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ABSTRACT

CFD simulations of complex outdoor environments

present a significant modelling challenge. Simulations

of airflow within an idealized street canyon are per-

formed here. We test the model sensitivity to the em-

pirical constants contained within the k-ε turbulence

model and examine how a systematic variation of these

values could produce improved prediction of the tur-

bulent kinetic energy when compared against wind

tunnel data. The Bayesian statistical calibration shows

the range of values the constants should take. This

results in improved CFD simulations in the region of

flow inside the street canyon, which is normally very

difficult to resolve accurately in CFD models.

INTRODUCTION

An in-depth understanding of the airflow processes

within street canyons is important to fully understand

the pollutant dispersion within these spaces as well as

issues relating to pedestrian comfort and energy use.

CFD has had a larger role to play in this process in re-

cent years as computer power and availability of soft-

ware has increased. The use of CFD modelling in the

built environment is widespread for indoor applica-

tions, but simulations of the outdoor environment are

still often carried out in atmospheric boundary layer

wind tunnels (Blocken et al., 2011).

Blocken et al. (2011) present a detailed review of CFD

simulations of the outdoor environment. The success-

ful and systematic application of CFD for the outdoor

environment is still hindered by lack of accuracy, high

computational storage, time and costs, since the com-

putational domains are very large and the boundary

conditions are generally not well known. Even the

most basic case, CFD simulation of an equilibrium at-

mospheric boundary layer in an empty domain, can

show very large errors in simulation results. Attempts

in validation of CFD models, such as simulations for

idealized high-rise buildings surrounded by low-rise

buildings with the standard k-ε model, can show, in

some instances, underestimation of wind tunnel flows

by up to a factor 4. Careful validation of CFD simu-

lations with wind tunnel experiments requires a grid-

sensitivity analysis, full consideration of the choice

of boundary conditions and high-order discretization

schemes, and a detailed comparison with the wind tun-

nel measurements.

We suggest a new method to help validate CFD mod-

els against wind tunnel data, one which improves re-

sults in the low speed regions within street canyons

and provides much greater faith in the modelling pro-

cess. Here we investigate how the tuning of the k-ε
model constants can improve the prediction of the tur-

bulent quantities within the street. We attempt the cal-

ibration for a particular case study of flow over a street

canyon at aspect ratio of one and a Reynolds num-

ber of 5x104. Three of the five model constants are

calibrated against observations of turbulent kinetic en-

ergy collected in wind tunnel laboratory experiments

(Kastner-Klein et al., 2001). These are Cε1, Cε2

and Cµ. The calibration process involves represent-

ing bias and computer model outputs as Gaussian pro-

cesses, following the Bayesian calibration framework

of Kennedy and O’Hagan (2001). Thus we can: (1)

evaluate a small systematic bias of the CFD model, (2)

narrow down the set of parameter values that provide

the best match between the CFD model outputs and

the observations, (3) quantify the uncertainty of the

turbulent kinetic energy outputs resulting from both

uncertainties in the CFD parameterization, the numer-

ical code itself and measurement errors, (4) emulate

the CFD model to get fast and improved predictions.

This paper starts with a brief introduction to the stan-

dard k-ε model followed by the description of the ex-

perimental and CFD set up. Then, an explanation of

the Bayesian calibration is given. Finally, we discuss

the results and the conclusions gained from them.

Turbulence Models

Turbulent flow is characterized by random fluctuations

of velocity. It is possible to model turbulent flow

within CFD without any adjustments to the Navier-

Stokes equations. This type of simulation is known as

direct numerical simulation (DNS) and is prohibitively

computationally expensive. Turbulence models used

within the CFD simulations enables the capture of the

main features of the flow without having to explicitly

model all the details of the turbulence, thus saving on

computer costs. Large eddie simulations (LES) only

models large features of the flow, but is either still out

of reach for simulation of the outdoor environment, or

when computational power is available, is very diffi-

cult to tune, which may make it imprecise, see Blocken

et al. (2011) and references therein.

