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Abstract

GaN and related nitride compounds have found many applications

in optoelectronic devices. Point defects introduce energy levels into

the band gap and alter the electrical and optical properties of GaN.

Previous studies focussed on studying point defects with density func-

tional theory (DFT), periodic boundary conditions (PBC) and rel-

atively inaccurate LDA energy functionals. We aim to improve on

the deficiencies of this method by implementing a quantum mechani-

cal/molecular mechanical (QM/MM) scheme, which has been specif-

ically designed for the study of point defects; we use a hybrid func-

tional and a formal charge scheme for the MM model. We offer an

explanation for why p-type doping is difficult to achieve in GaN; the

exothermic formation energies of the Ga interstitial and N vacancy at

the VBM are thought to be the main cause. We suggest that the pro-

cesses responsible for a variety of DLTS signals between 0.18-0.67eV

below the CBM may be due to Ga interstitial 3+/2+, 2+/1+ tran-

sitions, N interstitials (1+/0) and Ga vacancies (2-/1-, 3-/2-). We

attribute the ODMR signal indicating a deep donor state 0.7eV below

the conduction band to the N interstitial 0/1- transition. Finally, our

results support previous suggestions that Ga vacancies may be the

cause of yellow luminescence in GaN.

Further refinements of the model, especially improving the basis set,

are recommended in the future, as well as a more detailed investi-

gation into the causes of discrepancy between our model and PBC

calculations.

We use the MM model to study the properties of ternary alloys of AlN,

GaN and InN, and to find their thermodynamically stable configura-

tions. Our results are in good agreement with PBC DFT calculations.

These structures are not observed experimentally; we suggest that this

is a growth phenomenon. Our results also support previous findings

that epitaxial strain stabilises highly internally strained alloys.
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1 Introduction

The development of a commercial blue light emitting diode (LED; see Fig. 1)

based on GaN by Nakamura [1] resulted in great interest in III-V nitrides, a

term used to refer to compounds of a Group III element (usually Al, Ga or In

in this context) and a group V element (N in this case). LEDs with a range of

colour characteristics can now be manufactured by alloying III-V compounds

in suitable proportions to generate the required band-gap for the emission

of a particular colour (see Fig. 2). White light LEDs have the potential to

replace conventional light bulbs and improve efficiency [2]. These compounds

have found many other applications in semiconductor electronic and opto-

electronic devices, which include laser diodes (LDs), as used in Blu-ray disc

technologies for example, high electron mobility transistors (HEMTs), dis-

tributed Bragg reflectors (DBRs) and metal-oxide-semiconductor field-effect

transistors (MOSFETs). More recently, there have been promising applica-

tions of GaN/InGaN in solar cells [3] and photodetectors [4].

Three methods have been widely used in the synthesis of GaN (and similarly

AlN and InN): metal organic vapor phase epitaxy (MOVPE), which is the

Figure 1: The operation of two types of LED. a) the p-n junction based
LED. A forward bias is applied to the junction so that majority carriers
(holes in the p-type material and electrons in n-type) cross the junction and
become minority carriers on the other side, where they undergo radiative
recombination and emit light with frequency ν = εg/h. εF is the Fermi level
and εg is the band gap b) quantum well based LEDs. The quantum well
confines electrons and holes and recombination occurs emitting light. From
[5].
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Figure 2: The band gaps vs. structural parameters of III-V wurtzitic nitrides
on the left. The colour range of light emitted is shown in the middle along
with the wavelengths used in some applications such as Blu-ray technology.
On the right, the relationship between the band gap and structure parameters
of some materials previously used in LEDs are shown. From [2].

variant of the metal organic chemical vapour deposition (MOCVD) used for

epitaxial growth, hydride vapour phase epitaxy (HVPE) and molecular beam

epitaxy (MBE). MOVPE and HVPE do not use high vacuum and the com-

pound is grown by a reaction between injected gases. In MOCVD/MOVPE

tri-methyl-Ga (or ocassionally tri-ethyl-Ga) reacts with ammonia and the

product is deposited on wafers of substrate, such as sapphire, in a highly

controlled environment. In HVPE, Ga reacts with HCl to give gallium chlo-

ride, which then combines with ammonia to create GaN. MBE uses a high

vacuum and is based on physical deposition of atoms. The growth rates for

this method are slower than the other two. A review of the growth methods

can be found e.g. in [6] and [7].

GaN is most readily synthesised as an n-type material. Creating p-type GaN
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has proven challenging and was finally synthesised by doping with Mg in

1989 [8].

Three phases of III-V nitrides are common. Wurtzite is the more stable

phase under ambient conditions; zincblende is metastable and rocksalt is a

high pressure phase. As wurtzite is the most stable phase under commonly

encountered conditions, we will focus our attention on this polymorph in the

present work.

In commercial applications and also experimental studies, the materials are

usually present as thin layers on a substrate of another material. The prop-

erties of the material in such an epitaxial layer might be quite different from

the bulk as strain can have a profound influence.

The electronic properties of the wide bandgap semiconductors are of particu-

lar importance in the aforementioned applications. The band structures have

been widely studied and the work has yielded an understanding of impor-

tant aspects of the behaviour of these materials. The electronic structure of

the bulk materials is a useful basis for exploring their electronic properties.

However, in addition to the bulk band structure, defects in the material,

i.e. deviations from the perfect crystalline periodic structure, are important

determinants of electronic behaviour. The theoretical prediction of the prop-

erties of GaN defects, such as their energetics, geometric configurations and

electronic structure, is the main purpose of the present work.

To access the detailed electronic properties in a theoretical calculation, quan-

tum mechanics has to be invoked. The famous Schrödinger equation forms

the basis of quantum mechanics (QM). While the formulation is very elegant,

the solution remains a major challenge for all but the simplest systems even

with the advent of powerful computers to carry out the calculations at ever

increasing speeds.

Hartree-Fock approaches (Section 2.2.1) suffer from accuracy problems due

to their neglect of correlation effects and large computational cost due to the

number of two electron integrals that have to be evaluated and have conse-

quently not been widely used in modern studies of GaN.

One of the most successful approaches to making quantum mechanical cal-

culations feasible for large assemblies of atoms, such as those in a periodic
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solid, is density functional theory (DFT; Section 2.2.2). As the name sug-

gests, it re-casts the Schrödinger equation in terms of electronic density, in

theory vastly simplifying the calculations, although in practice this formal-

ism brings its own set of challenges.

For crystalline materials such as III-V nitrides, we can utilise the underlying

periodicity of the lattice in the DFT calculation to impose periodic boundary

conditions (PBC; see Section 2.2.2) . The crystal is represented by an infi-

nite array of identical repeating units (“supercells”) with restrictions placed

on the wavefunction at the boundary between the units to ensure physically

correct behaviour. Such a treatment is suitable for the study of bulk proper-

ties but leads to difficulties when studying isolated defects or their complexes

as the defects in neighbouring supercells will interact with each other unless

the supercells are large enough for even the long-range electrostatic defect

self-interactions between defects to be negligible. Furthermore, in the infinite

periodic system, a charged defect in each supercell would lead to the system

having infinite electrostatic energy. This problem was solved by Leslie and

Gillan [9]. When the defect is not a classical point defect but has a dipole

or higher order multipole terms associated with it, treating the electrostatic

energy becomes much more difficult. Several methods have been introduced

to deal with this problem, for example one due to Makov and Payne [10] but

the problem has not been fully solved to date. A more detailed discussion

of the problems arising from the electrostatic interactions in a periodic DFT

calculation are discussed in [11]. A detailed analysis of the problems inherent

in treating charged defects with periodic boundary conditions is given in [12],

[13] and [14].

A further issue arises if the geometric deformations associated with the de-

fect are large and the supercell size is small relative to them. The distortions

will interact with each other at the boundary, affecting the result. More lo-

calised defects have larger deformations associated with them and require a

better quality functional to describe them, usually hybrid functionals, which

are very expensive for PBC DFT calculations. LDA (local density approx-

imation) and GGA (generalised gradient approximation) functionals, com-

monly used in PBC DFT calculations, tend to underestimate the bandgap
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significantly, potentially seriously distorting defect energy calculations. New

hybrid functionals have been developed recently [15], which are computa-

tionally somewhat less expensive and their utilisation in studies of GaN has

become feasible [16]. These functionals are better suited to the description

of localised states than LDA and GGA functionals. Alternative methods,

such as DFT+U, where U is an empirical parameter, have been also been

proposed to deal with localised states in DFT while still using the LDA or

GGA energy functionals. This approach, however, requires some a priori

knowledge of the type of localisation required in a particular defect.

An alternative approach to defect calculations, adopted in the present work,

was specifically developed for these purposes. A cluster including the defect

and surrounding atoms is carved out and its electronic structure calculated.

The remainder of the crystal is included at two levels of approximation. The

atoms adjacent to the QM region are described with molecular mechanics

(MM; Section 2.1) where specially parameterised functions, obtained by fit-

ting to experimental data, describe the energy surface in the material. Atoms

further away from the QM cluster interact with it via Coulomb forces. These

far-away atoms are represented by a number of carefully calculated point

charges chosen to reproduce the Madelung potential. This approach forms

the basis of so-called QM/MM hybrid embedding methods, whose implemen-

tation forms the basis of Chapter 8.

In QM/MM methodology, atoms (ions) in the system interact via long range

and short range forces. The latter are determined via correlation and ex-

change functionals in DFT and approximated with short range interatomic

potentials in the MM portion of the calculation. In the case of charged species

only, the long range interactions are the electrostatic Coulomb forces. Here,

an important technical choice arises, viz. what charges to assign to the ions

in a solid such as GaN.

The relative degree of ionicity and covalency can be difficult to ascertain

[18]. Different measures of ionicity/covalency (e.g. difference in electroneg-

ativities, charge analysis [17]) give most compounds different mixtures of

ionic/covalent character [18]. Based on these ionicity measures there is no

consistent way of assigning ionic charge.
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This distinction between ionic and covalent bonding is also important in de-

ciding on the type of QM region termination in hybrid embedding methods.

For covalent systems the QM region is terminated with so-called link atoms,

which are usually capping hydrogens to terminate a severed covalent bond to

atoms in the MM region. No such bonds exist in the case of ionic compounds,

where we terminate the QM region with a pseudopotential, mimicking the

effect of the electronic cloud surrounding an ion just outside the QM region.

The pseudopotentials prevent unphysical spilling of electrons out of the QM

cluster. QM region termination is further discussed in Section 2.3.1 of the

present work.

GaN has a Pauling ionicity of 0.486 [20] and Phillips ionicity [21] of 0.500

[22] and yet another measure of ionicity, Majewski-Vogl ionicity is used as

a basis for comparing GaN and AlN in [23]; [18] casts doubt on all these

ionicity measures. An ionicity of 1 under both schemes implies 100% ionic

character. Several MM models assign the ions in GaN non-formal charges,

i.e. other than 3+ for gallium and 3- for N.1 These models are often based

on Mulliken analysis [17], e.g. [24] and [25] where charges 2+ (Ga) and 2−
(N) are used although the Mulliken charges assigned to ions in different poly-

morphs of the same material can be quite different. For example, in wurtzite

GaN the Mulliken charges have been calculated as +1.6 for Ga and -1.6 for

N, whereas the corresponding values for the rocksalt phase are +2.5 and -2.5

[26], which presents difficulties when developing a potential to describe both

the polymorphs. Further discussion of the issue of ionic charges in GaN can

be found in [27], where a variable charge interatomic potential is developed.

No clear choice of fixed partial charges for GaN is apparent. In the present

work, we adopt a different approach and develop a formal charge model.

One technical issue, as mentioned above, is the choice of a QM region ter-

mination scheme. If we were to assign the partial charges 2+ and 2− to

Ga and N, for example, based on the results of Mulliken analysis, we would

implicitly assume a significant degree of covalency. In effect, a single electron

would be assumed to be the basis of a bond to the four nearest neighbours.

Such a choice would, however, present difficulties when dealing with atoms

1All the charges in this work are in the units of the electronic charge
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on the boundary. The partial charges suggest that when a bond is cleaved a

non-integer number of electrons (1/4 in the case of a 2+/2- charge state) is

transferred. A link atom scheme would be necessary to saturate the dangling

bonds. We believe that due to the significant ionic character of GaN, a link

atom termination scheme, suitable for highly covalent systems, is not a good

approach. Termination with pseudopotentials was therefore chosen.

We will treat the formal-charge assumption as one of our hypotheses. The

results of our calculations will provide a test of this hypothesis. A failure of

our fully ionic model correctly to account for a considerable covalent charac-

ter of bonding would be expected to lead, among other potential problems, to

high-energy electronic states on the boundary due to missing link-atom ter-

mination, which is necessary for covalent systems. In future work, a partial

charge model using link atoms could be developed and comparisons made

with our results to test our formal charge hypothesis further. Developing

such a partial charge model is beyond the scope of this work.

A further reason for developing a formal charge model is the need to study

alloys. The interatomic potential described in Chapter 5 was used to in-

vestigate ternary Al/Ga/In nitride alloys, which requires a common N-N

interatomic potential, and therefore a common charge on the nitride ion.

Since the three binary compounds have varying degrees of ionic character,

and as has been mentioned before, even for a single material the measures

differ in their assessment of ionicity, a formal charge model is a sound choice

in this instance.

As a final remark on the issue of appropriate ionic charges, we note that it

has been suggested that for a material with an appreciable degree of cova-

lency, one can either use a partial charge model or a formal charge model

with three-body terms (see Section 2.1) [24]. [28] developed a formal charge

model for AlN but did not find it necessary to include three-body terms for

this material.

In the present work, we focus our attention on GaN and discuss AlN and

InN where appropriate. One of the main aims is to establish a methodology

for modelling highly ionic solids and their alloys. In particular, we aim to

validate a QM/MM method for defect calculations in such solids.
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While QM/MM models do not have some significant problems that DFT cal-

culations suffer from, such as the interaction of images in the neighbouring

supercells and the band gap problem (provided that a hybrid functional is

used in the QM/MM study), they are not without their limitations. Shallow

defects do not lend themselves to study by QM/MM methods as the bound-

ary conditions require that the electrons do not delocalise beyond the extent

of the QM region. QM/MM methods can also be challenging to implement

as a suitable interatomic potential is required. Distortions of the QM/MM

boundary are observed if an incorrectly parameterised potential is used.

The remainder of this thesis is organised as follows.

Chapter 2 discusses the computational aspects of the work, which include

QM methods (in particular DFT), MM methodology (including parameter

fitting) and QM/MM hybrid schemes. General issues of geometry optimisa-

tion and energy minimisation are also discussed.

Chapter 3 gives greater detail on the theoretical background regarding vari-

ous physical properties, including elastic constants and phonon frequencies.

A brief summary of the theory of defects, cation ordering and phase separa-

tion is also given, the latter being relevant for the study of alloys.

Chapter 4 summarises the literature regarding methodological developments

in interatomic potentials for the III-V nitrides and the QM/MM approach

as well as defects in GaN. Experimental and computational studies of III-V

nitride alloys are discussed, especially their stability with respect to phase

separation and the evidence for cation ordering in the lattice.

We then turn to a description of a new formal charge interatomic potential

model for GaN, AlN and InN in Chapter 5. The bulk properties calculated

with the model are compared with other results as well as experimental data.

These include elastic and piezoelectric constants, which are important as III-

V nitrides are usually present in applications as thin films with considerable

amounts of strain. The effect of this strain on the structural parameters

and electric response to the strain are measured by the elastic and pieze-

olectric constants, respectively. Dielectric constants are another important

property, which must be reproduced correctly if charged defects are to be

studied. Phonon frequencies are a sensitive indicator of the quality of the

34



model. They form the microscopic basis for macroscopic thermodynamic

properties, such as thermal expansion, which is particularly relevant in the

high-operating-temperature applications of III-V nitrides as differential ther-

mal expansion coefficients between substrate and epitaxial thin films result

in large amounts of strain and concomitant engineering problems. Finally,

the phase stability of the commonly found polymorphs is studied.

In Chapter 6, the model developed in the previous chapter is used to calcu-

late the energies and structures of formal-charge native defects, interstitials

and vacancies, in the three binary materials. The solution energies of the

unlike cations in each compound are also calculated.

In Chapter 7, we turn our attention to ternary alloys, or solid solutions, of the

III-V nitrides. Controlling the composition of an alloy allows one to engineer

many of its properties, such as band gap, and alloys have found a number

of industrial applications. In this chapter we consider their stability with

respect to phase separation into their constituent components and investi-

gate the energetics and structures of a number of ordered arrangements. As

most practical uses of III-V nitrides involve highly strained epitaxial films,

the effect of strain is also considered.

In Chapter 8, we take the potentials developed and thoroughly validated

in the previous chapters and combine them with quantum mechanical tech-

niques in a hybrid embedding scheme allowing us to calculate the energetics,

geometries and electronic structure of defects in GaN. In addition to insights

into the science of native defects in GaN, methodological issues regarding

QM/MM implementation are discussed.

Finally in Chapter 9, the findings of this work are summarised and future

directions of work indicated.
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2 Background on computational methods

In this chapter, some of the common methods for calculating the properties

of materials are described. These can be divided into electronic structure

techniques and approaches based on interatomic potentials. Various combi-

nations of the methodologies have been described such as hybrid QM/MM

methods, which will also be considered.

2.1 Molecular mechanics (MM) methods

In molecular mechanics methods, the potential energy of the interactions

between different species is expressed via parameterised functions. The pa-

rameters and functional forms are chosen so that the physical properties

of the system are well reproduced. These properties include the structural

parameters which are determined at the equilibrium geometries, i.e. where

the forces on all atoms are zero. The forces are determined as the negative

derivatives of the energy with respect to the coordinates.

The functional form of the interactions depends on the system under consid-

eration. For covalent systems, the potential energies are frequently expressed

in terms of the bond bending and stretching. For highly ionic systems, such as

III-V nitrides the interatomic potential is divided into a long range Coulom-

bic part, describing the interaction of charged species, and a short range po-

tential, which simulates the interactions other than Coulombic of the outer

electrons of the ions.

The Coulomb interaction is given by

Velectrostatic = − q1q2

4πε0r
(1)

where q1 and q2 are the ionic charges, ε0 is the permittivity of free space and r

is the interionic separation. The present potentials are formal charge models,

i.e. all the cations are assigned charge 3+ and nitrogen ions are 3- as discussed

in Chapter 1. Evaluating the total Coulomb energy for a periodic system is

complicated as the number of interacting ions increases as r3 with distance r
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from a reference atom while the electrostatic potential decreases as 1/r. The

sum of electrostatic energy contributions is conditionally convergent. Various

solutions have been proposed to this problem. The Ewald summation is the

most commonly used [1], [2]; another method is due to Evjen [3].

A related concept to the electrostatic potential is the Madelung field. It can

be determined for a single ion by summing up the electrostatic interactions

with all other ions in the lattice, which are approximated as point charges.

The sum of the interactions of the ion i with all the other ions in the lattice

may be written as

Vi =
e

4πε0

∑
j 6=i

zj
rij

(2)

where zj is the charge of the jth ion. Normalising to the nearest neighbour

distance, r0

Vi =
e

4πε0r0

∑
j 6=i

zjr0

rij
=

e

4πε0r0

Mi (3)

where

Mi =
∑
j 6=i

zj
rij/r0

(4)

is the Madelung constant. The summation is challenging as the series is con-

ditionally convergent as described above in the discussion of summation of

the total electrostatic energy of the lattice, but again the Ewald technique

may be used.

The above approximation treats the lattice ions as point charges. It is pos-

sible to generalise the expression and include multipole terms. Higher order

Madelung constants are thus obtained [4], [5].

Next we turn to the short range interatomic potentials. Common forms in-

clude Buckingham, Born-Meyer, Morse and Lennard-Jones. In addition, the

shell model simulates the interaction between the core and valence electrons

of an ion via a spring.

The Buckingham potential is often used in modelling III-V nitrides. It has

the form

VBuckingham = Ae−r/ρ − C

r6
(5)
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where r is the separation between the species, and A, ρ and C are parameters.

The first term represents the repulsion between the electrons of neighbouring

electron clouds, whilst the second term is equivalent to the r−6 term of the

Lennard-Jones interaction (see below).

The Born-Meyer potential is a special form of the Buckingham, with C = 0.

A Morse potential may be used to describe more covalent-like interactions.

In the fitting of the present potentials it was found that the N-N interaction

is well-suited to this description.

VMorse = De

((
1− e−a(r−re)

)2 − 1

)
(6)

This form was originally developed to describe diatomic molecules as it ac-

counts for the harmonic oscillator behaviour of molecules as well as anhar-

monic effects. The De parameter is then the dissociation energy of the bond;

re determines the position of the minimum of the function and a affects the

width of the potential well.

Another commonly used function is the Lennard-Jones 12-6 potential.

VLennard-Jones =
C12

r12
− C6

r6
(7)

where r is the interatomic distance and C12 and C6 are empirically deter-

mined constants.

The C12 term represents repulsion due to the overlap of electronic clouds

and is fundamentally due to the Pauli exclusion principle. There is no firm

theoretical justification for the use of the 12 exponent but this model has

been successfully used in a number of systems. The 12-term is also widely

applied to avoid “Buckingham catastrophe” at the very short range, whereby

the electrostatic attraction between oppositely charged species overcomes the

exponential repulsion.

The r−6 has a solid theoretical foundation and is based on dispersion interac-

tions. It is used for modelling the N-N interaction beyond the 1st neighbour

shell in our model.

The above models are all two-body potentials, i.e. the interactions between
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two ions are considered. Higher-order terms can also be included, which

model the interactions between three ions and more. Three-body terms will

include the angle subtended by the the vectors rij and rjk where i, j and

k are the three ions considered in the interaction. These terms model the

directionality of covalent bonds in the material and have not been used in

the present work although their inclusion might improve some aspects of the

model and may be considered in future work.

The shell model [6] approximates the polarisation behaviour of electrons with-

out using quantum mechanics and allows dielectric properties to be modelled.

The polarisability α of an ion in the shell model is described by

α =
Y 2

k
(8)

The charge is split between the core and the massless shell of the ion, their

sum adding up to the overall charge. The shell of charge Y is attached to

the core with a spring constant k. The potential, V2 due to the interaction

is

V2 =
1

2
kx2 (9)

where x is the displacement of the shell from the core. The N ion is a highly

polarisable anion and needs this approach.

A quartic term in the shell displacement may be included to prevent excessive

polarisation

V4 =
1

4
k4x

4 (10)

The x4 potential increases more rapidly than the x2 term with increasing

displacement from the core. This term effectively prevents the shells from

moving too far off the core and hence dampens polarisation.

The MM software used in the present work is the General Utility Lattice

Program (GULP), developed by Julian Gale [1].

2.1.1 Potential fitting

Like the rest of the MM work in this thesis, interatomic potential fitting was

performed with the GULP software [1]. In this implementation, potential
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parameters are fitted by minimising the sum of squares using a Newton-

Raphson functional minimisation process (see, for example, [40] and a short

summary below). The sum of squares, F , is defined as

F =
∑
allk

w(fcalc, k − fobs, k)2 (11)

where w is the weighting factor, fcalc and fobs are the calculated and ob-

served quantities (e.g. structural parameters, elastic constants) respectively.

Experimental properties provide indirect information about the energy sur-

face. Near equilibrium, the first-order derivatives are zero by definition as

−E ′(x) represents forces on the ions. The second order derivatives are related

to elastic constants and phonon frequencies, which is why these experimen-

tal properties are a useful source of information. As an alternative, ab initio

potential energy surfaces are sometimes used as “observables” although this

approach was not used in the present work.

Relax fitting was used. In this form, the structure is optimised at every fit-

ting step, in contrast to conventional fitting where observables are calculated

for the observed structure which may be off the energy minimum.

2.1.2 Mott-Littleton method

The Mott-Littleton method is used to calculate the energies of point defects

in MM as an alternative to the supercell approach (see Section 2.2.2). In the

latter, a repeating supercell containing the defect is the basis of a periodic

boundary condition calculation. For charged defects, this method introduces

problems with interaction of defects with their images in neighbouring cells.

The Mott-Littleton approach does not suffer from the problem arising from

defect-defect interactions. In its original implementation [42], which did not

employ computers, the equilibrium positions of the nearest neighbours of

the defect centre (vacancy or interstitial) were calculated. The rest of the

crystal was treated as a continuum whose polarisation contributes to the
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defect energy a negative term first proposed by Jost [43]

EJost = − q2

2R

(
1− 1

ε0

)
(12)

The approach has evolved since then with advances in computational re-

sources. The GULP implementation [1] of the methodology is discussed

below.

Two concentric regions are defined, region 1 and 2, with region 2 further sub-

divided into 2a and 2b. The defect centre defines the centre of a sphere of

radius r1 containing region 1 and the defect usually lies in the defect centre.

The region between radii r2 and r1 (r2 > r1) is region 2a. The rest of the

crystal is defined as region 2b.

It is assumed that atoms in region 1 are strongly perturbed by the presence

of the defect and fully relaxed during the calculation with respect to their co-

ordinates. In region 2a, it is assumed that the perturbation is weak enough

and that the response to the forces is harmonic. This approximation can

only be employed when the structure is close enough to a minimum for the

harmonic approximation to be valid.

Representing the coordinates of region 1 atoms by x and the displacements

of region 2a atoms by ζ we obtain the following relationship for the total

energy of regions 1 and 2a

E = E1(x) + E12(x, ζ) + E2(ζ) (13)

where E1 and E2 are the energies of regions 1 and 2, respectively, and E12 is

the interaction energy between those two regions.

As mentioned before, the approximation in regions 2a stipulates that the

energy of region 2 is a quadratic function of ζ

E2(ζ) =
1

2
ζTWζ (14)
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At equilibrium, the first derivative with respect to region 2a displacements

much be zero, i.e.
∂E

∂ζ
= 0 =

∂E12(x, ζ)

∂ζ
+Wζ (15)

Combining Equations 13, 14 and 15 we obtain

E = E1(x) + E12(x, ζ)− 1

2

∂E12(x, ζ)

∂ζ
ζ (16)

Thus the difficult E2 term is eliminated. The total energy can then be min-

imised. There is a further technical issue with calculating E12, viz. that the

energy of the electrostatic interaction between regions 1 and 2 is performed

using the Ewald summation, assuming a perfect lattice. Because ions in re-

gion 2a are no longer at their perfect lattice sites, a correction has to be

applied.

The displacements of region 2a, ζ may be calculated by keeping in mind the

quadratic approximation. Then

ζ = −W−1g (17)

where W is the second derivative matrix and g is the matrix of forces on the

ions. A commonly applied approximation equates g to the electrostatic force

due to the defect species.

Region 2b interaction energies are calculated by implicitly considering the

polarisation of the region due to the defect, which is based on the approach

pioneered by Jost [43] although it does not treat the remainder of the crystal

as a continuum but considers the polarisation of individual ions and performs

a variant of Ewald summation.

Further discussion of the Mott-Littleton approach can be found, for example,

in [7] and [8].

2.2 QM methods

While MM methods allow one to model material behaviour at the atomic

level, electronic properties can be only crudely approximated, e.g. by the
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shell model. In order to understand the electronic structure, quantum me-

chanics has to be invoked. Different ab initio methods have been developed

and are briefly summarised below. Further details can be found in standard

texts, e.g. [9].

In quantum mechanics, the Schrödinger equation is solved. In its time-

independent form it can be written as

ĤΨ = EΨ (18)

where Ĥ is the Hamiltonian and Ψ is the wavefunction. E, the eigenvalue in

this equation, represents the energy of the system.

In the absence of external fields, the electronic Hamiltonian operator is, in

atomic units

Ĥ = −1

2

electrons∑
i

∇2
i −

electrons∑
i

nuclei∑
A

ZA
riA

+
electrons∑
i 6=j

1

rij
+

nuclei∑
A 6=B

ZAZB
rAB

(19)

A number of formalisms and approximations have developed to solve this

equation for many electron systems, such as tight-binding and Green’s func-

tions methods. However, most modern studies of III-V nitrides have focussed

on Hartree-Fock and Density Functional Theory (DFT) derived approaches.

2.2.1 Hartree Fock methods

The wavefunction Ψ determines the energy E via

E =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

(20)

The wavefunction has to be antisymmetric with respect to the exchange of

two electronic coordinates, a requirement imposed by the Pauli exclusion

principle. This can be satisfied by expressing the wavefunction in terms of
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Slater determinants SD

SD =
1√
N !

∣∣∣∣∣∣∣∣∣∣
φ1(r1) φ2(r1) . . . φN(r1)

φ1(r2) φ2(r2) . . . φN(r2)

. . . . . . . . . . . .

φ1(rN) φ2(rN) . . . φN(rN)

∣∣∣∣∣∣∣∣∣∣
(21)

where φn(rm) is the nth spinorbital, i.e. the product of electron spatial or-

bitals and spin function, which is an appropriate approximation in the non-

relativistic limit, and rm is the radius-vector of electron m. The spin orbitals

are orthonormal 〈φi|φj〉 = δij. In the Hartree-Fock approach, an approxima-

tion of a single Slater determinant is made.

It can be shown that this constrained optimisation problem (keeping the one

electron orbitals orthonormal) leads to the Hartree-Fock equations

F(r1)φi(r1) = εiφi(r1) (22)

where φ′i are the canonical molecular orbitals and Fi is the Fock operator.

F(r1) = h(r1) +
N∑
j

(Jj(r1)−Kj(r1)) (23)

The first term has its origins in the description of the kinetic energy of

electron i in the field of the nuclei of the system,a,

h(ri) = −1

2
∇2

i −
∑
a

Za

|Ra − ri|
(24)

J is the Coulomb term, a classical repulsion between like charges

Ji(r1)|φj(r1)〉 = 〈φi(r2)| 1

|r1 − r2|
|φi(r2)〉|φj(r1)〉 (25)
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K is the exchange term, with no classical analogy. It arises as a result of the

antisymmetry requirement of the wavefunction

Ki(r1)|φj(r1)〉 = 〈φi(r2)| 1

|r1 − r2|
|φj(r2)〉|φi(r1)〉 (26)

Since the Fock operator depends on the final wavefunction the equations have

to be solved in a self-consistent manner to obtain a final wavefunction and

energy.

Various approximations have been implemented, including neglecting some

overlap integrals and parameterising others. These adaptations form the ba-

sis of semiempirical methods and result in increased computational speed but

possible loss of accuracy.

Other methods derived from the Hartree Fock approach, such as the con-

figuration interaction, try to correct for the neglect of electron correlation.

They are beyond the scope of this work and are discussed in more detail in [9].

2.2.2 Density functional theory(DFT)

DFT removes the problem of dealing with the complicated many-body inter-

action among electrons by replacing it with a single-body calculation where

the electronic density n is the key variable. While a wavefunction in HF-

based methods depends on 3N coordinates (4N including spin) where N is

the number of electrons, density only depends on three coordinates, indepen-

dent of the number of electrons, in theory vastly reducing the computational

effort.

A proof by Hohenberg and Kohn [10] underlies the method, stating that

the ground state electronic energy is fully determined by the density. The

problematic part in DFT involves mapping the density onto the energy, i.e.

determining the energy functional. The second important theorem [10], based

on the more general variational principle, states that the true ground state

electron density is that which gives the lowest possible energy, which is equal

to the ground state energy.

In order for these theorems to be of practical use in reducing the computa-
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tional effort in electronic structure calculations, the Kohn-Sham equations

reformulate the problem in terms of N non-interacting one-electron systems.

The interactions of an electron with all the other electrons, rather than being

included in the wavefunction via its dependence on all the electronic coordi-

nates, are now dealt with via the effective potential term in the Hamiltonian.

The problem is then reformulated as the Kohn-Sham equations [11][
− 1

2
∇2 + veff (r)

]
ψi = εiψi (27)

where

veff (r) = v(r) +

∫
ρ(r′)

|r − r′|
dr′ + vXC(r) (28)

ρ(r) =
N∑
i=1

|ψi(r)|2 (29)

v(r) is the potential due to nuclei and any external fields and the second term

in Eq. 28 is the classical Coulomb interaction. This reformulation puts the

two difficult aspects into the vXC term. Firstly, it is difference between the

kinetic energy of the non-interacting electron gas, described by the KS equa-

tions, and the true kinetic energy of the fully interacting system. Secondly,

all non-classical aspects of the electron-electron interaction are included in

this term.

The exchange term arises naturally in HF when employing a Slater deter-

minant formulation as a result of applying the antisymmetrising operator.

However, even including this term does not yield the correct energy of the

system, which is lower than predicted by HF. The difference between the

true minimum and the HF minimum is termed the electron correlation en-

ergy. Electrons are correlated and as a result they are further apart than

predicted by the HF wavefunction. The correlation between electrons in the

same molecular orbital is larger than inter-orbital correlation. Since electrons

with the same spin are not allowed in the same orbital due to the Pauli ex-

clusion principle, the correlation between opposite spins is larger than same

spin correlation, which has no intra-orbital contribution. Opposite spin cor-
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relation is termed Coulomb correlation and same spin correlation is known

as Fermi correlation. Due to correlation effects there is a reduced probability

of finding another electron in the immediate vicinity of one, i.e. there is hole

around it.

The exact form of the exchange correlation functional is unknown and the

approximations developed to describe it are summarised later in this section.

The effective potential is a function of density, but density is also calculated

via equation 29, which in turn depends on the effective potential. The equa-

tions are solved in the self-consistent field (SCF) approach. The majority of

computational approaches to solving the KS equations are iterative. The ini-

tial guess KS orbitals are integrated to obtain the density function, which in

turn is used to determine v1. Kohn-Sham equations are then solved to yield

a new set of orbitals (with new expansion coefficients), which then determine

the new density and v2. If the difference between v1 and v2 is too large, the

process is repeated until self-consistency is achieved.

The Kohn-Sham (KS) orbitals can be either described numerically or as an

expansion over basis functions (plane waves, Gaussians, etc.).

The total energy of the system can be written as

EDFT [ρ] = TS[ρ] + Ene[ρ] + J [ρ] + Exc[ρ] (30)

where TS is the non-interacting kinetic energy, Ene is the energy of the in-

teraction between nuclei and electrons, Exc is the exchange and correlation

energy and J is the electron Coulomb term.

The boundary conditions in DFT calculations of crystalline solids can be

divided into two classes. Under periodic boundary conditions a repeating

supercell unit imposes conditions on the boundaries between supercell. As

an alternative is a cluster approach without any periodicity, a method that

is extensively used in this thesis.

Functionals

A number of functionals have been developed to describe the exchange and

correlation interaction. Some of the most common ones used in studies of

GaN are local density, gradient corrected and hybrid functionals.
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In the local density approximation (LDA), the electron density is assumed

to be slowly varying in space and the exchange energy can be written as

ELDA
xc [ρ] =

∫
εxc(ρ↑, ρ↓)ρ(r)dr (31)

where εxc is the exchange-correlation energy density. Reasonably accurate

formulae for εxc have been determined from Monte Carlo simulations. VWN

is an example of LDA functional.

In the generalised gradient approximation (GGA) the energy density is a

function of the first spatial derivative of density a well as the density itself.

EGGA
xc [ρ] =

∫
εXC(ρ↑, ρ↓,∇ρ↑,∇ρ↓)ρ(r)dr (32)

PW91 and LYP are examples.

Meta-GGA methods employ a second derivative of the density in the expan-

sion and the Kohn-Sham kinetic energy density (or its Laplacian). Asymp-

totically corrected methods aim to reproduce correctly the 1/r asymptotic

behaviour of the exchange energy density. Hybrid functionals use exact ex-

change energy, calculated from HF methods, to improve accuracy in addition

to any number of explicit energy functionals. B3LYP is an example.

The functional relationships between the energy density and the electron

density and its derivatives are often quite complicated and depend on the

exact functional employed.

