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Abstract

The problem of secure message transmission (SMT), due to its importance in both

practice and theory, has been studied extensively. Given a communication network in

which a sender S and a receiver R are indirectly connected by unreliable and distrusted

channels, the aim of SMT is to enable messages to be transmitted from S to R with a

reasonably high level of privacy and reliability. SMT must be achieved in the presence

of a Byzantine adversary who has unlimited computational power and can corrupt the

transmission. In the general adversary model, the adversary is characterized by an

adversary structure. We study two different measures of security: perfect (PSMT) and

almost perfect (APSMT). Moreover, reliable (but not private) message transmission

(RMT) are considered as a specific part of SMT. In this thesis, we study RMT, APSMT

and PSMT in two different network settings: point-to-point and multicast.

To prepare the study of SMT in these two network settings, we present some ideas

and observations on secret sharing schemes (SSSs), generalized linear codes and critical

paths. First, we prove that the error-correcting capability of an almost perfect SSS is

the same as a perfect SSS. Next, we regard general access structures as linear codes,

and introduce some new properties that allow us to construct pseudo-basis for efficient

PSMT protocol design. In addition, we define adversary structures over “critical paths”,

and observe their properties. Having these new developments, the contributions on SMT

in the aforementioned two network settings can be presented as follows.

The results on SMT in point-to-point networks are obtained in three aspects. First,

we show a Guessing Attack on some existing PSMT protocols. This attack is critically

important to the design of PSMT protocols in asymmetric networks. Second, we de-

termine necessary and sufficient conditions for different levels of RMT and APSMT.

In particular, by applying the result on almost perfect SSS, we show that relaxing the

requirement of privacy does not weaken the minimal network connectivity. Our final

contribution in the point-to-point model is to give the first ever efficient, constant round

PSMT protocols in the general adversary model. These protocols are designed using

linear codes and critical paths, and they significantly improve some previous results in

terms of communication complexity and round complexity.

Regarding SMT in multicast networks, we solve a problem that has been open for

over a decade. That is, we show the necessary and sufficient conditions for all levels of

SMT in different adversary models. First, we give an Extended Characterization of the

network graphs based on our observation on the eavesdropping and separating activities

of the adversary. Next, we determine the necessary and sufficient conditions for SMT

in the general adversary model with the new Extended Characterization. Finally, we

apply the results to the threshold adversary model to completely solve the problem of

SMT in general multicast network graphs.
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Chapter 1

Introduction

Problems of secure communication and computation in different network models have

been studied extensively over the last decades. In a network, it is obvious that secure

communication between two parties is guaranteed if they are connected by a private and

authenticated channel. However, in most cases, many parties are only indirectly con-

nected. That is, most parties need to use intermediate parties in order to communicate

with each other. This kind of network can be seen as an incomplete graph, in which the

nodes are the parties and the edges are authenticated communication channels. Since

some of the intermediate parties may be corrupted by a malicious force, the channels

between two indirectly connected parties are distrusted. In this thesis, we study secure

message transmission (SMT) in such networks. More specifically, we study SMT in the

so-called general adversary model, in which the corrupted parties are characterized by

an adversary structure.

In this chapter, we introduce the problems that we are going to deal with, and

briefly describe our contributions. In the following Section 1.1, we show the basics of

the problem of SMT and reveal the motivation of our research. Since we are partic-

ularly interested in the general adversary model, we define and discuss this model in

Section 1.2. In Section 1.3, we briefly undergo a survey on the previous studies, and

discuss the problems this work will solve. The contributions of this thesis are presented

in Section 1.4, which is followed by an overview of the organization of this thesis in

Section 1.5.

1.1 Secure Message Transmission

The problem of secure message transmission (SMT) uses the following setting: a party,

namely a sender S, wants to send to another party, namely a receiver R, one or more

messages. The distrust of the network is modelled by an entity called adversary, who

is active and adaptive, and can control some parties in the network with unbounded

computational power. The goal of SMT is to allow the messages to be transmitted

9



Chapter 1. Introduction 10

with privacy and reliability ; i.e., to guarantee some level of secrecy and integrity of

the messages when the receiver R receives them, despite the presence of an adversary.

This setting uses the information-theoretic security approach (Shannon security), which

means that the cryptographic methods based on computational hardness cannot be

applied because of the unbounded computational power that the adversary possesses.

In addition, it is assumed that no secret key is shared between the sender S and the

receiver R before the transmission.

To make SMT possible, the corrupting ability of the adversary must be limited.

There are two approaches to characterize an adversary: the threshold model and the

general adversary model. The threshold model assumes that any parties can be taken

over by the adversary, but the number of the corrupted parties is bounded by a threshold

t; i.e., the adversary can control up to t parties. On the other hand, in the general ad-

versary model [ISN87, HM00], the adversary is characterized by an adversary structure,

which is a set of subsets of the parties in the network; i.e., the adversary can control

a subset of parties in the adversary structure. It is worth noting that an adversary

structure is relatively more general than a threshold in the context, as we shall discuss

in the following Section 1.2.

The SMT setting can find many applications in practice and in theory. Concern-

ing information security, SMT solutions can be practically applied on telephone net-

works, TV and radio networks, wireless communication, the Internet, etc. For example,

Desmedt [Des05] (see also [Des06]) motivated the use of SMT on the Internet by showing

that potential attacks against routers can compromise the integrity of the Internet. In-

deed, current Internet protocols, including IPsec, do not have the resilience to deal with

the corrupted routers, which may completely disrupt the communication in a malicious

manner. Therefore, in order to achieve reliable communication on the Internet against

attacks on routers, the SMT setting can be applied in such a manner that the parties

are used to model the routers. Thus resilient Internet connectivity can be achieved.

Theoretically, not only is SMT important in its own right, but it is also an essential

primitive for achieving secure distributed computation. For example, most studies of

secure multiparty computation (MPC) assume that there is a secure communication

channel between each pair of players (parties) (see, e.g., [BOGW88, CCD88, GRR98,

FHM99, CDM00]). It is clear that for MPC in network models, SMT is essential for

achieving secure communication between the players. Another motivation of studying

SMT is to achieve information-theoretic security. The security of all existing crypto-

graphic techniques (e.g., AES), including public key cryptosystems (e.g., RSA), is based

on unproven hardness assumptions. These assumptions can be weakened by factors

such as the increase in computing speed and the advent of new computing paradigms

(e.g., Quantum computing [Sho97]). Thus achieving information-theoretic security is

important because it cannot be affected by the factors mentioned above.

For different applications, different levels of security are required. As in [FW98], two
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SMT

RMT APSMT PSMT

Figure 1.1: Problem set of SMT.

different measures of SMT are considered: perfect security (PSMT; i.e., zero probability

that the transmission fails to be secure) and almost perfect security (APSMT; i.e., an

arbitrarily small probability that the transmission fails to be secure). It is important

to note that security in this context is measured by both privacy and reliability. Thus

PSMT requires both perfect privacy (i.e., the adversary learns absolutely no information

about the messages) and perfect reliability (i.e., the receiver R outputs the messages

with complete correctness). On the other hand, APSMT allows non-perfection on either

privacy or reliability, or both.

In most cases, reliability is important in its own right. For example, when a message

is opened to all the parties, no privacy is required, but reliable message transmission

(RMT) must be enabled from the sender to each receiver. In all SMT scenarios, RMT is

essential, though privacy may not always be needed. Thus we study RMT as a specific

part of SMT. Therefore, the problem set of SMT can be shown in Figure 1.1.1

The advantage of SMT is that it achieves information-theoretic security, which is the

strongest notion of security. However, due to the lack of cryptographic methods being

used, achieving SMT usually requires relatively strong network connectivity and high

communication cost. The communication cost of an SMT protocol is normally calculated

in communication complexity (CC) [Yao79], which is the number of bits transmitted over

the network through the communication. However, round complexity (RC) [DDWY93]

is constantly taken into consideration as well. Round complexity is measured by the

number of rounds taken by an SMT protocol, where a round is a communication from

S to R or vice versa. In different network settings and adversary models, for different

security and communication requirements, the study of SMT normally aims for two

different kinds of contributions:

1. To determine network connectivity; i.e., to find the necessary and sufficient condi-

tions that the network must satisfy in order to allow for the existence of an SMT

protocol.

2. To minimize communication cost; i.e., to design efficient SMT protocols with

toward-optimal communication cost in terms of CC and RC.2

1Note that the difference between RMT and APSMT is that RMT guarantees no privacy whatsoever,
while APSMT requires perfect or almost perfect privacy. We extend this problem set in our security
model in Section 2.4.

2Normally, a protocol is called efficient if its CC is polynomial in the number of communication
channels in a network. Most studies tend to design efficient protocols that are executed in a constant
number of rounds (i.e., constant RC).
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In this thesis, we make both kinds of contributions as mentioned above, mainly in

the general adversary model. The motivation of studying this model is presented in the

following section.

1.2 The General Adversary Model

In the general adversary model, the adversary is characterized by an adversary structure.

The concept of adversary structures is based on the concept of access structures [ISN87],

and was first proposed by Hirt and Maurer [HM00] in the context of secure multiparty

computation. An adversary structure can be defined as follows:

Definition 1.2.1. (see [HM00]) Given a party set D, an adversary structure A on D

is a family of subsets A ⊆ 2D such that for any A ∈ 2D, if A ∈ A and A′ ⊆ A, then

A′ ∈ A.

Obviously, an adversary structure A is by definition monotone, thus we define the

basis of A as a set Â ⊆ A such that if and only if a set A ∈ Â, then ∀A′ ) A : A′ /∈ A.

In general, the number of members in A or Â is exponential in the number of members

in D.

As an example, let D = {1, 2, 3} be a party set and

A = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}}

be an adversary structure, the adversary can choose to control any one set from A; e.g.,

if it chooses {1, 2} to control, then it is unable to control party 3. Note that if {2, 3}
was in A, then the adversary would be 2-bounded—just as in the threshold model. This

is because the adversary could choose to control any 2 parties. Thus it is clear that a

threshold t is a special adversary structure, which consists of all subsets that contain at

most t parties. Since an adversary structure has a non-threshold meaning in most cases,

it is more general than a threshold.

Burmester and Desmedt [BD04] motivated this model by introducing the common

platform attacks. The idea is that a hacker who can exploit a weakness in one platform,

can with almost the same ease attack many computers on the same platform. One

obvious example is the computer viruses, such as the Internet virus and worms that

only spread on Windows, or sometimes Unix. To model such an attack, the general

adversary model is clearly more appropriate than the threshold model.

On the other hand, due to the generality of the general adversary model, the research

in this model can be applied directly in the threshold model. That is, even in the study of

the threshold model, the work can be done in such a manner that an adversary structure

is studied, and the results can be straightforwardly used to find the respective results in

the threshold model. Therefore, the study of the general adversary model is obviously
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important, and it has received a considerable amount of attention in the research of

secure multiparty computation (see, e.g., [HM00, BW98, FHM99, CDM00, DDFN07]).

In the following section, we briefly review the previous work in the field of SMT

research regarding both the threshold and general adversary models. We shall provide a

more detailed survey on the related previous results later in Section 2.9 after we give all

the definitions and models. Therefore, Section 1.3 could be seen as a problem statement,

and Section 2.9 is a more detailed summary of the previous results.

1.3 Previous Work (in Brief)

Given a sender S and a receiver R, SMT between S and R has been studied with different

kinds of network, adversary and security models. The contributions of the previous work

included the determination of minimal network connectivities and the construction of

efficient protocols with minimized communication cost.

Most studies of SMT considered the threshold model. The initial study of PSMT

was carried out by Dolev et al. in [DDWY93] (see also [Dol82]). Their work assumed a

threshold adversary in an undirected synchronous network, and showed the fundamental

condition for PSMT in such a network. In the study by Desmedt and Wang [DW02]

(see also [WD08]), directed networks were considered. Their setting allows asymmetric

communications between S and R by introducing the concept of feedback channels (i.e.,

channels from R to S). Their work showed the necessary and sufficient condition for

PSMT in this network setting.

The concept of APSMT was introduced by Franklin and Wright in [FW98] (see

also [FW00]). They showed that Dolev et al.’s fundamental condition for PSMT in

undirected networks is also necessary and sufficient for APSMT. However, a later study

by Desmedt and Wang [DW02] showed that in directed networks with feedback channels,

the network connectivity required for APSMT is weaker than that for PSMT. This

problem was further studied by Srinathan and Rangan in [SR06], whose results were later

extended by Shankar et al. in [SGSR08]. In all these studies of APSMT, the requirement

for reliability was weakened. That is, these results considered perfect privacy and almost

perfect reliability. However, there is another kind of APSMT, where the requirement for

privacy is lower, but perfect reliability must be guaranteed. This kind of almost perfect

private message transmission has not been considered in previous studies.

The work to minimize the communication cost of PSMT protocols has been done in a

sequence of studies. In the initial study by Dolev et al. [DDWY93], a 2-round PSMT pro-

tocol was provided with communication complexity (CC) exponential in the number of

communication channels (i.e., n), which is inefficient. Later in [SAA96], Sayeed and Abu-

Amara improved the result by showing a 2-round PSMT protocol with CC polynomial

in n. More recently, Srinathan et al. [SNR04] gave the lower bound on CC for 2-round

PSMT protocols: Ω(n`), where ` is the number of bits of the transmitted message. Any
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protocol that achieves such a CC is thus called optimal. However, their proposed optimal

2-round PSMT protocol is flawed, as pointed out by Agarwal et al. [ACdH06], who pre-

sented their own 2-round PSMT protocol, which is optimal, but at the price of requiring

` to be exponential in n. Later studies by Patra et al. [PCSR06] and Fitzi et al. [FFGS07]

both gave optimal PSMT protocols that transmit messages of length polynomial in n.

However, the result of [PCSR06] requires an additional round, and the result of [FFGS07]

requires additional channels. The problem of designing an optimal 2-round PSMT pro-

tocol was finally solved by Kurosawa and Suzuki in [KS08, KS09c]. Their results were

obtained based on a new idea of pseudo-basis and pseudo-dimension (see Appendix A.6).

All the above studies considered undirected networks. Using the similar technique as

that in [KS08], Patra et al. proposed in [PCR10] the optimal 3-round PSMT protocols

in directed networks.

Most studies on SMT used the point-to-point communication channels; i.e., there is

only one party at each end of a point-to-point channel. In [FY95], Franklin and Yung

initialized the study of SMT via multicast (partial broadcast) channels. A multicast

channel enables messages to be sent from a party to a fixed subset of parties on this

channel. Several different partial broadcast network settings have been introduced by

Franklin and Yung [FY95], but they only studied perfect privacy against a passive adver-

sary (i.e., an eavesdropper without the capability to corrupt the transmission). A very

different full information model was considered by Goldreich et al. in [GGL98]. Later

Franklin and Wright [FW98] (see also [FW00]) studied SMT on a specific neighbour

network setting, in which each party must communicate simultaneously to all its neigh-

bours in the underlying network. Some further studies on this multicast model have

been carried out by Wang and Desmedt in [WD99] and Desmedt and Wang in [DW02].

We note that the previous results demonstrated in such multicast neighbour networks

are under a strong assumption; i.e., all communication channels between S and R are

neighbour-disjoint.3 Indeed Franklin and Wright in [FW98] raised the following open

problem:

“. . . if these n disjoint paths do not have disjoint neighbourhood, then an

adversary may be able to foil our protocols with t < n faults by using one

fault to eavesdrop on two disjoint lines. An obvious direction of further

research is to characterize secure communication fully in this more general

setting.”

Therefore, the minimal network connectivity for SMT in a general multicast network

remains unknown for any level of security.

All the above studies considered the threshold model. In addition, SMT in the

general adversary model has also been studied. The research was initiated by Ku-

mar et al. [KGSR02], who showed the necessary and sufficient condition for PSMT

3Neighbour-disjoint means that any two communication channels between S and R do not have a
common neighbour.
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in undirected point-to-point networks. Desmedt et al. [DWB05] showed the minimal

network connectivity required for 1-round PSMT protocols, and Patra et al. [PSC+07]

presented the necessary and sufficient condition for PSMT in directed networks with

feedback channels.

Although all conditions for PSMT have been determined, the research of SMT in

the general adversary model is still in the beginning phase, with the following problems

remain unsolved:

• What are the necessary and sufficient conditions for RMT and APSMT in point-

to-point networks?

• How is it possible to reduce the communication cost of the previous PSMT proto-

cols, which are relatively inefficient in terms of CC and RC?

• What are the necessary and sufficient conditions for SMT (including different levels

of RMT, APSMT and PSMT) in general multicast networks?

Our research is devoted to answer these questions. In the following section, we

highlight the contributions of this thesis.

1.4 Contributions of the Thesis

The main contributions of this thesis are presented in two aspects: (1) SMT in point-

to-point networks and (2) SMT in multicast networks. However, many of our results on

SMT are based on our new findings on secret sharing schemes (SSSs), linear codes and

critical paths. Thus we discuss these basic ideas and observations before we show the

main results.

1.4.1 Ideas and Observations

The first contribution of this thesis relies on some basic ideas and observations on secret

sharing, error-correcting, linear codes and critical paths, which are the foundations of

our study of SMT. These ideas and observations are presented in three aspects, which

we describe as follows.

First, we examine the error-correcting capability of an almost perfect secret sharing

scheme. Secret sharing schemes (SSSs) are an essential tool in the study of SMT. To

study almost perfect security, we analyse the properties of a newly defined almost perfect

SSS. Using exhaustive search, we show that an almost perfect SSS can detect and correct

the same number of errors as a perfect SSS can. This result will later be used to prove

the necessary and sufficient conditions for almost perfect privacy.

Next, we construct a generalized linear code, which is derived from a linear secret

sharing scheme (LSSS) considering an adversary structure. Previous studies showed that

a generalized LSSS can be constructed using a monotone span program [KW93, CDM00].
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In this thesis we convert the LSSS into a linear code with error-correcting capabil-

ity. Using the linear code, we extend the idea of pseudo-basis and pseudo-dimension

(see [KS08]) in the general adversary model.

Finally, we show our observation on the critical paths between S and R. With the

help of some examples, we show that if messages are transmitted via the paths between

the sender S and the receiver R, then the number of elements transmitted is independent

to the size of the network. Moreover, we claim that the communication complexity (CC)

of most SMT protocols is determined by the number of critical paths, instead of the size

of the network. Thus we define the critical-path structure, which is converted from the

adversary structure. This observation should provide a clear view on the problem of

SMT in the general adversary model.

With these ideas and observations, we are ready to solve the problems of SMT in

point-to-point and multicast networks.

1.4.2 SMT in Point-to-Point Networks

We study SMT in point-to-point networks and make three aspects of contributions.

First, we cryptanalyse some existing PSMT protocols in directed point-to-point net-

works. In a directed network with feedback channels from R to S, the feedbacks are nor-

mally used by the receiver R for reliability purposes when faulty messages are received.

We design a Guessing Attack, which can be performed by the adversary on the feedback

channels to breach perfect privacy of some existing protocols in [DW02, PSC+07]. This

kind of attack should always be considered when designing SMT protocols in such a

network setting.

Next, we determine minimal network connectivities for different levels of RMT and

APSMT in the point-to-point model. First, by generalizing the idea of [DW02], we

show the necessary and sufficient conditions for achieving almost perfect reliability in

different network settings. Next, using the previously mentioned result regarding the

error-correcting capability of an almost perfect SSS, we prove that in order to achieve

almost perfect privacy, the same connectivity is required as that for perfect privacy. In

other words, reducing the requirement for privacy does not weaken the minimal connec-

tivity. This is sometimes different to some cases when the requirement for reliability is

relaxed. These results complete the research of determining minimal connectivities in

the point-to-point model, and hence answer the first question raised at the end of Sec-

tion 1.3. A summary of the minimal network connectivities for SMT in point-to-point

networks is shown in Table 6.1 in the concluding Chapter 6 of this thesis.

Our final contribution in the point-to-point model is on PSMT protocols. Using

the linear code we discussed earlier, we can design efficient PSMT protocols in constant

rounds. Our results significantly improve the previous protocols in terms of communica-

tion complexity (CC) and round complexity (RC) (see Table 4.1 in Section 4.3). Indeed,

our protocols are the first ever efficient, constant-round PSMT protocols proposed in the
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general adversary model. Furthermore, we are also the first to study PSMT of multiple

messages in this context. These results answer the second question raised at the end of

Section 1.3.

1.4.3 SMT in Multicast Networks

As we discussed in Section 1.3, the previous results regarding SMT in multicast neigh-

bour networks require node-disjoint and neighbour-disjoint paths. This requirement is

not necessary in the general multicast network graph setting. To that extent the neces-

sary and sufficient conditions for SMT in general multicast networks remain unknown.

We completely solve this problem, which has been open for over a decade. Our solution

is based on two basic ideas: (1) a general graph setting can be applied naturally in the

general adversary model; (2) a threshold corresponds to a special adversary structure

(see Section 1.2). Thus we study SMT in multicast neighbour networks in the general

adversary model, and then apply the results to the threshold model.

First, we realize that the current adversary structure model is not enough to char-

acterize general multicast networks, so we give an Extended Characterization of the

network graphs. This characterization is based on our observation on the eavesdropping

and separating activities of the adversary on the multicast channels. This observation

allows us to gain a clearer insight on the multicast communication.

Next, using the Extended Characterization, we give the necessary and sufficient

conditions for different levels of SMT (including RMT, APSMT and PSMT) in the

general adversary model. Besides proving that our conditions imply the lower bounds

on the network connectivity, we also provide communication protocols to show that the

bounds are tight.

Finally, we use the results in the general adversary model to find the necessary

and sufficient conditions for SMT in the threshold model. Additionally, by analysing

some previous results (e.g., in [WD99, DW02]), we show how our results explain all the

examples and prove all the conjectures in previous work.

The necessary and sufficient conditions for SMT in multicast neighbour networks are

the final contributions of this thesis. These results answer the third question raised at

the end of Section 1.3. A summary of the minimal network connectivities for SMT in

multicast networks is shown in Table 6.1 in Section 6.1.

1.5 Organization of the Thesis

The organization of this thesis strictly follows our description of the contributions in the

previous section. That is, we first show “Ideas and Observations”, then “SMT in Point-

to-Point Networks”, and finally “SMT in Multicast Networks”. We present the “Model

and Background” before showing the results, and summarize our results in “Conclusion

and Future Work” at the end of this thesis.
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First, in Chapter 2, we give the definitions and notations for our network, adversary

and security models, discuss the basics of communication cost, secret sharing schemes,

error-correcting codes and authentication codes, and finally summarize the related pre-

vious results in more detail. These are the background to our research.

In Chapter 3, we present our ideas and observations. We study the error-correcting

capability of a threshold almost perfect SSS (see Section 3.1), which will later be used to

determine the minimal connectivities for almost private communication. We also convert

the generalized linear secret sharing scheme (LSSS) to a linear code with error-correcting

capability, and then generalize the idea of pseudo-basis and pseudo-dimension by using

the linear code (see Section 3.2). This result will later be used to design efficient PSMT

protocols. Finally, we define adversary structures over critical paths, and observe their

properties (see Section 3.3).

In Chapter 4, we study SMT in point-to-point networks. We design a Guessing

Attack on the feedback channels to breach perfect privacy of some previous protocols

(see Section 4.1). Then we determine the minimal connectivity requirements for all

levels of RMT and APSMT in both undirected and directed network graph settings

(see Section 4.2). Finally, we propose a number of efficient protocols using the above

mentioned linear code, and show how these protocols improve the previous results in the

general adversary model. Indeed, our protocols make some significant improvements to

the previous results in terms of communication complexity (CC) and round complexity

(RC) (see Section 4.3, Section 4.4 and Section 4.5).

In Chapter 5, we study SMT in multicast neighbour networks. First we show our

observation on the eavesdropping and separating activities on a single multicast channel,

and use our observation to further characterize the multicast graph for our communi-

cation model (see Section 5.1). We then study different levels of reliability (RMT) and

security (SMT) in the general adversary model (see Section 5.2 and Section 5.3), and

finally apply these results in the threshold model to completely solve the problem of

SMT in general multicast graphs (see Section 5.4).

Finally, in Chapter 6, we summarize the results of this thesis (see Section 6.1) and

raise open problems for future work (see Section 6.2).



Chapter 2

Model and Background

In this chapter we describe the network, adversary and security models, and give defi-

nitions and notations to be used in the rest of this thesis. We also present some related

results and techniques from previous studies in detail, which are used as the background

to our study.

2.1 Basics

We denote F as a finite field which is assumed to be sufficiently large, and use ρ to

denote the length of the field elements. We denote M ⊆ F as a message space from

which the messages are drawn. Thus each message is a field element of length ρ. Let

A be a set, we write a ∈R A to indicate that a is chosen from A with respect to the

uniform distribution. Let a ∈ R, we write bac ∈ Z to denote the integer part of a, and

dae ∈ Z to denote the smallest integer that is greater than or equal to a.

2.2 Network Model

We model two different kinds of networks: the point-to-point networks and the multicast

networks. A point-to-point network consists of a number of point-to-point channels each

of which enables a party to send an element to another party through the channel, while

a multicast network consists of a number of multicast (or “partial broadcast”) channels

each of which enables a party to send an element to a fixed subsets of parties through

the channel [FY95]. Besides describing these two network settings in Section 2.2.1 and

Section 2.2.2 respectively, we also define different kinds of network connectivities in both

the threshold and general adversary models in Section 2.2.3.

2.2.1 Point-to-Point Networks

We abstract away the concrete network structure and model a point-to-point network

by a graph G(V,E), whose nodes are the parties in the network and edges are private

19
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and authenticated point-to-point channels. Let S,R ∈ V , where S is the sender and R

is the receiver.

For different types of communication channels, we use different network graphs:

Undirected graphs. In an undirected graph, all edges in E are undirected, so the

communication on the edges can go in both directions. Therefore, the undirected

paths allow two-way communication between S and R (see, e.g., [DDWY93]).

Directed graphs. In a directed graph, all edges in E have directions, that is, they are

either one-way directed or bi-directed. Therefore, the directed paths between S

and R can be distinguished as either forward paths (i.e., from S to R) or feedback

paths (i.e., from R to S) or, otherwise, heterogeneous paths (see, e.g., [DW02,

SR06]). Note that a path can be both forward and feedback if all edges composing

it are bi-directed.

2.2.2 Multicast Networks

In the initial work [FY95], a multicast network is modelled by a hypergraph H(V,EH),

where the nodes in V are the parties in the network and EH is the set of all hyperedges

(v, V ∗) where v ∈ V and V ∗ ⊆ V \ {v}. Thus, a hyperedge (v, V ∗) is a multicast

channel on which an element multicast by node v will be received—simultaneously and

privately—by all nodes in V ∗.

As in [FY95], given two nodes v1, v2 ∈ V , we say that there is a directed link from v1

to v2 if there exists a hyperedge (v1, V
∗
1 ) such that v2 ∈ V ∗1 , and we say that there is an

undirected link between v1 and v2 if there is a directed link from v1 to v2 and a directed

link from v2 to v1. Let S,R ∈ V , S = v0 and R = vk+1, we say that v0, v1, . . . , vk, vk+1

form a directed (undirected) path from (between) S to (and) R if there is a directed

(undirected) link from (between) vi to (and) vi+1 for each 0 ≤ i ≤ k.

Neighbour networks, also defined in [FY95], are special multicast networks. The

underlying graph of a neighbour network is an undirected graph G(V,E), in which an

element multicast by a node v ∈ V will be received—simultaneously and privately—by

all its neighbours, where a neighbour of v is a node v′ ∈ V such that (v, v′) ∈ E.

It is easy to observe that a neighbour network graph can be used to model a spe-

cial hypergraph in which all links are undirected, and vice versa. Therefore, given a

neighbour network graph G(V,E), we use HG(V,EHG) as the hypergraph that graph G

models. In this thesis, we mainly study RMT and SMT in the neighbour network graph

G(V,E), but we will use the results generalized from HG(V,EHG).

2.2.3 Network Connectivity

In this thesis, we use a graph G(V,E) to model a point-to-point network or a multicast

communication neighbour network, and use H(V,EH) to denote a multicast communi-
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cation hypergraph. Next, we define different kinds of network connectivities in different

adversary models.

In the threshold (t-bounded adversary) model, we define the following network con-

nectivities.

Definition 2.2.1. Given a multicast graph G(V,E) where S,R ∈ V , we say that S and

R are t-connected if there are n > t node-disjoint paths between S and R in G.

Definition 2.2.2. (following [DW02]) Given a multicast graph G(V,E) where S,R ∈ V ,

we say that S and R are tneighbour-connected if, after removing t nodes (excluding S and

R) and their neighbours from G, there remains a path between S and R.

Definition 2.2.3. (following [WD99]) Given a multicast graph G(V,E) where S,R ∈ V ,

we say that S and R are weakly (n, t)-connected if there are n node-disjoint paths

p1, . . . , pn between S and R, and after removing t nodes (excluding S and R) and their

neighbours from G, there remains a path pi between S and R where 1 ≤ i ≤ n.

Definition 2.2.4. (following [FY95]) Given a hypergraph H(V,EH) where S,R ∈ V , we

say that S and R are strongly (weakly) thyper-connected if for any set A ⊆ V \ {S,R}
such that |A| ≤ t, after removing all nodes in A and all hyperedges (v, V ∗) such that

A∩({v}∪V ∗) 6= ∅, there remains a directed (undirected) path from (between) S to (and)

R.

