid loss trials. c) Overall, there was a 

significant action by valence interaction, and this was driven by higher accuracy when 

squeezing to win than to avoid loss. d-e) Prediction of proportion of succesful trials by model 

PBwl and Pav. Visual inspection suggests that model PBwl gives a better match between 

observation and prediction than model Pav does. 

The action by valence interaction I found in the learning data was also 

evident in overall performance.  I entered the overall proportion of correct 

responses, into a 2 x 2 (Action x Valence) repeated-measures ANOVA and found a 

significant action by valence interaction, F(1,18) = 7.76, p = .012, p
2 = .30 (FIGURE 

4-3C). This interaction was driven by a significantly better performance for 

squeezing to win than to avoid loss, t(18) = 3.05, p = .007. Correct withdraw 
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responses to win and to avoid loss were not significantly different. No main effect of 

action or valence was found, Fs < 1.2, ps > .25. The learning data suggest a 

potential pavlovian role of outcomes in the withdraw domain, whilst overall 

performance data suggest a pavlovian role in the squeeze domain. Combined, these 

learning and overall performance results suggest a potential interdependence 

between action and valence where rewards preferentially facilitate squeezing, and 

punishments preferentially support learning to withdraw effort.  

 

Raw data: p(stay) 

I can test whether the tendency to make the same response (p(stay) is 

influenced by what happened in the previous trial; whether participants just made 

a correct response that was rewarded, a correct response that was unrewarded (due 

to probabilistic outcomes), or an incorrect response. To do this, I calculated the 

proportion of making the same response (p(stay)) at trials t+1 and t+2 after 

rewarded correct, unrewarded correct, and (unrewarded) incorrect trial t. I entered 

p(stay) into two separate 2 x 2 x 3 Action x Valence x Trial-t (rewarded/ 

unrewarded correct and incorrect trials) repeated measures ANOVAs.  

For p(stay) at trial t+1, there was a main effect of trial-t, p(stay) following 

incorrect trials were significantly lower than following correct trials (FIGURE 4-4A, 

F values in TABLE 4-1) and a main effect of valence, participants had a stronger 

tendency to make the same response when trial t was a win trial than when it was 

an avoid loss. Action effect was n.s., p >.3. I also found an action by trial-t 

interaction, followed up by separate one-way ANOVAs and bonferroni t-tests for 

squeeze and withdraw trials (collapsed over valence trials) to see if p(stay) was 

influenced by the fact that trial t was rewarded/unrewarded/incorrect. Both one-

way ANOVAs at squeeze and withdraw conditions were significant: what happened 

at trial t influences probability of making the same response at trial t+1 . Follow-up 

Bonferroni t-tests show that p(stay) for squeeze and withdraw responses after 

correct trials were significantly higher than after an incorrect trial, and p(stay) 

squeeze following a rewarded correct trial was higher than an unrewarded correct 

trial, but p(stay) withdraw was the same following rewarded and unrewarded 

correct trials.  
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Figure 4-4. Group-averaged probability of staying at trial t+1 (a) and trial t+2 (b) for 

rewarded and unrewarded correct and (unrewarded) incorrect trials t. Solid lines denote 

squeeze actions, dotted lines denote withdraw actions; blue lines denote win trials, red lines 

denote avoid loss trials. 

For p(stay) at trial t+2 (FIGURE 4-4B, F values in  

Table 4-1), there was a main effect of trial-t, p(stay) following incorrect 

trials were significantly lower than following correct trials, and a main effect of 

valence, participants had a stronger tendency to make the same response at trial 

t+2 when trial t was a win than avoid loss trial. Action effect and interactions were 

n.s., p >.3. Note I ran this analysis on 14 participants as there were missing data 

for the other 5 participants. All F and t values are in TABLE 4-1. 

 

Raw data: predicting current action  

Furthermore I tested if previous actions or outcomes can be used to predict action 

at trial t. Although this analysis does not address whether there is an interaction 

between action and valence in a way which instantiates a pavlovian influence of 

outcome on actions, it may suggest the importance of participants‘ previous actions 

and outcomes. To do this, I ran three logistic regressions to predict whether action 

at trial t ta , was a squeeze or withdraw response. The three models included these 

predictors of the same cue: 1ta and 2ta  (action model), 1toutcome and 2toutcome  

(outcome model) and 1ta  , 2ta  , 1toutcome , and 2toutcome  (action + outcome model). 

I calculated regression weights for each model in each individual (group-averaged 

values in FIGURE 4-5), and found that in less than 50% of participants these 

regression weights were significant. When entered into a series of paired-samples 
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t-test, I could not find any significant difference between predictors in trial t-1 and 

t-2 in all three models, action and outcome predictors in action+outcome model 

were also not significantly different from each other, ps > .15. 

 

Table 4-1 F and t values for sequential dependence analysis between trial t and trial 

t+1 and t+2. 

No. Name of effect F or t values p values Partial 

eta sq 

Action x Valence x Trial-t (rewarded correct/unrewarded correct /incorrect) on 

p(stay) at trial t+1 

1. Correct > incorrect (main effect of trial-

t) 

F (2,7) = 52.32 < .00001 .93 

2. Win > avoid loss (main effect of valence) F (1,8) = 47.23 .0001 .85 

3. Action by trial-t interaction F (2,7) = 6.59 .02 .65 

4. One-way ANOVA of trial-t in squeeze 

condition 

F (2,12) = 

14.91 

.001 .71 

5. One-way ANOVA of trial-t in withdraw 

condition 

F (2,12) = 

16.83 

<.0001 .73 

6. Correct>incorrect in squeeze condition  t (13)=5.06 <.0001  

7. Rewarded correct >unrewarded correct 

in squeeze condition 

t (13)=2.261 .042  

8. Correct>incorrect in withdraw condition  t (13)=4.65 <.0001  

9. Rewarded correct >unrewarded correct 

in withdraw condition 

t (13)=1.22 .24  

Action x Valence x Trial-t (rewarded correct/unrewarded correct /incorrect) on 

p(stay) at trial t+2 

10. Correct > incorrect (main effect of trial-

t) 

F (2,7) = 110.66 < .00001 .97 

11.  Win > avoid loss (main effect of 

valence) 

F (1,8) = 11.26 .009 .58 
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Figure 4-5. Group-averaged regression weights for predicting action at trial t, based on 

actions and outcomes at trial t-1 and t-2, for (a) action, (b) outcome, and (c) action+outcome 

models. Paired-samples t-tests revealed no significance between t-1 and t-2. 

 

Modelling results 

Behaviourally I found that state values have pavlovian influence on i) block-by-

block learning, such that learning is more evident when participants withdrew 

effort to avoid loss than to win, and ii) overall performance, such that performance 

is better when squeezing to win than to avoid loss (FIGURE 4-3). To begin 

describing the underlying decision processes for my choice data, and to specifically 

test for a pavlovian influence in effort-related actions, I built and ran 6 models, 

each either assumes or does not assume a pavlovian influence of outcome on action 

(pav term). In addition I also vary whether a model has a bias for squeezing, and 

whether it has different outcome sensitivity for wins and losses.  
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Figure 4-6.  Bayesian Information Criterion (BIC) scores for 6 models summed across 

participants (a) and individually plotted (b). 

 

Model PBwl (pav-bias-win-loss) is the winning model, showing the lowest 

BIC score than other models (FIGURE 4-6A). This model qualitatively supports the 

action by valence interaction I found behaviourally, but also includes a bias term 

and different reward and loss sensitivity parameters. While model Pav did not 

show a low BIC score, a random effects, group level Bayesian model selection 

(BMS) procedure revealed that model Pav and model PBwl show equally larger 

exceedance probabilities, such that these models are more likely than others 

(exceedance probability of .40 and .49, respectively). This BMS procedure takes into 

account individual BIC values and distribution of BIC values (Stephan, Penny, 

Daunizeau, Moran, & Friston, 2009).  

Inspection of individual BIC scores for both models (FIGURE 4-6B) helps 

explain why model Pav seem to approach PBwl despite its high BIC score. Model 

Pav seems to divide participants into two groups, those with low and high BIC 

scores, whereas model PBwl seem to be more normally distributed with high 

frequency around the lower values. However, the split point based on BIC scores 

for model Pav does not correspond to my learner/nonlearner split using behavioural 

data (non-learner: performance under 75% correct in the last 20 trials of at least 1 

condition) described below.  TABLE 4-2 shows how model PBwl has better quality of 

behavioural fits than model Pav does. 
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Table 4-2 Poorer quality of behavioural fits to 4,560 choices from 19 participants for model 

Pav than those for model PBwl, shown with negative log likelihood (-LL), pseudo-r2, and 

Bayesian Information Criterion (BIC). 

 Model Pav Model PBwl 

-LL 2122.93 1772.61 

Pseudo-r2 0.328345 0.43918 

Number of parameters 3 5 

BIC 4558.26 4065.88 

 

A likelihood ratio to compare model PB (pav-bias) with its nested model 

PBwl (pav-bias-win-loss) showed a mean log likelihood ratio of 8.4712 which 

significantly favours model PBwl, p < .05 with a chi-square cumulative distribution 

test. This model is also significantly better than model Pwl (pav-win-loss), mean log 

likelihood ratio = 5.5280, p <.05. Model PB (pav-bias) and Pwl (pav-win-loss) did 

not differ significantly with each other.  

 

Figure 4-7 Model predictions for probability of effort deployment (p(squeeze)) in 6 blocks of 

10 trials by 4 different models: model RW, Pav, Bias, and PBwl in each condition. Black line 

denotes observed data. Particularly, the winning model PBwl seems to match data better 

than other models (Pav, RW & Bias) in squeeze to avoid and withdraw to win conditions. 

Surrogate data based on these known decision processes provide some 

qualitative support for model PBwl ( FIGURE 4-3D-E, FIGURE 4-7). Visual inspection 

suggests that all models seem be able to predict squeeze to win and withdraw to 



Effort KURNIAWAN 2011 

83 

 

avoid conditions as well as the winning model PBwl does, but the three models 

seem to do poorly in predicting squeeze to avoid loss and withdraw to win 

conditions. These two conditions contain the conflict between pavlovian tendencies 

of positive, approach actions and negative, inhibitory actions.  

  

Relation between parameter estimates and individual differences in 

learning  

I next sought if estimates from model PBwl are different in participants who 

learned and did not learn the task. I categorised a non-learner if s/he did not attain 

75% accuracy in the last 20 trials of 1 of 4 conditions. I realise this is an arbitrary 

cut-off, nonetheless it is one way to categorise if a subject managed to make correct 

responses at the end of experiment. This cutoff split the group into 10 learners and 

9 non-learners. Independent-samples t-tests revealed no significant difference in 

all model parameters ( , pav, bias , win  and loss ), even after excluding several 

participants whose estimates did not reach reasonable values (2 non-learners, 

value > 100), ps > .1.     

 

4.4 Discussion 

 

I show a pavlovian influence of affective outcomes on instrumental, vigorous 

actions. Here, I orthogonalised affect and effect to reveal asymmetric associations 

between invigoration and appetitive/aversive outcomes. Specifically, this study is 

the first to extend the activation/inhibition axis into an effort expenditure/ 

withdrawal spectrum and to use reinforcement learning concepts to describe 

decision processes that may underlie such asymmetries.  

Behaviourally, I found evidence for differential pavlovian effects of outcomes 

on actions. That is, expending effort seems to have an appetitive advantage, 

whereas effort withdrawal seems to benefit from avoidance from punishment. At 

the core of this asymmetry is a pavlovian notion that, on the one hand, the 

appetitive system which more readily associates rewards to a neutral stimulus 

would also more readily associate an invigorated action to the same neutral 

stimulus. On the other hand, the aversive system which more readily associates 
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punishment to a neutral stimulus would invoke a stronger association between a 

neutral stimulus with a withdrawal of effort. 

I instantiated this pavlovian idea into the models by adding the stimulus 

value associated with outcomes to the action value of expending effort. In the avoid 

loss conditions, even though participants made all correct choices, the running 

average of stimulus values would still be negative as they would receive money loss 

in a fraction of the trials. In other words, when a cue is mostly associated with 

rewards (win conditions), its stimulus value would be added to the action value for 

expending effort, whereas even when a cue is only occasionally associated with 

punishments and with a neutral outcome otherwise (avoid loss conditions), its 

stimulus value would be subtracted from the action value of expending effort. 

Model PBwl (pav-bias-win-loss) specifies this pavlovian term and it shows the best 

evidence for the observed data. In addition, the winning model also specifies a 

squeezing bias and allows for differential outcome sensitivity which will be 

discussed below. 

 

Pavlovian term 

I discussed some kind of spillover between pavlovian and instrumental indices at 

the start of this chapter. In situations where expending effort is required to earn 

reward (squeeze to win), the stimulus-outcome/action-outcome spillover facilitates 

learning and correct choices. Likewise, in situations where punishment cessation is 

achieved through effort withdrawal (withdraw to avoid loss), this spillover 

faciliates correct responding. In contrast, when expending effort is required to 

avoid punishment (squeeze to avoid loss) and withdrawal gains reward (withdraw 

to win), this spillover may impede learning the correct response. The pav term 

addresses this spillover and is evident in how well the models‘ surrogate data 

match the observed data. Compared to other models (RW, Bias, Pav), surrogate 

data of model PBwl show better prediction for block-by-block learning data in the 

latter two conditions.   

The model assumes an incremental effect of pavlovian influence and bias on 

action value for squeezing (eq. 2). I found no evidence for a squeezing bias (except 

for 1 subject). In principle, though, the pavlovian term could interact with action 

value and have a multiplicative effect, such that in cases where pavlovian effect is 

weak, it causes diminution of action value, whereas in cases where pavlovian effect 
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is large, it exagerrates the value of squeezing. Nevertheless, assuming an additive 

effect is more parsimonious; thus I used this assumption in the models. Further 

work may address whether a multiplicative effect could explain data better.      

 

Bias for squeezing 

As mentioned above, I found no evidence for a squeezing bias. Nonetheless two 

subjects‘ bias data are noteworthy. First, I estimated an extremely high bias 

parameter for one subject who never learnt to withdraw. This became a sanity 

check that the bias term was instantiated correctly, as it strongly reflects this 

subject‘s raw data. Second, I found another subject who shows a negative bias 

value, but has raw data which clearly suggests a stronger sensitivity to reward 

than punishment, and this is confirmed by the rho values. This suggests that bias 

alone does not explain learning in the paradigm. Indeed, in go/nogo paradigms 

where an action has minimal effort cost, a bias for ‗go‘ is perhaps more detectable, 

but this putative bias may be obscured by the fact that squeezing in this task is 

much more costly than a simple button press. The models which only included bias 

did not fit the data very well, although once pav and rho are included in the model, 

having bias seems to fit the data better than not adding it (model PBwl vs. Pwl). 

