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Abstract

This thesis is based on five articles, four of which have bediighed in the Journal of Math-
ematical Physics, Physical Review D, Modern Physics Letéeand Journal of High Energy
Physics. The fifth has been submitted to Mathematika. Irethesks we study several distinct
problems within the broad subject area of Mathematical ieRySThe common feature is that
all these works deal with rotations of one form or anothepdrticular, we show an equivalence
between the massless and massive Dirac equations and rbadetson the concept of rotating
material points. We also solve an open problem in Einsteirtad theory, namely, we find a
natural matter source for a non-trivial spin angular momentensor. Finally, we construct
a complete class of non-standard (non-local) spinor fieddriles and examine their possible

applications in Cosmology.
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Chapter 1

Introduction

1.1 Topics and themes

This thesis is based on five articles, four of which have bedaighed in the Journal of Math-
ematical Physics, Physical Review D, Modern Physics Leteand Journal of High Energy
Physics. The fifth has been submitted to Mathematika. Thaeraaay notice discrepancies in
notation between the thesis and the articles. This is dueetoature of working on two main
but distinct topics during the course of the PhD. Thereforaking such notational changes was
unavoidable in preparing a coherent document.

The first half of the thesis details extensive work invediigaan interesting link between
spinors and rotating material points. The latter half death spinors in cosmology, specifi-

cally, with what are called non-standard spinors.

1.1.1 Coframe

We suggest a new geometric interpretation of both the Dinac\ileyl (massless Dirac) equa-
tions. The basic idea is to view space-time as an elasticreamh whose material points can
experience no displacements, only rotations, with rotgtiof different material points being
totally independent. The idea of rotating material pointsyraeem exotic, however it has long
been accepted in continuum mechanics within the Cosseratyttof elasticity [[43]. This idea

also lies at the heart of the theorytefeparallelism(= absolute parallelism = fernparallelismus),

a subject promoted by A. Einstein aid Cartan[[37], 106, 11.7]. With regards to the latter it is
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interesting that Cartan acknowledged|[35] that he drewitiagpn from the ‘beautiful’ work of

the Cosserat brothers.

An elastic continuum with no displacements, only rotatidasof course, a limit case of
Cosserat elasticity. The other limit case is classicaltieis with displacements only and no

(micro)rotations.

Rotations of material points of the elastic continuum arecdbed mathematically by
attaching to each geometric point an orthonormal basisclwhives a field of orthonormal
bases called thtameor coframe depending on whether one prefers dealing with vectors or
covectors. Our model will be built on the basis of exterioicalus so for us it will be more

natural to use the coframe.

1.1.2 Spinors and torsion

General relativity is a successful theory in agreement witlast number of observations. It is
based on the Einstein-Hilbert action which yields the figldations if varied with respect to
the metric. If, however, the metric and the connection (npoeeisely the non-Riemannian part
of the connection with the connection assumed to be metrigpatible) are considered as

priori independent variables, two field equations are obtained.fif$t one relates the Einstein
tensor (not necessarily symmetric) to the canonical enarggentum tensor, while the other
field equation relates the skew-symmetric part of the caimmecthe torsion tensor, to the spin
angular momentum of matter, see e.gl[67,/68| 69, 70, 66, BEibh and torsion are related by

algebraic equations, and torsion vanishes in the absersmiates.

The cosmological principle states that the universe is ftgemeous and isotropic on very
large scales. More mathematically speaking, the four deioeal spacetiméM, g) is defined
by 3D space-like hypersurfaces of constant time which are odbitsLie group G action on
M, with isometry groupSO(3). We assume all fields to be invariant under the action of G
which meansC,g,, = 0 and£¢7},,* = 0 whereL, denotes the Lie derivative with respect

to the generator of the group. This assumption reduces th@malogical metric to the well



1.1. Topics and themes 11

known Friedmann-Lemaitre-Robertson-Walker form whickharacterized by the scale factor
and the geometry of the constant time hypersurfaces. liegppd the torsion of spacetime, it
reduces the components compatible with the cosmologidgatipte to a spatial axial torsion

and a vector torsion pait [116].

Cosmological models with torsion were pioneered by Kopskyin [81,[82], who as-
sumed a Weyssenhoff fluid [124] to be the source of both curgand torsion. The cosmolog-
ical principle was first extended to Einstein-Cartan theéoifil 16], where it was also suggested
to reconsider the results in [81,182], since the Weysserthaff turns out to be incompatible
with the cosmological principle (see also [94] 14, 28]). Asberate analysis of the most gen-
eral action up to quadratic terms in curvature and torsisnm@ing the cosmological principle
can be found in[59]. Analytical solutions of the Riemanmaed gravity have recently been
discussed in a cosmological contextlin/[83]. Non-Riemammiepdels of cosmology in general

have been discussed in [101, 100,102, 103].

However, nobody has so far succeeded in constructing arivial-spin angular momen-
tum tensor in cosmology by minimally coupling matter fieldshie geometry. We show that
the minimally coupled eigenspinors of the charge conjagatiperatori[4, 3] yield a spin tensor

compatible with the cosmological principle.

These spinors belong to a wider class of so-called flagpaleosp [44]. They are
non-standard spinors according to the Wigner classificasiod obey the unusual property
(CPT)? = —1. Hence, their dominant coupling to other fields is via theddignechanism
or via gravity [4/3]. The particles associated with such llfieeory are naturally dark and are

named Elko spinors.

1.1.3 New class of spinors

In recent years, our understanding of the universe has begpeatly improved thanks to the
high precision cosmological observations that we havdablai today. According to the Stan-

dard Model of Cosmology, which assumes General Relatigtha theory describing the grav-
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itational interaction, our universe is composed by abtigtof baryons,23% of dark matter
and73% of dark energy. Moreover, in addition to these componentsneed to assume an
early inflationary epoch in order to explain the currentestatt our universe. Although this
budget enables us to successfully account for the curresthalogical data, it needs to as-
sume the existence of three unknown components from a legptiysics point of view, namely
dark matter, dark energy and inflation. Thus, we find thatiptieths based on General Rela-
tivity plus the Standard Model of particle physics are atoddth current astronomical ob-
servations, not only on cosmological scales, but also oactjal scales where dark matter
plays a crucial role. This indicates failures either in jgdetphysics or in general relativity
(or both) and, in particular, it might be indicating the égitce of new particles/fields as can-
didates for dark matter, dark energy and inflation which daaidise in high energy physics
[92,5,26/ 12, 85, 34, 42, 80,179,188, 105|184, 8,1122].

Spinors have played an important role in mathematics andighyhroughout the last 80
years. They theoretically model particles with half integjgin, like the electron in the massive
case or the neutrino (massive or massless). The spin siucfumanifolds has played an
important part in modern mathematics, while in mathemhbpbasics this structure motivated
the twistor program.

In the framework of particle physics all spinors used arbegitDirac, Weyl (massless
Dirac spinors) or Majorana spinorg, Such spinors obey a field equation which is first order
in the derivatives (momenta) af. Cosmologically, this first order field equation impliesttha
the average value of both = ¢ and the spinor energy density of a free spinor field evolves
like the energy density of pressure-less dust i.e. prapmatito(1 + 2)3, wherez is the redshift.
Additionally, the first order nature of the field equationuls in a quantum propagataf; -,
which, for large momenta, behaves ag&'r « p~!. This limits the form of perturbatively
renormalizable spinor self-interaction terms in the actio be no more than quadratic if
e.g.y1 and Q,Z_WHA%W. The momentum drop-off of/r also results in) having a canonical

mass dimension df/2.
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A wider range of renormalizable self-interaction terms andmological behavior would
be allowed if one could construct a viable spinor field theahereGr « p~2, for largep,
resulting in ay with a canonical mass dimension of unity. We refer to thisrentlass of
spinor field theories with such properties as Non-Standamdes (NSS). This class of spinors
is closely related to Wigner’s non-standard classes|[128&inberg showed that, under the
assumptions of Lorentz invariance (rotations and boostd)lacality (events affecting other
events within their light-cones), the only spiri2 quantum field theory is that which describes
standard spinors (Dirac, Weyl, Majorana). NSS will therefaiolate either locality or Lorentz
invariance, or possibly both. Our working assumption ig¢ teasonable NSS models preserve
Lorentz invariance, while being non-local.

Along these lines of reasoning, Ahluwalia-Khalilova anduiller [4, (3] constructed a
NSS model using momentum space eigenspinors of the chargegation operatoEigen-
spinoren des LadungsKonjugationsOperat@#ko) to build a quantum field. They showed
that such spinors belong to a non-standard Wigner classdmnbitenon-locality [125]. They
satisfy (CPT)? = —I while Dirac spinors satisfyC PT)? = 1. In more mathematical terms,
they belong to a wider class of spinor fields, so-called flégyppinor fields[[44]. The spinors
correspond to the class 5, according to Lounesto’s claggdit which is based on bilinear
covariants, similar to Majorana spinors, see also [46| 4%, [Zocality issues and Lorentz in-
variance were further investigated in [2, 1] with resultsrg the lines of the current work.
Causality has been analysed|in|[52], 53].

The construction of Elkos using momentum space eigenspingp, i, ), of the charge
conjugation operator leads to a spinor field with a doubleiekstructure. The left-handed and
the right-handed spinor have opposite helicities whichuin tequires a careful construction of
the resulting field theory. These spinors have receive@ guitne attention recently [22,123)52]
and their effects in cosmology have been investigated [3524,[61] 16, 44, 46, 45, 74, 107,
108,17/ 123].

However, as we will show iffg], Elkos spinors, defined in the way described above, are not
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Lorentz invariant. We demonstrate using our constructioNSS where this Lorentz violation
appears, thus confirmin@l/[2] 1]. The original analyses défthe field structure entirely in
terms of momentum space basis spinors rather than, for dgastarting with an action whose
minimization would imply that structure. This led to the ktion of Lorentz invariance being
hidden in the mathematical structure of the model. In thesgmework, on the other hand,
we start with a general action principle for NSS. When apptie the Elkos, an alternative
model also based on eigenspinors of the charge conjugapierator, the violation of Lorentz
invariance and other issues with their construction ardi@xpt the level of the action. The
original Elko definition is seen to require a preferred sgéaedirection and is ill-defined when
the momentum points along that direction. We offer a new N&S theory which is also based
on the eigenspinors of the charge conjugation operatarugieg the basis\(p, &, e)) which
respects the rotational grouf)(3) but is not invariant under boosts.

We shall see that the general construction of NSS modelsecaadn as the choice of some
operatorP satisfying P> = I which acts on) to project out those states that would otherwise
give an inconsistent Hamiltonian density. In this thesispsavide a general treatment of a
class of NSS models based on an action principle and choiopafatorP. We show that
there is one, potentially unique, choice®fwhich results in a Lorentz invariant, ghost-free but
non-local spinor field theory with canonical mass dimensioa.

We are also interested in the cosmological behavior of géMN8S models and construct
the energy-momentum tensaf,,,. For Elko spinors it appears that, at present, no one has
obtained the fulll,,, as all previous works in the literature, including ours, daverlooked
contributions tdl,,, from the variation of spin connection.

The remainder of this chapter provides the notation andexttions used throughout the
thesis. In particular, it describes the spin connectionyifaatrices, covariant derivative, the
coframe, torsion and spinors.

Due to the work of this thesis having developed in two maingpdtris unavoidable to have

separate sections for notation pertaining to Chaplers$ B &d4Ghapter§]5 &16



Chapter 2

Notation

We work, unless otherwise stated, on a 4-manifdbldequipped with a Lorentzian metrig
The construction presented is local so we do not naakeiori assumptions on the geometric
structure of spacetiméM, g}. The metricg is not necessarily the Minkowski metric. Fur-
thermore, we use the following signatufe, —, —, —}. We use local coordinatels:#} where
p=0,1,2,3. We also denoté,, = 0/0x* and assume Einstein’'s summation convention for

repeated indices. We define the covariant derivative of tovéield IV as
V. VY =0,+T",V" (2.1)

wherel™ ., are the connection coefficients. In the case of General iRigfafcurvature only,
no torsion) we call our connection the Levi-Civita connetand write our connection coeffi-
cients as{I'}" .. In the case of no curvature but non-zero torsion (Telefsdisah) we write
coefficients asl'|” ... The explicit formula for the Levi-Civita connection can therived from
the metric compatibility condition

Viugvs =0 (2.2)
together with the condition that torsion is zero, giving
{I'} ' = %g%(augw + O Grp — OnGyuw)- (2.3)
Curvature is measured by the Riemann curvature tensor vidabéfined as

Ry’ = 20,17, + 217\ I (2.4)

plv]
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whereI'?,, is the general connection and therefore can contain cuevatnd torsion. Two

other important quantities are the Ricci tensor
R,, = R,.," (2.5)

and the Ricci scalaR = R,".
As mentioned above, we can also encode torsion into thigneictt does not feature in the
metric but appears at the level of the connection. In pddicue can write a general metric

compatible ¢ = 0) connection as
I ={T}Y 0 — K" (2.6)

whereK is a tensor called contortion; it possess the anti-symn@operty K3, = —K,3.

Torsion is defined as the anti-symmetric part of the conaacti
T =T —T7,,) = (K, — Ku7). (2.7)

Torsion (contortion) and the metric are independent of edlohr providing our universe

with more degrees of freedom. The interval on our space-ndefined as
ds?* = g, dztdx” (2.8)

and it does not depend on torsion (contortion).

Throughout this thesis we use Greek lettéss 3, . .. } for holonomic indices and Latin
letters{j, k, ... } for anholonomic indices.

We will use A to represent Lorentz transformations and, in the latter plathe thesis,
the cosmological constant. It will be obvious from the cahtes to which use of\ is being

implemented.

2.1 Coframes

Within this thesis we will use two distinct coframe¥,, ande’,,. They satisfy the same condi-
tion

ﬁjoﬂ?kﬁnjk = GaB (29)
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and
¢ o511k = gas (2.10)

whereg, is the space-time metric ang;, = diag(+1, -1, —1, —1) (the Minkowski metric).

With both coframes we can obtain the frame versions
0’ = np 0g™? (2.11)

and

er” = njpelag™. (2.12)

It is important to note that the anholonomic index always esrfirst and the Lorentz index
second. Sometimes we will suppress the Lorentz index. Welwrihis only when it is obvious
and doesn’'t add any confusion.

The reader may wonder why we would introduce two coframemm(@s) that, at least

according to the above definitions, are the same object.

2.1.1 &,

The usual argument for introducing a coframe is to includeap in curved space. Spinors
require by definition to be defined clearly with respect to tloeentz symmetry of a given
space-time. Since in general a manifold in General Retatddes not necessarily respect
Lorentz symmetry globally, it is necessary to introduce @lastructure that defines spinor
states according to Lorentz symmetry of locally flat spatesther wordsg’, is a reference

coframe, and all formulae are invariant under changes sfréference coframe.

2.1.2 ¥,

This second coframe is the the main feature of our alteraatiedel in Chaptels| 3 & 4. Our
formulae will not be invariant under changes®f,, so/, is a true dynamical variable.
In the next section we will introduce our spinor notation ahen return to the topic of

including the coframes defined above.
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2.2 Spinors

Spinors can be difficult to understand and often in the plsykierature they are introduced
without a rigorous definition. The simplest definition of argp is Cartan’s for a spinor in 3
dimensions. Simply put, a spinor is the square root of a cernigbtropic {,, V¢ = 0) vector.
We can see immediately one very important feature of theospifte define our vector to have
the componenty* = (V!1, V2, V3) and being isotropic means we take the following condition

into consideration

(VH2 4+ (V32 + (V3?2 = 0. (2.13)

Then we can define two numbefs & in accordance with

Vi=¢ -, (2.14)
V2 =i + &),

V3= —2¢16.