Basis sets

Basis sets provide a way of expressing a wavefunction ψ in terms of known

functions χi, i.e. the basis set weighted by variable coefficients ci

ψ =
∑
i

ciχi (33)

This expansion is fully accurate if the basis set is complete. In computational

practice it is impossible to have a complete basis set, which would require

an infinite number of basis functions. Both the actual number and quality

of the basis functions determine the accuracy of the calculation.
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Figure 3: Periodic boundary conditions. The central box represents a re-
peating cell, which is not necessarily the unit cell of the material, and has to
be chosen carefully so that the underlying inherent periodicity of the lattice
is not disturbed. A supercell with a number of unit cells is often chosen, e.g.
a 2× 2× 2 will contain two unit cells along each lattice vector. The arrows
represent forces on the particles. From [12].

The most commonly used basis sets are Slater-type orbitals (STOs), Gaussian-

type orbitals (GTOs) and plane wave basis sets.

Plane waves are used with periodic boundary conditions (Fig. 3), which em-

ploy an infinitely repeating supercell. The wavefunction Ψ can be expanded

due to Bloch’s theorem as

Ψi(r) = eik·rfi(r) (34)

where k is the electronic momentum and

fn(r) =
∑
G

cnGe
iG·r (35)

Here G are reciprocal lattice vectors. Periodic boundary conditions and plane

waves were not used in the present work but are common in other studies of

GaN defects.
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STOs have the form

χSTOζ,n,l,m(r, θ, φ) = NYl,m(θ, φ)rn−1e−ζr (36)

where N is a normalisation constant, Yl,m are spherical harmonics and ζ is

the orbital exponent.

A GTO can be written as

χGTOζ,n,l,m(r, θ, φ) = NYl,m(θ, φ)r2n−2−le−ζr
2

(37)

In Cartesian coordinates

χGTOζ,lx,ly ,lz(x, y, z) = Nxlxylyzlze−ζr
2

(38)

The type of orbital is determined by lx + ly + lz where l are the orbital quan-

tum numbers. For a p-type orbital the sum is equal to 1, for example. There

are five d-type components of a GTO in polar coordinates (Y2,2 , Y2,1, Y2,0,

Y2,−1 and Y2,−2) whilst there are six Cartesian components (x2, y2, z2, xy,

xz and yz). It can be shown that these six functions may be transformed

into five spherical d-functions and one s-function (x2 + y2 + z2). Similarly,

the 10 Cartesian f-functions can be shown to transform into seven spherical

f-functions and one set of three p-functions. In computational methods the

excess functions are often removed, speeding up the calculation.

STOs are in theory more accurate than GTOs as they are better behaved

near the nucleus and they do not fall off as quickly as the GTOs hence the

tails of the functions are better represented. However, it is more efficient to

calculate two-electron integrals with GTOs and they are often preferred in

computational chemistry.

The minimal basis set employs the same number of functions as there are

electrons in the neutral atom. Doubling the minimal basis set results in a

double zeta (DZ) type basis set. If only the functions for the valence elec-

trons are doubled a split valence basis is formed, sometimes referred to as

valence double zeta. Triple and higher order zeta basis sets have also been

developed.
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Basis functions with higher angular momenta than those occupied in the

ground state of the atom are also included to describe polarisation effects

(e.g. p functions for hydrogen, d functions for carbon). Inclusion of too many

polarisation functions with a small number of sp-functions might however re-

sult in artefacts as the higher angular momentum functions compensate for

inadequacies in the sp basis.

Another common addition to a basis set are diffuse basis functions. These

have small ζ parameters in the exponential, resulting in a slower decay and

a better description of the tail of the wavefunction. This may be necessary

for modelling loosely bound electrons, e.g. in anions, or if the property being

studied depends on the wavefunction tail, e.g. polarisability.

To improve the computational efficiency of the basis set, it is often con-

tracted. The contraction is usually applied to the chemically largely inert

but energetically important core electrons. It is performed by fixing some

of the ci coefficients so that they are no longer subject to calculation via

the variational principle. Three basis functions χ1, χ2 and χ3 with three

variable coefficients c1, c2 and c3 may be contracted to one basis function

ccontr(A1χ1 + A2χ2 + A3χ3) where Ai are constants and ccontr is a variable

coefficient. The basis functions in the contraction are called primitive func-

tions.

Pseudopotentials

In atoms with a large number of core electrons the basis functions represent-

ing the core electrons are both expensive and unnecessary and they are often

replaced with a pseudopotential, also known as an effective core potential

(ECP) (see [13], [14], [15], [16], [17], [18] and [19]). In deriving preudopoten-

tials, an accurate all-electron wavefunction is calculated. The valence orbitals

are then replaced with pseudorbitals which are equivalent to the true wave-

function outside the core region (at distances > RC outside the nucleus) but

lack the nodal structure in the core region (see Fig.4). A pseudopotential is

then introduced which results in Schrödinger equation yielding the pseudo

wavefunctions and the correct Kohn-Sham eigenvalues. The pseudopotential

is usually expanded in terms of analytical functions such as Gaussians.

A good pseudopotential needs to be transferable, i.e. applicable in a range of
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atomic/molecular environments different from those it was originally fitted

in.

A variety of approaches to constructing ECPs have been developed. In gen-

eral, pseudopotentials are non-local, i.e. the radial form is a function of the

angular momentum l. Kleinman and Bylander separated the local and non-

local parts of the pseudopotential operator [20]. Hay and Wadt proposed

a semilocal scheme [19]. Other models were developed by Huzinaga [21],

Phillips and Kleinman [16] and Durand and Barthelat [22]. Norm-conserving

pseudopotentials such as [14] require that the integrated charge within RC

matches that of a full-electron calculation.

In addition to reducing the computational expense of QM calculations, pseu-

dopotentials are used to create a boundary between QM and MM subsystems

in QM/MM methods (see below).

Pseudopotentials, or effective core potentials, can be divided into small core

Figure 4: Comparing a wavefunction in a potential with a wavefunction in a
pseudopotential.rc is the cut-off radius. From [23]

potentials describing only the deepest core electrons and large core potentials

which describe all the electrons bar the valence ones.
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Figure 5: RHF, ROHF and UHF treatment of spin. From [24].

2.2.3 Spin in QM computational methods

Two electrons may be present in each orbital. The resulting spin-orbital is

written as a product of the spatial wave function and the spin function α or

β. If an even number of electrons are present and they have a singlet-type

wavefunction (a closed shell system), i.e. each electron is paired up in an

orbital with another electron, the spatial parts of the wavefunction of the

two electrons in the same orbital are commonly restricted to be identical,

which is known as Restrictred Hartree-Fock (RHF). Open shell-systems may

also be restricted in such a way, resulting in Restricted Open-Shell Hartree-

Fock (ROHF). More commonly for open shell systems though, the two spatial

wavefunctions in the same orbital are not restricted, leading to Unrestricted

Hartree Fock (UHF). The differences between the different configurations

and the associated energy levels are illustrated in Fig. 5. The same concepts

apply in DFT calculations.

In open shell systems, spin density is defined as the total density of electrons

with spin α less the total density of electrons with spin β.

2.3 QM/MM methods

QM/MM methods aim to overcome the insufficient accuracy of MM and

computational expense of QM methods by combining the two to create a

potentially powerful and yet fast method. The system being studied is parti-
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tioned between a chemically active region treated at the QM level and system

remainder studied by MM. Further details on the partitioning of the system

are given in Chapter 8.

2.3.1 Termination of the QM region

The methodologically difficult part is the treatment of the interface between

the two subsystems, which can be achieved either by introducing extra nu-

clear centres (link atoms) or a boundary region.

Link atom schemes are well suited to the description of covalent systems, es-

pecially organic molecules (see e.g [25], [26], [27]). Variations on the method

such as scaled position link atom method (SPLAM) [28], adjusted connection

atoms [29] and double link atoms [30]) have been proposed.

Boundary region methods usually employ pseudopotentials, or pseudobonds

in the case of covalent systems [31]. The Hamiltonian can then be rewritten

as

H =

(
− 1

2

Neff∑
i

∇2
i

)
+

(
Neff∑
i 6=j

1

rij
−

Neff∑
i

∑
α∈QM

Zα
rαi
−

Neff∑
i

∑
β∈MM

qβ
rβi

)
+

+

(
Neff∑
i

∑
γ∈Yps

VYps(riγ)

)
+

( ∑
α1 6=α2∈QM

Zα1Zα2

rα1α2

+
∑

α∈QM,β∈MM

Zαqβ
rαβ

)
(39)

Here the first bracket represents the kinetic energy of Neff electrons. These

are QM region electrons, and, depending on the implementation, the valence

electrons of the boundary atoms Yps. The interactions between the bound-

ary atoms may be treated at the QM level, in which case they enter into

the Hamiltonian as additional α atoms, or at the MM level, corresponding

to β description in Eq. 39. The second bracket is the Coulomb interaction

between the electrons in the system and of the electrons with the nuclear

charges α in the QM region as well as the charges β of the MM region. The

third term describes the interaction of the electrons with the ECPs VYps cen-

tred on atoms Yps. The final term is a constant that accounts for the Coulomb
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interaction of the nuclear charges in the QM region with themselves as well

as the charges in the MM region.

Variations on the pseudopotential theme have been introduced. The quan-

tum capping potential (QCP) [32] reduces the number of valence electrons

(from four to one in the case of carbon) and introduces extra terms into the

potential to account for this modification.

2.3.2 Energy expression

There are two main approaches to calculating the total energy of a QM/MM

system: additive and subtractive schemes.

The total energy in an additive scheme can be written as

Etotal = EMM(X) + EQM(Y +B) + EQM−MM(Y +B,X)− Ecorr (40)

where EMM is the MM energy of the atom set X, EQM is the QM energy

of the atom set Y and the boundary (or link) atoms B and EQM−MM is

the energy of interaction between the QM and MM atoms. Corrections to

the energy, Ecorr are sometimes applied, for example a Jost correction (see

Section 8.2.2).

In a subtractive scheme the energy may be written as

Etotal = EMM(X + Y +B) + EQM(Y +B)− EMM(Y +B) (41)

An example a subtractive scheme is ONIOM [33] , [34], [35], [36], [37], in-

cluding approaches with more than two layers.

Additive schemes only will be used in the present work.

2.3.3 Interaction between QM and MM subsystems

The interaction between the QM and MM regions in an ionic solid take the

form of the usual Coulomb and short range terms, although the parameters

of the short range potential may have to be adapted relative to a pure MM

model.
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A further consideration is the treatment of polarisation in the QM/MM

model. Here three different models have been developed: mechanical, elec-

trostatic and polarised embedding.

In mechanical embedding, the electrostatic interaction between the QM and

MM regions is confined to the Coulomb interaction between the ionic charges

and is treated at the MM level of approximation, which introduces a constant

term in the Hamiltonian. The electrons in the QM region are not polarised

by the MM region, a serious drawback in the treatment of highly ionic sys-

tems. Furthermore, the method requires an accurate set of parameters, which

might be difficult if the charge distribution in the QM region is altered from

the bulk charge distribution, as is usually the case in the course of a chemical

reaction.

Electrostatic embedding improves on the shortcomings of the previous ap-

proach by incorporating the interaction between the electrons and MM charges

in the one-electron terms in the Hamiltonian. As a result the electrons in

the QM region can respond to changes in the ionic charge distribution in the

MM region. The MM region electrostatic contribution is no longer a constant

additive term in the total energy expression. The MM region is, however,

not polarised by the QM fragment.

The next logical step is to include the MM polarisation in the formalism.

This is known as polarised embedding. The ionic shells of the shell model, as

described above, respond to electronic polarisation in the QM region. The

equilibrium polarisation is found by solving for the QM and MM region po-

larisations self-consistently. This methodology was used in the current work.

When link atoms are used with electrostatic and polarised embedding charge

modifications on the QM-MM boundary might be required, including selec-

tive deletion of atomic charges and charge shifting. [38] discusses these issues

further.

In addition to the long-range Coulomb interactions, short-range interactions

between the QM and MM regions are included at the MM level of approx-

imation. A more detailed description of our QM/MM implementation and

the interactions between the different regions is decribed in Chapter 8.
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2.4 Geometry optimisation

A number of methods are available for energy minimisation. The system

at the energy minimum is said to have an optimised geometry, so energy

minimisation and geometry optimisation are equivalent terms. The same

principles apply to geometry optimisation in MM and QM/MM codes.

It has been found that methods involving the gradients of the function be-

ing optimised are efficient at finding the minimum of a 3D function. The

minimum can be found by using the first order derivatives of a function;

following the negative gradient leads to the solution. This method is known

as “steepest descent”. More sophisticated methods usually converge in fewer

iterations but each step is computationally more demanding. Two popular

variants, Newton-Raphson (and related approaches) and conjugate gradients

are briefly summarised below. Standard texts such as [40] discuss optimisa-

tion techniques in more detail.

The potential energy can be regarded as a Taylor expansion around the equi-

librium geometry.

E(x + dx) = E(x) + E ′(x)dx +
1

2
dxTE(x)′′dx + . . . (42)

where the E ′(x) = g and E ′′(x) = H matrices contain first and second-

derivatives respectively. In the Newton-Raphson algorithm the vector in

the direction from the current geometry towards the energy minimum is

approximated as

dx = −H−1g (43)

The inversion of the Hessian, H, is computationally demanding. A number

of techniques have been developed to avoid calculating it at every optimisa-

tion step. These methods update the inverse Hessian matrix approximately

based on the value of the coordinates and g, the gradient vector. Examples of

schemes for updating the inverse Hessian are Davidon-Fletcher-Powell (DFP)

and Broydon-Fletcher-Goldfarb-Shanno (BFGS), the latter being the default

in GULP [1], the software used in the current work. The exact Hessian is

recalculated when the software deems the approximate one no longer appro-
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priate or after a specific number of cycles. This approach only works when

the starting geometry is close to a minimum.

The Hessian might be very expensive to calculate at all. In that case, it can

be set to a unit matrix initially and subsequently updated using an update

scheme such as BFGS. Alternatively, a method which does not require a

Hessian and uses only first derivatives, such as conjugate gradients (CG, see

below) can be employed.

When starting from a point sufficiently far from the minimum, Eq.43 becomes

increasingly approximate. A further danger is that a maximum rather than

a minimum is found. To improve on the method, a line search is performed

in the direction of the search vector dx

dx = −αH−1g (44)

α is chosen so that the energy along the direction dx is minimised. Once the

minimum along that search vector is found, a new search vector is calculated.

An alternative to the Newton-Raphson scheme is the CG method. It is a

generalisation of the steepest descent method, which starts with a direction

that has the largest gradient d0 = −∇f . The following steps are orthogonal

to the previous one, i.e. di · dj = δij. CG also starts off with the steepest

descent direction d0. Once the minimum has been found, the algorithm

chooses another direction to search along using information from the previous

steps to increase efficiency. The step direction in cycle i is found via

di = −gi + βidi−1 (45)

The choice of β varies in different methods, such as Fletcher-Reeves, Polak-

Ribiere and Hetenes-Schiefel. Full details can be found, for example, in [41].

Methods using second derivatives, such as Newton-Raphson are particularly

suitable for small systems due to their efficiency. As the system size increases,

calculating and inverting the Hessian becomes increasingly expensive and the

memory requirements will rise as well. For very large systems, either the unit

Hessian method, or ultimately the conjugate gradients approach, have to be

61



used. Furthermore, Newton-Raphson methods become less useful when the

structure being optimised is outside the harmonic region [1].
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3 Introduction to material properties

In this chapter, the relevant physical properties of III-V nitrides are reviewed,

including bulk properties such as structure and phase stability. We also con-

sider defect properties and phase separation in alloys.

3.1 Structural properties

III-V nitrides crystallise in three polymorphs: the hexagonal wurtzite struc-

ture (Fig. 9, space group P63/mc) and two cubic phases, zincblende (Fig.

9, F4̄3m) and rocksalt (space group Fm3̄m). The structural parameters of

the unit cells and the fractional coordinates of the ions within them are tab-

ulated in Table 1. There are four atoms in the unit cell of wurtzite and two

in the cubic polymorphs. Wurtzite has three material-dependent structural

parameters (a, c and u) and the other two polymorphs have only one.

The wurtzite and zincblende structures are both based on tetrahedra. The

difference between these two polytypes lies in the rotation of successive tetra-

hedra along the c-direction (see Fig. 6). Wurtzite has ABABAB... type

stacking. In zincblende the third layer is rotated by 60◦ in the ab-plane with

Table 1: Unit cell and the fractional coordinates of the three common GaN
polymorphs

Structural parameters Angles Fractional coordinates
Wurtzite
a = b 6= c α = β = 90◦, γ = 120◦ Ga 2/3, 1/3, 1/2

Ga 1/3, 2/3, 0
N 1/3, 2/3, u
N 2/3, 1/3, 1/2+u

Zincblende
a = b = c α = β = γ = 90◦ Ga 0, 0, 0

N 1/4, 1/4, 1/4
Rocksalt
a = b = c α = β = γ = 90◦ Ga 0, 0, 0

N 1/2, 1/2, 1/2
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Figure 6: A diagram showing the difference between the wurtzite and
zincblende polymorphs. a) and b) indicate the handedness of the succes-
sive layers, right (R) handed for wurtzite and left (L) handed for zincblende.
The resulting views along the z-direction are shown in c) and d). From [1].

respect to wurtzite resulting in ABCABCABC... stacking. Other types of

stacking are possible as shown in Fig. 8. This type of polytypism is very

common in silicon carbide, where a wide range of polytypes is known.

The stacking differences result in wurtzite having hexagonal packing and

zincblende being cubic (see Fig 9). Rocksalt is also cubic as can be seen in

Fig. 7, but has the higher coordination number of 6.

Figure 7: Rocksalt structure from [2]. The blue atoms are cations and the
green atoms are nitrogens.
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(a) wurtzite (b) zincblende

Figure 9: Two common polymorphs of III-V nitrides. The shaded spheres
are cations and the white spheres are nitrogen ions. The hexagonal packing
of wurtzite and cubic packing of zincblende is shown. From [4]

When indexing the Miller planes in wurtzite and zincblende a rotation

is applied to the zincblende unit cell with respect to the one presented in

Fig. 6. This rotation is shown diagrammatically in Fig. 10. The layer of

like cations (or analogously, anions) has the crystallographic index (0001) in

wurtzite, which after the rotation becomes (111) in zincblende. The (111)

plane in zincblende is sometimes referred to as the pyramidal plane.

3.2 Elastic properties

Understanding the elastic properties is essential for the applications of ma-

terials such as the III-V nitrides in electroluminescent devices, where they

are present as epitaxial thin films. The mismatches in the lattice constants

between successive layers result in significant strain, especially at high tem-

peratures, due to differential thermal expansion coefficients of the film and

the substrate. The elasticity of the material determines the response to this

strain.

The elastic constant tensor cijkl is defined as

σij = cijklεkl (46)
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Figure 10: The difference between zincblende and wurtzite and their crystal-
lographic planes. Ga in pink and N in blue. Note that the zincblende unit
cell is rotated with respect to wurtzite so that the (111) zincblende plane is
equivalent to the (0001) plane in wurtzite. From [5].

where σij is the stress and εij is the strain. As there are three coordinates,

there are in principle 3×3×3×3 = 81 components of cijkl. Due to symmetry

some components are equal and the elastic constant tensor is reduced to a

6×6 matrix. However, depending on the symmetry of the crystal some of the

elements of the matrix are equal and the number of independent constants is

further reduced. In wurtzite only the C11, C12, C13 and C44 are independent.

A cubic crystal (e.g. zincblende) has only three independent elastic constants

C11, C12 and C44.

The elastic constant matrix can be related to the internal energy U of the

lattice via

Cij =
1

V

(
∂2U

∂εi∂εj

)
(47)
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Strain ε is defined as

εij =
1

2

(
∂ui
∂rj

+
∂uj
∂ri

)
(48)

where ui is the deformation in ri direction, and ri (i = 1,2,3) are the coordi-

nates. Equation 47 is used in MM calculations to calculate elastic constants.

In the present work we model the behaviour of defectless bulk materials.

Experiments are often performed on polycrystalline samples or thin films

with significant concentrations of defects. Single crystals of III-V nitrides

are difficult to grow. Furthermore, much of recent research has focussed on

developing epitaxial films rather than bulk nitrides. These factors might ex-

plain some of the discrepancy between our model and experiment.

3.3 Dielectric properties

The response of a crystal to an electric field is in many ways analogous to its

elastic reponse. Elastic constants measure the response to stress; dielectric

constants measure how the polarisation of the material changes with applied

electric field. Just like the elastic response, dielectric properties are frequency

dependent. The intrinsic (high-frequency) behaviour corresponds to no re-

laxation involving ionic displacements whereas relaxation occurs in response

to a low frequency electric field.

The electric field experienced by an ion in a crystal is a sum of any applied

electric field and the field due to the displacement of the ions and electrons

in the crystal. The relationship between this so-called local field, Eloc and

the applied field may be expressed as

Eloc(r) =
ε+ 2

3
E(r) (49)

where ε is the dielectric constant of the medium. The static and high fre-

quency extremes of the dielectric function are usually quoted. In the high

frequency case, only the electrons are able to respond to the electric field as

the electric field oscillates faster than the maximum ionic phonon. In the

static response, both the electrons and ions respond to the electric field. The
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quality of the calculated dielectric constants is a sensitive indicator of the

reliability of the model as second derivative matrices are used in the calcu-

lation.

The relationship between ε and the polarisability α is given by the Clausius-

Mossotti relation
ε(ω)− 1

ε(ω) + 2
=

4πα

3v
(50)

where v is the volume of the primitive unit cell. The polarisability is a sum

of the polarisability due to the displacement of positive ions, α+, that of

negative ions, α− and electronic polarisability

α = (α+ + α−) +
e2

M(ω̄2 − ω2)
(51)

Here M is the ionic mass and ω̄ is a vibrational frequency characteristic of

the crystal. α can be seen as a link between the theoretical polarisability of

the shell model (Section 2.1) and the macroscopic high frequency dielectric

constant.

It can be shown that the Lydanne-Sachs-Teller relationship holds between

longitudinal and transverse modes (ωL and ωT respectively)

ω2
L =

ε0
ε∞
ω2
T (52)

where ε0 is the static dielectric constant and ε∞ is the high frequency dielec-

tric constant. This relationship is often useful in developing potentials as

fitting the dielectric constants is often easier than matching phonon frequen-

cies.

Whilst the dielectric properties describe the response of any material to an

applied electric field, some materials show spontaneous polarisation (in the

absence of an external field) due to the non-zero electric dipole moment as-

sociated with their unit cell, which is known as ferroelectricity. Wurtzite

structures exhibit spontaneous polarisation while the cubic polymorphs do

not.
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3.4 Piezoelectric properties

Piezoelectricity refers to the ability of a material to generate an electric field

in response to applied strain. The reverse piezoelectric effect refers to the

generation of strain when an electric field is applied.

The relationships between the tensors of strain S, stress T , the electric charge

density displacement D and electric field E can be expressed via piezoelectric

coefficients

S = sET + dtE (53)

D = dT + εTE (54)

where d is the tensor of the direct piezoelectric effect and dt is the tensor of

the converse piezoelectric effect. The T and E superscripts indicate constant

stress and electric field respectively.

3.5 Phonons

The lattice dynamics of a crystal are closely linked to its thermodynamic

quantities. Atoms in the unit cell oscillate with respect to each other in

different modes given by the symmetry of the cell. The normal modes of

oscillation of the wurtzite cell are shown in Fig. 11. The oscillations in the

xy-plane are doublets because the a and b directions are equivalent, thus

giving two degenerate modes.

The lowest three energy phonons are the acoustic branches corresponding

to the transmission of sound waves. The other modes, six in number for

wurtzite, are termed optical modes. The highest frequency modes are those

in which the neighbours move in the opposite direction to each other. In

lower frequency modes, neighbours oscillate in phase. Zincblende has two

atoms per unit cell hence six phonon branches (three acoustic and three op-

tical).

Oscillations along the c-direction are the A and B modes. The modes with

ions oscillating in the xy-plane are the E modes. The number of unique
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Figure 11: The normal modes of oscillation of a wurtzite lattice. The grey
circles are cations and the white circles represent N ions. The arrows indicate
the direction of relative motion in each mode. From [16]

optical modes is reduced from nine to six as the ab-plane modes are dou-

bly degenerate due to the equivalence of the a and b directions. However,

the degeneracy is broken for some of these modes for certain wavevectors

k2 due to LO/TO (longitudinal/transverse) splitting. A LO/TO clasifica-

tion is assigned to modes according to whether the atomic displacements are

perpendicular or parallel to the direction of the wavevector. For example,

approaching the Γ point3 from the z-direction will give an A1 longitudinal

mode and two E1 transverse modes with the same frequency (a doublet).

Approaching the Γ point along a wavevector in the xy-plane will give an A1

transverse mode and one E1 transverse and one longitudinal mode.

The phase relationship between the oscillations in neighbouring unit cells is

2The wavevector determines the phase relationship between oscillations in neighbouring
cells.

3The Γ point has the wavevector k = (000).
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given by the wavevector k. The dependence of phonon frequencies ω on k

is the dispersion relation of the phonons. The phonon frequencies are most

commonly experimentally measured at the Γ point where all the unit cells

oscillate in sync, i.e. k = (000). The Brillouin zones, i.e. the unit cells in

reciprocal space, and their important symmetry points, of which the Γ point

is one, for wurtzite and zincblende are shown in Fig. 12.

The density of states is a convenient concept in the computation of ther-

Figure 12: The Brillouin zone for wurtzite (left) [8] and zincblende (right)
[9] with indicated special directions:
wurtzite K (1/3, 1/3, 0), M (1/2, 0, 0), A (0, 0, 1/2), H (1/3, 1/3, 0.5), L
(0.5, 0, 0.5)
zincblende X (1, 0, 0), L (1, 1, 1), K (3/4, 3/4, 0), W (1, 1/2, 0)

modynamic quantities that involve integration over k-space, such as specific

heats. This integral may then be expressed as an integral over frequencies

rather than wavevectors. The density of states gives the weighting factor in

the integration for any frequency ω, which may be understood as the number

of available states in the interval ω to ω + δω.

In computational implementations, numerical summing scheme over points

in a Monkhorst-Pack mesh is usually carried out [10] to obtain the density

of states. In the limit of the grid spacing going to zero, this converges on the

true result.
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3.6 Thermodynamic properties

The quantum theory of the harmonic crystal predicts a temperature depen-

dence of the specific heat cv, given by

cv =
1

V

∑
k,s

∂

∂T

h̄ωs(k)

eβh̄ωs(k) − 1
(55)

where V is the volume, T is the temperature, ωs(k) is the frequency of mode

s at wavevector k. In the low temperature limit this can be approximated

as a T 3 dependence in insulators and AT +BT 3 in metals, tailing off at high

temperatures to a constant. At intermediate temperatures the Debye and

Einstein models are used to describe specific heats.

Whilst many material properties can be explained by the harmonic approxi-

mation of the energy expression, the description of certain properties dictates

the inclusion of cubic and quartic terms; higher order terms are generally ne-

glected. For example, the volume dependence of phonon modes is a direct

consequence of the anharmonicity of the ionic interaction energy. Other phe-

nomena such as thermal expansion and the non-identity of constant volume

and constant-pressure specific heats can only be explained by anharmonic

terms in the expansion.

It can be shown (e.g. Chapter 25 in [11]) that the thermal volume expansion

coefficient α, may be written as

α =
γcv
3B0

(56)

where cv is the specific heat at constant volume, B0 is the bulk modulus

and γ is the overall Grüneisen parameter. γ can be written in terms of the

Grüneisen parameters of normal mode k,s as

γ =

∑
k,s γk,scvs(k)∑

k,s cvs(k)
(57)
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The Grüneisen parameter of a mode is defined by

γk,s = − V

ωs(k)

∂ωs(k)

∂V
=

B0

ωk,s(P = 0)

∂ωk,s

∂P
(58)

where ωs(P = 0) are the phonon frequencies at zero pressure.

The specific heat at constant volume of the mode is

cvs =
∑
k

h̄ωs(k)

V

∂

∂T
ns(k) (59)

where ns(k) = [eβωs(k) − 1]−1.

As the main contribution of the temperature dependence of the thermal

expansion coefficient comes from the cv term, it can be expected that α will

show similar temperature behaviour, i.e.

α ∝ T 3, T → 0; (60)

α = constant, T � ΘD (61)

3.7 Band structure

The computational methods employed to calculate the band structure are

discussed in detail in [7]. The calculated band structure of GaN is shown in

Fig. 13.

Electrons at zero temperature reside in the orbitals which altogether form

the valence band. The conduction band comprises the unoccupied orbitals,

which can nonetheless be partially filled by excitation and result in electronic

conductivity, hence the name. The highest energy point of the valence band

is known as the valence band maximum (VBM) and the bottom of the con-

duction band is the conduction band minimum (CBM). The band gaps form

the basis of important electrical properties of the material. Wurtzite GaN

has a bandgap of 3.505eV [13] and AlN 6.2eV[14]. The band gap of InN

[15] has recently been determined to be around 0.7eV, although a wide range

of values between 0.65 and 2.3eV has been reported over the last decades [16].
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Figure 13: The band structure of GaN. Calculated in [12] using an empirical
pseudopotential method. The orange arrow indicates the direct band gap of
the material.

Figure 14: Antisite. The central anion (yellow) is replaced by a cation (green)

3.8 Defects

3.8.1 Formation energy

While a perfect crystal is a useful approximation for the study of many ma-

terial properties, real crystals contain significant numbers of imperfections.

These defects can be surface, line or point defects. In this section, only point

defects will be considered.

There are three main types of defect - vacancies (absence of ions in a lattice),

interstitials (presence of extra ions) and antisites (see Fig. 14). It can be
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shown [2] that the concentration of a defect at thermodynamic equilibrium,

c = n/N , where n is the number of defects and N is the number of lattice

ions, is given by

c = NsitesNconfige
−(Ef/kT ) (62)

Here Nsites is the number of possible defect sites per unit volume, Nconfig is

the number of equivalent configurations. Nconfig = 1 if no symmetry breaking

occurs. Ef is the energy required to create the defect and T is the tempera-

ture. This equation in effect states that the higher the formation energy the

lower the concentration of the defect.

The mobility of the defects has to be large enough to allow their concentration

to equilibrate. Kinetic barriers, for example, might keep the concentrations

of high energy defects above the equilibrium value. If the system is too far

off thermodynamic equilibrium, formation energies lose their usefulness in

predicting defect concentrations.

The formation energy depends on how the defect was generated and the

relative chemical potentials of the species involved. In the case of charged

species, the formation energy will also be a function of the Fermi level, EF .

The formation energy of a defect can be written, in the Zhang-Northrup

formalism [17], as

Ef (q, EF ) = Etot(q)− Etot
bulk −

∑
i

∆niµi + qEF (63)

where Etot(q) is the total energy of a system with a defect in charge state

q , Etot
bulk is the total energy of the bulk, ∆ni is the change in the number

of atoms of type i during the formation of the defect, µi is their chemical

potential and EF , the Fermi level, is the electron chemical potential with

respect to the valence band maximum. ∆ni > 0 if an atom i is being added

< 0 if it is being removed. The chemical potential represents the energy of

the reservoir of the relevant species, which acts as a source or a sink.

For example, the formation energy of an oxygen substitutional atom with
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charge q in GaN lattice, removing a nitrogen atom, can be written as

Ef (GaN : Oq
N) = Etot(GaN : Oq

N)− Etot
bulk − µO + µN + qEF (64)

where Etot(GaN : Oq
N) is a quantity that may be taken from a defect cal-

culation such as a QM/MM calculation. The defectless bulk energy Etot
bulk

is similarly calculated. The chemical potentials will depend on the growth

conditions.

At equilibrium, the chemical potentials of Ga and N are related to the

chemical potential of GaN via

µGaN = µGa + µN = Etot[GaN] (65)

The chemical potentials have to satisfy the condition µN ≤ µN[N2] and µGa ≤
µGa[bulk]. Here µN[N2] is the energy of N in the N2 molecule and µGa[bulk]

is the chemical potential bulk Ga metal. If these boundary conditions are

not satisfied the system would decompose into Ga and N. The chemical

potential of GaN is given by the total energy of a two-atom unit of bulk

GaN, Etot[GaN].

In the nitrogen-rich limit, the chemical potential of the nitrogen atom is

half the binding energy of a nitrogen molecule. The chemical potential of

Ga is then determined in the nitrogen-rich limit from Etot[GaN] and the N

chemical potential via Eq.65 as follows. Etot[GaN] can be expressed as

Etot[GaN] = µGa[bulk] + µN[N2] + ∆Hf [GaN] (66)

where ∆Hf [GaN] is the enthalpy of formation of GaN. Combining Eq. 65

and 66 and eliminating Etot[GaN] gives

µGa + µN = µGa[bulk] + µN[N2] + ∆Hf [GaN] (67)

Since µN = µN[N2]

µGa = µGa[bulk] + ∆Hf [GaN] (68)

81



i.e. in the N-rich limit the chemical potential of Ga will decrease4 by the mag-

nitude of the enhalpy of formation of GaN. In the Ga rich limit the chemical

potential of Ga is given by Ga metal cohesive energy, whereas µN can be

calculated via µN = µN[N2] + ∆Hf [GaN]. For further discussion of chemical

potentials, refer to [2].

The formation energy depends on the chemical potential of the electrons,

the Fermi energy as it is often referred to5. Plotting this dependence for a

variety of charge states allows one to determine thermodynamic transition

levels, i.e. the Fermi levels at which the most stable charge state changes

from one value to another [19], [20], [21].

In the above formation energy formalism, we are neglecting vibrational en-

tropy contributions to the energy. It has been suggested that these effects

are negligible for point defects [2]. At the moment a thorough computational

evaluation including phonon frequencies, is computatationally too demand-

ing.

3.8.2 Defect energy levels and electronic conductivity

In a perfect semiconductor system at zero temperature the electronic levels

are formally occupied up to the Fermi energy, EF , although in practice EF

lies in the bandgap where there are no electronic states. There are no elec-

trons in the conduction band. By the band symmetry approximation, this

intrinsic Fermi level lies near the middle of the energy gap. As the tem-

perature increases, the Fermi function, giving the probability of an electron

occupying an energy state E higher than the ground state, changes from a

step function to a smeared out function as shown in Fig. 15. The num-

ber of electrons in the conduction band is then given by the integral of the

probability over the electronic density of states in the conduction band. The

4Since the enthalpy of formation is exothermic the change to the chemical potential
will be negative.

5The Fermi energy terminology here is potentially misleading. In a metal, the Fermi
energy is the highest energy level that electrons will occupy at zero temperature. In
semiconductors, this might not be the case as the Fermi energy may formally lie in the
band gap and the highest energy electrons are below this level, in the valence band.

82



Figure 15: The Fermi function and temperature. From [23]

number of holes is determined by the corresponding integral in the valence

band. The position of the Fermi level at non-zero temperature must be such

that the number of electrons and holes is equal.

In semiconductors, the major source of electronic conductivity are defects.

The defect energy levels often lie in the band gap as illustrated in Fig. 16.

If the energy differences between the dopant level and the conduction or va-

lence bands are small an electron can easily be removed from the valence

band or added to the conduction band. The Fermi level shifts and hence so

do the probabilities of the electron being found in the conduction band or a

hole in the valence band. The number of free carriers increases and electrical

conductivity rises with it.

A distinction is often made between shallow and deep defect levels. The en-

ergy difference between shallow defect levels and the VBM or CBM is small

relative to the band gap. The bigger the difference the deeper the level. In

general, shallow defect levels are associated with delocalised wavefunctions

and small geometric distortions and vice versa for deep levels.

