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Abstract

It has recently been shown that nucleosome distribution, histone modifications and RNA polymerase II (Pol II) occupancy
show preferential association with exons (‘‘exon-intron marking’’), linking chromatin structure and function to co-
transcriptional splicing in a variety of eukaryotes. Previous ChIP-sequencing studies suggested that these marking patterns
reflect the nucleosomal landscape. By analyzing ChIP-chip datasets across the human genome in three cell types, we have
found that this marking system is far more complex than previously observed. We show here that a range of histone
modifications and Pol II are preferentially associated with exons. However, there is noticeable cell-type specificity in the
degree of exon marking by histone modifications and, surprisingly, this is also reflected in some histone modifications
patterns showing biases towards introns. Exon-intron marking is laid down in the absence of transcription on silent genes,
with some marking biases changing or becoming reversed for genes expressed at different levels. Furthermore, the
relationship of this marking system with splicing is not simple, with only some histone modifications reflecting exon usage/
inclusion, while others mirror patterns of exon exclusion. By examining nucleosomal distributions in all three cell types, we
demonstrate that these histone modification patterns cannot solely be accounted for by differences in nucleosome levels
between exons and introns. In addition, because of inherent differences between ChIP-chip array and ChIP-sequencing
approaches, these platforms report different nucleosome distribution patterns across the human genome. Our findings
confound existing views and point to active cellular mechanisms which dynamically regulate histone modification levels
and account for exon-intron marking. We believe that these histone modification patterns provide links between chromatin
accessibility, Pol II movement and co-transcriptional splicing.
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Introduction

It is a widely held view that combinations of post-translational

modifications on the N-terminal tails of histones are likely to

function as an epigenetic code [1] to regulate aspects of gene

expression, including the activity of cis-regulatory elements, and

the three phases of transcription (initiation, elongation and

termination). In support of this code, systematic studies of histone

acetylation and methylation patterns across the human genome

have revealed signatures for transcriptionally active and inactive

promoters [2,3,4,5,6], distal elements/enhancers [2,4,6], and

insulators [2,7]. A number of these histone modifications have

also been shown to co-localize with gene bodies of transcribed

genes [2,5,8]. Until recently, the extent to which modifications in

gene bodies contribute to the functional complexity of chro-

matin is not clear. Evidence pointed to H3K9ac, H3K9me2,

H3K27me3, and H3K36me3, having roles in closing chromatin to

prevent spurious initiation of transcription within gene bodies

[9,10,11], and/or facilitating splicing [12,13,14]. What is clear is

that expressed genes require a dynamic equilibrium between

the relaxation and compaction of chromatin [15], and the

displacement/replacement of nucleosomes [16,17] as the RNA

polymerase II (Pol II) complex moves through the gene during

transcription [18].

The recent discovery that H3K36me3 marks exons within

transcribed gene bodies provided the first genome-wide evidence
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that coding features of all expressed genes may also have specific

epigenetic signatures related to co-transcriptional splicing [12].

Subsequently, a number of studies provided clues as to the extent

of this marking; a large number of histone modifications showed

higher levels across exons which, for the most part, could be

accounted for by nucleosome distribution, with well-positioned

nucleosomes on exons accounting for these patterns [19,20,

21,22,23]. Higher levels of Pol II occupancy were also associated

with exons when compared to introns [19], suggesting that Pol II

movement is affected by nucleosome positioning. However, the

exact relationships between histone modifications, nucleosome

distribution, Pol II movement and splicing across transcribed

genes are not yet clear, although recent evidence points to a role

for H3K36me3 in regulating the splicing machinery [24].

In this context, we sought to more accurately define the

distribution of a variety of histone modifications within gene

bodies across the human genome across several cell types, and

relate these patterns to hallmarks of transcriptional activity and

chromatin structure. Our data further supports the existence of a

complex chromatin-based marking system for exon-intron struc-

tures across the human genome. Histone modifications are

primarily associated with exons, but some also show higher levels

in introns. Surprisingly, this exon-intron marking is intrinsic to

most genes, irrespective of their transcriptional status, although the

type of marks found on transcriptionally active or inactive genes

do differ. We provide evidence that this marking is not accounted

for by nucleosome distribution and points to active mechanisms

which lay down these marks across exons or introns of both

expressed and non-expressed genes. Our data supports the

hypotheses that histone modifications may regulate chromatin

accessibility and Pol II movement during transcription and co-

transcriptional splicing, and may also ‘‘prime’’ exon-intron

structures prior to transcription.

Results

Histone Modifications Mark Exon-Intron Structures of
Expressed and Non-expressed Genes in a Cell-type
Specific Manner

We performed chromatin immunoprecipitation in combination

with microarrays (ChIP-chip) for 19 histone modifications, Pol II,

histone density, and chromatin accessibility (FAIRE) in two

hematopoietic cell lines (erythroid K562 and monocytic U937)

and primary CD14+ monocytes. FAIRE (formaldehyde-assisted

isolation of regulatory elements) assays allow DNA segments which

are less readily cross-linked with proteins after formaldehyde

treatment (i.e., regions of accessibility or DNase I hypersensitivity)

to be physically separated from bulk cross-linked chromatin using

phenol-chloroform fractionation [25,26]. We analyzed the output

of these assays, in the first instance, on our bespoke (custom-made)

tiling path microarray covering 30 Mb of the human genome

constituting the pilot regions of the ENCODE project [4]. The

ENCODE pilot regions have been shown to be strong indicators of

trends across the whole genome [3]. In parallel, we determined

expression profiles for our three cell types (see Materials and

Methods). To account for non-specific enrichments from ChIP

and differences in nucleosome density, we normalized our datasets

with the non-specific antisera ChIP profiles [27] and for H3/H2B

histone density. This normalization step would effectively remove

any biases in histone modification profiles which could be

attributed to differences in nucleosome distribution. We deter-

mined the distribution of histone modifications with respect to the

‘‘ON/OFF’’ expression status of genes, their overall chromatin

landscape, and exon/intron structures. We subsequently profiled

four of these histone modifications across the whole human

genome (see below).

Consistent with our previous observations and with those of

others [2,4,5], we found four generalized trends for histone

modifications across consensus plots for expressed genes in all

three cell types (Supplementary Figures S1, S2, S3, S4). These

included histone modifications with a substantial promoter/

transcriptional start site (TSS) bias (e.g. H3K4me2 and

H3K4me3), those extending into gene bodies with either a 59 or

39 enrichment biases relative to gene structures (e.g. H3K79me3

and H3K36me3 respectively), and those depleted across gene

bodies (e.g. H3K36me1). Non-expressed genes showed hallmark

patterns of enrichment for the repressive modifications (e.g.

H3K9me2 and H3K27me3). Patterns for histone density and

FAIRE were consistent with open, nucleosome-poor and closed,

nucleosome-rich chromatin states for expressed and non-expressed

genes respectively (Supplementary Figure S5).

We analyzed further the co-localization of these histone

modifications with respect to features within gene bodies. Initially,

we combined data from all three cell types, in order to observe

generalized trends of histone modification patterns which may

reflect fundamental features of eukaryotic cells. We constructed

consensus exon-intron plots across the ten most 59 exons (to

represent 59 ends and gene bodies) and across the five most 39

exons (to represent 39 ends) of genes. Thus, unlike previous studies,

we examined histone modification levels across the entire lengths

of exons and introns rather than exclusively around the exons and

their most immediate 59 and 39 intronic sequences. This allowed

us to assess whether, on average, differences in histone

modification levels could discriminate exons from introns across

their entire lengths. For transcriptionally active (i.e., expressed)

genes, we found patterns of differential ‘‘marking’’ of exons when

compared to introns for 15 of the 19 histone modifications

(Figure 1; Supplementary Figure S6). The majority of these biases

(seen for 10 out of 15 modifications) were evident as enrichments

favoring exons. These included H3K36me3 which had previously

been reported as preferentially marking exons [12,19,20,

21,22,23]. Others, such as H3K9me2, H3K9me3, H3K27me2

and H3K27me3 were evident as selective depletions across exons.

One modification, H3K36me1, showed an enrichment bias

favoring introns. Surprisingly, non-expressed genes also showed

consistent patterns of exon-intron marking for five modifications

with some modifications having enrichment biases favoring exons

(e.g. H3K27me3) while others showed biases favoring introns (e.g.

H3K9me2) (Supplementary Figures S7). At 39 ends of expressed

genes, the differential marking of exons and introns was

maintained up to the penultimate exon, after which the differential

was less obvious or absent (Supplementary Figure S7). For virtually

all histone modifications, the marking biases we observed were

evident both with and without nucleosome normalization

(Figure 1; Supplementary Figures S6 and S7), demonstrating that

underlying nucleosome distributions could not account for the

differential marking levels we observed. Furthermore, in several

instances, marking biases were accentuated only through nucle-

osome normalization (Figure 1 and Supplementary Figure S6, eg.

H3K36me1; Supplementary Figure S7a and c, eg. H3K27ac),

providing evidence that nucleosome distributions could mask

underlying differences in histone modification levels if not taken

into account.

Overall, these marking patterns (both normalized and unnor-

malized with respect to nucleosome distributions) showed high

levels of statistical significance (see Figures 1, Supplementary

Figures S6, S7) when compared with randomized datasets of

histone modification enrichments and when comparing enrich-
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ments found on exons with those of introns - demonstrating that

the marking patterns and biases were directed specifically at exons

or introns within the genome. These distributions could not be

accounted for by variations in GC-content [12] which may affect

hybridization kinetics in ChIP-chip assays, since we observed

histone modification biases both for exons and for introns

(although exons generally have a higher GC-content than introns).