These give the solutions

VI iV ViV
glzi\/# and @:i,/%. (2.15)

If we were multiply the vector by —* then according td (2.15) and &, will be multiplied

by e~i/2. Therefore a rotation throughr leaves the vector unchanged but the two numbers
&1 and & change sign. This pair of quantities constitutespinor. A spinor, according to
Cartan|[[36], can be thought of as a directed or polarisedapit vector.

Throughout this thesis we will not be discussing spinors utimdetail but will be using
them for various mathematical constructions or to represemething physical. We have there-
fore decidednot to derive their form explicitly (which could be the topic ofb@ok) and just
introduce the properties that we need. Furthermore sirere il a clear divide in the topic of
this thesis, we will separate our notation section into taxig Section 2]3 pertains to Chapters

&M and Sectiof 2]4 to Chaptérs 5 & 6.
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2.3 Notation for Chapters[3 &4

Spinors, unlike “proper” vectors introduced above, do ratLorentz indices. Instead, they

have spinor indices. We will reserve the beginning of theérLalphabet for theséa, b, ... }.

In Chaptef B we will be in (1+3) dimensions working with Weplrgors (= definite helicity).

They have two complex components, i.e. four real degree=eflom. In Chaptéd 4 we will be

in (1+2) dimensions working with a Dirac spinor. Due to thdueed dimensionality the Dirac

spinor also has two complex components, i.e. four real @sgoéfreedom in (1+2) dimensions.
For example, when dealing with the Weyl equation (massléssc@quation), we will be

working with a Weyl spinor field® whereb = 1, 2. The Weyl equation itself is
0% {V}a® =0, (2.16)

where the Pauli matrices are defined below an{lV} denotes the covariant derivative with
respect to the Levi-Civita connection.
In Minkowski space, i.e. flat space-time with= n = diag(+1,—1,—1,—1), Pauli

)

matrices are defined as

10
0 1
% 0 1
0%y = &gy = oa = bo . (2.17)
a2 0 —i
a3 i 0
1 0
0 -1

For an arbitrary Lorentzian metrig # n = diag(+1, —1, —1, —1) Pauli matricess’ ;, (note
the Latin upper index!) are defined as above (see formuld|(Pvithereas Pauli matrices;,
(note the Greek upper index!) are defined as Hermitian nesttié ,;, satisfying the relation

ao‘baaﬁi"" + aﬂbaaai’c = 2¢°95,° where spinor indices are raised and lowered using the “metri
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spinor” ey

€ab = €45 = € = ¢ — (2.18)
in accordance with the formulag? := €0 g;¢? .

Of course, the matrices®,;, are expressed Vi 4, in accordance with the formula
O’adb = ejo‘sjdb (2.19)

wheree;* is some reference frame. This is the frame introduced inesaios[2.1.11.

We define the covariant derivatives of spinor fields as
Vuga = 8u§a + Paub§b7 Vuga = uga - Pbua§b7 (2-20)
Vo = 0un* + T un’s Vuna = 8uma — T uam;, (2.21)

wherel'* ; = T ;. The explicit formula for the spinor connection coefficiefit',;, can be

derived from the following two conditions:
V€ay =0, (2.22)
Vuo%a =0, (2.23)
Whel’evu()'adb = aMO'aab + Fa“[goﬁab — fwéudgaéb — Fd“bO'aad and
«
e,z = (2.24)
i {uﬂ }

are the Christoffel symbols. Conditioris (2.22), (2.23)egan overdetermined system of linear

algebraic equations fdkeI'* 5, Im I'* 5, the unique solution of which is
1,
0 = 700" (0u0”as + T30, ) (2.25)

In Chapter$ 3 &4 we will view the coframe (framé)as a dynamical variable.
We restrict our choice of local coordinates dfto those withdet e/, > 0. This means
that we work in local coordinates with specific orientatitmparticular, this allows us to define

the Hodge star: we define the action«abn a rank- antisymmetric tensoR as

(*R)a, 1. 1= (7“!)*1 V|det g| R*"“eqy  an (2.26)
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wheree is the totally antisymmetric quantitygios := +1.

The coframe? which is our dynamical variable is assumed to satisfy
det ¥/, > 0, (2.27)

ande’ - 99 > 0. These assumptions mean that we work with cofrathesich can be obtained
from our reference coframeby proper Lorentz transformations? = A7, e where theA7,,

are real scalar functions satisfying conditions
Mji Ajk Air = Nir, det Ajk > 0, AOO > 0.

We define the forward light cone (at a given point) as the sebwéctors of the forna;/
with 7k c;c;, = 0 andcg > 0. This implies, in particular, that our covectodefined by formula
(3.4) lies on the forward light cone.

We define

bd

Tofac = (1/2)(0aab€bdgﬁcd — g€ T ped) (2.28)

(the first spinor index enumerates the rows and the secondheneolumns). These “second
order” Pauli matrices are polarized, i.ec = +ic depending on the choice of “basic” Pauli
matriceso,_; . Here the explicit formula for the action of the Hodge staisenond order Pauli

matrices is
1
(*U)Wéab = 5 V |detg| Uaﬂab Capys-

Following from our choice of Pauli matrices we have the failog polarization
*x 0 = i0. (2.29)

We can also form a complex coframe, written as

(2.30)

]
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where

L:=90 4+ 93, m = 9 + 92, n =90 — 9. (2.31)

(The Lorentz index has been suppressed.)

Note that formulal(2.27) implies
x (IAm)=—i(l Am) (2.32)

where the covectorsandm are defined by formulaé (2.81). We chose the sign in the RHS of
(2.29) so as to agree with (2132). In other words, the meaafrmpndition [2.29) is that the

orientation encoded in our Pauli matrices agrees with tlentation encoded in our coframe.

2.3.1 Torsion

One of the more dominant themes in this thesis is torsiors. particularly important when we
want to measure the deformation of the coframes from theaebée counterparts. We define

torsion for our dynamical variablé’ , as (suppressing Lorentz indices)
T =9"®dd° — 9 @ do* —9? @ dv?® — 9 @ d¥® (2.33)

where(d¥7) .5 = 9,97 5 — 9317, is the exterior derivative of the coframe. We are only inter-
ested in a special irreducible part of torsion, namely thalgpart, which is totally antisymmet-

ric in all three Lorentz indices,

T2 = = (09 A d9® — 9t A a9t — 92 A dv* — 93 A dv®). (2.34)

Wl

Here the exterior product of a covector (1-form)and a covariant rank two antisymmetric
tensor (2-formjw is defined agv A w)agy 1= VaWgy + VyWag + VW~ q-

We identify differential forms with covariant antisymmiettensors. Given a pair of real
covariant antisymmetric tensof? and () of rank » we define their dot product aB - Q) :=

LPy 0, Qp,..8,9% ... g>Pr. We also defing P||? := P - P.
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2.4 Notation for Chapters[5 &[6

In Chaptel’b we will be in 1+3 dimensions working with Elko rspis in Cosmology. They
have 4 complex components, but due to the cosmologicaliplinG= space-time is assumed to
be homogeneous and isotropic), only have one real degreeasfdm.

In Chaptef 6 we will be in 1+3 dimensions working with genised non-standard quan-
tum fields. These are different mathematical objects toospjrin some sense they are infinite-
dimensional versions of the spinors from the rest of theishaa/e will introduce them rigor-
ously in that chapter with their own notation and therefoiéavoid cluttering this section with
very specialised notation.

As in Chapter§]s &6 we will be dealing with spinors with 4 comptomponents we will
require thet x 4 analogue of the Pauli matrices, namely the Dirac matrices.

The4 x 4 Dirac matricesy’, j = 0, 1,2, 3, in any space-time, curved or flat, are defined

in terms of the2 x 2 Pauli matricesr’ as

0 1 0 —sm 1 O
70 = , = , n=1,23, =i’y = ,
1 O s 0 0 -1
(2.35)

where thes™ are defined in accordance with 2.17.
The matricesy* are then given by® = ~7¢;*, and hence satisfy
7497 + 4Py = 2¢%71.
The covariant derivative of a 4-component complex spindefined as
Vol =0,V 4+ T,V (2.36)
whereTl’,, denotes the spin connection
Pa= ol =1 [, (237)

and, since we require

Vaelg = 0ned g — T el y — walpels = 0, (2.38)
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we have

wo "

= ejﬂﬁaekﬁ + ejﬁekofﬁag. (2.39)

Hereek = ek 5gf.

The covariant derivative has a particular form associatéuaach object (vector, covector,
spinor, etc) it acts on. Also, there is a distinct connectidrether you have curvature, torsion
or both. We will always state explicitly which form of the @mant derivative we are using

throughout the thesis.

2.5 Brief introduction to teleparallelism

Given a coframe), we introduce a covariant derivatiy& | such thatV|J = 0. We repeat this
formula giving frame and tensor indices explicith7 |97 3 = 0. We then rewrite the formula
in even more explicit form:

A 5 — [T g, =0 (2.40)

where|I'|7,4 are the connection coefficients. Note that formila_(2.4@) thaee free indices
J, @, B running through the value® 1,2, 3. Note also that the connection coefficieht” .z

has three indices;, 3, v running through the value 1,2, 3. Hence, [(2.40) can be viewed
as a system of 64 inhomogeneous linear algebraic equatiorthd determination of the 64

unknown connection coefficienB|” 5. It is easy to see that its unique solution is
T ap = 0irg" 0" 5029" 5. (2.41)

The corresponding connection is calleEdeparallel When writing the teleparallel covariant
derivative and connection coefficients we use the “moduiggi to distinguish these from the
Levi-Civita covariant derivative and connection coeffitiefor which we use curly brackets.
Thus, we have two different connections: the Levi-Civitammection used primarily in
the text of this thesis and the teleparallel connection usettis section. Both are metric
compatible:{V}g = |V|g = 0. The Levi-Civita connection is uniquely determined by the

metric whereas the teleparallel connection is uniquelermened by the coframe. For the
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Levi-Civita connection torsion is zero whereas for thegalallel connection curvature is zero.
Thus, in a sense, the Levi-Civita and teleparallel conoastare antipodes.

“Teleparallelism” stands for “distant parallelism”. Whatmeant here is that the result of
parallel transport of a vector (or a covector) does not déperthe choice of curve connecting
the two points. This fact can be expressed in even simplerstas follows. Suppose we have
two covectorsu andwv, of equal magnitudéu||? = ||v||*> # 0, at two different pointsP and
@, of our manifold (spacetime)/. We need to establish whetherandv are parallel. To do
this, we use the coframe as a basis and write a;97, v = ;7. By definition, the covectors
v andv are said to be parallel if; = b;.

Formula [2.411) allows us to evaluate torsion of the teldpgreonnection:
Tvaﬁ = |F|vo¢6 - |F|Wﬁa = nikgvéﬁié(aa'ﬂkﬁ - 8ﬁ’l9ka) = mkgvéﬁig(dﬁk)aﬁ

where d denotes the exterior derivative. Lowering the first tengoiek gives a neater repre-

sentationl’,,z = nikﬂg(dﬂ’“)w. Dropping Lorentz indices altogether we get
T = nipd' ® do*. (2.42)

Itis known [70/ 118, 72] that torsion decomposes into thnelucible pieces called tensor
torsion, vector torsion and axial torsion. (Vector torsisrsometimes called trace torsion.) In
this thesis we use only the axial piece. Axial torsion hasrg sienple meaning: it is the totally
antisymmetric piecd™* 3, = %(Tam + T03 + Tya). Substituting[(2.42) into this general
formula we arrive af(2.34).

Of course, there is much more to teleparallelism than theettary facts sketched out

above. Modern reviews of the physics of teleparallelismlmafound in[71, 65, 89, 48, 13, 95].
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Alternative picture of particle physics.
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Chapter 3

Weyl Lagrangian

Theorems$ 3]1[- 314 are the main the results of this chaptefinde@n equivalence between our
model based on the coframe and the standard model for a as&atrino.

Let’s first define our model in more detail.

3.1 The setup

We start by reacalling our definition of axial torsidn (2.3%Fhis 3-form is calledaxial torsion
of the teleparallel connectionThe geometric meaning of the latter phrase was explained in
a concise fashion in the previous chapter, whereas a d&gxjeosition of the application of
torsion in field theory and the history of the subject can hnébin [58/ 72]. What is important
at this stage is the observation that the 3-fdrm (2.34) is asune of deformations generated by
rotations of spacetime points.

Note that the 3-form[{2.34) has the remarkable property afamnal covariance: if we

rescale our metric and coframe as

9ap — ezhgaﬁ (31)
W s eyl (3.2)
whereh : M — R is an arbitrary scalar function, then our 3-form is scaled as

T s 2hax (3.3)
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without the derivatives of appearing. The issue of conformal covariance and invagiavitt
be examined in detail in Sectign 3.6.

It is tempting to use the 3-forml (2.34) as our Lagrangian batgroblem is that we are
working in 4-space. In order to turn our 3-form into a 4-forra proceed as follows.

We recall the definition of,,,
lo := 90 + 93,. (3.4)

This is a nonvanishing real lightlike covector field. It waNentually (see Sectién 3.8) transpire
that the covector field(3.4) has the geometric meaning afrimeucurrent.

We define our “teleparallel” Lagrangian as
Liele(9) :== L ANT™. (3.5)

Note that formulae[(2.34)[(3.4)._(3.5) are very simple. yTde not contain spinors, Pauli
matrices or covariant derivatives. The only concepts usethase of a differential form, wedge
product and exterior derivative. Even the metric does npeapin formulae[(2.34), (3.4}, (3.5)

explicitly: it is incorporated implicitly via the constrati (2.9).

3.2 Symmetries

As with any Lagrangian it is good to know what symmetriesgiingl or not, are available to us.

We start with Lorentz transformations of the coframe:

97 A G = Aok (3.6)
where the\’,, are real scalar functions satisfying the constraint

Nkl AP s = nps. (3.7)

Obviously, transformations (3.6), (3.7) form an infiniteagnsional Lie group. Within this
group we single out an infinite-dimensional Lie subgrdiifas follows.
Put

My = O + 92,. (3.8)
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The subgroupH is defined by the condition of preservation modul¢l) of the complex 2-
form I A m. More precisely, a Lorentz transformatidn (3.6), [3.7)islided inH if and only
if

mod U(1)

IAm AT (3.9)

wherel, = 9°, + 93, andm, = 91, + i02,.

We can pause for a moment and state our first result.
Theorem 3.1. The teleparallel Lagrangiari (3.5) is invariant under theian of the groupH.

In view of Theoreni_3]1 we call two coframes equivalent if tif§er by a transformation
from the subgroug and gather coframes into equivalence classes accordihdstcetation.

Let's look in more detail at our gauge grouip. Consider a Lorentz transformation of the
coframe [(3.B) satisfying the defining conditién (3.9) of guoup H. (Recall that here tha/,,
are not assumed to be constant, i.e. they are real scaldidimmsatisfying[(3.]7).) We denote
this Lorentz transformation.