Initially the description “deep level” was applied to defects whose energies

are found near the middle of the band gap. Many defects have properties

that cannot be described by the same formalism as shallow defects and yet
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(a) Donor doping (b) Acceptor doping

Figure 16: Donor and acceptor doping. The Fermi levels are shown by the
dashed lines. Eg denotes the bandgap. From [24]

their energies are not in the vicinity of the middle of the band gap. These

defects are now also called deep defects.

Shallow (hydrogenic) defects contain charge carriers (electrons or holes) that

are only loosely bound to the defect centre, which is approximated as having

infinite mass. A donor atom can be thought of as a hydrogen atom, but with

electron screening which is determined by the electronic properties of the

host system. Similarly an acceptor atom in this description is equivalent to

a positron bound to a negative muon, with environment-dependent screen-

ing. Some of the important properties of these systems can be understood

in terms of the effective mass approximation. These defects are most effec-

tively studied by periodic DFT calculations, which are well-suited to their

delocalised nature. Further details can be found in [25] and [7] .

The deep level defects are important in luminescence and lasing phenomena.

They can also trap charge carriers and thus reduce electronic conductivity.

If a semiconductor system contains both shallow donors and acceptors, the

holes created in the valence band and the electrons in the conduction band

may recombine, decreasing free carrier concentrations, which is known as

compensation.

Compensation and the deep/shallow nature of defects in a material determine

the limits of conductivity of doped semiconductors. Other factors include the
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Figure 17: A configuration coordinate diagram showing the difference be-
tween thermodynamic and optical ionisation energies for an acceptor A. A−

denotes a defect that has trapped an electron whereas the state A0 + e− cor-
responds to a neutral defect and an electron in the conduction band. Erel is
the Franck-Condon shift and is equal to the relaxation energy of the defect
in the charge state A− from its equilibrium geometry in the neutral state to
its equilibrium geometry in the present charge state. EPL is the energy mea-
sured in a photoluminescence measurement. The energy Eg−EA corresponds
to the thermodynamic transition. From [34]

solubility of dopants.

Two types of defect level can be measured and calculated. The thermody-

namic transition level between two charge states q1 and q2 is defined as the

energy difference between the relaxed configurations of the two charge states,

or, equivalently, the Fermi level where the two charge states have equal en-

ergies. This type of transition level is measured by deep-level transient spec-

troscopy (DLTS). For shallow centres it can be deduced from temperarature-

dependent Hall measurements as the thermal ionisation energy.

The optical levels correspond to a transition where the geometry of the final

charge state does not relax to its equilibrium configuration. These energies

are determined in photoluminescence measurements. For a comparison of

thermodynamic and optical levels see Fig. 17.

A relevant quantity, accessible to experiment, is the ionisation potential of

the material, which is the difference between the Fermi level in the material

and the vacuum level. The vacuum level, i.e. the energy of a stationary
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Figure 18: Vacuum levels for different tungsten surfaces from [26], values
from [27].

electron infinitely removed from the solid, is, however, not uniquely defined

as can be seen in Fig. 18, which shows the vacuum levels of tungsten as be-

ing different depending on which surface, (110), (111) or (100), the electron

was removed from. The distinction is important in interpreting experimental

measurements of the ionisation potential, especially in a highly ionic material

such as GaN.

3.8.3 Defect geometries and electronic structure

There is no simple way of determining the geometry or electronic structure

of defects without performing detailed calculations such as those presented

later in this work.

Depending on the environment of the defect centre, the electronic structure

can in the first instance be approximated with atomic orbitals, e.g. when

considering a Ga interstitial or, alternatively, a molecular picture can be

considered, e.g. for a nitrogen interstitial, which forms a bond with a lattice

nitrogen in a fashion similar to a N2 molecule.

In the atomic picture, the electronic structure of native defects can be under-

stood with reference to s and p orbitals of the isolated Ga or N atoms. We

will use the example of GaAs, which is discussed in more detail in [28] and

shows many similarities to GaN, although it is most commonly found in the

86



zincblende phase and is less ionic than GaN. The energy levels of Ga vacan-

cies in GaAs are shown in Fig. 196. When an atom is removed, four dangling

orbitals (φ1, φ2, φ3 and φ4) are formed, which point from the nearest neigh-

bours to the now vacant site. A fully symmetric combination of these orbitals

φ1 + φ2 + φ3 + φ4 is has a1 symmetry (in group theory notation). The other

three dangling orbitals belong to the t2 representation and can be written as

(φ1−φ2−φ3 +φ4), (φ1 +φ2−φ3−φ4) and (−φ1 +φ2−φ3 +φ4). These three

orbitals are degenerate in the zincblende structure but split into a singlet

and a doublet in the wurtzite structure due to the lowering of symmetry in

wurtzite relative to zincblende. This is a consequence of the inequivalence of

one of the nearest neighbours in wurtzite, which lies along the c axis from the

vacancy, to the other three neighbours. In zincblende all four neighbours are

equivalent. This approach has been taken for GaN in [38] and the hexagonal

splitting can be seen in Fig. 26.

In open shell systems, electronic level degeneracy leads to symmetry-breaking

and the lowering of energy according to the Jahn-Teller theorem. The asso-

ciated geometric distortion removes the degeneracy, which is known as the

Jahn-Teller effect. Pseudo-Jahn-Teller (or second order Jahn-Teller) effects

have their origin in symmetry-breaking as well but it is the ionic energy that

is reduced rather than electronic. This effect can occur in closed shell sys-

tems.

Certain defects in GaN are sometimes said to have negative-U properties.

Such defects, usually associated with large geometry relaxations, undergo a

thermodynamic transition with an associated change in the charge state of 2.

For example, the thermodynamic transition may occur between the 1+ and

1- charge states while the charge 0 defect is not thermodynamically stable at

any Fermi level.

6This approach is derived from the work of Coulson and Kearsley [29], which studied
the energy levels of a vacancy in the perfect diamond lattice.
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Figure 19: The energy level diagram and the electronic densities of the A1
singlet and the T2 triplet of a neutral Ga vacancy in ZB GaAs. It can be
seen that in this material A1 is a resonance in the valence band whereas T2
is a bound state. Electron densities are in the (110) crystal plane. From [28].

3.9 Alloys

In this section, two important concepts relating to alloys are discussed, phase

separation and cation ordering.

Phase separation is a phenomenon which is highly relevant for the applica-

tions of III-V nitrides. Alloys have many useful properties different from

those of their constituent components, such as band gaps that result in the

emission of different colours of light. If the solid solution is unstable with

respect to decomposition to the binary compounds from which it was formed,

these valuable properties cannot be accessed.

The second important concept discussed here is the ordering in an alloy and

the enumeration of the ordered configurations in a computational study.

3.9.1 Phase separation

Alloys can under certain conditions decompose into their binary constituents

(if the free energy of mixing is positive for all alloy compositions) or into
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Figure 20: Free energy as a function of alloy composition (upper graph).
The lower graph shows the spinode and binode as a function of temperature.
Adapted from [31].

regions significantly richer or poorer in one constituent than would be ex-

pected from the overall composition of the alloy. The latter situation will

arise if the free energy vs. composition has a dependence of the form shown

in Fig. 20. For a system with such free energy characteristics, there are two

types of decomposition, spinodal and binodal, determined by the curvature

of the free energy vs. composition curve. Positive curvature leads to binodal

decomposition and negative curvature to spinodal.

Spinodal decomposition is characterised by variations in composition that

are small in amplitude but large in spatial extent. Such behaviour occurs

because the spinodal region is unstable with respect to fluctuations in com-

position, which are small in their amplitude initially. The amplitude increases

with time as can be seen in Fig. 21. Note that in spinodal decomposition

the diffusion is uphill, i.e. against the concentration gradient.

Binodal decomposition occurs down the concentration gradient and is large
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Figure 21: Spinodal vs. binodal decomposition. The arrows indicate the
direction of particle flow. Time progression is from top to bottom. In the
long time limit the concentration profiles converge. From [30].

in amplitude and small in extent. It occurs by nucleation and growth. The

equilibrium concentrations are given by the positions of the minima of the

free energy curve. The extent of A-rich and B-rich regions, where A and B

are the constituent components, is determined by the conservation of A and

B particle numbers. In contrast to spinodal decomposition, in nucleation

and growth the compositions of the A and B rich regions do not change with

with time but are fixed at the equilibrium concentrations from the start. The

extent of the decomposition region grows with time, however. Additionally,

there is a sharp concentration contrast between the regions with different

compositions in nucleation and growth while in spinodal decomposition the

concentration is more slowly varying in space.

In the limit of long times spinodal decomposition results in the same com-

position vs. spatial extent profile a binodal decomposition (see Fig 21).

For a system with a free energy vs. composition dependence like the one in

the upper graph in Fig. 20, the two compositions where the curvature of the

free energy vs. composition is zero, c′s and c′′s , as well as the compositions

corresponding to the minima of the free energy function, c′α and c′′α, depend
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on the temperature. The lower graph in Fig. 20 shows the dependence of

these four points on temperature. The cs points form the spinode and the cα

points are the binode curve on the lower graph in Fig. 20.

3.9.2 Ordering in alloys

If the alloy does not undergo phase separation, the lattice can be occupied

randomly or there can be ordering in the arrangement. This section discusses

the latter.

We model ordered structures using supercells (see Section 2.2.2 on p. 52),

usually composed of a number of unit cells of the material. For example, a

2 × 2 × 2 supercell is composed of two unit cells along each of the lattice

vectors, giving eight unit cells in total. This supercell is then repeated an

infinite number of times along each lattice vector to form the infinite crystal

lattice. Once the structures have been generated, their energies can be cal-

culated to determine the most thermodynamically stable arrangement.

In our study the anion sites are occupied by nitrogen ions. The cation sites

may be occupied by Al, Ga or In. Different cation fractions in the unit cells

lead to different macroscopic compositions of the alloy. Only ternary alloys

of the form AxB1−xN, where A and B are cations, will be studied here.

We start with the smallest possible unit cell, equivalent to that of a wurtzite

unit cell. The two cation sites may be occupied either by A or B. If both

the sites are A or B, a binary compound is formed. If one of the cation sites

contains A and the other one B, an ordered alloy A0.5B0.5N results. Inter-

changing the two sites results in equivalent arrangements so in this case only

one unique configuration is possible.

Next we consider a 2× 1× 1 supercell. Now there are four cation sites. If we

wish to create a 50:50 alloy, the number of possible arrangements is 4 × 3,

some of which will be equivalent. The number of inequivalent sites will be

determined by the symmetry of the system.

To establish whether two configurations are equivalent one can use the con-

cept of isometric transformation. Such a transformation, e.g. rotation, trans-

lation, reflection, will do not change any of the distances and angles in the
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Figure 22: Symmetry operators of a parent structure (e.g. wurtzite) consti-
tute the isometric operators of an alloy supercell. From [32]

final, transformed structure.

For a crystal structure, such as wurtzite, isometric operations are determined

by the symmetry of the system. When these symmetry operations are ap-

plied to the binary compound (e.g. GaN), the structure is transformed back

to itself. When the symmetry operators of the binary compound are applied

to a supercell of an alloy material, it can be shown that equivalent structures

are generated (see Fig. 22).

Clearly, for supercells containing more than a few atoms it would be ex-

tremely difficult to find all the inequivalent configurations so a software pack-

age, SOD (Site Occupancy Disorder) is used. This software utilises the sym-

metry operators of the relevant structure (wurtzite in our case) to establish

whether a particular configuration is equivalent to any other configuration

that has already been generated by the program. More details can be found

in [32]. Since the original software did not contain the symmetry operators

for the wurtzite structure, they were kindly implemented by Dr. Scott Wood-

ley.

If a particular configuration, n, has a number of equivalent (degenerate)

arrangements, M, each with energy En, then the probability of this configu-
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ration is given by

Pn =
1

Z
M exp (−En/kBT ) (69)

Rearranging gives

Pn =
1

Z
exp (−Ered,n/kBT ) (70)

where kB is the Boltzmann factor, T is the temperature and the reduced

energy Ered,n is defined as

Ered,n = En − TSdeg,n (71)

The partition function, Z may be written as

Z =
N∑
n=1

exp (−Ered,n/kBT ) (72)

The degeneracy entropy, Sdeg,n, is, by definition

Sdeg,n = kB lnM (73)

This contribution to the free energy is not to be confused with the vibrational

entropy due to the phonon contributions, or with the entropy of the ensemble,

i.e. its configurational entropy, Sconfig, discussed below.

The reduced energy and degeneracy entropy are not physically observable

quantities; rather they are a mathematical convenience. The internal energy

of the system, E, can be written as

E =
N∑
n=1

PnEn (74)

The free energy can also be readily calculated as

F = −kBT lnZ (75)
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Sconfig, can then be deduced from

F = E − TSconfig (76)

Rearranging this equation and substituting for E from Eq.74 and F from

Eq.75, we obtain

Sconfig =
1

T

[ N∑
n=1

PnEn + kBT lnZ

]
(77)

Taking M = 1 for all configurations and using Eq. 69 to define En

Sconfig =
1

T

[
−

N∑
n=1

PnkBT lnPnZ + kBT lnZ

]
= −kB

N∑
n=1

Pn lnPn (78)

Depending on the difference between the energies of the different configura-

tions, the system can range from completely disordered (the energies are the

same; all configurations equal probabilities) to ordered (one configuration is

much more likely than any other). The maximum entropy, Smax in Eq. 78

will occur when all the configurations are equally likely, i.e. Pn = 1/N . In

that case

Smax = kB lnN (79)

N , the total number of possible configurations, can be determined for a

given supercell size using combinatorial formulae. In the limit of infinite

supercell size, it can be shown that for an alloy with composition AxB1−xC,

the maximum configurational entropy, corresponding to a random alloy, is

given by

Sconfig, max = −kB[x lnx+ (1− x) ln (1− x)] (80)
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4 GaN, AlN and InN properties

This chapter focusses the properties of GaN; however, previous AlN and InN

studies will be mentioned where appropriate. Many physical properties of III-

nitrides have been studied exhaustively and a detailed discussion is beyond

the scope of this work. Experimentally and computationally determined val-

ues of a number of these properties are referenced in Chapter 5, Tables 2 to 4

(bulk properties), 6 to 8 (Γ point phonon frequencies), 5 (wurtzite-to-rocksalt

transition pressures) and Fig. 43 and 44 (thermal expansion data).

In the sections which will follow, we will review in more detail the literature

on GaN interatomic potentials, previous QM/MM studies of solid state sys-

tems, calculations and relevant experimental data regarding point defects in

GaN and the evidence for phase separation and ordering in alloys of III-V

nitrides.

4.1 Interatomic potentials

A number of interatomic potentials have been developed for GaN employing

a variety of functional forms. To the best of our knowledge, there are no

previous formal charge models of GaN although such a model was developed

for AlN [1].

[2] discusses a GaN model based on the Buckingham potential with Ga/N

charges of 2+/2- and a shell model. Defect energies, phase transition pres-

sures and surface properties were determined. [3] uses the potential derived

in [2] to study the pressure dependence of phonon modes and thermodynamic

stability of the different phases, including the less frequently discussed NiAs

polymorph. [4] employs the same potential to study high pressure and tem-

perature behaviour of GaN.

Another set of Buckingham potentials for the Al-Ga-In-N system, allowing

the study of alloys was presented in [5]. Schottky and Frenkel defect energies

as well as solution energies were calculated. The latter calculations indicate

that In should readily dissolve in AlN and GaN at least in low concentra-

tions, in contradiction to the widely discussed theoretical results in [6], which

suggest they should be immiscible.
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Yet another partial charge Buckingham model was developed in [7], this

time using a genetic algorithm to find the potential parameters, rather than

a Newton-Raphson process. It is somewhat less good at predicting the a

structural parameter of wurtzite, calculating a value of 3.25Å compared to

the experimentally determined 3.19Å. Ref. [8] presents a new partial charge

Buckingham potential for Monte Carlo simulations of the thermodynamic

properties of GaN/InN mixtures. Ref. [9] employs a potential which in-

cludes electrostatic energies due to bond and ionic charges to study wurtzite-

zincblende stability. [10] presents a systematic approach for developing in-

teratomic potentials for III-V semiconductors, validated for the case of AlAs,

GaAs, and InAs. [11] then derives the AlN, GaN and InN potentials based on

this methodology, which does not explicitly include a long range electrostatic

interaction.

[12] presents a two body potential developed by fitting to Hartree-Fock data,

which is used to model dislocations. Here charges of 1.15 and -1.15 are as-

signed to Ga and N, respectively. The short term interaction is described by

Gilbert-type repulsion7, a modified Morse potential and a van der Waals r−6

term.

In [13], a lattice inversion potential8 for AlN, GaN and InN was developed.

The ionic charges assigned to the Al/N are +0.98/-0.98, Ga/N +0.63/-0.63

and InN +0.82/-0.82. The short-range interaction is modelled with a Morse

potential and an exponential repulsive term.

Other potentials, not based on the Buckingham function, include Stillinger-

Weber [14], [15] [16] and bond-order (Tersoff-Brenner) [17] potentials, which

do not explicitly include long range electrostatic forces. [17] and [14] were

used in a study of native defects and the results compared with ab initio

calculations. [16] were used to study detailed thermodynamic properties of

GaN, including thermal expansion and specific heats. Finally, [18] discusses

7The Gilbert repulsion between ions i and j is of the form (bi + bj) exp

(
ai+aj−rij

bi+bj

)
where ai is the repulsion radius of ion i and bi is its softness parameter.

8A lattice inversion procedure employs DFT total-energy calculations for a number of
polytypes, four in the case of [13], to derive the ionic charges and short range parameters
of a MM model
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a modified-embedded-atom model to study InGaN alloys.

4.2 QM/MM methodology

While QM/MM methods have been used extensively in enzyme, e.g. [19] and

[20], and zeolites, e.g. in [21], [22] and [23], applications in ionic solids have

been more sparse, and confined to oxides. These include studies of polar

ZnO surface and their defects [1], methanol synthesis over Cu/ZnO [4], the

interaction of ZnO surface sites with Cu atoms and clusters in various charge

states [26]. MgO surfaces and their associated defects we discussed in [5].

The oxide studies listed here were carried out with the ChemShell software.

Other codes include an early embedding software called ICECAP [2], using

Hartree-Fock as the QM method, and PARAGAUSS [29], which was used to

investigate Pd atom adsorption on the oxygen vacancies on the MgO surface

[3]. All of these methodologies are based on the Mott-Littleton approach to

defect calculations (see Section 2.1.2).

[31] reviews QM/MM methodology, the various implementations and their

relative merits in more detail. The theoretical details are discussed in Section

2.3.

4.3 Defects

There are several outstanding questions regarding defects in GaN that com-

putational studies have addressed. The formation energies of different types

of defect have been studied by several workers and form the basis of much

of the discussion on the following issues: the origin of n-type “autodoping”

in the GaN and the difficulty in p-doping the material as well as limits to

doping and compensation. The microscopic basis of yellow luminescence has

also been the subject of much discussion. These issues are briefly summarised

below.
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4.3.1 Formation energies and relative abundance of defects

Interstitials and antisites have been reported in the literature as having higher

formation energies than vacancies [32], which also reports nitrogen vacancies

to be the most thermodynamically stable at the valence band maximum

(VBM) and gallium vacancies at the conduction band minimum (CBM).

Since GaN is most commonly n-type, the CBM value is of most interest.

The calculations in [33] challenge the CBM results and find that in the Ga-

rich limit at least the formation energies of Ga and N vacancies are compara-

ble. While both calculations use periodic boundary conditions within the the

LDA approximation (LSDA for [33]) they differ in their treatment of the Ga

3d electrons9. [33] uses the projector augmented wave method [36] whereas

[32] employs the non-linear core correction (nlcc). The treatment of the Ga

3d electrons has a significant influence on the results obtained in periodic

calculations. [33] studies the convergence of the defect energies reaching su-

percells of up to 300 atoms while [32] uses 96-atom supercells.

[37] reports the formation energies of defects in zincblende GaN and AlN cal-

culated using the full potential linear muffin-tin orbital method. Vacancies

are found to have lower formation energies in this polymorph as well.

There is significant variation in the calculated formation energies obtained

in different studies, as can be seen from Fig. 23 and 24, and Table 35 in

Section 8.3.5. The latter tabulates the formation energies of the neutral N

vacancy calculated with various methods. Differences of up to a few eV are

commonly observed.

The high concentration of Ga vacancies in n-type GaN is supported by

positron annihilation experiments (PAS) [38] and the high concentrations

were also correlated with increased intensity of yellow luminescence (see Sec-

tion 4.3.2). The concentration was found to be particularly high in nitrogen-

rich growth conditions, consistent with the theory in Section 3.8.1. Increasing

9There have been discussions over the role of the 3d electrons in the description of
GaN. Periodic DFT calculations within the local density approximation have found that
the 3d electrons play a role in bonding. Treating them as valence electrons is thought to
improve the structural parameters and formation energies. However, their inclusion leads
to a shrinking of the band gap in these calculations [34], [35].

101



the N:Ga ratio during the growth phase are associated with a decrease in free

electrons, consistent with Ga acting as a compensating centre, according to

the authors of [39]. In p-type GaN, Ga vacancies are lacking.

[34] argues that the lack of signal for negatively charged nitrogen vacancies in

PAS measurements may be due to their signal being indistinguishable from

that of the bulk. They also argue that the migration energies in the negative

charge states of the N vacancy are low enough for equilibrium to be obtained

on the timescale of the experiment, and lower than that of the Ga vacancy.

Finally they suggest the low formation energies of N vacancies as the cause

of the thermal decomposition of GaN at temperatures above about 900◦C,

which occurs via the evaporation of nitrogen from the surface.

The computational studies assume thermodynamic equilibrium, which may

Figure 23: The formation energy of vacancies in GaN under Ga-rich (left)
and N-rich (right) conditions, from [33]

or may not be achieved on the timescale of an experiment. The growth

temperatures of the material may affect whether the concentrations of the

defects equilibrate. MOCVD (Metal Organic Chemical Vapour Deposition)

is carried out at relatively high temperatures (1000-1100◦ C). It is suggested

that defect mobility is large enough for the equilibration of the concentrations

[32], [34]. Molecular beam epitaxy (MBE) is typically performed at about

800◦ C and it is not clear whether thermodynamic equilibrium is attained.

Surface effects play an important role in the concentration of defects. Sur-

faces change the Fermi level in the band gap, and hence the formation energy
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Figure 24: The formation energy of GaN defects under Ga-rich conditions
using 96-atom supercells (for antisites 32-atom supercells were used) from
[34].

of a defect. This often results in lower defect formation energies at the surface

and consequently higher concentrations. Studies of defects at GaN surfaces

can be found in e.g. in [42], [43], [44] and [45].

From the dependences of formation energies on the Fermi level the thermody-

namic defect transition levels can be determined, as is shown in Fig. 25 from

[34]. There is disagreement about the transition levels for the N vacancy.

[34] suggests a 3+/1+ transition for at around 0.5eV (see Fig. 24) while [33]

predicts 1+/1- and 1-/3- transitions further up in the band gap (see Fig. 23).

The electronic structure of defects was calculated in [32]. Their results are

shown in Fig. 26. The results are analysed in terms of zincblende symme-

try with superimposed hexagonal splitting as has been previously applied to
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Figure 25: GaN thermodynamic defect transition levels, adapted from [34].
Eb is the band gap energy.

Figure 26: The electronic structure of neutral GaN native defects based on
calculations in [38]. The T subscript refers to the tetrahedral arrangement
and O refers to an octahedral arrangement.

GaAs studies (see Fig. 19). Hence the zincblende energy triplet level splits

into a quasitriplet. This approach assumes predominantly covalent bonding.

It is questionable how accurate such an analysis is for a highly ionic material

such as GaN.

[32] studied the defect geometries and electronic structures using 32-atom

supercells and periodic boundary conditions. They found that for a Ga va-
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cancy the N dangling bonds are localised whilst for the N vacancy the Ga

dangling bonds are strongly overlapping forming a metallic-like bond, which

was also noted in [34]. They also find that with increasing occupation of the

Ga vacancy defect levels from 3+ to 3- the first-neighbour N ions first move

inward with the largest inward relaxation for the neutral charge state and

then they move outwards in the case of negative charge states.

Tight-binding approaches use the fact that most Hamiltonian matrix ele-

ments are vanishingly small and hence only a sparse matrix needs to be di-

agonalised. Both empirical and ab initio descriptions have been attempted.

However, due to the ionic nature of group-III nitrides the neglect of important

interactions beyond the first neighbour leads to significant errors in defect

energy levels and lattice constants. The energy levels of neutral nitrogen

vacancies were predicted to be lie near to the bottom of the conduction band

whereas periodic DFT predicts them to be near the top of the valence band

[34].

[36] reports the formation energies and geometries of defects calculated with

periodic DFT as well as Stillinger-Weber and Tersoff-Brenner potentials. The

Ga interstitial is found to assume an unusual metastable split interstitial Ga-

N configuration with DFT. The differences in formation energies between the

different metastable Ga interstitials are found to be around 1eV at most.

Nitrogen antisite are studied in detail in [50]. The negative charge states

experience a large Jahn-Teller effect.

Deep level transient spectroscopy (DLTS) and photoluminescence (PL) stud-

ies have been employed to study defect transition levels. PL measures optical

transitions and is discussed in more detail in Section 4.3.2. DLTS measures

the activation energy for the transition. A range of activation energies, only

tentatively assigned to particular defects have been determined experimen-

tally ranging from 0.18 to 0.62eV in references [31], [29] and [30]. Other

studies by Haase et al. [41] have shown that a defect with activation energy

0.67eV in their experiment can be generated by N implanatation and then

removed by annealing. They speculate that this points to the nitrogen va-

cancy or interstitial defect.
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4.3.2 Luminescence in GaN

A whole range of luminescence lines have been observed in GaN, both un-

doped and intentionally doped. They are discussed in depth in [55]. Most of

the lines in undoped GaN, e.g. blue, UV and red, are thought arise from de-

fect complexes with impurities unintentionally introduced during the growth

process. The yellow line is thought to be due to gallium vacancies or their

complexes with impurities, and is discussed in more detail below.

The yellow luminescence (YL) band is centred around 2.2eV. It is observed

in crystals as well as epitaxial layers prepared with a variety of techniques.

It was suggested in [56] that YL is due to a shallow donor-deep acceptor

transition. The proposed mechanism is shown in Fig. 27. The deep acceptor

is 860meV above the valence band and in [56] the authors suggest it is a

complex between a Ga vacancy and a C impurity. Other candidates that

could give rise to yellow luminescence have since been advanced including

surface defects and isolated Ga vacancy or the Ga vacancy-ON complex. In

[39] the shallow donor candidates are suggested to be SiGa and ON. The deep

acceptor is claimed to be a complex with a Ga vacancy.

An alternative mechanism has been proposed in [26] (see Fig. 28). The shal-

low donor D loses an electron to a deep double donor state DD in the charge

state 1+, which is a non-radiative process (1). Radiative recombination (2)

is postulated to occur next, with the deep donor state losing an electron to

the acceptor state A, and a photon with energy 2.2eV is emitted. The direct

D-A recombination competes weakly with the two-stage process. Evidence

both in support and against this model is discussed in [55].

[55] presents the full experimental evidence related to YL in GaN. In this re-

view, a gallium vacancy (or its complex) or a carbon impurity are suggested

as the most likely causes of YL.

4.3.3 The role of defect in n-type vs. p-type doping of GaN

Historically there was some controversy about the origins of n-type doping

in GaN. It was originally thought to be caused by the presence of a nitrogen
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Figure 27: The suggested mechanism [56] for yellow luminescence in GaN.

Figure 28: An alternative mechanism for the origin of yellow luminescence
as proposed in [26].

vacancy but more recent research has attributed it to unintenional substi-

tutional oxygen, replacing a N in the lattice. Oxygen as a source of n-type

behaviour in GaN was first proposed in [58]. The authors cite the relation-

ship between the carrier concentration and the growth temperature and the

decrease in carrier concentration when the reactant NH3 gas is purified to a

high degree as evidence that impurities must be responsible for n-type be-
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haviour of GaN.

A review of experimental evidence for the origins of n-type conductivity

in GaN can be found in [59]. This includes evidence from high-pressure

(>20GPa) freeze-out of electrons, which was originally attributed to the ni-

trogen vacancies creating a resonance in the conduction band under pressure.

It is suggested in [59] that this behaviour is, however, also consistent with DX

centre behaviour of an oxygen donor. A DX centre, such as a more widely

studied Si in GaAs undergoes a strong relaxation under pressure accompa-

nied by a transition from a shallow to deep centre. There is evidence for

similar behaviour in experimental and in computational studies in AlGaN

where an increase in Al content above about 30% will lead to oxygen becom-

ing a deep donor [60] .

p-doped GaN was first made in 1989 by doping with Mg [61]. Increasing

carrier concentrations in p-type doped GaN has proved challenging. Mg has

been widely used as an acceptor but its solubility in GaN is limited. [59]

suggests that the Mg defect with the lowest formation energy is a Mg sub-

stitution on a Ga site. H defects are thought to play an important role

in p-doped GaN, where it acts as a donor, H+, compensating an acceptor

and passivating Mg, which leads to reduction in degree of p-doping. The

formation of H complexes with Mg acceptors has been studied in [62] and

on surfaces [63]. In the resulting complex H binds to N, rather than the

neighbouring substitutional Mg and hence the vibrational frequency is more

similar to that of a N-H bond.

Alternative dopants have been sought. Isoelectronic doping with In has been

reported in [64]. Beryllium doping was studied in [65]. Fluorine has been

proposed as a promising p-type dopant in AlN, ZnO and ZnMgO [66]. Calcu-

lations in [67] suggest that fluorine preferentially substitutes on N sites. Much

research has been devoted to the causes of doping limitations in semiconduc-

tors, namely solubility of the dopant, its ionisation energy, incorporation of

impurities in configurations which do not exhibit good doping behaviour and

compensation either by native defects or impurities. For a fuller discussion

see [34].
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4.4 Alloys

Considerable attention has been devoted in the literature to the study of III-

V alloys. Physical properties of the solid solutions have been widely studied,

including the band gaps and piezoelectric properties, which are beyond the

scope of this work. Here we consider the stability of the solutions with re-

spect to phase separation and the extent of ordering in the alloys.

Early theoretical studies of InxGa1−xN [6] suggested that the free energy

of mixing should be positive and phase separation should occur, in appar-

ent contradition with experiment which synthesised solid solutions of InGaN

without any observations of phase separation, although it has proven difficult

to synthesise InGaN with high In fractions. For example, [68] does not find

any evidence of phase separation quantum wells with InxGa1−xN layer thick-

ness of 2.38±0.10nm and x = 0.18 using a 3-dimensional atom probe (3DAP)

and needle-shaped specimens. [69] reports InxGa1−xN with x=0.35 without

phase separation. [70] observes spinodal phase separation at x = 0.29 but

not at lower In fractions. [71] reviews the experimental data regarding phase

separation.

Other computational studies have reported similar results, with alloys with

large lattice mismatch (AlInN and InGaN) being more prone to phase sep-

aration, with the binary compounds predicted to be immiscible up to tem-

peratures of more than 1500◦C [8]. AlN and GaN are well matched in their

structural parameters and AlGaN is predicted to be stable at room temper-

atures [72], [18], [73], [74].

It has been suggested that the InGaN phase separation is suppressed in the

interfacial region due to strain effects, which has indeed been observed in

cross-sectional TEM images in [75]. Spinodal phase separation occurs in

thick films far away from the interface, equivalent to the bulk environment.

The critical thickness for the phase separation to be observed was found to

be about 30-40nm [76].

The maximum film thickness of film that can be grown without phase sepa-

ration was found to be dependent on the growth rate of the sample [77]. A

high growth rate is required to produce homogenous InGaN alloys, implying
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Figure 29: The phase diagram of InxGa1−xN compounds for a) relaxed layers,
b) strained layers with the interface in the ab plane. From[78] calculated with
a valence force field model

that conditions far from thermodynamic equilibrium are required.

The suppression of phase separation by epitaxial strain has been confirmed

theoretically in [78] using a valence field model. The spinodals and binodals

are shown Fig. 29. The author also suggests that orienting the epitaxial layer

parallel to the c axis will further stabilise the InGaN alloy (Fig. 30). In the

case of the zincblende phase the tendency to phase separate is almost com-

pletely suppressed by the strain. [79] also finds evidence of suppression of

phase separation in strained cubic InGaN alloys.

Another extensively discussed effect is “compositional pulling” [80]. Under

the same growth conditions, alloys with different In fractions are observed de-

pending on the substrate used in the region adjacent to the interface between

the substrate and epitaxial layer. The molar fraction of In increases as the
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Figure 30: Phase diagram of InxGa1−xN compounds for a) strained wurtzite
layers parallel to the c-axis (b) strained zincblende (sphalerite) layers in
(001)-plane. From [78]. The spinode and binode are shown.

thickness of the epitaxial layer increases. The greater the lattice mismatch

between the substrate and the compound being deposited, the stronger the

compositional pulling, which is attributed to the increasing strain. This phe-

nomenon further complicates the relationship between strain and the degree

of phase separation.

In summary, a variety of factors determine whether phase separation occurs

in an alloy, including the degree of strain, growth conditions and the thick-

ness of the epitaxial layer if the material is present as a film. It is possible

that the resulting arrangements do not reflect the configurations at thermo-

dynamic equilibrium.

[82] grew InGaN samples with In content > 25% and thickness 0.3−0.5µm at

temperatures 690-780 ◦ C. Their results indicate a coexistence of phase sepa-
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Figure 31: A lowest energy ordered In0.25Ga0.75N structure from [81]. Ga
atoms are white, In atoms are black and N are grey.

ration (areas with 96% InN by x-ray diffraction) and regions of ordering. Two

types of ordering were observed, 1:1 (In0.50Ga0.50N) and 1:3 (In0.25Ga0.75N).

The authors suggest ordering along the c-axis of -Ga-In-Ga-In- in the 1:1

case. The 3:1 case is postulated to have two types of high-symmetry order-

ing: either along the c-axis (Ga-Ga-Ga-In-Ga-Ga-Ga-In) or the following (in

a 1× 1× 2 supercell fractional coordinates): one Ga ion at (1/3, 2/3, 0), two

Ga ions at (2/3, 1/3,1/4) and (2/3, 1/3, 3/4), and one In ion at (1/3, 2/3,

1/2).

[71] also discusses long range atomic ordering in InGaN based on experi-

mental data, which relies on the appearance of “forbidden peaks” in the

diffraction results. These peaks are thought to arise as a result of ordering

of InN and GaN layers along the c-axis. Ordering is found to increase with

film deposition rate. Further experimental evidence of such ordering is found

by [69] (InGaN), [83] (AlGaN) and [84] (AlGaN). The ordering along the c-

axis in wurtzite, with alternating layers of In/AlN and GaN is similar to the

Cu-Pt type ordering found in zincblende III-V alloys [85]. This ordering was

found in the computational study of InGaN using cluster expansion methods

in [86].

Other geometries have also been reported. [87] finds evidence that the sym-

metry of an InGaN alloy is lowered to the P3ml spacegroup. [81] reports an

ordered InGaN structure without layers of InN and GaN arranged along the
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c-axis (Fig. 31) calculated using periodic DFT in the local density approxi-

mation.

In summary, there is some evidence of ordering in III-V nitride alloys, with-

out a definitive answer as to the exact nature of the repeating unit.
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5 Molecular Mechanics studies of III-V ni-

tride semiconductors

In this section new formal charge interatomic potentials for AlN, GaN and

InN are presented. The extra constraint of formal charges makes fitting such

potentials a challenging problem due to the degrees of freedom lost in re-

stricting the ionic charges. To add extra degrees of freedom, independently

parameterised layers of short range interactions are used in the model, in

contrast to previous models for III-V nitrides, which are single-layered.