We can reduce the amount of computing power needed

by focusing on the mean properties of the flow.

This results in the Reynolds-Averaged Navier Stokes

(RANS) equations. These equations contain corre-
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lations of the fluctuating velocity components u′

iu
′

j

which are known as the Reynolds stresses. The tur-

bulence model is a way of closing the RANS equa-

tions by approximating the Reynolds stress. The stan-

dard k-ε turbulence model is an example of a RANS

model and is a popular choice in CFD modelling due

to its robust nature and the fact that it has been well

validated. However it has been noted that the stan-

dard k-ε model has problems predicting flow separa-

tion and underpredicts turbulent kinetic energy values

within street canyons (Cheng et al., 2003; Lien et al.,

2004; Solazzo et al., 2009). The practicality of the

standard k-ε model means that it is still widely used in

industry and research, thus creating a demand for im-

proved performance from the model (Solazzo, 2008).

This fact along with its well documented shortcomings

provides the motivation behind the choice of the stan-

dard k-ε model for this study.

The standard k-ε model

The Reynolds stresses u′

iu
′

j are related to the shear

stress of the flow τ by the following equation:

τ = ρu′

iu
′

j (1)

where ρ is the density of the fluid. We can find the

value for τ , and hence u′

iu
′

j , by the Boussinesq hy-

pothesis:

τ = µt

du

dy
(2)

where µt is the turbulent viscosity and du
dy

is the mean

velocity gradient. In the case of the standard k-ε tur-

bulence model, turbulent viscosity is defined as

µt = ρCµ

k2

ε
(3)

where Cµ is a model constant.

By solving the following differential equations for the

turbulent kinetic energy, k, and the turbulent dissipa-

tion, ε we can find a value for µt (Launder and Spald-

ing, 1974):

Dε

Dt
=

1

ρ

∂

∂xk

[

µt

σε

∂ε

∂xk

]

+
Cε1µt

ρ

ε

k

(

∂Ui

∂xk

+
∂Uk

∂xi

)

∂Ui

∂xk

−
Cε2ε

2

k
(4)

Dk

Dt
=

1

ρ

∂

∂xk

[

µt

σk

∂k

∂xk

]

+
µt

ρ

(

∂Ui

∂xk

+
∂Uk

∂xi

)

∂Ui

∂xk

− ε (5)

where σk, σε, Cε1, Cε2 and Cµ are all empirical

model constants. The default values for these con-

stants in most commercial CFD softwares, including

Ansys CFX tested here, are shown in Table 1.

Table 1: standard values used for model constants

Cµ Cε1 Cε2 σε σk

0.09 1.44 1.92 1.3 1.0

These values were found through data fitting for a

wide range of flows (Launder and Spalding, 1974) but

ad-hoc adjustments are often made to them depend-

ing on the situation being modeled. When using the

k-ε model to simulate the atmospheric boundary layer

Richards and Hoxey (1993) chose a value of 0.013 for

Cµ. This value was obtained through detailed field

measurements and is based upon the following rela-

tionship:

Cµ =

(

u2

∗

k

)2

(6)

where u∗ is the frictional velocity. Beljaars et al.

(1987) and Hagen et al. (1981) used this relationship

along with field data to justify the use of Cµ = 0.0324
and Cµ = 0.026, respectively, in their simulations.

Hargreaves and Wright (2007), Richards and Hoxey

(1993), Beljaars et al. (1987) and Solazzo et al. (2009)

all alter the value for σε. This is based on the types of

boundary conditions used at the inlet and the restric-

tions these place on σε . This is discussed in further

detail in the section on statistical calibration.