Condition [3.9) means thdkt is a composition of two Lorentz transformations:
A=AN'N (3.10)

where/’ is a rotation by a constant angtein the?!, ¥?>—plane

m| = | e¥m (3.11)

andA” is a Lorentz transformation preserving the 2-fafm m. Our convention for writing
compositions of Lorentz transformations is as follows. Whaoking at a Lorentz transforma-
tion (3.6) we view the real coframe as a column of height 4 \eftitries¥*, £ = 0,1,2,3,
and the Lorentz transformation itself as multiplicationabgeal4 x 4 matrix A7;,, so the group
operation is matrix multiplication with the matrix furthtet® the right acting on the coframe

first. So, formula[(3.10) means that acts on the coframe first.
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Itis known, see Section 10.122 [n11], that Lorentz transi@tions preserving the 2-form

I A m admit an explicit description:

l l

A//
m | m+ fl (3.12)
n n+ fm+ fm+|f%

wheref : M — C is an arbitrary scalar function andis defined as
Ng =900 — 93,. (3.13)

Substituting [(3.11)[(3.12) intg_(3.110) we arrive at thel@ipformula for an element\ of the
groupH:
l l
m | — e’m + fl . (3.14)
n n+ fe %m+ fem + |f|*l

Let us now examine the structure of the gratdp

The group of rotations in thé!, ¥2—plane is isomorphic tdJ(1). Hence further on we
will refer to the group of Lorentz transformations of the remhe of the form[(3.11) a&(1).
Let us emphasise that theappearing in formuld(3.11) is a constant, not a function.

Let us denote by3%(M) the group of Lorentz transformations of the coframe preésgrv
the 2-forml A m, see formulal{3.12). In choosing the notatiBA we follow [11] where the
“M" indicates dependence on the point of the manifiidi.e. it highlights the fact that thé
appearing in formuld (3.12) is a function, not a constant.

Both U(1) and B%(M) are abeliaH subgroups ofH. Moreover, it is easy to see that
B?(M) is a normal subgroup dff, B?(M) < H, and thatH is a semidirect product a82(M)
andU(1), H = B%(M) x U(1). Here the symbol " stands for the semidirect product with

the normal subgroup coming first.

The groupB? can, in fact, be characterised as the nontrivial abeliagrsutp of the Lorentz group. See

Appendix B in [120] for details.
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The infinite-dimensional Lie grouf is itself nonabelian. However, it is very close to be-
ing abelian:H contains the infinite-dimensional abelian Lie subgrd2i{)/) of codimension

1.

3.3 Proof of Theorem3.1
Let us rewrite our teleparallel Lagrangidn (3.5) in termshaf complex coframd (3.4), (3.8),
B.13):

Lice(¥) = (1/6) LA (n Adl —m Adm —m A dm). (3.15)
The groupH is a semidirect product of the groug®’ (M) andU(1) so in order to check that
(3.18) is invariant under the action #f it is sufficient to check thai(3.15) is invariant under the
actions of B?(M) andU(1) separately.U(1)-invariance is obvious: just substitufe (3.11) into
(3.I5) noting thaty is constant. Hence, it remains only to show that our teldjghtaagrangian
(3.18) is invariant under the transformatign (3.12).

When substitutind (3.12) int@ (3.1L5) we will get an expressihich is a sum of two terms:
e aterm without derivatives of the functiofy and
e aterm with derivatives of the functiof.

Looking at our original formulal(3]5) we see that the termhwiit derivatives of the function
f does not change the teleparallel Lagrangian because msfdrenation [(3.12) preserves the
covector field and because axial torsion is an irreducible piece of tor§ienthe 3-form[(2.34)
is invariant under rigid Lorentz transformations). So ityaremains to check that the term with

derivatives of the functiorf vanishes. The term in question is
(1/6) LA (—m Adf ANl —m Adf A)

which is clearly zero

3.4 Equivalence

Before we state our second main result and prove it, we msstliscuss the Weyl Lagrangian.
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The accepted mathematical model for a massless neutrigbigighe following complex

linear partial differential equation ol know asWeyl's equation
ic%; {V}ag" = 0. (3.16)
The corresponding Lagrangian is

Liven(€) = 2 (80, (V)" — {V}all3,6) * 1. (3.17)

Herex1 is the standard volume 4-form (Hodge dual of the scalaz®),a = 0,1, 2,3,
are Pauli matriceg; is the unknown Weyl (2-component) spinor field afd} is the covariant
derivative with respect to the Levi-Civita connection defirby formulae[{2.20)[[(Z.24).

It is well known that Weyl's Lagrangiam (3.1.7) i§(1)-invariant:

mod U(1) ~ ~

g g = LWeyl(g) = LWeyl(g)'

In view of this we call two spinor fields equivalent if they aqual moduloU(1) and gather
spinor fields into equivalence classes according to thatiosl. We call an equivalence class of

spinorsnonvanishingf its representatives do not vanish at any point.

Theorem 3.2. The equivalence classes of cofrandegnd nonvanishing spinor fieldsare in a

one-to-one correspondence given by the formula

mod U(1
(LA m)aﬁ = . Jaﬁabgagb (3.18)

where! and m are defined by formulag_(3.4) and _(B.8) respectivélyand ¢ are arbitrary
representatives of the corresponding equivalence claasdsr,g are “second order” Pauli

matrices [2.2B). Furthermore, under the correspondencEg(3ve have

4

Ltele(ﬁ) = _g LWeyl(g)' (319)

A shorter way of stating Theorelm 3.2 is “the nonlinear chasfgeariable

coframed <«+—  spinor field¢
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specified by formula(3.18) shows that the two Lagrangidng,(¥) and Ly (), are the
same up to a constant factor”. The only problem with such temstent is that it brushes aside

the important question of gauge invariance.

3.5 Proof of Theorem 3.2

The gauge grou@ allows us to gather coframes into equivalence classes: Igvcecoframes
equivalent if they differ by a transformation frof. We will now establish the geometric
meaning of these equivalence classes of coframes.

Let us first fix a spacetime poiat € M and examine in detail the geometric meaning of
the groupB2. We initially definedB? as the the group of Lorentz transformations preserving
the 2-formi A m. The complex nonzero antisymmetric tengar m is polarized (sed (2.82))
and has the additional properdyt (I A m) = 0. It is easy to see (and this fact was extensively
used in[[120, 78, 118, 119, 97]) that such a tensor can beewiittterms of a nonzero spingr
as

(IAM) 05 = —Tapabl®€’ (3.20)
with the spinor defined uniquely up to a sign. Thus, the gréifpcan be reinterpreted as
the group of Lorentz transformations preserving a giverzeom spinor and the equivalence
classes of coframes are related to this spinor accordingrtouia [3.20). Here the relationship
between an equivalence class of coframes and a nonzera spime-to-two because formula

(3.20) allows us to change the sign&of

Remark 1. One can use the above observation to formulate an altemmad®finition of a
spinor: a spinor is a coset of the Lorentz group with respecthie subgroupB2. In using
this definition one, however, has to decide whether to usetaight cosets asB? is not a
normal subgroup of the Lorentz group.

Remark 2. In SL(2, C) notation the groupB? is written in a particularly simple wayB? =

1
feC

0 1
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Let us now allow dependence on the spacetime poirt M. Then the groupB?(M)
is the group of Lorentz transformations preserving a givenzero spinor field, with the
equivalence classes of coframes related to the spinor fielatding to formulal(3.20). Here the
relationship between an equivalence class of coframes andwanishing spinor field remains

one-to-two.

Finally, let us switch from the group?(M) to H = B?(M) x U(1). This means that in
our definition of equivalence classes of coframes we allown to be multiplied by a constant
complex factor of modulus 1, so formula(3120) turns inid83. Here the relationship between
an equivalence class of coframes and a nonvanishing spéidridecomes one-to-infinity be-
cause formuld (3.18) allows us to multiply the nonvanistspupor field¢ by a constant complex
factor of modulus 1; note that this eliminates the diffeeebetweerg and—¢. It remains only
to gather nonvanishing spinor fielgsinto equivalence classes as described in the beginning
of Section[3.4 and we arrive at a one-to-one correspondeeiveebn equivalence classes of

coframes and nonvanishing spinor fields given by the exgbemula (3.18).

In the remainder of this section we perform the nonlineangezof variable
spinor field¢ —  coframed

and show that ey (§) turns into—% Liee(¥). In order to simplify calculations we observe
that we have freedom in our choice of Pauli matrices. It iiceht to prove formula(3.19) for
one particular choice of Pauli matrices, hence we willlud&2We are also allowed to choose
e = 1. Note that this approach is not new: it was, for example,resitely used by A. Dimakis

and F. Muller-Hoisseri [49, 50, 51].

We now calculate explicitly the corresponding second oRfaili matrices:

1 .
OaBab = 5(19] A 19k)a5 Sjkab (3.21)
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where

0 Sotab  S02ab  S03ab

5106 0 S12ab  S13ab
Sjkab =
S20ab  S21ab O S23ab

830ab  S31ab  S32ab 0O

-1 0 - 0 0 1
©)
0 1 0 — 1 0
1 0 0 2 -1
0)
0 -1 i 0 0 -1
= . (3.22)
7 0 0 —z — 0
O
0 =2 —7 0 0 =2
0 -1 1 0 i 0
O
-1 0 0 1 0 —2

Substituting[(3.4) [(318) an@ (3.21]), (3122) into the empraf3.18) we see that this equation can
be easily resolved faof giving

mod_U(l) 1

go (3.23)

0

Formula [3.2B) may seem strange: we are proving Thedremo8.a fyeneral nonvanishing
spinor field¢ but ended up with formuld (3.23) which is very specific. Hoarthere is no
contradiction here because we chose Pauli matrices slyeaddpted to the coframé and,

hence, specially adapted to the corresponding spinorfield
Substituting[(2.20) and (3.23) intb (3]117) we get
Liwey (€)
i : , .
= g(iba%aaﬁ“(%a% TV ay07ca)é? = €90%3,05"(0a0” j, + {0} aq07 j,)E7) * 1
- g(UQiaUﬁm(aaaﬁc'l TV ay07a) = 0%,05" (000" + {T} ay075,)) * 1

- §(0“1a06w{v}a0ﬂc'1 —0°,058"{V}ao’i,) % 1.
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We now write down the spinor summation indices explicitly:

Ley (§) = §(0a110ﬁ21{‘7}a0ﬂ21‘+'Ua120612{‘7}a0ﬁ11‘+'Ua110622{‘7}a0ﬁ21
— 04,05 2{V}a0Piy — 0%5,05"{V}a0" i) — 095,052 {V}a0’5) # 1.

Note that the terms with = 1, ¢ = 1 andb = 1, ¢ = 1 cancelled out. Finally, we substitute

explicit formulae [(2.19),[(2.17) for our Pauli matrices winigives us

Lt () = £ (-} {(VYam” + m* (~mg) (V}al® + M5 (¥ }orm”

- la(_mﬁ){v}amﬁ - ma(_mﬁ){v}alﬁ - malﬁ{v}amﬁ) *1

- é((m Am) P {VYals — (L AT P {V }amp + (L AmM)*P{V}amp) % 1
N 1_26((m " m)aﬁ(dl)aﬁ o (l A m)aﬁ(dm)aﬁ + (l VAN m)aﬁ(dm)aﬁ) * 1

= 1_ZG * ((m A m)aﬁ(dl)aﬁ — (A m)aﬁ(dm)aﬁ + (LA m)aﬁ(dm)aﬂ)

_ é([*(m A Adl— [ Am)] A dm + [+(LAm)] A dm).

Butx(IAm) = —i(IAm) (seel(2.3R)) and(m Am) = +i(lAn) so the above formula becomes
Lt (€) = —%(l/\n/\dl—l/\m/\dm—l/\m/\dm).
Comparing with[(3.155) we arrive dt (3]19)

3.6 Conformal invariance

Until now we have kept the metric fixed but now we shall scagerttetric as[(3]1) and the Pauli
matrices as

o €04, (3.24)
Recall that heré : M — R is an arbitrary scalar function. Let us also scale the sgielt as
£y e B/2hg, (3.25)

It is well known that the Weyl Lagrangiah (3]17) is invariamder the transformation (3.1),

B.24), (3.25).
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Examination of formulad (3.18), (2.28)), (3142), shows thattransformatiorf (31 1), (3.24),
(3.28) (but not[(3.R)) induces the following transformatiaf the complex coframé (3.4), (3.8),

@.13):

l e 2h]
m| = | em (3.26)
n ethn

Of course, it is easy to check directly that our teleparaligrangian[(3.15) is invariant under
the transformatior{ (3.26).
The transformation (3.26) is a composition of two commutiremsformations: a confor-

mal rescaling of the coframB_(3.2) and a Lorentz boost

90 cosh3h —sinh3h 90
H

93 —sinh3h  cosh3h 93

The presence of a Lorentz boost in this argument is somewtmattural so we suggest below
a modified version of our teleparallel Lagrangian, one foiclltonformal invariance is self-

evident. Recall that our original teleparallel Lagrangian.(?) was defined by formulda (3.5)

or, equivalently, in terms of the complex coframe, by foran(8.15).

Put

Liete (1, 8) 1= sLieie(¥) = SIAT™ = (s/6) LA (n Adl —m Adm —mAdm)  (3.27)

wheres : M — (0, 400) is a scalar function. The functionwill play the role of an additional
dynamical variable. In view of (313) the Lagrangidan (3.26gs not change if we scale the
coframe as[{3]2), the metric ds (3.1) and the scalass — e 3"s. Hence, the Lagrangian
(3.27) is conformally invariant and, moreover, this confat invariance is quite obvious.

Let us now examine the properties of the Lagrandian {3.27fixed metric. Of course, it
is invariant under the action of the grouip which was described implicitly in Sectién 3.4 and

explicitly in Sectio 3.2 (see formula(3]14)). Howevelisitalso invariant under the transfor-
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mation
l ekl
m m
— (3.28)
n ekn
S eks

wherek : M — R is an arbitrary scalar function. The transformatibn (B.87 composition

of two transformations: a Lorentz boost

s coshk —sinhk 90
H

93 —sinhk  coshk 93

and a rescaling of the scalars — eFs. We will denote the infinite-dimensional Lie group of
transformations(3.28) by (M).

Thus, having incorporated into our original teleparallelgtangian[(3]5) an additional
dynamical variable, the positive scalar functigrwe have acquired an additional gauge degree

of freedom. The new (extended) gauge group is

H=HwxJM)=(B*M)x U(1)) x J(M)

= (B*(M) x J(M)) x U(1) = B* (M) x (J(M) x U(1)).

The action ofH preserves the 2-forhA m moduloU(1) and modulo rescaling by a positive
scalar function.

We have established the following analogue of Thedremn 3.1.

Theorem 3.3. The modified teleparallel Lagrangiah (3]127) is invarianten the action of the

group H.

In view of Theoreni 3.3 we call two sets of dynamical variabteframe + positive scalar”
equivalent if they differ by a transformation from the groflpand gather sets of dynamical
variables into equivalence classes according to thisioelafThe following is an analogue of

Theoreni3.P.
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Theorem 3.4. The equivalence classes of cofranteand positive scalars on the one hand
and nonvanishing spinor fieldson the other are in a one-to-one correspondence given by the
formula

mod U(1
s(lAm),s = W TopabE?E" (3.29)

wherel andm are defined by formulaé (3.4) and (3.8) respectivélys and £ are arbitrary
representatives of the corresponding equivalence clasedsr .z are “second order” Pauli

matrices[(2.28). Furthermore, under the correspondehcgd)3ve have

Fuce(9, ) = — 5 Lt (€). (330)

The proof of the first part of Theorem 8.4 (formula_(3.29))ssentially a repetition of the
proof of the first part of Theorefn 3.2: take the argument frbekieginning of Sectidn 3.3 and
add one gauge degree of freedom.

As to the second part of Theorém13.4 (formuila_(8.30)), it $ynfipllows from the second
part of Theorerh 3]2 (formulé& (3.119)). Indeed, when we rep(@c18) by((3.2P) the spinor field

scales ag — /s ¢&. But

4 4 b b
—g LWeyl(\/gg) = —5 SLWeyl(g) ygm)SLtele(ﬂ) ygz)Ltele(ﬁ, 5)

giving us [3.30).