Since the potentials have a common model for the interactions between N

ions (apart from InN having a different N spring constant) they can be ex-

tended to the study of alloys.

The potentials were rigorously tested by performing a number of calculations

of physical properties. In addition to the bulk properties of the wurtzite,

zincblende and rocksalt phases, some of which were used in the fitting pro-

cess, the temperature and pressure behaviour are compared with experiment

and other theoretical studies. These calculations go beyond the usual vali-

dation tests to which most potential models are often subjected.

5.1 Methodology

The General Utility Lattice Program (GULP) package [1], [2] was used for

fitting interatomic potentials and calculating physical properties in this work.

The theoretical background is discussed in Chapter 2. The software is suit-

able for fitting the potential parameters as well as for structural optimisation

(energy minimisation). These functionalities are described in more detail in

Chapter 2. The methods of calculation of bulk properties, such as elastic

constants, from the energy expression are reviewed in Chapter 3.

The starting point for the development of the GaN potential was the partial

charge GaN model of Zapol et al. [3]. The partial charges were increased in

small increments until a formal charge model was obtained. The effects of the

N core/shell charge split were then studied. Whilst GULP has a facility for
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fitting parameters, the process is highly manual as the starting parameters

in a fitting procedure must be sufficiently close to the optimum parameteri-

sation for a successful fit.

Furthermore, the correct relative thermodynamic stability of different poly-

morphs is a difficult observable to include in fitting and it has to be tracked

manually. The fitting of phonon frequencies is also problematic. While it is

possible to fit to a numerical value of a frequency, there is no guarantee that

this will be assigned to the correct mode as the order of modes might not be

correctly reproduced by the model.

The parameterisation was further refined once it was used in a QM/MM

scheme as the QM and MM forces were mismatched. This problem is related

to an inherent difficulty with interatomic potentials as the errors in inter-

atomic interactions can compensate for each other and lead to seemingly

correct results. In this case, improving the model based on the QM informa-

tion also led to better predictions of piezoelectric constants. The consistency

of the final GaN potential with QM calculations gives credence to the model.

Based on the GaN parameters InN and AlN parameters were fitted. The

InN dielectric constants were very challenging to reproduce while keeping

the same spring constant as in GaN and therefore it was necessary to fit

k2 and k4 constants of the shell model (see Section 2.1) separately for InN,

which presents some difficulties when modelling alloys.

The model is based on the commonly used short range interatomic inter-

actions, such as Buckingham and Born-Meyer. However, the parameters of

these interactions are fitted separately for different atomic neighbour shells

unlike in previous studies where the parameters are the same for the full range

of interatomic distances. The experimental near-neighbour interatomic dis-

tances in the materials studied, which are used as a guide to delimiting the

parameterisation layers in our model, are tabulated in Appendix I.

The successive layers of the usual interatomic potential functions are joined

by polynomial functions designed to ensure smoothness (see Fig. 34 for illus-

tration). The extra parameters in the present model compared to a single

layer potential add degrees of freedom. They should in principle lead to a

better fit and compensate for the extra constraint of fixed ionic charges.
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The connecting polynomial functions are of order five in the interatomic dis-

tance r and are chosen to match the end-point functions in the value of the

potential and its first and second derivatives

Vpolynomial = c5r
5 + c4r

4 + c3r
3 + c2r

2 + c1r + c0 (81)

The following conditions are imposed on the polynomial acting between r1

and r2, the end points of the polynomial region:

V1(r1) = Vpolynomial(r1) and V2(r2) = Vpolynomial(r2) (82)

(
dV1

dr

)
r1

=

(
dVpolynomial

dr

)
r1

and

(
dV2

dr

)
r2

=

(
dVpolynomial

dr

)
r2

(83)

(
d2V1

dr2

)
r1

=

(
d2Vpolynomial

dr2

)
r1

and

(
d2V2

dr2

)
r2

=

(
d2Vpolynomial

dr2

)
r2

(84)

where potential V1 acts at interatomic distances < r1 and V2 is valid > r2. V1

and V2 are traditional potentials, such as the Buckingham or other potentials

discussed in Section 2.1.

The number of layers is varied as necessary. In some cases the potentials

have the same parameterisation for the full range of interatomic distances,

as is commonly used in MM studies. In other cases up to three different

layers with varying parameterisations, or, indeed, different functional forms,

are present and connected with polynomial regions.

The polynomial functions act at interatomic distances at which ions are not

observed in the bulk material and hence do not affect bulk properties. When

the material is placed under pressure or a defect is introduced, ions might

enter the polynomial regions. However, by ensuring the smoothness of the

polynomials relative to the end-point functions, it is assumed that even the

polynomial regions model the physical properties of the system reasonably

well.

A final requirement for an acceptable potential function is that it must not
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exhibit any unphysical maxima or minima.

The potentials are taken to act on the cores of Ga, In and Al and the shells of

N ions. In the case of N ions, both the shells and the cores experience forces

as shown in the parameter listings in Appendix I. As the shells are attached

to the cores by springs, the forces acting on the shells are largely transmitted

to the cores and vice versa. Relative shell-core displacement within the shell

model (Section 2.1) simulates electronic polarisation effects in the material.

We aimed to fit the lattice parameters to within 1% of experimental data;

the dielectric constants were expected to be within 10%. Close to the energy

minimum the high frequency dielectric constants are relatively simple to fit

as they depend almost exclusively on the values of spring constant and shell

charge. Since the elastic constants have large experimental errors less strin-

gent requirements were imposed. Zone-centre phonon frequencies were also

fitted.

All the energy calculations at this stage were performed without taking into

account phonon vibrations. Internal lattice energies, rather than free ener-

gies, were thus minimised. Including vibrations in a quantitatively correct

fashion is a demanding task for interatomic potentials unless they are specif-

ically parameterised for that purpose.

5.1.1 Molecular mechanics model for GaN, InN and AlN

The final potential parameters for GaN, InN and AlN are presented in Tables

45, 47 and 48 in Appendix I, respectively.

The N-N short range potential is common to all three materials. It contains a

region of Morse potential (see Section 2.1), which is more commonly employed

to model covalent species rather than a strongly ionic material. However, it

has been found empirically to work well in our models. The short range

potential has a tail composed of a r−6 function. The short range potential

only is plotted in Fig. 32, where the different layers are distinguished by

colour, and the short range and long range contributions are contrasted in

Fig. 33. Similarly the Ga-N potential is depicted in Fig. 34 and 35.
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Figure 32: The N-N short range potential.

Figure 33: The N-N total potential and its components.
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Figure 34: The Ga - N short range potential.

Figure 35: The Ga - N total potential and the short range and long range
contributions.

The cation - N potentials are compared in Fig. 36. There is a clear trend of

the value of the potential at each interatomic distance with In being the most
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Figure 36: A comparison of cation - N short range potentials.

repulsive and Al the least, which is related to the different lattice parameters

and hence bond lengths in the materials.

5.1.2 Results

The results of calculations of bulk physical properties are shown in Tables

2, 3 and 4 on pp 130, 131 and 132. The structural parameters are well pre-

dicted, with the possible exception of the AlN and InN a parameters which

have a slightly larger than the target 1 % error. The dielectric constants are

within approximately 10 % of experimental values.

The elastic off-diagonal constants proved to be more problematic in com-

parison with experimental data. However, the experimental determination

of elastic constants suffers from significant problems as shown by the large

scatter in the values reported. Measurements can have large discrepancies as

different kinds of samples used (single crystals vs. polycrystalline vs. pow-

der, bulk vs. thin films) with different amounts of defect as well as different

techniques (e.g. high/low frequency). The present computational method
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Table 2: Comparison of properties of GaN calculated here with other exper-
imental and theoretical values. Values in bold were fitted to.

Property Present Experiment Other calc.
Wurtzite
latt. const. a (Å) 3.188 3.191 3.234, 3.205,3.186

latt. const. c (Å) 5.186 5.191 5.164,5.145

u parameter 0.375 0.3772 0.3854, 0.3756

C11 (GPa) 376.1 296±187, 390±158, 3749 3864, 4105, 3476

C12(GPa) 238.4 130±107, 145±208, 1069 1604, 1615, 1546

C13 (GPa) 227.8 158±57, 106±208, 709 1414,1425, 1236

C33 (GPa) 496.2 267±177, 398±208, 3799 3914,4135, 3816

C44 (GPa) 71.9 24±27,205±108, 1019 1154,1235, 816

C66 (GPa) 68.8 1133, 1255, 986

ε011 9.90 9.38 1 8.054, 8.910, 8.645

ε033 10.1 10.21 11.2412.645

ε∞11 5.32 5.3510 5.214, 4.255

ε∞33 5.41 5.351 5.844,4.585

B0 (GPa) 289 195, 2372,1957,2108,1809 210±105, 2365,
2086

piezoel.const. 5.97 0.65 12 0.73 11

e33 (Cm−2)
piezoel.const. -7.14 -0.33 12 -0.49 11

e31 (Cm−2)
energy per cation- -86.69
anion pair/eV
Zincblende
latt. const. a (Å) 4.48 4.494 4.534, 4.4986

C11 (GPa) 304.8 3813, 2964 3004,2876

C12 (GPa) 286.1 1303, 1544 1904,1696

C44 (GPa) 116.8 963, 2064 1604,2446

ε011 10.1 9.75 8.884

ε∞11 5.43 5.35 5.414

B0 (GPa) 292.4 2086

energy per cation- -86.60
anion pair/eV
Rocksalt
energy per cation- -85.85
anion pair/eV

1 [4] and references therein; 2 [5] and references therein; 3 [6] and references
therein; 4 [3] and references therein; 5 [7]; 6 [8]; 7 Sheleg and Savastenko
(temperature-dependent broadening of powder X-ray diffraction spectra);
8 Polian (Brillouin scattering); 9 Takagi (Brillouin scattering); 10 Bougrov
(2001), 300K; 11 [10]; 12 [30]
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Table 3: Comparison of properties of InN calculated here with other experi-
mental and theoretical values. Values in bold were fitted to.

Property Present Experiment Other calc.
Wurtzite
lattice const., a (Å) 3.577 3.541 3.531

lattice const., c (Å) 5.675 5.691 5.691

special position, u 0.380 0.3782

C11 (GPa) 218.6 190±75 2713, 2233, 2981

C12 (GPa) 177.1 104±35 1243, 1153, 1071

C13 (GPa) 143.9 121±75 943, 923, 1091

C33 (GPa) 282.1 182±65 2003, 2243, 2511

C44 (GPa) 58.0 10±15 463, 483,891

C66 (GPa) 20.7 951

ε011 13.9 15.01, 15.37, 14.48 9.821

ε033 12.6 13.18 17.711

ε∞11 7.60 8.41, 9.36 3.51

ε∞33 5.14 3.691

B0 (GPa) 182.7 126,1395,1393 1473,1413

piezoel.const. e33 (Cm−2) 6.97 0.97 9

piezoel.const. e31 (Cm−2) -3.19 -0.57 9

energy per cation- -79.34
anion pair/eV
Zincblende
lattice const., a (Å) 4.99 4.984

C11 (GPa) 195.8 2423

C12 (GPa) 173.3 1073

C44 (GPa) 0.16 493

ε011 18.9
ε∞11 11.7
B0 (GPa) 180.8
energy per cation- -79.19
anion pair/eV
Rocksalt
energy per cation- -78.87
anion pair/eV

1 [4] and references therein, 2 [5] and references therein, 3 [6] and ref-
erences therein, 4 [9] and references therein, 5 Sheleg and Savastenko
(temperature dependent broadening of powder x-ray diffraction spectra), 6

Tyagai (1977), heavily doped film, 7 Zubrilov (2001), 8 Davydov (1999); 9 [32]
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Table 4: Comparison of properties of AlN calculated here with other exper-
imental and theoretical values. Values in bold were fitted to.

Property Present Experiment Other calc.
Wurtzite
lattice const., a (Å) 3.148 3.111 3.111

lattice const., c (Å) 4.976 4.971 4.981

special position, u 0.385 0.3822

C11 (GPa) 444.7 3455, 411±106 46433983,3963, 4171

C12 (GPa) 304.7 1255, 149±106 1493,1403,1373,1781

C13 (GPa) 306.1 1205, 99±46 1163, 1273, 1083, 1521

C33 (GPa) 439.2 3955, 389±106 4093,3823,3733, 4321

C44 (GPa) 102.9 1185, 125±56 1283, 963, 11631251

C66 (GPa) 69.5 1201

ε011 7.88 8.81, 9.14[7], 8.5[8] 8.071

ε033 8.86 11.221

ε∞11 5.21 4.71, 4.84[7],4.6[8] 4.461

ε∞33 5.38 4.851

piezoel.const. e33 24.6 1.55 9

(Cm−2)
piezoel.const. e31 -10.7 -0.58 9

(Cm−2)
B0 (GPa) 351.6 2015, 2106 2283, 2183, 2073,2481

energy per cation- -89.31
anion pair/eV
Zincblende
lattice const., a (Å) 4.389 4.374

C11 (GPa) 363.3 4253

C12 (GPa) 344.3 1203

C44 (GPa) 125.4 1123

ε011 8.28
ε∞11 5.43
B0 (GPa) 350.6 2024

energy per cation- -89.19
anion pair/eV
Rocksalt
energy per cation- -88.72
anion pair/eV

1 [4] and references therein, 2 [5] and references therein, 3 [6] and references
therein, 4 [9] and references therein, 5 Tsubouchi (surface acoustic wave), 6

McNeil (Brillouin scattering), 7 Collins (1967) 300K, reflectivity, 8 Goldberg
(2001) 300K; 9 [31]
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models high frequency “intrinsic” elastic behaviour. The off-diagonal terms

might be improved by the inclusion of three-body terms, which are related

to a degree of covalency in the system and take account of bond rotations.

Importantly, the correct relative stability of the three commonly studied

phases is reproduced, the accuracy of which can be improved by exploiting

the fact that the different phases have varying numbers of neighbours at par-

ticular interatomic distances as can be seen from Tables 42, 43 and 44. In

particular, the wurtzite structure has one neighbour at a cation-N distance

which is not found in the other two structures. In wurtzite GaN, a Ga-N

pair is seen at an interatomic distance of about 3.2Å; there are no such pairs

in zincblende and rocksalt. Shifting the value of the potential by a constant

offset at this interatomic distance10 corrects the relative phase stability if nec-

essary and can be used to control the pressure at which transitions between

the phases occur. One must however be careful not to introduce unphysical

local maxima into the potential form by introducing such offsets.

The dependence of the enthalpy per cation-anion pair on pressure for GaN

phases is shown in Fig. 37. Our calculated GaN phase transition from

wurtzite to rocksalt is 38.4 GPa, in good agreement with the lower end of

experimental data of 37 GPa from [11]. A higher value of about 52.2 GPa

has been reported in [12]. The calculated AlN transition pressure is 24.6GPa;

X-ray diffraction experiments reported in [13] measure the transition at 22.9

GPa. The InN calculated pressure is 15.1GPa, compared with the experi-

mental value of 12.1 GPa from [12]. The results are summarised in Table 5.

The introduction of offsets as a way of improving the fit to transition pres-

sures is an attractive option but this correction needs to be interpreted care-

fully. Seemingly accurate transition pressures may mask problems with the

potentials. In the present case the agreement with a wide range of experimen-

tal properties is good and the potentials have physically sensible functional

forms so one can be satisfied with the quality of the model.

The dependence of volume on pressure, i.e. the equation of state (EoS), is

explicitly shown in Fig. 38 on p. 135. The GaN experimental EoS is taken

10i.e. moving the relevant section of a curve such as the one in Fig. 34 up or down in
energy, and adapting the adjacent polynomial region accordingly.
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Figure 37: The relative stability of GaN phases. The diagram indicates a
phase transition from wurtzite to rocksalt at 38.4GPa. The corresponding
transition pressure for AlN is 24.6GPa and for InN 15.7GPa

Table 5: Wurtzite-rocksalt transition pressure

Transition pressure (GPa)
Compound Present Experiment
AlN 24.6 24.6 [13]
GaN 38.4 37 [11], 52.2 [12]
InN 15.1 12.1 [12]

from [14] where the data is fitted to the third-order Birch-Murnaghan equa-

tion of state

P (V ) =
3

2

[
ζ7/3 − ζ5/3

][
1 +

3

4
(B′0 − 4)(ζ2/3 − 1)

]
(85)

where V0 is the volume at ambient pressure, ζ = (V0/V ) and B′0 = dB0/dP .

Reasonable agreement with experimental data is shown. As both the a and

the c parameter contribute to the volume, the compressibility along both

directions will shed some light on the deviations from experimental data in
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Figure 38: The equation of state for wurtzite GaN calculated with our model
(red) and experimental data (black circles and crosses) in [14]. The black line
is a result of fitting the experimental data to the Birch-Murnaghan equation
of state.

Figure 39: The pressure dependence of the compressibilities for GaN. The
present calculation is in colour (green for a parameter and pink for c param-
eter), and the results in black are from [14]. a0 and c0 are the values of the
cell parameters at zero pressure.
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the Equation of State calculation. The compressibilities are discussed next.

The volume in Fig. 38 is a function of the a and c parameters. Their pressure

dependences and respective compressibilities are shown in Fig. 39. The a

parameter pressure dependence is very well reproduced. Larger errors occur

in the calculation of the c parameter under pressure, which can be traced to

the poor reproduction of the c33 elastic constant. It has proven difficult to fit

some of the elastic constants while at the same time ensuring compatibility

with the QM calculation (see Chapter 8). These problems, described in more

detail in Section 8.2.3 on p. 201, are partly related to the highly manual pro-

cess which is at present required to create a potential model which both fits

experimental data and does not suffer from distortions in QM/MM calcula-

tions. Automation of the process might result in an improved parameter set.

Γ point phonon frequencies calculated with the present model are compared

with experimental data and other calculations in Tables 6, 7 and 8. Like

the elastic constants, the phonons are a measure of the second derivatives of

energy. The present results are in good agreement with experiment usually

within 10%, with the exception of the E2(low) and B1(low) modes which have

more significant errors.

The dispersion curves and density of state are shown in Fig. 40, 41 and

42. The general features of the dispersion curves are correct but they are not

reliable on the quantitative level. Specifically, GaN and InN experimental

results have a large gap between the low-energy and the high-energy modes

which is underestimated with the present model.
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Table 6: Comparison of phonon frequencies in cm−1 at Γ point for AlN with
experimental data and other calculations

Mode Present Experiment Other calc.
Wurtzite
E2(low) 192.3(doublet) 248.41, 3032 2362, 2282, 3012

2412, 2522

B1(low) 595.8 5532, 5242

7232, 5801

A1(TO) 670.5 6592, 6672, 6602 6292, 6012, 6682

6072, 6142

E1(TO) 712.7 673.41,6142, 6712 6492, 6502, 7342

6672, 6722, 6732

E2(high) 742.2(doublet) 6601, 4262,6652 6312, 6382, 7042

6602, 6602

B1(high) 801.9 7172, 7032, 7722

A1(LO) 855.6
E1(LO) 874.8 9171

Zincblende
TO 663.4 5512, 5582, 6032, 6002

1 [15] and references therein; experiments at 6K, 2 [16] and references therein

Table 7: Comparison of phonon frequencies in cm−1 at Γ point for GaN with
experimental data and other calculations

Mode Present Experiment Other calc.
Wurtzite
E2(low) 108.8 (doublet) 143.61 1531, 1431

B1(low) 432.9 3191, 3371

A1(TO) 556.2 5461, 533.81 5461, 5411

E1(TO) 546.6 560.21 5541,5681

E2(high) 577.2(doublet) 5691 5651,5791

B1(high) 674.1 7281, 7201

A1(LO) 761.4 7361 7341, 7481

E1(LO) 746.1 7441 7391, 7571

Zincblende
TO 552.4 5512, 5582, 6032, 6002

1 [15] and references therein; experiments at 6K, 2 [16] and references therein
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Table 8: Comparison of phonon frequencies in cm−1 at Γ point for InN with
experimental data and other calculations

Mode Present Experiment Other calc.
Wurtzite
E2(low) 69.4(doublet) 871

B1(low) 274.8
A1(TO) 402.3 4471

E1(TO) 421.4 4761

E2(high) 451.4(doublet) 4881

B1(high) 571.0
A1(LO) 627.6 5861

E1(LO) 570.0 5931

1 see [17]

Figure 40: The calculated and experimental GaN phonon dispersion curves.
The pink curve is calculated with the present model and the black curves are
experimental and ab initio data taken from [18].
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Figure 41: The calculated and experimental InN phonon dispersion curves.
The pink curve is calculated with the present model and the black curves are
experimental and ab initio data taken from [17] .

Figure 42: The calculated and experimental AlN phonon dispersion curves.
The pink curve is calculated with the present model and the black curves are
experimental and ab initio data taken from [15].
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Figure 43: The structure parameters as a function of temperature.

1 [19] ,2 [20] ,3 [21],4 [22],5 [23] ,6 [24], 7 [25], 8 [26]

The errors in the phonon dispersion translate into errors in temperature

behaviour in Fig. 43 and 44,which can be seen from the temperature depen-

dences of the structural parameters and the thermal expansion coefficients

α

α =
1

x

∂x

∂T
(86)

where T is the temperature and x is one of the structural parameters. In the

present work α was calculated simply as

α =
1

xT+δT

xT+δT − xT
δT

(87)

The thermal expansion coefficients are of the correct order of magnitude

but clearly underestimated. Modelling correct temperature behaviour with

interatomic potentials that also simulate other properties well is, however, a
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Figure 44: The thermal expansion coefficients as a function of temperature.

1 [19] ,2 [26] ,3 [29],4 [21],5 [24] ,6 [25]

very difficult task and not essential for the purposes for which our models

will be used.

5.1.3 Summary

In this section, new interatomic potentials for modelling GaN, AlN and InN,

were presented and extensively tested in the calculation of a wide range of

physical properties. The models show reasonable agreement with experi-

mental structural and dielectric properties as well as phonon frequencies.

Properties such as phonon densities of states and temperature behaviour can

be described only with limited accuracy. The off-diagonal and c33 elastic con-

stants also show less good agreement, leading to errors in the compressibility
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along the c-axis. A possible route to further improvement of the potential

would be to include three body terms as opposed to just two body interac-

tions as in the current model. Furthermore, an automated process of fitting

potentials which are suitable for use in QM/MM applications, i.e. which do

not lead to boundary distortions, is suggested.

In future work the study of the relative stability of phases may be extended

to other polytypes of the material. Polytypes are common in materials such

as silicon carbide and micas. [27] discusses the 4H phase in semiconductors

while [28] analyses the 9R phase in epitaxial layers, which might have po-

tentially stabilising effects on phases which are metastable in the absence of

strain.
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6 Point defects

Defects in III-V nitride alloys are of high importance as they impart useful

as well as deleterious properties to the devices in which these materials are

used. They are the basis of ionic conductivity and can increase as well as

decrease carrier concentrations. Defects may also provide a mechanism for

reducing strain in the material.

Defect calculations also enable us to test the potentials for robustness since

the interatomic distances in defect systems can be quite different from the

equilibrium distances for which the potentials were parameterised. Further-

more, the reduction of symmetry in a defect calculation may reveal instabil-

ities that are not apparent in the bulk.

In this section the interatomic potentials from the previous section will be

used in conjunction with the Mott-Littleton method to calculate point de-

fect formation energies and geometries in GaN in the formal charge state.

Calculations of other charge states are inaccessible to these potentials as pa-

rameterising the interactions of a non-formal-charge defect with the rest of

the lattice would be very difficult. Cation substitutional defect solution en-

ergies will also be evaluated.

6.1 Methodology

Defect energies in GULP are calculated using the Mott-Littleton method

(see Section 2.1.2) as implemented in the GULP package. The harmonic

approximation for region 2 displacements of the Mott-Littleton method only

holds if region 1 is large enough. Energy convergence checks were performed

to ensure that the defect energies were converged to less than 0.1eV. The

required region 1 radii were approximately 21 Å.

A further methodological issue is the initial defect geometry. If this is too

different from the geometry associated with the global minimum, the struc-

ture may optimise to a local minimum. A carefully selected range of starting

geometries was explored in the search for a global minimum. The nitrogen

interstitials had starting coordinates taken from a mesh of 4× 4× 4 equally
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Figure 45: Positions of Ga octahedral and tetrahedral interstitial defects
in wurtzite structure. Analogous N interstitials can be formed although in
calculations they are predicted to assume a split interstitial position. From
[1].

spaced fractional coordinate points in the unit cell (such that x ≥ y due

to the ab-plane symmetry of the wurtzite unit cell. The configuration with

the lowest resulting energy was taken. Cation interstitials in previous work

have been found to occupy an octahedral site which lies along the hexagonal

channel in the c-direction (see Fig. 45). The channel was explored for the

lowest energy configurations in addition to performing the unit cell search

described above.

The defect energy calculated in GULP is the difference between the energy

of the system with defect Ud and the perfect system Up , i.e.

Udefect = Ud − Up (88)

For an interstitial, this corresponds to the energy change on taking an ion

at infinity to the equilibrium position in the lattice. This is, however, not a

quantity directly measurable by experiment. Comparison with experimental

values will require other terms usually via a Born Haber cycle. Some of the

energies in such cycles, such as ionisation and atomisation energies, cannot be

extracted from the current model. However, combinations of defect energies,

in particular, Schottky and Frenkel energies can be measured experimentally
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and calculated with the current model.

The Schottky defect energy, ESchottky, is defined as

ESchottky = Ecation vacancy + Eanion vacancy + Elattice (89)

where Ecation vacancy and Eanion vacancy are the cation and anion defect energies

and Epair is the exothermic lattice energy per anion-cation pair.

The cation Frenkel energy, EFrenkel, can be expressed as

EFrenkel = Ecation vacancy + Ecation interstitial (90)

and analogously for the anion.

To calculate the solution energies we used the supercell approach with 4 ×
4× 4 supercells, containing 256 atoms. One of the cations was replaced with

another element; for example for GaN lattice, one Al or one In substitutional

atom was placed at a Ga site. The solution energy Esolution is then calculated

as

Esolution = Esupercell − 127EGaN − Elattice impurity (91)

where Esupercell is the energy of the supercell as calculated by GULP. EGaN is

the lattice energy per cation-anion pair in a pure binary compound (without

a substitutional impurity) and Elattice impurity is the lattice energy of the im-

purity binary compound. With increasing supercell size the infinite dilution

limit is approached.

6.2 Results and discussion

In Fig. 46, the variation in energy vs. region size for the N interstitial in

GaN is presented. At a region 1 size of about 20 Å the desired convergence

to 0.1eV is achieved. It is difficult to perform larger calculations as GULP

experiences memory problems.

The final geometries of interstitials and vacancies are shown in Table 9. An-

tisites were not studied in this work due to their large formation energies, as
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Figure 46: The variation in defect energy vs. region size (convergence curve)
for the N interstitial in GaN.

suggested in the literature. The Ga interstitial is found to be lowest in energy

at the octahedral side. N interstitial forms a split interstitial with another

lattice N. The nearest neighbours of the vacancies experience a breathing

relaxation outwards from the defect centre.

Nitrogen interstitials have been widely reported to form a split interstitial

configuration, e. g. in [2], as shown in Fig. 47 although [3] discusses a N3−

interstitial in a non-split interstitial configuration. The distance between the

lattice N and the interstitial is measured and compared with the bond length

in the N2 molecule, 1.11Å, in Table 9. This comparison is frequently used

when less negative charge states are studied. In those cases the bond length

is comparable to that of a nitrogen molecule. For N3− the Coulomb repul-

sion between the nitrogens is very strong, hence the bond length is more than

twice the N-N distance in the N2 molecule.

Our calculations do show a split interstitial in that the lattice nitrogen is

significantly displaced from its lattice site. The interstitial N is in the centre

of the channel as shown in Fig.48 similar to the configuration discussed in

[3].

The N-N bond lengths increase in the order Al<Ga<In, reflecting increas-
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Table 9: Native defects: geometries and energies of the lowest energy config-
urations. The split N interstitial bond is compared to the bond length of free
N2 of 1.11 Å. The % change in vacancies measures the breathing relaxation
of the distance between the defect centre and the nearest unlike neighbours.
Three of these neighbours are equivalent and one is inequivalent, positioned
along the z-axis from the defect centre. The cation interstitial bond lengths
are compared with the nearest neighbour distances in the bulk. The defect
energy in the last column is as calculated in GULP via equation 88.

Defect type Geometry (Å) % change Defect energy (eV)
GaN
N interstitial lattice split N 2.50 +125 -35.20
N vacancy Ga equivalent 2.40 (3) +23 53.54

Ga inequivalent 2.39 +22
Ga interstitial N 2.01 (3), 2.23 (3) +3, +15 -29.04

Ga 2.43 (3) Ga 2.70 (3) -24, -15
Ga vacancy N equivalent 2.21 (3) +14 48.49

N inequivalent 2.28 +17
AlN
N interstitial lattice split N 2.43 +119 -36.78
N vacancy Al equivalent 2.37 (3) +24 56.42

Al inequivalent 2.32 +21
Al interstitial N 2.13 (3), 2.00 (3) +12, +5

Al 2.37 (3), 2.64 (3) -23, -14 -29.93
Al vacancy N equivalent 2.12 (3) +11 50.67

N inequivalent 2.19 +15
InN
N interstitial lattice split N 2.77 +150 -33.02
N vacancy In equivalent 2.61 (3) +20 46.71

In inequivalent 2.77 +28
In interstitial N 2.10 (3), N 2.72 (3) -3,+25

In 2.82 (3), In 2.91 (3) -20, -17 -29.34
In vacancy N equivalent 2.60 (3) +20 44.36

N inequivalent 2.82 +30
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Figure 47: N split interstitial interstitial in GaN (view along the x-axis). The
interstitial and the lattice N with which it forms a bond are shown in pink.

Figure 48: The geometry of the split N interstitial (view along the z-axis).
The interstitial and the lattice N with which it forms a bond are shown in
pink.

ing lattice parameters. The interatomic distances of the N interstitial and

the lattice nitrogens are significantly different from the bulk N-N distances

(around 3.1 Å for GaN and AlN and 3.5 Å for InN).

Earlier periodic DFT calculations suggest that N3− interstitial has very high

formation energies [2]. Our own QM/MM calculations in Chapter 8 seem to

agree that the 3- charge state is unstable (see Table 29).

The cation interstitials can occupy two high symmetry sites, referred to as

octahedral and tetrahedral (see Fig. 45). The octahedral arrangement has

consistently been reported as the lower energy configuration as has indeed

been shown in the present work. There are six nearest N neighbours in this
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arrangement, two sets of three N ions by symmetry, and two sets of three

nearest cation neighbours, the distances to which are reported in Table 9 and

compared with the bulk bond lengths. The cation-cation bond lengths are

generally about 20% shorter than in the bulk and cation-N bonds about 10%

longer.

In GaN each N vacancy site is surrounded by four nearest Ga neighbours,

three in-plane, equivalent ones and one along the c-axis which is inequiva-

lent. The distances of these two types of neighbour from the defect centre are

reported in Table 9 and compared with equilibrium bond lengths. For all the

defects the relaxation is outwards from the defect centre, which is consistent

with the reduction in the Coulomb attraction of the nearest neighbour Ga

ions to the defect centre after the N is removed. Similar observations hold

for the other vacancies. We also note here that our QM/MM calculations,

reported in Chapter 8, indicate that the formally charged N vacancy may be

unstable.

As indicated in Table 9, the deviations of the interatomic distances in defects

with respect to the bulk bond lengths can be significant. Robust potentials

which interpolate well between the bulk interatomic distances are needed if

reliable defect geometries are to be predicted. The deviations from experi-

mental data observed in the potentials under pressure in section 5 indicate

that there is some room for improvement at non-equilibrium distances, for

instance by further fitting the structural parameters to pressure data.

The Schottky and Frenkel defect energies are reported in Table 10. Schottky

defect energies are the lowest for all three materials, indicating that vacancies

are the dominant type of defect in III-V nitrides, which is consistent with

the findings of DFT calculations, which also predict vacancies to be thermo-

dynamically most stable (see Section 4.3 and 8).

The cation Frenkel defects have the highest energies. The same trends are

observed in [4], apart from the Frenkel cation and anion defect energies in

AlN. A direct comparison of defect energies is not possible as the potential

used in [4] is a partial charge model with ionic charges of 2+ and 2-. The

Schottky and Frenkel defect energies become larger in the order Al>Ga>In,

consistent with the findings in [4]. Our reported values are generally larger
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Table 10: Schottky and Frenkel defect energies per atom. The values in
brackets are from [4], where partial ionic charges are used as opposed to the
formal ionic charges in the present work.

Compound Schottky (eV) N Frenkel (eV) Cation Frenkel (eV)
AlN 8.89 (5.17) 9.82(7.4) 10.37(6.62)
GaN 7.67 (4.74) 9.17 (6.66) 9.72 (7.42)
InN 6.00 (3.39) 6.94(4.76) 7.58 (7.43)

Table 11: Solution energies per cation. The calculations labelled PBC are
based on a 4× 4× 4 supercell. The M-L label denotes Mott-Littleton defect
energies. The values in brackets are from [4], based on 96-atom supercells.

Al Ga In
Compound PBC M-L PBC M-L PBC M-L
AlN × × 0.04(0.86) 1.48 1.07(0.51) 10.78
GaN 0.04 (0.99) -1.40 × × 0.62(1.53) 8.93
InN 0.74 (0.09) -9.17 0.46(1.00) -7.92 × ×

than those obtained for the partial charge systems.

Finally, the solution energies are shown in Table 11. The corresponding

Mott-Littleton energies are also shown. The solution energies are in general

less endothermic than the values from [4], based on a partial charge model

and 96-atom supercell compared with a 256-atom supercell in our calculation.

It should be recalled here that InN has a different spring constant from AlN

and GaN in this model, leading to ambiguity in its definition and possible

inaccuracies. A possible improvement would involve changing the N spring

constant based on the type of nearest cation neighbours.

The endothermic solution energies imply that the III-V nitrides are not solu-

ble in each other even at low concentrations. These calculations are implicitly

performed at 0K and do not model the increased solubility of an impurity

with temperature. The solubility is explored further in the next chapter, in

the context of alloys.
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6.3 Summary

In this work the geometries and defect energies of native defects were studied

with interatomic potentials from Chapter 5. Schottky defects were found to

be energetically most favourable, consistent with DFT predictions of vacan-

cies being more abundant in GaN [5]-[9]. Further discussion and comparison

with our QM/MM calculations is given in Chapter 8.

The solution energies of the cations in pure binary compounds were of the

order of 1eV.

In the present work diffusion barriers were not studied. Diffusion is an impor-

tant phenomenon and would be an interesting topic for future exploration.

Likewise defect complexes, line defects and dislocations are possible future

directions for this work.
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7 Solid solutions

7.1 Introduction

The alloys of AlN, GaN and InN have many interesting properties and have

been widely used in engineering applications. In particular, growing the al-

loys under careful control of composition allows for engineering the band gap

and associated electrical properties, which are relevant in III-V nitride de-

vices (see [1], [2], [3], [4] and [5]).

In this section, the interatomic potentials presented earlier are employed to

study the alloys over a range of compositions. Two approaches are taken.

In the mean field formalism, each cation site is fractionally occupied by an

“average cation” of two different species with the occupancies summing to

unity. Secondly, we utilise the SOD (Site Occupancy Disoder, [8]) software

to generate ordered structures with desired compositions explicitly and eval-

uate their free energies and other relevant quantities.

Previous work suggests that strain plays an important role in the stabilisa-

tion of the III-V alloys, suppressing phase separation. The effects of strain

are also studied in this chapter.