Furthermore, nucleosome normalization would take into account

any GC-content related effects. Thus, we attributed our results as

indicative of a complex bona fide marking system of exon-intron

structures defined by histone modification levels and not by

nucleosome distributions, as reported previously [19,20,21,22,23].

The complexity of this marking system was further elaborated

when we examined histone modification exon-intron marking

biases for each of the three cell types independently (Supplemen-

tary Figure S8). We identified a high degree of variability in the

marking repertoire of each cell type – with one or two cell types

showing exon bias for a given histone modification, while the third

cell type showing the opposite (i.e., intronic) or no exon-intron bias

at all. Only eight modifications showed consistent biases across all

three cell types and, even then, only showed these biases in the

context of expression (i.e., either for expressed and/or non-

expressed genes). For expressed genes in all three cell types,

H3K36me3 was the only mark showing strong enrichment bias for

Figure 1. Histone modification patterns track exons and introns across gene bodies which is not accounted for by nucleosome
distribution. Histograms show the mean levels of ChIP-chip enrichments (Z-scores) for 15 histone modifications spanning the first ten exons and
nine introns of expressed consensus genes (n = 268, exons:introns = 1466:551). Data is derived from ENCODE regions in the K562 and U937 cell lines
and CD14+ primary monocytes. Datasets were normalized with the combined histone distribution profiles obtained for H2B and H3 in each cell line.
Some of these modifications showed the most obvious exon marking over the first two 59 exons (eg., H3K9ac and H3K4me3), while others showed
differential enrichments across the majority of the first ten exons (eg., H3K27me1 and H3K36me3), apart from the first two. Repressive modifications
H3K9me2/3 and H3K27me2/3 showed preferential depletion of exons, while H3K36me1 showed preferential enrichment of introns. Hypothetical
gene structures are shown at the bottom of the figure. Median P-value obtained from bootstrapping for exons and introns across all 19 histone
modifications tested in this study was ,1.0610215. Median P-value obtained for pair-wise t-tests between adjacent exon-intron pairs (exon2 R
exon10) for the data shown in the figure was 3.5461025.
doi:10.1371/journal.pone.0012339.g001
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exons, with H3K9me2, H3K9me3, H3K27me2 and H3K27me3

showing consistent exonic depletion. For non-expressed genes,

H3K9me2 and H3K9me3 showed intronic enrichment,

H3K27me3 showed exonic enrichment, while H3K36me1,

H3K9ac and H3K18ac all showed intronic depletion. Cell-type

specific differences in marking biases were not due to inherent

differences between the epigenetic states of cell lines and primary

cells, since K562 showed as many concordant marking biases with

CD14+, as it shared with U937 (Supplementary Table S1).

Variations in Nucleosomal Architecture Between Cell
Types

We further explored the underlying nucleosomal landscape

across the three cell types to determine why our ChIP-chip histone

modification patterns were not accounted for by nucleosome levels

as shown in previous studies using ChIP-sequencing [19,20,22,28].

For this analysis, we also performed ChIP-seq in the K562 cell line

to determine whether we observed the same nucleosomal patterns

with both ChIP-chip and ChIP-seq platforms. By examining

nucleosomal levels across exons and introns of expressed genes, we

observed striking variations in the three cell types analyzed by

ChIP-chip (Figure 2). Both K562 and U937 displayed higher levels

of nucleosomes in introns, while CD14+ cells showed higher levels

across exons. This not only highlighted that different cell types

may have different nucleosomal architectures, but reinforced that

nucleosome distributions did not account for, and were often

opposing, exon-intron marking by histone modifications (Supple-

mentary Figure S8). Remarkably, in our analysis of nucleosome

density in K562 using ChIP-seq, we saw a distinct bias in

nucleosome distribution favoring exons which was in direct

contrast to the patterns observed with ChIP-chi. This nucleosomal

exon bias was seen for the set of expressed genes in ENCODE

regions which we had analyzed by ChIP-chip, and also genome-

wide for all expressed genes in K562. These results not only

provide compelling evidence that ChIP-chip and ChIP-seq reveal

different nucleosomal architectures, but also helped reconcile the

differences in marking patterns which we observed with ChIP-chip

from that which others observed with ChIP-seq [19,20,22,28].

While ChIP-chip is likely to capture the entire chromatin milieu of

cells, size-selection of ChIP-seq material may only capture a

proportion of the information which is obtained from ChIP assays.

This interpretation is supported by studies which have shown than

sonication of cross-linked chromatin followed by massively-parallel

sequencing of size-selected material, enriches for regions of high

chromatin accessibility [29]. Such enrichment would also apply to

sequencing of ChIP samples derived by either cross-linking

followed by sonication, or by native ChIP using micrococcal

nuclease digestion, as both procedures are unlikely to fragment the

genome randomly prior to chromatin immunoprecipitation.

Therefore, we believe that our ChIP-chip datasets accurately

reflect marking of exons and introns (by both nucleosomes and

histone modifications) in the cell types we analyzed.

Evidence for the Combinatorial Nature of Exon-Intron
Marking

It is thought that the co-occurrence of histone modifications on

the same histone tails could function combinatorially as a ‘‘histone

code’’ to regulate biological outcomes [1]. To provide evidence for

the combinatorial nature of exon-intron marking, we addressed

whether histone modifications could exist together on the same

histone tails by performing sequential-ChIP on ENCODE

microarrays (seq-ChIP-chip). We used permutations of histone

modifications which showed concordant marking biases in K562

cells in either expressed or non-expressed genes (H3K36me3

followed by H3K27me1 - both favoring exons of expressed genes;

H3K27me3 followed by H3K36me1 - both favoring exons of non-

expressed genes). These combinations showed improved resolution

of exon-intron marking after seq-ChIP-chip for either expressed or

non-expressed genes which could not be accounted for by

nucleosome distribution (Supplementary Figure S9 and S10). To

provide evidence that our seq-ChIP-chip procedure resulted in

enrichments coming from both ChIPs when assayed sequentially,

we also performed two control seq-ChIP-chip experiments. The

first (H3K27me1 followed by H3K36me3) showed that our seq-

ChIP-chip could detect enrichments irrespective of the order that

the ChIP assays were performed. The second was used to show

that when two histone modifications with opposing types of

tracking (one favoring exons and one favoring introns across

expressed genes) were used in seq-ChIP-chip, the resultant

sequential profiles showed an overall loss or reversal of tracking

which was no longer statistically significant (Supplementary

Figures S9 and S10). Our data suggests that there is combinatorial

marking of exons with H3K27me1/H3K36me3 or H3K27me3/

H3K36me1 within gene bodies of expressed or non-expressed

genes respectively. However, whether these signatures occur

together on the same histone H3 N-terminal tail, or on the same

or closely spaced nucleosomes cannot be determined from our

assays. Previous sequential-ChIP analysis had shown that a

H3K27me3/H3K4me3 ‘‘bivalent’’ signature is likely to exist on

the same histone tails at the 59 ends of a subset of developmentally

regulated genes which are either silent or have low levels of

transcriptional activity [2,30]. The exon marking signatures we

describe here span entire gene bodies of either expressed or non-

expressed genes, and may thus be typical signatures of all genes.

Furthermore, these combinations provide a tantalizing clue that

there may be a ‘‘combinatorial switch’’ - (H3K27me3 R
H3K27me1 and H3K36me1 R H3K36me3), when a gene goes

from being repressed to being active.

Exon-Intron Marking Reflects Exon Usage
We next examined the possible functions of this histone

modification marking system. H3K36me3 marking, among others,

had previously been implicated in co-transcriptional splicing with

enrichment biases showing a relationship with exon usage (i.e.,

favoring canonical exons rather than alternatively-spliced exons

across expressed genes) [12], splice-site strength [19,20,23] or splice-

site switching [24]. For all expressed and non-expressed genes

identified in K562, U937 and CD14+ cells, we examined the mean

enrichment levels of each of the 19 histone modifications across a

total of 3761 canonical exons and compared them with the levels

attributed to alternatively-spliced exons and introns (totals of 1064

and 4626 respectively). We considered that any biases at 59 ends of

coding sequences may be distinct from those across gene bodies, as

they lie within close proximity to promoters which have unique

histone modification signatures. Thus, we partitioned our datasets

accordingly with the 59-most 25% of gene lengths being considered

separately from the remainder of gene bodies. We observed

extensive exon usage biases within gene bodies (Figure 3, Supple-

mentary Figure S11). In gene bodies of expressed genes, 13 histone

modifications mirrored exon usage as either enrichment or depletion

biases, depending on whether the marking favored exons or introns.

In these cases, alternatively-spliced exons showed mean values which

lay between those found for canonical exons and those for introns –

as would be expected, given that only a proportion of alternatively-

spliced exons would be used in the cell types we examined. Exon

usage biases were further accentuated in sequential-ChIP-chip assays

for combinations of H3K36me3 and H3K27me1 in the K562 cell

Exon-Intron Marking
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line (Supplementary Figure S10). This data supports previous

findings linking exon-intron marking by histone modifications with

co-transcriptional splicing, although our evidence would suggest that

at least 13 histone modifications are involved in this process (at least

two of which may act in specific combinations on expressed genes).

However, six modifications did not show alternatively-spliced exons

having mean enrichments between those of canonical exons and

introns for expressed genes (e.g. H3K79me1R3, H4K16ac). This, in

addition to the data which showed exon or intron biases for histone

modifications across non-expressed genes (Figure 1 and Figure 3)

suggests that other features, apart from exon usage, are being

marked across gene structures. Furthermore, given that cell-type

specific exon-intron marking also exists (Supplementary Figure S8),

the relationship between histone modifications and splicing may also

have cell-type specific components.