Future work should explore different amounts of effort costs and the extent to 

which effort costs do minimise an existing bias to act. 

 

Sensitivity for reward and punishment  

The effect of outcome valence can take two forms, first a main effect of valence 

which could manifest in outcome sensitivity parameters such as rhos for rewards 

and punishments, second an interaction with action which could manifest in a 

pavlovian term. In addition to estimating pav, the winning model PBwl allows for 

different sensitivy to reward and punishment. This is similar to participants in 

Huys et al. (2011) who showed greater sensitivity to reward than punishment in a 

task with deterministic outcomes. Here, there is better model evidence when I 

allow for separate updating of action and stimulus value for positive and negative 

outcomes (model PBwl), than when I simply specify one softmax temperature for 

each individual (model PB). Different outcome sensitivity may appear like a simple 

opponency between positive and negative outcomes, regardless of actions. 

Nevetherless, midbrain DA neurons have been reported to be sensitive to both 
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positive and negative outcomes (Matsumoto & Hikosaka, 2009),  and in addition, 

this opponency has been elegantly expanded to conflate with action, which again 

points to the interaction between affect and effect and has been discussed 

previously to implicate neutotransmitters 5HT and DA (Daw, 2002; Guitart-Masip 

et al., 2011; Huys et al., 2011). Unfortunately, the current analyses are not able to 

pick apart the relative importance of each parameter in the model to determine 

which form of valence effect dominates the data.   

 

Nature of squeeze and withdraw actions 

I realise that squeeze and withdraw responses in this task are not simple 

analogues to approach and avoid responses, and they may not be direct extensions 

of response emission and inhibition either (Guitart-Masip et al., 2011). However,  

Huys and colleagues have conceptualised (one) go approach and (two) go withdraw 

actions in their analysis of pavlovian and instrumental interaction (Huys et al., 

2011). I likened the binary actions to behavioural activation and inhibition. In this 

task, it is reasonable to assume a general preparedness to squeeze every time 

participants self-commenced a trial. A squeeze choice simply allows a release of 

that prepared invigoration hence a form of behavioural activation, whilst 

withdrawal may serve like an inhibition or withdrawal of that preparedness to 

expend effort.  

In addition, the original orthogonalisation between affect and effect was 

driven by the notion of ‗appetitive actions‘ and that experimental conditions 

involving the possibility to earn reward are gratuitously termed ‗approach‘ actions 

(Niznikiewicz & Delgado, 2011). Thus, it is unclear whether an exemplar of 

activation such as squeezing counts as an ‗appetitive action‘, or how such an action 

that is not neccesarily ‗appetitive‘, could have a bias for reward, as was found in 

this study.  

Moreover, one cannot fully rule out that the squeeze/appetitive and 

withdraw/aversive associations could be due to the visuo-motor dynamics the 

participants experienced in the task. Indeed, visually participants saw a red bar 

going up as they squeezed which might invoke a sense of gain, whereas they saw 

the same bar coming down as they withdrew which could feel like losing.   
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Influence of past trials on current choices  

I made some attempt to run frequency analyses and regression models to dissect 

the data without any assumptions of underlying decision processes. After making a 

correct squeeze response, being rewarded in the last trial seems to facilitate 

sticking to the same squeeze choice on the current trial compared to not being 

rewarded. However, after making a correct withdraw response, subjects are as 

likely to stick to the same withdraw choice on the current trial regardless of reward 

delivery. This may suggest that probability of sticking to the same choice is more 

dependent upon reward in a squeeze condition, but not in a withdraw condition. 

Unfortunately, the regression models could not reach reliable results to clarify the 

roles of past actions and outcomes on influencing current choice. It would be useful 

to address this issue with a kernel analysis which still assumes some influence of 

previous distant trials although with more forgetting. 

 

Several caveats and future work 

I have observed pavlovian effects separately in block-by-block (in withdrawal) and 

overall performance (in squeeze). My discussion thus far has not necessarily treated 

them as separate, but it is plausible that this separate effect may reflect and be 

driven by different decision mechanisms. My model is not able to distinguish this. 

A recent attempt (not reported here) using a model comparison method (Huys et 

al., 2011) shows the best model evidence for a model which specifies separate 

pavlovian terms for squeeze and withdraw actions. I aim to carefully characterise 

this new modelling result in future work. 

Further modelling work can use Bayesian posterior maximization (Daw, 

2009) using regularisation to underweight participants who show irregular 

learning data. This would address the issue that the current Bayesian model 

selection results gave high exceedance probability to model Pav which did not have 

a good BIC value. I could also refine the analysis, such as running ANOVA on 

surrogate data, to test if predicted data by model PBwl is significantly better than 

that by models RW, bias, and pav (FIGURE 4-7), and assessing reaction time data 

and grip force data at the time of cue presentation.  

To sum, I expanded the behavioural invigoration of affect-effect architecture 

to vigorous actions. By orthogonalising effort deployment/withdrawal and affective 

valence, I observed a pavlovian effect on both kinds of action and have 
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approximated the observed data with decision processes which involve a pavlovian 

effect, bias for squeezing, and separate affective sensitivity. These terms together 

gave the best model evidence for the data. My data gave a fresh insight into 

characterising the nature of actions and vigour, and how action and outcomes are 

associated under pavlovian influences.      
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Chapter 5  Modulation on outcome delivery (study 4) 

 

 

 

Abstract 

 

Prior to taking an action, we anticipate how much effort the action will require. 

After taking that action, we evaluate the affective outcomes delivered. Effort 

magnitude, the vigour of the action, and whether the action yields a reward or 

avoids a punishment, are all likely to influence action anticipation and outcome 

evaluation. ACC and dorsal striatum (dSTR) are known to play a role in 

anticipation of effort and stimulus-response association while ventromedial 

prefrontal cortex (vmPFC) and ventral striatum (vSTR) are known to signal 

outcome evaluative processes. It remains unclear if effort and outcome valence 

influence neural signals for outcome evaluation. Using fMRI, I conducted a cue 

predictive task wherein participants anticipate and execute vigorous actions and 

were also presented with outcomes for their actions. I manipulated actions, to 

entail low or high effort,and the valence of the outcome so that an action yielded a 

reward or avoided a punishment. When an action is anticipated, activity in ACC 

and dSTR is sensitive to the action‘s effort level but not to outcome valence. When 

an action has been completed, activity in vmPFC and insula is sensitive to the 

action‘s outcome valence but not to effort size. Importantly, I manipulated 

expectation such that participants occasionally did not receive the expected 

outcomes, and thus experience a negative prediction error. Here, I found 

dissociation in effort and valence modulation of expectation, such that activity in 

vSTR and vmPFC for expected outcomes is modulated by effort, while insular 

activity for negative prediction error (undelivered outcomes) is modulated by 

outcome valence. These findings confirm involvement of ACC in anticipating effort, 

and provide new insight into a neural modulation of effort on outcome evaluation.      
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5.1 Introduction 

 

A consequence of instrumental learning is the continuation of cue responding and 

the maintenance of reinforcement delivery. During this response-outcome cycle, 

one anticipates the upcoming action, executes the action and then monitors 

whether the expected outcome is delivered. Indeed, once stable performance is 

achieved, it is assumed that there is coding of effort and outcome magnitudes, or 

perhaps coding of an integrated value that combines effort and outcome. Indeed, 

previous work has shown that presenting a cue that reliably predicts an upcoming 

action, which embodies effort costs and rewards, implicates ACC and striatum 

(Croxson et al., 2009; Gan et al., 2010; Kennerley et al., 2009). These brain regions 

seem to represent action parameters which could be useful in making adaptive 

action selection given a larger range of effortful actions available (Bautista et al., 

2001).      

Recent evidence suggests that appetitive and aversive outcomes may have a 

different relationship to action (Boureau & Dayan, 2011; Daw, 2002; Guitart-Masip 

et al., 2011; Huys et al., 2011). Indeed, as discussed in CHAPTER 4, I observed 

differential effect of rewards and punishments on effort expenditure. Here, I 

examine if neural anticipatory responses to an incoming action, and the neural 

evaluation of outcome delivery and omission, are sensitive to effort and outcome 

valence. 

In this task, participants performed an overlearnt instrumental task where 

one of four cues reliably predicts a low or high effort action, and leads either to a 

probabilistic reward or a probabilistic avoidance of loss under a correct response 

(FIGURE 5-1). Using fMRI, I recorded BOLD responses to cue and outcome 

presentation enabling the examination of effort and outcome valence influences in 

action anticipation and outcome evaluation, respectively.  

While most previous studies examining effort have used appetitive stimuli 

(Cousins & Salamone, 1994; Croxson et al., 2009; Ghods-Sharifi & Floresco, 2010; 

Prevost et al., 2010; Rudebeck et al., 2006), none have examined exertion of effort 

for active avoidance from punishment, or instantiated such active avoidance in 

actions with different effort sizes. I predicted involvement of ACC and striatum in 

effort and reward anticipation as found previously, but now tested if similar 

activity could be observed when avoiding punishment. Moreover, I expected 
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activity in regions typically responsive to either appetitive or aversive values such 

as orbitofrontal cortex, ventral striatum, and insula (Seymour, Singer, & Dolan, 

2007), and explore any modulation by expended effort during outcome evaluation. 

   

5.2 Method 

 

General Task Description 

The task required participants to respond to one of four cues which predicted either 

a low of high effort level, and either a probabilistic win or a probabilistic avoidance 

of loss. After exhaustive training on day 1, participants then completed this task in 

the scanner on day 2. At the start of each trial, participants saw a cue, then after a 

jittered period (see FIGURE 5-1A), based on the cue presented, they had to squeeze 

a hand bar to reach one of two effort targets (25% or 65% max effort; FIGURE 5-1B) 

within 1.5 sec. Performance was >90% correct. After receiving a visual feedback 

indicating that they satisfied the squeezing target and time criteria, they saw an 

outcome which was 20, 0, or -20 pence. Outcome probabilities for correct responses 

were 80/20, such that outcome was 20 pence 80% of the time, and 0 pence 

otherwise in win condition, while in the avoid loss condition, outcome was 0 pence 

80% of the time and -20 pence otherwise.  

 

Participants, stimuli and procedure 

Twenty one participants (10 females, mean age = 22 (3) years) were recruited 

through a participant database at UCL. I excluded two participants in the imaging 

analysis as they were tested on different scanning parameters. All participants 

came to the lab on two consecutive days (day 1: training, day 2: scanning, roughly 

24h apart) and were told they would receive payment at the end of second day 

based on their performance on both days. The reward scheme was adjusted such 

that all subjects received £30 for the time spent in the lab. The study was approved 

by the UCL ethics committee. 

Cues were four fractal stimuli. Each cue is presented at the centre of screen 

with the squeeze stimulus superimposed on it. Each fractal stimulus (FIGURE 5-1D) 

was randomly assigned to one of four contingencies, crossing between effort (25% 

vs. 65% max force) and outcome valence (win vs. avoid loss).  
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General procedure. On day 1, participants underwent a learning and a 

testing block. On day 2, participants lay on the scanner bed to undergo, 

successively, force calibration, a practice block, four experimental blocks, a 

structural scan and force re-measurement. Calibration was completed as 

participants lay on the scanner bed outside the magnet, while the rest of the 

conditions were completed inside the magnet.  

Training day. Participants completed a full learning block (as in Chapter 4) 

and a short testing block to test that they have learnt the contingencies. If they did 

not perform well when tested, they were explicitly told the contingencies, 

completed a short learning block and another testing block. By the end of day 1, all 

participants knew the cue-condition contingencies and that these stayed the same 

on the second day.  

Scanning day. On day 2, I made sure they remembered the contingencies to 

ensure stable, non-learning performance in the scanner. In the scanner, 

participants underwent 4 blocks of scanning sessions with a rest period between 

sessions. Each scanning block has 20 continuous, fully-randomised repetitions of 

four conditions, presented with a 5-secs rest every twelve trials. Overall, there 

were 320 trials lasting for 45 minutes.  

As seen in FIGURE 5-1A, at the start of each session, a fixation cross was 

presented for 1 sec, followed by one of four fractal cues for 1 sec. Another fixation 

cross then appeared for a jittered anticipation period between 0.5-3.5 sec. Following 

this, a ‗squeeze‘ instruction appeared which gave participants 1.5 sec to respond by 

squeezing either to the low or high effort level (indicated on screen by two tick 

marks). Within this 1.5 sec, participants had to reach either effort level within 1 

sec and maintain grip force at that level for another 0.5 sec. Following this, they 

saw another fixation cross for 1 sec and the monetary outcome (20/0 pence for 

reward condition, 0/-20 pence for avoid lose condition) for 1 sec. There was a 

jittered ITI between 750-1500 ms before the next trial commenced.  

I intend to disambiguate signal associated with anticipation of effort and 

valence from the actual movement execution. To do this, I introduced probabilistic 

execution such that although seeing a similar display of a bar reaching the squeeze 

target line, in half the trials participants did not have to execute the trials and 

were told that the computer will ‗squeeze‘ for them. This essentially de-correlated 

the anticipation signal from squeezing signal. I was aware that during these 
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computer-executed trials, there would be a ‗nogo‘ signal for inhibiting a squeeze 

response.  

 

 

Figure 5-1 a) A schematic of one trial. Left-top to right-bottom: the first three screens 

showed a fixation cross for 1 sec, one of four fractal cues for 1 sec, and a jittered 

anticipation period between 0.5-3.5 sec (fixation cross). Following this, participants saw a 

‗squeeze‘ instruction which gave them 1.5 sec to respond by squeezing either to the low or 

high effort level (indicated on screen by two tick marks. Here, only low effort is shown). 

Then, they saw a fixation cross (1 sec) followed by a monetary outcome (20/0 pence for win 

condition, 0/-20 pence for avoid loss condition) for 1 sec. Inter-trial interval was jittered 

between 750-1500 ms before the next trial commenced. In 50% of the trials, participants did 

not execute squeezing but instead saw a green bar moving upwards indicating computer 

executed trials. b) The two tick marks were shown in both high and low effort trials during 

the squeeze period, the lower for low effort and higher for high effort targets. c) Here 

depicted an illustration of what participants see on screen (left) and the grip trajectories 

during 1.5 sec (right). The green line shows a trial of high effort, blue line for low effort 

squeeze, vertical red line indicates the cut-off time to reach the squeeze target line. 

Roughly, participants start at zero force level and slowly increase the force level, reaching 

the target at 1 sec and maintaining grip force for another 0.5 sec. d) For each participant, 

the four fractal stimuli were randomly assigned to the experimental conditions.  