Wind tunnel set up

The data used to validate the CFD model is from a

wind tunnel experiment carried out by Kastner-Klein

et al. (2001) in the wind tunnel at the University of

Karlsruhe. The buildings on either side of the street

were represented by two rectangular blocks. The wind

direction was perpendicular to the street axis. The

model of an atmospheric boundary layer was obtained

through the use of small blocks placed on the wind tun-

nel floor. Measurements were taken using a laser ve-

locimetry system. Velocity measurements were taken

on a vertical cross section of the street at the center of

the street length.

CFD SIMULATION

The numerical simulation was carried out using An-

sys CFX, a commercial CFD software package. The

geometry of the model is shown in Figure 1. The

mesh used was an unstructured hexahedral mesh with

a mesh refinement zone in-between and surrounding

the two buildings in order to capture the detail in this

area. A 2.5 dimensional simulation was performed.

The geometry was extended a small distance in the y
direction and symmetry boundaries applied. This re-

duces the CPU time which is especially useful when

running the large number of models necessary for cal-

ibration.

It is important to ensure that we can accurately model

boundary conditions within the wind tunnel. A simu-

lation was first carried out modeling the empty domain

(no streets present) to ensure the correct profiles for

velocity and turbulence were being created and there
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Figure 1: Geometry of the street canyon. The TKE

profiles were taken in the middle of the canyon.

was little decay as we moved down the wind tunnel.

From testing of the empty domain it was found that

the following inlet boundary conditions provided the

best match with the experimental data:

• Inlet Velocity Profile:

u = uref

(

z − d0
zref − d0

)0.23

(7)

where zref = 0.48m is the boundary layer height,

uref = 7m/s (velocity at zref ) and d0 = 0.002m is

the displacement height. This profile is the power

law and the value of 0.23 was found by Kastner-

Klein et al. (2001).

• Turbulent Kinetic Energy profile:

k =
u2

∗
√

Cµ

(

1−
z

δ

)

(8)

where u∗ = 0.38m/s and δ = 0.485m is bound-

ary layer height.

• Turbulent Dissipation profile:

ε =
u3

∗

κ(z + z0)

(

1−
z

δ

)

(9)

where κ = 0.4 is the Von Karman constant and z0
= 0.0008m is the roughness length.

These profiles have been applied in previous simu-

lations of urban airflow such as Di-Sabatino et al.

(2007). The outlet boundary was set to outflow with

static pressure 0pa. The top of the wind tunnel was

set to symmetry boundary. A sand grain roughness of

Ks = 0.024m was applied to the floor of the domain.

This value was calculated from the formula given by

Blocken et al. (2007) of Ks = 30z0 . In order to carry

out the calibration process the model is run forty times

with varying values for the model constants. The de-

sign for these forty runs is described in the following

section.

STATISTICAL CALIBRATION

The calibration of our CFD model consists of putting

distributional assumptions (prior distributions or sim-

ply priors) on the calibration (also called tuning) pa-

rameters Cε1, Cε2 and Cµ before comparing with ob-

servations, and letting the information contained in the

data update this a priori assumption to get as a result

Figure 2: Normalized TKE data from wind tunnel (cir-

cles) and CFD simulation (crosses) against height nor-

malized by the height h of the buildings. Red crosses

correspond to the initial design and green crosses cor-

respond to the additional design.

a posterior distribution of the calibration parameters.

The advantage of such a Bayesian analysis (Kennedy

and O’Hagan, 2001) over standard estimation of pa-

rameters (e.g. by minimizing the differences between

observations and simulator outputs) lies mainly in the

ability to retrieve a full description of the uncertain-

ties about the parameters and consequently about the

simulator outputs. Moreover, the possibility for the

modelers to express their -uncertain- scientific beliefs

in terms of priors on the parameters enables a natural

integration of scientific knowledge and evidence given

by measurements. It was decided to calibrate three

out of the five k-ε model constants and not σε and σk

due to their strong interdependence on the other model

constants. This arises from the fact that if equation (8)

and (9) are to satisfy equation (4) then the following

relationships must hold (Solazzo et al., 2009):

σk =
κ2

√

Cµ

z + z0
z

(10)

σǫ =
κ2

√

Cµ((1−
z
δ
)Cε2 − Cε1)

(11)

We must choose a fixed value for σε and σk i.e. they

cannot vary with changing height, z. We therefore

choose to use the relationship suggested by Richards

& Hoxey (1993) to adjust the values of σε and σk ac-

cording to the values of Cµ, Cε1 and Cε2.

