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Abstract

This thesis is based on five articles, four of which have been published in the Journal of Math-

ematical Physics, Physical Review D, Modern Physics Letters A and Journal of High Energy

Physics. The fifth has been submitted to Mathematika. In these works we study several distinct

problems within the broad subject area of Mathematical Physics. The common feature is that

all these works deal with rotations of one form or another. Inparticular, we show an equivalence

between the massless and massive Dirac equations and modelsbased on the concept of rotating

material points. We also solve an open problem in Einstein-Cartan theory, namely, we find a

natural matter source for a non-trivial spin angular momentum tensor. Finally, we construct

a complete class of non-standard (non-local) spinor field theories and examine their possible

applications in Cosmology.
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Chapter 1

Introduction

1.1 Topics and themes

This thesis is based on five articles, four of which have been published in the Journal of Math-

ematical Physics, Physical Review D, Modern Physics Letters A and Journal of High Energy

Physics. The fifth has been submitted to Mathematika. The reader may notice discrepancies in

notation between the thesis and the articles. This is due to the nature of working on two main

but distinct topics during the course of the PhD. Therefore,making such notational changes was

unavoidable in preparing a coherent document.

The first half of the thesis details extensive work investigating an interesting link between

spinors and rotating material points. The latter half dealswith spinors in cosmology, specifi-

cally, with what are called non-standard spinors.

1.1.1 Coframe

We suggest a new geometric interpretation of both the Dirac and Weyl (massless Dirac) equa-

tions. The basic idea is to view space-time as an elastic continuum whose material points can

experience no displacements, only rotations, with rotations of different material points being

totally independent. The idea of rotating material points may seem exotic, however it has long

been accepted in continuum mechanics within the Cosserat theory of elasticity [43]. This idea

also lies at the heart of the theory ofteleparallelism(= absolute parallelism = fernparallelismus),

a subject promoted by A. Einstein andÉ. Cartan [37, 106, 117]. With regards to the latter it is
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interesting that Cartan acknowledged [35] that he drew inspiration from the ‘beautiful’ work of

the Cosserat brothers.

An elastic continuum with no displacements, only rotations, is, of course, a limit case of

Cosserat elasticity. The other limit case is classical elasticity with displacements only and no

(micro)rotations.

Rotations of material points of the elastic continuum are described mathematically by

attaching to each geometric point an orthonormal basis, which gives a field of orthonormal

bases called theframeor coframe, depending on whether one prefers dealing with vectors or

covectors. Our model will be built on the basis of exterior calculus so for us it will be more

natural to use the coframe.

1.1.2 Spinors and torsion

General relativity is a successful theory in agreement witha vast number of observations. It is

based on the Einstein-Hilbert action which yields the field equations if varied with respect to

the metric. If, however, the metric and the connection (moreprecisely the non-Riemannian part

of the connection with the connection assumed to be metric compatible) are considered asa

priori independent variables, two field equations are obtained. The first one relates the Einstein

tensor (not necessarily symmetric) to the canonical energy-momentum tensor, while the other

field equation relates the skew-symmetric part of the connection, the torsion tensor, to the spin

angular momentum of matter, see e.g. [67, 68, 69, 70, 66, 115]. Spin and torsion are related by

algebraic equations, and torsion vanishes in the absence ofsources.

The cosmological principle states that the universe is homogeneous and isotropic on very

large scales. More mathematically speaking, the four dimensional spacetime(M,g) is defined

by 3D space-like hypersurfaces of constant time which are orbitsof a Lie group G action on

M , with isometry groupSO(3). We assume all fields to be invariant under the action of G

which meansLξgµν = 0 andLξTµνλ = 0 whereLξ denotes the Lie derivative with respect

to the generator of the group. This assumption reduces the cosmological metric to the well
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known Friedmann-Lemaı̂tre-Robertson-Walker form which is characterized by the scale factor

and the geometry of the constant time hypersurfaces. If applied to the torsion of spacetime, it

reduces the components compatible with the cosmological principle to a spatial axial torsion

and a vector torsion part [116].

Cosmological models with torsion were pioneered by Kopczy´nski in [81, 82], who as-

sumed a Weyssenhoff fluid [124] to be the source of both curvature and torsion. The cosmolog-

ical principle was first extended to Einstein-Cartan theoryin [116], where it was also suggested

to reconsider the results in [81, 82], since the Weyssenhofffluid turns out to be incompatible

with the cosmological principle (see also [94, 14, 28]). An elaborate analysis of the most gen-

eral action up to quadratic terms in curvature and torsion assuming the cosmological principle

can be found in [59]. Analytical solutions of the Riemann-squared gravity have recently been

discussed in a cosmological context in [83]. Non-Riemannian models of cosmology in general

have been discussed in [101, 100, 102, 103].

However, nobody has so far succeeded in constructing a non-trivial spin angular momen-

tum tensor in cosmology by minimally coupling matter fields to the geometry. We show that

the minimally coupled eigenspinors of the charge conjugation operator [4, 3] yield a spin tensor

compatible with the cosmological principle.

These spinors belong to a wider class of so-called flagpole spinors [44]. They are

non-standard spinors according to the Wigner classification and obey the unusual property

(CPT )2 = −1. Hence, their dominant coupling to other fields is via the Higgs mechanism

or via gravity [4, 3]. The particles associated with such a field theory are naturally dark and are

named Elko spinors.

1.1.3 New class of spinors

In recent years, our understanding of the universe has become greatly improved thanks to the

high precision cosmological observations that we have available today. According to the Stan-

dard Model of Cosmology, which assumes General Relativity as the theory describing the grav-
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itational interaction, our universe is composed by about4% of baryons,23% of dark matter

and73% of dark energy. Moreover, in addition to these components, we need to assume an

early inflationary epoch in order to explain the current state of our universe. Although this

budget enables us to successfully account for the current cosmological data, it needs to as-

sume the existence of three unknown components from a particle physics point of view, namely

dark matter, dark energy and inflation. Thus, we find that predictions based on General Rela-

tivity plus the Standard Model of particle physics are at odds with current astronomical ob-

servations, not only on cosmological scales, but also on galactic scales where dark matter

plays a crucial role. This indicates failures either in particle physics or in general relativity

(or both) and, in particular, it might be indicating the existence of new particles/fields as can-

didates for dark matter, dark energy and inflation which could arise in high energy physics

[92, 5, 26, 12, 85, 34, 42, 80, 79, 88, 105, 84, 8, 122].

Spinors have played an important role in mathematics and physics throughout the last 80

years. They theoretically model particles with half integer spin, like the electron in the massive

case or the neutrino (massive or massless). The spin structure of manifolds has played an

important part in modern mathematics, while in mathematical physics this structure motivated

the twistor program.

In the framework of particle physics all spinors used are either Dirac, Weyl (massless

Dirac spinors) or Majorana spinors,ψ. Such spinors obey a field equation which is first order

in the derivatives (momenta) ofψ. Cosmologically, this first order field equation implies that

the average value of bothΦ = ψ̄ψ and the spinor energy density of a free spinor field evolves

like the energy density of pressure-less dust i.e. proportional to(1+z)3, wherez is the redshift.

Additionally, the first order nature of the field equation results in a quantum propagator,GF ,

which, for large momentap, behaves asGF ∝ p−1. This limits the form of perturbatively

renormalizable spinor self-interaction terms in the action to be no more than quadratic inψ

e.g. ψ̄ψ and ψ̄γµAµψ. The momentum drop-off ofGF also results inψ having a canonical

mass dimension of3/2.
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A wider range of renormalizable self-interaction terms andcosmological behavior would

be allowed if one could construct a viable spinor field theorywhereGF ∝ p−2, for largep,

resulting in aψ with a canonical mass dimension of unity. We refer to this entire class of

spinor field theories with such properties as Non-Standard Spinors (NSS). This class of spinors

is closely related to Wigner’s non-standard classes [125].Weinberg showed that, under the

assumptions of Lorentz invariance (rotations and boosts) and locality (events affecting other

events within their light-cones), the only spin-1/2 quantum field theory is that which describes

standard spinors (Dirac, Weyl, Majorana). NSS will therefore violate either locality or Lorentz

invariance, or possibly both. Our working assumption is that reasonable NSS models preserve

Lorentz invariance, while being non-local.

Along these lines of reasoning, Ahluwalia-Khalilova and Grumiller [4, 3] constructed a

NSS model using momentum space eigenspinors of the charge conjugation operatorEigen-

spinoren des LadungsKonjugationsOperators(Elko) to build a quantum field. They showed

that such spinors belong to a non-standard Wigner class and exhibit non-locality [125]. They

satisfy(CPT )2 = −I while Dirac spinors satisfy(CPT )2 = I. In more mathematical terms,

they belong to a wider class of spinor fields, so-called flagpole spinor fields [44]. The spinors

correspond to the class 5, according to Lounesto’s classification which is based on bilinear

covariants, similar to Majorana spinors, see also [46, 45, 74]. Locality issues and Lorentz in-

variance were further investigated in [2, 1] with results along the lines of the current work.

Causality has been analysed in [52, 53].

The construction of Elkos using momentum space eigenspinors, λ(p, h, e), of the charge

conjugation operator leads to a spinor field with a double helicity structure. The left-handed and

the right-handed spinor have opposite helicities which in turn requires a careful construction of

the resulting field theory. These spinors have received quite some attention recently [22, 23, 52]

and their effects in cosmology have been investigated [25, 15, 24, 61, 16, 44, 46, 45, 74, 107,

108, 17, 123].

However, as we will show in§6, Elkos spinors, defined in the way described above, are not
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Lorentz invariant. We demonstrate using our construction of NSS where this Lorentz violation

appears, thus confirming [2, 1]. The original analyses defined the field structure entirely in

terms of momentum space basis spinors rather than, for example, starting with an action whose

minimization would imply that structure. This led to the violation of Lorentz invariance being

hidden in the mathematical structure of the model. In the present work, on the other hand,

we start with a general action principle for NSS. When applied to the Elkos, an alternative

model also based on eigenspinors of the charge conjugation operator, the violation of Lorentz

invariance and other issues with their construction are explicit at the level of the action. The

original Elko definition is seen to require a preferred space-like direction and is ill-defined when

the momentum points along that direction. We offer a new NSS field theory which is also based

on the eigenspinors of the charge conjugation operator (i.e. using the basisλ(p, h, e)) which

respects the rotational groupSO(3) but is not invariant under boosts.

We shall see that the general construction of NSS models can be seen as the choice of some

operatorP satisfyingP 2 = I which acts onψ to project out those states that would otherwise

give an inconsistent Hamiltonian density. In this thesis weprovide a general treatment of a

class of NSS models based on an action principle and choice ofoperatorP . We show that

there is one, potentially unique, choice ofP which results in a Lorentz invariant, ghost-free but

non-local spinor field theory with canonical mass dimensionone.

We are also interested in the cosmological behavior of general NSS models and construct

the energy-momentum tensor,Tµν . For Elko spinors it appears that, at present, no one has

obtained the fullTµν as all previous works in the literature, including ours, have overlooked

contributions toTµν from the variation of spin connection.

The remainder of this chapter provides the notation and conventions used throughout the

thesis. In particular, it describes the spin connection, Pauli matrices, covariant derivative, the

coframe, torsion and spinors.

Due to the work of this thesis having developed in two main parts, it is unavoidable to have

separate sections for notation pertaining to Chapters 3 & 4 and Chapters 5 & 6



Chapter 2

Notation

We work, unless otherwise stated, on a 4-manifoldM equipped with a Lorentzian metricg.

The construction presented is local so we do not makea priori assumptions on the geometric

structure of spacetime{M,g}. The metricg is not necessarily the Minkowski metric. Fur-

thermore, we use the following signature{+,−,−,−}. We use local coordinates{xµ} where

µ = 0, 1, 2, 3. We also denote∂µ = ∂/∂xµ and assume Einstein’s summation convention for

repeated indices. We define the covariant derivative of a vector fieldV ν as

∇µV ν = ∂µ + ΓνµκV
κ (2.1)

whereΓνµκ are the connection coefficients. In the case of General Relativity (curvature only,

no torsion) we call our connection the Levi-Civita connection and write our connection coeffi-

cients as{Γ}νµκ. In the case of no curvature but non-zero torsion (Teleparallelism) we write

coefficients as|Γ|νµκ. The explicit formula for the Levi-Civita connection can bederived from

the metric compatibility condition

∇µgνκ := 0 (2.2)

together with the condition that torsion is zero, giving

{Γ}γµν =
1

2
gγκ(∂µgκν + ∂νgκµ − ∂κgµν). (2.3)

Curvature is measured by the Riemann curvature tensor whichis defined as

Rµνρ
σ := 2∂[µΓ

σ
ν]ρ + 2Γσ [µ|λΓ

λ
ρ|ν], (2.4)
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whereΓσνρ is the general connection and therefore can contain curvature and torsion. Two

other important quantities are the Ricci tensor

Rνρ := Rµνρ
µ (2.5)

and the Ricci scalarR = Rν
ν .

As mentioned above, we can also encode torsion into this picture. It does not feature in the

metric but appears at the level of the connection. In particular, we can write a general metric

compatible (∇g = 0) connection as

Γγµν = {Γ}γµν −Kµν
γ (2.6)

whereK is a tensor called contortion; it possess the anti-symmetrypropertyKαβγ = −Kαγβ .

Torsion is defined as the anti-symmetric part of the connection,

T γµν = (Γγµν − Γγνµ) = (Kνµ
γ −Kµν

γ). (2.7)

Torsion (contortion) and the metric are independent of eachother providing our universe

with more degrees of freedom. The interval on our space-timeis defined as

ds2 = gµνdx
µdxν (2.8)

and it does not depend on torsion (contortion).

Throughout this thesis we use Greek letters{α, β, . . . } for holonomic indices and Latin

letters{j, k, . . . } for anholonomic indices.

We will useΛ to represent Lorentz transformations and, in the latter part of the thesis,

the cosmological constant. It will be obvious from the context as to which use ofΛ is being

implemented.

2.1 Coframes

Within this thesis we will use two distinct coframes,ϑjα andejα. They satisfy the same condi-

tion

ϑjαϑ
k
βηjk = gαβ (2.9)
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and

ejαe
k
βηjk = gαβ (2.10)

wheregαβ is the space-time metric andηjk = diag(+1,−1,−1,−1) (the Minkowski metric).

With both coframes we can obtain the frame versions

ϑk
β = ηjkϑ

j
αg

αβ (2.11)

and

ek
β = ηjke

j
αg

αβ . (2.12)

It is important to note that the anholonomic index always comes first and the Lorentz index

second. Sometimes we will suppress the Lorentz index. We will do this only when it is obvious

and doesn’t add any confusion.

The reader may wonder why we would introduce two coframes (frames) that, at least

according to the above definitions, are the same object.

2.1.1 e
j
α

The usual argument for introducing a coframe is to include spinors in curved space. Spinors

require by definition to be defined clearly with respect to theLorentz symmetry of a given

space-time. Since in general a manifold in General Relativity does not necessarily respect

Lorentz symmetry globally, it is necessary to introduce a local structure that defines spinor

states according to Lorentz symmetry of locally flat spaces.In other words,ejα is a reference

coframe, and all formulae are invariant under changes of this reference coframe.

2.1.2 ϑ
j
α

This second coframe is the the main feature of our alternative model in Chapters 3 & 4. Our

formulae will not be invariant under changes ofϑjα, soϑjα is a true dynamical variable.

In the next section we will introduce our spinor notation andthen return to the topic of

including the coframes defined above.
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2.2 Spinors

Spinors can be difficult to understand and often in the physics literature they are introduced

without a rigorous definition. The simplest definition of a spinor is Cartan’s for a spinor in 3

dimensions. Simply put, a spinor is the square root of a complex isotropic (VαV α = 0) vector.

We can see immediately one very important feature of the spinor. We define our vector to have

the componentsV µ = (V 1, V 2, V 3) and being isotropic means we take the following condition

into consideration

(V 1)2 + (V 2)2 + (V 3)2 = 0. (2.13)

Then we can define two numbersξ1, ξ2 in accordance with

V 1 = ξ21 − ξ22 , (2.14)

V 2 = i(ξ21 + ξ22),

V 3 = −2ξ1ξ2.

These give the solutions

ξ1 = ±
√

V 1 − iV2
2

and ξ2 = ±
√

−V1 − iV2
2

. (2.15)

If we were multiply the vector bye−iα then according to (2.15)ξ1 andξ2 will be multiplied

by e−iα/2. Therefore a rotation through2π leaves the vector unchanged but the two numbers

ξ1 and ξ2 change sign. This pair of quantities constitutes aspinor. A spinor, according to

Cartan [36], can be thought of as a directed or polarised isotropic vector.

Throughout this thesis we will not be discussing spinors in much detail but will be using

them for various mathematical constructions or to represent something physical. We have there-

fore decidednot to derive their form explicitly (which could be the topic of abook) and just

introduce the properties that we need. Furthermore since there is a clear divide in the topic of

this thesis, we will separate our notation section into two parts: Section 2.3 pertains to Chapters

3 & 4 and Section 2.4 to Chapters 5 & 6.
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2.3 Notation for Chapters 3 & 4

Spinors, unlike “proper” vectors introduced above, do not carry Lorentz indices. Instead, they

have spinor indices. We will reserve the beginning of the Latin alphabet for these{a, b, . . . }.

In Chapter 3 we will be in (1+3) dimensions working with Weyl spinors (= definite helicity).