3.7 Weyl’s equation in teleparallel form

Here we write down explicitly the Euler—Lagrange field edprad resulting from the variation

of the action
1 . .
Siele 1= / Liele = / LAT™ = < pingi / NN (3.31)

with respect to the coframé subject to the metric constrairit_(2.9). Herelaywe denote the
quartet of constants; :== (1 00 1).

The variation of the coframe is given by the formula

o9, = FI Lok (3.32)
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where theF7,, are real scalar functions satisfying the antisymmetry
Fji, = —Fy;. (3.33)

Condition [3:3B) ensures that the variation of the RHS d8)(& zero. Of course, tha/,

appearing on the RHS df(3.6) are expressed vidtheas
AJ 57 J 1 gl

(an exponential series), or, in matrix notatioh,= e!’. Hence, the matrix-functiod” is the

linearization of the Lorentz transformatidnabout the identity.

Substituting[(3.32) intd (3.31) we get
30Stele = Pilljk / (F' 0  AN9T N dO* + FI 9% A9 A d® + FF 197 AgT A ddt + 9" A AR Ao
wheredF¥, is the gradient of the scalar functidi*;. Upon contraction withy;;, the second
and third terms in the integrand cancel out in view{of (B.3Baf this would happen was clear

a priori because axial torsion is invariant under rigid lLrdretransformations) so the above

formula becomes
30Siele = / (p'mrFi 07 A" A dOF + pem 9% AT A dF; A9Y)
wherep’ := 1"/ p;. Integration by parts and antisymmetrization,i gives
60Stele = / Ey (0 nud? A0 A do® — pPd® A9 A dO® — 2prd(9F A 9P A 99)).
Thus, our field equations are
Pl AL A dOF — P9t A9 A d9F — 2pd(9F A 9T A 9T) = 0. (3.34)
The field equationg (3.84) are, of course, equivalent to
s [pn0? A OE A dOF — pP g9t A9E A dOF — 2prd(9F A9 A 9T)]) = 0. (3.35)

The advantage of the representatibn (B.35) is that théndaft sides of (3.35) are scalars and
not 4-forms as iN(3.34). We denote the left-hand sideS 8Bj3y G . Note the antisymmetry

G = —G7",
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We will now rewrite our field equationg (3.85) in more compémtm in terms of the

complex coframe (314)(3.8], (3113).
We note first thatG1? = 4{V},1%. Thus, our field equations (3135) imply

{(V1al® = 0. (3.36)

Note that the scala&"® also has a clear geometric meaniGg*® = 3 * Lice.
Put

g;:=(01i0), rj:=(100=1),
Aji = PjqQr — Praj, Bji := pjrr — prrj — 4qQk + QG5 Cik = 1iQr — T1G;-

The antisymmetric matriceBe A, Im A, Re B, Im B, Re C, Im C are linearly independent,

therefore the system of 6 real equatidns (B.35) is equivedehe system of 3 complex equations
A ;G =0, By;GY=0, C;G"=0.

Straightforward calculations show thatijGij is zero for any coframe? (this is actually a
consequence of Theorédm3.1), hence our real field equalBaBB) @re equivalent to the pair of
complex equations
B;;GY =0, C;;GY = 0. (3.37)

As the systemg (3.35) arld (3137) are equivalent and as equ&t36) is a consequence of
(3.38), equation(3.36) is also a consequencé_of [3.37)céle can extend the systelm (3.37)
by adding equatior (3.86): the systelm (3.37) is equivalernthé system[(3.37)[_(3.86). The
advantage of having (3.86) as a separate equation is thiaiglifies subsequent calculations.

We now examine our system of field equatidns (B.37), (3.36aightforward calculations

with account of[(3.36) give
BijGij = —8im“v,, CijGij = 8in“v,

where

Ve = {VIP(ILAm)ap — mP{V}als. (3.38)
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Thus, our system of field equations (3.37), (3.36) is eqaiviaio

m*v, = 0, n%v, =0 (3.39)

and [3.36). BuRe(m®v,) = 2{V},l%, so [3.36) is a consequence bf (3.39). Herice, {3.39)
is the full system of field equations. It is equivalent to thiginal system of field equations
3.35).

It is easy to see that for any cofrantave have

m*v, = 0, [%ve =0 (3.40)

so the pair of scalar complex equatiohs (8.39) is equivdtetite complex covector equation

v=0. (3.41)

Recall that the LHS of this equation is defined by form{ila&}.3

Equation [(3.411) is the compact “tetrad” representationhef ¥Weyl equation found by
Griffiths and Newing[[64]. Griffiths and Newing derived (3)4irectly from Weyl's equation
(2.16), without examining the Weyl Lagrangian (3.17).

Let us have a closer look at equatign (3.41) so as to estathlestactual number of in-
dependent “scalar” equations contained in it and the actuaiber of independent “scalar”
unknowns. It would seem that (3]41) is a system of 4 complealés” equations (4 being the
number of components of the covecigrfor 6 real “scalar” unknowns (6 being the dimension
of the Lorentz group). But we already know that we a prioriéhaentities [(3.40) so equation
(3.41) is equivalent to the pair of scalar complex equati@89). It is also easy to see that
is invariant under the action of the transformatibn (B. h2nce the set of solutions to equation
(3.41) is invariant under this transformation which meédwas we are dealing with a pair of com-
plex “scalar” unknowns (see argument in the beginning otiSe.5). Thus, equation (3.41)
is a system of 2 complex “scalar” equations for 2 complex latainknowns, as expected of

the Weyl equation.
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Note that the scalan“v,, appearing in the LHS of (3.39) is also invariant under th@act

of the transformatiori(3.12) and can be written down extficis v, = 2{V}4l*— 3 Licle.

3.8 Discussion of results

For Weyl's Lagrangian we found a simple teleparallel repnéation [(3.5).

The teleparallel representation of Weyl's equation was diesived by Griffiths and New-
ing [64]. Our contribution is the teleparallel represeiatatof Weyl's Lagrangian and observa-
tion that for the Lagrangian things become much simpler.

Now, formula [3.19) (as well as its generalised versfondp.Bolds forany Lorentzian
metric so when using this formula there is really no need soi@e the metric to be fixed.

Let us now examine the geometric meaning of the covector ffidgddined by formula(314).
If we choose Pauli matrices in the form (2.17) and téke (2réplacinge with 9, we get[(3.2B)

which immediately implies
lo = 0,;°€". (3.42)

Formula [3.4R) remains true for any choice of Pauli matrlmesause its RHS has an invariant
meaning. More specifically, the RHS of (3142) is the well-kmoexpression for the neutrino
current. In light of this it is not surprising that our fieldwegions imply that the divergence bf
is zero, see formula_(3.86).

The main issue with our model is that our Lagrangianl(3.5)weB as its generalised
version [[3.21)) is not invariant under rigid Lorentz trarshations of the coframe. A possible
way of overcoming this difficulty is sketched out below.

Consider the Lagrangian

L(9,s) := s|T™|* * 1 (3.43)

wheres : M — (0,+o0) is a scalar function which plays the role of an additional aiyical
variable. This Lagrangian is Lorentz invariant and is a sderase of a general quadratic

Lorentz invariant Lagrangian (a general Lagrangian costaquares of all three irreducible
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pieces of torsion). The special feature of the Lagrandia#3)3s that it is conformally invariant:
it does not change if we rescale the coframd_as (3.2) and #tarsa@ss — e 2"s.

Of course, a positive scalaris equivalent to a positive density: p = sm :
Thus, having the scalar functienas a dynamical variable is equivalent to having the density
as a dynamical variable. Thinking in terms of an unknown dgnsis more natural from the
physical viewpoint. However, in this chapter we will staytiwihe scalak.

We vary the actiorS(9, s) := [ L(9, s) with respect to the scalarand with respect to
the coframed subject to the metric constrairit_(2.9), which gives us thieElLagrange field
equations. The fundamental difference between our ofligimaformally invariant Lagrangian
(3.27) and the new conformally invariant Lagrangian (B.43dhat the latter is quadratic in
torsion, hence the field equations for (3.43) will be secamtio

Suppose now that the metric is Minkowski. It turns out thathis case one can construct
an explicit solution of the field equations for (3143). Thastruction proceeds as follows.

Let! £ 0 be a constant real lightlike covector lying on the forwaghticone and let be
a constant coframe such thatl. 9!, [ 1 9?; here “constant” means “parallel with respect to

the Levi-Civita connection induced by the Minkowski metri€hen, of course,
1 =c(9° +9%) (3.44)

wherec > 0 is some constant (compare with formula {3.4)). Put

90 1 0 0 0) (9"
9! 0 cos2¢ +£sin2¢ 0 9!
= , s = const >0 (3.45)
92 0 Fsin2p cos2p 0 92
93 0 0 0 1)\

wherey := [1-dz andz® are local coordinates. Straightforward calculations stiwat this
coframe) and scalars are indeed a solution of the field equations for (8.43). We tbid
solution aplane wavevith momentuni. The upper sign if(3.45) corresponds to the massless

neutrino and lower sign corresponds to the massless atrim@uNote that we can distinguish
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the neutrino from the antineutrino without resorting to aidge energies. Note also that we
automatically get only one type of neutrino (left-handed) @ne type of antineutrino (right-
handed).

Suppose now that we are seeking solutions which are notserilggplane waves. This can
be done using perturbation theory. In the language of spiperturbation means that we assume
the spinor field to be of the form “slowly varying spiner e~**”. We claim that application
of a perturbation argument reduces the quadratic (in teydiagrangian[(3.43) to the linear
(in torsion) Lagrangiar (3.27). At the most basic level tas be explained as follows. Note
that for a plane wave we have the following two identitig8* = i% xlandl = c(¥° + ¥?)

(compare the latter witt (3.444)). Thus, for a plane wave weha
ax 4 0 3
T :igc*(ﬁ + 7). (3.46)

We now linearize (in torsion) the quadratic Lagrangian 3 .dbout the poin{(3.46). We get,
up to a constant factor, the linear Lagrangian (8.27).

The bottom line is that we believe that the true Lagrangiaa ofassless neutrino field is
the quadratic Lagrangiah (3]43). The linear LagrandiaB7)3(which is equivalent to Weyl's

Lagrangian[(3.17)) arises only if one adopts the pertwbatpproach.



Chapter 4

Dirac Lagrangian

As we mentioned in the previous chapter, we believe thatrthe ltagrangian for a massless
neutrino field is the quadratic Lagrangian (3.43). What ablmeimassive Dirac equation? What
happens if we add mass infa (3.43)?

For our next set of results we must reduce the dimensioralitye problem. For this chap-
ter only we will be working in (1+2)-dimensional Minkowskpacetimavi'+2 with coordinates
z% a=0,1,2, and metrigg,3 = diag(+1, -1, —1).

The Dirac equation i +2 is
(0% (10 + A)y £ ma?’db]nb =0. 4.1

Here m is the electron massr® are Pauli matriced (2.17) and,, is a given external real
electromagnetic field. The tensor summation indexins through the valuds 1, 2, the spinor
summation index runs through the valuek, 2 and the free spinor index runs through the
valuesi,2. The spinor field; : M'*2 — C? is the dynamical variable (unknown quantity).
The two choices of sign give two versions of the Dirac equatiorresponding to spin up and
down.

Equations[(4.11) are, of course, a special case of the Dinaatien in dimension 1+3. The
latter is a system of four complex equations for four complaknowns and if one looks for
solutions which do not depend afi then this system splits into a pair of systefns](4.1).

All fields are assumed to be infinitely smooth with no assuamgtion their behavior at
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infinity. We focus on understanding the geometric meaningapfation [(4.11) rather than on

fitting it into the framework of operator theory.

Our model is based on the Lagrangian (8.43) introduced ietigdeof the previous chapter
except that we will need to introduce some new ideas, coaeayt notation. Though the model
itself is quite simple, it is not easy to see how it generatesDirac equatior (411). The main

difficulties are as follows.

e The dynamical variables in our model and the Dirac model #ferent. We will over-

come this difficulty by performing a nonlinear change of dyizal variables given by

the explicit formulae[(4.19)E(4.21).

e We incorporate mass and electromagnetic field into our mbgeheans of a Kaluza—
Klein extension, i.e. by adding an extra spatial dimensiod then separating out the
extra coordinater®>. Now, our field equation (Euler—Lagrange equation) wilhtout to
be nonlinear so the fact that it admits separation of vagglid nontrivial. We will es-
tablish separation of variables by performing explicitccdtions. We suspect that the
underlying group-theoretic reason for our nonlinear fiejdaion admitting separation
of variables is the fact that our modellg1)-invariant, i.e. it is invariant under the mul-
tiplication of the spinor field by a complex constant of madull. Hence, it is feasible
that one could perform the separation of variables withaitirvg down the explicit form

of the field equation.

¢ Our field equation will be second order so it is unclear hovait be reduced to a first or-
der equation{4]1). This issue will be addressed in AppdAtdidamely, in this appendix
we prove an abstract lemma showing that a certain class ¢ifiwan second order partial
differential equations reduces to pairs of linear first orelguations. To our knowledge,

this abstract lemma is a new result.
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4.1 What changes have we made to our model?

The coframey is now a triple of orthonormal covector fields, j = 0,1,2, in M!'*2. Each
covector fieldy/ can be written as before a¥, where now the tensor index = 0,1,2
enumerates only three components. Of course, orthondynislunderstood as before in the
Lorentzian sense: the inner produtt - 9% = g9 9%z is +1 if j = k =0, —1 if
j=k=1o0rj =k =2,and zero otherwise.

Again we have the orthonormality condition for the coframepresented as a single tensor
identity

g =npd? @9 (4.2)

but wherer;;. has changed to
Ny = 17" = diag(+1, -1, -1) (4.3)

We view the identity[(219) as a kinematic constraint: theemor fieldsy’ are chosen so that
they satisfy [[2.9), which leaves us with three real degrédseedom at every point afl'*2.

If one views’,, as a3 x 3 real matrix-function, then conditiofi (2.9) means that thistrix-
function is pseudo-orthogonal, i.e. orthogonal with respe the Lorentzian inner product.

We choose to work with coframes satisfying conditions
det ¥, = +1 >0, 90y >0 (4.4)

which single out coframes that can be obtained from theafrf@ligned with coordinate lines)
coframe’ , = §7, by proper Lorentz transformations.

As dynamical variables in our amended model we choose tharoefy and a positive
densityp. Our coframe and density are functions of coordinat®sa = 0, 1,2, in M2, At
a physical level, making the densipya dynamical variable means that we view our contin-
uum more like a fluid rather than a solid: we allow the matealedistribute itself so that it
finds its equilibrium distribution. Note that the total nuentof real dynamical degrees of free-

dom contained in the cofram&and positive density is four, exactly as in a two-component
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complex-valued spinor fielg.

4.1.1 Mass and electromagnetism

In order to incorporate into our model mass and electrontagfield we perform a Kaluza—
Klein extension: we extend our original (1+2)-dimensioiihkowski spacetimeV'*? to
(1+3)-dimensional Minkowski spacetinid! 2 by adding the extra spatial coordinaté. The
metric onM!'*3 is gog = diag(+1,—1,—1,—1). Here and further on we ugmld type for
extended quantities. Say, the use of bold type in the tensiees ofg. g indicates thatx and
3 run through the values, 1, 2, 3.

We extend our coframe as

. v
ﬁja = ) ] = 07 17 27 193(1 = (45)

Q
)
Q

where the bold tensor index runs through the valuds 1, 2, 3, whereas its non-bold counter-
parta runs through the valuds 1, 2. In particular, the,, in formula [4.5) stands for a column
of three zeros.