In the general adversary model (see Section 1.2), we define network connectivity as

follows.

Definition 2.2.5. Given a graph G(V,E) where S,R ∈ V , let A ⊆ V \ {S,R} be a set

of nodes, if there is path p between S and R such that p passes through some nodes in

A, then we say that A cuts p.

Definition 2.2.6. (following [DWB05]) Given a graph G(V,E) where S,R ∈ V , let A
be an adversary structure on V \ {S,R}, if there exists a set A ∈ A such that A cuts all

paths between S and R, then we say that S and R are A-separated. We say that S and

R are A-connected if they are not A-separated.

Definition 2.2.7. Let k ≥ 1 and A be an adversary structure on a party set D, we

define

kA = {A1 ∪ . . . ∪Ak|A1, . . . , Ak ∈ A}.

It is straightforward that kA is also an adversary structure on D. Let D = V \{S,R}
in a graph G(V,E), then when we say that S and R are kA-connected, we mean that

the union of any k sets in A cannot cut all the paths between S and R.

Regarding directed graphs, we give two special kinds of connectivities as follows.
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Definition 2.2.8. Given a directed graph G(V,E) where S,R ∈ V , let A be an adversary

structure on V \ {S,R}, we say that S and R are strongly 3A-directed-connected if

they are 2A-connected on the forward paths, and for any three sets A1, A2, A3 ∈ A, if

A1 ∪A2 ∪A3 cuts all the forward paths, then at most one of these three sets cuts all the

feedback paths.

Definition 2.2.9. Given a directed graph G(V,E) where S,R ∈ V , let A be an adversary

structure on V \{S,R}, we say that S and R are strongly 2A-directed-connected if they

are A-connected on the forward paths, and 2A-connected with the union of all the forward

and feedback paths in G.

These special kinds of connectivities will be used when studying SMT in directed

graphs.

2.3 Adversary Model

We consider an adversary who is characterized by an adversary structure, which is

defined in Definition 1.2.1.

An adversary can be either passive or active. Assume that an adversary chooses a

set of parties A ∈ A to control, where A is an adversary structure on V \ {S,R} in a

graph G(V,E). A passive adversary only observes the traffic of the nodes in A. On

the other hand, not only does an active adversary read the traffic through the nodes

it controls, but it also decides whether to deny or to modify the transferred data, or

whether to follow the protocol or not, on the nodes in A that it controls.

In this thesis we consider an adversary who can exhibit an active behaviour. Such

an adversary has unlimited resources, and knows the complete protocol specification,

message space and the complete structure of the graph.

In our work, an dynamic adversary, who can change the parties it controls from

round to round, is not considered. Instead we only consider static adversaries. That is,

before the protocol starts, the adversary chooses which set of parties A ∈ A to control,

and the choice will not be changed until the end of the protocol.

2.4 Security Model

In this section we use a similar security model to that of [FW98].1

Given a graph G(V,E) where S,R ∈ V , let Π be a message transmission protocol.

The sender S starts with a message mS ∈M drawn with respect to a certain probability

distribution. At the end of the protocol, the receiver R outputs a message mR ∈ M.

1We notice that some extended security models have been proposed in recent studies (e.g., in [KS09a,
DESN10]), but in this thesis we only employ Franklin and Wright’s model because it is a nice and simple
measure of different security levels. Our results can be easily generalized in the extended models.
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RMT

δ-RMT 0-RMT
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(ε, δ)-SMT (ε, 0)-SMT (0, δ)-SMT

PSMT

(0, 0)-SMT

Figure 2.1: Extended problem set of SMT.

During the execution of the protocol Π, each node that participates in communication

generates randomness’s and performs local computation.

For any execution of the protocol Π, let adv be the adversary’s view of the entire

protocol, i.e., the behaviour of the faulty nodes, the initial state of the adversary, and the

randomness’s of the adversary during the execution. We write adv(m, r) to denote the

adversary’s view when mS = m and when the randomness’s generated by the adversary

are r.

Privacy. The protocol Π is ε-private if, for any two messages m0,m1 ∈ M and any

randomness’s r,
∑

c |Pr[adv(m0, r) = c]−Pr[adv(m1, r) = c]| ≤ 2ε. The probabil-

ities are taken over the randomness’s of the honest parties, and the sum is over all

possible values of the adversary’s view.

Reliability. The protocol Π is δ-reliable if, with probability at least 1 − δ, R outputs

mR = mS at the end of the protocol. The probability is over the choice of mS and

the randomness’s of all parties.

Security. The protocol Π is (ε, δ)-secure if it is ε-private and δ-reliable.

Therefore, using this notation, PSMT is written as (0, 0)-SMT. In the context of al-

most perfect security, both ε and δ should be made negligible in the security parameters.

Note that in the rest of this thesis, ε and δ only appear when studying almost perfect

security or reliability (i.e., ε > 0 and δ > 0), except when explicitly specified. With this

security model, we extend the context of SMT as shown in Figure 2.1.

2.5 Communication Cost

The communication cost of an SMT protocol is calculated in communication complexity

(CC) and round complexity (RC). CC is the worst case number of bits transmitted

during the execution of the protocol. As we denoted in Section 2.1, field elements of

length ρ are transmitted in our protocols. Thus if, for example, in a protocol O(n) field

elements are communicated, then the CC of this protocol is O(nρ). RC is the number
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of rounds taken by a protocol, where a round is a communication from S to R or vice

versa.

In the previous studies of the threshold (t-bounded) model, Srinathan et al. showed

in [SNR04] that the lower bound on the communication overhead is Ω( n
n−2t) for 2-round

PSMT, and Fitzi et al. showed in [FFGS07] that the lower bound for 1-round PSMT is

Ω( n
n−3t), where n is the number of node-disjoint paths between S and R. If we consider

tight graphs, i.e., n = 2t+ 1 for 2-round PSMT and n = 3t+ 1 for 1-round PSMT, then

the optimal CC is O(n) for transmitting only one bit. This, however, is not possible in

most message transmission protocols, which only enable security for large field elements.

Thus if a message of size ` (bits) is transmitted, then the CC of an optimal protocol is

O(n`) (see, e.g., [SNR04, ACdH06, FFGS07]). As shown in Section 2.1, in our model, we

let each message be a field element of size ρ (bits). In the case that a larger message of

size `ρ (bits) is transmitted, we model the transmission as ` messages each of size ρ are

transmitted. Thus, throughout this thesis, we use ` to denote the number of messages

(field elements) to be transmitted in a protocol, and hence the CC of an optimal protocol

(in the threshold model) is O(n`ρ).2

In general, a protocol is called efficient if its CC is polynomial in the size of the

graph and its RC is constant. However, this notation has some limitations in the general

adversary model. This is discussed further in Section 3.3.

2.6 Secret Sharing

Secret sharing schemes (SSSs) are extremely important in the studies of SMT. Given a

set of n participants D = {1, . . . , n}, the idea of secret sharing is to divide a secret s

into n pieces, where each piece is called a share, and assign a share to each participant.

A perfect SSS enables any qualified subset (of D) of participants (i.e., any subset of

participants that is by some law qualified to access the secret s) to reconstruct the secret

s with the shares they hold, but does not reveal any information to any unqualified subset

of participants. To enable perfect secret sharing, the size of a share must be larger or

equal to the size of the secret [CSV93].

Note that if no unqualified subset becomes qualified by adopting a participant a,

then the share of a is unimportant for any reconstruction of the secret. Thus an SSS

does not need to assign a share to the unimportant participant a in the first place.

Without loss of generality, we assume that all participants considered are important,

and a share should be assigned to every one of them.

The qualified subsets are defined either by a threshold t or by an access structure

2There are some other measures of the communication cost of an SMT protocol. For example,
transmission rate (see, e.g., [KS08]) and transmission complexity (see, e.g., [YD10]) are both used in
the literature. These concepts are derived from the definition of the communication complexity (CC)
and used for different purposes. Our CC model can explain our results well, so no other concepts will
be employed in this thesis.
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Γ. Based on the definitions of qualified subsets, we consider two kinds of SSSs: the

threshold SSSs and the generalized SSSs. Next we discuss these two kinds of secret

sharing in Section 2.6.1 and Section 2.6.2 respectively.

2.6.1 Threshold Secret Sharing

Regarding threshold secret sharing, we consider both perfect and almost perfect SSSs. A

perfect SSS gives no advantage for the reconstruction of the secret to any set of less than

t+ 1 participants, while an almost perfect SSS allows some set of at most t participants

to reconstruct the secret with a small probability using the shares they hold.

Definition 2.6.1. Let κ < 1 and d ≥ 1, a (t + 1, n, κ)-SSS is a probabilistic function

TS : Fd → Fn such that for any secret s ∈ F and random vector r ∈ Fd−1, we have

TS(s, r) = (s1, . . . , sn). Let 1 ≤ k ≤ n and X be a variable induced by s, for any k

entries si1 , . . . , sik (1 ≤ i1 < . . . < ik ≤ n), a (t + 1, n, κ)-SSS has the following two

properties:

property-1 Pr[X = s|si1 , . . . , sik ] = 1 if k ≥ t+ 1. That is, s can be reconstructed from

any k ≥ t+ 1 entries of (s1, . . . , sn) with probability 1.

property-2 For any secret s′ ∈ F, Pr[X = s′|si1 , . . . , sik ] ≤ Pr[X = s′]+κ < 1 if k < t+1.

That is, s can be reconstructed from some k < t+1 entries with a probability

less than 1.

A perfect threshold SSS is thus a (t+1, n, 0)-SSS. A classic (t+1, n, 0)-SSS scheme has

been designed by Shamir in [Sha79]. Shamir’s SSS is based on polynomial interpolation.

A Shamir’s (t + 1, n, 0)-SSS is constructed by using a polynomial f(x) of degree at

most t such that f(x) = s + a1x + . . . + atx
t where a1, . . . , at ∈R F, and the n shares

are (s1, . . . , sn) = (f(1), . . . , f(n)). Independently, Blakley [Bla79] introduced another

threshold SSS. Blakley’s scheme is geometric in nature, as it divides the secret to n

shares and each share defines an affine hyperplane. The secret can be reconstructed by

finding the intersection of any t+1 hyperplanes. It is easy to observe that Blakley’s SSS

does not achieve perfect secrecy, because any t participants can get a line by intersecting

their t hyperplanes, and they know that the secret is on this line, which may be a smaller

space than F. Therefore, Blakley’s SSS is a (t+ 1, n, κ)-SSS with almost perfect secrecy.

Shamir’s SSS is more efficient than Blakley’s, and more popular in application.

In Shamir’s SSS, the size of the share is normally equal to the size of the secret.

2.6.2 Generalized Secret Sharing

In [ISN87], Ito et al. introduced the concept of the general access structures.

Definition 2.6.2. (following [ISN87, HM00]) Given a participant set D, a monotone

access structure Γ is a family of subsets Γ ⊆ 2D such that for any A ∈ 2D, if A ∈ Γ and

A ⊆ A′, then A′ ∈ Γ.
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Thus every set in Γ is qualified to access the secret. Without loss of generality, we

assume that Γ 6= ∅.
In the generalized model, we consider only perfect SSSs. That is, given a set of

participants A ∈ 2D and a secret s ∈ F, a generalized SSS allows the participants in A

to reconstruct the secret s with probability 1 if A ∈ Γ. However, if A /∈ Γ, then the

probability that the participants in A learn s is equal to the probability that they guess

s with no knowledge of any share.3

Suppose that the parties in a network are the participants in D of an SSS, then an

adversary structure can be seen as the complement of an access structure; i.e., A = 2D\Γ.

Therefore, the secrecy of an SSS means the privacy of an SMT protocol, if a message is

shared among the parties.

The basic idea of the generalized SSS designed by Ito et al. [ISN87] is, for each set

A ∈ Γ, to share the secret with Shamir’s SSS among the participants inA. Since there are

up to O(2n) sets in Γ, the size of the shares is exponentially large. Another generalized

SSS was proposed by Benaloh and Leichter in [BL88]. Their scheme employs some

carefully designed monotone functions that correspond to the properties of monotone

access structures. Their scheme is slightly more efficient, but still requires the size of

shares to be exponential in n. Many recent studies used linear secret sharing schemes

(LSSSs) by applying monotone span programs (MSP) to share secrets among access

structures (see, e.g., [Bei96]). This is studied in more detail in Section 3.2.

In general, the size of the largest share generated by a generalized SSS is larger

than the size of the secret. There are a number of studies attempting to determine

the size of the shares in the context of “information rate”.4 For example, in [Csi97],

Csimaz constructed a special access structure such that if the size of the secret is ρ,

then the lower bound on the size of the largest share is Ω( nρ
logn). This lower bound is

later corresponded by Blundo et al. [BSSV97], who showed a tight lower bound in their

model. The result in this area will not be discussed in this thesis, but we refer to some

studies in [Csi97, vD95, BSSV97]. However, to the best of our knowledge, there is no

generalized SSS for any access structure with the size of the shares polynomial in n.

2.7 Error-Correcting Codes

In [MS81], McEliece and Sarwate argued that Shamir’s SSS [Sha79] is very closely related

to Reed-Solomon coding schemes [RS60]. In fact, Shamir’s scheme corresponds to a

special case of Reed-Solomon codes. This argument realizes the possibility of applying

3Due to the trivialness of the concept, a formal definition to the generalized SSS is not provided here.
In Section 3.2.1, we give a formal definition of the generalized Linear SSS (LSSS) in Definition 3.2.2,
which is more precise in concept.

4The information rate of an SSS is the ratio between the size of the secret and the largest share given
to any participant. The studies of information rate often employ the connection between entropy and
matroid (see e.g., [BD91, KOS+93]). The findings on upper bound on the information rate result in the
lower bound on the size of the shares.
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error-correcting codes to SSSs.

We remark that a (t + 1, n, κ)-SSS is a function TS : Fd → Fn (d ≥ 1) such that

for any secret s ∈ F and random vector r ∈ Fd−1, we have TS(s, r) = (s1, . . . , sn). The

function can be seen as a coding function such that for each (s, r) ∈ Fd, TS(s, r) =

(s1, . . . , sn) is a codeword.

• We say that a (t+1, n, κ)-SSS can detect e errors if given any codeword (s1, . . . , sn)

and any vector (x1, . . . , xn) ∈ Fn such that 0 < |{i : xi 6= si, 1 ≤ i ≤ n}| ≤ e, one

can detect that (x1, . . . , xn) is not a codeword.

• We say that a (t+1, n, κ)-SSS can correct e errors if given any codeword (s1, . . . , sn)

and any vector (x1, . . . , xn) ∈ Fn such that 0 < |{i : xi 6= si, 1 ≤ i ≤ n}| ≤ e, one

can reconstruct the secret s from (x1, . . . , xn) with probability 1.

Reed-Solomon codes are maximum distance separable (MDS) codes, whose minimum

Hamming distance5 d = n − b − 1, where n is the length of the codewords and b is

the dimension of the code. An MDS code with minimum Hamming distance d can

detect d − 1 errors and correct bd−12 c errors [MS78]. As mentioned above, a Shamir’s

(t + 1, n, 0)-SSS corresponds to a Reed-Solomon MDS code, where the length of the

codewords is n and the dimension of the code is b = t+ 1. Thus the minimum distance

d = n− (t+ 1)− 1 = n− t. This implies that such a perfect (t+ 1, n, 0)-SSS can detect

n− t− 1 errors and correct bn−t−12 c errors.

Berlekamp-Welch algorithm is a simple polynomial time decoding algorithm for

Reed-Solomon codes. A nice description of this algorithm can be found in [HP06].

Later in Section 3.1, we examine the error-correcting capability of an almost perfect

(t+ 1, n, κ)-SSS.

2.8 Authentication Codes

Authentication codes are constantly used in the protocols that achieve δ-reliability (see,

e.g., [GMS74, RBO89, Rab94, FW98, WD99]).

Definition 2.8.1. Let key = (a0, a1, . . . , ak) ∈R Fk+1 be an authentication key of k + 1

field elements, and let m ∈ F, we define an authentication code

auth(m; key) = a0 + a1m+ . . .+ akm
k.

Next we show that such an authentication code can authenticate k messages without

giving away an advantage in forging the authentication key key.

5The Hamming distance between two codewords is the number of places where they differ.
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Theorem 2.8.1. (following [WD99]) Let key = (a0, a1, . . . , ak) ∈R Fk+1 be an authen-

tication key, and for 1 ≤ i ≤ k, let mi ∈ F and ci = auth(mi; key), then for any

a′0, a
′
1 . . . , a

′
k ∈ F,

Pr[a0 = a′0|view] = Pr[a1 = a′1|view] = . . . = Pr[ak = a′k|view] =
1

|F|
,

where view = (m1, c1, . . . ,mk, ck).

Proof. According to Definition 2.8.1, we have the following:


1 m1 · · · mk

1
...

...
. . .

...

1 mk · · · mk
k

×

a0

a1
...

ak

 =


c1
...

ck

 . (2.1)

Since the coefficient matrix of eq. 2.1 is a k × (k + 1) Vandermonde matrix, for each

0 ≤ i ≤ k, no value of ai can be ruled out. That is, given the values of view =

(m1, c1, . . . ,mk, ck), each ai is equally likely to be any field element in F. This concludes

the proof.

Due to Theorem 2.8.1, we have that a key ∈R Fk+1 can be used to authenticate k

elements without giving away an advantage in forging the key key.

2.9 Previous Results (in Detail)

In Section 1.3, we briefly surveyed the work in the area of SMT studies. Now after

presenting our network, adversary and security models and related definitions and no-

tations, we can discuss in more detail some previous results in this context.

2.9.1 On SMT in Point-to-Point Networks

First we present the previous results on SMT in point-to-point networks.

In the threshold model, the paths for communication between S and R must be node-

disjoint, so an adversary who can control up to t nodes is not able to control more than

t paths. In an undirected graph with n node-disjoint paths between S and R, 0-RMT or

(0, 0)-SMT is possible if and only if n ≥ 2t+1 [DDWY93]. This condition is also the lower

bound for δ-RMT and (0, δ)-SMT, as shown in [FW98]. On the other hand, in a directed

graph with n forward paths from S to R and u feedback paths from R to S, the necessary

and sufficient condition for (0, 0)-SMT is n ≥ max{3t+1−2u, 2t+1} [DW02]. Different

to the case in undirected graphs, the connectivity for both δ-RMT and (0, δ)-SMT in a

directed graph is weaker than that for (0, 0)-SMT. Indeed, only n ≥ max{2t+1−u, t+1}
node-disjoint paths are required for δ-RMT or (0, δ)-SMT in directed graphs [DW02].
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Undirected Graphs

SMT

RMT
δ-RMT

n ≥ 2t+ 1 [FW98]
N/A

0-RMT
n ≥ 2t+ 1 [DDWY93]

2A-connectivity [KGSR02]

APSMT

(ε, δ)-SMT
N/A
N/A

(ε, 0)-SMT
N/A
N/A

(0, δ)-SMT
n ≥ 2t+ 1 [FW98]

N/A

PSMT (0, 0)-SMT
n ≥ 2t+ 1 [DDWY93]

2A-connectivity [KGSR02]

Directed Graphs

SMT

RMT
δ-RMT

n ≥ max{2t+ 1− u, t+ 1} [DW02]
N/A

0-RMT
n ≥ 2t+ 1 [DDWY93]

2A-connectivity on forward paths [DWB05]

APSMT

(ε, δ)-SMT
N/A
N/A

(ε, 0)-SMT
N/A
N/A

(0, δ)-SMT
n ≥ max{2t+ 1− u, t+ 1} [DW02]

N/A

PSMT (0, 0)-SMT
n ≥ max{3t+ 1− 2u, 2t+ 1} [DW02]

strong 3A-directed-connectivity [PSC+07]

* For each security level (e.g., δ-RMT), the results are presented in two rows:
the upper row indicates the result in the threshold model and the lower row
indicates the result in the general adversary model.

Table 2.1: Network connectivities for SMT in point-to-point networks.

In the general adversary model, necessary and sufficient conditions for PSMT have

been obtained in previous studies. In an undirected graph, 0-RMT and (0, 0)-SMT is

possible if and only if S and R are 2A-connected [KGSR02]. In a directed graph, 0-RMT

is possible if and only if S and R are 2A-connected on the forward paths [DWB05], and

(0, 0)-SMT is possible if and only if S and R are strongly 3A-directed-connected (see

Definition 2.2.8) [PSC+07]. Unlike the results in the threshold model, the conditions for

SMT in the general adversary model do not require node-disjoint paths.6 The commu-

nication on a network graph is normally via the so-called critical paths (see our model

in Section 3.3). In [KGSR02], an algorithm for identifying critical paths from all paths

in a graph has been proposed. A sketch of the algorithm is shown in Appendix A.1.

In summary, the previous results regarding the point-to-point network connectivities

are shown in Table 2.1, with the N/A (not available) parts to be filled in by this thesis.

6In [PSC+07], the condition for (0, 0)-SMT requires node-disjoint paths. This requirement is clearly
unnecessary and incorrect.
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Privacy
None (1) Almost perfect (ε) Perfect (0)

Reliability
Almost perfect (δ) n > t n > t n > t

Perfect (0) n > 2t n > 2t n > 2t

Table 2.2: Network connectivities for SMT on multicast channels [FW98].

As we mentioned in Section 1.3, there are a series of studies which considered the

communication costs of the PSMT protocols in the threshold model; e.g., [SAA96,

SNR04, ACdH06, PCSR06, FFGS07, KS08]. The best known result has been obtained

in [KS08], in which a 2-round PSMT protocol is proposed, and the CC of the protocol is

O(n`ρ) while transmitting ` (` is polynomial in n) messages. To obtain this result, some

techniques given in [SNR04], including randomness extractor (see Appendix A.2) and

advanced reliable transmission (see Appendix A.3), have been used, and a new idea of

generating pseudo-basis and pseudo-dimension (see Appendix A.6) has been introduced

in [KS08]. Some of these techniques are employed and generalized in our study of PSMT

protocols in the general adversary model.

In the literature, no specific result has been found regarding the communication

costs of PSMT protocols in the general adversary model. In [KGSR02], the proposed

PSMT protocol, which is executed in a 2A-connected undirected graph, has an RC O(n)

and a CC O(hn2ρ), where h is the total size of the shares constructed by a generalized

SSS. In [DWB05], a 1-round PSMT protocol, requiring S and R to be 3A-connected,

has been given with a CC O(|A|nρ). In [PSC+07], a PSMT protocol with strong 3A-

directed-connectivity is proposed by combining a quasi-polynomial (in |A|) number of

sub-protocols and error-correcting codes (see Appendix A.5). Thus both the RC and

CC of their protocol are quasi-polynomial in the size of the adversary structure, which is

generally exponential in the size of the graph. The comparisons on RC and CC between

our results and the results mentioned above are presented in Section 4.3.1.

2.9.2 On SMT in Multicast Networks

Concerning multicast communication on neighbour networks, if the adversary is a pas-

sive eavesdropper, then as proven in [FY95], the weak thyper-connectivity (see Defini-

tion 2.2.4) is necessary for 0-private communication. In the presence of a Byzantine

(active) adversary, the results in the threshold model have been given in [FW98]. These

results, requiring n node-disjoint and neighbour-disjoint paths, can be summarized in

Table 2.2. In [FW98], Franklin and Wright showed an efficient (0, δ)-SMT protocol for

n > d3t2 e, and asked an open question on whether there exists an efficient (0, δ)-SMT

protocol for t < n ≤ d3t2 e. Wang and Desmedt answered this question in [WD99], by

showing an efficient (0, δ)-SMT protocol that employs the properties of the authentica-

tion codes (see Section 2.8).

Notably the most significant finding in the multicast neighbour network setting is
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Figure 2.2: Private and reliable connectivity.

that the connectivity required for δ-RMT, and hence (0, δ)-SMT, is unexpectedly weaker

than that required in point-to-point networks (i.e., n > t vs. n > 2t).

As discussed in Section 1.3, the results of [FW98] are obtained under a strong as-

sumption that the n paths between S and R are neighbour-disjoint. The necessary and

sufficient conditions for SMT in a more general multicast graph setting remain unknown.

In [WD99], Wang and Desmedt claimed that the weak (n, t)-connectivity (see Defini-

tion 2.2.3) is sufficient for (0, δ)-SMT in multicast graphs.7 In [DW02], Desmedt and

Wang extended this study. Using examples, they showed that the following implications

are strict (see related definitions in Section 2.2.3):

weak (n, t)-connectivity ⇒ tneighbour-connectivity

⇒ weak thyper-connectivity ⇒ t-connectivity.

In addition, they gave the following results regarding SMT in multicast graphs [DW02]:

• The weak (n, t)-connectivity is not necessary for (0, δ)-SMT in multicast graphs.

E.g., in Figure 2.2(a), S and R are not weakly (2, 1)-connected, but (0, δ)-SMT is

possible (see their protocol in [WD08]).

• As proven in [FY95], the weak thyper-connectivity is necessary for 0-private commu-

nication, and hence (0, δ)-SMT. However, the weak thyper-connectivity is not nec-

essary for δ-RMT. E.g., in Figure 2.2(b), S and R are not weakly 1hyper-connected,

but δ-RMT is possible.

• They conjectured that the weak thyper-connectivity is not sufficient for (0, δ)-SMT.

E.g., in Figure 2.2(c), S and R are weakly 1hyper-connected, but they conjectured

that there is no (0, δ)-SMT against a 1-bounded adversary.

Therefore, regarding SMT in the general multicast graph setting, there is no previous

result that gives the necessary and sufficient conditions for any level of security. Indeed,

if we draw a similar table as Table 2.1 for SMT in multicast graphs, then all the result

fields will be N/A. In this thesis we completely solve this problem, and our findings will

be shown in Chapter 5.

7Wang and Desmedt believed that the sufficiency of this condition is straightforward, so in their
papers [WD99, WD01], no proper proof was given. We see this claim as a conjecture, and this matter
will be discussed in more detail in Section 5.4.
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Ideas and Observations

Secret sharing schemes (SSSs) and error-correcting codes play critically important roles

in the study of secure message transmission (SMT). Indeed, not only can they help

design SMT protocols, but they can also be used to determine the minimal network

connectivity for a certain level of security. One of the goals of this thesis is to determine

the necessary condition for ε-private message transmission. We can achieve this goal by

examining the error-correcting capability of a (t+ 1, n, κ)-SSS (See Definition 2.6.1).

Another goal of this thesis is to reduce the communication costs of the previous (0, 0)-

SMT protocols. To design efficient protocols, we regard monotone access structures as

linear codes, whose properties can then be employed for efficient (0, 0)-SMT protocol

construction. Our result uses a generalization of Kurosawa and Suzuki’s idea of pseudo-

basis and pseudo-dimension presented in [KS08] (see Appendix A.6).

As discussed in the previous chapters, SMT in the general adversary model does not

require node-disjoint paths between S and R. Therefore, a basic idea of using critical

paths was introduced by Kumar et al. in [KGSR02] (see Appendix A.1). We show our

observation on the properties of the critical paths, and discuss how to determine the

communication complexity (CC) of SMT protocols using critical paths.

In this chapter we present the above ideas and observations in three respective sec-

tions. Some results in this chapter has been published in [YD09, YD10].

3.1 (t+ 1, n, κ)-SSS and Error-Correcting

In Section 2.7, we denoted the terms error-detecting and error-correcting for (t+1, n, κ)-

SSS, and showed that there exists a perfect (t+ 1, n, 0)-SSS can detect n− t− 1 errors

and correct bn−t−12 c errors. In the following, using exhaustive search, we show that an

almost perfect (t+ 1, n, κ)-SSS can do just the same.

Lemma 3.1.1. Let (s, r) ∈ Fd (d ≥ 1) and TS be a (t+1, n, κ)-SSS such that TS(s, r) =

(s1, . . . , sn). For any t + 1 entries si1 , . . . , sit+1 (1 ≤ i1 < . . . < it+1 ≤ n), given

TS(s′, r′) = (s′1, . . . , s
′
n) for any s′ 6= s and any r′ ∈ Fd−1, we have (s′i1 , . . . , s

′
it+1

) 6=

32
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(si1 , . . . , sit+1).

Proof. Due to property-1 of Definition 2.6.1, we have that Pr[X = s|si1 , . . . , sit+1 ] = 1

and Pr[X = s′|s′i1 , . . . , s
′
it+1

] = 1. Since s′ 6= s, we have Pr[X = s|s′i1 , . . . , s
′
it+1

] = 0.

This implies that (s′i1 , . . . , s
′
it+1

) 6= (si1 , . . . , sit+1).

Lemma 3.1.2. Let (s, r) ∈ Fd (d ≥ 1) and TS be a (t+1, n, κ)-SSS such that TS(s, r) =

(s1, . . . , sn). For any t entries si1 , . . . , sit (1 ≤ i1 < . . . < it ≤ n), there exists a

codeword TS(s′, r′) = (s′1, . . . , s
′
n) where s′ 6= s and r′ ∈ Fd−1 such that (s′i1 , . . . , s

′
it

) =

(si1 , . . . , sit).