They have two complex components, i.e. four real degrees of freedom. In Chapter 4 we will be

in (1+2) dimensions working with a Dirac spinor. Due to the reduced dimensionality the Dirac

spinor also has two complex components, i.e. four real degrees of freedom in (1+2) dimensions.

For example, when dealing with the Weyl equation (massless Dirac equation), we will be

working with a Weyl spinor fieldξb whereb = 1, 2. The Weyl equation itself is

iσαȧb{∇}αξb = 0, (2.16)

where the Pauli matricesσ are defined below and{∇} denotes the covariant derivative with

respect to the Levi-Civita connection.

In Minkowski space, i.e. flat space-time withg = η = diag(+1,−1,−1,−1), Pauli

matrices are defined as

σαȧb = sj ȧb =























σ0ȧb

σ1ȧb

σ2ȧb

σ3ȧb























:=



























































1 0

0 1













0 1

1 0













0 −i

i 0













1 0

0 −1



























































. (2.17)

For an arbitrary Lorentzian metricg 6= η = diag(+1,−1,−1,−1) Pauli matricessj ȧb (note

the Latin upper index!) are defined as above (see formula (2.17)) whereas Pauli matricesσαȧb

(note the Greek upper index!) are defined as Hermitian matricesσαȧb satisfying the relation

σαḃaσ
βḃc+σβḃaσ

αḃc = 2gαβδa
c where spinor indices are raised and lowered using the “metric
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spinor” ǫab

ǫab = ǫȧḃ = ǫab = ǫȧḃ =







0 1

−1 0






(2.18)

in accordance with the formulaσβȧc := ǫȧėσβėdǫ
cd .

Of course, the matricesσαȧb are expressed viasj ȧb in accordance with the formula

σαȧb = ej
αsj ȧb (2.19)

whereejα is some reference frame. This is the frame introduced in subsection 2.1.1.

We define the covariant derivatives of spinor fields as

∇µξa = ∂µξ
a + Γaµbξ

b, ∇µξa = ∂µξa − Γbµaξb, (2.20)

∇µηȧ = ∂µη
ȧ + Γ̄ȧµḃη

ḃ, ∇µηȧ = ∂µηȧ − Γ̄ḃµȧηḃ, (2.21)

whereΓ̄ȧµḃ = Γaµb. The explicit formula for the spinor connection coefficients Γaµb can be

derived from the following two conditions:

∇µǫab = 0, (2.22)

∇µσαȧb = 0, (2.23)

where∇µσαȧb = ∂µσ
α
ȧb + Γαµβσ

β
ȧb − Γ̄ċµȧσ

α
ċb − Γdµbσ

α
ȧd and

Γαµβ =

{

α

µβ

}

(2.24)

are the Christoffel symbols. Conditions (2.22), (2.23) give an overdetermined system of linear

algebraic equations forReΓaµb, ImΓaµb the unique solution of which is

Γaµb =
1

4
σα

ċa
(

∂µσ
α
ċb + Γαµβσ

β
ċb

)

. (2.25)

In Chapters 3 & 4 we will view the coframe (frame)ϑ as a dynamical variable.

We restrict our choice of local coordinates onM to those withdet ejα > 0. This means

that we work in local coordinates with specific orientation.In particular, this allows us to define

the Hodge star: we define the action of∗ on a rankr antisymmetric tensorR as

(∗R)αr+1...α4
:= (r!)−1

√

|det g|Rα1...αrεα1...α4
(2.26)
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whereε is the totally antisymmetric quantity,ε0123 := +1.

The coframeϑ which is our dynamical variable is assumed to satisfy

detϑjα > 0, (2.27)

ande0 ·ϑ0 > 0. These assumptions mean that we work with coframesϑ which can be obtained

from our reference coframee by proper Lorentz transformations:ϑj = Λjk e
k where theΛjk

are real scalar functions satisfying conditions

ηji Λ
j
k Λ

i
r = ηkr, detΛjk > 0, Λ0

0 > 0.

We define the forward light cone (at a given point) as the set ofcovectors of the formcjϑj

with ηjkcjck = 0 andc0 > 0. This implies, in particular, that our covectorl defined by formula

(3.4) lies on the forward light cone.

We define

σαβac := (1/2)(σαaḃǫ
ḃḋσβcḋ − σβaḃǫḃḋσαcḋ) (2.28)

(the first spinor index enumerates the rows and the second onethe columns). These “second

order” Pauli matrices are polarized, i.e.∗σ = ±iσ depending on the choice of “basic” Pauli

matricesσαaḃ . Here the explicit formula for the action of the Hodge star onsecond order Pauli

matrices is

(∗σ)γδab :=
1

2

√

|det g| σαβab εαβγδ.

Following from our choice of Pauli matrices we have the following polarization

∗ σ = iσ. (2.29)

We can also form a complex coframe, written as






















l

m

m̄

n























(2.30)
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where

l := ϑ0 + ϑ3, m := ϑ1 + iϑ2, n := ϑ0 − ϑ3. (2.31)

(The Lorentz index has been suppressed.)

Note that formula (2.27) implies

∗ (l ∧m) = −i(l ∧m) (2.32)

where the covectorsl andm are defined by formulae (2.31). We chose the sign in the RHS of

(2.29) so as to agree with (2.32). In other words, the meaningof condition (2.29) is that the

orientation encoded in our Pauli matrices agrees with the orientation encoded in our coframe.

2.3.1 Torsion

One of the more dominant themes in this thesis is torsion. It is particularly important when we

want to measure the deformation of the coframes from the reference counterparts. We define

torsion for our dynamical variableϑjα as (suppressing Lorentz indices)

T = ϑ0 ⊗ dϑ0 − ϑ1 ⊗ dϑ1 − ϑ2 ⊗ dϑ2 − ϑ3 ⊗ dϑ3 (2.33)

where(dϑj)αβ = ∂αϑ
j
β − ∂βϑjα is the exterior derivative of the coframe. We are only inter-

ested in a special irreducible part of torsion, namely the axial part, which is totally antisymmet-

ric in all three Lorentz indices,

T ax =
1

3

(

ϑ0 ∧ dϑ0 − ϑ1 ∧ dϑ1 − ϑ2 ∧ dϑ2 − ϑ3 ∧ dϑ3
)

. (2.34)

Here the exterior product of a covector (1-form)v and a covariant rank two antisymmetric

tensor (2-form)w is defined as(v ∧ w)αβγ := vαwβγ + vγwαβ + vβwγα.

We identify differential forms with covariant antisymmetric tensors. Given a pair of real

covariant antisymmetric tensorsP andQ of rank r we define their dot product asP · Q :=

1
r!Pα1...αr

Qβ1...βrg
α1β1 . . . gαrβr . We also define‖P‖2 := P · P .
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2.4 Notation for Chapters 5 & 6

In Chapter 5 we will be in 1+3 dimensions working with Elko spinors in Cosmology. They

have 4 complex components, but due to the cosmological principle (= space-time is assumed to

be homogeneous and isotropic), only have one real degree of freedom.

In Chapter 6 we will be in 1+3 dimensions working with generalised non-standard quan-

tum fields. These are different mathematical objects to spinors, in some sense they are infinite-

dimensional versions of the spinors from the rest of the thesis. We will introduce them rigor-

ously in that chapter with their own notation and therefore will avoid cluttering this section with

very specialised notation.

As in Chapters 5 & 6 we will be dealing with spinors with 4 complex components we will

require the4× 4 analogue of the Pauli matrices, namely the Dirac matrices.

The4 × 4 Dirac matricesγj , j = 0, 1, 2, 3, in any space-time, curved or flat, are defined

in terms of the2× 2 Pauli matricesσj as

γ0 =







O 11 O






, γn =







O −sn

sn O






, n = 1, 2, 3, γ5 = iγ0γ1γ2γ3 =







1 O

O −1 ,

(2.35)

where thesn are defined in accordance with 2.17.

The matricesγα are then given byγα = γjej
α, and hence satisfy

γαγβ + γβγα = 2gαβ1.
The covariant derivative of a 4-component complex spinor isdefined as

∇αΨ = ∂αΨ+ ΓαΨ (2.36)

whereΓα denotes the spin connection

Γα =
i

4
ωα

jkfjk, f jk =
i

2

[

γj , γk
]

, (2.37)

and, since we require

∇αejβ = ∂αe
j
β − Γσαβe

j
σ − ωαjkekβ = 0, (2.38)
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we have

ωα
jk = ejβ∂αe

kβ + ejβe
kσΓβασ. (2.39)

Hereekα = ekβg
αβ .

The covariant derivative has a particular form associated with each object (vector, covector,

spinor, etc) it acts on. Also, there is a distinct connectionwhether you have curvature, torsion

or both. We will always state explicitly which form of the covariant derivative we are using

throughout the thesis.

2.5 Brief introduction to teleparallelism

Given a coframeϑ, we introduce a covariant derivative|∇| such that|∇|ϑ = 0. We repeat this

formula giving frame and tensor indices explicitly:|∇|αϑjβ = 0. We then rewrite the formula

in even more explicit form:

∂αϑ
j
β − |Γ|γαβϑjγ = 0 (2.40)

where|Γ|γαβ are the connection coefficients. Note that formula (2.40) has three free indices

j, α, β running through the values0, 1, 2, 3. Note also that the connection coefficient|Γ|γαβ

has three indicesα, β, γ running through the values0, 1, 2, 3. Hence, (2.40) can be viewed

as a system of 64 inhomogeneous linear algebraic equations for the determination of the 64

unknown connection coefficients|Γ|γαβ. It is easy to see that its unique solution is

|Γ|γαβ = ηikg
γδϑiδ∂αϑ

k
β . (2.41)

The corresponding connection is calledteleparallel. When writing the teleparallel covariant

derivative and connection coefficients we use the “modulus”sign to distinguish these from the

Levi-Civita covariant derivative and connection coefficients for which we use curly brackets.

Thus, we have two different connections: the Levi-Civita connection used primarily in

the text of this thesis and the teleparallel connection usedin this section. Both are metric

compatible:{∇}g = |∇|g = 0. The Levi-Civita connection is uniquely determined by the

metric whereas the teleparallel connection is uniquely determined by the coframe. For the
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Levi-Civita connection torsion is zero whereas for the teleparallel connection curvature is zero.

Thus, in a sense, the Levi-Civita and teleparallel connections are antipodes.

“Teleparallelism” stands for “distant parallelism”. Whatis meant here is that the result of

parallel transport of a vector (or a covector) does not depend on the choice of curve connecting

the two points. This fact can be expressed in even simpler terms as follows. Suppose we have

two covectors,u andv, of equal magnitude||u||2 = ||v||2 6= 0, at two different points,P and

Q, of our manifold (spacetime)M . We need to establish whetheru andv are parallel. To do

this, we use the coframe as a basis and writeu = ajϑ
j , v = bjϑ

j. By definition, the covectors

u andv are said to be parallel ifaj = bj .

Formula (2.41) allows us to evaluate torsion of the teleparallel connection:

T γαβ := |Γ|γαβ − |Γ|γβα = ηikg
γδϑiδ(∂αϑ

k
β − ∂βϑkα) = ηikg

γδϑiδ(dϑ
k)αβ

where d denotes the exterior derivative. Lowering the first tensor index gives a neater repre-

sentationTγαβ = ηikϑ
i
γ(dϑ

k)αβ . Dropping Lorentz indices altogether we get

T = ηikϑ
i ⊗ dϑk. (2.42)

It is known [70, 118, 72] that torsion decomposes into three irreducible pieces called tensor

torsion, vector torsion and axial torsion. (Vector torsionis sometimes called trace torsion.) In

this thesis we use only the axial piece. Axial torsion has a very simple meaning: it is the totally

antisymmetric pieceT ax
αβγ = 1

3(Tαβγ + Tγαβ + Tβγα). Substituting (2.42) into this general

formula we arrive at (2.34).

Of course, there is much more to teleparallelism than the elementary facts sketched out

above. Modern reviews of the physics of teleparallelism canbe found in [71, 65, 89, 48, 13, 95].
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Part I

Alternative picture of particle physics.
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Chapter 3

Weyl Lagrangian

Theorems 3.1 - 3.4 are the main the results of this chapter: wefind an equivalence between our

model based on the coframe and the standard model for a massless neutrino.

Let’s first define our model in more detail.

3.1 The setup

We start by reacalling our definition of axial torsion (2.34). This 3-form is calledaxial torsion

of the teleparallel connection. The geometric meaning of the latter phrase was explained in

a concise fashion in the previous chapter, whereas a detailed exposition of the application of

torsion in field theory and the history of the subject can be found in [58, 72]. What is important

at this stage is the observation that the 3-form (2.34) is a measure of deformations generated by

rotations of spacetime points.

Note that the 3-form (2.34) has the remarkable property of conformal covariance: if we

rescale our metric and coframe as

gαβ 7→ e2hgαβ (3.1)

ϑj 7→ ehϑj (3.2)

whereh :M → R is an arbitrary scalar function, then our 3-form is scaled as

T ax 7→ e2hT ax (3.3)
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without the derivatives ofh appearing. The issue of conformal covariance and invariance will

be examined in detail in Section 3.6.

It is tempting to use the 3-form (2.34) as our Lagrangian but the problem is that we are

working in 4-space. In order to turn our 3-form into a 4-form we proceed as follows.

We recall the definition oflα,

lα := ϑ0α + ϑ3α. (3.4)

This is a nonvanishing real lightlike covector field. It willeventually (see Section 3.8) transpire

that the covector field (3.4) has the geometric meaning of neutrino current.

We define our “teleparallel” Lagrangian as

Ltele(ϑ) := l ∧ T ax. (3.5)

Note that formulae (2.34), (3.4), (3.5) are very simple. They do not contain spinors, Pauli

matrices or covariant derivatives. The only concepts used are those of a differential form, wedge

product and exterior derivative. Even the metric does not appear in formulae (2.34), (3.4), (3.5)

explicitly: it is incorporated implicitly via the constraint (2.9).

3.2 Symmetries

As with any Lagrangian it is good to know what symmetries, internal or not, are available to us.

We start with Lorentz transformations of the coframe:

ϑj
Λ7→ ϑ̃j = Λjkϑ

k (3.6)

where theΛjk are real scalar functions satisfying the constraint

ηjkΛ
j
rΛ

k
s = ηrs. (3.7)

Obviously, transformations (3.6), (3.7) form an infinite-dimensional Lie group. Within this

group we single out an infinite-dimensional Lie subgroupH as follows.

Put

mα := ϑ1α + iϑ2α. (3.8)
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The subgroupH is defined by the condition of preservation moduloU(1) of the complex 2-

form l ∧m. More precisely, a Lorentz transformation (3.6), (3.7) is included inH if and only

if

l ∧m modU(1)
= l̃ ∧ m̃ (3.9)

wherel̃α = ϑ̃0α + ϑ̃3α andm̃α = ϑ̃1α + iϑ̃2α.

We can pause for a moment and state our first result.

Theorem 3.1. The teleparallel Lagrangian (3.5) is invariant under the action of the groupH.

In view of Theorem 3.1 we call two coframes equivalent if theydiffer by a transformation

from the subgroupH and gather coframes into equivalence classes according to this relation.

Let’s look in more detail at our gauge groupH. Consider a Lorentz transformation of the

coframe (3.6) satisfying the defining condition (3.9) of ourgroupH. (Recall that here theΛjk

are not assumed to be constant, i.e. they are real scalar functions satisfying (3.7).) We denote

this Lorentz transformationΛ.

Condition (3.9) means thatΛ is a composition of two Lorentz transformations:

Λ = Λ′′Λ′ (3.10)

whereΛ′ is a rotation by a constant angleϕ in theϑ1, ϑ2–plane














l

m

n















Λ′

7→















l

eiϕm

n















(3.11)

andΛ′′ is a Lorentz transformation preserving the 2-forml ∧ m. Our convention for writing

compositions of Lorentz transformations is as follows. When looking at a Lorentz transforma-

tion (3.6) we view the real coframe as a column of height 4 withentriesϑk, k = 0, 1, 2, 3,

and the Lorentz transformation itself as multiplication bya real4× 4 matrixΛjk, so the group

operation is matrix multiplication with the matrix furthest to the right acting on the coframe

first. So, formula (3.10) means thatΛ′ acts on the coframe first.
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It is known, see Section 10.122 in [11], that Lorentz transformations preserving the 2-form

l ∧m admit an explicit description:















l

m

n















Λ′′

7→















l

m+ fl

n+ fm̄+ f̄m+ |f |2l















(3.12)

wheref :M → C is an arbitrary scalar function andn is defined as

nα := ϑ0α − ϑ3α. (3.13)

Substituting (3.11), (3.12) into (3.10) we arrive at the explicit formula for an elementΛ of the

groupH:














l

m

n















Λ7→















l

eiϕm+ fl

n+ fe−iϕm̄+ f̄ eiϕm+ |f |2l















. (3.14)

Let us now examine the structure of the groupH.

The group of rotations in theϑ1, ϑ2–plane is isomorphic toU(1). Hence further on we

will refer to the group of Lorentz transformations of the coframe of the form (3.11) asU(1).

Let us emphasise that theϕ appearing in formula (3.11) is a constant, not a function.

Let us denote byB2(M) the group of Lorentz transformations of the coframe preserving

the 2-forml ∧ m, see formula (3.12). In choosing the notationB2 we follow [11] where the

“M ” indicates dependence on the point of the manifoldM , i.e. it highlights the fact that thef

appearing in formula (3.12) is a function, not a constant.