Our original (1+2)-dimensional coframg which was initially a function of 2°, 2!, 22)
only, is now allowed to depend or? in an arbitrary way, as long as the kinematic constraint
(2.9) is maintained. Our only restriction on the choice dkexled (1+3)-dimensional coframe
¢ is the condition that the last element of the coframe is pitesd as the conormal to the
original Minkowski spacetim@I' 2, see formula[{4]5).

We also extend our positive densjiyallowing arbitrary dependence ari. We retain the
non-bold type for the extended

The coframe element$ are different at different points € M'*+3 and this causes defor-
mations. As a measure of these “rotational deformationstmseaxial torsionwhich is the
3-form defined by the formula

1 .
T .= gojkﬁJ A dok (4.6)

whereoj, = o¥ := diag(+1,—1,—1,—1) and d denotes the exterior derivative &rfi'*3.
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Here “torsion” stands for “torsion of the teleparallel cextion” with “teleparallel connection”
defined by the condition that the covariant derivative ofheaaframe elemend’ is zero; see
Appendix A of [29] for a concise exposition. “Axial torsiong the totally antisymmetric part

of the torsion tensor.

4.2 The new Lagrangian

We choose the basic Lagrangian density of our mathematicdehas
L(9,p) = |IT™?p 4.7)

where||T*||? = 5T, T ,g**gP*g7*. The main motivation behind the choice of La-
grangian density[ (417) is the fact that it is conformallydnant: it does not change if we
rescale the coframe a¥ — e, metric asg, 3 — ¢*P'gqp and density ap — e21p where
h : M'*3 — R is an arbitrary scalar function. At this point it is importan note that our
Kaluza—Klein extension procedure does not actually allowconformal rescalings because
the last formula[(4]5) is very specific. Thus, our logic isttive choose a Lagrangian density
(4.2) whichwould beconformally invariant if not for the prescriptive nature thie Kaluza—
Klein construction. This is in line with the view that mas&éks conformal invariance. The

electron mass: will appear below in formulad (4.12) and (4113).

Substituting[(4.b) intd (416) we get
T = T _ 93 A D3dd (4.8)

where

1 :
T8 = gnjkw A do¥ (4.9)
is the axial torsion in original (1+2)-dimensional spacetiandDs is the 2-form
1 ; &
D3 = 5771‘1#9] A 039" . (4.10)

The 2-form D3¢ characterizes the rotation of the cofrath@s we move along the coordinate

x3 and is, in effect, an analogue of angular velocity.
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Substituting[(4.B) intd(4]7) we rewrite our basic Lagramgdensity as
L0, p) == (IT™|* + [|Ds?*)p. (4.11)

We now incorporate the electron massnto our model by imposing the periodicity con-
ditions

9z, 2t 2?23 4+ 1 /m) = 9(a0, 2!, 2%, ), (4.12)

p(zo,xl,xQ,:Ug—{—ﬂ'/m) :p(xoaxlaanxg)' (413)
Conditions [4.12) and{4.13) mean that we make the coomliriatyclic with period = . In
other words, we effectively roll up our third spatial dimamsinto a circle of radiugl—m :

Finally, we incorporate the prescribed electromagnet@vgctor potentialA into our

model by formally adjusting the partial derivatives apfegin the definition of axial torsion

@.9) as

Oa > O + m 14,03, a=0,1,2. (4.14)

As a result, our Lagrangian density (4.11) turns into
L(®, p) = (IT5* + [1Ds?[*)p, (4.15)

where

T3 =T —m~ LA A D30. (4.16)

Let us summarize the above construction. The Lagrangiasitgie¢hat we shall be studying
is given by formulal(4.15) where the 3-forff{* and 2-formD3 are defined by formulaé(4.9),

(4.10) and[(4.16). The corresponding action (variationatfional) is
S(9,p) ::/ L(9, p) de’datda?da® . (4.17)
M1+3

Of course, the integral il (4.117) need not converge as webeillsing it only for the purpose of
deriving field equations (Euler—Lagrange equations). Quachical variables are the coframe

¥ and densityp which live in the original (1+2)-dimensional spacetime dapend on the extra
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spatial coordinater®. We seek solutions which are periodic if, see formulae[{4.12) and
@.13).

Our field equations are obtained by varying the action {4wlit) respect to the coframe
¥ and densityp. Varying with respect to the densigyis easy: this gives the field equation
| T3|12 + || D3?||* = 0 which is equivalent td.(¥, p) = 0. Varying with respect to the coframe
9 is more difficult because we have to maintain the kinematistaint [(2.9). A technique for
varying the coframe with kinematic constraiht (2.9) wascdibed in Appendix B of([20] but

we do not use it in this thesis.

4.3 Switching to the language of spinors

As pointed out in the previous section, varying the coframgexct to the kinematic constraint
(2.9) is not straightforward. This technical difficulty ch@ overcome by switching to a different

dynamical variable. It is known that in dimension 1+2 a cofea) and a positive density

1
are equivalent to a 2-component complex-valued spinor field £* = satisfying the
52

inequality

oy’ > 0. (4.18)

The explicit formulae establishing this equivalence are

p = 3", (4.19)
o = p 't (4.20)
(0 + 0% = p oy £ Tacal, (4.21)

Here o are Pauli matrices andis the “metric spinor” [(2.1B), the free tensor indexruns
through the values, 1, 2, and the spinor summation indices run through the valugsr 1, 2.
The advantage of switching to a spinor figlds that there are no kinematic constraints on its
components, so the derivation of field equations becomaigktforward.
Formulae[(4.19)E(4.21) are a variant of those from [40]4i0] these formulae were writ-

ten for dimension 3, i.e. for 3-dimensional Euclidean spadeereas in this thesis we write
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them for dimension 1+2, i.e. for (1+2)-dimensional Minkdivspacetime. Both the formulae

from [40] and formulae(4.19)=(4.21) are a special caseadetrom [64].

Remark 3. The right-hand sides of formulae (4119)—(4.21) are invatiander the change of
sign of¢. Hence, the correspondence between coframe and positisitylen the one hand and
spinor field satisfying conditioi (4.118) on the other is ondvio. A spinor field is, effectively,
a square root of a coframe and a density. The fact that theosgiald has indeterminate sign
does not cause problems as long as we work on a simply couhepéa set, such as the whole
Minkowski spacévI'*2. Here and further on, the notions of openness and conneessdof
subsets of' T2 are understood in the Euclidean sense, i.e. in terms of dipes-dimensional
metric. Note that a similar issue (extraction of a singléueal “square root” of a tensor) arises

in the mathematical theory of liquid crystals [9].

We now need to express the differential formsi(4[9), (4.100)@.16) via the spinor fielél.

This is done by direct substitution of formulde (4.18)—#.8iving

 2i(E%0% 00" — £ 0%0aE?)

o T — XS , 4,22
3E¢o3eat? @22
2i(E900ap 038" — E204,3405€%)
Dad). — 3¢ , 4.23
(xDy9) 3&¢o3eal? (423)
SEa o —1 b_ ¢boa, -1 ca
* T — _21(5 0% (O +m " Aa03)€" = E0%(0a +m™ Aad3)E") . (4.24)

330087

The tensor summation index in formulae [4.22) and (4.24) and the free tensor indeix
formula [4.238) run through the valués1,2. Formulae [(4.22) and (4.23) are, of course, a
variant of those from[40]: we have simply turned 3-dimensioEuclidean space into (1+2)-

dimensional Minkowski space and replaced the extra coatelir? with the extra coordinate?.

Substituting formulae[{4.24) and_(4123) into_(4.15) we \arriat the following self-
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contained explicit spinor representation of our Lagrangiansity
4
9¢¢03eat?

([1(€%0%a0(0a +m ™ Aads)€? — £0% 1 (0n +m ™ Aad)€1)]

L) =

+ [[i(ETaan0s€” — ﬁbﬂaabasgd)Hz)- (4.25)

Here and further on we write our Lagrangian density and otiom@s L(¢) and S(¢) rather
than (9, p) and S(¥, p), thus indicating that we have switched to spinors. The siet ¢

satisfying condition[(4.18) is the new dynamical variable.

The field equation for our Lagrangian denslfty (4.25) is

A
EZ <(*sz)gadb(aoc + milAaai%)gb + 0% (0a + milAaai%)((*sz)gb)

(% D30) a0 05" — aadbag((*pgﬂ)agb)> — 0 Loyt =0 (4.26)

where the quantitiesT4*, D3, p and L are expressed via the spinor figldn accordance

with formulae [(4.24),[(4.23)[(4.19) and (4125).

We seek solutions of the field equatidn (4.26) which satiséyperiodicity condition
(¥, 2t 2?23 4+ 1 /m) = £(a0, 2!, 2%, 23, (4.27)
or the antiperiodicity condition
€20, 2, 22 23 + 1/m) = —£(20, 2!, 2%, 23). (4.28)

The above periodicity/antiperiodicity conditions are owiginal periodicity conditions[(4.12)
and [4.1B) rewritten in terms of the spinor field. The spidtinto periodicity/antiperiodicity
occurs because the spinor field corresponding to a cofratha dansity is determined uniquely

modulo sign, see Remalk 3.
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4.4 Separating out the coordinater?

Our field equation[(4.26) is highly nonlinear and one doesempect it to admit separation of

variables. Nevertheless, we seek solutions of the form
£(a°, 2 a2, 2°) = n(a®, 2", 2?) T, (4.29)

Note that such solutions automatically satisfy the aniiucity condition [4.28): the coframe
corresponding to a spinor field of the forin (4.29) experisraee full turn (clockwise or antick-
lockwise) in the(¥!, ¥?)-plane asc® runs from O to~.

Substituting formula(4.29) intd_(4.24), (4123), (4.19044.25) we get

ax 2(71°0% 4 (10 £ A)an” — 0’03 (10 F A)ait")

— 4 4.30
" 3¢o3eqmn? ’ (4.30)
4 =a b
(+Dgd)q = £ oL (4.31)
1-03¢dM

p = iosaun’, (4.32)

16

L) =  97¢oean?

<[%(77a0'aab(m £ A)an” — 00w (10 F A)ai®)] - (mﬁdasabﬁb)2> (4.33)

where the signs agree with those[in (4.29) (upper sign quorets to upper sign and lower sign
corresponds to lower sign).

Note that the quantitie§ (4.30)=(4133) do not dependnvhich simplifies the next step:
substituting [(4.209) into our field equatiopn_(4126) and divgdthrough by the common factor

; 3
eT™ME" we get

4 . 6] . ax
S (T a0(i0 £ Ao’ + 0”000 + Aa(<TFEI"))

32m?
9

+ Baun’ — p  Liozan’ = 0. (4.34)

Observe that formula@ (4.B0)=(4134) do not containThus, we have shown that our field

equation[(4.26) admits separation of variables, i.e. oneseak solutions of the forh (4.29).
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Consider now the action

Sy (n) = /M | Lan) dalde' da? (4.35)

whereL (n) is the Lagrangian density (4133). It is easy to see that exjufd.34) is the field
equation (Euler-Lagrange equation) for the action (4.35).

In the remainder of this chapter we do not use the explicibfof the field equatiori (4.34),
dealing only with the Lagrangian density (4.33) and acti®B8%). We needed the explicit form
of field equations[(4.26) and (4]34), only to justify separaof variables.

We give for reference a more compact representation of ogrdrgian density (4.33) in

terms of axial torsior’y%. (see formulal(4.30)) and density(see formulal(4.32)):

Li(n) = —<(*T2’i)2 - 1—967712>p- (4.36)

Of course, formula[{4.36) is our original formul@a{4.15) wit®> separated out. The choice of
dynamical variables in the Lagrangian density (4.36) isaifhe user: one can either use the
x3-independent spinor field or, equivalently, the corresponding-independent coframe and

z3-independent density (the latter are related) toy formulae [4.10)E(4.21) witlj replaced

by 7).

4.5 Main result

Let D,; be the linear differential operator mapping undotted spfieds into dotted spinor

fields in accordance with formula
n — Dpsn=0%4(i0, + V"Aa)nb + sma?’dbnb (4.37)

where the tensor summation indexuns through the valugs 1, 2 and the letters ands take,
independently, symbolic values(as inD,.s) or numerical values-1 (as in the RHS of formula
(4.31)), depending on the context.

The main result of this chapter is
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Theorem 4.1. Let() be an open (see Remaik 3) subse¥df 2 and letn : QO — C? be a spinor
field satisfying the condition

T osan” > 0 (4.38)

(compare with[{4.18)). Thenis a solution of the field equation for the Lagrangian dengity
if and only if it is a solution of the Dirac equatioPR 7 = 0 or the Dirac equationD_n = 0,
and a solution of the field equation for the Lagrangian dgnéit if and only if it is a solution

of the Dirac equationD__n = 0 or the Dirac equationD__n = 0.

Proof. Put

Lr g - a i i
L,s(n) = 3 [ﬁ“ao‘db(zaa + rAa)nb — nba ab(10q — T A7 ] + smij a3abnb. (4.39)

This is the Lagrangian density for the Dirac equationn = 0. Formula[(4.3B) can be rewritten

in more compact form as

3 ax
L,s(n) = (—Z « Thr + sm)p (4.40)

wherexT3%, r = =+, is the Hodge dual of axial torsion defined by formudla (4.30) ais the

density defined by formula(4.82). Comparing formulae_(#a&l [4.40) we get

_32m Ly (n) Lr—(n)
9 Ly+(n) = Le—(n)

Ly(n) = (4.41)

Note that the denominator in the above formula is nonzeraumse condition[(4.38) can be
equivalently rewritten a&, 4 (n) > L,_(n).

The result now follows from formulda{4.41) and Lemfia 1 (se@é&mix(A). O

4.6 The sign in the inequality (4.18)

In Sectior 4.8, when switching to the language of spinorsghase to work with spinor fields
¢ satisfying the inequality (4.18). It is natural to ask whappens if we choose to work with

spinor fields¢ satisfying the inequality

Erorainé < 0. (4.42)
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One can check that in this case all our arguments can be egpeéh minor changes. Namely,
in dimension 1+2 a coframgand a positive density are equivalent to a 2-component complex-
valued spinor field¢ satisfying the inequality[{4.42), with this equivalencesctébed by a
slightly modified version of formulad_(4.19)—(4]21). In thed we get an analogue of The-
orem4.1 for such spinors.

In fact, there is no need to repeat our arguments becauseisteebijection between spinor

fields¢ satisfying the inequality{4.18) and spinor fielfisatisfying the inequality {4.42):
R i T (4.43)

We do not view the transformatiof _(4]143) as physically digant because the primary
dynamical variables in our model are the coframe and pesitensity, not the spinor field. We
view the spinor field merely as a convenient change of dynanvariables. If two different
spinor fields correspond to the same coframe and positivatgleme interpret them as the same
particle. In group-theoretical language this means thatmoodel is built on the basis of the

pseudo-orthogonal grolfO(1, 2) rather than the spin grougpin(1, 2).

4.7 Plane wave solutions

In this section we construct a special class of explicit tohs of the field equations for our
Lagrangian density (4.15). This construction is presentgtially, in the language of spinors
and under the additional assumption that the electromigo@tector potential is zero.

