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Abstract

Department of Chemistry

Doctor of Philosophy

by Gary Mark Doctors

Patient-specific Computational fluid dynamics (CFD) studies of cerebral blood flow have

the potential to help plan neurosurgery, but developing realistic simulation methods that

deliver results quickly enough presents a major challenge. The majority of CFD studies

assume that the arterial walls are rigid. Since the lattice-Boltzmann method (LBM) is

computationally efficient on multicore machines, some methods for carrying out lattice-

Boltzmann simulations of time-dependent fluid flow in elastic vessels are developed. They

involve integrating the equations of motion for a number of points on the wall. The

calculations at every lattice site and point on the wall depend only on information from

neighbouring lattice sites or wall points, so they are suitable for efficient computation on

multicore machines.

The first method is suitable for three-dimensional axisymmetric vessels. The steady-state

solutions for the wall displacement and flow fields in a cylinder at realistic parameters for

cerebral blood flow agree closely with the analytical solutions. Compared to simulations

with rigid walls, simulations with elastic walls require 13% more computational effort at

the parameters chosen in this study.

A scheme is then developed for a more complex geometry in two dimensions, which applies

the full theory of linear elasticity. The steady-state wall profiles obtained from simulations

of a Starling resistor agree closely with those from existing computational studies. I find

that it is essential to change the lattice sites from solid to fluid and vice versa if the wall

crosses any of them during the simulation. Simple tests of the dynamics show that when

the mass of the wall is much greater than that of the fluid, the period of oscillation of the

wall agrees within 7% of the expected period. This method could be extended to three

dimensions for use in cerebral blood flow simulations.
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Introduction

Cerebral blood flow behaviour, i.e. haemodynamics, plays a crucial role in the under-

standing, diagnosis and treatment of cerebrovascular disease, of which there are several

types. For example, aneurysms are dilations of the arterial walls, which could grow and

then rupture, atherosclerosis is the buildup of fatty deposits in arteries, which restricts

blood flow, and an arterio-venous malformation is a direct connection between an artery

and a vein, which may rupture or direct blood flow away from the surrounding vessels.

Haemodynamics has been modelled extensively in the last thirty years, by simple one

and two-dimensional computational models and, more recently, three-dimensional compu-

tational fluid dynamics (CFD) studies. Many of these CFD studies simulate blood flow

in patient-specific vasculatures. The models have enhanced our understanding of haemo-

dynamic phenomena. In particular, some of the work discussed in section 1.8 provides

evidence of correlation between the behaviour of the blood flow and the development of

neurovascular pathologies, such as the effect of the area over which the inflow jet impinges

on the wall of an aneurysm on the risk of rupture of that aneurysm.

Patient-specific medicine is the adaptation of medical treatment to the characterstics of an

individual patient. For example, simulations of cerebral blood flow could be used to help

surgeons assess the risks of cerebrovascular disease in patients and the effects of surgical

treatments on a patient before they are carried out. In the latter case, the results must

be available within a few minutes. These simulations have a high computational cost due

to the intricate geometry of the vessels. Therefore, it is essential that they run efficiently

on multicore computers. It is difficult to develop high- performance codes for continuum

solvers that satisfy this requirement. The lattice-Boltzmann method (LBM) has several

advantages over continuum solvers. Most importantly, it is possible to achieve a linear
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speed-up with the number of processors. Since 2007, the LBM has been used to simulate

patient-specific blood flow in cerebral vasculatures.

Most CFD simulations of cerebral blood flow have, thus far, assumed that the arterial

walls are rigid. However, the displacement of the wall could influence or be influenced by

cardiovascular disease. Since 3D CFD studies have shown that the flow fields are sensitive

to small changes in the geometry, as discussed in section 1.8, it is likely that the elasticity

will have important effects on the pressure, velocity and stress flow fields. In this thesis,

I first devise a method for carrying out time-dependent simulations of fluid flow through

three-dimensional axisymmetric elastic vessels, then develop a somewhat similar method

to deal with a more complex geometry. The LBM is used because of its computational

efficiency on multicore machines and I attempt to minimise the increase in computational

cost due to the inclusion of elasticity and to maintain the scalability characteristics of the

LBM. The ultimate aim of this work is to simulate patient-specific cerebral blood flow

realistically, including the effects of arterial elasticity, within a clinically useful timescale.

Some modifications to the LBM have already been proposed to simulate fluid flow in

elastic vessels. However, the majority of these studies only include simulations of flow

through a simple two-dimensional channel in which the wall is divided into segments that

move independently. The scheme that can deal with a more complex geometry places

a restriction on one of the parameters of the elastic wall material, whereas the method

developed in this study does not restrict that parameter.

This thesis begins with an overview of blood circulation, cerebrovascular disease, medical

imaging techniques that are used for diagnosis of cerebrovascular disease, computational

models of cerebral blood flow and the use of simulation for surgical planning. The im-

portance of including arterial elasticity is also discussed in chapter 1 and some simple

computational models that include arterial elasticity are reviewed. Chapter 2 describes

theoretical and practical aspects of the lattice-Boltzmann method, which was used for all

simulations of fluid flow in this thesis. That chapter includes a discussion of the accuracy

of the LBM, its advantages over other CFD techniques, its limitations, and a review of

methods for applying boundary conditions within the LBM. Lattice-Boltzmann simula-

tions of cerebral blood flow are reviewed there. Chapter 2 also describes how the LBM

can be used for simulations of non-Newtonian fluids.
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Chapter 3 begins with a short discussion of systems other than blood vessels in which the

effect of elasticity on fluid flow in systems is important. This is followed by a review of

existing methods for including wall elasticity in lattice-Boltzmann models. A method for

carrying out lattice-Boltzmann simulations of fluid flow through 3D axisymmnetric vessels

is proposed in chapter 3 and its accuracy, computational cost and suitability for cerebral

blood flow simulations are evaluated. The accuracy of several different combinations of

lattice-Boltzmann boundary condition methods and their suitability for computations of

fluid flow through elastic vessels was also tested.

A method is developed for lattice-Boltzmann simulations of fluid flow through elastic

vessels in a more general geometry in chapter 4. Experimental and computational work

on an extensively studied system of fluid flow through compliant vessels is reviewed. The

steady-state wall profiles resulting from simulations with the scheme developed in chapter

4 are compared with those from existing computational studies of the same system to

validate the steady-state behaviour. In chapter 5, the scheme is improved so that it can

cope with a wider range of wall densities and larger displacements of the wall.

Chapter 6 contains concluding remarks and a discussion about future work.



Chapter 1

Haemodynamics

Cerebral blood flow behaviour plays a crucial role in the understanding, diagnosis and

treatment of cerebrovascular disease. This has been modelled extensively in both healthy

and diseased blood vessels by simple one and two-dimensional models and three-dimensional

computational fluid dynamics (CFD) studies. For these studies, the required models of

the lumenal geometry are usually extracted from 3D data sets acquired in vivo, such as

magnetic resonance angiograms and computed tomography angiograms [20–22]. In this

chapter, cerebrovascular diseases and their treatments are discussed, then the one, two

and three dimensional models of blood flow are reviewed. The methods of extracting the

geometry for the 3D simulations are also summarised.

In section 1.1, I describe the structure of the cerebral blood vessels. Diseases of blood

vessels are discussed in section 1.2 and surgical treatment is described in section 1.3.

Section 1.4 explains why it is important to understand the cerebral blood flow behaviour.

The typical simplifications and assumptions of blood flow models are described in section

1.5. The physical parameters of blood flow are discussed in section 1.6. Section 1.7

describes some methods for medical imaging and how they are used to obtain data for

CFD simulations. Three dimensional CFD simulations and simpler models are reviewed

in sections 1.8 and 1.9 respectively. Finally, studies that include arterial elasticity are

discussed in section 1.10.
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1.1 Structure of the blood vessels

There is no effective storage of oxygen and glucose in the brain. 15% of total cardiac

output goes to the brain and it consumes 25% of the oxygen supplied to the body. The

vasculature of the brain differs from the rest of the body in several ways [23].

Firstly, the brain and spinal cord are surrounded by three membranes called meninges.

The dura mater consists of two periosteal layers and is the outermost membrane. The

arachnoid membrane is in the middle. The innermost meninx, the pia mater, follows the

surface of the brain and penetrates the fissures. The subarachnoid space, which is between

the pia mater and arachnoid membrane, contains cerebrospinal fluid (CSF), which cushions

the brain. The arteries and veins are surrounded by CSF after they pierce the dura mater.

There are differences in the structures of the vessels. In the brain, the arteries have a

thin endothelium, then a tunica media, consisting of the elastic fibres, then the tunica

adventitia, which is a tough outer layer. Outside the brain, the elastic fibres take up the

whole width of the arterial wall.

The brain also has some collateral circulation, which means that we have an arterial

network which prevents focal disruption of blood flow when an artery is occluded. It

allows distal branches of an occluded artery to fill in a retrograde fashion by providing

alternative routes for blood flow. The small cortical branches of the cerebral arteries

(arteries supplying the left and right cerebral cortices, which make up the majority of

the brain) join across a vulnerable watershed or border zone on the surface of the brain.

The most important collateral route is the circle of Willis, as shown in figure 1.1. It joins

the left and right internal carotid arteries (ICAs), and the basilar artery. The ICAs and

vertebral arteries, which join to form the basilar artery, supply the brain.

As well as providing alternative routes for blood flow when arteries are occluded, the CoW

may also have a role in healthy subjects [1]. The flow in the vertebral artery and possibly

the carotid artery is influenced by movements of the head. The posterior communicating

artery (PcomA) may have a compensatory function in this case, so that the effects of a

decrease in blood flow in one of the afferent (incoming) vessels of the CoW are reduced

and a critically low level is not reached in any of the efferent (outgoing) vessels.
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Figure 1.1: The left image shows the CoW and the right image shows the main systemic
arteries. The arrows show the normal flow directions for blood. Image taken from [6].

The systemic arteries that supply the body are configured as shown in figure 1.1. The

aorta (1) comes up from the heart and splits into the aortic arch (2) on the left and the

brachiocephalic artery (3) on the right. The first branch of the brachiocephalic artery and

aortic arch are the right and left common carotid arteries respectively (5 and 6). The

common carotid arteries split into the external carotid arteries, which supply the face (10

and 13) and the ICAs (11 and 12), so the systemic arteries supplying the left and right

ICAs are asymmetric. The brachiocephalic artery becomes the right subclavian artery (7)

and the aortic arch reaches its maximum height and curves over and its next branch is

the left subclavian artery (9). The first branch of each subclavian artery is the vertebral

artery (14 and 17) The left and right subclavian arteries reach a maximum height and

curve over to become the left and right brachial arteries (16 and 15).

The veins that drain the brain begin deep within the parenchyma of the brain and drain

on the surface. All veins drain into cavities called dural venus sinuses, which force apart

the two periosteal layers in the dura mater. The sinuses drain into the internal jugular

vein. Dural sinuses are a feature unique to the brain. One of the largest veins is the Great
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Cerebral Vein, or vein of Galen, which drains the deep cerebrum, which is the uppermost

and largest part of the brain [23].

The arteries branch into smaller and smaller ones that become arterioles when the diameter

is below approximately 50µm [24]. The capillaries are 4-7µm wide and one cell thick and

are not surrounded by CSF.

1.2 Cardiovascular diseases of the blood vessels

The blood vessels also differ in their response to injury. If a subarachnoid haemorrhage

occurs, blood leaks into the CSF. The presence of blood here may induce sustained vaso-

constriction and compression of structures in the brain, which do not occur if blood is

applied to the outside of extracranial arteries. Cerebral haemorrhage results from rup-

ture of the wall of a blood vessel due to weakening by high blood pressure, in which case

intracerebral haemorrhage is most likely, or the rupture of an aneurysm, in which case

a subarachnoid haemorrhage is most likely. Aneurysms are dilations of the arterial wall

that frequently form at arterial bifurcation sites [3, 23]. An aneurysm may be saccular,

in which case it resembles a bubble (figure 1.2) or fusiform (figure 1.3), in which case the

vessel bulges around the entire circumference without protrusion of the inner layers of the

vessel [4]. A schematic diagram of the regions of an aneurysm is given in figure 1.4.

Ischaemia, or a reduction in blood supply, destroys the brain tissue. This may be caused by

stenosis which is the partial occlusion of an artery. Stenosis is usually due to atherosclero-

sis, which is the buildup of fatty deposits. A deposit may serve as a nidus for the formation

of a clot, called a thrombus. A clot may come from a distant site and lodge in a smaller

vessel. In this case, it is called an embolus. A drop in cerebral perfusion pressure, which is

the difference between arterial and venous pressure results in a smaller flow. The collateral

circulation should reduce the chance of ischaemia. The term stroke refers to neurologic

dysfunction resulting from a derangement of blood supply to the brain or spinal cord. A

stoke may be haemorrhagic or ischaemic.

An arterio-venous malformation (AVM) occurs when there is a direct connection between

an artery and a vein, as shown in figure 1.5. It is important to treat it in order to regain

normal cerebral flow [4]. Atherosclerosis can cause the development of vessels in the
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Figure 1.2: A saccular, or bubble aneurysm. Image taken from a presentation by Dr.
Stefan Brew, National Hospital for Neurology and Neuroscience, Queen Square, London.

Figure 1.3: A fusiform aneurysm. Image taken from a presentation by Dr. Stefan Brew.
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Figure 1.4: Regions of an aneurysm. Image based on [25].

Figure 1.5: An AVM is a direct connection between an artery and a vein. Image taken
from a presentation by Dr. Stefan Brew.

tunica adventitia (outer layer) of arteries. One type of AVM is a vein of Galen aneurysm

malformation (VGAM) which, in adults is associated with a fusiform aneurysm. Hassan

et al. [4] were treating a patient who had a VGAM supplied by a single feeder from the

medial posterior choroidal artery, which is a branch of the PCA. It drained to an old sinus

that usually would have closed after birth.
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1.3 Treatment of cardiovascular diseases

The information in this subsection came from a talk and from watching operations by Dr.

Stefan Brew, National Hospital for Neurology and Neuroscience, Queen Square, London.

Other citations are indicated.

For ischaemic strokes, there are several methods of treatment. One can use thrombolytic

agents, intravenously or intra-arterially to remove the thrombus if that causes the stroke.

Anticoagulants may be injected. Alternatively, an arterial deposit can be surgically re-

moved. One can mechanically recanalise the artery, that is, to place a bypass to allow

blood to flow past an occluded segment of an artery. It may be treated by angioplasty,

which is the widening of a blood vessel using folded balloons and inserting a stent, which

is a cylindrical structure consisting of struts that cross one another.

A cerebral haemorrhage may be treated by occluding the aneurysm. A surgical clip may

be used to stop blood flowing into the aneurysm. A coil may be inserted into it (figure

1.6) [26]. When an aneurysm is packed with one or more coils, the blood clots around it.

Angioplasty may also be used to redirect the flow [6]. A stent may be used to support

the coils [27]. Stents are increasingly being used to redirect the flow of blood through

the parent artery and not the aneurysm (figure 1.7), rather than merely being a support

device for the coils [28]. A blood clot may form on the spaces between the struts of the

stent [28]. Alternatively, the parent artery may be occluded by injecting particles or glue.

An artery may also be occluded if it supplies a tumour.

An AVM may be treated by embolisation of the abnormal blood vessels. In [4], the

VGAM was treated by stenosis of the parent artery just before the aneurysm, after which

the drainage pattern was normal.

If a coil, stent or balloon is inserted into an artery or an injection is needed in a specific

place, this is done by catheterisation. The insertion of a coil like this is shown in figure 1.6.

Stents or coils are made of a material with memory and they are kept inside the catheter

as a long, thin rod of a material with memory [26–28]. An incision is made in the femoral

artery and the catheter is guided up to the brain, then to the point where the treatment is

needed. The stent or coil is then pushed through and it will assume the correct shape. A

balloon will be inflated inside the vessel. X-ray angiographies, explained in section 1.7 are
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Figure 1.6: Packing an aneurysm with coils causes the blood to clot inside it. Image
taken from a presentation by Dr. Stefan Brew.
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Figure 1.7: A stent redirects the flow through the parent artery. Image taken from a
presentation by Dr. Stefan Brew.

taken at various times during the procedures to check the position of the catheter [26, 27]

and check the flow of blood after treatment. They are not taken continuously during the

entire operation due to the risks of x-rays to the patient and surgeon. The procedures

described are called interventional neuroradiology and it is replacing conventional surgery

due to improvements in imaging equipment, catheters, embolic agents and stents. However,

there will always be some lesions (abnormal tissues) that are best treated by conventional

surgery.

When treatment involves occluding a vessel, the treatments take advantage of the collateral

circulation in the brain, so that blood will be supplied via a different route. However, 51%

of people have an incomplete CoW or a hypoplastic (small and underdeveloped) artery in

the CoW [6]. The most common anatomical variations are PcomA missing (9% of people),

both PcomAs missing (9%), one P1 PCA missing (9%), one PcomA and the contralateral

P1 PCA missing (9%), one A1 ACA missing (6%). These were included in the study by

Alastruey et al. [6]. They also included the CoW with a missing AcomA, even though

it occurs in only 1% of people because the AcomA is commonly recognised as the most

important collateral route in the case of severe occlusion of an ICA. When neurosurgery

is carried out, it is essential to check whether the patient will have an adequate supply

of blood to all parts of the brain. A balloon occlusion test(BOT) is usually used in
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the treatment of non-operable cerebral aneurysms [29]. The balloon makes a temporary

occlusion of the vessel to test the effect of a permanent one.

The deployment of a stent to treat atherosclerosis injures the arterial wall. Smooth muscle

cells regrow in response to this injury but excessive regrowth can cause restenosis of the

artery.

1.4 Use of simulation for surgical planning

In all these treatments, it is difficult to assess whether the treatment will be successful

before it is carried out and return the blood flow pattern to normal. Therefore, simulations

of cerebral blood flow will be an essential tool for surgeons to assess the effects of treatments

before they are carried out. It is essential to ensure that there will be a sufficient blood

supply to all areas of the brain, that unwanted blood flow, for example in aneurysms or

AVMs, has been stopped and that haemodynamic factors such as the wall shear stress

and blood pressure are favourable and do not lead to complications such as the rupture of

vessels. Currently, the effects of treatment are not known precisely before the treatment

is carried out. Furthermore, the causes of growth and rupture of cerebral aneurysms, are

not well understood, but are thought to depend on haemodynamic factors [30]. These

factors, particularly wall shear stress (WSS) may also play a role in the onset and perhaps

the progression of atherosclerotic plaques. Atherosclerosis usually develops in regions of

complex flow. Simulations of blood flow in the brain will help to understand these factors.

Planned aneurysm surgery could benefit from a better understanding of the process of

aneurysm formation, progression and rupture, so sound judgement in therapies could be

exercised [3]. Haemodynamic factors should be important in the pathogenesis and throm-

bosis of aneurysms, so a correlation between patient-specific clinical events and haemody-

namic patterns must be undertaken to better understand the relative importance of the

haemodynamic forces.

Computational models are attractive for studying correlations between haemodynamic

patterns and clinical events because they are able to model and study any possible geom-

etry [3, 31]. They are capable of predicting the flow and pressure at any desired section

in the vessel network [29]. They can estimate flow in normal and disease situations and
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predict the result of treatment procedures [29]. By 2008, some tools had been developed

to allow endovascular devices to be placed virtually inside patient-specific vascular geome-

tries and to simulate the fluid dynamics before and after treatment [32–34]. Bernardini

et al. [32] computed the flow fields in an artery harbouring an aneurysm before and after

insertion of a stent, using several different models of stent deployment. Tahir et al. [35]

modelled restenosis of arteries after stent deployment. These studies are discussed in more

detail in section 1.8.

For a patient-specific simulation, the geometry must first be extracted from a medical

image [3, 31]. This will be described in section 1.7. The geometry is converted into a

numerical model by converting it into volumetric data and creating a tetrahedral grid in

the fluid domain on which the incompressible Navier-Stokes equations [36] for unsteady

incompressible flow in three dimensions are solved:

∇ ·v = 0 (1.1)

ρ

(
∂v

∂t
+ v · ∇v

)
= ∇ ·σ, (1.2)

where ρ is the density, t is time, v is velocity and σ is the stress tensor. For a Newtonian

fluid:

σij = η

(
∂vi
∂xj

+
∂vj
∂xi

)
− pδij , (1.3)

where η is the dynamic viscosity, p is the pressure and x is the position.

A finite-element formulation is usually used for cerebral blood flow simulations [3, 37].

At each fluid inlet and outlet, boundary conditions for the pressure and velocity must be

specified. No slip boundary conditions are applied at the vessel walls, which means the

velocity of the fluid parallel and perpendicular to the wall is zero. In contrast, Hassan

et al. [4] used a finite-volume formulation and solved it using a software package called

Fluent [38].

Many three dimensional computational fluid dynamics (CFD) studies have been carried

out concerning the haemodynamics of cerebral aneurysms and how this relates to their

formation, growth and rupture [37].

These studies usually only consider blood vessels immediately surrounding the aneurysm

and not the whole brain. Studies on flow throughout the brain usually use alternative
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models. It is difficult to quantitatively test the accuracy of CFD models because any of

the flow parameters, such as the blood velocity at a certain point, or the phase difference

between flow in places are difficult to measure in vivo and the measurement would involve

significant patient risk [25, 39]. For example, intravascular probes can be used to measure

the pressure, but they can only provide a small amount of information [40]. On the

other hand, velocities can be measured accurately in some circumstances, as shown in

section 1.7, and Cebral et al. [41] have used these measurements to validate their CFD

simulations, as described in section 1.8. To assess the significance of assumptions and gain

an understanding of the effects of changing the parameters, a sensitivity analysis is often

conducted, in which only one parameter is changed in each simulation relative to the base

case, and the behaviour is compared to that case [25, 37].

Another approach for understanding the blood flow is to create geometrical models.

Tateshima et al. [30] constructed geometrically realistic models, from 3D Computer To-

mography angiography. Stereolithography was used to create the models, from which

female acryllic casts were made. The models included the parent artery and the arterial

branches. An elevated reservoir tank and a servomotor generated velocity-controlled pul-

satile flow at the inlets to the models. Laser-Doppler velocimetry was used to measure

the velocity of the fluid. Titanium dioxide particles were added so that the velocity could

be measured. The fluid used was sodium iodide, which has the same refractive index as

acryllic, to eliminate optical distortion. The velocity as a function of time was ensemble av-

eraged over many periods. The shear stress was calculated from the velocity measurement

at the walls and 0.7mm away using equation (1.4).

σ = η
∂v

∂x
. (1.4)

For accurate flow velocity simulation, not all parameters, such as kinematic viscosity and

the duration of one pulsatile period, must be matched between the in vitro and in vivo

states. It is sufficient to match dimensionless parameters and the waveform shape. In

this study, the acryllic models were of a different size to the actual aneurysms and the

fluid viscosity was different, but the Reynolds number, Re and Womersley number, α were
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matched. They are given by:

Re =
vmaxD

ν
, ν =

η

ρ
(1.5)

α =
D

2

√
ω

ν
, (1.6)

where ω is the angular frequency in rad s−1 and ν is the kinematic viscosity. The veloc-

ity profile was arranged so that the maximum and minimum Reynolds number and the

Womersley numbers matched the in vivo conditions.

This contrasts with most studies involving models, which often use idealised geometries,

which allowed detailed measurement of haemodynamic variables but cannot be used eas-

ily for understanding the haemodynamic forces in an individual clinical case [25]. The

creation of patient specific geometrical models is impractical for large population studies,

but without them correlation between patient-specific events and haemodynamic patterns

cannot be assessed. Computational based models provide the ability to model and study

all possible geometries [25].

Hassan et al. [4] point out that it is important to minimise the region of interest to decrease

computational time. Their simulations take one day for rigid walls and four days for elastic

walls.

Studies of large areas of the intracranial vasculature, such as the whole CoW, are often

carried out using a significantly simplified model of the blood flow, that is one dimensional,

so that the velocity and pressure are averaged over the cross-section. These usually do not

extract the vasculature from medical images, so they sometimes require the dimensions

of arteries. In some cases, the Navier-Stokes equations are used in one dimension [24,

29], in which a conservation of mass relation is used to calculate the pressures and the

Navier-Stokes momentum equation calculates the flows. In other studies, simpler equations

involving mass and momentum conservation are used [1, 5, 6]. In Hillen et al. [39]’s 1988

study, the flow is assumed to be steady Poiseuille flow, so conservation of momentum is

already satisfied by that and no further equations are needed.

Boundary conditions for the junctions consist of mass conservation, so the volume flow

rate into the junction is equal to the volume flow rate away from it. The pressure at the

end of one artery must be equal to that at the start of the next artery [1, 5, 6, 24, 29, 39].
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Sometimes, the pressures are matched, taking into account the curvature in the arteries

by adding a term proportional to ρv2, according to Bernoulli’s law, to the pressure [1, 6].

Hillen et al. [1] tested the effect of this in the PCA and found that it was negligible. The

use of this for junctions was discussed in [24], since the cross-sectional area changes. It

typically increases, so the actual pressure (not including ρv2) decreases. However, the

change in area is discontinuous, so flow separation and vortex formation are expected

downstream from any bifurcation and it was decided that pressure continuity was more

appropriate. An appropriate pressure or velocity waveform must be applied at the inlet.

Not all or even most of the arteries can be included in the model [29]. We must choose

where to terminate the model. At the outlets, there are few measurements of pressure or

velocity, so some assumptions must be made regarding the boundary conditions [29, 31].

In some models, some of the main systemic arteries are included as well as the cerebral

ones [6, 29]. This could be because they play an important role in wave propagation and

overall flow distribution [29] or because there may be a time delay between the inlet flow

waves in the ICAs and VAs [6]. Clark et al. [29] comment that patient specific studies

have not yet reached the clinical utilisation stage. A past study by the authors involved a

generic model including 108 vessels that used patient-specific vessel sizes measured from

digital subtraction angiography (DSA), which is described in section 1.7.2. The driving

force was the pressure waveform in the aorta. The flow patterns were measured as well as

simulated by single photon emission computerised tomography, electroencephalography,

cerebral oxygen saturation and trancscranial Doppler, which is described in section 1.7.

Satisfactory accuracy was achieved for some, but not all flows. In this study, not only are

the arteries in the model distensible, but also the outflow conditions take into account the

elasticity of the arteries that are not simulated, by using a lumped resistance-capacitance

resistance (RCR) model (see section 1.10). This was also applied by Alastruey et al.

[6]. The RCR parameters are calculated on a patient-specific basis using Phase Contrast

Magnetic Resonance Angiography (PCMRA) flow measurements of the velocities in some

vessels.

Some 2D and 3D models have been used to simulate the CoW [6]. Some models have made

the nonlinear 1D Navier-Stokes or mass and momentum conservation equations (equations

(1.1), (1.2), (1.16) and (1.17)) linear.
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1.5 Typical simplifications and assumptions of the models

Detailed haemodynamic information is not usually available in vivo, so ranges of param-

eters, such as mean flows, phase shifts and waveform shapes are usually estimated from

measurements of healthy volunteers [3, 37, 42]. In the 3D CFD simulations, the walls

are usually assumed to be rigid and blood is modelled as an incompressible, Newtonian

fluid. This is due to a lack of information about arterial elasticity and wall thickness. At

the inlet, the analytical solution by Womersley for pulsatile flow in a straight rigid pipe

is usually applied to each Fourier mode of a volume flow rate waveform. However, [32]

applied a parabolic flow with the correct flow rate at each time step.

Mihalef et al. [43] carried out 3D CFD simulations of the heart, for which moving bound-

aries must be included. Rather than solving the equations of motion for the wall, the wall

motion was derived from a series of medical images taken at different instants of time,

as discussed in section 1.7.6. A similar approach was also used by Jeays et al. [44] for

simulating blood flow in the superior mesenteric artery, which is a branch of the aorta.

In the simplified models, the vessels are often assumed to be straight and to have a circular

cross-section [1, 5, 6, 24, 29, 39]. The models of the CoW are also flat, whereas in reality

the CoW is not confined to one plane.

A resistance model is usually used for the outflow boundaries. The idea of this is explained

well in [39]. The pressure drop in an arterial segment is given by:

∆p = ZRQ, (1.7)

where ZR is the resistance, Q is the volume flow rate and p is the pressure. For Poiseuille

flow in a circular pipe, the resistance is:

ZR =
8ηl

πR4
(1.8)

At the outflow boundaries, one can calculate the flux, then the pressure is found from the

venous pressure and the combined resistance of all arteries and capillaries beyond, but

supplied by, the outflow arteries. This pressure can then be used as an outlet boundary

condition. This peripheral resistance is often taken to be inversely proportional to the
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brain masses irrigated by the vessels, so that if the pressure at the outlets is the same,

the volume flow rate is proportional to the mass irrigated, which is reasonable. Then

the resistance is inversely proportional to the volume flow rate. This idea was used in

[6] to calculate the resistance of the brain from the total resistance. Castro et al. [37]

assumed that the resistances of the distal vascular beds supplied by the ouflow arteries

were all equal, which may be valid if very small arteries are included, but not necessarily

for models that only include a small number of vessels. The idea of resistance can be

applied to any blood vessels.

Finding the correct peripheral resistance distribution is one of the major challenges to

cerebral blood flow simulation [29]. The peripheral resistances may be calculated by

running a simulation of steady flow and adjusting the resistances until the total flux

through the brain agrees with values from the literature [1, 5]. The average volume flux

under pulsatile flow with the same resistances is found to be only slightly higher [1]. If

the model only takes into account large arteries, the pressure drop will be small compared

to the total difference between arterial and venous pressure, so the total resistance will be

approximately equal to the resistance of the efferent arteries combined in parallel using

equation (1.9), and this can be compared to the literature.

1

ZR,total
=

N∑
i=1

1

ZR,i
(1.9)

In contrast to the 3D CFD models, the simplified models usually use distensible walls

[1, 5, 6, 24, 29], but these remain a challenge to model and assumptions have to be

made abut them. There is little information available about wall elasticity [3]. Models

that include elasticity will be discussed in section 1.10. More recently, Zhang et al. [45]

have developed a method of measuring the motion of aneurysm walls from 3D rotational

angiography, which is discussed in section 1.7.2. From these measurements, it is possible

to identify regions of an aneurysm with different mechanical properties. The accuracy of

the wall motion estimates was tested by taking images of physical models and found to

be accurate within 10% [40]. These methods could be used to measure the mechanical

properties of the wall required for a patient-specific simulation.

Resistances are almost always kept constant in time, but Alastruey et al. [6] commented

that time-varying resistances in the efferent vessels can account for vasoconstriction and
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vasodilation.

1.6 Specifying simulation parameters

In order to simulate blood flow, one needs approximate physical parameters to put into the

Lattice-Boltzmann simulation and the approximate output parameters we might expect,

for example the WSS or velocity. This section reviews these parameters.

Many of the parameters depend on Haematocrit (Hct), which is defined as the ratio of the

volume of erythrocytes (red blood cells) to the volume of whole blood [46, 47]. Any part

of the blood that is not a red blood cell is called plasma. Hct is an important property on

which the speed of sound, density and viscosity depend. It is typically 46% for men and

38% for women, except in certain disorders of the blood [46]. Kenner [48] gives a range

of densities for arterial blood, which agrees with Purves et al. [46], except that it includes

values intermediate between those typical of men and women. Kenner [48]’s data show

that Hct = 31% for capillary blood. This either disagrees with Purves et al. [46] or Purves

et al. [46] only show data for arterial blood.

It is necessary to know the speed of sound in order to match all parameters in the Lattice-

Boltzmann simulation with the in vivo conditions (section 2.7). The speed of sound de-

pends on Haematocrit, temperature and frequency. It may be measured by placing a

sample of blood in a temperature controlled chamber. An 10MHz ultrasound transducer

is placed below the container. The ultrasound waves reflect at both the bottom of the

container and the interface of the blood with the air. The traces of the two echoes are

displayed on an oscilloscope. Measurements at many different chamber heights give an ac-

curate sound speed. At 37◦C, I found the following values from the literature: 1590m s−1

[49], 1580m s−1 [50], 1591m s−1 at a Hct of 51.6% [47], 1584.2m s−1 [51], 1590m s−1 [52],

(1541.82+0.98Hct)m s−1, giving 1571−1591m s−1 for typical Hcts of 30% to 50%. These

values agree within 1.3% of each other.

The density of plasma and erythrocytes depends only on temperature. The density of

blood is given by Kenner [48]:

ρ = Hctρerythrocytes + (1−Hct)ρplasma (1.10)
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The density of plasma (1017±2)kg m−3 and that of erythrocytes is (1095±2)kg m−3. Us-

ing the typical Hcts quoted earlier and linear interpolation, the density of arterial blood is

between and 1045kg m−3 and 1055kg m−3. It has been shown that measuring the density

is an accurate way to find the Hct [48]. Hinghofer-Szalkay and Greenleaf monitored the

density of blood continuously in six subjects and found that it varied between 1046kg m−3

and1057kg m−3, depending on whether the person’s body position [53]. The density of

blood may be measured using a mechanical oscillator [48]. We simply use the relation-

ship between the resonant frequency and mass of the oscillator with blood for damped

harmonic motion. In 3D CFD simulations of cerebral blood flow, the density is taken to

be 1000kg m−3 (1982) [37], or 1050 to 1060 kg m−3 [4–6, 54] [42], which may be more

accurate.

The viscosity of blood depends on many factors. An empirical equation for viscosity in

terms of Hct is

η =
η0

1−Hct
(1.11)

The viscosity is 2.7× 10−3Pa s for a Hct of 46%, implying that the viscosity of plasma is

1.25 × 10−3Pa s [55]. A good fit to this formula was found for in vivo measurements of

blood viscosity.

The viscosity also depends on shear rate [56] ranging from 5.8 × 10−3Pa s at 1s−1 to

(3.43 ± 0.33) × 10−3Pa s and (3.20 ± 0.49) × 10−3Pa s at 100s−1 for men and women

respectively when normalised to a Hct of 45%. Men and women have similar visocosities

for shear rates below 100s−1. Above 150s−1, Eckmann et al found that the viscosity is

constant, but this was for blood that was haemodiluted with albumen to a Hct of 22.5%

[57]. With a Hct of 45%, the behaviour with respect to shear rate should be the same for

a Hct of 45% provided that the formula quoted in the previous paragraph holds.

When the red cells are at rest they tend to aggregate and stack together in a space efficient

manner. In order for blood to flow freely, the size of these aggregates must be reduced.

The forces that disaggregate the cells produce elastic deformation. With a 2Hz oscillation,

the elastic modulus of the blood is 8 × 10−3Pa s at 1s−1, but becomes negligible relative

to the viscosity at 100s−1 for an oscillation at 2Hz at 22◦C. The viscosity varies from

2 × 10−2Pa s at 1s−1 to 7 × 10−3Pa s at 1000s−1 [58], but this measurement was carried

out at 22◦C, not 37◦C. Since viscosity and elasticity were measured separately, this cannot
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be compared to a viscosity measurement alone [56]. To a fair approximation, blood can be

treated as Newtonian in large blood vessels, where the typical shear rate exceeds 100s−1.

[59].

Red blood cells also line up behind each other in very narrow tubes. The viscosity at high

shear rates, extrapolated to a Hct of 45% is constant at tube diameters above 1mm, it falls

more and more rapidly, reaching a minimum at 7µm, then rises very rapidly at diameters

below this [60]. The comparison was done at all shear rates greater than 50s−1.

The viscosity is usually measured with a viscometer that applies a certain strain rate by

moving a pair of parallel plates. The force required to move them is measured, from which

the stress can be calculated. The viscosity is calculated from equation (1.4). The elasticity

and viscosity can be combined into a complex viscosity which depends on frequency. If an

oscillation at a particular frequency is applied, the viscous and elastic components may

be separated. Otherwise, only the apparent viscosity can be measured. The apparent

viscosity can be determined by a method based on Poiseuille’s law (equation (1.12)) [55]:

v = − 1

4νρ
∇p(R2 − r2) (1.12)

For flow in a narrow tube, a reservoir of fluid of a certain depth could be used to supply

the tube. It will apply a certain pressure to the inlet. The fluid will then flow at a constant

velocity if the depth is constant. This can be measured by working out the volume flow

rate and dividing by the cross-sectional area of the tube. There is some range in the values

of viscosity, which is perhaps due to its complexity.

The viscosity of blood used in simulation ranges from 0.003Pa s to0.0046Pa s [1, 4–6, 24,

37, 42, 54]. These viscosities are slightly higher than the experimentally measured ones.

The equations in [24] do not require the density or dynamic viscosity. Instead they use a

kinematic viscosity, ν = 4.6×10−6m2s−1, which is slightly larger than in the other studies.

A pulsatile period is almost always taken as 1s [1, 5, 6, 29, 39].

The dimensions of the arteries, when needed, are often taken from the literature. These

dimensions are from Hillen et al [1]. They put the vertebral, basilar and P1 PCA together

as one artery in their model, so the length of these individually in the table was taken

from [5]. In [1], the diameter of the PcomA was varied from 0.06 to 0.14cm. It is not
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clear why the internal diameters in the model were made slightly larger than the ones they

quoted from the literature. They agree with the diameters used in [30]. Alastruey et al

used slightly different internal diameters, but they were within the range given by table

1.1, except the ICA, which had an internal diameter of 4.0mm [6]. The diameters can be

measured by MRA.

Anatomical dimensions (cm) Model dimensions (cm)

Diameter (mean) Diameter (range) Internal diameter Length

ICA 0.32 0.16-0.38 0.4 25.0
MCA 0.32 0.16-0.38 0.4 7.0
Vertebral artery 0.29 0.08-0.42 0.3 20.0
Basilar artery 0.30 0.25-0.35 0.3 3.0
P1 PCA 0.21 0.07-0.30 0.3 2.0
P2 PCA 0.23 0.12-0.30 0.3 7.0
PcomA 0.12 0.05-0.33 0.1 2.0

Table 1.1: Anatomical and model dimensions. All anatomical dimensions are external
diameters in fixed material.

For the 3D CFD simulations, two pulsatile periods are typically carried out. There are

usually 100 timesteps per cycle [3, 37, 42], though [54] found that 40 timesteps per cycle

gave a reasonable compromise of accuracy and computational time.

Timesteps of 8 × 10−4s [5] to 1 × 10−3s [1] are used to solve the differential equation for

the one-dimensional models. Models use between 30 and 100 spatial points to solve the

differential equation [1, 5], which is a rather coarse resolution. Some of the other articles

did not state the spatial and temporal discretisation.

The pressure at the ICA or basilar artery is often taken to be periodic, with a systolic

pressure of 120mmHg and a diastolic pressure of 80mmHg [1, 5, 39]. [2] used a systolic

and diastolic pressure of 110mmHg and 80mmHg respectively. The waveform is sometimes

smoothed slightly. The waveform is shown in figure 1.8 [1]. The blood pressure gradually

decreases and becomes less pulsatile further down the arterial tree, as shown in figure 1.9.

From simulations, the WSS we can expect is usually much smaller than the pressure, at

25Pa to 100Pa [54, 59].

The volume flow rate through the brain is 10 to 15mls−1. A typical waveform is shown

in figure 1.10. [6] used a flow rate waveform, with a peak volume flow rate of 485mls−1.

Though this appears to be very high, using the fact that this is the flow from the aorta

and the brain uses 15% of the cardiac output (section 1.1) and integrating the volume flow
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Figure 1.8: A typical pressure waveform at the ICA [1].

Figure 1.9: Change in blood pressure down the arterial tree [2].

rate over the period, the average over one pulsatile period is 15mls−1. The flows in the

efferent arteries from their data only add up to 7.8mls−1, so it appears that something is

not correct. The inlet boundary condition acts as a total reflector when the flow rate is

zero, simulating the closure of the aortic valve.

Q(t) =

 Q sin πt
t1
, t < t1

0, otherwise
(1.13)

Olufsen [24] used a flow rate measured from magnetic resonance. It peaked at 375mls−1

Unusually, the period of oscillation was 1.25s. The total flow rate through the system

was 4.03 litres per minute, so if 15% flows through the brain, this gives 10mls−1. The

waveforms for the left and right ICA are typically in phase and the flow in the ICAs may
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Figure 1.10: Volumetric flow rate waveform for the right ICA [3] measured using phase-
contrast Magnetic Resonance Angiography, which is discussed in subsection 1.7.5.

lag that in the vertebral arteries by 17± 8× 10−3s, which is very slight [61].

The venous pressure is between 5mmHg and 20mmHg [1, 5, 6, 29, 39]. Hillen et al [1, 5]

assumed a total flux of 12.5mls−1. The efferents to the CoW, i.e. the ACAs, MCAs and

PCAs have peripheral resistances in the ratios 6:3:4 under the assumption in section 1.5.

The total resistance of the brain from literature is 1.375×109Nsm−5 [1]. Alastruey et al [6]

state that the total resistance of all arteries in the body is 1.34×108Nsm−5. Combining the

resistances of the brain and the rest of the system in parallel, assuming that the resistance

of efferent arteries is inversely proportional to the volume flow rate and the brain uses 15%

of the cardiac output, the resistances of the brain would be 8.93 × 108Nsm−5, which is

lower than the value used by Hillen et al. The resistances in the ACAs, MCAs and PCAs

were also in a different ratio because they were calculated in a different way. They were

8.48× 109Nsm−5, 5.97× 109Nsm−5 and 8.48× 109Nsm−5 respectively.

Velocities are between 0.7 and 1m s−1 in the carotid arteries [62]. The flow rate in each

ICA is approximately 4.8mls−1. Flow rates are approximately 0.7m s−1 in the vertebral

arteries [29], 0.4m s−1 in the efferent arteries of the CoW under normal conditions and

can reach 1.5m s−1 when an artery is missing or occluded [6]. For the circle segments, the

velocities can be higher. They are between 0.6 and 1.13m s−1 for the M1 MCA and 0.64

to 1.68m s−1 for the ACA [62].
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1.7 Methods of imaging of cerebral vasculature

It is essential to be able to extract the vasculature from medical imaging in order to per-

form patient specific simulations of cerebral blood flow. Until recently, CFD modelling

was only used to study blood flow in idealised geometries [3, 31, 42]. The study of cerebral

blood flow requires that simulations begin to use actual clinical data. Medical imaging

and reconstruction methods can provide accurate geometric information for the CFD sim-

ulations. The medical imaging methods described here are usually used routinely during

medical procedures, as well as simulations.

1.7.1 Magnetic Resonance Angiography

In Magnetic Resonance Imaging, a static magnetic field is applied. There will be resonant

absorption of radio waves due to the magnetic moments of nuclei aligning with or against

the magnetic field. The contrast is achieved by differences in the density of nuclei or

difference in the relaxation time for them or a mixture of these effects. The ability to

choose different contrast mechanisms gives MRI great flexibility. In MRI scans, one slice

is imaged at a time. Magnetic Resonance angiography (MRA) is the imaging of flowing

blood in vessels using MRI.

The blood itself can be used as a contrast agent. The signal from flowing blood can be

enhanced at the expense of signal from static surrounding tissue. These are called “bright

blood” MR angiograms [31, 37]. However, they suffer from poor signal quality and low res-

olution compared to x-ray angiograms, and regions of slowly flowing or recirculating blood

can induce signal loss. Therefore, they may not give a complete visualisation of flow in

the aneurysm dome. “Bright-blood” MR angiograms can be enhanced with paramagnetic

contrast agent. Hassan et al. [54] had a resolution of 700µm and an isotropic resolution

of 600µm will soon be achieved with this technique. This may not be good enough for

CFD models of aneurysms, particularly in the aneurysm neck. Recent refinements have

made this contrast-enhanced MRA the noninvasive method of choice for large intra- and

extracranial arteries and larger dural venous sinuses [23, 29]. Such angiograms may still

not receive a signal in slow flow regions, so some arteries, including the PcomA and AcomA

are often invisible when imaged by MR techniques, but they can be better visualised by

performing the scan when the flux is maximal according to a simulation [6].
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In “black-blood MRI”, the signal from flowing blood is suppressed rather than enhanced.

The resolution of inner and outer boundaries of the vessel wall is 300µm in plane and

there is a 1.5-2mm slice thickness [31]. This anisotropic resolution means that side vessels

oriented parallel to the slices may not be imaged well. Limitations of this method are that

imaging artifacts that arise from slow recirculating flow can mimic atherosclerotic plaques

[63] and that the contrast at the outer vessel wall is poor, which degrades the reliability

of wall thickness measurements [31].

1.7.2 X-ray Angiography

In x-ray angiography, the clinician uses a contrast agent, injected into an artery via a

catheter [23, 31, 64]. The contrast agent absorbs x-rays while two x-ray scanners, one

anterior to the head and one lateral, record the flow of blood through the vasculature.

The images are projections of the vasculature on two planes. First, the blood in arteries is

seen, then late arteries and early veins, then only veins [4]. When a run of images is taken,

the first image can be subtracted or an image can be taken without contrast agent and

subtracted from the rest of the images to remove bone and other unwanted tissue from

the images. This is called digital subtraction angiography (DSA). Its predecessor was

screen film catheter angiography [23]. The resolution and contrast is better than those in

MRA and CT scans [31]. CFD simulations cannot be performed with these 2D images and

three-dimensional reconstruction requires at least two (ideally orthogonal) projections and

some assumptions about the shape of the lumen. A typical digital subtraction angiogram

is shown in figure 1.11.

A recent development is 3D Rotational angiography (3DRA) [3, 4, 31, 37, 64]. A 3D model

is built up through the acquisition of a series of 2D rotational projections at different angles

on one axis of rotation[64]. Between 44 and 200 images are required, and the reconstruction

has an isotropic resolution of 200-400µm [3, 4, 31, 37, 42, 54]. The contrast agent must be

injected continuously so that complete filling of the selected artery is achieved. The scan

can be finished in five to eight seconds, and requires 5ml of contrast agent, which is less

than ordinary DSA [3, 64]. In [4] however, 17ml of contrast agent was used. In this study,

a VGAM was visualised and the 3DRA images showed that the small arterial aneurysm

was communicating with the venous aneurysm.
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Figure 1.11: A digital subtraction angiogram of a giant aneurysm near the PComA.
Image taken from a presentation by Dr. Stefan Brew.

Jiang et al. [64] compared 3DRA and digital subtraction angiography for the treatment of

spinal cord vascular malformations in 12 patients. The method facilitated further treat-

ment in two cases and modified therapeutic strategies in two cases. In one particular case,

where the vasculature surrounding a spinal aneurysm was sufficiently complicated, 3DRA

gave the clinician a better understanding of the connective vascular structure.

Zhang et al. [45] developed an algorithm for finding the displacement field over the wall

of an aneurysm during the cardiac cycle from 3DRA. A physiological signal, such as the

blood pressure is used to calculate the time between the start of the cardiac cycle and the

acquistion of each 2D projection and the 2D projections are sorted by this time interval.

For each time at which a 2D projection is available, the 3D model is iteratively deformed

in order to maximise the similarities between the simulated and actual 2D projections.

From the wall displacement field, it is possible to produce a strain map and hence identify

regions of the aneurysm with different mechanical properties Villa-Uriol et al. [40]. The

mechanical properties of an aneurysm could therefore be determined by running a simula-

tion, then adjusting the properties until the resulting wall displacement field matches the

wall displacement of the actual aneurysm.
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The limitation of 3DRA and DSA is that they are unable to visualise an entire lesion fed

by more than one artery because they rely on selective angiographic catheterisation. In

3DRA, the contrast agent is typically injected into one of the ICAs or VAs and it flows

with the blood, so only the left or right side of the CoW is visualised at a time [37]. It is

possible to image both sides with angiography of some kind with simultaneous injection of

contrast agent in both ICAs or using an aortic arch injection, but this carries more risk for

the patient [37]. Jiang et al. [64] say that this can be improved with refinement of image

fusion techniques and Castro et al. [37, 42] have developed such a technique, so that the

two sides are imaged independently, then fused together.

This technique is invasive, with a risk less than 1% of complications such as stroke as a

result of catheterisation. It is only carried out when catheterisation is necessary for the

patient. It also cannot measure the vessel wall thickness, so it cannot provide information

about the plaque burden for assessing atherosclerosis [31].

1.7.3 Computed Tomography Angiography

Computer Tomography Angiography (CTA) uses x-rays to produce the images, but unlike

DSA, the brain is scanned in slices. It can be used to construct 3D CFD models [30].

Slices are 1.0 mm apart but the data is reconstructed with a 0.5 mm interval by linear

interpolation. The resolution was 0.35 × 0.35mm. Hassan et al. [54] achieved a similar

resolution. The mesh quality can be sufficient for a simulation, but one must remove

the skull base bone. Sometimes a grid generator can allow construction of a triangular,

prismatic, layered mesh that represents vascular walls of finite thickness. Though CTA

can image both avenues of inflow into an AcomA, i.e. both sides of the CoW [37], this

resolution may not be sufficient for 3D CFD models of aneurysms, particularly in the

aneurysm neck.

1.7.4 Ultrasound imaging

Ultrasound images are produced by transmitting a 1-10MHz beam of sound and analysing

the returned echoes. If the ultrasound is swept along a vessel, an image with resolution

0.2× 0.2× 0.6mm3 can be achieved in 10s, but the image quality is not yet sufficient for

reliable CFD simulations [31]. 2D images are acquired manually without reference to a
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fixed coordinate system, making it difficult to reconstruct a series of them in 3D. The

image quality depends on the proximity of the transducer to the tissue of interest, so

this method is usually limited to superficial vessels. Ultrasonography is also limited by

its intrinsic variability and sound propagation problems around bone or air cavities [62].

With MRA scans and x-ray angiography, the patient lies in a supine position for practical

reasons. Transcranial Doppler ultrasound has the ability to measure velocity of blood flow

with the patient in different positions, which is an advantage for CFD studies because

the effects of physiological variations, e.g.heart rate and cardiac output may be important

[31]. This was used by [4] and [54] for inlet boundary conditions.

In contrast, Intravascular ultrasound(IVUS) is useful for CFD. It is the most sensitive of

all imaging techniques. A transducer is introduced into the artery via a catheter. X-ray

angiography is used with it to guide the placement of the transducer and orient the imaging

planes. This is a highly invasive procedure and will not be carried out unless that patient

has been referred for cardiac catheterisation. Doppler ultrasound can be used to measure

blood velocities in vivo, either at the centreline of the vessel, or at a series of points at

different radii. IVUS can also be used to measure the regional mechanical properties of

the vessel wall, by measuring its thickness and displacement over time.

1.7.5 Phase contrast Magnetic Resonance Angiography

Phase-contrast MRA (PCMRA) can provide 2D and occasionally 3D images of one or

more velocity components in a time-resolved manner [31]. Wetzel et al. [62] evaluated

this technique in which velocities in three dimensions are encoded into the radio-frequency

signal in reciprocal space. The PCMRA was synchronised with an electrocardiogram.

Blood flow in three patients was studied to evaluate the technique. The resolution is 50ms

in time and 1.5× 1.5× 1.5mm in space. Significant postprocessing was carried out in this

study. Regions of low signal intensity, such as the air or ventricular system were excluded.

Further noise reduction was achieved by comparing the standard deviation of the velocity-

time course for each pixel, so that flowing blood could be separated from static tissue.

The thresholds could be adjusted interactively for noise suppression. A particle-tracing

technique was used to visualise the blood flow. The data was reformatted onto chosen 2D

planes transecting the 3D data volumes. Imaginary particles were released from all points

on these planes and the new positions of each particle after each timestep were calculated.
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The progress of the particles up to a certain time could be viewed as a streamline, enabling

the flow pattern to be visualised. The images were also colour-coded for velocity, as shown

in figure 1.7.5. The scan takes 15-20 minutes and the entire processing time was 45-60

minutes. The most time-consuming part was placement of the 2D planes.

The flow was well visualised in the left and right ICA, M1 MCA and A1 ACA. Pulsatile

forward flow directed downstream was observed, with no retrograde flow. No flow was

visualised in a patient with an occluded left ICA from the point of the occlusion. On the

non-occluded side, the flow appeared to be normal compared to that in healthy volunteers.

One volunteer demonstrated a helical flow pattern in the carotid siphon when the visu-

alisation covered the axial volume (figure 1.7.5B). This was consistent with the sagittal

volume results. Such flow had been reported in previous numerical simulation. The peak

systolic velocities were compared with Transcranial Doppler ultrasound, as explained in

section 1.7.4. The velocities from PCMRA were 30.3% lower on average. However, velocity

aliasing did not occur.

The study showed that 3D velocity fields for a single frame can be depicted in great detail

and complex flow patterns can be detected. This shows that there have been improvements

in PCMRA between 2002 and 2007, since Steinman commented that it can measure the

flow in straight segments, but complex flow patterns can be distorted [31]. It probably

underestimated the peak velocities because the temporal resolution was relatively low,

which might lead to an underestimation of peak velocities due to low-pass filtering. It

could also be due to attenuation and shift of the pressure and flow rate waveforms induced

by the compliance or the vessel [31].

The limitations of the technique are that it requires significant manual processing. Late

diastolic flow cannot be assessed. The advantage over CFD simulation is that no assump-

tions are made, such as using rigid walls and a Newtonian flow, but the resolution is not

sufficient to calculate secondary flow parameters, such as WSS and will not be able to

visualise secondary flow patterns. The velocity range most be predefined, so for patients

with pathologies such as stenosis, an altered geometry can result in accelerated flow, caus-

ing velocity aliasing artifacts. Some suggestions for improvements are given, including

sampling central k-space more frequently than peripheral k-space to improve temporal

resolution and using partial Fourier acquisitions and parallel imaging to improve spatial

resolution. Clark et al. [29] improved the accuracy of PCMRA by taking a 3D time of flight
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Figure 1.12: Time resolved 3D particle traces for 4 successive systolic timeframes illus-
trating blood flow in parts of the CoW in 2 healthy volunteers with axial slab orientations.
The progress of the particles over time helps us to understand the flow field. Image from

[62].

MRA scan, reconstructing the 3D surface rendering of the vasculature, then applying a

new localisation algorithm to this rendering to specify the position for an oblique PCMRA

scan. This scan produces images with 256× 128 pixels over a 16cm field of view, giving a

resolution of 1.25mm in one direction and 0.63mm in the other.

PCMRA is usually used in image-based CFD applications for providing flow-rate wave-

forms at straight segments [3, 6, 29] as boundary conditions, which allows cerebral circu-

lation simulations to be more patient-specific [29]. With four optimally placed imaging

planes, the boundary conditions at all afferent and efferent arteries to the CoW can be

specified [3], as shown in figure 1.13. Womersley solutions are usually imposed at the inlets.
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Figure 1.13: PCMRA measurements of volumetric flow rate waveforms can provide
boundary conditions for the whole CoW. Image taken from [3].

If a full velocity profile is required, the image must be interpolated onto the inlet nodes,

requiring sophisticated postprocessing and higher quality images, which take more time to

acquire [31]. Patient-specific boundary conditions can then be specified in a noninvasive

way, whereas for patient-specific pressure boundary conditions, a transducer would need

to be inserted via a catheter, which is invasive and dangerous for the patient. Though it

would help CFD studies, there would be no benefit to that particular patient.

1.7.6 Segmentation, postprocessing and visualisation

When one has a series of 2D cross-sectional images, one can reconstruct boundaries of the

lumen, then convert these to a 3D surface [54]. It is straightforward to connect points

around the edge using splines or filtering techniques to achieve the desired smoothing. For

bifurcating vessels, one may use this approach to reconstruct each branch separately, then

merge them using solid modelling operations. When there are hundreds of vessels to be

imaged, it is easier to extract from the 3D volumetric data 2D images distributed along

and oriented normal to the centrelines of vessels of interest. An alternative approach is

to operate on the 3D images directly by extending 2D contour detection algorithms to

3D. One can place a triangulated sphere in the lumen and refine it via the same internal

and image-based forces as for the 2D dynamic contour, but this technique requires pro-

gramming from scratch and it remains to be seen how it would perform for very complex

geometries. This approach does not require operator intervention to reconstruct branches.
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When the 3D geometry is reconstructed in terms of the boundaries of the vessels, the

model must be discretised into finite elements or volumes for CFD simulation. For simple

structures, one can divide the tube like structure into a fixed number of points around

the circumference and along the tube axis. For bifurcating geometries, more effort is

required to ensure the quality of the elements. The most popular method is unstructured

meshes on which arbitrary distributions of tetrahedral, hexahedral or prismatic elements

are generated using sophisticated algorithms. The approaches still need the user to identify

complex regions where refinement is needed. Adaptive refinement can be used in which

the simulation error is estimated, but to date this has only been applied to steady flows.

In some of the studies mentioned thus far [3, 25, 37, 42], a deformable model is used for

some of the models. The image is smoothed by a combination of blurring and sharpen-

ing operations, then segmented with a region growing algorithm, then the isosurface is

extracted. An alternative to this is the level-set approach [25], in which an image of a

function, called the action map, is created. There is an abrupt jump in the time values

in the neighbourhood of the edges of an aneurysm and the surrounding vessels. A pre-

segmentation of the aneurysm is then extracted using threshold values of the action map.

The grey values of this are modelled by a Gaussian distribution. Based on this, the surface

is left to evolve and a level set algorithm is used to make the final image.

To generate the finite-element grid, an advancing front method may be used that first

re-triangulates the surface, then marches into the domain, creating tetrahedral elements

[25, 37]. In these studies, vessel branches were truncated and the vessels were extruded

along their axes. Castro et al. [37, 42] also fused images from the two sides of the CoW

together, in order to study the AcomAs. There are usually 1-3 million elements in a 3D

CFD simulation [37, 42] and the resolution is usually finer than the original image, for

example, [42] had a final resolution of 0.16mm. The inlet, outlet and wall boundaries are

defined at this stage. If an inlet boundary is not defined, the simulation may assume it is

a wall, so one would have a dead end.

Hassan et al. [4] used 3DRA to study a VGAM. In this study and their next one [54], the

volumetric data from 3DRA are reformatted into 460 DICOM sections, with one file for

each. This changes it from a set of rotational images to a set of slices. This number of slices

is needed to obtain a good quality final mesh. The files were concatenated into a single file

to be read by the DICOM reader, in binary or ASCII format. A raster (rectangular grid of
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pixels) 3D image was produced, which included data such as the image size and patient’s

name. The region of interest was defined using AVS express. In this study, the basilar

artery was cut out to reduce the computing time. This produced a Stereolithography file,

with no extra information in it. ICEM CFD 4.1 was used to discretise the domain with

an unstructured tetrahedral boundary-fitted mesh containing 77696 nodes and 384129

tetrahedrons. The grid generation allows us to cut out unnecessary parts like small vessels

and to define inlet, outlet and wall boundaries. Mesh smoothing further improves the

quality of the grid. The mesh generation takes about 30 minutes. Only minor manual

manipulations are needed if the resolution is fine. The coarser the resolution, the more

manipulations are needed, There is a penumbra effect as the boundaries are approached

and correction for this is operator dependent. Figure 1.14 illustrates these stages in the

image processing.

Mihalef et al. [43] used a series of CTA images taken at different times throughout the

cardiac cycle such that the fluid boundaries moved. The surfaces were modelled by a

number of parameters for the trajectories of specific landmarks on the heart and for the

surface meshes. These parameters were fitted to the images. A machine-learning algorithm

was used to avoid the need to explore the entire parameter space. The algorithm would

explore a small subspace spanned by a few parameters to find approximate values for

them, thereby eliminating the majority of the parameter space. This was repeated several

times. Since it would have been difficult to generate a suitable finite-element mesh due to

the large deformations of the heart, a level-set method was used for the CFD simulation,

in which the level set function was used to create a sharp distinction between the fluid

domain and the remainder of the space. While this is a simulation of blood flow in the

heart, the same approach could be applied elsewhere in the cerebral vasculature.

The results of the simulation are usually visualised. The velocity may be shown as colour

coded streamlines [4, 62] (see subsection 1.7.5 [37]), or as a colour map on a selected

plane through the vasculature [3] or on the surface [4]. In that study, the pressure at the

surface was also visualised. General purpose software, called Ensight was used. The WSS

is usually visualised as a colour map on the surface of an aneurysm or blood vessel, as

shown in figure 1.15.
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Figure 1.14: Detailed procedure of image reconstruction. A, Reformatting protocol of
the angiographic image into DICOM sections. B, Examples of the sequential secondary
DICOM sections. C, Raster greyscale 3D binary image output by (x) MedCon to AVS/-
Express. The columns around the image are the patient’s data and image parameters.
Under AVS/Express, image manipulation and cutting out of the region of interest is done
as shown in panel D. The figure in panel D is the STL file output from AVS/Express to
ICEM CFD. E demonstrates the STL file in its mesh form. Finally, mesh reconstruction,
smoothing and closure of the inlet and outlet re done by a mesh generator before volume
mesh generation and CFD calculation on the tetrahedral mesh illustrated in F. Image

taken from [4].

1.7.7 Accuracy

Some studies have compared the flow fields obtained by CFD simulations of flow through

blood vesssels to experimentally measured flow fields in physical models of the same blood

vessels with the same boundary conditions [65–67]. Perktold et al. [65] constructed physical

and numerical models from the same cast of a human left coronary artery branch. They

compared the velocity profiles obtained from a CFD simulation to those measured by

laser-Doppler anemometry at several different locations and observed good agreement.
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Figure 1.15: Examples of aneurysms where the inflow jet impacts the neck (top row of
images), body (2nd row), dome (3rd row) or has a changing impingement zone (4th row).
Images from left to right: mean wall shear stress distribution, then intra-aneurysmal flow
velocity on a planar cut through the sac at 4 instants during the cardiac cycle. Taken

from [3]

Botnar et al. [66] carried out a similar comparison for a carotid artery bifurcation. Phase-

contrast MRI was used to measure the axial velocities at selected locations, as described

in section 1.7.5. The differences between the corresponding simulated and experimentally

measured axial velocities at each plane over which the velocity was compared were less

than 10% of the maximum axial velocity over that plane. Myers et al. [67] compared the

measured wall shear stress (WSS) in a model of the right coronary artery to the WSS

calculated from their CFD simulation and observed reasonable quantitative agreement.

Steinman [31] comments that while these studies show that the flow fields in physical

models of blood vessels are accurately calculated by CFD methods, they cannot tell us

whether a reconstructed model is faithfully reproducing the in vivo environment. Such

direct validation is difficult in the absence of a perfect technique for measuring velocities

in vivo. If there was such a technique, there would be no need for CFD simulations [3, 31].

Steinman [31] commented that the accuracy of PCMRA may provide a gold standard for

measuring velocities in vivo in future.
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In CFD studies, the geometry cannot be reconstructed perfectly. Steinman [31] compared

a geometric model of the aortic bifurcation made of acryllic using CT data with an MRA

scan. The geometric errors in the acrylic cast were within 150µm, but there were dif-

ferences of 15-35% in the simulated WSS and that measured in the cast, because MRA

underestimated the dimensions immediately before the bifurcation.