Nevertheless, I made it explicit to participants that 50% of the time they 

would not have to squeeze and that they only found out whether it was a computer-

executed trial at the end of the jittered anticipation period, ~1.5-4.5 s after fractal 

stimulus was presented. This creates a situation where the fractal cue simply codes 
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the level of effort (and its associated outcome), with equal uncertainty for ‗go‘ and 

‗nogo‘ responses, and that as the grip cue appears this uncertainty becomes a 

certain ‗go‘ in half of the trials, and a certain ‗nogo‘ in the other half. I accept that 

any activity which arose at the fractal cue could be a mixture between a certain ‗go‘ 

and a certain ‗nogo‘ signal, but I am confident that this signal is decorrelated from 

movement anticipation.     

 

 

Figure 5-2 Example of one subject squeeze levels over training and scanning sessions. Each 

coloured line represents 1 trial. Squeeze level starts around zero with minimal natural 

noise from the squeeze device. Squeeze level then increases and reaches the target (25% or 

65% max force) before 1 sec, and stays at that level until 1.5 sec lapsed. As seen on top row, 

this participant made incorrect responses during training: he squeezed 65% for the low 

effort cue, and squeezed for 25% for the high effort cue, but made no incorrect responses in 

the scanning session as shown on bottom row. The bottom row shows trials from only scan 

session 1, so there are fewer lines.   

During the squeeze period I presented both effort target levels (tick marks).  

Thus, participants had to use their memory to decide which effort level to reach. 

Once the red bar reached the line and stayed there for 0.5 sec, the tick mark 

reached would turn red, indicating that they had successfully squeezed according 

to this 1.5 sec time rule. However, this did not indicate that they had chosen the 

correct effort level, given the cue. I specifically designed the grip task this way, 
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such that during training, participants did not experience motoric and visual 

uncertainties about achieving/not achieving the squeeze target. This is to ensure 

that any lack of learning could only be due to unformed/ impaired associations 

between cue, discrete effort levels (low vs. high), and outcome valence. In FIGURE 

5-2, I show an example of one participant‘s squeeze behaviour. Here, squeezing 

diverged into either the low (25%) or the high (65%) effort levels, and at no other 

force levels. This demonstrates that this participant‘s response was motorically apt, 

and that there was always a discrete choice between squeezing at low or high 

effort. FIGURE 5-2 also illustrates that participant was making incorrect choices in 

training block, but was performing accurately in the scanning session. 

 

Imaging analysis 

I specified separate first level general linear models (GLM) for each participant by 

creating sets of regressors time-locked to i) fractal cue (action anticipation) and ii) 

outcome cue (outcome evaluation), with four scanning sessions concatenated into 

one.  

To highlight activity correlating with anticipation of effort and valence, I 

defined four regressors-of-interest representing four event types at cue onset that 

varied in effort level and outcome valence: low effort-win (LowWin), low effort-

avoid loss (LowAvoid), high effort-win (HighWin), and high effort-avoid loss 

(HighAvoid). To highlight activity reflecting outcome evaluation which correlated 

with effort, valence, and expected outcome, I defined eight regressors-of-interest 

representing eight event types at outcome onset that varied in effort level, outcome 

valence, and whether they received the expected (80% or the time) or the 

unexpected outcome  (20% of the time). As participants were >95% correct in 

squeeze responses, their expected outcome was the better outcome (20 or zero 

pence in win or avoid loss conditions), and their unexpected outcome was the worse 

outcome (zero or -20 pence in win and avoid loss conditions). These regressors are 

called LowWinExpect, LowWinUnexpect, LowAvoidExpect, LowAvoidUnexpect, 

HighWinExpect, HighWinUnexpect, HighAvoidExpect and HighAvoidUnexpect. I 

entered three regressors-of-no interest for own squeeze periods (low and high effort 

separately), and computer-executed squeeze periods (collapsing low and high effort 

trials).  
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Two separate second level F-tests were specified. To do this, I computed a 

set of contrasts at first level for each participant for each of the relevant regressors-

of-interest against baseline and fed the t-contrasts into second level F-tests. The 

first is a two-way Effort x Valence F-test with regressors-of-interest at cue onset, 

and the second is a three-way Effort x Valence x Expected Outcome F-test with 

regressors-of-interest at outcome onset. I ran a priori region-of-interest (ROI) 

analyses using anatomically defined masks for bilateral ACC and bilateral 

striatum (4 masks created using the software Marsbar, Brett et al., 2002; 

http://marsbar.sourceforge.net/; FIGURE 5-5A) and voxel-based, whole-brain 

analyses to look for main effects and interaction effects. To examine further 

involvement of suprathreshold regions from the whole-brain analysis, I created 

4mm spherical ROI masks at the peaks of each suprathreshold cluster and 

extracted the signal in these ROIs. I then ran repeated measures ANOVA on the 

extracted signal. Any interaction effects found in these tests are orthogonal to the 

original clusters from which I derived the ROIs. I thresholded results at p .001 

uncorrected, but only report p values with family-wise error (FWE) correction. 

 

5.3 Results 

 

Behaviourally, participants reached a good accuracy level in the training session, 

>65% correct, and a stable performance, >95% correct, in the scanner (FIGURE 

5-3A). No effects of effort, valence, and effort by valence interaction on overall 

performance were significant.  

In block-by-block training data (FIGURE 5-3B), there is evidence of learning 

on the training day, F (5,16) = 7.12, p = .001, p
2 = .69, a block by valence 

interaction between block 3 and previous blocks, F (1,20) = 5.67, p = .027, p
2 = .22 

and a block by effort interaction between block 4 and previous blocks, F (1,20) = 

5.23, p = .03, p
2 = .20. None of the 2x2 effort by valence follow-up ANOVAs showed 

significance in blocks 3 and 4.  

 

Time to reach squeeze target 

Participants learnt the squeeze timing criterion well. They reached the target 

before 1 sec, but the pattern of squeezing on day 1 is different to that on day 2 

(FIGURE 5-3C). Subjects took their time in reaching the target before 1 sec on 

http://marsbar.sourceforge.net/
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scanning day, showing evidence of learning. I entered RTreach in a 2 x 2 x 2 Day x 

Effort x Valence repeated measures ANOVA and found that RTreach was different 

across  the two days (significant main effect of day, day by effort, day by valence 

interaction effects, ps < .02, and marginally significant day x effort x valence, p = 

.059). 

 

 

Figure 5-3 Behaviour on training (left) and scanning (right) days. a) Overall proportion of 

successful trials was >65% on training and >95% on scanning day. b) Participants show 

increasing block-by-block performance on training and stable performance on scanning day. 

c) The time it takes for participants to reach each target effort level (25% and 65% max 

force). On training day, participants took longer to reach low than high targets. On 

scanning day, they took longer to reach high than low targets, and they were also faster to 

reach targets to win than to avoid loss. LW/Lwin = Low effort to win, LAv/LAvoid = Low 

effort to avoid loss, HW/HWin = High effort to win, HAv/HAvoid = High effort to avoid loss.  

 

To follow up, I ran separate 2x2 Effort x Valence ANOVAs on both days. On 

day 1, there was a main effect of effort, participants took longer to reach low than 

high effort, F(1,20) = 21.58, p <.0001, p
2 = .51, valence and interaction effects were 

n.s. On day 2, there were main effects of effort and valence, RT was longer to reach 
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high than low effort, F(1,20) = 82.29, p <.0001, p
2 = .80, and RT to win was faster 

than to avoid loss, F(1,20) = 9.12, p =.006, p
2 = .31, interaction was n.s. Note there 

was an opposite effect of effort in both conditions, while participants reached the 

high effort target faster in training, they reached the same target slower during 

scanning, just under 1 sec (FIGURE 5-3C) which indicates motoric mastery.        

 

 

Figure 5-4 Squeeze acceleration in low (blue) and high (green) effort condition on training 

(top) and scanning (bottom) days. The shallower the slope is, the faster the acceleration 

from reaching 1% to reaching 20% max force. Here we see squeeze accelerate at a higher 

rate in high effort condition. 

  

Squeeze acceleration  

I sought difference in squeeze acceleration before reaching targets. To do this, I 

calculated how long participants needed to reach 1, 3, 5, 10, 15, and 20% max force 

levels. I observed no difference between valence conditions. Thus, I collapsed these 

conditions and entered RT into a 2 (day) x 6 (force levels reached), x 2 (effort 

conditions) ANOVA, yielding a significant day by effort interaction, p = .017. I than 

ran separate 2 x 6 Effort x Force level ANOVAs on training and scanning days 

yielding significant main effects of effort, force levels, and interaction on both days, 

ps < .0001. FIGURE 5-4 shows how long it took participants to reach 1, 3, 5, 10, 15 

and 20% max force in low (blue) and high (green) effort conditions. What is most 

informative is whether squeeze acceleration is slower in low than in high effort 

condition.  
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A series of paired-samples t-tests between low and high effort conditions 

showed significant effects  across all force bins on both days, such that participants 

took longer squeezing in low effort condition than they did for high effort condition, 

ts > 4.00, ps < .0001, except for reaching 1% on scanning day, p = .06. Visual 

inspection suggested that the differences in latency to reach levels that are <10% 

maximum force between the two effort conditions are small (below 100 msec), but 

at 15% and 20% maximum force, the data reflected a much longer latency when 

approaching the low effort target than when squeezing at the same levels for a high 

effort target. Participants seem to squeeze quickly to reach the high effort target 

and accelerate much faster than they do in low effort trials. This may suggest more 

control exerted in low effort conditions (FIGURE 5-4). 

 

Anticipatory brain responses for effort and valence  

I focused on BOLD response at onset of the fractal stimulus, indicating anticipation 

of action. Given robust past evidence for involvement of rodent ACC and striatum 

in effort processing, I ran a priori ROI analyses to examine whether the ACC and 

striatum responded to anticipation of effort, valence, or both (FIGURE 5-5A). These 

ROIs show a main effect of effort in bilateral ACC and left dorsolateral striatum. 

Responses to the cue in bilateral dorsal ACC and left putamen (shown in FIGURE 

5-5B) reveal higher activity when participants anticipated performing an action at 

high effort than when a low effort action was anticipated (TABLE 5-1). I only found 

suprathreshold activity in this high > low effort contrast, but no difference in these 

ROIs for low > high effort contrasts, or for a valence or an interaction effect. 
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Figure 5-5 Main effect of effort. a) To test an apriori hypothesis on striatal and ACC 

involvement, I used anatomically-defined ROI masks on these regions bilaterally. b) ROI 

analyses showed that activity in both ACC and dorsolateral striatum was higher when cue 

indicated an incoming high effort action than when it indicated an action with low effort, 

small-volume and FWE corrected ps < .01. c) Voxel-based, whole brain analysis show higher 

activity in a large cluster around supplementary motor area for high > low effort contrast. 

Bars show averaged parameter estimates for the cluster (mean + SEM, 147 voxels, p FWE-

corrected <.05).  

I next conducted a voxel-based, whole brain analysis which revealed a 

robust main effect of effort in a cluster involving bilateral supplementary motor 

area, premotor and primary motor, and somatosensory areas (147 voxels, p FWE-

corrected <.05; TABLE 5-1). Seen in FIGURE 5-5C, averaged parameter estimates in 

this cluster indicate higher activity when anticipating high than low effort actions. 

No suprathreshold activity is found for low > high effort contrasts, valence main 

effects, or interaction effects.  
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Table 5-1 MNI coordinates of regions the activity of which is higher for anticipated high 

effort than anticipated low effort based on ROI and whole-brain analyses (p reported for 

ROI analysis is after small-volume correction, all p reported is FWE corrected at peak 

level). 

Region Nearest 

Brodmann 

Areas 

Coordinates (mm) Z 

value 

No. of 

voxels 

P 

 x y z    

ROI analysis        

Left ACC 24/32 -6 +17 +28 3.70 13 .018  

Right ACC 24/32 +6 +23 +28 3.82 17 .01  

Left Putamen NA -21 +5 +7 4.24 30 .007  

Left SMA 6 -6 +2 67 6.15 147 <.0001  

Whole-brain analysis        

      Left SMA 6 -9 -13 58 5.32  0.002  

      Left SMA 24 -3 +2 +46 5.17  0.004 

Left premotor area 6/4 -24 -13 +70 5.41 46 0.001 

      Left primary motor  6/4 -21 -19 +58 5.27  0.002 

Left primary visual  17 -6 -85 -8 5.31 4 0.002 

Right primary motor  4 +21 -25 +64 4.84 6 0.017 

Left somatosensory  1/2 -18 -40 +58 4.72 6 0.029 

     Left somatosensory  1/2 -21 -40 +57 4.70  0.031 

Left primary visual  17 -3 -97 +10 4.65 1 0.038 
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Figure 5-6 Brain response to outcome valence during outcome phase. a) Activity in vmPFC 

is higher when participants just completed trials that allowed them to win, than trials that 

only allowed them to avoid loss. b) The reverse contrast yielded activation in anterior 

insula. Yellow clusters are thresholded at p .001 uncorrected, red clusters survived FWE-

correction. 

 

Outcome evaluation for effort, valence, and expected outcome  

I found main effects of valence and expected outcome during outcome phase, but no 

main effects of effort. For valence effects, FIGURE 5-6A shows that, at the time of 

outcome, vmPFC responds more strongly in trials where the fractal stimulus just 

indicated an action to win compared to an action to avoid loss. The reverse contrast 

shows that at the time of outcome, activity in the anterior insula is higher in avoid 

loss trials than in win trials (FIGURE 5-6B; both clusters p FWE-corrected <.05). 

Note that even though I am looking at brain responses during outcome phase, this 

main effect of valence simply reflects the valence context of the trials; that is a 

context where the response allowed participants to win or to avoid loss. As the 

outcome delivery was probabilistic, this effect of valence does not take into account 

the actual outcome presented, whether it was expected or unexpected.  

Thus, I looked at a main effect of expected outcome by contrasting response 

to outcomes that were expected and those unexpectedly omitted (see methods).  
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Table 5-2 MNI coordinates of regions the activity at outcome phase of which is higher for 

win conditions than avoid loss conditions (all p reported is FWE corrected at peak level). 

Region Nearest 

Brodmann 

Areas 

Coordinates (mm) Z 

value 

No. of 

voxels 

P 

 x y z    

Contrast: Win > avoid loss 

Right vmPFC 10 +3 +53 -5 4.73 5 .02  

Right vmPFC 10 +12 +53 +1 4.52 1 .047  

Contrast: Avoid loss > win 

Right anterior insula NA +30 +26 -2 4.72 5 .021 

        

Brain response correlated with expected outcome  

Voxels in bilateral ventral striatum (ventral putamen) and left vmPFC were more 

active when seeing an expected than unexpected outcome (FIGURE 5-7A, TABLE 

5-3). I then examined involvement of these regions in outcome expectation by 

creating three 4mm spherical ROI masks at the peaks of these cluster and 

extracted the signal in these ROIs. To test for modulatory effects of effort or 

valence on outcome evaluation, I ran a 2x2x2 Effort x Valence x Expected outcome 

repeated measures ANOVA on the extracted signal (see methods). 