We seek solutions of the form
(a0, 2t 22, 2%) = ¢ i atrma®) (4.44)

wherep = (po,p1,p2) is a real constant covector, takes the valuesx1 and( # 0 is a
constant spinor. We shall call solutions of the tylpe (4 @ldne wave In seeking plane wave
solutions what we are doing is separating out all the vagghhamely, the original variables

r = (2%, 2, 2?) (coordinates oM'*2) and the extra variable® (Kaluza—Klein coordinate).
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As usual, our spinor field is assumed to satisfy the inequalify (4.18). As explained in
Sectior 4.5, this assumption does not lead to the loss oficotu

Our field equation[(4.26) is highly nonlinear so it is reopriori clear that one can seek
solutions in the form of plane waves. However, plane wavetimis are a special case of
solutions of the typé (4.29) and these have already beeyzathin preceding sections. Namely,
Theorem 4.1l gives us an algorithm for the calculation of Ehp wave solutiond (4.44) by

reducing the problem to Dirac equations
Dysn =0 (4.45)
for the z3-independent spinor field
n(x®, 2!, 2?) = e P (. (4.46)

Herer is the same as in formula_(4]44), i.e. a number taking theegaltl, ands is another
number, also taking, independently, the valdds By D,.; we denote the differential operators
@.31).

Clearly, a Dirac equatior (4.45) has a nontrivial plane waoetion if and only if the
momentump satisfies the conditiofip||> — m? = 0, sop is timelike. Our model is invariant
under proper Lorentz transformations of coordindte’s z*, 2?) so without loss of generality

we can assume that

P1 =Dp2 = 0. (4.47)

Combining formulae(4.37) (2.17), (4]46) ahd (4.47) wetbagthe Dirac equatiof (4.45) takes

the form

Py — SM 0 Cl
=0. (4.48)

0 po+sm ) \¢?

Equation [4.46) has a nontrivial solution satisfying theguality [4.18) only if

Py = SM (4.49)
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with the corresponding given, up to scaling by a nonzero complex factor, by the fdamu

¢4 = : (4.50)

Combining formulae(4.44)[ (4.47], (4]49) and (4.50) weatode that our model admits,
up to a proper Lorentz transformation of the coordinateesysn M2 and complex scaling,

four plane wave solutions and that these plane wave sokiiomgiven by the explicit formula
1 .
gd _ efzm(smOJrrmS) ) (451)

Here the numbers ands can, independently, take valugd.

Let us now rewrite the plane wave solutiohs (4.51) in termsusforiginal dynamical vari-

ables, coframeé) and densityp. Substituting formula€ (2.17) and (4151) into formulael®)--

@.21) we gep = 1, 9%, = §°, and

0 0
o= | cos 2m(sz® +ra?) | #o = | —sin 2m(sz¥ +rad) | - (4.52)
sin 2m(sx® + ra?) cos 2m(sz? + ra?)

In order to distinguish the two spins we fi¥ and examine how the covecta?$ and?
evolve as a function of time®. We say that spin is up if the rotation is counterclockwisd an
spin is down if the rotation is clockwise. Examination ofrfarla [4.52) shows that we have

spin up ifs = +1 and spin down it = —1.

We will now establish which of the solutions (4152) describe electron and which de-

scribe the positron. Let us introduce a weak constant pestiectric field0 < A4y < m and
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A1 = Ay = 0. Then we can repeat the calculation leading up to forniuE2but now we get

0

o= | cos 2[(sm — rAg)x° + rma3)

sin 2[(sm — rAg)z® + rma?®]
0
o = | —sin 2[(sm — rAg)a® + rma’] | - (4.53)
’]

cos 2[(sm — rAg)z® + rma

We define quantum mechanical energy as

g:=|sm —rAy| (4.54)

which is half the angular frequency (as a function of tin¥¢ of the solution[(4.53). Note that

our energy[(4.54) is by definition positive.

We say that we are dealing with an electrorx it m and with a positron it > m.
Examination of formula[(4.34) shows that we are looking aekettron if the signs of ands
are the same and at a positron if the signs ahds are opposite. This means that the electron
is described by a wave traveling in the negativedirection whereas the positron is described

by a wave traveling in the positive®-direction.

Our classification of plane wave solutions is summarizecainld4.].

Table 4.1: Classification of solutiorls (4152)
S = +1 s=—1

r = +1 | Electron with spin up Positron with spin down

r = —1 | Positron with spin up Electron with spin down
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4.8 Discussion

4.8.1 Problem of vanishing density

The only technical assumption in our analysis is that thesitiep does not vanish. Rephrased

in terms of the spinor field, this assumption reads as
Easant” # 0, (4.55)

compare with[(4.18) and (4.42). We do not know how to drop ssimption[(4.55).

4.8.2 Electron in curved spacetime

One of the advantages of our mathematical model is that & doeuse covariant differentiation

(only exterior differentiation) so the generalization ke tcase of a curved (1+2)-dimensional
spacetime is absolutely straightforward. Covariant @gies appear only when we switch
from coframe and density to a spinor field. All our analysisshiding Theoreni 4]1, carries

over to the case of curved spacetime. We chose our (1+2)rgdioral spacetime to be flat only

to make the exposition clearer.

4.8.3 Rigid Lorentz transformations of the coframe

An interesting feature of our model is that it possesses ditiadal symmetry which the Dirac
equation in dimension 1+2 does not possess. The symmetmnyeistign is invariance under
rigid Lorentz transformations of the coframe, i.e. tramsfations/ — 7 = A7, 9% where
the A7, are real constants satisfying the conditipnA’, A%, = ., then’s being defined by
formula [4.3). In order to see that the Dirac equation in disien 1+2 is not invariant under
rigid Lorentz transformations of the coframe we look at theab Lagrangian density (4.89),
switch from a spinor field; to a coframey and a density which gives us[(4.40) and then

rewrite formula[(4.4D) in more explicit form as
3 ax 0
L,s(n) = (_Z x T +rA-9° + 3m>p (4.56)

wherexT* is axial torsion in dimension 1+2, see formUla{4.9). Chgatle term(A - ¥°)p in

formula [4.56) is not invariant under rigid Lorentz transfiations of the coframe. This non-
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invariance is not normally noticed because the covectat figp is traditionally interpreted as
the electron current, unrelated to any coframe. On the dthed, our model is invariant under
rigid Lorentz transformations of the coframe even in thespnee of an external electromagnetic
field: this fact is established by examination of formulagf4(4.10), [(4.15) and (4.16).

How can the two models be mathematically equivalent? Thevani that invariance
under rigid Lorentz transformations of the coframe is brokéhen we separate out the extra
coordinatez®. Namely, the construction described in Secfiod 4.4 assagspsecial role to the
coframe element’: it does not depend on? (this follows from formulae[{4.29)[(4.19) and
(4.20)) whereas the other two elements of the coframe rafeinctions of:? (this follows
from formulae[(4.2P)[(4.19) and (4)21)).

4.8.4 Our choice of Lagrangian
We chose a very particular Lagrangian dendity](4.7) cointgionly one irreducible piece of
torsion (axial) whereas in teleparallelism it is tradiébmo choose a more general Lagrangian

containing all three pieces (axial, vector and tensor) efttiision tensor
T := oy ® do¥, (4.57)

see formula (26) in [72]. Note that when Einstein introdutadparallelism[[117] he failed to
identify axial torsion as a separate irreducible piece:Lhigrangian contained only two terms,
the square of the full torsion tensor and the square of itiovguece.

In choosing our particular Lagrangian density [4.7) we wgualed by the principles
of conformal invariance, simplicity and analogy with Maxisgetheory. The analogy with
Maxwell's theory is that we characterize the field strengghabdifferential form, replacing
the electromagnetic tensor (2-form) by axial torsion (B¥fh It appears that the Lagrangian

density [4.7) was never examined.

4.8.5 Exclusion of gravity

We assumed the (1+2)-dimensional metyito be prescribed (fixed) and the coframidéo be

chosen so as to satisfy the kinematic constraini (2.9). Atamed in subsectidn 4.8.2, the fact
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that we chose the metricto be Minkowski is irrelevant and all our analysis carriegow the
case of an arbitrary Lorentzian metric in dimension 1+2. iflmgortant thing is that the metric
g is not treated as a dynamical variable. This means that wsectwoexclude gravity from our
model.

On the other hand, in teleparallelism it is traditional tewithe metric as a dynamical
variable. In other words, in teleparallelism it is custoyn&r view (2.9) not as a kinematic
constraint but as a definition of the metric and, consequetativary the coframe without any
constraints. This is not surprising as most, if not all, atshwho contributed to teleparallelism
came to the subject from General Relativity.

It appears that the idea of working with a coframe subjedhédkinematic constrainf (2.9)

iS new.

4.8.6 Density as a dynamical variable

We took the positive density of our continuum to be a dynahiagable whereas in teleparal-
lelism the tradition is to prescribe it as= /| det g| . Taking p to be a dynamical variable is,
of course, equivalent to introducing an extra real posiivalar field into our model. It appears

that the idea of making the density a dynamical variabless akw.

4.8.7 Electron in dimension 1+3

The major outstanding issue is whether we can reformulat®ttac equation in dimension 1+3
using our approach. This would mean starting from (1+3)atffigional spacetime, performing
a Kaluza—Klein extension to dimension 1+4, choosing thdfaramally invariant Lagrangian
density [4.7) and so on, as described in Secfioh 4.1.

It seems that the equation we get starting from (1+3)-dinoeas$ spacetime and perform-
ing the construction described in Sectlon]4.1 is not the @éguation in dimension 1+3. Our
analysis is heavily dependent on dimension and, whenrsgditbm (1+3)-dimensional space-
time, we do not appear to get a factorization of the Lagrandensity of the typd (4.41).

However, the equation we get in dimension 1+3, althoughineal, seems to be very
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similar to the Dirac equation. The natural way of testing ldegse our equation is to the Dirac

equation would be to calculate the energy spectrum of thetrelein a given static electromag-

netic field, starting with the case of the Coulomb potentigidfogen atom).

4.8.8 Similarity with the Ashtekar—Jacobson—-Smolin consuction

The analysis presented in this chapter exhibits certaiitaities with [6,[73] in that a 3-dimen-
sional (or, in our case, (1+2)-dimensional) cofrathis used as a dynamical variable and that a

second order partial differential equation is reduced tosadirder equation.
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Chapter 5

Spinors and torsion

In this second part of the thesis we will shift our focus teeaittive spinors and their appli-
cations to cosmology. In particular we are interested ineustdnding dark matter and dark
energy. Therefore, we consider spinors which are natudally, i.e. their interaction with the
electromagnetic force is heavily suppressed. We startnwastigation with a particular spinor,
known as the Elko spinor.

In this chapter we will look at two applications of the Elkadrsr. The first is its candidacy
for dark energy, then second we will investigate its abilitysource torsion which was an open

problem in Einstein-Cartan theory.

5.1 A very short introduction to Elko spinors

Elko spinors[[4] are similar to Majorana spinors but acqtiive full four degrees of freedom
of a Dirac spinor due to their helicity structure. They caupb the Higgs mechanism via
AHH and weakly to the electromagnetic field \X&y“, Y]\ F ., however in the latter case
this coupling is heavily constrained because of the massbss of the photon, making them a
candidate for dark matter. The idea of one field explaininth latark matter and dark energy
has already been discussed in various approaches, se8#[83]. One possible mass range
for the Elko spinors is in the: ~ MeV range.
These spinors belong to a wider class of so-called flagpaleosgp [44]. They are

non-standard spinors according to the Wigner classificaiod obey the unusual property
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(CPT)? = —1. Elko spinors are defined by

+o90%
A= | (5.1)

oL
where¢; denotes the complex conjugateq@f ando, denotes the second Pauli matrix. For a
detailed treatment of the field theory of the eigenspinorthefcharge conjugation operator we
refer the reader tad [4, 3]. Dark spinors have an imaginargrthiegonal norm with respect to
the standard Dirac dual = ¢'~°, and in order for a consistent field theory to emerge the dual

is defined to be

Ao = ieATA0 (5.2)

v

with el — 1 = —¢fh

_ -}
(41 = -4 such that

X (D)o (P) = % 2m 6o, (5.3)

wherep denotes the momentum.

Due to their formal structure Elko spinors allow for manyeirsting applications. For
instance, in[[2b] it has been shown that Elko spinors ndiuyald an anisotropic expansion
in the context of cosmological Bianchi type | models. Thiswk for a suppression of the low
multipole amplitude of the primordial power spectrum. Thienordial power spectrum of the
guantum fluctuations of Elko spinors has been investigatdd4,/61] where is was found that
the small scale power spectrum essentially agrees withoffsdtalar field inflation while the

large scale power spectrum shows new features.

5.2 Dark energy

An increasing number of independent observations indidéit we are living in an expanding
universe where the expansion itself is accelerafing|[114,/28]. It has been accepted that this
requires some additional negative-pressure matter sonezaed dark energy. The simplest

model explaining this accelerated expansion is the cogim@bconstant\ which corresponds
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to an unusual equation of state = P/p = —1. The A cold dark matter {CDM) model
(the standard model of cosmology) fits the present data vetly iHowever, the numerical
value of the cosmological constant is about 120 orders ofnihade smaller than the vacuum
expectation value predicted by quantum field theory. Thialkrass problem can be addressed
by considering dynamical models. The field slowly rolls d@wme potential, and the effective
equation of statev.g converges tav.g = —1. Originally it was believed that this value should
be approached from above. Recently there has been inteqgsaintom models where the dark
energy equation of state is approached from belaw< —1, see[[31/ 32, 109, 91, 57,160,
47,141 112 76, 127, 75, 1113, 110] 33| 90]. These modelguath counter intuitive, are not
excluded by current data [31,132].

Figure[5.1, taken from [32], shows data taken from the ciusbeindance, supernovae,
guasar-lensing statistics and the first acoustic peak iodlmic microwave background (CMB)
radiation power spectrum. Together, they imply a convezgeai the equation to one dominated
by dark energy. Also, when the parameter space is expandieditme w < —1 (phantom
region), the data does not rule autconverging taw = —1 from this region.

A universe dominated by phantom energy is very differentrip \&e are accustomed to.
The scale factor increases at a rate quicker than that ofdtieom, and it is not long before
gravitationally bound objects are pulled apart. Finalhg same fate is met by objects bound by
the three stronger forces. Due to the success oAtBBM model (constant equation of state),
any theory based on a dynamical equation of state would héreghjto reproduce the results
of ACDM for present time. In other words; must approach the value = —1: either from
w > —1orw < —1. The majority of dynamical dark energy models are based oivieg
scalar fields with a suitably chosen potential. One limitaf scalar field theories is that they
are unable to cross the phantom divide without acquiringglagies, such as negative kinetic
energy.

This topic falls under the umbrella of modified gravity, whisplits into two main cat-

egories: amending the geometrical (left-hand) side or tatancontent (right-hand) side of
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Einstein’s field equations. The former requires alteringvly (changing the action), and the
latter populating the universe with alternative specieBosE two approaches are not entirely
independent as many modified theories bring new geometyicantities to the matter side,

ultimately changing the energy content of the universe,alogving for a new interpretation.
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Figure 5.1: Current constraints to the— €2, parameter space. The red solid curves show the
age (in Gyr) of the Universe today (assuming a Hubble parani& = 70 km sec— ! Mpc™1).

The light shaded regions are those allowed @tc@nfidence level) by the observed cluster
abundance and by current supernova measurements of thesexpaistory. The dark orange
shaded region shows the intersection of the cluster-almeedand supernova curves, addition-
ally restricted (at 2 confidence level) by the location of the first acoustic peath@cosmic-

microwave-background power spectrum and quasar-lensiigts.