7.2 Mean Field Approximation

7.2.1 Methodology

In the mean field approximation, the cation sites are occupied with varying

fractions of Al, Ga and In to simulate the full range of ternary III-V nitride

alloys. This formalism was used in previous work, such as [6], and is also

discussed in [7].

The sites with fractional occupations in the GULP software are interpreted

as being occupied by a species whose interatomic interactions are defined as

a weighted average of the interactions of the distinct species that fractionally

occupy the site. For example, in AlxGa1−xN, the cation-N interaction in the
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mean field approximation can be written as

Vcation-N in alloy(r) = xVAl - N(r) + (1− x)VGa - N(r) (92)

where VAl - N and VGa - N are the sums of Coulomb and short range interac-

tions between the relevant cations and N in the binary compounds.

This method is a simplistic attempt to model a random alloy, where the prob-

abilities of occupation of a cation site are determined by the composition of

the alloy.

The starting point a and c parameters for the mean field optimisation cal-

culations were the weighted averages of the structural parameters of the end

members. The calculations were performed at zero temperature and pres-

sure.

The mean field approach is most suitable for alloys in which the alternative

cations are very similar in their ionic radii, as is the case for Al and Ga.

In differs from the other two cations, resulting in much more strained alloys,

less amenable to mean field treatment. AlxGa1−xN alloys are considered here

and compared with explicit calculations.

7.2.2 Results and discussion

The enthalpy and internal energy are equal in the following calculations as

the temperature and pressure contributions are zero. The enthalpy of mixing

of two binary compounds, ∆H, is calculated as

∆H(AxB1−xN) = H(AxB1−xN)−
(
xH(A) + (1− x)H(B)

)
(93)

where A, B are Al, Ga or In and H is the enthalpy.

The dependence of enthalpy and ∆H on alloy composition are shown in

Fig. 49 and 50. The free energy is shown to vary approximately linearly

with composition. At 0K the enthalpy of mixing is always positive, suggest-

ing that the system is more stable when separated into the two constituent

phases.
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Figure 49: The enthalpy as a function of AlxGa1−xN alloy composition, in
the mean field approximation.

Figure 50: The enthalpy of mixing as a function of alloy composition, in
the mean field approximation compared with lowest (red points) and highest
(green points) explicit alloy results. For explicit structure calculations see
section 7.3.
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Figure 51: The free energy of mixing, assuming a fully disordered alloy for
AlGaN at different temperatures.

The temperature dependence of the free energy of mixing, assuming a fully

disordered alloy (which is the basis of the mean field approach; see Section

3.9.2) and taking into account only configurational, but not vibrational en-

tropy, is shown in Fig. 51. The entropy contribution to the free energy was

calculated via equation 80. The enthalpy of mixing becomes favourable at

temperatures between 500 and 1000K.

The results are in qualitative agreement with early studies suggesting that

the mixed alloys should be unstable, which would seem to be at odds with

experiment where it has been shown that mixing does occur at finite tem-

peratures. An important factor that is neglected in the present calculation

is the epitaxial strain, which has previously been shown to reduce ∆H. A

study of strained structures is presented in section 7.3. Another possibility

is that experiment accesses a metastable configuration.

Next, the effect of composition on the cell parameters was studied. The

results are shown in Fig. 52 and compared with Vegard’s law, which postu-

lates that the observable properties of an alloy vary as a weighted average of
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(a) a parameter (b) c parameter

Figure 52: The structural parameter as a function of AlGaN alloy composi-
tion, in the mean field approximation (dark blue line). The light blue dashed
line gives Vegard’s law prediction. The red bars show the range of parameters
obtained from explicit calculations from section 7.3.

the properties of the end members. For instance the structural parameter a

can under this assumption be written as

a(AxB1−xN) = xa(A) + (1− x)a(B) (94)

The results of the explicit calculations from section 7.3 are also shown. The

plots show significant deviations from Vegard’s law. The a parameter is cal-

culated to be smaller than the Vegard’s law predictions, whereas c is larger.

Both show a relatively smooth bowing out of the curves. The a parameter

is at the lower end of the range from the explicit calculations and the c pa-

rameter at the higher end.
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The mean field approach gives results which are reasonably close to those

calculated with explicit calculations but it is unclear how reliably it models

a random alloy. Overestimation of the enthalpy of mixing is a common prob-

lem since the method does not include possible energy lowering distortions [7].

7.3 Explicit cation ordering

7.3.1 Methodology

The mean field approximation is a useful starting point for the study of al-

loys but it is rather limited due to its simplistic nature. A more rigorous

approach is to consider different explicit cation arrangements and compare

their relative stabilities.

In the present work, the Site Occupancy Disorder program (SOD; see [8] and

Section 3.9.2) was used to generate all inequivalent structures in 2 × 2 × 2

and 1× 1× 8 wurtzite supercells. Four cases were studied: AlxGa1−xN with

x = 0.25, 0.5 and 0.75 as well as In0.25Ga0.75N. In the case of the 25:75 mix-

tures the 2× 2× 2 supercell has 38 inequivalent arrangements and 1× 1× 8

has 116. In the 50:50 alloy the corresponding values are 190 and 810. The

1×1×8 arrangements are by construction composed of layers of like cations

(see Fig. 53). The labelling of the structures is arbitrary. The prefix Z in-

dicates a 1 × 1× 8 supercell and prefix R indicates a 2× 2× 2 structure in

this Chapter.

The effect of temperature was studied via the inclusion of the degeneracy

entropy Sdeg of each arrangement, provided by SOD . Whilst at zero temper-

ature the structure with the lowest internal energy is most stable, at higher

temperatures this entropy may make a significant contribution to the reduced

energy, Ered, as outlined in Section 3.9.2.

In addition to degeneracy entropy, there is a vibrational entropy contribution,

which was not evaluated in this work due to the problems with modelling

temperature dependences with the current potentials as explained in Chap-

ter 5.

In modelling InGaN, a further issue arises. The spring constants employed
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Figure 53: The lattice one of the configurations of In0.25Ga0.75N with a 1×1×8
supercell. The dashed lines indicate the unit cell, which can be seen in Fig.
54. As can be seen from the diagram for any 1 × 1 × 8 configuration the
structure is by construction composed of layers of In (orange) and Ga (grey).
The N ions are in blue.

in the models for GaN and InN are unequal in order to enable correct high

frequency dielectric constants to be calculated. To simulate the alloy a spring

constant which is a weighted average of the GaN and InN spring constants is

used. Hence k2 = 42.828 eV/Å2 and k4 = 81250 eV/Å4. One could in princi-

ple improve on this procedure by changing the spring constant based on the

number of like/unlike nearest cation neighbours and weight the spring con-

stants accordingly, which is, however, beyond the scope of the SOD software

at the moment. Another possible improvement would be to make the spring

constant direction-dependent, so that the spring constant changes depending

on the type of cation in a particular direction. This type of interaction is not

implemented in the GULP code at present.

A more sophisticated treatment of polarisability would be to calculate the

polarisability, and hence the spring constant, via the Madelung field (see

Section 2.1). Ref. [9] suggested that polarisability might be environment

dependent. [10] subsequently postulated that a simple relationship exists be-

tween the polarisability α0 of an anion in a crystal with an anion Madelung

field V0 and an isostructural crystal with polarisability α′ and Madelung field

V ′

α′ =
α0V0

V ′
(95)
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If we know the Madelung field and polarisability of a nitride ion in one of

the binary compounds that make up the alloy, and the Madelung field in the

alloy, we can deduce the polarisability, and hence the spring constant (see

Eq. 8), of the nitride ion in the alloy. The Madelung field of the alloy can be

calculated with some starting value of the spring constants, e.g. a weighted

mean of the end members, by optimising the alloy structure in GULP. A new

value of polarisability, and a new spring constant, can then be calculated via

Eq. 95. The alloy structure can be optimised with the new spring constant

and a new Madelung field calculated until convergence is achieved in this

iterative procedure. A scheme like this may be implemented in the future to

improve on the present methodology.

The weighted average spring constants, used in this work, were tested in

the pure binary systems (i.e. GaN and InN) to ensure that unphysical be-

haviour does not occur when they are used. The GaN structural parameters

are well reproduced (a = 3.187Å, c = 5.188 Å). The high frequency dielec-

tric constants are higher than those calculated with the original GaN spring

constants (ε11 = 6.28 and ε33 = 6.37) and there are no imaginary phonon

frequencies for the wurtzite structure, which indicates that a true minimum

rather than a saddle point has been found.

For InN, the structural parameters with the altered spring constant are

a = 3.570Å, c = 5.697 Å and the high frequency dielectric constants ε11

= 4.55 and ε33 = 4.64. No imaginary frequencies appear for wurtzite.

To simulate epitaxial strain in the material in the ab plane, the a parame-

ter was fixed at 3.19 Å, approximately that of the optimised GaN structure,

whilst other parameters, including the fractional coordinates within the unit

cell, were allowed to relax. Ered was calculated by comparing with the en-

ergies of similarly strained binary alloys, i.e. with the a parameter fixed at

3.19Å. This model assumes that the a parameter of the substrate does not

change in the presence of the epitaxial layer. It also assumes there are no

strain-relieving dislocations.

Ternary III-V alloys are most frequently grown as epitaxial thin films. In the

current model we assume an infinite extent of the lattice in the c-direction,

simulating a thick layer. Thick layers are likely to have a higher concentra-
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tion of dislocations that relieve epitaxial strain and lead to phase separation

[12]. To improve the model, surface effects would have to be included as well.

Furthermore, one could include a direct interface between the substrate and

the epitaxial layer. This interaction is at present confined to fixing the a

parameter of the alloy supercell, which is a rather crude approximation.

7.3.2 Results and discussion

In0.25Ga0.75N

∆Ered for the different configurations explored (referenced by arbitrary num-

bers, 2× 2× 2 supercells prefaced by R and 1× 1× 8 by Z) is shown in Fig.

56 on p. 169. A summary of the lowest energy configurations at different

temperatures (including the effect of degeneracy entropy), with and without

epitaxial strain are shown in Table 12. Configuration R15 (see Fig. 54) is

in all cases the one lowest in energy. The highest energy configurations R16

and Z112, are in fact equivalent (see Fig. 54 and 62). For T = 0K structure

Z150 (Fig. 54) is the highest in energy.

Structures Z150 and R16 are similar layered arrangements. In the R16 ar-

rangement 3 layers of Ga are followed by 1 layer of In along the z-direction.

Z150 has a layer sequence 1(In):2(Ga):1(In):2(Ga):1(In):2(Ga):1(In):6(Ga),

a somewhat less symmetrical arrangement than the others.

Our results are in good agreement with DFT calculations in [14], which

show that a structure equivalent to configuration R15 is the lowest in energy

and structure R16 is the highest in energy. The configuration set in the pre-

vious work is less exhaustive than that presented here. The conclusion the

authors draw is that cations of the same species are preferentially distributed

as far from each other as possible. This finding can potentially be explained

by the fact that a regularly distributed arrangement relieves internal strain

in the material.

While our bulk calculations predict [0001] superlattices to be energetically

unfavourable with respect to other types of ordering, there has been some

experimental evidence of ordering in [11] in the form of (0001) superlattice
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Table 12: The lowest energy configurations for the In0.25Ga0.75N alloy, both
relaxed and under strain (with the a parameter kept fixed at 3.19 Å). The
highest energy configurations are in brackets. The configurations are shown
in Fig. 54 and 62. Note the arrangements R16 and Z112 are equivalent as
both the 1× 1× 8 and the 2× 2× 2 supercell can produce an arrangement
with single layers of In alternating with three layers of Ga.

0K 100K 300K 600K
unstrained R15 R15 R15 R15

(Z150) (R16=Z112) (R16=Z112) (R16=Z112)
strained R15 R15 R15 R15

(Z150) (R16=Z112) (R16=Z112) (R16=Z112)

peaks, which are forbidden in a random alloy.

Reference [11] discusses experimental evidence of ordering in an InxGa1−xN.

It suggests there is a competition between phase separation and ordering.

Ordering is observed to dominate below In atomic fractions of 0.2 and phase

separation is observed above those fractions. The ordering was suggested to

occur along the c axis with separate planes of In and Ga ions.

It has been suggested that kinetic effects on the surface might lead to the

stabilisation of the [0001] superlattices. A possible mechanism is discussed

in [13]. This mechanism is used in [15] to explain how pyramidal ordering

arises, i.e. ordering along the [11̄01] surface in zincblende for which there is

some experimental evidence in AlGaN [15]. This type of ordering, depicted

in Fig. 55 was initially suggested for In0.5Ga0.5P and is equivalent to ordering

along the z-axis in wurtzite as explained in Fig. 10.

∆Ered of the most stable configurations is shown in Table 13. The values are

positive for all the temperatures under study in the unstrained case. Strain

release has the dramatic effect of stabilising all the structures as ∆Ered be-

comes negative for most of the 2× 2× 2 configurations.

The differences in ∆Ered of the lowest and highest configurations and the

two lowest configurations is shown in Table 14. The differences between the

lowest and highest energy configurations, of about 0.22eV per unit cell of

wurtzite, are large relative to kT at 300K, which is approximately 0.03eV
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(a) Config. R15 (b) Config. R16 (c) Config. Z150

Figure 54: Low and high energy configurations for In0.25Ga0.75N. The grey
atoms are Ga and orange atoms are In. N is in blue. Configuration R16 and
Z150 are very similar but the stacking of the layers is slightly different as
discussed in the text.

Figure 55: Pyramidal ordering as suggested for zincblende Ga0.5In0.5P in [16].
This is a CuPt type arrangement.
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Table 13: ∆Ered per unit cell of wurtzite for lowest energy configurations for
In0.25Ga0.75N in eV per wurtzite unit cell (i.e.containing two cations).

0K 100K 300K 600K
unstrained 0.185 0.183 0.180 0.176
strained -0.109 -0.110 -0.113 -0.118

Table 14: The differences in energy between the lowest and highest config-
urations for In0.25Ga0.75N in eV per unit cell of wurtzite. The configuration
reference numbers of the lowest and highest energy configurations are given
in Table 12. The values in brackets are the differences between the two lowest
energy configurations.

0K 100K 300K 600K
unstrained 0.22 (0.061) 0.22 (0.058) 0.22 (0.053) 0.22 (0.045)
strained 0.20 (0.065) 0.20 (0.063) 0.20 (0.057) 0.20 (0.049)

per unit cell of wurtzite and means that the high energy configurations are

very unlikely to be observed in the bulk at 300K. However the differences

between the lowest two configurations are relatively small, about 0.06eV per

unit cell of wurtzite. A number of configurations near the low energy end of

the range are likely to be present.

The DFT results in [14] predict configuration R15 to have a formation

energy of 56meV/cation. The present data are calculated per wurtzite unit

cell, i.e. per two cations. The corresponding value from our work is around

70meV/cation. The highest energy configuration is predicted in [14] to have

a formation energy of 138meV/cation as opposed to 200meV/cation with the

present work. The differences between the DFT results and are calculations

are of the order of the difference between the DFT and valence force field

calculations (VFF) in [14]. However, our calculations give formation energies

which are higher than the DFT results while the VFF results are lower.

The dependence of the reduced energy on the number of nearest like cation

neighbours (i.e. In-In nearest neighbour pairs rather than In-Ga pairs) is
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shown in Fig. 56. An interesting feature emerges. ∆Ered increases with

increasing numbers of nearest neighbour In-In pairs for the 2× 2× 2 super-

cells. Although there is a fair degree of scatter in the data the general trend

is clear. The arrangement with the lowest ∆Ered is one where there are no

nearest In neighbours for any of the In ions in the supercell. This pattern

persists under conditions of pseudomorphic11 epitaxial strain in the ab plane

(see Fig. 57). In the 1×1×8 supercells, each In cation has at least six other

In ions as the nearest cation neighbours, which is not the case for 2× 2× 2

supercells. The 1 × 1 × 8 supercells have generally higher reduced energies,

but the trend is opposite to the 2× 2× 2 supercells and the reduced energy

decreases as the number of like cation neighbours increases.

The highest ∆Ered for the 2× 2× 2 arrangement coincides with one of the

1×1×8 supercells. One can easily deduce that this will be the only 2×2×2

supercell with In-only- and Ga-only- layers as shown by configuration R16

in Fig. 54.

These findings can be intepreted in terms of the increased internal strain in-

duced in the alloy when In cations cluster. Due to the large lattice mismatch

between Ga and In, the strain is minimised by ordering In in a staggered ar-

rangement as shown in configuration R15 in Fig. 54. Small-scale clustering

of In leads to strain at the interface of the In cluster and the Ga-rich portion

of the alloy, rendering such arrangements energetically unfavourable.

This deduction is counterintuitive, since the positive sign of ∆Ered implies

that phase separation, which is an extreme form of clustering of the two

binary compounds, should occur. Once mixed, however, the alloys will as-

sume an arrangement which will most effectively relieve the internal strain.

The ordered structure with evenly dispersed In ions leads to strain release

and the lowering of energy and is favoured over more clustered and strained

structures with multiple interfaces between In- and Ga-rich regions.

11i.e. keeping the alloy structural parameters equal to those of the underlying substrate
for the entire extent of the direction normal to the interface. In this case, the interface is
in the ab plane and the substrate has parameters a = b = 3.19 Å and γ = 120◦, which are
kept constant for −∞ < z < +∞ for the alloy epitaxial system. This is unlikely to occur
in practice. Once the layer exceeds a certain critical thickness, the epitaxial strain would
in practice be relieved by dislocations.

168



Figure 56: ∆Ered per unit cell of wurtzite vs. the sum of the number of
nearest cation In-In pairs (summed over the unit cell).

Figure 57: ∆Ered per unit cell of wurtzite vs. the sum of the number of
nearest cation In-In pairs (summed over the unit cell) under strain.
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Figure 58: The distribution of cation-cation bond lengths in the low energy
(configuration R15) and high energy (configuration R16) arrangements.

Detailed analysis of the GULP output suggests that the energy difference be-

tween configurations R15 and R16 arises 40% from the short range potentials

and 60% from the Coulomb interaction. Since the charges in the Coulomb

interaction are the same in the two cases, the difference has to be due to

interionic distances. To understand the causes of the energy difference in

the 2 × 2 × 2 configuration, the weighted mean bond distances in the low

energy (configuration R15) and high energy (configuration R16) were stud-

ied. Of course the weighted mean distance is only a crude way of estimating

the effect of geometry on the lattice energy since the dependences are non-

linear. Furthermore, second and further neighbours play a role. However,

some qualitative insights can be gleaned from these considerations.

The cation-cation distances are shown in Fig. 58 and in Table 15. The

cations interact with other cations via identical repulsive Coulomb interac-

tions and a r−12 term, which has a very small effect. For the purposes of

the energy calculation the cation-cation interactions of all combinations of

cations may be treated as equivalent, i.e. as Coulombic interactions between

charges 3+. It can be seen that configuration R15 does indeed have a slightly
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Table 15: The weighted mean bond lengths in configurations R15 and R16
in In0.25Ga0.75N. Configuration R15 is the lowest energy configuration, R16
is the highest in energy. The results in the third column are from [17], calcu-
lated with the valence forcefield model with an 8×8×5 supercell simulating a
random alloy (i.e. cation sites are randomly occupied) and the bond lengths
are averaged. The experimental results in the fourth column, from [18], are
measured by total electron yield extended x-ray absorption fine structure.
The samples were grown by molecular beam epitaxy and contain a mixture
of wurtzite, zincblende and amorphous regions.

bond type Config. R15 Config. R16 [17] [18]
In-In × 3.289 3.317 3.35
Ga-Ga 3.257 3.244 3.243 3.25
In-Ga 3.295 3.352 3.297 3.275
(cation-cation avg) (3.270) (3.274)
In-N 2.140 2.083 2.126 2.09
Ga-N 1.965 1.978 1.963 1.94
N-N (shorter) 3.208 3.242 3.204
N-N (longer) 3.494 3.512 3.471
(N-N avg) (3.280) (3.280)
N core-shell 0.0162 0.0256

higher weighted mean distance between cations than the high energy configu-

ration R16 suggesting decreased positive contributions from the cation-cation

Coulomb interactions to ∆Ered.

The In-N bond lengths in configuration R15 are longer, suggesting that the

short range repulsion will be reduced (but the Coulomb attraction is also

reduced). The shorter Ga-N bond length in configuration R15 follows the

opposite trend. The mean displacement of the shells from cores in R15 is

shorter resulting in a less positive contribution. The N-N bonds are slightly

shorter.

The results in Table 15 are compared with valence forcefield calculations sim-

ulating a random alloy, and experimental data with no clear ordering. The

bond lengths are in good agreement with both sets of results although direct

comparisons are difficult to draw as our simulations are based on ordered,

rather than random, structures. Shorter bond lengths might be expected
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Figure 59: The a parameter as a function of number of nearest In-In neigh-
bours in In0.25Ga0.75N.

due to the more efficient stacking of ordered structures, which is the case in

some but not all bond lengths. The bond length differences between our cal-

culations and other studies are within the range of error of our model (about

1%).

For the 1 × 1 × 8 supercells the trend with the increasing numbers of like

neighbours reverses. One can speculate that the clustering of layers means

a reduction in the number of strained interfaces between layers of unlike

cations and hence reduced overall interlayer strain.

Clustering of layers and the formation of [3,3] superlattices has been reported

in [19] for zincblende In0.5Ga0.5N by first principles and cluster expansion

methods. Alternating groups of three InN and three GaN layers along the

c-direction were predicted below the critical temperature of 1487K, above

which disordered structures were predicted.

With larger supercells (extended in the c-direction) than in the present work,

an even greater degree of layer clustering would be possible. For example,

an arrangement with 24 Ga layers alternating with 8 In layers could be mod-
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Figure 60: The c parameter as a function of number of nearest In-In neigh-
bours in In0.25Ga0.75N.

elled. If the trends exhibited in our calculations are extrapolated, the system

would be expected to undergo an even greater extent of clustering.

Finally, the structural parameters were plotted as a function of the number

of nearest In-In neighbour pairs. The results are shown in Fig. 59 and 60.

Again a clear relationship is observed: the a structural parameter increases

with the number of nearest neighbour In-In pairs whilst the c parameter de-

creases.

The c parameter might decrease for the 1 × 1 × 8 configurations due to the

more efficient stacking of layers. If successive layers are of the same kind,

their energies are minimised at the same interlayer distance. If they are of

a different kind, a “compromise” distance is found. To relieve the strain of

such an arrangement might require elongation in the c direction.

The a parameter is the lowest in arrangements where the In ions are inter-

spersed between the Ga ions, which will result in the the smallest pertur-

bation of the cation layers, which are predominantly Ga, and therefore the

smallest increase in the a parameter relative to pure GaN. Future analysis
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Table 16: The lowest energy configurations for the AlGaN alloy, both relaxed
and under strain (with the a parameter kept fixed at 3.19 Å). The highest
energy configurations are in brackets.

%Al Unstrained
0K 100K 300K 600K

25 Z88 Z88 Z88 Z88
(R16=Z112) (R16=Z112) (R16=Z112) (R16=Z112)

50 Z452 Z452 Z452 Z452
(Z191) (Z191) (Z191) (Z191)

75 Z105 (R1) Z105 (R4) Z105 (R4) Z105 (R4)

% Al Strained
0K 100K 300K 600K

25 Z88 Z88 Z88 Z88
(R16=112) (R16=Z112) (R16=Z112) (R16=Z112)

50 Z452 (Z191) Z452 (Z191) Z452 (Z191) R175 (Z191)
75 R38 (Z147) R38 (Z48) Z105 (Z48) Z105 (Z48)

could include the study of elastic constants of the alloys, the dependence

of the unit cell volume on the number of nearest In-In neighbours and the

effects of defects on the bulk modulus of the alloys. AlxGa1−xN

Next, AlxGa1−xN will be considered for x = 0.25, 0.5 and 0.75. A summary

of the highest and lowest energy configurations is shown in Table 16.

For x = 0.25 the lowest energy configuration is a layered structure with

all the Al layers clustered together. The highest energy configuration is a

layered structure with each Al layers interspersed with 3 Ga layers, which is

configuration number Z112, or equivalently R16, in Fig. 62.

These patterns are reminiscent of the nearest neighbour dependences stud-

ied for InGaN. Here we plot ∆Ered against the number of nearest neighbour

Al-Al pairs in Fig. 61. The same types of pattern emerge. The layered

structures (i.e. 1× 1× 8 supercells) are now however shifted lower in energy

resulting in one of these structures with Al layers clustered together, having

the lowest energy overall. The likely cause of the increased stability of the

layered arrangements is the much smaller lattice mismatch relative to the

InGaN case.
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Figure 61: ∆Ered per unit cell of wurtzite vs. the sum of the number of
nearest neighbour Al-Al pairs for Al0.25Ga0.75N.

Reference [20] studied AlxGa1−xN where x = 0.3− 0.5 and observed diffrac-

tion peaks forbidden in a random alloy. [21] attributes this pattern to alter-

nating AlN and GaN layers along the c direction. 10:2 monolayer ordering

was reported in AlGaN [22]. Certain growth conditions are thought to favour

(0001) superlattices even though they are not necessarily energetically most

favourable in the bulk (see [15] and references therein) which might explain

why the structures predicted in the present work to have positive ∆Ered are

stable in experiment. Another possibility is that the structures layered along

the c-direction are metastable in the bulk. The discrepancy between exper-

imental observations and the present calculations may also be due to the

differing energetics at the growth surfaces relative to the bulk. Surface lay-

ers, esp. polar, can be expected to experience reconstructions, which might

result in different structures being stabilised.

The calculation of diffraction patterns from the predicted structures is work

in progress. Lowering of symmetry to the P3M1 spacegroup (no. 156) was

observed for the Z112 (=R16) configuration.

The trends in the structural parameters in relation to the number of near-

est Al-Al pairs differ somewhat from the InGaN case (see Fig. 63 and 64).
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(a) Config. Z88 (b) Config. R16 (c) Config. Z112

Figure 62: The low and high energy configurations for Al0.25Ga0.75N. Pink
atoms are Al, grey Ga and blue N. Configuration Z88 is the lowest in en-
ergy. Configurations R16 and Z112 are equivalent, and the highest in energy
amongst all the configurations searched.

There is a less clear dependence between the number of like neighbours and

a parameter although the 1 × 1 × 8 arrangements have generally higher a

parameters. The c parameter, as for InGaN, shows a decreasing trend with

the number of like Al-Al pairs.

Values of ∆Ered per wurtzite unit cell for the lowest energy configurations

are shown in Table 17. The values are much less positive than in the case of

In0.25Ga0.75N. Just increasing the temperature to 600K, even in the absence

of strain, is sufficient to turn ∆Ered negative. The effect of strain is much

less pronounced than for InGaN, only yielding a reduction in ∆Ered of about

2meV per unit cell of wurtzite.

The differences between the highest and lowest, and the two lowest, calcu-
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Figure 63: The a parameter as a function of number of nearest Al-Al neigh-
bours in Al0.25Ga0.75N.

Figure 64: The c parameter as a function of number of nearest Al-Al neigh-
bours in Al0.25Ga0.75N.
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Table 17: ∆Ered per unit cell of wurtzite for the lowest energy configurations
for AlGaN in meV per unit cell of wurtzite.

%Al Unstrained
0K 100K 300K 600K

25 12 8 3 -6
50 14 11 5 -10
75 11 8 2 -7

% Al Strained
0K 100K 300K 600K

25 10 7 2 -7
50 13 10 4 -9
75 5 4 3 -6

lated values of ∆Ered are shown in Table 18. The variations are significantly

smaller than for InGaN. Even the difference between the highest and lowest

configurations is of the order of 0.01eV per unit cell of wurtzite, which is

comparable to kT at room temperature. It also means that the AlGaN case

is more taxing for our model, since the small energy differences may well be

within the range of error of the model.

The patterns in ∆Ered and the extent of its variation between the differ-

ent configurations are similar for the other two Al fractions studied, 0.5 and

0.75, as can be seen from Tables 16 and 17. As for x = 0.25, the differences

between configurations are small and the strain imposed does not stabilise

the structures significantly.

The lowest and highest energy structures for x = 0.75 are shown in Fig.

65, 66 and 67. Configuration Z105 is the lowest energy configuration, apart

from the strained structure at 0 and 100K. It is equivalent to the lowest

energy configuration for x = 0.25, with Al layers clustered together. At low

temperatures under strain, configuration R38, which is also the lowest energy

arrangement for In0.25Ga0.75N, is the most stable. The high energy structures

are mostly layered arrangements with Al layers alternating with Ga layers

rather than clustered together.
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Table 18: The differences in energy between the lowest and highest configu-
rations for AlGaN in meV per unit cell of wurtzite. The values in brackets
are the differences between the two lowest energy configurations.

Unstrained alloy
%Al Energy difference meV per unit

( cell of wurtzite) at temperature
0K 100K 300K 600K

25 12 (3) 15 (4) 21 (4) 29 (4)
50 27 (4) 30 (4) 34 (0.4) 46 (0.06)
75 13 (4) 15 (4) 21 (4) 29 (4)

Strained alloy
%Al Energy difference meV per unit

( cell of wurtzite) at temperature
0K 100K 300K 600K

25 13 (3) 16 (4) 21 (4) 30 (4)
50 30 (5) 33 (5) 37 (2) 48 (0.02)
75 22 (0.4) 21 (0.2) 20 (0.6) 24 (5)

The results for x = 0.5 follow the same trends as for the 0.25 and 0.75 frac-

tions in that the clustered layer arrangements are energetically favourable

(see configuration Z452 in Fig.68 on p. 183). The alternating layer arrange-

ment is the highest energy configuration. At high temperatures (600K) and

under strain a more asymetrical arrangement 175 in Fig.68 is the most stable

one. As was discussed earlier, the energy differences between the configura-

tions are very small, of the order of 10−5eV per unit cell of wurtzite at 600K.

Fig. 50 compares the explicit calculations with the mean field approach.

∆Ered calculated using the mean field approach is larger than the explicit

calculations, as discussed in Section 7.2.2 on p. 161.

7.4 Summary and future work

To summarise, ternary III-V alloys were studied utilising the interatomic po-

tentials derived in Section 5.1.1. Mean field and exhaustive enumeration in

1× 1× 8 and 2× 2× 2 supercells were employed. As in previous studies, the
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(a) Config. R1 (b) Config. R4

Figure 65: Two high energy configurations for Al0.75Ga0.25N. Configuration
R4 is equivalent to Z48 shown in Fig 66.

current model predicts that unstrained alloys have a tendency to undergo

phase separation. Epitaxial strain can have a strong stabilising effect, as was

demonstrated for the case of In0.25Ga0.75N. Good agreement between a range

of our and previous computational data is noted, for example in searching

for the most stable configuration in the In0.25Ga0.75N ordered structures set.

We also find evidence of symmetry-lowering transitions.

In In0.25Ga0.75N, the lowest energy configuration has In ions maximally in-

terspersed between Ga ions, presumably to relieve strain. The lowest energy

configurations for AlGaN have clustered layers of Al and Ga. The optimised

AlGaN structures have very similar energies, with differences of the order

of kT at room temperature, so there is not a strong preference for the low-

energy arrangements. In contrast, the energy differences in In0.25Ga0.75N are

larger.

The energetic and structural properties have been found to have a strong

dependence on the number of nearest like cation-cation neighbours in the su-
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(a) Config. Z48 (b) Config. Z147

Figure 66: Two high energy configurations for Al0.75Ga0.25N.

percell, which can be related to the extent to which internal strain is relieved

in the structure.

We now consider possible future directions of this work.

Thin films of the zincblende structured alloy have been reported to be sta-

bilised by epitaxial strain when using cubic substrates such as 3C-SiC and

GaAs [24]. There has been some suggestion, as outlined above, of pyramidal

ordering along the [11̄01] surfaces in zincblende. There is a large body of sim-
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(a) Config. R38 (b) Config. Z105

Figure 67: The low energy configurations for Al0.75Ga0.25N.

ulations of zincblende ternary compounds (e.g. [23] and references therein).

The present model would be well suited for the study of these systems. It

would also be desirable to explore the configurations in larger supercells. At

the moment one is limited by the SOD software in this as it breaks down if

the number of configurations is too large.

Surface effects are of particular interest as the experimentally observed con-

figurations might be determined by growth kinetics. The thermodynamics

of the surface might favour different configurations from those that are en-

ergetically stable in the bulk, and those configurations might be “frozen in”

unless the migration barriers for cations in the lattice are small enough. The

energetics of migration therefore also warrants further study. This chapter

has established an appropriate methodology for the study of these problems.
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(a) Config. Z175 (b) Config. Z191 (c) Config. Z452

Figure 68: The low and high energy configurations for Al0.5Ga0.5N. This
shows that the alloy prefers to phase separate unless it is under strain and a
reasonably high temperature, in which case it assumes configuration R175.
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8 QM/MM study of GaN

8.1 Introduction

In this chapter, the GaN potential developed in the previous chapters is com-

bined with quantum mechanical approaches to calculate the electronic and

structural properties of native point defects in the material. For details of

the theory underpinning QM/MM methodology, see Section 2.3.

In our QM/MM approach, the system is modelled as a spherical cluster of

radius 30 Å, with point charges simulating the remainder of the infinite crys-

tal. The cluster is partitioned into the electronically active part, treated at

the QM level (see Fig. 69), Region I. The defect is positioned approximately

centrally in the QM region. The interface between the QM and MM parts,

Region II contains Ga3+ ions represented by effective core potentials (ECPs;

see section 2.2.2 on p. 54), designed to model the short range repulsion be-

tween the electrons originating from the QM region and the boundary ions.

The ECPs prevent the electrons “spilling” over from the QM region into the

MM fragment. The rest of the system is treated at the MM level of approx-

imation, and is further divided into an active Region III, where cores and

shells are allowed to relax with respect to their Cartesian coordinates, and

an inactive Region IV, held fixed at the equilibrium geometry as calculated

by the bulk MM model. Region V contains the point charges.

This approach was pioneered in [2] in a code named ICECAP. A more recent

implementation of cluster embedding methodology, ChemShell [3], was used

in [1] and [4] for ZnO and [5] for MgO as well as in the present work.

In this chapter, the detailed aspects of QM/MM methodology and software

will first be reviewed. The complexities of the set-up of a perfect (defect-

free) cluster are described and the convergence of the calculated energy for

the bulk ionisation potential is investigated. Next, the native defect forma-

tion energies, optical transition levels, geometries and electronic structures

are calculated. These properties give an indication of the relative abundance

of the defects and their luminescence properties.

GaN is usually found to be n-type and it has in fact proven exceptionally dif-
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Figure 69: Regions in a ChemShell calculation. The cluster here denotes
the defect region. The “cluster” and “QM” regions will be referred to as
Region I. The interface in the present model contains Ga3+ ions whose valence
electrons are described with a specially parameterised effective core potential.
The interface is denoted Region II in the text. The MM active region will
be referred to as Region III and the MM inactive region as Region IV. The
point charges comprise Region V. From [1]

ficult to achieve p-type doping. Therefore, the behaviour at the conduction

band minimum (CBM) is more relevant for interpreting experimental data.

The knowledge of the defects near the valence band maximum (VBM) and

their possible compensating properties might go some of the way towards

explaining the difficulty with p-doping the material.

8.2 Methodology

8.2.1 Software and hardware

An implementation of the QM/MM approach, known as ChemShell [3] was

used in this work. This software provides an interface between a variety of

QM and MM codes, and implements a number of molecular mechanical meth-

ods (molecular dynamics, Monte Carlo), optimisers and analytical tools. The

QM driver used in the present work is GAMESS-UK [6], [7]), and the MM

driver was GULP, the same software that was used in the previous chapters
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Figure 70: Chemshell schematic

in the development and validation of the interatomic potential.