Proof. Assume that such codeword TS(s′, r′) does not exist. That is, only s can be

reconstructed from these t entries si1 , . . . , sit ; i.e., Pr[X = s|si1 , . . . , sit ] = 1. This

violates property-2 of Definition 2.6.1, and hence we have a contradiction.

Theorem 3.1.1. A (t+ 1, n, κ)-SSS can detect n− t− 1 errors, but no more.

Proof. Let (s, r) ∈ Fd (d ≥ 1) and TS be a (t + 1, n, κ)-SSS such that TS(s, r) =

(s1, . . . , sn). As discussed in Section 2.7, we regard (s1, . . . , sn) as a codeword. First we

show that if there is a vector x = (x1, . . . , xn) such that |{i : xi 6= si, 1 ≤ i ≤ n}| = e

and 0 < e ≤ n − t − 1, then one can detect that x is not a codeword. Since n − e ≥
n−(n−t−1) = t+1, there are at least t+1 entries xi1 , . . . , xit+1 (1 ≤ i1 < . . . < it+1 ≤ n)

such that (xi1 , . . . , xit+1) = (si1 , . . . , sit+1). Due to Lemma 3.1.1, xi1 , . . . , xit+1 can only

be a part of the codeword TS(s, r) for some r ∈ Fd−1. Since the e errors are not a part

of this codeword, it is easy to detect that x is not a codeword.

Next we show that if e > n − t − 1, then the vector x can also be a codeword; i.e.,

x = TS(s′, r′) where s′ 6= s and r′ ∈ Fd−1. Since in this case n−e < n−(n−t−1) = t+1,

there are at most t entries xi1 , . . . , xit (1 ≤ i1 < . . . < it ≤ n) such that (xi1 , . . . , xit) =

(si1 , . . . , sit). Due to Lemma 3.1.2, there exists a secret s′ 6= s such that these n − e
entries are a part of the codeword TS(s′, r′), and it is possible that the e errors are

also a part of this codeword. Thus x can be a codeword, and hence one cannot detect

e > n− k − 1 errors.

Theorem 3.1.2. A (t+ 1, n, κ)-SSS can correct bn−t−12 c errors, but no more.

Proof. Let (s, r) ∈ Fd (d ≥ 1) and TS be a (t + 1, n, κ)-SSS such that TS(s, r) =

(s1, . . . , sn). As discussed in Section 2.7, we regard (s1, . . . , sn) as a codeword. First we

show that if there is a vector x = (x1, . . . , xn) such that |{i : xi 6= si, 1 ≤ i ≤ n}| = e

where 0 < e ≤ bn−t−12 c, then one can reconstruct the secret s from x. To correct e

errors, one selects n − e entries from x and puts them into a new (n − e)-vector y. In

this way, we can regard y as a codeword of a (t+ 1, n− e, κ)-SSS that shares s with at

most e errors. Due to Theorem 3.1.1, a (t+ 1, n− e, κ)-SSS can detect

n− e− t− 1 ≥ n− bn− t− 1

2
c − t− 1 ≥ bn− t− 1

2
c ≥ e
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errors. With at most e errors in y, one can detect if y is a codeword. If y is not

a codeword, then one uses exhaustive search until it finds a y that is a (error-free)

codeword, and then the secret s can be reconstructed from y.

Next we show that if e > bn−t−12 c, then one cannot correct e errors and reconstruct

s from x. We view x as it consists of three parts: (1) t error-free entries, (2) e errors

and (3) b = n− t− e other error-free entries. Let e = bn−t−12 c+ a (a ≥ 1), we have the

following:

b = n− t− e = n− t− (bn− t− 1

2
c+ a)

≤ 2× bn− t− 1

2
c+ 2a− (bn− t− 1

2
c+ a)

= bn− t− 1

2
c+ a

= e.

That is, b ≤ e. Due to Lemma 3.1.2, the t error-free entries are a part of the codeword

TS(s, r) as well as TS(s′, r′) for some s′ 6= s. It is possible that the e errors are also

a part of the codeword TS(s′, r′). Therefore, those t + b error-free entries are a part

of TS(s, r), and those t + e entries are a part of TS(s′, r′). Since b ≤ e, one cannot

distinguish whether the secret s is shared and the e entries are errors, or the secret s′

is shared and the b entries are errors. Thus one cannot reconstruct s with probability

1.

Therefore, we have shown that an almost perfect (t + 1, n, κ)-SSS can detect and

correct exactly same numbers of errors as a perfect (t+ 1, n, 0)-SSS can. This result can

be used to determine the minimal network connectivity for ε-private communication.

We discuss this further in Section 4.2.

3.2 Generalized Secret Sharing and Linear Codes

In this section, we first present the definition and construction of a generalized linear

secret sharing scheme (LSSS) using a monotone span program (see Section 3.2.1), and

then we propose a new generalized linear code (see Section 3.2.2) for the purpose of

error-correcting and also for the purpose of defining pseudo-basis and pseudo-dimension

(see Section 3.2.3). This follows the idea of Kurosawa and Suzuki in the threshold

model [KS08].

3.2.1 Constructing an LSSS

Given a set of n participants D = {1, . . . , n}, a generalized LSSS can be constructed to

share a secret s among the participants, in such a way that any set of participants in
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an access structure Γ (see Definition 2.6.2) can reconstruct the secret, but any other set

cannot.

First, it is well-known that monotone span programs are essentially equivalent to

LSSSs (see [KW93, CDM00]).

Definition 3.2.1. (following [KW93]) A monotone span program is a triple (F,M, ψ),

where F is a finite field, M is an h× d matrix (h ≥ d), and ψ : {1, . . . , h} → {1, . . . , n}
is a surjective function that assigns a number of rows in M to each participant in D.

For later use, we only allow each row of M to be assigned to a unique participant;

i.e., if ψ(i) = j, then ψ(i) 6= j′ for any j′ 6= j. This is easy to achieve by duplicating the

rows that are assigned to multiple participants. Thus h can indicate the total number

of shares distributed.

Similar to Shamir’s scheme, our construction assumes that F is sufficiently large.

Now with (F,M, ψ), one can share a secret s ∈ F using an LSSS.

Definition 3.2.2. Given a monotone span program (F,M, ψ), a secret s ∈ F and a

random vector r ∈ Fd−1, we regard LS : Fd → Fh as a function such that (T denotes

transpose)

LS(s, r) =
(
M × (s, r)T

)T
= (s1, . . . , sh),

where s1, . . . , sh are the h shares generated by the LSSS, and they are assigned to the n

participants by ψ. For any set A ∈ Γ, let the t shares si1 , . . . , sit (1 ≤ i1 < . . . < it ≤ h)

be all the shares assigned to the participants in A (i.e., ψ(i1, . . . , it) = A), and let X be

a random variable induced by s, the LSSS must satisfy the following conditions:

Secrecy: let s′ be any secret, Pr[X = s′|si1 , . . . , sit ] = Pr[X = s′] if ψ(i1, . . . , it) /∈ Γ;

Reconstruction: Pr[X = s|si1 , . . . , sit ] = 1 if ψ(i1, . . . , it) ∈ Γ.

Apparently, if ψ(i1, . . . , it) ∈ Γ, then in the linear span of the i1, . . . , it-th rows of

M , the target vector tar = (1, 0, . . . , 0) must exist [KW93]. This is required to satisfy

the reconstruction condition.

As discussed in Section 2.6.2, in the context of the information rate, the size of the

shares has been studied in literature (e.g., [Csi97, vD95, BSSV97]). However, to the best

of our knowledge, there is no result regarding the tight upper bound on the total size

of the shares, which is h in our LSSS. In fact, we do not know whether for any access

structure, there exists an LSSS with size h polynomial in n. However, we can have an

exponential size LSSS, which we call the Worst Case LSSS, as follows. This LSSS is

derived from the generalized SSS proposed in [Mau06].

Given a set of n participants D and a monotone access structure Γ on D, we let

A = 2D \ Γ. The worst case LSSS is defined by a monotone span program (F,Mh×d, ψ)

such that d = |A| and h = O(dn). h is thus exponential in n because in general

d = |A| = O(2n).
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Worst Case LSSS

Let ∆ = {D \ A|A ∈ A} and d = |∆| = |A|. Construct a d× d matrix MV ,

which is an identity matrix except all entries in the first row are 1.

Let ∆ = {B1, . . . , Bd}, then for each 1 ≤ i ≤ d, construct a |Bi| × d matrix

Mi such that each row of Mi is a duplication of the i-th row of MV . Let

h =
∑d

i=1 |Bi|, construct an h × d matrix M that is filled by M1, . . . ,Md

from top to bottom.

The function ψ assigns the rows in M to each participant in such a manner

that if a participant is in Bi ∈ ∆ (1 ≤ i ≤ d), then ψ assigns a row of Mi to

this participant. End.

Theorem 3.2.1. The Worst Case LSSS is a generalized linear secret sharing scheme.

Proof. We prove that the Worst Case LSSS satisfies the Secrecy and Reconstruction

conditions of Definition 3.2.2.

There are in total h shares distributed, but only d distinct shares. Let s1, . . . , sd

be the distinct shares of a secret s, then it is straightforward that s can only be recon-

structed with all the d shares, because all rows in the matrix MV are linearly indepen-

dent.

First, for each set A /∈ Γ, we have A ∈ A and there is a share si assigned to the set

Bi = D \ A. Thus the participants in A cannot learn si and hence cannot reconstruct

s. Thus the Secrecy condition is satisfied. Next, for contradiction, we assume that

there exists a set A′ ∈ Γ such that the participants in A′ cannot learn a share si. Let

A ∈ A and Bi = D \ A, then A′ does not contain any participant in Bi, which means

A′ ⊆ A ⇒ A′ ∈ A, and hence we have a contradiction. Thus any set in Γ can learn all

the d shares to reconstruct the secret s, which means that the Reconstruction condition

is satisfied.

3.2.2 Linear Codes

Now we have an LSSS defined by (F,Mh×d, ψ). We denote k as the rank of M , thus

k ≤ d. In the rest of the section, we let the first k rows of M be linearly independent.1

Thus ψ(1, . . . , k) ∈ Γ. Indeed, because otherwise ψ(1, . . . , k) ∈ A and the participants

in ψ(1, . . . , k) can then recover all the other shares using linear combinations, which

contradicts the Secrecy condition of Definition 3.2.2. Next we define a generalized linear

code.

Definition 3.2.3. A linear code C is defined by a k×h generating matrix G in standard

form G = (Ik|N) [MS78], where Ik denotes the k×k identity matrix and N is a k×(h−k)

matrix.
1For example, in our worst case LSSS, it is straightforward that k = d. One can easily adjust the

matrix M to make the first d rows be the rows of MV , and hence the first d rows are linearly independent.
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The codewords of code C are determined by an encoding function EC : Fk → Fh

such that given a k-vector r ∈ Fk,

EC(r) = r×G = c,

where c is an h-vector, as a codeword of C, and denoted c ∈ C.

Evidently, the linear code C has |F|k codewords, each of which is generated for a

k-vector r.

We link an LSSS with a linear code as follows. In the rest of this section, we let Mk

be a k × d matrix that consists of the first k rows of M , so the rank of Mk is k. We

construct the generating matrix G in such a manner that the i-th column of G, which

we call coli, has the following property:

(coli)
T ×Mk = rowi, (3.1)

where rowi is the i-th row of M . This is possible because the rank of M is k, thus each

rowi is in the linear span of the first k rows of M (Mk). Therefore, the set of shares

{LS(s, r)|s ∈ F, r ∈ Fd−1} consists of the codewords of a linear code, because for any

s ∈ F, r ∈ Fd−1, we have

LS(s, r) = (s1, . . . , sh) = EC(s1, . . . , sk) ∈ C.

Definition 3.2.4. Let k be a k-vector such that k×Mk = tar, where tar = (1, 0, . . . , 0) ∈
Fd is the target vector,2 and let r ∈ Fk. We define a decoding function DC : Fk → F
such that DC(r) = r × kT . We denote the output of the function, r = DC(r), as the

information of the codeword c = EC(r).

Lemma 3.2.1. Given any codeword c = (c1, . . . , ch) = EC(r) ∈ C, for any t entries

ci1 , . . . , cit (1 ≤ i1 < . . . < it ≤ h) which are all the entries assigned to a set of

participants, one can decode the information of c with these t entries if and only if

ψ(i1, . . . , it) ∈ Γ.

Proof. Let k be a k-vector such that the information of c is r = DC(r) = r×kT . From

Definition 3.2.4, we have k×Mk = tar where tar is the target vector. Remark that C

is defined by the generating matrix G, which is derived from the matrix M of the LSSS.

Let Λ be a k × t matrix such that for each 1 ≤ j ≤ t, the j-th column of Λ is the ij-th

column of G, then due to eq. 3.1, we have
rowi1

...

rowit

 = ΛT ×Mk, (3.2)

2Because ψ(1, . . . , k) ∈ Γ, as shown before, the target vector must be in the linear span of the first k
rows of M . Thus k must exist.
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where for each 1 ≤ j ≤ t, rowij is the ij-th row of M .

First, we show that if ψ(i1, . . . , it) /∈ Γ, then one cannot decode r with ci1 , . . . , cit .

Assume the opposite; i.e., r can be decoded with ci1 , . . . , cit . Since r = r × kT and

(ci1 , . . . , cit) = r× Λ, the possibility that r can be decoded with ci1 , . . . , cit means that

the column vector kT is in the linear span of the columns of Λ. Indeed, there must exist

a tT such that kT = Λ× tT , so that

r = r× kT = r× Λ× tT = (ci1 , . . . , cit)× tT .

Since kT = Λ× tT ⇒ k = t× ΛT , by multiplying t by both sides of Eq. 3.2, we have

t×


rowi1

...

rowit

 = t× ΛT ×Mk = k×Mk = tar.

This means that the target vector tar is in the linear span of the rows assigned to the

participants in ψ(i1, . . . , it) /∈ Γ, which is not allowed in our LSSS due to the Secrecy

condition. This contradiction proves the “only if” direction of our condition.

Next, if ψ(i1, . . . , it) ∈ Γ, then using the reverse of the above proof and the Re-

construction condition of the LSSS, we can easily prove that one can decode r with

ci1 , . . . , cit .

Given that c = (c1, . . . , ch) is a codeword at the encoding end and x = (x1, . . . , xh)

is the input at the decoding end, because of the channel noise, it is possible that x 6= c.

We denote e = (e1, . . . , eh) as an error vector such that e = x−c. Normally we have the

following assumption: let E = {i|ei 6= 0} be an error locator, we always have ψ(E) ∈ A,

where A = 2D \Γ is an adversary structure. That is, the errors in a codeword are caused

by a set in the adversary structure. Therefore, we have the following lemma:

Lemma 3.2.2. Given a set of participants D, let Γ and A be an access structure and

an adversary structure on D respectively, C be a generalized linear code, c ∈ C be a

codeword at the encoding end and x be a vector at the decoding end:

• the decoder can detect that x is not a codeword if and only if D /∈ 2A;

• the decoder can decode the information of c from x if and only if D /∈ 3A.3

It is easy to prove Lemma 3.2.2 using a similar exhaustive search technique as that

of Section 3.1. Next, we generalize Kurosawa and Suzuki’s idea of pseudo-basis and

pseudo-dimension [KS08] (see also Appendix A.6) under the condition D /∈ 2A.

3D /∈ 2A means D /∈ {A1 ∪A2|A1, A2 ∈ A} and D /∈ 3A means D /∈ {A1 ∪A2 ∪A3|A1, A2, A3 ∈ A}.
See Definition 2.2.7.
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3.2.3 Pseudo-Basis and Pseudo-Dimension

At Eurocrypt ’08, Kurosawa and Suzuki initiated the idea of pseudo-basis and pseudo-

dimension in the threshold model with multiple codewords. A generalization of the

pseudo-basis and pseudo-dimension is possible if D /∈ 2A (corresponding to n ≥ 2t + 1

in the threshold model), thus we assume that D /∈ 2A in this section.

We let ψ−1 be the inverse function of ψ. That is, let A ⊆ D, then ψ−1(A) returns

all the locations of the entries in a codeword that are assigned to the participants in A

by ψ.

Definition 3.2.5. Let A ⊆ D, we define |A| as the size of A and |ψ−1(A)| as the weight

of A. We denote szA = max{size of A|A ∈ A} and wtA = max{weight of A|A ∈ A}.

Apparently, szA = O(n) and wtA = O(h). The idea of the generalization is as

follows. The encoder sends w codewords c1, . . . , cw, and the decoder receives w h-

vectors x1, . . . ,xw such that for each 1 ≤ i ≤ w, xi = ci + ei where ei = (ei1, . . . , eih) is

an error vector. For each ei, let Ei = {j|eij 6= 0} be an error locator, then Ei has the

following two properties: (1) |Ei| ≤ wtA and (2) ψ(Ei) ∈ A and hence |ψ(Ei)| ≤ szA.

We assume that ψ(
⋃w
i=1Ei) ∈ A. That is, the errors in all codewords are caused by the

same set in A. Now we give our Pseudo-Basis Construction Scheme as follows.

Pseudo-Basis Construction Scheme

Set B := ∅. For each 1 ≤ i ≤ w, distinguish the following two cases:

1. B = ∅: if xi ∈ C, then do nothing, otherwise, then add xi in B.

2. Otherwise: let B = {xg1 , . . . ,xgb} (b ≥ 1) where 1 ≤ g1 < . . . < gb < i,

if there exist a1, . . . , ab ∈ F such that xi + a1xg1 + . . .+ abxgb ∈ C, then

do nothing; otherwise, add xi in B.

Let B be the pseudo-basis. Thus |B| is the pseudo-dimension. End.

Before we show how the decoder can decode the information of the codewords by

analysing the pseudo-basis, we give the following lemma for further discussion.

Lemma 3.2.3. For any codeword c = (c1, . . . , ch) ∈ C, let T = {i|ci 6= 0}. If D /∈ 2A
and ψ(T ) ∈ A, then the information of c is 0.

Proof. Let O = {i|ci = 0}. From D /∈ 2A and ψ(T ) ∈ A, we have ψ(O) ∈ Γ. Due to

Lemma 3.2.1, the information of c can be decoded with all the entries ci where i ∈ O.

Since all these entries are 0’s, the information of c is 0.

Based on this Lemma, we describe a new concept called invalid error vector, which

is crucial for the correctness of our decoding scheme.

Definition 3.2.6. An invalid error vector is an error vector that is a codeword.
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Given a codeword c ∈ C and a vector x, we let e = x − c be an error vector such

that ψ(E) ∈ A. If e is a codeword (i.e., e ∈ C), then x ∈ C. Due to Lemma 3.2.3, the

information of the codeword e is 0, so the information of x equals to the information of

c. That is, the error vector e does not actually cause errors. Thus we call this kind of

error vector invalid. Evidently, the vector 0 ∈ Fh is an invalid error vector.4

Let B = {xg1 , . . . ,xgb} be a pseudo-basis and Eg1 , . . . , Egb be the respective error

locators (1 ≤ g1 < . . . < gb ≤ w), we denote F =
⋃b
i=1Egi as the final error locator of

B.

Due to the existence of invalid error vectors, the final error locator may not indicate

all the error locations. Indeed, it is possible that there exists a vector xi /∈ B such that

its error locator Ei * F , so some locations in Ei is not identified by F . Next, we show

that even though the final error locator may not indicate all the error locations, the

decoder can still decode all the information reliably with it.

Lemma 3.2.4. If the final error locator of a pseudo-basis is known, then the decoder

can decode the information of all the codewords.

Proof. Given the final error locator F of a pseudo-basis B = {xg1 , . . . ,xgb}, a decoding

scheme is as simple as follows:

Decoding Scheme from the pseudo-basis

For each 1 ≤ i ≤ w, decode the information ri of ci from xi such that if

j ∈ F , then the j-th entry of xi is not used for decoding. End.

It is straightforward that if i ∈ {g1, . . . , gb}, then the decoded information ri is

correct. Indeed, D /∈ 2A and ψ(F ) ∈ A imply that ψ({1, . . . , h} \ F ) ∈ Γ. Thus

according to Lemma 3.2.1, the entries not indicated by F can be used to decode ri.

Since F contains all the error locations of xi, all the entries that are used to decode ri

are correct.

Next, if i ∈ {1, . . . , w} \ {g1, . . . , gb}, then as we discussed before this lemma, it

is possible that Ei * F . That is, errors may exist in the entries used to decode ri.

Since xi /∈ B, there exist a1, . . . , ab ∈ F such that xi + a1xg1 + . . . + abxgb ∈ C. Thus

ei + a1eg1 + . . .+ abegb ∈ C. Let e′i = ei + a1eg1 + . . .+ abegb , we regard e′i as an invalid

error vector. Thus one can decode the information ri of ci correctly from the vector

x′i = ci + e′i because x′i ∈ C. Since xi = ci + ei = x′i − (a1eg1 + . . . + abegb), it is clear

that excluding the entries indicated by F , the remaining entries of xi are the same as

those of x′i. That is, even though errors may exist in these remaining entries, one can

decode the information ri of ci correctly from these entries.

4Note that in the threshold model, where any (up to) t entries of the codeword of size n ≥ 2t + 1
can be errors, invalid error vectors (except 0 ∈ Fn) do not exist. This is because if n = 2t+ 1, then the
minimum Hamming distance is t+1. Since 0 ∈ Fn is always a codeword, the other codewords must have
at least t+ 1 non-zero entries. Thus any error vector with at most t non-zero entries is not a codeword.
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It is trivial that the pseudo-dimension |B| of our scheme is at most wtA = O(h). This

is because the dimension of the vector space spanned by the error vectors is wtA, since

there are at most wtA non-zero entries in each error vector. Therefore, the pseudo-basis

has O(h2) field elements.

Using the generalized linear code and the idea of pseudo-basis and pseudo-dimension,

it is possible to design efficient PSMT ((0, 0)-SMT) protocols with constant round com-

plexity (RC). We show our results later in Chapter 4.

3.3 Critical Paths

Unlike those in the threshold model, the conditions for SMT in the general adversary

model do not require node-disjoint paths. This raises the question of how the messages

are transmitted in a general network graph. A straightforward solution (though somehow

less efficient) is to characterize the graph into all possible paths between S and R, and

the messages are transmitted through these paths. To this end, the idea of critical paths

was introduced by Kumar et al. [KGSR02] in their initial study (see Appendix A.1). We

extend their study, by first giving a formal definition as follows.

Definition 3.3.1. Given a graph G(V,E), in which S and R are connected with a

certain connectivity, say ξ-connectivity. A set of paths P is called critical if S and R

remain ξ-connected with all paths in P , but lose the ξ-connectivity with all paths in any

set P ′ ( P . Let H be the set of all critical sets of paths, we define a minimal critical

set P ∗ as P ∗ ∈ H such that |P ∗| = min{|P | : P ∈ H}.

For example, if S and R are 2A-connected in a graph G(V,E) (see Definition 2.2.6),

where A is an adversary structure, then a set of paths P is called critical if, S and R

remain 2A-connected with all paths in P , but they are 2A-separated with the paths in

any set P ′ ( P . Our definition of critical paths is general, as it can be applied to any

kind of connectivity.

Without loss of generality, we assume that there does not exist a trusted path be-

tween S and R; i.e., |P ∗| > 1. We show the following observation.

Observation 3.3.1. With any graph in which S and R are dA-connected, |P ∗| can be

as small as d+ 1 or as large as exponential in the size of the graph.

We show two examples in Figure 3.1. In the examples we assume that S and R are

2A-connected, where A is an adversary structure on V \ {S,R}.
First, consider a graph G1 as shown in Figure 3.1(a), in which there are only three

paths between S and R. The adversary structure A has the following property: all

nodes in any set A ∈ A are on the same path. Thus it is clear that in G1, S and R are

2A-connected, and all the three paths are in P ∗.

Next, consider a graph G2 as shown in Figure 3.1(b). We assume that except S

and R, there are 3τ nodes in G2. We can view S and R as they are connected by τ
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(b) G2: |P ∗| is exponential in n.

Figure 3.1: 2A-connectivity in different graphs.

levels L1, . . . , Lτ , where each level Li (1 ≤ i ≤ τ) is a set of three nodes, and there is an

edge between each node in Li and each node in Li+1. The adversary structure A has

the following property: for each set A ∈ 2V \{S,R}, if there exist two nodes v1, v2 ∈ A
such that v1, v2 ∈ Li (1 ≤ i ≤ τ), then A /∈ A; otherwise A ∈ A. In other words, the

adversary can control at most 1 node of each level. Obviously, S and R are 2A-connected

in G2, but if we remove any edge from the graph, then they are 2A-separated. Also

straightforwardly |P ∗| = 3τ , because the critical paths are all the paths on each of which

there is exactly one node of each level, and there are 3τ such paths. Thus we have that

|P ∗| is exponential in the size of the graph, which is 9τ − 3.

To sum up, the two examples in Figure 3.1 are used to demonstrate Observation 3.3.1.

Evidently, our examples can easily be adapted to other connectivities; e.g., the 3A-

connectivity.

Therefore, if an SMT protocol is executed via the paths in a graph, then it is impos-

sible to determine its CC in the size of the graph, because the number of paths varies

remarkably in different graphs with the same connectivity (e.g., G1 and G2). Thus in

this thesis, we determine CC in the number of critical paths.

Now we define our model of critical paths to characterize the network graph.

Definition 3.3.2. Given a graph G(V,E) where S,R ∈ V , let A = {A1, . . . , Az} be an

adversary structure on V \ {S,R}, a Basic Characterization of G given A is defined as

follows:

• If G is an undirected graph, then we use P to denote a minimal critical set of paths

between S and R, and we write P1, . . . , Pz, where Pi ⊆ P for each 1 ≤ i ≤ z, to

denote the sets of the paths in P that A1, . . . , Az cut respectively.

• If G is a directed graph, then we use P and Q to denote the minimal critical sets of

the forward and feedback paths respectively, and we write P1, . . . , Pz (Q1, . . . , Qz),

where Pi ⊆ P (Qi ⊆ Q) for each 1 ≤ i ≤ z, to denote the sets of the forward

(feedback) paths in P (Q) that A1, . . . , Az cut respectively.

Furthermore, in our study of SMT in point-to-point networks, to effectively use

critical paths, we construct new structures which consist of the subsets of critical paths.
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Definition 3.3.3. Given a graph G(V,E) where S,R ∈ V , let A = {A1, . . . , Az} be an

adversary structure on V \ {S,R}.

• If G is an undirected graph, then P = {P1, . . . , Pz} is the critical-path structure

on P .

• If G is a directed graph, then P = {P1, . . . , Pz} and Q = {Q1, . . . , Qz} are the

critical-path structures on P and Q respectively. We also denote the critical-path

structure P � Q = {P1 ∪Q1, . . . , Pz ∪Qz}.

In the next chapter, we study in more depth the properties of the critical-path

structures, and show how SMT protocols can be constructed with respect to the critical-

path structures.

3.4 Brief Conclusion of Chapter 3

In this chapter, we prepared our study of SMT with some ideas and observations. In

Section 3.1, we proved that an almost perfect threshold (t+ 1, n, κ)-SSS can correct the

same number of errors as a perfect (t + 1, n, 0)-SSS can. This result will be used to

determine the necessary condition for almost perfect private communication. Next in

Section 3.2, we presented a generalized linear code with error-correcting capability, and

generalized the idea of pseudo-basis and pseudo-dimension, which will later be used for

efficient PSMT protocol design. Finally in Section 3.3, we showed our observation re-

garding critical paths in a general network graph, and defined the Basic Characterization

of the graphs and new adversary structures over critical paths.

In the next chapter, we study SMT in point-to-point networks. All the results

obtained in this chapter will then be used.



Chapter 4

SMT in Point-to-Point Networks

In this chapter we address the problem of secure message transmission (SMT) in point-

to-point networks. As we discussed in Section 2.2.1, different point-to-point networks

can be modelled by either undirected or directed graphs. Here we study both. The work

in this chapter is devoted to determine minimal network connectivities for different levels

of almost perfectly secure message transmission (APSMT), and also to design efficient

perfectly secure message transmission (PSMT) protocols. Besides this, the first result

in this chapter is a cryptanalysis of some previous PSMT protocols.

We first focus on PSMT in directed graphs with feedback paths from R to S. The

study of this setting was initiated by Desmedt and Wang in [DW02] and then followed by

Patra et al. in [PSC+07]. We observe that all their “PSMT protocols” do not guarantee

perfect privacy, when the adversary performs a delicately designed Guessing Attack. In

Section 4.1, we describe such a Guessing Attack against these existing protocols.

Next, we determine minimal network connectivities for APSMT in both undirected

and directed graphs. We study δ-RMT and (0, δ)-SMT in the general adversary model,

and also show that reducing the level of privacy does not weaken the connectivity re-

quirements. Our results should complete Table 2.1, and end our search for minimal

connectivities for SMT in the point-to-point setting. These results will be presented in

Section 4.2.

Finally, we study PSMT in both undirected and directed graphs. We show that using

the generalized linear code we discussed in Section 3.2, efficient PSMT protocols can

be designed to significantly reduce the communication costs of the previous protocols

(e.g., in [KGSR02, YD09]) in the general adversary model. We present these results

in three sections: Section 4.3 gives the preliminaries for PSMT protocols and shows

how our protocols would improve the previous results; respectively in Section 4.4 and

Section 4.5, we give efficient protocols for PSMT in undirected and directed graphs.