RNA Polymerase II Occupancy is Linked to Chromatin
Accessibility and Histone Modification Patterns

Previous studies have linked Pol II occupancy with nucleosome

positioning, suggesting that the nucleosome per se, may provide a

Figure 2. Nucleosome distribution patterns in three cell types display different biases with respect to exon-intron structures in
gene bodies of expressed genes. Histograms show the mean levels of ChIP-chip enrichments (Z-scores) or mean number of reads (ChIP-seq) for
histones spanning the first ten exons and nine introns of consensus expressed genes. a. K562 cell line using ChIP-chip (n = 76, exons:introns
= 477:187). b. U937 cell line using ChIP-chip (n = 88, exons:introns = 558:219). c. CD14+ primary monocytes using ChIP-chip (n = 80, exons:introns
= 493:181). d. K562 cell line using ChIP-seq (n = 68, exons:introns = 465:418). e. K562 cell line using ChIP-seq (n = 1184, exons:introns = 8095:7500).
Data was derived as the combined dataset for H2B and H3 across the ENCODE regions (panels a R d) or across the whole genome (panel e).
Hypothetical gene structures are shown at the bottom of each panel of the figure. Median P-values obtained from bootstrapping for exons and
introns were 1.77610213 (panel a), ,1.0610215 (panel b), 5.93610211 (panel c), ,1.0610215 (panel d) and ,1.0610215 (panel e). Median P-values
obtained for pair-wise t-tests between exons and introns (exon2 R exon10) were 4.1461024 (panel a), 1.87610213 (panel b), 2.33610216 (panel c),
3.21610210 (panel d) and ,1.0610215 (panel e).
doi:10.1371/journal.pone.0012339.g002
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barrier or ‘‘speed bump’’ which impedes Pol II movement across

exons which have well-positioned nucleosomes [19,31]. However,

given that these studies were conducted using ChIP-seq, we

considered that they may not provide a completely unbiased view

of the role of chromatin architecture in regulating Pol II

movement. We adopted a view that exon-intron marking by

histone modifications, at least for expressed genes, may also be

involved in regulating chromatin accessibility to facilitate the

movement of Pol II across genes during transcription. Therefore,

we examined whether other features of chromatin structure across

expressed genes also displayed exon-intron marking which were

concordant with histone modification patterns. We had already

demonstrated that the densities of histones H2B and H3 (i.e.,

nucleosomes) were lower across exons than introns of expressed

genes in both the K562 and U937 cell lines, but the patterns were

reversed in CD14+ monocytes (Figure 2). FAIRE accessibility

assays showed the highest levels of accessibility across introns of

both expressed and non-expressed genes in all three cell types

(Supplementary Figure S12). Therefore, the different nucleosome

distributions in our three cell types could not explain the FAIRE

patterns, confounding views that nucleosome patterns per se

determine accessibility. However, eight histone modifications

(H3K9me2, H3K9me3, H3K9ac, H3K27ac, H3K27me2,

H3K27me3, H3K36me1, and H3K36me3) consistently showed

differential exon-intron marking across all three cell types (see

above and Supplementary Figure S8) which were concordant with

the FAIRE profiles for either expressed or non-expressed genes.

This pointed to these histone modifications being directly related

to accessibility across gene bodies.

This suggested to us that the combinatorial effect of differential

histone modification load across gene bodies may result in an

overall more compact chromatin configuration across exons of

expressed genes. From this, we predicted that although K562 and

U937 both have higher nucleosome densities in introns than in

exons, Pol II occupancy across exons would be higher than across

introns. Our prediction was substantiated by observing significant

exon bias in Pol II occupancy across expressed genes in K562 and

U937 when we performed ChIP-chip assays with an antibody

which recognized both initiating and elongating forms of Pol II

(Figure 4 and Supplementary Figure S13). This bias reflected exon

usage and showed highest levels of occupancy at both 59 and 39

ends of genes. Unlike histone modification profiles which

differentially marked exon-intron structure across genes up to

the penultimate exon (Supplementary Figure S6), marking by Pol

II appeared to continue right up to the last exon.

Taken together, our data points towards a close relationship

between chromatin accessibility/compaction, histone modifica-

tions and the movement or ‘‘pausing’’ [32] of Pol II across exon-

intron structures during transcriptional elongation. In turn, Pol

II exon ‘‘pausing’’ may affect exon usage during co-transcrip-

tional splicing. In support of our interpretations, data from a

variety of sources suggests that histone modifications [12,24,33],

histone deacetylase and chromatin modelling activity [34,35,36]

and the speed of Pol II movement or pausing [37,38,39] may

facilitate splice-site selection in alternatively-spliced mRNAs.

This would imply that the role of histone modifications in co-

transcriptional splicing is not direct, as suggested previously

[12,24]. While it is possible that well-positioned nucleosomes

across exons are also related to Pol II movement [19], cues

received by Pol II from histone modifications on these

nucleosomes may be the critical factor in controlling both Pol

II movement and the recruitment of splicing factors. Our data is

consistent with histone modifications having both of these roles,

as has been proposed by other investigators [31]. Furthermore,

differences in marking between histone modifications and Pol II

at the 39 ends of expressed genes suggest that there are other

Figure 3. Histone modifications differentially mark canonical and alternatively-spliced exons and introns across bodies of
expressed genes. Histograms show the mean levels (Z-scores) for histone modifications and histones (ChIP-chip enrichments) or chromatin
accessibility (FAIRE) spanning typical canonical/alternatively-spliced exons and introns. Data was derived from gene bodies of expressed genes
(n = 268, canonical exons:alternatively-spliced exons:introns = 2463:523:3036) in the K562 and U937 cell lines and CD14+ primary monocytes across
the ENCODE regions. Histone distribution was based on the combined data for H2B and H3 in each cell type. Biases favoring either canonical exon or
intron are summarized by the difference in Z-scores shown above each assay in grey. Positive (+) differences in Z-scores reflect exon biases, while
negative (2) differences reflect intron biases. Error bars are 95% confidence intervals.
doi:10.1371/journal.pone.0012339.g003
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features involved in pausing during polyadenylation [40,41] that

we have not yet examined.

Exon-Intron Marking is Dependent on Rates of
Transcription

We were able to determine that the exon-intron marking

patterns we had observed across the ENCODE regions were

fundamental features of all human genes by performing ChIP-chip

using Affymetrix GeneChIPH whole genome tiling arrays. These

studies were performed in the K562 cell line for four modifications

(H3K27me1, H3K27me3, H3K36me1 and H3K36me3) which

typified the kind of exon or intron marking biases we had observed

across the ENCODE regions, and which appeared to be

distributed as combinatorial signatures in either expressed or

non-expressed genes (see Results above and Supplementary

Figures S9 and S10). We examined histone modification patterns

across the gene structures of 9921 genes for which we had

consistent expression data, and gene/transcript information

available from ENSEMBL (see Materials and Methods). For both

expressed and non-expressed genes, we observed genome-wide

patterns of exon-intron marking that were in agreement with those

we obtained across the ENCODE regions (Figure 5A, Supple-

mentary Figures S14, S15). We did, however, observe that

similarities between the ENCODE and whole genome datasets

were most evident when we explored different binning strategies

for expressed and non-expressed genes. For example, for

H3K27me1, the top 25% of expressed genes in genome-wide

analysis showed patterns similar to the ENCODE regions (Figure 1

and Figure 5a), whilst only the bottom 10% of non-expressed

genes genome-wide showed the same patterns obtained for

ENCODE. This suggested that different rates of transcription

reflected in steady-state expression levels may have a bearing on

the marking system. By constructing 12 intervals of modification

data based on the Robust Multichip Average (RMA) values of all

9921 genes, we uncovered striking differential exon/intron

marking as a function of expression level (Figure 5b, c) displaying

a number of prominent features.

Firstly, the most repressed/silent genes (the first decile in

Figure 5a) were not appreciably enriched for these four histone

marks. Secondly, substantial enrichments for the repressive

H3K27me3 were the first to appear in the second and third

deciles, followed thereafter by the other three modifications as

‘‘waves’’ of increasing and then decreasing enrichment levels, in

the order H3K36me1, H3K27me1 and H3K36me3. Genes within

deciles 1 to 4, however, were still transcriptionally inactive, as we

could not detect appreciable levels of Pol II binding for 24 genes

assayed by ChIP-chip which were partitioned into these deciles

(data not shown). Thirdly, exons were preferentially loaded with

modifications at lower levels of expression, with introns only

showing similar levels of enrichments at higher levels of expression

(shown as an intron ‘‘lag’’ in Figure 5c). The marking biases at

canonical or alternatively-spliced exons differed as a function of

expression level, and in some instances, showing higher enrich-

ments for alternatively-spliced exons than for canonical ones (e.g.

H3K36me1 and H3K27me1), again suggesting that exon usage per

se was not the only factor that distinguished them. Fourthly, at the

Figure 4. RNA polymerase II (Pol II) occupancy levels are increased at transcribed exons. a. Pol II levels across consensus expressed (‘‘ON’’)
(n = 245) and non-expressed (‘‘OFF’’) genes (n = 115). b. Histograms show levels of Pol II at 59 ends and across gene bodies with respect to canonical/
alternatively-spliced exons and introns of expressed genes [n = 181, canonical exon:alternatively-spliced exon:intron = 330:151:496 (59 ends) or 1705/
371/2110 (gene bodies)]. Biases favoring either canonical exon or intron are summarized by the difference in Z-scores shown above each assay in
grey. Positive (+) differences in Z-scores reflect exon biases, while negative (2) differences reflect intron biases. Error bars are 95% confidence
intervals. c. Exon-intron tracking of Pol II across the first ten exons and nine introns of consensus expressed genes (n = 181, exon:introns = 980:376)
(hypothetical gene structure shown below panel). d. Exon-intron tracking of Pol II across last 5 exons and 4 introns of consensus expressed genes
(n = 181, exon:introns = 563:148) (hypothetical gene structure shown below panel). Median P-values obtained from bootstrapping for exons and
introns in c and d were both ,1.0610215. Median P-values obtained for pair-wise t-tests between adjacent exon-intron pairs in data from c (exon2 R
exon10) and in d (exonslast-4 R exonlast) were 5.0661026 and 6.3061024 respectively. In all panels, Pol II ChIP-chip enrichments across ENCODE genes
in the K562 and U937 cell lines are expressed as mean Z-scores.
doi:10.1371/journal.pone.0012339.g004
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very highest levels of expression (the top 5-10% of RMA values,

decile 10), the marking biases and enrichment levels of all four

modifications showed distinct shifts away from those seen in the

previous deciles. More specifically, (i) marking biases for both

H3K36me1 and H3K27me3 switched from favoring exons, to

favoring introns, and (ii) the differentials between canonical exons,

alternative exons and introns for all four modifications changed.