To optimise the positions of the ions in the system, i.e. to determine the

lowest energy configuration, a series of steps is performed at ionic geometries

with successively lower energies, utilising an energy optimisation algorithm

(see Section 2.4 on p. 60) analogous to a MM optimisation. At each configu-

ration of ionic positions, the lowest energy of that configuration is determined

by optimising the electronic distribution (using GAMESS-UK) and shell po-

sitions in the MM active region (using GULP), holding the ionic coordinates

constant. The sequence of steps in a ChemShell calculation is shown dia-

grammatically in Fig. 70.

The calculation of the energies and forces on the QM region atoms is

performed by GAMESS-UK at the starting geometry first. Once SCF con-

vergence (convergence of the DFT calculation, see Section 2.2.2 on p. 50)

is achieved, the output containing the QM energy and forces is termed

gamess.eandg (=energy and gradient) in Fig. 70. This output also con-

tains the electrostatic forces due to the QM region on the MM shells. With

this information the shells in the MM-active region are relaxed, which results
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in altered electrostatic forces on the QM region. Next, a new GAMESS-UK

calculation is performed using the new shell coordinates. This sequence is

repeated until the changes of the electronic distribution and shell displace-

ments between successive calculations are below the desired threshold, i.e.

until self-consistency is achieved between the QM and MM regions.

The converged forces on the ionic cores are then used by an optimiser, such

as DL-FIND or newopt (see [3]), to find a new geometry with a lower en-

ergy. At this new set of ionic coordinates, another GAMESS-UK calculation

followed by a self-consistent determination of shell positions is carried out.

This process is repeated until desired convergence is achieved with respect

to the total energy of the system, i.e. the energy minimum within a specified

degree of accuracy is obtained.

The calculations in which the ionic configuration with the lowest energy is

found will be referred to as optimisation runs. Calculations at a fixed ionic ge-

ometry with only electrons and shells being optimised are called single-point

calculations, used in the determination of optical defect levels and ionisation

potentials.

The QM/MM calculations are computationally expensive. They were per-

formed on HeCToR, the UK National Computing Service phase 2a (Cray

XT5h system) and 2b (Cray XT6). Full technical information is available

in [8]. Optimisation calculations usually require many thousands of proces-

sor hours. Highly parallelised implementations of the ChemShell code were

therefore used.

8.2.2 Calculating formation energies, ionisation potentials and de-

fect levels

Some of the most important defect properties in semiconductors relate to the

energetics of transitions between charge states of the system. The ionisation

potential (IP) measures the energy required to remove an electron from the

top of the highest occupied state, which can be the valence band or an in-gap

defect level.

Both vacancies and interstitials can exist in a range of charge states. The
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transitions between them relate to luminescence and their deep/shallow na-

ture to their contribution to electrical conductivity (Section 3.8.2 on p.82).

The defect formation energies affect their abundance (Section 3.8.1).

The IPs and optical defect levels calculated here are the values for a vertical

transition, i.e. the energy of the ionised state is calculated at the geometry of

the un-ionised system as a single-point calculation (see Section 8.2.1, p.190).

In the case of the IP, we remove an electron from the VBM of a neutral

perfect cluster, leaving it singly positively charged but do not allow the coor-

dinates of the ions to relax from the equilibrium configuration of the neutral

cluster. Such a calculation corresponds to a fast process where only the elec-

trons and shells, which model electrons, are able to respond to the charge

being removed. The ions, which are heavier, respond more slowly and can be

approximated as stationary (i.e. in the Born-Oppenheimer approximation).

In a system containing a defect, the electron may be removed from one of

the in-gap states rather than the VBM.

In contrast to the optical transitions described above, the thermodynamic

defect levels take the relaxation of the ions into account. These transitions

assume that thermodynamic equilibrium has been reached and the most sta-

ble charge state is the one with the lowest formation energy. However, the

activation energy for such a process may be prohibitively large, meaning

that thermalisation might not occur on the timescale of an experiment. For

a more detailed discussion of optical vs. thermodynamic defect levels, refer

to Section 3.8.2, p. 82.

In calculating the IPs the electron is considered to be removed to infinity, i.e.

the vacuum level (see Section 3.8.2), which is a convenient reference state,

unaffected by the electronic changes associated with defects. It allows us to

bring different calculations into the same energy frame.

As previously explained the QM/MM model only allows for polarisation of

the QM, boundary and the MM active region. However, when a charged

defect is introduced, the significant polarisation of the MM inactive region

and the rest of the crystal is neglected. To correct for this inaccuracy, an

additional term is introduced: this “Jost correction” [1] is derived by inte-

grating the electrostatic energy over the surface of a sphere delineating the
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boundary between Regions III and IV, R, which is set at 15Å in all cases in

the present study, up to infinity. The Jost correction is then

EJost =
q2

2R

ε− 1

ε+ 1
(96)

where q is the charge of the defect and ε is the dielectric constant of the

medium. The dielectric constant is taken from the bulk MM calculations in

Chapter 5. For processes that occur fast so the atoms do not relax to new

coordinates (vertical ionisation potentials and electron affinities), the high

frequency dielectric constant is used in the calculation of the Jost correction.

For thermodynamic processes (such as defect formation energies), the Jost

correction is calculated using the static dielectric constant.

The IP can then be written as

EIP = Ebulk charge 1+
QM/MM (X0)− Ebulk charge 0

QM/MM (X0)− EJost,∞(q = 1) (97)

where Ebulk charge 1+
QM/MM and Ebulk charge 0

QM/MM are the QM/MM energies of a cluster as

calculated by ChemShell and X0 is the equilibrium geometry of the 0 charge

state. EJost,∞(q = 1) is the high frequency Jost correction for charge 1+.

In comparing the IPs with experimental values, one has to bear in mind that

the electron is removed from the bulk. In experiment, surface effects and

polarity are important. Non-polar surfaces have band structures similar to

the bulk. Polar surfaces experience more bending of the bands. For these

reasons direct comparison with experimental data has to be qualified.

The bulk electron affinities are more challenging to calculate with the cur-

rent model because the strong delocalisation associated with electrons in the

conduction band does not lend itself to cluster calculations.

Calculations of the quantity

E = Ebulk charge 1+
QM/MM (X0)− Ebulk charge 1-

QM/MM (X0)− 2Ebulk charge 0
QM/MM (X0) (98)
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instead of the IP remove the problem with the definition the vacuum level.

The above IP calculation refers to the process

GaN(bulk)→ GaN(bulk)1+ + e−(vacuum) (99)

The optical defect transition levels are calculated similarly. For the 2+/3+

optical transition level of the N interstitial, for example, the following reac-

tion equation applies

GaN(N2+
i )→ GaN(N3+

i ) + e−(vacuum) (100)

The energy corresponding to this transition, Evacuum level
optical , can be written as

Evacuum level
optical =

(
E

N3+
i

QM/MM(XN2+
i

)− EJost,∞(q = 3)

)
−

−
(
E

N2+
i

QM/MM(XN2+
i

)− EJost,∞(q = 2)

)
(101)

The first bracket refers to the energy of a system with an N interstitial in the

3+ charge state, at the optimised geometry of the 2+ charge state, XN2+
i

,

including the Jost correction for charge 3+, EJost(q = 3). The second bracket

is the energy of a system with an N interstitial in the 2+ charge state, at its

optimised geometry, including the Jost correction for charge 2+, EJost(q = 2).

This calculation is implicitly performed with respect to the vacuum level as

the electron is removed to infinity. To determine EVBM
optical, the energy with

respect to the top of the valence band (see Section 3.7) we use the following

equation

EVBM
optical = Evacuum level

optical − EIP (102)

Because both EIP and Evacuum level
optical are calculated with respect to the common

vacuum level, this subtraction gives the energy of the optical transition level

with respect to the VBM. EIP is taken a positive number.

The energy with respect to the VBM then corresponds to the following re-

action

GaN(N2+
i )→ GaN(N3+

i ) + e−(VBM) (103)
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This calculation implies the electron is removed to the defect and placed

at the top of the valence band, which is a reasonable assumption in a p-

type material: p-doping in GaN is difficult to achieve and the material is

commonly found to be n-type. The optical transition level with respect to

the CBM is more relevant. This process corresponds to the equation

GaN(N2+
i )→ GaN(N3+

i ) + e−(CBM) (104)

and its energy may be calculated via

ECBM
optical = Evacuum level

optical + EA (105)

where EA is the electron affinity (as a negative number). Negative values

of the defect level with respect to the VBM or CBM indicate that the level

is located above the VBM or CBM, respectively. States above the CBM

are resonances in the conduction band whereas states below the VBM are

resonances in the valence band. As a consequence they have finite lifetimes

and tend to decay rapidly.

One can similarly calculate the electron affinities of defects. For example,

the affinity of the nitrogen interstitial in the charge state 2+ with respect to

the CBM can be represented by the following reaction

GaN(N2+
i ) + e−(CBM)→ GaN(N1+

i ) (106)

If we wish to calculate the optical transition level, the single-point calcula-

tion of the 1+ charge state is carried out at the optimised geometry of the

2+ charge state.

A negative value of a defect transition energy indicates that the implied pro-

cess occurs spontaneously, which can be seen in Fig. 71 on p. 196. The black

curve represents an initial state, i.e the left hand side in an equation such

as Eq.104. Three final state (right hand side of a reaction) possibilities are

shown. The first, orange curve, represents a lower-energy final state and

energy E1 is released in the optical transition by photoemission. Such a sit-

uation would arise if the defect state is a resonance in the conduction band,
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in which case an electron would auto-ionise to the bottom of the conduction

band, or if the state is a resonance in the valence band and captures an elec-

tron from it. The green curve represents a state which is thermodynamically

stable with respect to the initial state, i.e. its minimum is lower than that of

the initial state, but there is an activation barrier. For the optical transition

from the initial to the final state to occur energy E2 must be absorbed, e.g. in

the form of photons. State 3, the blue curve, is thermodynamically unstable

with respect to the initial state, i.e. the minimum of the curve lies above

that of the initial configuration; E3 is absorbed during the optical transition.

In summary, the relative position of the energy minima of two charge states

indicates their relative thermodynamic stability and hence their relative equi-

librium concentrations. Positive vertical ionisation potentials and affinities

indicate the amount of energy that needs to supplied in an optical process

for a transition to occur. Negative optical defect levels indicate unstable res-

onances, i.e. electrons auto-ionising to the bottom of the conduction band or

capturing electrons from the top of the valence band. The formation energies

of the resonances are ill-defined.

After the excitation of the electron to a higher energy state, the energy may

be dissipated as heat, i.e. phonons, or emitted in the form of light as the

electron falls to a lower energy state, either its original state or another low-

lying energy level. Photo-emission can provide useful experimental evidence

of defect energetics.

The formation energies of defects can be calculated using Eq. 63. For

instance, for a nitrogen vacancy in the charge state 3+ the formation energy

refers to the following reaction

GaN(bulk)→ GaN(with N3+
va ) + 1/2N2(g) + 3e−(CB) (107)

where CB refers to electrons in the conduction band.

The energy of this reaction can be written as

EF (N3+
va ) = EQM/MM(with N3+

va )− EJost,0(q = 3+) +

+µ(N)− 3EA − EQM/MM(perfect) (108)
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Figure 71: Optical transitions from the initial state (black curve). The en-
ergies with respect to the reaction coordinate are shown for different charge
states, represented by different curves.

EQM/MM(with N3+
va ) and EQM/MM(perfect) are simply the results of the QM/MM

calculation with and without the defect, with equal sizes of the QM region.

The defect QM/MM calculation requires the appropriate static Jost correc-

tion for the 3+ charge state, EJost,0(q = 3+). The electron affinity, EA,

accounts for each electron in Eq. 107 as energy is released when electrons

move from the vacuum level to the lower energy level in the conduction

band. The electron affinity EA is derived from

EIP = Egap + EA (109)

where Egap is the experimentally determined band gap at 4K12, 3.505eV [9],

and EIP is the ionisation potential calculated with the same size of QM re-

gion as the defect and bulk calculations. A Jost correction for charge 1+ is

applied to the ionisation potential calculation.

12There is a negligible error from not using a 0K value.
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This semi-empirical approach, using experimental parameters to calculate de-

fect energies, is necessary as our method does not reliably model the electron

affinity. Placing an electron in the conduction band results in a delocalised

state, which is poorly represented by cluster methods as the wavefunction is

artificially limited by the size of the QM cluster.

In the nitrogen-rich limit, µ(N) can be easily obtained as one half of the

energy of a N2 molecule calculated with the basis set and functional used in

the defect and bulk calculations. In the gallium-rich limit the condition in

Eq. 65 in Section 3.8.1 must be satisfied. As was shown in Section 3.8.1, in

the Ga-rich limit, µ(N) = µ(N[N2]) + ∆Hf [GaN] where the latter term is the

enthalpy of formation of GaN, experimentally determined as -1.17eV [11]. It

is corrected for temperature to obtain the value at 0K in the same fashion

as the cohesive energy of the Ga metal below, to -1.22eV.

In the gallium-rich conditions, the chemical potential of Ga is given by the

cohesive energy of Ga metal, obtained from experimental measurements. The

enthalpy of formation under standard conditions (i.e. at 298K) is 272.0kJ/mol

(section 5.12 in [12]). The temperature dependence is taken from that of ger-

manium, which next to Ga in period IV (section 5.2 in [12]) as Ga data was

not available. For gaseous Ge, the difference H0
298K − H0

0K is 7.4kJ/mol.

The Ga chemical potental in gallium-rich conditions at 0K is therefore is

µ(Ga) = −2.8eV at 0K. In nitrogen-rich conditions, the chemical potential

would be determined by a procedure analogous to the N chemical potential in

Ga-rich conditions explained above, i.e. µ(Ga) = µ[Ga(atom)] + ∆Hf [GaN] .

8.2.3 Set-up of a perfect cluster

The system is simulated with a spherical cluster of radius 30 Å. Beyond this

radius the description is approximated by a small number of point charges

calculated with the Construct software [1], [4].

There are several steps in the cluster generation process. Firstly, the bulk

structure is relaxed to its equilibrium geometry using GULP and the parame-

ters developed in the previous chapters. The structural parameters, including

197



shell positions from the optimisation calculation, are then used by the Con-

struct utility to create a spherical cluster, radius 30Å. The Madelung field

(see Section 2.1) of the remainder of the crystal (i.e. beyond 30Å in our case)

is simulated with a number of point charges. Some cluster ionic charges near

the surface of the cluster may also be adapted by Construct better to model

the electrostatic forces. In this step, the atoms that will form the central

QM region are also labelled. The QM regions can be visualised and adapted

as deemed necessary for a particular calculation; for example one might wish

to terminate the cluster with a particular type of ion. which will have to be

performed manually. Furthermore the QM region has to be sufficiently large

for the problem at hand and any defects should be positioned as centrally as

possible in the QM region. In the final step Regions II,III and IV (see below)

of the calculation are defined based on their radii. The boundary of Regions

I/II is defined by the QM cluster, while the user-specified thickness of Region

II determines the boundary of Regions II and III. The III/IV boundary is

determined as a sphere with radius 15 Å relative to the origin of the cluster

and corresponds to the boundary of the inner region in the Mott-Littleton

calculations in Chapter 6, where slightly larger radii of between 18 and 21

Å were typically used. Fig.46 shows that at a radius of region 1 in the MM

defect calculation of 15Å, convergence to about 0.1eV is obtained.

In the QM/MM calculation with the cluster thus generated, the central por-

tion of the cluster which is treated at the QM level, Region I, is terminated

with nitrogen ions, which are capped with Ga ions, Region II. The gallium

ions in Region II interact with Region I via Coulomb interaction and a spe-

cially parameterised large core ECP (see Section 2.2.2) on the Ga ions in

region II, designed to prevent electrons spilling from the QM cluster into

the MM portion of the calculation. Region II orbitals are effectively frozen,

which prevents unphysical charge distortions due to the mismatch between

the QM and MM forces. Hence Region II acts as a buffer between the QM

and MM regions and their alternative descriptions of the system to ensure

continuity.

The rationale for using Ga ions in the buffer region is their lack of valence

electrons relative to nitrogen ions, which means that it is easy to model
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them as point charges with ECPs. Parameterising an ECP for a nitrogen

ion would be a much more challenging task as nitrogen ions are much more

electronically active. Since Ga ions are used in Region II, Region I has to be

terminated with N ions.

Apart from the interaction of Region I ions with themselves and the ECPs

of the Ga ions in Region II, all the interactions are based on the MM model

described in Chapter 5.

The convergence of the energies with respect to the size of Regions I and II

is discussed in more detail below. Five sizes of Region I were explored: 5, 19,

42, 74, and 116 QM atoms. The difference in Region I and Region II radii is

around 3.5 Å. Manual changes were made to this cutoff as the clusters were

cut so that each N in Region I only has Region I or Region II Ga as nearest

neighbours. This restriction ensures that the valence electrons of nitrogen

ions do not spill unphysically from the cluster due to insufficient short range

repulsion from Region III.

Region III comprises the MM active part of the calculation while Region IV

is treated at the MM level of approximation but is not relaxed with respect

to Cartesian coordinates during a QM/MM calculation. Region IV ion cores

and shells are fixed at the optimised coordinates given from a bulk MM cal-

culation. Any polarisation of this region by a charged defect is included via

the Jost correction (see Section 8.2.2 on p. 192).

The parameters of the MM interactions are practically identical to the values

used in the previous chapters to calculate bulk properties, defect properties

and solid solutions. The potential in Results chapters I-III are slightly re-

fined by improving the constant shifts of the different layers of the potentials

and the associated polynomial regions, better to model the phase transition

pressures. The bulk-distance potential function parameters, e.g. the param-

eters of the Ga-N Buckingham potential are left unchanged. This version of

the potential is tabulated in 46 in the Appendix.

The hybrid functional used was b97-2 [13], which generally outperforms ear-

lier functionals in several aspects such as structural parameters, binding ener-

gies and ionisation potentials as well as polarisabilities and reaction barriers.

The basis sets (see Section 2.2.2) and ECPs are listed in the Appendix. For

199



Ga in Region I the SBKJC basis set and ECP [14] were used, which resulted

in a considerable decrease in computational cost relative to the Def2-TZVP

basis set [15], which was used for N.

Some of the most diffuse functions were removed to reduce the computa-

tional cost. In the Ga SBKJC basis the most diffuse L basis function (with

ζ = 0.0746100) was removed. The diffuse functions make it difficult to

contain the electron density within the QM region and increase the compu-

tational expense of the calculation. Another function was uncontracted to

give two functions with ζ = 2.1230000 and ζ = 0.1939000. Uncontracting

a basis function recovers some degrees of freedom lost by excluding another

basis function. The SBKJC small core ECP was left unchanged.

The Region II ECP for Ga is based on a large core pseudopotential simulating

28 core electrons, Stuttgart RLC. This pseudopotential was re-parameterised

for the purposes of the current model. The criterion used in the parameteri-

sation was the spread between values of the energies of the 1s N orbitals in

a bulk QM/MM calculation. In the absence of boundary effects, no energy

spread should be observed, as in the bulk all nitrogen ions are symmetry-

equivalent. The presence of the QM/MM boundary causes an energy spread

of about 0.8eV in an optimisation calculation with 74 QM atoms. Such

energy spread is the lowest obtained with a manual and computationally

expensive optimisation process. An improved and less manual method is de-

sirable if better results are to be obtained with less computational expense.

The nitrogen Def2-TZVP basis set was altered by removing the f function as

this unnecessarily increases computational effort. Nitrogen f orbitals would

only contribute to octupolar and higher polarisation terms, which are negli-

gible for nitride ions. The d functions were retained as they are needed to

model the polarisation response.

For the calculations of vacancies, a basis set centred on the defect centre

(i.e. the original position of the removed atom) was included. This extra

ghost basis set enters into the QM calculation in the same way as basis

sets centred on actual atoms and provides an additional degree of freedom,

which has been found to improve results in previous work on ZnO [16]. Such

ghost basis sets are commonly used in linear combination of atomic orbitals
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(LCAO) methods in the calculation of anionic vacancies and in the counter-

poise correction method (e.g. [20]).

One of the main challenges of developing a successful QM/MM model is the

need to match the QM and MM forces at the boundary between the regions.

An incorrect parameterisation of one pair of interactions in a MM model can

be compensated for by another pair hence giving a seemingly correct model.

This will be revealed in a QM/MM calculation as geometric distortions at

the boundary. Finding a suitable set of parameters thus requires identifying

the particularly distorted QM atoms at the boundary and determining im-

proved parameters of the interaction between them and the MM neighbours

by carefully considering the forces on the QM and MM atoms. For exam-

ple, a significant distortion of a boundary atom towards the centre of the

QM cluster might indicate that the MM forces are insufficiently attractive

or they are too repulsive compared to the QM forces, which might be due to

the interaction with either cations or anions in the MM region.

Large net forces indicate a problem with the interatomic potential although

the magnitude of the force that is satisfactorily small to give acceptably small

boundary distortions is difficult to determine a priori. Lighter atoms such as

N will typically respond with larger distortions to the same force, as could

be expected from Newtonian physics. A determination of the initial forces

combined with a geometry optimisation for a number of MM parameterisa-

tions (forces) provides guidance on the acceptable magnitude of the initial

force.

Once the culprit interaction causing the distortions has been identified, the

potential model with the problematic interaction adapted for use in QM/MM

has to be checked in a pure MM calculation and the physical properties recal-

culated. The potential will likely need to be re-parameterised in GULP by fit-

ting to experimental data again and the new potential checked in a QM/MM

calculation for boundary distortions. In principle, one can proceed iteratively

until convergence is achieved between fitting to experiment and matching QM

and MM forces although in practice this is a very time-consuming task. In

this work, only one cycle was performed based on an original MM potential,

not reported here, which was adapted by the above-mentioned procedure to
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Figure 72: The atomic displacements for the 74-QM-atom cluster relative to
their equilibrium positions in the MM model.

yield the parameters presented in the preceding chapters. It would be clearly

desirable to make the process of finding suitable MM parameters less man-

ual. While including the information from the QM forces improved the MM

model in some respects (e. g. the signs of the piezoelectric constants), the

errors on other observables increased (e. g. elastic constants).

The distribution of the displacement of ions from their position in the MM

optimised bulk using a 74-QM-atom cluster is shown in Fig. 72. The y-axis

indicates the number of atoms with their displacements from the MM equilib-

rium. All the displacements are less than 0.2 Å. One may argue that these are

still relatively large compared to the structural parameters of GaN. However,

providing that the QM cluster is large enough, the boundary distortions do

not significantly interact with the defect centres in the middle of the cluster.

The boundary effects are then present as perturbations of the Hamiltonian.

Since all our energy calculations involve subtracting two QM/MM energies

with the same QM region size, and hence the same starting boundary dis-

tortions, the perturbations should largely cancel out.

In addition to ensuring that the geometry is not significantly distorted, the

electron density of the innermost QM ions should not exhibit marked dif-
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Figure 73: The charge density of the 74-QM-atom cluster. The blue atoms
are N and grey are Ga in Region I. Pink atoms are Ga in region 2. The
transparent blue clouds indicate the 0.05 e/Å3 isosurface.

ferences from the boundary atoms. The charge density for the 74-QM-atom

cluster is shown in Fig. 73. We did not attempt a quantitative assessment of

the charge density variations between the centre and the edge of the cluster.

However, a qualitative inspection does not reveal any gross charge distor-

tions.

8.3 Results

In this section, calculations of ionisation potentials and the energetics, ge-

ometry and electronic structure of native defects will be presented.
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8.3.1 Ionisation potentials

The calculation of ionisation potentials is relevant in two respects. Firstly,

it allows for direct comparison with experimentally determined values. Sec-

ondly, this value is needed in the calculation of energetics of native defects

later in this chapter via equations such as 108 and 109 if one wishes to keep

the number of experimentally determined values used in the calculation to

one, the band gap energy at 0K from [9].

The IPs calculated with the present model as a function of inverse QM re-

gion size are shown in Fig. 74. A trend of decreasing value of the ionisation

potential with increasing QM region size is observed. The calculations were

perfomed up to a QM-region size of 116 atoms, which with the present compu-

tational resources is the upper limit. The 5-QM-atom-cluster result (8.3eV)

was excluded as it was deemed too small for a satisfactory calculation of the

IP. Two least-squares lines were fitted to the plot of the IP against the inverse

of the QM region size, one including all four calculated QM region sizes (19,

42, 74 and 116 atom) and one including only the largest three of these. As

can be seen in Fig. 74, the two lines have slightly different y-axis intercepts,

corresponding to the value of the IP in the limit of infinite cluster size. The

intercept is 6.64eV when all four data points are included and 6.48eV with

the three point subset. With this data it is difficult to draw firm conclusions

about the precise value of the IP, especially since the number of data points

is small. It should also be pointed out that energy convergence is usually

plotted as a function of QM cluster radius (or the size of the supercell in

PBC calculations). The number of QM atoms here is not a very accurate

proxy for the radius of the cluster, as our clusters tend to be elongated rather

than spherical to satisfy the requirements for N-termination of region II, for

example. It is, however, clear that the IP is not fully converged even at our

largest cluster size of 116 QM atoms.

A possible cause of inaccuracy in an IP calculation would be a highest occu-

pied molecular orbital (HOMO; refer to Section 3.7) centred on an ion near

the boundary of the QM region. Such a situation might arise, for example, if

the system had a high degree of covalency. The broken bonds in the vicinity
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Figure 74: The ionisation potential of the perfect cluster as a function of the
inverse of the QM cluster size. The black circles correspond to the results
for the 116, 74 and 42 QM-region clusters and the black rectangle is the
19-QM-atom cluster result. Least-squares regression lines were fitted to the
three circle points (blue line) and all four data points (pink line).

of the boundary would create states with high energy and might become the

HOMO. However, one would expect such localised states to have energies

which quickly converge with QM region size as their boundary environment

is relatively independent of cluster size. Nonetheless, to exclude this possi-

bility, the HOMO charge density was plotted and is shown in Fig. 75. The

HOMO is quite delocalised with most of the density concentrated in p-like

orbitals on nitrogen atoms intermediate between the centre of the cluster and

the boundary, although there is a smaller but significant charge density on

the boundary ions. Little of the charge density resides on the Ga ions or

central nitrogens.

The boundary distortions tend to become slightly larger with increasing QM

cluster size, possibly reflecting the mismatch between the equilibrium struc-

tural parameters of the QM and MM models, which might also contribute to

the slow convergence.

At present, the issue of convergence of the IPs remains unresolved. In previ-
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Figure 75: The HOMO of the 74-QM-atom cluster. The blue atoms are nitro-
gens and grey are Ga in Region I. Small grey Ga atoms are in Region II. The
blue and yellow semi-transparent regions denote the positive and negative
lobes of the HOMO respectively. Ions from Regions III-V are omitted.

ous studies of ZnO [16], convergence was improved by terminating the QM

region with cations instead of anions and parameterising an anion ECP for

Region II. A similar approach may prove fruitful in GaN but has not been

attempted in the present work.

As has been noted before, the ionisation potential depends heavily on the

polarity of the surface (see Section 3.8.2). The available value for the band

gap at 0K is 3.505eV [9] and the electron affinity at 300K is 4.1eV [10] .

This suggests an experimental ionisation potential of around 7.6eV, about

1eV higher than our result. We can also use the ZnO IP in conjunction
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with the ZnO-GaN valence band offsets (the positions of the VBM of the

two materials with respect to each other) to deduce the GaN IP. The IP

value of ZnO is 7.71eV; the experiment and QM/MM calculation in [4] are

in good agreement. The GaN-ZnO valence band offset has been variously

reported as 0.7eV [17] (theoretical), 0.8eV [18] (experimental), 0.7±0.1eV

([19], experimental, polar surfaces) and 0.9± 0.1eV ([19], experimental, non-

polar surfaces). Based on these data, the IP of GaN has been calculated as

6.7-7.1eV, less than the 7.6eV calculated from the GaN experimental band

gaps and electron affinity, and closer to our results.

The lack of convergence of the IP to an asymptotic value makes it difficult

to establish a definitive value for the the IP. However, it does not invalidate

subsequent defect calculations using the present IP, provided that the appro-

priate value is used, i.e. the IP for the same QM-region size as that used in

the defect calculation. The two calculations will then have a common refer-

ence level, the vacuum level for that QM-region size, which makes it possible

to extract the relevant defect energies.

8.3.2 Ga vacancy

The formation energies of a Ga vacancy are summarised in Table 19. The

results calculated using 42-QM-atom and 116-QM-atom clusters are shown.

The results using the larger cluster differ by up to 0.4eV from the smaller

cluster results, with the best agreement seen for the 1- triplet formation en-

ergy. While two cluster sizes are insufficient to determine the extent of the

convergence of the formation energies, they do give a sense of the magnitude

of errors that might be expected. In conjunction with the IP convergence

studies in the previous section, we can conclude that the errors from the

incomplete convergence with respect to the QM cluster size are of the order

of a few tenths of an eV. In this case, the defects with charges 1- and more

positive increase in formation energy with increasing QM cluster size while

the more negative defects converge to lower formation energies.

The 42-QM-atom calculation predicts a relatively low formation energy for

the Ga vacancy 1+ at the VBM, which is not observed for the calculation
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Table 19: The formation energies (eV) of the gallium vacancy in the various
charge states in the gallium-rich and nitrogen-rich limits at the VBM and
CBM using 42-atom and 116-atom QM clusters and comparing with 96-atom
LDA PBC calculations in [25] and [33], which uses the local spin density
approximation (LDA) with up to 300-atom supercells. S = (spin) singlet, D =
doublet, T=triplet, Q=quadruplet. The question marks refer to uncertainty
in the spin state of the calculation in previous works.

Ga-rich N-rich
Charge VBM CBM VBM VBM CBM
state # QM atoms in cluster: PBC # QM atoms:

42 116 42 116 Ref.[25] Ref. [33] 42 42
1+ (S) 7.98 11.47 11.49 14.97 6.76 10.27
1+ (T) 9.39 12.90 8.17 11.68
0 (D) 10.00 10.43 10.00 10.43 9.06(?) 8.40(?) 8.79 8.79
0(Q) 9.95 10.33 9.95 10.33 8.73 8.73
1- (T) 12.61 12.74 9.11 9.24 9.31 8.83 (?) 11.39 7.89
2- 15.61 15.48 8.60 8.47 9.95 9.60 14.39 7.38
3- 19.02 18.62 8.51 8.11 11.05 10.67 17.80 7.28

with the 116 QM atoms. We offer two explanations, firstly the defect might

be a resonance in the valence band. The energies of such resonances are not

well defined. Secondly, the defect may be quite delocalised and the 42 atom

QM cluster might not be sufficiently large to model it.

In the neutral charge state the spin quadruplet, i. e. a state in the which the

three electrons in the dangling bonds are unpaired, is found to be slightly

lower in energy than the doublet.

The formation energies as a function of Fermi level are shown in Fig. 76.

Thermodynamic transitions are observed at much higher energies in the band

gap than in the periodic calculations in [25] (see Table 20). If our predictions

are correct, they might explain some of the DLTS results discussed in Section

8.4, which position defect levels 0.2-0.7eV below the conduction band.

The optical transition levels are shown in Table 21. The 1+ state is a res-

onance in the valence band. The 42-QM-atom optical transition levels are

within about 0.2eV of the 116-QM-atom results where available.

Next, we plotted the HOMO of the 3- vacancy (Fig. 77), which can be seen
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Figure 76: The formation energies of Ga vacancy in different charge states
calculated with a 116 QM atom cluster. The thermodynamic transition levels
are as follows: 0/1- at 2.31eV, 1-/2- at 2.73eV and 2-/3- at 3.15eV. The
corresponding values for the 42-atom cluster are 2.66eV, 3.00eV and 3.41eV.

to consist of two p-type orbitals on the N ions adjacent to the vacancy. These

correspond to the dangling bonds. The electronic structure of the 2- charge

state is similar. The spin density of the neutral spin quadruplet is indicated

in Fig. 78 and is distributed evenly over the four N neighbours adjacent to

the vacancy as can be expected. The spin density of the spin triplet state

of the charge 1- vacancy is shown in Fig. 79. The hole that has been filled

relative to the neutral state is on the inequivalent N neighbour of the defect

centre, along the c-axis (in orange) and the remaining holes are distributed
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Table 20: The thermodynamic transition levels for the ionisation of a Ga
vacancy, in eV above the VBM.

Transition Present Ref. [25]
42 QM atoms 116 QM atoms

3-/2- 3.41 3.15 1.10
2-/1- 3.00 2.73 0.64
1-(triplet)/0 (quadruplet) 2.66 2.31 0.25
0(quadruplet)/1+(singlet) 1.97 × ×

Table 21: The optical transition levels for the ionisation of a Ga vacancy, in
eV below the CBM. RES denotes resonances.

Transition 116 QM atoms 42 QM atoms
B97-2 B97-2 SVWN

3-/2- 0.48 0.34 0.56
2-/1- 1.03 0.80
1-(triplet)/0 (quadruplet) 1.17
0(quadruplet)/1+(singlet) 5.13 (RES)

evenly over the three in-plane N nearest neighbours (pink). Three lobes of

spin density are formed on each of the three equivalent N nearest neighbours.

Table 19 on p. 208 also shows that our values of formation energies are sig-

nificantly larger than those calculated with periodic boundary conditions,

especially for the more negative charge states. Under Ga-rich conditions,

[28] finds the formation energy of the Ga vacancy in the charge state 3- at

the CBM to be around 1.5eV in contrast to our calculations of about 8.5eV.

There is better agreement for the less negatively charged Ga vacancies. A

summary of various calculations of the neutral Ga charge state is shown in

Table 22. Our calculations are at the higher end of the spectrum.

We investigated two possible reasons for the discrepancy between our and

PBC results: the functionals and basis sets employed. There are, of course,

multiple differences between our method and the PBC, which are discussed

in more detail in Section 8.4.2.
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Figure 77: The HOMO of the charge 3- Ga vacancy. The defect centre is
indicated by a cross. The 0.03e/Å3 isosurface is shown. The +/- lobes of the
orbital are depicted in semi-transparent blue and yellow.

Table 22: The formation energies of the neutral Ga vacancy from a range
of theoretical studies under N-rich conditions (eV), from [35] and ref-
erences therein. [35] used self-consistent-charge density-functional-tight-
binding (SCC-DFTB) whereas the other works cited use DFT for defect
formation energy calculations.

Present [25] [35] [36] [32] [37] [38] [39]
8.73 7.84 7.83 6.14 6.8 6.3 6.3 6.7

Our calculations use the B97-2 hybrid functional whereas the PBC calcu-

lations in [28] employ the LDA. We investigated the effect the change in

the functional would have on our calculations and used the LDA SVWN

functional [21] as implemented in Chemshell. The results are summarised in

Table 23. The differences between the SVWN and B97-2 are of the order of a
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Figure 78: The spin density of the neutral Ga vacancy. The defect centre is
shown by an arrow. The 0.005e/Å3 isosurface is indicated. The spin density
is depicted in semi-transparent yellow.

few 0.1eV, insufficient to explain the large discrepancies between the present

calculations and the PBC results in [28]. The optical transition levels, shown

in Table 21 on p. 210 are also in fairly good agreement. A further issue is

the spin state of the electronic configuration calculated with PBC, which is

unclear from the literature. A more detailed discussion of the discrepancies

is provided in Section 8.4.

In our most recent calculations we re-considered our basis set. We re-

introduced the diffuse l function originally taken out to increase the speed of

the calculations13. For the case of the 42-atom calculations, this expanded

basis set resulted in a reduction of the formation energy for the two test cases

with charge 1- and 3-, of around 2.5eV almost exclusively due to the changed

energy of the free Ga atom.