σk =
κ2

√

Cµ

(12)

σǫ =
κ2

√

Cµ(Cε2 − Cε1)
(13)

which also satisfy equation (4). For simplicity we now

denote Cε1 and Cε2 as C1 and C2. The intervals cho-

sen to be tested for the calibration constants were as
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follows C1 : 0.5 - 1.5, C2: 1.5 - 2.5 and Cµ: 0 -

0.2. These were chosen based on the standard values

suggested for the model constants and how these had

been changed in the past. We put uniform priors on

these parameters, allowing for equal initial probabil-

ity of being at any location in these intervals. Further

expert judgment, say via more preliminary experience

on the sensitivity of CFD models to these parameters

in various settings could have improved the priors by

setting meaningful probability distributions on these.

The complete set of inputs x = (h, θ) consists of pa-

rameters divided into two categories: the known pa-

rameters (normalized height h in [0, 2]) and the un-

known calibration parameters θ = (C1, C2, Cµ). We

denote by yM (x) the empirical output of the computer

model as a function of x = (h, θ) and η(x) the ex-

pected output of the computer model as a function of

x = (h, θ). The difference between yM (x) and η(x) is

the numerical intrinsic error. The computer code out-

put η(x) is an approximation of the reality yR(h). The

notation used emphasizes that physical observations

are only made at values of the observable parameter,

h. To learn about the values of the calibration parame-

ters, the CFD model is run at inputs x in a design (i.e.

choice of values) DM . Experimental data (i.e. TKE

observations) yF (h) are collected at a number of in-

puts heights h in a design DF from the center of the

street canyon (see figure 1).

The design DF (the normalized heights at which ob-

servations are collected) are given by Kastner-Klein

et al. (2001). For our design of experiments DM cor-

responding to the calibration parameters, we used a se-

quential design (Gramacy and Lee, 2009). We started

with a maximin Latin Hypercube (LHS) design. With

this design we try to cover as much space as possible

in the three-dimensional space of the calibration pa-

rameters with only n = 40 runs. For the normalized

height components of the computer design DM , we

first choose 15 irregularly spaced points that are close

to the observations to maximize the amount of infor-

mation obtained through these heights under the con-

straint of the computing time necessary to perform the

Bayesian calibration. Note that using uneven heights

is deliberate as it may help later on estimate param-

eters that describe the decays in the correlation (i.e.

smoothness) across heights. The heights in DF and

DM are different, but the methodology accommodates

such variation. Figure 2 shows the CFD computed

TKEs at these heights (red crosses) for the various

choices of calibration parameters. This is the first step

in our study.

The following equations constitute an extension of

Kennedy and O’Hagan (2001) as they specify the in-

trinsic CFD model numerical error. They describe the

relationships between the CFD model and the obser-

vations at the height design points, using bias δ(h), in-

trinsic CFD model numerical error εη and observation

error ε (both assumed constant across heights h):

yM (h, θ) = η(h, θ) + εη (14)

yR(h) = η(h, θ∗) + δ(h) (15)

yF (h) = yR(h) + ε (16)

Here, θ∗ is used to represent the true (unknown) values

of the calibration parameters. These equations suggest

that even if the CFD model were run at the true values

of the calibration parameters, it would still be a biased

representation of reality. Thus the model can never

perfectly match observations without some additional

process of adjusting for model errors.