We further refined the nature of some of these shifts by examining

the predicted level of inclusion of alternatively-spliced exons in

gene transcripts expressed at high levels. H3K36me3 levels

showed enrichments which reflected exon usage, with frequently

included alternatively-spliced exons having higher modification

levels than infrequently included ones (Supplementary Figure

S16). Surprisingly, H3K36me1, H3K27me1 and H3K27me3 all

showed significantly higher levels of enrichments for less frequently

included exons, supporting the idea that exon exclusion, rather

than exon inclusion or usage, was also a feature of the marking

system. This last feature points to a specialized need to further

regulate chromatin structure and Pol II movement at very high

rates of transcription – this may be required to maintain the

fidelity of transcriptional elongation or the splicing process.

Exon-Intron ‘‘Priming’’ in the Absence of Transcription
We propose that the ‘‘waves’’ of differential exon-intron

marking with histone modifications described above could model

the temporal events that occur when genes go from being

transcriptionally repressed/silent to being transcriptionally active.

For individual genes which were differentially expressed between

the three cell types we examined, we confirmed that changes in

expression from non-expressed to expressed (‘‘OFF’’ to ‘‘ON’’) or

from low expression to high expression were accompanied by the

changes predicted for these four histone modifications (Supple-

mentary Figure S17). All of our data, taken together, suggests that

such a model has both transcriptionally-independent (‘‘priming’’)

and transcriptionally-dependent phases (Figure 6). Furthermore, in

both of these phases, histone modification marking distinguishes

Figure 5. Genome-wide histone modifications patterns track exon-intron structures in gene bodies according to levels of gene
expression or repression. a. Histograms show the level of four histone modifications across the first ten exons and nine introns of consensus
genes expressed (‘‘ON’’) (n = 1845, exons:introns = 12763:10853) or non-expressed (‘‘OFF’’) (n = 1657, exon:introns = 10911: 9194). Exon numbering is
at the bottom of the panel. Median P-value obtained from bootstrapping for exons and introns for all four modifications were ,1.0610215 (‘‘ON’’)
and ,1.0610215 (‘‘OFF’’). Median P-values obtained for pair-wise t-tests between adjacent exon-intron pairs (exon2 R exon10) for the data shown in
the figure were 1.01610249 (‘‘ON’’) and 6.48610209 (‘‘OFF’’). b. Histograms show relationships between four histone modifications and canonical/
alternatively-spliced exons, and introns across gene bodies as a function of expression levels (percentile rankings on the x axes). Genes (n = 9921,
canonical exons:alternatively-spliced exons:intron = 70470:20733:91613) were ranked into 12 bins according to expression level (percentile rankings
on the x axes). Error bars are 95% confidence intervals. c. Line graphs of the levels of the four histone modifications from b as a function of expression
level (percentile rankings on the x axes) and exon/intron structure (red = canonical exons, blue = alternative exons and green = introns). Error bars
are 95% confidence levels. In all panels, ChIP-chip enrichments obtained from genome-wide analysis of the K562 cell line are expressed as mean Z-
scores.
doi:10.1371/journal.pone.0012339.g005
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canonical exons from alternatively-spliced exons, both of which

are seen as distinct from introns. Based on our whole genome

analysis, ‘‘priming’’ of exons and introns is likely to involve

H3K27me3 and H3K36me1, both of which appear loaded onto

histones when genes are silent or at low levels of gene expression.

These modifications are removed in favor of H3K27me1 and

H3K36me3 as expression levels increase. This would indicate that

the switch from the tri- to mono-methyl state for H3K27 and the

switch from the mono- to tri-methyl state for H3K36 may be

involved in the transition from ‘‘priming’’ to transcription, or from

low-level to high-level transcription. This idea is also supported by

our sequential-ChIP-chip which showed that the combination

H3K27me3/H3K36me1 is found on non-expressed genes,

whereas expressed genes have H3K36me3/H3K27me1 (Supple-

Figure 6. Schematic model of the relationships between histone modifications and exon-intron structures across expressed and
non-expressed/silent genes. Model is based on relationships observed for both ENCODE and whole genome datasets described in the text.
Circular arrows reflect statistically significant increases (+) or decreases (2) in histone modification levels (shown either side of the arrows) observed
when comparing a typical intron and a typical exon (either canonical or alternative) in either the expressed (‘‘ON’’) or non-expressed (‘‘OFF’’) state.
Relative distances between nucleosomes are based on histone density data. Predicted Pol II movement is also shown. Transcribed mRNA is shown in
red. a. Canonical exon versus intron. b. Alternatively-spliced exon versus intron.
doi:10.1371/journal.pone.0012339.g006
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mentary Figures S9 and S10). The presence of exon-intron

marking for H3K9me2 or 3 and H3K27me2 across non-expressed

genes (Figures 1 and 3) argues that a variety of repressive marks

are also involved in the ‘‘priming’’ process. Noticeably, these latter

marks show biases favoring introns, which is in contrast to the

exon enrichment bias seen with H3K27me3. Therefore, the

‘‘priming’’ process may be capable of distinguishing the full

complement of coding features (both exons and introns) in the

absence of transcription. We speculate that ‘‘priming’’ may

provide a transcription-ready template of exon-intron structures,

and that this template serves to facilitate subsequent phases of

marking and chromatin re-organization during transcription. This

model, which is consistent with data from one other study [23],

confounds previous views that histone modification patterns across

gene bodies are found only on transcribed genes [12,19,20] and

points to exon-intron marking as a constitutive feature of

eukaryotic genes irrespective of transcriptional activity.

Discussion

There is a growing body of evidence linking chromatin structure

and function, exon-intron organization and co-transcriptional

splicing/mRNA processing (reviewed in [31,42]). Our study

provides several lines of evidence pointing to histone modifications

as having roles in determining chromatin accessibility, Pol II

movement and co-transcriptional mRNA processing at a global level

through exon-intron marking. Our results are in striking contrast to

previous reports which showed that histone modification exon-

intron marking patterns were merely a reflection of nucleosomal

distribution, with well-positioned nucleosomes on exons accounting

for apparent histone modification biases [19,20,21,22]. Having

accounted for differences in nucleosome distribution, the patterns of

histone modifications we observed can only be attributable to active

cellular mechanisms (i.e., the action of histone modifiers) which

overlay the nucleosomal architecture with modifications on specific

nucleosomes located within exons or within introns. Furthermore,

while other studies had observed exon marking across expressed

genes by analyzing a single cell type, our data points to aspects of this

marking as being cell-type specific, combinatorial, and related to

levels of transcription – with even untranscribed genes having exon-

intron marking biases. We also provide evidence that this marking

system is not simply mirroring exon usage, as some modifications

track infrequently used alternative exons. These observations have

not been fully described previously.

What remains to be determined are how each histone

modification contributes to chromatin configurations and the

control of Pol II movement, which trans-acting factors lay down

the marks, and whether the marks facilitate recruitment of

additional factors during the three phases of transcription, and

during co-transcriptional splicing. Whether aspects of this marking

system function in a truly combinatorial fashion must be explored

further. Given our evidence which shows exons are ‘‘primed’’ with

histone marks prior to their transcription, how this ‘‘priming’’ is

laid down in the absence of Pol II, and whether it is

developmentally regulated are particularly interesting areas to

explore. The findings of the present study confound previous views

on chromatin and splicing and provide the starting point for

several new avenues of investigation.

Materials and Methods

ENCODE Tiling Array
The construction of the PCR product Sanger Institute

ENCODE array is described in detail elsewhere [4]. This array

was further supplemented with a 256 kb tiling path of the human

SCL locus for which a detailed analysis of histone modifications

had previously been determined [43]. The preparation of

amplicons and arrays are also described at www.sanger.ac.uk/

Projects/Microarrays/arraylab/methods.shtml.

Cell Sources
Human cell lines K562 [44] and U937 [45] were cultured in

DMEM, 9% fetal calf serum, 1% penicillin-streptomycin and

2 mM L-glutamine and in RPMI 1640, 18% fetal calf serum, 1%

penicillin-streptomycin and 2 mM L-glutamine respectively.

Human CD14+ monocytes were isolated from peripheral blood

obtained from a subject of the Cambridge BioResource, a

collection of 4000 pseudo-anonymized healthy blood donors that

has been established by the Cambridge Biomedical Research

Centre in collaboration with NHS Blood and Transplant, for use

in genotype-phenotype association studies. The study was

approved by the Cambridgeshire 1 Research Ethics Committee.

CD14+ monocytes were purified using the RoboSep fully

automated cell separator (Stem Cell Technologies Inc) according

to manufacturer’s instructions. Purity of CD14+ cells was

determined to be greater than 98% by FACS [46].