A mesh is considered sufficiently resolved when a doubling of the element size induces little

change in the velocity fields. Extremely fine mesh densities are required to resolve WSS

to 10%, because WSS is the gradient of the velocity field and must be calculated from

it. However, the patterns of WSS are reproduced. One other issue is the reproducibility

of the models. A study showed that interoperator variability was only slightly higher

than intra operator variability. If the same subject is imaged again, there is < 300µm

inaccuracy in geometry and less than 0.4Pa inaccuracy in WSS. Villa-Uriol et al. [40]

have developed an automatic approach for segmenting the vascular tree and validated it

by constructing vascular models from 3DRA and MRA images of a physical model of a

vessel. The differences between the geometries of the physical models and the computed

models were 200µm and 300µm for the models constructed from 3DRA and MRA images

respectively, which are below the corresponding resolutions of the imaging methods.

It is hard to automatically extract the vasculature, measure the arterial diameters accu-

rately and measure the flow rate and pressure [29]. The arterial diameters extracted from

patients were used in [6].

1.8 Three dimensional fluid dynamics simulation of blood

flow

In this section, I review the results of three dimensional computational fluid dynamics

simulations of blood flow in the literature.

Many studies strongly suggest that the wall shear stress plays a particularly important

role in the evolution of aneurysms. Jou et al. [21] studied two similar aneurysms in 2005,

one of which was growing. A clear correlation between regions of growth and low WSS

was visible in images of these in the growing aneurysm and this aneurysm had larger areas

of low WSS than the stable one. In 2008, Boussel et al. [22] discovered a statistically
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significant negative correlation between growth and time-averaged WSS by measuring

these quantities in many tiny regions of seven aneurysms. This is counterintuitive, but the

two aforementioned studies comment that low WSS leads to the death of endothelial cells

(those at the inner surfaces of arteries) and changes their secretions, including vasodilators

and vasoconstrictors. These processes may cause arterial wall remodelling. On the other

hand, Shojima et al. [20] and Boussel et al. [22] cited animal studies in which a high WSS

initiated an aneurysm. Shojima et al. [20] found a significant negative correlation between

the spatially averaged wall shear stress and the aspect ratio, which had been linked to

a greater risk of rupture in previous studies, but the ruptured aneurysms in [20] had a

higher average WSS but regions of low WSS near the tip, so the conclusion is not entirely

clear. The conclusions concerning WSS strongly suggest that one should consider the

mechanisms for initiation, growth and rupture of aneurysms separately.

Cebral et al. [3, 25] characterised aneurysms according to the flow patterns inside, which

allowed them to search for correlations with the risk of rupture. They concluded that

rupture is significantly more likely in aneurysms which have an inflow jet with a smaller

impingement zone on the wall. The WSS is elevated in the impingement zone [25]. The

@neurIST project [68] aims to extend these studies by building a database of morphologi-

cal, flow and structural characteristics for hundreds of aneurysms. The flow characteristics

include vortex patterns and maximum, minimum and average velocities. The pressure on

the surfaces of aneurysms may be less important than WSS [20, 68], since its spatial vari-

ation is usually much less than the difference between systolic and diastolic pressure. This

is confirmed by the simulations in Shojima et al. [20]’s study.

In Cebral et al. [3]’s study, the geometry of the parent artery is included, but the surround-

ing vasculature is not, because it is impractical to do so. Since the smaller arteries were

excluded, outflow velocity boundary conditions could be applied, without the need for a

resistance model, as described in section 1.5. They comment that prior clinical studies had

largely ignored the effects of the geometry of the parent artery and its relationship to the

aneurysm. Extremes in parent artery configuration can cause large changes in the flow in

the aneurysm. It can cause deflection of the inflow jet away from the typical location in

the distal lip and cause it to impact the dome or proximal neck, which in effect converts

a sidewall aneurysm to a flow pattern analogous to a terminal aneurysm. There were

some other simplifications relating to the gemoetry. AcomA was not included, which may
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introduce a bias. The geometry was also assumed not to be changed by the rupture of an

aneurysm.

For the velocity boundary conditions in Cebral et al. [3, 25]’s studies, the velocity bound-

ary conditions were given by PCMRA measurements of velocity were obtained on four

planes around the CoW (Figure 1.13)(see subsection 1.7.5). At the outflow, traction-free

boundary conditions were used, in which each flow rate is assumed to be proportional to

the area of the outflow vessel. One further simplification in their study is that the input

flow rate relied on pulse rates in healthy subjects.

To assess the significance of some of the modelling assumptions, Cebral et al. [25] carried

out an analysis of the sensitivity of the results with respect to the mean flow, flow division

in the outflow vessels, by raising and lowering the resistances where there was more than

one outflow vessel, including non-Newtonian effects, as shown in section 2.11, closing off

small vessels and varying the mesh size and reconstruction, in which other modellers were

asked to construct new models from scratch. There were four aneurysms and in all cases,

the location and shape of vortex structures were slightly different as the parameters were

changed, but this did not change the classification of the aneurysms with respect to the

complexity and stability of the flow pattern, or the impingement region or their WSS

classification, if the WSS was measured. The WSS was measured with the changes to the

mean flow and viscosity. It corresponded to the region of impingement of the flow on the

wall of the aneurysm in all cases. The only large change in the flow behaviour happened

in one remodelling case in which the segmentation algorithm wrongly joined an artery

and an aneurysm due to the limited resolution, which showed that a small but important

change in the geometry can cause a large difference in flow dynamics.

With flow rate, the magnitude of velocity or vortex intensity was affected. The size of the

impingement region changed slightly. A non-Newtonian model produced smaller viscosity

gradients than the Newtonian one because of an increase in the non-Newtonian viscosity

in the regions of low flow and strain rate. The largest differences were seen in the artery

with the lowest flow rate. They conclude that the precise flow conditions do not matter for

qualitative studies. Hassan et al. [54] opine that simplifications such as neglecting gravity

and the non-Newtonian nature of blood are of secondary importance.
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Cebral et al. [3] highlight the feasibility of computational methods for clinical investigation.

The findings suggest that the characteristics of the inflow jet and the interaction with the

wall play an important role in the development and ultimate rupture of the aneurysm.

Castro et al. [37] investigated the effects of unequal flow conditions in the ICAs on the

haemodynamics of AcomA aneurysms. A sensitivity analysis was conducted on the wall

shear stress (WSS) in which a parameter was changed, then the flow conditions were

swapped. The velocity was increased by 5% in one artery and decreased by 5% in the

other, the volume flow rate waveform shapes were changed so that both ICAs had a

different waveform from each other and from the base case and 2% and 4% phase leads of

the waveform in one ICA relative to the other.

In one patient, the flow was symmetric and most of the blood stayed on the same side of

the AcomA as it flowed from the A1 ICA to the A2 ICA. In the other patient, the AcomA

was more superiorly located (higher) and the flow was more asymmetric, with significant

cross over between the two arteries. In this patient, the jet flows meet closer to the neck

of the aneurysm, resulting in a larger elevation of wall shear stress. This provides further

evidence that the geometry can have large effects on the flow conditions.

They found that there is potential for rapid and severe shifts in flow if there are differences

in flow between the ICAs or asymmetric changes in flow related to the pathology and

geometry of the connecting intracranial arteries because AcomAs are a site of meeting and

colliding pressure waves. The sensitivity to asymmetries can vary. Changing the velocities

shifts the peaks of WSS towards the vessel with the larger mean flow. At selected regions, it

can diffuse or concentrate the peaks in time depending on whether the inflow jets interfere

constructively or destructively. In contrast, changing the relative phase or shape of the

waveforms has a much more dramatic effect by making regions of elevated WSS travel

along the surface.

They discuss whether the asymmetries exist. The different velocities could be caused by

differences in the impedance of distal vascular beds. The phase and waveform differences

may arise due to differences in the proximal carotid arteries. They carry out a calculation

based on wave propagation effects and conclude that difference in length would cause

a negligible difference in phase, but differences in thickness of the walls and the elastic

modulus could cause a phase difference of 2.25%, as shown in section 1.10.
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For improvements to the model, such as wall compliance and sensible outflow conditions

at the boundary requires information that is unavailable, e.g. wall compliance, 4D infor-

mation of vascular motion and flow or resistance information. Further work is needed to

improve the models and characterise the errors.

Castro et al. [37]’s paper builds on previous work by Cebral et al. [3, 25] by analysing

AcomA aneurysms, which had been excluded because of the potential of multiple avenues

of inflow, which could not be imaged by 3DRA. In this study, they overcame the problem

using a new technique in which two independently acquired rotational angiograms were

combined.

The effect of a non-Newtonian viscosity was not tested in AcomA aneurysms, but from

their previous studies, it is likely to have very little effect on the velocity and WSS.

Hassan et al. [4] studied a VGAM in an adult. This involves a small fusiform aneurysm

on the artery, which communicated with a large aneurysm on the vein. They comment

that fusiform aneurysms had been inadequately studied. Only three had been studied

in Cebral et al.’s initial study [3]. A CFD simulation was carried out. The boundary

condition was obtained by transcranial ultrasonography. The boundary condition at the

outlet was that in the Fluent software [38], not a resistance model. Since the geometry can

have a large effect on the flow fields, the boundary conditions were set as far as possible

from the aneurysms or other complex parts, so that a Womersley flow profile at the inlet

would be more accurate [4] and this is what physicians must do.

From a CFD simulation, they noticed that the venous aneurysm was washed out faster

than the nearby normal veins. Inspection of the computational replica revealed a narrow

hole between the aneurysms, through which the contrast agent passed. This might explain

why the patient did not suffer the usual symptoms of a VGAM anomaly. The volume flow

was low, so there was a normal venous drainage pattern. The artery was stenotic just

before the aneurysm, so the Bernoulli effect was quite marked and the smaller segment

resulted in much higher velocities, of 1.48 − 2.15m s−1. The jet subjected the wall to

high shear stress and pressure, as it impinged on the wall, as shown in figure 1.16. In

general, when blood impinges on an aneurysm wall, there is a stagnation point at which

the pressure is maximal but the WSS is zero. The WSS was very high around it, caused by

the bloodstream turning along the wall [4, 54]. The small aneurysm regulated a low shunt
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volume of blood, so it was not high enough to cause venous reflux, i.e. some blood flowing

backwards due to failure of valves. When the jet came near to the venous aneurysm,

part of it went through the hole and the other part performed a whirling motion inside

the arterial aneurysm, as shown in figure 1.16. The embolisation (see subsection 1.3)

eliminated the whirling flow but did not terminate the blood flow completely. The artery

was packed with many coils and the stenosis was sealed off. In the example, the CFD

simulation helped to understand what was happening.

Hassan et al. [4, 54] used all the available modalities of cerebral angiography. Their CFD

simulation was carried out using Fluent [38], including its outlet boundary conditions.

They present a method of reconstructing cerebral grids as 3D numerical grids. Four

examples of grid reconstruction and flow simulation for patients with ruptured aneurysms

(three MCA aneurysms and one ICA-PcomA aneurysms) were validated with angiographic

and operative findings. The rupture corresponded to the area facing the jet entering

the aneurysm. Wall elasticity was simulated on two aneurysms using Fidap (see section

1.10). This confirmed that the area of maximum wall displacement is located at the

angiographically determined bleb at the aneurysmal inflow zone. The points of rupture

have a relatively high pressure and WSS.

A comparative blinded study should be conducted before the whole numerical procedure

is proved correct and time-efficient.

The endothelium regulates vascular tone by producing vasodilator and vasoconstrictor

substances. It is sensitive to changes in oscillating WSS which has stronger biologic in-

fluence on vessels than direct mechanical force. Increased WSS stimulates the release of

nitrous oxide, which is a strong vasodilator and also a factor in arterial wall degenera-

tion. Therefore, a local increase in WSS may cause local dilation and degeneration of

arterial walls. The approach could be extended for AVM, AVM flow induced aneurysms

and atherosclerosis. Patient specific computer modelling combined with information from

other imaging modalities may provide important insights into flow dynamics before and

after surgical or endovascular treatment.

They emphasise the importance of geometry, in particular the curvature of the parent

artery. They point out that one must consider the errors and it may not make sense to

compute the flow fields to 1% if the geometry is only known to 10%.
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Figure 1.16: Simulation results for the blood flow in an adult Vein of Galen Aneurysm
Malformation at three instants of time within a cardiac cycle. The left images are relative
surface pressure maps, whie the central and right images demonstrate the blood velocity
maps in two cross-sections. They small and large aneurysms are the arterial and venous

aneurysms respectively. Image taken from Hassan et al. [4].
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Castro et al. [42] said that simulations had only been performed on idealised models. More

recently, parent arteries have been used instead of straight ones. They carried out a CFD

simulation to assess the effects or truncation of the parent artery in the flow rates in

aneurysms. All distal vascular beds were assumed to have similar resistance to flow. They

found that curvatures in the parent artery upstream to the aneurysm neck significantly

influences the direction of the inflow jet. Truncation of the parent arteries causes the WSS

to be lower and shifted towards the neck. Streamlines show that the flow has a simpler

vortical pattern and is quieter in truncated models. The changes are more pronounced

in cases with high degrees of upstream curvature. The inflow jet is parallel to the walls

in truncated models, and therefore almost tangential to the aneurysm neck in sidewall

aneurysm. Curvature may cause the flow to be directed into the aneurysm more. In the

patient with the AcomA aneurysm, truncation changed the relative contributions to flow

from the two ICAs. They say that there are two different theories on the effects of WSS.

Low flow theories claim that domes are under low WSS states that trigger mechanobiologic

processes that weaken the arterial wall. The theories were based on observations of low

WSS in the dome made on idealised experiments or computer models. On the other hand,

high flow theories indicate that a different set of mechanobiologic processes are triggered

by high WSS at the aneurysm wall, particularly at flow impaction zones, that weaken

vessel structure. The theories are not mutually exclusive, but the low flow theory might

have to be reexamined. Generalizing from idealised models may be misleading.

A limitation of this study is the sample size is small and biased by their intention to show

an effect. It is not clear how much of the parent artery is needed, but one could use

theories about developing distance. The developing distance is given by:

Lentr = 0.06ReD (1.14)

and

Lentr = 4.4Re0.25D (1.15)

for laminar and turbulent flow respectively [69, 70]. Each patient-specific anatomy has its

own solution.

Radaelli et al. [71] analysed some mirror cerebral aneurysms, which are aneurysms within

the same patient symmetrically located within the cerebral vasculature. Patient-specific
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geometries were constructed from 3DRA images of the aneurysm. For the patients in which

one of the aneurysms had ruptured, but not the other, there was signifcant asymmetry

between the two sides of the COW and the ICA and this caused significant differences in

the simulated haemodynamics. This shows that it is essential to include the parent artery

and perhaps some of its branches in CFD simulations of cerebral aneurysms if the risk of

rupture is to be assessed.

Steinman [31] reviewed the applications of image-based CFD for studying atherosclerosis

progression. Studies show that low WSS promotes progression of atherosclerotic lesions.

He underlines the importance of obtaining an accurate patient-specific geometry, since

small changes can have large effects on the flow fields. It is possible to simultaneously

reconstruct 3D maps of WSS and wall thickness in a patient-specific manner from black

blood MRI images. A low or oscillating WSS leads to an increased wall thickness, but a

statistically significant relationship was not obtained. Inability to resolve wall thickness

or other sources of inaccuracy may have masked the relationship.

A study showed that distensibility in the carotid bifurcation caused the WSS to be low-

ered, but the WSS and velocity still kept the same pattern. In older subjects or patients

with cardiovascular disease, there will be increased stiffness. Side branches are sometimes

ignored, especially if they are oriented parallel to the (often thick) imaging slices but this

has relatively minor effects on the flow patterns. It may be satisfactory to find flow fields

qualitatively. One author pointed out that “errors in WSS should only be considered sig-

nificant if they would lead to different conclusions regarding the likely cause or location of

vascular disease”. CFD is improving, so it will soon be able to predict rather than confirm,

the development, progression and perhaps even induced regression of atherosclerosis, and

other cardiovascular diseases.

Villa-Uriol et al. [40] have reviewed some techniques for characterising and managing

cerebral aneurysms. They discuss how personalised vascular models can be created and

used to derive a collection of descriptors. The correlation between these descriptors and

clinical events could be examined so that in future, the descriptors could provide more

information to clinicians than they currently have when they assess the situation for a

particular patient. The descriptors include characterisations of the shape of the aneurysms,

their rate of growth, the pulsation of the walls of the aneurysms and the flow characteristics.
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They discuss some studies that simulate the blood flow after coils or stents have been

inserted into the vasculature.

Villa-Uriol et al. [40] also emphasise the importance of validating both the reconstruction

of the vessels from medical images and of ensuring that the flow fields agree with those

occurring in vivo. They cite Geers et al. [72], who studied the differences between models of

four MCA aneurysms derived from 3DRA and CTA images and the subsequent differences

in the flow fields. Since the contrast and resolution of the CTA images was lower than that

of the 3DRA images, the aneurysm neck appeared to be wider in the models constructed

from CTA images, which increased the flow rate into the aneurysm. Furthermore, some of

the vessels that could be reconstructed from the 3DRA images could not be reconstructed

from the CTA images, so they were not included in the models derived from the CTA

images. Despite these differences, the main flow characteristics were well produced between

the two sets of models.

Experimental measurements of the flow in physical models of blood vessels can be used to

validate CFD simulations [73, 74] as well as to study the flow, as Tateshima et al. [30] did.

Both Ford et al. [73] and Hoi et al. [74] measured the velocity of flow in a silicon phantom

over selected planes using particle imaging velocimetry. A laser was used to illuminate a

selected plane and the positions of the particles were measured from images taken by a

camera at regular intervals. Ford et al. [73] found that the CFD simulations were able to

capture the features of the flow in fine detail, although there discrepancies between the

simulated and measured flow fields in some places. They comment that this may be due

to the slight distensibility of the physical phantom. Hoi et al. [74] also obtained good

agreement between the simulated and measured velocity fields. Their physical phantom

was almost spherical, but the velocity field simulated in an ideal spherical model disagreed

with that measured from the phantom, which shows that a small change in the geometry

can cause a large change in the flow fields.

Cebral et al. [41] compared the isovelocity surfaces extracted from their patient-specific

CFD simulations with isointensitity surfaces obtained from time-of-flight MRA images,

which were discussed in section 1.7.5, and obtained good agreement in the aneurysmal flow

region. In contrast to the sensitivity analyses discussed earlier in this section, this provides

one of the few tests of whether a CFD model is reproducing the in vivo environment

correctly.
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Mihalef et al. [43] carried out a simulation of the blood flow in the heart. The motion of

the walls was derived from a series of CTA images, as explained in section 1.7.6. Their

computation resulted in right-handed helical motion of blood as it entered the aorta,

which is a well known feature of healthy aortic flow. This occurred despite the fact that

the torsional motion of the heart was not included, which provides evidence that the helical

rotation is determined by the orientation of the aorta with respect to the mitral valve and

the valve geometry. The time-dependent flow rate through the valves in the heart also

agreed qualitatively with some typical data measured in vivo. While the model achieves

some qualitatively correct results, a quantitative comparison with in vivo experiments has

not been attempted. Jeays et al. [44] simulated blood flow in the superior mesenteric

artery with moving walls and compared the velocity flow fields to those obtained using

rigid walls. The largest difference in the WSS was 26% when commpared with a global

norm, but the average difference was 2%, despite expansion of the artery of order 10% of

its radius and translation of order its radius.

Bernardini et al. [32] used a finite-element method to simulate the flow in an artery with

an aneurysm before and after insertion of a stent in the parent artery. The mesh resolution

was 0.3mm, except at the vessel and aneurysm walls and around the stent struts, where

it was 0.02mm, which is much finer than the other simulations discussed in this section.

Some methods of surgical treatment, such as occlusion of certain blood vessels, could be

simulated by editing the vasculature and therefore a coarser resolution could be used.

Bernardini et al. [32] compared the results obtained with five different models of the stent

itself. The most complex model used the precise three-dimensional shape of the stent and

took into account the material properties and its elasticity to determine the position it

reaches after deployment, while the simplest model neglected the material properties and

assumed that the stent was rigid with struts that had a uniform cross section. The velocity

and wall shear stress were averaged over the volume and wall of the aneurysm respectively,

then the ratio between the values of these averages in the treated and untreated vessels

was calculated and averaged over time. The velocity and wall shear stress were reduced

by approximately 50% in the aneurysm, but there was significant variation between the

results for different stent deployment models. Nevertheless, the results are consistent with

redirection of the blood flow through the parent artery, which gives some evidence that

the model is behaving correctly. The tool is therefore promising for use in neurosurgery.
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Villa-Uriol et al. [40] evaluated some recent techniques for simulating the effects of neu-

rosurgery and explain that the performance of different stents can now be evaluated with

CFD models. For example, Kim et al. [33] investigated the influence of two different stents

in different axial orientations on the flow fields in an aneurysm. The geometry was ex-

tracted from 3DRA images of an aneurysm. The struts on the stents were assumed to be

uniform and the stent position was calculated by iteratively solving an evolution equation

for the points on the stent mesh. Both stents reduced the velocity in the aneurysm and

the WSS on the aneurysm wall, but for one of the stents, the remaining WSS depended

strongly on the position of the stent. Morales et al. [34] developed a virtual coiling method,

in which a CFD simulation is carried out in the presence of coils. They found that the

WSS increased near the aneurysm neck but decreased on the wall of the aneurysm. The

haemodynamic differences owing to coil configurations were negligible when the coil pack-

ing rate was above 20%. They concluded that their technique has the potential to become

a valid tool for evaluating post-treatment aneurysm haemodynamics.

Tahir et al. [35] modelled restenosis of arteries after stents had been deployed. The ar-

terial wall was damaged based on hoop strain and longitudinal threshold criteria, which

exposed the smooth muscle cells in the model to blood flow, causing them to proliferate.

A biological solver controlled the progression of cell proliferation according to a set of

rules. The probability that a smooth muscle cell divides was decreased by interactions

with neighbouring cells, high wall shear stress and use of a drug-eluting stent. The blood

flow was modelled with the lattice-Boltzmann method, which is discussed in chapter 2.

The flow rate was constant. Their simulation results agreed qualitatively with published

data from experiments and clinical trials in the following ways. First, the rate of growth

relative to the number of cells reached a peak after approximately 20 days. Second, the

rate of proliferation increases with the degree of injury, i.e. the depth to which the stent

is pushed into the arterial wall, although the number of cells at the end of restenosis did

not depend strongly on this deployment depth. Thinner stent struts were found to cause

faster proliferation of cells, but the maximum number of cells was lower.

1.9 Other models of cerebral blood flow

Tateshima et al. [30] used a physical model to study the WSS in unruptured cerebral
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aneurysms with blebs, or lobulations, which are small outpouchings of the aneurysm dome.

Studies had shown that WSS contributes to the formation of aneurysms but little attention

had been given to the effect of shear stress in aneurysms that were already present. The

paper paid particular attention to the bleb, which is the point at which cerebral aneurysms

commonly rupture. The walls were rigid in this study, which was reasonable for this type of

model because previous work had found no remarkable difference in the flow between rigid

and elastic physical models. The flow rates in each arterial branch were set in accordance

with the cross-sectional area of the branch.

In this paper, the WSS in a basilar tip aneurysm and an MCA aneurysm in the COW

was evaluated using geometrically realistic models. It was measured at ten points on

each aneurysm; three in the inflow zone, four in the dome and three in the outflow zone.

It was expressed as a percentage of the maximum WSS in the parent arteries. For both

aneurysms, the inflow was at the distal side of the neck and the outflow was at the proximal

side. The mean WSS was higher in the outflow than the inflow zone. The direction of the

WSS was the same as the intra-aneurysmal flow. The bleb had the highest mean WSS and

was the point at which the maximum WSS over time and space occurred. In the MCA

aneurysm, the peak WSS was 93% and occurred in the early diastolic phase, whereas in

the basilar tip aneurysm, the maximum WSS was 54.4% and occurred in the late systolic

phase. The WSS varied at each point, unlike in idealised aneurysm models.

Wall shear stress impinges on endothelial functions, rather than having a direct mechan-

ical influence. As the WSS increases, more endothelium-derived nitric oxide (a strong

vasodilator) is produced. Increased WSS caused by increased velocity stimulates dilation,

so velocity declines to the normal range. This is how the blood flow volume is regulated.

Distribution of stress in a curved tube is not uniform, as it is in a straight tube. There

may be local dilation of the wall. Experiments have shown that increased WSS causes

aneurysms to form.

It remains unclear whether the endothelial cells on the aneurysmal wall are sensitive to

modifications of WSS. From scanning electron microscope images, normally shaped arterial

endothelial cells have been seen on the inner surface of an unruptured aneurysm sac. It

is possible that endothelial cells in a cerebral aneurysm react to WSS in the same way as

those in a normal artery. From the results obtained, there are two possible hypotheses.

Regions of the aneurysm with high WSS could be more prone to bleb formation due to
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increased production of nitric oxide. Alternatively, the bleb induced a higher WSS, which

caused more nitric oxide to be produced, leading to degeneration of the vascular wall.

This is because nitric oxide could cause degeneration of the walls and has been shown to

decrease smooth muscle cell proliferation and migration. Studies have also shown that

the walls of ruptured aneurysms contain fewer muscle cells and more irregular layers of

collagen IV than unruptured ones. These hypothesis make use of biochemical factors,

which the theories about WSS in [3, 25, 37] neglect.

Hillen et al. [1] wanted to study the flow in the PcomA. They only used half of the CoW.

The PCA and ICA were the afferent arteries, the MCA and ACA were combined as one

efferent artery and the PCA was the other. The CoW was assumed to be symmetric, so

the flux through one side of it was half of the total flux. The idea of efferent resistances was

applied by combining the resistances of the ACA and MCA in parallel, so the combined

resistance was half that of the PCA. The combined resistance of all efferents was calculated

and divided by two to take into account the two sides of the CoW. The PcomA connected

the two sections, as shown in figure 1.17. Mass and momentum were conserved, as follows:

∂A

∂t
+

∂

∂x
(Av) = 0 (1.16)
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where A is the cross-sectional area.

The viscous friction is the Poiseuille resistance expression for the volume flow rate for

steady laminar flow in a circular tube. This is because Womersley showed that for rel-

atively small values of the Womersley number, α = D
2

√
ω
ν , from equation (1.6), the ad-

ditional inertial and frictional losses arising due to velocity profile distortion in pulsatile

flow conditions do not differ greatly from steady flow conditions. The largest value of α is

3 in the study by Hillen et al. [1]. The pipes were modelled as distensible vessels here, as

explained in section 1.10.

They found that when the resistance in the vertebral artery (section 45 of figure 1.17)

is increased by reducing the cross-sectional area, the pressure at B, D and E decreases

because of this change in resistance because p = ZRQ. The velocity in 45 decreases, but

the velocity in 56 decreases less and the velocity in 12 and 25 increases because of the

reduced pressure at 5. More blood flows through the PcomA. Changing the peripheral
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resistance at 6 shows that the afferent and efferent systems are not independent. In that

case the ratio of volume flow rate Q12

Q45
would not change and Q23

Q56
would be linearly related

to
ZR,6
ZR,3

. The peripheral resistance dominates since both ratios are close to the
ZR,6
ZR,3

. At

ZR,6
ZR,3

= 3.1, Q12

Q45
changes from being greater than Q23

Q56
to being less, so the flow in the

PcomA changes direction.

If we increase the resistance in segment 45 while changing the diameter of the PcomA,

there is a similar appearance of change of volume flow rate in segments 12 and 25. The

changes in flow rate are greater if the PcomA is wider. The flow in segment 56 deceases,

but by less than 10%, provided that the PcomA is not too narrow. Looking at the same

results in a different way, Q45 decreases and Q25 increases as the diameter of the PcomA

is increased. The effect is greater if section 45 is partially occluded. The total volume

flux was independent of the diameter of the PcomA, but the afferent fluxes depend on

it strongly. It was interesting that the normal range of variation of the diameter in the

PcomA is in the region where the effect on the system is large.

They concluded that the PcomA is capable of performing the compensatory function by

responding to physiological fluctuations in the blood flow in the afferent vessels, due to, for

instance, movements of the spine, and the mechanism for this is clear, as in the paragraph

above. It is what one would intuitively expect but it does confirm that increasing the

resistance of 45 has both effects that we would expect; i.e. it both decreases the flow in 45

and the pressure at 5. The total flux is determined by the total peripheral resistance. The

compensatory capacity of the vessel is limited only by very small diameters of the vessel.

Previous work had concluded that opposing streams from carotid and PCAs meet to form

a dead point. If this is valid for the PcomA, the study indicates that the diameters of the

afferent vessels and the ratio of the peripheral resistances have to be finely tuned. The

limitation of this model is the simple geometry.

The model was extended to include all the arterial segments of the CoW and the basilar

artery in [5], with the positive flow directions as shown in figure 1.18. First the cross-

sectional area of the basilar artery (16) was reduced. The results were similar to the

earlier model. The other experiments in [1] were repeated and the results were identical.

The pressure in the vertebral arteries, basilar arteries, PcomAs and both segments of

the PCAs decreases, whereas it does not change in the ACAs, MCAs or AcomAs. The

velocities in the vertebral arteries, basilar artery and P1 PCAs decrease, and the velocity
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Figure 1.17: A model of half of the CoW, as studied by Hillen et al. [1]. The arrows
show the normal directions of blood flow.

in the P2 PCA decreases slightly. The velocity in the ICA and PComA increases and it

does not change in the MCA or ACAs, as in [1]. There is no flow in the AcomA, which is

as expected due to the symmetry.

The study also assess the effects of asymmetry in the CoW. If the right PcomA is doubled

in size, to 2mm, there are no differences in pressure between any points in the system and

the corresponding points on the opposite sides and no difference in afferent or efferent flow

rates. However, there is a clockwise reallocation of flow in the segments of the circle. Flow

in the right PcomA is greater than the left PcomA due to its reduced resistance. This

causes a flow to the right in the AcomA. Flow in the right P1 PCA is lower on the right

than the left because flow is partially cancelled out by a greater flow from the anterior

circulation. The flow in the right A1 ACA would be negative according to the arrow in

figure 1.18 in the symmetric case. In the asymmetric case, the flow direction is reversed

and this is why the flow is less than in the left A1 ACA.

The diameter of the right PcomA was then varied. The flux in the left and right PcomA

and the AcomA (segments 13, 3 and 8 respectively in figure 1.18) were plotted against

diameter of the right PcomA, producing an s-shaped graph, as shown in figure 1.19. The

flow in the AcomA changes direction when the diameters of the PcomAs are equal. As

the diameter of one PcomA increases, the flow in it increases, the flow in the contralateral

PcomA decreases and the flow in the ipsilateral ICA increases. When the diameter of

the ipsilateral PcomA is less than 1.85mm, the flow increases faster for smaller diameters
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Figure 1.18: A model of the CoW, as studied by Hillen et al. [5]. The arrows show the
positive directions of blood flow. See also figure 1.1.

of the contralateral PcomA and when it is greater than 1.85mm, the opposite happens.

When the contralateral PcomA has a diameter of 1.85mm, the diameter of the ipsilateral

PcomA appears to have no effect on the flow in the ICA.

The symmetric model was then modified to account for the presence of the posterior

perforating arteries to work out whether they could cause a dead point in the PcomA.

Fluid was allowed to leak out at each node in the PcomA. It can only exist if the sum

of the efferent flows in the perforating arteries exceeds the inflow to the PcomA at either

end. The total resistance of these perforating arteries was varied and the maximum value

of the resistance for a dead point to occur was calculated as a function of the diameter of

the PcomA. The minimum resistance of these perforating arteries were calculated based

on the assumption that the resistance is inversely proportional to the brain mass irrigated.
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Figure 1.19: Flow rate through the left and right PcomA and AcomA (Q13, Q3 and
Q8 respectively) with respect to the diameter of the right PcomA). Graph taken from [5].

The maximum for a dead point to occur is below the minimum possible resistance for a

diameter over 0.8mm, so a dead point cannot occur unless the diameter is less than 0.8mm.

They concluded that the conclusions drawn from the simplified model are valid for the

CoW as a whole. The mechanism governing the efferent vessel fluxes is the ratio of

the peripheral resistances. The flows in afferent segments and segments of the circle are

strongly influenced by their own resistances. The change in the diameter of the PcomA

affects the flux in all segments of the circle and afferent segments. The influence is strong

in the range of anatomical variation, except that the influence of the diameter of one



Chapter 1. Haemodynamics 79

PcomA on the flux in the opposite ICA reduces to zero in one case. This could be because

the energy losses on both flow routes from the ICA to the PcomAs are equal, creating a

balance. There is some doubt about the existence of a dead point in the PcomA and it

should not be assumed that the flow is zero in the PcomA in models of the CoW. Models

of the cerebral circulation should include the anatomical variations and the correlations

within the variations, since these factors strongly influence the flow in the afferent vessels

and the segments of the circle.

Hillen et al. [39] wanted to investigate the contribution of the refinements to the models

in their previous studies and gain an insight into the governing mechanisms. They con-

structed an analytic relationship between the fluxes and vascular resistances, which are

explained in section 1.5. They had to assume steady Poiseuille flow in each vessel to do

this. Conservation of mass at each of the seven junctions of the CoW required the net flux

to be zero, i.e.

Q6 = Q7 +Q8. (1.18)

The pressure is continuous for all branches of the junction, so we have equations such as

pA − pII = ZR,16Q16, (1.19)

where pA is the arterial pressure. Overall, a set of 23 linear equations for 23 unknowns was

obtained. These were solved by matrix inversion to produce 23 equations for 23 unknowns

(16 fluxes and 7 junction pressures). The fluxes did not differ by more than 10% compared

to the ones from the previous study. They were lower, which was probably because the

arterial diameters matched those in the previous study at diastole, so the time average

was larger in the previous study.

To assess the dependence of the flux through a vessel on particular resistances, the flux

through each artery from each junction was expressed as a function of its own resistance

and the resistance of the other arteries from the same junction. For example, for junction

Ia, segment 5, in figure 1.18:

Q5 =
a1ZR,3 + a2ZR,4 + a3 + a4

d1(ZR,3ZR,4 + ZR,3ZR,5 + ZR,4ZR,5) + d2ZR,3 + d3ZR,4 + d4ZR,5 + d5
, (1.20)

where the an and dn are positive constants that depend on the other resistances. If we
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then further simplify the expressions and look at the dependence of an arterial flow on its

own radius, the flux through segment i is given by:

Q′i =
a

dZR,i + e
=

aR4
i

η′id+R4
i

(1.21)

where

η′i =
8ηLi
π

,

Q′i =
Qi

pA − pV
,

where pA is the pressure at the entry points, pV is the venous pressure, Li is the length

and a, d and e are positive or negative constants. Equation (1.8) has been used to express

the flow rate through the vessel in terms of its radius. We obtain the same s-shaped graph

of flux against radius as in the previous studies (figure 1.19), with a minimum flux of zero

when the radius of the artery is zero and a maximum of a
q . The dependence of the flux in

segment i on the radius of segment j from the same junction is also s-shaped, and is given

by:

Q′i =
aη′j + bR4

j

η′jd+ eR4
j

(1.22)

The minimum flux is a
d at radius zero and the maximum is b

e at large radii or vice versa

if a
d >

b
e at large radii. The graphs are shown in figure 1.20.

A study was carried out on the posterior communicating artery and this was compared to

[1] and [5]. If we calculate Q3 and ZR,1, ZR,2, ZR.3, ZR,4 and ZR,5 remain included with

ZR,16 = 0 and all other resistances set to infinity, the model is identical to [1].

Q3 =
− ZR,1
ZR,1+ZR,2

+
ZR,4

ZR,4+ZR,5
ZR,1ZR,2
ZR,1+ZR,2

+
ZR,4ZR,5
ZR,4+ZR,5

+ ZR,3
(pA − pV ) (1.23)

Using data on the arterial resistances, we obtain

ZR,2 � ZR,1 and ZR,5 � ZR,4 ⇒ Q3 =
−ZR,1
ZR,2

+
ZR,4
ZR,5

ZR,1 + ZR,4 + ZR,3
(pA − pV ). (1.24)

This shows the influence of the comparably small afferent resistances on the flux in the

communicating segment. The flow changes direction when
ZR,1
ZR,2

=
ZR,4
ZR,5

, as in the previous
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Figure 1.20: Relationships between flux through an artery vs resistance (top row) and
flux vs radius.

studies. This mechanism is similar to the principle of the Wheatstone Bridge, in which

the bridge current is zero when
ZR,1
ZR,2

=
ZR,3
ZR,x

as shown in figure 1.21.

In [5], the influence of the contralateral PcomA on the flow in the ICA became very

small for a certain value of the ipsilateral PcomA. It is difficult to determine whether the

influence is truly zero or just close to zero. In this study, Q1 was expressed as a function
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Figure 1.21: The Wheatstone bridge.

of R1, R3 and R13. The expression can be differentiated to give:

∂Q1

∂ZR,13
=

−a1Z
2
R,3 + a2ZR,3 + a3

(d1ZR,3ZR,13 + d2ZR,3 + d3ZR,13 + d4)2
(pA − pV ). (1.25)

The denominator is always positive, but the numerator can be zero for a certain value of

R3. This was consistent with the radius of 1.85mm. This simple model gave consistent

conclusions with both previous models. Energy losses related to branching tubes and inlet

phenomena are neglected and it may be expected that the energy losses will affect the

outcomes of the models in a quantitative, but not a qualitative way. The model proves

that the mechanisms that govern the flow in the CoW are simple and explainable by

steady laminar flow relations or by electric current theory with capacitance and inductance

neglected. An obvious shortcoming of all three models by Hillen et al. [1, 5, 39] is the lack

of experimental confirmation.

Clark et al. [29] and Alastruey et al. [6] not only included vessel elasticity in the simulated

vessels, but also included the elasticity of the distal vessels by using an RCR model at the

outflow boundaries (see section 1.10). The first resistance was set to the impedance of the

terminal vessel in both studies to minimise the total impedance of the lumped parameter

model. Clark et al. [29] calculated the RCRs from the velocities at the outflows. They
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Figure 1.22: The sector model for blood vessels, by Alastruey et al. [6].

stated that the crucial unknowns were the second resistances in the model, but it is not

clear how the capacitances were determined. To measure the velocities at all the outflows

would take far too long, so the authors used a sector model. To determine the terminal

resistance, it is necessary to be able to define the flow into and/or out of the sector. The

primary input to each one comes from an artery in which the flow rate was measured using

PCMRA. The secondary anastomoses are the arteries that join the sectors. The terminal

efferents are the outflows that do not feed another sector. The terminal vessels of each

sector are melded together into one. The configuration is shown in figure 1.22.
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First a plausible set of resistances was estimated from a previous simulation or a steady

flow simulation. At the start of the simulation, the velocity was zero and there was

venous pressure everywhere. The aortic pressure waveform was used as the inlet boundary

condition. The flow at the efferent, was assumed to be the same as the mean flow through

the primary input to each sector, neglecting the secondary flows. This target flow rate

is called a QGOAL. The simulation is done for a pulsatile period, then the RCRs are

adjusted. The simplest way to do this is multiply the resistance by the ratio of mean flow

rate achieved to the measured mean flow rate. This would correctly adjust one terminal

flow, but the sectors are joined by the secondary flows, so many adjustments are needed.

After a user-specified number of periods, the simulation was started again from zero flow

and venous pressure at all nodes. When the terminal flows matched the QGOALS, the

QGOALS were adjusted to take into account the secondary flows and the process was

started again from zero flow and venous pressure. This iterative method tells us the

output RCRs. They did not test whether the assumption that the resistance is inversely

proportional to the brain mass irrigated is valid or not.

The method was carried out for three different patients who were about to undergo a BOT

test and a simulation was carried out. Using the same RCRs, the same artery was occluded

in the model as the one occluded in the BOT test. The generic model was also used in the

same way. The mean volume flow rates were compared with measured flow rates from the

PCMRA before and after the BOT test. The cerebral perfusion pressure (CPP)(difference

between arterial and venous pressure) for both models was compared. The baseline flow

results agreed closely with the PCMRA ones and were more consistent than the generic

model. For the patient who passed the BOT test, the generic and sector models showed

no drop in cerebral perfusion pressure, which is consistent with the result that the patient

passed the test. For two patients who failed the BOT test, the model predicted drastically

different flow patterns in several sectors. The reduction in flow in one sector in each patient

was comparable with the BOT failure in which hemiparesis (paralysis of one side of the

body) occurred. A similar result was found for the CPP values. The reduction in flow and

pressure was not as pronounced in one patient than the other because the former patient

failed the BOT only under hypotensive (low blood pressure) challenge. In the patient

who failed the BOT test, there was an anomaly in the occluded AC sector, in which all

possible paths to two sectors were blocked by occlusions, but the sector model found the

one unblocked path, which was implausible because it found backward flow. To correct
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the implausible solution, an eight-sector model was used. They concluded that patient

specificity was achieved. However, studies in a large population of patients are needed.

Alastruey et al. [6] studied the effects of anatomical variations on the cerebral outflows

of the CoW, both in healthy conditions and after a complete occlusion of an ICA or VA.

Previous work had shown that the COW can compensate for the omission of a single

circulus vessel and that the worst configuration of the CoW when the ICA is partially

occluded is that of a missing ipsilateral A1 ACA. They used equations (1.16) and (1.17),

except that the viscous friction coefficient was 22πηv
A . That might be due to the difference

in friction between steady and pulsatile flow explained earlier in this section, but it is not

clear why the difference between the coefficients should be so large. The resistance of the

brain was calculated, but in contrast to other studies, the peripheral resistances were set

to be inversely proportional to the areas of the arteries, giving them different resistances.

They also used an RCR model.

The model captured wave propagation features observed in in vivo measurements along

the aorta such as the increase in pulse pressure away from the heart, the notch at the end

of systole and the diastolic decay due to the Windkessel effect. The peak flow decreases

as we move down the aorta. This confirms that the flow boundary condition is realistic,

perhaps more so than some other studies. However, Clark et al. [29] might give the more

accurate estimate of the RCRs. The flow in the common carotid artery is always in the

forward direction. The brachiocephalic and subclavian arteries have backward flow at the

end of systole, which was in good qualitative agreement with in vivo measurements of

velocity from Doppler ultrasound. A quantitative comparison cannot be achieved because

there is little information about the inflow at the ascending aorta, the arterial geometry

and elasticity and the terminal impedances of the subject. The pressure waves of the three

arteries are almost identical, so the antegrade flow is a consequence of the length, diameter

elasticity and mean flow (determined by the terminal resistances) of the common carotid

and vertebral arteries and their adjacent arteries.

The volume outflows were compared under normal conditions. The MCAs receive the

largest blood supply, followed by the ACAs. The values and distribution of the outflows

agreed with in vivo measurements within acceptable limits. The flow in the AcomAs

and PcomAs are small but sufficiently significant to maintain these vessel active, being

1 to 5% of the rates in the other CoW arteries. These flows arise from pressure phase
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delays between both sides of the CoW caused by the asymmetry introduced by having

the brachiocephalic artery on one side. This asymmetry does cause a difference in flow

waveform shape and amplitude between the left and right sides of the CoW. The most

common anatomies of the CoW described in section 1.3 were simulated. When one of

the A1ACAs and P1PCAs is absent, the flow rates through the communicating arteries

is higher. The direction of the flow shows which side it is. The flows in the efferent

arteries changed by less than 15%. This suggests that flows through the communicating

arteries are sufficient to supply all areas of the brain in subjects with a hypoplastic (small or

underdeveloped) A1 ACA or P1 PCA. In the anatomies tested with missing communicating

arteries, the flows in the other arteries changed by less than 1%. The results show that

a significant flow in AcomA without significant stenosis of the ICAs or VAs implies that

there is at least one missing or hypoplastic A1 ACA or P1 PCA.

The different anatomies of the CoW were then simulated with an occluded ICA or VA.

The occlusion of the VA has relatively little effect compared to the occlusion of the ICA.

If the right ICA is occluded, the highest decrease in flow in the efferent arteries occurs in

the right MCA then the right A2 ACA. The decrease in flow is greater if the AcomA is

absent than a PcomA because flow from the left ICA to the right ICA has less viscous

dissipation through the AcomA than through the PcomAs. This shows that the AcomA is

a more critical collateral pathway than both PcomAs if an ICA is occluded, in agreement

with previous work. If the right VA is occluded, the P2 PCAs are the efferent arteries with

the highest reduction in flow rates and the PcomAs become the more important collateral

routes. The anatomy with a missing A1 ACA and complete occlusion of the contralateral

ICA presents the highest reduction in outflow rates, and therefore the highest risk of

ischaemia and stroke.

The effect of partial occlusions of the communicating arteries with occlusion of the right

ICA were studied. The flows in the A2 ACA and MCA depend strongly on the calibre of

the AcomA, whereas the P2 PCA flow remains almost constant. The diameter of the right

PcomA affects the outflows at all three efferent arteries. The flow through the AcomA

is higher for a given calibre than the flow through the PcomA if it has the same calibre.

A reduction in the diameter of the AcomA produces a higher reduction in the mean flow

rates of the A2 ACA and MCA than the same reduction in the PcomA, confirming that

the AcomA is the more important collateral pathway. The flow in the PCA decreases as
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the diameter of the PcomA increases because more blood flows to the anterior circulation.

The minimum diameter of the PcomA for collateral flow is less than that for the AcomA

because the PcomA is longer, so it has a higher resistance to flow.

Detailed information on elasticity and boundary conditions and geometry was not avail-

able. The data was for healthy young adults. This model has not analysed other mech-

anisms of autoregulation such as vasoconstriction and vasodilation and wall remodelling.

The model can predict the effect of clinical interventions and can study the effects of

changes in the cardiac output. It has the potential to simulate local flows in detail if

coupled to a 3D simulation of a local area of the circulation, so flow patterns leading to

aneurysms and atherosclerosis can be investigated.

Olufsen [24] studied the effects of different boundary conditions. For this model, the

arteries were assumed to taper. Instead of using a completely one-dimensional model, a

boundary layer was used, with a thickness of 1mm in all arteries. The velocity gradually

decreases from the mean velocity to zero across the boundary layer. This is reasonable

because measurements show that the velocity profile is almost flat in the aorta and more

parabolic in the peripheral arteries. The RCR model (see section 1.10) was compared to a

pure resistance model and a structured tree outflow condition. In this, the small arteries

were modelled as a symmetric tree from each outlet, with 17 generations of bifurcations.

The momentum equation (equation (1.2)) was linearised. Combining this with equation

(1.28) below for the compliance gave a wave equation. The impedance of an arterial

section was calculated, and the impedance of each tree was calculated by combining the

impedances of each section. The impedance is assumed to be zero beyond the arterioles

which is consistent with the fact that smaller arteries generate the peripheral resistance,

and not the capillaries. The flow in the arterioles is assumed to be purely viscous and not

pulsatile, but such assumptions are sensible, because velocity waves propagate and decay

exponentially [75]. The structured tree condition maintains high frequency oscillations

in the impedance and includes wave propagation effects for the entire tree, which is not

possible with simpler models. The RCR and resistance models are likely to introduce

artificial reflections at the outflow boundaries.
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1.10 Inclusion of arterial elasticity

The displacement of the artery walls due to the elasticity might be as important as the

pressure, velocity and stress flow fields in the development of cardiovascular disease, but

most 3D CFD simulations assume that the walls are rigid, as explained in section 1.8.

The elasticity is also likely to have important effects on the pressure, velocity and stress

flow fields, since several of the studies reviewed in section 1.8 show that the flow fields are

sensitive to small changes in the geometry. Hoi et al. [74] found that the wall shear stress

across three planes differed by an average of 42%, 29% and 37% between a spheroidal CFD

model of an aneurysm and a more realistic model with a volume that was 8% larger. This

suggess that the flow fields are very sensitive to small changes in volume, which suggests

that they would be signficantly affected by the inclusion of elasticity. However, Jeays et al.

[44] found an average difference of only 2% in the wall shear stresses obtained by a model

of the superior mesenteric artery with moving boundaries agreed compared with those

obtained by a model with rigid boundaries.

If the effects of arterial wall elasticity are to be included, an equation of motion for the

vessel wall is needed. In models, the radius is usually assumed to change instantaneously

with pressure [1, 5, 6, 24]. If we balance the circumferential tensile stress, σ and transmural

pressure (the difference in pressure between the inside and outside of the artery) for a

cylindrical vessel and use the fact that biological tissue is practically incompressible [6, 24,

76], we obtain:

p− p0 =
4

3

Eh

R0

(
1− R0

R

)
, (1.26)

where p is the pressure of the fluid inside, p0 is the external pressure, E is the Young’s

modulus, h is the thickness of the wall and R0 is the radius of the tube when p = p0.

Equation (1.26) is developed in more detail in section 3.2.1. One of the more important

assumptions of the derivation is that the walls are thin, i.e. h� R.

In reality, the transmural pressure applies an outward force and the elasticity of the vessel

applies an inward force, so the Newtonian equations of motion need to be integrated to find

the radius of an artery or position of the wall at a particular time. As we would expect,

there is a time delay in the response from a change in pressure to the corresponding change

in cross-sectional area, which is as we would expect from integrating Newton’s equations

of motion, but Olufsen [24] commented that this is because the wall is viscoelastic.
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The Young’s modulus depends on the radius of the artery at zero transmural pressure.

Olufsen [24] obtained an approximate functional fit for the Young’s modulus as a function

of R0. It decreases with vessel radius, which is consistent with [6], which used a Young’s

modulus of 4.0×105Pa for the systemic arteries, 8.0×105Pa for the carotid and vertebral

arteries and 1.6×106Pa for the other arteries because intracranial arteries are stiffer than

extracranial ones, in accordance with the reduced thickness of the elastic tissue described

in section 1.1. Hassan et al. [54] used E = 2.7 × 106Pa, but they used a fluid structure

interaction programmed into a software package called Fidap. It is difficult to model the

Young’s modulus accurately because the data vary widely between patients.

The compliance constant is defined as:

C =
dV

dp
, (1.27)

where V is the volume. Using equation (1.26), the compliance in one artery is given by:

C =
3πR3L

Eh
≈ 3πR3

0L

Eh
(1.28)

Alastruey et al. [6] used equation (1.26), but with the second term multiplied by R
R0

to

calculate the compliance constant (equation (1.29)), which gives a linear pressure-radius

relationship. From experiments, the pressure-radius relationship of arteries is found to be

linear, since the Young’s modulus is not constant [76].

p = p0 +
β

A0

(√
A−

√
A0

)
, β =

4
√
πhE

3
. (1.29)

Alastruey et al. [6] assumed a wall thickness of 25% of the internal radius, so the equation

may not be valid because the derivation assumes h
r << 1.

In contrast to the other studies, Hillen et al. [1, 5] used a linear pressure-area relationship

and estimated the compliance constant from the fact that the cross-sectional area of carotid

and vertebral arteries at a systolic pressure of 120mmHg is 10% larger than that at a

diastolic pressure of 80mmHg [77]. Therefore:

A = A0(1 + β(p− pd)), (1.30)
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Figure 1.23: Resistance-capacitance-resistance model for the vessels beyond the outflow
boundaries.

where pd is the diastolic pressure and β is the compliance constant. Hillen et al. [5] used

β = 1.887×10−5m2N−1. This does not take into account the different elasticity of different

arteries and could be quite inaccurate.

Using a constant peripheral resistance as an outflow boundary condition forces the pres-

sure and velocity to be in phase at the outlet. This is not valid if the arteries lying beyond

the simulation domain are large [24]. An alternative approach is to apply a Windkessel

model at the outflow boundary. The most commonly used one is a three-element lumped

parameter model which represents the resistance and elasticity of the vessels by an electri-

cal model consisting of a resistance in series with a parallel combination of a resistor and

a capacitor to simulate arterial compliance (figure 1.23).

The impedance is given by:

Z(ω) =
ZR,1 + ZR,2 + iωZCZR,1ZR,2

1 + iωZCZR,2
(1.31)

Substituting

V = V0 exp iωt, I = I0 exp iωt, (1.32)

where I is current and V is voltage, into this, gives the following differential equation [6]

V +R2ZC
dV

dt
= I(ZR,1 + ZR,2) + ZR,1ZR,2ZC

dI

dt
(1.33)



Chapter 1. Haemodynamics 91

V is analogous to p and I is analogous to Q.

p+ ZR,2C
dp

dt
= Q(ZR,1 + ZR,2) + ZR,1ZR,2C

dQ

dt
, (1.34)

where Zc is the peripheral compliance. If the Navier-Stokes equations are solved by meth-

ods explicit in time, the equation above cannot be solved directly because it requires

knowledge of the flow fields at all times during the current pulsatile period. This has been

overcome by using the flow fields from the previous pulsatile period to solve this equation

alongside the Navier-Stokes equations and the solution converges within a few pulsatile

periods [6, 24].

Alastruey et al. [6] state that the compliance for the whole arterial system is 9.45 ×

10−9m5N−1. In this study, the compliance of the efferent arterial segments were calcu-

lated using equation (1.28). Compliances can be combined in the same way as capacitances

in an electric circuit, so the peripheral compliances could be worked out from the total

compliance. They were distributed in the same proportion as the flow distribution de-

termined by the resistances, i.e. inversely proportional to the resistances, as explained in

section 1.5.

A phase difference between the flows in the carotid arteries could be caused by a difference

in wave propagation speeds, ce.

ce =

√
aEh

ρR
, (1.35)

where a is a dimensionless constant, which is 2 [37] or 4
3 [24]. Using a rough calculation

for ideal fluids (fluids without viscosity), a phase difference of 2.25% could arise from

differences in the compliance of the arteries, as calculated from a plausible set of parameters

[37], for example E1 = 2.0× 106Pa, E2 = 1.5× 106Pa, L1 = 21cm, L2 = 20cm, R1 = R2 =

0.3cm, h1 = 0.03cm, h2 = 0.02cm.

Vorp and Geest [78] discuss the mechanism of rupture of abdominal aortic aneurysms

(AAA) and how the risk of rupture can be predicted. Rupture occurs when the stress

within the arterial wall is greater than the stress that the tissue can withstand. Many

experiments have shown that the wall strength decreases as an AAA forms, but the wall

stress increases. In particular, in vivo measurements have shown that the elastic modulus

increases in patients with the AAA. Ex-vivo experiments have shown that the mechanical
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properties vary spatially. These variations must therefore be taken into account on a

patient-specific basis. While equation (1.26) describes the pressure-radius relation for a

cylinder, it is inadequate for a complex geometry and tissue constitutive relations must be

used if the state of stress is within the wall is to be determined accurately. Measurements

of the wall thickness, the forces imparted by the fluid and boundary conditions at either

side of the wall are required for this purpose.

Vorp and Geest [78] have recently developed a rupture potential index, which compares

the stress acting on the wall of an aneurysm to the strength of the wall. In this model, the

wall strength was calculated from a statistical model that had been derived by regression

on data from many patients. The spatial variation of the wall strength depended on the

ratio of the local transverse diameter to the maximum transverse diameter.

Watton et al. [79, 80] have developed models for the growth and stabilisation of aneurysms

that take into account the following details of the structure of the arterial wall. The main

load-bearing components of the arterial walls are elastin and collagen, but elastin bears

most of the load at physiological strains. In unloaded tissue, most of the collagen fibrils

are folded and a certain strain, called the recruitment stretch, is required before a fibre,

consisting of a population of fibrils, can contribute to load bearing. The elastin fibres do

not have this property. They are observed to degrade as an aneurysm grows. However,

the collagen fibres are constantly being deposited and degrading and these processes act

to change the configuration of the collagen fibres in response to changing physiological

conditions. The models assume that new collagen fibres attach to the arterial wall at a

constant strain and that the configuration of the fibres changes such that the recruitment

strain relaxes towards this attachment strain. They also assume that the density of collagen

fibres increases such that the rate of increase is proportional to the difference between the

strain and the attachment strain. The constitutive relations for the collagen and elastin

were nonlinear.

Watton et al. [80] analysed the deformation of pre-stretched cylindrical and spherical

membranes subject to a constant internal pressure. They initially assumed that the stretch

of the collagen fibres was equal to the attachment stretch. Equations were derived for the

concentrations of collagen fibres when the membranes were in mechanical equilibrium. For

the cylindrial and spherical membranes, the concentration must increase by the square and

cube of the circumferential strain respectively. The equations were differentiated to find
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the rate of change of concentration. It depended on the current fibre concentration, the

difference between the collagen fibre stretch and the attachment stretch, the rate of change

of fibre stretch, the rate of loss of elastin and the ratio of load borne by the elastinous

and collagenous constituents. Upon substitution of an exponential degradation of elastin

over time, the equations for the rate of change of collagen and elastin concentration had

the same form. The rate of increase of fibre concentration necessary for stabilisation was

larger for the spherical membrane.

The assumption about the stretch of the collagen fibres was relaxed and a more general fibre

concentration evolution equation was proposed. Numerical analyses of the growth, collagen

fibre stretch and collagen fibre concentration was carried out for cylindrical and spherical

membranes using simplified fibre concentration equations, namely (1.36) and (1.37), along

with a constitutive model for the membranes and a spatially uniform degradation of elastin.

dnC
dt

= a0(εC,ll − εC,AT,ll), (1.36)

dnC
dt

=

(
a1nC + a2

∣∣∣∣dnEdt
∣∣∣∣) (εC,ll − εC,AT,ll), (1.37)

where n is the number density of the fibres, εC,ll and εC,AT,ll are respectively the current

and attachment stretches of the collagen fibres in the direction of the fibres, the subscripts

C and E denote quantities for the elastin and collagen fibres respectively and a1 and a2 are

positive constants. Modelling the concentration of the collagen fibres with equation (1.36)

did not stabilise the growth of the the spherical or cylindrical vessels, but the growth was

stabilised when equation (1.37) was used, provided that a1 > 0. Incorporating sensitivity

to the rate of elastin degradation, i.e. setting a2 > 0, improved the stability of the growth.

Watton and Hill [79] simulated the development of an AAA due to an axisymmetric

degradation of elastin in the arterial wall by applying the model described three paragraphs

previously at each point in space. The pressure inside the artery was constant in time and

space. The fractions of the load that were initially borne by the elastic and collagen fibres

could be freely chosen. The artery was assumed to be cylindrical, but, in contrast to [80],

the rate of degradation of elastin varied along its axis, causing an aneurysm to form in

the centre instead of uniform growth of the artery. The rate of growth was approximately

proportional to the diameter of the aneurysm for a range of values of the rate constants for

the deposition of collagen and the relaxation of its recruitment strain. Increasing the rate
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of turnover of collagen fibres increased the rate and nonlinearity of the dilation. Increasing

the deposition rate reduced the rate of dilation. Inreasing the proportion of load initially

borne by the elastin rendered the artery more sensitive to the degradation of elastin and

resulted in faster rates of dilation. Aneurysms of realistic dimensions could be developed

from these parameters. It was tested slightly more rigorously by comparing the resulting

mechanical properties of the wall with experimentally mechanical properties in aneurysms

of the same radius.

Ventikos et al. [81, 82] extended the model of aneurysm evolution proposed in [79, 80]

by simulating a blood flow through the vessel, and letting the rate of degeneration of the

elastin fibres at each point on the wall depend on the wall shear stress (WSS) exerted by the

blood. This rate of degeneration was a decreasing function of the wall shear stress (WSS)

for WSSs between 0.5Pa and 2.0Pa, which is consistent with the fact that low WSS leads to

the death of endothelial cells, as explained in section 1.8. The collagen fibres were assumed

to bear 80% of the initial load at systole. Finite-volume and finite-element solvers were

used to compute the fluid and wall dynamics respectively. The disparity in the timescales

of the haemodynamic period and were tackled by either looking at systolic conditions or

appropriate averaging. The aneurysm was represented by an initial outpouching.

At each point on the wall, The degeneration of the elastin due to the low WSS caused the

aneurysm to grow in size, which further lowered the WSS. This mimicked the instability

and subsequent rupture of aneurysms. There areas of lowest WSS corresponded to the

areas where the greatest degeneration of elastin had occurred. The collagen content in the

arterial wall increased to compensate for the loss of elastin, which enabled the aneurysm

to stabilise. During the simulations in these studies, the elastin strains increased signifi-

cantly, whereas the collagen strains increased negligibly. In one of these two studies [82],

the simulation was started from a cylindrical geometry, but the elastin was originally de-

generated in a small region of the outpouching. The elastin was allowed to degenerate

in a larger region once this system had reached a steady state, i.e. an outpouching had

formed.

Watton et al. [83] modelled the aneurysms in a similar way to [82], except that a second

model was constructed for which the degradation of elastin at each point was linked to

a high WSS gradient instead of a low WSS. When the degradation of elastin was linked

to a low WSS, it degraded progressively until a peak in the WSS distribution developed
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within the dome of the aneurysm due to the enlargement of the distal neck, which halted

the growth of the aneurysm. When the degradation of elastin was linked to a high WSS

gradient, it did not degrade progressively because the WSS was low and relatively uniform

within the dome region of the aneurysm. The latter model led to aneurysms that prop-

agated upstream and downstream. Neither model yielded aneurysms with a well defined

neck.

The models described in [81–83] can mimic the growth and stabilisation or rupture of

aneursysms, so they could be used to evaluate the risk of a haemorrhage. Measurements of

aneurysm growth have been compared with the WSS results of haemodynamics simulations

[21, 22] and they could be compared with the patient-specific models of this growth by

Ventikos et al. [81] to develop their technique further.



Chapter 2

Lattice-Boltzmann methods

CFD simulations of cerebral blood flow have a high computational cost due to the intricate

geometry of the vessels. Simulations with a high resolution or with many vessels must run

efficiently in parallel if results are to be obtained within a reasonable timescale, which

may be a few hours for a scientific study. CFD simulations could be used to help surgeons

assess the risks of cerebrovascular disease in patients and the effects of surgical treatments

on a patient before they are carried out [84, 85], as explained in section 1.4, in which case

the results must be available within a few minutes. However, it is difficult to develop high-

performance, scalable codes for continuum solvers [86]. The volumetric mesh required for

the simulation is difficult to generate and involves significant human-computer interaction

[87]. The lattice-Boltzmann method (LBM) provides an alternative. It is represented by

a Boltzmann equation that is discretised in time, space and velocity.

The method is summarised in section 2.1. Its advantages over finite-element and finite-

volume fluid solvers are described in section 2.2. Lattice-Boltzmann simulations of blood

flow are reviewed in section 2.3 and their future utility for planning neurosurgery is dis-

cussed. Section 2.4 explains how the LBM was developed from Lattice Gas Automata.