In left vSTR ROI (peak at [-18 8 -8]), I found no main effect of effort, but a 

significant valence effect such that there was a stronger response in win than avoid 

loss trials, F(1,18) = 7.23, p = .015, p
2 = .28, and a two-way interaction between 

effort and expected outcome, F(1,18) = 6.00, p=.025, p
2 = .25. 

To follow up, I averaged the extracted signal values across valence 

conditions, and ran t-tests to look for simple effects of expected outcome in low and 

high effort separately. This effort by expected outcome interaction is driven by a 

diminished effect of expected outcome in the high effort trials. T-tests show that 

following a low effort action, vSTR show a stronger response to expected than 

unexpected outcomes, t(18) = 7.53, p < .0001, whereas following a high effort action, 

this effect was only marginally significant, t(18) = 2.06, p = .054 (FIGURE 5-7B top). 
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Table 5-3 MNI coordinates of regions the activity of which reflects main effect of expected 

outcome based on whole-brain analyses (all p reported is FWE corrected at peak level). R= 

right, L= left, IFG= inferior frontal gyrus, dACC= dorsal anterior cingulate cortex. 

Region Nearest 

Brodma

nn 

Areas 

Coordinates (mm) Z 

value 

No. of 

voxels 

P 

x y z 

Expected > unexpected        

Left (ventral) putamen NA -18 +8 -8 5.73 19 <.001 

Left mid orbital gyrus 10/12 -9 +47 -5 5.00 14 .006 

Right ventral putamen NA +21 +8 -8 4.99 10 .006 

Right posterior insula NA +54 -22 +16 4.98 19 .006 

L.parahippocampal gyr. NA -30 -37 -11 4.92 3 .009 

Left insula NA -54 -4 10 4.88 6 .010 

Right mid orbital gyrus 12 +6 +32 -11 4.88 13 .011 

Left cerebellum NA -24 -49 -50 4.70 2 .022 

L. sup. frontal gyrus 8 -21 +38 +43 4.55 1 .041 

Right (dl) putamen NA +27 -13 +13 4.55 1 .042 

Unexpected > expected        

Right insula NA +33 +23 -2 7.32 530 <.0001 

     R. IFG (p. opercularis) 44 +54 +17 +37 6.11  <.0001 

     R. IFG (p. triangularis) 44 +51 +23 +25 6.09  <.0001 

Left insula NA -30 +23 -5 6.35 76 <.0001 

R. inferior parietal cortex 40 +42 -52 +46 6.09 123 <.0001 

R. middle temporal gyrus 21 +57 -28 -5 5.25 9 .002 

L. inferior parietal cortex 39/ 40 -33 -55 +40 4.83 5 .013 

Left cerebellum NA -12 -79 -29 4.68 4 .025 

R. dACC 6 +6 +32 +46 4.53 2 .045 
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Figure 5-7 Brain response to expected and unexpected outcomes during outcome phase. a) 

Regions in ventral striatum (putamen) and vmPFC were more active when participants 

saw an expected, better outcome than an unexpected, worse outcome (p FWE-corrected 

<.05). b) Parameter estimates of extracted signal in left vSTR (top) and left vmPFC 

(bottom) show effort by expected outcome interaction such that the effect of expected 

outcome is more pronounced if it is an outcome of low effort action than if it is an outcome 

of high effort action. The effects of expected outcome in both ROIs are significant only in 

low effort action. c) Brain response to unexpected outcome shows a large cluster in bilateral 

insula expanding to right inferior frontal gyrus (pars opercularis and triangularis; left 

image) and in the right parietal cortex (right image), p FWE-corrected <.05. d) Extracted 

signal in bilateral insula ROIs shows valence by unexpected outcome interaction. In these 

regions, brain response is significantly stronger to unexpected than expected outcomes in 

both valence conditions, although is more pronounced in avoid loss than in win trials. Bars 

show mean + SEM. LEff_expect = Low effort, expected outcome, HEff_expect = High effort, 

expected outcome, LEff_unexpect = Low effort, unexpected outcome, HEff_unexpect = High 

effort, unexpected outcome, W_exp = Win trial, expected outcome, W_unexp = Win trial, 

unexpected outcome, Av_exp = Avoid loss trial, expected outcome, Av_unexp = Avoid loss 

trial, unexpected outcome. 
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In right vSTR ROI (peak at [21 8 -8]), I only found a significant valence 

effect such that there was a stronger response in win than avoid loss trials, F(1,18) 

= 4.7, p < .04, p
2 = .20, no main effect of effort or any two-way interaction was 

significant.  

In left vmPFC ROI (peak at [-9 47 -5]), there was no main effect of effort, 

but response in win trials was significantly stronger than that in avoid loss trials, 

F(1,18) = 9.02, p = .008, p
2 = .33. There was also a marginally significant two-way 

interaction between effort and expected outcome, F(1,18) = 4.30, p = .053, p
2 = .19. 

This marginally significant effort by expected outcome interaction is driven by a 

non-significant effect of expected outcome in the high effort trials. T-tests show 

that following a low effort action, vmPFC was sensitive to expected outcomes, t(18) 

= 5.04, p < .0001, whereas high effort does not modulate expectation, n.s. (FIGURE 

5-7B bottom). 

 

Brain response correlated with negative prediction error  

In the reverse contrast, where brain response to an unexpected omission of 

outcome (negative prediction error) was stronger than to an expected outcome 

delivery, I found a large cluster involving bilateral insula and extending into right 

inferior frontal gyrus (both pars opercularis and triangularis). This contrast also 

yielded higher activity in right parietal cortex. I then also ran an ROI analysis 

using 4mm masks peaking at bilateral insula to test for modulatory effects of effort 

or valence on brain response to unexpected outcome. 

Within the left insula ROI (peak at [-30 23 -5], FIGURE 5-7C), as found in the 

whole-brain analysis, response in avoid loss trials were significantly stronger than 

that in win trials, F(1,18) = 12.43, p = .002, p
2 = .40. There was also a significant 

interaction between valence and unexpected outcome, F(1,18) = 20.89, p < .0001, 

p
2 = .53. There was no main effect of effort. To follow up this interaction, I 

averaged the extracted signal values across effort conditions, and ran t-tests to look 

for simple effects of unexpected outcome in win and avoid loss trials separately. 

This significant valence by unexpected outcome interaction is driven by a stronger 

effect of unexpected outcome in the avoid loss trials, t(18) = 5.13, p <.0001 than in 

the win trials, t(18) = 3.12, p = .006 (FIGURE 5-7D top).  

Within the right insula ROI (peak at [30 23 -5], FIGURE 5-7C), I found a 

significant avoid loss > win effect, F(1,18) = 18.15, p < .0001, p
2 = .50, and a 
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significant valence by unexpected outcome interaction, F(1,18) = 29.25, p < .0001, 

p
2 = .61, but a non-significant effect of effort. Similar to left insula, this valence by 

unexpected outcome interaction in right insula is driven by a stronger effect of 

unexpected outcome in avoid loss trials, t(18) = 7.99, p < .0001, than that in win 

trials, t(18) = 2.31, p = .032 (FIGURE 5-7D bottom). 

 

5.4 Discussion 

 

The results suggest that brain activity is only sensitive to size of anticipated effort, 

but not to reward or punishment. In contrast, once the action is completed, brain 

activity does not respond to effort just exerted, but is instead sensitive to outcome 

valence (i.e. the possibilities to win or to lose), and to modulation of effort and 

valence on outcome monitoring. That is, response to expected outcomes is weaker 

after actions with high than low effort, whereas response to unexpected outcomes is 

stronger in trials where they could only avoid losing compared to trials where they 

have the possibility to win. 

 

ACC, dorsal striatum and SMA for anticipated high versus low effort 

I found higher activity in the ACC and dorsal striatum when an action with large 

effort is anticipated. First, this provides converging evidence to previous 

involvement of ACC in rodents and humans (Croxson et al., 2009; Floresco & 

Ghods-sharifi, 2007; Prevost et al., 2010; Walton et al., 2002). Indeed, lesions to 

rodent ACC impair willingness to scale an effortful barrier in order to gain large 

reward (Rudebeck et al., 2006). However, it is worth noting that, unlike most of 

previous effort studies, my current task does not involve explicit cost-benefit 

analysis. What this suggests is that value comparison during cost-benefit analysis 

might require a representation of the kind I observed in this task, one about effort 

size.  

Second, dorsal striatum in rodents supports stimulus-response (S-R) 

associations and the results demonstrate sensitivity to the specific cost parameter 

of the action when such a cue-action representation is useful to indicate an 

upcoming action. However, in CHAPTER 3, I report that the same voxels in left 

dorsal putamen show a stronger response when an action with low effort, compared 
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to high effort, was chosen. This is puzzling given BOLD signal in the same voxels 

in these two studies is coding effort size in opposite directions.  

The investment of effort in this thesis is operationalised and inspected with 

a tight control using extensive training blocks. This was done with the intention to 

ensure that every choice (study 2) or anticipation (study 4) phase is a genuine 

process which closely matches the actual effort investment. Such control invokes 

habit–based actions. My results demonstrate that such cognitive process of choice 

or anticipation of effort recruits dorsal striatum, a substructure of the striatum 

which primarily receives sensorimotor information (Voorn et al., 2004), and 

facilitates habitualised, automatised behaviour (Wickens et al., 2007). 

In the choice task in CHAPTER 3, the BOLD response at the time of choice 

may reflect both the cognitive representation of effort and a result of value 

comparison. It is possible that this putamen activity is a correlate for how valuable 

the chosen action is, which would reflect a stronger signal in actions with low effort 

(high value) than high effort (low value). We know that striatum has been 

implicated extensively in valuation and value-based decision making (Rangel, 

Camerer, & Montague, 2008), and this result provides support for this literature. 

The whole-brain contrast between anticipating high and low effort actions showed 

a large activation in the supplementary motor area, an area that supports 

behaviour such as movement generation (Picard & Strick, 2001). I have made extra 

steps to exclude as much motor execution and preparatory signal as possible by de-

correlating activity during cue presentation and action execution, and including 

self and computer executed squeeze periods as regressors-of-no interest (see 

methods). These steps are taken to ensure that BOLD response to cue presentation 

reflect pure action anticipation. However, I cannot fully exclude the possibility that 

the contrast for high versus low effort still contain a general motoric preparatory 

signalling. 

 

vmPFC and ventral striatum reflects sensitivity to goodness of event  

There is consensus that vmPFC and ventral striatum are part of circuitry 

implicated in appetitive value (Seymour, Singer, et al., 2007), with some proposing 

the role for vmPFC in subjective value and biasing choice (Kable & Glimcher, 

2007). In my task, vmPFC was more responsive in reward than in punishment 

context. When examined further, vmPFC, now together with ventral striatum seem 

to selectively respond to outcomes that are expected. This selective signal to 
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expected outcomes persists only following an action with low effort. In fact, 

following an action with high effort, these regions fail to distinguish whether an 

action resulted in expected or unexpected outcomes.  

Both vmPFC and ventral striatum seem to indicate the goodness of the 

trial, with strongest activity for a desired, expected outcome (a reward in win 

condition, and punishment avoidance in avoid loss condition) which resulted from a 

less demanding action (low effort). Indeed after having executed a more strenuous, 

high effort action, sensitivity to the goodness of the outcome diminished. This effort 

modulation of signalling of desired, expected events is novel and brings a new focus 

on  neural scaling of outcome signal by action costs. The finding is in line with the 

dominant views concerning the functional roles played by vmPFC and ventral 

striatum in signalling desired, positive events. 

 

Insula reflects sensitivity to punishments  

I found that insula is more responsive in punishment than in a reward context. The 

same insula cluster also responds stronger to unexpected omissions of outcomes 

than to expected outcomes. This selective signal to unexpected outcomes is 

modulated by valence such that, it is stronger in a punishment than a reward 

context.  Both the avoid loss > win and valence-modulated unexpected > expected 

outcomes contrasts point to the possibility that insula, here, is indicating the 

badness of the event. In my task, the unexpected omission of reward in a win 

condition can be strictly thought as negative prediction error, but the unexpected 

omission of safety signal in avoid loss condition (when they expected to receive zero 

pence for a correct response) is simply an unexpected punishment. I found the 

largest activity over these trials in cases where subjects received an unexpected 

punishment. I also observed a noteable effect in unexpected omission of reward in 

the insula. The insula is extensively implicated in representation of aversive value 

(Sarinopoulos, Dixon, Short, Davidson, & Nitschke, 2006; Seymour, Daw, et al., 

2007; Seymour, Singer, et al., 2007; Talmi et al., 2009). While it is useful and 

appropriate to divide the trials and run the factorial three-way ANOVA as 

described above, this interaction found in insula may ultimately express sensitivity 

to aversive events.  

 Furthermore, from the unexpected > expected outcome contrast, I also found 

activity in the inferior parietal cortex. In light of previous role of this region in 

switching strategies, activity in the parietal cortex may serve as an evaluative 
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signal which informs the subject whether s/he is wrong and that s/he needs to 

change strategy. Activity in this region has been suggested previously to contribute 

a switching strategy (Rushworth, Paus, & Sipila, 2001). 

 

Several caveats and further analyses 

It is surprising that I could not  detect any suprathreshold BOLD response to 

anticipated reward or punishment, considering ubiquitous findings of reward- or 

value-correlated BOLD activity in regions such as striatum and OFC at the time of 

cue (e.g., Croxson et al., 2009; Knutson et al., 2005). 

I specifically contrast my paradigm with that used by Croxson and 

colleagues (2009). Reward size in their paradigm was visually and explicitly 

marked by the location of a horizontal line on a circular cue. This is different to the 

process through which my participants may have formed a cue-outcome 

association. My participants went through a trial-by-trial learning in which 

making the correct action was what was relevant to them. A stronger association 

between a cue and the correct action is formed when a cue-action link is reinforced, 

i.e. results in better outcomes (win or loss avoidance), but this reinforcing effect 

may not necessarily result in a cue-to-action+outcome association, but a sequential 

cue-action-outcome one. Indeed, as reviewed by Schoenbaum and colleagues, dorsal 

striatum in rodents and putamen in primates have been broadly implicated in cue-

action associations (Stalnaker, Calhoon, Ogawa, Roesch, & Schoenbaum, 2010). 

Another possible explanation for the absence of outcome-related activity is 

that the monetary outcome here may not be as salient as the vigour the 

participants had to produce shortly following cue presentation. Using the same 

effort device in CHAPTER 3, I also failed to find a main effect of reward at cue 

despite seeing robust reward effects on behaviour. This could be directly tested by 

increasing the outcome sizes in further experiments, and by devising ways to 

estimate relative salience between effort and outcome. 