Some results in this chapter has been published in [YD09, YD10].

44
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4.1 Guessing Attack

In this section we study a particular point-to-point network setting: a directed graph

with feedback paths. In general, the feedback paths are used by the receiver R to seek

for help from the sender S when R does not have enough information to recover the

messages (i.e., for reliability purposes). However, this emphasis on reliability may lead

to a damage on perfect privacy. Indeed, we observe that all PSMT (i.e., (0,0)-SMT)

protocols proposed by Desmedt and Wang in [DW02] and Patra et al. in [PSC+07] do

not guarantee 0-privacy. To breach 0-privacy of these protocols, we design a Guessing

Attack which can be performed by the adversary on the feedback paths.

The basic idea of the Guessing Attack is to replace the feedbacks from R to S on

the feedback paths with something that may reveal the message. This guess will be

successful with some probability. Even if the guess is not correct, the probability of

learning the actual secret is better than random guessing, so perfect privacy of the

protocol is violated.

In the following, we show how our Guessing Attack can be designed as the strategy

of the adversary against some existing protocols.

4.1.1 On Desmedt and Wang’s Protocols

Here we give an example of how the Guessing Attack breaches 0-privacy of one of

Desmedt and Wang’s protocols in [DW02]. This DW protocol (the protocol of [DW02,

Theorem 5]) is for (0, 0)-SMT against a t-bounded adversary in the threshold model.

First we sketch the DW protocol as follows.

Condition for the DW protocol: There are 3t ≥ 2t+ 1 directed node-disjoint paths

from S to R and one directed node-disjoint path from R to S.1

Sketch of the DW protocol Let p1, ..., p3t be the directed paths from S to R and q

be the directed path from R to S.

Step 1 . . .

Step 2 S chooses a keyS ∈R F and uses a (t + 1, 3t, 0)-SSS to construct shares

c = (s1, ..., s3t) of keyS . For each 1 ≤ i ≤ 3t, S sends si to R via path pi.

Step 3 Let cR = (sR1 , ..., s
R
3t) be the shares R receives. If R finds that there are

at most t − 1 errors (using error-correcting code: see Section 2.7), then R

recovers keyR from the shares, and sends ‘stop’ to S via path q; otherwise,

R sends cR to S via path q.

Step 4 If S receives cS = (sS1 , ..., s
S
3t) from path q, S broadcasts F = {i : sSi 6=

si} (|F | = t) via all paths p1, ..., p3t; otherwise, S broadcasts ‘stop’.

1This condition is sufficient for (0, 0)-secure message transmission from S to R, but is stronger than
the necessary condition, which is n ≥ max{3t + 1 − 2u, 2t + 1} [DW02], where n is the number of the
forward paths and u is the number of the feedback paths. See Table 2.1 for more details.
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Step 5 . . .

Step 6 S broadcasts m+keyS via all paths p1, ..., p3t, where m is the actual message.

Step 7 . . .

This single-feedback-path protocol is the basis of the main protocols in [DW02]. We

observe that this DW protocol is 0-reliable, so in the above sketch we did not describe

how R recovers the message (see [DW02] for the complete protocol). Now we show that

using our Guessing Attack, the adversary can learn the message m with some extra

information it gets during the execution of the protocol.

Theorem 4.1.1. This DW protocol is not a 0-private message transmission protocol

from S to R.

Proof. LetX be a variable induced by keyS and adv be the view of the adversary through

this DW protocol, due to the fact that keyS ∈R F, if the protocol is 0-private, then the

probability that the adversary learns keyS is Pr[X = keyS |adv] = Pr[X = keyS ] = 1
|F| .

Now we show a Guessing Attack by which the adversary can learn keyS with probability

better than 1
|F| .

Guessing Attack on the DW protocol

The t-bounded adversary chooses to control forward paths p1, . . . , pt−1 and

feedback path q. Thus the adversary is able to get shares s1, . . . , st−1 in

Step 2. With these t− 1 shares, the adversary performs as follows.

The adversary chooses a share s′t ∈R F and two keys key′1, key
′
2 ∈R F where

key′1 6= key′2. Regarding key′1, the adversary assumes that s1, . . . , st−1, s
′
t

are t shares of key′1, thus using Lagrange interpolation, the adversary out-

puts the other t shares s′t+1, . . . , s
′
2t of key′1. Similarly, regarding key′2,

the adversary assumes that s1, . . . , st−1, s
′
t are t shares of key′2, and out-

puts the other t shares s′2t+1, . . . , s
′
3t of key′2. The adversary sets c′ =

(s1, . . . , st−1, s
′
t, . . . , s

′
3t).

In each execution step of the DW protocol, the adversary acts in a passive

manner on the forward paths p1, . . . , pt−1. Thus R sends ‘stop’ to S in Step 3.

On the feedback path q, the adversary ignores what R sends and transmits

c′ to S. Then in Step 4, if S finds exactly t errors in cS , which is actually

c′, then S broadcasts F = {i : s′i 6= si}, according to which the adversary

can recover keyS = key′j (j ∈ {1, 2}); otherwise, S broadcasts ‘stop’, and the

adversary chooses a key′ ∈R F, as its keyS . End.

In this Guessing Attack, the adversary guesses a share s′t and two keys key′1 and

key′2. Now S will broadcast the set F if S finds exactly t errors in c′, and the t errors

can only be either s′t+1, . . . , s
′
2t or s′2t+1, . . . , s

′
3t. That is, the guess is successful if s′t = st



Chapter 4. SMT in Point-to-Point Networks 47

and one of the two keys is correct; i.e., key′j = keyS (j ∈ {1, 2}). Thus the probability

η that the guess in successful is

η =
1

|F|
×
(

2× 1

|F|

)
=

2

|F|2
.

If the guess fails, then the adversary will choose a key′ ∈R F, and with probability 1
|F| ,

key′ = keyS . Thus, the total probability θ that the adversary learns keyS by performing

the Guessing Attack is

θ = η + (1− η)× 1

|F|
>

1

|F|
.

Therefore, the adversary can learn keyS with a probability better than 1
|F| , and hence

can recover the message m with better probability.2 Thus this DW protocol is not

0-private.

This example clearly shows how a Guessing Attack can be performed on the feedback

paths. In the journal paper [WD08], Wang and Desmedt provided a fixed protocol that

uses induction when S receives doubtable feedbacks (i.e., the case that a Guessing Attack

may happen). The new protocol is 0-private. For more details of the (0,0)-SMT protocol

tolerating a threshold adversary, we refer to [WD08, Theorem 4.2].

Next we show our Guessing Attack on a previous protocol for PSMT in the general

adversary model, which is proposed by Patra et al. in [PSC+07].

4.1.2 On Patra et al.’s Protocols

In [PSC+07], Patra et al. proposed three protocols for (0,0)-SMT with feedbacks. Two

of the protocols are in the threshold model, and the other one is in the general adversary

model. We observe that neither of these three protocols achieves 0-privacy when the

Guessing Attack takes place. Here we show a Guessing Attack on their so-called Secure

Protocol, which was claimed to be (0,0)-secure tolerating a general adversary structure.

For the attack on the other two protocols in the threshold model, we refer to [YD09].

First, we sketch the Secure Protocol. The Secure Protocol is a 3-round protocol

tolerating a set B, which is a subset of an adversary structure A, where |B| = 3. The

Secure Protocol is actually a sub-protocol for (0,0)-SMT, and the whole protocol can be

resembled with quasi-polynomial (in |A|) number of instances of the Secure Protocol,

using the sub-protocol reconstruction scheme described in Appendix A.5. Here we show

that this sub-protocol itself does not achieve perfect privacy.

Conditions for Secure Protocol Let B = {A1, A2, A3}, S and R are strongly 3B-

directed-connected (see Definition 2.2.8). It is straightforward that if S and R

are 3B-connected with the forward paths, then (0, 0)-SMT is easy to achieve

2Although the message m may be chosen with respect to any probability distribution (not necessarily
uniform), more knowledge on the key keyS gives better probability to recover m.
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(see [DWB05]). In this protocol, we assume that A1∪A2∪A3 cuts all the forward

paths.

Sketch of Secure Protocol Since S and R are strongly 3B-directed-connected, they

are 2B-connected on the forward paths, thus there exist 3 forward paths p1, p2, p3

such that p1 ∈ P \ (P2 ∪P3), p2 ∈ P \ (P1 ∪P3) and p3 ∈ P \ (P1 ∪P2). Also since

A1∪A2∪A3 cuts all the forward paths, due to the strong 3B-directed-connectivity,

we know that at most one of A1, A2, A3 cuts all the feedback paths, thus there

exist 2 feedback paths qα ∈ Q \Qα and qβ ∈ Q \Qβ, where α, β ∈ {1, 2, 3}.3 Let

m be the message S transmits to R:

Round 1 S chooses a bivariate polynomial f(x, y) =
∑1

i=0

∑1
j=0 ri,jx

iyj uniformly at

random such that f(0, 0) = m. f(x, y) is also symmetric; i.e., f(i, j) = f(j, i).

S sends the polynomial f(x, i) to R via path pi, 1 ≤ i ≤ 3.

Round 2 R receives the polynomial fRi (x) = fR(x, i) on path pi, 1 ≤ i ≤ 3. Out of the

three fRi (x)’s, at most one is corrupted. R then performs tests to determine

which path pi is faulty.4 According to the outcome of the tests:

• if R concludes that all pi’s (1 ≤ i ≤ 3) are honest, then R recovers m

and terminates the protocol;

• if R finds which pi (1 ≤ i ≤ 3) is faulty, then R recovers m and terminates

the protocol;

• if R finds that one of the two paths pi and pj (1 ≤ i, j ≤ 3 and i 6=
j) is faulty but cannot distinguish which one, then R sends a 4-vector

(i, j, fRi (j), fRj (i)) to S via paths qα and qβ.

Round 3 S receives two 4-vectors: (iα, jα, viα , vjα) on path qα and (iβ, jβ, viβ , vjβ ) on

path qβ.

• Regarding (iα, jα, viα , vjα), S checks whether viα = f(jα, iα) and whether

vjα = f(iα, jα). According to the outcome, S identifies which path piα

or pjα is faulty, and appends an error message “Path γ is faulty” (γ is

either piα or pjα) to (iα, jα, viα , vjα).

• S performs similar computation to the other 4-vector (iβ, jβ, viβ , vjβ ).

• S broadcasts the two 4-vectors along with the appended error messages

via all paths in P .

. . . (We do not need to show how the message is recovered here. For the complete

protocol, see [PSC+07].)

Next, we show that by performing a Guessing Attack, the adversary can breach

perfect privacy of the Secure Protocol.

3See related notations of P,Q in Definition 3.3.2.
4The details of the tests are not important here, instead we refer to [PSC+07, Secure Protocol].
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Theorem 4.1.2. The Secure Protocol is not a 0-private message transmission protocol

from S to R.

Proof. Without loss of generality, we assume that m ∈R F. Let X be the variable

induced by m and adv be the view of the adversary through the Secure Protocol. If

the protocol is 0-private, then the probability that the adversary learns m is Pr[X =

m|adv] = Pr[X = m] = 1
|F| . Assuming that there exist two feedback paths q1 ∈ Q \Q1

and q2 ∈ Q \Q2 (i.e., α = 1 and β = 2), and q1, q2 ∈ Q3, we show a Guessing Attack as

follows.

Guessing Attack on the Secure Protocol

The adversary chooses Z3 to control, so it corrupts both q1 and q2. In

Round 1, the adversary can only get f(x, 3), with which it knows f(1, 3) and

f(2, 3). Because f(x, y) is symmetric, we have r0,1 = r1,0, thus using polyno-

mial interpolation, we know that the adversary only needs f(1, 2) to recover

the message m. In each round of the Secure Protocol, the adversary acts in

a passive manner on paths in P3. Thus R does not use the feedback chan-

nel throughout the protocol. In Round 2, the adversary chooses 4 distinct

random numbers v′1, v
′
2, v
′
3, v
′
4 ∈R F, and transmits two 4-vectors (1, 2, v′1, v

′
2)

and (1, 2, v′3, v
′
4) to S. Then in Round 3, if regarding a value v′i (1 ≤ i ≤ 4),

no appended error message “Path γ is faulty” (γ is either p1 or p2) is broad-

cast by S, then the adversary knows that v′i is correct (i.e., v′i = f(1, 2)), and

hence recovers m; otherwise, the adversary chooses v′ ∈R F \ {v′1, v′2, v′3, v′4}
as f(1, 2) to recover a message m′. End.

In this Guessing Attack, the guess is successful if there is a v′i = f(1, 2) (1 ≤ i ≤ 4),

so the error messages S broadcasts in Round 3 will indicate which v′i is correct. Thus

the probability η that the guess is successful is

η = 4× 1

|F|
=

4

|F|
.

If the guess fails, then the adversary knows that neither of the 4 random numbers

v′1, v
′
2, v
′
3, v
′
4 is correct. The adversary will choose a v′ ∈R F \ {v′1, v′2, v′3, v′4}, and with

probability 1
|F|−4 , v′ = f(1, 2), and the recovered message m′ is the actual message; i.e.,

m′ = m. Thus, the total probability θ that the adversary learns m by performing the

Guessing Attack is

θ = η + (1− η)× 1

|F| − 4
=

4

|F|
+

(
1− 4

|F|

)
× 1

|F| − 4
=

5

|F|
.

Therefore, the probability that the adversary learns m is much higher than expected

(i.e., 1
|F|). Thus the Secure Protocol is not 0-private.
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We have just shown a Guessing Attack on an existing PRMT protocol in the general

adversary model. To defend against such an attack, we propose a fixed protocol in a

directed graph with feedback paths. This result will be presented in Section 4.5.

4.2 Minimal Connectivities for APSMT

In this section, we determine the necessary and sufficient conditions for different levels

of almost perfect security. The results in this section consist of two parts: one on

almost perfect reliability (see Section 4.2.1) and the other on almost perfect privacy (see

Section 4.2.2). These results should finally complete Table 2.1.

4.2.1 Almost Perfect Reliability

Here we study almost perfect reliability to determine the necessary and sufficient con-

ditions for δ-RMT and (0, δ)-SMT in the general adversary model.

Against a t-bounded adversary in an undirected point-to-point graph, Franklin and

Wright showed that given δ < 1
2(1 − 1

|M|), where M ⊆ F is a message space, δ-RMT is

possible if and only if n ≥ 2t + 1 [FW00, Theorem 5.1]. Combining their proof with

the technique of Desmedt et al. in [DWB05, Theorem 3], it is easy to prove that the

following theorem is necessary.

Theorem 4.2.1. Given an undirected graph G(V,E) where S,R ∈ V , let A be an

adversary structure on V \{S,R}, δ-RMT or (0, δ)-SMT is possible if and only if S and

R are 2A-connected in G.

Since the 2A-connectivity is sufficient for 0-RMT and (0,0)-SMT, it is obviously

sufficient for δ-RMT and (0, δ)-SMT where the requirements for reliability are relaxed.

Because lowering the requirement for reliability (by a negligible amount) does not weaken

the connectivity in undirected graphs, there is no need to present protocols to show the

sufficiency of the condition. We refer some related protocols to [KS09b, DESN10].

Next, we study δ-RMT and (0, δ)-SMT in a directed graph. We use the same net-

work model as that of [DW02], that is, the condition is expressed using the forward and

feedback paths, and any heterogeneous paths are not considered. For the results on het-

erogeneous paths, we refer to [SR06, NAS11]. Now we consider the strong 2A-directed-

connectivity described in Definition 2.2.9. Using the notation of Definition 3.3.3, we have

that if S and R are strongly 2A-directed-connected, then P /∈ P and P ∪Q /∈ 2(P �Q).

Next we show that the strong 2A-directed-connectivity is the minimal connectivity for

δ-RMT and (0, δ)-SMT in directed graphs.

Theorem 4.2.2. Given a directed graph G(V,E) where S,R ∈ V , let A be an adversary

structure on V \ {S,R}, δ-RMT or (0, δ)-SMT is possible if and only if S and R are

strongly 2A-directed-connected in G.
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Proof. First, we show that the condition is necessary. It is straightforward that S and

R must be A-connected on the forward paths (i.e., P /∈ P), because there must exist

one uncorrupted path from S to R. Moreover, 2A-connectivity with all the forward and

feedback paths (i.e., P ∪Q /∈ 2(P � Q)) is also necessary, because even if we strengthen

the connectivity, such that all the forward and feedback paths are bi-directed, due to

Theorem 4.2.1, δ-RMT or (0, δ)-SMT is impossible if S and R are not 2A-connected.

Therefore, the strong 2A-directed-connectivity is the lower bound.

Next, we show that the condition is sufficient for (0, δ)-SMT, and hence it is sufficient

for δ-RMT. Let A = {A1, . . . , Az} and m ∈ M be the message, we construct a 2-round

(0, δ)-SMT protocol, which uses the authentication code we discussed in Section 2.8, as

follows.

3-Round Directed APSMT Protocol

Round 1 - S to R and R to S in parallel: For each 1 ≤ i ≤ z:

1. For each path pj ∈ P \Pi, S chooses (aSi,j , b
S
i,j , c

S
i,j) ∈R F3 and sends

the 3-vector to R via path pj .

2. For each path qj ∈ Q\Qi, R chooses (dRi,j , e
R
i,j , f

R
i,j) ∈R F3 and sends

the 3-vector to S via path qj .

3. On each path pj ∈ P \ Pi, R receives a 3-vector (aRi,j , b
R
i,j , c

R
i,j). On

each path qj ∈ Q \Qi, S receives a 3-vector (dSi,j , e
S
i,j , f

S
i,j).

Round 2 - S to R: For each 1 ≤ i ≤ z:

1. S computes

αSi =
∑

pj∈P\Pi a
S
i,j +

∑
qj∈Q\Qi d

S
i,j ,

βSi =
∑

pj∈P\Pi b
S
i,j +

∑
qj∈Q\Qi e

S
i,j and

γSi =
∑

pj∈P\Pi c
S
i,j +

∑
qj∈Q\Qi f

S
i,j .

2. S sends the pair (m+αS , auth(m+αSi ;βSi , γ
S
i )) to R via all paths

in P \ Pi.

Recovery Phase For each 1 ≤ i ≤ z:

1. On each path pj ∈ P \ Pi, R receives a pair (gRi,j , h
R
i,j).

2. If the pairs received on all paths in P \Pi are the same, we call this

pair (gRi , h
R
i ) then R computes

αRi =
∑

pj∈P\Pi a
R
i,j +

∑
qj∈Q\Qi d

R
i,j ,

βRi =
∑

pj∈P\Pi b
R
i,j +

∑
qj∈Q\Qi e

R
i,j and

γRi =
∑

pj∈P\Pi c
R
i,j +

∑
qj∈Q\Qi f

R
i,j .

If hRi = auth(gRi ;βRi , γ
R
i ), then R recovers the message m′ = gRi −

αRi , and terminates the protocol. End.

Now we show that the 3-Round Directed APMST Protocol is (0, δ)-secure. Assume

that the adversary chooses a set Ae ∈ A to control. We prove that the protocol is 0-

private. For each 1 ≤ i ≤ z, the keys are transmitted via the paths in (P ∪Q)\(Pi∪Qi).
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Since S and R are 2A-connected with all paths in P ∪Q, there always exists a (forward

or feedback) path wj ∈ (P ∪ Q) \ ((Pi ∪ Qi) ∪ (Pe ∪ Qe)). Thus the adversary will not

learn the keys transmitted on wj , and hence it cannot compute αSi , β
S
i , γ

S
i to recover m.

Thus 0-privacy is guaranteed.

Finally, we prove that the protocol is δ-reliable. It is straightforward that if i = e

(i.e., the adversary chooses Ai ∈ A to control), then the message m′ = m can be reliably

recovered. This is because all the keys used for authentication, which are transmitted

via (P ∪Q)\(Pi∪Qi), are uncorrupted. Next, for any 1 ≤ i ≤ z, we use RT to denote the

event that the message m′ recovered by R is correct (i.e., m′ = m), and use RT to denote

the event otherwise. In order for m′ to be recovered, the pairs received on all paths in

P \Pi must be the same, thus in the event RT , we have Pi∪Pe = P . Similar to what we

showed above, we know that the adversary does not have enough information to compute

αRi , β
R
i , γ

R
i . Thus RT only happens if the adversary modifies gRi so that gRi 6= m + αSi

and successfully guesses an element hRi ∈R F such that hRi = auth(gRi ;βRi , γ
R
i ). Thus

Pr[RT ] = 1
|F| is the probability that the guess of hRi is successful. Since 1 ≤ i ≤ z, the

adversary has at most z attempts to make its guesses successful. That is, the probability

that the adversary can breach the reliability of the protocol with successful guesses is

δ = z × Pr[RT ] = z × 1

|F|
=

z

|F|
.

It is straightforward that δ can be made negligible in the security parameters (given F
is sufficiently large). Hence we have the proof.

Therefore, we showed the necessary and sufficient conditions for almost perfect reli-

ability when no privacy or perfect privacy is guaranteed. In the next section, we study

almost perfect privacy.

4.2.2 Almost Perfect Privacy

The main result in this section shows that reducing the requirement for privacy does

not weaken the minimal network connectivity. That is, the necessary and sufficient

conditions for ε-privacy are the same as those for 0-privacy. This result is general,

regardless of the adversary models and network settings. Proving the conditions for all

the network and adversary models will be redundant. We therefore present only one

example. That is, we prove that in a directed graph, the condition for (0,0)-SMT—the

strong 3A-directed-connectivity (see Definition 2.2.8)—is also necessary and sufficient

for (ε, 0)-SMT. The technique used in this proof should be enough to show how similar

results can be obtained in other network and adversary models.

Theorem 4.2.3. Given a directed graph G(V,E) where S,R ∈ V , let A be an adversary

structure on V \ {S,R}, (ε, 0)-SMT is possible if and only if S and R are strongly 3A-

directed-connected in G.
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Proof. The sufficiency of the condition is straightforward. As shown in the proof of

Theorem 4.1.2, Patra et al.’s Secure Protocol in [PSC+07] is actually an (ε, 0)-SMT

protocol. Next, using a technique similar to that in [DW02, DWB05], we prove the

necessity of the condition.

According to Table 2.1, the 2A-connectivity on the forward paths is necessary for 0-

RMT, and hence it is necessary for (ε, 0)-SMT. Now we show that (ε, 0)-SMT is possible

only if for any three sets A1, A2, A3 ∈ A, if A1∪A2∪A3 cuts all the forward paths, then

at most one of these three sets cuts all the feedback paths.

For contradiction, we assume that there are three sets A1, A2, A3 ∈ A such that

P1 ∪ P2 ∪ P3 = P , Q1 ( Q and Q2 = Q3 = Q, and there exists a (ε, 0)-SMT protocol Π

in this graph G. Let m ∈M be the message that S wants to send to R. The adversary

will simulate the possible behaviours of S and R by executing Π to transmit another

message m′ ∈M. The strategy of the adversary is to choose an e ∈R {1, 2, 3} and control

the set Ae. During the execution of the protocol Π, the adversary acts as follows:

• If e = 1, then the adversary acts in a passive manner throughout the protocol.

• If e = 2, then the adversary corrupts P2. On all paths in P2, the adversary ignores

what S sends in each step of Π and simulates the protocol as S sent the message

m′. On all paths in Q2 = Q, the adversary ignores what R sends in each step of

Π and simulates what R would send to S if e = 1.

• If e = 3, then the adversary corrupts P \ (P1 ∪ P2), which is possible because

P1 ∪ P2 ∪ P3 = P ⇒ P \ (P1 ∪ P2) ⊆ P3. On all paths in P \ (P1 ∪ P2), the

adversary ignores what S sends in each step of Π and simulates the protocol as S

sent the message m′. On all paths in Q3 = Q, the adversary ignores what R sends

in each step of Π and simulates what R would send to S if e = 1.

Note that the simulation of the adversary on the feedback paths in Q when e = 2 or

e = 3 may not be successful, because R may send something that the adversary fails

to learn. However, there is a non-zero probability with which the simulation succeeds,

given the adversary knows the protocol and can always guess. In the following, we

consider the case that this simulation succeeds.

It is straightforward that despite the value of e, the feedbacks that S receives are

the same, thus the view of S is always the same. At the end of the protocol, the view of

R can be divided into three parts view1, view2 and view3, where view2 consists of all

the information the paths in P2 have learned, view3 consists of all the information the

paths in P \ (P1 ∪P2) have learned and view1 consists of all the information the rest of

the paths in P have learned. Given e ∈R {1, 2, 3}, let adv(m, r) be the adversary’s view

when the actual message is m, since Π is ε-private, we have that for any two messages

m0,m1 ∈M,

∑
viewe

|Pr[adv(m0, r) = viewe]− Pr[adv(m1, r) = viewe]| ≤ 2ε < 1.
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That is, let X be a variable induced by m, for any message m0 ∈M we have

Pr[X = m0|viewe] ≤ Pr[X = m0] + κ < 1.

Moreover, since Π is 0-reliable, R should be able to recover the actual message m from

any two of the views view1, view2, view3 with probability 1. Thus for any {i, j} ⊂
{1, 2, 3}, we have

Pr[X = m|viewi, viewj ] = 1.

Thus we regard view1, view2, view3 as shares of m distributed using a (2, 3, κ)-SSS (see

Definition 2.6.1). Now when e = 2 or e = 3, R should be able to distinguish which view

of view2 or view3 is corrupted. To sum up, view1, view2, view3 are shares of a (2, 3, κ)-

SSS, and this SSS can correct 1 error: either view2 or view3. Due to Theorem 3.1.2, a

(2, 3, κ)-SSS can only correct b3−1−12 c = 0 error. We have a contradiction.

Next, it is straightforward that the following result can be obtained using similar

proofs to that of Theorem 4.2.3.

Corollary 4.2.1. Let 0 ≤ δ < 1
2 and 0 ≤ ε1 < ε2 < 1, in any network model and any

adversary model, the minimal connectivity required for (ε1, δ)-SMT is the same as that

for (ε2, δ)-SMT.

Therefore, in the following, we show the final results for ε-private message transmis-

sion in different network and adversary models.

Corollary 4.2.2. Given an undirected graph G(V,E) where S,R ∈ V , let n be the

number of paths between S and R:

• In the threshold model where the adversary is bounded by t nodes of V \ {S,R},
(ε, δ)-SMT or (ε, 0)-SMT is possible if and only if n ≥ 2t+ 1.

• In the general adversary model where the adversary is characterized by an adver-

sary structure A on V \ {S,R}, (ε, δ)-SMT or (ε, 0)-SMT is possible if and only if

S and R are 2A-connected in G.

Corollary 4.2.3. Given a directed graph G(V,E) where S,R ∈ V , let n be the number

of forward paths and u be the number of feedback paths:

• In the threshold model where the adversary is bounded by t nodes of V \ {S,R},
(ε, δ)-SMT is possible if and only if n ≥ max{2t+ 1− u, t+ 1}, and (ε, 0)-SMT is

possible if and only if n ≥ max{3t+ 1− 2u, 2t+ 1}.

• In the general adversary model where the adversary is characterized by an adver-

sary structure A on V \ {S,R}, (ε, δ)-SMT is possible if and only if S and R are

strongly 2A-directed-connected in G, and (ε, 0)-SMT is possible if and only if S

and R are strongly 3A-directed-connected in G.
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Therefore, together with the results given in Section 4.2.1, we can complete Ta-

ble 2.1 to give the minimal network connectivities for SMT in all kinds of point-to-point

networks in different adversary models. We shall present a completed table in the con-

cluding Chapter 6 at the end of this thesis.

4.3 PSMT Preliminaries

In the rest of the chapter, we study PSMT (i.e., (0,0)-SMT) protocols. Efficient PSMT

protocols in undirected and directed graphs will be given in Section 4.4 and Section 4.5

respectively. In this section, we discuss some preliminaries so our protocols can be

constructed in a clear manner.

First, we employ the model of critical paths defined in Definition 3.3.2 and the

critical-path structure defined in Definition 3.3.3. That is:

• In an undirected graph, we denote P = {p1, . . . , pn} as a critical set of undirected

paths, and denote P = {P1, . . . , Pz} as a critical-path structure on P . Thus n is

the number of critical paths and z = |P| = |A|.

• In a directed graph, we denote P = {p1, . . . , pn} as a critical set of forward

paths and Q = {q1, . . . , qu} as a critical set of feedback paths, and denote P =

{P1, . . . , Pz} and Q = {Q1, . . . , Qz} as critical-path structures on P and Q respec-

tively. Thus n and u are the number of forward and feedback paths respectively

and z = |P| = |Q| = |A|. Without loss of generality, we assume u = O(n).

Next, we show how our protocols would improve the previous results in terms of com-

munication complexity (CC) and round complexity (RC) (see notations in Section 2.5).

4.3.1 Improvements to the Previous Results

Here we compare our results with the previous PSMT protocols in the general adver-

sary model. As shown in Section 2.9.1, PSMT protocols tolerating adversary struc-

tures have been proposed by Kumar et al. [KGSR02], Desmedt et al. [DWB05], Pa-

tra et al. [PSC+07] and Yang and Desmedt [YD09] for different network settings.5 We

show that our protocols in this work comprehensively improve the previous results in

terms of communication complexity (CC) and round complexity (RC).