Section 2.5 explains the theory of the LBM in detail. An improvement to the method

to simulate incompressible flow more accurately is discussed in section 2.6. Section 2.7

explains how simulation parameters are converted between physical and lattice units. The

intrinsic accuracy of the LBM is discussed in section 2.8. Some methods for dealing with

boundary conditions and their accuracy are reviewed in section 2.9. Further applications

96
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of the LBM are discussed in section 2.10. Section 2.11 describes how the LBM can be used

for simulations of non-Newtonian fluids.

2.1 Summary of the lattice-Boltzmann method

The LBM is represented by a Boltzmann equation that is discretised in time, space and

velocity [16, 17]:

fi(x + ∆tei, t+ ∆t)− fi(x, t) = fi(x, t) + χi(x, t), i ∈ {0, 1, 2, . . . , N − 1}, (2.1)

where fi(x, t) describes the distribution function of the particle density at site x at time t

moving with microscopic velocity ei, χi(x, t) is the collision operator and N is the number

of discrete velocities. The density and macroscopic velocity are given by:

∑
i

fi = ρ, (2.2)∑
i

fiei = ρv. (2.3)

With an appropriate collision operator, the Navier-Stokes equations may be derived.

For all simulations of fluid flow in this thesis, I use the LBM with a Bhatnagar-Gross-Krook

(BGK) operator, in which the distributions relax to equilibrium at a single timescale [16].

The lattice-Boltzmann equation (equation (2.1)) becomes [16, 17]:

fi(x + ∆tei, t+ ∆t)− fi(x, t) = −1

τ
(fi(x, t)− f (eq)

i (ρ(x, t),v(x, t)), (2.4)

where τ is the dimensionless relaxation time and f
(eq)
i (ρ,v) is the local equilibrium distri-

bution function for density ρ and velocity v. For practical implementation, this equation

is divided into two steps: collision, in which the distributions functions are modified ac-

cording to the right side of equation (2.4), i.e.

f+
i (x, t) = fi(x, t)−

1

τ
(fi(x, t)− f (eq)

i (ρ(x, t),v(x, t))), (2.5)
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and streaming, in which the distribution functions are moved to the neighbouring sites,

i.e.

fi(x + ∆tei, t+ ∆t) = f+
i (x, t). (2.6)

At boundary sites, i.e. sites adjacent to the wall (edge sites), inlet or outlet, some of

the neighbouring sites are solid, so some of the distributions are unknown after stream-

ing. Many boundary condition methods have been devised to determine the distribution

functions from the velocity or pressure and they are discussed in section 2.9.

I use the two-dimensional, 9-velocity model, D2Q9, or the three-dimensional 15-velocity

model, D3Q15, [17] or their incompressible counterparts, D2Q9i and D3Q15i [88, 89], in

all simulations in this thesis. The particle velocities, ei are given by Succi [17]. There is

some freedom of choice in the equilibrium distribution functions [17]. For the compressible

models, they can be chosen as:

f
(eq)
i (ρ,v) = wiρ

(
1 + 3

ei ·v
c2

+
9

2

(ei ·v)2

c4
− 3

2

v ·v
c2

)
, (2.7)

where the wi used for the model in this study are given by Succi [17], Qian et al. [16] and

Zou et al. [89], and c = ∆x/∆t, where ∆x is the lattice spacing.

Through a Chapman-Enskog expansion, it can be shown that the macroscopic equations

are the incompressible Navier-Stokes equations with error terms as follows [89]:

∇ ·v = 0 +O(∆x2) (2.8)

∂v

∂t
+ v · ∇v = −∇P

ρ0
+ ν∇2v +O(∆x2) +O(Ma2) +O(Ma3∆t), (2.9)

where ∆x = c∆t, Ma is the Mach number and ρ0 is the actual density of the fluid. The

pressure is given by equation (2.10):

p = ρc2
s, (2.10)

where the speed of sound is given by c2
s = c2

3 for the D2Q9 and D3Q15 models. The

kinematic viscosity is

ν =
c2

3

(
τ − 1

2

)
∆t. (2.11)
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The stress tensor, σαβ, can be calculated directly from the distribution functions as follows

[59, 90, 91]:

σαβ =
∑
i

f
(neq)
i eiαeiβ, (2.12)

The LBM is only valid for low Mach numbers, i.e. |v| � ∆x/∆t due to the error terms

in equation (2.9). The LBM also requires the time over which the fluid undergoes a

macroscopic change, such as the period, T , in a range of distance L, to be much greater

than the time taken by sound to travel that distance, i.e. T � L
cs

. This is explained in

section 2.6.

Using an incompressible model eliminates the compressibility error of order Ma2 [88, 89].

For this model, the density and macroscopic velocity are calculated by equation (2.13)

instead of equations (2.2) and (2.3).

∑
i

fi = ρ,
∑
i

fiei = ρv. (2.13)

For the equilibrium distribution, the density appears inside the brackets, i.e. equation

(2.7) becomes

f
(eq)
i (ρ,v) = wi

(
ρ+ 3

ei ·v
c2

+
9

2

(ei ·v)2

c4
− 3

2

v ·v
c2

)
. (2.14)

2.2 Advantages of the lattice-Boltzmann method

Finite-element or finite-volume fluid dynamics solvers have problems in 3D due to the

computational costs of mesh generation, the need to solve the auxiliary Poisson equation

for the pressure field, and approximations associated with the calculation of shear stress

from the velocity field [86, 90]. It is difficult to develop high-performance, scalable parallel

codes from continuum solvers. The intricate geometry of the vessels and calculation of

boundary conditions at such walls are also very difficult for continuum-based solvers. De-

veloping 3D models with the temporal resolution to address issues of pulsatile flow, phase

differences and the effects of treatment is very powerful in understanding neurovascular

patho-physiology and treatment [86].

LBM has a number of advantages over finite-element or finite-volume methods for com-

putational fluid dynamics simulations. It is applied on a Cartesian grid of lattice points,
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which is simple to generate [87]. It is ideally suited to computation on multicore machines

because the distribution functions at each lattice site are calculated using only informa-

tion from the nearest neighbours [16]. Consequently, numerical codes can be implemented

efficiently in parallel [16, 90]. In a parallel implementation, a linear speed-up with number

of processors can be ahieved. Furthermore, the pressure, p, and the stress tensor, σαβ, can

be calculated directly from the distribution functions using equations (2.10) and (2.12).

2.3 LBM simulations of blood flow

Recently, scientists have started to use the LBM to study blood flow through parts of

patients’ vasculatures [59, 85, 87]. In 2003, Artoli [59] simulated steady and pulsatile

blood flow in the aortic bifurcation. Pressure boundary conditions were used at the inlets

and outlets with the method by [9], which is described in section 2.9.2. However, this

requires the inlets and outlets to be aligned with an axis. The distribution functions

at walls that are unknown after streaming are determined by the bounce-back method,

described in section 2.9.1. Artoli [59] found the flow was simple at the start of systole,

but negative velocities were observed just proximal to the bifurcation later on. The flow

then relaxed towards the end of systole. Complex flow occurred in the main aorta during

diastole involving vortices and mixing. At all times during the pulsatile cycle, the flow at

the outlets was in the forward direcion, which demonstrates the function of the aorta as a

reservoir. The von Mises stress, which is an invariant of the stress tensor, was calculated

at the walls. High stress was found near the outlets, where the arteries are curved. While

the accuracy of the steady and unsteady simulations were tested for a 3D cylinder, the

flow fields obtained for the aortic bifurcation were not compared with those obtained in

other studies.

More recently, both Axner [85] and He et al. [87] compared the flow fields that they

obtained in a patient-specific system with a continuum solver and they mostly agreed

well. He et al. [87] used vasculatures which included a saccular aneurysm. In one of

the models, the jet flowing into the aneurysm impinged on a large area of the wall, so

according to Cebral et al. [3], the risk of rupture was low. Axner [85] developed a tool

for extracting the vasculature, editing it and computing the flow. An artery with severe
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stenosis was simulated with and without a bypass to demonstrate the feasibility of the

tool for simulating the effects of surgery.

In the GENIUS (Grid Enabled Neurosurgical Imaging Using Simulation) project [84], a

tool called HemeLB has been developed [92, 93] to carry out interactive simulations of

patient-specific cerebral blood flow, which is intended for use by clinicians for surgical

planning. The configuration of lattice sites, including the identification the sites that are

inside and outside of the fluid domain and those adjacent to inlets, outlets and walls,

is constructed by using a fast and robust parallel ray-tracing technique with an efficient

clustering algorithm [86]. While the simulation is running, images of the flow fields are

sent to the user over a dedicated network while the simulation is running [84]. The user

can change parameters on the fly to find out how a simulation responds to perturbations,

without having to restart the simulation, which would be essential for surgical planning,

as well as the ability to obtain the results within a clinically useful timescale.

In order to achieve this, HemeLB runs very efficiently on multicore machines. The fluid

solver by itself scales linearly up to 256 and 1024 cores for geometries with 1.6 million and

4.7 million lattice sites respectively [92, 93]. The main reasons for this efficiency are as

follows. First, each lattice site only requires information from neighbouring sites for the

LBM. Second, buffers are set up for every processor to store information that is sent to or

received from neighbouring processors and to store the indices of the send or receive buffers

for the relevant lattice sites. Consequently, communication costs are minimised. Third,

the domain is partitioned such that each processor deals with exactly the same number

of fluid sites plus or minus one. Fourth, it uses a bi-level grid to store the configuration

of lattice sites in the grid [86, 92]. This avoids the need to check every lattice site and

reduces memory requirements. Axner [85]’s solver scales well up to 128 cores. In 2001,

Gropp et al. [94] developed a non-LBM fluid solver that scales linearly up to 700 cores on

a system with 2.8 million vertices.

The CrossGrid project aims to support pre-operative planning of vascular surgery in a sim-

ilar way [95] to the GENIUS project, by allowing storage of the medical imaging data, gen-

eration of a computational mesh, simulation of the fluid flow and visualisation of the flow

fields to take place in disparate geographical locations. The fluid dynamics are simulated

in parallel on a computational grid involving multicore machines in different geographical

locations. When this is complete, the results are transferred to a different computing
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resource to allow the clinician to visualise the flow fields. The clinician can then assess

the effects of surgery on the blood flow by editing the vasculature and running another

simulation. For example, in a patient with atherosclerosis, a surgeon may consider placing

a bypass to allow blood to flow past an occluded segment of an artery, as described in

secton 1.3.

Melchionna et al. [96] have also developed a tool for lattice-Boltzman simulation of cerebral

blood flow, including software to reconstruct patient-specific geometries from CT images.

The lattice-Boltzmann software is capable of carrying out multi-scale simulations and is

described by Bernaschi et al. [97], as discussed in section 2.10. Melchionna et al. [96]

demonstrated its use for a simulation of the coronary artery and surrounding vessels,

but only steady flow was considered, in contrast to the studies by Mazzeo and Coveney

[92], Mazzeo et al. [93] and the majority of those described in section 1.8. The spatial

resolution is 20µm, which is much higher than that used in HemeLB. Therefore, 250× 106

lattice points were required, which was higher than the numbers used in HemeLB. The

resolution was chosen to be that beyond which the flow fields obtained in simulations of

Poiseuille flow are no longer sensitive to the resolution. A rich structure was seen in the

wall shear stress, particularly at the main bifurcations, although this was not compared

with the WSS achieved from any other computational or experimental studies.

The distribution functions at lattice sites adjacent to the walls that are unknown after

streaming are determined by the bounce-back method, described in section 2.9.1, due to

its simplicity. An equilibrium scheme is used at the inlet and outlet, as described in section

2.9.4 to apply velocity boundary conditions, which constrasts with the majority of 3D CFD

simulations of cerebral blood flow described in section 1.8, which use velocity and pressure

boundary conditions at the inlets and outlets respectively. The flow rate at each outlet

is set to be directly proportional to the area of the outlet such that the sum of the flow

rates is equal to the flow rate at the inlet, as in the studies by Tateshima et al. [30] and

Cebral et al. [3, 25]. A plug flow profile was used instead of the parabolic flow profile used

in the other studies discussed in this thesis, because for the former flow profile, the flow

rate is proportional to the area, while for the latter, it is proportional to the square of

the area, as shown by equation (1.12). However, it would have been possible for them to

use a parabolic profile with the flow rate directly proprtional to the area, though it would

have resulted in a different pressure distribution along the arteries. HemeLB uses pressure
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boundary conditions at the inlets and outlets to the simulation. The method for applying

the boundary conditions is described in [93] and section 2.9.6.

The techniques used by Melchionna et al. [96] to minimise the computational cost of

simulations on multicore machines are similar to those in HemeLB: buffers are set up to

store information that is sent to or receved from neighbouring processors, the lattice sites

are divided evenly between the processors and it uses an indirect addressing system in

order to reduce memory requirements for sparse systems. Their simulations were carried

out on graphical processing units. The scalability was only tested on a system with 4×106

lattice sites and up to eight processors, but a superlinear speedup was achieved, with 955

million site updates per second achieved with eight GT200 GPUs. HemeLB has achieved

576 million lattice site updates per second for a simulation with 1.6 million lattice sites

running on 512 cores of the Ranger supercomputer at the Texas Advanced Computing

Center.

2.4 Development from Lattice Gas Automata

In this section, I describe how the lattice-Boltzmann method was derived from lattice gas

models. Lattice gas models consist of a regular lattice, with a set of variables {Ni}, i ∈

{1, . . . , b} that describe the population of b given velocities, ei [16, 17, 98]. Each velocity

on each lattice point has a population of either 0 or 1 particles. This had been designed

to minimise the amount of memory that simulations needed. The dynamics consists of

streaming from node to node according to the velocity ei and collision, in which the

populations are redistributed as particles collide. This collision must be carried out in a

way that conserves mass and momentum. The state of a Lattice point can be described

by a vector with the same number of components as the number of velocities. For every

possible state s, the probabilities of a transition to state s’ are assigned, making sure that

mass and momentum are conserved. At every collision, the system moves to state s′ with

probability P (s′). A collision matrix is needed to store the probabilities of each state s′

from each state s. The equation for the evolution of the system using this method is [98]:

Ni(x + ei, t+ 1) = Ni(x, t) + χi, (2.15)
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where Ni is the occupation number of a lattice site for velocity i. χ is the collision term.

We have:

χi =
∑
s,s′

(s− s′)P (s→ s′)
∏
i

N si
i (1−N si

i )1−si , (2.16)

where s is a vector describing the state and i is the index to the components. The entire

product is 1 when the system is in state s, otherwise it is zero. A simpler way of writing

this would be:

χi =
∑
s′

(s− s′)P (s→ s′). (2.17)

If fi is the ensemble average of Ni, the density and momentum can be found by [16, 17, 98]:

ρ =
∑
i

fi(r, t), (2.18)

ρv =
∑
i

fi(r, t)ei. (2.19)

It has been shown that the Frisch-Hasslacher-Pomeau (FHP) model, and the face-centred

hypercubic (FCHC) satisfy the incompressible Navier-Stokes equations in two and three

dimensions respectively [16]. The FHP model is a hexagonal model in which the particles

can have only six velocities, so they always propagate towards one of the nearest neighbours

of the lattice point. There are no rest particles [17]. The FCHC model is a four-dimensional

model with 24 directions. The model is projected onto a 3D geometry to simulate the flow

[98]. These models are isotropic, whereas a square lattice with only four directions would

not be isotropic, i.e. rotationally invariant, which means that angular momentum would

not be conserved [17]. Equations (2.25) and (2.26) show this in more detail. Qian et al.

[16] propose a 3-dimensional model with 14 moving directions and one rest particle, as

explained in section 2.5. This satisfies isotropy with fewer directions, so it requires 42%

less computer memory for simulations.

The main advantages of lattice gas techniques over conventional finite-difference methods

for solving the Navier-Stokes equations were the intrinsic stability, easy introduction of

boundary conditions and the simplicity of the numerical scheme. The populations of each

velocity at each lattice site are calculated depending only on information from the nearest

neighbours, so numerical codes can be implemented efficiently in parallel. However, there

were several disadvantages. There was a lot of statistical noise, resulting in the need for

spatial or time averaging. There was also some coupling of statistical fluctuations.
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The Navier-Stokes equations are Galilean invariant. If one measures the acceleration of

a point, one is looking at different fluid elements over time. The acceleration will be

different in different frames of reference because one will be looking at a different set

of fluid elements. The left hand side of equation (1.2), which is shown below, is the

instantaneous acceleration of a fluid element when one is moving with the fluid, i.e. it is

equal to the acceleration when v is zero.

ρ

(
∂v

∂t
+ v · ∇v

)
= ∇ ·σ.

This quantity is the same in all frames of reference, since the acceleration of a particular

fluid element does not depend on its velocity. The lattice gas automata simulate Navier-

Stokes equations, but there is a density dependent factor in the advection term (the second

term), so it becomes [16, 98]:
g(ρ)

ρ0
v · ∇v. (2.20)

It is Galilean variant, and by the equation, the pressure then depends on velocity.

This problem arises because only one particle is allowed in each velocity state on each

lattice point. There is a semi-detailed balance of binary collisions, which means that:

∑
s

P (s→ s′) = 1. (2.21)

It can be shown that the collisions will force the system to approach a local equilibrium

described by the Fermi-Dirac distribution [98]:

fi =
1

1 + exp(α+ βei ·v)
, (2.22)

where α and β are Lagrange multipliers determined by mass and momentum conservation.

The particles should instead obey Maxwell-Boltzmann statistics.

Some attempts were made to improve on these disadvantages [16]. Using mean populations

of particles instead of the Boolean variables of lattice gases, (i.e. using a population

between 0 and 1 instead of 0 or 1 exclusively) reduced the statistical noise, but this

required polynomials in the population functions for the collisions and was impractical for

all but the simplest cases. An equation that uses mean populations of particles is called
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the Lattice-Boltzmann Equation (LBE) (equation (2.1)):

fi(r + ei, t+ 1)− fi(r, t) = χi(r, t), (2.23)

where fi is the probability distribution function for particles such that equations (2.2) and

(2.3) hold [16, 17]:

∑
i

fi, = ρ∑
i

fiei = ρv,

and χ is the collision function

Another attempt to improve on these disadvantages involved using a simplified collision

matrix, whose elements depend only on the angle of interacting particles. This suppressed

statistical noise, but the lack of Galilean invariance remained. One more approach was

tried, which uses Maxwellian particles, that violate the semi-detailed balance of binary

collisions and introduce more populated rest particles. In this model, the collision rules

were complicated.

In 1992, Qian et al [16] proposed the Lattice BGK model, which is a combination of the

previous approaches, so that continuous distribution functions are used, rest particles were

used and the collisions were simplified. The LBE is applied with a Bhatnagar-Gross-Krook

(BGK) operator, as explained in section 2.1. With this term equation (2.23) becomes the

LBGK equation (equation (2.4)) [16, 17].

fi(r + ei, t+ 1)− fi(r, t) = −1

τ
(fi(r, t)− f (eq)

i (r, t)).

The equilibrium distribution functions are given by the Maxwellian equilibrium distri-

bution functions. The approach was combined with a three-dimensional model with 14

moving directions, which were the axes and diagonals of a cube, which saved memory com-

pared with the FCHC model. The exact Navier-Stokes equation was obtained, as shown in

section 2.5. There was no density-dependent term in the Navier-Stokes equations, partly

due to the choice of equilibrium distribution functions, which one is not free to choose

with Lattice Gas methods [89]. The method was tested, as described in section 2.8. The

only hypothesis necessary to derive the governing equations is that the dynamics of the
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system can be decomposed into phenomena that evolve with different time scales, so that

one can simulate a wide range of nonlinear partial differential equations by lattice BGK

models with a suitable equilibrium distribution function [16].

2.5 Detailed Theory of the lattice-Boltzmann method

In this section, I derive the equilibrium distribution functions for the lattice-Boltzmann

method (LBM) given in equation (2.7), then show how the Navier-Stokes equations are

derived from the LBM. The LBM is also directly derived from the Boltzman equation.

The equilibrium distribution functions depend on the lattice used. These functions must

be intrinsically isotropic and Galilean invariant [16, 75, 98].

The equilibrium distribution may be found by expanding up to second order in the macro-

scopic velocity, v [75]:

f
(eq)
i (v) = f

(eq)
i (0)(1 +Avαeiα +Bvαvα + Cvαvβeiαeiβ), (2.24)

where ei is the microscopic velocity, which will usually be much greater than the macro-

scopic velocity.

The isotropy conditions required on the fourth order tensors may be explicitly introduced

like this [75, 91]:

∑
i

f
(eq)
i (0)eiαeiβ = n2δαβ (2.25)

and
∑
i

f
(eq)
i (0)eiαeiβeiγeiδ = n4∆αβγδ, (2.26)

where ∆αβγδ = δαβδγδ + δαγδβδ + δαδδβγ . (2.27)

This cannot be achieved by a square or cubic lattice with only four velocities [17]. The

following lattices are linear, square or cubic lattices that are satisfactory. They are denoted

DdQb, where d is the number of dimensions and b is the number of lattice velocities [17].
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D1Q3 has velocities +c, 0 and −c, for i = 0, 1, 2. D2Q9 has velocities:

c(0, 0), i = 0

c(±1, 0), c(0,±1), i = 1, 2, 3, 4

c(1, 1), c(−1, 1), c(−1,−1), c(1,−1), i = 5, 6, 7, 8.

(2.28)

D3Q15 has velocities:

c(0, 0, 0) i = 0

c(0, 0,±1), c(0,±1, 0), c(±1, 0, 0) i = 1, 2, . . . , 6

c(±1,±1,±1) i = 7, 8, . . . , 14.

(2.29)

D3Q19 has velocities:

c(0, 0, 0) i = 0

c(0, 0,±1), c(0,±1, 0), c(±1, 0, 0) i = 1, 2, . . . , 6

c(±1,±1, 0), c(±1, 0,±1), c(0,±1,±1) i = 7, 8, . . . , 18.

(2.30)

Figure 2.1 shows exactly how the directions are numbered for the D2Q9 and D3Q15

lattices. Qian et al. [16] proposed the D3Q15 model, but their model was unusual because

the class I particles had a velocity of 2c, i.e. they moved two lattice points at each timestep.

The FHP model could be called the D2Q6 model.

For all these lattices, the equilibrium distribution functions may be derived by considering

Galilean invariance of their 0th, 1st, 2nd and 3rd moments [75, 91], which are given by

equations (2.31) to (2.34).

M0(v) =
∑
i

f
(eq)
i (v) (2.31)

M1(v) =
∑
i

(vγ − eiγ)f
(eq)
i (v) (2.32)

M2(v) =
∑
i

(vγ − eiγ)(vδ − eiδ)f
(eq)
i (v) (2.33)

M3(v) =
∑
i

(vγ − eiγ)(vδ − eiδ)(vε − eiε)f
(eq)
i (v) (2.34)

If Mj is the jth moment, we require:

Mj(v) = Mj(0), j = 0, 1, 2, 3. (2.35)
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Figure 2.1: Lattice velocities for the D2Q9 and D3Q15 models.

This means that the moment is the same for all v, so it is the same in all frames of

reference. The invariance of the first moment implies that equation (2.2) holds in all

frames of reference, i.e. mass is conserved and that of the second moment implies that

equation (2.3) holds in all frames, i.e. momentum is conserved.

This derivation is given below for the D3Q15 model. Let class j represent particles with j

equal to the square modulus of the particle velocities, divided by c2. The values of f
(eq)
i (0)

in equation (2.24) are defined as:

f
(eq)
i (0) = f0 i = 0 (class 0)

f
(eq)
i (0) = f I i = 1, 2, . . . , 6 (class I)

f
(eq)
i (0) = f II i = 7, 8, . . . , 14 (class II).

(2.36)
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From the lattice velocities and the isotropy conditions (2.25) and (2.26), we obtain:

n4 = 8wII = wIc4, (2.37)

n2 = 3wIc2. (2.38)
14∑
i=0

f
(eq)
i (0) = ρ (from (2.2)), (2.39)

14∑
i=0

f
(eq)
i (0)eiα = 0, (2.40)

14∑
i=0

f
(eq)
i (0)eiαeiβ = n2δαβ, (2.41)

14∑
i=0

f
(eq)
i (0)eiαeiβeiγ = 0, (2.42)

14∑
i=0

f
(eq)
i (0)eiαeiβeiγeiδ = n4∆αβγδ, (2.43)

14∑
i=0

f
(eq)
i (0)eiαeiβeiγeiδeiε = 0. (2.44)

Applying Galilean invariance to the moments of the equilibrium distributions, i.e. applying

equations (2.31) to (2.34), then using equations (2.24), (2.27) and (2.39) to (2.44), then

equating terms in v, v2δγδ, vγvδ and terms of order 1, gives equations (2.45) to (2.49):

ρB + n2C = 0, (2.45)

ρ− n2A = 0, (2.46)

ρ− 2n2A+ 2n4C = 0, (2.47)

Bn2 + Cn4 = 0, (2.48)

n2 −An4 = 0. (2.49)

Solving equations (2.37) to (2.39) and (2.45) to (2.49) gives A = 3
c2
, f I = ρ

9 , f
II = ρ

72 , f
0 =

2ρ
9 , C = 9

2c4
and B = − 3

2c2
. We also have:

n2 =
ρc2

3
, (2.50)

n4 =
ρc4

9
. (2.51)
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We therefore have the following equilibrium distribution [16, 17, 75]:

f
(eq)
i ((v)) = wiρ

(
1 + 3

vαeiα
c2
− 3vαvα

2c2
+

9vαvβeiαeiβ
2c4

)
, (2.52)

where w0, wI , wII and wIII represent the weights wi for classes 0, 1, 2 and 3 respectively,

where the class is the square modulus of the particle velocity. The weights for this model

and the D1Q3, D2Q9 and D3Q19 models are given in table 2.1.

Model w0 wI wII wIII

D1Q3 2/3 1/6 0 0
D2Q9 4/9 1/9 1/36 0
D3Q15 2/9 1/9 0 1/72
D3Q19 1/3 1/18 1/36 0

Table 2.1: Coefficients for the equilibrium distribution functions of various lattice-
Boltzmann models [16–18].

On the other hand, Kandhai et al. [18] say that the equilibrium distribution can be chosen

in many ways, which seems to contradict the requirements discussed earlier in the section.

The distribution stated in equation (2.52) is a common choice. Zou and He use the

following distribution [9]:

f
(eq)
i (v) = wiρ(1− 8

3
v2

c2
), i = 0

f
(eq)
i (v) = wiρ(1 + 8

3
eiαvα
c2

+ 4
eiαeiβvαvβ

c4
− 4

3
v2

c2
), i 6= 0

(2.53)

with w0 = ρ
8 , w

I = ρ
8 , w

II = ρ
64 . The isotropy conditions (2.25) and (2.26) hold for this

distribution and the zeroth, first and second moments are Galilean invariant, but the third

moment is not, as shown here. From the lattice velocities, we obtain equations (2.39) to

(2.43) again, but we have n2 = 3
8ρc

2 and n4 = 1
8ρc

4, instead of equations (2.50) and (2.51).

The third moment of the equilibrium distribution is:

M3(v) =
14∑
i=0

f
(eq)
i (0)

(
1 + 8

3
eiαvα
c2

+ 4
eiαeiβvαvβ

c4
− 4

3
vαvα
c2

)(vγ − eiγ)(vδ − eiδ)(vε − eiε
)

−4
3f

0
(
v2

c2

)
(2.54)
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= ρvγvδvε + 3
8ρc

2(vγδδε + vδδγε + vεδγδ)

−1
3ρc

2vα(δαγδδε + δαδδγε + δαεδγδ)− ρvα(vγvδδαε + vγvεδαδ + vδvεδαγ)

+1
2ρvαvβ (vγ(δαβδδε + δαδδβε + δαεδβδ) + vδ(δαβδγε + δαγδβε + δαεδβγ)

+ vε(δαβδγδ + δαγδβδ + δαδδβγ))

+3
2
ρ
c2
vαvβvγvδvεδαβ − 1

2v
2ρ(vγδδε + vδδγε + vεδγδ)− 3

2

( ρ
c2

)
v2vγvδvε,

(2.55)

⇒M3(0) = 0. (2.56)

Therefore, it may not be sensible to use the distribution given in equation (2.53), even

though the LBM still gives rise to the Navier Stokes equations when this distribution is

used.

I now show how the Navier-Stokes equations are derived from the LBM using the D3Q15

model. From equations (2.2) and (2.3) and from the fact that the zeroth and first moments

are Galilean invariant, we have:

∑
i

f
(eq)
i (v) = ρ, (2.57)∑

i

f
(eq)
i (v)eiα = ρvα. (2.58)

Using equations (2.39) to (2.44), (2.50) and (2.51) and replacing α and β in equation (2.52)

with δ and ε respectively, we have:

i=15∑
i=0

f
(eq)
i (v)eiαeiβ =

ρc2

3
δαβ + ρvαvβ. (2.59)

i=15∑
i=0

f
(eq)
i (v)eiαeiβeiγ =

3

c2
n4vδ(δδαδβγ + δδβδαγ + δδγδαβ). (2.60)

⇒
i=15∑
i=0

f
(eq)
i (v)eiαeiβeiγ =

ρc2

3
(vαδβγ + vβδαγ + vγδαβ). (2.61)

The LBGK equation (2.4) is:

fi(r + ∆tei, t+ ∆t)− fi(r, t) = −1

τ
(fi(r, t)− f (eq)

i (r, t)),
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where τ is the relaxation time divided by ∆t. We must Taylor expand it:

fi(r + ei∆t, t+ ∆t)− fi(r, t)

≈
[
∆t∂t + ∆teiα∂α + (∆t)2

2 eiα∂α(eiβ∂β + ∂t) + (∆t)2

2 ∂t(eiα∂α + ∂t)
]
fi(r, t).

(2.62)

Fluid dynamics emerges from a perturbative treatment of the kinetic equations. The

perturbation parameter is the Knudsen number, namely the ratio between the molecular

mean free path and the shortest scale at which macroscopic variations can be appreciated:

ε =
Lmfp
LM

. (2.63)

The Chapman-Enskog procedure is an expansion in the smallness parameter, ε of both

dependent variables, such as f(r,v, t) and independent variables, such as r and t. The

idea is to represent space time variables on a hierarchy of slow or fast scales such that each

variable is O(1) at its own scale [17]. In fluid flow, we have the processes of advection and

diffusion. Advection along length LM takes time:

t =
LM
Lmfp

tcoll, (2.64)

where tcoll is the time between collisions. Diffusion along the same length takes much

longer:

t =

(
LM
Lmfp

)2

tcoll = ε−2tcoll. (2.65)

Both these processes happen over a distance:

x = ε−1Lmfp. (2.66)

If x1 is the ratio of a spatial coordinate to LM , and t1 and t2 are the ratios of a temporal

coordinate to the times required for advection and diffusion respectively over a distance

LM , the spatial and temporal derivatives of a function describing a process involving

advection and diffusion are as follows:

∂t = ε∂1t + ε2∂2t, (2.67)

∂r = ε∂1r. (2.68)
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We can expand the distribution functions like this, where superscript eq denotes local

equilibrium and superscripts 1 and 2 are departures from local equilibrium:

fi = f
(eq)
i + εf

(1)
i + ε2f

(2)
i . (2.69)

Therefore, equations (2.57) and (2.58) imply:

15∑
i=0

f
(a)
i =

15∑
i=0

f
(a)
i eiα = 0 for a = 1, 2. (2.70)

Substituting equations (2.67), (2.68) and (2.69) into (2.62) gives:

{
∆t
(
ε∂1t + ε2∂2t

)
+ ∆teiαε∂1α + (∆t)2

2 eiαε∂1α

[
eiβε∂1β +

(
ε∂1t + ε2∂2t

)]
+ (∆t)2

2

(
ε∂1t + ε2∂2t

) [
eiαε∂1α +

(
ε∂1t + ε2∂2t

)]}
×
(
f

(eq)
i + εf

(1)
i + ε2f

(2)
i

)
= − 1

τ (f
(eq)
i + εf

(1)
i + ε2f

(2)
i − f

(eq)
i ).

(2.71)

The notation ∂1r = ∂1α has been used. To first order in ε, equation (2.71) is:

∆t∂1tf
(eq)
i + ∆t∂1αeiαf

(eq)
i = −1

τ
f

(1)
i . (2.72)

Summing equation (2.72) over all i, using equations (2.58) and (2.59) gives:

∆t∂1t

15∑
i=1

f
(eq)
i + ∆t∂1α

15∑
i=0

eiαf
(eq)
i eiα = −1

τ

15∑
i=0

f
(1)
i . (2.73)

⇒ ∂1tρ+ ∂1αρvα = 0. (2.74)

Multiplying equation (2.72) by eiβ we get:

∆t∂1teiβf
(eq)
i + ∆t∂1αeiαeiβf

(eq)
i = −1

τ
f

(1)
i eiβ. (2.75)

Summing this in the same way as 2.72, using equations (2.58), (2.59) and (2.70), then

dividing by ∆t gives:

∂1tρvβ + ∂1αρvαvβ + ∂1α

(
ρc2

3
δαβ

)
= 0. (2.76)
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To second order in ε we get:

∆t∂2tf
(eq)
i + ∆t∂1tf

(1)
i + ∆t∂1αeiαf

(1)
i + (∆t)2

2 ∂1t(∂1tf
(eq)
i + ∂1αeiαf

(eq)
i )

+ (∆t)2

2 ∂1α(∂1teiαf
(eq)
i + ∂1βeiβeiαf

(eq)
i ) = − 1

τ f
(2)
i .

(2.77)

Summing equation (2.77) over i, terms two and three on the left side and the term on the

right side are zero from equation (2.70). Terms four and five sum to give the left hand

sides of equations (2.74) and (2.76). The right hand sides of the equations are zero, so

these terms sum to zero. This leaves:

∂2tρ = 0. (2.78)

Multiplying equation (2.77) by eiγ and summing over i gives:

15∑
i=0

[
∆t∂2teiγf

(eq)
i + ∆t∂1teiγf

(1)
i + ∆t∂1αeiγeiαf

(1)
i

+ (∆t)2

2 ∂1t(∂1teiγf
(eq)
i + ∂1αeiγeiαf

(eq)
i ) + (∆t)2

2 ∂1α(∂1teiαeiγf
(eq)
i + ∂1βeiγeiβeiαf

(eq)
i )

]
= − 1

τ f
(2)
i eiγ .

(2.79)

The second term and right hand side are zero by equation (2.70). The fourth term is zero

by equation (2.76). Using equations (2.59) and (2.60), the fifth term is:

(∆t)2

2 ∂1α∂1t

(
ρc2

3 δαγ + ρvαvγ

)
+

(∆t)2

2 ∂1α∂1β

(
ρc2

3 (vγδβα+ vβδγα+ vαδγβ)
)
.

(2.80)

Considering equation (2.72) multiplied by ∆t∂1βeiβeiγ and summed over i, then swapping

α and β:

∆t∂1α

15∑
i=0

f
(1)
i eiαeiγ = −τ(∆t)2×{

∂1t∂1α

(
ρc2

3 δαγ + ρvαvγ

)
+ ∂1α∂1β

(
ρc2

3 (vαδβγ + vβδαγ + vγδαβ)
)}

.

(2.81)

Adding equations (2.80) and (2.81) gives the following to order v:

{
1

2
− τ
}
× (∆t)2

{
c2

3
∂1t∂1αρδαγ +

c2

3
∂1α∂1βρ(vαδβγ + vβδαγ + vγδαβ)

}
. (2.82)
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Using equation (2.74) to convert time derivatives into spatial derivatives:

{
1

2
− τ
}
×
{
−c

2

3
∂1γ∂1αρvα +

c2

3
∂1α∂1γρvα +

c2

3
∂1β∂1γρvβ +

c2

3
∂1α∂1αρvγ

}
. (2.83)

Substituting this expression for the third minus the fifth term into equation (2.79) and

using equation (2.58) for the first, then dividing by ∆t gives:

∂2tρvγ = ν∂1α∂1αρvγ + ζ∂1γ∂1αρvα, (2.84)

where ν is the kinematic shear viscosity and ζ is the kinematic bulk viscosity, which are

both the same in this case. We have [16, 91]:

ν = ζ =
c2

3

(
τ − 1

2

)
∆t. (2.85)

Adding ε(2.74) to ε2(2.78), then recombining the derivatives gives us the continuity equa-

tion:

∂tρ+ ∂αρvα = 0. (2.86)

Adding ε(2.76) to ε2(2.84), swapping some suffixes, then recombining the derivatives gives

us the other Navier-Stokes equation:

∂tρvα + ∂βρvβvα = −∂α
(
ρc2

3

)
+ ν∂β∂βρvα + ζ∂α∂βρvβ. (2.87)

The neglected term resulting from only finding equation (2.82) to order v was−ε2ν∂1t∂1αρvβvγ .

This term can be converted to the following spatial derivative:

− ε2ν∂1α∂1βρvαvβvγ . (2.88)

The equations have been derived up to second order in the Knudsen number, so in both

of them, there will be an error of order ε3.

The lattice-Boltzmann method gives the compressible Navier-Stokes equations with an

ideal gas equation of state, i.e.

p = ρc2
s, (2.89)
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where p is the pressure and cs is the speed of sound. For an ideal gas, this only holds if cs

is the isothermal sound speed. Here, we had:

c2
s =

c2

3
, (2.90)

where c is the speed of lattice particles moving horizontally or vertically. Only the gradient

of pressure features in the Navier-Stokes equations, so the lattice- Boltzmann method will

model a fluid with an equation of state given by:

p = p0 + c2
s(ρ− ρ0). (2.91)

The same results would be achieved for the equilibrium distribution functions, sound speed

and Navier-Stokes equations for the D1Q3, D2Q9 and D3Q19 models [17, 75].

From equation (2.85), the relaxation parameter, τ , must be greater than 0.5 for the viscos-

ity to be positive. If it is not, the LBGK equation will be unstable. The requirement is the

same as that of the relaxation method. If the parameter is too low, the RHS of equation

(2.4) may become large, so the distribution functions, which represent particle densities

could become negative [16] at the next timestep. Applying the equation repeatedly would

cause them to become more and more negative, i.e. unstable. Instability can also occur

in the same way if the Mach number is high and τ is greater than, but close to 0.5. The

region of parameter space for which LBM simulations are stable is strongly dependent on

the choice of boundary conditions [59]. The equilibrium distribution functions were ex-

panded up to second order in velocity, so it can be shown that the maximum Mach number

for stable simulations is
√

2 for one dimension and
√

5/2 for two or three dimensions.

2.5.1 Derivation of the lattice-Boltzmann equation from the Boltzmann

equation

He and Luo [99] derive the lattice-Boltzmann equation, including the equilibrium distribu-

tion functions, directly from the Boltzmann equation. They begin by using the Bhatnagar-

Gross-Krook approximation with the Boltzmann equation, so that it reads

Df

Dt
=

1

τ ′
(f(r, e, t)− g(ρ, e,v)), (2.92)
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where D
Dt = ∂

∂t + v · ∇ is the convective derivative, e is the velocity of a particle, v is the

macroscopic velocity, f is the single-particle distribution function, τ ′ is the relaxation time

and g is the Maxwell-Boltzmann distribution function given by

g =
ρ

(2πRθ)ND/2
exp

[
−(e− v)2

2Rθ

]
, (2.93)

whereND is the number of dimensions, R is the ideal gas constant and θ is the temperature.

Equation (2.92) can be formally integrated over a time interval ∆t:

f(x+e∆t, e, t+∆t)−f(x, e, t) =
1

τ ′
e−∆t/τ ′×

∫ ∆t

0
et
′/τ ′(f −g)(r+et′, e, t+ t′)dt′. (2.94)

Taylor expanding the right hand side and neglecting terms of order ∆t2 or smaller, we

obtain:

f(r + e∆t, e, t+ ∆t)− f(r, e, t) = −1

τ
[f(r, e, t)− g(r, e, t)], (2.95)

where τ = τ ′

∆t is the dimensionless relaxation time.

The equilibrium distributions for the lattice-Boltzmann method (LBM) can be derived as

follows. The distribution function g is first expanded as a Taylor series in v up to the v2

term:

g =
ρ

(2πRθ)ND/2
exp

(
− e2

2Rθ

)[
1 +

e ·v
Rθ

+
(e ·v)2

2(Rθ)2
− v2

2Rθ

]
. (2.96)

The moment integral, emf (eq)de, is required to derive the Navier-Stokes equation, where

m is an integer such that 0 ≤ m ≤ 3 for isothermal models and 0 ≤ m ≤ 4 otherwise. This

integral contains the following:

I =

∫
exp

(
− e2

2Rθ

)
h(e)de. (2.97)

The integral I can be evaluated by Gaussian quadrature in two or three dimensions.

Gaussian quadrature is the approximation of the definite integral of a function f(x) as a

weighted sum of the values of f at a number of different points xi in the integration domain,

which are called abscissas. That is,
∫ b
a f(x)dx =

∑n
i=1wif(xi). The approximation is exact

if f(x) is a polynomial or order 2n − 1 or less. It is accurate provided that f(x) is well

approximate by such a polynomial between x = a and x = b. Therefore, the integral I
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can be expressed as ∑
i

Wi exp
(
− ei

2Rθ

)
h(ei), (2.98)

where h(e) is a polynomial and Wi and ei are the weights and abscissas (or discrete

velocities) of the quadrature.

The equilibrium distributions for the D2Q9 model are derived here as an example of this

quadrature. Splitting the exponential in the integral I in equation (2.97) gives

I = 2Rθ

∫ ∫
exp (−e′2x ) exp (−e′2y )h(e′

√
2Rθ)de′xde′y, (2.99)

where the substitution

e′x =
ex√
2Rθ

, e′y =
ey√
2Rθ

, (2.100)

has been used. The integral of h(x) exp (x2) is evaluated as follows:

∫ ∞
−∞

h(x) exp (x2)dx =
n∑
i=1

wih(xi),

wi =
2n−1n!

√
π

n2|Hn−1(xi)|2
, (2.101)

where Hn is the nth Hermite polynomial. For the D2Q9 model, n = 3 is a suitable choice.

Therefore the polynomial H2(x) = 4x2−2 is required to calculate the weights, wi, from the

abscissas xi in equation (2.101). The three weights and abscissas for the integral (2.101)

are:

x1 = −
√

3
2 , x2 = 0, x3 =

√
3

2 ,

w1 =
√
π

6 , w2 = 2
√
π

3 , w3 =
√
π

6

(2.102)

Substituting this into equation (2.101) for the nine possible combinations of e′x and e′y

gives

I = 2Rθ

[
w2

2h(0) +
4∑
i=1

w1w2h(ei) +
8∑
i=5

w2
2h(ei)

]
, (2.103)

where ei = 0 for i = 0,
√

3Rθ(±1, 0) and
√

3Rθ(0,±1) for i = 1, 2, 3, 4 and
√

3Rθ(±1,±1)

for i = 5, 6, 7, 8 and we have used ei =
√

2Rθe′i from equation (2.100) to calculate the

values of ei from the abscissas e′i given in equation (2.102). The polynomial h(ei) contains

the terms emixe
n
iy, where m and n are integers. The quadrature above is exact for m+n ≤ 5.
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The weights Wi in equation (2.98) are idenfied by comparing it with equation (2.103):

Wi = 2πRθ exp

(
e2
i

2Rθ

)
wi (2.104)

with

wi =


4/9, i = 0

1/9, i = 1, 2, 3, 4

1/36, i = 5, 6, 7, 8

. (2.105)

The equilibrium distribution for the D2Q9 model is f
(eq)
i = Wif

(eq)(r, ei, t). Therefore,

from equation (2.96), we obtain equation (2.52) with the weights given in table 2.1.

To obtain the nine-direction model, configuration space is discretised into a square lattice

with spacing ∆x =
√

3Rθ∆t = c∆t. The isothermal speed of sound is cs =
√
Rθ, therefore

c2
s = c2

3 .

In this derivation, the discretisation of momentum is determined by the spatial discretisa-

tion. However, it is possible to choose the discretisations independently, which allows an

arbitrary mesh to be used. In this case, a local LBE is built at each point and collision is

carried out as usual. However, each distribution function at a mesh grid point no longer

goes to another grid point through the streaming process, so interpolation is used to con-

struct the distribution functions after streaming. They demonstrate the accuracy of this

simulation method by comparing its results for a backward facing step with those from

a normal lattice-Boltzmann (LB) simulation. One can also raise the Reynolds number

without adjusting τ or the maximum velocity by using a finer mesh than the one normally

used for the usual LBM.

2.6 Incompressible models

In this section, I explain how compressibility errors arise in LB simulations and how the

accuracy can be improved by using the incompressible model developed by Zou et al.

[89]. The LBM as it stands never solves the continuity equation exactly because one must

determine the pressure through an equation of state. The density has to vary in space for

the pressure to vary [90].
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Substituting equation (2.86) into (2.87) and using the fact that the shear and bulk vis-

cosities are equal for the LBM with a BGK collision operator, i.e. ν = ζ, as descibed in

section 2.5, we obtain the following equation:

ρ(∂tvα + vβ∂βvα) + vα(∂tρ+ ∂β(ρvβ))

= −∂α
(
ρc2

3

)
+ ν∂β(∂βρvα + ∂αρvβ).

(2.106)

Since the second term on the left hand side of this equation is 0 from equation (2.86), and

p = ρc2
s from equation (2.10), we have the following, where we include equation (2.86):

∂tρ+∇ · (ρv) = 0, (2.107)

ρ(∂tvα + vβ∂βvα) = −∂αp+ ν∂β(∂βρvα + ∂αρvβ). (2.108)

In the case of steady flow, the equations are as follows:

∇ · (ρv) = 0 (2.109)

ρvβ∂βvα = −∂αp+ ν∂β(∂βρvα + ∂αρvβ) (2.110)

Comparing to the exact steady incompressible Navier-Stokes equations at constant density

ρ0 (derived from equations (1.1) and (1.2) considering steadiness):

∇ ·v = 0 (2.111)

vβ∂βvα = −∂α
(
p

ρ0

)
+ ν∂β(∂βvα + ∂αvβ) (2.112)

we see that terms containing the spatial derivative of ρ are neglected. For example, the

continuity equation (2.109), ∇ · (ρv) = 0 gives ρ∇ ·v + (∇ρ) ·v = 0. When this is used to

approximate equation (2.111), the term (∇ρ) ·v is neglected and a compressibility error

arises.
∇ρ
ρ
∼ O(Ma2), (2.113)

from the left side of equation (2.112), so this will be the compressibility error for any finite

Mach number.

To improve the accuracy of lattice-Boltzmann simulations, Zou et al [89] proposed an

incompressible model. This was based on the idea of using v = ρv to represent the
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velocity, which had been applied to the Lattice Gas method. Theoretically, it simulates the

incompressible continuity equation (equation (2.111)) for v, but the Navier-Stokes equation

still has the factor g(ρ)
ρ0

in the advection term (see equation (2.20)). The compressibility

error comes from ignoring the change of ρ in this term. In the LBM, the nonlinear term

can be made exact by choosing an appropriate equilibrium distribution function, which is

a choice we do not have in Lattice Gas Automata. Using:

∑
i

fi = ρ (2.114)∑
i

fiei = v, (2.115)

and changing the equilibrium functions such that ρ is inside the bracket, we have for the

D3Q15 model for example:

f
(eq)
i (v) = wi

(
ρ+ 3

vδeiδ
c2
− 3vδvδ

2c2
+

9vδvεeiδeiε
2c4

)
, (2.116)

with the weights given in table 2.1. We obtain the exact incompressible steady NS equa-

tions from this, though the errors due to the lattice size remain. All incompressible models

are given i as a suffix, so D3Q15 becomes D3Q15i. [89] state that the model is only valid

for steady flows because the temporal derivative of ρ in the continuity equation is nonzero

in time-dependent flows. It is related to the temporal derivative of pressure and cannot

easily be handled.

Equation (2.116) can be derived by substituting ρ = ρ0 + δρ into the equilibrium distri-

bution functions and neglecting the terms proportional to δρ
(
v
c

)
and δρ

(
v
c

)2
, which are

of order Ma3 or higher [88]. The reference density of the fluid, ρ0, can be set to one.

Through the Chapman-Enskog procedure, it can be shown that the incompressible model

gives rise to the following equations when time-dependent terms are kept:

1

c2
s

∂p

∂t
+∇ ·v = 0, (2.117)

∂v

∂t
+ v · ∇v = −∇p+ ν∇2v, (2.118)

ν =

(
τ − 0.5

3

)
c2∆t. (2.119)
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A dimensionless form of equation (2.117) is:

1

T

∂p′

∂t′
+
cs
L
∇′ ·v′ = 0, (2.120)

where p′ = p
c2s
, t′ = t

T ,∇
′ = L∇,v′ = v

cs
and L and T are characteristic length and

time respectively. Therefore, the incompressible model can accurately simulate fluid flow

provided that the slow flow condition is satisfied, so the time over which the fluid undergoes

a macroscopic change, such as the period, in a range of distance L, must be much greater

than the time taken by sound to travel that distance, i.e.

T � L

cs
. (2.121)

The incompressible models eliminate terms of O(Ma2) but error terms of higher order in

the Mach number still remain in the case of unsteady flow, as discussed in section 2.8, so

it is still necessary to have Ma � 1. Most simulations have Ma < 0.15. Even for steady

flow, it is necessary to have Ma < 1 to avoid instability, as discussed at the end of section

2.5.

Despite the accuracy of incompressible models, the second and third moments of the

distribution functions may not be Galilean invariant. If the jth moment is taken to be:

Mj(v) =
∑
i

(v − ei)
jf

(eq)
i (v), (2.122)

one obtains
∑
i
fi = ρ and

∑
i
fiei = v with j = 0 and j = 1, as expected but it can be

shown that the second and third moments are not Galilean invariant.

2.7 Conversion of parameters into lattice units

During a lattice-Boltzmann simulation, it is often convenient to set ∆x = ∆t = 1, so

we have c = 1, and also set ρ0 to 1 or a nominal value [89]. It can be shown, for both

compressible and incompressible models (section 2.6) that ρ0 is an irrelevant variable and

changing it will not change the simulation results. Setting the parameters to one ensures

that the numbers calculated during the simulation are as close to order 1 as possible.

When applying the Lattice Boltzmann method to a simulation of blood flow, we must
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have a way of converting parameters from physical units to Lattice units. In this section,

Q represents a quantity in physical units and Q* is the Quantity in lattice units.

In this section, we will need equations (2.91), (2.90), (2.85), (1.5), (1.6):

p ≈ p0 + c2
s(ρ− ρ0),

c2
s =

c2

3
,

ν =
c2

3

(
τ − 1

2

)
∆t,

Re =
vmaxD

ν
, ν =

η

ρ
,

α =
D

2

√
ω

ν
.

Any length or time can be converted easily, as follows:

L∗ =
L

∆x
, (2.123)

t∗ =
t

∆t
. (2.124)

Since we set the density of the fluid ρ0∗ = 1 in lattice units, we can define the lattice unit

of mass as follows:

∆m = ρ0∆xND , (2.125)

where ND is the number of dimensions and in 2D, we define the density as the mass per

unit area. Any quantity can be converted by considering its dimensions. For velocity and

kinematic viscosity, we have

v∗ = v
∆t

∆x
, (2.126)

ν∗ =
ν∆t

∆x2
. (2.127)

The value of τ is given by rearranging equation (2.85), so

τ =
1

2
+

3

∆tν
∆x2. (2.128)
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For the pressure, let ∆p = p− p0, ∆ρ = ρ− ρ0. Therefore,

∆p∗ =
∆p∆t2∆xND−2

∆m
, (2.129)

where the 2D pressure is the force per unit length. The same equation can be used for

any quantity that has dimensions of pressure, for example the Young’s modulus of the

wall if elasticity is included in the simulation. Substituting equation (2.125) into equation

(2.129) gives

∆p∗ =
∆p

ρ0
∆t2∆x2. (2.130)

It is more convenient to express this in terms of ρ for LBM by substituting equation (2.91)

into this:

∆ρ∗ =
∆p

ρ0cs∗2
∆t2∆x2. (2.131)

If we convert the speed of sound, cs, using equation (2.127), it will not generally match the

actual speed of sound in the fluid we are simulating due to the restriction on cs∗ (equation

(2.90)). Therefore, from equation (2.91), the fractional change in density due to differences

in pressure in the fluid will not match, resulting in a compressibility error. From section

1.6, some typical parameters for blood flow are: D = 5×10−3m, cs = 1580m s−1 where D is

the diameter of an artery. If we choose the spatial resolution ∆x = 2.5×10−4m and match

the speed of sound in the simulation to that of blood, we would have ∆t = 1.06× 10−7s.

Using such a small timestep would be very computationally costly. Using equation (2.91),

the change in density of the blood is given by ∆ρ
ρ0

= 7.6×10−7, which is tiny, so blood flow

can be taken as incompressible. The compressibility error from the LBM is of order Ma2,

as explained in section 2.8. Therefore, the Mach number should be kept much smaller

than one.

2.7.1 The law of similarity

For a steady incompressible flow, then for the parameters that characterise the fluid itself,

only the kinematic viscosity, ν, appears in the Navier-Stokes equations [36]. Therefore

the unknown functions that have to be determined by solving them are the velocity and

the ratio p
ρ0

, which depends on the velocity of the fluid through ν. If the shape of the

body is given, the geometrical properties are specified by a characteristic length, D. Then
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any flow is specified by three parameters, ν, D and the speed of the main fluid stream, v.

Only one dimensionless quantity can be formed from the above three, which is called the

Reynolds number. Any other dimensionless quantity can be written as a function of the

Reynolds number.

If the lengths are measured in terms of D and the velocities are measured in terms of v,

the velocity distribution obtained by solving the equations of incompressible flow is given

by a function of the form

v = vf
( r

D
,Re

)
. (2.132)

From this expression, we can see that in flow of the same type, the velocities v
v are the

same functions of the ratio r
D if the Reynolds number is the same for each flow [36]. Such

flows are said to be similar. Therefore, when carrying out a lattice-Boltzmann simulation

of these flows, it is only necessary to match the Reynolds number in physical and lattice

units. Therefore, two of the three parameters mentioned in the last but one paragraph

may be chosen freely, for example, the system size and velocity. Setting these parameters

is equivalent to choosing the spatial and temporal resolution, ∆x and ∆t. The value of

τ must then be calculated from the viscosity using equation (2.128). An equation similar

to (2.132) can be developed for the pressure distribution by constructing a dimensionless

parameter involving pressure:

p = ρ0v
2f
( r

D
,Re

)
. (2.133)

Unsteady flows are characterised by four parameters: v, ν, D and a time interval T

[36]. From these parameters, we can construct two indepdendent dimensionless quantities

which match between flows that are similar. When simulating a flow, we therefore have

two degrees of freedom. A possible choice of independent dimensionless parameters are

the Reynolds number and the Womersley number, given by equation (1.6). The Strouhal

number, expressed by equation (2.134) [36], is an alternative dimensionless parameter.

St =
vT

D
. (2.134)
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2.8 Simulation accuracy of lattice-Boltzmann method

When Qian et al proposed the Lattice BGK model [16], a simulation was performed with a

D3Q15 model on a 128× 1× 1 lattice, with a small amplitude sinusoidal wave. The speed

of sound agreed with equation (2.85) within 0.4%. Chen et al. [98] also tested the method

for Beltrami flow. This involves rewriting the incompressible Navier-Stokes equation (1.2)

in the form:
∂v

∂t
+ ω × v = −∇

(
p

ρ
+
v2

2

)
− ν(∇× ω), (2.135)

where

ω = ∇× v (2.136)

is the vorticity. For Beltrami flows,

v × ω = 0. (2.137)

Periodic boundaries were used, so the first term on the right hand side of equation (2.135)

is zero, and we obtain:
∂v

∂t
= −ν(∇× ω) (2.138)

Taking the curl of both sides of this equation, using equation (2.136), and applying some

vector calculus identities as follows gives a diffusion equation for vorticity:

∂ω

∂t
= −ν(∇×∇× ω) (2.139)

= −ν(∇(∇ ·ω)−∇2ω) (2.140)

= −ν(∇(∇ · (∇× v))−∇2ω) (2.141)

= ν∇2ω (2.142)

The flow theefore has a solution that exponentially decays with time. Simulations were

carried out on a 64×64×64 D3Q15 lattice for 100 timesteps between τ = 0.55 and τ = 3.

< (v × ω)2 >= 0, (2.143)

where <> denotes spatial averaging, is the basic Beltrami property and was obtained

throughout the simulation. Equation (2.138) was satisfied. The viscosity was calculated
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from the rate of decay and it satisfied the theoretical relation (equation (2.85)):

ν =
c2

3

(
τ − 1

2

)
.

A 128 × 128 × 128 lattice was used to test a decaying Taylor-Green Vortex, which has a

turbulent decay mechanism. The lattice Boltzmann method was compared to a spectral

method. The quantity < ω2 > was measured over time, and the results agreed well at most

times, but not at the peak of the vorticity. This is probably because the spectral methods

solves the incompressible Navier-Stokes equations, whereas the lattice Boltzmann method

solves the compressible ones and the scheme is first order accurate in time and second-

order accurate in space. The quantities
<v2y>

<v2x>
, <v2z>
<v2x>

,
<ω2

y>

<ω2
x>

, and <ω2
z>

<ω2
x>

agreed very well.

The velocity contour lines are also in good agreement. Finally, there was good agreement

between the energy spectra in three-dimensional isotropic turbulence. The system energy

oscillated below a viscosity of about 0.001. This allows for a maximum Reynolds number

of about 1000.

All of these early tests were designed to study the intrinsic accuracy of the Lattice-

Boltzmann method, without boundary condition methods, which can introduce further

inaccuracies, as shown in section 2.9. Therefore, periodic boundary conditions were used,

in which all particles leaving the system on one side are injected into the other side with

the same velocity.

There will be some small simulation errors, and one can quantify these. In the Lattice-

Boltzmann method, the distance between the lattice points is much greater than the

molecular mean free path, because we are interested in the macroscopic behaviour of the

fluid, not the motions of individual molecules. We still have diffusion and advection of the

lattice particles, but their mean free path is directly proportional to the lattice spacing. It

also depends on the relaxation parameter, τ . Therefore, the Knudsen number is directly

proportional to lattice spacing divided by system size.

ε ∝ O(
∆x

L
). (2.144)

As shown in section 2.5, there is an error of O(ε3). The lowest order terms in the Navier-

Stokes equations are O(ε), so the relative error is of the order of the square of the lattice
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spacing. A similar argument applies to the neglected term in equation (2.88). The lattice

spacing ∆x = c∆t, so the derived Navier Stokes equations (using equations (2.86) and

(2.87)) are [89, 90]:

∂tρ+ ∂αρvα = 0 +O(∆x)2, (2.145)

∂tρvα + ∂βρvβvα = ∂α

(
ρc2

3

)
+ ν∂β(∂βρvα + ∂αρvβ) +O(∆x)2

+O(∆xv3). (2.146)

Substituting (2.145) into (2.146), and following the short procedure used in section 2.6 to

derive equations (2.107) and (2.108), we obtain the compressible Navier-Stokes equations

with error terms:

∂tρ+∇ · (ρv) = 0 +O(∆x)2 (2.147)

ρ(∂tvα + vβ∂βvα) = −∂αp+ ν∂β(∂βρvα + ∂αρvβ)

+O(∆x)2 +O(∆xv3) (2.148)

The equation looks first order in time and space, but it is in fact first order in time and

second order in space. The last term in equation (2.148) represents an error of order

∆xMa3, where Ma is the Mach number. Since this term came from a time derivative, it

is not present in the case of steady flow.

In section 2.6, it was shown that the lattice-Boltzmann method gives rise to compressibility

errors given by equation (2.113):

∇ρ
ρ
∼ O(Ma2),

where Ma is the Mach number. One can try to minimise the Mach number, but this

can be impractical as shown in section 2.7. Most flows of interest occur at moderately

high Reynolds numbers in nominally incompressible regimes [90]. Incompressible models,

described in section 2.6, have been developed to address this problem.

As well as testing the sound speed and viscosity, as written about earlier in this section,

studies have also tested that the errors in velocity are as we would expect from the theory.

Errors in velocity relative to an analytical solution are normally calculated using the L2
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norm [88, 89]:

Eanalytic =

√√√√√
∑
r
|v(r, t)− vanalytic(r, t)|2∑

r
|v(r, t)|2

. (2.149)

Zou et al [89] tested the compressibility error for flow in a square cavity with a moving

top which had 256X256 lattice points. There is no analytic solution for this, so the errors

were calculated using the stream function, as follows:

ψ(x1, y) =

x1∫
0

vydx. (2.150)

We would expect this to be zero at the walls, i.e. at x1 = L because the flow in the positive

y direction should be balanced by flow in the negative y direction at all places. If it is

not, there is a compressibility error. The simulation confirmed that this was proportional

to Ma2. The flow behaviour was the same in all simulations, because Re was constant. It

was tested for velocities between 0.1 and 0.01 in lattice units. Other simulations of flow

in a cavity have been compared with solutions from finite-difference methods [90].

Comparisons of compressible and incompressible models on the vortex centres in the cavity

and velocity of flow in a square region with a constant body force were also carried out

[89]. This was used instead of a pressure boundary condition, in order to avoid errors from

the boundary conditions. An extra term is introduced into the LBGK equation, so we

have

fi(r + ei, t+ ∆t)− fi(r, t) =
−1

τ
(fi(r, t)− f (eq)

i (r, t)) +
(∆t)2

∆x
gi, (2.151)

where gi is adjusted in proportion to the weight of the equilibrium distribution for direction

i. For example we have the following for the D2Q9 model [100]:

gi =


0, i = 0

1
3cei ·F, i = 1, 2, 3, 4

1
12cei ·F, i = 5, 6, 7, 8,

(2.152)

where F is the force per unit volume, which appears on the right hand side of the Navier-

Stokes momentum equation (equation (2.108)), as shown here:

ρ(∂tvα + vβ∂βvα) = −∂αp+ ν∂β(∂βρvα + ∂αρvβ) + Fα (2.153)
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Keeping v = 0.1, Re = 100, the errors for the compressible model levelled off to 0.004

as the lattice resolution was increased due to the constant compressibility error, but the

errors for the incompressible model kept decreasing as ∆x2. The stability behaviour of

the incompressible model was also better than the compressible one.

The accuracy of the incompressible model was also thoroughly tested by [90] for the flow

over a step, i.e. into the narrow end of a stepped cavity. They used velocity boundary

conditions, assuming a Poiseuille flow at the inlet, and pressure boundary conditions at

the outlet using bounceback of the nonequilibrium distribution as proposed by Zou and He

(see section 2.9). The lattice resolution, system shape and Reynolds number were varied.