Antibody Specificity Determination
ChIP antibodies and pre-immune antisera controls used in this

study are described in Supplementary Table S2. Dot blots for

dilution series of histone peptides (5–100 ng/ml in 20 mM Tris-

HCl, pH 7.5) containing modified histone residues or unmodified

histone control peptides (Supplementary Table S2) were prepared

by vacuum-blotting (Bio-Dot, BIO-RAD) using the Immobilon-

PSQ or Immobilon-P membranes (Millipore). Dot blots were

hybridized using standard procedures detailed elsewhere [47].

Signal intensities of hybridization signals on ECL HyperfilmTM

(GE Healthcare) were obtained and the data summarized in

Supplementary Figure S18.

Chromatin Immunoprecipitation (ChIP) and Sequential
ChIP

ChIP was performed as described elsewhere [4,48] using varying

cross-linking conditions depending on the assay (conditions

available upon request). 8–10 mg of each antibody (Supplementary

Table S2) were used in ChIP assays. Sequential ChIP (Seq-ChIP)

was performed according to the protocol found in Supplementary

Protocol S.1. Mock IP controls using the relevant pre-immune

antisera were performed for ChIP and for both rounds of Seq-ChIP.

Three bioreplicates were performed for each ChIP assay.

ChIP-chip Labelling, Microarray Hybridization and
Quantitation

Fluorescently-labelled DNA samples were prepared from unam-

plified input/ChIP/FAIRE DNAs and hybridized onto the EN-

CODE PCR product tiling array for 45 hours using an automated

hybridization station (HS 4800TM, TECAN) as described elsewhere

[4]. Microarrays were scanned using a ScanArray 4000 XL (Perkin

Elmer). Mean spot intensities from images were quantified using

ProScanArrayH Express (Perkin-Elmer) with background subtraction.

Spots affected by dust were manually flagged as ‘‘not found’’ and

excluded from subsequent analysis. These data were submitted to

ArrayExpress (accession no. E-MTAB-334).

Whole Genome ChIP-chip Analysis
Chromatin immunoprecipitated DNA samples and the input

(control) sample (see above) were amplified with a version of the
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REPLI-g FFPE Kit (Qiagen) according to the manufacturer’s

protocol. 20 mg of amplified DNA of each sample was fragmented

in 16One-Phor-All Buffer plus (GE Healthcare) using 1:50

dilution of DNAse I (Epicentre) for 9 minutes at 37uC followed

by heat inactivation at 100uC for 10 minutes and snap cooling on

ice for 2 minutes. The fragmented DNA was checked on an

agarose gel to ensure that the main DNA band was below 100 bp.

The fragmented DNA was end-labeled using the GeneChip WT

Double-Stranded DNA Terminal Labeling Kit (Affymetrix)

according to the manufacturer’s protocol. 18 mg of amplified

samples were hybridized to the GeneChipH Human Tiling 2.0R

Array Set (Affymetrix) and washed, stained and scanned following

the manufacturer’s protocols. The scanned output files were

analyzed with Tiling Analysis Software version1.1 (Affymetrix,

Santa Clara, CA, USA). Probes were mapped to human

chromosomes according to NCBIv35 (hg17) genome assembly.

The samples (ChIP and genomic input samples) were normalized

together by quartile normalization using a linear intensity scale.

Two-sample analysis using only data from the perfect matches

with bandwidth 40 was applied to the sample to determine the

ChIP enrichment at each probe position. These data were

submitted to ArrayExpress (accession no. E-MTAB-336).

ChIP-sequencing
ChIP assays for histones H2B and H3 were performed in the

K562 cell line as described above. Samples were prepared for

next-generation sequencing using the Illumina ChIP-seq kit (IP-

102-1001) according to manufacturer’s instructions. Samples were

sequenced on the Genome Analyzer IIa (Illumina).

Gene Expression Analysis
We prepared total RNA from three bioreplicates of K562, U937

and CD14+ cells using TRIZOL reagent as described at http://

www.sanger.ac.uk/Projects/Microarrays/arraylab/protocol1.pdf.

RNA isolated from CD14+ monocytes was purified further using

the RNeasy MinElute Cleanup Kit following the manufacturers’

instructions (Qiagen). Each purified RNA sample was assessed for

quality and integrity using the 2100 Bioanalzyer (Agilent)

following the manufacturers’ instructions. Transcriptional activity

in K562 and U937 was determined by hybridizing samples to the

Affymetrix U133 plus 2.0 gene expression microarray and also to

the Sanger ENCODE array. For Affymetrix GeneChip analysis,

samples were prepared according to the Affymetrix GeneChip

Expression Analysis Manual (Affymetrix) using 5 mg of total RNA.

For Sanger ENCODE array analysis, labelled samples were

prepared by oligo-dT priming or random priming as described at

http://www.sanger.ac.uk/Projects/Microarrays/arraylab/protocol5.

pdf. RNA samples (labelled with Cy3) and genomic DNA (labelled

with Cy5) from the same cell source were hybridized as for ChIP-

chip analysis. Expression analysis of CD14+ monocytes was

performed using Illumina Human-6 v2 BeadChips (Illumina Inc.

San Diego, USA) [46]. Total RNA (500 ng) from each sample

was amplified and labelled by in vitro transcription according to

the manufacturer’s instructions (Illumina TotalPrep RNA ampli-

fication kit, Ambion, Texas, USA). 1500 ng of biotinylated aRNA

were hybridized, and the BeadChips washed, stained and scanned

following the manufacturer’s instructions. For each cell type

analyzed, three biological replicates were performed across the

relevant microarray platforms. Affymetrix GeneChip and Illu-

mina BeadChIP data were submitted to ArrayExpress [accession

nos. E-MTAB-335 (K562 and U937) and E-TABM-633 (CD14+
monocytes)].

For Sanger ENCODE arrays, overall gene expression levels

across all three bioreplicates were computed as the average (mean)

of the random-primed and oligodT Z-scored data mapping to the

last 2000 bases average for oligo dT-primed and random primed

normalized Cy3/Cy5 ratios for all tiles encompassing a gene.

Whole Affymetrix expression data were analyzed with Biocon-

ductor (http://bioconductor.org/), normalized and transformed

using the MAS5 and RMA methods in the affy package (http://

bioconductor.org/packages/bioc/html/affy.html). Similarly, Illu-

mina data was analyzed by RMA using the lumi (http://

bioconductor.org/packages/bioc/html/lumi.html) package. To

determine the overall expression status of genes in ENCODE

regions based on Affymetrix, Sanger ENCODE array and

Illumina analysis, expression levels of 618 annotated genes were

binned into quartiles based on RMA (Affymetrix) or Z-scores

(Sanger ENCODE arrays). Genes considered expressed (‘‘ON’’)

and non-expressed (‘‘OFF’’) were those that were found in the top

2 quartiles of ranked genes and the bottom quartile of ranked

genes respectively. Genes expressed in K562 and U937 which

were found in the intersection of quartile bins for both Affymetrix

and Sanger ENCODE array analysis (Supplementary Table S3,

S4, S5, S6) were used further. CD14+ monocyte gene ranking was

performed using RMA of Illumina data only and ‘‘ON/OFF’’

states determined using the same quartile strategy as above

(Supplementary Table S7–S8). For interpretation of whole

genome ChIP-chip datasets in the K562 cell line in the context

of gene expression, data was considered for only those genes

consistently called either absent or present by MAS5 on

Affymetrix Expression GeneChips and which also had ENSEMBL

identifiers (Supplementary Table S9). These genes were then

ranked by RMA values. Expressed and non-expressed genes were

considered to be those in the top 25% and bottom 25% of RMA

values respectively, unless specified in the text or figures.

Computational Analyses of ChIP-chip Data
(i) Pre-processing and Normalization. Pre-processed data

were created from raw enrichment data from three bioreplicate

hybridizations. The ratios of the background corrected ChIP

signal divided by the background corrected input signal, both

globally normalized to the median ratio, were used for all ChIP-

chip analyses. Ratios of duplicated spots were averaged. Ratios of

spots defined as ‘‘not found’’ and ratios with a value below zero

were excluded from the analysis and also excluded from the final

composite median data. In addition, histone modification ChIP-

chip datasets were normalized with respect to histone density

(based on averaged H3 and H2B levels) and with rabbit IgG

control datasets by dividing the final composite median data for

each ChIP-chip assay with histone density or IgG data on a tile by

tile basis. Pol II ChIP-chip datasets were normalized with mouse

IgG control datasets. Final normalized datasets were used to create

3 datasets used in the analyses: (i) centred enrichment data, (ii) log2

centred enrichment data, and (iii) log2 centred Z-scored

enrichment data (log2 centred data were divided by the

standard deviation of the entire dataset). For Affymetrix

GeneChipH tiling array experiments, the scanned output files

were analyzed with Tiling Analysis Software version1.1

(Affymetrix, Santa Clara, CA, USA). The samples (ChIP and

genomic input samples) were normalized together by quartile

normalization using a linear intensity scale. Two-sample analysis

using only data from the perfect matches with bandwidth 40 was

applied to the sample to determine the ChIP enrichment at each

probe position. All data were stored and analyzed on NCBI

human genome build 35 (hg17).

(ii) Sequential ChIP-chip (Seq-ChIP-chip). For sequential-

ChIP (ChIP for histone modifications in both rounds) and

sequential-ChIP controls (ChIP for histone modification in first
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round followed by ChIP for rabbit IgG in the second round), signal

intensities in both channels were normalized independently and

averaged for bioreplicates (based the median input signals), and then

normalized between experimental and control datasets. The signals

from each array element attributed to the sequential-ChIP

experimental datasets were obtained by subtracting signal for

each sequential ChIP control from the sequential-ChIP values in the

ChIP channel. The enrichment ratio for sequential-ChIP was then

determined relative to the normalized input channel. The ratios

were then median centred, normalized with respect to histone

density and rabbit antisera control datasets, and transformed to log2

centred Z-scored enrichment data as described above.