Because the previous protocols use different models for PSMT, it is not straight-

forward to compare their CC to our results. In fact, we need to compare the three

parameters (n, z, h) that determine the CC of the protocols, where n is the number of

critical paths, z = |A| and h is the size of the LSSS as well as the length of the codewords

5As discussed in Section 4.1, all protocols of Patra et al. in [PSC+07] are vulnerable to the Guessing
Attack. In [YD09], a fixed protocol is proposed against the Guessing Attack. However, this protocol
still uses Patra et al.’s sub-protocol reconstruction scheme (see Appendix A.5). Thus as Patra et al.’s
protocol, this fixed protocol is not efficient.
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Network graph RC CC of 1 a CC of ` a

[KGSR02] undirected O(n) O(hn2ρ) –

[DWB05] b directed 1 O(znρ) –

[YD09] directed quasi-poly. in z quasi-poly. in zρ –

Our results
undirected

3 (Section 4.4.1) O(hn2ρ) O(h`ρ)
2 (Section 4.4.2) O(hn2ρ) O(hn`ρ)

directed
3 (Section 4.5.1) O(h2n2ρ) O(hn`ρ)
2 (Section 4.5.2) O(hρ) O(h`ρ)

a “CC of 1” is the CC of the PSMT protocol that transmits a single message and “CC
of `” is the CC of the protocol that transmits multiple (`) messages, where each
message is a field element of size ρ.

b Desmedt et al.’s protocol in [DWB05] is executed in special directed graphs without
feedback paths, so only 1-round protocol is needed.

Table 4.1: PSMT in the general adversary model.

(see Section 3.2). First, the shares of an LSSS or the codewords of a linear code are

constructed with respect to the critical-path structure P, that is, the participants of the

secret sharing scheme are the critical paths in P . Now we do not know the tight upper

bound on h, but our Worst Case LSSS (see Section 3.2.1) achieves h = O(|A|n) = O(zn),

so h ≤ zn. In general, z is exponential in the size of the network graph. As we showed

in Observation 3.3.1, the number of critical paths, n, can be linear or exponential in

the size of the graph, depending on the network graph and the adversary structure.

Thus we observe that z can be exponential in n, or n can be polynomial in z in some

graphs (see also [KGSR02]). Either way, our protocols for transmitting a single mes-

sage significantly improve the previous results in terms of CC and RC. We also present

some efficient protocols to transmit ` > 1 messages. The problem of multiple message

transmission in the general adversary model has not been studied before.

The comparison of the results are shown in Table 4.1. Note that Desmedt et al.’s

protocol in [DWB05] is executed in directed graphs without feedback, which means

that the receiver R cannot send messages to the sender S. Thus the protocols in this

graph must be non-interactive and can only have 1-round. Their protocol is actually an

alternative use of our Worst Case LSSS that was presented earlier. Thus the protocol

can easily be transformed into a 1-round protocol with CC O(hρ). The protocol by

Yang and Desmedt [YD09] uses Patra et al.’s sub-protocol reconstruction scheme (see

Appendix A.5), which requires both the CC and RC to be quasi-polynomial in z. As

discussed above, both h and n are at most polynomial in z, so our improvements are

obvious. We also remark that in the studies of the general adversary model, our results

are the first to have constant RC in undirected and directed graphs with interaction.

4.3.2 Protocol Preliminaries

Recalling the statement at the beginning of Section 4.3, we employ the model of criti-

cal paths defined in Definition 3.3.2 and the critical-path structures defined in Defini-
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tion 3.3.3. That is, we use P = {p1, . . . , pn}, Q = {q1, . . . , qu}, P = {P1, . . . , Pz} and

Q = {Q1, . . . , Qz} in our protocols.

We assume that each message m is drawn from the message space M ⊆ F with

respect to a certain probability distribution. Thus each message m is a field element of

size ρ.

Given that the sender S and the receiver R are 2A-connected with the paths in

P , if S sends the same elements via all paths in P , then R is able to recover these

elements with perfect reliability [DWB05] (see Appendix A.4). In our protocols we say

“S broadcasts some elements via P” to indicate this kind of transmission. Note that this

broadcast only happens when S and R are 2A-connected, and the CC of the broadcast

of 1 field element is O(nρ).

Our protocols use the linear code we described in Section 3.2. The participants of

the linear code are the paths in P and Q, so the linear codes are constructed with respect

to the access structures Γ = 2P \ P or Γ′ = 2Q \ Q. Thus, S usually sends a codeword

c = {c1 . . . , ch} via P = {p1, . . . , pn} in such a manner that for each 1 ≤ j ≤ h, if

ψ(j) = pi where 1 ≤ i ≤ n, then S sends cj via path pi. We say “S sends c via P with

respect to ψ” to indicate this kind of transmission. Note that the CC of the transmission

of 1 codeword is O(hρ).

In addition, because the participants of the linear code are the critical paths, we use

szP and wtP to calculate the CC of the protocols, where szP and wtP are alternations

of szA and wtA defined in Definition 3.2.5.

In our protocols, we omit some indices for the communication. For example, if S

sends a pseudo-basis to R, then generally S should attach an index in the transmission

to indicate exactly to which codeword each vector in the pseudo-basis corresponds.

Indexing is very cheap in terms of CC. Thus in our protocols, we omit some indices to

make the protocols easier to read.

In the following Section 4.4 and Section 4.5, we give our efficient PSMT protocols

in undirected and directed graphs respectively. For each graph setting, we propose 3-

round and 2-round protocols for the transmissions of a single message m and multiple

(`) messages m1, . . . ,m`. Thus we have four protocols in each section (for each graph

setting).

4.4 Efficient PSMT in Undirected Graphs

In this section, we present our PSMT protocols in undirected graphs. The necessary

and sufficient condition for PSMT in an undirected graph is that S and R are 2A-

connected [KGSR02] (see Table 2.1). We first give 3-round protocols in Section 4.4.1

for the transmissions of a single message and multiple messages, and then give 2-round

protocols in Section 4.4.2.
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4.4.1 3-Round Undirected Protocols

First, we give a 3-round PSMT protocol for a single message transmission as follows.

3-Round Undirected Protocol for a single message m

Round 1 - S to R:

1. S chooses n random k-vectors r1, . . . , rn ∈ Fk, and for each 1 ≤ i ≤
n, S encodes ri to get codeword ci = EC(ri) = (ci1, . . . , cih).

2. For each 1 ≤ i ≤ n, S sends vector ri via path pi, and sends

codeword ci via P with respect to ψ.

Round 2 - R to S:

1. R receives n k-vectors r′1, . . . , r
′
n and n h-vectors x1, . . . ,xn (re-

garding the codewords c1, . . . , cn) from P . For each 1 ≤ i ≤ n, let

xi = (xi1, . . . , xih).

2. For each 1 ≤ i ≤ n, R encodes r′i to get codeword c′i = EC(r′i) =

(c′i1, . . . , c
′
ih). R then constructs a set Di such that for each 1 ≤

j ≤ h, if and only if xij 6= c′ij , then (xij , j) ∈ Di.

3. R broadcasts sets D1, . . . , Dn via P .

Round 3 - S to R:

1. S receives sets D1, . . . , Dn from P .

2. S sets F := ∅. For each 1 ≤ i ≤ n, if there exists a pair (xij , j) ∈ Di

such that xij = cij , then S sets F := F ∪ {i}.
3. For each 1 ≤ i ≤ n such that i /∈ F , S decodes ri = DC(ri). S

computes σ = m+
∑

i/∈F ri, and then broadcasts F and σ via P .

Recovery Phase

1. R receives F and σ from P .

2. For each 1 ≤ i ≤ n such that i /∈ F , R decodes r′i = DC(r′i). R

recovers m′ = σ −
∑

i/∈F r
′
i. End.

Theorem 4.4.1. This 3-Round Undirected Protocol is a (0, 0)-SMT protocol for a single

message.

Proof. Without loss of generality, we assume that the adversary corrupts the set of paths

{p1, . . . , pt} ∈ P, and ci1, . . . , ciy are the entries in ci that are assigned to these paths

by ψ; i.e., ψ(1, . . . , y) = {p1, . . . , pt}.
First, we prove that the protocol is 0-private. In Round 1, the adversary can learn

r1, . . . , rt. We observe that if a pair (xij , j) ∈ Di, then the adversary knows xij already

before the broadcast of Round 2, because if xij 6= c′ij , then either xij is changed, or

r′i is changed, or both are changed. In either case the adversary knows xij . Thus
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broadcasting Di does not reveal extra information to the adversary. For each i > t, due

to Lemma 3.2.1, with the entries xi1, . . . , xiy (i.e., ci1, . . . , ciy) that the adversary can

learn, the adversary cannot reconstruct ri = DC(ri). After Round 2, the adversary only

knows r1, . . . , rt and hence r1, . . . , rt. If i > t, then because r′i = ri, for each 1 ≤ j ≤ h,

we have c′ij = cij . Thus (xij , j) ∈ Di ⇒ xij 6= c′ij ⇒ xij 6= cij , so i /∈ F . Thus all the

information rt+1, . . . , rn are used to encrypt the message m, so the adversary cannot

recover m with only r1, . . . , rt.

Next, we prove that the protocol is 0-reliable. We claim that if the adversary changes

ri on path pi, then i ∈ F . Since S and R are 2A-connected, we have {pt+1, . . . , pn} ∈ Γ.6

If the adversary changes ri to make DC(r′i) 6= DC(ri), then there exists at least 1 entry

c′ij , where ψ(j) ∈ {pt+1, . . . , pn}, in the codeword EC(r′i) = (c′i1, . . . , c
′
ih) such that

xij 6= c′ij . This is because if such an entry does not exist, then due to Lemma 3.2.1, from

the entries assigned to {pt+1, . . . , pn} ∈ Γ, DC(r′i) = DC(ri) can be recovered. Thus

after Round 2, we have (xij , j) ∈ Di where ψ(j) ∈ {pt+1, . . . , pn}. With this entry xij , S

finds xij = cij , because {pt+1, . . . , pn} are uncorrupted, S adds i to F in Round 3. Thus

we showed that our claim is correct. This claim implies that if r′i 6= ri, then i ∈ F . That

is, for any i /∈ F , we have r′i = ri. Thus R can recover m′ = σ−
∑

i/∈F r
′
i = σ−

∑
i/∈F ri.

This implies that the protocol is 0-reliable.

CC of the protocol. Let CC(i) be the CC of Round i for each 1 ≤ i ≤ 3. In this

protocol:7

CC(1) = (kn+ hn)ρ = O(hnρ)

CC(2) = O(2hn2ρ) = O(hn2ρ)

CC(3) = O(n(szP + 1)ρ) = O(n2ρ)

Therefore, the CC of this protocol is O(hn2ρ).

Next, we propose a 3-round PSMT protocol that transmits multiple (` = wtPh)

messages. In this protocol we use the pseudo-basis that was discussed in Section 3.2.3.

3-Round Undirected Protocol for ` = wtPh messages m1, . . . ,m`

Round 1 - S to R:

1. S chooses wtP + ` random k-vectors r1, . . . , rwtP+` ∈ Fk, and for

each 1 ≤ i ≤ wtP + `, S encodes ri to get codeword ci = EC(ri) =

(ci1, . . . , cih).

2. For each 1 ≤ i ≤ wtP + `, S sends codeword ci via P with respect

to ψ.

6Here Γ = 2P \ P, which is an access structure on the critical set of paths P .
7See the notations of szP and wtP in Definition 3.2.5. Note that the linear code is constructed with

respect to the critical-path structure P. These notations will be used in the rest of this chapter.
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Round 2 - R to S:

1. R receives wtP + ` h-vectors x1, . . . ,xwtP+` (regarding the code-

words c1, . . . , cwtP+`) from P . For each 1 ≤ i ≤ wtP + `, let

xi = (xi1, . . . , xih).

2. R uses the Pseudo-Basis Construction Scheme (see Section 3.2.3)

to construct a pseudo-basis B from x1, . . . ,xwtP+`, and then broad-

casts B via P .

Round 3 - S to R:

1. S receives the pseudo-basis B from P .

2. Since the pseudo-dimension of B is at most wtP , S can find ` k-

vectors ra1 , . . . , ra` (1 ≤ a1 < . . . < a` ≤ wtP + `) such that

ca1 , . . . , ca` /∈ B. For each 1 ≤ i ≤ `, S computes rai = DC(rai)

and σi = mi + rai .

3. S finds the final error locator F from B.8 S then broadcasts F and

(σ1, a1), . . . , (σ`, a`) via P .9

Recovery Phase

1. R receives F and (σ1, a1), . . . , (σ`, a`) from P .

2. With the final error locator F , R uses the Decoding Scheme from

pseudo-basis (see Lemma 3.2.4) to get the information ra1 , . . . , ra`
of ca1 , . . . , ca` from xa1 , . . . ,xa` , and then for each 1 ≤ i ≤ `, R

recovers the message mi = σi − rai . End.

Theorem 4.4.2. This 3-Round Undirected Protocol is a (0, 0)-SMT protocol for multiple

messages.

Proof. First, the protocol is 0-private. This is because due to Lemma 3.2.1, the adversary

cannot learn the information of any codeword in Round 1, and the codewords revealed

in Round 2 are not used to encrypt the messages. Thus at the end of the protocol, the

messages are encrypted with the information of the codewords that the adversary cannot

learn, so 0-privacy is guaranteed. It is straightforward that the protocol is 0-reliable due

to Lemma 3.2.4.

CC of the protocol. In this protocol:

CC(1) = h(wtP + wtPh)ρ = O(wtPh2ρ) = O(h`ρ)

CC(2) = O(n(wtPh)ρ) = O(n`ρ)

CC(3) = O(n(wtP + 2wtPh)ρ) = O(n`ρ)

Therefore, the CC of this protocol is O(h`ρ).

8The final error locator F is a set of locations where the vectors in the pseudo-basis differ from the
actual codewords. See Section 3.2.3 for the notation of the final error locator.

9a1, . . . , a` are used to indicate which vector rai is used to compute σi, where 1 ≤ i ≤ `.
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4.4.2 2-Round Undirected Protocols

First, we give a 2-round PSMT protocol to transmit a single message (similar protocol

in the threshold model has been given in [DESN10]).

2-Round Undirected Protocol for a single message m

Round 1 - R to S:

1. R chooses n random k-vectors r1, . . . , rn ∈ Fk, and for each 1 ≤
i ≤ n, R encodes ri to get codeword ci = EC(ri) = (ci1, . . . , cih).

2. For each 1 ≤ i ≤ n, R sends vector ri via path pi, and sends

codeword ci via P with respect to ψ.

Round 2 - S to R:

1. S receives n k-vectors r′1, . . . , r
′
n and n h-vectors x1, . . . ,xn (re-

garding the codewords c1, . . . , cn) from P . For each 1 ≤ i ≤ n, let

xi = (xi1, . . . , xih).

2. For each 1 ≤ i ≤ n, S encodes r′i to get codeword c′i = EC(r′i) =

(c′i1, . . . , c
′
ih). S then constructs a set Di such that for each 1 ≤ j ≤

h, if and only if xij 6= c′ij , then (xij , j) ∈ Di.

3. S finds a k-vector rS such that m = DC(rS), and then encodes

cS = EC(rS) = (cS1 , . . . , c
S
h). For each 1 ≤ j ≤ h, if ψ(j) = pi, then

S computes zj = cSj + c′ij . Finally S sets z = (z1, . . . , zh).

4. S broadcasts z and D1, . . . , Dn via P .

Recovery Phase

1. R receives z and D1, . . . , Dn from P .

2. R sets F := ∅. For each 1 ≤ i ≤ n, if there exists a pair (xij , j) ∈ Di

such that xij = cij , then R sets F := F ∪ {i}.
3. For each 1 ≤ j ≤ h, if ψ(j) = pi, then R computes cRj = zj − cij .
R then decodes the message m′ as the information of (cR1 , . . . , c

R
h )

such that for any ψ(j) = pi where i ∈ F , the entry cRj is not used

for decoding. End.

Theorem 4.4.3. This 2-Round Undirected Protocol is a (0, 0)-SMT protocol for a single

message.

Proof. Without loss of generality, we assume that the adversary corrupts the set of paths

{p1, . . . , pt} ∈ P.

First, we prove that the protocol is 0-private. This follows the proof of Theorem 4.4.1.

That is, the adversary can only learn r′1, . . . , r
′
t. Thus in Round 2, the adversary can

learn an entry cSj = zj − c′ij in cS if and only if ψ(j) = pi ∈ {p1, . . . , pt}. That is, the
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adversary can only learn the entries in cS that are assigned to {p1, . . . , pt} ∈ P, and

with these entries the adversary cannot recover the message m as the information of cS ,

due to Lemma 3.2.1.

Next, we prove that the protocol is 0-reliable. Following the proof of Theorem 4.4.1,

we claim that if the adversary changes ri on path pi, then i ∈ F . Thus if i /∈ F ,

then r′i = ri, and hence for each 1 ≤ j ≤ h, we have c′ij = cij . Thus if i /∈ F , then

cRj = zj − cij = zj − c′ij = cSj . Due to the 2A-connectivity, with these correct entries in

(cR1 , . . . , c
R
h ) (i.e., cRj = cSj ), which are assigned to a set in the access structure Γ = 2P \A,

R can recover m′ = m with 0-reliability. This concludes the proof.

CC of the protocol. In this protocol:

CC(1) = (kn+ hn)ρ = O(hnρ)

CC(2) = O(n(h+ 2hn)ρ) = O(hn2ρ)

Therefore, the CC of this protocol is O(hn2ρ).

Next, we show our 2-round PSMT protocol that transmits multiple messages. We

employ a well-known technique in this context: the randomness extractor [SNR04,

ACdH06, KS08] (see Appendix A.2). Suppose that the adversary has no knowledge

on ` out of w random elements r1, . . . , rw ∈ F. Let f(x) be a polynomial of degree

degf(x) = w − 1 such that f(i) = ri for each 1 ≤ i ≤ w, then the adversary has no

knowledge on zj = f(w+ j) for each 1 ≤ j ≤ `. We denote a function RE : Fm → F` as

a randomness extractor such that RE(r1, . . . , rw) = (z1, . . . , z`). This function will be

used in the following 2-round PSMT protocol.

2-Round Undirected Protocol for ` = wtP(n− szP − 1) messages

m1, . . . ,m`

Round 1 - R to S:

1. R chooses wtPn random k-vectors r1, . . . , rwtPn ∈ Fk, and for each

1 ≤ i ≤ wtPn, S encodes ri to get codeword ci = EC(ri) =

(ci1, . . . , cih).

2. For each 1 ≤ i ≤ n, R sends wtP vectors

ri+0·n, ri+1·n, . . . , ri+(wtP−1)n

via path pi. R also sends codewords c1, . . . , cwtPn via P with re-

spect to ψ.

Round 2 - S to R:

1. S receives wtP k-vectors

r′i+0·n, r
′
i+1·n, . . . , r

′
i+(wtP−1)n
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on each path pi (1 ≤ i ≤ n), and also receives wtPn h-vectors

x1, . . . ,xwtPn (regarding the codewords c1, . . . , cwtPn) from P . For

each 1 ≤ i ≤ wtPn, let xi = (xi1, . . . , xih).

2. For each 1 ≤ i ≤ wtPn, S uses the Pseudo-Basis Construction

Scheme to construct a pseudo-basis B from x1, . . . ,xwtPn. Let b be

the pseudo-dimension of B, then b ≤ wtP .

3. For each 1 ≤ i ≤ wtPn, S encodes r′i to get codeword c′i =

EC(r′i) = (c′i1, . . . , c
′
ih). S then constructs a set Di such that for

each 1 ≤ j ≤ h, if and only if xij 6= c′ij , then (c′ij , xij , j) ∈ Di.

4. For each 1 ≤ i ≤ wtPn, S decodes r′i = DC(r′i). S then constructs

an ordered set T such that if and only if |Di| ≤ wtP , then r′i ∈ T .

S uses the randomness extractor to get (z1, . . . , z`) = RE(T ), and

for each 1 ≤ i ≤ `, S computes σi = mi + zi.

5. S broadcasts the pseudo-basis B and σ1, . . . , σ` via P . For each

1 ≤ i ≤ wtPn, if |Di| > wtP , then S broadcasts “ignore i”; else, S

broadcasts Di via P .

Recovery Phase

1. R finds the final error locator F from B.

2. For each Di that R receives on P , R constructs an h-vector x′i =

(x′i1, . . . , x
′
ih) such that for each 1 ≤ j ≤ h, if (c′ij , xij , j) ∈ Di, then

x′ij = c′ij − (xij − cij); else, then x′ij = cij . R then decodes the

information r′′i from x′i such that for any j ∈ F , x′ij is not used for

decoding. R puts r′′i in an ordered set T ′.

3. R uses the randomness extractor to get (z′1, . . . , z
′
`) = RE(T ′), and

for each 1 ≤ i ≤ `, R computes m′i = σi − z′i. End.

Theorem 4.4.4. This 2-Round Undirected Protocol is a (0, 0)-SMT protocol for multiple

messages.

Proof. Without loss of generality, we assume that the adversary corrupts the set of paths

{p1, . . . , pt} ∈ P.

First, we prove that the protocol is 0-private. In Round 1, the adversary can learn

wtPt random k-vectors:

r′i+0·n, r
′
i+1·n, . . . , r

′
i+(wtP−1)n

for 1 ≤ i ≤ t. With the pseudo-basis B broadcast in Round 2, the adversary can learn

(at most) extra b codewords, and hence extra b random k-vectors. As shown the proof of

Theorem 4.4.1, if a vector (c′ij , xij , j) ∈ Di, then the adversary knows c′ij already before

the broadcast of Round 2. That is, the broadcast in Round 2 does not reveal any extra

information. Thus in total, the adversary can learn at most wtPt+ b (≤ wtP(szP + 1))
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random k-vectors that R has chosen in Round 1. Since

wtPn− (wtPt+ b) ≥ wtP(n− szP − 1) = `,

there are at least ` k-vectors that remain secret. For any i such that the k-vector ri

remains secret, it is straightforward that |Di| ≤ wtP , and hence r′i ∈ T and r′i is secret

to the adversary. Thus the adversary has no knowledge on at least ` elements in T .

S can then use the randomness extractor to get ` perfectly private random elements.

That is, there are enough (at least `) pads z1, . . . , z` to encrypt the messages, thus the

protocol is 0-private.

Next, we prove that the protocol is 0-reliable. First we show that for each Di that

R receives, R gets r′′i = r′i. First, for each 1 ≤ i ≤ wtPn, we have xi = ci + ei where

ei is an error vector. Due to Lemma 3.2.4, we know that the information of ci can be

decoded from xi if the final error locator F is given. Let ei = (ei1, . . . , eih), for each

1 ≤ j ≤ h, we have xij = cij + eij . Now in Recovery Phase, if (c′ij , xij , j) ∈ Di, then

x′ij = c′ij − (xij − cij) = c′ij − eij ; else (which means xij = c′ij), x
′
ij = cij = xij − eij =

c′ij − eij . Thus in either case, for each 1 ≤ j ≤ h, we have x′ij = c′ij − eij , and hence

x′i = c′i − ei. Therefore, as we showed above, if the final error locator F is given, then

the information of c′i can be decoded from x′i. Thus R can get r′′i = r′i for each Di

received, and simultaneously get (z′1, . . . , z
′
`) = (z1, . . . , z`) to recover the messages with

0-reliability.

CC of the protocol. In this protocol:

CC(1) = (k + h)wtPnρ = O(h`ρ)

CC(2) = O(n(wtPh+ `+ wtPn · 3h)ρ) = O(h2n2ρ) = O(hn`ρ)

Therefore, the CC of this protocol is O(hn`ρ).

4.5 Efficient PSMT in Directed Graphs

In this section we present our PSMT protocols in directed graphs. Again it is worth

noting that the model of critical paths defined in Definition 3.3.2 and the critical-path

structure defined in Definition 3.3.3 will be employed. That is, we use P = {p1, . . . , pn},
Q = {q1, . . . , qu}, P = {P1, . . . , Pz} and Q = {Q1, . . . , Qz} in our protocols.

The necessary and sufficient condition for PSMT in a directed graph is that S and

R are strongly 3A-directed-connected (see Definition 2.2.8). That is, S and R are 2A-

connected on the forward paths (i.e., P /∈ 2P), and for any three sets A1, A2, A3 ∈ A, if

A1∪A2∪A3 cuts all the forward paths (i.e., P1∪P2∪P3 = P ), then at most one of these

three sets cuts all the feedback paths (i.e., at most one Qi = Q where i ∈ {1, 2, 3}).
In a directed graph without feedback paths (Q = ∅), S and R are 3A-connected on
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P . S only needs to send a codeword c, of which the information is the message m, to

R via P with respect to ψ. Due to Lemma 3.2.2, R can decode the information of c by

correcting errors. Thus the protocol is perfectly secure and the CC is O(hρ). We note

that Desmedt et al.’s protocol [DWB05] is actually an alternative use of the Worst Case

LSSS (see Section 3.2.1).

In this section we consider a directed graph with feedback paths (Q 6= ∅). We give

our 3-round protocols for single and multiple message transmission in Section 4.5.1.

In Section 4.5.2, we show that the strong 3A-directed-connectivity is not sufficient for

2-round PSMT protocols in directed graphs, and hence we give a new necessary and

sufficient condition and propose our protocols under this condition.

4.5.1 3-Round Directed Protocols

In our 3-round protocols, we do not need to assign shares (or entries) to the paths in

Q. Thus the participants of the linear codes are the forward paths in P . That is, the

linear code is constructed with respect to P.

First, we give a 3-round PSMT protocol for the transmission of a single message.

3-Round Directed Protocol for a single message m

Round 1 - S to R:

1. S chooses wtP(u+1)+1 random k-vectors r1, . . . , rwtP (u+1)+1 ∈ Fk,
and for each 1 ≤ i ≤ wtP(u+ 1) + 1, S encodes ri to get codeword

ci = EC(ri) = (ci1, . . . , cih).

2. For each 1 ≤ i ≤ wtP(u+ 1) + 1, S sends ci via P with respect to

ψ.

Round 2 - R to S:

1. R receives wtP(u+ 1) + 1 h-vectors x1, . . . ,xwtP (u+1)+1 (regarding

the codewords c1, . . . , cwtP (u+1)+1) from P . R uses the Pseudo-

Basis Construction Scheme (see Section 3.2.3) to build a pseudo-

basis B from x1, . . . ,xwtP (u+1)+1, and then sends B via all paths

in Q.

Round 3 - S to R:

1. For each 1 ≤ v ≤ u, let Bv be the pseudo-basis that S receives on

path qv, and let bv be the pseudo-dimension of Bv.

2. For each 1 ≤ v ≤ u, if bv > wtP , then S broadcasts “ignore v” via

P ; else, S finds the final error locator Fv from Bv. If |Fv| > wtP ,

then S broadcasts “ignore v” via P ; else, S broadcasts Bv and Fv

via P .
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3. S sets U := ∅ and T := ∅. For each 1 ≤ v ≤ u such that bv ≤
wtP and |Fv| ≤ wtP , S adds all the actual codewords (ci’s) that

correspond to the h-vectors in Bv to U . Thus at last, |U | ≤ wtPu.

For each ri such that EC(ri) = ci /∈ U , if i /∈ T and |T | < wtP + 1,

then S sets T := T ∪ {i}. Thus at last, |T | = wtP + 1. For each

i ∈ T , S decodes ri = DC(ri). S computes σ = m+
∑

i∈T ri, and

broadcasts σ and T via P .

Recovery Phase

Let v := 1, while v ≤ u:

1. if R receives “ignore v” from P , then R sets v := v + 1;

2. else if R receives Bv and Fv from P , then

(a) if Bv 6= B, then R sets v := v + 1;

(b) else, with Fv, σ and T , R uses the Decoding Scheme from

pseudo-basis (see Section 3.2.3) to get the information ri of

ci for each i ∈ T . R then recovers m = σ −
∑

i∈T ri, and

terminates the protocol.

If v > u, then R knows that S did not receive the correct pseudo-basis

B, so all paths in Q are corrupted. For each i ∈ T , R finds a set

Pf ∈ P such that Qf = Q, and if Pf ’s entries in xi are removed, all the

remaining entries are a part of a codeword c′i ∈ C, R then decodes r′i
as the information of c′i. R recovers m′ = σ −

∑
i∈T r

′
i. End.

Theorem 4.5.1. This 3-Round Directed Protocol is a (0, 0)-SMT protocol for a single

message.

Proof. First, we prove that the protocol is 0-private. There are in total wtP(u+ 1) + 1

codewords being transmitted. In Round 1, the adversary cannot learn any codeword.

In Round 2, the adversary can learn at most b codewords from the pseudo-basis B that

R sends, where b is the pseudo-dimension of B. On each path qv ∈ Q, the adversary

can change the pseudo-basis to Bv so that in Round 3, when S broadcasts Fv, the

adversary can learn if the codewords corresponding to the guessed h-vectors in Bv are

correct. This is a kind of Guessing Attack on the feedback paths (see Section 4.1).