The error was measured using the normalised divergence,

∇ ·v
v

< tol (2.154)

This error was always less than 3 × 10−6. The stream functions also agreed with theory

correct to 0.1%. The pressure contours were also the same as those found from Navier-

Stokes methods. The stress is calculated directly from the distribution functions using

equation (2.246), in contrast to finite-difference methods which need to calculate it from

the velocity flow field. The improvement in accuracy has been confirmed.

He and Luo [88] used the incompressible model to study Poiseuille flow in two dimensions.

The system had only 17× 5 lattice points. A pressure boundary condition was applied at

the outlet. Both a pressure and a velocity boundary condition were tried at the inlet. The

boundary condition method was not stated. The simulation achieved machine accuracy for

τ = 0.75, 1.0 and 2.0 for the incompressible models. This is because the Lattice Boltzmann

method is second order accurate in space, and in Poiseuille flow, the last term is second

order in space. Noble et al [101] and Zou and He [9] also achieved machine accuracy using

consistent methods at all boundaries and [9] achieved second-order accuracy for other

boundary conditions (see section 2.9). They constructed a table showing the mean relative

error in velocity against the lattice size and type of boundary condition for three pair of Re

and τ . The order of convergence was calculated using least-squares fitting. A relative error

in velocity of less than 1.0× 10−3 was achieved for Re = 10, τ = 0.6; Re = 10, τ = 0.8 and

Re = 1, τ = 1.1, with a 64 × 32 lattice. The consistent method. The Lattice-Boltzmann

method is also second order in the case of flow between two porous parallel plates, in
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which the top plate is moving, which drives the flow. Even if there is, in addition, a

flow normal to the boundaries, the method achieves second order accuracy provided that

accurate boundary conditions are used (i.e. the consistent method) [101, 102]. The same

accuracy can also be achieved for cavity flow with an analytical solution and the oscillating

plate problem [102].

Zou and He [9] also carried out simulations of steady flow in a 3D square duct under

different boundary conditions. The errors were larger in this case, but still second order

convergent for most boundary conditions, falling below 10−2 for a 64×32×32 lattice, except

for the simple bounce-back without collision (section 2.9). Mazzeo and Coveney [92],

Mazzeo et al. [93] carried out simulations under the same parameters with the consistent

method for pressure by Zou and He with bounce-back, nonequilibrium extrapolation and

a new extrapolation method (see section 2.9). These boundary conditions are first order

and the order of convergence was approximately first order in the simulations. The errors

were higher, but fell below 1.0× 10−1 for a 64 × 32 × 32 system for two of the boundary

condition methods.

In simulations of two-dimensional Womersley flow with T=1000 and T=2000 and a system

of 21 × 21 lattice points, compressible and incompressible models have been compared,

while the pressure difference between the inlet and outlet was varied [88]. The results are

in excellent agreement with the analytic solution. With a small pressure difference, the

models have comparable errors, but the error in the compressible model grows faster. The

term δρ
ρ ∝ Ma2, but this does not mean the velocity is proportional to Ma2. The errors

were found to be of order 0.96 and 1.24 for the incompressible and compressible models.

The compressibility error was reduced. In contrast to the other literature, it is found

that the error in velocity is second order in the temporal resolution. The second-order

error in Mach number was obtained under a constant system size, period of oscillation and

viscosity. Therefore, the Reynolds number was changed between the simulations. This

shows that it is not necessary to ensure that the Reynolds is the same to test the error

with respect to T, system size or Ma.

Sometimes strange effects can occur, such as the Lattice Boltzmann solution approaching

the steady state solution, then diverging from it if the tolerance (permitted difference

between current and previous timestep for us to say the method has converged on a
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solution) is too low. The solution may even reach a nearly periodic state [89]. One must

watch out for this in simulations.

If rest particles were not included in the D3Q15 and D3Q19 models, we would have the

D3Q14 and D3Q18 models respectivley. Likewise, the FHP or D2Q6 model would become

D2Q7 if rest particles were included. The presence of rest particles often improves the

accuracy of the model. Furthermore, for a small relaxation time τ , the rest particles may

be needed to stabilise the system [18]. Ladd [91] did not use rest particles in his lattice-

Boltzmann simulations, but set the speed of sound cs =
√

1
2 instead of cs =

√
1
3 , which

causes the viscous stresses to be incorrect if the flow is significantly compressible.

Using 14 moving directions instead of 18 can result in a checkerboard effect. If we colour

the lattice points at the beginning of the simulation so they are black if x + y + z is odd

and white if x + y + z is even, as shown in figure 2.2, then, if there are no obstacles in

the system, it is clear to see that, in the D3Q14 model, the colour of the lattice point

at which a given particle resides changes at every time step. Therefore, the black and

white populations are entirely independent of each other, so the mass and momentum are

conserved separately for the black and white particles, which is unphysical. In the D3Q18

model, the black and white populations mix immediately wit each other. In the D3Q15

models, the populations of black and white particles are not entirely independent because

they are coupled by the rest particles, but checkerboard effects may also lead to unphysical

behaviour here [18].

In summary, the error is composed of the following terms (see also section 2.9):

• An error of order (∆x)2 due to the intrinsic accuracy of the Lattice Boltzmann

Method.

• O(∆x)2 or O(∆x) due to the boundary condition method. The lower order term

dominates.

• O(∆tMa3) in a time-dependent flow due to the intrinsic accuracy.

• O(∆t) from boundary conditions in the new extrapolation method (section 2.9.6)

• O(Ma2) for compressible models.

The following conditions must be satisfied:



Chapter 2. Lattice-Boltzmann methods 134

Figure 2.2: Checkerboard colouring of the lattice structures of D3Q19 (left) and D3Q15
(right) models. Image taken from [18].

• The lattice spacing must be much less than the region over which there is a macro-

scopic change in the fluid velocity (see section 2.5).

• The Mach number must be significantly less than 1, so that the error terms listed

above are not too large.

• For time-dependent flows, the slow flow condition must be satisfied, so the period

of oscillation must be much greater than the advection time for information to pass

along the length of the system, i.e. T � L
c (section 2.6).

2.9 Boundary condition methods

In most research and engineering problems in hydrodynamics, it is essential to specify

pressure and velocity boundary conditions, so that a unique solution to the particular flow

problem can be found. They affect the flow either near the boundaries or in the bulk of

the system. The Lattice-Boltzmann method presents a particular challenge in boundary

conditions, because at the wall or the inlet or outlet of a system, collsion and streaming

alone cannot determine the distribution functions in the inward-pointing directions because

there are no fluid sites that stream to the boundary sites in those directions. New methods

are needed to deal with these functions.
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Figure 2.3: Illustration of the bounce-back method on a hexagonal lattice. Image from
[103].

In viscous flow situations, a non-slip boundary condition usually applies, which means

that the velocity parallel to the wall is zero in addition to the velocity perpendicular to

the wall.

2.9.1 Bounce back

The simplest boundary condition method is the bounce-back rule. Here, particles that

meet a wall node are bounced back with a reversed velocity. The bounce back condition

was originally used in the Lattice Gas method [103]. It is illustrated in figure 2.3. Whenever

a direction-3 particle arrives from node B, a direction 6 particle is sent back to B at the

following time step, and similarly for direction-2 particles from node C. The time average of

the population has an equal number of direction-3 and direction-6 particles and direction-2

and direction-5 particles, so the average velocity is zero. This technique has been used

in lattice-Boltzmann simulations. If the value of the distribution function of 3-direction

particles, f3, arriving at A from B is 0.19 while f2 from C is 0.17. Using the bounce-back

algorithm, f6 from A is 0.19 and f5 from A is 0.17. Nodes B and C receive particles from a

population identical to their own, but travelling in the opposite direction. This is different

from the intended result of having a no-slip wall at A. For simple analytical flow, it can

be shown both theoretically and computationally that this gives a first-order slip velocity

[100, 101] and first-order errors throughout the fluid domain [9, 18, 90]. This has also been

shown computationally for 2D cavity flows [9].
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Figure 2.4: The inclined tube flow computation for an inclination of 45 degrees. On
the left the computational grid is shown and on the right the location of the wall. Image

taken from [18].

An alternate interpretation of the bounce-back condition corresponds to a no-slip wall

halfway between the nodes A and B-C. This is because the velocity at A in the oppo-

site direction is the symmetric reflection of the state at BC through the no-slip wall in

between. Using half-way wall bounceback gives much improved accuracy in simulations

[103]. The slip velocity is then second order [100] and it has been shown computationally

to give second-order errors throughout the fluid domain for Poiseuille flow in two and three

dimensions [9].

The bounce-back rule leads to a non-slip boundary somewhere between the wall nodes

and the adjacent fluid sites. It may be different from exactly half way in between in the

case of an inclined wall [18], but the simulation error in a 2D inclined tube is still second-

order in the velocity. It is first-order for the simple bounce-back scheme. In both cases,

the errors are about 50% higher with such a staircased geometry, as shown in figure 2.4.

The geometry in staggered between lines through P-type and Q-type points in this figure.

Therefore the half-way shifted boundary is also staggered, between the two dotted lines.

The location of the boundary can be taken as the average of these two lines, i.e. the thick

solid line.

The equilibrium and nonequilibrium parts of the distribution function, in terms of the

flow physics, refer to the contribution of velocity gradients. For steady uniform flow,

the distribution functions are the equilibrium ones. When there are velocity gradients,
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the distribution functions are no longer at equilibrium. In this situation, the particle

population arriving at a node will have contributions from neighbourhoods having higher

and lower velocities than the nodal velocity. The collision operator, representing viscosity,

operates on the deviations of the populations from their zero-gradient values and moves

them toward the equilibrium values. For high viscosity, the nonequilibrium values are

adjsted very little so the momentum excess or deficit can propagate through a given node

to the next neighbours, so that their velocities are more likely to match. For a low viscosity,

the opertor moves the nonequilibrium contribution strongly towards zero, so the velocity

gradients have little effect on the velocity in neighbouring nodes.

With half-way wall bounceback, the populations coming from nodes A and going to nodes

B-C will correspond to zero velocity halfway between, but will carry inaccurate velocity

gradient information. There will therefore be errors of order ∇2v in the velocity, i.e.

second-order errors.

Ziegler [103] proposed a more accurate alternative, in which the boundary is kept coincident

with the first line of nodes. During the streaming phase, the precollision distributions

pointing into the fluid (which are unknown) are set to the ones pointing outwards that

arrive from within the fluid. For example, in a d2q9 model with the boundary at the

bottom, we would have f2 = f4, f5 = f7 and f6 = f8. The other distribution functions

(in this case those pointing along the boundary) are then set equal to the average of the

incoming ones. During the collision phase, collision is done at the boundary nodes as well

as in the bulk. This should be more accurate because the effects of viscosity are taken

into account at the boundary nodes. From a simulation of Poiseuille flow, the velocities

given by the half-way wall bounceback and the improved method were found to be exactly

the same except for the first two lattice points away from the wall. The wall shear stress

was calculated by working out the momentum difference between particles arriving and

leaving the wall and by the velocity gradient. The strain rate was then multiplied by the

viscosity. The results should be the same and consistent with the total force applied to

the system by the pressure gradient. The two methods of calculation gave more consistent

answers with the new method than the half-way bounceback.

The bounceback methods can be used in any geometry and are easy to implement. How-

ever, it cannot be used for boundaries that have a non-zero velocity [100, 101], such as the

problem with flow between two porous plates described in section 2.8. The different types
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of bounceback condition as well as the equilibrium method were analysed by He et al [100]

by solving the LBGK equation and confirming the results with numerical simulation, but

this was only done for Poiseuille and Couette flow.

Instead of the distribution functions being bounced back on the nodes, they may be

bounced back on the links instead. That is, particles that leave a fluid node at time t

and propagate towards a solid node with velocity ek arrive back at the fluid node at time

t + ∆t with velocity ei = −ek. Since the velocity is constant before and after reflection,

the particles travel a distance ∆x
2 before being reflected. Therefore, a no-slip and no-

penetration condition should be applied at that point. If the wall is not located half way

between the fluid and solid sites, the simulation errors are of order ∆x. However, Noble

et al. [101] and Inamuro et al. [104] have shown that a slip velocity remains if τ is signif-

icantly greater than one, and that it increases with τ , eventually becoming equal to the

velocity in the centre of the channel. Noble et al. [101] state that this is because the mean

free path increases with τ , so at very high values of τ , it is large comapared to the size of

the system.

Ladd [91] adjusted the bounce back condition so that a non-zero velocity can be imposed

at the wall. The distribution function that is unknown after streaming is determined by

fi(r, t+ ∆t) = f+
k (r, t) + f

(eq)
i (ρ(r, t),vb)− f

(eq)
i (ρ(r, t),vb), (2.155)

where ek = −ei is the lattice direction pointing towards a solid site and f+
k (r, t) is the

postcollision distribution function in direction k at time t. Substituting equation (2.52)

into this gives

fi(r, t+ ∆t) = f+
k (r, t) + wiρ

(
6ei ·v
c2

)
, (2.156)

where wi is the weight of the distribution function f
(eq)
i given in table 2.1. While the

equilibrium distribution functions are adjusted, bounce-back is still being carried out for

the nonequilibrium distribution functions. Therefore, the behaviour of the stress tensor at

the boundaries will be the same as it is for the usual bounce-back condition.

Bouzidi et al. [7] combined the bounce back scheme with a spatial interpolation of the

distribution functions in order to improve its accuracy by ensuring that each particle

distribution function that propagates towards a solid site is reflected at the wall, which is
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Figure 2.5: Details of the bounceback of the distribution functions used in the method
by Bouzidi et al. [7] and the cells surrounding the lattice sites for the method by Verberg

and Ladd [8].

not generally half way between the fluid and solid sites. Therefore, a particle leaving node

f at time t with velocity ek does not arrive back at node ff after moving a distance ∆x,

so the distribution function of particles at node ff at time t + ∆t in direction ei = −ek

is not known, as shown in figure 2.5.

For this method, we need to consider the link from the edge site f to a neighbouring solid

site w. The link intersects the wall at point b and the fraction of the intersected link in

the fluid region is

δ =
|xf − xb|
|xf − xw|

, (2.157)

where xf , xw and xb denote the position vectors of site f , site w and point b respectively.

This definition is also used for other boundary condition methods [10, 14]. At this point, I

generalise the definition of δ such that it would be negative if the wall has crossed the site
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f , i.e. if point b lies between sites f and ff , but it would have the same value otherwise:

δ =
(xb − xf ) · (xw − xf )

|xw − xf |2
. (2.158)

I define the normalised cut distance at an edge site as the value of δ. This generalized

definition will be useful in section 5.5.

To apply the velocity boundary condition for δ < 1
2 , Bouzidi et al. [7] constructed a ficti-

tious distribution function for particles at point c at time t for particles that would arrive

at site f after bouncing back on the wall at point b, having travelled a total distance of

∆x. This distribution function was calculated by linear interpolation of the postcollisional

distribution functions between sites f and ff :

fi(xf , t+ ∆t) = f+
k (xc, t) (2.159)

= 2δf+
k (xff , t) + (1− 2δ)f+

k (xf , t), (2.160)

where f+
k is a post-postcollisional distribution function. For δ ≥ 1

2 , fi(xf , t + ∆t) was

calculated by linear interpolation between the distribution functions arriving at point c

and site ff respectively at time t+ ∆t:

fi(xf , t+ ∆t) =

(
1− 1

2δ

)
fi(xff , t+ ∆t) +

(
1

2δ

)
fi(xc, t+ ∆t) (2.161)

=

(
2δ − 1

2δ

)
f+
i (xf , t) +

(
1

2δ

)
f+
k (xf , t). (2.162)

For moving boundaries, Bouzidi et al. [7] adjusted the distributions in the same way as

Ladd [91]. The second term on the right hand side of equation (2.156) was multiplied by

the coefficient of the distribution that was bounced back, i.e. the coefficient of f+
k (xc, t)

in equation (2.159) and that of f+
k (xf , t) in equation (2.161). That is, expressions (2.163)

and (2.164) were added to the RHSs of equations (2.160) and (2.162):

wiρ

(
6ei ·v
c2

)
. (2.163)(

1

2δ

)
wiρ

(
6ei ·v
c2

)
. (2.164)

Bouzidi et al. [7] also gave equations for quadratic interpolation involving site fff in
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figure 2.5, but the distribution functions at site f would no longer be determined by

those from the nearest neighbours alone. Simulations of Poiseuille flow in a channel using

their method were much more accurate than those using convential bounce-back and the

velocity at the walls of the channel were zero. Good agreement between the velocity field

and the analytical solutions was also achieved with Bouzidi et al. [7]’s method for plane

Couette flow, time-dependent flow inside both a static and an impulsively started circle,

and flow past a periodic array of cylinders. For the flows in channels, body forcing was

used to drive the flow. The transfer of momentum for the fluid to the boundary was also

calculated for circular flows and this also agreed closesly with the analytical solution.

Verberg and Ladd [8] only allowed particles to move a total distance of ∆x during the

timestep in which they bounce back on the wall, in common with [7], by considering

the unit square centred on site w in figure 2.5, which I will call cell w, to be partially

filled with fluid. If the wall is vertical, the volume fraction of fluid in cell w is φw =

δ − 0.5. The distribution function f+
k (xf , t), which represents the population density of

fluid moving with velocity ek after collision, is split into three fractions, such that the

population densities in cells f and w are given by

fk(xw, t+ 1) = f+
k (xf , t), (2.165)

fi(xw, t+ 1) = f+
k (xf , t), (2.166)

fi(xf , t+ 1) = (1− 2φw)f+
k (xf , t) + φw[f+

k (xw, t) + f+
i (xw, t)], (2.167)

fk(xf , t+ 1) = φwf
+
k (xf , t) + f+

k (xff , t). (2.168)

All the fluid particles within the population represented by f+
i (xw, t) reach cell f . Since

the fluid occupies fraction φw of cell w, this gives rise to the third term on the right of

equation (2.167). Similarly, all the fluid particles represented by distribution function

f+
k (xw, t) bounce back on the wall and reach cell f , giving rise to the second term on the

right of equation (2.167). A fraction φw of the fluid represented by f+
k (xf , t) does not

reach the wall because it lies further away than ∆x, the distance that the fluid particles

travel during one timestep. It therefore remains in cell f , which gives rise to the first

term on the right of equation (2.168). A further fraction φw of the fluid represented by

f+
k (xf , t) reaches the wall but does not return to cell f because the distance to the wall

and back is greater than ∆x, which gives rise to the first term on the right of equation
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ff f w

wall

Figure 2.6: Representation of an inclined wall (the diagonal line) for the method pro-
posed by Verberg and Ladd [8]. The shaded portions of the diagram represent the areas

that are considered to be solid.

(2.167). Equations (2.165) to (2.168) are only valid if φw < 0.5, otherwise none of the

reflected population density is returned to cell f .

The authors note that the fluid velocity in the partially filled cells is only first order ac-

curate. They subsequently make a better approximation by assuming that the population

density f+
i (t) varies linearly along the line connecting point f to point w, i.e.

fi(x, t) =
2(x− xf )

(1 + φw)|xw − xf |
[f+
i (xw, t)− f+

i (xf , t)] + f+
i (xf , t) (2.169)

The propagation and bounceback of particles represented by f+
i (x, t) is considered for

every location in the relevant cells by integrating fi(x, t) along the line between sites f

and w, e.g.

fk(x, t+ 1) =
1

φw

∫ φw−1/2

−1/2
fi(x, t)dx, (2.170)

if this line is in the x-direction. For inclined boundaries, the method is adapted by splitting

cells f and w such that a fraction of the population density is reflected in cell f , while

the remainder bounces back in cell w and the boundary is represented as shown in figure

2.6. If the boundary is almost parallel to the horizontal direction, the population density

would be bounced back over many cells.

Their method was much more accurate than the simple bounce back method for simulations

of Poiseuille flow in inclined channels, and, in contrast to that method, the accuracy was

not sensitive to the position of the lattice sites relative to the wall. For their simulations

of flow past periodic arrays of disks and spheres, the drag coefficients were independent of

the positions of the boundary nodes and agreed closely with the theoretical values.
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2.9.2 Consistent methods

One can eradicate the slip velocity that arises from the bounce-back condition by forcing

the unknown distribution functions to satisfy equations (2.2) and (2.3). Methods that use

this are called consistent methods [101, 104, 105].

∑
i

fi = ρ∑
i

fiei = ρv

Consistent methods can be used for walls with any velocity, as well as inlet or outlet

boundary conditions [9, 101, 105]. At the wall, we know all components of the velocity,

but not the density. The velocity in the plane of the inlet or outlet is generally taken

to be zero, so if we use velocity boundary conditions, we also know the velocity but not

the density. If we use pressure boundary conditions, we know the density and all but one

components of the velocity. Equations (2.2) and (2.3) can be used to find a consistency

condition to determine the unknown velocity or density. Some of the distribution functions

will be unknown after streaming.

Noble et al. [101] used a FHP model with rest particles, i.e. D2Q7. In this model, the

above equations give rise to three equations. There are two unknown distribution functions

and either an unknown density or component of the velocity, so there are three unknowns

in total.

The works in [100] and [105] provide a better theoretical understanding of the various

boundary condition methods by analysing the slip velocity in terms of momentum exchange

between the layer of boundary nodes and the adjacent fluid layer. If there is no slip velocity,

the momentum exchange calculated from the distribution functions should be equal to the

exchange carried by the vertical velocity plus the viscous force.

There are usually more unknowns than equations to determine them at the boundaries

for the D2Q9 and D3Q15 models, so to close the system of equations, we assume that the

bounceback condition is still correct for the nonequilibrium part of the particle distribution
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for some of the directions, as proposed by Zou and He [9]. We have:

fi − f (eq)
i = fi+2 − f (eq)

i+2 (2.171)

for the 2D case and

fi − f (eq)
i = fi+1 − f (eq)

i+1 (2.172)

for the 3D case (see figure 2.1).

For the 2D case at the inlet or wall we know all but three distribution functions after

streaming, so there are four unknowns but only three equations from (2.2) and (2.3).

Bounceback of the nonequilibrium part normal to the boundary is used. For example, in

the 2D case, for a node at the bottom wall in a tube with its axis in the x-direction, we

know vx and vy, but need to determine f2, f5, f6 and ρ. We have:

f2 + f5 + f6 = ρ− (f0 + f1 + f3 + f4 + f7 + f8) (2.173)

f5 − f6 = ρvx − (f1 − f3 − f7 + f8) (2.174)

f2 + f5 + f6+ = ρvy + (f4 + f7 + f8) (2.175)

Equations (2.173) and (2.175) give the consistency condition:

ρ =
1

1− vy
[f0 + f1 + f3 + 2(f4 + f7 + f8)]. (2.176)

Bounceback of the nonequilibrium part gives:

f2 − f (eq)
2 = f4 − f (eq)

4 . (2.177)

The distribution functions f5 and f6 can then be determined from the equilibrium distri-

butions for the D2Q9 model (equation (2.52) and table 2.1). We obtain:

f2 = f4 +
2

3
ρvy, (2.178)

f5 = f7 −
1

2
(f1 − f3) +

1

2
ρvx +

1

6
ρvy, (2.179)

f6 = f8 +
1

2
(f1 − f3)− 1

2
ρvx +

1

6
ρvy. (2.180)



Chapter 2. Lattice-Boltzmann methods 145

For a pressure boundary condition at the inlet, we have ρ = ρin, vy = 0 and after streaming

f2, f3, f4, f6 and f7 are known. vx and f1, f5 and f8 are unknown. We have:

f1 + f5 + f8 = ρin − (f0 + f2 + f3 + f4 + f6 + f7), (2.181)

f1 + f5 + f8 = ρinvx + (f3 + f6 + f7), (2.182)

f5 − f8 = −f2 + f4 − f6 + f7. (2.183)

Equations (2.181) and (2.182) give the consistency condition:

vx =
f0 + f2 + f4 + 2(f3 + f6 + f7)

ρin
. (2.184)

One then proceeds in the same way as for a wall node, using the bounceback for the

non-equilibrium part of the particle distribution normal to the inlet, i.e.

f2 − f (eq)
2 = f4 − f (eq)

4 . (2.185)

The corner nodes at the inlet and outlet need special treatment if we use pressure bound-

ary conditions. Both the velocity and density are specified and there are five unknown

distribution functions after streaming. There are five unknowns and three equations, so

bounceback of the nonequilibrium part is used normal to both the wall and inlet or outlet.

For example, for the bottom node at the inlet, we would use:

f1 − f3 = f
(eq)
1 − f (eq)

3 , (2.186)

f2 − f4 = f
(eq)
2 − f (eq)

4 . (2.187)

Using U − x = vy = 0 and the equilibrium distribution functions, we obtain:

f1 = f3, (2.188)

f2 = f4. (2.189)

For complex geometries, we may have a boundary node that is on two walls, as shown in

figure 2.7. In the case of a node such as A, f1, f3, f5, f6 and f8 need to be specified. Using

no-slip conditions we have vx = vy = 0. Using bounceback for the normal distribution
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Figure 2.7: 2D lattice geometry for the flow over a backward facing step. The arrow
shows the direction of flow.

gives f1 = f3, f2 = f4. Expressions of x and y momenta give:

f5 − f6 + f8 = −(f1 − f3 − f7) = f7, (2.190)

f5 + f6 − f8 = −(f2 − f4 − f7) = f7. (2.191)

From these two equations:

f5 = f7, (2.192)

f6 = f8 =
1

2
[ρ− (f0 + f1 + f2 + f3 + f4 + f5 + f7)], (2.193)

but there are no more equations available to determine ρ, so it is assumed to be equal to

that of its neighbouring node [9, 90].

For node B, there is a lack of freedom, so only f5 can be specified [90]. One can choose:

f5 = f7. (2.194)

This avoids the slip velocity in the diagonal direction.

For an inlet, outlet or wall node in the 3D case there are five unknown distribution func-

tions, so there are six unknowns in total. Bounceback of the nonequilibrium part can be
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used for all five of the distribution functions (equation (2.172)), so there are more equa-

tions than unknowns. In order to obtain the correct velocity parallel to the boundary, the

unknowns are modified in the following way with a suitable choice of δα and δα+1, except

the one normal to the boundary, which leaves the momentum normal to the boundary

unchanged:

fi ← fi +
1

4
eiαδα +

1

4
ei(α+1)δα+1, (2.195)

where α and α+ 1 are directions parallel to the boundary and For example, for the inlet

boundary condition ρ is given by equation (2.2) and (2.3) gives:

ρinvx = f1 + f7 + f9 + f11 + f13 − (f2 + f8 + f10 + f12 + f14). (2.196)

Consistency of these determines vx when pressure boundary conditions are used or ρ when

velocity boundary conditions are used:

ρinvx = ρin − [f0 + f3 + f4 + f5 + f6 + 2(f2 + f8 + f10 + f12 + f14)]. (2.197)

We use bounceback of the nonequilibrium parts for f1, f7, f9, f11, and f13. f7, f9, f11 and

f13 are modified:

fi ← fi +
1

4
eiyδy +

1

4
eizδz. (2.198)

We find:

f1 = f2 +
2

3
ρinvx (2.199)

fi = fi+1 +
1

12
ρinvx −

1

4
[eiy(f3 − f4) + eiz(f5 − f6)], i = 7, 9, 11, 13. (2.200)

For incompressible models, ρv must be replaced with v.

The consistent methods by Noble et al. [101], Zou and He [9] and Inamuro et al. [104]

give machine accuracy for Poiseuille flow in a 2D square duct, even for high values of

τ , unlike the bounce-back method, because the slip velocity has been eradicated and the

Lattice-Boltzmann method is of second order in space (i.e. it includes terms up to ε2 and

terms of order ε3 arise only from third derivatives in space or higher; Poiseuille flow has

no terms beyond second order). It is second order for other types of flow, such as flow

through a pair of porous parallel plates. For steady flow in a 3D square duct, it is second
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order [9, 90] but does not achieve machine accuracy. This may be because problems in

resolving the four edges pose additional difficulties in resolving the flow. The density is

also not uniform in cross section as it should be.

The disadvantage of this method is that two of the directions need to be perpendicular to

the wall and some need to be parallel, so it can only be used for boundaries aligned with

certain planes.

One possible approach to the boundary condition at the wall is to set the unknown distri-

bution functions to the equilibrium distribution for the velocity of the wall. The velocity

along the wall obtained with this assumption is not equal to the wall velocity, although

the normal velocity is equal to that of the wall [104]. Inamuro et al. [104] compensate

for this by setting the unknown distribution functions to the equilibrium ones given by

equation (2.7), with the density replaced by ρ′ and the velocity replaced by vwall + v′,

where v′ is a counter-slip velocity tangential to the wall. Since the density of the fluid, ρ, is

unknown as well as ρ′ , and, in ND dimensions, the slip velocity has ND − 1 components,

there are ND + 1 unknowns. Equations (2.2) and (2.3) provide ND + 1 constraints on

these unknowns, in a similar way to the methods described by Zou et al. [89] and Noble

et al. [101]. It may not be possible to use the method for all non-axis aligned boundaries

because the equations for ρ′ and v′ require certain distribution functions.

To apply pressure boundary conditions at the inlet and outlet, Inamuro et al. [104] calcu-

lated the unknown distribution functions as follows:

fi,inlet = fi,outlet + wik, (2.201)

where wi is the weight for the equilibrium distribution function f
(eq)
i given in table 2.1 and

the constant k is chosen such that
∑

i fi = ρin. The same method is applied at the outlet.

This method requires the distribution function fi to be determined by streaming at the

outlet. At sites adjacent to both the wall and the inlet or outlet, this method is applied

to the distribution functions for particles entering the wall or moving along its tangent,

then the no-slip condition is applied to determine the unknown distribution functions for

particles entering the fluid domain.
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Hecht and Harting [106] showed how to extend Zou and He [9]’s method to nonflat bound-

aries, but one has to derive a separate scheme for every possible combination of neigh-

bouring lattice sites to a boundary.

2.9.3 Comparison of body force with pressure boundary conditions

Kandhai et al. [18] compared body force to a pressure boundary condition method by

considering fluid flow through an infinite vertical aray of cylinders. The errors in the

velocity, pressure and drag forces acting on each cylinder were calculated. Flow in a

disordered porous medium was also simulated. They found that the body force approach

is quite an accurate substitute for pressure boundaries, but for low Reynolds number flows

and complicated geometries, pressure boundary conditions may be needed.

2.9.4 Equilibrium schemes

An alternative to the bounceback method is the equilibrium scheme [100]. One can assign

the unknown equilibrium distribution functions to the equilibrium ones for the velocity

and pressure of the boundary. However, the velocity calculated from the resulting equilib-

rium distribution functions will in general be different from the intended velocity of the

boundary. A slip velocity is the special case of this when the velocity should be zero at the

boundary. Melchionna et al. [96] used an equilibrium scheme for the pressure boundary

conditions at the inlet and outlet.

2.9.5 Extrapolation methods

Extrapolation methods find the unknown distribution functions at the boundary sites by

extrapolating from nearby fluid sites. Zhao-Li et al. [10, 102] proposed a nonequilibrium

extrapolation method to calculate the distribution functions at the edge sites, f . Equa-

tions (2.5) and (2.6) represent the collision and streaming steps of the lattice-Boltzmann

equation. We require f+
i (xw, t) to finish the streaming step at site f , as shown in figure

2.5. One can decompose fi(xw, t) into local equilibrium and nonequilibrium parts:

fi(x, t) = f
(eq)
i (ρ(xw, t),v(xw, t)) + f

(neq)
i (x, t), (2.202)



Chapter 2. Lattice-Boltzmann methods 150

where f
(eq)
i and f

(neq)
i are the equilibrium and nonequilibrium parts of fi respectively.

The density, velocity and nonequilibrium distributions are approximated by the following

extrapolations involving sites f and ff :

ρw = ρf , (2.203)

vw =

 (vb + (δ − 1)vf )/δ, δ ≥ 0.75

vb + (δ − 1)vf +
(

1−δ
1+δ

)
(2vb(t) + (δ − 1)vff ) , δ < 0.75

, (2.204)

f
(neq)
i (xw, t) =

 f
(neq)
i (xf , t), δ ≥ 0.75

δf
(neq)
i (xf , t) + (1− δ)f (neq)

i (xff , t), δ < 0.75
, (2.205)

where ρw = ρ(xw, t), ρf = ρ(xf , t), vw = v(xw, t), etc., and δ is the normalised cut

distance, given by equation (2.158). The post-collision distribution function at site w is

given by

f+
i (xw, t) = f

(eq)
i (ρw,vw) + (1− τ−1)f

(neq)
i (xw, t), (2.206)

where τ is the dimensionless relaxation parameter.

The extrapolation in velocity is of order (∆x)2. From the Chapman-Enskog expansion

(equation (2.69)), it can be shown that the extrapolation of the nonequilrium distribution

is also of second order [102]. We have

f
(neq)
i = εf

(1)
i +O(ε2) (2.207)

Node w is a neighbour of node f at a distance ∆x = O(Lε) (equation (2.144)), and using

equation (2.68), i.e. ∂r = ε∂1r, we have:

f
(1)
i (xw, t) = f

(1)
i (xf , t) +O(ε) (2.208)

Therefore, at node w, we have

f
(neq)
i (xw, t) = f

(neq)
i (xf , t) +O(ε2). (2.209)

Setting the nonequilibrium distribution function equal to that at node f gives an error of

order ∆x2, since ∆x = O(Lε). For the velocity boundary condition, we do not know the
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pressure at site w, so this is also extrapolated from site f

p(xw, t)− p(xf , t) = (e2 · ∇p)∆x = O(εMa2), (2.210)

using equations (2.68) and (2.113). We have:

f
(eq)
i (xw, t) = f

(eq)
i (p(xf , t),v(O, t)) +O(∆xMa2). (2.211)

If the Reynolds number, Re = vD
ν is kept constant as ∆x is reduced, i.e. the width

of the channel in lattice units is increased, and the viscosity is kept the same, i.e. τ is

constant, then v ∝ 1
D . The speed of sound is 1√

3
in lattice units, so the Mach number,

Ma ∝ 1
D . Therefore, the error from the extrapolation of pressure is of order ∆x3. [102]

achieved second order accuracy in space with Poiseuille flow, porous plate flow and cavity

flow when comparing their results with an analytical solution and keeping the Reynolds

number constant.

The wall may be curved in such a way that site ff is solid, as well as site w, and therefore

the information that may be required from that site is not available. Zhao-Li et al. [102]

do not explain how to deal with this case.

Zhao-Li et al. [102] explain how this method can also be used for pressure boundary

conditions and show that it is expected to have the same accuracy.

Fang et al. [14] use a similar method that also extrapolates the information from sites f

and ff to find the distribution function at site w. For the density and nonequilibrium

distribution, equations (2.212) and (2.214) are used instead of equations (2.203) and (2.205)

respectively, and the velocity is extrapolated using equation (2.213) for all δ, not δ ≥ 0.75.

ρw = ρf , (2.212)

vw = (vb + (δ − 1)vf )/δ, (2.213)

f
(neq)
i (xw, t) = 2f

(neq)
i (xf , t)− f

(neq)
i (xff , t). (2.214)

The relative errors arising from the application of the method are second order in space,

by similar arguments to those earlier in the section. Fang et al. [14] only consider a lattice

site to be a fluid site if it is inside the wall and the wall does not cross the unit square
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centred on the lattice site. Therefore, the normalised cut distances lie within the range

0.5 ≤ δ < 1.5.

Filippova and Hanel [107, 108] have also developed an extrapolation method to find the

distribution functions at site f that cannot be determined by streaming. For the clarity

of the following discussion, we state the lattice BGK equation (equation (2.4)) at site f

for the distribution function fi, such that the lattice vector ei points away from the solid

site w:

fi(xf , t+ ∆t) = (1− τ−1)fi(xw, t) + τ−1f
(eq)
i (ρ(xw, t),v(xw, t)). (2.215)

Since the distribution functions coming from site w are unknown, this is replaced with

fi(xf , t+ ∆t) = (1− τ−1)fk(xf , t) + a1τ
−1
i f

(eq)
k (xw, t) + a2τ

−1
i f

(eq)
k (xf , t), (2.216)

where ek = −ei is the lattice direction pointing towards site w, the relaxation parameter

τ−1
i can be varied, and a1a2 = 0, a2

1 + a2
2 = 1. The equilibrium distribution at site w is

calculated in the similar way as in [10] with the following exceptions. First, the 2nd and

3rd terms use the velocity at site f , not site w, i.e. we have

f
(eq)
i (xw, t) = wiρf

(
1 + 3

ei ·vw
c2

+
9

2

(ei ·vf )2

c4
− 3

2

vf ·vf
c2

)
(2.217)

instead of equation (2.7). Second, the velocity vb is calculated by equation (2.204), as

if δ ≥ 0.75, regardless of its actual value. This causes instability as δ → 0. Equation

(2.216) reduces to the simple bounce-back condition if τ−1
i = 0. If τi = τ and a2 = 0,

the equation reduces to the lattice-BGK equation for fi(xf , t+∆t) with fi(xw, t) replaced

with fk(xf , t). Filippova and Hanel [107, 108] use the following values for τ−1
i , a1 and a2.

τ−1
i = τ−1(2δ − 1), a1 = 1, a2 = 0, δ ≥ 0.5;

τ−1
i = τ−1

(
2δ−1

1−τ−1

)
, a1 = 0, a2 = 1, δ < 0.5.

(2.218)

Equation (2.216) is only valid for stationary boundaries, i.e. vb = 0. For moving bound-

aries, the term −6wivb · ek is added to the RHS [108].
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2.9.6 Methods involving extrapolation in time

Mazzeo et al. [93, section 3.1] developed a new extrapolation method. This method is used

in HemeLB for patient-specific simulations of cerebral blood flow, as described in section

2.3. Results for simulations of a 2D channel and a 3D square duct using this method are

presented in Mazzeo et al. [93, section 3.1] and [92]. It is applied as follows. Instead of

carrying out collision at the sites adjacent to the wall, labelled f in figure 2.5, the post-

collisional distribution functions are set to the equilibrium ones with density ρ(x, t) and

the velocity to be prescribed at site f , which is assumed to be the same as the velocity of

the wall, i.e.

f+
i (xf , t) = f

(eq)
i (ρ(xf , t),vb). (2.219)

At all other fluid sites, collision is carried out as usual, followed by streaming. However,

at a site of type f , the distribution functions that cannot be determined by streaming,

which we call the unknown distribution functions, are set to the postcollisional ones, i.e.

fi(xf , t+ ∆t) = f+
i (xf , t). (2.220)

This is almost equivalent to an extrapolation of the unknown distribution functions in

time, fi(xf , t + ∆t) = fi(xf , t + ∆t). Such an extrapolation is reasonable provided that

the slow flow condition, T � L
c , described in section 2.8, is satisfied. One can see this

from the Taylor expansion of the distribution functions in terms of time: fi(r, t + ∆t) =

fi(r, t) + ∆t∂fi∂t [109]. ∆x = c∆t, so the method is first order accurate in time and space.

The explanations of this method in [92, 93] is slightly different, but the method is exactly

equivalent.

The method can also be used for pressure boundary conditions; the post-collisional dis-

tributions are set to the equilibrium distributions with a prescribed density ρset and the

velocity at the end of the previous time step, i.e. equation (2.219) is replaced with:

f+
i (xf , t) = f

(eq)
i (ρset,v(xf , t)). (2.221)

At a fluid site adjancent to a wall and an inlet or outlet, the density and velocity can be

prescribed, i.e.

f+
i (xf , t) = f

(eq)
i (ρset,vb). (2.222)
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In contrast to the extrapolation method by Zhao-Li et al. [10], this method assumes that

the pressure and/or velocity is equal to that at the boundary, i.e. it does not take into

account the distance from the boundary. Interpolation could be carried out to do this.

Since this method sets the nonequilibrium parts of the post-collisional distribution func-

tions to zero, the deviatoric stress tensor at the boundary site is zero immediately after

this stage. This may cause inaccuracy, particularly when it is applied at sites adjacent

to the wall, because the shear stress is expected to reach a maximum there if the flow is

parabolic. For example, for Poiseuille flow in a 3D cylinder in the x-direction, the velocity

is given by equation (1.12). The y and z-components of the velocity are zero. The com-

ponent of the stress τxr = η ∂vx∂r , from equation (1.3). Therefore, τxr = − r∇p
2νρ , where ν is

the kinematic viscosity and ρ is the density. The maximum is clearly at r = R. When

the flow fields are calculated at the end of the time step, after streaming, the distributions

at the boundary sites are no longer given one of the equations (2.219) to (2.222), so the

nonequilibrium parts of the distribution functions are nonzero and the stress is nonzero,

but it may still be inaccurate.

2.9.7 Grid refinement

Boundary condition methods that do not take into account the distance from the lattice

sites at the edge of the fluid domain to the boundary, such as the bounce-back condition,

impose velocity boundary conditions on a staircased boundary, leading to large simulation

errors for nonflat boundaries, as described in section 2.9.1. This can be improved by using

a more sophisticated boundary condition method. Alternatively, local grid refinement can

be applied to regions where large changes of solution are expected. Filippova and Hanel

[108] proposed a scheme to apply this to the LBM. The grid is refined by a factor n, and

the timestep is reduced to ∆t
n . In order to ensure that the viscosity, which is given by

equation (2.11), is the same for the coarse and fine grids, the values of τ for these grids

are related by

τfine =
1 + n(2τcoarse − 1)

2
. (2.223)

Since the velocity and density and their derivatives must be continuous over the interface

between the two grids, we have the following relationships between the post-collisional
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distribution functions:

f+,coarse
i = f

(eq),fine
i + (f+,fine

i − f (eq),fine
i )

(
n(1− τ−1

coarse)τ
−1
fine

(1− τ−1
fine)τ

−1
coarse

)
, (2.224)

f+,fine
i = f

(eq),coarse
i + (f+,coarse

i − f (eq),coarse
i )

(
(1− τ−1

fine)τ
−1
coarse

n(1− τ−1
coarse)τ

−1
fine

)
. (2.225)

2.10 Further applications of the lattice-Boltzmann method

Kandhai et al. [18] simulated the flow through a porous medium. Dimensional analysis

suggests that, for a constant body force, the saturation time tsat needed to reach the steady

state is of the form:

tsat ∝
R2
pore

ν
, (2.226)

where Rpore is the characteristic length of pore in the system. Saturation times can be

very long for high porosities. Tens of thousands of time steps may be needed, so a consant

body force may be computationally inefficient, especially when one is only interested in the

steady-sate solution. The iterative momentum relaxation method proposed by Kandhai

et al. [18] reduces computing time by adjusting the force at certain intervals of time to

the total momentum loss in the fluid due to vicous forces. Since the LBM is very useful

for simulating fluid flow through complex geometries, Filippova and Hanel [107] used it to

simulate gas particle flow in filters in 2D. The drag force on each particle was calculated

using Stokes’ law for spherical particles. A particles was deposited when it touched part

of the filter or another particle that had been deposited. At that point, the lattice sites

inside the region of the particles became solid. The collection efficiency of the filter matched

experimental results closely.

Ladd [91] proposed a method for simulating a colloidal system using the LBM. The bounce-

back method was suitable for dealing with the nonflat boundaries between the solid parti-

cles and the fluid domain and it was adjusted to take into account the non-zero velocities

of the particles, as described in section 2.9.1.

Bernaschi et al. [97] developed a lattice-Boltzmann code called MUPHY for carrying out

multi-scale simulations. They have coupled lattice-Boltzmann and molecular dynamics

methods and hence simulated the translocation of DNA across a multi-hole membrane,

which was driven by a force from an electric field. The lattice spacing ws 50nm, therefore
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thermal effects were important and were taken into account by a stochastic forcing term

applied to each lattice site. The timesteps used to integrate the equation of motion of each

polymer bead were much smaller than the lattice-Boltzmann timesteps. The translocation

of DNA is an important processes occuring during a viral infection by phages, inter-

bacterial DNA transduction and gene therapy. In addition, understanding this process

may open a way to fast gene-sequencing by sensing the base-sensitive electronic signal as

the biopolymer passes through a nanopore.

2.11 Application to non-Newtonian fluids

Blood is not a Newtonian fluid, as shown in section 1.6. To make the simulation of

blood flow using Lattice-Boltzmann methods more realistic, non-Newtonian effects should

be included. In this section, the attempts to incorporate non-Newtonian behaviour into

Lattice-Boltzmann simulations and the characterisation of non-Newtonian fluids are dis-

cussed.

In a non-Newtonian fluid, the stress is not directly proportional to the strain rate, but a

function of it. Non-Newtonian fluids are often categorised into idealised types of fluids.

Power-law fluids have the following stress-strain relationship.

σ = k

(
∂vx
∂y

)n
(2.227)

They can be divided into shear thickening fluids, where, in which the additional stress

needed to increase the velocity of the fluid increases with strain rate. In a shear thinning

fluid, less and less additional stress is required to increase the velocity as the strain rate

increases, so it flows more easily. A third type is a Bingham fluid, which can bear some

shear stress before it starts flowing, but once it starts flowing, the stress increases linearly

with strain rate.
∂vx
∂y = 0, σ < σ0

∂vx
∂y = σ−σ0

k , τ ≥ 0
(2.228)

It is sometimes difficult to characterise the behaviour of a fluid, but one can define an

apparent viscosity [25, 110–112], so that equation (1.4) for Newtonian flow can still be
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used. For a power-law fluid, the viscosity is given by:

η = k

(
∂vx
∂y

)n−1

(2.229)

The apparent viscosity increases with strain rate for a shear thickening fluid and decreases

for a shear thinning fluid.

Fluids may be time-independent (purely viscous) [110], so the shear stress depends only

on the shear rate, as in the models described above. In time-dependent fluids, the shear

stress is a function of both the magnitude and the duration of the shear rate and possibly

of the time lapse between consecutive applications of the shear stress. The flow curve

can involve a hysteresis loop whose shape depends on the rate at which the shear stress

is applied. One example of this is viscoelastic fluids, which show partial elastic recovery

upon the removal of a deforming shear stress. The viscosity may then be expressed as a

complex number. The elastic modulus of blood is usually very small, as shown in section

1.6, so in this study, it will be modelled as a purely viscous fluid.

The equations quoted so far have assumed that the flow is a simple shear flow, so the ve-

locity is always in the same direction and does not vary with z. A more difficult problem is

how to generalise the stress-strain-rate relationship to three dimensions. For a Newtonian

fluid, the stress tensor in the Navier-Stokes equations is (see equation (1.3)):

σij = 2η ˙εij , (2.230)

where the tensor on the right is the strain-rate tensor:

˙εij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
(2.231)

Writing this out explicitly:

σ = η


2∂vx∂x

∂vx
∂y +

∂vy
∂x

∂vx
∂z + ∂vz

∂x

∂vy
∂x + ∂vx

∂y 2
∂vy
∂y

∂vy
∂z + ∂vz

∂y

∂vz
∂x + ∂vx

∂z
∂vz
∂y +

∂vy
∂z 2∂vz∂z

 . (2.232)
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For a power-law fluid, one might expect:

σ = η


2
(
∂vx
∂x

)n (
∂vx
∂y

)n
+
(
∂vy
∂x

)n (
∂vx
∂z

)n
+
(
∂vz
∂x

)n(
∂vy
∂x

)n
+
(
∂vx
∂y

)n
2
(
∂vy
∂y

)n (
∂vy
∂z

)n
+
(
∂vz
∂y

)n
(
∂vz
∂x

)n
+
(
∂vx
∂z

)n (
∂vz
∂y

)n
+
(
∂vy
∂z

)n
2
(
∂vz
∂z

)n
 . (2.233)

In this case, the apparent viscosity would be a fourth-order tensor and would be very

difficult to define. In the lattice-Boltzmann equation with the Bhatnagar-Gross-Krook

collision operator (equation (2.4)), the viscosity is a scalar, so the method would have to

be modified to accommodate a fluid that behaves like this, which could ruin the excellent

parallel performance of the Lattice-Boltzmann.

However, a fluid cannot obey equation (2.233) because the shear stress and shear rate

are measurable quantities and the law that relates them must be rotationally invariant,

because with any phenomenon, viewing it from a different angle should make no difference

to the physical laws. Define:

µij =
∂vi
∂xj

(2.234)

For any purely viscous fluid, we have:

σij = f(µij) + f(µji) (2.235)

In a different frame of reference, we should obtain.

σi′j′ = f(µi′j′) + f(µj′i′) (2.236)

A rotation matrix relates the tensors in the old and new frames of reference:

σi′j′ = Rσij , µi′j′ = Rµij (2.237)

Therefore:

f(Rµij) + f(Rµji) = Rσij = Rf(µij) + Rf(µji), (2.238)
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using (2.235) This can only be satisfied if:

f(µij) = kµij , (2.239)

where k is a scalar. Then:

Rf(µij) = R(kµij) = kRµij = f(Rµij) (2.240)

as required for equation (2.238).

The scalar k is the apparent viscosity, which is a function of the different components of

the strain rate. The value of k must be independent of the basis in which the strain rate is

measured. Therefore, k is a function of three invariants of the strain rate tensor [110, 111],

i.e.

σij = η(I, II, III)

(
∂vi
∂xj

+
∂vj
∂xi

)
. (2.241)

The studies state that this simple relation has been used, but not that it has been proven

to hold, suggesting that some validation of this is still required. For an incompressible

fluid, the first invariant vanishes, and for a simple shear flow even the third invariant

vanishes, so we have:

η = η

(√
II

2

)
, (2.242)

e.g.

η = η0

(√
II

2

)n−1

(2.243)

for a power law fluid. Equation (2.242) is dimensionally correct because II has dimensions

of the square of strain rate. It is given by [110]:

II = 2

[(
∂vx
∂x

)2

+

(
∂vy
∂y

)2

+

(
∂vz
∂z

)2
]

+

(
∂vx
∂y

+
∂vy
∂x

)2

+

(
∂vx
∂z

+
∂vz
∂x

)2

+

(
∂vy
∂z

+
∂vz
∂y

)2

,

(2.244)

or equivalently [112]:

II/2 =
√

˙εij ˙εij . (2.245)

This apparent viscosity is a scalar quantity, so one can use it directly in the Lattice-

Boltzmann method, which was done for a power law fluid with n < 1 in [112]. It may be
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calculated at the beginning of each time step for every lattice point based on the velocities

that were calculated at the end of the previous time step. As explained in section 2.2,

the stress can be calculated directly from the distribution functions instead of using a

finite difference method to find the velocity gradients [59, 90, 91], which will make the

calculation faster and more accurate, as shown in equation (2.246).

σαβ = −
(

1− 1

2τ

)∑
i

fneqi eiαeiβ (2.246)

For a non-Newtonian flow, the strain rate is related to the stress by equation (2.241), i.e.

2η(t) ˙εαβ = −
(

1− 1

2τ

)∑
i

fneqi (t)eiαeiβ. (2.247)

Substituting equation (2.242) into this gives

2η(II/2) ˙εαβ = −
(

1− 1

2τ

)∑
i

fneqi (t)eiαeiβ, (2.248)

which can be used to update the viscosity, η, at every time step. Each component of the

stress tensor depends on all the components of the strain tensor. Therefore, the set of

equations we obtain is not straightforward to invert to find the apparent viscosity.

Replacing η(t) with η(t−∆t) in equation (2.247) gives

˙εαβ = −
(

1

2η(t−∆t)
− 1

4τη(t−∆t)

)∑
i

fneqi (t)eiαeiβ, (2.249)

from which it is very straightforward to estimate the strain rate. Equation (2.245) can

then be used to find the second invariant of the strain rate , from which the viscosity

η(t) can be estimated with equation (2.242). With this approach, the lattice-Boltzmann

method should remain fast and accurate if the time step is short compared to the time

over which the viscosity undergoes a major change, but instabilities may arise due to the

replacement of η(t) with η(t−∆t) and the calculation of the viscosity will be less accurate

than using equation (2.248).

No fluids obey the power law perfectly. For example, pseudoplastic fluids are Newtonian

at low shear rates, shear thinning fluids that obey a power law at high shear rates and they

require a transition region in between. A modified power law can describe the apparent
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viscosity more accurately. [110, 111].

η =
η0

1 + η0
k (2ε̇)1−n . (2.250)

Park and Lee [110] investigated the pressure drop in a rectangular duct for steady flow.

The friction factor, or resistance of the duct was calculated, as explained in section 1.5, as

a function of the Reynolds number. An iterative method was used, in which the velocity

profile was initially set to the analytic one for a rectangular duct, the viscosities were

calculated based on the strain rates, then the new velocities were calculated. There was

good agreement between theory and experiment. Similar work was carried out by the same

authors to model heat transfer [111]. The data was compared with experimental data and

was much more accurate than using a simple power law, which leads to large errors in

the Newtonian region because the apparent viscosity becomes infinite at zero shear rate

which occurs at maxima or minima in velocity. The studies also demonstrate the validity

of equation (2.242).

Casson’s model is one of the most common models for blood viscosity. It requires a shear

stress before it starts flowing, like a Bingham fluid, but with an equation in the form of a

modified power law [25].
√
σ =
√
σ0 +

√
ηε̇. (2.251)

The apparent viscosity is:

η =

(√
σ0

II
+
√
η0

)2

. (2.252)

In this study, the Navier-Stokes equations were solved with a finite-element approach. Both

finite-element and lattice-Boltzmann methods cannot cope with very high viscosities. In

[25], the expression was modified as follows to prevent the viscosity from becoming infinite

at zero shear rate:

η =

[√
σ0

(
1− exp(−mII)

II

)
+
√
η0

]2

. (2.253)

In [112], the authors state that lattice-Boltzmann simulations are less accurate and take

more time to converge for very high values of τ , so τ was limited to 10. However, [101]

achieved machine accuracy for 2D Poiseuille flow for values of τ up to 50.0, because

accurate boundary conditions were used (sections 2.8 and 2.9).
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Sullivan et al. [112] studied the flow of a power-law fluid through porous media. In the

past, numerical models had used idealised porous media by assuming that each pore was a

parallel pipe. Analytical solutions relating the flow rate to the pressure drop and density

of pores had been derived from this. The models required correction factors in order

to agree with experiment. Numerical models with various arrangements of spheres to

represent the pores better describe the nature of porous media. The analytical solutions

could be corrected by changing the constants of proportionality. The analytical solution

was extended to power law fluids. The Lattice-Boltzmann method was used in this study

to simulate the flow and good agreement with the established theory was obtained.



Chapter 3

A new method for

lattice-Boltzmann simulations of

fluid flow through axially

symmetric elastic systems

The simulation of viscous fluid flow in elastic pipes is an area of considerable practical

interest. For instance, three-dimensional (3D) computational fluid dynamics (CFD) simu-

lations of cerebral blood flow have enhanced our understanding of cerebrovascular diseases,

as explained in section 1.8. These studies usually assume that the arterial walls are rigid,

but the displacement of the wall could influence or be influenced by cardiovascular dis-

ease and is likely to have important effects on the pressure, velocity and stress fields, as

explained in section 1.10.

The effect of elasticity on fluid flow is also paramount in models of the bladder and urinary

tract [113]. It is necessary to understand the dynamics of elastic pipes carrying fluids in

many engineering projects, including nuclear reactor components, marine drilling and oil

pipelines because, in practice, the pipes are not completely rigid [114, 115]. Studies of

the response of elastic pipes to various flow conditions include a theoretical analysis of the

deflection of oil pipelines [114, 115], and a demonstration of a finite-element method for

some simple types of piping systems [115].

163
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Many of the systems of interest require three-dimensional simulations in complex geome-

tries. These simulations must run efficiently on multicore computers if the results are to

be obtained within a reasonable timescale, especially in the case of interactive simula-

tions. This is particularly important in simulations of cerebral blood flow, especially if

these simulations are to be used to plan neurosurgery, as discussed in section 2.3. The

lattice-Boltzmann method (LBM) [16, 17, 75, 88, 89] is ideally suited to computation on

multicore machines because the algorithm for calculating the flow fields at each lattice

site depends only on information from its nearest neighbours [16], as explained in section

2.2. The efficiency can be improved further if buffers are set up for every processor to

store information that is sent to or received from neighbouring processors, as described in

section 2.3. If the effects of vessel elasticity are to be included in a large lattice-Boltzmann

simulation of fluid flow in complex geometries, it is essential that the method retains the

aforementioned characteristics.

For the method developed in this chapter, no fluid nodes are created or destroyed as the

wall moves over the lattice sites, as explained in section 3.5.1, in contrast to the lattice-

Boltzmann schemes involving moving boundaries in the literature, which are reviewed

in section 3.1. Keeping the number of lattice sites constant would make it easy to set

up buffers for the information exchanged between processors. It would also not have a

dramatic effect on the accuracy of the simulation, as explained in section 3.5.1.

It is also important that methods for simulating fluid flow in elastic pipes are sensitive

to small displacements. For example, experimental data shows that the cross-sectional

areas of the vertebral and internal carotid arteries, the largest arteries in the brain, are

approximately 10% larger at a static pressure of 120 mmHg than they are at 80 mmHg [77],

as explained in section 1.10. Cerebral arteries branch out and become smaller and smaller

so, if the lattice-Boltzmann method is used, the smallest arteries may be only a few lattice

points across and if the cross-sectional area of these only changes by 10%, displacements of

a fraction of the lattice spacing must be considered. Furthermore, methods for simulating

cerebral blood flow must be stable and accurate for realistic values of the dimensionless

parameters, such as the Reynolds number, which is given by Re = ρvmaxD/η, where ρ is

the density of the fluid, vmax is its maximum speed, η is the dynamic viscosity, and D is the

diameter of the vessel, from equation (1.5). These parameters vary widely between human

subjects, but Re > 100 is typical in the larger cerebral arteries and typical parameters are
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given in section 1.6. For example, in the iternal carotid artery, we have ρ ≈ 1000kg m−3,

η ≈ 3.5× 10−3Pa s, D ≈ 3× 10−3m, vmax ≈ 0.7m s−1, which gives Re = 600.

The work in this chapter is largely taken from Doctors et al. [116]. In this chapter, a new

method for carrying out lattice-Boltzmann simulations of fluid flow in 3D elastic pipes is

proposed whilst all the issues described above are addressed. It is organised as follows. In

section 3.1, some existing methods for including wall elasticity in lattice-Boltzmann models

are described. In section 3.2, I describe the equations of motion for the elastic walls and

summarise lattice-Boltzmann scheme used in this study. The accuracy of several different

combinations of lattice-Boltzmann boundary condition methods and their suitability for

3D computations of fluid flow through elastic vessels is tested in section 3.3. This is also

done for 2D computations in section 3.4 because some of the simulations in chapter 5

require such simulations at higher Reynolds numbers than those achieved in the tests of

the boundary condition methods in section 3.3. Section 3.5 contains a description of our

method for simulating fluid flow through elastic vessels and details of the analytical solution

with which the numerical results are compared. Section 3.6 contains results concerning

the accuracy of the simulation method and its computational cost. Section 3.7 discusses

the implications of the results. The conclusions are presented in section 3.8.

3.1 Summary of lattice-Boltzmann fluid flow simulations in

elastic pipes

A few modifications to lattice-Boltzmann methods have already been proposed to simulate

fluid flow in distensible vessels.

Fang et al. [14, 117] simulated fluid flow through a channel oriented in the x-direction.

The wall was allowed to move in the direction of the normal. The wall was divided into

segments of length one lattice spacing, which were allowed to move in the y-direction.

The force on each wall segment was linear in the displacement and the equation of motion

of the wall was integrated at each time step to find its new position and velocity. The

velocity of the fluid next to the wall was equal to the velocity of the wall because no-slip

and no-penetration conditions were applied there. Steady and pulsatile flow was simulated

in both studies. The position of the wall agreed very closesly with the analytical solution
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when the simulations had reached a steady state. Pulsatile flow was also simulated and

compared with experimental results from the aorta. The agreement in [117] appears to be

better than in [14].

The dimensionless relaxation parameter, τ = 1 and 2 in [117] and [14] respectively. The

ratio of the mass of a wall of length ∆x, the lattice spacing, to the mass of the fluid at a

lattice site was 500 in both studies, which is unrealistically high for a simulation of blood

flow. For blood flow, The density of the arterial walls, ρw is approximately equal to the

density of the blood ρf . For large arteries, the thickness, h, is approximately one-fifth of

the radius, R, as described in section 1.10. Therefore, for a realistic 2D simulation, the

ratio of the mass of a segment of the wall of length ∆x, the lattice spacing, to the mass of

the fluid at a lattice site is expected to be R
5∆x , where R is the half-width. In [14], R ≈ 5,

so this ratio would be of O(1).

In both of these studies, three types of lattice sites were defined: if the wall crossed the

unit square centred on a lattice site, the site was defined to be a boundary site, otherwise,

it was a fluid site if it lay inside the channel and a solid site if it lay outside. However, the

simulation methods differed slightly. In their 1998 study [117], the velocity of the fluid at

the boundary nodes was calculated by a quadratic interpolation or extrapolation, which

seems to assume that a Poiseuille flow will occur, since the velocity is quadratic in the

distance from the centreline. The density was given by a second-order extrapolation, then

the distribution functions that were unknown after streaming were calculated from the

method by Zou et al. [89]. When a boundary node became a fluid node, the distribution

functions were not changed. The force on each segment of the wall was given by considering

the change in momentum at the boundary nodes due to the distribution functions. While

the method is accurate, it is unsuitable for large simulations that run in parallel and the

difficulties arising with buffers when fluid nodes are created or destroyed.

In [14], the distances from the wall to the fluid sites adjacent to boundary sites in the

horizontal, vertical and diagonal directions were calculated. An extrapolation method

similar to that by Zhao-Li et al. [102], is applied at the wall. It is described in section

2.9.5. When a boundary site became a fluid site, the distribution functions were set to the

average of values given by second-order extrapolation in the directions pointing towards

solid sites, which conserves mass, as explained in section 5.6.4. While the distributions at

each boundary site still required information from the first and second neighbouring fluid
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sites in particular directions, only distributions pointing towards fluid sites were required,

for which streaming between the boundary sites was not needed, in contrast to [117].

Therefore, each site only required information from its nearest neighbours for this part of

the method.

Hoekstra et al [118] compared the accuracy of simulations that use the velocity boundary

condition method of Fang et al [14] to those of Zou and He [9] and Bouzidi [7], while

Fang et al’s method was used for creation and destruction of fluid nodes. In contrast to

that study, the wall was massless. The simulation error in the displacement of the wall

relative to the analytical solution was approximately equal when the Fang or Zou and He

velocity boundary condition method was used, but it was ten times larger for the Bouzidi

boundary condition. This error was also first order in the grid spacing. Fang et al’s method

was validated for pulsatile flows by comparing the wavelength and attenuation constant

of the waves in the wall displacement to theoretical solutions derived by Womersley. The

wavelengths agreed within the error in estimating them from the simulation, while the

attenuation constants agreed well for Womersley numbers greater than 6. The Womersley

number is given by α = R
√
ω/ν, where R is the radius of the tube, ω is the angular

frequency and ν is the dynamic viscosity. For Womersley numbers less than 6, Hoekstra

et al showed that the inaccuracy is partly due to the large grid spacing used.