(iii) ChIP-sequencing. 36 bp reads were aligned to the

NCBI human genome build 36 (hg18) using the Burrows-Wheeler

alignment algorithm Bowtie [49]. 14 040 928 (H2B) and 14 896

571 (H3) unique sequence reads were aligned unambiguously to

the human genome. Aligned sequencing reads were filed into

200 bp ‘‘bins’’.

(iv) Analysis of Histone Modification Enrichments and

Gene Features. Normalized ChIP-chip and Seq-ChIP-chip

data described above was viewed within the UCSC genome

browser as formatted wiggle tracks (http://genome.ucsc.edu/

goldenPath/help/wiggle.html) permitting the visualization of

continuous-valued data in the context of annotated genome

features. Modified histone behaviours in the context of composite

genes were plotted using the R (http://www.r-project.org/) or

Python programming language. Consensus histone modification

profiles for subsets of ‘‘ON/OFF’’ genes were visualized based on

expression levels as described above.

(v) ChIP-chip and ChIP-seq Levels Across Exons and

Introns. The log2 centred Z-scored ChIP-chip and Seq-ChIP-

chip enrichment data for 19 histone modifications, five Seq-chip

combinations, histone density, FAIRE and Pol II were determined

across exon-intron gene structures for the ENCODE datasets. For

whole genome analysis, the log2 centred Z-scored enrichment data

for H3K27me1, H3K27me3, H3K36me1, H3K36me3 were

determined. For the ENCODE datasets, genes that encompassed

at least 6 kb of genomic sequence and containing three or more

exons were analyzed (see below). For whole genome analysis, in

certain situations, only the three exon constraint was used. Exon

(both canonical and alternative) and intron coordinates for genes

with Ensembl IDs were downloaded from the Ensembl database

(http://www.ensembl.org/) and associated with experimental

datasets. Canonical exons were defined as those exons present in

every annotated ENSEMBL mRNA transcript for a given

ENSEMBL gene. Alternative exons were defined as those exons

which were found in some, but not all, mRNA transcripts for a

given ENSEMBL gene. Exons (both canonical and alternative)

and introns were binned according to their position within the

transcript. Histograms of histone modification and Pol II

behaviours across consensus ‘‘ON’’ and ‘‘OFF’’ gene structures

(first ten exons and nine introns) were derived using mean ChIP-

chip or Seq-ChIP-chip enrichment/depletion values for canonical

exons and introns. The gene structure at 39 ends (last five exons

and four introns) were analyzed in a similar fashion. The mean

ChIP-chip enrichment/depletion values were also determined for

canonical and alternative exons, and for introns (with 95%

confidence intervals). For this analysis, 59 ends of genes were

considered to be the 59-most 25% of the gene, whilst gene bodies

were considered to be the remaining 75% of the gene. Sequences

containing overlap between canonical and alternative exons were

excluded from analysis. Genomic ‘‘bins’’ containing sequence

reads from ChIP-seq datasets for H2B and H3 in K562 cells, were

assigned to exons and introns in a similar fashion.

A randomization strategy (bootstrapping) was used to determine

the statistical significance of ChIP-chip and ChIP-seq distributions

across exons and introns. The genomic co-ordinates of microarray

tiles were randomized within any single dataset 100 times to

generate 100 random datasets across the ENCODE regions (or

whole genome where appropriate). This effectively assigned

datapoints, normally assigned to exons and introns, to random

genomic co-ordinates. Mean ratios were calculated for exons and

introns of consensus ‘‘ON’’ and ‘‘OFF’’ gene structures for the

experimental and random datasets based on the correct annotated

co-ordinates of exons and introns. Mean ratios from the

experimental dataset were also compared to the population of

randomized values to determine whether the mean ratios obtained

in the experimental dataset could have occurred by chance in the

randomized datasets and significance levels (P-values) were

assigned. For ChIP-seq, 100 randomized datasets were generated

for equivalent numbers of reads for both H2B and H3 (see above).

In other words, 36 bp ‘‘read’’ co-ordinates were assigned

randomly to each randomized dataset. Randomized datasets were

filed into 200 bp ‘‘bins’’ as described for the experimental datasets

(see above). Mean read levels for both exons and introns of

expressed ‘‘ON’’ genes were determined for both the experimental

and randomized datasets and P-values were assigned. Two-tailed

t-tests were also performed for pairwise comparisons of histone

modification or Pol II levels across exons (canonical) and introns in

consensus gene structures (for gene structures from exons 2 R 10).

Similarly, bootstrapping and t-tests were performed at the 39 end

of genes (for the last 5 exons and 4 introns) for ChIP-chip datasets.

Supporting Information

Protocol S1 Protocol for Sequential-ChIP (Seq-ChIP) used in

this study. All reagents (including suppliers and catalogue

numbers) used for Seq-Chip assays are shown at the top of the

protocol. For details of hybridization of these samples to Sanger

Institute tiling microarrays, refer to our previous publications1,2 1.
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1% of the human genome in five human cell lines. Genome Res 17,

691-707 (2007). 2. Bruce, A.W., Lopez-Contreras, A., Flicek, P.,

Down, T.A., Dhami, P., Dillon, S.C., Koch, C.M., Langford,

C.F., Dunham, I., Andrews, R.M. and Vetrie, D. Functional

diversity for REST (NRSF) is defined by in vivo binding affinity

hierachies at the DNA sequence level. Genome Res 19, 994-1005

(2009).

Found at: doi:10.1371/journal.pone.0012339.s001 (2.28 MB

DOC)

Figure S1 Histone modification patterns for expressed and non-

expressed genes across the ENCODE regions in the K562 and

U937 cell lines and CD14+ monocytes. a. Consensus gene plots

for 19 histone modifications across expressed (ON) genes (n = 366).

b. Consensus gene plots for 19 histone modifications across non-

expressed (OFF) genes (n = 167). ChIP-chip enrichment levels in

both panels are expressed as mean Z-scores. Proportional gene

length and flanking regions are shown on the x axis as percentages

(%). Color key to modifications depicted in each panel are shown

to the right of the figure. Some modifications showed strong

association with 59 ends (i.e., promoters) or with gene bodies of

actively transcribed genes (with either a 59 or 39 bias). Other

modifications showed depletions across gene bodies of expressed

genes. Consensus plots for non-expressed genes exhibited the

typical hallmarks of H3K27me3 and H3K9me2 enrichments.

Found at: doi:10.1371/journal.pone.0012339.s002 (1.14 MB

TIF)
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Figure S2 Histone modification patterns for expressed and non-

expressed genes across the ENCODE regions in the K562 cell line.

a. Consensus gene plots for 19 histone modifications across

expressed (ON) genes (n = 111). b. Consensus gene plots for 19

histone modifications across non-expressed (OFF) genes (n = 53).

ChIP-chip enrichment levels in both panels are expressed as mean

Z-scores. Proportional gene length and flanking regions are shown

on the x axis as percentages (%). Color key to modifications

depicted in each panel are shown to the right of the figure. Trends

were as described in Supplementary Figure S1.

Found at: doi:10.1371/journal.pone.0012339.s003 (1.16 MB TIF)

Figure S3 Histone modification patterns for expressed and non-

expressed genes across the ENCODE regions in the U937 cell line.

a. Consensus gene plots for 19 histone modifications across

expressed (ON) genes (n = 134). b. Consensus gene plots for 19

histone modifications across non-expressed (OFF) genes (n = 62).

ChIP-chip enrichment levels in both panels are expressed as mean

Z-scores. Proportional gene length and flanking regions are shown

on the x axis as percentages (%). Color key to modifications

depicted in each panel are shown to the right of the figure. Trends

were as described in Supplementary Figure S1.

Found at: doi:10.1371/journal.pone.0012339.s004 (1.15 MB TIF)

Figure S4 Histone modification patterns for expressed and non-

expressed genes across the ENCODE regions in CD14+
monocytes. a. Consensus gene plots for 19 histone modifications

across expressed (ON) genes (n = 121). b. Consensus gene plots for

19 histone modifications across non-expressed (OFF) genes

(n = 52). ChIP-chip enrichment levels in both panels are expressed

as mean Z-scores. Proportional gene length and flanking regions

are shown on the x axis as percentages (%). Color key to

modifications depicted in each panel are shown to the right of the

figure. Trends were as described in Supplementary Figure S1.

Found at: doi:10.1371/journal.pone.0012339.s005 (1.16 MB TIF)

Figure S5 Chromatin accessibility (FAIRE) and histone density

patterns (H2B/H3) for expressed and non-expressed genes across

the ENCODE regions in the K562 and U937 cell lines and

CD14+ monocytes. a. Consensus gene plots across expressed (ON)

genes in all three cell types [ALL (n = 366), K562 (n = 111), U937

(n = 134), and CD14+ monocytes (n = 121)]. b. Consensus gene

plots across non-expressed (OFF) genes in all three cell types [ALL

(n = 167), K562 (n = 53), U937 (n = 62), and CD14+ monocytes

(n = 52)]. ChIP-chip enrichment levels in both panels are

expressed as mean Z-scores. Proportional gene length and flanking

regions are shown on the x axis as percentages (%). Color key to

FAIRE and histone density assays in each panel are shown to the

right of the figure.

Found at: doi:10.1371/journal.pone.0012339.s006 (0.88 MB TIF)

Figure S6 Histone modification patterns track exons and introns

across gene bodies without accounting for nucleosome distribu-

tion. Histograms show the mean levels of ChIP-chip enrichments

(Z-scores) for 15 histone modifications spanning the first ten exons

and nine introns of expressed consensus genes (n = 268, exons:in-

trons = 1466:551). Data is derived from ENCODE regions in the

K562 and U937 cell lines and CD14+ primary monocytes.