Second, my interpretation for the effort by expected outcome interaction is 

limited with the fact that I did not exclude outcome onsets that happened after 

computer-executed squeezing periods. I cannot rule out the possibility that this 

effort modulation on vmPFC and ventral striatal signal for expected outcomes 

simply reflects the modulation of having seen a tall or a short ‗squeeze bar‘ on the 

screen, rather than having squeezed with a large or small hand force. I aim to 
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refine my analyses by creating a design matrix which excludes all outcome onsets 

in computer-executed trials. This way I can be sure that effort modulation was due 

to participants‘ own experience of exerting large or small force.  

Third, I am aware that I have not excluded trials in which participants 

made an incorrect response, thus activity to outcomes that are expected and 

unexpected may be contaminated by trials in which an expectation was to receive 

an outcome for an incorrect response. Nonetheless these trials are so few that any 

effect due to incorrect responses would not have been strong enough to change the 

current interpretation. 

Fourth, the follow-up tests for the significant two-way Effort x Expected 

outcomes and Valence x Unexpected outcomes interactions could be significantly 

improved by creating new second-level F-tests which would contain the averaged 

regressors across low and high effort in ventral striatum and vmPFC and across 

win and avoid loss in insula. Instead, I simply manually calculated an average of 

the extracted signal outside SPM8. Although the current ROI follow-up tests are 

orthogonal from the whole-brain results, the proposed analysis would be more 

conventional.   

Fifth, I have qualitatively categorised expected/ unexpected outcomes, 

resulting from less/ more demanding actions to be in goodness-badness spectrum. I 

am aware this is rather an informal, yet psychologically valid description of events 

in the task. I would like to adopt a more formal approach to describing the value of 

each trial/event, for example with a reinforcement learning approach which 

mathematically characterise trial-by-trial action values and the state values 

associated with them. 

Finally, I computed the time it took to reach different grip level criteria to 

assess grip acceleration between high and low effort conditions (FIGURE 5-4). It 

would be useful to also do this across valence conditions. Additionally, a potentially 

more refined analysis to test if people exert different vigour as a function of effort 

and valence is to model the slope of the increase in grip trajectory.  

 

Summary and conclusions  

In sum, I found no behavioural evidence for valence modulation on effort 

deployment, but I have found neural findings relevant to action anticipation and 

outcome evaluation. Activity in the ACC and dorsal striatum is higher for 

anticipating high compared to low effort, but reward and punishment contexts do 
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not seem to be relevant at the time of action anticipation. When action has been 

completed, effort levels do not seem to be relevant, but the goodness and badness of 

events seems to evoke differential activity in the ventral striatum/ vmPFC and 

insula, respectively.  

 This study provides support for the role of ACC in signalling effort. It also 

provides data that inform a general understanding of the neural underpinnings for 

processing affective events. In this case a monetary outcome (deemed ‗desirable‘ or 

‗undesirable‘ in the task) which results from an action that is either less or more 

demanding, evokes activity in regions for appetitive and aversive values. Note that 

the interpretation of the findings  relies heavily on the assumption that i) losing 

money is aversive, that ii) winning money is appetitive and iii) that exerting effort 

is costly where a larger effort bears more cost. I have reason to think that this is 

the case based on previous work (Kurniawan et al., 2010; CHAPTER 3), where I 

showed that behavioural choice and psychological liking are associated with 

squeezing and monetary earnings, and that choice is associated with a broader 

personality trait to persist with daily challenges.  

 This work forges new avenues for exploring brain responses for committing 

an action and its association with rewards and punishments. A more refined design 

that allows examination of different actions and different ways in which effort can 

be exerted is likely to shed light into how affective events are associated with 

actions and the boundaries in which forming of an action-outcome association 

becomes impaired.  
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But pleasure (as opposed to pain) cannot be the only factor 

affecting my decision to act ..."  

Karol Wojtyla, Love and Responsibility, p.36, 1960. 
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Chapter 6  Context and Pain (study 5)  

 

6.1 Pain and effort 

 

In 1960 Karol Wojtyla, an actor and a philosopher, who later became better known 

as Pope John Paul II, identified the importance of pain in influencing our decisions 

about which is the best course of action. He wrote this just a few years after 

Stevens‘ (S. S. Stevens, 1957) attempt to provide psychophysical measures for 

various sensations such as loudness and heaviness, although at that time failing to 

include pain sensation.  A decade previously Mosteller & Nogee (Mosteller & 

Nogee, 1951) attempted to create a laboratory measures for ‗utility‘, at that time 

ignoring notions of cost-benefit tradeoffs.  

 What became clear in his later philosophical and theological work is that 

what he meant with ‗pain‘ was not only the primary visceral cost that we 

experience as we receive a sudden electrical jolt by touching a power source, but 

also emotional suffering and the enduring of physically challenging demands that 

we encounter in life. The latter resembles the construct I explore in this thesis: 

effort. Indeed in everyday language, (physical and emotional) pain and effort seem 

interchangeable as both contain aversive value and are more or less traded-off 

against benefits such as a job salary, a top-of-mountain ecstasy, or eternal life. In 

what follows I briefly discuss ways in which effort is distinct from physical pain, 

but also ways in which effort can relate to physical pain. This subsection provides a 

background rationale for my final study which investigates the influence of context 

on pain avoidance.    

  Physical pain plays a major role in shaping behaviours related to health and 

disease. As the body‘s primary aversive stimulus, pain signals imminent or actual 

physical harm, evokes a feeling of unpleasantness, and constitutes a potent signal 

that helps to shape future behaviour toward minimising injury (Craig, 2003; 

Fields, 2004). Physical pain can be defined in laboratory settings as any primary, 

visceral sensation caused by aversive events such as electrical currents, focal heat 

stimulation, or sharp pricks or pinches on the skin. The aversive and robust 

bottom-up quality of pain alongside with abundant evidence for its malleability to 

top-down control have triggered and maintained long-standing bodies of knowledge 
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on issues such as placebo effects, pain rehabilitation, analgesia or chronic pain 

syndromes.        

Empirically, effort is distinct from pain. Despite the recurrent theme in 

previous chapters that effort is costly we do not avoid effort to the extent that we 

avoid pain. Indeed, effort is an abstract concept which has not yet implicated such 

robust neural and physiological signatures as pain does (Tracey & Mantyh, 2007). 

Neverthless, due to the scarce empirical work on either, work on understanding 

pain-reward integration has used previous discussions on effort-reward integration 

as a framework for cost-benefit tradeoffs (Talmi et al., 2009) and work on ‗suffering‘ 

for the sake of charity-giving has conflated both pain and effort manipulations 

(Olivola, 2010).  

Effort is intimately linked to pain. In physical rehabilitation settings, 

perceived effort and pain ratings are simultaneously used as metrics for 

rehabilitation training efficacy. For example, both ratings of effort and pain were 

acquired to assess peripheral control on movement (Hollander et al., 2010). In this 

study, the authors compared venous occlusion on an arm during light-weight biceps 

exercise with a non-occluded medium-weight biceps exercise, to test if perception of 

effort and pain can be influenced by peripheral sensation that is caused by venous 

occlusion. Participants had to perform a number of arm flexion exercises and make 

verbal reports on effort and pain. They found that both ratings rose to a medium 

level (‗6‘ on a BORG scale) at a similar rate as a result of arm exercises, and 

demonstrated peripheral control of effort and pain ratings. 

In occupational health, reports of pain are also associated with perceived 

effort. As reviewed previously (Tam & Yeung, 2006), cases of body pain are robustly 

associated with perception of physical exertion during work, such that workers who 

required treatments for their lower back pain due to work demands (e.g. lifting) 

also perceived higher exertion rate when tested on various lifting measures.  It 

could be that perceived effort becomes a cognitive signal for behavioural 

modification to avoid pain occurrence (Tam & Yeung, 2006). 

  Colloquially, the exertion of effort is often implicated as a source of pain in 

various body parts. Indeed loss of grip strength, which is also an effort measure 

used in previous chapters, seems to be ubiquitous in individuals reporting chronic 

pain (Lohman, Thorpe, Prior, George, & J. P. Kim, 2008). Effortful breathing 

causes significantly greater pain than pain at rest in post-upper abdominal 

operative patients (Kimball et al., 2008). While minimal activities such as walking 
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may not cause pain in healthy individuals, it is certainly true for certain 

individuals, such as those with obesity. The more challenged our body parts feel in 

completing physical movements or tasks, the more likely we are to report exertion 

or effort, and this is linked to subsequent reports for pain (e.g. Karason et al., 

2005). On the flip side, faked effort as a pain index is a controversial issue in 

medico-legal settings, and tests have been developed to distinguish submaximal 

effort exertion in malingerers who try to claim legal benefits for chronic pain 

(Lohman et al., 2008). The biological mechanism for how effort causes pain is not 

straightforward. Indeed, simple analgesic manipulations to modulate the 

endogenous opioid system (using codeine) does not attenuate muscle pain ratings 

after strenuous grip exercises (Cook et al., 2000). Nevertheless, in most settings, 

effort exertion does eventually lead to subjective pain. 

The above highlights the intimacy between the experience of effort and pain 

and the importance of extending research on action costs to the pain domain. Below 

I report my first attempt to study pain, instead of effort, in assessing the influence 

of a context manipulation on pain avoidance as an important exemplar for cost-

driven actions. 
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6.2 Relative magnitude influences on pain avoidance  

 

Abstract 

 

 

Motivational theories of pain highlight its role in people‘s choices of actions that 

avoid bodily damage. By contrast, little is known regarding how pain influences 

action implementation. To explore this poorly understood area, I conducted a study 

wherein participants had to rapidly point to a target area to win money while 

avoiding an overlapping penalty area that would cause pain in their contralateral 

hand. I found that pain intensity, and target-penalty proximity, repelled 

participants‘ movement away from pain and that motor execution was influenced 

not by absolute pain magnitudes but by relative pain differences. My results 

indicate that the magnitude and probability of pain have a precise role in guiding 

motor control and that representations of pain that guide action are, at least in 

part, relative rather than absolute. Additionally, my study shows that the implicit 

monetary valuation of pain, like many explicit valuations (e.g., patients‘ use of 

rating scales in medical contexts), is unstable, a finding that has implications for 

pain treatment in clinical contexts. 
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6.2.1 Introduction  

 

Pain dominates the shaping of health and illness-related behaviours, providing an  

imminent aversive signal for harm. Traditional studies of motivational aspects of 

pain have concentrated on either subjective rating of unpleasantness (in humans) 

or aversive classical and instrumental conditioning (primarily in other species; 

Dayan & Seymour, 2008; Price, 2000). Although these approaches have yielded 

considerable insight into how pain influences action choice, few studies have 

investigated how pain influences action implementation. Both action choice and 

action implementation are central themes in theories of optimal control: action 

choice is formalised, for example, by reinforcement learning theory (Seymour et al., 

2004), while action implementation is formalised by theories of motor control. To 

see how both factors operate, imagine that you burn your arm while removing 

bread from an oven. The ensuing pain might influence both your decision to use the 

oven in the future and the movements you will make when reaching into the oven 

again. Pain‘s influence on action implementation, although ubiquitous in ecological 

contexts, remains poorly understood.  

From a functional point of view, pain is often viewed as helping to guide 

behaviour in an effort to balance an agent‘s long-term interests and immediate 

goals. Conventional ideas about the motivational role of pain are based on the 

assumption that pain provides a signal of an approximate but absolute quantity of 

ascending nociceptive input (leaving aside descending modulatory influences that 

arise in specific circumstances; Fields, 2004). Optimality requires that pain signals 

provide an absolute measure of potential bodily damage. For example, from an 

evolutionary or economic and nutritional standpoint, people should stop gathering 

or eating a food at exactly the point when the risk of bodily damage outweighs that 

food‘s caloric value. Successfully making this type of trade-off via the proxy of 

experienced pain requires that instances or predictions of bodily damage map 

consistently onto subjective pain—that is, such ideas assume that pain is absolute 

rather than relative.  

However, recent studies on explicit decision making when pain is a factor 

have produced striking results that call into question this assumption about the 

absolute nature of pain. For example, when people bid money to avoid painful 

electrical stimuli in an auction paradigm, the financial value they were willing to 

pay for pain relief was influenced by the amount of a different pain they had 
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recently experienced (Vlaev, Seymour, Dolan, & Chater, 2009). This finding 

supports theories about relative judgment in explicit affective valuation, as well as 

theories in perceptual domains such as vision and audition (Garner, 1954; Laming, 

1984, 1997). However, it remains possible that these results reflect a relativistic 

process related to the construction of explicit valuations rather than a more 

fundamental property of pain perception itself. This possibility motivated my 

experimental approach in the present study, in which I exploited a motor task that 

obviates the need for explicit judgments (Maloney, Trommershäuser, & Landy, 

2007) but nevertheless provides a metric of sensitivity to pain intensity.  

In recent motor-control experiments, participants making rapid pointing 

movements in situations involving risk chose visuomotor strategies that maximised 

gain (Trommershäuser, Landy, & Maloney, 2006; Trommershäuser, Maloney, & 

Landy, 2003a, 2003b, 2008). In these studies, participants pointed at 

configurations similar to the ones shown in FIGURE 6-1B. If participants hit the 

target area, they won a small monetary reward, but if they hit an overlapping or 

abutting penalty circle, they incurred a small monetary loss. Results showed that 

participants optimised their mean pointing response according to changes in 

penalty value. The distance by which participants avoided the penalty region was 

indicative of how ―bad‖ they rated the monetary loss. Participants chose pointing 

strategies that maximised expected gain.  

Extending this approach, one can estimate how aversive a shock would be to 

participants in terms of monetary units by presenting two overlapping regions, one 

carrying monetary gain and one carrying immediate shock, and measuring how far 

participants‘ finger points are repelled from the shock region. A region that carries 

a higher shock level should repel finger pointing farther than a region that carries 

a milder shock level. This approach provides an ideal system in which to study the 

role of pain as a disincentive in motor planning and to test the hypothesis that 

relative coding of pain intensity is a core property of pain representation. 

 

6.2.2 Method  

 

Participants, apparatus and materials  

Seventeen volunteers (9 males and 8 females; mean age = 24 years, SD = .74) were 

recruited through the psychology participant database at UCL. All participants 
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were right-handed or ambidextrous. They gave written consent to participate in the 

study, were paid between £20 and £32 (depending on performance), and were 

debriefed after the experiment. The study was approved by the UCL ethics 

committee.  

 

 
 

Figure 6-1 Illustration of the experimental stimuli, sequence of events in a trial, and main 

dependent variable. The stimulus compound consisted of an open yellow circle (the target 

circle) and a filled coloured circle (the penalty circle, shown here in green). The hand 

images indicate the end points of participants' pointing movements. a) Participants had to 

touch a central cross to make the stimulus compound appear, after which they had 650 ms 

to respond to the stimulus. If participants touched the penalty region, they received an 

electric shock. If they touched the target region, a monetary reward was shown on the 

screen. Participants received both pain and reward if they touched the overlapping region, 

and they received neither pain nor reward if they touched the screen outside the target and 

penalty regions. b) Two stimuli configurations in the far and near conditions. White squares 

show the centres of the circles. c) The measured end-point shift for a given trial was the 

horizontal distance between the end point of the participant's response and the centre of 

the target region. The illustrations are not to scale. 