The pseudo-dimension bv must not be larger than wtP for the Guessing Attack to be

successful, because otherwise S and R will “ignore v”. Thus the set U that S con-

structs in Round 3 consists of all the codewords that the adversary can possibly learn

by performing the Guessing Attack. As mentioned earlier, besides these |U | ≤ wtPu

codewords, the adversary can learn at most b other codewords from the pseudo-basis

B, which are sent by R in Round 2. Since b ≤ wtP , the adversary can learn at most

|U | + b ≤ wtP(u + 1) codewords. Thus it cannot learn the information of at least 1

out of the wtP + 1 codewords that are not in U and indicated by T . Since this secret



Chapter 4. SMT in Point-to-Point Networks 67

information is used to encrypt the message m, the adversary cannot recover m, which

means that the protocol is 0-private.

Next we prove that the protocol is 0-reliable. If S receives some Bv = B on a path

qv ∈ Q, then S will send Bv and Fv to R in Round 3. Thus it is straightforward that R

can recover the message (Recovery Phase, case 1(b)) due to Lemma 3.2.4. Otherwise, if

S does not receive a correct B, then in Recovery Phase, R is able to know that all paths

in Q are corrupted. R will then perform the last part of our protocol. We claim that

for each r′i that R decodes, we have r′i = ri. Let Pe ∈ P be the set that the adversary

corrupts, so Qe = Q. Assume that there is an i ∈ T such that r′i 6= ri, then some

of Pe’s entries are in the remaining entries of xi after removing Pf ’s entries. Now the

remaining entries are a part of a codeword means that there exists a set Pj ∈ P, such

that all the remaining entries are assigned to Pe ∪ Pj by ψ. This is because if Pj does

not exist, then the remaining entries that are not assigned to Pe are assigned to a set

in the access structure Γ = 2P \ P. With these entries, r′i = ri can be decoded, due to

Lemma 3.2.1. Thus Pj exists, so to sum up we have Pf ∪ Pe ∪ Pj = P , Qf = Q and

Qe = Q. This contradicts the strong 3A-directed-connectivity. From this contradiction,

we showed that our claim is correct. Thus with the correct r′i = ri for each i ∈ T , R

can recover the message m with 0-reliability.

CC of the protocol. In this protocol:

CC(1) = h(wtP(u+ 1) + 1)ρ = O(h2nρ)

CC(2) = O(u(wtPh)ρ) = O(h2nρ)

CC(3) = O(n(wtPhu+ wtPu+ 1 + (wtP + 1))ρ) = O(h2n2ρ)

Therefore, the CC of this protocol is O(h2n2ρ).

Next, we propose a 3-round PSMT protocol that transmits multiple (` = wtPu)

messages. This protocol is adapted from the above protocol which transmits a single

message. Thus we only show their differences as follows.

3-Round Directed Protocol for ` = wtPu message m1, . . . ,m`

Round 1 - S to R: S does the same only for wtP(u + 1) + ` random k-

vectors.

Round 2 - R to S: R does the same.

Round 3 - S to R: S does the same until step 3.

3. S sets U := ∅. For each 1 ≤ v ≤ u such that bv ≤ wtP and

|Fv| ≤ wtP , S adds all the actual codewords (ci’s) that correspond

to the h-vectors in Bv to U . Thus at last, |U | ≤ wtPu.

4. S sets T1, . . . , T` := ∅. For each ri such that EC(ri) = ci /∈ U , for

each 1 ≤ j ≤ `, if i /∈ Tj and |Tj | < wtP , then S sets Tj := Tj ∪{i}.
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Thus all T1, . . . , T` are the same and each |Tj | = wtP . There are

at least ` k-vectors ri such that EC(ri) = ci /∈ U and i /∈ Tj .
10

Let ri1 , . . . , ri` be ` such k-vectors, then for each 1 ≤ j ≤ `, S sets

Tj := Tj∪{ij}. Thus |Tj | = wtP+1, and all T1, . . . , T` are different.

For each 1 ≤ j ≤ ` and i ∈ Tj , S decodes ri = DC(ri), computes

σj = mj +
∑

i∈Tj ri, and broadcasts σj and Tj via P .

Recovery Phase For each 1 ≤ j ≤ `, R does the same to recover the

message mj . End.

Theorem 4.5.2. This 3-Round Directed Protocol is a (0, 0)-SMT protocol for multiple

messages.

Proof. The (0,0)-security of this protocol can be easily proved following the proof of

Theorem 4.5.1.

CC of the protocol. In this protocol:

CC(1) = h(wtP(u+ 1) + wtPu)ρ = O(h`ρ)

CC(2) = O(u(wtPh)ρ) = O(h`ρ)

CC(3) = O(n(wtPhu+ wtPu+ wtPu(1 + (wtP + 1)))ρ) = O(hn`ρ)

Therefore, the CC of this protocol is O(hn`ρ).

4.5.2 2-Round Directed Protocols

In [PCR09], Patra et al. showed that in the threshold model, the minimal connectivity

for PSMT in directed graphs (i.e., n ≥ max{3t + 1 − 2u, 2t + 1}) is not sufficient for

2-round protocols. Here we show a similar result in the general adversary model. That

is, we prove that in the general adversary model, the strong 3A-directed-connectivity

is not sufficient for 2-round protocols. Note that the general assumption is that the

feedback paths are not reliable.

Theorem 4.5.3. Given a directed graph G(V,E) where S,R ∈ V , let A be an adversary

structure on V \ {S,R}, 2-round PSMT is possible if and only if S and R are 2A-

connected on the forward paths and 3A-connected with the union of all the forward and

feedback paths in G.

Proof. First we prove the necessity of the condition. The 2A-connectivity on the forward

paths is obviously necessary. Now for contradiction, we assume that S and R are 3A-

separated in G and a 2-round PSMT protocol Π exists. Let viewS and viewR be the

10Because |U | ≤ wtPu, |Tj | = wtP and the total number of vectors ri is wtP(u + 1) + `, it is
straightforward that the number of vectors ri such that EC(ri) = ci /∈ U and i /∈ Tj is wtP(u + 1) +
`− |U | − |Tj | ≥ `.



Chapter 4. SMT in Point-to-Point Networks 69

views of S and R respectively. In Round 1 of Π, viewS and viewR can be different if the

adversary corrupts some feedback paths. Since the feedback paths are not reliable, S

cannot detect the differences. Thus after Round 2, because Π is perfectly private, with

respect to P�Q (see Definition 3.3.3), we regard viewS as a codeword whose information

is the message. Thus viewR is viewS plus an error vector caused by a corrupted set

Pe∪Qe ∈ P�Q. Since S and R are 3A-separated, we have P ∪Q ∈ 3(P�Q). Thus due to

Lemma 3.2.2, R cannot correct the errors and hence cannot decode the message. Thus

Π is not perfectly reliable. This contradiction shows that the condition is necessary.

Next we show a 2-round PSMT protocol under this condition. First we consider the

critical-path structure P�Q. From the condition, we have P /∈ 2P and P ∪Q /∈ 3(P�Q).

Now if Q /∈ P �Q, then we add Q to P �Q. It is straightforward that with this updated

critical-path structure P � Q, we still have P /∈ 2P and P ∪ Q /∈ 3(P � Q). In the

following protocol, we consider that paths in P ∪ Q are the participants of our linear

code, thus the linear code in this protocol is constructed with respect to the updated

P � Q. Since Q ∈ P � Q, there exists a linear code defined by a generating matrix G′

(see Definition 3.2.3) such that the columns in G′ that are assigned to the paths in Q

are linearly independent. We use this linear code in our protocol.

2-Round Directed Protocol for a single message m

Round 1 - R to S: R chooses a random k-vector r, and encodes it to get

the codeword c = EC(r) = (c1, . . . , ch). Suppose that c1, . . . , ct are

the entries in c such that ψ(c1, . . . , ct) = Q, our linear code allows all

these entries to be independent. R then sends the entries c1, . . . , ct via

Q with respect to ψ.

Round 2 - S to R: Upon the entries c′1, . . . , c
′
t that S receives on Q, S

constructs a k-vector r′ such that c′1, . . . , c
′
t are a part of the codeword

c′ = EC(r′) = (c′1, . . . , c
′
t, c
′
t+1, . . . , c

′
h). S decodes r′ = DC(r′). S then

sends c′t+1, . . . , c
′
h via P with respect to ψ and broadcasts σ = m + r′

via P .

Recovery Phase R receives c′′t+1, . . . , c
′′
h and σ on P . R constructs an h-

vector x = (c1, . . . , ct, c
′′
t+1, . . . , c

′′
h). Thus x = c′+ e where e is an error

vector caused by a corrupted set Pe ∪ Qe ∈ P � Q where 1 ≤ e ≤ z.

Since S and R are 3A-connected, due to Lemma 3.2.2, R can correct the

errors, decode the information r′ of c′ from x, and recover the message

m = σ − r′. End.

We now prove the security of this protocol. First, the protocol is 0-private. Because

the codeword c′ is transmitted via P ∪Q with respect to ψ. Due to Lemma 3.2.1, the

adversary cannot decode r′ and hence cannot recover m. Next, it is straightforward that

the protocol is 0-reliable due to Lemma 3.2.2.
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Clearly the CC of this 2-Round Directed Protocol is O(hρ). Furthermore, this

protocol can be used to transmit any ` > 1 messages with CC O(h`ρ).

4.6 Brief Conclusion of Chapter 4

In this chapter, we presented our results on SMT in point-to-point networks. First

in Section 4.1, we proposed a Guessing Attack on some existing PSMT protocols in

a directed graph with feedback paths. Our Guessing Attack was described using two

examples: one in the threshold model and the other in the general adversary model.

Next in Section 4.2, we determined the minimal network connectivities for APSMT. We

showed the necessary and sufficient conditions for δ-RMT and (0, δ)-SMT in both undi-

rected and directed graphs, and then proved that the minimal connectivity required for

ε-privacy is the same as that for 0-privacy. These results now complete Table 2.1, and

the completed table will be shown in Section 6.1. In Section 4.4 and Section 4.5, we gave

efficient PSMT protocols in undirected and directed graphs respectively. The construc-

tions of our protocols are based on the ideas of linear code, pseudo-basis and critical

paths. These protocols make significant improvements to the previous results in terms

of communication complexity (CC) and round complexity (RC) (see the comparison of

the results in Section 4.3).

In the next chapter, we study SMT in multicast communication neighbour networks.

Our goal is to determine the minimal connectivities for SMT in a general multicast graph

in both the threshold and general adversary models.



Chapter 5

SMT in Multicast Networks

In this chapter we solve the problem of secure message transmission (SMT) in multicast

graphs. A multicast graph is an undirected graph used to model the neighbour network

(see Section 2.2.2), in which a message multicast by a node is received—simultaneously

and privately—by all its neighbours. Our work is devoted to determine minimal con-

nectivities for different levels of reliability and security in a general multicast graph, in

which node-disjoint and neighbour-disjoint paths are not strictly required. Thus our

results solve Franklin and Wright’s open problem [FW98] (see Section 1.3), which has

been open for over a decade.

In our work, we study SMT in multicast graphs in the general adversary model, and

then apply the results to the threshold model.

First, we show that the current Basic Characterization (see Definition 3.3.2) of the

network graph is not enough to characterize the multicast communication. Thus in

Section 5.1, we give an Extended Characterization of the multicast graphs, which is

based on our observation on the eavesdropping and separating activities of the adversary

on a single path. This characterization should give a clearer insight on how the message

can be securely transmitted over multicast graphs.

Next, in Section 5.2 and Section 5.3, we give the necessary and sufficient conditions

for reliability and security respectively. Besides proving that our conditions imply the

lower bounds on network connectivity, we also provide message transmission protocols

to show that these bounds are tight.

Finally in Section 5.4, we use our results in the general adversary model to find the

necessary and sufficient conditions for reliability and security in the threshold model.

Moreover, by analysing the previous results, we show how our results explain all the

examples and prove all the conjectures in the previous studies (see some previous results

in Section 2.9.2).

Some results in this chapter has been published in [YD11].

71



Chapter 5. SMT in Multicast Networks 72

5.1 Characterization of Multicast Communication

In this section we characterize the multicast graphs based on the adversary structures.

We show an Extended Characterization which is essential for obtaining the necessary

and sufficient conditions in the multicast model. This characterization is based on our

observation on the eavesdropping and separating activities of the adversary on a single

path between the sender S and the receiver R. We show this observation in the following

Section 5.1.1, and present the Extended Characterization in Section 5.1.2.

5.1.1 Eavesdropping and Separating

Given an undirected multicast graph G(V,E) where S,R ∈ V , let A be an adversary

structure on V \ {S,R} and P be the set of all paths between S and R. For each path

p ∈ P , we define eavesdropping and separating as follows.

Definition 5.1.1. We say that the adversary can eavesdrop on p if it cannot control

any node on p but can control some neighbours of p.1 Suppose that the adversary can

eavesdrop on p and there is an element a to be transmitted between S and R on p. We

say that the adversary can completely eavesdrop on p if the adversary can always learn

a by eavesdropping.

Definition 5.1.2. We say that the adversary can separate S and R on p if it can control

some nodes on p. Suppose that the adversary can separate S and R on p and there are k

elements (a1, . . . , ak) ∈ Fk to be transmitted on p. We let (aS1 , . . . , a
S
k ) and (aR1 , . . . , a

R
k )

be the views of S and R respectively on these k elements at the end of any protocol. We

say that the adversary can completely separate S and R on p if there always exists a

strategy of the adversary that causes ∀i (1 ≤ i ≤ k) : aSi 6= aRi with probability 1.

Next we show several lemmas regarding the eavesdropping and separating activities

of the adversary on a single path p ∈ P . In the following, we assume that path p is

placed in a left-to-right direction, with S at the left end and R at the right end.

Lemma 5.1.1. The adversary can completely eavesdrop on a path p ∈ P if and only if

it can eavesdrop on two adjacent nodes2 on p.

Proof. We first prove the “if” direction. The privacy problem has been studied by

Franklin and Yung in [FY95]. They showed that private communication is possible

only if S and R are weakly thyper-connected in the hypergraph HG(V,EHG) (see Defi-

nition 2.2.4). Concerning private communication on a path p, this connectivity means

that by removing all the faulty nodes and the hyperedges on which the faulty nodes are,

path p remains. Evidently, this necessary condition for privacy is satisfied if and only

1Obviously, if the adversary can control some nodes on p, then it can learn everything passing through
those controlled nodes. However, for the purpose of our observation, we do not consider this activity as
“eavesdropping”, instead, we characterize it as “separating”, which we describe in Definition 5.1.2.

2Two nodes u, v ∈ V are adjacent to one another if there is an edge {u, v} ∈ E between them.
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Figure 5.1: Eavesdropping activities on a single path p.

if the adversary cannot eavesdrop on two adjacent nodes on p. This is clear from our

Single Path Eavesdropping Examples following this proof. Thus if the adversary can

eavesdrop on two adjacent nodes on p, then it can completely eavesdrop on p.

Next we prove the “only if” direction. We propose the following protocol, which

allows S to send an element aS to R with perfect privacy, if the adversary cannot

eavesdrop on two adjacent nodes on p. First we assume that including S and R, there

are k + 2 nodes v0, . . . , vk+1 on p. We let S be node v0, R be node vk+1, and v1, . . . , vk

be the other k nodes from left to right.

Single Path Private Propagation Protocol

1. For each 1 ≤ i ≤ k + 1, vi initiates an element ai ∈R F and multicasts

it. Thus for each 0 ≤ i ≤ k, vi receives the element ai+1 from its right

side neighbour node vi+1.

2. S sets i := 1 and multicasts b0 = aS + a1. While i ≤ k, vi receives the

element bi−1 from its left side neighbour node vi−1, vi then multicasts

bi = bi−1 − ai + ai+1 and sets i := i+ 1.

3. When i = k + 1, R receives the element bk from vk, R then sets aR :=

bk − ak+1. End.

Now for each 0 ≤ i ≤ k, the element that vi multicasts is an encrypted ciphertext bi =

aS +ai+1. In order to decrypt aS , the adversary needs to learn a pair (bi, ai+1) for some

0 ≤ i ≤ k. Since bi is multicast by vi and ai+1 is multicast by vi+1, the adversary who

cannot eavesdrop on two adjacent nodes is not able to learn aS by eavesdropping.

Single Path Eavesdropping Examples

(a) If the adversary can eavesdrop on at least two adjacent nodes on p, then the neces-

sary condition of [FY95] is not satisfied. For example, in Fig 5.1(a), the faulty node

is node 4 and the hyperedges are

(S, {1}), (1, {S, 2, 4}), (2, {1, 3, 4}), (3, {2, R}), (4, {1, 2}) and (R, {3}).

By removing the hyperedges that node 4 is on, the remaining hyperedges are

(S, {1}), (3, {2, R}) and (R, {3}).
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Thus p does not remain because edge {1, 2} is removed, and hence the condition

of [FY95] is not satisfied.

(b) If the adversary cannot eavesdrop on two adjacent nodes on p, then the necessary

condition of [FY95] is satisfied. For example, in Fig 5.1(b), the faulty node is node

4 and the hyperedges are

(S, {1}), (1, {S, 2, 4}), (2, {1, 3}), (3, {2, 4, R}), (4, {1, 3}) and (R, {3}).

By removing the hyperedges that node 4 is on, the remaining hyperedges are

(S, {1}), (2, {1, 3}) and (R, {3}).

Thus p remains because all edges on p remain, and hence the condition of [FY95] is

satisfied.

We note that the separating activities have been observed by Franklin and Wright

in [FW98], but here we extend their result and upgrade their protocol.

Lemma 5.1.2. (following [FW98]) The adversary can completely separate S and R on

a path p ∈ P if and only if it can control two or more nodes on p.

Proof. We first prove the “if” direction. If the adversary can control two or more nodes

on p, then the leftmost faulty node, say v1, will modify whatever is received on its right

side, and the rightmost faulty node, say v2, will modify whatever is received on its left

side. Thus despite what protocol is executed, in the view of S, the elements transmitted

on the right side of v1 are corrupted, and in the view of R, the elements transmitted on

the left side of v2 are corrupted. This immediately implies that the views of S and R

can be completely different.

Next we prove the “only if” direction. We assume that including S and R, there are

k+2 nodes v0, . . . , vk+1 on p. We let S be node v0, R be node vk+1, and v1, . . . , vk be the

other k nodes from left to right. We show that with the following protocol, the adversary

cannot completely separate S and R when k elements (a1, . . . , ak) are transmitted on p,

if the adversary can only control one node on p.

Single Path Distribution Protocol

1. For each 1 ≤ i ≤ k, vi initiates an element ai ∈R F and multicasts it.

2. For each 1 ≤ i ≤ k, the nodes on the left side of vi execute an instance

of the Single Path Private Propagation Protocol from vi−1 to S in which

vi−1 sends ai, and the nodes on the right side of vi execute an instance of

the Single Path Private Propagation Protocol from vi+1 to R in which

vi+1 sends ai.
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3. At the end of the protocol, for each 1 ≤ i ≤ k, S receives an element aSi
and R receives an element aRi . If S (or R) receives nothing regarding

the element ai for some 1 ≤ i ≤ k, then S (or R) sets aSi = 1 (or

aRi = 1). End.

Let ve (1 ≤ e ≤ k) be the only faulty node on p. It is straightforward that at the

end of the protocol, aSe = aRe , even if ve does not initiate and multicast any element (in

this case aSe = aRe = 1). This shows that the adversary cannot completely separate S

and R on path p if it can only control one node on p.

Finally, we give the following two lemmas, which are trivial so we omit the proofs.

Lemma 5.1.3. If the adversary can only control one node v on a path p ∈ P , then

despite what protocol is executed on p, there exists a strategy of the adversary that causes

the views of S and R to be different except for their views on the elements multicast by

v.

Lemma 5.1.4. Given a node v on a path p ∈ P , if the adversary can neither separate

S and R on p, nor completely eavesdrop on p, nor control a neighbour of v, then during

the execution of the Single Path Distribution Protocol on p, the adversary cannot learn

the elements multicast by v.

5.1.2 Extended Characterization

Based on our observation on the eavesdropping and separating activities, we now present

an Extended Characterization ζA of a multicast graph G(V,E) given an adversary struc-

ture A on V \ {S,R}. This is an extension of the Basic Characterization shown in Def-

inition 3.3.2. This Extended Characterization is essential for obtaining the necessary

and sufficient conditions in multicast graphs.

Definition 5.1.3. Given an undirected multicast graph G(V,E) where S,R ∈ V , let

A = {A1, . . . , Az} be an adversary structure on V \ {S,R} and P be the set of all

paths between S and R. An Extended Characterization of G given A is a set ζA =

{ζA1 , . . . , ζAz} where for each 1 ≤ i ≤ z, we have ζAi = (P
(+)
i , P

(1)
i , P

(∗)
i , Pi) where

• P (+)
i is the set of all paths on each of which there are at least two nodes in Ai,

• P (1)
i is the set of all paths on each of which there is exactly one node in Ai,

• P (∗)
i is the set of all paths on each of which there is no node in Ai, but on each

path in P
(∗)
i , there are two adjacent nodes that both have neighbours in Ai, and

• Pi = P
(+)
i ∪ P (1)

i is the set of all paths that Ai cuts (same as Definition 3.3.2).
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With the Extended Characterization ζA, we know that during the execution of any

protocol, by choosing a set Ai ∈ A to control, the adversary can separate S and R on

Pi, completely separate S and R on P
(+)
i and completely eavesdrop on P

(∗)
i .

Given any set Ai ∈ A, we are particularly interested in the nodes of Ai on the paths

of P
(1)
i . Due to Definition 5.1.3, there is exactly one node in Ai on each path in P

(1)
i .

For each path p ∈ P (1)
i , we use Ai u p to denote the single node v ∈ Ai that is on path

p; i.e., v = Ai u p. Note that this notation is only used for the paths in P
(1)
i , but not

for P
(+)
i .

Finally in this section, we define some special connectivities (e.g., high A-connectivity

and low 2A-connectivity) using the Extended Characterization.

Definition 5.1.4. Given a graph G(V,E) where S,R ∈ V , let A be an adversary struc-

ture on V \ {S,R}, we say that S and R are highly A-connected if for any set Ai ∈ A,

we have Pi ∪ P (∗)
i 6= P .

Definition 5.1.5. Given a graph G(V,E) where S,R ∈ V , let A be an adversary struc-

ture on V \ {S,R}, we say that S and R are highly 2A-connected if for any two sets

Ai, Aj ∈ A, we have (Pi ∪ P (∗)
i ) ∪ Pj 6= P .

Definition 5.1.6. Given a graph G(V,E) where S,R ∈ V , let A be an adversary struc-

ture on V \ {S,R}, we say that S and R are lowly 2A-separated if there exist two (not

necessarily distinct) sets A1, A2 ∈ A such that

(a) P1 ∪ P2 = P , and

(b) P
(1)
1 = ∅, or for each path p ∈ P (1)

1 , we have that p ∈ P2 ∪ P (∗)
2 or A1 u p has a

neighbour in A2, and

(c) P
(1)
2 = ∅, or for each path p ∈ P (1)

2 , we have that p ∈ P1 ∪ P (∗)
1 or A2 u p has a

neighbour in A1.

We say that S and R are lowly 2A-connected if they are not lowly 2A-separated.

Lemma 5.1.5. Given a graph G(V,E) where S,R ∈ V , let A be an adversary structure

on V \ {S,R}, if S and R are lowly 2A-connected, then they are A-connected.

Proof. Assume that S and R are A-separated; i.e., there exits a set Ai ∈ A such that

Pi = P . If we let both the sets A1, A2 of Definition 5.1.6 be Ai, then it is straightforward

that S and R are lowly 2A-separated. Thus we have a contradiction.

With some examples, we can show that the high A-connectivity and the low 2A-

connectivity do not imply each other. We give more details in Section 5.4.

Next, we present our results on reliable communication in Section 5.2, and then

study secure communication in Section 5.3.
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5.2 Reliable Multicast Communication

In this section, we discuss reliable message transmission (RMT) in multicast graphs. We

study almost perfect reliability (δ-RMT) in Section 5.2.1 and perfect reliability (0-RMT)

in Section 5.2.2.

5.2.1 Almost Perfectly Reliable Multicast

Here we give the necessary and sufficient condition for δ-RMT in a multicast graph.

Theorem 5.2.1. Given a graph G(V,E) where S,R ∈ V , let A be an adversary structure

on V \ {S,R}, the necessary and sufficient condition for δ-RMT from S to R is that S

and R are lowly 2A-connected.

Next, we use Lemma 5.2.2 to show that the condition is necessary and Lemma 5.2.3

to show that the condition is sufficient. Before we present these two lemmas, we first

give the following Lemma 5.2.1, which is a key ingredient for proving the necessity.

Lemma 5.2.1. Given a graph G(V,E) where S,R ∈ V , let A be an adversary structure

on V \ {S,R}, if there exists two sets A1, A2 ∈ A such that P
(+)
1 ∪ P (+)

2 = P , and

δ < 1
2(1− 1

|M|), then δ-RMT from S to R is impossible.

Proof. First, we note that similar results has been proven in [FW00, Theorem 5.1]

and [DWB05, Theorem 3] in the point-to-point setting. Especially in [FW00], Franklin

and Wright showed that if n ≤ 2t and δ < 1
2(1− 1

|M|), then in a point-to-point network,

δ-RMT is impossible. It is straightforward that P
(+)
1 ∪ P (+)

2 = P in a multicast graph

is the same as P1 ∪ P2 = P in a point-to-point graph. Indeed, it can be seen as if P is

split into two parts, and the adversary can choose to completely separate S and R on

either part.

Now assume there exists a δ-RMT protocol Π that transmits a message m ∈M from

S to R. The strategy of the adversary is to choose an e ∈R {1, 2} and control the set

Ae. During the execution of the protocol Π, the adversary acts as follows:

• If e = 1, then the adversary completely separates S and R on P
(+)
1 to make the

views of S and R completely different, and simulates the protocol on P
(+)
1 as S

sent a message m′ ∈M to R.

• If e = 2, then the adversary completely separates S and R on P \ P (+)
1 to make

the views of S and R completely different. This is possible because P
(+)
1 ∪P (+)

2 =

P ⇒ P \ P (+)
1 ⊆ P

(+)
2 . The adversary then simulates the protocol on P \ P (+)

1 as

S sent a message m′ ∈M to R.

Let mR be the message that R recovers, since R does not know whether e = 1 or e = 2,

similar to the proof in [FW00, Theorem 5.1], we have

Pr[mR = m|m′ 6= m] ≤ Pr[mR = m′|m′ 6= m] ≤ Pr[Π fails |m′ 6= m].
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This implies that the probability δ that the protocol Π fails is at least 1
2 Pr[m′ 6= m] =

1
2(1− 1

|M|). We have a contradiction.

Lemma 5.2.2. The condition of Theorem 5.2.1 is necessary.

Proof. It is straightforward that in order to achieve δ-reliability, it is necessary to have

Pi 6= P for any Ai ∈ A; i.e., P \ Pi 6= ∅.
Next we prove the necessity of the condition by contradiction. We assume that

S and R are lowly 2A-separated (i.e., there exist two sets A1, A2 ∈ A as they are in

Definition 5.1.6) and there exists a δ-RMT protocol Π that transmits a message m ∈M
from S to R. Without loss of generality, we let P1 ∩ P2 = ∅. Now if P

(1)
1 = ∅ and

P
(1)
2 = ∅, then we have P

(+)
1 = P1 and P

(+)
2 = P2, and hence P

(+)
1 ∪P (+)

2 = P (following

Definition 5.1.6(a)), thus due to Lemma 5.2.1, δ-RMT is impossible in this case. In the

rest of this proof we let P
(1)
1 6= ∅ and/or P

(1)
2 6= ∅.

During the execution of any protocol Π, we consider a node v. Throughout the

protocol, v will multicast a tuple of elements, say (v ∼ Π). Note that some elements in

(v ∼ Π) are not necessarily initiated by v, rather, they can just be initiated by other

nodes and transmitted via v. If a part of the elements in (v ∼ Π) are multicast by

all nodes (excluding S and R) on a path p (v is on p), then we use (v ∼ p) to denote

the tuple of these elements. Note that some (v ∼ p) must exist, because otherwise any

element transmitted during the protocol cannot be leant by both S and R. Now we let

(v ∼ p)S and (v ∼ p)R be the views of S and R respectively on (v ∼ p).
The strategy of the adversary is to choose an e ∈R {1, 2} and control the set Ae.

Let d ∈ {1, 2} such that d 6= e, then R should be able to recover the actual message

from the elements received on Pd with probability 1 − δ. If, despite whether e = 1

or e = 2, (v ∼ p)S 6= (v ∼ p)R for any v on any p ∈ Pe (i.e., the views of S and

R are completely different on Pe), then following the proof of Lemma 5.2.1, δ-RMT is

impossible. Therefore, there must exist an e ∈ {1, 2} such that (v ∼ p)S = (v ∼ p)R

is guaranteed for some v on some p ∈ Pe. We say that the tuple of elements (v ∼ p)

where p ∈ Pe such that (v ∼ p)S = (v ∼ p)R is used to support the actual message.

Following Lemma 5.1.2, the adversary can completely separate S and R on P
(+)
e and

cause ∀(p ∈ P (+)
e , v on p) : (v ∼ p)S 6= (v ∼ p)R. Following Lemma 5.1.3, for any path

p ∈ P
(1)
e (if P

(1)
e 6= ∅), (v ∼ p)S = (v ∼ p)R can only be guaranteed if v = Ae u p.