Datasets are not normalized with the combined histone distribu-

tion profiles obtained for H2B and H3 in each cell line.

Hypothetical gene structures are shown at the bottom of the

figure. Median P-value obtained from bootstrapping for exons and

introns across all 19 histone modifications tested in this study was

,1.0610215. Median P-value obtained for pair-wise t-tests

between adjacent exon-intron pairs (exon2 R exon10) for the data

shown in the figure was 1.1361026.

Found at: doi:10.1371/journal.pone.0012339.s007 (0.94 MB TIF)

Figure S7 Histone modification and chromatin accessibility

(FAIRE) patterns track exons and introns across gene bodies of

non-expressed genes and at 39 ends of expressed genes.

Histograms show the mean levels of ChIP-chip enrichments for

histone modifications or FAIRE values (Z-scores) spanning the first

ten exons and nine introns or last five exons and four introns of

consensus genes (hypothetical gene structures are shown at the

bottom of each panel of the figure). Data is derived from

ENCODE regions in the K562 and U937 cell lines and CD14+
primary monocytes. a. Five histone modifications across first 10

exons and 9 introns of non-expressed genes with histone

normalization (n = 92, exons:introns = 393:136). b. 14 histone

modifications and FAIRE levels across last five exons and four

introns of expressed genes with histone normalization (n = 268,

exons:introns = 848:226). c. Five histone modifications across first

ten exons and nine introns of non-expressed genes without histone

normalization (n = 92, exons:introns = 393:136). d. 14 histone

modifications and FAIRE levels across last five exons and four

introns of expressed genes without histone normalization (n = 268,

exons:introns = 848:226). Median P-values obtained from boot-

strapping for exons and introns across all patterns shown were

,1.0610215 (panel a), ,1.0610215 (panel b), ,1.0610215 (panel

c), and ,1.0610215 (panel d). Median P-values obtained for pair-

wise t-tests between adjacent exon-intron pairs were 3.1561022

(panel a), 4.4061024 (panel b), 1.3561022 (panel c), and

1.4961027 (panel d).

Found at: doi:10.1371/journal.pone.0012339.s008 (1.27 MB TIF)

Figure S8 Cell type specificity of exon-intron marking by

histone modifications cannot be accounted for by nucleosome

distributions. Histograms show the mean levels of ChIP-chip

enrichments (Z-scores) for histone modifications across exons and

introns of consensus expressed (ON) (green) or non-expressed

(OFF) genes (red). Data is derived from ENCODE regions in the

K562 and U937 cell lines and CD14+ primary monocytes and

each cell line is shown in separate panels. Histone modifications

assayed are shown along the top of the figure. Levels of histones

are also shown for each cell line at the right of the figure. Data for

each cell line is derived as follows. K562 expressed genes (n = 76,

exons/introns = 713/290), non-expressed genes (n = 25, exons/

introns = 134/76); U937 - expressed genes (n = 88, exons/introns

= 801/327), non-expressed genes (n = 20, exons/introns = 128/

75); CD14+ monocytes - expressed genes (n = 80, exons/introns

= 681/285), non-expressed genes (n = 27, exons/introns = 228/

98). All exonic levels were determined for canonical exons only.

Error bars are 95% confidence intervals.

Found at: doi:10.1371/journal.pone.0012339.s009 (1.02 MB TIF)

Figure S9 Sequential ChIP-chip enhances histone modification

tracking of exon-intron structures in the K562 cell line.

Sequential-ChIP-chip was performed using two combinations of

primary (1u, blue) and secondary (2u, red) ChIP assays which

showed exon-intron tracking across gene bodies (panels a and b).

Two control sequential ChIP-chip experiments were also per-

formed (panels c and d). In all cases, data was analyzed to take into

account nucleosome distribution (i.e., normalized with respect to

histone H2B and H3 density). a. Consensus gene plot showing

mean enrichment levels (Z-scores) across expressed (ON) (n = 111)

or non-expressed (OFF) genes (n = 53) in the K562 cell line from

ENCODE regions: 1u with anti-H3K36me3 and sequential 2u
with anti-H3K27me1 (top panel); 1u with anti-H3K27me3 and

sequential 2u with anti-H3K36me1 (bottom panel). Proportional

gene length and flanking regions are shown on the x axis as

percentages (%). b. Histograms show the levels of combinations of
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histone modifications across the first ten exons and nine introns of

consensus expressed (ON) genes (n = 85, exons:introns = 499:185)

or non-expressed (OFF) genes (n = 26, exons:introns = 132:54)

from panel a. Hypothetical gene structures are shown below the

panel. Median P-values obtained from bootstrapping for exons

and introns were ,1.0610215 (expressed genes) and ,1.0610215

(non-expressed genes). Median P-values obtained for pair-wise t-

tests between adjacent exon-intron pairs (exon2 R exon10) were

3.6361024 (expressed genes) and 1.2461023 (non-expressed

genes). c. Consensus gene plot showing mean enrichment levels

(Z-scores) across expressed (ON) (n = 111) genes in the K562 cell

line from ENCODE regions: 1u with anti-H3K27me1 and

sequential 2u with anti-H3K36me3 (top panel); 1u with anti-

H3K4me3 and sequential 2u with anti-H3K9me3 (bottom panel).

d. Histograms show the levels of combinations of histone

modifications across the first ten exons and nine introns of

consensus expressed genes (ON) (n = 85, exons:introns = 499:185)

from panel c. Hypothetical gene structures are shown below the

panel. The first control sequential ChIP-chip (H3K27me1 R
H3K36me3) was used to demonstrate that sequential ChIP-chip

gave the same result irrespective of which antibody was used first

(see panels a and b for reversed combination). The second control

sequential ChIP-chip (H3K4me3 R H3K9me3) was used to show

a decrease in exon-intron marking for two modifications which

showed opposing exon-intron biases (H3K4me3 = exon enrich-

ment bias; H3K9me3 = exon depletion bias). Median P-values

obtained from bootstrapping for exons and introns were

,1.0610215 (H3K27me1 R H3K36me3 combination) and

,1.0610215 (H3K4me3 R H3K9me3 combination). Median P-

values obtained for pair-wise t-tests between adjacent exon-intron

pairs (exon2 R exon10) were 6.7961025 (H3K27me1 R
H3K36me3 combination) and 0.16 (H3K4me3 R H3K9me3

combination). Thus, exon-intron tracking for this latter combina-

tion was no longer statistically significant.

Found at: doi:10.1371/journal.pone.0012339.s010 (0.85 MB TIF)

Figure S10 Histograms show the levels of sequential-ChIP-chip

enrichments for combinations of histone modifications (those

described in Figure S9) spanning typical canonical/alternatively-

spliced exons (CE and AE respectively) and introns (I) of expressed

genes [n = 85, canonical exons:alternatively-spliced exons:introns

= 145:68:221 (59 ends) or 796:166:976 (gene bodies)]. Blue bars

show ChIP-chip enrichments after 1u antibody and red bars show

ChIP-chip enrichment after the 2u antibody. Error bars are 95%

confidence intervals. In all panels, histone modification ChIP-chip

enrichment levels are expressed as mean Z-scores.

Found at: doi:10.1371/journal.pone.0012339.s011 (0.84 MB

TIF)

Figure S11 Histone modifications differentially mark canonical

and alternatively-spliced exons and introns across non-expressed

genes. Histograms show the mean levels (Z-scores) for histone

modifications and histones (ChIP-chip enrichments) or chromatin

accessibility (FAIRE) spanning typical canonical/alternatively-

spliced exons and introns. Data was derived from gene bodies of

non-expressed genes (n = 92, canonical exons:alternatively-spliced

exons:introns = 631:184:826) in the K562 and U937 cell lines and

CD14+ primary monocytes across the ENCODE regions. Histone

distribution was based on the combined data for H2B and H3 in

each cell type. Biases favoring either canonical exon or intron are

summarized by the difference in Z-scores shown above each assay

in grey. Positive (+) differences in Z-scores reflect exon biases,

while negative (2) differences reflect intron biases. Error bars are

95% confidence intervals.

Found at: doi:10.1371/journal.pone.0012339.s012 (0.76 MB TIF)

Figure S12 FAIRE accessibility assays show introns are

preferentially accessible across three cell types. Histograms show

the mean levels of FAIRE enrichments (Z-scores) across exons and

introns of consensus expressed (ON) (green) or non-expressed

(OFF) genes (red). Data is derived from ENCODE regions in the

K562 and U937 cell lines and CD14+ primary monocytes and

each cell line is shown separately. Datapoints for each cell line

were derived as follows. K562 expressed genes (n = 76, exons/

introns = 713/290), non-expressed genes (n = 25, exons/introns

= 134/76); U937 - expressed genes (n = 88, exons/introns = 801/

327), non-expressed genes (n = 20, exons/introns = 128/75);

CD14+ monocytes - expressed genes (n = 80, exons/introns

= 681/285), non-expressed genes (n = 27, exons/introns = 228/

98). All exonic levels were determined for canonical exons only.

Error bars are 95% confidence intervals.

Found at: doi:10.1371/journal.pone.0012339.s013 (0.50 MB TIF)

Figure S13 RNA polymerase II (Pol II) occupancy levels are not

accounted for by nucleosome distributions. Histograms show the

mean levels of ChIP-chip enrichments (Z-scores) for Pol II and

histones across exons and introns of consensus expressed (ON)

(green) or non-expressed (OFF) genes (red). a. Data derived from

ENCODE regions in the K562 cell line: expressed genes (n = 76,

exons/introns = 707/287), non expressed genes (n = 25, exons/

introns = 133/76). b. Data derived from U937 cell line: expressed

genes (n = 88, exons/introns = 797/325), non expressed genes

(n = 20, exons/introns = 123/73). All exonic levels were deter-

mined for canonical exons only. Error bars are 95% confidence

intervals.