 

The MATLAB toolbox used was Psychophysics Toolbox Version 2.54 (Brainard, 

1997; Pelli, 1997). Participants sat 70 cm from a 25-in. touch screen (Keytec, Inc., 

Garland, TX). Electrical pain stimuli were delivered and controlled by three DS7 

Stimulators (Digitimer, Hertfordshire, United Kingdom), which have been fully 

approved for clinical use. These apparati have been used for various pain 
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experiments (Mobbs et al., 2007; Vlaev et al., 2009). Electrical pain stimulates a 

broader range of nociceptive and nonnociceptive afferents than, for example, laser 

or thermal noxious stimulation. Electrical pain offers researchers an advantage 

over other forms of stimuli because it is largely free of the confounding effects of 

stimulus habituation or sensitisation (McMahon & Koltzenburg, 2005). 

 

General task description  

I trained participants to rapidly touch (within 650 ms) a small target area on a 

computer screen (Gepshtein, Seydell, & Trommershäuser, 2007; Trommershäuser, 

Gepshtein, Maloney, Landy, & Banks, 2005). Participants earned money by hitting 

the target area, which carried a fixed known reward of approximately 6 pence per 

hit (paid at the end of the experiment). Hitting the penalty area resulted in 

immediate administration of a shock (low, medium, or high level). 

Participants received both money and a shock if they hit the overlapping 

region of the target and penalty areas (FIGURE 6-1A). The magnitude of pain varied 

between trial blocks, and participants learned the magnitude in each block only 

when they hit the penalty region. Participants received no money or shock if they 

did not respond within 650 ms, in which case they see a message ―too late‖ on the 

screen.  

I manipulated the target-penalty distance (near: 6.6 mm; far: 10.56 mm) 

and the shock level associated with each penalty (low, medium, and high pain). 

End-point shift—the distance between the center of the target circle and the end 

point of a pointing movement (FIGURE 6-1C)—was the critical dependent variable. 

The idea behind the experiment was that penalties should have the effect of 

repelling a participant‘s end points away from the penalty region to a degree 

dependent on the movement inaccuracy for that individual participant. 

Specifically, a higher pain level and a near penalty region would be more aversive 

than a lower pain level and a far penalty region (Trommershäuser et al., 2006) and 

would therefore result in larger end-point shifts.  

To test for absolute versus relative pain encoding, I presented two shock 

strengths during each trial block (low-medium, medium-high, and low-high). On 

each trial, the relative intensity of the shock was indicated by the colour of the 

penalty area. That is, participants were told that the colour of the penalty area 
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indicated whether the higher or lower shock intensity in that block was in effect, 

but experience alone informed them of the actual intensity.  

 

Figure 6-2 Context dependency in motor control for pain avoidance. The graphs in (a) 

illustrate the end-point shift predicted in the three experimental blocks according to an 

absolute-coding model (left) and a relative-coding model (right). Increases in end-point shift 

would be expected to reflect increases in pain magnitude in the absolute-coding model, but 

in the relative-coding model, increases in end-point shift would be expected to remain 

identical across experimental blocks. The observed pooled-participant mean end-point 

shifts are shown as a function of (b) target-penalty distance and (c) pain intensity in the 

low-medium, medium-high, and low-high blocks. Error bars represent standard errors of 

the mean. The graph in (d) shows estimated equivalent monetary value of low, medium, 

and high pain within the low-medium, medium-high, and low-high blocks. 

 

I assumed that each response would not reflect a summarised coding of the 

two pain intensities within the block. Rather, I assumed that participants‘ motor 

systems would distinguish the two pain intensities consistently, such that a higher 

pain level would always be avoided by a greater distance than its lower-level 

counterpart. The crucial distinction between an absolute and a relative model of 

pain is that this higher-versus-lower pain-response pattern applies only within 

blocks in the case of relative coding, but applies both within and across blocks in 

the case of absolute coding.  

Put differently, according to an absolute-coding model, end-point shifts 

should depend purely on the absolute pain intensity presented at each trial, and 

should be independent of the other shock intensity presented in that block. In 
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contrast, according to a relative-coding model, end-point shifts should vary 

according to a pain‘s intensity relative to the other pain stimulus occurring in the 

same block. For instance, a medium-intensity stimulus should repel end points to a 

greater degree if it is the higher of the two intensities in a block (i.e., in a low-

medium block) than if it is the lower of two intensities (i.e., in a medium-high 

block). FIGURE 6-2A illustrates the predictions of these hypothesised absolute and 

relative models.  

 

Stimuli 

The visual stimulus presented on each trial consisted of a target and a penalty 

circle, each of which had a 9.24-mm radius. The target was always an open yellow 

circle. The penalty was always a filled circle.  

Each of the three experimental blocks had two shock levels, which were 

indicated visually by different colours; different colours were also used in different 

blocks. For each participant, I randomly chose six penalty colours from among 

seven colours (excluding four colour pairs that could not be visually discriminated 

easily). This variability in colour coding was made clear to participants; they were 

able to visually distinguish the target circle from the penalty circle and expected 

two penalty colours representing different shock levels in each block. Colour coding 

allowed participants to identify which penalties had a higher pain level within an 

experimental block; this use of colour coding also ensured that the colour-pain 

association did not carry over to other blocks. For example, a blue circle might 

represent low pain throughout the first block, but in the next block, low pain would 

be associated with a different colour, such as pink. Penalty colours in practice 

blocks were different from the penalty colours in experimental blocks. 

At the start of each trial, a cross (8 mm  8 mm) appeared at the centre of 

the screen. When participants touched the cross, the stimulus appeared for 650 ms; 

its location was randomly selected to be 9.9 cm to the left of, to the right of, above, 

or below the cross.  

 

Procedure  

Appropriate shock levels for each participant were calibrated in advance of the 

trials. Two silver-chloride electrodes were placed on the back of the left hand. A 

brief current was delivered through the electrodes to cause a transitory aversive 
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sensation, which became increasingly painful as the current was increased. I 

administered shocks, starting at extremely low intensities and ascending in small 

steps, until participants reached their maximum tolerance. No shocks above a 

participant‘s stated tolerance level were administered. Participants rated each 

shock on a visual analogue scale from 0, no pain at all, to 10, the worst possible 

pain. Their ratings allowed us to determine the appropriate range of current 

amplitudes to use during the actual experiment and to assign pain levels (low, 

medium, and high) that were subjectively comparable across participants.  

Once their maximum tolerance was reached, participants received fourteen 

random subtolerance shocks that removed expectancy effects created by the 

incremental procedures. A Weibull (sigmoid) function was statistically fitted to 

participants‘ ratings for the fourteen shocks and the intensities of current that 

related to three levels of pain (mild: 4; moderate: 6; strong: 8) were estimated; and 

subsequently used for the three shock levels (low, medium, and high) in the 

experiment. Participants were unaware that only three specific amplitudes of 

current were used during the experimental task. The participants rated the same 

set of fourteen subtolerance shocks in a random order at the end of experiment. A 

one-sample t test showed that the sum of the difference between participants‘ first 

and second ratings was not significantly different from zero, t(16) = 1.25, p = .22, 

which suggests that there was no systematic change between participants‘ first and 

second ratings.  

To investigate the possibility of adaptation more precisely, I compared the 

second ratings made by participants who completed the low-medium, medium-

high, or low-high block as their final block in the experiment. If participants had 

adapted after their final block, ratings made by participants whose final block 

included low intensities (e.g., the low-medium block) should have been higher than 

ratings made by participants whose final block included high intensities (e.g., the 

medium-high block). A Kruskal Wallis (nonparametric) test showed no evidence of 

such adaptation: The mean rating differences were the same among participants 

who had just completed the low-medium, medium-high, or low-high blocks, 2(2, N 

= 17) = 0.40, p = .81. These results suggest that there was no significant 

habituation or sensitisation during the experiment. 

Participants completed three practice phases and three experimental blocks. 

During the first practice phase, which had 64 trials (eight repeats of eight stimulus 

locations), participants learned to point within 650 ms. The penalty area appeared 
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randomly at a middle distance (9.24 mm) to the left or right of the target‘s center 

point. Participants then completed the second phase, which was the same as the 

first phase except that there were 72 trials and participants received a mild shock 

when they hit the penalty area. In the third phase, the penalty circle was randomly 

presented either near (6.6 mm) or far from (10.56 mm) the target (FIGURE 6-1B). 

Participants completed 112 trials (seven repeats of sixteen stimulus locations). The 

shock level was the same in Phases 2 and 3, but this level was different from the 

shock levels in the experimental blocks. Because of the time limit for responding, 

the task was difficult, and these three practice phases allowed participants to 

achieve adequate accuracy rates without learning the pain magnitudes to which 

they would be exposed in the experimental blocks.  

There were 128 trials (four repeats of sixteen stimulus locations at two pain 

levels) in each of the three experimental blocks. The order of the experimental 

blocks was determined randomly for each participant. The experimental blocks 

represent three pairs of pain magnitudes, which allowed us to test whether finger-

pointing shifts reflected relativistic or absolute coding of pain magnitudes.  

 

Data analysis 

I conducted repeated measures analyses of variance (ANOVAs) with three 

independent variables: distance (near or far), block (low-medium, medium-high, or 

low-high), and relative pain (lower or higher within each block). The dependent 

variables were average end-point shifts from the center of the target (FIGURE 6-1C) 

and reaction times (RTs). Responses on 14% (SD = 2%) of the trials were late 

(equally distributed across blocks), and these trials were excluded from all 

analyses. All trials during which participants responded within 650 ms (including 

trials with end-points outside the circles) were included in the analyses.  

In principle, stimulus intensity (measured in milliamps) could have been 

added into the general linear model, although any significant association between 

stimulus intensity and end-point shifts would vary widely according to factors such 

as skin temperature, sweating, hydration, sex, and skin thickness. Therefore, in 

line with normal practice in the pain literature, it was not included.  

To determine trade-offs between reward and pain, I compared the shifts I observed 

in participants‘ response to changes in pain intensity with the strategies of an 

optimal movement planner maximising gain. The only free parameter in this 
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comparison was alpha, which represented the pain-pence exchange rate for each 

shock level. This comparison yielded an estimate for the monetary value of the 

penalty that corresponded to the movement shift I observed in response to changes 

in pain intensity. The method for computing this equivalent monetary value is 

described in APPENDICES. 

6.2.3 Results 

As FIGURE 6-3 shows, participants hit the target-only area significantly more often 

than they hit the penalty-only area or the overlapping region, F(1, 17.46) = 171.65, 

p < .00001, p
2 = .91. I tested whether participants adjusted their end-points 

according to pain intensity and target-penalty proximity. To do this, I computed 

pooled-participant mean end-point shifts by computing median values for each 

participant's horizontal end-point shift in each condition, and then averaging these 

median values across all participants. This value served as an index of how far 

participants deviated from optimal pointing (Trommershäuser et al., 2005).  

 

 
Figure 6-3 Mean percentages of participants‘ end points that hit the target-only area, 

penalty-only area, and overlapping region of the target and penalty area. Error bars 

represent standard errors of the mean. 

 

An ANOVA revealed that participants displaced their end-point much 

farther when the penalty was near the target than when it was far from the target 

(FIGURE 6-2B), F(1, 14) = 66.60, p < .00001, p
2 = .82. This finding is consistent with 

the hypothesis (Trommershäuser et al., 2008) that movement execution 

incorporates information relating to judged movement variability (noise). 

Displacement from the target's centre also depended on relative pain magnitudes; 

that is, end-point shift was larger when pain was stronger than when pain was 

milder, F(1, 14) = 4.84, p = .045, p
2 = .25. End-point shift was not affected by 
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absolute pain intensities. The Block  Relative Pain interaction was not significant; 

the difference between lower and higher pain was similar across the three 

experimental blocks (FIGURE 6-2C). These results suggest that end-point shift was 

influenced by relative pain intensities. Other effects on end-point shifts were 

nonsignificant, Fs(2, 13) < 3.59, ps > .057, and F(1, 14) < 2.46, p > 0.13.  

 
Figure 6-4 Reaction times (RTs). a) Pooled-participant mean RT for each of the three 

experimental blocks (low-medium, medium-high, and low-high). b) Pooled-participant mean 

RT as a function of target-penalty distance (near vs. far) and pain intensity within each 

experimental blocks. Bars show mean + SEM. 

 

I also examined participants‘ RTs (calculated from when they touched the 

fixation cross to when they touched the stimulus compound). Participants 

responded more slowly when the penalty circle was near than when it was far (see 

FIGURE 6-4B), F(1, 14) = 12.32, p = .003, p
2 = .46. RTs were also influenced by 

block, F(2, 28) = 5.2, p = .012, p
2 = .27 (FIGURE 6-4A). RTs in the low-high block 

were significantly slower than RTs in other blocks—low-medium block: t(14) = 2.7, 

p = .017; medium-high block: t(15) = 2.23, p = .041. Participants responded with 

equal quickness in the low-medium and medium-high conditions (p > .05). 

Although FIGURE 6-4B suggests that there may be a trend for an interaction, all 

interaction effects were nonsignificant, Fs < 0.12, ps > .80. See APPENDICES for 

complete descriptions of ANOVA results for end-points and RTs. 

 

Under the assumption that end-point displacements corresponded to an 

optimal pointing strategy that maximised gain (Trommershäuser et al., 2008), I 

estimated the equivalent monetary value of each shock level to assess participants‘ 

trade-offs between reward and pain. Overall, participants consistently experienced 

higher shocks to be more painful and unpleasant than lower shocks. When 

converted into a hypothetical equivalent monetary value of pain for an optimal 

movement planner maximising gain, the shift in mean motor response to higher 
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shocks corresponded to higher equivalent monetary values than the shift in mean 

motor response to lower shocks did (details about the computation of the monetary 

values of pain can be found in APPENDICES). These results demonstrate that pain 

can be measured in equivalent monetary values. The results for this implicit 

measure correspond with those for my explicit measure (pain avoidance in end-

point shifts), which suggests that pain is encoded relatively in guiding motor 

movement. FIGURE 6-2D depicts the context dependency of the estimated 

equivalent monetary values of pain. 

 

 

6.2.4 Discussion 

 

The data show that previous painful outcomes exert a pervasive influence on future 

movement control. First, I have shown that higher-intensity pain generally has a 

stronger influence on biasing future movement in a direction away from pain. 