Buxton et al. [119] coupled the lattice-Boltzmann method with a lattice-spring model,

which consisted of a cubic lattice of linear springs with point masses at the corners. A

Verlet algorithm was used to integrate the equations of motion. At the fluid sites that

were adjacent to solid sites, they used a bounce-back method that was modified to apply

a given velocity half way along the link between the fluid and solid sites, as described in

section 2.9.1, in order to apply no-slip and no-penentration conditions at the wall. This

velocity was given by a weighted average of the velocities at nearby points on the wall. On

the other hand, the force at a point on the wall was calculated as a weighted average of

the forces half way along the aforementioned links, which in turn are calculated from the

bounce-back condition. However, the linear compliance force does not take into account

the stress at the boundaries. The method is valid for any general geometry because it

takes into account the interaction between different points on the elastic wall. However,

the Poisson’s ratio, which is the ratio of transverse to axial strain, is restricted to 0.25. The

method, including the creation and destruction of fluid nodes, only requires information
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from the nearest neighbouring sites, in contrast to that described in [14]. However, for

the weighted averaging, lattice sites and wall points within several lattice lengths of the

desired point had to be taken into account. They use a multiple-time relaxation LBM,

which allowed the shear and bulk viscosities to be varied independently. For most of

their simulations, the shear viscosity is chosen such that the distribution functions relax

to equilibrium in one timestep, which is equivalent to setting τ = 1. This optimised the

accuracy when new fluid sites are created, since the distribution functions at these sites

were set to equilibrium. The ratio of the density of the wall to that of the fluid was 11,

significantly less than the ratio used by [14].

Buxton et al. [119] use their method to simulate an elastic spherical shell filled with

a compressible fluid, in contrast to most other studies described in this thesis, which

attempt to simulate incompressible fluids. They studied breathing mode oscillations for

elastic shells of different thicknesses in vacuo, then in fluid-filled spherical shells with

different Youngs moduli. The frequencies of oscillations agreed closely with the analytical

predictions. For the fluid-filled shell, the damping of the oscillations increased as the bulk

viscosity increased, but was unaffected by the shear viscosity. The collision of the shell with

a hard wall and an adhesive wall was studied under a variety of different parameters by

introducing a force on the elastic wall nodes that depended on their position. The authors

discuss the application of these simulations to the design of effective microcapsules for the

pharmaceutical industry.

The method proposed by Leitner et al [120] involved a threshold pressure equal to the

pressure required to balance the restoring forces from the wall elasticity and to maintain

the wall in equilibrium. The pressure was calculated at each fluid and solid node, the

pressure of a solid node being determined by the pressure exerted by the surrounding fluid

nodes. If the pressure was below a threshold, the node would become solid, otherwise it

would become a fluid node. Certain update rules were then applied to eliminate artefacts

and holes in the wall [120]. While the method is simple and accurate, it requires constant

creation and destruction of fluid nodes and is not sensitive to wall displacements of less

than the size of one fluid node, so it is not sufficiently sensitive for fluid flow through

complex, branching geometries.

In this chapter, a new method is proposed for simulating fluid flow in three-dimensional

elastic vessels with curved boundaries, in which the distances from sites at the edge of the
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simulation box to the wall in the lattice directions are estimated from the displacement

of the closest point on the wall and the curvature there. A nonequilibrium extrapolation

method is then applied to the sites at the edge. No fluid nodes are created or destroyed,

which is advantageous for running on parallel architectures. The accuracy and computa-

tional cost of the method are tested for pressure-driven flow in an elastic cylinder.

3.2 Theoretical background

The equations of motion for elastic walls in a system through which a fluid flows are

developed in this section. This is followed by a summary of the lattice-Boltzmann model

employed in this chapter.

3.2.1 Equations of motion for the elastic walls

In a simulation of fluid flow in an elastic vessel, an equation of motion for the wall is

required. If the wall is in equilibrium, the circumferential tensile stress, σθθ, balances the

transmural pressure (the difference between the pressure of the fluid inside, p, and the

pressure outside, p0), provided that loading and deformation are axisymmetric, i.e. we

have σrθ = σzθ = 0 and the radius of the vessel varies slowly along its length, i.e. σzr

is negligible. Resolving the forces for an infinitesimal element of the wall of a cylindrical

vessel (see figure 3.1), we have [24]:

Tdθ = (p− p0)Rdldθ; (3.1)

therefore:

σθθhdldθ = (p− p0)Rdldθ, (3.2)

which implies
σθθh

R
= p− p0, (3.3)

where T is the tensile force, dl is a small element of length, h is the wall thickness, R is

the radius of the vessel and dθ is a small angle. The walls are assumed to be thin, i.e.

h
R � 1, so that the area of an element of the wall on the inside is equal to that on the

outside and the forces are balanced correctly in equation (3.3).
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dθ/2 dθ/2

dl

Figure 3.1: Balance of transmural pressure and tensile stress in the arterial wall.

To express the pressure in terms of the radius, we require Hooke’s law for the diagonal

components of the strain tensor in cylindrical polar coordinates [121]:

εrr =
1

E
[σrr − Ω(σθθ + σzz)] , (3.4)

εθθ =
1

E
[σθθ − Ω(σrr + σzz)] , (3.5)

εzz =
1

E
[σzz − Ω(σrr + σθθ)] , (3.6)

where σ is the stress, ε is the strain, E is the Young’s modulus of the wall and Ω is

Poisson’s ratio for the wall of the cylinder, which is the ratio of its transverse to axial

strain. Usually, vessels are assumed to be tethered in the longitudinal (z) direction, i.e.

εzz = 0 [24]. The compressive stress in the radial direction, σrr, is negligible compared

with the circumferential tensile stress σθθ. Therefore, from Hooke’s law, we obtain:

σθθ =
Eεθθ

1− Ω2
. (3.7)
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Substituting this into equation (3.3), using εθθ = R−R0
R0

, where R0 is the radius of the tube

at zero transmural pressure, we find:

p− p0 =
Eh

1− Ω2

(
1

R0
− 1

R

)
. (3.8)

If the pressure is p1 when the equilibrium radius is R1, it can be shown that equation

(3.8) holds with p0 replaced by p1 and R0 replaced by R1. Therefore, we can redefine p0

to be the reference pressure at radius R0 in equation (3.8). Biological tissue is practically

incompressible [6], which implies Ω = 1
2 . The forces on an element of the wall arising

from the pressure difference and the elasticity of the wall act along the outward and

inward normals respectively. The magnitudes of these forces per unit area are given by

the left and right sides of equation (3.8) respectively, which holds when the wall is in

equilibrium. When the wall is not in equilibrium, the net force per unit area in the

direction of the outward normal is given by subtracting the elastic restoring force from the

pressure difference. Using Newton’s third law, we obtain the following equation of motion

[24, 120]:

ρwallh
d2R

dt2
= (p− p0)− 4Eh

3

(
1

R0
− 1

R

)
. (3.9)

This equation may also be written in terms of the displacement of the wall in the direction

of the outward normal, by substituting ∆R = R−R0.

3.2.2 The lattice-Boltzmann model

The lattice-Boltzmann model used in this study to simulate the fluid flow is the three-

dimensional, 15-direction, incompressible lattice-Boltzmann scheme [88, 89] with a Bhatnagar-

Gross-Krook (BGK) collision operator, which is a single-time relaxation model [16]. This

model was described in section 2.1. For convenience we summarise it again here. Let

fi(x, t) be a non-negative real number describing the distribution function of the particle

density at site x at time t moving with microscopic velocity ei. The distribution functions

evolve according to equation (2.4):

fi(x + ∆tei, t+ ∆t)− fi(x, t) = −1

τ
(fi(x, t)− f (eq)

i (ρ(x, t),v(x, t)),
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where τ is the dimensionless relaxation time and f
(eq)
i (ρ,v) is the local equilibrium dis-

tribution function for density ρ and velocity v. For practical implementation, this equa-

tion is divided into two steps: collision and streaming, which are expressed by equations

(2.5) and (2.6). The particle velocities, ei, for the D3Q15i model are given in equation

(2.29) [17], i.e. e0 = (0, 0, 0), ei = c(0, 0,±1), c(0,±1, 0), c(±1, 0, 0) for i = 1, 2, . . . , 6 and

ei = c(±1,±1,±1) for i = 7, 8, . . . , 14, where c = ∆x/∆t, where ∆x is the lattice spacing.

Equation (2.116) gives the equilibrium distributions:

f
(eq)
i (ρ,v) = wi

(
ρ+ 3

ei ·v
c2

+
9

2

(ei ·v)2

c4
− 3

2

v ·v
c2

)
,

with w0 = 1, wi = 1
9 for 1, 2, . . . , 6, and wi = 1

72 for i = 7, 8, . . . , 15.

The density and macroscopic velocity are calculated from the distribution functions by

equation (2.13), i.e. ρ =
∑

i fi, v =
∑

i fiei. The pressure, p, and kinematic viscosity, ν,

are given by equations (2.10) and (2.11) respectively, i.e. p = ρc2
s and ν = c2

3

(
τ − 1

2

)
∆t,

where the speed of sound is given by c2
s = c2

3 .

In all simulations in this chapter, ∆x, the lattice length, and ∆t, the time step, are set to

one for convenience, so that c = 1. The density of the fluid ρ0 is also set to one, so that

p0 = c2
s = 1

3 . All results in this chapter are given in lattice units, i.e. lengths are measured

in lattice lengths, time is measured in lattice timesteps and p0 = 1 lattice pressure unit.

3.3 Choice of boundary condition methods for simulations

of a 3D cylinder

In this section, I compare the accuracy and stability of simulations of a 3D cylinder point-

ing along the x-axis with three different combinations of methods for applying pressure

boundary conditions at the inlet and outlet and velocity boundary conditions at the walls

and discuss their suitability for simulating fluid flow through elastic vessels in a general

geometry. First, the time-extrapolation method developed by Mazzeo et al. [93] and de-

scribed in section 2.9.6 is applied at all lattice sites that are adjacent to boundaries 1.

1The code and instructions for its use may be downloaded from http://ccs.chem.ucl.ac.uk/∼gary as a zip
archive and will be in the folder “Marcos method barycentric v” when the archive has been unpacked. For
the simulations reported in this section, INCOMPRESS was defined at compile time and the command-line
argument “staircased” was 1.
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Second, my own method involving extrapolation in time and space, described in section

3.3.1 is applied for all boundaries 2. Third, the extrapolation method by Zhao-Li et al. [10]

and discussed in section 2.9.5 is used to determine the unknown distributions, fi, at lattice

sites adjacent to the wall, which I will define as edge sites, and the consistent method by

Zou and He [9] is used to find the unknown fi at the inlet or outlet, i.e. those for which the

lattice vector ei is in the opposite direction to a link between a lattice site and the next

one that crosses the inlet or outlet plane. For example, if the cylinder is oriented in the

x-direction, the fi for which eix = 1 are unknown at the inlet, then Zou and He’s method

is used to find the remaining fi. The methods are abbreviated by the authors’ names. The

third method 3 is called ZouHe+GZS, where I have used the authors’ first names in [10].

At sites adjacent to both the wall and the inlet or outlet, the unknown fi that cannot be

determined by Zou and He’s method are determined by the extrapolation method. The

extrapolation method involves finding the relevant postcollisional distribution function,

f+
i (xw, t), at a solid site w, then this distribution function is streamed to site f , at which

we are applying the boundary condition. The configuration of these sites is shown in figure

2.5. If the neighbouring site ff opposite site w is also solid, the method cannot be applied,

as explained in section 2.9.5. Therefore, for the ZouHe+GZS method, bounceback is used

to find fi(xf , t+ ∆t), i.e. fi(xf , t+ ∆t) = fj(xf , t+ ∆t), where ej = −ei.

3.3.1 A new method for pressure and velocity boundary conditions

In this section, I propose a new method for applying pressure and velocity boundary

conditions in a 3D vessel. It has similarities to the method proposed by Zhao-Li et al. [10]

and described in section 2.9.5: the distribution functions at sites adjacent to a boundary

are constructed by calculating the equilibrium and nonequilibrium components separately,

and extrapolation is used to find the nonequilibrium distributions.

2The code and instructions for its use may be downloaded from http://ccs.chem.ucl.ac.uk/∼gary as
a zip archive and will be in the folder “BC orig dirs fneq unknown 2neighs” when the archive has been
unpacked. For the simulations reported in this section, INCOMPRESS was defined at compile time and
the command-line argument “staircased” was 0.

3The code and instructions for its use may be downloaded from http://ccs.chem.ucl.ac.uk/∼gary as
a zip archive and will be in the folder “Guo Zheng Shi” when the archive has been unpacked. For the
simulations reported in this section, INCOMPRESS was defined at compile time.
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At each edge site, the velocity is calculated from that at three neighbouring fluid lattice

sites and a point on the wall itself using Barycentric coordinates to carry out the interpo-

lation or extrapolation, as decribed by Hazewinkel [122, p. 342]. The velocity at the site

is given by

v(site) =

4∑
i=1

b(i)v(i) (3.10)

4∑
i=1

b(i) = 1 (3.11)

(3.12)

where b(i) is the Barycentric coordinate of the ith point in space (which may be a neigh-

bouring lattice site or a point on the wall itself) and v(i) is the velocity there. The b(i) are

calculated by solving

Aijb
(j) = x

(site)
j − x(4)

j , (3.13)

for j = 1, 2, 3, then finding b(4) from equation (3.11), where x
(i)
j is the jth coordinate of

the ith point and Aij is a matrix given by

Aij = x
(i)
j − x

(4)
j , (3.14)

for i = 1, 2, 3, j = 1, 2, 3. At each lattice site that is adjacent to an inlet or outlet, which

I will define as an inlet or outlet site respectively, the same method is applied to find the

pressure at that lattice site, from that at three neighbouring sites and a point on the inlet

or outlet itself.

For each boundary site, the three neighbouring lattice sites are chosen at the beginning of

the simulation such that their position vectors are linearly independent. This ensures that

the vectors r(i) − r(4) are linearly independent and therefore the matrix A is nonsingular,

apart from the rare case where the point on the wall, inlet or outlet lies in the common

plane of the three neighbouring lattice sites. If there is more than one suitable combination

of these neighbours, the combination that will be used is chosen by the following criteria,

in order of importance. First, the number of neighbours that are not themselves boundary

sites is maximised. Second, the number of non-edge, non-inlet or non-outlet neighbours is

maximised if the boundary site is an edge site or a non-edge inlet or outlet site respectively.
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Third, r(neigh) − r(site) is equal to one of the lattice vectors, ei, given in equation (2.29)

or (2.30) and the indices of the first, then the second, then the third lattice vectors are

minimised.

At this time, the velocity is unknown at each non-edge inlet or outlet site, the density is

unknown at each non-inlet or non-outlet edge site and the nonequilibrium distribution is

unknown. These quantities are determined by linear extrapolation from the fluid sites at

positions r(site) + ei and r(site) + 2ei. The vector ei is chosen by the following criteria,

in order of importance. First, axis-aligned vectors are preferred. Second, the vector is

preferred if the lattice site at r(site) + ei is not a boundary site. Third, the vector with

the smallest value of ei ·n is preferred, where n is the inward normal to the wall if the

boundary site we are looking at is an edge site and the inward normal to the inlet or outlet

otherwise. Fourth, the direction with the lowest value of i is preferred.

The information that each boundary site requires from its neighbours to find the distribu-

tion functions at time t+∆t is calculated from the distribution functions at its neighbours

after streaming, i.e. at time t+∆t, except for the neighbours that are themselves boundary

sites, in which case the distributions at time t are used, i.e. an extrapolation in time is

carried out.

Rather than applying this method for the distribution functions that could not be de-

termined by streaming, it was applied for all the distribution functions at the boundary

sites because this gave rise to more accurate results in preliminary simulations of flow in

a cylinder.

3.3.2 Simulation method

Steady flow in a cylinder is simulated using the D3Q15i lattice-Boltzmann model. The

geometry of the system is approximated by a set of points on a cubic lattice that is inside

the cylinder of radius R0. The pressure at the outlet is set to p0 throughout the simulation.

The flow fields are calculated at the beginning of each time step and the convergence of

the simulation is checked by at each time step by comparing the velocity field to that at

the beginning of the previous timestep. I choose to use the L1 norm of the velocity flow



Chapter 3. A new method for lattice-Boltzmann simulations of fluid flow through axially
symmetric elastic systems 176

field to check whether the simulation has converged to a steady state sufficiently, i.e:

∑
sites |v(x, y, z, t)− v(x, y, z, t− 1)|∑

sites |v(x, y, z, t)|
< tol, (3.15)

where tol = 10−8 for all simulations in this section. This convergence criterion is widely

used [88, 102].

The pressure difference between the inlet and outlet is chosen to give rise to a particular

maximum velocity, which is calculated by setting the distance from the centre of the tube,

r = 0, in equation (1.12):

vx = − 1

4νρ
∇p(R2 − r2).

For all simulations in this section, I ensured that the length was greater than the entrance

length for Poiseuille flow to ensure that the inlet boundary conditions do not affect the

flow at the outlet. The entrance length is given by equation (1.14), i.e. Lentr = 0.12ReR

[69, 70], where Re is calculated from the average velocity over the cross-section of the

cylinder. Integrating equation (1.12) with respect to r gives the flow rate:

Q =

R∫
0

v(r)(2πr)dr = −πR
4

8νρ
∇p. (3.16)

This is πR2

2 times the maximum velocity. Therefore, the average velocity is half of the

maximum velocity, so the entrance length is given by

Lentr = 0.06ReR, (3.17)

if the Reynolds number is calculated from the maximum velocity given by equation (1.12).

Lattice-Boltzmann simulations may become unstable if the Mach number is too high or

the dimensionless relaxation parameter, τ , is too low as discussed in section 2.5. For

all simulations in this section, vx < 0.03c, so the Mach number is less than 0.052, from

equation (2.90). Therefore, the requirement that Ma � 1 for an accurate and stable

simulation, discussed in section 2.8, is satisfied, which shows that any instability is caused

by the value of τ being too low. The boundary conditions also affect the stability, as

discussed in section 2.9. In this section, I test the stability of simulations that use the

three combinations of boundary condition methods discussed earlier, by finding the value
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of τ , τmin, such that the simulation converges to a steady state while remaining stable for

a given velocity, vx = 0.03c and the same simulation with τ = τmin − 0.1(τmin − 0.5) is

unstable. The maximum Reynolds number that can be simulated accurately for a given

system size can be readily calculated using equations (2.85) and (1.5).

Negative distribution functions indicate that a simulation has become unstable, as dis-

cussed in section 2.5. The same applies to the equilibrium part of the distribution func-

tions and these were used to check for instability. The distribution functions may not

become negative until a long time after the simulation has become unstable, in which

case it would not converge to a steady state. In this section, a simulation at a value of

τ = τ1− 0.1(τ1− 0.5) is deemed to be unstable if it does not converge within six times the

number of timesteps required for the simulation with τ = τ1.

When the steady state is reached, the velocity and pressure fields are compared with the

analytical solution from Poiseuille flow. For the pressure, we expect that p = p0+∇p(L−x),

where L is the length of the cylinder, while equation (1.12) gives the analytical solution

for the velocity. The simulation errors are measured with ε1 and ε∞, i.e. the L1 and L∞

norms, which are given below for velocity and are calculated similarly for the pressure

difference, p − p0. The L∞ norm depends only on the largest simulation error, while the

simulation errors for each site are weighted equally in the L1 norm.

ε1 =

∑
sites |v(x, y, z)− v′(x, y, z)|∑

sites |v′(x, y, z)|
, (3.18)

ε∞ =
maxsites(|v(x, y, z)− v′(x, y, z)|)

max(|v′(x, y, z)|)
, (3.19)

where v′ is the analytical velocity. The L∞ norm depends only on the largest simulation

error, while the simulation errors for each site are weighted equally in the L1 norm.

3.3.3 Stability of the simulations

Simulations of Poiseuille flow were performed for cylinders of two different radii. The

maximum expected velocity was 0.03c. The minimum values of τ at which the simulations

were stable, τmin, are given in table 3.1. These correspond to a maximum Reynolds

number, which is calculated using equation (2.85), i.e. ν = τ−0.5
3 c2∆t, and Re = 2vR

ν . All

the simulations shown are unstable if τ = τmin − 0.1(τmin − 0.5). For all simulations in
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Method R = 5∆x R = 10∆x
τmin Remax τmin Remax

Mazzeo 0.5015 600 0.5075 200

Doctors 0.67 5.29 0.70 9.00

ZouHe+GZS 0.530 30.0 0.522 81.8

Table 3.1: Minimum values of τ and corresponding maximum Reynolds number for
which simulations of flow in a cylinder at radius R are stable if the maximum velocity
is 0.03∆x

∆t when three different boundary condition methods are used. Re is calculated
from the maximum velocity. The simulations are unstable if τ = τmin − 0.1(τmin − 0.5).
The methods are abbreviated by their authors’ names and described at the beginning of
section 3.3 and in subsection 3.3.1. The lengths of the cylinders are 0.32ReR, i.e. 5 1

3
times the entrance length.

this subsection, the length was set to 0.32ReR, i.e. 51
3 times the entrance length given by

equation (3.17).

3.3.4 Comparison of the accuracy of the simulations

Simulations of Poiseuille flow were performed for cylinders of three different radii at Re =

1.0, τ = 1.0 using the three boundary condition methods described in this section and

at Re = 30.0, τ = 0.53 using the methods that were stable at these parameters. The

accuracy of these simulations is expressed by the the L1 and L∞ norms for the pressure,

velocity and stress flow fields. Linear regression on log(ε) against log(∆x
R ) was used to

find the value of n in the relationship ε ∝ (∆x
R )n that fits the data best for each set of

simulation errors. The results for Re = 1.0 and Re = 30.0 are given in tables 3.2 and 3.3.

3.3.5 Discussion

The simulation errors are higher at Re = 30 than at Re = 1 for both the Mazzeo and

ZouHe+GZS methods. For the former, the errors in the velocity flow field become smaller

as the resolution increases, as shown in tables 3.2 and 3.3, but the the reduction is less

than first order in the lattice spacing, ∆x and the L1 and L∞ norms remain above 0.1 at

a radius of 20 lattice lengths. For the shear stress, the errors remain above 0.68. For the

pressure, the errors become larger as the size of the simulation increases if Re = 1.0. For

elastic vessels, the displacement of the wall is determined chiefly by the pressure. These

inaccuracies are probably due to the fact that the stress is set to zero at the boundaries, as
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Method Type of Error for different system sizes Order of
error R = 5∆x R = 10∆x R = 20∆x Convergence

L = 50∆x L = 100∆x L = 200∆x

Mazzeo velocity L∞ 3.88× 10−1 2.26× 10−1 1.69× 10−1 0.65
velocity L1 5.68× 10−1 3.30× 10−1 1.78× 10−1 0.82
pressure L∞ 1.96× 10−2 4.30× 10−2 8.69× 10−2 -1.05
pressure L1 4.34× 10−3 1.02× 10−2 1.36× 10−2 -0.68
stress L∞ 9.86× 10−1 9.95× 10−1 9.99× 10−1 -0.01
stress L1 7.41× 10−1 7.01× 10−1 6.81× 10−1 0.06

Doctors velocity L∞ 7.06× 10−2 1.86× 10−2 5.66× 10−3 1.90
velocity L1 1.01× 10−1 2.78× 10−2 7.65× 10−3 1.86
pressure L∞ 5.85× 10−3 1.47× 10−3 4.63× 10−4 1.95
pressure L1 1.29× 10−3 2.16× 10−4 3.72× 10−5 2.58
stress L∞ 8.50× 10−2 4.33× 10−2 2.33× 10−2 0.95
stress L1 5.71× 10−2 2.43× 10−2 1.10× 10−2 1.21

ZouHe+GZS velocity L∞ 7.69× 10−2 3.69× 10−2 1.78× 10−2 1.06
velocity L1 3.41× 10−2 4.29× 10−3 1.20× 10−3 2.41
pressure L∞ 6.18× 10−3 5.90× 10−3 6.23× 10−3 -0.01
pressure L1 4.03× 10−4 1.82× 10−4 7.69× 10−5 -1.19
stress L∞ 4.67× 10−1 4.67× 10−1 4.65× 10−1 0.00
stress L1 4.37× 10−2 1.74× 10−2 8.23× 10−3 -1.20

Table 3.2: Comparison of the accuracy of simulations of flow in a cylinder with radius
R and length L at Re = 1.0, τ = 0.8 for three different boundary condition methods.
The methods are abbreviated by their authors’ names and described at the beginning of
section 3.3 and subsection 3.3.1. The order of convergence is the value of n for which the

data fits the relationship ε ∝ (∆x
R )n.

explained in section 2.9.6. The method proposed in this study is much more accurate at

Re = 1, τ = 0.8: the L1 errors in pressure, velocity and stress are 7.65× 10−3, 3.72× 10−5

and 1.10 × 10−2 respectively. The errors in pressure and velocity are approximately of

order ∆x2, which matches the intrinsic accuracy of the LBM. The errors in stress are first

order accurate in space. The velocity field for the ZouHe+GZS method is generally more

accurate than the new method proposed in this study, although the L∞ norm is higher at

R = 20∆x. The L1 and L∞ norms for the pressure are of order ∆x and 1 respectively,

in contrast to the method in this study. The L1 norm is approximately twice as high at

R = 20∆x as it is in my method. The ZouHe+GZS method generally produces the most

accurate shear stress results, except at a very small number of lattice sites.

The Mazzeo method is stable at much lower values of τ than the other methods, as shown

in table 3.1. A maximum Reynolds number of 600 or 200 can be obtained for a cylinder

with radius 5 and 10 lattice lengths respectively, which is of the order of magnitude that
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Method Type of Error for different system sizes Order of
error R = 5∆x R = 10∆x R = 20∆x Convergence

L = 50∆x L = 100∆x L = 200∆x

Mazzeo velocity L∞ 5.77× 10−1 3.07× 10−1 1.93× 10−1 0.79
velocity L1 7.24× 10−1 4.48× 10−1 2.54× 10−1 0.76
pressure L∞ 1.12× 10−1 8.52× 10−2 8.41× 10−2 0.21
pressure L1 5.30× 10−2 2.68× 10−2 6.48× 10−3 1.52
stress L∞ 9.99× 10−1 9.99× 10−1 1.00 0.00
stress L1 9.61× 10−1 9.56× 10−1 9.53× 10−1 0.01

ZouHe+GZS velocity L∞ 1.33× 10−1 3.88× 10−2 1.66× 10−2 1.50
velocity L1 6.23× 10−2 1.78× 10−2 5.01× 10−3 1.81
pressure L∞ 2.39× 10−2 8.22× 10−3 7.93× 10−3 0.80
pressure L1 1.47× 10−2 5.19× 10−3 7.73× 10−4 2.12
stress L∞ 6.38× 10−1 5.42× 10−1 5.16× 10−1 0.15
stress L1 6.67× 10−2 2.52× 10−2 1.18× 10−2 1.25

Table 3.3: Comparison of the accuracy of simulations of flow in a cylinder with radius
R and length L at Re = 30.0, τ = 0.53 for the boundary condition methods described at
the beginning of section 3.3. The method described in subsection 3.3.1 was unstable at
these parameters. The order of convergence is the value of n for which the data fits the

relationship ε ∝ (∆x
R )n.

would be required for blood flow simulations, as explained at the beginning of this chapter.

However, the minimum value of τ is significantly higher at R = 10∆x than at R = 5∆x,

which suggests that it becomes much less stable as the system size is increased. For the

method proposed in this study, the maximum Reynolds numbers are less than a tenth of

that required for a simulation of cerebral blood flow. If the Mach number is kept constant,

the Reynolds number can only be increased by increasing the radius of the cylinder. If the

length is increased in the same proportion, the number of lattice sites would be proportional

to Re3. The number of timesteps required for information to propagate is proportional

to the size of the cylinder. Therefore, the computational cost is likely to scale as Re4.

Therefore, increasing Re to 100 would result in a formidable increase in computational

cost. Furthermore, if the length is to be kept longer than the entrance length, 0.06ReR,

there would be an additional factor R ∝ Re in the computational cost, so it would scale as

Re5. Therefore, this method cannot reasonably be used for simulations of cerebral blood

flow. If τ could be reduced further, the computational cost would scale as Re ∝ (τ−0.5)−1

for τ < 1 since, in this regime, the distributions take more time to relax to equilibrium as

τ is lowered. For the ZouHe+GZS method, the maximum Reynolds number achievable is

30 and 81.8 at R = 5∆x and 10∆x respectively. A Reynolds number of 162.6 could be

obtained at R = 20∆x if the minimum value of τ is kept the same as it is at R = 10∆x. In
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contrast to the other methods, the minimum value of τ is lower at R = 10∆x than when

R = 5∆x, which suggests that the maximum Reynolds number, Remax ∝
(
R

∆x

)n
, where

n > 1.

Both Mazzeo’s method and the method proposed in this study can simulate fluid flow in

a complex geometry. However, the former does not take into account the distance from

the edge sites to the wall, it would not be sensitive to displacements of less than one

lattice length, which is required for simulations of blood flow through elastic arteries, as

explained at the beginning of this chapter. It is possible that this could be improved by

interpolation to find the velocity at the edge sites. The method proposed in section 3.3.1

takes into account the separation between each edge site and its point on the wall, which

is ideal for simulating fluid flow through elastic systems. However, it is only stable at low

Reynolds numbers. The ZouHe+GZS method takes into account the distances along the

lattice vectors to the wall, but these may be difficult to calculate accurately for a moving

wall since particular points on the wall will not necessarily move in the directions of the

lattice vectors. The method is able to simulate flow in a complex geometry, but has the

limitation that the inlet and outlet plane must be aligned with two axes. The pressure

boundary condition can be changed to overcome this limitation, as discussed in section

3.4. For simulating blood flow through elastic vessels, the ZouHe+GZS method looks the

most promising overall, considering its accuracy, stability and suitability for dealing with

the motion of the wall. Therefore, this method is used for all simulations of fluid flow in

elastic vessels in this chapter.

3.4 Choice of boundary condition methods for simulations

of a 2D channel

Simulations of flow through a 2D elastic vessel at Re = 450 are required in chapter 5 to

compare the results from the elastic model developed in that chapter and chapter 4 with

results in [15] as explained in sections 5.2 and 5.3. However, in section 3.3, the highest

Reynolds number that could be achieved for accurate simulations of a 3D cylinder was 81.8

at R = 10∆x and it is therefore expected to be 163.6 at R = 20∆x. These simulations

used the extrapolation method by Zhao-Li et al. [10] at the walls and the method by Zou

and He [9] at the inlet and outlet. This combination of methods is again abbreviated by
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ZouHe+GZS. Therefore, the accuracy and stability of simulations using this combination

and the boundary conditions by Mazzeo et al. [93] (abbreviated by Mazzeo) are compared

in this section. Since the computational cost is of order the number of lattice sites times

the length of the channel, as discussed in section 3.4.4, it would scale as Re3 in a 2D

channel if the width is increased. However, if τ could be reduced, the computational cost

would scale as Re2. Therefore, I attempt to reduce the minimum value of τ for simulations

that use Zhao-Li et al. [10]’s method near the walls by using Mazzeo et al. [93]’s method

to apply pressure boundary conditions at the inlet and outlet sites. Lattice sites adjacent

to a wall and the inlet or outlet, which I will call the corner sites, must be treated very

carefully, as explained in section 3.4.1. This combination is abbreviated as Mazzeo+GZS

4.

The simulations are carried out, and the stability is tested, in the same way as described

in section 3.3.2, except that the D2Q9i model is used. The pressure difference between the

inlet and outlet is chosen to give rise to a particular maximum velocity, which is calculated

by setting y = 0 in the equation for Poiseuille flow in a 2D channel,

vx =
∇p
2νρ

(
R2 − y2

)
, (3.20)

where R = D
2 is the half-width of the channel and y is measured relative to the centreline.

For all simulations in this section, I ensured that the length was at least four times the

entrance length, which is given by 0.06ReD, where Re is calculated from the average

velocity across the width. Integrating equation 3.20 with respect to y gives the flow rate:

Q = 2

D/2∫
0

v(y)dy =
2∇p
3νρ

R3 (3.21)

This is 4
3R = 2

3D times the maximum velocity, so the average velocity is 2
3 of the maximum

velocity, so the entrance length is given by

Lentr = 0.04ReD = 0.08ReR, (3.22)

4The code for all simulations in this section and instructions for its use may be down-
loaded from http://ccs.chem.ucl.ac.uk/∼gary as a zip archive and will be in the folder “Elas-
tic complex geometry rev 215” when the archive has been unpacked. For these simulations, INCOMPRESS
and INC FLUID were defined at compile time.
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if the Reynolds number is calculated from the maximum velocity.

For the extrapolation method by Zhao-Li et al. [10], described in section 2.9.5, the nor-

malised cut distance, δ, is required for each link from an edge site f to a neighbouring

solid site w, as described in section 2.9.5. The normalised cut distance is given by equation

(2.158), i.e. δ =
(xb−xf ) · (xw−xf )

|xw−xf |2
, where xf , xw and xb denote the position vectors of site

f , site w and the point of intersection of the link with the wall respectively. For a 2D

axis-aligned channel, δ is identical to the distance from the last row of lattice sites to the

wall divided by the lattice spacing, for all the relevant links. Zhao-Li et al. [10] found

that the minimum value of τ at which their simulations of an axis-aligned channel were

stable varied with δ. Therefore, I also tested the effect of varying δ for the ZouHe+GZS

combination.

When checking the convergence and simulation errors, the sums in equations (3.18), (3.19)

and (3.15) are taken over the lattice sites that are not adjacent to the inlet or outlet and

that lie beyond the entrance region. The tolerance for the convergence criterion is 10−8.

3.4.1 Combination of a velocity and pressure condition at the corner

sites

At sites adjacent to the both the wall and the inlet or outlet, the method by Mazzeo et al.

[93] described in section 2.9.6 can be used to apply the pressure boundary condition, using

equation (2.221), i.e.

f+
i (xf , t) = f

(0)
i (ρset,v(xf , t)).

This can then be combined with the method by Zhao-Li et al. [10] described in section 2.9.5

by carrying out streaming as usual, then using the latter to extrapolate to find the relevant

distribution function at the site on the other side of the wall, labelled w in figure 2.5. The

density required should be extrapolated from the prescribed density that was applied at

the inlet or outlet, i.e. ρf = ρset. Equations (2.204), (2.205) and (2.202) can then be

applied as usual to find f+
i (xw, t), then this distribution function is streamed to the site

at which we are applying the boundary condition, i.e. fi(xf , t + ∆t) = f+
i (xw, t). If the

site labelled ff is solid, bounceback is used to find fi(xf , t+ ∆t), as explained in section

3.3. Some of the links from site f to its neighbours may intersect the inlet or outlet

plane but not the wall. The distribution functions at site f that would be determined
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Method R = 5.2∆x R = 10.2∆x
τmin Remax τmin Remax

Mazzeo 0.506 156 0.5125 146.88

ZouHe+GZS 0.526 36 0.518 102

Mazzeo+GZS 0.524 39 0.5135 136

Table 3.4: Minimum values of τ and corresponding maximum Reynolds number for
which simulations of flow in a channel with half-width R are stable if the maximum
velocity is 0.03∆x

∆t for three different boundary condition methods. Re is calculated from
the maximum velocity. The simulations are unstable if τ = τmin − 0.1(τmin − 0.5). The
methods are abbreviated by their authors’ names and described at the beginning of section
3.4 and in subsection 3.4.1. The lengths of the channels are 0.32ReR, i.e. 4 times the

entrance length.

by streaming from one of these neighbours are therefore unknown at this time. These

distribution functions are given by equation (2.220), i.e.

fi(xf , t+ ∆t) = f+
i (xf , t).

3.4.2 Stability of the simulations

Simulations of Poiseuille flow were performed for channels with half-widths, R = (5+δ)∆x

and R = (10 + δ)∆x using the ZouHe+GZS combination of methods, with various values

of δ, where δ∆x is the distance from the last row of lattice sites to the wall. The maximum

expected velocity was 0.03c. The minimum values of τ at which the simulations were stable,

τmin, are plotted on graph 3.2. These correspond to a maximum Reynolds number, which

is calculated as explained in section 3.3.3 and plotted on graph 3.3. All the simulations

shown are unstable if τ = τmin − 0.1(τmin − 0.5). For all simulations in this subsection,

the length was set to 0.32ReR, i.e. 4 times the entrance length given by equation (3.22).

Stability tests were also carried out in the same way using the Mazzeo and Mazzeo+GZS

methods at R = 5.2∆x and R = 10.2∆x and the results are compared with those from

the ZouHe+GZS method in table 3.4.

Additional simulations were carried out with R = 20.2∆x for the Mazzeo+GZS method.

For that, the minimum value of τ was 0.508064, which corresponded to a Reynolds number

of 450.
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Figure 3.2: Minimum values of τ for which simulations of flow in a channel with the
ZouHe+GZS method are stable for half widths R of 5.0∆x to 5.9∆x and 10.0∆x to
10.8∆x. The maximum velocity is 0.03∆x

∆t . The simulations are unstable if τ = τmin −
0.1(τmin − 0.5). The minimum value of τ is lower at R ≈ 10∆x than at R ≈ 5∆x. As
the distance from the last row of lattice sites to the wall, δ∆x is increased, the value of
τmin decreases somewhat. The effect of changing δ is less significant at R ≈ 10∆x than

at R ≈ 5∆x.

3.4.3 Comparison of the accuracy of the simulations

Simulations of Poiseuille flow were performed for channels of three different half-widths

at Re = 31.2, τ = 0.53 using the three boundary condition methods described in this

setion. The accuracy of these simulations is expressed by the the L1 and L∞ norms for

the pressure and velocity flow fields. The relationship ε ∝ (∆x
R )n was fitted to each set of

simulation errors as explained in section 3.3.4. Table 3.5 shows the results.

3.4.4 Discussion

For all three combinations of boundary condition methods, the simulation errors in the

velocity and the L∞ norm for the pressure generally become smaller as the width of the

channel increases, but the reduction in the error is of order ∆xn, where n < 1, in contrast

to the results for the 3D simulations. For the L1 norm for the pressure, the errors are

at least first order in ∆x. The order of convergence is lowest for the Mazzeo method
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Figure 3.3: Maximum Reynolds numbers for which simulations of flow in a channel
with the ZouHe+GZS method are stable for half widths R of 5.0∆x to 5.9∆x and 10.0∆x
to 10.8∆x. The values of Re correspond to the minimum values of τ in graph 3.2 and
are calculated from the maximum velocity of 0.03∆x

∆t . As the distance from the last row
of lattice sites to the wall, δ∆x is increased, the maximum Reynolds number increases

somewhat. The effect of changing δ is less significant at R ≈ 10∆x than at R ≈ 5∆x.

and highest for the Mazzeo+GZS method, for which n = 1.58. None of the boundary

condition methods achieve second-order accuracy in space. This may be because the

distance from the wall to the last row of lattice sites is doubling as the system size doubles.

Simulations with R = 10.2∆x and R = 20.2∆x will be needed to verify this. However,

the results for the ZouHe+GZS method are accurate, with simulation errors between 10−2

and 10−3 at R = 20∆x. The errors for Mazzeo’s method are 15 to 60 times higher.

The Mazzeo+GZS method has somewhat smaller errors than the Mazzeo method and

they achieve an acceptable accuracy, with L1 norms or 0.0268 and 0.0125 for the pressure

and velocity field when R = 20∆x, but these errors are still much higher than for the

ZouHe+GZS method, rather than being similar to the ZouHe+GZS method as expected.

For the ZouHe+GZS method, increasing the distance from the last row of lattice sites to

the wall when R ≈ 5∆x reduces τmin somewhat, from 0.533 at δ = 0 to 0.520 at δ = 0.9,

as shown in graph 3.2. The reduction in τ and the increase in width causes the Reynolds

number to almost double, as shown in graph 3.2. At a half-width of 10 lattice lengths,

τmin decreases significantly as δ increases from 0 to 0.1, remains constant, then decreases
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Method Type of Error for different system sizes Order of
error R = 5.2∆x R = 10.4∆x R = 20.8∆x Convergence

L = 50∆x L = 100∆x L = 200∆x

Mazzeo velocity L∞ 2.82× 10−1 1.91× 10−1 1.38× 10−1 0.52
velocity L1 3.33× 10−1 2.25× 10−1 1.75× 10−1 0.46
pressure L∞ 2.36× 10−1 2.44× 10−1 1.52× 10−1 0.32
pressure L1 1.17× 10−1 5.71× 10−2 2.43× 10−2 1.13

ZouHe+GZS velocity L∞ 6.08× 10−3 3.09× 10−3 4.31× 10−3 0.25
velocity L1 5.91× 10−3 4.04× 10−3 2.58× 10−3 0.60
pressure L∞ 6.12× 10−3 2.71× 10−3 9.89× 10−3 -0.35
pressure L1 7.55× 10−3 1.09× 10−3 1.30× 10−3 1.27

Mazzeo+GZS velocity L∞ 8.43× 10−2 6.53× 10−2 5.44× 10−2 0.32
velocity L1 2.80× 10−2 2.59× 10−2 2.68× 10−2 0.03
pressure L∞ 1.62× 10−1 1.08× 10−1 1.22× 10−1 0.20
pressure L1 1.11× 10−1 4.15× 10−2 1.25× 10−2 1.58

Table 3.5: Comparison of the accuracy of simulations of flow in a channel with half-
width R and length L at Re = 31.2, τ = 0.53 for three different boundary condition
methods. The methods are abbreviated by their authors’ names and described at the
beginning of section 3.4 and subsection 3.4.1. The order of convergence is the value of n

for which the data fits the relationship ε ∝ (∆x
R )n.

slightly between δ = 0.6 and δ = 0.8. Since the stability of the GZS method changes very

little for δ > 0.1 at R ≈ 10∆x, it was kept constant at δ = 0.2 for the comparison of

the three boundary condition methods. The results described here contrast with those in

Zhao-Li et al. [10], for which the the minimum values of τ are much lower and increasing δ

has a dramatic effect on them; they are 0.506, 0.50003 and less than 0.5 + 10−7 at δ = 0.1,

0.2 and 0.3 respectively for a channel with R ≈ 16. However, body forcing was used in

that study, which implies that the use of a pressure boundary condition has significantly

increased τmin and therefore reduced the maximum Reynolds number that can be achieved.

The minimum value of τ for both the ZouHe+GZS and the Mazzeo+GZS methods appears

to decrease as the width of the channel increases, as shown in figure 3.2 and table 3.4, so the

maximum achievable Reynolds number increases as
(
R

∆x

)n
, with n > 1, but the opposite

is true for the Mazzeo method. The value of τmin decreases more for the Mazzeo+GZS

method than the ZouHe+GZS method and is lower at R = 10.2∆x, reaching τ = 0.5135.

One further simulation showed that it decreases to 0.508064 at R = 20.2∆x, corresponing

to Re = 450, as desired for the comparison of results of simulations of elasticity in a

general two-dimensional geometry with those in Luo and Pedley [15]. Furthermore, since

the Mazzeo method is used for the pressure boundaries, they need not be axis-aligned.
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The Mazzeo+GZS method also achieves acceptable accuracy. It can be extended to three

dimensions easily. Therefore, it is the most suitable of the combinations of boundary

condition methods discussed in this section and section 3.3 for simulating cerebral blood

flow through elastic arteries in a complex geometry at realistic parameters.

3.5 Simulation method

In this section, a method for simulating steady flow in an elastic cylinder is proposed 5. The

flow is simulated using the D3Q15i lattice-Boltzmann model. The geometry of the system

is approximated by a set of points on a cubic lattice that is inside the cylinder when the

pressure in the fluid is equal to the reference pressure p0, i.e. it is approximated by the set

of points inside the cylinder of radius R0. No fluid nodes are moved, created or destroyed.

The pressure at the outlet is set to p0 throughout the simulation, while the pressure at the

inlet is held constant at a pressure greater than p0. In the simulations presented in this

study, the axis of the cylinder is aligned in the x direction and the geometry extends from

x = 0 to x = L. The configuration of lattice sites in a quarter of one layer of a cylinder

with radius R0 = 5 is shown in figure 3.4.

As the cylinder deforms, every point on the wall moves in the direction of its outward

normal, as explained in section 3.2.1. For each fluid node that is adjacent to the wall, f ,

which we will call an edge site, we store certain information about its nearest point on

the wall, n. This includes the outward normal, n, the displacement from site f to point

n along n when the cylinder has not been deformed, the change in displacement along n,

∆R, and the velocity along n, d∆R
dt , as shown in figure 3.4.

In order to couple the wall to the fluid, a no-slip boundary condition is applied at the

wall rather than at the edge sites by using a boundary condition method based on that

proposed by Zhao-Li et al. [10], which is described in sections 2.9.5 and 3.3. For this

method, the normalised cut distance, δ, is required for each link from an edge site f to

a neighbouring solid site w, as described in section 2.9.5. The normalised cut distance

is given by equation (2.158) and described in section 2.9.1 and the beginning of section

3.4. At each edge site, the values of δ are stored for every link that points towards a solid

5 The code for all simulations reported in section 3.6, and instructions for its use, may be downloaded
from http://ccs.chem.ucl.ac.uk/∼gary as a zip archive and will be in the folder “Guo Zheng Shi”. For
these simulations, INCOMPRESS and ELASTIC were defined at compile time.
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Figure 3.4: Diagram showing the configuration of fluid sites in a quarter of one layer
of a circular cylinder. The filled circles are the fluid sites and the open circles are the
solid sites. The link between an edge site, f , and one of its neighbouring solid sites, w,
intersects the wall at point b. The nearest point to the edge site that lies on the wall is n.
The fraction, δ, of the link between f and w that lies inside the cylinder is calculated from
the displacement, ∆R, of point n from its equilibrium position at the reference pressure.

site, and the velocity is calculated at each point of intersection of a link with the wall, b.

For each edge site, it is difficult to calculate δ and the velocity of the wall at point b, vb,

exactly, because every point on the wall is displaced by a different amount from its position

at the reference pressure in an elastic system. Therefore, we make the approximation that

point b lies the same distance from its equilibrium position in the undeformed cylinder as

the point n on the wall lies from its own, i.e. that it is also a distance R0 + ∆R from the

centre of the cylinder. Hence, for a cylinder pointing along the x axis, δ is estimated by
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solving the following equation:

(yf − δeiy)2 + (zf − δeiz)2 = (R0 + ∆R)2, (3.23)

where eiy and eiz are the y and z components of the vector xf − xw. This approximation

implies that the velocity of the wall at the point of intersection with the link, vb, is d∆R/dt

in the direction of the outward normal at point b. For a cylinder pointing along the x axis,

the velocity at this point is given by

vb =
d∆R

dt

(
1√

(yf − δeiy)2 + (zf − δeiz)2

)
(0, y − δeiy, z − δeiz) . (3.24)

Initially, the distribution functions everywhere are set to the equilibrium values with zero

velocity and p = p0. The displacement and velocity of the walls are zero everywhere,

except at the inlet and outlet, where the displacement is set to the equilibrium value given

by equation (3.9) with d2R
dt2

= 0.

At each timestep, the collision and streaming are carried out at all sites. The unknown

distribution functions, fi, at the edge sites are calculated by a boundary condition method

based on that by Zhao-Li et al [10]. Pressure boundary conditions are then applied at the

inlet and outlet using the method by Zou and He [9] to determine the fi that point into the

fluid. The procedure at sites adjacent to both the wall and the inlet or outlet is explained

in section 3.3. The pressure and velocity flow fields at the end of the time step can then

be calculated. At each edge site, the current displacement and velocity of its point on

the wall are determined from those at the previous timestep by equation (3.9), assuming

that the pressure at the wall is equal to the pressure at the edge site. This is followed

by estimation of the values of δ required for the application of the boundary condition at

the edge sites at the next timestep. Finally, the convergence of the simulation is checked

by comparing the flow fields at the beginning of the timestep to those at the beginning of

the previous timestep. We choose to use the L1 norm of the velocity flow field to check

whether the simulation has converged sufficiently, i.e.:

∑
sites |v(x, y, z, t)− v(x, y, z, t− 1)|∑

sites |v(x, y, z, t)|
< tol, (3.25)
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where tol is the tolerance. This convergence criterion may also be used for pulsatile flow.

In that case, the simulation is considered to be converged when the velocity as a function

of space and time is the same during each pulsatile period.

3.5.1 Method for avoiding the creation and destruction of fluid nodes

as the wall moves over a lattice site

As the wall moves, the fluid domain may expand to include site w in figure 3.4. In this

case, we do not change w into a fluid node, as stated at the beginning of this section, but

we simply allow the value of δ to increase beyond 1, i.e. we have |xb−xf | > |xw−xf |. This

allows the value of ∆R > 1. If δ > 1, the extrapolation to find the velocity at site w in

equation (2.204) to apply the velocity boundary conditions becomes an interpolation. By

Taylor expanding vw and vb about xf , it can be shown that the error in the interpolation or

extrapolation of vw is proportional to (∆x)2(1−δ). We expect similar errors in the velocity

field throughout the system. If the wall displacement ratio due to elasticity, ∆R/R0,

remains constant and the lattice spacing is changed, the values of δ change approximately

according to δ ∝ ∆R/(R0∆x). Therefore, we expect our simulations to be first-order

accurate in space and in the value of ∆R/R0. If fluid nodes were created or destroyed, the

velocity would be second-order accurate in space since the lattice-Boltzmann method and

the scheme that is applied for the boundary conditions at the edge sites are second-order

accurate, as explained in sections 2.8 and 2.9.5 respectively.

3.5.2 Oscillation of the walls

During a simulation, the walls oscillate about their equilibrium position according to

equation (3.9). This influences the velocity flow field, which in turn influences the pressure

exerted on the walls, so both the walls and the fluid oscillate while the oscillations are

damped by the viscosity of the fluid. The simulation converges to a steady state when

the oscillations die out. Since pressure boundary conditions are imposed at the inlet and

outlet, the walls at the inlet and outlet oscillate indefinitely if the wall there does not

start in its equilibrium position given by equation (3.9) with d2R
dt2

= 0; this prevents the

simulation from converging due to the influence of the flow fields at the inlet and outlet
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on the flow fields elsewhere. Hence, the walls at the inlet and outlet radii are initialised

to their equilibrium positions.

The wall may undergo many oscillations before the simulation converges. Therefore, we

have implemented an optional damping factor. This damping factor is removed when the

simulation has almost converged, i.e. when equation (3.15) is satisfied for a tolerance three

times higher than tol, in order to simulate a system in which the walls themselves do not

provide any damping. Equation (3.9) with damping factor b is

ρwallh
d2∆R

dt2
= (p− p0)− 4

3

Eh

R0

(
1− R0

R0 + ∆R

)
− bd∆R

dt
. (3.26)

A linear approximation to equation (3.26), valid for small displacements, i.e. ∆R � R0,

is
d2∆R

dt2
+

b

ρwallh

(
d∆R

dt

)
+

4

3

E

ρwallR
2
0

∆R− p− p0

ρwallh
= 0. (3.27)

For a constant pressure, if we have light damping, the solution would be

∆R = <
[
A exp

(
− bt

2ρwallh
− iωt

)]
, (3.28)

where < means “the real part of”, with

ω2 = ω2
0 −

b2

4ρ2
wallh

2
, (3.29)

ω2
0 =

4

3

E

R2
0ρwall

. (3.30)

The damping factor was chosen to be half that for critical damping, i.e. b = ρhω0.

Therefore, equation (3.28) becomes

∆R = <[A exp (−ω0t/2− iωt)]. (3.31)

From equation (3.31), the amplitude of the oscillation decreases by a factor of 10−8 in a

time t = 37/ω0. Therefore, if we have tol = 10−8 it is expected that any simulation would

converge in a number of timesteps approximately equal to 37/ω0 except if the simulation

with rigid walls with the same dimensions, relaxation parameter and Reynolds number

requires more timesteps than this to converge, in which case the simulation with elastic

walls would require approximately the same number of timesteps because the rate of
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convergence is limited by that of the lattice-Boltzmann method rather than the oscillation

of the walls. The additional damping factor also greatly enhances the stability of the

simulation.

The period of oscillation of the wall, under constant pressure conditions, i.e. the period

without taking into account the fluid, is Λ′ = 2π/ω. The period of oscillation without the

additional damping factor, which we will call the free period, is shorter, and is given by

Λ =
2π

ω0
= πR0

√
3ρwall

E
. (3.32)

If the convergence rate is limited by the oscillation of the walls, the number of timesteps

that we estimate will be required, 37/ω0, is six times the free period of oscillation of the

wall.

3.5.3 Solving the equation of motion

The displacement and velocity of the wall were calculated by integrating equation (3.26)

numerically using a Runge-Kutta method adapted for solving second-order differential

equations. This scheme finds the radius and velocity of one point on the wall at the current

timestep from the same quantities at the previous timestep and the current pressure.

Second-order equations can be expressed as two first-order equations with two dependent

variables, i.e.

dy

dt
= y′ (3.33)

dy′

dt
= f(t, y, y′) (3.34)

where t is the independent variable, and y and y′ = dy/dt are the dependent variables.

The Runge-Kutta method could be developed for accuracy up to any order in the step

size, but the lattice-Boltzmann method only simulates fluid flow accurate to second order

in space and first order in time (see section 3.2.2), so a second-order method is sufficiently
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accurate. The following iteration scheme for equations (3.33) and (3.34) guarantees second-

order accuracy in the step size, h:

yt+h = yt + 0.5(a1 + a2) (3.35)

y′t+h = y′t + 0.5(a′1 + a′2) (3.36)

with

a1 = hy′t,

a′1 = hf(t, yt, y
′
t),

a2 = h(y′t + a′1),

a′2 = hf(t+ h, yt + a1, y
′
t + a′1).

In order to solve equation (3.26) to find the motion of the wall, we replace y with ∆R, y′

with u = d∆R
dt and h with ∆t in equations (3.35) and (3.36). This gives:

Rt+∆t = Rt + 0.5(a1 + a2) (3.37)

ut+∆t = u′t + 0.5(a′1 + a′2) (3.38)

with

a1 = ∆tut

a′1 = ∆t

(
p− p0

ρwallh
− but
ρwallh

− 4

3

E

ρwall

(
1

R0
− 1

R0 + ∆R

))
a2 = ∆t(ut + a′1)

a′2 = ∆t

(
p− p0

ρwallh
− b

ρwallh

(
ut + a′1

)
− 4

3

E

ρwall

(
1

R0
− 1

R0 + ∆R+ a1

))
.

For the scheme to be valid, the free period of oscillation of the wall must be much larger

than the timestep ∆t. The period of oscillation is given by equation (3.32). The method

was tested for various periods of oscillation, T , for the linear approximation to the equation

of motion (equation (3.27)), with no damping and a constant pressure, i.e.

d2∆R

dt2
+

4

3

E

ρwallR
2
0

∆R− p− p0

ρwallh
= 0. (3.39)
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The maximum relative error in displacement, ε∆R, and the maximum relative error in

velocity, εv, were calculated as follows over 10 periods of oscillation:

εv =
max10T

t=0 |v(t)− v′(t)|
max10T

t=0 |v′(t)|
, (3.40)

ε∆R =
max10T

t=0 |∆R(t)−∆R′(t)|
max10T

t=0 |∆R′(t)|
, (3.41)

where the primed quantities denote the analytical values. At T = 1460∆t, errors of

ε∆R = 1.9 × 10−4 and εv = 1.9 × 10−4 were obtained. The errors were O(∆t2). From

equation (3.32), we have T > 1460∆t in the simulation of fluid flow in an elastic pipe in

this study.

3.5.4 Comparison of numerical and analytical solutions

When the steady state is reached, the velocity and pressure fields and the displacements

of the wall are compared with analytic solutions. The simulation errors are measured with

ε1 and ε∞, i.e. the L1 and L∞ norms, which are given by equations (3.18) and (3.19)

respectively for the velocity. They are calculated similarly for the pressure difference,

p− p0, and the wall displacement, ∆R.

If the tube is long and thin, smooth under deformation and aligned along the x axis, the

velocity at a displacement x from the inlet is equal to that of Poiseuille flow for a tube of

radius R(x). In three dimensions, the flow rate is given by:

Q(x) =

R(x)∫
0

vx(x, r)(2πr)dr = −πR
4(x)

8νρ

dp(x)

dx
. (3.42)

The flow rate can be expressed in terms of R(x) using the expression for the pressure-radius

relation, which comes from setting d2R
dt2

= 0 in equation (3.9), giving

p(x)− p0 =
4

3

Eh

R0

(
1− R0

R(x)

)
. (3.43)

The flow rate is constant at all values of x in the tube, which allows us to find the functional

form of R(x). We can find dp/dx from equation (3.43), substitute it into equation (3.16),
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then integrate with respect to x, as described by Fung [76], to obtain:

(
18νQ

πEh

)
x = R3(0)−R3(x). (3.44)

The radii of the tube at the inlet and outlet, R(0) and R(L) respectively, are determined

from the pressure boundary conditions by equation (3.43). The flow rate can be found by

substituting R(0) and R(L) into equation (3.44).

3.6 Results

A simulation of steady flow in a 3D elastic cylinder pointing along the x axis was performed

and compared to a simulation with rigid walls with the same dimensions and Reynolds

number. The simulation parameters were chosen such that the Reynolds number and

maximum displacement of the wall relative to its position at the reference pressure are

realistic for blood flow through large cerebral arteries, as explained in the introduction.

We define the Reynolds number as Re = 2vmaxR0/ν, where vmax is the maximum velocity,

R0 is the radius of the tube at the reference pressure and ν is the kinematic viscosity.

We chose Re = 120, at which we expect the flow to be laminar, since the transition to

turbulence occurs between Re = 1500 and Re = 4000 for flow in a cylinder [76]. The wall

displacement at the inlet is 1.0 lattice length, which is 5% of R0, i.e. the cross-sectional

area is 10% larger than at the reference pressure. In lattice units, the pressure difference

between the inlet and outlet is p(0)− p(L) = 5.4×10−4, the relaxation parameter τ = 0.53,

the wall thickness h = 4.0, the Young’s Modulus E = 0.043, the density of the fluid ρ = 1.0

and the density of the wall ρwall = 7.8. From equation (3.32), the free period of oscillation

of the wall is 1500 timesteps. The tolerance for the convergence criterion in equation (3.15)

was 1.0× 10−8. The damping factor was included in the simulation.

Figure 3.5 shows the difference between the numerical and analytical wall displacement

(∆Rnumerical −∆Ranalytical) as a function of x. The mean of this difference over all edge

sites at each value of x is plotted and the error bars show the range of this difference

at each value of x. Figure 3.6 shows the difference between the numerical and analytical

pressure (pnumerical−panalytical). The mean of this difference over all sites at each value of

x is plotted and the error bars show the range of this difference. The simulation errors are
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Figure 3.5: Difference between the numerical and analytical displacement
(∆Rnumerical −∆Ranalytic) as a function of x in a simulation of fluid flow in a 3D elastic
cylinder that includes a damping factor, with ∆R = 1.0 lattice unit at the inlet and
Reynolds number Re = 120. The mean difference in displacement over all edge sites at a
particular value of x is shown by a cross, and its range over the same sites is shown as an

error bar.

small compared with the difference between the inlet and outlet pressure and the maximum

wall displacement respectively. The largest simulation errors, of 2.7%, occur near the inlet,

where the cylinder is slightly narrower than the analytical solution predicts.

Figure 3.7 shows the x component of velocity, vx, as a function of the distance from the

centreline of the tube at four places along the length of the tube. The numerical results

exhibit the expected Poiseuille flow and agree closely with the analytic solution. The

maximum numerical value of vx is 2.79× 10−2 in lattice units and it occurs at coordinate

(200, 0, 0). The maximum analytical velocity of 3.00 × 10−2 lattice units occurs at the

same place. The maximum absolute values of velocity in the y and z directions are both

1.98 × 10−4 in lattice units. The velocity is slightly lower than that predicted by the

analytical solution at all four locations along the length of the tube. This is because the

cylinder is narrower than the analytical solution predicts near to the inlet, which restricts

the flow. The maximum error in the wall displacement is 2.7% and the flow velocity

is proportional to the square of the radius of the cylinder, so this would account for a

difference of 5.4% in the velocity.
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Figure 3.6: Difference between the numerical and analytical pressure (pnumerical −
panalytic) as a function of x in a simulation of fluid flow in a 3D elastic cylinder that
includes a damping factor, with ∆R = 1.0 lattice unit at the inlet and Reynolds number,
Re = 120. The mean difference in pressure from the analytical solution over all edge sites
at a particular value of x is shown by a cross, and its range over the same sites is shown

by an error bar.
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Figure 3.7: Velocity of flow in the x direction at four values of x in a simulation of
fluid flow in a 3D elastic cylinder that includes a damping factor, with ∆R = 1.0 lattice
unit at the inlet and Reynolds number Re = 120. The crosses are the numerical results
and the line is the analytical solution. The numerical velocity is slightly lower than the
analytical velocity because the cylinder is slightly narrower than the analytical solution

predicts near the inlet, which restricts the flow.
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Table 3.6: Relative errors in velocity, pressure and wall displacement for a simulation of
fluid flow in a 3D elastic cylinder that includes a damping factor, with ∆R = 1.0 lattice
unit at the inlet and Reynolds number Re = 120, and for a simulation with rigid walls

with the same dimensions and Reynolds number.

Quantity and Simulation error
type of error Rigid walls Elastic walls with damping factor

velocity ε1 4.87× 10−3 5.79× 10−2

velocity ε∞ 1.69× 10−2 7.12× 10−2

pressure difference ε1 3.15× 10−3 6.39× 10−3

pressure difference ε∞ 9.21× 10−3 2.61× 10−2

wall displacement ε1 0 8.40× 10−3

wall displacement ε∞ 0 2.74× 10−2

Table 3.7: Comparison of computational cost between the simulation of fluid flow in
a 3D elastic cylinder that includes a damping factor, with ∆R = 1.0 lattice unit at the

inlet, and the simulation for rigid walls with the same Reynolds number.