Found at: doi:10.1371/journal.pone.0012339.s014 (0.52 MB TIF)

Figure S14 Genome-wide patterns of H3K27me1, H3K27me3,

H3K36me1 and H3K36me3 for expressed and non-expressed

genes in the K562 cell line. a. Consensus gene plots for four

histone modifications across expressed (ON) genes (n = 2066). b.

Consensus gene plots for four histone modifications across non-

expressed (OFF) genes (n = 1973). ChIP-chip enrichment levels in

both panels are expressed as mean Z-scores. Proportional gene

length and flanking regions are shown on the x axis as percentages

(%). Color key to modifications depicted in each panel are shown

to the right of the figure.

Found at: doi:10.1371/journal.pone.0012339.s015 (0.60 MB TIF)

Figure S15 Histone modifications patterns mark exon-intron

structures across the whole human genome. a. Histograms show

the level of H3K27me1 (bin 0%-10%, n = 662, exon:introns =

4378:3697) and H3K36me3 (bin 0%–25%, n = 1657, exon:in-

trons = 10911:9194) across the first ten exons and nine introns of

consensus non-expressed (OFF) genes. Exon numbering is at the

bottom of panel. b. Histograms show the levels of ChIP-chip

enrichments for H3K27me3 [bin 95%–100%, n = 332, canonical

exons:alternatively-spliced exons:introns = 642:165:811 (59 ends)

or 2415:402:2817 (gene bodies)] and H3K36me1 [bin 90%–

100%, n = 700, canonical exons:alternatively-spliced exons:in-

trons = 1385:400:1803 (59 ends) or 5750:882:6649 (gene bodies)]

spanning typical canonical (dark green)/alternatively-spliced (light

green) exons and introns (olive green) of expressed (ON) genes.

Error bars are 95% confidence intervals. In both panels, ChIP-

chip enrichments obtained from genome-wide analysis of the

K562 cell line are expressed as mean Z-scores.

Found at: doi:10.1371/journal.pone.0012339.s016 (0.51 MB TIF)

Figure S16 Histone modification patterns show relationships

with either exon inclusion or with exon exclusion within gene

bodies of highly expressed genes. Histograms show the levels of

four histone modifications for the top ten percent of expressed
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genes in the K562 cell line. Genes (991) were placed into two bins:

90–95% and 95%–100% based on ranked expression level.

Analysis shown was based on canonical exons = 6967, introns

= 7714, and alternatively-spliced exons 221: 1040 (0–50%

inclusion: 50–100% inclusion). Error bars are 95% confidence

intervals. In all panels, ChIP-chip enrichments obtained from

genome-wide analysis of the K562 cell line are expressed as mean

Z-scores.

Found at: doi:10.1371/journal.pone.0012339.s017 (0.93 MB TIF)

Figure S17 Changes in gene expression levels are accompanied

by changes in histone modification levels across gene bodies.

Levels of H3K36me3, H3K27me1, H3K36me1, and H3K27me3

for genes which show differential expression between cell types

(K562, U937 and CD14+) are shown. Histone modification ChIP-

chip enrichment levels (Z-scores) for canonical exons (red) and

introns (green) are shown on the y axis. Gene names and their

expression levels in two different cell types (level of expression - low

R high or off R on - denoted by the black triangle) are shown

below the x axis. H3K36me3 and H3K27me1 both show exon

enrichment biases for all differentially-expressed gene pairs shown.

However, both H3K36me1 and H3K27me3 show either exon or

intron enrichment biases depending on the level of gene

expression, which are consistent with the whole genome datasets

shown in Figure 5. Error bars are 95% confidence intervals.

Found at: doi:10.1371/journal.pone.0012339.s018 (1.13 MB TIF)

Figure S18 Determination of specificity of antibodies used in

this study by dot blot analysis. Antibodies raised against histone

modifications were each hybridized to a panel of relevant methyl-

modified or acetyl modified peptides of histone H3 and histone H4

and their unmodified forms (see also Materials and Methods).

Antibodies (Ab) and peptides (Pep) used are shown on the left and

top of each panel respectively. Images in each panel are

composites of different hybridizations denoted by the black lines

dividing the sections of the panels. a. H3K9 methyl modifications.

b. H3K36 methyl modifications. c. H3K27 methyl modifications.

d. H3K79 methyl modifications. e. H3K9, 18, 27 acetyl

modifications. f. H3K4 methyl modifications. g. H4K16 acetyl

modification. In all panels, the results are shown for peptides

spotted onto the immunoblot at a concentration of 25 ng/ml.

Found at: doi:10.1371/journal.pone.0012339.s019 (1.44 MB TIF)

Table S1 Concordance of histone modification exon-intron

marking biases between cell types. Table shows level of agreement

in exon-intron marking biases for K562, U937 cell lines and

CD14+ primary monocytes. Histone modifications are shown in

columns along the top. Pairwise comparisons between cell lines are

shown along the left-hand side. Each black box shows when the

exon-intron marking bias for a histone modification (either an

exon or intron bias) is in agreement between two cell types for

either expressed (ON) (green boxes) or non-expressed (OFF) (red

boxes) genes. White boxes represent discordance. Concordance

was scored based on the data presented in Supplementary Figure

S8. Overall concordance between all three cell types is shown in

the bottom row of the table.

Found at: doi:10.1371/journal.pone.0012339.s020 (0.02 MB

DOC)

Table S2 Antibodies and peptides used in this ChIP-chip study.

a. The name of the epitopes to which each antibody used in ChIP-

chip is given in the first column. The supplier and the catalogue

number of each antibody are given in the second and third

columns respectively. Lot numbers of each antibody appears in the

last column. b. The names of peptides used in dot blot analysis are

shown in the first column. The supplier and the catalogue number

of each peptide are given in the second and third columns

respectively.

Found at: doi:10.1371/journal.pone.0012339.s021 (0.08 MB

DOC)

Table S3 Expressed genes in the K562 cell line across the

ENCODE regions. Expressed genes were determined as described

in Materials and Methods and this list reflects the intersecting top

two quartiles of expression values obtained from Affymetrix

GeneChipH and Sanger Institute microarray expression studies.

Gene ID/name is shown in the first column. The ENCODE

region, chromosome co-ordinates [(NCBI human genome build

35 (hg17)] and direction of transcript/strand are also shown in the

additional columns.

Found at: doi:10.1371/journal.pone.0012339.s022 (0.50 MB

DOC)

Table S4 Non-expressed genes in the K562 cell line across the

ENCODE regions. Non-expressed genes were determined as

described in Materials and Methods and this list reflects the

intersecting bottom quartile of expression values obtained from

Affymetrix GeneChipH and Sanger Institute microarray expres-

sion studies. Gene ID/name is shown in the first column. The

ENCODE region, chromosome co-ordinates [(NCBI human

genome build 35 (hg17)] and direction of transcript/strand are

also shown in the additional columns.

Found at: doi:10.1371/journal.pone.0012339.s023 (0.24 MB

DOC)

Table S5 Expressed genes in the U937 cell line across the

ENCODE regions. Expressed genes were determined as described

in Materials and Methods and this list reflects the intersecting top

two quartiles of expression values obtained from Affymetrix

GeneChipH and Sanger Institute microarray expression studies.

Gene ID/name is shown in the first column. The ENCODE

region, chromosome co-ordinates [(NCBI human genome build

35 (hg17)] and direction of transcript/strand are also shown in the

additional columns.

Found at: doi:10.1371/journal.pone.0012339.s024 (0.57 MB

DOC)

Table S6 Non-expressed genes in the U937 cell line across the

ENCODE regions. Non-expressed genes were determined as

described in Materials and Methods and this list reflects the

intersecting bottom quartile of expression values obtained from

Affymetrix GeneChipH and Sanger Institute microarray expres-

sion studies. Gene ID/name is shown in the first column. The

ENCODE region, chromosome co-ordinates [(NCBI human

genome build 35 (hg17)] and direction of transcript/strand are

also shown in the additional columns.

Found at: doi:10.1371/journal.pone.0012339.s025 (0.29 MB

DOC)

Table S7 Expressed genes in CD14+ monocytes across the

ENCODE regions. Expressed genes were determined as described

in Materials and Methods and this list reflects the top two quartiles

of expression values obtained from Illumina BeadChipH expres-

sion studies. Gene ID/name is shown in the first column. The

ENCODE region, chromosome co-ordinates [(NCBI human

genome build 35 (hg17)] and direction of transcript/strand are

also shown in the additional columns.

Found at: doi:10.1371/journal.pone.0012339.s026 (0.51 MB

DOC)

Table S8 Non-expressed genes in CD14+ monocytes across the

ENCODE regions. Non-expressed genes were determined as

described in Materials and Methods and this list reflects the
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bottom quartile of expression values obtained from Illumina

BeadChipH expression studies. Gene ID/name is shown in the first

column. The ENCODE region, chromosome co-ordinates [(NCBI

human genome build 35 (hg17)] and direction of transcript/strand

are also shown in the additional columns.

Found at: doi:10.1371/journal.pone.0012339.s027 (0.27 MB

DOC)

Table S9 Expression levels of 9922 genes across the human

genome in the K562 cell line. These genes gave consistent MAS5

values (all A or all P) in four bioreplicate Affymetrix GeneChIPH
expression experiments and all had been assigned ENSEMBL

identifiers. List shows their ENSEMBL IDs, MAS5 call and

ranking based on RMA values.

Found at: doi:10.1371/journal.pone.0012339.s028 (0.36 MB

TXT)
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