Second, I have shown that the likelihood of pain, inferred by the proximity of pain 

to the goal target, biases movement in a similar way. This suggests that movement 

execution incorporates the consideration of both the magnitude and the probability 

of pain, as predicted by an optimal account of motor control. This study helps build 

a richer picture of the motivational dimension of pain because it shows that pain 

not only influences decisions about whether to perform an action (i.e., escape and 

avoidance behaviour), it also informs the actual execution of that action.  

My results indicate that the influence of pain is more relative than absolute. 

That is, relatively intense pain that has been recently experienced has a greater 

effect on movement control than relatively mild pain that has been recently 

experienced. In addition, these findings suggest that noxious events are 

represented in relative terms at the level of basic motor control, which is putatively 

a much more fundamental index of the mental representation of such events than 

subjective ratings are. My results correspond nicely with the relativistic valuation 

of pain Vlaev and co-workers (Vlaev et al., 2009) demonstrated in an economic 

bidding game (borrowed from behavioural economics). The correspondence between 

explicit and implicit pain valuation in my study also resembles the correspondence 

between risk perception as examined via a classical economic decision-making task 

and an equivalent motor task (Wu, Delgado, & Maloney, 2009).  
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My implicit analysis of monetary values of pain implies that its context 

effect on movement control could be explained by differential economic values of 

pain. It is conceivable that people will tradeoff the amount of pain they will choose 

to suffer against the amount of money they are willing to pay to relieve that pain 

(Vlaev et al., 2009). Thus, the relative end-point shifts I found in this study could 

partially be explained by the fact that participants‘ monetary valuation of pain was 

sensitive to the relative context of that pain.  

Two caveats should be noted in relation to the interpretation of my findings. 

First, it is difficult to rule out the possibility that short-term habituation to pain 

might have contributed to the relative coding I observed. Although I did not find 

evidence for habituation over the course of the experiment, it is possible that 

higher-intensity stimuli caused a relative diminution of pain through habituation 

effects that operated over the course of each block. Second, according to some 

accounts of relativity effects, participants use recent experiences to inform 

expectancies about forthcoming pain (Seymour & McClure, 2008). That is, 

participants infer distributions of anticipated pain and incorporate these 

distributions as priors in representational inference about inherently uncertain 

ascending afferent inputs. Thus, apparent relative effects might emerge not due to 

a fundamental limitation in people‘s ability to encode intensity, but because of 

uncertainty in the ascending input.  

My results have implications for pain in clinical environments. A number of 

conditions and disorders cause pain that is exacerbated by movement; examples 

include conditions arising out of peripheral injury (e.g., post trauma), neuropathic 

conditions (e.g., complex regional pain syndrome), and central nervous system 

disorders (e.g., post stroke pain). Behaviours such as limb guarding (protecting a 

limb after recent trauma) are pervasive during recuperation and are essentially 

physiological. In other clinical situations, pain acts as a barrier to optimal 

functional recovery for the affected limb. Accordingly, an understanding of the 

exact ways in which pain modulates movement planning and execution can inform 

therapeutic strategies, particularly in poorly understood (but critically important) 

areas such as upper-limb physiotherapy. Furthermore, the existence of relative 

coding might inspire strategies that exploit context effects to improve movement 

recovery when pain experience is a recognised obstacle.  
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Chapter 7  General Discussion 

 

7.1 Summary of findings 

 

The decision to act requires a complex integration and anticipation of physical 

costs. There is currently little understanding regarding key questions, including: 

how are such costs computed in the brain, how are they integrated with value, and 

how do they influence the neural sensitivity to outcomes? Here I consider effort and 

pain as physical costs in a range of contexts;  1) effort choice, 2) pavlovian influence 

on effort learning, 3) basal ganglia-prefrontal sensitivity to effort anticipation and 

outcomes and 4) relativity influence in pain avoidance.  

 

In the individual chapters I report that: 

 Anticipated effort influences the likelihood to choose an action, its subjective 

likeability, and the time taken to decide. Persistence as a personality trait is 

also associated with likelihood of accepting an effortful action. 

 Learning about effort actions is influenced by affective context (i.e. reward 

or punishment). When anticipating reward, we tend be active and expend 

effort, whereas when anticipating punishment, we tend to withdraw from 

expending effort. Computationally, this is accounted for by a pavlovian 

influence which specifies a ‗spillover‘ from stimulus value associated with 

reward/punishment into an action value for exerting effort.  

 Anterior cingulate cortex (ACC) is sensitive to the effort requirement of an 

upcoming action, but not to affective contexts namely rewarding or 

punishing outcomes. 

 Over and above a nonspecific role for anticipating movement, the dorsal 

striatum (putamen) plays a crucial role in effort computations both in choice 

and non-choice contexts.  

 Ventromedial prefrontal cortex (vmPFC) and ventral striatum are sensitive 

to the hedonic aspect of an action, by directly integrating its expended 

disvalue (effort) and expected value (outcome).  

 Insula is sensitive to an action‘s displeasure, by responding most strongly to 

an unexpected punishment and most weakly to an expected reward. 
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 The context provided by relative pain magnitudes influence how the motor 

system implements pain avoidance (another exemplar of cost-driven 

behaviour). The same level of pain is avoided farther when paired with a 

milder pain than when it is paired with a stronger pain.   

7.2 Apathy, persistence and compulsion  

 

As alluded to earlier in this thesis, my behavioural and neuroimaging work in 

healthy participants may have implications for a more fine-grained analysis of 

neurological cases of apathy, using brain and behavioural evidence. First, several 

distinct types of brain insult are associated with apathy in humans. For example, 

bilateral ACC lesions can present with akinetic mutism, a wakeful state 

characterised by prominent apathy, indifference to painful stimulation, lack of 

motor and psychological initiative (Tekin & Cummings, 2002). Apathy is also often 

present in patients with subcortical brain lesions (involving BG), but is more 

commonly found in those with prefrontal, mainly ACC, lesions (van Reekum, Stuss, 

& Ostrander, 2005). More recently apathy in Alzheimer‘s disease patients has been 

associated with weaker ACC white matter integrity (J. W. Kim et al., 2011), 

whereas apathy in frontotemporal dementia population has no association with 

basal ganglia grey matter volume (Links et al., 2009).  

Second, effort is a salient variable in individuals with apathy who lack the 

ability to initiate simple day-to-day activities with excessive reliance on external 

control (a spectrum that incorporates abulia) (Lévy & Dubois, 2006; van Reekum et 

al., 2005). This lack of internally generated actions may stem from impaired 

incentive motivation: the ability to convert basic valuation of reward into action 

execution (Schmidt et al., 2008). Patients with auto-activation deficit (AAD), the 

most severe form of apathy, are characterised by lack of self-initiated action (van 

Reekum et al., 2005) or a quantitative reduction in self-generated voluntary 

behaviours (Lévy & Dubois, 2006). Thus, the key feature in AAD is an inability to 

internally generate goal-based actions, a deficit that may variously reflect an 

ability to (1) encode that the consequence of an action as pleasurable or as having 

hedonic value (e.g., to attain reward, ‗liking‘) (2) execute the action; and (3) 

represent the association between action and reward. I now discuss a proposal that 
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the behavioural and neural mechanisms underlying AAD are mostly intimately 

linked to the third sub-process.  

AAD is not associated with impaired ‗liking‘ as patients with AAD have a 

normal skin conductance response to receipt of rewards and verbally distinguish 

between different magnitudes of monetary reward (Schmidt et al., 2008). In 

addition, the most prominent damage in AAD pertains to BG and the dopaminergic 

system. Secondly, AAD is probably not linked to specific impairments of action 

execution. Schmidt and colleagues (2008) tested patients with bilateral BG lesions 

with the history of AAD and found that, compared to normal and Parkinson‘s 

disease control groups, patients with AAD are worse when generating voluntary 

vigourous actions based on contingent reward, but are equally able to generate the 

same motor response if based on external instructions. This provides evidence 

against AAD being explicable in terms of an impairment in pure motor action 

execution.  

I suggest that AAD reflects an impairment in linking reward anticipation to 

action. Damage to BG in AAD most commonly involves a focal bilateral insult to 

the internal portion of pallidum (Lévy & Dubois, 2006). Pessiglione and colleagues 

investigated the role of ventral pallidum in incentive motivation employing a task 

where individuals voluntarily squeezed a handgrip device in response to different 

reward magnitudes (Pessiglione et al., 2007). Notably, the amount of voluntary 

force during squeezing was proportional to reward magnitude, suggesting that 

participants were able to identify a reward context where it was advantageous to 

produce more physical effort. Furthermore, ventral pallidal activity correlated with 

outcome context, providing a neural basis for enhanced effort as a response to 

increased payoff. Similarly, damage to BG in AAD may have caused a failure to 

recognise an advantageous context to make an adaptive action (Lévy & Dubois, 

2006; Walton et al., 2004). These data suggest that bilateral BG damage, at least in 

AAD, produces a syndrome that arises out of a deficit in translating reward cues 

into appropriate action selection and execution. 

In light of Schmidt and co-workers‘ (2008) findings that AAD patients were 

mostly impaired in the execution of actions, when an internal link between a 

reward and action is required, it is noteworthy that AAD may cause impairments 

beyond simple abstract action-reward association. In other words, AAD may cause 

impairments in the actual execution of reward-based actions. This highlights the 

importance of BG in energising individuals to act with perseverance, a deficit 



Effort KURNIAWAN 2011 

135 

 

commonly found in patients with Parkinson‘s disease (which is largely associated 

with a dysfunction in BG). Schneider tested Parkinson‘s disease patients in solving 

a difficult cognitive task, and found that the patients were making significantly 

fewer attempts to solve the task than normal controls, pointing to a deficit in 

mental persistence in such patients (Schneider, 2007). It may well be that 

persistence is linked to a higher tendency to generate internal motivation or 

arousal which then energises individuals to persevere (Gusnard et al., 2003), or 

perhaps lessens a tendency to distraction (Nicola, 2010).  

Taken together, apathy, as a manifestation of impaired motivation to 

overcome the cost of an action, is associated with damage to a cortico-subcortical 

network (either lesions in the ACC or BG) that generates internal association 

between action and its consequences. This highlights a key involvement of the ACC 

and BG in the anticipation and execution of effortful actions.  

I have discussed how apathy could be an instance where effortful, motivated 

behaviour,  to gain reward is impaired. At first glance, persistence seems to be the 

opposite of apathy which provides an optimal behaviour where persistent 

individuals are capable of exerting effort while still maximising gain. However, a 

further opposite of apathy which highlights another state of impaired behaviour 

might be the case of compulsive behaviour. Using the orthogonalisation of action 

and outcome valence (Boureau & Dayan, 2011; Guitart-Masip et al., 2011; Huys et 

al., 2011) described in CHAPTER 4 we can see that, on the one hand, apathy is a 

marker of an impairment in invigoration for reward (FIGURE 7-1), while on the 

other hand, compulsion could be a marker for a failure to suppress habitual 

responses to evade punishments. Compulsion has been shown to be a behavioural 

manifestation of trait impulsivity (Belin, Mar, Dalley, Robbins, & Everitt, 2008). 

Early evidence for failure in response suppression comes from a rodent experiment 

which shows that while rats with limited cocaine exposure are able to suppress 

lever pressing to self-administer cocaine when the lever is now associated with 

shock delivery, rats with extended cocaine exposure develop a compulsive cocaine-

taking response and fail to suppress this behaviour and perseverate in self-

administering cocaine even when this simultaneously delivers shock 

(Vanderschuren & Everitt, 2004). Two fundamental points to clarify here are i) 

whether compulsive behaviour is specific to failure in this ‗NoGo-to avoid 

punishment‘ quadrant, and ii) whether this precise failure takes place during 

learning or performance. 
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Figure 7-1 The affect-effect plot (Boureau & Dayan, 2011) depicted in chapter 4. By using 

this framework, we could potentially characterise apathy as having impairments in vigour 

for rewards and compulsion as having impairments in suppressing actions for punishment 

avoidance 

  This novel opponency between apathy and compulsion, depicted in the 

affect-effect plot in FIGURE 7-1, may provide a fruitful framework for investigating 

aberrations in the forms of lack, and excess, of effortful actions and in 

understanding the intimate relationship between action and outcome. Future work 

should further exploit this orthogonal paradigm akin to studies in CHAPTER 4 and 

in Guitart-Masip et al. (2011) and Huys et al. (2011) to test clinical populations 

such as individuals with apathy and obsessive compulsive disorder (OCD).  

 

7.3 Outstanding issues and future directions 

 

Repetitive responding 

In the research reported here, I utilised one means of measuring and manipulating 

physical effort through force production. It is worth considering a different form of 

effort such as that in repetitive responding. Like force production, repetitive 

responding is differentially influenced by a dopaminergic manipulation (Ishiwari et 

al. 2004). Both forms of effort may be associated with a behavioural trait of 

persistence which characterises a human tendency to exert self-regulatory effort 

(Segerstrom and Nes 2007) in order to achieve long term goals (Duckworth et al. 

2007). Reported in CHAPTER 3, persistence is associated with activity in dorsal ACC 
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when participants rejected an option with low effort. This provides provisional 

support for an extensive neurological literature that links circuitry damage 

involving the ACC to various motivational impairments, as for example seen in 

apathetic patients (van Reekum et al. 2005; Eslinger and Damasio 1985). An 

important future research avenue would be to examine if repetitive responding 

interacts with force production in influencing action choices and how this relates to 

a persistence trait, apathetic syndromes and OCD. 

 

Serotonin and dopamine 

Emerging work using the affect-effect orthogonalisation often highlighted the 

opponency between 5HT and DA (Boureau & Dayan, 2011; Cools, O. J. Robinson, & 

Sahakian, 2008; Daw, 2002; Huys et al., 2011). While DA has been much robustly 

implicated in vigour, as well as reward, some weaker evidence points to an 

association of 5HT with inhibition and punishment. In relation to our novel 

attempt to extend an action spectrum into vigour (CHAPTER 4), it is difficult to 

explain our behavioural data using this opponency. A nascent opponency literature 

is extremely complicated and underexplored in the typical approach-avoidance 

spectrum (Huys et al., 2011), and our paradigm does not provide a straightforward 

extension from existing paradigms, nor does it allow a clear inference about the 

likely neurotransmitters involved in such processes.  

 

Effort integration into outcome value  

In addition, I have shown in CHAPTER 5 evidence of effort integration in the 

prefrontal-striatal sensitivity to hedonic outcomes. I found that vmPFC and ventral 

striatal response to expected, desirable, outcomes is stronger after expending less 

effort and weaker after large effort. Of course, this conceptualisation of effort 

integration into hedonic outcomes (more effort, less hedonic) is somewhat informal. 

Thus, a stronger analysis should utilise computational approaches to formalise how 

just-expended effort could be integrated into outcome valuation. 