Quantity measured in simulation Rigid walls Elastic walls with
damping factor

Site updates per second 2.42× 106 2.07× 106

Timesteps until convergence 64737 62522
Wall clock time for the simulation 6760s 7630s

For the velocity, wall displacement and pressure relative to the reference pressure (p−p0),

the ε1 and ε∞ errors were calculated using equations (3.18) and (3.19). These relative

errors, and the error for a simulation with rigid walls with the Reynolds number Re = 120,

are shown in table 3.6. Comparing the simulations with rigid and elastic walls, it can be

seen that taking into account wall elasticity introduces errors of less than 6% in the velocity,

less than 2% in the density and less than 3% in the wall displacement.

Table 3.7 compares the computational cost of the simulation with elastic walls to that

of the simulation with rigid walls with the same Reynolds number, Re. We ran these

simulations on a 2.5GHz Intel Q3900 quad-core machine, using OpenMP to parallelise the

program [123], and having compiled the program with the optimisation flag -O3. The wall

clock time was measured by taking the difference in the return values of the function time()

from the standard C library at the beginning and end of the simulation. The number of

site updates per second was 14% lower when elasticity was included, so only 17% more

work was needed for each timestep. The simulation time was 12% longer than that for a

simulation with rigid walls and it required 3% fewer timesteps.
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3.7 Discussion

For three-dimensional simulations of fluid flow in elastic pipes, the ε1 simulation errors

in velocity, pressure difference and wall displacement are 6%, 0.6% and 0.8% respectively

and the ε∞ errors are 7%, 3% and 3% respectively, which shows that the pressure field and

the shape of the wall are calculated very accurately. While the relative errors in velocity

are slightly larger, the simulation method is sufficiently accurate to reveal the patterns in

the velocity field and the accuracy is comparable with possible errors in geometry due to

the finite resolution of, for example, medical imaging techniques.

The simulation errors are higher than those for the simulation with rigid walls for the

same dimensions and Reynolds number, but the differences in both types of relative error

are less than 6%, 2% and 3% for the velocity, pressure difference and wall displacement

respectively. The reason for the larger errors is that the wall is generally further from the

sites at which the boundary condition method is applied.

The method satisfies the requirement, explained at the beginning of this chapter, that the

calculation at every site depends only on information from nearest neighbours. No more

communication between processors is required for a simulation with elastic walls than one

with rigid walls. On 4 cores, 14% fewer site updates per second were achieved compared

with the simulation for rigid walls. This is because, in addition to the lattice-Boltzmann

method and boundary conditions, the Runge-Kutta method was applied to calculate the

position and velocity of the wall, and the fractions of the links between fluid sites adjacent

to boundaries and their neighbouring solid sites were recalculated at every time step.

While the number of timesteps required for convergence was 42 times the free period

of oscillation of the wall, it was approximately equal to the number of timesteps for a

comparable simulation with rigid walls, as predicted in section 3.5.2. This shows that the

rate of convergence is limited by that of the lattice-Boltzmann method rather than the

oscillation of the wall.

The Reynolds number and maximum wall displacement in the simulation were reasonably

realistic for blood flow through the largest cerebral arteries. For these parameters, the

simulation is accurate and the computational cost is little more than that for a comparable
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simulation with rigid walls, which shows that the method described in this study may be

suitable for simulating cerebral blood flow.

In physical units, the density of the wall was ρwall = 7800kg m−3, while for cerebral arteries,

we would expect ρwall = 1000kg m−3. The free period of oscillation of the wall decreases as

ρwall decreases, which reduces the accuracy of the Runge-Kutta method used to calculation

the position and velocity of the wall and could cause instability. This does indeed happen if

ρwall = 1000kg m−3 for the simulation described in this paragraph. However, it is sensible

to choose a slightly higher value of ρwall because the cerebral arteries are surrounded by

other tissues in the brain, which are likely to increase the free period of oscillation of the

wall.

The method is sensitive to relatively small displacements of the wall, which were less than

5% of the original radius of the cylinder in this study. The fluid domain can, and does,

expand to include sites that were initially solid. In this case, we continue to treat these

sites as solid sites and simply apply the boundary condition method at the same fluid

sites, taking into account the increased displacement of the wall. As explained in section

2.9.5, we expect that this method for dealing with the walls would introduce relative

errors proportional to the ratio of wall displacement to the initial radius of the cylinder

and that, for the same relative wall displacement, the error would be first order in space.

For relatively large wall displacements, allowing creation or destruction of fluid nodes may

improve the accuracy because the sites at which the boundary conditions are applied would

be closer to the walls. However, this may increase the computational cost considerably (see

section 3.1) because information from different sites would be needed as the simulation

progresses, unless one is able to set up the necessary buffers to pass information between

processors on a multicore machine. This could be done by setting up buffers for the extra

lattice sites that may be needed during the simulation and indexing the sites, including

these extra ones, at the beginning of the simulation.

Although the method developed for simulating fluid flow in elastic pipes can be used in

a complex geometry, the equation of motion for an element of the wall would need to be

modified. The elastic restoring force would depend on the strain and the principal radii

of curvature rather than only the radius. In simulations of flow through pipes that bend

significantly, two principal radii of curvature would be needed. The equation of motion

could be derived by considering an element of the wall in the same manner as in section
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3.2.1, and we expect it to have a similar form to the current equation of motion. Therefore,

it may not be significantly more computationally intensive to solve.

We may require information from nearby points to calculate the normal, strain and radii

of curvature when simulating the flow in complex geometries. We track the motion of one

point on the wall for each lattice site that is adjacent to the wall, as described in section

3.5. Therefore, when updating a lattice site and its point on the wall, we can minimise

the computational cost by only using information from neighbouring lattice sites and their

points on the wall, so that the amount of communication between processors would not

increase significantly. While the calculation of the normal, strain and radii of curvature will

increase the computational cost at the edge sites slightly, we anticipate that this will have

a minor effect on the overall computational cost of the simulation because the majority

of lattice sites in the simulation are not adjacent to the wall. For simulations running

in parallel on multicore machines, we can take into account the relative computational

costs of edge sites and non-edge sites when dividing the computational domain between

the processors.

3.8 Conclusions

A new method has been proposed for simulating viscous fluid flow in elastic pipes using

the lattice-Boltzmann method. It is based on estimating the distances from sites at the

edge of the simulation box to the wall in the lattice directions, from the displacement of

the closest point on the wall and its curvature. The nonequilibrium extrapolation method

[10] is then applied as it would be in a simulation with rigid walls, making use of these

distances. The method is capable of simulating flow in a three-dimensional vessel with

curved boundaries.

The simulation method has been tested in a cylinder and the numerical results for the

pressure, velocity and wall displacement are in good agreement with the analytical solu-

tions. The maximum relative errors in velocity, pressure difference and wall displacement

are 7%, 3% and 3% respectively. The simulation errors are higher than those for the simu-

lation with rigid walls for the same dimensions and Reynolds numbers, but the differences

are less than 6%, 2% and 3% for the velocity, pressure difference and wall displacement

respectively.
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The method is promising for simulations of cerebral blood flow because, at a realistic

Reynolds number, wall displacement and wall density, as well as being accurate, its com-

putational cost is little more than the cost for a comparable simulation with rigid walls.

This is because it requires a similar number of timesteps and the computational effort per

timestep is such that 14% fewer site updates are achieved per second. The algorithm for

calculating the flow fields at each lattice site depends only on information from the nearest

neighbours, and no fluid nodes are created or destroyed, so it is suitable for use in large

simulations running in parallel on multicore machines. No more information needs to be

communicated between lattice sites than in a simulation with rigid walls.

The simulation method proposed is also sensitive to small displacements of the wall, there-

fore it may be especially useful for simulations of complex, branching geometries, such as

the cerebral vasculature. This simulation method could also be applied in studies of the

bladder and urinary tract or for designs of piping systems in engineering projects.

In situations where the density of the wall is very low, or the free period of oscillation of

the wall is very short, the simulation may become unstable due to the limitations of the

Runge-Kutta method. This could be improved by using several timesteps for calculating

the displacement and velocity of the wall during each timestep for the lattice-Boltzmann

method.



Chapter 4

A new method for simulating fluid

flow through elastic systems with

a general geometry

In the previous chapter, a method for simulating fluid flow through elastic vessels was

developed that has could be used for modelling cerebral blood flow. The theory in section

3.2.1 assumes that the system is axisymmetric and that the radius of the vessel varies

slowly along its length, so that the σrθ = σzθ = σzr = 0, where r and θ are the radial

and circumferential directions and z is the axis of symmetry. The model can be used for

individual arteries provided that they are locally almost axisymmetric, and the directions

of their axes vary slowly along their length. Given the positions of a point on the wall and

its neighbours, it would be straightforward to estimate the normal to the wall (the radial

direction) and the principal radius of curvature, R0, and its direction (the circumferential

direction) at that point. The z direction is perpendicular to the other two directions. For

aneuryms, one could follow the method of section 3.2.1 assuming spherical symmetry.

However, the model would not be valid at the branches between arteries or at the edges

that connect arteries to aneurysms because there is no symmetry about any of the axes.

It is also possible that the axes of the blood vessels may change too quickly for the model

to be valid. Therefore, the full theory of linear elasticity is required to simulate blood

flow through such complex geometries accurately. In this chapter, I develop a scheme

204
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for simulating fluid flow through elastic vessels in two dimensions with this theory. The

theory required is discussed in section 4.1 and the method is explained in sections 4.2 to

4.4. Section 4.3 explains how the neighbours to each point on the wall are chosen, while

section 4.4 explains how the surface normals, stress tensor and distances from the wall

to the adjacent lattice sites along the lattice vectors are calculated. The work required

to extend the method to three dimensions is discussed in section 4.5. Section 4.6 reviews

some experimental and computational work on an extensively studied system of fluid flow

through compliant vessels. The results from the scheme developed here are compared with

those from computational studies of the same system in section 4.7. Conclusions for this

chapter are presented in section 4.8.

4.1 Theory of Linear Elasticity in Two and Three Dimen-

sions

In this section, I outline the theory of linear elasticity in the case of a general geome-

try, based on Landau and Lifshitz [121, chapter 1] unless otherwise stated. We use the

summation convention for subscripts throughout this section.

4.1.1 The Strain Tensor

In this subsection, the strain tensor is defined in terms of the derivatives of the displacement

field.

The deformation of a body is described mathematically in the following way. Let the

position of a point in the body be defined by the vector r, denoted xi before deformation

and r′, denoted x′i after deformation. The displacement of a point due to the deformation

is given by the vector ui = x′i − xi. The displacement vector is a function of the original

position in the body. Let dl and dl′ be the distance between two points in the body that

are very close together before and after deformation respectively. We have

dl′2 = (dxi + dui)
2 (4.1)

= dx2
i + 2duidxi + du2

i (4.2)

dl′2 = dl2 + 2
∂ui
∂xk

dxidxk +
∂ui
∂xk

∂ui
∂xl

dxkdxl. (4.3)
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Splitting the second term by swapping suffixes i and k and swapping suffixes i and l in

the third term gives

dl′2 = dl2 +

(
∂ui
∂xk

+
∂uk
∂xi

+
∂ul
∂xk

∂ul
∂xi

)
dxidxk. (4.4)

The strain tensor, εik is defined as

dl′2 = dl2 + 2εikdxidxk. (4.5)

Therefore, it can be expressed in terms of the spatial derivatives of the displacement as

εik =
1

2

(
∂ui
∂xk

+
∂uk
∂xi

+
∂ul
∂xi

∂ul
∂xk

)
. (4.6)

For small deformations, the strain tensor is given by

εik =
1

2

(
∂ui
∂xk

+
∂uk
∂xi

)
. (4.7)

The relative change in volume in 3D or area in 2D during a deformation can be derived

by considering an infinitesimal element with area or volume dV before deformation and

dV ′ afterwards. We take the principal axes of the strain tensor as the coordinate axes.

Therefore:

dV ′ = dV

ND∏
i=1

(1 + ε(i)), (4.8)

where ND is the number of dimensions and ε(i) is the ith principal value of the strain

tensor. Neglecting higher-order terms, we have

dV ′ = dV (1 +

ND∑
i=1

ε(i)) (4.9)

The sum of the principal values of a tensor is equal to the sum of the diagonal components.

Therefore
dV ′ − dV

dV
= εii. (4.10)
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4.1.2 The stress tensor

In this subsection, the force per unit volume is derived in terms of the stress tensor and

the constraints on it at the boundaries of an elastic body.

The force per unit volume, Fi, is given by the divergence of the stress tensor with respect

to the coordinates of the deformed body, i.e.

Fi =
∂σik
∂x′k

(4.11)

We can find the acceleration of a point in the body by dividing by the density there.

When the deformations are small, the derivatives of the stress tensor with respect to xi

and x′i differ only by higher-order quantities, so we may therefore make the approximation

that

Fi =
∂σik
∂xk

. (4.12)

Furthermore, when the deformations are small, dV
′−dV
dV � 1, so the acceleration of a point

in the body is given by
d2ui
dt2

=
Fi
ρ0
, (4.13)

where ρ0 is the density of the body before deformation and d2ui
dt2

= dvi
dt = ∂vi

∂t + vj
∂vi
∂xj

, is

the convective derivative of the velocity field v in the elastic material.

From equation (4.12), it follows that the force on any volume can be written as an integral

of the stress over the closed surface, i.e.

∫
V
FidV =

∫
V

∂σik
∂xk

dV =

∮
S
σikdsk, (4.14)

where dsk are the components of the surface element vector directed along the outward

normal. Let us consider an element of an elastic body of finite area but infinitesimal

thickness at the surface, as shown in figure 4.1. If the outward normal to the surface is n,

the force on the surface is given by
∮
S(τ ·n − σ ·n), where τ is the external stress. The

acceleration of this element must be finite, but its volume is infinitesimal, which implies

that we must have

σ ·n = τ ·n, (4.15)
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Figure 4.1: A volume element at the boundary of the elastic body.

whether or not the elastic body is in equilibrium.

4.1.3 Calculating the Free Energy

In this subsection, the Helmholtz free energy is expressed in terms of the strain tensor.

This expression can be used to derive Hooke’s law.

We consider the free energy of a body, W , as a function of the strain tensor, εik. The

strain tensor for an elastic body is given by equation (4.7). We take the undeformed state

to be the state of the body in the absence of external force and at the same temperature.

Then for εik = 0, the internal stresses are also zero, i.e. σik = 0. Since

σik =
∂W

∂εik
, (4.16)

it follows that there is no linear term in the expansion of W in powers of εik. Next,

since the free energy is a scalar, each term in the expansion of W must also be a scalar.

Two independent scalars of the second degree can be formed from the components of εik.

Therefore, expanding W in powers of εik, we therefore have as far as terms of the second

order

W = W0 +
1

2
λε2ii + µεikεik, (4.17)

where λ and µ are called Lamé coefficients.
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Any deformation can be represented as the sum of a pure shear and a hydrostatic com-

pression. To do so, we use the identity

εik ≡ (εik −
1

ND
δikεll) +

1

ND
δikεll. (4.18)

Since the relative change in volume in 3D or area in 2D in a deformation is given by

equation (4.10), dV ′−dV
dV = εii, the first term on the right of equation (4.18) is a pure

shear, since the sum of its diagonal terms is zero because δii = ND. The second term is a

hydrostatic compression. Substituting this into equation (4.17), we have

W = µ

(
εik −

1

ND
δikεll

)2

+
2

ND
µδikεikεll −

1

N2
D

µδikδikε
2
ll +

1

2
λε2ii (4.19)

⇒W = µ(εik −
1

ND
δikεll)

2 + µ

(
2

ND
− ND

N2
D

+
1

2
λ

)
ε2ll (4.20)

⇒W = µ(εik −
1

ND
δikεll)

2 +
1

2
Kε2ll (4.21)

with

K = λ+
2

ND
µ, (4.22)

where we have dropped the term W0 since it will be of no interest in what follows. K and

µ are called respectively the bulk modulus or modulus of hydrostatic compression and the

shear modulus or modulus of rigidity.

The free energy must be a minimum in equilibrium, therefore we have K > 0 and µ > 0.

4.1.4 Hooke’s law

In this subsection, Hooke’s law is derived for a general geometry, based on Landau and

Lifshitz [121, chapter 1].

We can find the stress in terms of the strain by first finding the total differential dW .

dW = Kεlldεll + 2µ(εik −
1

ND
δikεll)d(εik −

1

ND
δikεll) (4.23)

We have (εik − 1
ND

δikεll)δik = εii − 1
ND

εllND = 0. Therefore:

dW = Kεlldεll + 2µ(εik −
1

ND
δikεll)dεik (4.24)
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Using equation (4.16), the stress tensor is given by

σik = Kδikεll + 2µ(εik −
1

ND
δikεll) (4.25)

To find the converse formula, we find the sum of the diagonal terms. This is zero for the

second term on the right side of equation (4.25). Therefore

εii =
σii
NDK

, (4.26)

Substituting this expression into equation (4.25), we find

σik =
δikσll
ND

+ 2µεik − 2µ
δikσll
N2
DK

(4.27)

⇒ εik =
δikσll
N2
DK

+
1

2µ

(
σik −

1

ND
δikσll

)
(4.28)

The coefficients of the components of the strain tensor are consistent in Hooke’s law in 2D

and 3D if we express it in terms of the Lamé coefficients, since they then do not depend

on the number of dimensions. Substituting equation (4.22) into equation (4.25), we find

σik =

(
λ+

2µ

ND

)
δikεll + 2µ

(
εik −

1

ND
δikεll

)
(4.29)

⇒ σik = λδikεll + 2µεik. (4.30)

4.1.5 Expressing Hooke’s law in terms of the Young’s modulus and Pois-

son’s ratio

In this subsection, we define the Poisson’s ratio, Ω and Young’s modulus, E in terms of

the bulk and shear moduli and express Hooke’s law in equation (4.25) in terms of Ω and

E.

We first consider a simple extension or compression of a rod. Let the rod be along the

y or z axis in two or three dimensions respectively, and let forces be applied to its ends

which stretch it in both directions. The force per unit area is p. Since the deformation is

homoegeneous, i.e. εik is constant through the body, the stress tensor σik is also constant,
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and so it can be determined at once from the boundary conditions. They are given by

σiknk = 0, (4.31)

where nk is the outward normal to the boundary. There is no external force on the sides

of the rod, so all components of the stress tensor there are zero apart from σyy or σzz in

two and three dimensions respectively. On the end surface, we have σzz = p. From the

inverse of Hooke’s law (equation (4.28)), all components εik with i 6= k are zero. For the

remaining components, we find

(
1

N2
DK

+
ND − 1

2NDµ

)
p =

 εyy, 2D

εzz, 3D
(4.32)

(
1

N2
DK
− 1

2NDµ

)
p =

 εxx, 2D

εxx = εyy, 3D
(4.33)

The component εyy or εzz in 2D or 3D respectively gives the relative lengthening of the

rod. The reciprocal of the coefficient of p is called the Young’s modulus, E. We have

E =


p
εyy
, 2D

p
εzz
, 3D

(4.34)

⇒ 1

E
=

2µ+ND(ND − 1)K

2N2
DKµ

(4.35)

⇒ E =
2N2

DKµ

ND(ND − 1)K + 2µ
(4.36)

The ratio of transverse compression to longitudinal extension is called Poisson’s ratio, Ω:

Ω =
NDK − 2µ

ND(ND − 1)K + 2µ
. (4.37)

Rearranging equation (4.37) gives:

ND(ND − 1)ΩK + 2Ωµ = NDK − 2µ (4.38)

⇒ 2µ(Ω + 1) = (1− (ND − 1)Ω)NDK (4.39)

⇒ 2µ =
1− (ND − 1)Ω

Ω + 1
NDK. (4.40)

Since K and µ are always positive, Poisson’s ratio can vary between -1 (for K/µ = 0)



Chapter 4. A new method for simulating fluid flow through elastic systems with a general
geometry 212

and 1
ND−1 (for µ/K = 0). For incompressible materials, the bulk modulus is infinite, so

µ/K = 0 and we have a Poisson’s ratio of 1
ND−1 . Substituting the Poisson’s ratio into

equation (4.36) gives:

E =
N3
DK

2
(

1
Ω+1

)
(1− (ND − 1)Ω)

ND(ND − 1)K +NDK
(

1
Ω+1

)
(1− (ND − 1)Ω)

(4.41)

⇒ E =
N2
DK(1− (ND − 1)Ω)

(ND − 1)(Ω + 1) + (1− (ND − 1)Ω)
(4.42)

⇒ K =

(
(ND − 1)(Ω + 1) + 1− (ND − 1)Ω

N2
D(1− (ND − 1)Ω)

)
E (4.43)

⇒ K =
NDE

N2
D(1− (ND − 1)Ω)

(4.44)

⇒ K =
E

ND(1− (ND − 1)Ω)
(4.45)

Substituting this into equation (4.40) gives

µ =
E

2(1 + Ω)
(4.46)

Substituting equations (4.45) and (4.46) into equation (4.25) gives Hooke’s law in terms

of the Young’s modulus and Poisson’s ratio.

σik =
E

ND(1− (ND − 1)Ω)
δikεll +

E

1 + Ω

(
εik −

1

ND
δikεll

)
(4.47)

=
E

1 + Ω

(
εik +

(
1 + Ω

ND(1− (ND − 1)Ω)
− 1

ND

)
δikεll

)
(4.48)

=
E

1 + Ω

(
εik +

(
1 + Ω− 1 + (ND − 1)Ω

ND(1− (ND − 1)Ω)

)
δikεll

)
(4.49)

=
E

1 + Ω

(
εik +

Ω

1− (ND − 1)Ω
δikεll

)
(4.50)

4.1.6 Equations of motion and its boundary conditions for an isotropic

elastic medium

In this subsection, an equation of motion for an elastic medium is developed along with

its boundary conditions.
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We first express Hooke’s law in terms of the displacement field by substituting the expres-

sion for the strain tensor (equation (4.7)) into that for Hooke’s law (equation (4.50)):

σik =
E

2(1 + Ω)

[
∂ui
∂xk

+
∂uk
∂xi

+

(
Ω

1− (ND − 1)Ω

)
δik
∂ul
∂xl

]
(4.51)

Applying equation (4.12) to find the force per unit volume gives:

Fi =
E

2(1 + Ω)

[
∂2ui
∂x2

k

+
∂2uk
∂xi∂xk

+

(
2Ω

1− (ND − 1)Ω

)
∂2ul
∂xi∂xl

]
. (4.52)

Changing suffix l to k and applying equation (4.13) produces the equation of motion, given

in Landau and Lifshitz [121, chapter 3]:

d2ui
dt2

=
E

2(1 + Ω)

[
∂2ui
∂x2

k

+

(
1 + (3−ND)Ω

1− (ND − 1)Ω

)
∂2uk
∂xi∂xk

]
, (4.53)

where d2ui
dt2

= dvi
dt = ∂vi

∂t + vj
∂vi
∂xj

, is the convective derivative of the velocity field v in the

elastic material.

The boundary condition on the stress tensor, given by equation (4.15), can be expressed

in terms of the derivatives of displacement by substituting equation (4.51) into it:

τiknk =
E

2(1 + Ω)

[
∂ui
∂xk

nk +
∂uk
∂xi

nk +

(
Ω

1− (ND − 1)Ω

)
∂ul
∂xl

ni

]
. (4.54)

The equation can be rearranged such that both sides are dimensionless as follows:

(
2(1 + Ω)(1− (ND − 1)Ω)

E

)
τiknk = Ω

∂uk
∂xk

ni+(1−(ND−1)Ω)

(
∂ui
∂xk

+
∂uk
∂xi

)
nk. (4.55)

4.2 Scheme for simulating fluid flow through an elastic ves-

sel in a general geometry

In this section, I describe a scheme for the two-dimensional simulation of the wall of an

elastic fluid-filled vessel and the fluid inside that vessel. The vessel may have any geometry

and the wall has a finite thickness. This scheme is used throughout this chapter and the

next. It applies the theory of linear elasticity, which is valid where the strains are small. It

also uses the following approximations, discussed in section 4.1.2, that are valid in the same
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regime: the density remains equal to that of the undeformed body; the spatial derivatives

of the stress tensor are approximately equal to those with respect to the coordinates of

the body before deformation.

4.2.1 Simulation setup

The simulation requires the initial shape of the inside surface of the vessel, and, if it is

initially strained, its shape in the unstrained state. We first label each lattice site in our

system as fluid if it is inside the vessel and solid if it is outside. Lattice sites that are

adjacent to the wall will have one or more neighbouring solid sites and they are labelled

as edge sites. We place a pair of points on the wall for each lattice site that is adjacent

to it: one on the inner surface of the wall and one on the outer surface. The positions

of these points are chosen such that the point on the inner surface is the closest point to

the lattice site, except for the simulations described in section 5.4 and thereafter, and the

vector joining the two points is normal to the surface. The configuration of points in the

wall is shown in figure 4.2. For each point on the wall, we choose which of its nearest

neighbouring points we will use to calculate the force per unit area at each point, and

hence find its acceleration. The selection of neighbouring points is discussed in section

4.3.

4.2.2 Procedure at each time step

First, we carry out a lattice-Boltzmann timestep to find the distribution functions, fi at

each lattice site at time t + ∆t from those at time t. From these, we can calculate the

pressure, velocity and stress flow fields at time t+ ∆t. The motion of the wall influences

the fluid through a no-slip condition. This is applied via a lattice-Boltzamnn boundary

condition based on that proposed by Zhao-Li et al. [10], which was described in section

2.9.5. We consider the lattice vector from an edge site f to a neighbouring solid site w.

This vector intersects the wall at point b, as shown in figure 4.2. We require the velocity of

the wall at point b, vb to calculate the distribution functions at the edge site fi(xf , t+∆t).

For simulations of fluid flow through elastic vessels of a general geometry, we make the

approximation that vb = vn, where vn is the velocity of the point on the inside surface
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n

f

w

b n

h

ff

δe
i

e
i

Figure 4.2: Configuration of points on the wall and nearby lattice sites. The filled
circles are the fluid sites and the open circles are the solid sites. The link between an
edge site, f , and one of its neighbouring solid sites, w intersects the wall at point b. Site
ff is the fluid site opposite site w. There is a pair of points (shown by filled squares) for
each edge site: one on the inside surface of the wall (the blue line) and one on the outside
surface of the wall (the red line). The separation between these two points is nh, where n
is the outward normal and h is the thickness of the wall. The point on the inner surface

is chosen to be the closest point to the edge site.

that belongs to the lattice site f . The error from this approximation error is first order in

the spacing between the points on the inside surface of the wall.

Second, we integrate the equation of motion (equation (4.53)) numerically at each point

on the wall using a Runge-Kutta method adapted for solving second-order differential

equations, which is the same method as the one used for simulations in an axisymmetric

vessel, which is explained in section 3.5.3. The spatial derivatives of displacement in this

equation are estimated from the displacement at the point in question and its neighbours

and the boundary condition on the stress tensor (equation (4.55)), as explained in the

next subsection. For a point on the inner surface of the wall, the external stress is equal

to the stress in the fluid at that point and may therefore vary with time. Therefore,
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the acceleration at our point depends explicitly on time, its displacement and that of its

neighbours, i.e. we have:
d2u

dt2
= f(t,u,u′). (4.56)

Such a second-order equation can be expressed as two first-order equations with two de-

pendent variables, i.e.

du

dt
= u′, (4.57)

du′

dt
= f(t,u,u′), (4.58)

where t is the independent variable and u and u′ = du/dt are the dependent variables.

The following iteration scheme for equations (4.57) and (4.58) guarantees second-order

accuracy in the step size, ∆t:

ut+∆t = ut + 0.5(a1 + a2), (4.59)

u′t+∆t = u′t + 0.5(a′1 + a′2), (4.60)

with

a1 = ∆tu′t,

a′1 = ∆tf(t,ut,u
′
t),

a2 = ∆t(u′t + a′1),

a′2 = ∆tf(t+ h,ut + a1,u
′
t + a′1).

If we know the displacement and velocity of the wall at time t, we can calculate the

displacement at time t+ ∆t, but the velocity at time t+ ∆t depends on the displacements

of the neighbouring points at time t + ∆t. Thefore, ut+∆t must be calculated for every

point before we can calculate u′t+∆t anywhere.

4.2.3 Finding the Derivatives of Displacement

In this section, I describe the scheme for calculating the derivatives of the displacement,

which are required for the equation of motion and its boundary conditions.
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For each component of the displacement field, ui, there are N unknown first- and second-

order spatial derivatives of displacement, where

N = 2ND +
ND(ND − 1)

2
, (4.61)

where ND is the number of dimensions. Therefore, we have NND unknown derivatives

in total. Since ND = 2 for all simulations in this chapter, N = 5, i.e. there are 5

derivatives for each component of u: ∂
∂x , ∂

∂y , ∂2

∂x2
, ∂2

∂y2
and ∂2

∂x∂y . We therefore have

NND = 10 unknown derivatives in total. The boundary condition on the stress tensor

(equation (4.55)) gives us ND constraints on them. Taylor expanding the displacement

about a point r0 up to second order to give the displacement at a neighbouring point r

also produces ND constraints for these derivatives:

ui(r)− ui(r0) =
∂ui
∂xj

∆xj +
1

2

∂2ui
∂xj∂xk

∆xj∆xk, (4.62)

where ∆xi = xi − x0,i. Therefore, we combine the ND constraints from the boundary

condition with the Taylor expansions of (N−1) neighbouring points, which give (N−1)ND

constraints, to give us a system of NND equations for NND constraints. Since ND = 2

and N = 5, we require four neighbouring points. The selection of neighbouring points is

discussed in section 4.3. Our closed system of equations can be written as

U = MD, (4.63)

where U and D are vectors with NND elements and M is an NND × NND matrix, as

follows:

D =



∂ui
∂xj

for j = 1, 2, . . . , ND

...

∂ui
∂xj∂xk

for k = j = 1, 2, . . . , ND

...

∂ui
∂xj∂xk

for k > j, j = 1, 2, . . . , ND

for i = 1, 2, . . . , ND


, (4.64)
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U =



u1,i − u0,i

u2,i − u0,i

...

uN−1,i − u0,i

for i = 1, 2, . . . , ND

...

2(1+Ω)(1−(ND−1)Ω)
E τijnj

for i = 1, 2, . . . , ND



, (4.65)

M =



MD 0 · · · 0

0 MD · · · 0

0 0
. . . 0

0 0 0 MD

MS


, (4.66)

where MD and MS are sub-matrices with dimensions (N − 1) × N and ND × (NND)

respectively and 0 is a sub-matrix whose elements are 0. They contain the coefficients of

the derivatives in vector D in the Taylor expansions of u about position r0 and in the

boundary condition given by equation (4.55) respectively. Column j of matrix M is a

coefficient of Dj .

In order to solve equation (4.63) we need to invert the matrix M and multiply it by the

vector U. It would be very computationally expensive to invert the entire matrix at every

timestep for every point on the wall. Fortunately, the matrix MD is constant throughout

the simulation because it consists entirely of combinations of the separations between the

point we are looking at and its neighbours when the wall is not strained. Therefore, we

can rearrange matrix M such that it is only necessary to invert a ND × ND matrix at

each timestep as follows. Columns l, l + N, . . . , l + (ND − 1)N are removed from matrix

M; the remaining columns are shifted in order to fill the gaps; then the empty columns

(N − 1)ND, (N − 1)ND + 1, . . . , NND are replaced by the columns whose indices were

l, l + N, . . . , l + (ND − 1)N respectively before they were removed. The same operation

must be performed on the rows of D. Matrix MD is now split into matrix L and vector

q with dimensions (N − 1) × (N − 1) and (N − 1) × 1 respectively, while matrix MS is

split into matrices R and S with dimensions ND × (N − 1)and a ND × ND respectively.
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We now have:

M =

 P Q

R S

 , (4.67)

where P, Q, R and S are sub-matrices and

P =


L 0 · · · 0

0 L · · · 0

0 0
. . . 0

0 0 0 L

 , (4.68)

Q =


q 0 · · · 0

0 q · · · 0

0 0
. . . 0

0 0 0 q

 . (4.69)

It can be readily checked that the inverse of matrix M is given by Bernstein [124, p. 44]:

M−1 =

 P−1 + P−1Q(S−RP−1Q)−1RP−1 −P−1Q(S−RP−1Q)−1

−(S−RP−1Q)−1RP−1 (S−RP−1Q)−1

 . (4.70)

The matrices P and Q are constant throughout the simulation, so its inverse and the

matrix P−1Q only need to be calculated once at the beginning of the simulation. It is

only necessary to inert the matrix S−RP−1Q, which is a ND×ND matrix. From equation

(4.68), it can be shown that the inverse of matrix P is

P−1 =


L−1 0 · · · 0

0 L−1 · · · 0

0 0
. . . 0

0 0 0 L−1

 . (4.71)
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Using equation (4.69), we have:

P−1Q =


L−1q 0 · · · 0

0 L−1q · · · 0

0 0
. . . 0

0 0 0 L−1q

 . (4.72)

We choose the value of l that maximises the condition number of matrix L, in order to

minimise the error in L−1.

4.3 The choice of neighbouring points

We find the derivatives of displacement at a point on the wall using its displacement and

that of some of its neighbouring points. Four neighbours are required for a 2D simulation,

but there are five possible neighbouring points to choose from, as shown in figure 4.3. The

validity of the calculation of the derivatives depends strongly on our choice of neighbouring

points. This section describes and explains which neighbouring points were chosen for

simulations of fluid flow through elastic systems.

I initially chose to use neighbours 1, 2, 3 and 4 since they are placed symmetrically about

the normal to the wall (figure 4.3). However, this choice causes instability, as illustrated

by the following situation. We have a rectangular piece of elastic material that we stretch

in the x-direction such that εxx = 0.01. It contracts in the y-direction due to the Poisson

effect. We choose Ω = 0.5, therefore εyy = −0.005. We then fix its corners. We place

eight points on this rectangle, which is shown by the dotted line in figure 4.4. Points C,

D, E and F should not move. However, in simulations of this situation, the points reached

a configuration similar to that shown by the solid line in figure 4.4 due to the limits of

numerical precision (the movements of points C, D, E, and F have been vastly exaggerated).

However, instead of returning to equilibrium, the left hand side of the material continues

to contract and the right hand side continues to expand, so the simulation is unstable with

respect to this configuration.

A test of the calculation of derivatives at point C was performed on this configuration.

Since r = (x, y) represents the position of a point in an elastic material before deformation
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12

34 5

Figure 4.3: A possible selection of the four neighbours that are used to calculate the
spatial derivatives of displacement at a point on the wall. This selection gives rise to

instability.

x

y 
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0 1 2 3
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D F

A
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G

H

Figure 4.4: This elastic rectangle (the dotted line) is unstable with respect to the shape
defined by the continuous lines if, for each point represented by a square, an unsuit-
able combination of neighbouring points is used to calculate the spatial derivatives of

displacement there.
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and u represents the displacement after deformation, the coordinates marked in figure 4.4

are the values of r + u on our elastic rectangle, nondimensionalised with respect to the

spacing betwen the points. From the definition of strain and taking point 0 to be at the

origin before stretching, we have x = x+ux
εxx

, and y =
y+uy
εyy

. To reach the configuration

shown by the solid line, we then add displacements (0, 7× 10−10), (0,−7× 10−10), (0, 7×

10−10) and (0,−7 × 10−10) to points C, D, E and F respectively. The values of r and

u for all eight points are shown in table 4.1. Setting the stress at the walls to zero and

applying the algorithm explained in section 4.2.3 gives the derivatives shown in table 4.2.

If we substitute these derivatives into the Taylor expansion of displacement about point C

(equation (4.62)), we find that the resulting values of r + u correspond exactly to those in

table 4.1, but we obtain (1, 1+7×10−10) instead of (1, 1−7×10−10) for point D due to the

postive value of
∂2uy
∂y2

. This is because we used points A, B, E and F in the calculation but

ignored point C and therefore biased the derivatives. Point C “thinks” that the material

hs been stetched in the y-direction. Applying equation (4.53) gives an acceleration of

E
2ρ(1+Ω)(1−Ω)(−3.517325 × 10−10, 1.70 × 10−9). We would expect the acceleration in the

y-direction to be negative by inspection of figure 4.4. Therefore, the simulation is unstable.

Point x y ux uy
A 0 0 0 0
B 0 1

0.995 0 −0.005
0.995

C 1
1.01 0 0.01

1.01 7.0× 10−10

D 1
1.01

1
0.995

0.01
1.01

−0.005
0.995 − 7.0× 10−10

E 2
1.01 0 0.02

1.01 7.0× 10−10

F 2
1.01

1
0.995

0.02
1.01

−0.005
0.995 − 7.0× 10−10

G 3
1.01 0 0.03

1.01 0
H 3

1.01
1

0.995
0.03
1.01

−0.005
0.995

Table 4.1: Unstrained positions of points, (x, y), and their displacements, u, from these
positions for the piece of elastic material shown in figure 4.4.

I conclude that when calculating the derivatives at a point, it is important to use the

displacement of the corresponding point on the opposite wall. One could choose the

neighbours in one of the two ways shown in figure 4.5, but there is still a risk of bi-

asing the derivatives by not including one of the neighbours. Therefore, I decided to

calculate the derivatives of displacement using both sets of neighbours and averaging

them. Repeating the test on point C in the last paragraph, we obtain an acceleration of

E
2ρ(1+Ω)(1−Ω)(−3.517325×10−10,−6.62×10−9). The acceleration in the y-direction is neg-

ative, i.e. towards the equilibrium position, which indicates that the simulation is stable
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Derivative Neighbour choice shown in:
Figure 4.3 Figure 4.5
ux uy ux uy

∂
∂x 1.00000× 10−2 −3.53500× 10−10 1.000000× 10−02 −3.535000× 10−10

∂
∂y 3.53500× 10−10 −5.00000× 10−3 3.535000× 10−10 −5.000000× 10−03

∂2

∂x2
0.00000 −2.14221× 10−9 0.000000× 10+00 −2.142210× 10−09

∂2

∂y2
−7.03465× 10−10 1.38604× 10−9 −7.034650× 10−10 −2.772070× 10−09

∂2

∂x∂y 1.43138× 10−26 7.03465× 10−10 0.000000× 10+00 7.034650× 10−10

Table 4.2: Spatial derivatives of displacement at point C in figure 4.4 for both choices
of neighbouring points.

4 3

2 1

5

or

2 1

4 5 3

Figure 4.5: The final selections of the four neighbours that are used to calculate the
spatial derivatives of displacement at a point on the wall. This is stable with respect to

the situation in figure 4.4.

with respect to the configuration shown in figure 4.4.

4.4 Calculation of the surface normals, normalised cut dis-

tances and stress tensor

The methods used for the simulations reported in this chapter to calculate the normal to

each point on the elastic wall, the stress tensor at the inner surface and the normalised

cut distances at each lattice site adjacent to the wall are described in this section. The

nomenclature of the relevant lattice sites and points is given in figure 4.2.

The normalised cut distance, δ, is the distance from site f to point b expressed as a fraction

of the length of the lattice vector xw−xf , and it could be estimated as the distance along

the lattice vector to its point of intersection with one of the two lines passing through point

n and its neighbours on the inner surface of the wall. The relative error of this estimate
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is first-order in space, for the following reason. If the lattice site is at the origin and the

point of intersection is (x, y), then Taylor expanding y about point n gives

y = yn + (xb − xn)

(
dy

dx

)
n

+
(xb − xn)2

2

(
d2y

dx2

)
n

+ . . . . (4.73)

We are ignoring the 3rd term in the Taylor expansion, giving us an absolute error of order

(∆x)2, where ∆x is the spacing between adjacent lattice points, which is approximately

equal to the spacing between adjacent wall points. The magnitude of the cut distance is

of order ∆x, therefore the relative error is of order ∆x.

If we approximate the inner surface of the wall between the points as a circle passing

through point n and its two neighbours and choose our axes such that the x-axis is the

tangent to this circle for the purposes of this discussion, we have d2y
dx2

= 1
r , where r is the

radius of the circle. Therefore, the error in y is third-order in space, so the relative error

in the normalised cut distance is second-order in space, which matches the accuracy of the

LBM (see chapter 3.2.2). When the point and its neighbours are collinear, we simply find

the point of intersection between the straight line on which they lie and the lattice vector.

A line that passes through a circle will intersect that circle in two places. The normalised

cut distance was chosen to be the distance from the lattice site to the nearest point

of intersection. The normal to the point on the wall that points away from the fluid

was approximated by the normal to the circle described above. This normal may point

towards or away from the centre of the circle, depending on the curvature of the wall. We

choose the normal that is closer to that at the previous timestep. At the beginning of

the simulation, we set the normal to point away from the fluid domain. Therefore, our

normal will always point away from the fluid domain except in the extreme case where the

orientation of the wall changes by approximately π radians in one time step.

The stress at point n on the inner surface of the wall is approximated to be equal to the

stress at point b, which is calculated by linear extrapolation from the lattice sites f and

ff , i.e. (τij)b = (1 + δ)(τij)f − δ(τij)ff . The site f may be have several fluid neighbours,

so there are several possible positions of intersection b, each with a different value of δ.

We want to use one close to point n. Therefore, for each neighbour, fneigh, of site f , the

scalar product between the lattice vector xf − xfneigh and the separation between site f

and its point on the wall, xn − xf , was evaluated and site ff was chosen to be the site
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fneigh for which this scalar product is a maximum, provided that fneigh is a fluid site.

If the wall moves inwards past site f , the site fneigh for which the scalar product is a

maximum may be solid, in which case site ff was chosen to be the lattice site opposite

site fneigh, i.e. xff = xf + (xf − xfneigh).

The acceleration of a point on the wall depends on the derivatives of displacement (equation

(4.53)) and these in turn depend on the stress tensor, τij , and outward normal there

(equations (4.63) to (4.65)). Clearly, the normal at a point depends on its displacement

and that of its neighbours, but the extrapolation of the stress tensor also depends on

these displacements because it depends on the value of δ. Since we must calculate the

acceleration as a function of the displacements of a point and its neighbours and as a

function of these displacements plus the a1 Runge-Kutta coefficient (see equation (4.59)

4.60), it follows that the normal, the values of δ and the stress at the inner surface of the

wall must be calculated as functions of these two sets of displacements during each time

step. The stress at the outer surface is a parameter of the simulation.

4.5 Work required to extend the simulation method to three

dimensions

In this section, I discuss how the simulation method could be extended to three dimensions.

The general scheme described in section 4.2 can be readily extended to 3D by using ND = 3

for all equations in that section. For each point on the wall there are N = 9 unknown

spatial derivatives of the displacement field at each point on the elastic wall, from equation

(4.61). Each point on the wall therefore requires eight neighbouring points. If a pair of

points is placed on the wall for each lattice site that is adjacent to the wall, there are many

different ways of choosing the neighbours to each point. For each point, the neighbours

could be chosen from all points on the wall or points belong to lattice sites adjacent

to the one that the current point belongs to. The calculation of the derivatives of the

displacement field at a point would need to be tested for different choices of neighbouring

points. In particular, it could be important to always include the corresponding point on

the opposite surface of the elastic wall (inner or outer) in the set of neighours to ensure

the simulation remains stable.
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The circle passing through a point and two of its neighbours on the same surface could

be assumed to lie approximately on the surface around that point, as described in section

4.4. The tangent to the circle will then be a good approximation to a tangent of the

actual surface. Another tangent can be found by drawing a circle through the point and

its other two neighbours on the same surface. The normal is then the vector product of

the tangents. The normalised cut distances could be calculated by finding a curved surface

that contains these two circles, but this is not straightforward.

4.6 Review of studies of a Starling resistor

The collapse of compressed tubes occurs naturally in several physiological applications.

Experiments have shown that the system is a non-linear dynamical system of great com-

plexity, in which self-excited oscillations arise in particular regions of parameter space and

that some combinations of parameters are unattainable.

Bertram et al. [125] carried out a systematic mapping of the types of instability occur in

different regions of parameter space. They studied elastic tubes of four different lengths

with three values of the resistance of the downstream rigid tube and plotted the flow rate

against the pressure drop between the upstream and downstream ends of the elastic tube

(p′u − p′d in figure 4.6) for several positive values of the difference between the external

pressure and that at the downstream end of the elastic tube, pe − p′d. The behaviour of

the Starling resistor at each value of the pressure drop and flow rate, which was called an

operating point, was classified as steady flow, regular or irregular self-excited oscillations

or small-amplitude, broadband noise-like fluctations. They noted that at the lowest down-

stream resistance, repetitive oscillations were most prevalent, many operating points were

unattainable at the intermediate resistance and many points were stable at the highest

resistance. There were distinct bands of low, intermediate and high frequency oscillations

in the parameter space studied, corresponding to different modes of oscillation. Within

each band, the frequency increased smoothly with the flow rate and pressure drop and did

not depend strongly on the tube length. However, the length of the elastic tube affected

the mode of oscillation that occurred. There were also some regions of hysteresis, where

the behaviour depended on the direction of approach.
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Figure 4.6: Diagram of a 2D Starling resistor, which is a channel with a collapsible
segment through which fluid flows. The dimensions are marked as well as the pressure
at the inlet and outlet and the pressure applied to the outside of the wall. The maxi-
mum deformation is ∆Dmax. The length of the elastic segment after deformation can be

estimated by applying Pythagoras’ theorem to the dotted triangles.

In order to understand the behaviour of the system, Lowe, Luo and Pedley [11, 13, 15,

19] have carried out a series of computational studies of flow through a two-dimensional

Starling resistor, which is a channel in which part of one wall is replaced with an elastic

segment under tension and to which a uniform external pressure may be applied, as shown

in figure 4.6. A Poiseuille flow may be imposed upstream. Let D be the width before

deformation and Lu, Le and Ld be the lengths of the upstream, elastic and downstream

sections of the wall respectively. The pressure at the outlet is pd while that applied

externally is pe. In their studies, the channel was oriented in the x-direction. The Reynolds

number was calculated from the average velocity of flow at the inlet for all studies discussed

in this section.

Lowe and Pedley [11] considered Stokes flow, which is the flow in the limit as Re → 0.

The membrane was assumed to be thin and massless. They simulated the system with an

iterative method, in which the flow fields were calculated for a given wall shape using a

finite-element method, which is itself iterative, then the wall shape was calculated from the

pressure along the wall as follows. The membrane equation, pe−p = T/R, was rearranged

to find the radius of curvature, R, at each point on the wall in terms of the tension. The

curvature at each point was expressed in terms of the position of the point and its nearest

neighbours. This system of equations was then solved using the Newton-Raphson method.
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The tension at each point was calculated by integrating the stress on the wall from the

fluid. In this study, the lengths of the wall segments were Lu = Ld = 2D and Le = 10D.

Simulations were carried out at various values of the tension and pe − pd. For each value

of the tension, the wall was distended everywhere at low external pressures, distended

upstream and collapsed downstream at intermediate external pressures and completely

collapsed at high external pressures. The pressure at which the two transitions should

occur was predicted analytically in the limit of high tension and the computations for

different pressures at the highest value of tension showed that the transitions occurred

close to the analytical predictions.

As the tension was lowered, the variation in channel width along the channel increased,

as one would expect. The shape of the wall also became more asymmetric. For inter-

mediate external pressures, the point at which the wall changes from being distended to

collapsed moved downstream as the tension was reduced. The pressure gradient increased

significantly due to the narrowing of the channel. This caused the wall to bulge at the up-

stream end for external pressures at which it would have been collapsed at lower tensions.

Therefore, the differences between the external pressures at which the transitions occurred

became wider. At the highest tension, the variation in tension along the membrane was

6×10−4T for all pressures tested, but this variation became more significant as the tension

was reduced. There was a limiting tension, below which no converged solution could be

found.

In the studies by Luo and Pedley [13, 15, 19], the following physical parameters were used:

η = 10−3Nm−1s, ρf = 103kgm−2, D = 10−2m, Le = 5 × 10−2m, pe − pd = 0.93Nm−1,

T = T0/β, where T0 = 1.610245N and β is a dimensionless parameter.

Luo and Pedley [13] considered steady flow at a non-zero Reynolds number under the same

assumptions as [11], except that the tension in the membrane was assumed to be uniform,

i.e. the shear stress was not included in the fluid-membrane interaction. The simulation

method was very similar to that in [11]. The length of the upstream and downstream

segments were Lu = 0.02m and Ld = 0.07m respectively. Ld was chosen to be long enough

for the flow pattern to recover from the constriction so that constant pressure condition is

applicable at the outlet.
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They found that at Re = 1, the wall deflection increases as β increases, i.e. the tension

decreases. This continued until β = βc = 65, beyond which no converged solution was

found. At Re = 100 and Re = 500, the maximum deflection only increased up to a

point. The point of maximum deflection moved downstream significantly as β increased

and continued to do so after the deflection reached its maximum. The upsteam end of the

membrane bulged out when β was increased to βb and the authors were unable to find a

converged solution beyond β = βc. They obtained βb = 129, βc = 130 and βb = 30, βc = 31

for Re = 100 and 500 respectively. For Re = 100 and Re = 500, flow separation occurred

at the downstream end of the membrane before the deflection reached its maximum, which

was shown by the negative vorticity there. A singularity in the vorticity was expected at

the upstream end of the segment at β = βb, but it occurred later due to the finite resolution,

being approached rapidly as β was increased to βc.

Luo and Pedley [13] suggest that the breakdown in their model may be due to the bulging

of the membrane at the upstream end and the singularities that develop there rather

than a purely numerical problem. A one-dimensional analysis was then performed to

investigate this. They used a constant flow rate, neglected viscosity, and assumed that the

flow separation begins at the point of maximum deflection and a steady solution existed

for all values of the tension. The tension reductions required for the membrane to bulge

outwards agreed well with those from the 2D simulations. At this point, the pressure

drop no longer increased with flow rate, which corresponded to the onset of self-excited

oscillations that had been observed in experiments in a different region of parameter space

[125]. This suggested that the origin of the breakdown was physical, but this was still

uncertain.

Rast [126] also carried out steady state simulations, but the critical values for tension

differed significantly, which showed that there is a numerical breakdown in the methods

for finding steady solutions. For example, at Re = 300, the value of TD
ρfQ2 , where Q is

the flow rate, is reduced to 0.15, whereas in Luo and Pedley [19], we have βc = 190, so

TD
ρfQ2 = 0.94 at the critical tension. Furthermore, Luo and Pedley [19] state that βb = 40 at

Re = 300. The fact that this is significantly less than βc shows that the membrane bulging

alone does not cause a breakdown in the simulation. While Rast [126] can achieve a lower

tension than [13], his numerical method reaches a limit when the wall at the downstream

end of the membrane becomes almost vertical, which occurs when the tension is very low.
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Rast [126] found that the wall exhibited similar behaviour to that described in [11] as

the tension was lowered. The spatial variation in the tension in the membrane was taken

into acount as in [11] and the other assumptions about it were the same. Flow separation

was observed at Re = 100 and Re = 300 and the eddies were observed to increase in

length with Re, but the length remained of O(D), not O(Re). The complexity of the

flow increases as the channel becomes narrower. At Re = 300, the wall was found to be

collapsed everywhere until the tension was lowered below a certain value, when it became

distended upstream. The point at which the channel became collapsed moved downstream

as the tension was reduced. The same behaviour was observed by Luo and Pedley [19].

However, since Rast [126] was able to lower the tension further, he found that the curvature

of the wall changed sign twice at TD
ρfQ2 = 0.15, i.e. β = 1193. The spatial variation in

tension was 0.5T at the lowest tension, which is much larger than that reported in any

simulations in [11], so it is expected that using a uniform tension would change the results

significantly. This might explain why the channel width never fell below 0.6D in [126],

whereas it reached 0.5D in [19] under the assumption of constant tension in the membrane.

While Luo and Pedley [19, 1996] presented results for steady flow simulations, the main

focus was on unsteady flow. They used Lu = 5 × 10−2m, Ld = 0.3m. The elastic wall

was modelled under the same assumptions as in their previous study Luo and Pedley [13,

1995], and its tension was assumed to remain constant with time. In constrast to their

previous study, the iteration scheme was solved for the fluid and the wall simultaneously as

follows. The equations for the unknown flow fields in space were discretized and combined.

The resulting equation was then integrated with respect to time with an implicit finite

difference scheme: an equation involving the unknowns in two subsequent timesteps was

obtained, then solved using the Newton-Raphson method. This method is an extension of

that developed in [126] for simulating steady flow.

Each simulation was initialised to its steady solution for the desired Reynolds number,

but a slightly different tension from that desired in order to impose a small disturbance

on the actual steady solution. The points on the wall were assumed to move only in the

direction normal to the wall’s initial shape. The simulations approached the steady state

solution for values of β < βu, but were unstable and underwent self-excited oscillations for

β ≥ βu for Reynolds numbers between 100 and 500, but were stable for all β at Re = 1.

The value of βu decreased as Re increased.
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The behaviour of the system was studied in detail for three different vales of β at Re = 300,

where βu = 27.5. Self-excited oscillations were observed. The motion of one point on the

wall was tracked over time and instaneous streamlines were recorded at different times

throughout one period of oscillation of the wall. When β = 30, the oscillations had a period

of 12.71Q
D2 and an amplitude of 0.2D. When β was increased to 32.5, the wall oscillation was

composed of one slow oscillation with a period of 20.75D2

Q and one oscillation at twice the

frequency, i.e. a period doubling bifurcation occurred. At β = 35, there was a triple peak

in the position of the point on the wall. These double peak and triple peak phases were

observed in measurements of the pressure and cross-sectional area of a tube by Bertram

et al. [125] and are shown in figures 9a and 9c of that study. When β was increased

further still, the wall was sucked under the rigid wall on the right [19], in agreement with

experimental observations in another study. The qualitative agreements with experimental

observations provide evidence that their simple model is sufficient to explain the observed

phenomena.

Luo and Pedley [13, 1995] also found that for a constant value of β, the pressure difference

between the inlet and outlet of the channel only increases with Re up to the point where

the membrane bulges out, then it remains approximately constant, i.e. pressure-drop

limitation occurs. Oscillations have often been experimentally observed when this occurs,

as shown by figure 2 in [125]. Luo and Pedley [19]’s results at Re = 300 also show that

oscillations would definitely be present in the pressure-drop limitation regime. They state

that the location of unstable points agrees with the experimentally observed conditions

at which steady flow gives way to self-excited oscillations. However, their results seem to

show that instability occurs somewhat earlier, at β = 27.5 for Re = 300.

In the self-excited regime, vorticity waves were found downstream of the elastic section

with associated eddies that sometimes split in two. These were similar to the vorticity

waves found in several computational studies, including [127], with a prescribed moving

indentation in the channel wall. The energy dissipation rates upstream and downstream of

the point of greatest constriction were very different in the self-excited and steady regimes,

which suggests that the mechanism of oscillation depends strongly on the details of energy

dissipation and flow separation.

Luo and Pedley [15] studied the effects of wall inertia at Re = 300 using the same ratios

of length to width as [19]. The ratio of the mass of the wall to the mass of the fluid below,
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i.e. ρwh
ρfD

, where h is the thickness of the wall, was varied, as well as the value of β. The

wall was, however, treated as a thin membrane. The position of the point on the wall

close to that of maximum deformation and the pressure there was examined. For β = 30,

the results for ρwh
ρfD

= 0.01 were very similar to those obtained by [19] with a massless

wall. At ρwh
ρfD

= 0.1, for β = 30, 32.5 and 35, high-frequency flutter was superposed on the

low-frequency self-excited oscillations for both the position of the point on the wall and the

pressure. The flutter grows with time from a small amplitude until it dominates the slower

mode. As the value of β increased, the oscillations became more complex, with a flutter

frequency six times that of the oscillation at β = 30, a period bifurcation at β = 32.5 and

a very complex oscillation at β = 35. Flutter also occurred at β = 25, which is outside

the regime at which self-excited oscillations arise when the wall is massless, which shows

that the inertia of the wall alone can cause instability. The critical value of tension below

which self-excited oscillations arose decreased as the mass was increased. At ρwh
ρfD

= 1, the

flutter frequency was comparable to the normal self-excited oscillations and they suggest

that the mechanism of the generation of oscillations may therefore be different when the

wall has more inertia. A direct quantitative comparison of the model with experiment

was not possible because the experiments are three dimensional and the wall has a finite

thickness. However, flutter has been observed in many different experiments. [15] have

picked one study to compare the ratios of the flutter frequency to that of the self-excited

oscillations and this ratio is 6 in [15] for ρwh
ρfD

= 0.1 and between 4 and 8 in the study.

When the external pressure and upstream pressure are increased by the same amount

relative to that at the downstream end of the elastic membrane, the flow rate increases up

to a limiting rate. This is called flow limitation.

Many studies have discussed whether flow limitation is related to self-excited oscillations.

The simulations by Luo and Pedley [15] show that the occurrence of flow limitation is not

a sufficient condition for self-excited oscillations at a fixed inflow rate.

Jensen and Heil [12] analysed high-frequency self-excited oscillations. They carried out an

asymptotic analysis in the limit of high tension, i.e. TD
ρfQ2 � Re, and found the boundaries

of stability. Numerical simulations confirmed these stability boundaries. All simulations

were carried out at Re > 300 and 103 ≤ TD
ρfQ2 ≤ 105, therefore 3 × 105 ≤ TD

ηQ ≤ 3 × 107,

which is much higher than the maximum value of 105 used by Lowe and Pedley [11] and

Luo and Pedley [13, 15, 19]. By investigating self-excited oscillations in a different region
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of parameter space, Jensen and Heil [12] showed that self-excited oscillations can grow by

extracting energy from the mean flow faster than it is lost through viscous dissipation. The

oscillations are closely related to the normal modes of the system, which have a frequency

set by a balance between the membrane tension and the inertia of the fluid.

4.7 Comparisons with the study by Lowe and Pedley

In this section, the method described in this chapter is validated by comparing the results

of several simulations of a Starling resistor to the results reported in Lowe and Pedley [11]

for the same sets of parameters 1.

The length of the Starling resistor was parallel to the x-axis. At the beginning of each

simulation, the elastic wall was initialised to be a rectangular piece of material of length

Le and thickness h that had been uniformly stretched in the x-direction to achieve the

desired tension, T , and allowed to contract in the y-direction due to the Poisson effect. The

corners were fixed during the simulation. The spacing between adjacent pairs of points

was equal to the lattice spacing ∆x. The coordinates of each point were measured relative

to the bottom left of the wall and calculated from the intial strain as follows, given that

the strain is uniform and defined by equation (4.7), with εxy = 0:

(x, y) =

(
x′

1 + εxx
,

y′

1 + εyy

)
, (4.74)

where (x, y) and (x′, y′) = (x+ ux, y + uy) are its coordinates before and after stretching

respectively and εyy = −Ωεxx, where Ω is the Poisson ratio. The initial strain, Young’s

modulus and thickness of the wall are constrained by

T = Eεxxh. (4.75)

From equation (4.74), the natural length of the elastic material is given by

L0 =
Le

1 + εxx
. (4.76)

1The code for these simulations and instructions for its use may be downloaded
from http://ccs.chem.ucl.ac.uk/∼gary as a zip archive and will be in the folder “Elas-
tic complex geometry rev 118”. For these simulations, INCOMPRESS and ELASTIC were defined
at compile time.
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The flow was simulated using the D2Q9i lattice-Boltzmann model. The lattice sites that

were initially inside the channel were regarded as fluid sites and those outside were regarded

as solid. No fluid nodes were moved, created or destroyed as the wall moved. The centreline

of the channel was placed on a row of lattice points, as shown in figure 4.7. Its width

was chosen such that the lattice points nearest to the wall lie a distance of 0.25 lattice

points from it unless otherwise stated. The distribution functions were initially set to the

equilibrium ones with zero velocity and p = p0 = 0. Pressure boundary conditions p = pu

and p = pd = p0 = 0 were applied at the inlet and outlet respectively using the method

by Zou and He [89], which was described in section 2.9.2, with pressure p0 at the outlet.

In all simulations reported here the ratios of the lengths of the elastic and rigid sections

are given by Lu
D = 2, Le

D = 10 and Ld
D = 2.

4.7.1 The wall parameters

In Lowe and Pedley’s study [11], the wall is assumed to be a thin membrane for which

the tension is fixed at the downstream end, whereas in the present study, the tension will

change as the wall deforms since we are using the full theory of linear elasticity. The

strain was chosen to minimise the anticipated relative change in tension, while ensuring

that εxx � 1, as required by the theory (section 4.1).

The wall shapes in [11] that are compared with the results from this study are qualitatively

similar to that in figure 4.6 and the maximum change in the channel width, ∆Dmax <

0.02D. Therefore, equations (4.75) and (4.76) hold approximately if we replace subscipt x

with subscript t, which denotes a tangential component, i.e. T ≈ Eεtth, with εtt ≈ L−L0
L0

,

where L is the current length of the wall. Expressing the tension in terms of this gives

T ≈ EhL− L0

L0
. (4.77)

If the wall has length L1 initially and tension T1 initially and length L2 and tension T2

after deformation, the relative change in tension during the simulation is

T2 − T1

T1
=
L2 − L1

L1 − L0
. (4.78)
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Figure 4.7: Diagram to show the setup of the simulations of the Starling resistors for
which the wall profiles were compared to those obtained by Lowe and Pedley [11]. The
solid circles are the fluid lattice sites and the centreline of the channel is placed on a row
of lattice sites. The channel is aligned with the x-axis. The inlet, outlet and external
pressures are pu, pd and pe respectively. The width of the channel is D and the lengths
of the upstream and downstream rigid sections of the wall and the elastic section are Lu,
Ld and Le respectively. For clarity, the lattice resolution is coarser than the resolution

used in the simulations.
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If the maximum change in the channel width during deformation, ∆Dmax, is small, L2

can be estimated using Pythagoras’ thereom on the dotted triangles shown in figure 4.6

to give L2 ≈
√
L2

1 + 4∆D2
max. The Taylor expansion in ∆Dmax is L2 ≈ L1

(
1 + 2∆D2

max

L2
1

)
.

Substituting into equation (4.78) gives:

T2 − T1

T1
≈ L1

L1 − L0

(
2∆D2

max

L2
1

)
. (4.79)

⇒ T2 − T1

T1
≈ 1

εxx

(
2∆D2

max

L2
1

)
. (4.80)

from equation (4.76). Since ∆Dmax < 0.02D and L1 = Le = 10D, we have T2−T1
T1

< 8×10−6

εxx
.

In all simulations in this chapter, εxx = 0.01, so the fractional change in tension during

the simulation is less than 8× 10−4.