5.2.1 Cosmological Elko spinor field equations

We now introduce the standard model for cosmology, i.e. ature and no torsion. Later in
the chapter we will add torsion and define the Einstein-Qamadel. The standard model of

cosmology is based upon the flat Friedmann-Lemaitre-RedreiValker (FLRW) metric

ds* = dt* — a(t)*(dz? + dy? + d2?), (5.4)
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wherea(t) is the scale factor ands cosmological time. The dynamical behavior of the unigers

is determined by the cosmological field equations of gerrefativity

1

1
Rap — §R9a6 = M—lea67 (5-5)
p

whereM,, is the Planck mass which we use as the coupling consltamgl = 8rG andc = 1.
T, denotes the stress-energy tensor, which for a homogenedusairopic cosmology takes

the form
T.s = diag(p, a*P,aP,a*P). (5.6)

The cosmological field equations can be written as

1

H= 5,
3M2

(5.7)
p+3H(p+ P) =0. (5.8)

The dot denotes differentiation with respect to titraand the Hubble parametér is defined by
H=a/a.
Let us consider a homogeneous single Elko spinor field. witlig [24,[61], the effective

Lagrangian density of this field can be written in terms ofgbalarfield ¢ as

1. 3
L= §¢2 + §H2¢2 —V(p). (5.9)

If the potentialV (¢) contains a standard mass te¥ify) = m2p?/2, then we can rewrite the

Lagrangian as

— _|_ — H —_ — . .

This allows us to interpret the explicit presence of the Hellgarameter in the action as an

effective mass term where the mass changes as the univelses\and we have

3
m2g =m? — ZH?. (5.11)
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It is interesting to note that if one converts back to nornmatsuthen the second term is of the
orderl x 10739 MeV. Therefore, the change in mass is tiny. If the universgeugoes a phase
of accelerated expansion, the Hubble parameter is appabeiynconstant. Depending on the
ratiom/H, it is possible for models to attain a negative valuesfg; without creating ghosts
which have negative kinetic energy. This arises as a dimtwaruence of the extra coupling a
spinor has, in addition to that of a scalar field, to geometry.

The energy density and the pressure of the Elko spinor fieldjiaen by

1. 3

pe = 59" +V(p) = SH¢, (5.12)
1. 1

P, = 5& —V(p) + §H2ap2. (5.13)

These two equations have the important property of leavivegacceleration equation un-

changed,

a 1
o= a, @ V) (5.14)

The spinor field’s potential energy may yield an acceleratgzhnsion of the universe. It should
be noted that the energy density and the pressure now dlyptiepend on the Hubble parame-
ter. These additional terms are present because the auvaeidvative has more structure when
acting on a spinor field. As mentioned before the ‘couplimgEi. [5.9) can be interpreted as
either the effective mass of the particle depending on thigbilduparameter [24], and therefore
on the evolution of the universe, or, alternatively, regagdhe gravitational coupling as time
dependent [61].

The effective equation of state of the Elko spinor field isegivy

P, 3¢*—V(p)+gH??
W = 2 = 22 () s r (5.15)
P 297+ V(p) — sH?p

When compared with the scalar field, (5.15) also demonstthte crossing the phantom divide
is possible without attaining a negative kinetic energynter

We will restrict our attention to power counting renormabife potentials. As the Elko
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spinor field has mass dimension one, the two allowed poteraia

1
Vi(p) = gm%z, (5.16)

and
Vo) = 2m2? + Lagt 5.17
2(90)—2m<p+40<s0, (5.17)

where theV; (y) is the aforementioned canonical mass term, x(eb) includes the self inter-

action term. Finallyw is a dimensionless coupling constant.

5.3 Dark spinors as dark energy

We start by solving Eq[{5.7) for the Hubble parameter. Using(5.12) we find

1 ¢*/2+V(p)

= ) 5.18
NeITAN M 519

The energy density of the Elko spinor field can be written as

I 1 ¢?/2+V

po = 59+ V0~ STt e )’ (519

_ (1., _ (p/Mp)*/8
- (2*0 * V(*p)) (1 1+ (gp/Mpl)?/s)' (5.20)

It is precisely this latter form of the energy density whicbtivated [61] to interpret (5.20) as
inducing a time-dependent gravitational coupling by coesngGy; = 87G.gp, Wherep,, is
the standard energy density of a scalar field.

Now, we consider the conservation equation](5.8) vith (bat®l [5.20) and numerically
solve the resulting equation far(¢) and substitute into Eqd._(5]12) and (3.13) to obtain the
evolution of the effective equation of stategz = P/p and plot it as a function of the evolution

parameter(t).
5.3.1 Phantom dark energy models

All of our results are in graphical form. They demonstrat the Elko spinor has as a solution
a late time convergence to that ofAdCDM model. This would, as part of a larger class of

evidence, be needed in order to qualify as a dark energy datedi
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Before we show the results we must discuss the initial camdit We chose our initial
conditions to bew(0) = {1/3,0,—1/3,—2/3}, the first two representing radiation and dust,
respectively. The initial conditions witw(0) < —1/3 correspond to an initially accelerat-
ing universe. Small changes in these initial conditions dbatter the late-time asymptotic
behaviour of the solutions. We have three classes of sakiticonverging, diverging and oscil-

lating.

5.3.2 Converging models

1
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Figure 5.2: Equation of state fdri(p): My = 1, ¢(0) = 1 andw(0) = —1/3. With

m? = {0.002,0.001} = {red (higher), blue (lower)}

Fig.[5.2 shows the dynamical behaviour of the effective 8gnaf state considering the
potentialV; with My, = 1, ¢(0) = 1 andw(0) = —1/3. For the two different mass values it is
possible to see that the effective equation of state almusiediately drops below the phantom
divide. During the subsequent evolutian,begins to increase as further shown by FEig] 5.3 to
the desired dark energy value. From 5.3 itis also evithert our model is practically indis-
tinguishable from dark energy modelled by a cosmologicaktant, long before recombination

when the scale factor is abouft) = 1073,
We obtained very similar results for other initial valuestteé equation of statew(0) =
1/3, w(0) = 0 andw(0) = —2/3. We have shown, for comparison, results frart0) = 1/3

in Fig.[5.4 and Fig._5]5; they qualitatively agree with theules presented in Figs. 5.2 and]5.3,
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Figure 5.3: Equation of state fdri(p): My = 1, ¢(0) = 1 andw(0) = —1/3. With

m? = {0.002,0.001} = {red
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Figure 5.4: Equation of state fdf (¢): My = 1, ¢(0) = 1 andw(0) = 1/3. With m?

{0.002,0.001} = {red (higher), blue (lower)}.

5.3.3 Diverging models

Next, we added a self-interaction term to the potential asediu; (). Interestingly, we found,
for all initial values ofw anda = 1, that the effective equation of state always diverges to
—o0, see Fig.[(5J6). Also, we checked, although not includeckire hthat our numerical results
for Va(p) converge to results fov; (¢) asa — 0. Although it might be possible to construct
models with finely tuned initial conditions such that theetyence of the equation of state
would happen in the future, we believe such models are velikalyym Hence, we are led to

conclude that a dynamical dark energy model based on ourdpikors requires their potential



to be of the simplest form, namely a canonical mass term puitkelf interaction.
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Figure 5.5: Equation of state fdf (¢): My = 1, ¢(0) = 1 andw(0) = 1/3. With m?
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Figure 5.6: Equation of state fdi(¢): My = 1, w(0) = 1/3 anda = 1. With m? =

{4,0.02} = {red (higher), blue (lower)}.

5.3.4 Oscillating models

Lastly, we found another set of interesting results whegestiuation of state oscillated between

w = 1 andw = —1 for all time. The oscillation of the equation of state is veapid, as can be

seen in Figl.5J7. This doesn’t agree with current obsematid herefore these oscillating mod-

els are unphysical. This qualitative behavior does not ghaihwe include the self-interaction

term. However, if such a model could be modified it would be immprcandidate for models

where the field changes its characteristic from being darttemat early times to become dark
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energy at late times, see al501[38, /96,86, 127, 19] .
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Figure 5.7: Equation of state for potentid(¢): M, = 1, m = 0.1
with initial conditions chosen such thav(0) = {1/3,0,—1/3,—2/3}, respectively

{blue(long dashed), red (medium dashed), green (dashed), cyan (short dashed)}

5.3.5 Discussion

An Elko spinor field is able to provide a possible model forkdaatter as it couples mainly via
the Higgs mechanism, but has heavily constrained interastivith the electromagnetic field.
Dark spinors have a predictédeV mass range and therefore experimental predictions can be
formulated and possibly measured at the LHC. Our resultssiow that the Elko spinor field
is also capable of having a dynamical equation of state wtrichses the phantom divide and
asymptotes taw = —1. This makes it a viable candidate for dark energy which cabaouled
out experimentally.

Unlike previous phantom models, Elko spinors do not obta&igative kinetic energy on
crossing the phantom divide, due to bgttand P depending on the Hubble parameter, and
therefore these models do not create ghosts. Accordirngjatig@ equation of state must not
stay below the divide but converge to dark energy, theretloeeElko spinors’ potential is of
the simplest form, a canonical mass tenmy? /2. Our Elko spinor model does not require
a modification of general relativity, leaving one of the megtcessful models in theoretical

physics untouched.
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Due to the interesting nature of Elko spinors, they have Isbemvn to give other unique
properties not found with other matter sources considerddd past. For now, in a cosmolog-
ical setting, Elko spinors are providing intriguing resulh having the potential to be the best

candidate dynamical dark energy model at hand.

5.4 Elko as a source of torsion

Due to their formal structure, Elko spinors couple difféahgto gravitation from scalar fields or
Dirac spinors[[22], eigenspinors of the parity operatorisdilows for many interesting appli-
cations. For instance, in[25] it has been shown that Elkoaspinaturally yield an anisotropic
expansion in the context of cosmological Bianchi type | med&his allows for a suppression
of the low multipole amplitude of the primordial power spech. The primordial power spec-
trum of the Elko field quantum fluctuations has been invetgyan [24]61] where it was found
that the small scale power spectrum is almost in agreemehtthat of scalar field inflation
while the large scale power spectrum shows new features.

General relativity is a successful theory in agreement aittast number of observations.
It is based on the Einstein-Hilbert action which yields tledfiiequations if varied with respect
to the metric. If, however, the metric and the connectionrérrecisely the non-Riemannian
part of the connection) are consideredagwiori independent variables, two field equations are
obtained. The first one relates the Einstein tensor (notssecidy symmetric) to the canonical
energy-momentum tensor, while the other field equationteslthe skew-symmetric part of the
connection, the torsion tensor, to the spin angular momermimatter, see e.d. [617, 68,169,
70,66,/115]. Spin and torsion are related by algebraic @angmtand torsion vanishes in the
absence of sources.

The cosmological principle states that the universe is fggmeous and isotropic on very
large scales. More mathematically speaking, the four déieeal spacetimé)M, g) is defined
by 3d space-like hypersurfaces of constant time which are odfits Lie group G action on

M, with isometry groupSO(3). We assume all fields to be invariant under the action of G
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which meansC¢g,, = 0 andL¢7},,* = 0 whereL, denotes the Lie derivative with respect
to the generator of the group. This assumption reduces th@aogical metric to the well
known Friedman-Lemaitre-Robertson-Walker form whiclcharacterized by the scale factor
and the geometry of the constant time hypersurfaces. lieppd the torsion of spacetime, it
reduces the components compatible with the cosmologidgatipte to a spatial axial torsion
and a vector torsion pait [116].

Cosmological models with torsion were pioneered by Kopskyin [81,[82], who as-
sumed a Weyssenhoff fluid [124] to be the source of both curgand torsion. The cosmolog-
ical principle was first extended to Einstein-Cartan theéoifil 16], where it was also suggested
to reconsider the results in [81,182], since the Weysserthaff turns out to be incompatible
with the cosmological principle (see also [94] 14, 28]). Asberate analysis of the most gen-
eral action up to quadratic terms in curvature and torsissuiaing the cosmological principle,
can be found in[59]. Analytical solutions of the Riemanmaed gravity have recently been
discussed in a cosmological contextlin/[83]. Non-Riemammieodels of cosmology in general
have been discussed in [101, 100,102, 103]

We will investigate the Einstein-Cartan action in the nedtin.

5.5 Einstein-Cartan theory with Elko spinors

The action of Einstein-Cartan gravity is

M2
S = /(TPIR + ﬁmat)\/_g d4$, (521)

whereR is the Ricci scalar computed from the complete connectigh eéntortion contribu-
tions, g is the determinant of the metri€,,,.; denotes the matter Lagrangian an/cMIfl =8rG
is the coupling constant; the speed of light is set to @ne: 1). The resulting field equations
are

1

1
Gij = Rij — 5 Rgij = e Yijs (5.22)
p

Ty + 6,19 — 51T = M2 7, (5.23)
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wherer% . is the spin angular momentum tensor, defined by

5£mat

= SRt (5.24)

andX;; is the total energy-momentum tensor
Sij = 0 + (Vi — K ) (7" — 7%+ 7). (5.25)

whereo;; is metric energy-momentum tensor
ij = 2 0V =9Lmar). (5.26)

V=g 697
The field equationd (5.23) are in general 24 algebraic eopumtiand in the absence of spin
sources torsion vanishes, torsion does not propagate.

We have not included the cosmological constant in the fielthggns for simplicity. It
should be noted, however, that there exist models wheredasmalogical constant might be
induced by the torsion of spacetime. Likewise, torsion damdntribute to the bare cosmolog-
ical constant and yield today’s observed effective cosgiold term, see e.d.[[7, 20, 126] and

also [30] for a spinorial dark energy model.

5.6 Cosmological field equations with torsion

Current observations [104, 199] suggest that the energyitgenfshe universe is very close to

the critical density, resulting in spatially flat hyperagés. The flat FLRW metric is
ds® = dt* — a(t)?(dz® + dy® + dz?), (5.27)

wherea(t) is the scale factor. It yields the following non-vanishingldnomic Christoffel

symbol components

a
r _ 1Y 1%
th_rty_rtz_a7

r,=r,, =T, =aa, (5.28)



5.6. Cosmological field equations with torsion 85

where the dot denotes differentiation with respect.td his then implies the following non-

vanishing anholonomic Christoffel symbdlg to be

1a, o0 i o
Tp = —5—(1"7" =7"") = =2, (5.29)
a a
n=123. (5.30)

When the cosmological principle is applied to the torsiarste [116/ 59] the allowed compo-

nents reduce to

Ti10 = Taoo = T30 = h(t), (5.31)

Tio3 = Ty12 = Tz = f(t). (5.32)

The cosmological Einstein tensor with torsion is now givgn b

Gy =32 (9 + 2h> + 3% — 3f2, (5.33)
a\a
Gow = a?(—zg sy f2>, (5.34)
a a " a
Cuo = Gyy = Gas. (5.35)

In addition to the geometry, the matter has to be compatibth twomogeneity and
isotropy. This yields two classes of Elko spinors, Elko drgginors which satisf;X)\ =0
and standard Elko spinors Whek_‘é = 0. The name ghost spinors refers to the fact that such
spinors lead to a vanishing metric energy-momentum teasorhence do not affect the curva-
ture of spacetime in general relativity, see alsd [62/63[289. A cosmological ghost spinor

field can be written in the form

Moy = #(0)€ (5.36)

Ay =) ¢, (5.37)
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where¢ and( are two linearly independent constant spinors given by

0 Fu
+i 0
§= ) C=i ; (5.38)
1 0
0 -1

with their respective dual spinors

=1 (0 i =+l 0) ;
¢ = (—i 0 0 ;1) , (5.39)
The set of 24 algebraic equatioris_(5.23) reduces to two amisnt equations relating

spin and torsion if we assume homogeneity and isotropy. ®iston functionsf andh can

therefore be expressgdn terms of the matter

__AMy 0
=y Ve (5.40)

¥ pl
_ WM 5.41
I="17 /M o (5.41)

¥ pl

which can be combined to give
h 1

7= §¢2/M§1_ (5.42)

Therefore, an Elko ghost spinor field satisfying the cosmickl principle indeed yields non-
trivial contributions to the spatial axial torsion compahand to the time component of the
torsion vector. Hence, the spin angular momentum tensocidi by this matter source satisfies
homogeneity and isotropy.