Therefore, there must exist an e ∈ {1, 2} such that the actual message received on Pd is

supported by some ((Ae u p) ∼ p) where p ∈ P (1)
e . Next, following Definition 5.1.6(b,c),

for each path p ∈ P (1)
d (if P

(1)
d 6= ∅), we have case 1: p ∈ Pe ∪ P (∗)

e , or case 2: Ad u p
has a neighbour in Ae. In case 1: p ∈ Pe ∪P (∗)

e , due to Lemma 5.1.1, there is no private

transmission on path p whatsoever, so the adversary can learn ((Ad u p) ∼ p). In case

2: Ad u p has a neighbour in Ae, it is trivial that the adversary can learn ((Ad u p) ∼ p).
To sum up, we can conclude that when the adversary chooses Ae to control, the

actual message, which can be recovered from the elements received on Pd, should be
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supported by some ((Ae u p) ∼ p) where p ∈ P (1)
e (if P

(1)
e 6= ∅), and the adversary can

learn ((Ad u p) ∼ p) for each p ∈ P (1)
d (if P

(1)
d 6= ∅). Note that {d, e} = {1, 2}.

Now during the execution of the protocol Π, the adversary corrupts Pe and causes

(v ∼ p)S 6= (v ∼ p)R for all nodes v on all paths p ∈ Pe except for p ∈ P
(1)
e and

v = Ae u p. This is possible due to Lemma 5.1.2 and Lemma 5.1.3. As we concluded

above, the adversary can always learn ((Ad u p) ∼ p) for each p ∈ P (1)
d . Thus on Pe, the

adversary simulates the protocol as S sent a message m′ ∈M, and m′ can be supported

by ((Ad u p) ∼ p), where p ∈ P (1)
d .

Therefore, at the end of the protocol Π, despite whether e = 1 or e = 2, the view of

R always consists of the following:

• on P1, a message is recovered which can be supported by ((A2 u p) ∼ p) for any

p ∈ P (1)
2 (if P

(1)
2 6= ∅), but may not be supported by any other elements received

on P2;

• on P2, a different message is recovered which can be supported by ((A1 u p) ∼ p)

for any p ∈ P (1)
1 (if P

(1)
1 6= ∅), but may not be supported by any other elements

received on P1.

Thus as shown in Lemma 5.2.1, with probability δ ≥ 1
2(1 − 1

|M|), R recovers the

wrong message m′. This is a contradiction, which proves the necessity of the low 2A-

connectivity.

Next, to prove that the condition is sufficient, we give a δ-RMT protocol. Let

P = {p1, . . . , pn}, we first generalize some of Franklin and Wright’s protocols in multicast

graphs.

Full Distribution Protocol

1. For each 1 ≤ j ≤ n, the nodes on path pj execute an instance of the

Single Path Distribution Protocol for each node vi on pj to distribute

an element ai,j . The nodes not on pj do not multicast anything.

2. At the end of the protocol, on each path pj (1 ≤ j ≤ n), S and R

receive aSi,j and aRi,j respectively as the element initiated by node vi on

pj . End.

Private Propagation Protocol

1. For each 1 ≤ j ≤ n, the nodes on path pj execute an instance of the

Single Path Private Propagation Protocol from S to R in which S sends

an element aSj , and the nodes not on pj do not multicast anything.

2. At the end of the protocol, on each path pj (1 ≤ j ≤ n), R receives aRj
as the element that S initiated and propagated on pj . End.
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Now we give the following protocol which achieves δ-RMT for a message m ∈ M in

a multicast graph G(V,E).

Reliable Transmission Protocol

1. The nodes of V execute an instance of the Full Distribution Protocol

in which for each 1 ≤ j ≤ n, the elements that node vi on path pj

initiates are (ai,j , bi,j) ∈R F2. Let (aSi,j , b
S
i,j) and (aRi,j , b

R
i,j) be what S

and R receive respectively regarding (ai,j , bi,j).

2. The nodes of V execute an instance of the Private Propagation Protocol

from S to R in which S sends the same vector on all paths in P :

(m, 〈auth(m; aSi,j , b
S
i,j)〉)

where 〈auth(m; aSi,j , b
S
i,j)〉 is an ordered set of the encrypted m with all

keys (aSi,j , b
S
i,j) that S receives in Step 1. At the end of the instance, R

receives a vector (mk, 〈ui,j,k〉) on each path pk ∈ P .

3. Given the vector (mk, 〈ui,j,k〉) that R receives on pk, if ∃(i, j) : ui,j,k =

auth(mk; a
R
i,j , b

R
i,j), then we say that mk is qualified on (vi ∼ pj). R

finds an Af ∈ A that satisfies the following three α-conditions:

α-1 all vectors received on P \ Pf are the same. We call this vector

(ml, 〈ui,j,l〉);
α-2 P

(1)
f = ∅, or for each pj ∈ P

(1)
f , we have that ml is qualified on

((Af u pj) ∼ pj);
α-3 P \(Pf∪P

(∗)
f ) = ∅, or for any vector (mk, 〈ui,j,k〉) that R receives on

path pk ∈ Pf such that mk 6= ml, we have that mk is not qualified

on any (vi ∼ pj) where pj ∈ P \ (Pf ∪ P
(∗)
f ) and vi does not have a

neighbour in Af .

R then outputs the message ml. End.

Lemma 5.2.3. The Reliable Transmission Protocol is a δ-RMT protocol under the

condition of Theorem 5.2.1.

Proof. It is straightforward that if a corruptedmk is qualified on some (vi ∼ pj) unknown

to the adversary, then the Reliable Transmission Protocol fails. We use RT to denote

the event when the above failure occurs and RT to denote the event otherwise. Let y

be the number of nodes on the longest path (i.e., with the maximum number of nodes)

between S and R, following the proof of Franklin and Wright [FW00, Theorem 3.4],

the probability that the protocol fails is Pr[RT ] < yn2

|F| . Thus this probability can be

made negligible in security parameters (assuming F to be sufficiently large). Next in

our proof, we assume that the above failure does not happen. That is, we analyse the

protocol in the event RT .
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The protocol achieves δ-reliability in Step 3. In the following, we first show that

R can always find an Af ∈ A that satisfies the three α-conditions, then we prove, by

contradiction, that in the event RT , the message output by R is correct.

First, we show that there always exists an Af that satisfies all three α-conditions, at

least when the adversary chooses Af to control so that Pf is corrupted. Since Pf 6= P

(following Lemma 5.1.5), we immediately have that condition α-1 is satisfied and ml

received on P \ Pf is the actual message. If P
(1)
f 6= ∅, then as shown in the proof of

Lemma 5.1.2, on each pj ∈ P (1)
f , S and R always have the same view on the key initiated

by Af upj . Thus it is clear that ml is qualified on ((Af upj) ∼ pj), and hence condition

α-2 is satisfied. If P \ (Pf ∪P
(∗)
f ) 6= ∅, then the adversary cannot learn the key initiated

by any node vi which is on a path pj ∈ P \ (Pf ∪P
(∗)
f ) if vi does not have a neighbour in

Af . Thus without the above mentioned failure RT , any faulty message mk 6= ml cannot

be qualified on such (vi ∼ pj), and hence condition α-3 is satisfied.

Next, using contradiction, we show that in the event RT , the message ml that S

outputs is the actual message. We assume that ml is modified by the adversary who

chooses a set Ae ∈ A to control, and all three α-conditions are satisfied. We now show

that the three α-conditions imply the three properties of A1, A2 in Definition 5.1.6.

• From condition α-1, since all vectors received on P \ Pf are modified, we have

Pe ∪ Pf = P (i.e., corresponding to Definition 5.1.6(a)).

• Condition α-2 indicates that either P
(1)
f = ∅, or the adversary can learn the key

initiated by node Af u pj on any path pj ∈ P (1)
f to make the faulty message ml

qualified on ((Af u pj) ∼ pj). Due to Lemma 5.1.4, this means that the adversary

can separate S and R on pj , completely eavesdrop on pj or control a neighbour

of Af u pj . Thus from condition α-2 we can conclude that P
(1)
f = ∅, or for each

path pj ∈ P
(1)
f , we have pj ∈ Pe ∪ P (∗)

e or Af u pj has a neighbour in Ae (i.e.,

corresponding to Definition 5.1.6(c)).

• Finally, since Pe 6= P and Pe∪Pf = P , there exists at least one path pk ∈ Pf such

that the message mk received on pk is the actual message. Due to condition α-3,

there are two cases:

case 1 P \ (Pf ∪ P
(∗)
f ) = ∅, thus we have P

(1)
e ⊆ Pf ∪ P

(∗)
f = P .

case 2 The actual message mk is not qualified on any (vi ∼ pj) where pj ∈ P \
(Pf ∪ P

(∗)
f ) and vi does not have a neighbour in Af . This implies that either

pj ∈ P (+)
e , or pj ∈ P (1)

e but any vi on pj that does not have a neighbour in Af

is not Ae u pj (because otherwise the actual message mk should be qualified

on (vi ∼ pj), due to the proof of Lemma 5.1.2). That is, if such pj ∈ P (1)
e

exists, then all the nodes on pj that do not have a neighbour in Af are not

Ae u pj . This implies that Ae u pj has a neighbour in Af .
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It is easy to conclude that in either case, P
(1)
e = ∅, or for each path pj ∈ P

(1)
e ,

we have pj ∈ Pf ∪ P
(∗)
f or Ae u pj has a neighbour in Af (i.e., corresponding to

Definition 5.1.6(b)).

To sum up, under our assumption (i.e., the recovered message ml is corrupted), Ae, Af

are as A1, A2 in Definition 5.1.6. This means S and R are lowly 2A-separated, which

contradicts the condition of Theorem 5.2.1.

Therefore, at the end of the Reliable Transmission Protocol, R can recover ml =

m with an negligible probability of failure (i.e., Pr[RT ] < yn2

|F| ). Thus the Reliable

Transmission Protocol is a δ-RMT protocol.

5.2.2 Perfectly Reliable Multicast

Here we show the necessary and sufficient condition for 0-RMT in multicast graphs.

Theorem 5.2.2. Given a graph G(V,E) where S,R ∈ V , let A be an adversary structure

on V \ {S,R}, the necessary and sufficient condition for 0-RMT from S to R is that S

and R are 2A-connected in G.

Proof. The proof of necessity straightforwardly follows Franklin and Wright’s proof

of [FW00, Theorem 3.6]. Indeed, assume that there exist two sets A1, A2 ∈ A such

that P1 ∪ P2 = P , the adversary who chooses Ae (e ∈R {1, 2}) to control will simulate

the protocol on Pe to transmit a faulty message. During the transmission, the adversary

will guess the information it cannot learn to support its faulty message. Thus at the

end of any protocol, R has to distinguish two different messages received respectively

from P1 and P2. With some non-zero probability, the guess of the adversary during the

execution of the protocol is valid, and R, in this case (or, as denoted in the proof of

Lemma 5.2.2, the event RT ), may mistakenly recover the wrong message. Thus there

does not exist a protocol that is 0-reliable.

The sufficiency of the condition can be proven with a 0-RMT protocol that combines

our Private Propagation Protocol with Desmedt et al.’s 0-RMT protocol [DWB05] (see

also Appendix A.4). The protocol is briefly described as follows. The nodes of V

execute an instance of the Private Propagation Protocol from S to R in which S sends

the message m on all paths in P . R finds an Af ∈ A such that all messages received

on P \ Pf are equal. R sets m′ to be this message. It is trivial that m′ = m, and hence

this protocol achieves 0-reliability.

Evidently the necessary and sufficient condition for 0-RMT in the multicast setting is

the same as that in the point-to-point setting. Same result has been shown by Franklin

and Wright [FW98] in the threshold model (see Table 2.1).
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5.3 Secure Multicast Communication

In this section we take the problem of achieving privacy into consideration. Therefore,

the SMT protocols should guarantee some level of privacy while enabling RMT. We

study almost perfect security in Section 5.3.1. In this case, δ-reliability is required, and

in addition, ε-privacy or perfect privacy should also be guaranteed. Thus we discuss

both (ε, δ)-SMT and (0, δ)-SMT. In Section 5.3.2, we study (0, 0)-SMT that enables

perfect security.

5.3.1 Almost Perfectly Secure Multicast

First, we give the necessary and sufficient condition for (ε, δ)-SMT in multicast graphs.

Unlike the neighbour-disjoint setting in [FW98] where the conditions for both δ-RMT

and (ε, δ)-SMT are the same (i.e., n > t), in multicast graphs, (ε, δ)-SMT requires

stronger connectivity than that for δ-RMT.

Theorem 5.3.1. Given a graph G(V,E) where S,R ∈ V , let A be an adversary structure

on V \ {S,R}, the necessary and sufficient condition for (ε, δ)-SMT from S to R is that

S and R are highly A-connected and lowly 2A-connected.

Proof. We first prove the necessity of the condition. It is straightforward that the

high A-connectivity, i.e., Pi ∪ P (∗)
i 6= P , is necessary for achieving ε-privacy, because

otherwise there is no private transmission between S and R on any path in P whatsoever.

Moreover, as proven by Lemma 5.2.2, the low 2A-connectivity is necessary for achieving

δ-reliability. Thus the condition is necessary for (ε, δ)-SMT.

Next, we show that the condition is sufficient. Let P = {p1, . . . , pn}, we give the

following protocol for S to send a message m ∈M to R.

Private Transmission Protocol

1. The nodes of V execute an instance of the Private Propagation Protocol

from S to R in which for each 1 ≤ j ≤ n, S sends a pair (aSj , b
S
j ) ∈R F

on path pj ∈ P . At the end of the instance, R receives a pair (aRj , b
R
j )

on each path pj ∈ P .

2. R chooses an element rR ∈R F and for each 1 ≤ j ≤ n, computes

sRj = auth(rR; aRj , b
R
j ). The nodes of V execute an instance of the

Reliable Transmission Protocol from R to S in which R sends a vec-

tor (rR, sR1 , . . . , s
R
n ). At the end of the instance, S outputs a vector

(rS , sS1 , . . . , s
S
n).

3. S computes an index set I = {j|sSj = auth(rS ; aSj , b
S
j )} and an encryp-

tion key key =
∑

j∈I a
S
j , and then encrypts the message c = m + key.
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The nodes of V execute an instance of the Reliable Transmission Pro-

tocol from S to R in which S sends a vector (I, c). At the end of the

instance, R outputs a vector (I ′, c′).

4. R computes a decryption key key′ =
∑

j∈I′ a
R
j and decrypts the message

m′ = c′ − key′. End.

First we show that this protocol is ε-private under the condition. Suppose that

the adversary chooses a set Ae to control. Since Pe ∪ P (∗)
e 6= P (high A-connectivity),

there exists a path pd ∈ P \ (Pe ∪ P (∗)
e ) on which the adversary cannot completely

eavesdrop. As shown in the proof of Lemma 5.1.1, the adversary cannot learn (aSd , b
S
d )

in Step 1. Because pd /∈ Pe, we have (aRd , b
R
d ) = (aSd , b

S
d ). Let RT denote the event that

the instance of the Reliable Transmission Protocol in Step 2 succeeds and RT denote

the event otherwise. In the event RT , rS = rR and for each 1 ≤ j ≤ n, we have sSj = sRj .

This implies that d ∈ I. The adversary who cannot learn aSd by eavesdropping or by

decoding sRd (due to Theorem 2.8.1) will not be able to compute key to decrypt m. That

is, for any two messages m0,m1 ∈M and any coin flips r, we have the following:

∑
c |Pr[adv(m0, r) = c|RT ]− Pr[adv(m1, r) = c|RT ]| = 0 (5.1)∑
c |Pr[adv(m0, r) = c|RT ]− Pr[adv(m1, r) = c|RT ]| ≤ |+ 1|+ | − 1| = 2 (5.2)

Let Pr[RT ] = ε, that is, ε is the probability with which the instance of the Reliable

Transmission Protocol in Step 2 fails. This can be made negligible as discussed in the

proof of Lemma 5.2.3. By combining Eq. 5.1 and Eq. 5.2, we have the following:

∑
c |Pr[adv(m0, r) = c]− Pr[adv(m1, r) = c]| ≤ 0 · Pr[RT ] + 2 · Pr[RT ] = 2ε.

Thus the Private Transmission Protocol is ε-private (see notation in Section 2.4).

Next we show that the protocol is δ-reliable. Let δ1 be the probability that the

instance of the Reliable Transmission Protocol in Step 2 fails and δ2 be the probability

that the instance in Step 3 fails. As shown in the proof of Lemma 5.2.3, δ1 and δ2 can be

made negligible in security parameters. Let δ3 be the probability that both the above

instances succeed, but R outputs m′ 6= m. This can only happen if there exists at least

one j ∈ I such that aSj 6= aRj . Since both reliable protocols succeed, the fact j ∈ I

implies auth(rR; aSj , b
S
j ) = auth(rR; aRj , b

R
j ). That is,

aSj + bSj r
R = aRj + bRj r

R ⇒ rR =
aRj − aSj
bSj − bRj

∈ F, (5.3)

where bSj 6= bRj .3 Since rR is chosen with respect to the uniform distribution, if the

adversary modifies (aSj , b
S
j ) to (aRj , b

R
j ) on path pj in Step 1, then the probability that

3If bSj = bRj , then auth(rR; aSj , b
S
j ) = auth(rR; aRj , b

R
j ) implies aSj = aRj . Since aSj 6= aRj , we always

have bSj 6= bRj .
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Eq. 5.3 is fulfilled is 1
|F| . Since the adversary can corrupt |Pe| paths, it is straightforward

that δ3 = |Pe|
|F| <

n
|F| , which is much smaller than δ1 and δ2. Thus the final probability

that the protocol fails to be reliable is

δ = δ1 + (1− δ1)δ2 + (1− (δ1 + (1− δ1)δ2))δ3 < δ1 + δ2 + δ3.

Therefore, the Private Transmission Protocol is an (ε, δ)-SMT protocol. This implies

that the condition is sufficient, which concludes our proof.

Note that compared to δ-RMT, (ε, δ)-SMT requires an extra condition: the high

A-connectivity. This is because, following our discussion in the proof of Lemma 5.1.1,

the condition Pi∪P (∗)
i 6= P corresponds to the weak thyper-connectivity in hypergraphs,

which is necessary for private communication as proven by Franklin and Yung [FY95].

Therefore, we can see the condition of Theorem 5.3.1 as that it consists of two parts, with

the high A-connectivity enabling private communication and the low 2A-connectivity

enabling δ-reliable communication. These two types of connectivities are independent.

Indeed, with some examples in Section 5.4, we can show that they do not imply each

other.

From Corollary 4.2.1, we know that reducing the requirement for privacy does not

weaken the minimal connectivity. Thus in the following theorem, we show that the

condition for (ε, δ)-SMT is also necessary and sufficient for (0, δ)-SMT.

Theorem 5.3.2. Given a graph G(V,E) where S,R ∈ V , let A be an adversary structure

on V \ {S,R}, the necessary and sufficient condition for (0, δ)-SMT from S to R is that

S and R are highly A-connected and lowly 2A-connected.

Proof. It is trivial that the condition is necessary following the proof of Theorem 5.3.1.

Next we show that the condition is sufficient by slightly amending the Private Trans-

mission Protocol to the following protocol which achieves perfect privacy.

Perfectly Private Transmission Protocol

1. Same as Step 1 in the Private Transmission Protocol.

2. R chooses an element rR ∈R F and for each 1 ≤ j ≤ n, computes

sRj = auth(rR; aRj , b
R
j ). The nodes of V executes an instance of the

Reliable Transmission Protocol from R to S in which R sends a vec-

tor (rR, sR1 , . . . , s
R
n ). At the end of the instance, S distinguishes the

following two cases:

Case 1 There exist two sets Af1 , Af2 ∈ A that satisfy all three α-conditions

of the Reliable Transmission Protocol, and the vectors u1 and u2

(both regarding the vector (rR, sR1 , . . . , s
R
n )) that S receives respec-

tively on P \ Pf1 and P \ Pf2 are different, then S terminates the

protocol.
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Case 2 Otherwise, S outputs a vector (rS , sS1 , . . . , s
S
n), and goes to Step 3.

3. Same as Step 3 in the Private Transmission Protocol.

4. Same as Step 4 in the Private Transmission Protocol. End.

Now we show that this protocol is 0-private. Following the proof of Theorem 5.3.1,

the privacy of the message transmission can only be breached in the event RT . It is clear

that the instance of the Reliable Transmission Protocol in Step 2 allows S to distinguish

between RT and RT . As shown in the proof of Lemma 5.2.3, in the event RT , only the

correct vector can be output after the Reliable Transmission Protocol. This means that

if two different vectors can be output, then the event RT occurs. Thus in Step 2, Case 1

indicates RT and Case 2 indicates RT . In the event RT , S terminates the protocol

so the adversary learns nothing about the message. Corresponding to Eq. 5.2 in the

previous proof, we have the following:

∑
c |Pr[adv(m0, r) = c|RT ]− Pr[adv(m1, r) = c|RT ]| = 0. (5.4)

Using Eq. 5.1 and Eq. 5.4, we have the following:

∑
c |Pr[adv(m0, r) = c]− Pr[adv(m1, r) = c]| = 0 · Pr[RT ] + 0 · Pr[RT ] = 0.

Thus the protocol achieves 0-privacy.

Next, using a similar proof to that of Theorem 5.3.1, we can prove that the Perfectly

Private Transmission Protocol is also δ-reliable. This concludes the proof.

5.3.2 Perfectly Secure Multicast

In [DDWY93], Dolev et al. showed that if σ is the maximum number of channels that a

listening (passive) adversary can control and τ is the maximum number of channels that

a disrupting (active) adversary can control, then there must be at least n ≥ max{σ +

τ + 1, 2τ + 1} paths between S and R in an undirected point-to-point graph for PSMT

(i.e., (0, 0)-SMT) to be possible. This setting can be generalized in our model as follows:

given an adversary structure A = {A1, . . . , Az}, then {P1 ∪P (∗)
1 , . . . , Pz ∪P (∗)

z } consists

of the subsets of paths a listening adversary can control and {P1, . . . , Pz} consists of the

subsets of paths a disrupting adversary can control. Thus we give the following theorem

for (0, 0)-SMT in multicast graphs.

Theorem 5.3.3. Given a graph G(V,E) where S,R ∈ V , let A be an adversary structure

on V \ {S,R}, the necessary and sufficient condition for (0, 0)-SMT from S to R is that

S and R are highly 2A-connected in G.4

Proof. Using a similar proof to that of [DDWY93, Theorem 5.2], we can prove that the

condition is necessary. To prove that the condition is sufficient, we can easily combine

4The high 2A-connectivity means (Pi ∪ P (∗)
i ) ∪ Pj 6= P for any Ai, Aj ∈ A. See Definition 5.1.5.
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the Private Propagation Protocol with any of the PSMT protocols in Section 4.4 to

give a (0,0)-SMT protocol under this condition. In this case, the linear code should be

constructed with respect to the critical-path structure P∗ = {P1 ∪ P (∗)
1 , . . . , Pz ∪ P (∗)

z },
and the errors are caused by a set in the critical path-structure P = {P1, . . . , Pz}.

Again from the result shown in Corollary 4.2.1, we can determine the minimal con-

nectivity for (ε, 0)-SMT.

Corollary 5.3.1. Given a graph G(V,E) where S,R ∈ V , let A = {A1, . . . , Az} be an

adversary structure on V \ {S,R}, the necessary and sufficient condition for (ε, 0)-SMT

from S to R is that S and R are highly 2A-connected in G.

5.4 Multicast in the Threshold Model

In this section we use our results in the general adversary model to find the necessary and

sufficient conditions for SMT in the threshold model. Unlike those in [FW98, FW00], our

results are obtained in general multicast graphs without the requirement of node-disjoint

and neighbour-disjoint paths.

First, because a threshold is a special case of an adversary structure, we re-define

the threshold model in the adversary structure context.

Definition 5.4.1. Given a graph G(V,E), a threshold t is an adversary structure AT ⊆
2V \{S,R} such that ∀(A ⊆ V \ {S,R}, |A| ≤ t) : A ∈ AT .

Using this new definition of the threshold, we define two special types of connectiv-

ities in the threshold model as follows.

Definition 5.4.2. Given a graph G(V,E) where S,R ∈ V , let AT be a threshold t on

V \ {S,R},

• we say S and R are tζ-private-connected if they are highly AT -connected in G;

• we say S and R are tζ-reliable-connected if they are lowly 2AT -connected in G.

Next, we show that our results correspond to Franklin and Wright’s results in [FW98]

(see Table 2.2) if the multicast graph consists of only node-disjoint and neighbour-

disjoint paths.

Lemma 5.4.1. In a multicast graph that consists of n node-disjoint and neighbour-

disjoint paths, n > t implies the conditions of Theorem 5.2.1, Theorem 5.3.1 and Theo-

rem 5.3.2, and n > 2t implies the conditions of Theorem 5.2.2 and Theorem 5.3.3.

Proof. For each Ai ∈ AT , we let P
(0)
i ⊆ P \ Pi be the set of all paths on each of which

there is at least one node that have a neighbour in Ai (thus P
(∗)
i ⊆ P

(0)
i ). In such a

special multicast graph, each node can only be on or be a neighbour of at most one



Chapter 5. SMT in Multicast Networks 88

path. Thus we have |Pi ∪ P (0)
i | ≤ t. Also, because there are at least two nodes on each

path in P
(+)
i , we have 2|P (+)

i |+ |P (1)
i |+ |P

(0)
i | ≤ t.

First, it is straightforward that n > 2t implies the conditions of Theorem 5.2.2 and

Theorem 5.3.3. Since n > 2t means that for any Ai, Aj ∈ AT , we have (Pi ∪ P (0)
i ) ∪

(Pj ∪ P (0)
j ) 6= P , the condition of Theorem 5.2.2, Pi ∪ Pj 6= P , and the condition of

Theorem 5.3.3, (Pi ∪ P (∗)
i ) ∪ Pj 6= P , are clearly satisfied.

Next, n > t means that for any Ai ∈ AT , we have Pi ∪ P (0)
i 6= P . Obviously this

implies the tζ-private-connectivity which means Pi ∪ P (∗)
i 6= P . Thus to show that n > t

implies the conditions of Theorem 5.2.1, Theorem 5.3.1 and Theorem 5.3.2, we only

need to prove that n > t implies the tζ-reliable-connectivity.

Finally, we prove this implication by contradiction. Assume that S and R are not

tζ-reliable-connected; i.e., they are not lowly 2AT -connected. That is, there exist two sets

A1, A2 ∈ AT such that P1 ∪ P2 = P (Definition 5.1.6(a)). From Definition 5.1.6(b), we

have P
(1)
1 ⊆ P2 ∪ P (0)

2 , and hence P
(+)
2 ∪ P (1)

2 ∪ P (0)
2 ∪ P (+)

1 = P because

P
(+)
1 ∪ P (1)

1 ∪ P (+)
2 ∪ P (1)

2 = P and P
(1)
1 ⊆ P (+)

2 ∪ P (1)
2 ∪ P (0)

2 .

Similarly, from Definition 5.1.6(c), we have P
(+)
1 ∪ P (1)

1 ∪ P (0)
1 ∪ P (+)

2 = P . Therefore,

we have |P (+)
1 | + |P (1)

1 | + |P
(0)
1 | + |P

(+)
2 | ≥ n and |P (+)

2 | + |P (1)
2 | + |P

(0)
2 | + |P

(+)
1 | ≥ n,

and hence

(2|P (+)
1 |+ |P (1)

1 |+ |P
(0)
1 |) + (2|P (+)

2 |+ |P (1)
2 |+ |P

(0)
2 |) ≥ 2n. (5.5)

As we showed at the beginning of this proof, for each i ∈ {1, 2}, we have 2|P (+)
i |+|P (1)

i |+
|P (0)
i | ≤ t. Thus Eq. 5.5 implies t + t ≥ 2n, and hence n ≤ t, which is a contradiction.

This proves that n > t implies the tζ-reliable-connectivity.

Next we discuss the connectivities in the general multicast graph setting with some

results in the previous studies. First we remark the relations of the t-connectivity

(see Definition 2.2.1), the tneighbour-connectivity (see Definition 2.2.2), the weak (n, t)-

connectivity (see Definition 2.2.3) and the weak thyper-connectivity (see Definition 2.2.4).

In [DW02], Desmedt and Wang [DW02] showed that the following implications are strict

(see Section 2.9.2):

weak (n, t)-connectivity ⇒ tneighbour-connectivity

⇒ weak thyper-connectivity ⇒ t-connectivity.

As shown in the proof of Lemma 5.1.1, Franklin and Yung’s weak thyper-connectivity

in a hypergraph HG is essentially our tζ-private-connectivity in a multicast graph G.

In [WD99], Wang and Desmedt claimed that their weak (n, t)-connectivity is sufficient

for (0, δ)-SMT. Since weak (n, t)-connectivity ⇒ tζ-private-connectivity, it is clear that
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Figure 5.2: Private and reliable connectivity (duplicate of Figure 2.2).