Both U(1) andB2(M) are abelian1 subgroups ofH. Moreover, it is easy to see that

B2(M) is a normal subgroup ofH,B2(M) ⊳H, and thatH is a semidirect product ofB2(M)

andU(1), H = B2(M) ⋉ U(1). Here the symbol “⋉” stands for the semidirect product with

the normal subgroup coming first.

1The groupB2 can, in fact, be characterised as the nontrivial abelian subgroup of the Lorentz group. See

Appendix B in [120] for details.
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The infinite-dimensional Lie groupH is itself nonabelian. However, it is very close to be-

ing abelian:H contains the infinite-dimensional abelian Lie subgroupB2(M) of codimension

1.

3.3 Proof of Theorem 3.1

Let us rewrite our teleparallel Lagrangian (3.5) in terms ofthe complex coframe (3.4), (3.8),

(3.13):

Ltele(ϑ) = (1/6) l ∧ (n ∧ dl − m̄ ∧ dm−m ∧ dm̄). (3.15)

The groupH is a semidirect product of the groupsB2(M) andU(1) so in order to check that

(3.15) is invariant under the action ofH it is sufficient to check that (3.15) is invariant under the

actions ofB2(M) andU(1) separately.U(1)-invariance is obvious: just substitute (3.11) into

(3.15) noting thatϕ is constant. Hence, it remains only to show that our teleparallel Lagrangian

(3.15) is invariant under the transformation (3.12).

When substituting (3.12) into (3.15) we will get an expression which is a sum of two terms:

• a term without derivatives of the functionf , and

• a term with derivatives of the functionf .

Looking at our original formula (3.5) we see that the term without derivatives of the function

f does not change the teleparallel Lagrangian because our transformation (3.12) preserves the

covector fieldl and because axial torsion is an irreducible piece of torsion(i.e. the 3-form (2.34)

is invariant under rigid Lorentz transformations). So it only remains to check that the term with

derivatives of the functionf vanishes. The term in question is

(1/6) l ∧ (−m̄ ∧ df ∧ l −m ∧ df̄ ∧ l)

which is clearly zero.�

3.4 Equivalence

Before we state our second main result and prove it, we must first discuss the Weyl Lagrangian.
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The accepted mathematical model for a massless neutrino field is the following complex

linear partial differential equation onM know asWeyl’s equation:

iσαḃa{∇}αξa = 0. (3.16)

The corresponding Lagrangian is

LWeyl(ξ) :=
i

2
(ξ̄ḃσαḃa{∇}αξ

a − {∇}αξ̄ḃσαḃaξ
a) ∗ 1. (3.17)

Here∗1 is the standard volume 4-form (Hodge dual of the scalar 1),σα, α = 0, 1, 2, 3,

are Pauli matrices,ξ is the unknown Weyl (2-component) spinor field and{∇} is the covariant

derivative with respect to the Levi-Civita connection defined by formulae (2.20), (2.24).

It is well known that Weyl’s Lagrangian (3.17) isU(1)-invariant:

ξ
modU(1)

= ξ̃ =⇒ LWeyl(ξ) = LWeyl(ξ̃).

In view of this we call two spinor fields equivalent if they areequal moduloU(1) and gather

spinor fields into equivalence classes according to this relation. We call an equivalence class of

spinorsnonvanishingif its representatives do not vanish at any point.

Theorem 3.2. The equivalence classes of coframesϑ and nonvanishing spinor fieldsξ are in a

one-to-one correspondence given by the formula

(l ∧m)αβ
modU(1)

= σαβabξ
aξb (3.18)

where l and m are defined by formulae (3.4) and (3.8) respectively,ϑ and ξ are arbitrary

representatives of the corresponding equivalence classesand σαβ are “second order” Pauli

matrices (2.28). Furthermore, under the correspondence (3.18) we have

Ltele(ϑ) = −
4

3
LWeyl(ξ). (3.19)

A shorter way of stating Theorem 3.2 is “the nonlinear changeof variable

coframeϑ ←→ spinor fieldξ
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specified by formula (3.18) shows that the two Lagrangians,Ltele(ϑ) andLWeyl(ξ), are the

same up to a constant factor”. The only problem with such a statement is that it brushes aside

the important question of gauge invariance.

3.5 Proof of Theorem 3.2

The gauge groupH allows us to gather coframes into equivalence classes: we call two coframes

equivalent if they differ by a transformation fromH. We will now establish the geometric

meaning of these equivalence classes of coframes.

Let us first fix a spacetime pointx ∈ M and examine in detail the geometric meaning of

the groupB2. We initially definedB2 as the the group of Lorentz transformations preserving

the 2-forml ∧m. The complex nonzero antisymmetric tensorl ∧m is polarized (see (2.32))

and has the additional propertydet(l ∧m) = 0. It is easy to see (and this fact was extensively

used in [120, 78, 118, 119, 97]) that such a tensor can be written in terms of a nonzero spinorξ

as

(l ∧m)αβ = −σαβabξaξb (3.20)

with the spinor defined uniquely up to a sign. Thus, the groupB2 can be reinterpreted as

the group of Lorentz transformations preserving a given nonzero spinorξ and the equivalence

classes of coframes are related to this spinor according to formula (3.20). Here the relationship

between an equivalence class of coframes and a nonzero spinor is one-to-two because formula

(3.20) allows us to change the sign ofξ.

Remark 1. One can use the above observation to formulate an alternative definition of a

spinor: a spinor is a coset of the Lorentz group with respect to the subgroupB2. In using

this definition one, however, has to decide whether to use left or right cosets asB2 is not a

normal subgroup of the Lorentz group.

Remark 2. In SL(2,C) notation the groupB2 is written in a particularly simple way:B2 =
















1 f

0 1







∣

∣

∣

∣

∣

∣

∣

f ∈ C











.
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Let us now allow dependence on the spacetime pointx ∈ M . Then the groupB2(M)

is the group of Lorentz transformations preserving a given nonzero spinor fieldξ, with the

equivalence classes of coframes related to the spinor field according to formula (3.20). Here the

relationship between an equivalence class of coframes and anonvanishing spinor field remains

one-to-two.

Finally, let us switch from the groupB2(M) toH = B2(M) ⋉U(1). This means that in

our definition of equivalence classes of coframes we allowl ∧m to be multiplied by a constant

complex factor of modulus 1, so formula (3.20) turns into (3.18). Here the relationship between

an equivalence class of coframes and a nonvanishing spinor field becomes one-to-infinity be-

cause formula (3.18) allows us to multiply the nonvanishingspinor fieldξ by a constant complex

factor of modulus 1; note that this eliminates the difference betweenξ and−ξ. It remains only

to gather nonvanishing spinor fieldsξ into equivalence classes as described in the beginning

of Section 3.4 and we arrive at a one-to-one correspondence between equivalence classes of

coframes and nonvanishing spinor fields given by the explicit formula (3.18).

In the remainder of this section we perform the nonlinear change of variable

spinor fieldξ −→ coframeϑ

and show thatLWeyl(ξ) turns into−3
4 Ltele(ϑ). In order to simplify calculations we observe

that we have freedom in our choice of Pauli matrices. It is sufficient to prove formula (3.19) for

one particular choice of Pauli matrices, hence we will use 2.17. We are also allowed to choose

e = ϑ. Note that this approach is not new: it was, for example, extensively used by A. Dimakis

and F. Müller-Hoissen [49, 50, 51].

We now calculate explicitly the corresponding second orderPauli matrices:

σαβab =
1

2
(ϑj ∧ ϑk)αβ sjkab (3.21)
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where

sjkab =























0 s01ab s02ab s03ab

s10ab 0 s12ab s13ab

s20ab s21ab 0 s23ab

s30ab s31ab s32ab 0























:=





















































O







−1 0

0 1













−i 0

0 −i













0 1

1 0













1 0

0 −1






O







0 i

i 0













−1 0

0 −1













i 0

0 i













0 −i

−i 0






O







−i 0

0 i













0 −1

−1 0













1 0

0 1













i 0

0 −i






O





















































. (3.22)

Substituting (3.4), (3.8) and (3.21), (3.22) into the equation (3.18) we see that this equation can

be easily resolved forξ giving

ξa
modU(1)

=







1

0






. (3.23)

Formula (3.23) may seem strange: we are proving Theorem 3.2 for a general nonvanishing

spinor fieldξ but ended up with formula (3.23) which is very specific. However, there is no

contradiction here because we chose Pauli matrices specially adapted to the coframeϑ and,

hence, specially adapted to the corresponding spinor fieldξ.

Substituting (2.20) and (3.23) into (3.17) we get

LWeyl(ξ)

=
i

8
(ξ̄ḃσαḃaσβ

ċa(∂ασ
β
ċd + {Γ}βαγσγ ċd)ξd − ξaσαḃaσβḃc(∂ασβḋc + {Γ}βαγσγ ḋc)ξ̄ḋ) ∗ 1

=
i

8
(σα1̇aσβ

ċa(∂ασ
β
ċ1 + {Γ}βαγσγ ċ1)− σαḃ1σβḃc(∂ασβ 1̇c + {Γ}βαγσγ 1̇c)) ∗ 1

=
i

8
(σα 1̇aσβ

ċa{∇}ασβċ1 − σαḃ1σβ
ḃc{∇}ασβ 1̇c) ∗ 1 .
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We now write down the spinor summation indices explicitly:

LWeyl(ξ) =
i

8
(σα1̇1σβ

2̇1{∇}ασβ 2̇1 + σα1̇2σβ
1̇2{∇}ασβ 1̇1 + σα1̇1σβ

2̇2{∇}ασβ 2̇1

− σα1̇1σβ 1̇2{∇}ασβ 1̇2 − σα2̇1σβ 2̇1{∇}ασβ 1̇1 − σα2̇1σβ 2̇2{∇}ασβ 1̇2) ∗ 1 .

Note that the terms witha = 1, ċ = 1̇ and ḃ = 1̇, c = 1 cancelled out. Finally, we substitute

explicit formulae (2.19), (2.17) for our Pauli matrices which gives us

LWeyl(ξ) =
i

8
(lα(−m̄β){∇}αmβ + m̄α(−mβ){∇}αlβ + m̄αlβ{∇}αmβ

− lα(−mβ){∇}αm̄β −mα(−m̄β){∇}αlβ −mαlβ{∇}αm̄β) ∗ 1

=
i

8
((m ∧ m̄)αβ{∇}αlβ − (l ∧ m̄)αβ{∇}αmβ + (l ∧m)αβ{∇}αm̄β) ∗ 1

=
i

16
((m ∧ m̄)αβ(dl)αβ − (l ∧ m̄)αβ(dm)αβ + (l ∧m)αβ(dm̄)αβ) ∗ 1

=
i

16
∗ ((m ∧ m̄)αβ(dl)αβ − (l ∧ m̄)αβ(dm)αβ + (l ∧m)αβ(dm̄)αβ)

=
i

8
([∗(m ∧ m̄)] ∧ dl − [∗(l ∧ m̄)] ∧ dm+ [∗(l ∧m)] ∧ dm̄).

But ∗(l∧m) = −i(l∧m) (see (2.32)) and∗(m∧m̄) = +i(l∧n) so the above formula becomes

LWeyl(ξ) = −
1

8
(l ∧ n ∧ dl − l ∧ m̄ ∧ dm− l ∧m ∧ dm̄).

Comparing with (3.15) we arrive at (3.19).�

3.6 Conformal invariance

Until now we have kept the metric fixed but now we shall scale the metric as (3.1) and the Pauli

matrices as

σα 7→ ehσα. (3.24)

Recall that hereh :M → R is an arbitrary scalar function. Let us also scale the spinorfield as

ξ 7→ e−(3/2)hξ. (3.25)

It is well known that the Weyl Lagrangian (3.17) is invariantunder the transformation (3.1),

(3.24), (3.25).
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Examination of formulae (3.18), (2.28), (3.42), shows thatthe transformation (3.1), (3.24),

(3.25) (but not (3.2)) induces the following transformation of the complex coframe (3.4), (3.8),

(3.13):














l

m

n















7→















e−2hl

ehm

e4hn















(3.26)

Of course, it is easy to check directly that our teleparallelLagrangian (3.15) is invariant under

the transformation (3.26).

The transformation (3.26) is a composition of two commutingtransformations: a confor-

mal rescaling of the coframe (3.2) and a Lorentz boost







ϑ0

ϑ3






7→







cosh 3h − sinh 3h

− sinh 3h cosh 3h













ϑ0

ϑ3






.

The presence of a Lorentz boost in this argument is somewhat unnatural so we suggest below

a modified version of our teleparallel Lagrangian, one for which conformal invariance is self-

evident. Recall that our original teleparallel LagrangianLtele(ϑ) was defined by formula (3.5)

or, equivalently, in terms of the complex coframe, by formula (3.15).

Put

L̃tele(ϑ, s) := sLtele(ϑ) = sl ∧ T ax = (s/6) l ∧ (n ∧ dl − m̄ ∧ dm−m ∧ dm̄) (3.27)

wheres :M → (0,+∞) is a scalar function. The functions will play the role of an additional

dynamical variable. In view of (3.3) the Lagrangian (3.27) does not change if we scale the

coframe as (3.2), the metric as (3.1) and the scalars ass 7→ e−3hs. Hence, the Lagrangian

(3.27) is conformally invariant and, moreover, this conformal invariance is quite obvious.

Let us now examine the properties of the Lagrangian (3.27) for fixedmetric. Of course, it

is invariant under the action of the groupH which was described implicitly in Section 3.4 and

explicitly in Section 3.2 (see formula (3.14)). However, itis also invariant under the transfor-
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mation






















l

m

n

s























7→























e−kl

m

ekn

eks























(3.28)

wherek : M → R is an arbitrary scalar function. The transformation (3.27)is a composition

of two transformations: a Lorentz boost






ϑ0

ϑ3






7→







cosh k − sinh k

− sinh k cosh k













ϑ0

ϑ3







and a rescaling of the scalars, s 7→ eks. We will denote the infinite-dimensional Lie group of

transformations (3.28) byJ(M).

Thus, having incorporated into our original teleparallel Lagrangian (3.5) an additional

dynamical variable, the positive scalar functions, we have acquired an additional gauge degree

of freedom. The new (extended) gauge group is

H̃ = H ⋉ J(M) = (B2(M)⋉U(1))⋉ J(M)

= (B2(M)⋉ J(M)) ⋉U(1) = B2(M)⋉ (J(M)×U(1)).

The action ofH̃ preserves the 2-forml ∧m moduloU(1) and modulo rescaling by a positive

scalar function.

We have established the following analogue of Theorem 3.1.

Theorem 3.3. The modified teleparallel Lagrangian (3.27) is invariant under the action of the

groupH̃.

In view of Theorem 3.3 we call two sets of dynamical variables“coframe + positive scalar”

equivalent if they differ by a transformation from the group̃H and gather sets of dynamical

variables into equivalence classes according to this relation. The following is an analogue of

Theorem 3.2.
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Theorem 3.4. The equivalence classes of coframesϑ and positive scalarss on the one hand

and nonvanishing spinor fieldsξ on the other are in a one-to-one correspondence given by the

formula

s (l ∧m)αβ
modU(1)

= σαβabξ
aξb (3.29)

wherel andm are defined by formulae (3.4) and (3.8) respectively,ϑ, s and ξ are arbitrary

representatives of the corresponding equivalence classesand σαβ are “second order” Pauli

matrices (2.28). Furthermore, under the correspondence (3.29) we have

L̃tele(ϑ, s) = −
4

3
LWeyl(ξ). (3.30)

The proof of the first part of Theorem 3.4 (formula (3.29)) is essentially a repetition of the

proof of the first part of Theorem 3.2: take the argument from the beginning of Section 3.3 and

add one gauge degree of freedom.

As to the second part of Theorem 3.4 (formula (3.30)), it simply follows from the second

part of Theorem 3.2 (formula (3.19)). Indeed, when we replace (3.18) by (3.29) the spinor field

scales asξ 7→ √s ξ. But

−4

3
LWeyl(

√
s ξ) = −4

3
sLWeyl(ξ)

by (3.19)
= sLtele(ϑ)

by (3.27)
= Ltele(ϑ, s)

giving us (3.30).

3.7 Weyl’s equation in teleparallel form

Here we write down explicitly the Euler–Lagrange field equations resulting from the variation

of the action

Stele :=

∫

Ltele =

∫

l ∧ T ax =
1

3
piηjk

∫

ϑi ∧ ϑj ∧ dϑk (3.31)

with respect to the coframeϑ subject to the metric constraint (2.9). Here bypi we denote the

quartet of constantspi := (1 0 0 1).

The variation of the coframe is given by the formula

δϑjk = F jkϑ
k (3.32)
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where theF jk are real scalar functions satisfying the antisymmetry condition

Fjk = −Fkj. (3.33)

Condition (3.33) ensures that the variation of the RHS of (2.9) is zero. Of course, theΛjk

appearing on the RHS of (3.6) are expressed via theF jk as

Λjk = δjk + F jk +
1

2
F j lF

l
k + . . .

(an exponential series), or, in matrix notation,Λ = eF . Hence, the matrix-functionF is the

linearization of the Lorentz transformationΛ about the identity.