Furthermore, we recalculated the 116-QM-atom cluster Ga vacancy forma-

13l Ga 1.0000000 0.0746100 1.0000000
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Figure 79: The spin density of the Ga vacancy in the charge state 1-. The
defect centre is shown by an arrow. The 0.005e/Å3 isosurface is indicated.
The three equivalent N are in pink and the inequivalent one is in orange.
The spin density is depicted in semi-transparent blue.

Table 23: Formation energies of the gallium vacancy in two charge states in
the gallium-rich limit at the VBM calculated with different energy functionals
and a 42-QM-atom cluster.

Charge state B97-2 SVWN
3- 19.02 18.47
2- 15.61 15.56

tion energy by placing a VTZ basis set due to Peterson (see Appendix, p. 269

and [46]) on the vacancy defect centre. The same basis set and the associated

ECP [47] were used to calculate the energy of the free Ga atom. This set-up

resulted in an even more dramatic drop in formation energy, of about 3.5eV.

We conclude that the abbreviated basis set is insufficient to model the Ga

vacancy and the free Ga atom. We recommend further investigations using
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Table 24: The geometry of the Ga vacancy - distances from the defect centre
to the nearest N neighbours in Å.

Charge state Distances to nearest neighbours
2- 2.515, 2.398, 2.301, 2.292
3- 2.546, 2.381 (×2), 2.363

the expanded basis set and the 116 atom cluster for the full range of charge

states. These calculations will require considerable computational resources.

8.3.3 Ga interstitial

The formation energies for the Ga interstitial are shown Fig. 80. We note

that the 3+ and 2+ charge states have exothermic formation energies at the

VBM, the same feature encountered with the nitrogen vacancy later in this

chapter and discussed as a possible reason for the difficulty in p-doping GaN

in Section 8.4. For the 3+ charge state, the energy released is more than 4eV.

Table 26 shows that the 4+ charge state is a resonance in the valence band

as the 3+/4+ transition with respect to the VBM is positive. The neutral

charge state is a resonance in the conduction band.

The formation energy results are also tabulated in Table 25 and compared

to PBC calculations with 96-atom supercells using the LDA approximation

in [25], which predict an endothermic formation energy at the VBM for the

3+ and 2+ charge states. There is a negative offset in our values of about

6.2-6.5eV relative to the PBC results for all the positive charge states

Recently, we carried out calculations with the Peterson basis set on the inter-

stitial Ga atom and added the diffuse l function to the other Ga atoms in the

QM cluster as described in Section 8.3.2 on p. 210 for the Ga vacancy cal-

culation. The formal charge state formation energies were determined to be

8.64 eV for the 74-QM-atom cluster and 9.27eV for the 116-QM-atom clus-

ter at the CBM in the Ga-rich limit, 2.39eV and 3.02 eV respectively above

the values calculated with the abbreviated basis set, which brings the val-

214



ues closer to the PBC results. Further calculations on the remaining charge

states for the 116-QM-atom set-up are recommended for future analysis.

The trends in the relative stability of the different charge states using the

original set-up without the diffuse l function are similar to those observed in

periodic DFT calculations (see Table 25). The 3+ charge state is the most

thermodynamically stable charge state near the VBM and the 1+ charge

state at the CBM, and 2+ the most stable species at only a small range of

Fermi levels. The 3+/2+ thermodynamic transition occurs at at a Fermi

level of 2.56eV, 2+/1+ at 2.69eV. Periodic DFT calculations in [25] predict

Figure 80: The formation energy of a Ga interstitial.
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Table 25: The formation energies of the gallium interstitial in various charge
states. PBC results from [25] are also quoted.

Ga-rich N-rich
Charge state VBM CBM VBM [25] VBM CBM
3+ -4.27 6.25 2.34 -3.05 7.47
2+ -1.71 5.30 4.89 -0.49 6.52
1+ 0.98 4.48 7.28 2.20 5.71
0 6.08 6.08 7.30 7.30
1- (triplet) 11.47 7.96 12.69 9.19
1- (singlet) 11.49 7.99 12.72 9.21

Table 26: The optical transition levels (eV) for the ionisation of a Ga inter-
stitial and its electron affinity. RES denotes resonance.

Ionisation energy w.r.t Electron affinity w.r.t
Transition VBM CBM Transition VBM CBM
0/1+ -4.92 -1.42 (RES) 1+/0 5.26 1.75
1+/2+ -1.63 1.88 2+/1+ 3.43 -0.07
2+/3+ -1.30 2.21 3+/2+ 3.11 -0.39
3+/4+ 1.39 (RES) 4.90

the 3+/1+ transition (i.e. a negative-U defect) at 2.47eV, in good agreement

with our results in terms of the value although we predict the charge 2+ state

to be the thermodynamically most stable species for a range of Fermi levels

of about 0.1eV. Again, parallels can be drawn with the observations for the

N vacancy later in the chapter. The neutral charge state is an unstable res-

onance in the conduction band (see Table 26).

The equilibrium geometry of the Ga interstitial is an octahedral arrange-

ment with a reduced symmetry. The interstitial lies in the hexagonal channel

of the wurtzite structure and can be thought of as sandwiched between two

planes of cations with normals along the c-direction. Similarly, it lies be-

tween two layers of anions. There are three nearest N neighbours in one of

the planes and three in the other plane. Two out of three nearest neighbour N

ions in each plane are equivalent and have equal distances requiv to the inter-
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Table 27: The geometries of the Ga interstitial in different charge states.
The distances from the interstitial to the nearest neighbours X are shown.

Interionic distance from interstitial Å to
Charge X Two equivalent ions One inequivalent ion

3+ N (plane 1) 1.933 1.908
N (plane 2) 2.610 2.686
Ga (plane 1) 2.574 2.569
Ga (plane 2) 2.486 2.504

2+ N (plane 1) 2.009 1.907
N (plane 2) 2.781 2.916
Ga (plane 1) 2.528 2.615
Ga (plane 2) 2.522 2.441

1+ N (plane 1) 2.105 1.931
N (plane 2) 2.899 3.096
Ga (plane 1) 2.478 2.718
Ga (plane 2) 2.612 2.282

0 N (plane 1) 2.117 1.934
N (plane 2) 2.925 3.146
Ga (plane 1) 2.477 2.720
Ga(plane 2) 2.638 2.275

stitial, while the third one, rinequiv, is different, requiv 6= rinequiv. The situation

is analogous for the Ga nearest neighbours, with two planes containing three

nearest neighbours each, two equivalent and one inequivalent. The interionic

distances are summarised in Table 27. We note that the geometry distortion

from a perfect octahedral arrangement, i.e. the difference between requiv and

rinequiv, becomes more pronounced as the charge state becomes less positive.

Compared with the results of the MM studies in Table 9, the interstitial -

N bond lengths for the charge state 3+ shorter by about 0.1 Å. The Ga-Ga

distances calculated with the interatomic potential are shorter (for one set

of MM distances) and longer (for the other set of MM) distances than the

QM/MM values also by around 0.1 Å.

Because of the octahedral arrangement, atomic orbitals are a good starting

point for understanding the electronic structure. The Ga3+ interstitial can

be expected to be a closed shell argon-type configuration. An extra electron

would be placed into the s-type orbital, in a similar fashion to a Ga3+ to
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Figure 81: The HOMO of the Ga interstitial 3+, isosurface 0.03eV/Å3. The
electron density mostly resides in p-like orbitals on the cluster N and are
concentrated on N on the edge of the cluster, far away from the interstitial.

Ga2+ free ion transition.

The HOMO of the 3+ Ga interstitial is shown in Fig. 81 and contains the

p-type orbitals on the Ns in the cluster as expected. The 3d electrons of the

Ga are lower in energy.

The 2+ and 1+ charge states have more complicated electronic structures

with a single lobe positioned on the Ga interstitial. In a free Ga ion with

charge 1+ or 2+ the HOMO can be expected to be a spherical s-type orbital.

In the crystal environment, this orbital is distorted as shown in Fig. 82. The

xy-plane view is shown in Fig. 83.
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Figure 82: The HOMO of the Ga interstitial 2+ (yellow and green lobes).
The xy-plane is also indicated. The electron density in this plane is shown
in Fig. 83. The interstitial is in pink, Ga in grey and N in blue.

Figure 83: The HOMO of the Ga interstitial 2+, xy-plane view.
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8.3.4 N interstitial

A number of configurations are in principle possible for the N interstitial. It

could assume octahedral or tetrahedral sites as has been described for Ga

interstitials (see Fig. 45). Most studies, however, report a split interstitial

configuration, apart from [22], which discusses other geometries, in particular

for the more negative charge states. In the 3- charge state, the N interstitial

might feasibly assume a channel-centre configuration.

The split interstitial configuration is the lowest energy geometry as calcu-

lated with the MM model in Section 6.2, albeit with a large bond length so

the interstitial is found close to the centre of the hexagonal channel and the

lattice N moves off its lattice site. The split configuration was used as the

starting point of the present calculation to speed up the expensive optimisa-

tion process. In the future, other starting geometries may be explored. Some

of the configurations in [22] would be possible candidates.

The split interstitial is a N2-like configuration and therefore the molecular

orbital energy levels of this molecule are a useful starting point for the con-

sideration of the interstitial. The electronic configuration of N2, as shown

in Fig.84, corresponds to the N interstitial in the charge state 3+ since the

molecule is neutral and the lattice nitrogen that the interstitial pairs up with

has a charge of 3-. On adding two more electrons, to form the 1+ charge

state, one would expect the electrons to occupy the N2 π
∗ antibonding or-

bitals. The spins can be expected to be unpaired (spin triplet) although we

also calculate a paired configuration (spin singlet) and compare its energy

with the triplet. Adding two extra electrons to form the 1- charge state re-

sults in a closed shell configuration.

The expectation of a spin triplet for the 1+ charge state is indeed borne

out by our calculations: the optimised charge 1+ spin triplet state is approx-

imately 1eV lower in energy than the spin singlet.

The formation energies for charge states varying from 3+ to 2- are shown

in Table 28, in the nitrogen-rich and gallium-rich limits (see Section 3.8.1).

The dependence of the formation energy on the Fermi level, based on Eq. 63,

is shown in Fig. 85.
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Figure 84: The energy levels of a nitrogen molecule. From [23]

The 3+ charge state is a resonance in the valence band and the 2- charge

state a resonance in the conduction band, according to the optical transi-

tion levels shown in Table 29 on p. 223 . The formation energy of the 3-

species was not calculated on account of the current method being unreliable

in studying the delocalised conduction band states. The 3+ charge state is

also expected to be a resonance in the valence band. Future work may in-

clude the calculation of the 3+/2+ electron affinity to determine the stability

of the resonance. A negative value of electron affinity with respect to the

VBM implies that the charge state spontaneously accepts an electron from

the VBM and implies an extremely short-lived state.

The present formation energies in Table 28 are compared with those obtained

with periodic boundary conditions DFT in the local density approximation,

with 96-atom supercells in [25]. Our values for the formation energies are

generally lower at the VBM for positively charged and neutral defects, by
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Figure 85: The formation energies of nitrogen interstitial as a function of
Fermi energy for different charge states in the nitrogen-rich limit. 0 on the
x-axis denotes the VBM. The CBM is at 3.505eV (i.e. one band gap energy
above the VBM). The 2+/1+(triplet) thermodynamic transition, the Fermi
level at which 1+ and 2+ charge state formation energies cross, is 1.13eV
above the VBM and the 1+(triplet)/0 thermodynamic transition occurs at
2.82eV above the VBM. The 2+/3+ transition is 0.58 above the VBM.

about 0.5-2eV. The negatively charged states in the present work have for-

mation energies about 1-2eV higher.

Reference [25] does not report optical transition levels. The thermodynamic

defect levels were calculated from their VBM formation energies, assuming
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Table 28: The formation energies of the nitrogen interstitial in the various
charge states at the VBM and CBM. The fourth results column gives the
data from [25], which used periodic boundary conditions within the local
density approximation and 96-atom supercells. It is unclear what the spin
state of the N interstitial in the 1+ charge state in [25] is.

Formation energy (eV)
Charge state N-rich conditions Ga-rich conditions

VBM CBM VBM VBM [25] CBM
3+ 0.10 10.61 1.32 3.19 11.84
2+ 0.67 7.68 1.90 3.93 8.91
1+ (triplet) 1.80 5.31 3.03 4.83 (triplet?) 6.53
1+ (singlet) 2.85 6.35 4.07 7.57
0 4.63 4.63 5.85 6.31 5.85
1- 8.16 4.66 9.38 8.31 5.88
2- 14.08 7.07 15.30 12.90 8.29

Table 29: The optical transition levels in eV for the nitrogen interstitial. The
two types of defect level relate to the ionisation of a defect and its electron
affinity. T refers to the spin triplet state of the 1+ interstitial. Negative
values refer to states above the relevant level, i.e. VBM or CBM. States
above the CBM are resonances (RES) which autoionise to the bottom of the
conduction band.

Ionisation energy (eV) Electron affinity (eV)
Transition VBM CBM Transition VBM CBM
2-/1- -6.03 -2.53 (RES)
1-/0 -2.83 0.67 0/1- 4.43 0.92
0/1+(T) -1.77 1.73 1+(T)/0 3.76 0.25
1+(T)/2+ -0.04 3.47 2+/1+(T) 2.04 -1.47
2+/3+ 0.50 (RES) 4.00

a band gap of 3.505eV. The 2+/3+ and 2+/1+ transition levels are in rea-

sonably good agreement, 0.2eV apart although it is not clear whether their

1+ calculation is for a spin triplet or singlet. The 0/1+ transition shows less

good agreement. We do not predict a 1-/0 thermodynamic transition for the

nitrogen interstitial, unlike [25]. At the CBM, our charge states 0 and 1-
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Table 30: The thermodynamic transition levels with respect to the VBM,
deduced from the crossings in Fig. 85. Values given above the VBM (positive)
and below the CBM (negative).

Transition VBM CBM
Present [25] Present

2-/1- × ×
1-/0 × 2.00
0/1+(triplet) 2.82 1.48 (triplet?) -0.69
1+(triplet)/2+ 1.13 0.90 (triplet?) -2.38
2+/3+ 0.58 0.74 -2.93

Figure 86: The σ and π bonding and antibonding orbitals. From [24].

are degenerate within the accuracy of the calculation. For a summary of the

thermodynamic transitions see Table 30.

One would expect the strongly localised, deep defect levels to be most suit-

able for QM/MM treatment. The extent of the delocalisation is best assessed

directly by plotting the HOMOs. The electron density of the N split intersti-

tial with charge 0 is shown in Fig. 87. The shape of the orbital is consistent

with an N2 π
∗ (anti-bonding) orbital (see Fig. 86), in agreement with Fig. 84,

which predicts the electronic structure of the split interstitial on the basis

of the corresponding levels in a N2 molecule. Adding three electrons to the

configuration in Fig. 84 results in charge state 0. The HOMO is then indeed

an N2 π
∗ orbital.

As a measure of the delocalisation of the electrons in the 1+, 0 and 1-
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Figure 87: The HOMO in the plane of the split interstitials for N interstitial
charge 0.

Table 31: The volumes enclosed by the 0.05e/Å3 isosurface for N split inter-
stitials.

Charge state Volume enclosed (Å3)
1- 4.941
0 5.082
1+ 4.875

charge states the volumes enclosed by the 0.05e/Å3 isosurface are shown in

Table 31. The volume increases from 1+ to 0 charge state, consistent with

an increased electronic repulsion. The 1- charge state becomes slightly more

localised by this measure.

Finally, the defect geometries, in this instance the distance between the

interstitial ion and the lattice nitrogen with which it forms a split forma-

tion, are presented in Table 32. A comparison is made with the results in

[32], where periodic boundary conditions were used for 32-atom supercells,

which is a relatively small supercell size for defects with strong relaxations.

Nonetheless, a good agreement is shown with our calculations unlike in the
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Table 32: The geometries for the nitrogen interstitial.

% change relative to
Charge level N-N split distance (Å) N2 bond length, 1.1Å

Present [32]
1+ 1.258 14 14
0 1.350 23 22
1- 1.458 33 30

case of the energy calculations. The geometry of the split interstitial is shown

in Fig. 88. As has been proposed in [22], the N interstitial might assume a

low energy configuration in the centre of the hexagonal channel, especially in

the 3- state, which might lower its formation energy. This configuration has

been found by our MM formal charge calculations (see Fig.48), which, being

computationally less expensive, allowed for a more extensive configuration

search. Our QM/MM search might have found a local, rather than global,

minimum because the final geometries of a particular charge state were used

as the starting geometries for the next more negative charge state. Such

a procedure might not find the correct global minimum if there is a large

difference between the geometries of the lowest energy configurations for the

two charge states. The investigation of other defect configurations using the

QM/MM approach would be an interesting subject for future study.

8.3.5 N vacancy

We now turn our attention to the energetics of nitrogen vacancies. The for-

mation energies in the N-rich limit as a function of Fermi level are shown in

Fig. 89. The formation energies at the VBM and CBM in the N-rich and

Ga-rich limits are given in Table 33.

The formation energy of the 3+ and 2+ level at the VBM becomes nega-

tive, implying that the formation is spontaneous. The 3+ state is a resonance

in the valence band. The 3+ state is possibly a resonance in the valence band

although the 2+/3+ optical transition is only 0.06eV below the VBM (see
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Figure 88: The geometry of the 1- split N interstitial (view along the z-axis).
The interstitial and the lattice N with which it forms a bond are shown in
pink.

Table 33: The formation energies of the nitrogen vacancy in the various
charge states at the VBM and CBM. Comparing with the results at the VBM
[25] using 96-atom supercells in periodic boundary condition DFT calcula-
tions in the LDA approximation using the non-linear core correction (nlcc)
for the description of 3d electrons. [33] uses the PAW method for treating
3d electrons.

Formation energy (eV)
Charge state N-rich Ga-rich

VBM CBM VBM CBM VBM [25] VBM [33]
3+ -2.31 8.21 -3.53 6.99 -1.08 0.89
2+ -1.19 5.81 -2.41 4.60 0.95
1+ (singlet) 0.015 3.52 -1.21 2.30 0.10 0.82
1+ (triplet) 2.60 6.10 1.38 4.88
0 (doublet) 4.06 4.06 2.84 2.84 3.16
1- (singlet) 8.15 4.64 6.93 3.42 5.00
2- 13.50 6.49 12.28 5.27 8.45
3- 10.59

Table 34). In Section 8.4 we relate the negative formation energies to hole
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Figure 89: The formation energies of the nitrogen vacancy in the various
charge states as a function of Fermi level in the nitrogen-rich limit. A ther-
modynamic 3+/2+ transition is observed at 1.12eV and 2+/1+ at 1.21eV.

Table 34: The optical transition levels (eV) for the ionisation of a nitrogen
vacancy and its electron affinity

Ionisation energy w.r.t Electron affinity w.r.t
Transition VBM CBM Transition VBM CBM
2-/1- -4.83 -1.33
1-/0 -3.33 0.18 0/1- 5.04 1.53
0/1+ -3.08 0.42 1+/0 4.74 1.24
1+/2+ -0.13 3.38 2+/1+ 1.66 -1.85
2+/3+ 0.06 3.57
3+/4+ 1.51 5.02
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Table 35: The formation energies of the neutral N vacancy from a range
of theoretical studies under N-rich conditions (eV). From [35] and ref-
erences therein. [35] used self-consistent-charge density-functional-tight-
binding (SCC-DFTB) whereas the other works cited use DFT for defect
formation energy calculations.

Present [35] [36] [32] [37] [38] [39]
4.06 3.65 4.81 1.2 4.6 5.0 2.8

compensation behaviour of GaN and the difficulty of p-doping the material.

Periodic DFT studies in [25] (see Table 33) using 96-atom supercells also

report negative formation energies at the VBM.

Other DFT calculations have predicted formation energies that are quite dif-

ferent from ours, often by several eV. These include periodic calculations in

[25] performed using 96-atom supercells and the non-linear core correction,

whose results are presented in Table 33. The results from [33], which used

the projector augmented wave method (PAW) are also shown. The best

agreement with these results is for the neutral charge state.

A number of other results for the neutral state are listed in Table 35. There

is significant variation among the results calculated with periodic DFT meth-

ods using a number of approximations. The formation energies range from

1.2 to 5.0eV. Our result is within this range of variation.

In Fig. 89 it can be seen a thermodynamic 3+/2+ transition occurs at 1.12eV

above the VBM and 2+/1+ at 1.21eV. The PBC calculations within the LDA

approximation and with the non-linear core correction [40] in [25] predict a

3+/1+ transition, suggesting that the nitrogen vacancy is a negative-U de-

fect (see Section 3.8.3), at about 0.59eV above the VBM. Both our work and

[25] predict that the 1+ charge state of the N vacancy is the most thermo-

dynamically stable at the CBM, which is in contrast to the results in [33],

with charge 1- being the thermodynamically stable state at the CBM and

formation energies comparable to those of gallium vacancies. This latter

work used the local spin density method and the projector augmented wave

method (PAW) to treat the core electrons including the 3d shell of Ga.
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The nitrogen vacancy is expected to be a potential well for electrons because

the four gallium ions surrounding the original nitrogen site are positively

charged and, the defect site has a deficiency of electrons.

The molecular orbital picture can be used as a starting point for rationalising

the electronic structure. In the case of the N vacancy in the charge state 3+,

all the orbitals pointing from the nearest neighbour Ga ions to the defect site

are empty. Adding an extra electron to the 3+ charge state will result in an

open-shell configuration and an electron might be expected to be delocalised

relatively evenly over the four neighbouring gallium ions, owing to the large

size of the gallium ion: the orbitals available for the electron from the de-

fect site are relatively far from the gallium core and quite delocalised. One

would therefore expect a relatively spherical distribution of electrons around

the defect site. The Jahn-Teller effect would be less likely to occur as it is

usually associated with localised electrons. However, our calculations predict

the 3+ charge state to be a resonance in the valence band. A near-spherical

HOMO is also predicted for the 1+ charge state, a closed shell configuration.

The electronic structure of more highly charged defects is more difficult to

predict but more localisation would be expected.

The calculated electronic structure of the N vacancy, i.e. the highest occupied

molecular orbital (HOMO), in the charge state 1+ is shown in Fig. 90 (plane

view) and Fig. 91 (3-D view). As predicted the distribution is approximately

spherical. It is quite a delocalised state, with significant charge density re-

siding on the neighbouring nitrogen ions.

The charge states of 0 and 1- have a more unusual charge distribution. The

spin density (see Section 2.2.3 on p. 56) of the neutrally charged state is

shown in Fig. 92. The spatial distribution is equivalent to the HOMO. There

are two orthogonal lobes, each connecting two nearest Ga neighbours of the

defect centre (in pink). The lengths of the bonds between the Ga atoms

connected by the HOMO lobes are 2.894 and 3.002 Å.

The 1- charge state has the same electronic structure with shorter Ga-Ga

bond lengths of 2.683 and 2.644 Å. The xy- plane projection of the charge

density is shown in Fig. 93.

This electronic structure is similar to that suggested in [32]. They interpret
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the geometry as strongly overlapping Ga dangling bonds forming a metallic-

like bond and suggest that the reason for the strong overlap is that in bulk

GaN the Ga-Ga distances are similar to those in Ga metal. They calculate

the electronic structure of the arsenic vacancy in GaAs, with a 20% larger

Ga-Ga distance and do not observe similar behaviour. The calculations in

[33] and the empirical tight-binding calculations in [42] also note the strong

Ga-Ga interaction surrounding the N vacancy.
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Figure 92: The spin density (yellow) of the neutrally charged N vacancy. Ga
is grey and N is blue.

Figure 93: The isocontours of the charge density of the highest occupied
orbital of the charge 1- nitrogen vacancy, in e/Å3, xy-plane.
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Table 36: The geometries for the nitrogen vacancy. The initial symmetry
reduced by off-centre displacement. The inequivalent neighbour lies along
the c-axis.

Chargel Distance between defect centre and nearest Ga (Å)
1+ 1.997 (2 equivalent) 2.129 (inequivalent), 1.853 (1 equivalent)
0 1.944 (2 equivalent) 1.955 (inequivalent), 1.758 (1 equivalent)
1- 1.916 (2 equivalent) 1.863 (inequivalent), 1.673 (1 equivalent)

Finally, the distances of the nearest-neighbour Ga atoms to the defect

centre (site of the original anion) are given in Table 36. The symmetry is

lowered by the presence of the defect. In the bulk, three of the nearest

neighbours are equidistant to a nitrogen, with the fourth, inequivalent, near-

est neighbour, along the c-axis, at a slightly different distance. When the

nitrogen is removed, two Ga ions remain equivalent, while the third one dis-

torts. This symmetry lowering is not observed in the calculations in [32].

Table 36 also suggests that as the charge state becomes more negative, the

neighbouring Ga ions move inwards as can be expected due to their positive

charge.

Ref. [33] also observes the symmetry lowering distortions. This is attributed

to the bonding between the Ga nearest neighbours of the vacancy and is a

manifestation of the Jahn-Teller effect (see 3.8.3).

8.4 Discussion

In this section, the implications of the results from the previous sections

will be discussed. First, we consider the sources of error in our calculations

and compare them with results using periodic boundary condition. Next,

we discuss the relative formation energies of the different types of defect un-

der various conditions and the implications of our defect formation energy

results for the p-type vs. n-type nature of GaN. We then turn our atten-

tion to summarising the thermodynamic defect levels calculated previously
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and compare them with deep level transient spectroscopy (DLTS) data. The

optical defect levels are compared with optically detected magnetic reso-

nance (ODMR) and photoluminescence data, yellow luminescence at 2.2eV,

in particular. The QM/MM results are then related to our previous MM

calculations.

8.4.1 Sources of error

Several aspects contribute to inaccuracies in the calculations of defect prop-

erties.

The convergence of the calculations with respect to several model parameters

has been discussed previously. Region I (QM region) size is an important

factor and is related to the magnitude of the boundary effects. Increasing the

QM region size, on the one hand, removes the boundary further away from

the defect centre, in theory improving the calculation. However, if there is

a sizeable lattice mismatch between the optimised lattice parameters calcu-

lated with the MM and QM models, increasing the QM region size will tend

to exacerbate the problem by increasing internal strain and lead to significant

boundary distortions.

The convergence of bulk IPs with respect to the size of Region I was discussed

in Section 8.3.1. The Ga vacancy defect formation energies and defect levels,

calculated with two cluster sizes, can be found in Section 8.3.2. From the

results we can put a tentative estimate on the errors arising from this source

of a few 0.1eV at most.

There are further convergence errors due to the size of region III. As discussed

in Section 8.2.3, the errors due to this are estimated to be less than 0.1eV.

Finally, the errors due to the convergence of the GAMESS-UK calculation

are typically very small, less than 0.01eV.

Another important model parameter is the energy functional. In Section

8.3.2, the hybrid functional used here, B97-2 and is compared with an LDA

functional SVWN. The differences in calculating the Ga vacancy defect for-

mation energies and optical defect levels were relatively small , a few 0.1eV.
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Hybrid functional are considered better quality than LDA functionals.

The largest inaccuracies we found in our calculations arise from the errors

due to the insufficiently extensive basis set for the Ga ions. While this choice

allows for increased speed and reduced cost of these very expensive calcu-

lations, the errors have been found to be of the order of about 3eV for Ga

vacancies and interstitials. Future calculations with improved basis sets, for

example, the Peterson TZV basis set [46], will improve the accuracy.

8.4.2 Comparison with PBC results

In this section, we will address the question of why such large differences are

observed between our calculations and the PBC results. Significant discrep-

ancies are observed in particular for the negatively charged Ga vacancies,

which were predict to be much higher in energy than PBC calculations at

the CBM. Furthermore, we predict lower energies for the positively charged

Ga interstitials and N vacancies at the VBM. In addition to the basis set

issues discussed in the previous section, different choices of boundary condi-

tions and differences in energy functionals are two important candidates for

the large discrepancies and are discussed below.

Firstly, the periodic boundary conditions lead to self-interactions of de-

fect images and elastic effects due to incomplete relaxation of the geometry

around the defect. The cluster methodology in the present work artificially

confines electrons and the “tails” of the wavefunctions might not be repre-

sented accurately. More delocalised states generally suffer from the QM/MM

boundary conditions more than highly localised ones. Furthermore, distor-

tions at the QM/MM boundary also lead to errors, although assuming the

distortions are sufficiently far away from the defect centre they can be treated

as perturbations to the Hamiltonian which largely cancel out in the calcula-

tion of the relevant energies.

The convergence of the relevant energies with the size of the supercell in the

PBC calculations and with the size of the QM cluster in QM/MM method-

ology can give an estimate of the errors due to these effects. The errors in
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Figure 94: The convergence of the configuration energy of N and Ga vacancies
using local spin density approximation (LSDA) and PBCs. From [33].

our calculations were considered in the previous section. For PBC calcula-

tions, such a study was performed, for example, in [33]. Their convergence

results for Ga and N vacancies are shown in Fig.94. The errors are within

about 1eV and more pronounced for the N vacancy. [25] finds the differences

in formation energies between PBC calculations with 32-atom and 96-atom

supercells to be of the order of a few 0.1eV.

Beyond the problems with the use of boundary conditions, the PBC calcu-

lations suffer from problems due to the use of either LDA or GGA energy

functionals, which significantly underestimate the band gap: with LDA the

band gap is 2.20eV and GGA gives 1.67eV [44]. Such small values of the band

gap may lead to excessive hybridisation between the in-gap defect states and

the conduction band states, causing potentially significant errors in the cal-

culated energies or even erroneously predicting a state to be a resonance in

the conduction band. Hybrid functionals, such as the one used in the present

work, tend to give more accurate estimates of the band gap.

In addition to the band-gap problem, LDA is often thought to be unsuitable

for defect calculations involving large relaxations and is generally accepted

not to predict bond strengths and lengths as accurately as hybrid function-

als, due to LDA assuming a greater degree of electron self-interaction, which

leads to a more delocalised nature of the electrons. This problem becomes

particularly acute when modelling very localised states. GGA is often not

found to offer substantial improvement over LDA in this respect and indeed
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LDA is sometimes thought superior in predicting properties of GaN [33]. To

separate the band-gap problem from the issues with modelling bond strengths

with LDA functionals, we performed a QM/MM calculation of the Ga va-

cancy with 42 QM atoms using the SVWN and B97-2 (as used in the rest

of this work) energy functionals. The results, in Section 8.3.2, show small

difference in the Ga vacancy formation energies calculated with LDA and

B97-2 functionals - a few 0.1eV, which is significantly less than the discrep-

ancies observed between PBC LDA results in [25] and [33], and supports our

conjecture that the band gap problem is the main cause of the difference.

In addition to the issues mentioned above, early PBC calculations tend to

use non-spin polarised methods, meaning that spin singlets are always calcu-

lated for systems with even numbers of electrons and the possibility of triplets

or higher multiplets is excluded. For open shell systems, a spin doublet is

formed, with the α and β orbitals half-occupied, which might potentially to

inaccuracies in the calculation of the formation energy. Later works, such as

[33], use the local spin density approximation with PBCs and find differences

in formation energies of about 1eV with respect to the results in [25] although

other aspects of their set-up differ as well such as the method of treating the

3d electrons and the size of the supercell so it is difficult to establish what

effect the spin polarisation had on the result.

In summary, we argue that the choice of less accurate energy functionals

based on the local density approximation in the PBC studies of GaN native

defects to date leads to errors. In particular, LDA tends to underestimate

the band gap seriously and leads to unphysical hybridisation of the in-gap

states and the conduction band. We speculate in the next section that this

might be the main cause of the substantial difference between the PBC [25]

and our calculations of the Ga vacancy at the CBM even considering the

improvements to our basis set. In future work, hybrid functionals, such as

HSE06, may be applied to the study GaN native defects to improve the re-

sults further.

Our own results suffer from inaccuracies as outlined in the previous section,

and our formal charge hypothesis may skew results. Further improvements,

especially with respect to convergence of the QM region size and refinements
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in the basis set, will be implemented in future work. Our formal charge hy-

pothesis could be tested by building a partial charge model and comparing

the results.

Ultimately, the best test of the accuracy of the various models is comparison

with experimental results, discussed in the following sections.

8.4.3 Defect formation energies and p-type vs. n-type doping

The formation energies of the most stable charge state for all four types of

native defect are summarised in Table 37 both at the VBM and CBM.

At the CBM, we predict the N vacancy to be the most stable defect in the

Ga-rich limit, in contrast to [25] (PBC DFT calculation with 96-atom su-

percells under the LDA), which suggests Ga vacancies are the major defect

under both Ga- and N-rich conditions, with a formation energy for the 3-

charge at the CBM of about 1.5eV in the Ga-rich limit - 7eV lower than our

calculation, 3.5eV after improving our basis set as described in the discussion

of the Ga vacancies and interstitials. Using our most recent calculations with

a more extensive basis set on Ga, as discussed earlier in this chapter, the Ga

vacancies appear to be the most stable species in the N-rich limit. The PBC

results in [33] smilarly suggest that Ga vacancies are the most stable species

in N-rich conditions, with very similar formation energies for both type of

vacancy in Ga-rich conditions.

The formation energy of the N vacancy is predicted to be 3.6eV at the CBM

in [25] for the 1+ charge state, while our calculations give 2.3eV.

[34] studied convergence using up to 300 atoms in the supercell and predicts

the formation energies of both Ga and N vacancies to be around 0.5eV in the

Ga-rich limit at the CBM, much lower than our calculations. Additionally,

our calculations do not predict the highly negatively charge states (2-, 3-) of

the N vacancy to be favourable unlike the results in Ref. [34].

We speculate that the Ga vacancies might be artificially stabilised by hy-

bridisation of the in-gap states with the conduction band due to the band

gap problem in the PBC LDA approach in [25] and [34] as discussed in Sec-

tion 8.4.2.
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Table 37: A summary of lowest energy charge states of each type of native
defect in GaN. If the lowest energy charge state is a resonance (RES), the
lowest energy non-resonant state is also indicated. The N vacancy 3+ is pos-
sibly a resonance with a defect level 0.06eV. Given the error of our calculation
it is difficult to determine with certainty whether this is a resonance. S=spin
singlet, D=doublet, T=triplet, Q=quadruplet. All calculations were carried
out with a 74-QM-atom cluster except the Ga vacancy, which used 116 QM
atoms. The values in brackets indicate the results with the improved basis
set.

Defect type Charge state Ga-rich limit N-rich limit
VBM
Ga interstitial 3+ -4.27(-1.86) -3.05(-0.63)
N interstitial 3+ (RES) 1.32 0.10

2+ 1.90 0.67
N vacancy 3+ (possibly RES) -3.53 -2.31
Ga vacancy 0(Q) 10.33 8.73
CBM
Ga interstitial 1+ 4.48 5.71
N interstitial 0 5.85 4.63
N vacancy 1+(S) 2.30 3.52
Ga vacancy 3- 8.11 (4.62) 6.88 (3.39)

The formation energies at the VBM become negative for the positive charge

states of the N vacancy and Ga interstitial. As has been argued in [43] for the

case of ZnO, negative formation energies of positively charged native defects

(i.e. cation interstitials and anion vacancies) at the VBM can be interpreted

as the defects acting as compensating centres, removing holes. This observa-

tion can be understood with reference to the reaction equation corresponding

to the formation energy of the defect at the VBM.

GaN(bulk)→ GaN(with N3+
va ) + 1/2N2(g) + 3e−(VBM) (110)

This equation can be rewritten as

GaN(bulk) + 3h+(VBM)→ GaN(with N3+
va ) + 1/2N2(g) (111)
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Table 38: The formation energies per hole or electron for GaN and ZnO,
indicating the reaction energies for the charge carrier compensation processes.
The values in brackets refer to the calculations using a larger basis set as
discussed in the text. For ZnO, the data is taken from [43].