0-privacy can be achieved. However, δ-reliability is only achievable under their condition

if weak (n, t)-connectivity ⇒ tζ-reliable-connectivity. In [WD99], there is not a proper

proof showing this implication. Thus their result (weak (n, t)-connectivity being the

upper bound for (0, δ)-SMT) is only a conjecture. We leave this as an open problem.

As discussed in Section 2.9.2, Desmedt and Wang [DW02, WD08] gave some results

regarding SMT in multicast graphs with examples. Here, using Figure 5.2, we explain

their examples and prove their conjectures as follows.

• Result: The weak (n, t)-connectivity is not necessary for (0, δ)-SMT in multicast

graphs. E.g., in Figure 5.2(a), S and R are not weakly (2, 1)-connected, but (0, δ)-

SMT is possible.5

Our explanation: This is because S and R are obviously 1ζ-private-connected

and 1ζ-reliable-connected in Figure 5.2(a).

• Result: The weak thyper-connectivity is not necessary for δ-RMT. E.g., in Fig-

ure 5.2(b), S and R are not weakly 1hyper-connected, but δ-RMT is possible.

Our explanation: This is because S and R are 1ζ-reliable-connected but not

1ζ-private-connected in Figure 5.2(b).

• Conjecture: The weak thyper-connectivity is not sufficient for (0, δ)-SMT. E.g.,

in Figure 5.2(c), S and R are weakly 1hyper-connected, but Desmedt and Wang

conjectured that there is no (0, δ)-SMT against a 1-bounded adversary.

Our proof: Indeed, not only is (0, δ)-SMT impossible, but δ-RMT is also impos-

sible, because S and R are not 1ζ-reliable-connected in Figure 5.2(c).

Note that the examples of Figure 5.2(b) and Figure 5.2(c) also show that the

tζ-private-connectivity and the tζ-reliable-connectivity do not imply each other, because

in Figure 5.2(b), S and R are 1ζ-reliable-connected but not 1ζ-private-connected, and in

Figure 5.2(c), they are 1ζ-private-connected but not 1ζ-reliable-connected. These examples

also show that the high A-connectivity and the low 2A-connectivity are independent.

Finally in this section, we present the following corollary as the results for SMT in

multicast graphs in the threshold model.

5We observe that their (0, δ)-SMT protocol in [WD08] is actually ε-private (ε > 0), but it is easy to
fix the protocol.
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Corollary 5.4.1. Given a graph G(V,E) where S,R ∈ V and an adversary who can

control up to t nodes in V \ {S,R},

• δ-RMT is possible if and only if S and R are tζ-reliable-connected in G.

• 0-RMT is possible if and only if S and R are 2t-connected in G.

• (ε, δ)-SMT or (0, δ)-SMT is possible if and only if S and R are tζ-private-connected

and tζ-reliable-connected in G.

• (ε, 0)-SMT or (0, 0)-SMT is possible if and only if S and R are (tζ-private + t)-

connected in G. The (tζ-private + t)-connectivity means that S and R are highly

2AT -connected.

5.5 Brief Conclusion of Chapter 5

In this chapter, we found the necessary and sufficient conditions for SMT in multicast

networks. As stated in Section 2.9.2, before this chapter, if we draw a similar table as

Table 2.1 for SMT in general multicast graphs (without the requirement of neighbour-

disjoint paths), then all the result fields will be N/A. With the minimal connectivities

determined in this chapter, we can finally present such a table as Table 5.1, which

summarizes our results for SMT in multicast networks. These results are presented

using the Extended Characterization, which is presented based on our observation on

the eavesdropping and separating activities of the adversary on a single path.

Multicast Graphs

SMT

RMT
δ-RMT

tζ-reliable-conn. (Corollary 5.4.1)
high A-conn. (Theorem 5.2.1)

0-RMT
2t-conn. (Corollary 5.4.1)
2A-conn. (Theorem 5.2.2)

APSMT

(ε, δ)-SMT
tζ-private-conn. and tζ-reliable-conn. (Corollary 5.4.1)

high A-conn. and low 2A-conn. (Theorem 5.3.1)

(ε, 0)-SMT
(tζ-private + t)-conn. (Corollary 5.4.1)

high 2A-conn. (Corollary 5.3.1)

(0, δ)-SMT
tζ-private-conn. and tζ-reliable-conn. (Corollary 5.4.1)

high A-conn. and low 2A-conn. (Theorem 5.3.2)

PSMT (0, 0)-SMT
(tζ-private + t)-conn. (Corollary 5.4.1)

high 2A-conn. (Theorem 5.3.3)

* “conn.” is short for “connectivity”.
** For each security level (e.g., δ-RMT), the results are presented in two rows: the

upper row indicates the result in the threshold model and the lower row indicates
the result in the general adversary model.

Table 5.1: Network connectivities for SMT in multicast networks.

In the following concluding chapter, we summarize the results of this thesis, and

propose future work.



Chapter 6

Conclusion and Future Work

We have considered the problem of secure message transmission (SMT) in the general

adversary model. We began with introducing our ideas and observations that would

help us determine minimal connectivities and design efficient protocols for SMT. Then

we studied SMT in two different kinds of networks: point-to-point and multicast.

In this chapter, we summarize the results of this thesis in Section 6.1 and propose

possible future research directions in Section 6.2.

6.1 Summary of Results

First of all, using exhaustive search, we proved that an almost perfect threshold (t +

1, n, κ)-SSS can detect, and simultaneously correct, exactly the same numbers of errors

as a perfect (t + 1, n, 0)-SSS can. That is, a (t + 1, n, κ)-SSS can detect n − t − 1

errors and correct bn−t−12 c errors. This result was later used to prove that the minimal

connectivity for almost perfect ε-private message transmission is the same as that for

perfect 0-private transmission, when the same level of reliability is required.

Next, we studied generalized LSSSs and regarded general access structures as linear

codes. Some properties of our linear code have been introduced, including the infor-

mation of a codeword, the decoding condition and the error-correcting capability. In

particular, we generalized the idea of pseudo-basis and pseudo-dimension using this new

linear code. We defined the size and weight of an adversary structure, which are used to

bound the pseudo-dimension and later used to determine the communication complexity

(CC) of our protocols. The possible existence of the invalid error vectors has also been

discussed as a crucial part of our result.

We formally defined the critical paths in a general graph, and observed their prop-

erties. From our observation, we concluded that if the SMT protocols are executed via

the critical paths, then it is impossible to determine its CC in the size of the network,

because the number of paths varies remarkably in different graphs with the same con-

nectivity. Thus we defined a new adversary structure over critical paths, and used this

91
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Undirected Graphs

SMT

RMT
δ-RMT

n ≥ 2t+ 1 [FW98]
2A-conn. (Theorem 4.2.1)

0-RMT
n ≥ 2t+ 1 [DDWY93]
2A-conn. [KGSR02]

APSMT

(ε, δ)-SMT
n ≥ 2t+ 1 (Corollary 4.2.2)
2A-conn. (Corollary 4.2.2)

(ε, 0)-SMT
n ≥ 2t+ 1 (Corollary 4.2.2)
2A-conn. (Corollary 4.2.2)

(0, δ)-SMT
n ≥ 2t+ 1 [FW98]

2A-conn. (Theorem 4.2.1)

PSMT (0, 0)-SMT
n ≥ 2t+ 1 [DDWY93]
2A-conn. [KGSR02]

Directed Graphs

SMT

RMT
δ-RMT

n ≥ max{2t+ 1− u, t+ 1} [DW02]
strong 2A-directed-conn. (Theorem 4.2.2)

0-RMT
n ≥ 2t+ 1 [DDWY93]

2A-conn. on forward paths [DWB05]

APSMT

(ε, δ)-SMT
n ≥ max{2t+ 1− u, t+ 1} (Corollary 4.2.3)
strong 2A-directed-conn. (Corollary 4.2.3)

(ε, 0)-SMT
n ≥ max{3t+ 1− 2u, 2t+ 1} (Corollary 4.2.3)

strong 3A-directed-conn. (Corollary 4.2.3)

(0, δ)-SMT
n ≥ max{2t+ 1− u, t+ 1} [DW02]

strong 2A-directed-conn. (Theorem 4.2.2)

PSMT (0, 0)-SMT
n ≥ max{3t+ 1− 2u, 2t+ 1} [DW02]
strong 3A-directed-conn. [PSC+07]

Multicast Graphs

SMT

RMT
δ-RMT

tζ-reliable-conn. (Corollary 5.4.1)
high A-conn. (Theorem 5.2.1)

0-RMT
2t-conn. (Corollary 5.4.1)
2A-conn. (Theorem 5.2.2)

APSMT

(ε, δ)-SMT
tζ-private-conn. and tζ-reliable-conn. (Corollary 5.4.1)

high A-conn. and low 2A-conn. (Theorem 5.3.1)

(ε, 0)-SMT
(tζ-private + t)-conn. (Corollary 5.4.1)

high 2A-conn. (Corollary 5.3.1)

(0, δ)-SMT
tζ-private-conn. and tζ-reliable-conn. (Corollary 5.4.1)

high A-conn. and low 2A-conn. (Theorem 5.3.2)

PSMT (0, 0)-SMT
(tζ-private + t)-conn. (Corollary 5.4.1)

high 2A-conn. (Theorem 5.3.3)

* “conn.” is short for “connectivity”.
** For each security level (e.g., δ-RMT), the results are presented in two rows: the

upper row indicates the result in the threshold model and the lower row indicates
the result in the general adversary model.

Table 6.1: Complete network connectivities for SMT.
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idea to design SMT protocols.

The results regarding SMT on point-to-point networks consist of the following: a

Guessing Attack on some previous (directed) protocols, the necessary and sufficient

conditions for APSMT and the constructions of some efficient PSMT protocols. First,

the Guessing Attack can be performed in a directed graph against a PSMT protocol.

By replacing the feedbacks from the receiver with some guessed values, the adversary is

able to learn the messages with better probability, and hence breach perfect privacy of

the protocol. Secondly, the necessary and sufficient conditions for APSMT have been

obtained by generalizing some previous results and applying our above mentioned result

on the error-correcting capability of a (t + 1, n, κ)-SSS. These findings completed the

research of determining the minimal connectivities in the point-to-point model. Finally,

a number of efficient PSMT protocols have been constructed using the newly proposed

generalized linear code. By comparing our results with the previous protocols in terms

of CC and RC (see Table 4.1), the significance of our design is obvious.

The results regarding SMT on multicast networks consist of the following: an Ex-

tended Characterization of a multicast graph based on the eavesdropping and separating

activities, the necessary and sufficient conditions for all levels of SMT in the general ad-

versary model and the corresponding conditions in the threshold model. First, our

observation on the eavesdropping and separating activities of the adversary allowed us

to gain an insight on multicast communication, and hence helped us re-characterize the

multicast graph and define respective network connectivities. Next, the Extended Char-

acterization was later used to find the necessary and sufficient conditions for reliable

and secure communication, and protocols were designed to enable such communication.

Finally, we applied our findings in the general adversary model to determine the minimal

network connectivities in the threshold model. These results explain all the examples

shown in [DW02], prove the conjecture given in [DW02], and completely solve the open

problem raised in [FW98].

Therefore, we have finally determined the minimal network connectivities for all

levels of SMT in all kinds of point-to-point (undirected and directed) graphs and mul-

ticast graphs, regarding different adversary models. The complete results on network

connectivities are shown in Table 6.1.

6.2 Future Work

In this section, we discuss the limitations of this thesis, and propose possible future

research directions.

Evidently, there are still many unknown properties of the linear code described in

Section 3.2. One of the most obvious unknown properties is the tight upper bound

on the size of the codeword (i.e., h). This is a difficult problem which has been open

for decades. Furthermore, we considered that the pseudo-dimension of our scheme is
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at most wtA = O(h), because there are at most wtA non-zero entries in each error

vector. Now with the existence of non-zero invalid error vectors, the dimension of the

vector space of the valid error vectors may be smaller than we expected. Thus another

interesting problem is whether it is possible to have a pseudo-dimension smaller than

O(h) in the presence of non-zero invalid error vectors.

Next, in point-to-point networks, the CC of our 2-Round Undirected Protocol and 3-

Round Directed Protocols for multiple message transmission is O(hn`ρ) (see Table 4.1).

In [SNR04, ACdH06, KS08], the authors used a technique, namely advanced reliable

transmission (see Appendix A.3), to reduce the CC of their PSMT protocol by O(n). We

wonder if the advance reliable transmission can be generalized in the general adversary

model to further reduce the CC of our protocols to O(h`ρ). Moreover, we conjecture

that Ω(h`ρ) is the lower bound on CC for secure transmission of ` field elements. This

conjecture may be proven using a similar technique as that in [SNR04, FFGS07].

Furthermore, for multicast graphs, we gave the necessary and sufficient conditions

for SMT in the threshold model in such a manner that a threshold t is considered as a

set in a special adversary structure AT . This setting is obviously general, but indirect

in notation. Indeed, when considering the threshold model, the network connectivities

should be more straightforward (e.g., n > t). Thus a more specified threshold model can

be defined, with respect to which efficient protocols can then be designed. For example,

if we assume that with any t nodes the adversary can control, it can completely eavesdrop

on t′ paths, then due to Corollary 5.4.1, there must be n > 2t + t′ node-disjoint paths

between S and R for PSMT. Apparently, a more sophisticated definition of the threshold

model is needed to simplify the conditions for APSMT.

As discussed in Section 2.2.2, an undirected multicast graph can be used to model a

hypergraph in which all links are undirected, and vice versa. Similarly, a directed mul-

ticast graph, which enables one-way or mixed communication between the neighbours,

can model all the multicast networks that a hypergraph can. It will be interesting to

formalize this network model, and study minimal network connectivities in it, thus all

kinds of secure multicast communications can be achieved.

Finally, all our protocols in this thesis use (critical) paths between S and R for

message transmission. In [FY95, DWB05], the authors showed that local interactions

between each node and its neighbours can be used for private communication against a

passive adversary. This kind of communication does not have to respect the paths, and

can be used in both point-to-point and multicast networks and in any adversary model.

More importantly, it achieves a CC that is guaranteed to be polynomial in the size of the

network graph. A question to be set is whether by using such local interactions, efficient

RMT and SMT protocols, of which the CC is polynomial in the size of the graph, can

be designed against an active adversary.



Bibliography

[ACdH06] S. Agarwal, R. Cramer, and R. de Hann. Asymptotically optimal two-round

perfectly secure message transmission. In Proc. CRYPTO ’06, volume 4117

of LNCS, pages 394–408, 2006.

[BD91] E. F. Brickell and D. M. Davenport. On the classification of ideal secret

sharing schemes. J. Cryptology, 4(2):123–134, 1991.

[BD04] M. Burmester and Y. Desmedt. Is hierarchical public-key certification the

next target for hackers? Commun. ACM, 47(8):68–74, 2004.

[Bei96] A. Beimel. Secure schemes for secret sharing and key distribution. PhD

thesis, Technion, Haifa, 1996.

[BL88] J. Benaloh and J. Leichter. Generalized secret sharing and monotone func-

tions. In Proc. CRYPTO ’88, volume 403 of LNCS, pages 27–35, 1988.

[Bla79] G. R. Blakley. Safeguarding cryptographic keys. In Proc. AFIPS ’79 Na-

tional Computer Conference, volume 48, pages 313–317, 1979.

[BOGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems

for non-cryptographic fault-tolerant distributed computing. In Proc. ACM

STOC ’88, pages 1–10, 1988.

[BSSV97] C. Blundo, A. De Santis, R. De Simone, and U. Vaccaro. Tight bounds on

the information rate of secret sharing schemes. Des. Codes Cryptography,

11(2):107–122, 1997.

[BW98] D. Beaver and A. Wool. Quorum-based secure multi-party computations.

In Proc. CRYPTO ’98, volume 403 of LNCS, pages 25–35, 1998.
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Appendix A

Existing Techniques

Here we show several existing techniques in the literature. These techniques appeared

in different papers that used different models and definitions. To make these results

understandable, we present them using the models of Chapter 2.

A.1 Critical Identifying Algorithm by Kumar et al.

Here we present Kumar et al.’s algorithm for identifying critical paths [KGSR02]. As-

sume that S and R are 2A-connected in an undirected graph G(V,E), the following

algorithm shows how a critical set of paths P is constructed.

Critical Identifying Algorithm

Inputs: G(V,E), A = {A1, . . . , Az}, S and R.

Set P := ∅ and i := 1.

While i ≤ z − 1 do

Set j := i+ 1.

While j ≤ z do

If Ai ∪Aj cuts all paths in P then

Select at random a path p that are not cut by Ai ∪ Aj , and

set P := P ∪ {p}.
End if

End while

End while

Output: critical set P . End.

Kumar et al. [KGSR02] claimed that this algorithm has the following properties:

1. The algorithm takes as in put G(V,E), A, S and R.
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2. The algorithm outputs a set of paths between S and R in G, denoted by P .

3. The algorithm runs in time polynomial in |V | and |A|; i.e., O(|V | · |A|4).

4. The number of paths in P is polynomial in |A|; i.e., O(|A|2).1

5. Any solution using P is also a solution that uses all the paths between S and R.

A.2 Randomness Extractor by Srinathan et al.

In [SNR04], Srinathan et al. designed a randomness extractor to generate secret ran-

domness’s. Their design uses a Vandermonde matrix, which is not easy to present. Since

Shamir’s SSS essentially produces a Vandermonde matrix, in [ACdH06, KS08], the au-

thors simplified the design of the randomness extractor by using Shamir’s SSS, which

uses a random polynomial. Here we show the simplified randomness extractor.

Randomness Extractor

Precondition: given w random elements r1, . . . , rw ∈ F, the adversary has

no knowledge on ` of them, where ` < w.

1. Using Lagrange interpolation, find a polynomial f(x) of degree

deg f(x) = w−1 such that f(i) = ri for each 1 ≤ i ≤ w. Note that due

to the well-known unisolvence theorem of polynomial interpolation, the

polynomial f(x) is unique because deg f(x) = w − 1.

2. Computes zj = f(w + j) for each 1 ≤ j ≤ `.

Postcondition: the adversary has no knowledge on z1, . . . , z`. End.

It is easy to prove the postcondition. Indeed, because this randomness extractor

essentially corresponds to a Shamir’s (w,w + `, 0)-SSS [Sha79], knowing w − ` shares,

any other ` shares remain secret and independent.

A.3 Advanced Reliable Transmission by Srinathan et al.

Consider the threshold model. In an undirected graph, S and R are connected by

n = 2t + 1 node-disjoint paths p1, . . . , pn. Suppose that S wants to reliably send w =

O(n) field elements to R via these paths. The normal solution is that S broadcasts

the w elements via all the n paths, and R then reliably recovers these elements using

majority vote. The communication complexity (CC) of this basic reliable transmission

is O(n2ρ). In [SNR04], Srinathan et al. showed that the CC for reliable transmission

can be reduced in some cases. In particular, they showed that if R knows the location

1Following our result in Observation 3.3.1 in Section 3.3, we can easily see that this claim is incom-
plete.
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of t′ < t paths that are corrupted, then S can reliably send t′+1 elements to R with CC

O(nρ). This protocol was also used in [ACdH06, KS08]. Here we show this advanced

reliable transmission as follows.

Advanced Reliable Transmission Protocol for t′ + 1 elements

a1, . . . , at′+1

Round 1 - S to R:

1. Using Lagrange interpolation, S finds a polynomial f(x) of degree

deg f(x) = t′ such that f(i) = ai for each 1 ≤ i ≤ t′ + 1.

2. For each 1 ≤ i ≤ n, S sends f(i) to R via path pi.

Recovery Phase Regarding f(x) as a Shamir’s (t′+1, n, 0)-SSS, R receives

n shares f(1), . . . , f(n) from the n paths. R knows which t′ paths are

corrupted, so the corresponding t′ shares are not considered. Thus the

remaining shares can be seen as shared by a (t′ + 1, n− t′, 0)-SSS, and

t− t′ of them are corrupted. As shown in Section 2.7, a (t′+1, n− t′, 0)-

SSS can correct bn−t′−t′−12 c = b2t+1−2t′−1
2 c = t − t′ errors. Thus R

can correct all the errors, and correctly recover all the shares, including

the t′ + 1 elements a1, . . . , at′+1, which are intended to be transmitted.

End.

Obviously, the CC of this protocol is O(nρ), which is more efficient than the ordinary

broadcast of which the CC is O(n2ρ). In [SNR04, ACdH06, KS08], this technique has

been used to reduce the CC of their protocols by O(n).

A.4 Reliable Transmission by Desmedt et al.

In the general adversary model, RMT is possible if S andR are 2A-connected. Reliability

is easy to achieve by Desmedt et al.’s protocol [DWB05], which we describe as follows.

Reliable Transmission Protocol for a single message m

Round 1 - S to R: S sends m to R via all paths in the critical set P .

Recovery Phase R finds a set Af ∈ A such that all elements received on

the paths in P \ Pf are the same. Let m′ be the element received on

the paths in P \ Pf , R outputs m′ as the message.

We show this protocol achieves perfect reliability. We assume that the adversary

chooses a set Ae ∈ A to control. First, it is straightforward that such Af exists, at least

when Af = Ae so all the paths in P \Pf are uncorrupted. Next, we prove that m′ = m.

Assume that m′ 6= m, then all the paths in P \Pf are corrupted. That is, Pe ∪Pf = P .

This contradicts the 2A-connectivity.
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A.5 Sub-Protocol Reconstruction by Patra et al.

Here we describe and analyse Patra et al.’s sub-protocol reconstruction scheme proposed

in [PSC+07]. In their work, to simplify the study of PSMT in directed graphs, the

authors gave the following lemma.

Lemma A.5.1. (following [PSC+07]) Given a directed graph G(V,E) where S,R ∈ V ,

let A be an adversary structure on V \ {S,R} and Ae ∈ A be any set that the adversary

can control. (0, 0)-SMT from S to R is possible if for any subset B ⊆ A such that |B| = 3

and Ae ∈ B,2 there exists a (0, 0)-SMT sub-protocol from S to R tolerating B.

Proof. This lemma can be proven using induction. Let z = |A|, the induction has been

shown in [PSC+07].

First, if the condition is satisfied, i.e., a (0, 0)-SMT sub-protocol exists for sub-

structures of size 3, then for any sub-structure B ⊆ A such that |B| = 4 and Ae ∈ B,

(0, 0)-SMT is possible tolerating B. This can be done by dividing B = {A1, A2, A3, A4}
into B1 = {A1, A2, A3}, B2 = {A1, A2, A4}, B3 = {A1, A3, A4} and B4 = {A2, A3, A4}.
If the corrupted set Ae ∈ B, then Ae must be in three of the divided sets B1,B2,B3,B4.
Now the message is shared by a (2, 4, 0)-SSS and each share is transmitted using a

sub-protocol tolerating each Bi for 1 ≤ i ≤ 4. Due to the condition, a (0, 0)-SMT sub-

protocol exists tolerating Bi if Ae ∈ Bi, thus at least 3 shares are received 0-reliably

and at most 1 share can be learned and corrupted. Since a (2, 4, 0)-SSS can correct

b4−1−12 c = 1 error (see Section 2.7), the message can be recovered with (0, 0)-security.

Applying the above procedure again, we can find that if |B| = 5 and Ae ∈ B, then

(0, 0)-SMT is possible tolerating B. This is because B can be divided into four sub-

structures of size 4 such that every set in B is in at least three of the four divided

sub-structures. Using induction, it is easy to show that when |B| = z, which implies

B = A, (0, 0)-SMT is possible.

Now we analyse their sub-protocol reconstruction scheme. Given an adversary struc-

ture A of size z ≥ 4, A can be divided into four sub-structures, each of size d3z4 e, such

that every set in A appears in at least three of them. Each of these subsets can be

further divided in the same way, and this division continues until all the divided sub-

structures are of size 3. Therefore, this scheme can otherwise be seen as a tree, in which

the adversary structure A is the root. The nodes are the sub-structures of A. Each par-

ent in this tree, say of size y, has exactly four children, each of which is a sub-structure

of its parent and of size d3y4 e. The leaves are sub-structures of size 3.

Now the sender S uses this tree. It works as that the root shares the message using a

(2, 4, 0)-SSS to its children, and following this, each parent on each level shares its share

2In [PSC+07], B̂, which is the basis of the sub-structure B (see Section 1.2 for definition), is used.

However this makes no difference to their proof and our analysis, so we discuss B instead of B̂ here for
a clearer presentation.
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using a (2, 4, 0)-SSS to its children. At the lowest level, each leaf has a final share. S uses

a (0, 0)-SMT sub-protocol (such sub-protocol exists due to Lemma A.5.1) to transmit

each final share to R tolerating the corresponding leaf, which is the sub-structure of size

3. Upon the received final shares, the receiver R goes backwards in the tree. That is,

R uses the above mentioned error-correcting method to reconstruct the share of each

parent of the leaves, and does the same from low levels to high levels until it recovers

the shared message.

Therefore, one only needs to design a (0, 0)-SMT sub-protocol tolerating each leaf,

which is a sub-structure of size 3. The number of times that such a sub-protocol needs

to be executed is the same as the number of leaves. We now calculate the number of

leaves. Let µ be the height of the tree, since each parent has exactly four children, there

are 4µ leaves in this tree, and hence the (0, 0)-SMT sub-protocol needs to be executed

4µ times. Next we calculate µ. From how the tree is constructed, we have the following:⌈3

4

⌈3

4
. . .
⌈3

4︸ ︷︷ ︸
µ

z
⌉
. . .
⌉⌉

= 3

⇒
(3

4

)µ
z ≤ 3

⇒µ ≥ log 4
3

z

3
.

Thus the number of (0, 0)-SMT sub-protocol executions is 4µ ≥ 4
log 4

3

z
3 , which is quasi-

polynomial in z. In [YD09], Yang and Desmedt used this sub-protocol reconstruction

scheme to design a (0, 0)-SMT sub-protocol tolerating a subset of size 3. The round

complexity (RC) of their sub-protocol is 12 and the communication complexity (CC)

is O(ρ). Thus after running all the sub-protocols, both the RC and CC are quasi-

polynomial in z.

A.6 Pseudo-basis and Pseudo-dimension by Kurosawa and

Suzuki

In this section, we describe the idea of pseudo-basis and pseudo-dimension in the thresh-

old model. This was first introduced by Kurosawa and Suzuki in [KS08]. A per-

fectly clear and detailed discussion of this idea has been presented in their journal

paper [KS09c]. Here we briefly show this idea using our model.

Given an undirected graph with n = 2t + 1 node-disjoint paths p1, . . . , pn between

a sender S and a receiver R, the messages are shared using Shamir’s (t + 1, n, 0)-SSS.

That is, given a secret s, the sender S chooses a random polynomial f(x) = s + a1x +

. . . + atx
t, and sends f(i) via path pi for each 1 ≤ i ≤ n. As discussed in Section 2.7,

Shamir’s scheme corresponds to a special case of Reed-Solomon codes. Thus the vector

of shares (f(1), . . . f(n)) is a codeword. That is, let C be a Reed-Solomon code, then
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(f(1), . . . f(n)) ∈ C. Since at most t paths are corrupted, regarding this codeword, R

receives an n-vector x = (x1, . . . , xn) with at most t errors. That is, |{i|xi 6= f(i) : 1 ≤
i ≤ n}| ≤ t. Let c ∈ C be the codeword sent by S, it was assumed that the errors are

caused by an error vector e = {e1, . . . , en} such that x = c + e. Let E be an error

locator such that E = {i|ei 6= 0}. Then it is straightforward that |E| ≤ t.
Now if w codewords c1, . . . , cw, regarding w messages, are sent in this way, let

x1, . . . ,xw be the received n-vectors, then for each 1 ≤ i ≤ w, we have xi = ci+ei, where

ei is an error vector. Considering a static adversary, all the error locators E1, . . . , Ew

together indicate at most t error locations. That is, the dimension of the vector space

spanned by e1, . . . , ew is at most t.

In [KS09c, Lemma 1], the authors showed the following fact: given 1 ≤ i ≤ w and

1 ≤ g1 < . . . < gb ≤ w, if there exist a1, . . . , ab ∈ F such that

xi + a1xg1 + . . .+ abxgb ∈ C,

then

ei + a1eg1 + . . .+ abegb = 0.

Here if xi + a1xg1 + . . . + abxgb ∈ C, then xi is said to be linearly pseudoexpressed by

{xg1 , . . . ,xgb}. In [KS08, KS09c, Fig. 2], an efficient way to check if a vector is linearly

pseudoexpressed by a set of vectors has been given.

Now the pseudo-basis B = {xg1 , . . . , xgb} is defined such that every n-vector xi

(1 ≤ i ≤ w) is linearly pseudoexpressed by B. From the above fact, we have that every

error vector ei is in the linear span of eg1 , . . . , egb . Thus it is clear that the correspond-

ing error locators Eg1 , . . . , Egb indicate all the error locations during the transmission.

As discussed earlier, the dimension of the vector space spanned by e1, . . . , ew is at

most t. That is, at most t error vectors are needed to span this vector space. Thus

|{eg1 , . . . , egb}| ≤ t, and hence we have the pseudo-basis |B| ≤ t.
During the transmission, if the receiver R constructs a pseudo-basis from the received

n-vectors and reliably sends it back to S, then S is able to find all the error locations

for R. With all the error locations known, R can finally recover all the w messages with

the correct elements.
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