Substituting (3.32) into (3.31) we get

3δStele = piηjk

∫

(F ilϑ
l∧ϑj∧dϑk+F j lϑi∧ϑl∧dϑk+F klϑi∧ϑj∧dϑl+ϑi∧ϑj∧dF kl∧ϑl)

wheredF kl is the gradient of the scalar functionF kl. Upon contraction withηjk the second

and third terms in the integrand cancel out in view of (3.33) (that this would happen was clear

a priori because axial torsion is invariant under rigid Lorentz transformations) so the above

formula becomes

3δStele =

∫

(piηlkFijϑ
j ∧ ϑl ∧ dϑk + pkηl

iϑk ∧ ϑl ∧ dFij ∧ ϑj)

wherepi := ηijpj. Integration by parts and antisymmetrization ini, j gives

6δStele =

∫

Fij(p
iηlkϑ

j ∧ ϑl ∧ dϑk − pjηlkϑi ∧ ϑl ∧ dϑk − 2pkd(ϑ
k ∧ ϑi ∧ ϑj)).

Thus, our field equations are

piηlkϑ
j ∧ ϑl ∧ dϑk − pjηlkϑi ∧ ϑl ∧ dϑk − 2pkd(ϑ

k ∧ ϑi ∧ ϑj) = 0. (3.34)

The field equations (3.34) are, of course, equivalent to

∗ [piηlkϑj ∧ ϑl ∧ dϑk − pjηlkϑi ∧ ϑl ∧ dϑk − 2pkd(ϑ
k ∧ ϑi ∧ ϑj)] = 0. (3.35)

The advantage of the representation (3.35) is that the left-hand sides of (3.35) are scalars and

not 4-forms as in (3.34). We denote the left-hand sides of (3.35) byGij . Note the antisymmetry

Gij = −Gji.
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We will now rewrite our field equations (3.35) in more compactform in terms of the

complex coframe (3.4), (3.8), (3.13).

We note first thatG12 = 4{∇}αlα. Thus, our field equations (3.35) imply

{∇}αlα = 0. (3.36)

Note that the scalarG03 also has a clear geometric meaning:G03 = 3 ∗ Ltele.

Put

qj := (0 1 i 0) , rj := (1 0 0 − 1) ,

Ajk := pjqk − pkqj, Bjk := pjrk − pkrj − qj q̄k + qkq̄j, Cjk := rj q̄k − rk q̄j.

The antisymmetric matricesReA, ImA, ReB, ImB, ReC, ImC are linearly independent,

therefore the system of 6 real equations (3.35) is equivalent to the system of 3 complex equations

AijG
ij = 0, BijG

ij = 0, CijG
ij = 0.

Straightforward calculations show thatAijGij is zero for any coframeϑ (this is actually a

consequence of Theorem 3.1), hence our real field equations (3.35) are equivalent to the pair of

complex equations

BijG
ij = 0, CijG

ij = 0. (3.37)

As the systems (3.35) and (3.37) are equivalent and as equation (3.36) is a consequence of

(3.35), equation (3.36) is also a consequence of (3.37). Hence we can extend the system (3.37)

by adding equation (3.36): the system (3.37) is equivalent to the system (3.37), (3.36). The

advantage of having (3.36) as a separate equation is that it simplifies subsequent calculations.

We now examine our system of field equations (3.37), (3.36). Straightforward calculations

with account of (3.36) give

BijG
ij = −8im̄αvα, CijG

ij = 8inαv̄α

where

vα := {∇}β(l ∧m)αβ −mβ{∇}αlβ . (3.38)
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Thus, our system of field equations (3.37), (3.36) is equivalent to

m̄αvα = 0, nαvα = 0 (3.39)

and (3.36). ButRe(m̄αvα) = 2{∇}αlα, so (3.36) is a consequence of (3.39). Hence, (3.39)

is the full system of field equations. It is equivalent to the original system of field equations

(3.35).

It is easy to see that for any coframeϑ we have

mαvα = 0, lαvα = 0 (3.40)

so the pair of scalar complex equations (3.39) is equivalentto the complex covector equation

v = 0. (3.41)

Recall that the LHS of this equation is defined by formula (3.38).

Equation (3.41) is the compact “tetrad” representation of the Weyl equation found by

Griffiths and Newing [64]. Griffiths and Newing derived (3.41) directly from Weyl’s equation

(2.16), without examining the Weyl Lagrangian (3.17).

Let us have a closer look at equation (3.41) so as to establishthe actual number of in-

dependent “scalar” equations contained in it and the actualnumber of independent “scalar”

unknowns. It would seem that (3.41) is a system of 4 complex “scalar” equations (4 being the

number of components of the covectorv) for 6 real “scalar” unknowns (6 being the dimension

of the Lorentz group). But we already know that we a priori have identities (3.40) so equation

(3.41) is equivalent to the pair of scalar complex equations(3.39). It is also easy to see thatv

is invariant under the action of the transformation (3.12),hence the set of solutions to equation

(3.41) is invariant under this transformation which means that we are dealing with a pair of com-

plex “scalar” unknowns (see argument in the beginning of Section 3.5). Thus, equation (3.41)

is a system of 2 complex “scalar” equations for 2 complex “scalar” unknowns, as expected of

the Weyl equation.
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Note that the scalar̄mαvα appearing in the LHS of (3.39) is also invariant under the action

of the transformation (3.12) and can be written down explicitly asm̄αvα = 2{∇}αlα− 3i
2 ∗Ltele.

3.8 Discussion of results

For Weyl’s Lagrangian we found a simple teleparallel representation (3.5).

The teleparallel representation of Weyl’s equation was first derived by Griffiths and New-

ing [64]. Our contribution is the teleparallel representation of Weyl’s Lagrangian and observa-

tion that for the Lagrangian things become much simpler.

Now, formula (3.19) (as well as its generalised version (3.30)) holds forany Lorentzian

metric so when using this formula there is really no need to assume the metric to be fixed.

Let us now examine the geometric meaning of the covector fieldl defined by formula (3.4).

If we choose Pauli matrices in the form (2.17) and take (2.19)replacinge with ϑ, we get (3.23)

which immediately implies

lα = σαaḃξ
aξ̄ḃ. (3.42)

Formula (3.42) remains true for any choice of Pauli matricesbecause its RHS has an invariant

meaning. More specifically, the RHS of (3.42) is the well-known expression for the neutrino

current. In light of this it is not surprising that our field equations imply that the divergence ofl

is zero, see formula (3.36).

The main issue with our model is that our Lagrangian (3.5) (aswell as its generalised

version (3.27)) is not invariant under rigid Lorentz transformations of the coframe. A possible

way of overcoming this difficulty is sketched out below.

Consider the Lagrangian

L(ϑ, s) := s‖T ax‖2 ∗ 1 (3.43)

wheres : M → (0,+∞) is a scalar function which plays the role of an additional dynamical

variable. This Lagrangian is Lorentz invariant and is a special case of a general quadratic

Lorentz invariant Lagrangian (a general Lagrangian contains squares of all three irreducible
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pieces of torsion). The special feature of the Lagrangian (3.43) is that it is conformally invariant:

it does not change if we rescale the coframe as (3.2) and the scalars ass 7→ e−2hs.

Of course, a positive scalars is equivalent to a positive densityρ : ρ = s
√

|det g|.

Thus, having the scalar functions as a dynamical variable is equivalent to having the densityρ

as a dynamical variable. Thinking in terms of an unknown density ρ is more natural from the

physical viewpoint. However, in this chapter we will stay with the scalars.

We vary the actionS(ϑ, s) :=
∫

L(ϑ, s) with respect to the scalars and with respect to

the coframeϑ subject to the metric constraint (2.9), which gives us the Euler–Lagrange field

equations. The fundamental difference between our original conformally invariant Lagrangian

(3.27) and the new conformally invariant Lagrangian (3.43)is that the latter is quadratic in

torsion, hence the field equations for (3.43) will be second order.

Suppose now that the metric is Minkowski. It turns out that inthis case one can construct

an explicit solution of the field equations for (3.43). This construction proceeds as follows.

Let l 6= 0 be a constant real lightlike covector lying on the forward light cone and letϑ be

a constant coframe such thatl ⊥ ϑ1, l ⊥ ϑ2; here “constant” means “parallel with respect to

the Levi-Civita connection induced by the Minkowski metric”. Then, of course,

l = c(ϑ0 + ϑ3) (3.44)

wherec > 0 is some constant (compare with formula (3.4)). Put






















ϑ0

ϑ1

ϑ2

ϑ3























:=























1 0 0 0

0 cos 2ϕ ± sin 2ϕ 0

0 ∓ sin 2ϕ cos 2ϕ 0

0 0 0 1













































ϑ0

ϑ1

ϑ2

ϑ3























, s = const > 0 (3.45)

whereϕ :=
∫

l · dx andxα are local coordinates. Straightforward calculations showthat this

coframeϑ and scalars are indeed a solution of the field equations for (3.43). We call this

solution aplane wavewith momentuml. The upper sign in (3.45) corresponds to the massless

neutrino and lower sign corresponds to the massless antineutrino. Note that we can distinguish
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the neutrino from the antineutrino without resorting to negative energies. Note also that we

automatically get only one type of neutrino (left-handed) and one type of antineutrino (right-

handed).

Suppose now that we are seeking solutions which are not necessarily plane waves. This can

be done using perturbation theory. In the language of spinors perturbation means that we assume

the spinor field to be of the form “slowly varying spinor× e−iϕ”. We claim that application

of a perturbation argument reduces the quadratic (in torsion) Lagrangian (3.43) to the linear

(in torsion) Lagrangian (3.27). At the most basic level thiscan be explained as follows. Note

that for a plane wave we have the following two identities:T ax = ±4
3 ∗ l andl = c(ϑ0 + ϑ3)

(compare the latter with (3.44)). Thus, for a plane wave we have

T ax = ±4

3
c ∗ (ϑ0 + ϑ3). (3.46)

We now linearize (in torsion) the quadratic Lagrangian (3.43) about the point (3.46). We get,

up to a constant factor, the linear Lagrangian (3.27).

The bottom line is that we believe that the true Lagrangian ofa massless neutrino field is

the quadratic Lagrangian (3.43). The linear Lagrangian (3.27) (which is equivalent to Weyl’s

Lagrangian (3.17)) arises only if one adopts the perturbative approach.



Chapter 4

Dirac Lagrangian

As we mentioned in the previous chapter, we believe that the true Lagrangian for a massless

neutrino field is the quadratic Lagrangian (3.43). What about the massive Dirac equation? What

happens if we add mass into (3.43)?

For our next set of results we must reduce the dimensionalityof the problem. For this chap-

ter only we will be working in (1+2)-dimensional Minkowski spacetimeM1+2 with coordinates

xα, α = 0, 1, 2, and metricgαβ = diag(+1,−1,−1).

The Dirac equation inM1+2 is

[σαȧb(i∂ +A)α ±mσ3ȧb]ηb = 0. (4.1)

Herem is the electron mass,σα are Pauli matrices (2.17) andAα is a given external real

electromagnetic field. The tensor summation indexα runs through the values0, 1, 2, the spinor

summation indexb runs through the values1, 2 and the free spinor indeẋa runs through the

values1̇, 2̇. The spinor fieldη : M1+2 → C
2 is the dynamical variable (unknown quantity).

The two choices of sign give two versions of the Dirac equation corresponding to spin up and

down.

Equations (4.1) are, of course, a special case of the Dirac equation in dimension 1+3. The

latter is a system of four complex equations for four complexunknowns and if one looks for

solutions which do not depend onx3 then this system splits into a pair of systems (4.1).

All fields are assumed to be infinitely smooth with no assumptions on their behavior at
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infinity. We focus on understanding the geometric meaning ofequation (4.1) rather than on

fitting it into the framework of operator theory.

Our model is based on the Lagrangian (3.43) introduced in theend of the previous chapter

except that we will need to introduce some new ideas, concepts and notation. Though the model

itself is quite simple, it is not easy to see how it generates the Dirac equation (4.1). The main

difficulties are as follows.

• The dynamical variables in our model and the Dirac model are different. We will over-

come this difficulty by performing a nonlinear change of dynamical variables given by

the explicit formulae (4.19)–(4.21).

• We incorporate mass and electromagnetic field into our modelby means of a Kaluza–

Klein extension, i.e. by adding an extra spatial dimension and then separating out the

extra coordinatex3. Now, our field equation (Euler–Lagrange equation) will turn out to

be nonlinear so the fact that it admits separation of variables is nontrivial. We will es-

tablish separation of variables by performing explicit calculations. We suspect that the

underlying group-theoretic reason for our nonlinear field equation admitting separation

of variables is the fact that our model isU(1)-invariant, i.e. it is invariant under the mul-

tiplication of the spinor field by a complex constant of modulus 1. Hence, it is feasible

that one could perform the separation of variables without writing down the explicit form

of the field equation.

• Our field equation will be second order so it is unclear how it can be reduced to a first or-

der equation (4.1). This issue will be addressed in AppendixA. Namely, in this appendix

we prove an abstract lemma showing that a certain class of nonlinear second order partial

differential equations reduces to pairs of linear first order equations. To our knowledge,

this abstract lemma is a new result.
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4.1 What changes have we made to our model?

The coframeϑ is now a triple of orthonormal covector fieldsϑj, j = 0, 1, 2, in M
1+2. Each

covector fieldϑj can be written as before asϑjα where now the tensor indexα = 0, 1, 2

enumerates only three components. Of course, orthonormality is understood as before in the

Lorentzian sense: the inner productϑj · ϑk = gαβϑjαϑ
k
β is +1 if j = k = 0, −1 if

j = k = 1 or j = k = 2, and zero otherwise.

Again we have the orthonormality condition for the coframe,represented as a single tensor

identity

g = ηjkϑ
j ⊗ ϑk (4.2)

but whereηjk has changed to

ηjk = ηjk := diag(+1,−1,−1) (4.3)

We view the identity (2.9) as a kinematic constraint: the covector fieldsϑj are chosen so that

they satisfy (2.9), which leaves us with three real degrees of freedom at every point ofM1+2.

If one viewsϑjα as a3 × 3 real matrix-function, then condition (2.9) means that thismatrix-

function is pseudo-orthogonal, i.e. orthogonal with respect to the Lorentzian inner product.

We choose to work with coframes satisfying conditions

detϑjα = +1 > 0, ϑ00 > 0 (4.4)

which single out coframes that can be obtained from the trivial (aligned with coordinate lines)

coframeϑjα = δjα by proper Lorentz transformations.

As dynamical variables in our amended model we choose the coframeϑ and a positive

densityρ. Our coframe and density are functions of coordinatesxα, α = 0, 1, 2, in M
1+2. At

a physical level, making the densityρ a dynamical variable means that we view our contin-

uum more like a fluid rather than a solid: we allow the materialto redistribute itself so that it

finds its equilibrium distribution. Note that the total number of real dynamical degrees of free-

dom contained in the coframeϑ and positive densityρ is four, exactly as in a two-component
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complex-valued spinor fieldη.

4.1.1 Mass and electromagnetism

In order to incorporate into our model mass and electromagnetic field we perform a Kaluza–

Klein extension: we extend our original (1+2)-dimensionalMinkowski spacetimeM1+2 to

(1+3)-dimensional Minkowski spacetimeM1+3 by adding the extra spatial coordinatex3. The

metric onM1+3 is gαβ = diag(+1,−1,−1,−1). Here and further on we usebold type for

extended quantities. Say, the use of bold type in the tensor indices ofgαβ indicates thatα and

β run through the values0, 1, 2, 3.

We extend our coframe as

ϑjα =







ϑjα

0






, j = 0, 1, 2, ϑ3

α =







0α

1






(4.5)

where the bold tensor indexα runs through the values0, 1, 2, 3, whereas its non-bold counter-

partα runs through the values0, 1, 2. In particular, the0α in formula (4.5) stands for a column

of three zeros.

Our original (1+2)-dimensional coframeϑ, which was initially a function of(x0, x1, x2)

only, is now allowed to depend onx3 in an arbitrary way, as long as the kinematic constraint

(2.9) is maintained. Our only restriction on the choice of extended (1+3)-dimensional coframe

ϑ is the condition that the last element of the coframe is prescribed as the conormal to the

original Minkowski spacetimeM1+2, see formula (4.5).

We also extend our positive densityρ allowing arbitrary dependence onx3. We retain the

non-bold type for the extendedρ.

The coframe elementsϑj are different at different pointsx ∈M
1+3 and this causes defor-

mations. As a measure of these “rotational deformations” wechooseaxial torsionwhich is the

3-form defined by the formula

Tax :=
1

3
ojkϑ

j ∧ dϑk (4.6)

whereojk = ojk := diag(+1,−1,−1,−1) and d denotes the exterior derivative onM1+3.
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Here “torsion” stands for “torsion of the teleparallel connection” with “teleparallel connection”

defined by the condition that the covariant derivative of each coframe elementϑj is zero; see

Appendix A of [29] for a concise exposition. “Axial torsion”is the totally antisymmetric part

of the torsion tensor.

4.2 The new Lagrangian

We choose the basic Lagrangian density of our mathematical model as

L(ϑ, ρ) := ‖Tax‖2ρ (4.7)

where‖Tax‖2 = 1
3!T

ax
αβγT

ax
κλµg

ακgβλgγµ. The main motivation behind the choice of La-

grangian density (4.7) is the fact that it is conformally invariant: it does not change if we

rescale the coframe asϑj 7→ ehϑj, metric asgαβ 7→ e2hgαβ and density asρ 7→ e2hρ where

h : M1+3 → R is an arbitrary scalar function. At this point it is important to note that our

Kaluza–Klein extension procedure does not actually allow for conformal rescalings because

the last formula (4.5) is very specific. Thus, our logic is that we choose a Lagrangian density

(4.7) whichwould beconformally invariant if not for the prescriptive nature ofthe Kaluza–

Klein construction. This is in line with the view that mass breaks conformal invariance. The

electron massm will appear below in formulae (4.12) and (4.13).