The numerical scheme allows for any Poisson’s ratio except Ω = 1
ND−1 , which would make

the coefficient of the second term in equation (4.53 infinite. Therefore, Ω = 0.5 was

chosen, which is well away from this critical value. The simulations were carried out with

a variety of different wall thicknesses. There are some issues surrounding the choice of the

wall density, which will be discussed in section 5.1. In this section, the density was set

such that the following parameter, Γ = 250 lattice-Boltzmann timesteps:

Γ = 2πh

√
ρw
E

(4.81)

Substituting equation (4.75) into this and rearranging gives

ρw = E

(
Γ

2πh

)2

. (4.82)

4.7.2 The flow parameters

For the simulations in this section, the tension is given by TD
ηQ = 105, where η is the

dynamic viscosity and Q is the flow rate. The last two quantities could therefore be chosen

freely provided that the Reynolds number is of order one or less so that it is sensible to

compare Lowe and Pedley’s results from computation of Stoke’s flow with my own. The

dimensionless relaxation parameter was chosen to be, τ = 0.56, therefore from equation

(2.11), η = νρf = ρf
τ−0.5

3 = 0.02ρf
∆x2

∆t , where ν is the dynamic viscosity, and the density

of the fluid, ρf = 1 in lattice units. Lowe and Pedley applied a Poiseuille flow at the inlet,
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therefore

Q =
2

3
vmaxD, (4.83)

where vmax is the maximum flow velocity. We define Re =
ρfvmaxD

η , therefore

Q =
2Reη

3ρf
. (4.84)

The pressure difference, pu − pd, that was applied was calculated using the following

equation for Poiseuille flow:

pu − pd =
12ηLQ

D3
, (4.85)

with L = Lu +Le +Ld. Since ∆Dmax < 0.02D, this is a reasonable approximation. Lowe

and Pedley state the pressure difference pe−p′d, where p′d is the pressure at the right-hand

end of the elastic wall. For Poiseuille flow, the pressure gradient is constant along the

length, therefore we have pu − p′d = Lu+Le
L (pu − pd), where Lu+Le

L = 6/7, from the lengths

stated earlier in this section. Adding pe−pu to both sides of the equation and rearranging

gives

pe − pd = (pe − p′d) +
1

7
(pu − pd). (4.86)

4.7.3 Convergence of the simulation

At each timestep, the convergence of the simulation is checked by comparing the flow fields

at the end of the timestep to those at the beginning. The simulation is considered to be

converged when the L1 norms of the velocity flow field and the wall displacement from its

initial (stretched) position are both below a chosen tolerance. The L1 norm of the velocity

field is given in equation (3.15), i.e.

L∑
x=0

R0∑
y=−R0

|v(x,y,t)−v(x,y,t−1)|

L∑
x=0

R0∑
y=−R0

|v(x,y,t)|
< tol. The tolerance is

2.0× 10−8 for all simulations in this section.

Since we calculate the acceleration of the wall explicitly, both the walls and the fluid

oscillate during each simulation, as explained in section 3.5.2. The simulation converges

when the oscillations die out. In order to help the simulation converge to a steady state,

I apply damping to each point on the wall by adding the term

− bdu
dt

(4.87)
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to its acceleration. The damping factor, b, is chosen to be 0.2 times the critical damping

factor for the lowest frequency mode of oscillation of the wall, i.e. b = 0.4ω0, where ω0 is

the angular frequency of oscillation without damping. In this mode, the entire wall moves

inwards or outwards together and forms a standing wave with a wavelength, λ of twice

its length. If we consider the wall as a stetched string oscillating in free space, the wave

speed, c, is given by

c2 =
T

ρwh
. (4.88)

Therefore the period of the wave is given by

Λ =
2π

ω0
= 2Le

√
ρwh

T
. (4.89)

4.7.4 Results and Discussion

A computation of a Starling resistor with a width of D = 10.5∆x was carried out, where

∆x is the lattice spacing, Re = 0.15, h = ∆x = D
10.5 , and ∆p∗ = (pe−pd)

(
D2

ηQ

)
= 24. The

dark red solid line in figure 4.8 shows the inner surface of the wall when the simulation

reached a steady state, where the x and y coordinates measured relative to the left hand

end of the inner wall and nondimensionalised on D. The top part of figure 3 in [11] is

superimposed on this graph since their raw data was not available for comparison. The

black solid line shows their results for ∆p∗ = 24. The maximum displacements in the

y-direction in Lowe and Pedley’s and the present study are ∆Dmax = 7.5 × 10−3D and

∆Dmax = 5.7016 × 10−3D and these occur at x = 4D and x = 4.48D respectively. I

suspected that the poor agreement between the results was due to the bending stiffness of

the wall, which is ignored in Lowe and Pedley’s simulation. I therefore reduced the wall

thickness, first to h = D
21 , then to h = D

42 . The results for the latter are shown by the red

solid line. It is clear that the wall bulged out more, resulting in better agreement with Lowe

and Pedley’s results. When considering the bending stiffness, the most important ratio is

h
Le

, but Le ∝ D in this study, so I report the ratio h
D . After reducing the thickness of the

wall, I increased the resolution of the lattice, first to D = 20.5∆x, while h = 0.25∆x. The

results for the latter, are shown by the dark green solid line. It is clear that the agreement

with Lowe and Pedley’s results is better at D = 40.5∆x than at D = 10.5∆x, which is

probably at least partly due to a further reduction in the ratio h
D . Figure 4.9 shows the

results for ∆p∗ = 24 for all five values of h
D and it is clear that the wall bulges out further
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as h
D decreases. However, the wall profiles for h = D

82 and h = D
162 are very close, so it

cannot be clearly determined which agrees most closesly with Lowe and Pedley’s results

since we do not have the exact data for these.

The simulations with D = 10.5∆x and D = 20.5∆x converged to the desired tolerance

within a time equal to 6 times the free period of lowest frequency mode of the wall, i.e.

within 6Λ. However, this was not the case at the highest spatial resolution, D = 40.5∆x.

This may be because, for the same Reynolds number, the maximum fluid velocity in

the x-direction, vx, is lower in lattice units, whereas the amplitude of the oscillation of

the wall’s velocity during an oscillation is the same. Since we impose no-slip conditions,

the L1 norm of the velocity field is larger. The amplitude of the velocity of the wall is

approximately ω0∆D, from equation (4.89). From equation (4.89), we have ω0 = π
L

√
T
ρwh

.

Therefore ω = 2π2

LΓ

√
hT
E from equation (4.82), then ω0 = 2π2h

LΓ

√
εxx from equation (4.75).

Since ∆D ∝ D, the amplitude of the velocity oscillation is proportional to D h
LΓ . This

amplitude is the same in lattice units for the simulations with h = 0.25∆x. Therefore, the

Reynolds number was changed to 1.5 for simulations with with D = 40.5∆x throughout

this section, since this was expected to speed up the convergence.

However, the simulations still did not converge to the desired tolerance; the L1 norm for

the velocity of the fluid decreased, then increased again later on in each simulation. The

L1 norms for the wall displacement continued to decrease for a longer period, but that

also began to increase under the influence of the fluid. The results for D = 40.5∆x in this

section are those for Re = 1.5 taken at t = 107∆t = 7.76Λ. The reason why this happens

is still unknown.

Graphs 4.10 and 4.11 show my results for TD
ηQ = 105 with ∆p∗ = 84 and 224 respectively

for h = ∆x
4 at three different values of the lattice resolution, ∆x. The deformation of

the wall increases when the lattice resolution increases and therefore h
D decreases, as it

did when ∆p∗ = 24, probably due to the reduced effect of the bending stiffness. The

wall profiles for the highest and lowest resolutions are shown in red and dark green on

graph 4.8 respectively, with dashed and dotted lines for ∆p∗ = 84 and 224 respectively,

and compared with Lowe and Pedley’s results, which are shown by the black dashed and

dotted lines respectively. The agreement with their results is better at the h ≈ D
40 than

at h ≈ D
10 , which suggests that it improves as h

D decreases. However, as in the case with
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Figure 4.8: Comparison of the wall profiles obtained in the present study at TD
ηQ = 105

with those obtained by Lowe and Pedley [11] and shown in figure 3 of that study. The
results for ∆p∗ = 24, 84 and 224 are represented by the solid, dashed and dotted lines
respectively. For each pressure, the black lines show Lowe and Pedley’s results, while the
dark red, red and dark green lines show the results of the present study for D = 10.5∆x,
h = D

10.5 , Re = 0.15; D = 10.5∆x, h = D
42 , Re = 0.15; and D = 40.5∆x, h = D

162 ,

Re = 1.5 respectively, except that D = 42∆x and h = D
168 instead of D = 40.5∆x for

∆p∗ = 224. We have τ = 0.56.

∆p∗ = 0, we cannot be sure whether the result with h ≈ D
20 or h ≈ D

40 agrees more closely

with Lowe and Pedley’s result, since the wall profiles for these results are very similar.

For ∆p∗ = 224, the simulations with D = 20.5∆x and D = 40.5∆x were unstable. This

was probably because the maximum inward displacement of the wall was expected to be

∆D = 0.018D, which is more than the initial separation of 0.25∆x between the row of

lattice sites adjacent to the wall and the wall itself when D = 20.5∆x and D = 40.5∆x.

Using lattice resolutions such that the initial separation between the wall and the adjacent

row of lattice sites is 0.5∆x from the wall and ∆x from the wall, i.e. greater than ∆D, so

21∆x and D = 42∆x respectively, improves the situation. This issue is discussed further

in section 5.5.
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Figure 4.9: Wall profiles obtained in the present study for TD
ηQ = 105 and ∆p∗ = 24 at

different lattice resolutions and wall thicknesses. From the least to the most distended wall
profile, we have Re = 0.15, h = D/10.5, D = 10.5Dx; Re = 0.15, h = D

21 , D = 10.5∆x;

Re = 0.15, h = D
42 , D = 10.5∆x; Re = 0.15, h = D

82 , D = 20.5∆x; and Re = 1.5, h = D
162 ,

D = 40.5∆x. We have τ = 0.56.
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Figure 4.10: Wall profiles obtained in the present study for TD
ηQ = 105 and ∆p∗ = 84 at

different lattice resolutions and wall thicknesses. The red, blue and dark green lines show
the wall profiles for Re = 0.15, h = D

42 , D = 10.5∆x; Re = 0.15, h = D
82 , D = 20.5∆x;

and Re = 1.5, h = D
162 , D = 40.5∆x respectively. We have τ = 0.56.
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Figure 4.11: Wall profiles obtained in the present study for TD
ηQ = 105 and ∆p∗ = 224

at different lattice resolutions and wall thicknesses. The red, blue and dark green lines
show the wall profiles for Re = 0.15, h = D

42 , D = 10.5∆x; Re = 0.15, h = D
84 , D = 21∆x;

and Re = 1.5, h = D
168 , D = 42∆x respectively. We have τ = 0.56.

Lowe and Pedley [11] predicted analytically that, at TD
ηQ = 105, the transition from the

elastic section being completely distended to being partially distended should occur at

∆p∗ = 64 and that the transition to it being fully collapsed should occur at ∆p∗ = 104.

They carried out computations at ∆p∗ = 63.5 and ∆p∗ = 64.5 to examine the first

transition and ∆p∗ = 103.5 and ∆p∗ = 104.5 to examine the second transition and

presented the results in figure 4 of their study. Their computations for the first and second

transition are compared with my own in graphs 4.12 and 4.13 respectively. For h = D
42 and

h = D
82 , the wall is less distended at ∆p∗ = 64.5 than at ∆p∗ = 63.5, but the transition

occurs when ∆p∗ > 64.5. However, when the resolution is increased such that h = D
162 , the

transition occurs when 63.5 < ∆p∗ < 64.5, in agreement with Lowe and Pedley’s results.

In contrast to the simulations described earlier in this section, the agreement with Lowe

and Pedley’s results is significantly better at h = D
162 than at h = D

82 . The resolution may

be insufficient to capture such a small collapsed section near the end of the wall when

h = D
42 , D = 10.5∆x or h = D

82 , D = 20.5∆x, since the width of the collapsed section is

0.15D. Alternatively, the improved agreement may be due to the reduction in the bending

stiffness. A similar situation occurs for the second transition, in which a tiny portion
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Figure 4.12: Comparison of the wall profiles near the wall’s right-hand end obtained
in the present study at TD

ηQ = 105 (the points marked by ’+’ and ’×’ for ∆p∗ = 63.5

and ∆p∗ = 64.5 respectively) with those obtained by Lowe and Pedley [11] and shown in
figure 4 of their study, at the same external pressures (the black solid and dashed lines
respectively). For each pressure, the red, blue and dark green points show the results
when D = 10.5∆x, h = D

42 , Re = 0.15, D = 20.5∆x, h = D
82 , Re = 0.15 and D = 40.5∆x,

h = D
162 , Re = 1.5 respectively. The wall undergoes a transition from a fully to partially

distended state for 63.5 < ∆p∗ < 64.5 for the higher resolution and in [11]. We have
τ = 0.56.

of the wall is distended at ∆p∗ = 103.5. The transition occurs for ∆p∗ < 103.5 when

h = D
42 , D = 10.5∆x and h = D

82 , D = 20.5∆x, but it occurs for 63.5 < ∆p∗ < 64.5 when

h = D
162 . While the wall profiles I obtain around these two transitions look significantly

different to Lowe and Pedley’s, even for the highest resolution, the difference is small

compared to the maximum displacement of the entire wall shown in figure 4.8.

The Starling resistor differs from blood vessels in at least two ways. First, the ends of the

elastic walls are fixed in a Starling resistor, but not in a blood vessel. Second, the elastic

forces on the wall are caused by the stretching of the wall in the same plane as the axis

of the length of the channel, whereas for blood flow through elastic vessels, the largest

contribution to the forces comes from the stretching of the wall in the circumferential
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Figure 4.13: Comparison of the wall profiles near the wall’s left-hand end obtained in
the present study at TD

ηQ = 105 (the points marked by ’+’ and ’×’ for ∆p∗ = 63.5 and

∆p∗ = 64.5 respectively) with those obtained by Lowe and Pedley [11] and shown in
figure 4 of their study, at the same external pressures (the black solid and dashed lines
respectively). For each pressure, the red, blue and dark green points show the results
when D = 10.5∆x, h = D

42 , Re = 0.15, D = 20.5∆x, h = D
82 , Re = 0.15 and D = 40.5∆x,

h = D
162 , Re = 1.5 respectively. The wall undergoes a transition from a partially to fully

collapsed state for 103.5 < ∆p∗ < 104.5 for the higher resolution and in [11]. We have
τ = 0.56.

direction, which is perpendicular to this plane, as explained in section 3.2, particularly for

axisymmetric vessels. Therefore, it is desirable to validate the method developed in this

chapter for a system with characteristics that are more similar to blood vessels, but the

method needs to be extended to three dimensions to accomplish this.

4.8 Conclusions

A model for time-dependent 2D simulations of fluid flow through elastic systems in a

general geometry has been developed in this chapter, which uses the full theory of linear

elasticity. The general scheme can be readily extended to 3D, but the selection of points
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on the wall to be used for the calculation of forces on the wall and the determination of the

points of intersection of the lattice vectors with the wall are more difficult to extend, as

discussed in section 4.5. The force at a point on the elastic wall depends on the derivatives

of the displacement field, which are estimated from the displacement of a point and its

neighbours for this model. In contrast, the model described in chapter 3 did not take into

account the displacement of the neighouring points when calculating the force at a point,

but it used the assumption that the blood vessels are axisymmetric instead. Therefore,

the model described in this chapter can be used for simulations of cerebral blood flow in

more complex geometries, including blood vessels involving branches or aneurysms. For

both models, the Poisson’s ratio can be chosen freely except that we cannot have Ω = 1
2 ,

whereas the model described by Buxton et al. [119] restricts the Poisson’s ratio to 1
4 .

The steady-state behaviour of the model has been validated by comparing the wall profiles

resulting from simulations of a 2D Starling resistor in which the fluid to those reported in

[11]. The agreement with their results improved as the ratio of the wall thickness, h, to

the channel width, D, was decreased, becoming very close at h = D
162 . This is because the

effect of the bending stiffness, which is ignored in [11], decreased as h
D decreased, since

the length of the elastic portion of the wall, Le = 10D, for all simulations in this chapter.

The spatial resolution became finer as h
D decreased, which might also have contributed to

the improved agreeement with [11]. The deformation of the wall increased as the bending

stiffness was reduced, as we would expect. Starling resistors have different characteristics

from blood vessels, as described in section 4.7.4, but they provide a useful system for which

to validate the model. Furthermore, the model needs to be extended to three dimensions

in order to validate it for systems that are more similar to blood vessels.

The dynamics of the model still need to be tested. While the simulations at h = D
162

initially converged to steady states that agreed closely with those in [11], the velocity

and wall displacement fields began to diverge towards the end of the simulation. The

convergence of the schemes proposed in this thesis is investigated further in section 5.10.

The computational cost of the method is likely to be greater than that for the method in

chapter 3 because the calculation of the acceleration at each point on the wall depends

on information from the neighbouring points instead of being independent of them, while

the equation of motion is also more complicated. However, since information is only

required from the nearest neighbours, the method is well suited to computation on parallel
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machines. The calculation of the acceleration of each point on the wall requires two

inversions of 10 × 10 or 27 × 27 matrices in 2D and 3D respectively. The computational

cost of this has been minimised by decomposing the matrix into blocks such that only

2× 2 or 3× 3 matrices must be inverted. The performance will be tested in chapter 5.



Chapter 5

Dynamic simulations of fluid flow

through elastic systems

In the previous chapter, a method for simulating time-dependent fluid flow through elastic

systems in a general geometry was developed and the steady state behaviour was validated.

In this chapter, the dynamics of the model for a 2D Starling resistor are studied, the model

is adapted in several ways in order to be able to deal with larger displacements of the wall

and lower wall densities, and its computational cost is evaluated. Section 5.1 contains

discussion of the limitations on the density of the wall, the improvement to the method

that allows lower densities to be used, and a simple test of the dynamics of the model in

2D. Section 5.2 explains how simulations were set up to attempt to compare the dynamics

with results from existing computational studies. Sections 5.3 to 5.6 describe attempts

at these comparisons and how the method was adapted to deal with the problems that

arose. Section 5.3 describes why it was necessary to change the method of calculating the

normalised cut distances, then describes this change. Section 5.4 describes how the points

on the elastic wall were initially evenly spaced and why this is important. In section 5.5,

I describe the remaining issues with the normalised cut distances and conclude that it is

necessary to create and destroy fluid nodes as the wall moves. I describe how this is done

in section 5.6. Results for simulations using this method are presented in section 5.7 and

its computational cost is evaluated in section 5.8. The simulation of fluid flow through

large elastic systems on multicore machines using the methods developed in 3 to 5 is

discussed in section 5.9. In section 5.10, changes are made to the method of calculating the

247
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velocity imposed on the fluid. In section 5.11, I describe how viscoelasticity was included.

Section 5.12 describes a comparison of the dynamics with a previous computational study.

Conclusions for this chapter are presented in section 5.13.

5.1 The density of the wall

In this section, the minimum temporal resolution that the simulation method can cope

with is determined and the limitations this places on the density of the wall are discussed.

The method is then improved by dividing each lattice-Boltzmann timestep into a number

of sub-timesteps which are used to integrate the equation of motion of the wall. Results

are presented for simulations of a Starling resistor at a variety of wall densities to test the

dynamics of the simulation when this improvement to the method is applied.

5.1.1 Limitations on the density of the wall caused by the temporal

resolution

When we simulate a piece of elastic material by integrating the equations of motion ex-

plicitly for a number of points on the wall (equation (4.53)), as described in section 4.2, we

expect many modes of oscillation. A full analysis of the normal modes is beyond the scope

of this work. However, we know that the modes of oscillation with the shortest periods

will be those for which neighbouring points move in opposite directions. In this section,

we consider the case where a point on the inner surface and its corresponding point on

the outer surface move in opposite directions and estimate the order of magnitude of the

period of this oscillation. For the purpose of this discussion, we fix the point on the outside

and model the point on the inside as a mass on a spring. The relevant mass is then of

order m = ρw∆xh, where ρw, ∆x and h are the density of the wall, the spacing between

adjacent pairs of points on the wall and its thickness respectively. The spring constant is

E∆x
h , where E is the Young’s modulus. Therefore the period of oscillation is of order Γ,

as given by equation (4.81).

Γ = 2πh

√
ρw
E
.

In a Starling resistor, we expect motion to be dominated by the mode of oscillation in

which the entire wall moves inwards or outwards together to form a standing wave with
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a wavelength of 2Le, where Le is the length of the elastic section of the wall. This is the

lowest frequency mode of oscillation and its frequency is given by equation (4.89), i.e.

Λ =
2π

ω0
= 2Le

√
ρwh

T
,

where T is the tension in the wall, provided that the mass of the wall is much greater than

that of the fluid below it, so that the inertia of the fluid is ignored. Since we integrate

the equations of motion of the wall explicitly in time as explained in chapter 4, section

4.2.2, the temporal resolution must be sufficient for the simulation to be stable. In this

section, we determine whether the minimum temporal resolution required is determined

by the shortest or the dominant mode of oscillation.

I carried out six computations 1 of the elastic section of the wall of a Starling resistor,

i.e. simulations that did not include the fluid. Most of the parameters are the same

as in section 4.7, i.e. the thickness of the wall is 0.25∆x, its initial strain is given by

εxx = 0.01, εyy = −0.005, εxy = 0 and the Poisson ratio, Ω = 0.5. A constant pressure

gradient was applied on the inside of the wall, such that the internal pressure was given

by p = pe + 4.8× 10−7(Lu +Le−x)ρf
∆x
∆t2

, where ρf is a reference density. It was enforced

through the boundary condition on the stress tensor in the wall, given by equation (4.55).

The tension was T = 0.4ρf
∆x3

∆t2
. The results are shown in table 5.1. I ran the simulations

for approximately four times the expected period of oscillation of the entire wall, Λ.

If a fluid with density ρf and dynamic viscosity η = 0.02ρf
∆x2

∆t were present, the pressure

gradient would drive a Poiseuille flow atRe = 0.15 in a channel of constant withD = 10∆x,

which approximately match the parameters used section 4.7. The value of TDηQ = 105, where

Q is the flow rate, would also match that used in section 4.7.

The amplitudes of the oscillations described earlier in this section were then examined

as follows. The change in separation in the y-direction between each point on the inner

surface of the wall and its corresponding point on the outer surface since the beginning of

the simulation was calculated at each timestep. The change in this separation is similar,

but not identical to, the change in thickness of the wall. A discrete Fast Fourier Transform

1The code for these simulations and instructions for its use may be downloaded
from http://ccs.chem.ucl.ac.uk/∼gary as a zip archive and will be in the folder “Elas-
tic complex geometry rev 142”. For these simulations, INCOMPRESS and INC FLUID were not
defined at compile time.
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Le/∆x ρw/ρf Γ/∆t Γo/∆t Λ/∆t

5 63326 250 105.3 3979
5 15831 125 52.63 1989
8 63326 250 104.4 6366
8 15831 125 53.33 3183

10 63326 250 108.1 7958
10 15831 125 54.05 3979

Table 5.1: Parameters of computations of the elastic section of the wall of a Starling
resistor for which a constant pressure gradient is applied at the lower surface. Le is the
length of the elastic wall and Λ is the expected period of oscillation of the entire wall.
Γ is the expected period of oscillation of the separation between each point on the inner
surface and its neighbour on the outer surface. Γo is the period of the dominant frequency
of oscillation of the y-component of this separation, which was the same for every pair of

points for each simualation.

(FFT) of the change in separation was then taken with respect to time for each pair of

points for 0 ≤ t < Λr, Λr ≤ t < 2Λr, 2Λr ≤ t < 3Λr and 3Λr ≤ t < 4Λr using the

function fft from the NumPy library for Python [128], where Λr is Λ rounded to two

significant figures. This results in a complex amplitude for each frequency in the FFT.

Graphs 5.1 to 5.3 show the modulus of the complex amplitude of the dominant frequency

for the simulations described above, |Ak|max, for each pair of points on the wall for the

four periods of time plotted against the initial x-ordinate of each pair of points. The range

in frequencies for the FFT is given by

−0.5

∆t
≤ ξ < 0.5

∆t
. (5.1)

The separation between adjacent frequencies is

∆ξ =
1

Λr
. (5.2)

The Fourier transform is given by

Ak =

Λr/∆t−1∑
t/∆t=0

at exp

(
−2πi

kt

Λr

)
k = − Λr

2∆t
,− Λr

2∆t
+ 1, . . . ,

Λr −∆t

2∆t
, (5.3)

where k = ξΛr and t is the number of timesteps since the start of the period over which

we take the FFT, at is the change in separation between the points at time t and Ak is

the complex amplitude for frequency ξ. The reciprocal of the dominant frequency for each

simulation is given in table 5.1. For each simulation, this frequency was the same for every
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pair of points, as we would expect. This period is shorter than Γ, probably because this

estimate of the period of oscillation of the separation between adjacent points on the wall

is highly simplified: it does not treat the modes of oscillation properly or take into account

the Poisson ratio.

Figures 5.1 to 5.3 show that, for Γ = 125∆t, for all three lengths of the elastic wall, and

for every pair of points apart from the fixed ones at the end of the wall, |Ak|max became

significantly larger for each successive period, Λr, over which it was measured, showing

that the simulation was unstable. For Γ = 250∆t, |Ak|max fluctuated but did not increase

over time. For example, for Le = 10∆x, the value |Ak|max for some pairs of points on the

wall was largest during the fourth period, but this was not the case for other points. These

results show that the minimum temporal resolution is determined by the shortest modes

of oscillation and is independent of the period of the longest modes of oscillation and

that Γ = 250∆t provides adequate temporal resolution for a wall thickness, h = 0.25∆x.

Therefore, Γ = 250∆t was chosen for all simulations in this section and section 4.7.

The choice of Γ = 250∆t required ρw = 4.0 × 106ρf , 2.0 × 106ρf and 106ρf in chapter

4, for an initial channel width D = 10∆x, 20∆x and 40∆x respectively, whereas ideally

we want the density of the wall to be of the same order of magnitude or less than that

of the fluid because, for many of the existing computations of flow in a Starling resistor

with which we could compare simulation results [11–13, 15, 19], the ratio of the mass of

the elastic section of the wall to that of the fluid below it, h
D

(
ρw
ρf

)
, is much less than

one. For simulations of blood flow, the densities of the wall and the fluid should be equal

as explained in section 3.7. This is not important for the steady state, but it would be

important for a comparison of the dynamics. However, the temporal resolution of the

method for simulating the elastic wall would then be insufficient for the simulations to be

stable.

5.1.2 Subdivision of the lattice-Boltzmann timesteps

The situation has been improved as follows. The lattice-Boltzmann timestep is carried

out first, then the equation of motion of the elastic wall is integrated using a number, Ψ,
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Figure 5.1: Modulus of the amplitude of the dominant frequency of oscillation of the
separation in the y-direction between each point on the lower surface at initial position x
and its corresponding point on the upper surface, for simulations of the elastic sections
of the walls of two Starling resistors. The elastic sections have length Le = 5∆x and
thickness 0.25∆x. The pressure applied on the lower surface is given by p = pe + 4.8 ×
10−7(Le − d)ρf

∆x
∆t2 , where ρf is a reference density, ∆t is the timestep and pe is the

pressure applied on the upper surface. The tension is T = 0.4ρf
∆x3

∆t2 . The graph on the
left shows results for ρw/ρf = 63326, which gives rise to Γ = 250∆t, Λr = 4000∆t, while
the graph on the right has ρw/ρf = 15831∆t, therefore Γ = 125∆t, Λr = 2000∆t, where
Λr is the period of the mode of oscillation in which the wall forms a standing wave with

wavelength 2Le, which is given by equation (4.89), rounded to two significant figures.

of shorter sub-timesteps 2. Therefore, ∆t, the length of the timestep, is replaced with ∆t
Ψ

in equations (4.59) and (4.60). At each sub-timestep, the stress in the fluid is estimated

by linear interpolation between the stress at times t0 and t0 + ∆t, where t0 is the time at

the start of the lattice-Boltzmann timestep. The stress at the inner surface of the wall is

then extrapolated as explained in section 4.4.

Since we calculate the acceleration of the wall explicitly, both the walls and the fluid oscil-

late during each simulation, as explained in section 3.5.2. If all the simulation parameters

are constant, the simulation converges to a steady state when the oscillations die out due

to the viscosity of the fluid. The subdivision of each timestep involves a change to the

2The code for this and instructions for its use may be downloaded from http://ccs.chem.ucl.ac.uk/∼gary
as a zip archive and will be in the folder “Elastic complex geometry rev 142” when the archive has been
unpacked. For the tests described in this section, INCOMPRESS and INC FLUID were not defined at
compile time.
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Figure 5.2: Modulus of the amplitude of the dominant frequency of oscillation of the
separation in the y-direction between each point on the lower surface at initial position x
and its corresponding point on the upper surface, for simulations of the elastic sections
of the walls of two Starling resistors. The elastic sections have length Le = 8∆x and
thickness 0.25∆x. The pressure applied on the lower surface is given by p = pe + 4.8 ×
10−7(Le − d)ρf

∆x
∆t2 , where ρf is a reference density, ∆t is the timestep and pe is the

pressure applied on the upper surface. The tension is T = 0.4ρf
∆x3

∆t2 . The graph on the
left shows results for ρw/ρf = 63326, which gives rise to Γ = 250∆t, Λr = 6400∆t, while
the graph on the right has ρw/ρf = 15831∆t, therefore Γ = 125∆t, Λr = 3200∆t, where
Λr is the period of the mode of oscillation in which the wall forms a standing wave with

wavelength 2Le, which is given by equation (4.89), rounded to two significant figures.

check on the convergence of the simulation described in section 4.7.3. It is still checked

once per lattice-Boltzmann timestep, but the L1 norm of the wall displacement from its

initial position is now calculated for each sub-timestep. If simulations are performed with

identical parameters apart from Ψ, the L1 norm for the wall displacement at a given time

is expected to be smaller for the simulations with a larger value of Ψ, but the L1 norm for

the velocity of the fluid would be the same. The L1 norm of the velocity field is given in

equation (3.15), i.e.

L∑
x=0

R0∑
y=−R0

|v(x, y, t)− v(x, y, t− 1)|

L∑
x=0

R0∑
y=−R0

|v(x, y, t)|
< tol.
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Figure 5.3: Modulus of the amplitude of the dominant frequency of oscillation of the
separation in the y-direction between each point on the lower surface at initial position x
and its corresponding point on the upper surface, for simulations of the elastic sections
of the walls of two Starling resistors. The elastic sections have length Le = 10∆x and
thickness 0.25∆x. The pressure applied on the lower surface is given by p = pe + 4.8 ×
10−7(Le − d)ρf

∆x
∆t2 , where ρf is a reference density, ∆t is the timestep and pe is the

pressure applied on the upper surface. The tension is T = 0.4ρf
∆x3

∆t2 . The graph on the
left shows results for ρw/ρf = 63326, which gives rise to Γ = 250∆t, Λr = 8000∆t, while
the graph on the right has ρw/ρf = 15831∆t, therefore Γ = 125∆t, Λr = 4000∆t, where
Λr is the period of the mode of oscillation in which the wall forms a standing wave with

wavelength 2Le, which is given by equation (4.89), rounded to two significant figures.

The tolerance is set to 2.0× 10−8 for all simulations in this section for both the fluid and

the wall displacement.

The boundary conditions on the fluid are less straightforward. If the velocity of the fluid

next to the wall is set to the instantaneous velocity of the wall, we would obtain spurious

results for the fluid because its temporal resolution would be insufficient to resolve the

results of the modes of oscillation of the wall with very short periods. Furthermore, the

fluid behaviour we are interested in happens on the timescale of the oscillation of the

entire wall. One possible approach to finding the long-term velocity of the wall at time t

is to find the average velocity between times t−∆t and t, i.e. v = (u(t)− u(t− dt))/∆t,

but this does not take into account the long-term acceleration of the wall. We apply the
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following equation of uniformly accelerated motion:

u(t0)− u(t1) = (t1 − t0)u′(t1)− 0.5(t1 − t0)2u′′, (5.4)

where t0 and t1 are two times. If we first substitute in t0 = t, t1 = t−∆t, then substitute

t0 = t, t1 = t − 2∆t to obtain a second equation, then eliminate the acceleration, u′′, we

find that the long-term velocity of the wall is:

v = 1.5u(t)− 2u(t−∆t) + 0.5u(t− 2∆t) (5.5)

We can therefore reduce the density and we only need to satisfy the criterion

ΓΨ ≥ 250∆t, (5.6)

provided Λ remains greater than Le/cs so that the slow-flow condition described in section

2.6 is satisfied, as required for accurate lattice-Boltzmann simulations. That is, the char-

acteristic timescale over which the flow fields change, which is equal to Λ, is greater than

the advection time for information to travel a distance Le through the fluid. Therefore,

from equation (4.89) we have

2

√
ρwh

T
>

1

cs
, (5.7)

where cs = ∆x
∆t
√

3
from equation (2.90). For the parameters used in this chapter and the

last, with D = 10∆x, Re = 0.15 and h = 0.25∆x, the density can be reduced to ρw = 0.4ρf

and this minimum density is directly proportional to Re.

I repeated the simulations described in table 5.1 with Γ = 25∆t but used a timestep of

∆t′ = 0.1∆t. For each simulation, the displacement of every point on the wall at time t

was equal to the displacement for the corresponding simulation with Γ = 250∆t at time

10t, for every value of t that is an integer multiple of ∆t, correct to three significant figures,

which showed that the timesteps had been subdivided correctly.
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5.1.3 Testing the dynamics of a Starling resistor with subdivision of the

timesteps.

Some simulations of a 2D Starling resistor including the fluid 3 were carried out with

various wall densities to verify that they are stable provided the density is chosen such

that Λ > Le
cs

and ΓΨ ≥ 250∆t and to test the dynamics in a simple way. Since the mass

of the wall was much greater than the mass of the fluid below it for these simulations, i.e.

ρwh � ρfD, I expected the wall to perform oscillations with period Λ that are damped

by the viscosity of the fluid.

These were set up as described in section 4.7. The lengths of the first rigid section, the

elastic section and the second rigid section of the wall were Lu = 5D, Le = 10D and

Ld = 30D respectively. The external pressure, pe, was given by D2(pe−pd)
ρfluidQ2 = 1.40133,

where pd is the pressure at the outlet. These parameters match those used by Jensen and

Heil [12]. The spatial resolution was chosen such that D = 10.4∆x, therefore the wall lay

a distance of 0.2∆x from the nearest row of latice points. Since Λ > Le
cs

is required, as

explained in section 5.1.2, simulations are expected to be stable if Λ > 175∆t. The wall

thickness, h = 0.25∆x. Its Poisson ratio and initial strain were the same as in section 4.7.

The inlet pressure, pu, was calculated for Poiseuille flow at Re = 30 as described in that

section. The computations were carried out for a time t ≈ 4.5Λ.

The displacement of the point that began at the centre of the inner surface of the wall over

time for the computation with ρw = 3896.96803ρf , corresponding to Λ = 331, Γ = 0.25,

with Ψ = 1000, is shown in graph 5.4. The simulation is stable and the amplitude of the

motion of the wall decreases over time due to the viscosity of the fluid, as we expect. The

results for all simulations with Λ > 175, and ΓΨ = 250 were qualitatively similar, except

that the effect of the damping was insignificant at higher values of ρw. This is because the

mass of the elastic portion of the wall was greater but the damping forces for a given set

velocity profile of the wall were the same. The simulations with Λ < 175 were unstable,

i.e. the amplitude of oscillation of the wall increased over time, because the wall profile

changes on a scale faster than the lattice-Boltzmann method can transfer the information

3The code for these simulations and instructions for its use may be downloaded
from http://ccs.chem.ucl.ac.uk/∼gary as a zip archive and will be in the folder “Elas-
tic complex geometry rev 142”. For these simulations, INCOMPRESS and INC FLUID were defined at
compile time.
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Figure 5.4: y-displacement of the central point on the inner surface of the elastic wall
in a simulation of a Starling resistor with Lu = 5D, Le = 10D and Ld = 30D, D =

5.2∆x, h = 0.25∆x, vmax = 0.03∆x
∆t , Re = 30.0, D2(pe−pd)

ρfluidQ2 = 1.40133, Ψ = 1000 and

ρw = 3896.968603ρf , corresponding to Γ = 0.25∆t, Λ = 331∆t.

about the flow fields from one end of it to the other. An example of this is shown in graph

5.5.

The average period of oscillation of each simulation over the first four periods of oscillation

was measured from graphs of the wall displacement over time. The densities of the wall, the

observed periods of oscillation and the expected ones, Λ, as well as whether the simulation

was stable, are given in table 5.2 for the simulations with ΓΨ = 250. The periods agree

fairly closely, which shows that the dominant motion is a standing wave described in

section 5.1.1 and its period is controlled by the inertia of the wall, which is expected since

for the first five entries in the table, the ratio of the mass of the elastic section wall to that

of the fluid below it, h
D

(
ρw
ρf

)
, is more than 25. The periods are all slightly shorter than

expected by approximately the same factor in these simulations, but the period appears

to be directly proportional to the density of the wall, as expected. This is probably

because additional forces are needed to deform the wall owing to the bending stiffness or

the expansion or compression of the wall in the direction of its normal due to the nonzero

pressures on either side. On the other hand, we would expect the damping from the fluid

to increase the period of oscillation, but this effect may be much smaller than that of the
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Figure 5.5: y-displacement of the central point on the inner surface of the elastic wall in
a simulation of a Starling resistor with Lu = 5D, Le = 10D and Ld = 30D, D = 5.2∆x,

h = 0.25∆x, vmax = 0.03∆x
∆t , Re = 30.0, D2(pe−pd)

ρfluidQ2 = 1.40133, Ψ = 4138 and ρw =

227.5830679ρf , corresponding to Γ = 0.060∆t, Λ = 80∆t. The simulation is unstable
because Λ is shorter than the advection time Le

cs
for information to travel a distance Le

through the fluid.

expansion or compression of the wall because the mass of the elastic section of the wall is

much greater than the mass of the fluid below it.

While the simulation with ρw = 3.56363503× 109ρf , corresponding to Λ = 3.31× 105∆t,

Γ = 250∆t with Ψ = 1 is stable, a simulation with ρw = 9.742421508 × 108ρf , corre-

sponding to Λ = 1.655 × 105∆t, Γ = 125∆t with Ψ = 1 is unstable. This confirms that

it is necessary to sub-divide each lattice-Boltzmann timestep into Ψ sub-timesteps for the

elastic wall such that ΓΨ ≥ 250∆t for a simulation of a Starling resistor to be stable.

The results in this section show that the density of the wall can be reduced provided

that Λ > Le
cs

and ΓΨ > 250∆t. Simple tests of the dynamics have shown that the model

behaves correctly.
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ρw/ρf Λ/∆t Observed period / ∆t Γ/∆t Ψ stability

3.89696803× 109 331000 308000 2.5× 102 1 stable
3.89696803× 107 33100 30800 2.5× 101 10 stable
3.89696803× 105 3310 3080 2.5 100 stable
3.89696803× 103 331 305 2.5× 10−1 1000 stable
1.08902054× 103 175 157 1.32× 10−1 1892 stable
2.275830679× 102 80 74 6.04× 10−2 4138 unstable

Table 5.2: Comparison of observed and expected periods of oscillation of points at
the centre of the elastic wall for simulations with L = 10D, h = 0.024D, vmax = 0.03,

Re = 30.0, τ = 0.53, ∆p′ = 1.40133, ΓΨ = 250∆t.

5.2 Setting up a comparison of the dynamics of the Starling

resistor simulation with previous computational studies

In this section, I describe how 2D simulations of Starling resistors were set up to attempt

to validate the dynamics of the model in this study by comparing the results with com-

putations in previous studies under the same parameters. Since the simulation method is

best suited to wall movements that are small compared with the channel width, I searched

for results that satisfied this criterion and chose to use those shown in figure 4 of [15],

for which the wall moves by less than 0.1D. However, that simulation was started from

a steady state solution for a slightly different wall tension, and in that steady state so-

lution, the wall deformation was large. In order to keep the deformation during my own

simulations significantly smaller than the channel width, it was necessary to begin the

simulations from a state expected to be close to the steady state, as described in the rest

of this section.

The simulations described in sections 5.3 to 5.5 were set up as described in section 4.7,

except that the wall shape was initialised to correspond approximately with one of the

steady solutions given in [13] or [19], the lattice site types were set according to this

new wall shape and the wall was held in its initial position until the fluid had converged

according to the criterion expressed by equation (3.15). The initialisation of the positions

of the wall points is described in the rest of this section.

The coordinates of eleven points were estimated by measuring from the graphs in [13] or

[19]. The inner surface of the wall consisted of the straight lines joining these points. The

sum of the lengths of these lines, L, was compared to the natural length of the elastic wall
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to estimate the tangential strain by εtt = L−L0
L0

. The thickness of the wall was estimated

by assuming that the normal strain, εnn = −Ωεtt, so that h = h0(1 + εnn). The outer

surface of the wall was constructed by shifting all the line segments of the inner surface

by hn, where n is the outward normal to the surface, except for the segments at the ends

of the wall. The line segments at the ends of the outer surface were those joining the

coordinates (0, h) to (Le, h) measured relative to the bottom left corner of the wall. An

example of the wall shape in which we have five points on the inner surface is shown in

figure 5.6. If a pair of adjacent line segments of the outer surface meet at a separation

∆r from where the corresponding line segments of the inner surface meet and these line

segments have normals nAB and nBC , then we must have

∆r ·nAB = ∆r ·nBC = h. (5.8)

Therefore

∆r =
h

2
(nAB + nBC). (5.9)

For each lattice site, the nearest point on the inner surface was sought starting with the line

segment for which x′′start ≤ xsite ≤ x′′end, where x′′start and x′′end are the x ordinates of the left

and right ends of the line segment and xsite is that of the site. The nearest point on the line

passing through the points at the ends of this line segment, r′′start and r′′end, is given by

r′′start+l(r
′′
end−r′′start), where l is found by solving (r′′start−rsite+l(r

′′
end−rstart)) ·n = 0,

where n is its normal. If l < 0 this point was to the left of the start of the line segment

and hence the closest point on the inner surface lay on one of the other line segments. The

procedure above was therefore repeated with successive line segments to the left of the

current one until l > 0. If l > 1 for the initial line segment, the procedure was repeated

with successive line segments to the right of the current one until l < 1. The cases for the

line segment AB with 0 < l < 1, l < 0 and l > 1 are shown in figure 5.6. If a pair of

line segments meet such that the wall is convex, we may have l > 1 for one segment and

l < 0 for the other. In this case, the point on the inner surface is placed at the corner

between the two segments. An example of this is shown in the diagram, where point B

is the nearest point to the lattice site in the region bounded by the dashed lines starting

from point B.

For each point at the corner between two line segments on the inner surface of the wall,
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its corresponding point on the outer surface was placed at the corner between the two

corresponding line segments of the outer surface. For each point that lies on a line segment

on the inner surface but not at a corner, its outer point is placed at a separation of nh

from it, where n is the normal to the line segment. This usually places the point on the

corresponding line segment on the outer surface, but it has a flaw: a lattice site’s nearest

point on the outer surface may lie at one of the outer surface’s corners even if its nearest

point on the inner surface does not lie on one of the inner surfaces corners. In figure 5.6,

this problem will occur if we have a point on the inner surface between point B and one

of the arrows joining the inner and outer surfaces. The position of the point on the outer

wall is shown by a diamond. However, the flaw in the algorithm is not relevant to the

findings described in sections 5.3 to 5.5.

When the points had been placed on the wall, it was assumed that the x-ordinates of the

points on the inner surface of the wall before it had been deformed by the stress from the

fluid were the same as those afterwards, i.e. x′′ = x′. For each point on the outer surface

of the wall, it was assumed that x′ was equal to that for the corresponding point on the

inner surface. The coordinates of the wall before stretching were given by equation (4.74),

i.e. (x, y) = ( x′

1+εxx
, y′

1+εyy
).

5.3 Change to the method for calculation of the normalised

cut distances

In this section, I describe a simulation that was carried out starting from a nonflat wall 4

and the reason why it was necessary to change the method of calculating the normalised

cut distances.

I decided to begin with a steady state solution given in figure 4 of [13] instead of figure 4

of [15] because the former has Re = 1.5 instead of Re = 450 5, because their resulting flow

fields were more straightforward in that simulation. The physical parameters are given

4The code for this simulation and instructions for its use may be downloaded
from http://ccs.chem.ucl.ac.uk/∼gary as a zip archive and will be in the folder “Elas-
tic complex geometry rev 176” when the archive has been unpacked. For this simulation, INCOMPRESS,
INC FLUID and MOVE WALL were defined at compile time.

5The Reynolds numbers for these simulations are quoted as 1 and 300 in Luo and Pedley’s publications
because they calculate them using the average velocity of fluid flow at the inlet whereas I calculate them
using the maximum velocity.
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Figure 5.6: Example of the simulation setup when we begin with a nonflat wall. In
this exampe, the inner wall is divided into four segments, separated by vertical lines. The
squares show the points we place on the elastic wall, while the circles represent some of
the lattice sites. For each lattice site, the value of lAB shows where the straight line that
includes segment AB comes closest to the lattice site. If lAB < 0 or lAB > 1, the line
comes closest beyond the ends of the line segment AB. The dotted lines join each point
on the inner surface to its corresponding point on the outer surface. The thickness of the
wall is h and the normal is n. Point B is the nearest point to the lattice site in the region
bounded by the dashed lines. The diamond shows the point corresonding to that on the
inner surface between corners B and C is not on the outer wall since the algorithm that

places the points is slightly flawed.

in section 4.6, i.e. η = 10−3Nm−1s, ρf = 103kgm−2, D = 10−2m, Lelastic = 5 × 10−2m,

pe−pd = 0.93Nm−1, T = T0/β, where T0 = 1.610245N. I used β = 15, which is the lowest

value in figure 4 of [13], since the simulations at high values of β become more challenging

[13]. The lengths of the upstream and downstream rigid section and the elastic section

were given by Lu = 2D, Ld = 7D and Le = 5D respectively. The strain and Poisson ratio

were given by εxx = 0.01, εyy = −0.005 and Ω = 0.5, the same as in section 4.7. The lattice

resolution was ∆x = D
10 , and the thickness was D

40 . The lattice timestep is ∆t = 0.02s,

leading to τ = 0.56 from equation (2.128). The density of the wall is ρw = 4000ρf , which

leads to Γ = 0.758∆t (from equation (4.81). For each lattice-Boltzmann timesteps, 500

timesteps were used for the elastic wall, i.e. Ψ = 500 which satisfies the requirement that
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ΓΨ ≥ 250. The parameters also satisfy the requirement that the period of oscillation of

the wall, Λ > L
cs

. The initial positions of the points at the ends of the line segments that

form the initial inner surface of the wall were measured from figure 4(a) of [13], They are

given in table 5.3 and plotted in figure 5.7.

x′′

D
y′′

D

−5.8824× 10−11 0.0000
4.7059× 10−1 −9.0909× 10−2

1.0000 −1.8182× 10−1

1.5294 −2.3636× 10−1

2.0588 −2.7273× 10−1

2.5000 −2.7273× 10−1

3.0294 −2.5455× 10−1

3.4706 −2.0000× 10−1

4.0000 −1.6364× 10−1

4.5294 −7.2727× 10−2

5.0000 0.0000

Table 5.3: Positions of the ends of the line segements that form the inner surface of the
elastic wall measured relative to its bottom left corner for the simulations started close to
the steady state found in figure 4 of [13]. The inner surface is formed by the line segments
joining these points. The double prime denotes the positions of the points after the wall
has been stretched along the x-direction, then deformed due to the internal and external

stress.

The configuration of lattice sites surrounding the one at (1.1D,−0.2D) is shown in figure

5.8. The point belonging to this lattice site is point B and its neighbours are points A

and C. At the beginning of the simulation, these points are collinear with coordinates

(1.0019D,−0.18201D), (1.1008D,−0.19220D) and (1.1110D,−0.19326D), so we have δ =

0.7636 for lattice direction 1, i.e. (1, 0). During the simulation, these points move so that

they are not collinear, and therefore the cut distances are calculated by approximating

the inner surface of the wall as a circle passing through a point and its neighbours, as

explained in chapter 4, section 4.4. In this simulation, the wall was allowed to move at

time t = 7364∆t and the simulation failed at time t = 7367∆t when the lattice vector (1, 0)

no longer intersected the circle between the three points, which were then at coordinates

(1.0045D,−0.17986D), (1.1032D,−0.19140D) and (1.1134D,−0.19269D). This lattice

vector would have intersected the line joining the last two points if they were joined with a

straight line. Furthermore, if we have a point at or near a corner between two line segments

and two neighbouring points on those line segments, drawing a circle between the three

points artificially concentrates the curvature at the corners if the points are close together,

as shown in figure 5.9. Lastly, the circle passing through a point and its neighbours will
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Figure 5.7: Initial inner surface of the elastic wall for the simulations started close to
the steady state found in figure 4 of [13]. The double prime denotes the coordinates of
the points after the wall has been stretched along the x-direction, then deformed due to

the internal and external stress.

not generally be consistent with the circle passing through one of the neighbours and its

own neighbouring points.

In order to solve these problems, the normalised cut distances were estimated as the

distance along the lattice vector to its point of intersection with one of the two straight

lines that join a point on the inner surface of the wall to its neighbours. The lattice vector

may intersect the wall beyond the neighbours, in which case we are assuming that the

tangent to the wall does not change, which is reasonable if the radius of curvature of the

wall is much greater than the spacing between the points on the wall. The method for

calculating the normal at a point on the wall remained the same.

5.4 Initial spacing between the points on the elastic wall

In this section, I discuss why it is necessary to space the points on the elastic wall moder-

ately evenly and how the simulation method was adapted to deal with this issue.
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Figure 5.8: Configuration of lattice sites and surrounding the one at (1.1D,−0.2D). The
filled circles represent fluid sites, while the open circles represent solid sites. Point B on
the inner surface of the wall belongs to the aforementioned lattice site and its neighbours
are A and C. The open and filled squares represent the points’ positions when the wall
began to move and when the distance from the lattice site to the wall along the vector
(1, 0) became undefined. The movements of the three points have been exaggerated for

clarity.

Figure 5.9: If an elastic wall is represented by line segments, one point is placed at
the corner between them and its neighbouring points are placed on them, the radius of
the circle passing through the three points is smaller if the neighbours are closer to the
original point. It is therefore inappropriate to approximate the surface between a point

and its neighbours as a circle.



Chapter 5. Dynamic simulations of fluid flow through elastic systems 266

The simulation was carried out as described in the last section 6. The wall was allowed to

move after time t = 7364∆t. The results at this time, t = 7371.2∆t and t = 7371.42∆t

are shown in figure 5.10. The wall does not move inwards or outwards significantly but

its shape becomes smoother, which is exactly what we would expect if the steady state

solution agrees with the one in figure 4 of [13]. However, point P moved 16 times further

during the last 0.22∆t than it did during the 7.2∆t since the wall began to move, reaching a

final y-ordinate of −0.16353D = −1.6353∆x, which shows that it was accelerating rapidly

away from its equilibrium position, i.e. the simulation was unstable.

The instability occurs because the aforementioned point was initially much closer to one

of its neighbours on the inner surface than the other; the initial coordinates of the

point and its two neighbours on the inner surface were (4.9849D,−2.3326 × 10−3D),

(4.8872D,−1.7426×10−2D) and (5D, 0) respectively. The algorithm for placing the points,

described in section 5.2, was modified to ensure that adjacent points on the inner surface

were separated by at least 0.5∆x, as described in the next paragraph. This prevented the

problem described in this section. The wall profiles at t = 7364∆t and t = 7375∆t are

plotted in figure 5.11 7.

If the wall slopes gently such that it is almost parallel to a row of lattice sites and it

crosses that row, the wall’s normal will be almost parallel with a lattice vector. Since the

separation between a lattice site and its point on the wall is perpendicular to the wall,

as explained in section 5.2, the point belonging to the last fluid site in the row that the

wall crosses will be very close to this fluid site and to the point belonging to the fluid site

below. In figure 5.12, A is the former lattice site and B is the latter. The point on the wall

that became unstable in the simulation described earlier belonged to a lattice site of type

B at (49.849∆x,−2.3326 × 10−2∆x) while site A was at (50∆x, 0). The gradient of the

wall was 0.1545. To remedy this situation, each point on the wall that lay less than 0.5∆x

from a lattice site belonging to a neighbouring point was moved along its line segment

6The code for this simulation and instructions for its use may be downloaded
from http://ccs.chem.ucl.ac.uk/∼gary as a zip archive and will be in the folder “Elas-
tic complex geometry rev 176” when the archive has been unpacked. For this simulation, INCOMPRESS,
INC FLUID and MOVE WALL were defined at compile time.

7The code for this simulation and instructions for its use may be downloaded
from http://ccs.chem.ucl.ac.uk/∼gary as a zip archive and will be in the folder “Elas-
tic complex geometry rev 181”. For this simulation, INCOMPRESS, INC FLUID and MOVE WALL
were defined at compile time.



Chapter 5. Dynamic simulations of fluid flow through elastic systems 267

Point P at t = 7371.2Δt

Point P at t = 7371.42Δt

Figure 5.10: Profile of the inner surface of the elastic wall in a Starling resistor for which
the initial state is expected to be close to the steady state. The physical parameters
are Re = 1.5, η = 10−3Nm−1s, ρ = 103kgm−2, D = 10−2m, Lelastic = 5 × 10−2m,
pe − pd = 0.93Nm−1, T = T0/β, where T0 = 1.610245N and β = 15. The red line shows
the wall’s position at the time that it began to move, t = 7364∆t, while the black dashed
and dotted lines show its position at t = 7371.2∆t and t = 7371.42∆t. Point P on the
wall accelerates rapdily away from its equilibrium position, because it was initially much

closer to one of its neighbours on the inner surface than the other.

until the length of projection of (rpoint− rA) along the line’s tangent reached 0.5∆x, since

we expect the spacing of points on the wall to be of order ∆x.

5.5 Causes and effects of negative or undefined normalised

cut distances

In this section, remaining issues with the normalised cut distances are discussed, including

the effect of a negative normalised cut distance and cases in which they are undefined.

The lattice-Boltzmann computation for the Starling simulation described in the previous

section became unstable at t = 7376∆t for the lattice site at (35∆x,−2∆x), i.e. some of
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Figure 5.11: Simulation of the same Starling resistor as in figure 5.10, but with more
evenly spaced initial points. The wall positions at t = 7364∆t and t = 7375∆t are

represented by the red and black lines respectively.

B

A

Figure 5.12: Configuration of lattice sites and their points on an elastic segment of the
inner surface of the wall if the wall slope is gentle. The filled and open circles represent
fluid and solid sites respectively. For each site adjacent to the wall, one point is placed
on its inner surface. The separation between lattice sites and their points are shown by
arrows. The points belonging to lattice sites A and B are much closer together than the

other points.
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the equilibrium distributions were negative. This site is an edge site, so the nonequilibrium

extrapolation method described in chapter 3, section 2.9.5 was applied to determine the

distribution functions for the lattice directions pointing away from its solid neighbours.

This involved constructing the distribution functions at the solid neighbours from estimates

of their velocities, densities and nonequilibrium distributions at time t = 7375∆t. The

velocities are given by equation (2.204), i.e. vb + (δ − 1)vf +
(

1−δ
1+δ

)
(2vb(t) + (δ − 1)vff )

for δ < 0.75, where vb = v(xb, t), vf = v(xf , t) etc. and f represents the edge site, w

represents a neighbouring solid site, ff represents the neighbouring fluid site opposite the

solid neighbour, point b is the point of intersection between the lattice vector xw − xf

and the wall and δ =
(xb−xf ) · (xw−xf )

|xw−xf |2
, from equation (2.158). For the site at (35,−2)

at t = 7375∆t, the x-components of vf , vff and vb are −0.08∆x
∆t , 0.11∆x

∆t and −0.04∆x
∆t

respectively and δ = −1.19 when the solid neighbour at (34,−2) is considered. Therefore,

vw = 3.81, which is much greater than the speed of sound cs = 1√
3
, so the lattice-

Boltzmann simulation breaks down, as explained in section 2.5. This occurs despite the

fact that vf , vff and vb were much less than cs and shows that negative value of δ may

cause the simulation to become unstable. From equation (2.204), we see that vw → ±∞ in

the limit as δ → −1. Figure 5.11 shows that the lattice site at (35,−2) was inside the wall

at time t = 7364∆t but outside at t = 7375∆t, which caused the value of δ to be negative.

The simulation shows that a small movement of the wall inwards can cause instability if

it crosses a lattice site and we do not change it into a solid site.

One could allow for a certain amount of inward motion of the wall by setting lattice sites

that lie within a certain distance of the wall to be solid in addition to those that lie outside.

However, small outward movements of the wall may also cause problems if it crosses a row

of lattice sites. For example, in figure 5.13, the wall becomes convex, so the lattice vector

from site A in direction (−1, 0) no longer intersects the two line segments coming from

point P , which belongs to lattice site A, so its value of δ for this direction is undefined.

To solve this problem, it is necessary to find the true point of intersection of the lattice

vector with the wall, by searching through all the line segments of which the wall’s inner

surface is composed instead of extending the line segments coming from point P until they

intersect the lattice vector, as explained in section 5.3. This would only solve the problem

if the wall crosses the row of lattice sites again. For simulations of systems other than

a Starling resistor oriented in the x-direction, this may not be the case. Therefore, it is

necessary to change the lattice site types from fluid to solid or vice versa as the wall moves.
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P

A
x
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Figure 5.13: Configuration of lattice sites around a region of the inner surface of the
wall that is initially concave (the dashed line), but becomes convex (the solid line). The
filled and open circles represent fluid and solid sites respectively. Point P belongs to site
A. The distances along the lattice vectors shown by arrows are required to impose the
boundary conditions at site A. The distance along vector (−1, 0) becomes undefined as

the wall moves.
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Figure 5.14: Configuration of lattice sites that could occur around a region of the inner
surface of the wall that is convex if the rules in Fang et al. [14] are applied, i.e. a site
cannot be a fluid site if the wall (shown in red) does not cross unit square centred on the
site. The filled and open circles represent fluid and solid sites respectively. The distances
along the lattice vectors shown by arrows are required to impose the boundary conditions

at site A. The distance along vector (1, 0) is undefined.

Fang et al. [14]’s method for applying no-slip boundary conditions required the normalised

cut distances, like the present study, as described in section 2.9.5. Although Fang et al.

[14] changed the site types as the wall moved, the normalised cut distances could have

become undefined if the wall was convex, because a lattice site was only considered to

be fluid if it was inside the wall and the wall did not cross the unit square centred on

the lattice site. For example, in figure 5.14, the lattice vector from site A in direction

(1, 0) does not intersect the wall. The normalised cut distance in this direction is therefore

undefined. In a less extreme case, the wall could cross the row of lattice sites, but the

normalised cut distance to the wall, δ, may be greater than 1.5, violating their requirement

that 0.5 < δ < 1.5.
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5.6 Adaptations of the simulation method when fluid nodes

are created or destroyed

In this section, I describe the changes to the procedure at each time step that are required

to deal with the creation and destruction of fluid sites as the wall moves.

After the lattice-Boltzmann method had been applied, the distribution functions, fi, at

each solid lattice site are set to the average of the fi over all neighbouring fluid sites in

case that site is about to become a fluid site due to the motion of the wall during the

timestep. This algorithm conserves the mass of the fluid approximately, as explained in

section 5.6.4 and causes the flow fields at this site to be set to the average of the flow fields

of the surrounding fluid sites when it becomes a fluid site. The equation of motion of the

wall is then integrated as usual.

Some of the lattice sites are changed from solid to fluid, or vice-versa, as appropriate to

the new wall profile. For each lattice site, an array of neighbouring site types has always

been maintained throughout the simulation because it was needed at the edge sites in

order to apply the boundary conditions and it is now needed for the solid sites in order to

set their distribution functions. This array of neighbouring site types is updated after the

site types have been set. As before, a site is an edge site if one or more of its neighbours

that lie on the same side of the inlet or outlet plane are solid. The array of neighbouring

sites is used at every time step to determine whether this is the case.

At the beginning of the simulation, there is one point on the wall for each edge site.

The number of points on the wall remains constant, but, since fluid nodes are created or

destroyed, the number of edge sites may change, so there is no longer exactly one pair of

wall points for each edge site. Each point on the inner surface of the wall requires the

stress at a fluid lattice site. Therefore, the next stage in the procedure is to search for the

nearest fluid site. Since the lattice-Boltzmann simulation is only valid if the wall moves by

less than one lattice length in a timestep, it is expected that the lattice site that was used

at the last time step or at least one of its neighbours will be fluid. Therefore, the search

is only carried out among these lattice sites in order to minimise the computational cost

of this step. The simulation exits if a fluid site is not found.
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Finally, a wall point is assigned to each edge site so that the its displacement at different

times may be used to apply the lattice-Boltzmann boundary condition at the edge site,

as explained in section 5.1 and section 4.2.2. The following algorithm is used to avoid

searching through all the points to find the nearest one for every edge site. The inner

surface of the wall is traversed from one end to the other and the types of lattice sites

immediately surrounding each line segment of the wall formed by joining a point on the

inner surface to its nearest neighbour on the same surface are checked, i.e. the lattice sites

for which

min(x0, x1)−∆x ≤ x ≤ max(x0, x1) + ∆x, (5.10)

min(y0, y1)−∆x ≤ y ≤ max(y0, y1) + ∆x (5.11)

are checked, where (x, y) are the coordinates of a lattice site and (x0, y0) and (x1, y1) are

the coordinates of the points on the wall. An example of this is shown in figure 5.15. For

each edge site that is found, the position of the wall point that was assigned to the site at

the previous timestep is compared with the positions of the wall points at the ends of the

line segment. The nearest of these three points on the inner surface of the wall is assigned

to that lattice site. This procedure requires a list of the indices of the points on the inner

surface of the wall as it is traversed from one end to the other. This ordered list is set up

at the beginning of the simulation.

5.6.1 Algorithm for updating the site types

If a fluid lattice site has some solid neighbours at time t, we know that the wall’s inner

surface intersects the lattice vectors from the fluid site that point towards those neighbours,

but not those that point towards the other neighbours. When the position of the wall

at time t + ∆t has been determined, we can determine which of the lattice vectors are

intersected by its inner surface at time t + ∆t. From this information, we can establish

whether the wall’s inner surface has crossed the lattice site. If it has, the site now lies

outside this surface, so it becomes solid. The same argument applies for establishing

whether a solid site that has some fluid neighbours should becomes a fluid site.