Because the simulator output η(·) is unknown except

at the design points DM , we assume that the un-

known function follows a Gaussian stochastic process

(GASP) distribution. That is, we model the N ob-

served simulator responses η(x), x ∈ Rp (here p = 4
since DM is over a range of C1, C2, Cµ and h, val-

ues), as coming from a multivariate normal distribu-

tion with mean µ and N×N variance-covariance func-

tion Σ. Since we initially standardize the entire set of

responses (CFD model and observed) by the mean and

standard deviation of the CFD responses, µ = 0 above

and the variability in the simulator (1/λη) below is ap-

proximately 1. Thus, we approximate the CFD model

by specifying a distribution of functions that interpo-

late the response η(x) in between the design points x
in DM . The random function is certain at the design

points, and uncertain at untried points. To specify Σ
according to the calibration parameters we use a prod-

uct Gaussian variance-covariance. Thus, the (i, j)th

element of Σ, cov(η(xi), η(xj)), is (conveniently us-

ing the notation θ4 for h):

1

λη

exp(−
4

∑

k=1

βk|θik − θjk|
2).

The notation θik denotes the ith design point in DM

for θk. The hyperparameters λη (the precision of the

GASP model), βk (which we call “correlation hyper-

parameters”) are to be estimated from the model out-

put and the observations as described below. The un-

known bias function δ(h) is also modeled as a GASP

random function with mean 0 and correlation matrix

with precision λδ and correlation parameter β5. Fi-

nally, the random error and intrinsic error compo-

nents are modeled as independent ε ∼ N(0, 1/λǫ) and

εη ∼ N(0, 1/λεη ).

For the estimation of the calibration and hyperpa-

rameters, we employ the Markov Chain Monte Carlo

(MCMC) algorithm. The chains are dependent ran-

dom samples that ought to be distributed in the long

run as the so-called posterior distributions of the pa-

rameters of interest, which are combinations of prior

information about the values of these parameters and

the information about the parameters provided by the

data. We then retrieve the posterior distributions of
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the various calibration parameters, which allows us to

make inferences and quantify our uncertainty about

the true values of these unknown quantities.

All the unknowns in the model (i.e. the calibration

parameters and the hyperparameters) require specified

prior distributions which represent uncertainty about

the values of these parameters before any data is col-

lected. The following choices are made for the priors:

• To represent vague prior information about the

true calibration parameter values, we specify a

uniform prior distribution over an interval twice

as wide as the interval on which they were sam-

pled for simulator runs.

• To model the correlation hyperparameters in Σ,

we conservatively places most of its prior mass

on values for the corresponding correlations near

1 (indicating an insignificant effect). Similarly,

conservative priors were used for the hyperpa-

rameters associated with the bias function.

• Gamma prior distributions were used for each of

the precision (i.e. inverse of the variance) hy-

perparameters λη , λδ and λǫ. Specifically, we

use priors λη ∼ GAM(10, 10) (with expecta-

tion 1 due to standardization of the responses),

λδ ∼ GAM(10, .03) (with expectation around

5% of standard deviation of the standardized re-

sponses), and λǫ ∼ GAM(10, .03) as well.

Figure 3: ALC scores for C1 and C2. Black dots are

projections of the initial design, circles are proposed

new design points from which we select the 20 most

highly ranked according to ALC.

Because our choice of priors make the full conditional

distributions of the unknowns difficult to sample from

in the MCMC chain, we implement a Metropolis-

Hastings algorithm to explore the multidimensional

space of parameters. The algorithm makes use of a

proposal distribution to draw a future value conditional

on the current state. Then this move is either accepted

or rejected according to a random toss with a probabil-

ity of acceptance that depends upon the target distribu-

tion. This eventually yields draws from the target dis-

tribution (here the posterior). We used multiple chains

to confirm the convergence towards a stationary poste-

rior distribution (after an initial burn-in period), saving

wall-clock time by running the chains in parallel.