 

Effort may boost value 

Throughout this thesis, I base my research on the assumption and empirical 

observation that effort is costly. In contrast, under some conditions, effort may 

boost preference or value (briefly listed in CHAPTER 1). This may arise in the 
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context of relief; that having done a hard work may yield a sense of relief which 

yields appetitive value. This is loosely associated with cognitive dissonance 

(Festinger, 1957) where an individual needs to justify his/her effortful action by 

concluding that s/he must like the outcome that action brings and therefore has a 

high preference for that action. Another suggestion is that this boosting effect could 

be related to social contexts attached to the actions (Heyman & Ariely, 2004), such 

that depending on the context, monetary or social, the effort people are willing to 

exert may depend (or may not depend, respectively) on the ‗benefits‘ that they 

receive, to the extent that in a social context they are willing to expend more effort 

for no monetary return (Heyman & Ariely, 2004). One viable paradigm to explore 

this would be to manipulate goals as either benevolent (e.g, charity) or self-

interested. Anecdotally, people are more willing to suffer (e.g., run greater 

distances) for ‗good causes‘, and recent work show that once they commit to 

financially contribute for good causes such as a charity, their contribution 

increases more when the contribution process involves pain and effort than when it 

is enjoyable (Olivola & Shafir, under review). Future work could explore the neural 

circuitry which determines effort‘s discounting or boosting effects.  

 

Effort and temporal discounting 

Finding the exact trade-off point for rewards againts effort and time costs is what 

we strive for. Often we make seemingly imbalanced decisions which could be 

described in the following quote: ―I consider that the sufferings of this present time 

are as nothing compared with the glory to be revealed to us.‖ (Rom 8:18). Indeed, 

looking at each time point (now and later), we see cost-benefit imbalances where 

there is greater suffering than reward in the present, but a much greater reward 

than the suffering, in the future. Notwithstanding the temporal element, a cost-

benefit imbalance could be seen as irrationality. However, a challenging research 

avenue would take into account the temporal aspect of this choice problem and 

examine how humans are able to, perhaps optimally, integrate effort, reward, and 

delay when making decisions. For example, it would be fruitful to create 

experimental situations where although the effort-reward trade-off now yields an 

action value that is incredibly low, people might continue persisting for the vision 

of a much better effort-reward trade-off later.  
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7.4 Contribution to the field 

 

My doctoral work has contributed to the field of decision neuroscience in the 

following ways: 

 I have developed laboratory paradigms  to manipulate physical effort 

expenditure and control for temporal costs. These paradigms involve 

extensive training protocols which allow precise control on effort 

expenditure and representation. The trade-offs between effort and reward 

are easily tipped by a slight increase in reward levels, thus central to such 

experimental paradigms is finding the right tradeoff points. In addition, I 

described two fMRI paradigms that segregate BOLD signal of abstract 

representation of effort from signal related to motor anticipation.  

 I provide converging evidence about the role of anterior cingulate cortex and 

striatum in effort processing in healthy humans, and these support previous 

findings from animal and clinical neuroscience concerning pathologies in 

effort-based behaviours. 

 I show viability of a computational approach to capture the pavlovian 

relationship between affective outcomes and effort deployment. 

 I report novel findings which highlight that effort just expended may have a 

modulatory influence on ventromedial prefrontal cortical and ventral 

striatal sensitivity to outcome delivery. This finding points to effort being 

integrated into outcome value. 

 I extend the examination of cost-driven behaviour to studying pain 

avoidance. I show that as effort was sensitive to context manipulation such 

as outcome valence, pain avoidance is also sensitive to a context 

manipulation of relative pain magnitudes.  

To conclude, the field of effort-based learning and decision making has contributed 

to knowledge about decisions, actions and their neural underpinnings. I have 

shown ways in which effort may influence choice and interact with outcomes, and 

how prefrontal-striatal circuitry is sensitive and influenced by the presence of 

effort demands. How pathologies might result from the interaction between vigour 

and rewards/ punishments is poorly understood. Future research programs 

investigating clinical populations such as those with apathy syndromes and OCD 
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might clarify our understanding of action and outcome. Such an eclectic and 

multidisciplinary approach, which takes into account non-human animal literature 

and healthy and clinical human research endeavours, is likely to be crucial 

paramount in providing an integrated framework in which to understand both 

healthy cognition and near-optimal actions on the one hand, and aberrant, 

suboptimal behaviour on the other. 
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Appendices 

 

7.5 Study 1: Details of effort and reward parameters. 

Here are listed effort levels in % of maximum force and reward levels in pence for 

each individual included in the analysis of Chapter 3, study 1. The last 10 subjects 

had the same experimental parameters and are analysed separately. 

 

          GRIP         HOLD 

  

 

Effort levels % max force) 

  

  

Reward Levels (pence) 

     

Sub 

no. Eff1 Eff2 Eff3 Eff4 Eff5 Rew1 Rew2 Rew3 Rew4 Rew5 Rew 

101 30 55 70 80 90 2 5 10 15 20 1 

102 30 55 70 80 90 2 5 10 15 20 1 

103 30 55 70 80 90 2 5 10 15 20 1 

104 50 60 70 80 90 2 5 10 15 20 1 

105 50 60 70 80 90 2 5 10 15 20 1 

106 50 60 70 80 90 2 5 8 12 15 1 

107 50 60 70 80 90 2 5 8 12 15 1 

108 50 60 70 80 90 3 6 9 12 15 2 

109 50 60 70 80 90 3 6 9 12 15 2 

110 50 60 70 80 90 3 6 9 12 15 2 

111 50 60 70 80 90 2 5 10 15 20 1 

112 50 60 70 80 90 2 5 10 15 20 1 

113 50 60 70 80 90 2 5 10 15 20 1 

114 50 60 70 80 90 2 5 10 15 20 1 

115 50 60 70 80 90 2 3 6 9 12 1 

116 50 60 70 80 90 2 3 6 9 12 1 

117 50 60 70 80 90 2 3 6 9 12 1 

118 50 60 70 80 90 2 3 6 9 12 1 

119 50 60 70 80 90 2 3 6 9 12 1 

120 50 60 70 80 90 2 3 6 9 12 1 

121 50 60 70 80 90 2 3 6 9 12 1 

122 50 60 70 80 90 2 3 6 9 12 1 

123 50 60 70 80 90 2 3 6 9 12 1 

124 50 60 70 80 90 2 3 6 9 12 1 

125 50 60 70 80 90 2 3 6 9 12 1 
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7.6 Study 2: Manipulation checks 

1. For each of the four ‗grip‘ and 1 ‗hold‘ stimuli, participants rated how much they 

liked a particular grip-for-money combination associated with that stimulus. They 

used a visual analog scale where they could slide the cursor on a bar to indicate 

their liking from ‗I do not like it at all' to 'I like it very much'.  Instructions: ―You 

will now see the circles again. For each circle you see, please think about how much 

gripping and how much money associated with it and indicate HOW MUCH YOU 

LIKE that grip-for-money action.‖ 

2. For each low and high reward level stimuli, participants answered to the 

question: ―How much money does the horizontal line on the circle mean?‖ 

3. For each of the low and high effort indicated by the target line in the 

thermometer cue, participants answered to the question: ―How much money do you 

think is considered a fair pay for gripping at the yellow line 10 times in a row?‖ 

7.7 Study 2: Persistence Scale 

The following are statements people might use to describe their attitudes, opinions, 

interests and other personal feelings. For each of the following questions, please 

write the number that best describes the way you generally act or feel, not just how 

you are feeling right now. Remember, there are no right or wrong answers, just 

describe your own personal opinions and feelings. 

 

Response scale: 

1  2   3   4   5 

Definitely Mostly          Neither True           Mostly              Definitely  

False  False         nor False            True              True 

 

1. I like a challenge better than easy jobs. 

2. I am usually eager to get going on any job I have to do. 

3. I often give up a job if it takes much longer than I thought it would. 

4. I am a very ambitious person. 

5. When I fail at something at first, I become even more determined to do a better 

job. 

6. I am usually so determined that I continue to work long after other people have 

given up. 
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7. I have often been called an "eager beaver" because of my enthusiasm for hard 

work. 

8. I often drag my heels a while before starting any project. 

9. I love to excel at everything I do. 

10. I am more hard working than most people. 

11. No matter how hard a job is, I like to get started quickly. 

12. The harder a job is, the less I enjoy it. 

13. I am eager to start work on any assigned duty. 

14. I often accomplish more than people expect of me. 

15. I usually push myself harder than most people do because I want to do as well 

as I possibly can. 

16. I am never described as an overachiever. 

17. If something doesn‘t work as I expected, I am more likely to quit than to keep 

going for a long time. 

18. I like to strive for bigger and better things. 

19. I am more of a perfectionist than most people. 

20. No job is too hard for me to do my best. 

 

7.8 Study 2: Brain activity during squeezing 

 

Table 1 MNI coordinates of regions the activity of which is correlated with ‗squeeze‘ period  
(thresholded at p = 0.001, unc., > 5 voxels) 

Region Nearest 

Brodma

nn 

Areas 

Coordinates 

(mm) 

Z 

value 

No. of 

voxels 

P 

x y z 

Contrast: Squeeze > Hold (Execute Period) 

Cerebellum Anterior Lobe N/A +15 -52 -23 4.58 27 .03 (corr.) 

Primary motor cortex 4 -42 -22 +49 3.72 11 .0001 (unc.) 

Caudate Nucleus  N/A -15 +26 +1 3.54 6 .0001 (unc.) 
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7.9 Study 7: Additional methods 

 

Computation for monetary trade-offs between reward and pain 

I briefly summarise how to compute optimal movement strategies maximising 

expected gain in the context of an unspecified loss function, previous work has 

provided (Trommershäuser, Maloney, & Landy, 2003a, 2003b) details on how to 

compute gain functions in the presence of monetary rewards and penalties. 

In the experiments by Trommershäuser and colleagues, participants win and lose 

small monetary rewards by touching a reward and penalty region on a plane before 

the timeout. Penalties and rewards depend only on the position of the end point in 

this plane, and a visuo-motor strategy S is identified with the mean end point on 

the plane (x,y) that results from adopting strategy S. 

 The model can be applied to the experiments reported in the present study 

as follows: the scene is divided into three regions: the circular target region 1(R )  

which carries a positive gain, the circular penalty region 2(R )  which carries no gain 

or a negative gain, and the background (no gain). An optimal visuo-motor strategy 

S on any trial is one that maximizes the participant‘s expected gain 

2

1

( ) ( | )i i
i

S G P R S    (1) 

Here Gi denoted the gain the participant receives if region Ri is touched within the time 

limit ( 1G 6p  for hitting the target region 1R ; 2G p  for hitting penalty region 2R ); 

P(Ri|S) is the probability, given a particular choice of strategy S, of reaching region Ri before 

the time limit (t = timeout) has expired, 

( | ) ( | )
timeout
i

i

R

P R S P S d    (2) 

and 
timeout
iR  denotes the set of possible trajectories   that pass through Ri after movement 

onset and before the timeout. Because the task requires a quick response (before the timeout), 

Eq. 1 contains a term for this timeout penalty. The probability that a visuo-motor strategy S 

leads to a timeout is P(timeout|S) .  

 

Maximizing Eq. (1) requires knowledge of the probability of hitting each 

region Ri. In our experiments, movement end points are distributed around the 
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mean end point (x,y)  according to a bivariate Gaussian distribution with widths 

x y(σ ,σ )  (see also Trommershäuser et al., 2005, for more details about the shape of 

the end point distribution), 

2 22 21
( , | , , , ) exp - - 2 exp - - 2 .

2
x y x y

x y

p x y x y x x y y  (3) 

The probability of hitting region Ri is then computed by integrating over region iR , 

( | , , , ) ( , | , , , ) .

i

i x y x y

R

P R x y p x y x y dxdy   (4) 

In the experiment, the probability of a timeout is effectively constant over 

the limited range of relevant screen locations (and effectively zero once participants 

are practiced in the task), so – for any given end point variance x y(σ ,σ ) – finding an 

optimal movement strategy corresponds to choosing a strategy with mean aim 

point (x,y)  that maximises, 

1 1 2( , ) ( | , , , ) ( | , , , )x y x yx y G P R x y P R x y   (5) 

Under the assumption that the measured mean end points (x,y)  correspond 

to the optimal movement strategy maximizing expected gain, the solution of Eq. (5) 

yields an estimate of the fit parameter α. This parameter α corresponds to the 

penalty value (in pence) that would have resulted into the observed mean shifts in 

each of the spatial configurations. 

 

7.10 Study 7: Additional results  

 

Late trials 

Late trials were equally distributed across Low-Medium, Medium-High, and Low-

High blocks: 11% (.7%), 14% (.8%), 13% (.7%), respectively.  

 

Complete three-way ANOVA results for end-point shifts 

A three-way repeated measures ANOVA with Distance (2: Near vs. Far), Block (3: 

Low-Medium, Medium-High, Low-High), and Relative Pain (2: Lower vs. Higher) 

yielded a significant main effect of Distance (F(1,14) = 66.60, p < .00001, partial eta 

squared .82): participants displaced their end-point much farther when penalty 
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was near, compared to far, from the target (FIGURE 6-2B), consistent with the 

hypothesis that movement execution incorporates information relating to judged 

movement variability (noise) (Trommershäuser et al., 2008).  

I also found a significant main effect of Relative Pain (Lower vs. Higher), 

F(1,14) = 4.84, p = .045, partial eta squared .25. Across all blocks, displacement 

was larger to penalty with stronger than that to milder pain magnitude. This 

indicates that the displacement from penalty depends on relative pain magnitudes; 

whether pain was milder or stronger, not on absolute pain intensities. Finally, it 

should be noted that the Block x Relative Pain interaction was not significant. This 

means the difference between Lower and Higher pain found in the main effect of 

Relative Pain, is comparable across three experimental blocks (FIGURE 6-2C), which 

suggests that end-point shift is influenced by relative pain intensities. No other 

effects were significant, F < 3, p >.068. 

 

Complete three-way ANOVA results for RTs 

A three way repeated measures ANOVA with Distance (2: Near vs. Far), Block (3: 

Low-Medium, Medium-High, Low-High), and Relative Pain (2: Lower vs. Higher) 

yielded a significant main effect of Distance on RT (F(1,14) = 12.32, p = .003, 

partial eta squared .46). Participants responded slower when the target was Near 

than Far. There was also a significant effect of Block on reaction time, F(2,28) = 

5.2, p = 0.012, partial eta squared .27. Follow-up paired-samples t-tests revealed 

that RT‘s in the context of Low-High pain was significantly slower than RT‘s in 

Low-Medium and Medium-High blocks (t(14) = 2.7, p = 0.017; t(15) = 2.23, p = 

0.041, respectively). Participants responded equally fast in Low-Medium and 

Medium-High conditions, p >.05. 
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