The total energy-momentum tensoy; for the Elko spinor matter is given by

S = Vo, (5.43)
Spe = —a?Vp + a2 (3h I 2f>f, (5.44)
e
Sow = Byy = Vs, (5.45)

1These computations were performed using the software Muattiea
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whereVp = V(0). This completes the formulation of the cosmological fieldagpns. Next,
we investigate the qualitative behavior of the equationmation.

The geometrical part of the cosmological field equati@n33p-[5.3%) can, for example,
be read off from|[[509] (cf their actiod.,) which we verified. In Ref.[[87], wheré = 0 was
assumed, the geometry parametewas redefined to include the remaining torsion Ay=

k — f2a%/2, see alsd[21].

5.7 Cosmological Elko spinor dynamics

The complete set of field equations can be reduced to a singil@ffder differential equation in
the following manner. First, all torsion functions in theldi@quations are written in terms of
the spin tensoi(5.41), thereby eliminating torsjpand’ for the matter fieldo. Next, we can
use Eq.[(5.33) and the derivative of that equation to findesgions fofi/a anda/a which are
expressed entirely in terms of the matter fieldWe analyze these equations qualitatively and

solve them numerically.

For the Hubble parametéf = a/a from Eq. [5.3B) we find

VVO/ME) 44 ot/ a
H— pl SO/ pl (546)

2v3 4 -t /My

Next, the terms wittii/a, a/a and f andh are eliminated forp in the spatial component of the

field equation which results in

- \/ Vo/M2 8 4 304 /M2
g: _ P il o4 — oh /MY, (5.47)

W3 12—t /M

Positivity of the square root requires/M,,; < v/2. This implies that the sign of the first
derivative of the field cannot change, and hence the fieldeviagla decreasing function of time
and in fact quickly approaches zero. When this happens, tibld parameter asymptotes to a
constant value and the universe expands accordingx@xp(Ht).

To see this behaviour of the solutions qualitatively, leewpand Eqs[(5.46) and (5147)
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| Vo 4
H=,|—— M 5.48
3M§1 + O(SD/ pl) ; ( )

" 1 Vo
; =73 3721 + O(@/Mpl)47 (5.49)
P

abouty = 0 which leads to

and therefore we find that a period of accelerated expansi@m iattractor solution of this
system of equations. Taking into account Eq. (5.41), we fatsbthat the torsion of spacetime

is quickly decreasing and approaching zero as the univeysmes.
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Figure 5.8: Left: Hubble parameter and right: torsion fiorct: for 1/M§1 =8randVy = 1.
Initial conditions of the matter field are, = ¢(t = 0) = {0.282,0.25,0.23,0.20}, {blue

(short dashed), red (dashed), (medium dashed) yellow a&®hdlong dashed)

Such a behaviour of the torsion is not unexpected, seeldjf. §binors and inflation in
the context of torsion theories have received much attenticthe past[56, 54, 39, 93,177,155,
21]. It should be pointed out, however, that matter sourcesidered previously violate the
cosmological principle.

We numerically solve the first order differential equati@d{@) and use this solution to
find the evolution of the Hubble parameter - we plot the Hulgaleameter in Fid. 518a - which
approaches a constant for different initial conditionsheffield. In Fig[5.Bb the torsion function

h is plotted for the same numerical solutions.
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In order to give a qualitative statement about the decayafatiee torsion, in Figl_5]9 we
plot the torsion functiork as a function of the number effoldings. We assume the total
number ofe-foldings to be sixty. Therefore, the torsion contributiofithe spacetime becomes

60 58.4 57.3 56.2 55.2
" T T T 0

torsion functionh

L L L -3
60 58.4 57.3 56.2 55.2
e- foldingsN

Figure 5.9: Torsion function for 1/M§1 = 8m andVj = 1. Initial condition isp; = {0.25}.

negligible after approximately fourfoldings.

5.7.1 Discussion

We identified the Elko spinor as a matter source whose sgi;fanmomentum tensor is com-
patible with the cosmological principle. We then solvedrémulting field equations of Einstein-
Cartan theory. It couples to all irreducible parts of tonsémd therefore leads to an interesting
coupling of matter and geometry. The Elko spinor is also radliiudark in that it can only
interact via the Higgs mechanism or gravity.

Our solutions of the field equations show that torsion doesstiaquickly (approximately
after a few e-foldings) and that the Hubble parameter hasistaot value as an attractor. Both
features of the model fit very well into the standard modelnfifationary cosmology in that
a period of accelerated expansion is an attractor solutibis. worth noting that in Einstein-
Cartan theory the spins of elementary particles are thaagbe the primary sources of torsion,
and it is therefore expected that on large sales and ovetdirsieon should average out or decay,
respectively.

We speculate that some non-zero cosmological torsion neadyl been observed in the
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large scale anisotropies of the cosmic microwave backgraadiation (CMB) where torsion

leaves its imprint only on the largest scales.



Chapter 6

Non Standard Spinors and Cosmology

This last chapter is much shorter than the rest and servasrimarize collaborative work on
extensions to the Elko spinor. For more details we pointiterésted reader to the four author
paper published in Journal of High Energy Physics [18].

The main theme of this work is to extend the Elko definitionrtdlude an entire class of
non-standard spinors. This can be achieved by introducprgjaction operator which projects
out states that contribute to an ill-defined Hamiltonianrap®. We begin with the criterion
that a free, massive spinor free field, in flat space-time (with tetrads,, = 6/, sol’,, = 0)

should obey the flat space Klein-Gordon equation,
0 = m2y. (6.1)
This suggests the following flat-space Lagrangian/fpr
L e = ()@) — mou, 6.2)

whered = 449, andzz is some dual spinor t¢ defined so tha;bi/z is a space-time scalar. We

vary ansz independently, and note that - up to a surface term - the ahcten (Cge)(HhLt
(2)

is equivalent to anothet, ;. _4.. given by,
LY e = (00)(0") — mEi. 6.3)

However, this equivalence relies 6 = @+ which is broken when the actions are promoted
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to curved space by taking, — V,, since generallyR # 0 whenR,,,, # 0. One must
therefore choose which of the two actions to promote to alisgace.

Remaining in flat space, there is a problem with both actianthay are given above.
The field equation(d?> — m?)y = 0 constrains the evolution of each of the four components
of ¢ but does not impose any relation between the different compts. We define a basis
e (Wherea = 1,2,3,4) on 4-spinor space, such tha?tawb =0if a # bandd,y, = 0.

We assume tha?usﬁb = 0. However, as is well known, Lorentz invariance preventsramf
definingzzawb = dqp, INStead we can ensure thﬁﬂppl = 17121/12 =1 andzz3¢3 = 17}4% =-—1.

Solutions of(9? — m?)y = 0 are then given by,

’L/J Z aa zE'pt ip- xw + Z bT fiEthrip-xwa’

p

wherea,(p) and bl(p) are some functions gb (the 3-momentum) an&, = /m? + p?.

Here,) = [d°p.

Let us define the Hamiltonian density = 1717? + 7 — £ where the momentum is
defined asr = LW /94 = :ﬁ andr = 85(”/812 = 4. In flat space, the Hamiltonian density
formed from£(?) differs from that based of(!) only by an irrelevant total derivative which

can be dropped. We then have
H = [m? VOV + m2| n=1,2,3. (6.4)
Takinge, = :ba%, one can show that

2 2 m2
= [@en=3 QY B o) - nop ), 69
a P p

which then becomes

H= Zeaz )al, (p) + ba(p)b}:(P)]- (6.6)

Finally, we can assume andb will be upgraded to operators that obey anti-commutation

relations. Thus, we arrive at the following Hamiltonian

H = ZeaZ (p) — b(P)ba(P)]. 6.7)
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This Hamiltonian density is ill defined, it is not positivefuhitive. However, we know that if we
were to write the Dirac spinor in the KG equation and follovilee same steps outlined above
we would get a consistent Hamiltonian density. Thus, theostrbe a projection operation
implicitly present which removes (projects out) the comgras of the spinor which would give
an inconsistent Hamiltonian density. It is important toentitat the actual energy is squared
in this expression and therefore we retain the negativeggriaformation, which is what we
learned from Dirac.

Let us assume that thg anda/; represent annihilation and creation operators respégtive
thena)a, #£0 andbb, # 0. If we interpretzﬁpzp as the energy-density of the spinor field with
€1 = e = —e3 = —e4 = 1, it follows that the spinor field can have negative energysign
unless there is some additional condition that requires- a4, = 0 andb; = by = 0 in the
definition of«. Additionally, without such a requirement it would be pdésito have states
with both a:flaa andbLba > 0 but with zero energy. Negative energy or ghost states leagtlio

known instabilities both classically and at the level of iofuan field theory.

6.1 Energy-momentum tensor

The other important part of this work was to construct a fakgy-momentum tensor. Thus
far in our work concerning the Elko spinor the energy-momantensor has been calculated
from the effective action. This, we find, is not the same a®tiergy-momentum tensor worked
from the full action for a non-standard spinor. We check thdhe case of the Dirac spinor the
contribution from the spin connection to its energy-momentensor is zero. This confirms
that the energy-momentum tensor for a Dirac spinor can entélom its effective action and

there are no extra terms coming from the spin connection.



Appendix A

Nonlinear second order equations which

reduce to pairs of linear first order equations

Let Q be an open subset &". We work with (infinitely) smooth vector functior@ — C™
writing these as columns of. complex scalars. In this appendix “vector” does not carry a
differential geometric meaning because we are not intedest coordinate transformations.
We use Cartesian coordinates . .., z".

Given a pair of vector functions,v :  — C™ we define their inner product in the
standard Euclidean manner(@sv) := [, v*udz' ... dz" where the stax denotes Hermitian
conjugation. This integral need not converge as we will dagug only for the purpose of
defining the formal adjoint of a differential operator, sextrparagraph.

Let AL be a pair of formally self-adjoint (symmetric) first ordemdiar partial differential
operators (differential expressions) with smooth coedfits acting on smooth vector functions
Q — C™. We do not introduce any boundary conditions.

Put
Lyi(u) :== Re(u*Ayru). (A1)
It is easy to see thali(u) is the Lagrangian density for the partial differential equa

tion ALu = 0. Namely, if one writes down the action (variational funatd) Si (u) :=

Jo L+ (w) dz'...dz"™ then the corresponding field equation (Euler—Lagrange tam)ais
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Aiu = 0.

Let us now define a new Lagrangian density

L@l ()
)= L) o)

(A.2)
and corresponding actiofi(u) := [, L(u) dz'...dz™. The field equation for the Lagrangian
density [A.2) is, of course, second order and nonlinear.

Note that the notation in this appendix is self-containedithe Lagrangian densiti€s (A.1),
(A.2) should not be confused with the Lagrangian densitle33), [4.39) introduced in the main

text (the latter have an extra subscript).

The main result of this appendix is

Lemma 1. Letu : © — C™ be a vector function satisfying the condition

Lo(u) # L_(u). (A3)

Thenuw is a solution of the field equation for the Lagrangian dendityf and only if it is a

solution of the equatiod , © = 0 or the equationA_u = 0.

Proof. The explicit formula for the operatof . is

7

AL =iB$0, + 5(&133‘:) +C4 (A.4)

whereB$ andCy are some smooth Hermitian x m matrix functions and the index runs

through the values, . .., n. Substituting[(A.4) into[(A.ll) we get

7

Ly(u) =3

[u*Bi@au — ((%u*)Biu] +u*Ciu. (A.5)

Now take an arbitrary smooth functidn: Q@ — R. Examination of formulal(Al5) shows
that

Li(ehu) = " Li(u). (A.6)

We call the property[ (Al6¥caling covariance Scaling covariance is a remarkable feature of

the Lagrangian density of a formally self-adjoint first artieear partial differential operator.
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Formulas[(A.2) and_(Al6) imply that the Lagrangian dengitglso possesses the property
of scalar covariance, i.€.(e"u) = e2" L(u) for any smooth : Q — R. Thus, all three of our
Lagrangian densitied,, L, andL_, have this property.

Observe now that if the vector functiomis a solution of the field equation for some
Lagrangian densitf possessing the property of scaling covariance th@r) = 0. Indeed, let

us perform a scaling variation of our vector function
u i u+ ou = u+ hu = e'u+ O(h?) (A7)

whereh : Q@ — R is an arbitrary “small” smooth function with compact supgpadt €
C§° (% R). Then0 = 6 [ L(u) = 2 [ hL(u) which holds for arbitrary: only if £(u) = 0.

In the remainder of the proof the variatiom : @@ — C™ of the vector functionu :
Q — C™ is arbitrary and not necessarily of the scaling type [A.Te Bnly assumption is that
du € C§°(Q;C™).

Suppose that is a solution of the field equation for the Lagrangian density [The case
whenw is a solution of the field equation for the Lagrangian densityis handled similarly.]

ThenL, (u) = 0 and, in view of formulal(A.B)L_ (u) # 0. Varyingu we get

B L_(u) " " L_(u)
e = [ it [ o=

_ —/5L+(u) - —6/L+(u)

5 / L(u) = -5 / Li(u). (A.8)

SO

We assumed that is a solution of the field equation for the Lagrangian dendity so
§[Ly(u) = 0 and formula[(A.8) implies thaf [ L(u) = 0. As the latter is true for an ar-
bitrary variation ofu this means that. is a solution of the field equation for the Lagrangian
density L.

Suppose that; is a solution of the field equation for the Lagrangian dengity Then

L(u) = 0 and formula[(A.2) implies that eithet, (u) = 0 or L_(u) = 0; note that in view
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of (A.3) we cannot have simultaneoudly, (u) = 0 andL_(u) = 0. Assume for definiteness
that L, (u) = 0. [The case whet._ (u) = 0 is handled similarly.] Varying: and repeating the
argument from the previous paragraph we arrivé_atl(A.8). ¥éeimed that: is a solution of
the field equation for the Lagrangian densitysod [ L(u) = 0 and formula[[A.8) implies that
6 [Ly(u) = 0. As the latter is true for an arbitrary variationothis means that is a solution

of the field equation for the Lagrangian density. O

Remark 4. It may seem that the variational proof presented above istffficiently rigorous”.
An alternative “completely rigorous” way of proving Lemiaslto write down the field equa-
tion for the Lagrangian density (A.2], (A.5) explicitly aadalyze this second order nonlinear
partial differential equation. The result, of course, reénsthe same, but the calculations be-

come much longer.

Remark 5. Examination of the proof of Lemra& 1 shows that the fact thettfierential oper-
ators A4 are linear and first order is not important. What is importasithat their Lagrangian
densities possess the scaling covariance propérty (A.§thé Lagrangian density (A.2) pos-
sesses this property as well, our construction admits amoolsvextension which gives a hier-

archy of nonlinear partial differential equations whichdigce to several separate equations.

Example 1. Let us give an elementary example illustrating the use ofrhaldh. Consider the

pair of linear first order ordinary differential equations
i +u=0 (A.9)

whereu : R — C is a scalar function. Let us write down the corresponding raagian

densitiesL (u) = %(uw’ — uw') £ |u|? in accordance with formula (Al1) and form a new

Lagrangian density-2L(u) = (ﬂ“;mﬂ')2+ |u|? in accordance with formuld (A.2). The latter

gives the field equation (Euler-Lagrange equation)

w —ud’ ' (w)? — (ud)?
< 2|ul? u) " 4lult vru=0 (A-10)
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Lemmadl tells us that a smooth nonvanishing functipis a solution of equatiori_ (A.10) if and
only if it is a solution of one of the two equatioris {(A.9). Ofise, this fact can be seen by

switching to the polar representatian= re~* wherer : R — (0, +o00) andy : R — R.
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