In a second step, we target regions of higher uncer-

tainty and reduce those. We apply the advanced Learn-

ing Cohn (ALC) which relies on building an emulator

of the CFD model that enables the relatively fast com-

putation of expected reductions in variance. We se-

lect a set of 20 additional points, see Gramacy and Lee

(2009, section 3.3) for details. As a result, our final

design DM is of size N = 620. Figure 3 displays the

ALC scores for projections of these expected reduc-

tions along the axis C1, C2.

DISCUSSION AND RESULT ANALYSIS

From the results taken from the CFD runs (shown in

Figure 2 denoted by crosses) we can see the wide

spread in TKE results produced by varying the k-ε
model constants. This highlights the importance of

choosing the most appropriate values for these con-

stants and the need for calibration. The posterior

Figure 4: Histogram of all posterior draws for C1.

Figure 5: Histogram of all posterior draws for C2.
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Figure 6: Histogram of all posterior draws for Cµ.

for the numerical intrinsic error εη turns out to stay

very small, from 0.9 to 1.6 ×10−3. This indicates that

within CFX the errors due to the intrinsic numerical

codes, unrelated to which parameters are used in the

model, are very small, which is reassuring. Figures 4,

5, and 6 display the histograms of posterior draws for

the calibration parameters, C1, C2 and Cµ. From the

distribution of the histograms we can infer information

about the preferred values for each parameter and the

uncertainty related to this parameter. In particular, we

notice that the initial non-calibrated value of 1.44 for

C1 on Figure 4 is not deemed a good value for this

CFD model. This is a major finding for future runs in

this context. Furthermore, the spread for C2 is wide,

which indicates that the likely values can vary in the

original interval 1.5-2.5 though with more probability

between 1.8 and 2.3. As for Cµ, the tuning procedure

reduced the prior interval of 0-0.2 to 0.05-0.17 with a

very large probability in the center of this interval as

the histogram shows a sharp peak there.

Based on these histograms, values of C1 = 1, C2 =
2.1, Cµ = 0.12 were selected as being likely values

to give the most improved model performance. Us-

ing equations (12) and (13) the value of σǫ= 0.42 and

σk= 0.462 were found. The CFD model was run with

the new choice of calibration parameters. The results

for the modified CFD model can be seen in Figures

7(b) and 8. Qualitative comparison of the CFD flow

patterns against that from the wind tunnel shows the

improvement produced by the modification of the pa-

rameters. The size of the flow separation and vor-

tex produced above the upstream building is reduced

(Figure 7(b)). This causes the center of vortex con-

tained within the street canyon to move down towards

the center of the street. This is in line with the re-

sults of Kastner-Klein et al. (2004) and previous re-

search on flow within regular street canyons. A quan-

titative comparison is shown in Figure 8 which shows

the TKE profiles taken from the center of the street

canyon. From this we can see that TKE predictions are

improved by the modified CFD model. The common

problem of under prediction of TKE within the street

is still present but less so compared with the previous

(a)

(b)

(c)

Figure 7: Vector plot showing velocities for (a) un-

modified CFD model (b) CFD model with modified

constants (c) results from wind tunnel experiment

Kastner-Klein et al. (2004)

model. Although this was not part of the Bayesian

calibration process it is used to demonstrate how more

informed choices of the calibration parameters can im-

prove both TKE and flow patterns.

The final stage in the calibration process is to produce

an emulator of the CFD model. This extracts all the

information contained within the CFD runs regarding

the calibration parameters and their uncertainties and

uses it to produce predictions of the TKE values at

specified heights. The results of the initial emulation

can be seen in Figure 9 denoted by the green line. By

adding in the bias found for the CFD model we get

our final prediction (blue line). We can now see how

the sequential design has improved the emulation and

predictions. Using these 20 additional points results in

overall tighter confidence regions for the prediction.