Substituting (4.5) into (4.6) we get

Tax = T ax − ϑ3 ∧D3ϑ (4.8)

where

T ax :=
1

3
ηjkϑ

j ∧ dϑk (4.9)

is the axial torsion in original (1+2)-dimensional spacetime andD3ϑ is the 2-form

D3ϑ :=
1

3
ηjkϑ

j ∧ ∂3ϑk. (4.10)

The 2-formD3ϑ characterizes the rotation of the coframeϑ as we move along the coordinate

x3 and is, in effect, an analogue of angular velocity.
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Substituting (4.8) into (4.7) we rewrite our basic Lagrangian density as

L(ϑ, ρ) := (‖T ax‖2 + ‖D3ϑ‖2)ρ. (4.11)

We now incorporate the electron massm into our model by imposing the periodicity con-

ditions

ϑ(x0, x1, x2, x3 + π/m) = ϑ(x0, x1, x2, x3), (4.12)

ρ(x0, x1, x2, x3 + π/m) = ρ(x0, x1, x2, x3). (4.13)

Conditions (4.12) and (4.13) mean that we make the coordinate x3 cyclic with period π
m . In

other words, we effectively roll up our third spatial dimension into a circle of radius1
2m .

Finally, we incorporate the prescribed electromagnetic (co)vector potentialA into our

model by formally adjusting the partial derivatives appearing in the definition of axial torsion

(4.9) as

∂α 7→ ∂α +m−1Aα∂3 , α = 0, 1, 2 . (4.14)

As a result, our Lagrangian density (4.11) turns into

L(ϑ, ρ) := (‖T ax
A ‖2 + ‖D3ϑ‖2)ρ, (4.15)

where

T ax
A := T ax −m−1A ∧D3ϑ. (4.16)

Let us summarize the above construction. The Lagrangian density that we shall be studying

is given by formula (4.15) where the 3-formT ax
A and 2-formD3ϑ are defined by formulae (4.9),

(4.10) and (4.16). The corresponding action (variational functional) is

S(ϑ, ρ) :=

∫

M1+3

L(ϑ, ρ) dx0dx1dx2dx3 . (4.17)

Of course, the integral in (4.17) need not converge as we willbe using it only for the purpose of

deriving field equations (Euler–Lagrange equations). Our dynamical variables are the coframe

ϑ and densityρ which live in the original (1+2)-dimensional spacetime butdepend on the extra
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spatial coordinatex3. We seek solutions which are periodic inx3, see formulae (4.12) and

(4.13).

Our field equations are obtained by varying the action (4.17)with respect to the coframe

ϑ and densityρ. Varying with respect to the densityρ is easy: this gives the field equation

‖T ax
A ‖2+‖D3ϑ‖2 = 0 which is equivalent toL(ϑ, ρ) = 0. Varying with respect to the coframe

ϑ is more difficult because we have to maintain the kinematic constraint (2.9). A technique for

varying the coframe with kinematic constraint (2.9) was described in Appendix B of [29] but

we do not use it in this thesis.

4.3 Switching to the language of spinors

As pointed out in the previous section, varying the coframe subject to the kinematic constraint

(2.9) is not straightforward. This technical difficulty canbe overcome by switching to a different

dynamical variable. It is known that in dimension 1+2 a coframe ϑ and a positive densityρ

are equivalent to a 2-component complex-valued spinor fieldξ = ξa =







ξ1

ξ2






satisfying the

inequality

ξ̄ȧσ3ȧbξ
b > 0. (4.18)

The explicit formulae establishing this equivalence are

ρ = ξ̄ȧσ3ȧbξ
b, (4.19)

ϑ0α = ρ−1ξ̄ȧσαȧbξ
b, (4.20)

(ϑ1 + iϑ2)α = ρ−1ǫċḃσ3ḃaξ
aσαċdξ

d. (4.21)

Hereσ are Pauli matrices andǫ is the “metric spinor” (2.18), the free tensor indexα runs

through the values0, 1, 2, and the spinor summation indices run through the values1, 2 or 1̇, 2̇.

The advantage of switching to a spinor fieldξ is that there are no kinematic constraints on its

components, so the derivation of field equations becomes straightforward.

Formulae (4.19)–(4.21) are a variant of those from [40]: in [40] these formulae were writ-

ten for dimension 3, i.e. for 3-dimensional Euclidean space, whereas in this thesis we write
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them for dimension 1+2, i.e. for (1+2)-dimensional Minkowski spacetime. Both the formulae

from [40] and formulae (4.19)–(4.21) are a special case of those from [64].

Remark 3. The right-hand sides of formulae (4.19)–(4.21) are invariant under the change of

sign ofξ. Hence, the correspondence between coframe and positive density on the one hand and

spinor field satisfying condition (4.18) on the other is one to two. A spinor field is, effectively,

a square root of a coframe and a density. The fact that the spinor field has indeterminate sign

does not cause problems as long as we work on a simply connected open set, such as the whole

Minkowski spaceM1+2. Here and further on, the notions of openness and connectedness of

subsets ofM1+2 are understood in the Euclidean sense, i.e. in terms of a positive 3-dimensional

metric. Note that a similar issue (extraction of a single-valued “square root” of a tensor) arises

in the mathematical theory of liquid crystals [9].

We now need to express the differential forms (4.9), (4.10) and (4.16) via the spinor fieldξ.

This is done by direct substitution of formulae (4.19)–(4.21) giving

∗ T ax = −2i(ξ̄ȧσαȧb∂αξ
b − ξbσαȧb∂αξ̄ȧ)

3ξ̄ċσ3ċdξd
, (4.22)

(∗D3ϑ)α =
2i(ξ̄ȧσαȧb∂3ξ

b − ξbσαȧb∂3ξ̄ȧ)
3ξ̄ċσ3ċdξd

, (4.23)

∗ T ax
A = −2i(ξ̄ȧσαȧb(∂α +m−1Aα∂3)ξ

b − ξbσαȧb(∂α +m−1Aα∂3)ξ̄
ȧ)

3ξ̄ċσ3ċdξd
. (4.24)

The tensor summation indexα in formulae (4.22) and (4.24) and the free tensor indexα in

formula (4.23) run through the values0, 1, 2. Formulae (4.22) and (4.23) are, of course, a

variant of those from [40]: we have simply turned 3-dimensional Euclidean space into (1+2)-

dimensional Minkowski space and replaced the extra coordinatex0 with the extra coordinatex3.

Substituting formulae (4.24) and (4.23) into (4.15) we arrive at the following self-
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contained explicit spinor representation of our Lagrangian density

L(ξ) = − 4

9ξ̄ċσ3ċdξd

(

[

i(ξ̄ȧσαȧb(∂α +m−1Aα∂3)ξ
b − ξbσαȧb(∂α +m−1Aα∂3)ξ̄

ȧ)
]2

+
∥

∥i(ξ̄ȧσαȧb∂3ξ
b − ξbσαȧb∂3ξ̄ȧ)

∥

∥

2
)

. (4.25)

Here and further on we write our Lagrangian density and our action asL(ξ) andS(ξ) rather

thanL(ϑ, ρ) andS(ϑ, ρ), thus indicating that we have switched to spinors. The spinor field ξ

satisfying condition (4.18) is the new dynamical variable.

The field equation for our Lagrangian density (4.25) is

4i

3

(

(∗T ax
A )σαȧb(∂α +m−1Aα∂3)ξ

b + σαȧb(∂α +m−1Aα∂3)((∗T ax
A )ξb)

− (∗D3ϑ)ασ
α
ȧb∂3ξ

b − σαȧb∂3((∗D3ϑ)αξ
b)
)

− ρ−1Lσ3ȧbξ
b = 0 (4.26)

where the quantities∗T ax
A , ∗D3ϑ, ρ andL are expressed via the spinor fieldξ in accordance

with formulae (4.24), (4.23), (4.19) and (4.25).

We seek solutions of the field equation (4.26) which satisfy the periodicity condition

ξ(x0, x1, x2, x3 + π/m) = ξ(x0, x1, x2, x3), (4.27)

or the antiperiodicity condition

ξ(x0, x1, x2, x3 + π/m) = −ξ(x0, x1, x2, x3). (4.28)

The above periodicity/antiperiodicity conditions are ouroriginal periodicity conditions (4.12)

and (4.13) rewritten in terms of the spinor field. The splitting into periodicity/antiperiodicity

occurs because the spinor field corresponding to a coframe and a density is determined uniquely

modulo sign, see Remark 3.
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4.4 Separating out the coordinatex3

Our field equation (4.26) is highly nonlinear and one does notexpect it to admit separation of

variables. Nevertheless, we seek solutions of the form

ξ(x0, x1, x2, x3) = η(x0, x1, x2) e∓imx
3

. (4.29)

Note that such solutions automatically satisfy the antiperiodicity condition (4.28): the coframe

corresponding to a spinor field of the form (4.29) experiences one full turn (clockwise or antick-

lockwise) in the(ϑ1, ϑ2)-plane asx3 runs from 0 toπm .

Substituting formula (4.29) into (4.24), (4.23), (4.19) and (4.25) we get

∗ T ax
A± = −2(η̄ȧσαȧb(i∂ ±A)αηb − ηbσαȧb(i∂ ∓A)αη̄ȧ)

3η̄ċσ3ċdηd
, (4.30)

(∗D3ϑ)α = ±4mη̄ȧσαȧbη
b

3η̄ċσ3ċdηd
, (4.31)

ρ = η̄ȧσ3ȧbη
b, (4.32)

L±(η) = −
16

9η̄ċσ3ċdηd

(

[

1
2 (η̄

ȧσαȧb(i∂ ±A)αηb − ηbσαȧb(i∂ ∓A)αη̄ȧ)
]2 − (mη̄ȧσ3ȧbη

b)2
)

(4.33)

where the signs agree with those in (4.29) (upper sign corresponds to upper sign and lower sign

corresponds to lower sign).

Note that the quantities (4.30)–(4.33) do not depend onx3, which simplifies the next step:

substituting (4.29) into our field equation (4.26) and dividing through by the common factor

e∓imx
3

we get

4

3

(

(∗T ax
A±)σ

α
ȧb(i∂ ±A)αηb + σαȧb(i∂ ±A)α((∗T ax

A±)η
b)
)

+
32m2

9
σ3ȧbη

b − ρ−1L±σ3ȧbη
b = 0. (4.34)

Observe that formulae (4.30)–(4.34) do not containx3. Thus, we have shown that our field

equation (4.26) admits separation of variables, i.e. one can seek solutions of the form (4.29).
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Consider now the action

S±(η) :=

∫

M1+2

L±(η) dx
0dx1dx2 (4.35)

whereL±(η) is the Lagrangian density (4.33). It is easy to see that equation (4.34) is the field

equation (Euler–Lagrange equation) for the action (4.35).

In the remainder of this chapter we do not use the explicit form of the field equation (4.34),

dealing only with the Lagrangian density (4.33) and action (4.35). We needed the explicit form

of field equations, (4.26) and (4.34), only to justify separation of variables.

We give for reference a more compact representation of our Lagrangian density (4.33) in

terms of axial torsionT ax
A± (see formula (4.30)) and densityρ (see formula (4.32)):

L±(η) = −
(

(

∗T ax
A±

)2 − 16

9
m2

)

ρ . (4.36)

Of course, formula (4.36) is our original formula (4.15) with x3 separated out. The choice of

dynamical variables in the Lagrangian density (4.36) is up to the user: one can either use the

x3-independent spinor fieldη or, equivalently, the correspondingx3-independent coframe and

x3-independent density (the latter are related toη by formulae (4.19)–(4.21) withξ replaced

by η).

4.5 Main result

Let Drs be the linear differential operator mapping undotted spinor fields into dotted spinor

fields in accordance with formula

η 7→ Drsη = σαȧb(i∂α + rAα)η
b + smσ3ȧbη

b (4.37)

where the tensor summation indexα runs through the values0, 1, 2 and the lettersr ands take,

independently, symbolic values± (as inDrs) or numerical values±1 (as in the RHS of formula

(4.37)), depending on the context.

The main result of this chapter is
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Theorem 4.1.LetΩ be an open (see Remark 3) subset ofM
1+2 and letη : Ω→ C

2 be a spinor

field satisfying the condition

η̄ȧσ3ȧbη
b > 0 (4.38)

(compare with (4.18)). Thenη is a solution of the field equation for the Lagrangian densityL+

if and only if it is a solution of the Dirac equationD++η = 0 or the Dirac equationD+−η = 0,

and a solution of the field equation for the Lagrangian density L− if and only if it is a solution

of the Dirac equationD−+η = 0 or the Dirac equationD−−η = 0.

Proof. Put

Lrs(η) :=
1

2

[

η̄ȧσαȧb(i∂α + rAα)η
b − ηbσαȧb(i∂α − rAα)η̄ȧ

]

+ smη̄ȧσ3ȧbη
b. (4.39)

This is the Lagrangian density for the Dirac equationDrsη = 0. Formula (4.39) can be rewritten

in more compact form as

Lrs(η) =
(

−3

4
∗ T ax

Ar + sm
)

ρ (4.40)

where∗T ax
Ar, r = ±, is the Hodge dual of axial torsion defined by formula (4.30) and ρ is the

density defined by formula (4.32). Comparing formulae (4.36) and (4.40) we get

Lr(η) = −
32m

9

Lr+(η)Lr−(η)

Lr+(η)− Lr−(η)
. (4.41)

Note that the denominator in the above formula is nonzero because condition (4.38) can be

equivalently rewritten asLr+(η) > Lr−(η).

The result now follows from formula (4.41) and Lemma 1 (see Appendix A).

4.6 The sign in the inequality (4.18)

In Section 4.3, when switching to the language of spinors, wechose to work with spinor fields

ξ satisfying the inequality (4.18). It is natural to ask what happens if we choose to work with

spinor fieldsξ̃ satisfying the inequality

¯̃ξȧσ3ȧbξ̃
b
< 0. (4.42)
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One can check that in this case all our arguments can be repeated with minor changes. Namely,

in dimension 1+2 a coframeϑ and a positive densityρ are equivalent to a 2-component complex-

valued spinor fieldξ̃ satisfying the inequality (4.42), with this equivalence described by a

slightly modified version of formulae (4.19)–(4.21). In theend we get an analogue of The-

orem 4.1 for such spinors.

In fact, there is no need to repeat our arguments because there is a bijection between spinor

fieldsξ satisfying the inequality (4.18) and spinor fieldsξ̃ satisfying the inequality (4.42):

ξ 7→ ξ̃
c
= ǫcbσ3ȧbξ̄

ȧ, ξ̃ 7→ ξc = ǫcbσ3ȧb
¯̃
ξȧ. (4.43)

We do not view the transformation (4.43) as physically significant because the primary

dynamical variables in our model are the coframe and positive density, not the spinor field. We

view the spinor field merely as a convenient change of dynamical variables. If two different

spinor fields correspond to the same coframe and positive density we interpret them as the same

particle. In group-theoretical language this means that our model is built on the basis of the

pseudo-orthogonal groupSO(1, 2) rather than the spin groupSpin(1, 2).

4.7 Plane wave solutions

In this section we construct a special class of explicit solutions of the field equations for our

Lagrangian density (4.15). This construction is presented, initially, in the language of spinors

and under the additional assumption that the electromagnetic covector potentialA is zero.

We seek solutions of the form

ξ(x0, x1, x2, x3) = e−i(p·x+rmx
3)ζ (4.44)

wherep = (p0, p1, p2) is a real constant covector,r takes the values±1 and ζ 6= 0 is a

constant spinor. We shall call solutions of the type (4.44)plane wave. In seeking plane wave

solutions what we are doing is separating out all the variables, namely, the original variables

x = (x0, x1, x2) (coordinates onM1+2) and the extra variablex3 (Kaluza–Klein coordinate).
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As usual, our spinor fieldξ is assumed to satisfy the inequality (4.18). As explained in

Section 4.6, this assumption does not lead to the loss of solutions.

Our field equation (4.26) is highly nonlinear so it is nota priori clear that one can seek

solutions in the form of plane waves. However, plane wave solutions are a special case of

solutions of the type (4.29) and these have already been analyzed in preceding sections. Namely,

Theorem 4.1 gives us an algorithm for the calculation of all plane wave solutions (4.44) by

reducing the problem to Dirac equations

Drsη = 0 (4.45)

for thex3-independent spinor field

η(x0, x1, x2) = e−ip·xζ. (4.46)

Herer is the same as in formula (4.44), i.e. a number taking the values±1, ands is another

number, also taking, independently, the values±1. ByDrs we denote the differential operators

(4.37).

Clearly, a Dirac equation (4.45) has a nontrivial plane wavesolutionη if and only if the

momentump satisfies the condition‖p‖2 −m2 = 0, sop is timelike. Our model is invariant

under proper Lorentz transformations of coordinates(x0, x1, x2) so without loss of generality

we can assume that

p1 = p2 = 0. (4.47)

Combining formulae (4.37), (2.17), (4.46) and (4.47) we seethat the Dirac equation (4.45) takes

the form






p0 − sm 0

0 p0 + sm













ζ1

ζ2






= 0. (4.48)

Equation (4.46) has a nontrivial solution satisfying the inequality (4.18) only if

p0 = sm (4.49)
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with the correspondingζ given, up to scaling by a nonzero complex factor, by the formula

ζd =







1

0






. (4.50)

Combining formulae (4.44), (4.47), (4.49) and (4.50) we conclude that our model admits,

up to a proper Lorentz transformation of the coordinate system inM1+2 and complex scaling,

four plane wave solutions and that these plane wave solutions are given by the explicit formula

ξd =







1

0






e−im(sx0+rx3) . (4.51)

Here the numbersr ands can, independently, take values±1.