Formation energy per electron/hole (eV)
GaN ZnO [43]

Defect type n Ga-rich N-rich n Zn-rich O-rich
hole carriers
(VBM)

Cation interstitial 3+ -1.42 (-0.41) -1.02 (-0.01) 2+ -2.35 -0.50
Anion vacancy 3+ -1.18 -0.77 2+ -2.59 -0.74
Anion interstitial 2+ 0.95 0.34 2+
electron carrier
(CBM)

Cation vacancy 3- 2.70 (1.54) 2.29 (1.13) 2- 2.60 0.75
Anion interstitial 1- 5.88 4.66 2- 3.58 1.73
Anion vacancy 1- 3.42 4.65 1- unstable

illustrating the effect of the N vacancy formation on the removal on holes (h).

Since the formation energy is exothermic, holes in the valence band would

not be present in appreciable concentrations in thermodynamic equilibrium,

which explains the difficulty in p-doping both GaN, and even more so ZnO.

The relevant formation energies per hole or electron for the two materials are

compared in Table 38. The ZnO values are based on the formation energies

of the formal charge defects from [43]. The GaN values are derived from the

lowest energy non-resonant charge state, positive charge state for the calcu-

lation of compensation processes involving hole carriers, and negative for the

equivalent calculation related to electron carriers.

We propose that the exothermic formation energies of cation interstitials

and anion vacancies are the cause of the challenges of p-doping both semi-

conductors. The hole compensation energies in ZnO are up to about 1.4eV

more exothermic for cation-rich conditions, due to the high lattice energy of

ZnO, whilst under anion-rich conditions GaN formation energies are more

exothermic by up to 0.5eV. ZnO has proved to be even more challenging to

p-dope than GaN and our findings suggest this should particularly be the
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case under cation-rich growth conditions. All electron compensation pro-

cesses are endothermic, as can be expected for a naturally n-type material.

Ref. [25] also predicts exothermic formation energies for the N vacancy at

the VBM of about -1eV in the 3+ charge state, about 1.3eV higher than

our prediction. Our predictions for the Ga interstitial exothermic formation

energies at the VBM are not reproduced in [25], which predicts the 3+ state

to have a formation energy of about 2.3eV at this Fermi level.

GaN hole conductivity can be increased significantly by doping with Mg. If

the dopant is present in large enough concentrations, it will have a significant

effect on the band structure of the doped material, pushing the valence band

up due to the changed Coulombic interactions in the case of doping with a

dopant such as Mg, which has a less positive charge than Ga. The defect

levels in the band gap may be significantly affected by the upward movement

of the valence band and hence the thermodynamics of the system may allow

p-doping to occur. Epitaxial strain might also have an effect on the ener-

getics of the system. These questions are possible avenues for future research.

8.4.4 Thermodynamic transitions

The thermodynamic transition levels are summarised in Table 39 and Fig. 96.

Unlike the results in [25], summarised in Fig. 25 on p. 104, our calculations

do not predict negative-U defects (see Section 3.8.3) for the Ga interstitial

and N vacancy. Instead of the 3+/1+ thermodynamic transition associated

with the negative-U defects in [25], we observe closely spaced 3+/2+ and

2+/1+ transitions in both cases. For the N vacancy, [33] predicts quite dif-

ferent transitions of 1+/1- and 1-/3- at 2.09eV and 2.80eV, respectively.

Another significant discrepancy between our results and the periodic DFT

calculations is the position of the thermodynamic transition levels for the Ga

vacancy, which are calculated in [33] to be 0.43eV (0/1- transition), 0.77 eV

(1-/2-) and 1.07eV (2-/3-) above the VBM. Our calculations place them at

2.31eV, 2.73eV and 3.15eV, respectively. We reiterate the hypothesis that

the difference is due to the hybridisation between the in-gap states and the
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Table 39: A summary of the in-gap thermodynamic transition levels. Values
in eV.

Defect Transition Defect level
above VBM below CBM

Ga interstitial 3+/2+ 2.56 0.95
2+/1+ 2.68 0.82

N interstitial 3+/2+ 0.58 2.93
2+/1+ 1.13 2.38
1+/0 2.82 0.69

N vacancy 3+/2+ 1.12 2.39
2+/1+ 1.21 2.30

Ga vacancy 1-/0 2.31 1.20
2-/1- 2.73 0.78
3-/2- 3.15 0.36

conduction band in the PBC calculations. However, further QM/MM cal-

culations with an improved basis set need to be carried out to confirm our

values.

The other thermodynamic transition levels are in broad agreement with the

PBC values, apart from the 1-/0 and 0/1+ transitions of the N interstitial.

The different types of transition and the experimental methods that can ac-

cess them are shown in Fig. 96 on p. 246 . Among the experimental data

that can give insight into defect energetics is deep level transient spectroscopy

(DLTS). It has been suggested that the thermodynamic transition level is the

relevant quantity measured by this technique [27], [28]. Various defect levels

have been reported (values below the conduction band): 0.62eV [30], 0.49eV

[31], 0.44eV [29], 0.26eV [30], 0.21eV [29] , 0.20eV [29] and 0.18eV [31]. DLTS

studies by Haase et al. [41] have shown that a defect (with activation energy

0.67eV in their experiment) can be generated by N implanatation and then

removed by annealing. They speculate that this points to the nitrogen va-

cancy or interstitial defect.

Within the error of our calculation, there are a number of thermodynamic

transition levels in the range of 0.1-1.0eV below the CBM that could explain

the experimental observations. Ga interstitial (3+/2+, 2+/1+), N intersti-
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Figure 95: The thermodynamic defect levels in GaN. Values in eV.

tial (1+/0) and Ga vacancy (2-/1-, 3-/2-) are all possible candidates. The

N interstitial 1+/0 transition is a promising candidate for interpreting the

aforementioned result in [41].

Our preliminary results indicate that much of the correction to the Ga va-

cancy results due to the increased accuracy of the basis set, as discussed in

the previous sections, might come from the improvement in the Ga free atom

energy, in which case the formation energies would be offset by a constant

amount for the different charge states and the thermodynamic transition

levels would be unaffected. A full set of calculations for all charge states is
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Figure 96: Types of transition level and spectroscopic methods for measur-
ing them, for an example transition, 0/1-. εopt and εtherm refer to optical and
thermodynamic levels respectively. Upward arrows indicate electron excita-
tion and downward arrows electron decay. The relaxation energies Erel and
E ′rel and the PL1 and PL2 transitions are further described in Fig. 97. From
[27]

recommended for Ga interstitials and vacancies to confirm the present values.

8.4.5 Optical transitions

The optical defect levels are summarised in Table 40 and Fig. 98. These

levels are potentially useful in interpreting photoluminescence data. One of

the most controversial observations is yellow luminescence at 2.2eV.

Fig. 97 shows two types of transitions that may be responsible for lumines-

cence, although of course there are other possibilities, for example transitions

between defect states. PL1 in Fig. 97 describes the electron affinity of the

defect with respect to the CBM. PL2 refers to the ionisation potential with

respect to the VBM.

Table 40 suggests the Ga vacancy 1-/0 or 2-/1- PL2-type transitions as a

possible cause for yellow luminescence. Not all electron affinity calculations
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Figure 97: Two types of transitions that can be determined in a photolumi-
nescence measurement. See also Fig.96. From [27]

have been completed but preliminary results suggest that the 2+/1+ affinity

of the N vacancy is exothermic with an energy of 1.85eV and this would be

another possible candidate although less close to the 2.2eV value than the Ga

vacancy results. Further discussion on the controversy regarding the origin

of YL can be found in Section 4.3.2. Future calculations to shed more light

on this issue are recommended, especially on the issue of defect complexes

and C impurities, which have been suggested as a possible cause of YL. The

Ga defect results also need to be verified with a larger basis set.

Further luminescence lines and bands in GaN are described in Table 49 on

p. 274. With future refinements of our model, more accurate assignments of

defect transitions can be made to luminescence lines.

We also note that difference between the optical and thermodynamic defect

levels is the relaxation energy associated with the thermodynamic transition.

The optical electron affinities can be used to explain photoluminescence and

optically detected magnetic resonance (ODMR) measurements in [26], which

indicate a deep donor state about 0.7eV below the conduction band. When

this donor is in its initial state it is paramagnetic, i.e. there must be an

unpaired spin. When it accepts an electron no ODMR signal arises as the

excited state is not paramagnetic. The 0/1- N interstitial transition fits this

description as 1- is a spin singlet, 0 is a spin doublet. The electron affinities of

the N interstitial are summarised in Table 29. The 0/1- transition is 0.92eV
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Figure 98: The optical defect levels in GaN.

below the CBM and, within the error of our calculation, a good candidate

for the defect which gave rise to the results in [26]. Further calculations on

the Ga vacancy optical affinities are to be performed in the future as well as

corrections due to the basis set.
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Table 40: A summary of the in-gap optical transition levels.

Defect Transition Defect level
above VBM below CBM

Ga interstitial 2+/3+ 1.30 2.21
1+/2+ 1.63 1.88

N interstitial 1+/2+ 0.04 3.47
0/1+ 1.77 1.73
1-/0 2.83 0.68

N vacancy 2+/1+ 0.13 3.38
0/1+ 3.08 0.42
1-/0 3.33 0.18

Ga vacancy 1-/0 2.33 1.17
2-/1- 2.48 1.03
3-/2- 3.03 0.48

8.4.6 Comparison with our MM results

Finally, we briefly compare the results of our MM defect calculations, which

were calculated for the formal charge states of the defects. In this chapter,

we found the N interstitial in the charge state 3- to be a resonance in the

conduction band although further calculations are needed to explore differ-

ent geometries, particularly a split interstitial configuration with the N in the

middle of the hexagonal channel, which was found to be the lowest energy

arrangement in our MM defect studies. The N vacancy in the formal charge

state is a resonance in the valence band hence again MM calculations are of

limited use.

Our QM/MM calculations indicate that the Ga interstitial and vacancy are

stable in their formal charge states. The Ga Frenkel defect energy is calcu-

lated as 14.36eV/per defect pair, which changes to 13.89 eV/defect pair when

the more accurate basis set is used. We attribute the discrepancy between the

QM/MM values and the MM result, 19.44eV/defect pair, to the inaccuracies

of the MM potential. The distances between defect centres and the nearest

neighbours differ by up to about 0.2Å between the MM and QM/MM sets of

results, and even more for further neighbours, as can be seen from Tables 9

(p. 150), 24 (p. 214) and 27 (p. 217). The Coulomb potential contributions
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will therefore be appreciably different (see Fig. 35 on p. 128).

The inaccuracy of the defect geometries may be due to the parameters of

the potential being fitted using bulk properties. The interatomic distances

of the defect configurations differ significantly from the bulk distances and

the results are therefore less reliable than bulk property calculations. Fit-

ting to a wider range of properties which explore non-equilibrium interatomic

distances, or to ab initio potential surfaces, might improve the MM results.

Finally, further refinements to the QM/MM values due to the use of larger

clusters are also possible in the future and might alter the extent of the dis-

crepancy. While MM calculations can be a starting point in the study of

GaN defects, they are of limited usefulness in exploring the full range of the

complex defect properties of the material.

8.5 Conclusions and future work

In this chapter, we presented a QM/MM model for native defects in GaN.

We have shown that our results differ substantially from previous period

boundary calculations, especially in predicting significantly higher formation

energies for the formally charged Ga vacancy. The variations in the forma-

tion energies calculated using periodic boundary conditions and our method

are of the order of a few eV. We predict the N vacancy to be the thermody-

namically stable species at the CBM in the Ga-rich limit and the Ga vacancy

is the likely candidate for the most favourable defect in the N-rich limit. We

also do not observe negative-U defects in the case of Ga interstitials and N

vacancies, unlike the PBC calculations in [25] and [34]. We attribute these

differences to the choice of functional and the band gap problems in the PBC

calculations as well as inaccuracies due to the basis set and convergence with

respect to the QM region size in our own calculations. Our formal charge

hypothesis may also skew results and is a candidate for further investigation

in the future.

We further discussed the exothermic formation energies of the Ga interstitial

and N vacancy defects as the cause of the difficulties in p-doping GaN.

We also shed some light on the elusive issue of yellow luminescence. Our
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results support previous suggestions that Ga vacancies may be the cause of

YL in GaN, although N vacancy is another likely candidate. Further calcu-

lations on the energetics of extrinsic defects are recommended to establish

what role they play in luminescence. In future work, our calculations can be

used to assign other GaN bands and lines.

We suggest that the processes responsible for a variety of DLTS signals be-

tween 0.18-0.67eV below the CBM may be due to Ga interstitial 3+/2+,

2+/1+ transitions, N interstitials (1+/0) and Ga vacancies (2-/1-, 3-/2-).

We attribute the ODMR signal indicating a deep donor state 0.7eV below

the conduction band to the N interstitial 0/1- transition.

Experimental results can be a useful test of the accuracy of the theoretical

models. However, a number of defect transitions, involving native and extrin-

sic defects, can be reponsible for any one experimental observation and firm

conclusions about the experimental energetics of specific transitions, that

can be directly compared to calculated values, are difficult to draw. Very

targeted experiments that give information about transitions between spe-

cific defect states would be valuable in testing our hypotheses. Alternatively,

consistency with a range of experimental data would give credence to our

model.

We have identified improvements to our model for Ga vacancies and inter-

stitials for future calculations. Potential further work also includes exploring

different configurations of the native defects, especially the channel-centred

configuration of the N interstitial. Extrinsic defects, such as C, O and Mg,

and defect complexes may play an important role in understanding the prop-

erties of this material and provide exciting opportunities for future study.
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9 Conclusions

This work has presented two models for GaN: a molecular mechanics (MM)

model and a hybrid QM/MM (quantum mechanics-molecular mechanics)

one.

The MM parameterisation is a formal charge model for simulating the proper-

ties of GaN, as well as the related materials AlN and InN, using multilayered

Buckingham and Morse potentials and the shell model for describing the po-

larisability of the nitride ion. The AlN and InN N-N interaction parameters

are fixed at the values developed for GaN, apart from the spring constant of

InN, which had to altered to allow the dielectric constants to be modelled

correctly. The common N-N interaction allowed us to study the properties

of alloy systems. Overall, the structural and dielectric properties are well

reproduced.

The main shortcoming of the MM model is the overestimation of the off-

diagonal elastic constants, meaning the model has a lesser tendency to shear

than the physical material. This deficiency affects physical properties such

as compressibility along the c-axis. Because the phase transition between the

wurtzite and rocksalt phases is a first-order transition, it is less significantly

impacted, and it can be fitted well within our model by shifting the separate

layers of our potential by constant offsets.

The origin of the problems with modelling the off-diagonal terms, which have

persisted despite intensive efforts at improving the model, is probably the

significant deviation of GaN from a fully ionic material. The formal-charge

assumption is based on physical reasoning [1] and the practical considera-

tions for implementing the QM/MM scheme. An alternative to introducing

covalency into the scheme via a partial-charge model, which would require

significant changes to QM region termination, is to include three-body terms

and future work on incorporating these terms could improve the model of

the shear response. We did not attempt this in the present work as the main

focus was the development of a QM/MM model, where the shear response is

of little consequence.

The model was then used to calculate the properties of formal charge defects,
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predicting vacancies to be the predominant type of defect in AlN, GaN and

InN.

As discussed above, the common N-N set of interactions allows us to model

alloys of the III-V nitrides. Two methods were used, the mean field approach

and explicit energy calculations of specific examples of cation ordering.

The mean field approach is most applicable to situations where the alterna-

tive cation species are similar in their ionic radii, such as in the case of Al

and Ga. The ionic radius of In is much larger than the other two cations and

this method is more likely to cause difficulties. It has indeed been found that

modelling the structural parameters of InGaN and AlInN with this approach

produced less consistent results than the AlGaN model.

Of the InGaN explicit cation ordering arangements we considered, we found

that layered configurations, with alternating planes of unlike cations in the

c-direction, had higher formation enthalpies relative to other structures we

studied. In the modelling of alloys, the inaccuracies in the off-diagonal elastic

constants might play a role. However, we argue that the layered arrange-

ments are less likely to relieve strain by shearing and therefore not likely to

be brought into thermodynamic stability. We find staggered arrangements

of unlike cations to be the most thermodynamically stable out of all the

configurations we considered, in agreement with previous DFT calculations.

In AlGaN alloys, the alternating layer arrangement was found to be more

energetically stable.

As was the case with the mean field approach, the enthalpy of mixing of the

bulk alloys was found to be positive. Furthermore, we found that the greater

the ionic radius mismatch between the cations, the larger the calculated en-

thalpy of mixing, as could be expected.

There has been a suggestion, based on experimental x-ray diffraction studies,

that c-axis ordering is present in alloys of AlGaN and InGaN. We suggest

that these might not necessarily be the thermodynamically stable configura-

tion but rather a consequence of the growth process. Indeed, the processes

at the growing surface warrant further study.

Epitaxial strain was found to have a stabilising effect on the structures, par-

ticularly in the case of the more internally strained alloys, such as InGaN, in
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agreement with experiment. AlGaN showed little stabilisation with epitaxial

strain in our calculations.

We also found a dependence of several quantities such as the enthalpy of mix-

ing and structural parameters on the number of unlike nearest neighbours in

an alloy. To the best of our knowledge, this has not been reported before.

Future improvements of the alloy model could include improving the mod-

elling of the spring constant. The InN N spring constant has a different value

at present from the AlN and GaN values, which results in difficulties when

modelling the alloy. In the present work, we used a simple averaged model

for the alloy N spring constant but have suggested possible improvements

(see section 7.3.1 on p. 7.3.1) which can be used to refine the model further.

In summary, we developed and validated a new formal-charge interatomic

potential for GaN, AlN and InN, which successfully predicts a number of

physical properties of binary nitrides and their ternary alloys. With this

model, and its limitations in mind, more complex phenomena can be inves-

tigated in the future.

The primary aim of this project was to implement a QM/MM scheme for the

GaN system and use it to study native defects in the material. The hybrid

method proved more challenging to implement than some oxide systems pre-

viously studied (such as ZnO). The main difficulty we encountered was the

distortion of the QM/MM boundary due to the mismatch between the QM

and MM forces. The process of refitting the MM potential to remove these

difficulties is very time-consuming and we suggest an automated method (i.e.

a fitting code) is developed if the methodology is to be used more widely for

complicated solid state systems in the future.

Our QM/MM defect calculations differ in several respects from previous PBC

DFT results, especially in predicting high formation energies for the Ga va-

cancy at the CBM. Our calculations show N vacancies to be the dominant

defect at the CBM, at least in the Ga-rich limit. We also propose Ga or

N vacancies to be responsible for the commonly observed, and controversial,

yellow luminescence in GaN. Furthermore, the exothermic formation energies

for the Ga interstitial and N vacancy at the VBM are used to explain the

problems with p-doping the material. We also make predictions about the
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defect transitions responsible for the observations in the recent DLTS and

ODMR experiments.

Further investigations of the differences between QM/MM and PBC results

are necessary to understand the causes of the discrepancy between these two

sets of results. We suggest that the differences might be due to the rather

inaccurate LDA functional used in the PBC GaN calculations to date, which

tends to underestimate the band gap quite severely. A recent study on the C

impurity in GaN [2] with a PBC approach and the HSE06 functional could

provide a basis for comparison. A PBC study of native defects with this

functional would shed light on the issue.

We have also suggested improvements to our Ga basis set to be included in

future calculations; these might also explain some of the differences between

our results and PBC calculations. The choice of basis set has to balance

carefully the need for a sufficiently large number of basis functions to model

each QM ion with the computational expense of the calculations, which rises

rapidly with the size of the QM region, another important determinant of the

quality of the results. Convergence of the defect energies with QM region size

should also be investigated further. We recommend the formal charge hy-

pothesis is revisited and a comparison with a partial charge QM/MM scheme

is carried out for completeness.

With the methodological advances put forward in this thesis, many appli-

cations can be explored, including surfaces, interfaces and defect migration.

Extrinsic defects in GaN also offer many exciting opportunities, especially

Mg, which has been used to create p-doped GaN. The present model could

be used to understand the mechanism of hole creation. The AlN and InN

potentials developed here are candidates for new QM/MM studies.

A relatively recent development in QM/MM modelling is the so-called Learn-

On-The-Fly (LOTF) [3], which aims to reduce the boundary effects in QM/MM

calculations. This method does not conserve energy and further develop-

ments will be needed to allow the extraction of energetic information. This

method is another avenue for future study.

In summary, this work has provided new insights into the physical properties

of GaN and related materials, which have many useful industrial applica-
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tions, and also implemented and validated the QM/MM methodology for

future studies.
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10 Appendix I - Interatomic potentials

Table 41: The units of the potential parameters in the current potential
models.

Interaction Parameter Unit Interaction Parameter Unit

Lennard-Jones Cn eVÅn Morse De eV

Buckingham/ A eV a Å−1

Born-Meyer ρ Å r0 Å

C eV Å6 polynomial cn eVÅ−n

spring kn eVÅ−n

Table 42: Interatomic distances for GaN calculated with experimental struc-
tural parameters. Rocksalt values calculated by optimising at zero pressure
with our potential.

Atom pair Dist. (Å) Number of Dist. (Å) Number of
neighbours neighbours

Wurtzite
Ga - Ga 3.1787 6 3.1846 6
Ga - N 1.9473 1 1.9487 3

3.238 1 3.7328 6
3.7335 3

N-N 3.1787 6 3.1846 6
zincblende
Ga - Ga 3.1750 12
Ga - N 1.9443 4 3.7230 12
N - N 3.1750 12
rocksalt
Ga - N 2.1098 6 3.6542 8
N - N 2.9837 12
Ga - Ga 2.9837 12
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Table 43: Interatomic distances for InN calculated with experimental struc-
tural parameters. The rocksalt values were obtained by optimising with our
potential.

Atom pair Dist. (Å) Number of Dist. (Å) Number of
neighbours neighbours

Wurtzite
In - In 3.5030 6 3.5400 6
In - N 2.1527 3 2.1689 1

3.5211 1 4.1432 3
4.1516 6

N-N 3.5030 6 3.5400 6
zincblende
In - In 3.5214 12
In - N 2.1564 4 4.1292 12
N - N 3.5214 12
rocksalt
In - N 2.3530 6 4.0755 8
N - N 3.3276 12
In - In 3.3276 12

Table 44: Interatomic distances for AlN calculated with experimental struc-
tural parameters. The rocksalt values were obtained by optimising withour
potential.

Atom pair Dist. (Å) Number of Dist. (Å) Number of
neighbours neighbours

Wurtzite
Al - Al 3.0707 6 3.1100 6
Al - N 1.8886 3 1.9054 1

3.0766 1 3.6386 3
3.6473 6

N-N 3.0707 6 3.1100 6
zincblende
Al - Al 3.0971 12
Al - N 1.8966 4 3.6317 12
N - N 3.0971 12
rocksalt
Al - N 2.0533 6 3.5554 8
N - N 2.9038 12
Al - Al 2.9038 12
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Table 45: The parameters of GaN potential. Units in Table 41. Charges Ga
+3.0 e, N core 1.4e, N shell -4.4e, For details of functional forms, refer to
Section 2.1).

Species Potential type Parameters Range (Å)

Ga core N shell Lennard Jones 12 C12 = 10 0.0− 15.0

Born-Meyer A = 1288.5621 0.0− 2.3

ρ = 0.357118

polynomial c0 = 0.55 0.0− 2.3

polynomial c0 = 6838.756066 2.3− 2.8

c1 = −13396.18758

c2 = 10494.93436

c3 = −4105.622176

c4 = 801.4915743

c5 = −62.44285935

Born-Meyer A = 1043.4481 2.8− 3.4

ρ = 0.384153

polynomial c0 = −0.1 2.8− 3.4

polynomial c0 = 134573.1245 3.4− 3.6

c1 = −193196.8281

c2 = 110917.6787

c3 = −31832.1139

c4 = 4566.565012

c5 = −261.9747598

N shell N shell Morse De = 0.93078550 0.0− 3.7

a = 2.3885

re = 2.44469

polynomial c0 = −4134.971889 3.4− 4.2

c1 = 5268.685067

c2 = −2683.064126

c3 = 682.5077857

c4 = −86.71401114

c5 = 4.401867951

C6r
−6 term C6 = 97.0 4.2− 15.0

N shell spring k2 49.500407 0.0− 0.6

N shell spring k4 50 000 0.0− 0.6
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Table 46: The parameters of the slightly adapted GaN potential used in the
QM/MM calculations. Units in Table 41. Charges Ga +3.0 e, N core 1.4e,
N shell -4.4e, For details of functional forms, refer to Section 2.1).

Species Potential type Parameters Range (Å)

Ga core N shell Lennard Jones 12 C12 = 10 0.0− 15.0

Born-Meyer A = 1288.5621 0.0− 2.5

ρ = 0.357118

polynomial c0 = 0.3 0.0− 2.3

polynomial c0 = 39877.01195 2.5− 2.8

c1 = −75263.81056

c2 = 56781.39881

c3 = −21400.8179

c4 = 4029.260072

c5 = −303.1546416

Born-Meyer A = 1043.4481 2.8− 3.4

ρ = 0.384153

polynomial c0 = −0.1 2.8− 3.4

polynomial c0 = 134571.7309 3.4− 3.6

c1 = −193194.8336

c2 = 110916.5371

c3 = −31831.78729

c4 = 4566.518302

c5 = −261.9720884

Born-Meyer A = 1.0675506 3.6− 10.0

ρ = 0.221570

N shell N shell Morse De = 0.93078550 0.0− 3.7

a = 2.3885

re = 2.44469

polynomial c0 = −4134.971889 3.4− 4.2

c1 = 5268.685067

c2 = −2683.064126

c3 = 682.5077857

c4 = −86.71401114

c5 = 4.401867951

C6r
−6 term C6 = 97.0 4.2− 15.0

N shell spring k2 49.500407 0.0− 0.6

N shell spring k4 50 000 0.0− 0.6
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Table 47: The parameters of InN potential I. Units in Table 41. Charges In
core +3.0 e ,N core 1.4e, N shell -4.4e. For details of functional forms, refer
to Section 2.1).

Species Potential type Parameters Range (Å)
In core In core LJ 12-term C12= 20 0.0− 10
In core N shell LJ 12-term C12= 20 0.0− 10

Buckingham A = 1279.0808 0.0− 2.5
ρ = 0.392572
C = 40.323008

polynomial c0 = 0.17 0.0− 2.5
polynomial c0 = 8888.748798 2.5− 2.8

c1 = −16504.78407
c2 = 12272.57582
c3 = −4563.942524
c4 = 848.3962086
c5 = −63.0483336

Buckingham A = 1528.5920 2.8− 3.7
ρ = 0.388669
C = 20.844536

polynomial c0 = −0.08 2.8− 3.7
polynomial c0 = −55975.48438 3.7− 3.9

c1 = 72777.54561
c2 = −37832.13986
c3 = 9828.905042
c4 = −1276.252061
c5 = 66.25990647

N shell N shell Morse De = 0.93078550 0.0− 3.7
a = 2.3885
re = 2.44469

polynomial c0 = −4134.971889 3.4− 4.2
c1 = 5268.685067
c2 = −2683.064126
c3 = 682.5077857
c4 = −86.71401114
c5 = 4.401867951

C6r
−6 term C6 = 97.0 4.2− 15.0

N shell spring k2 22.8 0.0− 0.5
N shell spring k4 175 000 0.0− 10.0
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Table 48: The parameters of AlN potential I. Units in Table 41. Charges Al
core +3.0e, N core +1.4e, N shell -4.4e. For details of functional forms, refer
to Section 2.1).

Species Potential type Parameters Range (Å)
Al core N shell LJ 12-term C12= 10.421450 0.0− 10

Born-Meyer A = 1644.6091 0.0− 2.2
ρ = 0.333663

polynomial c0 = 0.65 0− 2.2
polynomial c0 = 4687.615495 2.2− 2.8

c1 = −9390.022249
c2 = 7524.973473
c3 = −3010.247517
c4 = 600.5008231
c5 = −47.76268013

Born-Meyer A = 675.36504 2.80− 3.30
ρ = 0.385367

polynomial c0 = −0.07 2.8− 3.3
polynomial c0 = 239338.3051 3.3− 3.5

c1 = −352957.4505
c2 = 208150.2682
c3 = −61359.74221
c4 = 9041.488172
c5 = −532.7635118

N shell N shell Morse De = 0.93078550 0.0− 3.7
a = 2.3885
re = 2.44469

polynomial c0 = −4134.971889 3.4− 4.2
c1 = 5268.685067
c2 = −2683.064126
c3 = 682.5077857
c4 = −86.71401114
c5 = 4.401867951

C6r
−6 term C6 = 97.0 4.2− 15.0

N shell spring k2 49.500407 0.0− 0.5
N shell spring k4 50 000 0.0− 10.0
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11 Appendix II - basis set and pseudopoten-

tials for ChemShell calculations

11.1 Gallium

11.2 Region 1 basis set and associated ECP

11.2.1 Basis set

Based on SBKJC VDZ ECP [14] (most diffuse function removed, another

function uncontracted relative to the originally published basis set):

L Ga

-0.0017110 113.9000000 -0.0080460

-0.8230360 9.1550000 -0.3574320

0.4586180 6.6330000 0.6637940

1.1618170 2.2780000 0.7136190

L Ga

1.0 2.1230000 -0.0962610

L Ga

1.0 0.1939000 1.0175730

L Ga

1.0000000 0.8818000 1.0000000

D Ga

0.0288770 70.4300000

0.1662530 21.0500000

0.4277760 7.4010000

0.5704100 2.7520000

D Ga

1.0000000 1.0260000

D Ga

1.0000000 0.3907000
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11.2.2 ECP

Based on SBKJC [14]

2 10

1

1 -3.8736300 26.7430200

3

0 4.1247200 3.4653000

2 260.7326300 9.1113000

2 -223.9600300 7.8932900

2

0 4.2003300 79.9935300

2 127.9913900 17.3911400

11.3 Region 2 ECP

Based on Stuttgart RLC ECP (no f function), [48]

3 0

1

2 0.000000000 1.000000000

1

2 43.853972000 5.215960000

1

2 156.103390000 4.308904000

1

2 1.031647000 0.496357000

11.4 Peterson TZV basis set

Based on [46]

S Ga

0.000064 11929.2
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0.000473 1783.70

0.002055 378.467

0.120290 29.6623

-0.463392 14.2332

0.744384 2.68739

0.450596 1.15096

0.020785 0.256164

-0.009249 0.122874

0.002291 0.053468

S 10 1.00

-0.000018 11929.2

-0.000123 1783.70

-0.000610 378.467

-0.031264 29.6623

0.126869 14.2332

-0.257857 2.68739

-0.286726 1.15096

0.356828 0.256164

0.571150 0.122874

0.245237 0.053468

S Ga

1 0.256164

S Ga

0.122874 1 0.122874

S Ga

1 0.053468

P Ga

0.000117 648.311

0.002102 103.324

-0.081044 21.0066

0.371433 5.03412

0.501425 2.29458

0.240806 1.01078
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0.018440 0.326569

-0.002056 0.117329

0.000711 0.041273

P Ga

-0.000025 648.311

-0.000313 103.324

0.014067 21.0066

-0.072662 5.03412

-0.103072 2.29458

-0.049176 1.01078

0.225329 0.326569

0.551737 0.117329

0.379164 0.041273

P Ga

1 0.3095

P Ga

1 0.0458

D Ga

0.002208 197.818

0.022023 61.9417

0.082915 24.7533

0.205399 10.6163

0.327835 4.68831

0.358575 2.03904

0.260599 0.849124

0.088355 0.320558

D Ga

1 0.320558

D Ga

1 0.1102

F Ga

1.0 0.3015
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11.5 ECP associated with Peterson TZV basis set

Based on [47]

4 10

1

2 0.000000 1.000

2

2 370.273040 25.880361

2 9.190615 7.901295

4

2 99.144001 45.149190

2 198.295512 44.979981

2 28.445653 17.224251

2 56.949705 16.747329

6

2 -18.168797 51.968812 2 -27.380273 51.629117

2 -1.587022 15.241738

2 -2.516292 15.320193

2 0.083166 4.918589

2 0.202198 4.755103

2

2 -0.616990 10.762263

2 -3.138584 19.852939

11.6 Nitrogen

11.6.1 Basis set

Based on Def2-TZVP [15]

S N

0.21887984991E-03 19730.8006470

0.16960708803E-02 2957.8958745

0.87954603538E-02 673.22133595

272



0.35359382605E-01 190.68249494

0.11095789217 62.295441898

0.24982972552 22.654161182

S N

0.40623896148 8.9791477428

0.24338217176 3.6863002370

S N

1.0000000 0.84660076805

S N

1.0000000 0.33647133771

S N

1.0000000 0.13647653675

P N

0.55552416751E-02 49.200380510

0.38052379723E-01 11.346790537

0.14953671029 3.4273972411

0.34949305230 1.1785525134

P N

1.000000 0.41642204972

P N

1.0000000 0.14260826011

D N

1.0000000 1.65400000

D N

1.0000000 0.46900000

12 Appendix III - GaN luminescence lines

and bands
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Table 49: Luminescence lines and bands (eV) for GaN.Continued on next
page. From Luminescence properties of defects in GaN, M.A.Reshchikov, H.
Morkoc, J.Appl.Phys.97, 061301 (2005)

Maximum position (eV) Doping Comment
3.478 Undoped
3.471 Undoped, Si A few close lines
3.466 Undoped,Mg Best FWHM <0.1meV
3.44-3.46 Undoped Plethora of lines
3.455 Zn A weaker peak at 3.39eV
3.45-3.46 Undoped Correlates with inversion domains
3.41-3.42 Undoped
3.397 Be e-A type
3.387 Undoped
3.38 Undoped
3.38 Be DAP type
3.37-3.38 Undoped
3.375 Undoped
3.364 Zn
3.35-3.36 Undoped
3.34 Undoped
3.30-3.32 Undoped
3.295 Undoped
3.288 Undoped
3.283 Undoped
3.28 Undoped e-A type
3.272 Zn
3.27 DBE in cubic GaN
3.26 Undoped, S DAP type
i 3.1-3.26 Mg e-A and DAp
3.21-3.23 Undoped
3.16 Shallow DAP in cubic GaN
3.08 Undoped
3.08 C In cubic GaN
3.0-3.05 C Broad
2.9-3.0 Undoped, Fe Broad, unstable intensity
2.9 P Broad, with fine structure
2.88 Undoped Broad, with fine structure
2.88 Zn Broad, with fine structure
2.86 Undoped
2.8 Undoped
2.8 Cd Broad, with fine structure
2.7-2.8 Mg Broad, large shifts
2.6-2.8 Undoped Broad, surface related
2.68 Undoped
2.6 As Broad, with fine structure
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Table 50: Luminescence lines and bands (eV) for GaN, continued.From
Luminescence properties of defects in GaN, M.A.Reshchikov, H. Morkoc,
J.Appl.Phys.97, 061301 (2005)

Maximum position (eV) Doping Comment
2.6 Zn Broad
2.56 Undoped Broad
2.51 Undoped Broad
2.5 Ca Broad
2.4-2.5 Mg-O Broad
2.48 Undoped Broad
2.43 Hg Broad
2.36 Undoped Broad
2.2-2.3 Undoped, C Broad
1.9-2.1 C Broad, in cubic GaN
1.8-2.0 Undoped Broad
1.85 Undoped Broad
1.8 Zn Broad
1.7-1.8 Mg Broad
1.66 Undoped Broad
1.64 C Broad
1.3 (Fe) Sharp
1.27 Mn Broad
1.193 (Ti, Cr)? Sharp
0.95 Undoped Sharp, irradiation induced
0.85-0.88 Undoped Sharp, irradiation induced
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