Indeed, Figure 9 displays larger confidence bands in

the initial design-based predictions than when 20 ad-

ditional well-chosen points are included in the analy-
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Figure 8: Normalized TKE profiles from CFD model

with un-modified constants (black line), modified con-

stants (dashed line) and wind tunnel data (circles)

sis. This occurs in particular at the height of 1.3 where

TKE is maximum, and at the height of 0.4 where there

is little variation and levels are low. The larger and

widening confidence width at the bottom heights of

around 0.2, with the full design compared to the initial

one, does not contradict this point. To the contrary, it

highlights the fact that correlations and levels of un-

certainties in the predictions are better estimated using

the 20 additional points. Indeed, one expects widening

confidence widths when predictions are made at the

borders of intervals as there is no possibility of bor-

rowing strength from unavailable information across

the border.

In these figures, the biases are small, as shown by the

difference between the emulator of the CFD model (in

green) and the prediction using the bias (in blue). It

is slightly larger within the street canyon (normalized

heights less than 1). This is as expected as it has been

noted that the standard k-ε model has problems pre-

dicting the TKE values within the street. Here we

put a small prior assumption on the size of the height

related bias, thus constraining this bias to be small.

We wanted the statistical calibration to find strong evi-

dence in the data to change the opinion that CFD mod-

els can be very accurate by just tuning our calibration

parameters. This belief cannot be held in general, and

is specific to the numerical model and the application:

for some atmospheric models pushing the calibration

parameters to extreme values in order to match obser-

vations is unrealistic and acknowledging a potentially

large bias is a better strategy (Guillas et al., 2009).

From this process we can see that making informed

choices about the standard k-ε model constants can

drastically improve the CFD model. However the best

predictions of the TKE values were found by emulat-

ing the CFD model using the full Bayesian framework

which enables the quantification of uncertainties re-

garding the parameters and the numerical model, not

by merely choosing some combination of parameter

values.

Figure 9: Emulator (green line) and prediction with

estimated bias added (blue line, with red lines corre-

sponding to the 95% confidence interval) and obser-

vations (circles), using the initial design (top panel) or

the full design (bottom panel).

CONCLUSION

The focus of this paper was on the constants contained

within the standard k-ε model, which are often in in-

dustry left unchanged from the original values sug-

gested by Launder and Spalding (1972) seen in Table

1. By varying these constants we were able to asses

their influence on the CFD models capability to simu-

late flow within and above a street canyon. The wide

spread of results shown in Figure 2 suggest these val-

ues have a significant impact on the turbulence values

and can be adjusted to improve model predictions as

seen by the use of modified parameters shown in Fig-

ures 7 and 8. Although these values have been changed

in the past, the approach used here is unique as it in-

volves the use of advanced statistical methods which

have not been applied to this problem before.

Through the use of Bayesian calibration we were able

to gain a greater understanding of the uncertainties re-

lating to model constants and quantify the bias of the

CFD model itself. Although the bias is slightly larger

within the street canyon it is still small enough to as-

sume that the standard k-ε model is capable of accu-

rately reproducing flow within a street canyon. We

were also able to use statistical methods to emulate

the CFD model, providing a much improved predic-
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tion of the turbulent kinetic energy values within the

street canyon by integrating over the range of possi-

ble values for the parameters. To our knowledge, it is

the first study to quantify uncertainties directly relat-

ing to the k-ε model constants, see Najm (2009) for a

review of direct computation of numerical uncertain-

ties in CFD outputs. Probabilistic statements can thus

be made about critical thresholds for turbulence and

flow speeds that could not be stated before.

This paper demonstrates the Bayesian calibration pro-

cess of a CFD model for one particular case study. A

suggestion for future work would be to perform the

same process for flows with different Reynolds num-

bers thus testing the sensitivity of the k-ε model con-

stants to changes in the Reynolds number. In this case

we chose the k-ε model as its limitations have been

well documented by previous research making it an

ideal candidate for calibration. However the calibra-

tion process can be used on any independent CFD in-

put parameter therefore Bayesian calibration posesses

a wide range of possibilities for CFD modeling in the

future including investigating the uncertainties inher-

ent within other turbulence models.
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