Let us now rewrite the plane wave solutions (4.51) in terms ofour original dynamical vari-

ables, coframeϑ and densityρ. Substituting formulae (2.17) and (4.51) into formulae (4.19)–

(4.21) we getρ = 1, ϑ0α = δ0α and

ϑ1α =















0

cos 2m(sx0 + rx3)

sin 2m(sx0 + rx3)















, ϑ2α =















0

− sin 2m(sx0 + rx3)

cos 2m(sx0 + rx3)















. (4.52)

In order to distinguish the two spins we fixx3 and examine how the covectorsϑ1 andϑ2

evolve as a function of timex0. We say that spin is up if the rotation is counterclockwise and

spin is down if the rotation is clockwise. Examination of formula (4.52) shows that we have

spin up ifs = +1 and spin down ifs = −1.

We will now establish which of the solutions (4.52) describethe electron and which de-

scribe the positron. Let us introduce a weak constant positive electric field,0 < A0 < m and
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A1 = A2 = 0. Then we can repeat the calculation leading up to formula (4.52), but now we get

ϑ1α =















0

cos 2[(sm− rA0)x
0 + rmx3]

sin 2[(sm− rA0)x
0 + rmx3]















,

ϑ2α =















0

− sin 2[(sm− rA0)x
0 + rmx3]

cos 2[(sm− rA0)x
0 + rmx3]















. (4.53)

We define quantum mechanical energy as

ε := |sm− rA0| (4.54)

which is half the angular frequency (as a function of timex0) of the solution (4.53). Note that

our energy (4.54) is by definition positive.

We say that we are dealing with an electron ifε < m and with a positron ifε > m.

Examination of formula (4.54) shows that we are looking at anelectron if the signs ofr ands

are the same and at a positron if the signs ofr ands are opposite. This means that the electron

is described by a wave traveling in the negativex3-direction whereas the positron is described

by a wave traveling in the positivex3-direction.

Our classification of plane wave solutions is summarized in Table 4.1.

Table 4.1: Classification of solutions (4.52)

s = +1 s = −1

r = +1 Electron with spin up Positron with spin down

r = −1 Positron with spin up Electron with spin down
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4.8 Discussion

4.8.1 Problem of vanishing density

The only technical assumption in our analysis is that the density ρ does not vanish. Rephrased

in terms of the spinor field, this assumption reads as

ξ̄ȧσ3ȧbξ
b 6= 0, (4.55)

compare with (4.18) and (4.42). We do not know how to drop the assumption (4.55).

4.8.2 Electron in curved spacetime

One of the advantages of our mathematical model is that it does not use covariant differentiation

(only exterior differentiation) so the generalization to the case of a curved (1+2)-dimensional

spacetime is absolutely straightforward. Covariant derivatives appear only when we switch

from coframe and density to a spinor field. All our analysis, including Theorem 4.1, carries

over to the case of curved spacetime. We chose our (1+2)-dimensional spacetime to be flat only

to make the exposition clearer.

4.8.3 Rigid Lorentz transformations of the coframe

An interesting feature of our model is that it possesses an additional symmetry which the Dirac

equation in dimension 1+2 does not possess. The symmetry in question is invariance under

rigid Lorentz transformations of the coframe, i.e. transformationsϑj 7→ ϑ̃j = Λjkϑ
k where

theΛjk are real constants satisfying the conditionηji Λjk Λir = ηkr , theη’s being defined by

formula (4.3). In order to see that the Dirac equation in dimension 1+2 is not invariant under

rigid Lorentz transformations of the coframe we look at the Dirac Lagrangian density (4.39),

switch from a spinor fieldη to a coframeϑ and a densityρ which gives us (4.40) and then

rewrite formula (4.40) in more explicit form as

Lrs(η) =
(

−3

4
∗ T ax + rA · ϑ0 + sm

)

ρ (4.56)

where∗T ax is axial torsion in dimension 1+2, see formula (4.9). Clearly, the term(A · ϑ0)ρ in

formula (4.56) is not invariant under rigid Lorentz transformations of the coframe. This non-
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invariance is not normally noticed because the covector field ϑ0ρ is traditionally interpreted as

the electron current, unrelated to any coframe. On the otherhand, our model is invariant under

rigid Lorentz transformations of the coframe even in the presence of an external electromagnetic

field: this fact is established by examination of formulae (4.9), (4.10), (4.15) and (4.16).

How can the two models be mathematically equivalent? The answer is that invariance

under rigid Lorentz transformations of the coframe is broken when we separate out the extra

coordinatex3. Namely, the construction described in Section 4.4 assignsa special role to the

coframe elementϑ0: it does not depend onx3 (this follows from formulae (4.29), (4.19) and

(4.20)) whereas the other two elements of the coframe rotateas functions ofx3 (this follows

from formulae (4.29), (4.19) and (4.21)).

4.8.4 Our choice of Lagrangian

We chose a very particular Lagrangian density (4.7) containing only one irreducible piece of

torsion (axial) whereas in teleparallelism it is traditional to choose a more general Lagrangian

containing all three pieces (axial, vector and tensor) of the torsion tensor

T := ojkϑ
j ⊗ dϑk, (4.57)

see formula (26) in [72]. Note that when Einstein introducedteleparallelism [117] he failed to

identify axial torsion as a separate irreducible piece: hisLagrangian contained only two terms,

the square of the full torsion tensor and the square of its vector piece.

In choosing our particular Lagrangian density (4.7) we wereguided by the principles

of conformal invariance, simplicity and analogy with Maxwell’s theory. The analogy with

Maxwell’s theory is that we characterize the field strength by a differential form, replacing

the electromagnetic tensor (2-form) by axial torsion (3-form). It appears that the Lagrangian

density (4.7) was never examined.

4.8.5 Exclusion of gravity

We assumed the (1+2)-dimensional metricg to be prescribed (fixed) and the coframeϑ to be

chosen so as to satisfy the kinematic constraint (2.9). As explained in subsection 4.8.2, the fact
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that we chose the metricg to be Minkowski is irrelevant and all our analysis carries over to the

case of an arbitrary Lorentzian metric in dimension 1+2. Theimportant thing is that the metric

g is not treated as a dynamical variable. This means that we chose to exclude gravity from our

model.

On the other hand, in teleparallelism it is traditional to view the metric as a dynamical

variable. In other words, in teleparallelism it is customary to view (2.9) not as a kinematic

constraint but as a definition of the metric and, consequently, to vary the coframeϑ without any

constraints. This is not surprising as most, if not all, authors who contributed to teleparallelism

came to the subject from General Relativity.

It appears that the idea of working with a coframe subject to the kinematic constraint (2.9)

is new.

4.8.6 Density as a dynamical variable

We took the positive density of our continuum to be a dynamical variable whereas in teleparal-

lelism the tradition is to prescribe it asρ =
√

|det g| . Takingρ to be a dynamical variable is,

of course, equivalent to introducing an extra real positivescalar field into our model. It appears

that the idea of making the density a dynamical variable is also new.

4.8.7 Electron in dimension 1+3

The major outstanding issue is whether we can reformulate the Dirac equation in dimension 1+3

using our approach. This would mean starting from (1+3)-dimensional spacetime, performing

a Kaluza–Klein extension to dimension 1+4, choosing the conformally invariant Lagrangian

density (4.7) and so on, as described in Section 4.1.

It seems that the equation we get starting from (1+3)-dimensional spacetime and perform-

ing the construction described in Section 4.1 is not the Dirac equation in dimension 1+3. Our

analysis is heavily dependent on dimension and, when starting from (1+3)-dimensional space-

time, we do not appear to get a factorization of the Lagrangian density of the type (4.41).

However, the equation we get in dimension 1+3, although nonlinear, seems to be very
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similar to the Dirac equation. The natural way of testing howclose our equation is to the Dirac

equation would be to calculate the energy spectrum of the electron in a given static electromag-

netic field, starting with the case of the Coulomb potential (hydrogen atom).

4.8.8 Similarity with the Ashtekar–Jacobson–Smolin construction

The analysis presented in this chapter exhibits certain similarities with [6, 73] in that a 3-dimen-

sional (or, in our case, (1+2)-dimensional) coframeϑ is used as a dynamical variable and that a

second order partial differential equation is reduced to a first order equation.
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Chapter 5

Spinors and torsion

In this second part of the thesis we will shift our focus to alternative spinors and their appli-

cations to cosmology. In particular we are interested in understanding dark matter and dark

energy. Therefore, we consider spinors which are naturallydark, i.e. their interaction with the

electromagnetic force is heavily suppressed. We start our investigation with a particular spinor,

known as the Elko spinor.

In this chapter we will look at two applications of the Elko spinor. The first is its candidacy

for dark energy, then second we will investigate its abilityto source torsion which was an open

problem in Einstein-Cartan theory.

5.1 A very short introduction to Elko spinors

Elko spinors [4] are similar to Majorana spinors but acquirethe full four degrees of freedom

of a Dirac spinor due to their helicity structure. They couple to the Higgs mechanism via
¬

λλH†H and weakly to the electromagnetic field via
¬

λ[γa, γb]λFab, however in the latter case

this coupling is heavily constrained because of the masslessness of the photon, making them a

candidate for dark matter. The idea of one field explaining both dark matter and dark energy

has already been discussed in various approaches, see e.g. [27, 33]. One possible mass range

for the Elko spinors is in them ≃ MeV range.

These spinors belong to a wider class of so-called flagpole spinors [44]. They are

non-standard spinors according to the Wigner classification and obey the unusual property
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(CPT )2 = −1. Elko spinors are defined by

λ =







±σ2φ∗L

φL






, (5.1)

whereφ∗L denotes the complex conjugate ofφL andσ2 denotes the second Pauli matrix. For a

detailed treatment of the field theory of the eigenspinors ofthe charge conjugation operator we

refer the reader to [4, 3]. Dark spinors have an imaginary bi-orthogonal norm with respect to

the standard Dirac dual̄ψ = ψ†γ0, and in order for a consistent field theory to emerge the dual

is defined to be

¬

λu = i εvuλ
†
vγ

0 , (5.2)

with ε{−,+}
{+,−} = −1 = −ε{+,−}

{−,+} such that

¬

λu(p)λv(p) = ± 2mδuv , (5.3)

wherep denotes the momentum.

Due to their formal structure Elko spinors allow for many interesting applications. For

instance, in [25] it has been shown that Elko spinors naturally yield an anisotropic expansion

in the context of cosmological Bianchi type I models. This allows for a suppression of the low

multipole amplitude of the primordial power spectrum. The primordial power spectrum of the

quantum fluctuations of Elko spinors has been investigated in [24, 61] where is was found that

the small scale power spectrum essentially agrees with thatof scalar field inflation while the

large scale power spectrum shows new features.

5.2 Dark energy

An increasing number of independent observations indicates that we are living in an expanding

universe where the expansion itself is accelerating [111, 114, 98]. It has been accepted that this

requires some additional negative-pressure matter source, named dark energy. The simplest

model explaining this accelerated expansion is the cosmological constantΛ which corresponds
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to an unusual equation of statew = P/ρ = −1. TheΛ cold dark matter (ΛCDM) model

(the standard model of cosmology) fits the present data very well. However, the numerical

value of the cosmological constant is about 120 orders of magnitude smaller than the vacuum

expectation value predicted by quantum field theory. This smallness problem can be addressed

by considering dynamical models. The field slowly rolls downsome potential, and the effective

equation of stateweff converges toweff = −1. Originally it was believed that this value should

be approached from above. Recently there has been interest in phantom models where the dark

energy equation of state is approached from below:w ≤ −1, see [31, 32, 109, 91, 57, 60,

47, 41, 112, 76, 121, 75, 113, 110, 33, 90]. These models, although counter intuitive, are not

excluded by current data [31, 32].

Figure 5.1, taken from [32], shows data taken from the cluster abundance, supernovae,

quasar-lensing statistics and the first acoustic peak in thecosmic microwave background (CMB)

radiation power spectrum. Together, they imply a convergence of the equation to one dominated

by dark energy. Also, when the parameter space is expanded toincludew ≤ −1 (phantom

region), the data does not rule outw converging tow = −1 from this region.

A universe dominated by phantom energy is very different to any we are accustomed to.

The scale factor increases at a rate quicker than that of the horizon, and it is not long before

gravitationally bound objects are pulled apart. Finally, the same fate is met by objects bound by

the three stronger forces. Due to the success of theΛCDM model (constant equation of state),

any theory based on a dynamical equation of state would be required to reproduce the results

of ΛCDM for present time. In other words,w must approach the valuew = −1: either from

w > −1 or w < −1. The majority of dynamical dark energy models are based on evolving

scalar fields with a suitably chosen potential. One limitation of scalar field theories is that they

are unable to cross the phantom divide without acquiring pathologies, such as negative kinetic

energy.

This topic falls under the umbrella of modified gravity, which splits into two main cat-

egories: amending the geometrical (left-hand) side or the matter content (right-hand) side of
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Einstein’s field equations. The former requires altering gravity (changing the action), and the

latter populating the universe with alternative species. Those two approaches are not entirely

independent as many modified theories bring new geometricalquantities to the matter side,

ultimately changing the energy content of the universe, andallowing for a new interpretation.

Figure 5.1: Current constraints to thew − Ωm parameter space. The red solid curves show the

age (in Gyr) of the Universe today (assuming a Hubble parameterH0 = 70km sec−1Mpc−1).

The light shaded regions are those allowed (at 2σ confidence level) by the observed cluster

abundance and by current supernova measurements of the expansion history. The dark orange

shaded region shows the intersection of the cluster-abundance and supernova curves, addition-

ally restricted (at 2σ confidence level) by the location of the first acoustic peak inthe cosmic-

microwave-background power spectrum and quasar-lensing statistics.

5.2.1 Cosmological Elko spinor field equations

We now introduce the standard model for cosmology, i.e. curvature and no torsion. Later in

the chapter we will add torsion and define the Einstein-Cartan model. The standard model of

cosmology is based upon the flat Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) metric

ds2 = dt2 − a(t)2(dx2 + dy2 + dz2), (5.4)
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wherea(t) is the scale factor andt is cosmological time. The dynamical behavior of the universe

is determined by the cosmological field equations of generalrelativity

Rαβ −
1

2
Rgαβ =

1

M2
pl

Tαβ , (5.5)

whereMpl is the Planck mass which we use as the coupling constant,1/M2
pl = 8πG andc = 1.

Tαβ denotes the stress-energy tensor, which for a homogeneous and isotropic cosmology takes

the form

Tαβ = diag(ρ, a2P, a2P, a2P ). (5.6)

The cosmological field equations can be written as

H2 =
1

3M2
pl

ρ, (5.7)

ρ̇+ 3H(ρ+ P ) = 0. (5.8)

The dot denotes differentiation with respect to timet and the Hubble parameterH is defined by

H = ȧ/a.

Let us consider a homogeneous single Elko spinor field. Following [24, 61], the effective

Lagrangian density of this field can be written in terms of thescalarfieldϕ as

L =
1

2
ϕ̇2 +

3

8
H2ϕ2 − V (ϕ). (5.9)

If the potentialV (ϕ) contains a standard mass termV (ϕ) = m2ϕ2/2, then we can rewrite the

Lagrangian as

L =
1

2
ϕ̇2 +

3

8
H2ϕ2 − 1

2
m2ϕ2. (5.10)

This allows us to interpret the explicit presence of the Hubble parameter in the action as an

effective mass term where the mass changes as the universe evolves, and we have

m2
eff = m2 − 3

4
H2. (5.11)
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It is interesting to note that if one converts back to normal units then the second term is of the

order1 × 10−39 MeV. Therefore, the change in mass is tiny. If the universe undergoes a phase

of accelerated expansion, the Hubble parameter is approximately constant. Depending on the

ratiom/H, it is possible for models to attain a negative value form2
eff without creating ghosts

which have negative kinetic energy. This arises as a direct consequence of the extra coupling a

spinor has, in addition to that of a scalar field, to geometry.

The energy density and the pressure of the Elko spinor field are given by

ρϕ =
1

2
ϕ̇2 + V (ϕ) − 3

8
H2ϕ2, (5.12)

Pϕ =
1

2
ϕ̇2 − V (ϕ) +

1

8
H2ϕ2. (5.13)

These two equations have the important property of leaving the acceleration equation un-

changed,

ä

a
= − 1

3Mpl
(ϕ̇2 − V (ϕ)). (5.14)

The spinor field’s potential energy may yield an acceleratedexpansion of the universe. It should

be noted that the energy density and the pressure now explicitly depend on the Hubble parame-

ter. These additional terms are present because the covariant derivative has more structure when

acting on a spinor field. As mentioned before the ‘coupling’ in Eq. (5.9) can be interpreted as

either the effective mass of the particle depending on the Hubble parameter [24], and therefore

on the evolution of the universe, or, alternatively, regarding the gravitational coupling as time

dependent [61].

The effective equation of state of the Elko spinor field is given by

weff =
Pϕ
ρϕ

=
1
2 ϕ̇

2 − V (ϕ) + 1
8H

2ϕ2

1
2 ϕ̇

2 + V (ϕ) − 3
8H

2ϕ2
. (5.15)

When compared with the scalar field, (5.15) also demonstrates that crossing the phantom divide

is possible without attaining a negative kinetic energy term.