I devised a number of tests for the algorithm that updates the site types, which involved a

fluid site surrounded by different combinations of fluid and solid neighbours and different
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Figure 5.15: In order to find the nearest wall point to each edge site or to find the
distances from lattice sites along their vectors to the points of intersection with the wall,
the lattice sites immediately surrounding the line segment that joins a point on the wall
to its neighbour are checked. The circles represent lattice sites. Those that need to be
checked when we look at the central line segment (the solid line) are inside the dashed

rectangle.

wall configurations. This set of tests was expanded to include cases in which an algorithm

failed to updated the site types correctly during some preliminary simulations, which are

not reported here, despite having passed the existing tests. The final set of seventeen test

cases are shown in figures 5.16 and 5.17. The same set of tests with the opposite site types

was carried out to check that the algorithm changes a solid site to a fluid when appropriate.

The tests do not include sets of configurations that are rotations of one another because

the algorithms are symmetric under rotation. For all the algorithms tested, if the wall’s

inner surface passed through a lattice site, that site was defined to be a fluid site.

Three algorithms were tested. For the first one, the lattice site type is changed if some

of the links joining this site to neighbouring sites of the same type are intersected by the

wall’s inner surface and either there are no neighbours of the opposite type or the links

joining this site to neighbours of the opposite type are not cut, because this shows that

the fluid site is now on the same side of the wall as sites of the opposite type. This method
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1. Site should 
remain fluid.

2. Site should 
remain fluid.

3. Site should 
remain fluid.

4. Site should 
become solid.

5. Site should 
remain fluid.

6. Site should 
become solid.

7. Site should 
remain fluid.

8. Site should 
remain fluid.

9. Site should 
become solid.

Figure 5.16: The first nine of seventeen tests for the algorithm that changes lattice sites
from fluid to solid or vice versa. Each test consists of a central fluid site, its neighbours
and a part of the inner surface of the wall that passes nearby, which is represented by a

solid line. The filled and open circles represent fluid and solid sites respectively.
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10. Site should 
become solid.

11. Site should 
remain fluid.

12. Site should 
become solid.

13. Site should 
remain fluid.

14 Site should 
remain fluid.

15. Site should 
remain fluid.

16. Site should 
remain fluid.

17. Site should 
become solid.

Figure 5.17: The last eight of seventeen tests for the algorithm that changes lattice sites
from fluid to solid or vice versa. Each test consists of a central fluid site, its neighbours
and a part of the inner surface of the wall that passes nearby, which is represented by a
solid line The filled and open circles represent fluid and solid sites respectively. For case
16, the link, shown by the dotted line, from the central fluid site to one of its neighbours,

is cut twice by the inner surface of the wall.
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Figure 5.18: The algorithm that changes lattice sites from fluid to solid or vice versa
will fail in this test case because the wall has moved by more than one lattice site during
one timestep. The solid line shows the new position of the wall’s inner surface. The filled

and open circles represent fluid and solid sites respectively.

works for all cases except 14 and 15. For the second algorithm, the site type is changed if

there exist some links that point towards neighbours of the same type and in the opposite

direction to neighbours of the opposite type and the wall’s inner surface intersects all of

these links. It works for all but the last test case. The final algorithm, which I have used

for the remaining simulations in this chapter, is a refinement of the second: the site type

is changed if there exists one link that fits the description in the last sentence and the

wall intersects it or if there exist two or more of these links and the wall’s inner surface

intersects two or more of them. This algorithm works in all seventeen test cases.

In test case 16, the lattice vector in direction (−1,−1) points towards a fluid site but away

from a solid site, but from the diagram it is clear that we should not change the central

site to a solid site. This is why the wall’s inner surface is required to intersect two or more

of the links of this type before the central site should be changed. The algorithm will fail

if we have two or more of these double intersections, but this can only occur if the wall

bends by more than 90◦ over a distance of the order of the lattice spacing. It may also

fail if the wall moves by more than one lattice length in one timestep, as shown in figure

5.18, but we already forbid this. A lattice site should never be completely surrounded by

sites of the opposite type. If this happens, the simulation exits.

If the simulation method is to be extended to 3D, an algorithm is needed to determine

whether the wall has crossed a particular lattice site given the set of lattice vectors that
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the wall intersects, as in the 2D case. However, the algorithm may be different from the

one used in 2D and more test cases would be required to check it.

5.6.2 Algorithm for calculating the normalised cut distances

Since the site types are now updated according to the position of the wall at every lattice-

Boltzmann timestep, the links between a fluid site and a neighbouring solid site are always

intersected by the wall. Therefore, normalised cut distances cannot be greater than one or

negative, i.e. 0 < δ < 1, unlike the situation in which the lattice site types are not updated.

The normalised cut distances along all other links are irrelevant for applying the boundary

conditions at the edge sites since the wall does not pass through them. For the same reason,

they are also irrelevant for updating the lattice site types. Therefore, the normalised cut

distances along all links are first set to an undefined value. The inner surface of the wall

is then traversed from one end to the other and the lattice sites immediately surrounding

each line segment of the wall formed by joining a point on the inner surface to its nearest

neighbour on that surface are identified, as described by equations (5.10) and (5.11) and

figure 5.15. If one of the links between a lattice site and its neighbours is cut by the line

segment, the distance from that lattice site along the link to the point of intersection is

calculated. If a link is cut twice, as shown by case 16 of figure 5.17, the normalised cut

distance will depend on the order in which the points on the wall are traversed. However,

this is not important because in that case, the sites at the ends of this link will either

both be fluid or both be solid, so the normalised cut distance will not be used to apply

the boundary condition.

5.6.3 Extrapolation of the stress

The method for extrapolating to find the stress at the inner wall that is described in

section 4.4 will fail in certain cases. For example, if the wall is approximately parallel to

the x-direction, but the separation between a point on the wall, n, and its edge site, f ,

has a nonzero x-component, the neighbouring fluid site will be chosen such that xf − xff

is one of the diagonal directions. The lattice link between sites f and p, where site p is

defined by xp − xf = xf − xff , may not be intersected by the wall, so the normalised cut

distance for this link at site f may remain undefined, as explained in section 5.6.2. This
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f

n

ff

p

Figure 5.19: If the stress at a point on the wall, n, is estimated as described in section
4.4, the method will fail in the case shown above since site for its choice of site ff , the
normalised cut distance, δ, for the link from site f to site p is not intersected by the wall,
so δ remains undefined, where site p is defined by xp − xf = xf − xff . The solid line is
the inner surface of the wall, the filled circles are fluid sites and the open circles are solid

sites.

is illustrate in figure 5.19. To avoid this problem, the stress tensor at a point on the inner

surface is set to the stress tensor at the nearest fluid lattice site.

5.6.4 Conservation of mass

We can show analytically that the mass is conserved as lattice sites are created or destroyed

for fluid that is contained in a channel with the walls moving at velocity v and that is

not driven by body forcing or a pressure gradient [14] as follows. For the purposes of this

discussion, we will refer to a solid site that has a fluid neighbour as a boundary site and

any other solid site as a solid site. In the discussions of the boundary condition, this site

is labelled w in figures 3.4 and 4.2.
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After a period of time, all fluid nodes have density ρ0 and velocity v and the same, time-

independent distribution functions, fi. The boundary sites also have these distribution

functions. Without loss of generality, we assume that vy < 0. We consider the mass of the

fluid arriving at and leaving a boundary site between time t0, when it becomes a boundary

site, and t1, when it becomes a fluid site. The boundary sites we consider are shown in

figure 5.20.

For a flat wall, we only need to consider site A, since all boundary sites will be of this

type. Recalling that all fluid and boundary nodes share the same and time-independent

distribution functions, fi, the increment in density at site A during one timestep of length

∆t, is

dρ = f4 + f7 + f8 − f2 − f5 − f6 = −ρ0vy (5.12)

where we have used equations (2.2) and (2.3) for the D2Q9 lattice-Boltzmann model and

taken ∆x = ∆t = 1. The density at time t1 is given by

ρA(t1) =

t1∑
t=t0

dρ0v∆t = ρ0, (5.13)

since the wall must move one lattice length between times t0 and t1. When the boundary

node becomes a fluid node, the density will be ρ0, since each distribution function is set

to the average of those at the surrounding fluid sites. Therefore, no perturbation occurs

when site A becomes a fluid site. A similar result can be obtained for the reverse process.

Therefore, the total mass of fluid at the fluid sites at time t0 is equal to that at t1 because

the number of fluid sites is the same at these times. Although this total is different at

other times because the number of fluid sites varies, the mass is conserved if one takes into

account the mass of the fluid that accumulates at the boundary sites.

For a nonflat wall, a given site will be of type C when it first becomes a boundary site,

then type B, then A, then D; such sites are illustrated in figure 5.20. The streaming

between boundary nodes B and D must also be considered to ensure that the increase in

density on node B behaves the same as the other nodes. The density increment for site B
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during one timestep is then given by equation (5.12). For nodes C and D, we have

dρD = f1(xD − e1) + f4(xD − e4) + f5(xD − e5) + f7(xD − e7)

+f8(xD − e8)− f2(xD)− f3(xD)− f5(xD)− f6(xD)− f7(xD) (5.14)

= f1 + f4 + f8 − f2 − f3 − f6 (5.15)

dρC = f8 − f6 (5.16)

The total increment in density of sites C and D is

dρ = f4 + f7 + f8 − f2 − f5 − f6 + f1 + f5 + f8 − f3 − f6 − f7 = ρ0(vx − vy). (5.17)

If we set vx = 0, we obtain equation (5.12) again. Since it applies throughout the downward

movement of the wall through one lattice length, the mass entering the wall is equal to

ρ0 and therefore no perturbation occurs when a boundary site becomes a fluid site. For

the case with vx 6= 0, we may have to consider the streaming of the distribution functions

between neighbouring boundary sites.

In the case where the density of the fluid varies in space, it is much more difficult to

calculate the net mass of fluid entering the wall to justify the distribution functions that

we set at a newly created fluid site. However, since we apply Zhao-Li et al. [10]’s method

at the boundaries, which is described in section 2.9.5, the calculation of the distribution

function at a boundary site that points towards a fluid site is calculated from the density

at that fluid site, f . In the case where v � ∆x
∆t and f

(neq)
i � f

(eq)
i in the fluid, that

distribution function fi ∝ ρ and the same applies for the distribution functions coming

from the fluid. Therefore, the net mass of the fluid entering the wall is the average of the

densities of the fluid sites surrounding a boundary site multiplied by ∆x2. Consequently,

setting each fi at the boundary site to the average value of fi at the surrounding fluid

sites gives rise to the correct mass of the fluid. This argument does not take into account

the changes in the number of fluid neighbours over time, but provides some justification

for setting the distributions as described above and would be correct in the case of a flat

wall, where every boundary site always has three neighbours.

The boundary condition method described in Fang et al. [14] and section 2.9.5 uses

a second-order extrapolation of the density to calculate the distribution functions that
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Figure 5.20: The configuration of lattice sites around a nonflat vessel wall. The filled
circles represent fluid sites; the open squares represent sites that are solid but have fluid
neighbours, which are defined as boundary sites in section 5.6.4; and the open circles
represent solid sites. For the boundary sites, there are four possible combinations of
neighbouring fluid sites. The boundary sites with these combinations are labelled A, B,
C and D. The indexing of the lattice links is shown on the right hand side of this figure.

stream from boundary sites to fluid sites, so using the argument above, the mass of the

fluid leaving the wall is the average of the extrapolated values of the densities over all

directions pointing towards the fluid sites. If the same were true for the mass of the fluid

entering the wall, then setting each fi to the average of the extrapolated values over all

directions pointing towards fluid sites, as in [14], which would give rise to the correct

density. They have shown that it gives rise to the correct density in the case where the

density and velocity of the fluid are constant. They calculated the amount of mass in the

unit square that each boundary site is responsible for, which was centred on the boundary

site, as described in section 2.9.5. They used this calculation to check the conservation

of mass for by running simulations in cases in which the density varied in space and the

velocity of the wall varied with time. This would be more difficult in the current study,

since there is no straightforward definition of the area that a boundary site is responsible

for.
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5.7 Results for a Starling resistor with a large wall displace-

ment

In this section, results are presented for a Starling resistor in which the wall is expected to

move by several lattice lengths during the simulation 8. The parameters mostly matched

those used in [11] and section 4.7, i.e. TD
ηQ = 105, Lu = 2D, Le = 10D, Lu = 2D.

The density of the wall was ρw = 4000ρf , which leads to Γ = 2.48∆t (from equation

(4.81) and Λ = 3162∆t from equation (4.89). For each lattice-Boltzmann timestep, 250

timesteps were used for the elastic wall, i.e. Ψ = 250, which satisfies the requirement

that ΓΨ ≥ 250 described at the end of section 5.1. The parameters also satisfy the

requirement that Λ > Le
cs

. The resolution was chosen such that D = 10∆x and the

thickness of the wall, h = 0.25∆x. The dimensionless relaxation parameter, τ = 0.56 and

Re = 1.5. The external pressure is given by pe−pd = 0.0058125 in lattice units, therefore,

∆p∗ = (pe−pd)
(
D2

ηQ

)
= 1453.125, much higher than highest value the value of ∆p∗ = 224

used in section 4.7. If we let ∆x = 5 × 10−4m, ∆t = 1.25 × 10−3s and ρf = 1000kgm−2

in physical units, the kinematic viscosity ν = 4 × 10−6m2/s and D = 5 × 10−3m, which

are in the regime of typical parameters for cerebral blood flow, described in section 1.6.

We also obtain pe − pd = 0.93N/m, which matches that used in [13] and section 5.3. The

tension, T = 0.32N, which corresponds to β = 5.032.

The simulation was set up as in described in chapter 4, section 4.7 and the wall was

initially flat, since it was no longer necessary to begin the simulation close to the expected

steady state because the method can cope with wall movements of several lattice lengths.

Furthermore, initialising the wall in that way also has the effect of creating a fairly abrupt

change in thickness near the ends of the wall, as shown in figure 5.6, which may cause waves

in the thickness of the wall with large amplitudes that might hinder the convergence of

the simulation. The wall was held in position until the fluid had converged, as described

in section 5.2. For the simulation described here, the wall was allowed to move after

t = 7740∆t, and the simulation was stopped at time t = 25000∆t. These two times are

separated by more than five times the free period of oscillation of the wall.

8The code for this simulation and instructions for its use may be downloaded
from http://ccs.chem.ucl.ac.uk/∼gary as a zip archive and will be in the folder “Elas-
tic complex geometry rev 215” when the archive has been unpacked. For this simulation, INCOMPRESS,
INC FLUID and MOVE WALL were defined at compile time.
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The displacement of the point that began at the centre of the inner surface of the wall

over time is shown in graph 5.21. The amplitude of the oscillation of this point decreases

due to the damping of the fluid, as we would expect. However, the oscillation becomes

less sinusoidal over time and the period of oscillation, estimated by measuring the times

between the peaks, is not constant, unlike the simulations in section 5.1.3. This may be

due to increasing amounts of noise due to an instability. The periods of the first four

oscillations are 3380∆t, 3570∆t, 3150∆t and 3680∆t. Three of these are slightly longer

than Λ, in contrast to the simulations in section 5.1.3. However, we would expect different

behaviour of the model since the simulation method is now significantly different, most

notably by the creation and destruction of fluid nodes.

The wall profile was checked at intervals of approximately one quarter of the apparent

period of oscillation. Figures 5.22 and 5.23 show the wall shape during the first and fourth

period respectively. From these, it is clear that the entire wall moves inwards or outwards

together, as we would expect for simulations at a low Reynolds number.

The results in this section indicate that the model appears to behave correctly in the early

stages of simulations in which the wall displacement is several lattice points. However,

increasing amounts of noise suggest that an instability is present. The noise may be due

to an assumption that is made when the no-slip and no-penetration boundary conditions

are applied to the fluid: The velocity of the wall at a point of intersection, b, of the wall

and the lattice link from an edge site is assumed to be equal to the velocity of the point

on the wall, n, that belongs to the lattice site, as explained at the beginning of section

4.2.2. Further work is required to check this and to validate the dynamics more rigorously

by raising Re to 300 to compare the results with those in figure 4 of [15].

5.8 Computational cost of the simulation

The computational cost of the simulation method developed in this chapter is discussed

in this section.

First, the wall clock time required to simulate one lattice-Boltzmann timestep for a Starling

resistor for which the wall moves at all times, was compared with the same quantity for a

channel with rigid walls with the same dimensions and flow parameters. The parameters
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Figure 5.21: Displacement of the central point on the wall in the y-direction over time
for a simulation of a Starling resistor with the parameters used in [11], except for the

external pressure, which is given by (pe − pd)
(
D2

ηQ

)
= 1453.125. We have TD

ηQ = 105 and

the lengths of the upstream and downstream rigid sections and the elastic section are
Lu = 2D, Ld = 2D, Le = 10D. The resolution is given by D = 10∆x, the wall thickness,
h = 0.25∆x, Re = 1.5 and τ = 0.56. If we let ∆x = 5 × 10−4m, ∆t = 1.25 × 10−3s
and ρf = 1000kgm−2 in physical units, pe − pd = 0.93N/m, which matches that used
in [13], and T = 0.32N, which corresponds to β = 5.032. The central point performs
oscillations that are damped by the viscosity of the fluid. However, the amount of noise
appears to increase over time, suggesting that there is an instability. This may be due
to an assumption that is made when the no-slip and no-penetration boundary conditions

are applied to the fluid.

were the same as those used in section 5.7. The flow fields and distribution functions

that had been obtained from the simulation in that section at the time the flow fields had

converged, i.e. at t = 7740∆t, were used to initialise the simulation of the Starling resistor

in this section so that the wall would be allowed to move immediately. For the simulation

of the channel with rigid walls, the tolerance for the convergence criterion was set to zero

so that the simulation would continue until the required number of timesteps had been

carried out. For both simulations, the compiler option -O3 was used to compile the code,

but OpenMP [123] was not used to parallelise the program, in contrast to the simulations

in section 3.6. The wall clock time was measured by taking the difference in the return

values of the function time() from the standard C library at the beginning and end of the

simulation. No information about the flow fields was written to output files during the



Chapter 5. Dynamic simulations of fluid flow through elastic systems 285

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0  2  4  6  8  10

y
 /

 D

x / D

t = 7740∆t
t = 8580∆t
t = 9420∆t

t = 10260∆t
t = 11120∆t

Figure 5.22: Wall profiles for a Starling resistor with the same parameters as those
used for figure 5.21 at intervals of time separated by one quarter of the apparent period of
oscillation of the wall during its first period of oscillation. The entire wall moves inwards

or outwards together and there are no points of inflexion.
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Figure 5.23: Wall profiles for a Starling resistor with the same parameters as those
used for figure 5.21 at intervals of time separated by one quarter of the apparent period
of oscillation of the wall during its fourth period of oscillation. The entire wall moves

inwards or outwards together and there are no points of inflexion.
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two simulations.

The simulations with rigid and elastic walls took 173 ± 1s for 5 × 105 timesteps and

(1145 ± 1)s for 104 timesteps respectively; therefore they took (3.46 ± 0.02) × 10−4s and

(1.145 ± 0.001) × 10−1s per lattice-Boltzmann timestep respectively. For this simulation,

the computational cost is a factor C = 331±2 higher when elastic walls are used compared

with rigid walls. This factor is much greater than that for the method for simulating an

axisymmetric system described in chapter 3 and for which C = 1.17, as shown in section

3.6. However, the 2D Starling resistor that I have simulated differs significantly from the

3D simulations carried out in chapter 3, as explained in section 4.7.4. Furthermore, the

computational cost depends strongly on the simulation parameters, as discussed in the

next paragraph.

The calculations required for moving the wall are expected to require a time

γe ∝ Ψ
Le
∆x

(5.18)

per timestep, since the number of moving points on the elastic wall is proportional to its

length. For the simulation of the fluid itself, we have

γf ∝
LD

∆x2
, (5.19)

where L is the total length of the channel, i.e. L = Lu + Le + Ld. The ratio of the

computational cost of a simulation with elastic walls to that of the same simulation with

rigid walls is given by

Φ =
γf + γe
γf

= 1 + k
ΨLe∆x

LD
, (5.20)

where k is a constant which we can determine from the results in this section. Since

C = 331, Le = 100∆x, L = 140∆x and Ψ = 250, k = 18.48. Since we must satisfy

equation (5.6) for the simulation to be stable, we have

Φmin = 1 + 18.48
Le∆x

LD

(
max

(
1,

250

Γ

))
. (5.21)
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Substituting equation (4.81) into this gives

Φmin = 1 + 18.48
Le∆x

LD

(
max

(
1,

125

πh

√
E

ρ

))
. (5.22)

The computational cost can be compared with the simulation in chapter 3 as follows.

Following the arguments in section 5.1.1, the period of the oscillation of a point on the

inner surface and its corresponding point on the outer surface should obey equation (4.81)

in 3D as well as in 2D, and equation (5.6) should still apply, giving rise to equation (5.22).

We should note that the dimensions of both ρ and E are different in 2D and 3D. The

computational costs of both the lattice-Boltzmann method (LBM) and the method for

dealing with the elasticity would be higher in 3D than in 2D. We assume that the ratio

of the computational cost of the latter at each point on the wall that of the LBM at each

lattice site is the same in 2D and 3D. We then need to replace Le with 2πR0L in equation

(5.22), where R0 is the radius of the cylinder before deformation, since the number of pairs

of points on the wall depends on the surface area of the cylinder and the elastic section

takes up the entire length of the cylinder. The number of lattice sites is approximately

πR2
0L instead of LD. Making these replacements gives:

Φmin = 1 + 36.96
∆x

R0

(
max

(
1,

125

πh

√
E

ρ

))
. (5.23)

Substituting the parameters used in section 3.6 into this, i.e. R0 = 20∆x, h = 4∆x,

ρ = 7.8 and E = 0.043 in lattice units, we obtain C = 2.848. The computational cost

is therefore expected to be more reasonable for realistic blood flow parameters than for

simulations of Starling resistors, but it is higher than that of the simple method described

in chapter 3.

5.9 Computational issues regarding simulations of fluid flow

through large elastic systems on multicore machines

In this section, I discuss the simulation of fluid flow through large elastic systems using the

methods developed in chapters 3 to 5, including how they could be parallelised to run on
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multicore machines, the amount of communication required between the processors and

the memory requirements.

The lattice-Boltzmann method was used for all simulations of fluid flow in this thesis

because it is much more suitable for computation on multicore machines than finite-element

or finite-volume fluid solvers, mainly because the distribution functions at each lattice site

only require information from its nearest neighbours, as described in section 2.2, which

reduces the amount of communication between neighbouring processors. Furthermore, it

can take place on a simple Cartesian grid, whereas mesh generation for continuum solvers is

a complicated process. This advantage becomes even more important in simulations with

moving boundaries because the mesh would need to be constantly updated for a continuum

solver. Since the lattice sites are divided amoung the processors at the beginning of the

simulation, the communication costs can be further reduced by setting up buffers to store

information that is sent to or received from neighbouring processors and by partioning the

domain such that each processor deals with the same number of lattice sites, as explained in

section 2.3. Applying these techniques minimises the communication costs and therefore

results in a linear speed up as the number of processors used to run the simulation is

increased.

For all simulations of fluid flow through elastic systems in this thesis, a boundary condition

method based on that by Zhao-Li et al. [10] and described in sections 2.9.5 and 3.3,

was applied at the lattice sites adjacent to the wall. For each distribution function that

is determined this way, this method requires the pressure, velocity and one of the pre-

collision distribution functions from a neighbouring fluid site. This information can be

communicated along with the distribution functions during the streaming step.

For the simulation method developed to deal with fluid flow in axisymmetric elastic sys-

tems, each point on the wall belongs to a particular edge site, as described in section 3.5.

Therefore, when the lattice sites are divided between the processors, each edge site can be

allocated to the same processor as its lattice site. Furthermore, each point moves indepen-

dently of the others. Therefore, no more communication between processors is required

for this method than for simulations with rigid walls. Since no fluid nodes are created or

destroyed, the aforementioned techniques for running the simulation in parallel coud be

applied.
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The method developed in this chapter, parts of which are the same as that described in

the previous chapter, is more complex. Consequently, it would be more challenging to

develop an efficient parallel computation from it for several reasons. These problems are

explained, along with some possible solutions, in the following paragraphs.

Firstly, several communication steps would be needed during each lattice-Boltzmann timestep

and each elastic wall timestep. Each point on the wall requires information from its nearest

neighbouring points twice during each timestep because the displacement of every point

must be calculated before the velocity of any of them can be, as explained in section 4.2.2.

The lattice-Boltzmann timestep must also be complete before the wall moves because the

stress at the boundary at the beginning and end of the timestep is required for the cal-

culation of the wall motion. When it is complete, the distribution functions at each solid

site with fluid neighbours are set in case that solid site becomes a fluid site, as explained

in section 5.6. The positions of the wall point at the end of each time step are needed to

calculate the lattice sites’ normalised cut distances, as explained in section 5.6.2, and to

find their nearest wall points, for which the velocity is used to find the distribution func-

tions at each edge site, as explained in section 4.2.2. This information must be passed to

the lattice sites before the next time step begins. In order to determine whether a lattice

site needs to change from being fluid to solid or vice versa, the neighbouring site types

before the update are required, as explained in section 5.6.1, which necessitates another

commmunication step. When this update is complete, another communication is needed

to determine which lattice sites are edge sites. Some of these communication steps are

independent and could be done concurrently to reduce the computational cost, for exam-

ple the distribution functions at each solid site could be set at the same time as each site

checks whether each of its neighbours are fluid or solid.

Secondly, since lattice sites are created or destroyed, the number of lattice sites that pass

information from their processor to neighbouring processors would change during the sim-

ulation, which would make it difficult to set up buffers to store the information that is sent

or received. This problem could be solved by setting up buffers at the beginning of the

simulation for lattice sites that could potentially become fluid sites during the simulation

and letting these sites send and receive information from their neighbours, even though

this is only meaningful when they become fluid sites. This would also help to distribute
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the lattice sites evenly between the processors. The buffers for passing information be-

tween the points on the wall on one processor and neighbouring processors would be more

straightforward to set up because the number of points on the wall remains constant. The

total number of fluid lattice sites and potential fluid lattice sites is constant. Therefore,

the lattice sites and points on the wall can remain evenly distributed among the processors

throughout the simulation, similarly to the method described in chapter 3.

Finally, in contrast to the simulation method described in chapter 3, each point on the

wall does not belong to a particular lattice site. Therefore, information at a point on

the wall may need to be shared between a point and a lattice site residing on a different

processor. Some of the phases of communication between processors described in the

previous paragraph would be unnecessary if this were not the case. A point will share

information with different lattice sites during the simulation, although the lattice site

must be the same as or a nearest neighbour of the one used at the previous time step, as

explained in section 5.6, which might help to reduce the computatoinal cost. Each segment

of the wall that joins a point on the wall to one of its neighbours affects the lattice sites

surrounding that segment of the wall, which may or may not be nearest neighbours of one

another. However, all communication within the wall or the fluid domain only takes place

between points or lattice sites that are neighbours of one another.

While the lattice-Boltzmann method is more suitable than continuum fluid solvers for

execution on multicore machines, it is much more memory intensive because, in addition

to the pressure and velocity at time t and t+ ∆t, the distribution functions at those times

also need to be stored at each lattice site. Therefore, for the D3Q15 model, 38 floating point

numbers are required at each site: 15 distribution functions, three components of velocity

and one pressure at the times t and t + ∆t. This requires 304 bytes if double precision

is used. Lattice-Boltzmann simulations achieve a linear speed up with the number of

processors until there are too few lattice site per processor, such that the proportion of

lattice sites that need to communicate with those on neighouring processors becomes too

high. For example, the lattice-Boltzmann solver HemeLB [92, 93] scales linearly up to

1024 cores for geometries with 4.7 million lattice sites as described in section 2.3, i.e.

while there are more than 4600 lattice sites per core. For such a simulation, 1.4 × 106

bytes are required for each core. The processor requires more time to load information

from some parts of the memory than others. For memory intensive simulations, the speed
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of the simulation may be limited by the time required to retrieve data from the memory

rather than the time required for the calculations themselves.

For the simulations of flow through axisymmetric elastic systems described in chapter 3, the

following information is stored for each edge site, as explained in section 3.5: the normalised

cut distances, the normal to the nearest point on the wall, its current displacement from

the edge site and that before deformation and its velocity. This requires 21 double precision

numbers for each edge site, i.e. 168 bytes. For a simulation of a blood vessel of radius R, the

fraction of lattice sites that are edge sites is approximately 2πR
πR2 = 2

R . For a resolution such

that R = 20 lattice units, one tenth of the sites are edge sites and therefore the difference

in memory requirements between simulations with rigid and elastic walls is negligible.

For the simulation method developed in this chapter, the normalised cut distances must be

stored for every lattice site because the lattice sites can change type during the simulation

so that any lattice site could become an edge site. Each site also requires the index of

its nearest point on the wall, as explained in section 5.6, and this can be stored as a

4-byte integer. Therefore, 124 bytes of storage would be needed at each lattice site for a

3D simulation, in addition to the 304 bytes needed for 3D LBM simulations in systems

with rigid walls. Some storage is also needed for types of the neighbouring lattice sites,

as explained in section 5.6.1, but since a site can only be a solid, fluid or edge site, it

is unnecessary to use an integer for every neighbour. At each point on the wall, storage

is required for its current position vector and that before deformation, its velocity, and

the a1 and a′1 Runge-Kutta coefficients, which are needed because the displacement at

time t + ∆t must be calculated for every point before the velocity at that time can be

calculated for any of them, as explained in section 4.2.2. Each point also requires the

stress tensor at these times, as explained in section 5.1.2. Since it is symmetric, it has six

distinct components in three dimensions. Therefore, 27 double precision numbers must be

stored for each point, requiring 216 bytes. Each point would also require the index of the

nearest lattice point and the indices of its neighbours, for which there are nine in three

dimensions, as explained in section 4.2.3. Therefore, at least ten integers are required,

taking the storage requirement to 256 bytes per point on the wall. At the beginning of the

simulation, there is a pair of points on the wall for each edge site, as explained in section

4.2.1. Therefore, for a blood vessel with a radius of 20 lattice units, there are one fifth as

many wall points as edge sites. Therefore, we require an average of 428 + 256
5 ≈ 480 bytes
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per lattice site, which is 50% more than what we would require for a lattice-Boltzmann

simulation with rigid walls.

5.10 Change to the method for applying velocity boundary

conditions to the fluid

In order to compare the time-dependent behaviour of the simulations in this study with

those in [15], it is necessary to find the steady state solution at the parameters used

there, as discussed in section 5.2. If the simulation is valid, it should be possible to

achieve convergence to a steady state because the viscosity of the fluid should damp the

oscillations. In this section, a simulation is carried out 9to check whether such convergence

is obtained, then changes are made to the velocity imposed on the fluid, vb, at each point

of intersection with a lattice link from an edge site to its neighbouring solid site, in order

to improve the convergence properties of the model developed in this study.

The parameters of the simulation were the same as those used in the last section, except

that the external pressure was given by ∆p∗ = (pe−pd)
(
D2

ηQ

)
= 24, so that the parameters

matched those used for one of the computations reported in [11], as explained in section

4.7.2. The simulation is started from the steady state solution for the flow fields for a

channel of the same dimensions with rigid walls. The L1 norms for both the velocity field

of the fluid and displacement of the wall decreased, then increased again, as shown in figure

5.24, which indicates that an instability arose. The velocity flow field begins to diverge

at approximately t = 4000∆t, whereas the wall displacement field begins to diverge at

10000∆t. This suggests that the calculation of the velocity at the boundary of the fluid

is invalid, rather than the calculation of the wall motion. This could cause instability

in the fluid, which subsequently causes instability in the wall motion. Nevertheless, the

wall shape has been checked at t = 10000∆t, where the L1 norm of the wall displacement

reaches its minimum value. The wall shape is shown by the dark green line in figure 5.28.

It agrees closesly with that achieved in section 4.7.4 for the same parameters except that

D = 10∆x in this section and D = 10.5∆x there. That wall profile is shown by the red

9The code for this simulation and instructions for its use may be downloaded
from http://ccs.chem.ucl.ac.uk/∼gary as a zip archive and will be in the folder “Elas-
tic complex geometry rev 215” when the archive has been unpacked. For this simulation, INCOMPRESS,
INC FLUID and MOVE WALL were defined at compile time.
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Figure 5.24: L1 norms of the fluid velocity and wall displacement, calculated from
equation (3.15), during a simulation of a Starling resistor with TD

ηQ = 105, ∆p∗ = (pe −

pd)
(
D2

ηQ

)
= 24, D = 10∆x, Re = 0.15, τ = 0.56, h = 0.25∆x. The velocity flow field and

wall displacement field begin to diverge at t = 4000∆t and t = 10000∆t respectively.

line in figures 5.28 and 4.8. The latter shows that the numerical solution agreed closely

with the Lowe and Pedley [11]’s solution.

A plausible explanation for the divergence in the velocity field of the fluid is as follows. At

the point of intersection, b, of the wall and the link from an edge site, f , to a neighbouring

solid lattice site, w, velocity vb is imposed on the fluid, as explained in section 4.2.2

and illustrated in figure 4.2. The velocity vb is set equal to the long-term velocity, vn

of the nearest point on the inner surface of the wall, n, to lattice site f , as explained

at the beginning of section 5.6. This long-term velocity is calculated by making the

approximation that the acceleration is uniform between times t − 2∆t and t because the

temporal resolution of the fluid simulation is ∆t, as explained in section 5.1.2. This results

in equation 5.5. Therefore we have:

vb(t) = vn(t) = 1.5un(t)− 2un(t−∆t) + 0.5un(t− 2∆t), (5.24)

where un is the displacement of point n. However, point b lies between point n and its

neighbours on the inner surface of the wall, as shown in figure 5.26. Therefore, the error
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Figure 5.25: Long term-velocity of the wall, as defined in section 5.1.2, for a simula-
tion of a Starling resistor at t = 8002∆t, calculated from equation (5.5), with the same
parameters as figure 5.24. The differences between velocities of neighbouring points are
significant, causing the velocity imposed at the boundary of the fluid to be inaccurate.

in the approximation that vb = vn is of order the difference in velocity between a point

and its neighbours. At the beginning of the simulation, the motion is dominated by the

mode of oscillation in which the entire wall moves inwards or outwards together to form

a standing wave with wavelength λ = 2Le, where Le is the length of the elastic section

of the wall. At a time t = 10000∆t, the overall wall profile changes very little, but other

modes of oscillation with shorter wavelengths are still present. Therefore, the error in vb

is larger relative to the maximum velocity of the wall. This inaccuracy could prevent the

velocity flow field from converging to a steady state.

To test this explanation, the long-term velocity of each point on the wall vn at time

t = 8002∆t, which was defined in section 5.1.2, has been calculated and plotted in figure

5.25. This velocity changes significantly over a shorter distance than Le and the maximum

difference in velocity between adjacent points is 7.6 × 10−8 D
∆t for the points at x = 3.7D

and x = 3.8D, which is 18% of the maximum velocity, 4.26 × 10−7 D
∆t . This suggests

that the the error in the approximation vb = vn may be preventing convergence of the

computation.



Chapter 5. Dynamic simulations of fluid flow through elastic systems 295

l

b

w

f

n

n+n

Figure 5.26: A link between an edge site f and a neighbouring solid site w, shown by a
dotted line, intersects the inner surface of the wall at point b, which lies between points n
and n+ on the wall, for which the motion is calculated. Interpolating between these two
points to find the velocity at point b, vb is more accurate than assuming that vb = vn.

The normalised distance from point n to point b, l, is required for the interpolation.

The accuracy of the estimate of the vb has been improved by using linear interpolation of

the velocity between the points on the inner surface of the wall for which the line segment

that joins them intersects the link between the lattice sites at point b, as shown in figure

5.26. That is,

vb = (1− l)vn + lvn+, (5.25)

where l is the normalised distance from point n to point b along the line segment between

points n and n+, i.e.

l =
(xb − xn) · (xn+ − xn)

|xn+ − xn|2
, (5.26)

where l lies within the range 0 ≤ l < 1.

The simulation described in this section was repeated with interpolation to find vb
10.

The behaviour of the L1 norms for the velocity of the fluid and the wall displacement

changed very little. These L1 norms are shown by the dark red lines in figure 5.27. The

L1 norms increase more slowly, reaching 3.74× 10−3 and 1.31× 10−7 respectively, instead

of 4.22 × 10−3 and 1.46 × 10−7. This shows that the instability remains, but it is less

severe.

10The code for this simulation and instructions for its use may be downloaded
from http://ccs.chem.ucl.ac.uk/∼gary as a zip archive and will be in the folder “Elas-
tic complex geometry rev 225” when the archive has been unpacked. For this simulation, INCOMPRESS,
INC FLUID and MOVE WALL were defined at compile time.
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Although interpolating between the points on the wall to find the velocity at the boundary

should have improved the accuracy and stability of the simulation, the method for cal-

culating the long-term velocity of a point on the wall, vn may be causing the instability.

The alternatives, which are described in section 5.1.2 are to set vn equal to the average

velocity of the wall over one timestep, i.e.

vn(t) = un(t)− un(t−∆t) (5.27)

or to set it equal to the instantaneous velocity of the wall 11. The simulation described in

the previous paragraph was repeated with these two methods and the L1 norms for the

former and latter methods of finding vn are shown by the orange and blue lines in figure

5.27 respectively. For both of these alternative methods for calculating vn, the simulation

divergences later on. If vn is set equal to the average velocity of the wall, the divergence

ccurs at t ≈ 11000∆t and does not occur before t = 20000∆t for the wall displacement.

The L1 norms are much lower at t = 200000∆t than they are for the other methods.

Therefore, this method is used for the remaining simulations in this thesis.

The wall shape at t = 10000∆t is shown by the orange line in figure 5.28 and it agrees very

closesly with the wall shapes obtained using the current method without the adjustments

to the calculation of the velocity at the boundary of the fluid. The agreement of the wall

profiles between the various simulation methods used in this thesis provides evidence that

the simulation method produces accurate steady state solutions.

5.11 Inclusion of viscoelastic behaviour

In this section, I explain how a damping factor can be included in the equation of motion

of the wall in order to enable simulations of a Starling resistor to converge to a steady state

and to include viscoelastic behaviour in the simulation, if this is desired. This damping

factor is removed when comparing the dynamics of the system with numerical or analytical

results for a system without a damping factor.

11The code for the former and latter methods and instructions for its use may be down-
loaded from http://ccs.chem.ucl.ac.uk/∼gary as a zip archive and will be in the folders “Elas-
tic complex geometry rev 226” and “Elastic complex geometry rev 227” respectively when the archive
has been unpacked. For the simulations reported in this section, INCOMPRESS, INC FLUID and
MOVE WALL were defined at compile time.
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Figure 5.27: L1 norms of the fluid velocity and wall displacement during three simu-
lations of a Starling resistor for which different methods involving spatial interpolation
are used to calculate the velocity to impose at the boundary of the fluid domain. The

parameters are TD
ηQ = 105, ∆p∗ = (pe − pd)

(
D2

ηQ

)
= 24, D = 10∆x, Re = 0.15, τ = 0.56,

h = 0.25∆x. For all three methods, the simulation begins to diverge instead of reaching
a steady state, but the divergence is much less severe if the velocity at the boundary of

the fluid is set equal to the average velocity of the wall over the last time step.

Any real elastic material exhibits viscoelastic behaviour, such that the stress depends on

the strain rate as well as the strain. The viscosity has bulk and shear components like the

elastic modulus [121]. A full treatment of this behaviour in the simulations described in this

thesis would be very complex. Therefore, the following term is added to the acceleration

of each point on the wall:

∑
neighs

b

(
∂uneigh
∂t

− ∂upoint
∂t

)
, (5.28)

where the sum is taken over neighbours 1 to 5 in figure 4.3. Since this term depends on

the relative velocities of the neighbouring points, the stress depends on the strain rate.

This damping term is more realistic than that given by equation (4.87), which depended

only on the absolute velocity of the point. It does not allow the bulk and shear viscosity

to be varied independently, but it can be used to help simulations converge to a steady

state.
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Figure 5.28: Wall profile obtained by simulations of a Starling resistor with three dif-
ferent methods. The red line show the results for the method described in chapter 4,
while the dark green and orange line show the results for the current method before
and after adjustments were made to the calculation of the velocity field at the bound-
ary of the fluid. The very close agreement between these profiles and the comparison of
them with [11]’s solution shown in figure 4.8 provides evidence that the current simula-
tion method gives accurate results for the steady state. The parameters are TD

ηQ = 105,

∆p∗ = (pe − pd)
(
D2

ηQ

)
= 24, D = 10∆x, Re = 0.15, τ = 0.56, h = 0.25∆x.

The simulation described in section 5.10 that used interpolation of the average velocities

of points on the wall to set the velocities at the boundary of the fluid was repeated 12 with

a damping factor of 0.1 times the critical damping factor calculated from the expected

period of oscillation of the separation between the inner and outer surfaces of the wall,

Γ, which is given by equation (4.81), as explained in section 5.1.1. For damped harmonic

motion, the critical damping factor is 2ω0, where ω0 is the angular frequency of the free

period of oscillation. Therefore, I have used b = 0.1bcrit = 0.2ω0 = 0.4π
Γ . The fluid velocity

and wall displacement fields converged to a steady state such that their L1 norms were

1.8 × 10−5 and 1.5 × 10−8 at t = 20000∆t respectively, which are much lower than those

achieved without damping at t = 20000∆t, and 1.0 × 10−8 and 6.2 × 10−11 respectively

at t = 85220∆t. The maximum difference between the positions of the points on the wall

12The code for this simulation and instructions for its use may be downloaded
from http://ccs.chem.ucl.ac.uk/∼gary as a zip archive and will be in the folder “Elas-
tic complex geometry rev 226” when the archive has been unpacked. For this simulation, INCOMPRESS,
INC FLUID and MOVE WALL were defined at compile time.
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obtained from this simulation and from the simulation described at the end of the last

section at t = 10000∆t, for which the wall shape is shown by the orange line in figure 5.28,

is 1.4× 10−5D.

5.12 Comparison of the dynamics with results from a pre-

vious study

In this section, I describe simulations of the Starling resistor shown in figure 5.29 with the

same parameters as those used for figure 4 of [15], which were intended to help validate the

dynamics of the model described in this study, as discussed in section 5.2 13. In that study,

the parameters were as follows. The width of the channel was D = 10−2m and the lengths

of the first rigid section of the wall, the elastic section, and the second rigid section were

Lu = 5D, Le = 5D and Ld = 30D respectively. The tension in the wall was 1.610245N/β,

β = 25 and the external pressure was pe − pd = 0.93Nm−1 + 12×23ηQ
D2 , where the second

term is the pressure required to drive Poiseuille flow through a channel of length 23D,

where Q is the flow rate and η is the dynamic viscosity. It was used by Luo and Pedley

[15, 19] to ensure that their simulation parameters matched those in Luo and Pedley [13].

The viscosity and density of the fluid are η = 10−3Nm−1s and 103kgm−2. The Reynolds

number at the inlet was 450 14. The length of the Starling resistor was along the x-axis.

β y-ordinate at x = 3.5D Reference

20 -0.30D Figure 7(a), [13]
25 -0.524D Figure 20(a), [19]
30 -0.545D Figure 20(a), [19]

Table 5.4: y-ordinate of the point on the wall at x = 3.5D, measured relative to the
left-hand end of the elastic wall, for the steady state solutions obtained by [13, 19] at

different values of the tension, T = 1.610245N
β .

Figure 4 of [15] shows the y-ordinate of the point with x = 3.5D relative to the left-hand

end of the elastic wall. The simulation shown there was started from a perturbation on

the steady state, i.e. the steady state for a slightly different value of β, which I have

13The code for these simulations and instructions for its use may be downloaded
from http://ccs.chem.ucl.ac.uk/∼gary as a zip archive and will be in the folder “Elas-
tic complex geometry rev 236” when the archive has been unpacked. For these simulations, IN-
COMPRESS, INC FLUID and MOVE WALL were defined at compile time.

14The Reynolds number quoted in Luo and Pedley [15] is 300 because it is calculated from the average
velocity of fluid flow at the inlet, whereas I calculate it from the maximum velocity.
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Figure 5.29: Diagram of a 2D Starling resistor, which is a channel with a collapsible
segment through which fluid flows. The dimensions are marked as well as the pressure at

the inlet and outlet and the pressure applied to the outside of the wall.

estimated from the y-ordinates at x = 3.5D for the steady-state solutions obtained by Luo

and Pedley [13, 19] at several different values of β. These y-ordinates are given in table 5.4

and measured relative to point O in figure 5.29. Since y = −0.425D when the simulation

shown in figure 4 of [15] was started, I estimate that β = 22.

In order to carry out the comparison with figure 4 of [15], it is necessary to initialise the

wall position and fluid velocity to a small perturbation on the steady state at β = 25. This

perturbed solution should ideally be equal to the steady state solution for β = 22. To that

end, a simulation was carried out with the method developed in this chapter, with β = 22.

The simulation was set up as described in section 4.7. The initial strain of the wall was

given by εxx = 0.01, εyy = −0.005, εxy = 0 and the Poisson ratio, Ω = 0.5. The thickness

of the wall is h = 0.3125∆x. The pressure difference between the inlet and outlet was

chosen to drive a Poiseuille flow in a channel of width D at Re = 450. The resolution is

given by ∆x = 2× 10−4m, ∆t = 1.333× 10−4s.

In order to achieve stability at Re = 450, the Mazzeo+GZS combination of boundary

conditions was used, as described in section 3.4.1, except that the method by Mazzeo

et al. [93] was used to impose a Poiseuille flow profile at the inlet Re = 450 instead of

a constant pressure. The boundary conditions therefore matched those used by Luo and

Pedley [15].
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The half-width is chosen to be D = 25.2∆x so that the distance from the last row of lattice

points to the wall is 0.2∆x, as described in section 3.4.2. The dimensions of the channel

are therefore 2% larger than those in [15], since I keep Lu = Le = 5D and Ld = 30D.

The density of the wall was ρw = 100ρf . Therefore, the expected period of oscillation of

the entire wall, calculated from equation (4.89), was Λ = 6986∆t. Since Le = 252∆x, this

satisfies the requirement that Λ > Le
cs

, which was explained in section 5.1.2. The expected

period of the oscillation of the separation between the inner and outer surfaces of the wall,

Γ = 2.722∆t, therefore Ψ = 100 wall timesteps were used per lattice-Boltzmann timestep,

satisfying ΓΨ > 250∆t. A damping factor of b = 0.4π
Γ was applied, as discussed in section

5.11, to help the simulation to converge.

The wall was held in position until the fluid had converged, as described in section 5.2, such

that the L1 norm for the difference in the velocity field between the current and previous

time steps reached 1.0× 10−7. In order to avoid having to wait for the oscillations of the

wall to die away, the simulation was restarted with the points on the wall initialised to

their positions at a previous point in time, t1, which is estimated to be the time when the

wall was close to its steady state.

When the fluid had converged during the first part of the simulation, in which the wall

was flat, the velocity and pressure fields were compared with the analytic solution for a

rectangular channel. The simulation errors were measured with the L1 and L∞ norms

for the difference between the analytical and numerical solutions, which are calculated

using equations 3.18 and 3.19 respectively. The L1 and L∞ norms were 1.09 × 10−3 and

2.79× 10−2 respectively for the velocity field and 1.28× 10−2 and 5.05× 10−2 respectively

for the pressure field, which shows that the fluid was simulated accurately.

The wall profiles obtained during the first simulation at various times are shown in figure

5.30. The wall does not complete an oscillation, despite the period of oscillation of the

wall in the abscence of fluid being Λ ≈ 7000∆t. This is probably because the ratio of the

mass of the wall to the mass of the fluid, ρwh
ρfD

= 0.625, so the period of oscillation is not

dominated by the inertia of the wall. The wall becomes unstable, such that at t = 36039∆t

after it was released, it crosses itself, which is unphysical, and it intersects some of the

links between lattice sites more than once, which causes the algorithm for calculating the

normalised cut distances, described in section 5.6.2, to fail.
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The simulation was then restarted with the wall fixed held its position at t = 33076∆t.

This wall profile, along with the resulting steady state solution for the fluid, was used as

the initial state for the comparison with figure 4 of [15], since it was smooth and collapsed

everywhere, in common with the steady state solutions for Re = 450, β < 30 shown

in figure 5(b) of [19], and y = −0.289D at x = 3.5D, which is comparable with the

initial y-ordinate of the point at x = 3.5D in the simulation shown in figure 4 [15]. Since

y = −0.524D at x = 3.5D for the steady state solution at β = 25, this perturbation is

somewhat larger than the one used by [15], but it still permits a comparison with their

results. In order to carry out the comparison, the parameters were changed to the values

used in figure 4 of [15] i.e. β = 25 and the ratio of the mass of the wall to that of the fluid

below it, ρwh
ρfD

= 0.1, which required ρw = 16.064ρf . This gives Γ = 1.163∆t, therefore

Ψ = 220 wall timesteps were used per lattice-Boltzmann timestep, satisfying ΓΨ > 250∆t.

The y-ordinate of the point at x = 3.5D at t = 0, t = 100∆t, t = 200∆t, t = 300∆t,

t = 400∆t and t = 454∆t is shown in figure 5.31. The fluid simulation became unstable

at t = 454∆t. The wall began to move outwards, i.e. away from the steady state solution

expected, at time t = 400∆t. This result shows that the model I have proposed is unstable

under the parameters used by [15], for which the tension is very low compared to the

previous simulations in this thesis; we have TD
ηQ = 2.46×103, compared with 105 in section

4.7. Figure 4 in [15] shows results for a much longer time: t = 20D2

Q = 30D2

Reν = 6.667s =

50000∆t, from equation (4.84). Therefore, this figure is shown separately as figure 5.32 in

this section.

5.13 Conclusions

The method for simulating fluid flow through elastic vessels that was developed in chapter

4 has been improved in several ways. Many sub-timesteps for the elastic wall are carried

out for each lattice-Boltzmann timestep, so that the minimum density of the wall that

is required to achieve sufficient temporal resolution is limited only by the fact that the

period of oscillation of the wall needs to be greater than the shortest timescale over which

the LBM can cope with major changes in the flow fields. The method also allows the wall

to move over lattice sites, so that it can simulate systems in which the displacement of

the wall is large. Some simple tests of the dynamics of the model in a Starling resistor
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Figure 5.30: Wall profiles obtained during a simulation of a Starling resistor for which
the wall was initially flat. The times are measured relative to time when wall was released.
The parameters approximately match those for the steady state solution used for figure 4
of [15]. We have D = 0.01008m, Lu = 5D, Le = 5D, Ld = 30D, ρf = 1000kgm−2, ρw =

100ρf , η = 10−3Nm−1s, Re = 450, T = 1.610245N/22, pe − pd = 0.93Nm−1 + 12×23ηQ
D2 .

The resolution is given by ∆x = 2 × 10−4m, ∆t = 1.333 × 10−4s, therefore τ = 0.510.
The thickness of the wall is h = 0.3125∆x.

have shown that the elastic portion of the wall performs oscillations approximately equal

to the free period of oscillation of a stretched string under the same tension, as expected,

and these oscillations are damped by the viscosity of the fluid. However, noise is present

in the oscillations and the amplitude of the noise appears to increase over time. The

simulation does not converge to a steady state. In an attempt to improve this situation,

the method for imposing the velocity at the boundary of the fluid has been improved, but

the simulations do not converge to a steady state unless damping is included.

The dynamics of the simulation have been compared with those in [15], but the fluid

simulation became unstable under the parameters used there. The wall moved towards

the steady state at first, then away from it. This shows that the model I have proposed is

unstable under the parameters used by [15]. For these parameters, the tension is very low

compared to the previous simulations in this thesis; we have TD
ηQ = 2.46 × 103, compared

with 105 in section 4.7, and hence we would expect sudden large movements of the wall to

be more likely. Such rapid divergence of the wall position and flow fields did not occur for
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Figure 5.31: Wall position y at x = 3.5D as a function of time for a simulation of a
Starling resistor for which the wall profile was initialised to that shown in figure 5.30 at
time t = 33076 and the parameters were approximately equal to those used for figure 4 of
[15]. They are given by D = 0.01008m, Lu = 5D, Le = 5D, Ld = 30D, ρf = 1000kgm−2,
ρw = 16.064ρf , η = 10−3Nm−1s, Re = 450, T = 1.610245N/25, pe − pd = 0.93Nm−1 +
12×23ηQ

D2 . The resolution is given by ∆x = 2× 10−4m, ∆t = 1.333× 10−4s. The thickness
of the wall is h = 0.3125∆x.

the simulations reported elsewhere in this thesis, where the tension was higher. It would

therefore be sensible to attempt further validations of the dynamics at a higher tension.

The method also needs to be extended to 3D in order carry out meaningful simulations

of cerebral blood flow, but some work is required to extend the methods for selecting the

points on the wall to be used for the calculation of forces on the wall and the determination

of the points of intersection of the lattice vectors with the wall, as discussed in section 4.5.

A significant effort is also needed to extend the algorithm for deciding whether the wall

has crossed a particular site to 3D, as discussed in section 5.6.1.

The ratio of the computational cost of a simulation with elastic walls to that of the same

simulation with rigid walls is higher for the simulation of a Starling resistor presented

in section 5.7 than for that of an elastic cylinder in section 3.6, but the systems being

simulated and their parameters are very different. The expected ratio for the elastic

cylinder in 3D, under the same parameters as in section 3.6, is estimated to be 3, which is
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Figure 5.32: Wall position y at x = 3.5D as a function of time from figure 4 of [15],
with error tolerances of 10−5, 10−6, 10−7 and 10−8 for their numerical methods for the

dotted, dashed, dash-dotted and solid lines respectively.

reasonable considering that the model neither makes any assumptions about the geometry

nor requires the wall displacement to be small. However, it would be more challenging to

develop an efficient parallel implementation for this method than that for axisymmetric

systems described in chapter 3, because several communication steps are needed during

each timestep for the wall and the lattice-Boltzmann method, and each point on the wall

does not belong to a particular edge site.



Chapter 6

Conclusions and Future Work

In this thesis, I have discussed models of cerebral blood flow and how they have helped

to improve our understanding of cerebrovascular diseases. Three-dimensional (3D) com-

putational fluid dynamics (CFD) simulations of patient-specific vasculature can now be

performed. I then explained how such simulations could be used to plan neurosurgery

by simulating the effects of different procedures on cerebral blood flow. The majority of

CFD simulations of blood flow use finite-element or finite volume simulations, which are

computationally costly for simulations in complex geometries at high resolutions. The

lattice-Boltzmann method, its computational efficiency and its scalability for simulations

in parallel were then discussed, along with existing simulations of cerebral blood flow using

this method, including some that are capable of carrying out simulations quickly enough

for use in neurosurgery.

Most 3D CFD simulations of cerebral blood flow do not include arterial elasticity, which is

important for simulating cerebral blood flow. There are also only a few published schemes

for simulating fluid flow through elastic vessels with the lattice-Boltzmann method. The

majority of these studies only include simulations of flow through a simple channel in which

the wall is divided into segments that move independently [14, 117, 118, 120]. However,

the method by Buxton et al. [119] is capable of simulations in a complex geometry.

I have developed a method for simulations of fluid flow through an axisymmetric elastic

vessel in three dimensions. The steady-state solutions for the wall displacement and the

pressure and velocity flow fields in a cylinder achieved good agreement with the analytical

306
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solution. The simulations were carried out at realistic parameters for cerebral blood flow,

in contrast to the existing methods for simulations of the cerebral blood flow. The method

is sensitive to displacements of the wall of fractions of a lattice lengths, in common with

[14, 117, 118], but not [120]. It is capable of carrying out time-dependent simulations in

common with the former three studies, but not the latter one. The Poisson ratio of the

wall material can also be chosen freely, in contrast to the other studies. Each point on the

wall moves independently. In contrast to the existing studies, no fluid nodes are created or

destroyed. The method is computationally efficient, requiring little more computational

effort than a simulation with rigid walls at realistic parameters for cerebral blood flow

simulations. It requires the inlet and outlet to be axis-aligned due to the pressure boundary

condition method, but this could be adapted.

A somewhat similar method was developed for simulations of fluid flow though elastic

vessels in a more complex geometry in two dimensions. It uses the full theory of linear

elasticity. Therefore, the motion of each point on the wall depends on that of the other

points, which is more realistic than the method described in the last paragraph. It can

therefore be used in complex geometries with branches, bulges in the wall, or rapid varia-

tions of the channel width along its length. These features occur in blood vessels, where

aneurysms correspond to bulges in the wall in a two-dimensional simulation. The steady-

state behaviour was validated by comparing the wall profiles resulting from simulations

of a 2D Starling resistor, which is a channel in which part of the wall is replaced with an

elastic segment under tension, to those reported in [11]. In contrast to most simulations

of Starling resistors [11, 13, 15, 19, 126], the wall has a finite thickness and the Young’s

modulus and Poisson ratio can be varied independently. I discovered that it is essential to

create and destroy fluid sites during simulations of fluid flow through vessels with moving

boundaries if the boundary crosses any lattice sites.

Simulations of a cylinder and a two dimensional channel have been performed for sev-

eral different combinations of lattice-Boltzmann boundary condition methods that were

suitable for simulating fluid flow in a complex geometry to assess the efficacy of them for

simulations of fluid flow through elastic vessels. A combination of the pressure boundary

condition developed by Zou and He [9] and the velocity condition by Zhao-Li et al. [10] was

found to be suitable in both cases, except that the pressure boundary condition requires

the inlet and outlet to be aligned with the axes. For the two-dimensional simulations,
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it was difficult to raise the Reynolds number beyond 200. Two dimensional simulations

of a channel with the pressure boundary condition method replaced by that proposed by

Mazzeo et al. [93] were tried. The accuracy was less good, but still acceptable. The method

was more stable, reaching a Reynolds number of 450 for a channel that is 40 lattice lengths

wide, which is sufficient for the comparison of the dynamics of the system with simulations

by Luo and Pedley [15].

The method for simulating flow in a complex geometries was then improved in several

ways. The density of the wall had been restricted by the minimum temporal resolution

required for a stable simulation, which was determined by the period of oscillation of a

mode in which each point moves in the opposite direction to its neighbour. Many sub-

timesteps for the elastic wall are carried out for each lattice-Boltzmann timestep, so that

the minimum density required is limited only by the condition that the period of oscillation

of the wall, and consequently the flow fields, must be greater than the advection time for

the LBM, as described in section 2.6. Lattice sites were created and destroyed as the wall

moved. Therefore, the method would be able to simulate elastic vessels in which the wall

is displaced by several lattice sites.

Simple tests of the dynamics have shown that when the mass per unit length of the wall

is much greater than that of the fluid in the channel, the elastic wall performs oscillations

equal to the expected period of oscillation of a membrane under tension. When the mass of

the wall is reduced, the oscillation is damped significantly due to the viscosity of the fluid,

as expected. However, noise is present in the oscillations and the amplitude of the noise

appears to increase with time. In an attempt to improve this situation, the method for

imposing the velocity at the boundary of the fluid has been improved, but the simulations

do not converge to a steady state unless damping is included in the wall. More work is

required to identify the source of the noise that arises in the simulation.

The dynamics were compared with the results shown in [15], but the simulation became

unstable at the parameters used there. This could be because the ratio TD
ηQ , where T , D, η

and Q are the tension, the channel width before deformation, the viscosity of the fluid and

the flow rate respectively, is much lower than it is for simulations reported elsewhere in

this thesis, and therefore we would expect instability to be more likely. It would therefore

be sensible to attempt further validations of the dynamics at a higher tension.
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The simulations of Starling resistors with this method were significantly more computa-

tionally costly than simulations of fluid flow through an elastic cylinder with the method

for axisymmetric systems. The computational cost for such a simulation with the latest

method has been estimated and it is expected to require three times the computational

effort of the same simulation with rigid walls. It would also be more challenging to develop

an efficient parallel implementation for this method.

Most parts of the method can be readily extended to three dimensions, but a significant

effort is needed to extend the algorithms for calculating the distances from the wall to the

lattice sites adjacent to it along the lattice vectors, selecting the points on the wall that

are used to calculate the forces on the wall, and deciding whether the wall has crossed a

particular site.

The method should then be parallelised so that it can be used in simulations of cerebral

blood flow. It could be combined with an interactive simulation tool such as HemeLB [92,

93], which was described in section 2.3, in order to carry out patient-specific simulations of

cerebral blood flow that include the effects of arterial elasticity. It would then be interesting

to compare the pressure, velocity and stress flow fields obtained by simulations of blood

flow where elasticity is included to where it is not. The effect of the geometry and the

other flow fields on the wall displacement in complex geometries can then be investigated.

The Young’s modulus is constant in my method, whereas in reality it depends on the

radius of the arteries [24]. However, it would be relatively easy to modify the method to

take the spatial variation of the Young’s modulus as a set of input parameters. The same

applies to the thickness of the wall. The elasticity is also nonlinear [76], but the variation

of the Young’s modulus with strain could readily be included in the simulation. However,

the non-constant Young’s modulus gives rise to a linear pressure-radius relationship in

large arteries [76] and one might question why I did not simply use that. It is because

the relationship would not determine the behaviour of the arterial walls at aneurysms or

branches.

Many studies have demonstrated the feasibility of blood flow simulation in patient- specific

vascular geometries for estimating the risk of cerebrovascular diseases, for example, the

rupture of an aneurysm [3, 20, 25]. Such simulations are also promising for assessing the

effect of surgical procedures on blood flow. For example, the tool described by Axner [85]
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allows the vascular geometry to be edited to simulate surgical procedures such as occluding

an artery or inserting a bypass. More recently, simulations of stent placement have been

carried out, for which a very high spatial resolution is required to resolve the stent struts

[33–35]. These studies assume that the arterial walls are rigid. However, the elasticity is

likely to affect the flow fields because the flow fields are sensitive to small changes in the

geometry [25, 37, 71]. Hoi et al. [74] found that similar CFD models with a small difference

in volume gave rise to significantly different results for the wall shear stress, which givs

further evidence that the inclusion of elasticity would affect the flow fields significantly.

Mihalef et al. [43], and Jeays et al. [44] simulated blood flow through vessels with moving

boundaries, where the wall motion during a cardiac cycle was derived from medical images,

which would improve the accuracy of the flow fields. However, it is also very important

to model the stress inside the blood vessel walls accurately, particularly when assessing

the risk of rupture of an aneurysm, and the constitutive relations of the tissue must

be applied [78]. The method that I have developed for the fully coupled simulation of

fluid flow through elastic vessels could be incorporated into blood flow simulations such

as those described above for this purpose and for the investigation of the vessel wall

displacement during the cardiac cycle. This change and further improvements to cerebral

blood flow models would render the simulations sufficiently realistic for a surgeon to use

to assess whether patients are at risk from cerebrovascular disease and to assess the effects

of different treatment procedures.
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