We will restrict our attention to power counting renormalizable potentials. As the Elko
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spinor field has mass dimension one, the two allowed potentials are

V1(ϕ) =
1

2
m2ϕ2, (5.16)

and

V2(ϕ) =
1

2
m2ϕ2 +

1

4
αϕ4, (5.17)

where theV1(ϕ) is the aforementioned canonical mass term, andV2(ϕ) includes the self inter-

action term. Finally,α is a dimensionless coupling constant.

5.3 Dark spinors as dark energy

We start by solving Eq. (5.7) for the Hubble parameter. UsingEq. (5.12) we find

H =
1√
3Mpl

√

ϕ̇2/2 + V (ϕ)
√

1 + (ϕ/Mpl)2/8
. (5.18)

The energy density of the Elko spinor field can be written as

ρϕ =
1

2
ϕ̇2 + V (ϕ)− 1

8

ϕ̇2/2 + V (ϕ)

1 + (ϕ/Mpl)2/8
(ϕ/Mpl)

2 (5.19)

=
(1

2
ϕ̇2 + V (ϕ)

)(

1− (ϕ/Mpl)
2/8

1 + (ϕ/Mpl)2/8

)

. (5.20)

It is precisely this latter form of the energy density which motivated [61] to interpret (5.20) as

inducing a time-dependent gravitational coupling by consideringGtt = 8πGeff ρ̄ϕ whereρ̄ϕ is

the standard energy density of a scalar field.

Now, we consider the conservation equation (5.8) with (5.18) and (5.20) and numerically

solve the resulting equation forϕ(t) and substitute into Eqs. (5.12) and (5.13) to obtain the

evolution of the effective equation of stateweff = P/ρ and plot it as a function of the evolution

parametera(t).

5.3.1 Phantom dark energy models

All of our results are in graphical form. They demonstrate that the Elko spinor has as a solution

a late time convergence to that of aΛCDM model. This would, as part of a larger class of

evidence, be needed in order to qualify as a dark energy candidate.
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Before we show the results we must discuss the initial conditions. We chose our initial

conditions to bew(0) = {1/3, 0,−1/3,−2/3}, the first two representing radiation and dust,

respectively. The initial conditions withw(0) ≤ −1/3 correspond to an initially accelerat-

ing universe. Small changes in these initial conditions do not alter the late-time asymptotic

behaviour of the solutions. We have three classes of solutions: converging, diverging and oscil-

lating.

5.3.2 Converging models
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Figure 5.2: Equation of state forV1(ϕ): Mpl = 1, ϕ̇(0) = 1 andw(0) = −1/3. With

m2 = {0.002, 0.001} = {red (higher),blue (lower)}

Fig. 5.2 shows the dynamical behaviour of the effective equation of state considering the

potentialV1 with Mpl = 1, ϕ̇(0) = 1 andw(0) = −1/3. For the two different mass values it is

possible to see that the effective equation of state almost immediately drops below the phantom

divide. During the subsequent evolution,w begins to increase as further shown by Fig. 5.3 to

the desired dark energy value. From Fig. 5.3 it is also evident that our model is practically indis-

tinguishable from dark energy modelled by a cosmological constant, long before recombination

when the scale factor is abouta(t) = 10−3.

We obtained very similar results for other initial values ofthe equation of state:w(0) =

1/3, w(0) = 0 andw(0) = −2/3. We have shown, for comparison, results fromw(0) = 1/3

in Fig. 5.4 and Fig. 5.5; they qualitatively agree with the results presented in Figs. 5.2 and 5.3,
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Figure 5.3: Equation of state forV1(ϕ): Mpl = 1, ϕ̇(0) = 1 andw(0) = −1/3. With

m2 = {0.002, 0.001} = {red (higher),blue (lower)}.

respectively.
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Figure 5.4: Equation of state forV1(ϕ): Mpl = 1, ϕ̇(0) = 1 andw(0) = 1/3. With m2 =

{0.002, 0.001} = {red (higher),blue (lower)}.

5.3.3 Diverging models

Next, we added a self-interaction term to the potential and usedV2(ϕ). Interestingly, we found,

for all initial values ofw andα = 1, that the effective equation of state always diverges to

−∞, see Fig. (5.6). Also, we checked, although not included in here, that our numerical results

for V2(ϕ) converge to results forV1(ϕ) asα → 0. Although it might be possible to construct

models with finely tuned initial conditions such that the divergence of the equation of state

would happen in the future, we believe such models are very unlikely. Hence, we are led to

conclude that a dynamical dark energy model based on our Elkospinors requires their potential
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to be of the simplest form, namely a canonical mass term, without self interaction.
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Figure 5.5: Equation of state forV1(ϕ): Mpl = 1, ϕ̇(0) = 1 andw(0) = 1/3. With m2 =

{0.002, 0.001} = {red (higher),blue (lower)}.
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Figure 5.6: Equation of state forV2(ϕ): Mpl = 1, w(0) = 1/3 andα = 1. With m2 =

{4, 0.02} = {red (higher),blue (lower)}.

5.3.4 Oscillating models

Lastly, we found another set of interesting results where the equation of state oscillated between

w = 1 andw = −1 for all time. The oscillation of the equation of state is veryrapid, as can be

seen in Fig. 5.7. This doesn’t agree with current observations. Therefore these oscillating mod-

els are unphysical. This qualitative behavior does not change if we include the self-interaction

term. However, if such a model could be modified it would be a prime candidate for models

where the field changes its characteristic from being dark matter at early times to become dark
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energy at late times, see also [38, 96, 86, 127, 19] .
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Figure 5.7: Equation of state for potentialV1(ϕ): Mpl = 1, m = 0.1

with initial conditions chosen such thatw(0) = {1/3, 0,−1/3,−2/3}, respectively

{blue(long dashed), red (medium dashed), green (dashed), cyan (short dashed)}

5.3.5 Discussion

An Elko spinor field is able to provide a possible model for dark matter as it couples mainly via

the Higgs mechanism, but has heavily constrained interactions with the electromagnetic field.

Dark spinors have a predictedMeV mass range and therefore experimental predictions can be

formulated and possibly measured at the LHC. Our results nowshow that the Elko spinor field

is also capable of having a dynamical equation of state whichcrosses the phantom divide and

asymptotes tow = −1. This makes it a viable candidate for dark energy which cannot be ruled

out experimentally.

Unlike previous phantom models, Elko spinors do not obtain negative kinetic energy on

crossing the phantom divide, due to bothρ andP depending on the Hubble parameter, and

therefore these models do not create ghosts. According to [32] the equation of state must not

stay below the divide but converge to dark energy, thereforethe Elko spinors’ potential is of

the simplest form, a canonical mass termm2ϕ2/2. Our Elko spinor model does not require

a modification of general relativity, leaving one of the mostsuccessful models in theoretical

physics untouched.
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Due to the interesting nature of Elko spinors, they have beenshown to give other unique

properties not found with other matter sources considered in the past. For now, in a cosmolog-

ical setting, Elko spinors are providing intriguing results in having the potential to be the best

candidate dynamical dark energy model at hand.

5.4 Elko as a source of torsion

Due to their formal structure, Elko spinors couple differently to gravitation from scalar fields or

Dirac spinors [22], eigenspinors of the parity operator. This allows for many interesting appli-

cations. For instance, in [25] it has been shown that Elko spinors naturally yield an anisotropic

expansion in the context of cosmological Bianchi type I models. This allows for a suppression

of the low multipole amplitude of the primordial power spectrum. The primordial power spec-

trum of the Elko field quantum fluctuations has been investigated in [24, 61] where it was found

that the small scale power spectrum is almost in agreement with that of scalar field inflation

while the large scale power spectrum shows new features.

General relativity is a successful theory in agreement witha vast number of observations.

It is based on the Einstein-Hilbert action which yields the field equations if varied with respect

to the metric. If, however, the metric and the connection (more precisely the non-Riemannian

part of the connection) are considered asa priori independent variables, two field equations are

obtained. The first one relates the Einstein tensor (not necessarily symmetric) to the canonical

energy-momentum tensor, while the other field equation relates the skew-symmetric part of the

connection, the torsion tensor, to the spin angular momentum of matter, see e.g. [67, 68, 69,

70, 66, 115]. Spin and torsion are related by algebraic equations, and torsion vanishes in the

absence of sources.

The cosmological principle states that the universe is homogeneous and isotropic on very

large scales. More mathematically speaking, the four dimensional spacetime(M,g) is defined

by 3d space-like hypersurfaces of constant time which are orbitsof a Lie group G action on

M , with isometry groupSO(3). We assume all fields to be invariant under the action of G
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which meansLξgµν = 0 andLξTµνλ = 0 whereLξ denotes the Lie derivative with respect

to the generator of the group. This assumption reduces the cosmological metric to the well

known Friedman-Lemaı̂tre-Robertson-Walker form which ischaracterized by the scale factor

and the geometry of the constant time hypersurfaces. If applied to the torsion of spacetime, it

reduces the components compatible with the cosmological principle to a spatial axial torsion

and a vector torsion part [116].

Cosmological models with torsion were pioneered by Kopczy´nski in [81, 82], who as-

sumed a Weyssenhoff fluid [124] to be the source of both curvature and torsion. The cosmolog-

ical principle was first extended to Einstein-Cartan theoryin [116], where it was also suggested

to reconsider the results in [81, 82], since the Weyssenhofffluid turns out to be incompatible

with the cosmological principle (see also [94, 14, 28]). An elaborate analysis of the most gen-

eral action up to quadratic terms in curvature and torsion, assuming the cosmological principle,

can be found in [59]. Analytical solutions of the Riemann-squared gravity have recently been

discussed in a cosmological context in [83]. Non-Riemannian models of cosmology in general

have been discussed in [101, 100, 102, 103]

We will investigate the Einstein-Cartan action in the next section.

5.5 Einstein-Cartan theory with Elko spinors

The action of Einstein-Cartan gravity is

S =

∫

(M2
pl

2
R+ Lmat

)√−g d4x, (5.21)

whereR is the Ricci scalar computed from the complete connection with contortion contribu-

tions,g is the determinant of the metric,Lmat denotes the matter Lagrangian and1/M2
pl = 8πG

is the coupling constant; the speed of light is set to one(c = 1). The resulting field equations

are

Gij = Rij −
1

2
Rgij =

1

M2
pl

Σij, (5.22)

T ijk + δikT
j
l
l − δjkT ill =M2

pl τ
ij
k, (5.23)
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whereτ ijk is the spin angular momentum tensor, defined by

τk
ji =

δLmat

δKij
k
, (5.24)

andΣij is the total energy-momentum tensor

Σij = σij + (∇k −Klk
l)(τij

k − τjki + τkij), (5.25)

whereσij is metric energy-momentum tensor

σij =
2√−g

δ(
√−gLmat)

δgij
. (5.26)

The field equations (5.23) are in general 24 algebraic equations, and in the absence of spin

sources torsion vanishes, torsion does not propagate.

We have not included the cosmological constant in the field equations for simplicity. It

should be noted, however, that there exist models where the cosmological constant might be

induced by the torsion of spacetime. Likewise, torsion could contribute to the bare cosmolog-

ical constant and yield today’s observed effective cosmological term, see e.g. [7, 20, 126] and

also [30] for a spinorial dark energy model.

5.6 Cosmological field equations with torsion

Current observations [104, 99] suggest that the energy density of the universe is very close to

the critical density, resulting in spatially flat hypersurfaces. The flat FLRW metric is

ds2 = dt2 − a(t)2
(

dx2 + dy2 + dz2
)

, (5.27)

wherea(t) is the scale factor. It yields the following non-vanishing holonomic Christoffel

symbol components

Γxtx = Γyty = Γztz =
ȧ

a
,

Γtxx = Γtyy = Γtzz = aȧ , (5.28)
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where the dot denotes differentiation with respect tot. This then implies the following non-

vanishing anholonomic Christoffel symbolsΓn to be

Γn = −1

2

ȧ

a
(γ0γn − γnγ0) = −2 ȧ

a
f0n, (5.29)

n = 1, 2, 3. (5.30)

When the cosmological principle is applied to the torsion tensor [116, 59] the allowed compo-

nents reduce to

T110 = T220 = T330 = h(t), (5.31)

T123 = T312 = T231 = f(t). (5.32)

The cosmological Einstein tensor with torsion is now given by

Gtt = 3
ȧ

a

( ȧ

a
+ 2h

)

+ 3h2 − 3f2, (5.33)

Gxx = a2
(

−2 ä
a
− ȧ

a

( ȧ

a
+ 4h

)

− 2ḣ− h2 + f2
)

, (5.34)

Gxx = Gyy = Gzz. (5.35)

In addition to the geometry, the matter has to be compatible with homogeneity and

isotropy. This yields two classes of Elko spinors, Elko ghost spinors which satisfy
¬

λλ = 0

and standard Elko spinors where
¬

λλ 6= 0. The name ghost spinors refers to the fact that such

spinors lead to a vanishing metric energy-momentum tensor,and hence do not affect the curva-

ture of spacetime in general relativity, see also [62, 63, 49, 23]. A cosmological ghost spinor

field can be written in the form

λ{−,+} = ϕ(t) ξ, (5.36)

λ{+,−} = ϕ(t) ζ, (5.37)
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whereξ andζ are two linearly independent constant spinors given by

ξ =























0

±i

1

0























, ζ = i























∓i

0

0

−1























, (5.38)

with their respective dual spinors

¬

ξ = i

(

0 i ±1 0

)

,

¬

ζ =

(

−i 0 0 ∓1
)

. (5.39)

The set of 24 algebraic equations (5.23) reduces to two independent equations relating

spin and torsion if we assume homogeneity and isotropy. The torsion functionsf andh can

therefore be expressed1 in terms of the matter

h = −
ϕ4/M4

pl

4 + ϕ4/M4
pl

ȧ

a
, (5.40)

f = −
2ϕ2/M2

pl

4 + ϕ4/M4
pl

ȧ

a
, (5.41)

which can be combined to give

h

f
=

1

2
ϕ2/M2

pl. (5.42)

Therefore, an Elko ghost spinor field satisfying the cosmological principle indeed yields non-

trivial contributions to the spatial axial torsion component and to the time component of the

torsion vector. Hence, the spin angular momentum tensor induced by this matter source satisfies

homogeneity and isotropy.

The total energy-momentum tensorΣij for the Elko spinor matter is given by

Σtt = V0, (5.43)

Σxx = −a2V0 + a2ϕ2
(

3h− ḟ

f
− 2

ϕ̇

ϕ

)

f, (5.44)

Σxx = Σyy = Σzz, (5.45)

1These computations were performed using the software Mathematica
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whereV0 = V (0). This completes the formulation of the cosmological field equations. Next,

we investigate the qualitative behavior of the equations ofmotion.

The geometrical part of the cosmological field equations (5.33)–(5.35) can, for example,

be read off from [59] (cf their actionL4) which we verified. In Ref. [87], whereh = 0 was

assumed, the geometry parameterk was redefined to include the remaining torsion byk̄ =

k − f2a2/2, see also [21].

5.7 Cosmological Elko spinor dynamics

The complete set of field equations can be reduced to a single first order differential equation in

the following manner. First, all torsion functions in the field equations are written in terms of

the spin tensor (5.41), thereby eliminating torsionf andh for the matter fieldϕ. Next, we can

use Eq. (5.33) and the derivative of that equation to find expressions foṙa/a andä/a which are

expressed entirely in terms of the matter fieldϕ. We analyze these equations qualitatively and

solve them numerically.

For the Hubble parameterH = ȧ/a from Eq. (5.33) we find

H =

√

V0/M2
pl

2
√
3

4 + ϕ4/M4
pl

√

4− ϕ4/M4
pl

. (5.46)

Next, the terms witḧa/a, ȧ/a andf andh are eliminated forϕ in the spatial component of the

field equation which results in

ϕ̇

ϕ
= −

√

V0/M
2
pl

4
√
3

8 + 3ϕ4/M4
pl

12− ϕ4/M4
pl

√

4− ϕ4/M4
pl. (5.47)

Positivity of the square root requiresϕ/Mpl <
√
2. This implies that the sign of the first

derivative of the field cannot change, and hence the field value is a decreasing function of time

and in fact quickly approaches zero. When this happens, the Hubble parameter asymptotes to a

constant value and the universe expands according toa ∝ exp(Ht).

To see this behaviour of the solutions qualitatively, let usexpand Eqs. (5.46) and (5.47)
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aboutϕ = 0 which leads to

H =

√

V0
3M2

pl

+O(ϕ/Mpl)
4, (5.48)

ϕ̇

ϕ
= −1

3

√

V0
3M2

pl

+O(ϕ/Mpl)
4, (5.49)

and therefore we find that a period of accelerated expansion is an attractor solution of this

system of equations. Taking into account Eq. (5.41), we alsofind that the torsion of spacetime

is quickly decreasing and approaching zero as the universe expands.
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Figure 5.8: Left: Hubble parameter and right: torsion function h for 1/M2
pl = 8π andV0 = 1.

Initial conditions of the matter field areϕi = ϕ(t = 0) = {0.282, 0.25, 0.23, 0.20}, {blue

(short dashed), red (dashed), (medium dashed) yellow and green (long dashed)}

.

Such a behaviour of the torsion is not unexpected, see e.g. [10]. Spinors and inflation in

the context of torsion theories have received much attention in the past [56, 54, 39, 93, 77, 55,

21]. It should be pointed out, however, that matter sources considered previously violate the

cosmological principle.

We numerically solve the first order differential equation (5.47) and use this solution to

find the evolution of the Hubble parameter - we plot the Hubbleparameter in Fig. 5.8a - which

approaches a constant for different initial conditions of the field. In Fig. 5.8b the torsion function

h is plotted for the same numerical solutions.
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In order to give a qualitative statement about the decay rateof the torsion, in Fig. 5.9 we

plot the torsion functionh as a function of the number ofe-foldings. We assume the total

number ofe-foldings to be sixty. Therefore, the torsion contributionof the spacetime becomes
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Figure 5.9: Torsion functionh for 1/M2
pl = 8π andV0 = 1. Initial condition isϕi = {0.25}.

negligible after approximately foure-foldings.

5.7.1 Discussion

We identified the Elko spinor as a matter source whose spin-angular momentum tensor is com-

patible with the cosmological principle. We then solved theresulting field equations of Einstein-

Cartan theory. It couples to all irreducible parts of torsion and therefore leads to an interesting

coupling of matter and geometry. The Elko spinor is also naturally dark in that it can only

interact via the Higgs mechanism or gravity.

Our solutions of the field equations show that torsion does vanish quickly (approximately

after a few e-foldings) and that the Hubble parameter has a constant value as an attractor. Both

features of the model fit very well into the standard model of inflationary cosmology in that

a period of accelerated expansion is an attractor solution.It is worth noting that in Einstein-

Cartan theory the spins of elementary particles are thoughtto be the primary sources of torsion,

and it is therefore expected that on large sales and over timetorsion should average out or decay,

respectively.

We speculate that some non-zero cosmological torsion has already been observed in the
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large scale anisotropies of the cosmic microwave background radiation (CMB) where torsion

leaves its imprint only on the largest scales.



Chapter 6

Non Standard Spinors and Cosmology

This last chapter is much shorter than the rest and serves to summarize collaborative work on

extensions to the Elko spinor. For more details we point the interested reader to the four author

paper published in Journal of High Energy Physics [18].

The main theme of this work is to extend the Elko definition to include an entire class of

non-standard spinors. This can be achieved by introducing aprojection operator which projects

out states that contribute to an ill-defined Hamiltonian operator. We begin with the criterion

that a free, massive spinor free field,ψ, in flat space-time (with tetradsejµ = δjµ soΓµ = 0)

should obey the flat space Klein-Gordon equation,

∂2ψ = m2
ψψ. (6.1)

This suggests the following flat-space Lagrangian forψ,

L(1)free−flat ≡ (
¬

ψ
←−
/∂ )(/∂ψ)−m2

ψ

¬

ψψ, (6.2)

where/∂ = γµ∂µ, and
¬

ψ is some dual spinor toψ defined so that
¬

ψψ is a space-time scalar. We

varyψ and
¬

ψ independently, and note that - up to a surface term - the aboveaction (L(1)free−flat)

is equivalent to anotherL(2)free−flat given by,

L(2)free−flat ≡ (∂µ
¬

ψ)(∂µψ)−m2
ψ

¬

ψψ. (6.3)

However, this equivalence relies on∂2ψ = /∂
2
ψ which is broken when the actions are promoted



92

to curved space by taking∂µ → ∇µ, since generallyR 6= 0 whenRµνρσ 6= 0. One must

therefore choose which of the two actions to promote to curved space.

Remaining in flat space, there is a problem with both actions as they are given above.

The field equation(∂2 − m2)ψ = 0 constrains the evolution of each of the four components

of ψ but does not impose any relation between the different components. We define a basis

ψa (wherea = 1, 2, 3, 4) on 4-spinor space, such that,
¬

ψaψb = 0 if a 6= b and∂µψa = 0.

We assume that∂µ
¬

ψb = 0. However, as is well known, Lorentz invariance prevents us from

defining
¬

ψaψb = δab, instead we can ensure that
¬

ψ1ψ1 =
¬

ψ2ψ2 = 1 and
¬

ψ3ψ3 =
¬

ψ4ψ4 = −1.

Solutions of(∂2 −m2)ψ = 0 are then given by,

ψ =
∑

a,p

aa(p)
1

2Ep
eiEpt−ip·xψa +

∑

a,p

b†a(p)
1

2Ep
e−iEpt+ip·xψa,

whereaa(p) and b†a(p) are some functions ofp (the 3-momentum) andEp =
√

m2 + p2.

Here,
∑

p =
∫

d3p.

Let us define the Hamiltonian densityH =
¬̇

ψ
¬

π + πψ̇ − L(1) where the momentum is

defined asπ = ∂L(1)/∂ψ̇ =
¬̇

ψ, and
¬

π = ∂L(1)/∂
¬̇

ψ = ψ̇. In flat space, the Hamiltonian density

formed fromL(2) differs from that based onL(1) only by an irrelevant total derivative which

can be dropped. We then have

H =

[

π
¬

π +∇n
¬

ψ∇nψ +m2
¬

ψψ

]

n = 1, 2, 3. (6.4)

Takingǫa =
¬

ψaψa, one can show that

H =

∫

d3xH =
∑

a

ǫa
∑

p

(E2
p + p2 +m2)

2Ep
[a†a(p)aa(p) + ba(p)b

†
a(p)], (6.5)

which then becomes

H =
∑

a

ǫa
∑

p

(Ep)[a
†
a(p)aa(p) + ba(p)b

†
a(p)]. (6.6)

Finally, we can assumea andb will be upgraded to operators that obey anti-commutation

relations. Thus, we arrive at the following Hamiltonian

H =
∑

a

ǫa
∑

p

(Ep)[a
†
a(p)aa(p)− b†a(p)ba(p)]. (6.7)
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This Hamiltonian density is ill defined, it is not positive definitive. However, we know that if we

were to write the Dirac spinor in the KG equation and followedthe same steps outlined above

we would get a consistent Hamiltonian density. Thus, there must be a projection operation

implicitly present which removes (projects out) the components of the spinor which would give

an inconsistent Hamiltonian density. It is important to note that the actual energy is squared

in this expression and therefore we retain the negative energy information, which is what we

learned from Dirac.

Let us assume that theaa anda†a represent annihilation and creation operators respectively,

thena†aaa 6= 0 andb†aba 6= 0. If we interpret
¬

ψψ as the energy-density of the spinor field with

ǫ1 = ǫ2 = −ǫ3 = −ǫ4 = 1, it follows that the spinor field can have negative energy density,

unless there is some additional condition that requiresa3 = a4 = 0 andb1 = b2 = 0 in the

definition ofψ. Additionally, without such a requirement it would be possible to have states

with botha†aaa andb†aba ≥ 0 but with zero energy. Negative energy or ghost states lead towell

known instabilities both classically and at the level of quantum field theory.

6.1 Energy-momentum tensor

The other important part of this work was to construct a full energy-momentum tensor. Thus

far in our work concerning the Elko spinor the energy-momentum tensor has been calculated

from the effective action. This, we find, is not the same as theenergy-momentum tensor worked

from the full action for a non-standard spinor. We check thatin the case of the Dirac spinor the

contribution from the spin connection to its energy-momentum tensor is zero. This confirms

that the energy-momentum tensor for a Dirac spinor can be taken from its effective action and

there are no extra terms coming from the spin connection.



Appendix A

Nonlinear second order equations which

reduce to pairs of linear first order equations

Let Ω be an open subset ofRn. We work with (infinitely) smooth vector functionsΩ → C
m

writing these as columns ofm complex scalars. In this appendix “vector” does not carry a

differential geometric meaning because we are not interested in coordinate transformations.

We use Cartesian coordinatesx1, . . . , xn.

Given a pair of vector functionsu, v : Ω → C
m we define their inner product in the

standard Euclidean manner as(u, v) :=
∫

Ω v
∗u dx1 . . . dxn where the star∗ denotes Hermitian

conjugation. This integral need not converge as we will be using it only for the purpose of

defining the formal adjoint of a differential operator, see next paragraph.

LetA± be a pair of formally self-adjoint (symmetric) first order linear partial differential

operators (differential expressions) with smooth coefficients acting on smooth vector functions

Ω→ C
m. We do not introduce any boundary conditions.

Put

L±(u) := Re(u∗A±u). (A.1)

It is easy to see thatL±(u) is the Lagrangian density for the partial differential equa-

tion A±u = 0. Namely, if one writes down the action (variational functional) S±(u) :=

∫

Ω L±(u) dx
1 . . . dxn then the corresponding field equation (Euler–Lagrange equation) is
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A±u = 0.

Let us now define a new Lagrangian density

L(u) :=
L+(u)L−(u)

L+(u)− L−(u)
(A.2)

and corresponding actionS(u) :=
∫

Ω L(u) dx
1 . . . dxn. The field equation for the Lagrangian

density (A.2) is, of course, second order and nonlinear.

Note that the notation in this appendix is self-contained and the Lagrangian densities (A.1),

(A.2) should not be confused with the Lagrangian densities (4.33), (4.39) introduced in the main

text (the latter have an extra subscript).

The main result of this appendix is

Lemma 1. Letu : Ω→ C
m be a vector function satisfying the condition

L+(u) 6= L−(u). (A.3)

Thenu is a solution of the field equation for the Lagrangian densityL if and only if it is a

solution of the equationA+u = 0 or the equationA−u = 0.

Proof. The explicit formula for the operatorA± is

A± = iBα
±∂α +

i

2
(∂αB

α
±) + C± (A.4)

whereBα
± andC± are some smooth Hermitianm ×m matrix functions and the indexα runs

through the values1, . . . , n. Substituting (A.4) into (A.1) we get

L±(u) =
i

2

[

u∗Bα
±∂αu− (∂αu

∗)Bα
±u

]

+ u∗C±u. (A.5)

Now take an arbitrary smooth functionh : Ω → R. Examination of formula (A.5) shows

that

L±(e
hu) = e2hL±(u). (A.6)

We call the property (A.6)scaling covariance. Scaling covariance is a remarkable feature of

the Lagrangian density of a formally self-adjoint first order linear partial differential operator.
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Formulas (A.2) and (A.6) imply that the Lagrangian densityL also possesses the property

of scalar covariance, i.e.L(ehu) = e2hL(u) for any smoothh : Ω→ R. Thus, all three of our

Lagrangian densities,L, L+ andL−, have this property.

Observe now that if the vector functionu is a solution of the field equation for some

Lagrangian densityL possessing the property of scaling covariance thenL(u) = 0. Indeed, let

us perform a scaling variation of our vector function

u 7→ u+ δu = u+ hu = ehu+O(h2) (A.7)

whereh : Ω → R is an arbitrary “small” smooth function with compact support, h ∈

C∞
0 (Ω;R). Then0 = δ

∫

L(u) = 2
∫

hL(u) which holds for arbitraryh only if L(u) = 0.

In the remainder of the proof the variationδu : Ω → C
m of the vector functionu :

Ω→ C
m is arbitrary and not necessarily of the scaling type (A.7). The only assumption is that

δu ∈ C∞
0 (Ω;Cm).

Suppose thatu is a solution of the field equation for the Lagrangian densityL+. [The case

whenu is a solution of the field equation for the Lagrangian densityL− is handled similarly.]

ThenL+(u) = 0 and, in view of formula (A.3),L−(u) 6= 0. Varyingu we get

δ

∫

L(u) =

∫

L−(u)

L+(u)− L−(u)
δL+(u) +

∫

L+(u) δ
L−(u)

L+(u)− L−(u)

= −
∫

δL+(u) = −δ
∫

L+(u)

so

δ

∫

L(u) = −δ
∫

L+(u) . (A.8)

We assumed thatu is a solution of the field equation for the Lagrangian densityL+ so

δ
∫

L+(u) = 0 and formula (A.8) implies thatδ
∫

L(u) = 0. As the latter is true for an ar-

bitrary variation ofu this means thatu is a solution of the field equation for the Lagrangian

densityL.

Suppose thatu is a solution of the field equation for the Lagrangian densityL. Then

L(u) = 0 and formula (A.2) implies that eitherL+(u) = 0 or L−(u) = 0; note that in view
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of (A.3) we cannot have simultaneouslyL+(u) = 0 andL−(u) = 0. Assume for definiteness

thatL+(u) = 0. [The case whenL−(u) = 0 is handled similarly.] Varyingu and repeating the

argument from the previous paragraph we arrive at (A.8). We assumed thatu is a solution of

the field equation for the Lagrangian densityL soδ
∫

L(u) = 0 and formula (A.8) implies that

δ
∫

L+(u) = 0. As the latter is true for an arbitrary variation ofu this means thatu is a solution

of the field equation for the Lagrangian densityL+.

Remark 4. It may seem that the variational proof presented above is “insufficiently rigorous”.

An alternative “completely rigorous” way of proving Lemma 1is to write down the field equa-

tion for the Lagrangian density (A.2), (A.5) explicitly andanalyze this second order nonlinear

partial differential equation. The result, of course, remains the same, but the calculations be-

come much longer.

Remark 5. Examination of the proof of Lemma 1 shows that the fact that the differential oper-

atorsA± are linear and first order is not important. What is importantis that their Lagrangian

densities possess the scaling covariance property (A.6). As the Lagrangian density (A.2) pos-

sesses this property as well, our construction admits an obvious extension which gives a hier-

archy of nonlinear partial differential equations which reduce to several separate equations.

Example 1. Let us give an elementary example illustrating the use of Lemma 1. Consider the

pair of linear first order ordinary differential equations

iu′ ± u = 0 (A.9)

whereu : R → C is a scalar function. Let us write down the corresponding Lagrangian

densitiesL±(u) = i
2(ūu

′ − uū′) ± |u|2 in accordance with formula (A.1) and form a new

Lagrangian density−2L(u) =
(

ūu′−uū′

2|u|

)2
+ |u|2 in accordance with formula (A.2). The latter

gives the field equation (Euler–Lagrange equation)

(

ūu′ − uū′
2|u|2 u

)′

+
(ūu′)2 − (uū′)2

4|u|4 u+ u = 0. (A.10)
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Lemma 1 tells us that a smooth nonvanishing functionu, is a solution of equation (A.10) if and

only if it is a solution of one of the two equations (A.9). Of course, this fact can be seen by

switching to the polar representationu = re−iϕ wherer : R→ (0,+∞) andϕ : R→ R.



References

[1] D. V. Ahluwalia, Cheng-Yang Lee, and D. Schritt. Self-interacting Elko dark matter with

an axis of locality.Phys. Rev., D83:065017, 2011, 0911.2947.

[2] D. V. Ahluwalia, Cheng-Yang Lee, D. Schritt, and T. F. Watson. Elko as self-interacting

fermionic dark matter with axis of locality.Phys. Lett., B687:248–252, 2010, 0804.1854.

[3] D. V. Ahluwalia-Khalilova and D. Grumiller. Dark matter: A spin one half fermion field

with mass dimension one?Phys. Rev., D72:067701, 2005, hep-th/0410192.

[4] D. V. Ahluwalia-Khalilova and D. Grumiller. Spin half fermions with mass dimension

one: Theory, phenomenology, and dark matter.JCAP, 0507:012, 2005, hep-th/0412080.

[5] Nima Arkani-Hamed, Hsin-Chia Cheng, Markus A. Luty, andShinji Mukohyama. Ghost

condensation and a consistent infrared modification of gravity. JHEP, 05:074, 2004, hep-

th/0312099.

[6] Abhay Ashtekar, Ted Jacobson, and Lee Smolin. A new characterization of half-flat

solutions to Einstein’s equation.Comm. Math. Phys., 115(4):631–648, 1988.

[7] P. Baekler, E. W. Mielke, R. Hecht, and F. W. Hehl. Kinky torsion in a Poincare gauge

model of gravity coupled to a massless scalar field.Nucl. Phys., B288:800–812, 1987.

[8] A. Balaguera-Antolinez, D. F. Mota, and M. Nowakowski. Ellipsoidal configurations in

the de Sitter spacetime.Class. Quant. Grav., 23:4497–4510, 2006, gr-qc/0606096.



References 100

[9] J. M. Ball and A. Zarnescu. Orientable and non-orientable director fields for liquid

crystals.Proc. Appl. Math. Mech., 7(1):1050701–1050704, 2007.
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[37] Élie Cartan and Albert Einstein.Letters on absolute parallelism, 1929–1932. Princeton

University Press, Princeton, N.J., 1979. Original text with English translation by Jules

Leroy and Jim Ritter, Edited by Robert Debever.

[38] Renyue Cen. Decaying Cold Dark Matter Model and Small-Scale Power. 2000,

arXiv:0005206 [astro-ph].

[39] P. Chatterjee and B. Bhattacharya. Space-time torsion, broken Lorentz symmetry and

inflation in the early universe.Mod. Phys. Lett., A8:2249–2257, 1993.

[40] Olga Chervova and Dmitri Vassiliev. The stationary Weyl equation and Cosserat elastic-

ity. J. Phys., A43:335203, 2010, 1001.4726.

[41] L. P. Chimento and R. Lazkoz. On the link between phantomand standard cosmologies.

Phys. Rev. Lett., 91:211301, 2003, gr-qc/0307111.



References 103

[42] Edmund J. Copeland, M. Sami, and Shinji Tsujikawa. Dynamics of dark energy.Int. J.

Mod. Phys., D15:1753–1936, 2006, hep-th/0603057.

[43] Eugène Cosserat and François Cosserat.Théorie des corps d́eformables. Librairie Sci-
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