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Abstract. We present three open problems in the mathematical modelling of
the flow of non-Newtonian fluids. The first problem is rather long standing: a
discontinuity in the dependence of the rise velocity of a gas bubble on its volume.
This is very well characterised experimentally but not, so far, reproduced either
numerically or analytically. The other two are both instabilities. The first is
observed experimentally but never fully predicted analytically or numerically. In
the second instability, numerical studies reproduce the experimental observations
but there is as yet no analytical or semi-analytical prediction of the linear
instability which must be present.

1. Introduction

The major open question regarding non-Newtonian fluids is very simple: what
equations should I use to model this fluid? This is not a mathematical question
but addresses issues of physics, chemistry and engineering. However, it lies at the
root of many of the mathematical problems presented in this paper.

Each of the problems which follows is essentially of the same form: a physical
phenomenon which we have not yet successfully modelled. In one case the phenomenon
has been reproduced by numerical simulation, which allows us to be certain that
we have chosen the “correct” equations (though there is almost certainly more than
one “correct” set); nonetheless, we do not have a mathematical (and hence physical)
understanding of what is going on. In other cases, the open problem includes selection
of a fluid model as well as solving the resultant equations.

Any incompressible fluid model can be specified using the following equations of
motion, in which we introduce the variables u, the fluid velocity; p, the pressure; s,
the stress tensor; and sp, the polymer extra stress tensor; and the parameters ρ (fluid
density) and ηs (solvent viscosity, which may be set to zero). The variables may all
depend on both position and time, t. We have mass and momentum conservation:

∇ · u = 0, ρ [∂t + (u · ∇)]u = ∇ · s, (1)

and the definition of the polymer stress (in which I is the identity tensor and
E = 1

2 (∇u+∇u>) the velocity gradient tensor):

s = −pI+ 2ηsE+ sp. (2)

To complete the model we need the constitutive equation which governs the evolution
of sp as a function of the flow history, and determines the fluid properties. The
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examples we see in this paper (which are all appropriate for dilute polymer solutions
rather than melts) may all be represented by the following generic equation:

sp + λ
∇

(fsp)= −
∇

(ηpgI) (3)

in which λ is the relaxation time, ηp the polymer viscosity, and the upper-convected
tensor derivative is defined as

∇
A= [∂t + u · ∇]A− (∇u)> ·A−A · ∇u. (4)

We can extract many standard models from this generic form: in particular, the
Oldroyd B (OB) and Upper Convected Maxwell (UCM) models (UCM is the special
case of OB with ηs = 0), and two FENE models based on Finitely Extensible
Nonlinearly Elastic dumbbells: FENE-P and FENE-CR. The parameters for these
three models are given below.

OB: f = g = 1 (5)

FENE-P: f =
g

a
=

L2 − 3

L2 + (λ/aηp) tr(sp)
a =

L2

L2 − 3
(6)

FENE-CR: f =
L2 − 3

L2 + (λ/ηp) tr(sp)
g = 1 (7)

where, in the FENE cases, L is the dimensionless length of the finite dumbbell.
The upper-convected derivative (4) is the derivative appropriate for line elements:

an infinitesimal line segment dl whose ends advect passively with flow will produce a
tensor 〈dldl〉 whose upper-convected derivative is zero. This is exactly equivalent to
the usual material derivative (as seen on the left hand side of the momentum equation,
for example), which is zero for the position of a passively advecting fluid point. As such
(4) appears naturally in fluids which are derived from microscopic models involving
dumbbells. In particular, the OB model can be derived by treating each polymer
molecule as an isolated dumbbell of two beads connected by a spring (and neglecting
hydrodynamic interactions between the beads) with a Hookean spring law.

The OB model [1] is one of the simplest of constitutive models to be a reasonable
model for some specific polymer solutions. Under shear flow, it has a constant shear
viscosity ηs+ηp, and a positive first normal stress difference (defined as N1 = sxx−syy
if the flow is in the x-direction with flow gradient in the y-direction) which depends
quadratically on the shear rate. These two facets are matched rather well by so-
called Boger fluids, in which a polymer is dissolved at low concentrations in a solvent
consisting of short-chain polymers or monomers of the same material. However, in
extensional flows OB has a serious problem: at a critical flow rate the resistance to
flow diverges, and at higher rates an anomalous negative viscosity is produced, which
is unphysical.

The FENE models shown in equations (6–7) were introduced to address this
problem, which results from the Hookean dumbbells of the OB model being stretched
to their full extent. The function f describes a nonlinear spring law with a finite
maximum extension L, and the FENE-P model [2] is derived directly from the
dumbbell model with this nonlinear spring law. The derivation is no longer perfect
(a preaveraging assumption needs to be introduced to close the set of equations)
but this is the logical next modelling step after OB. In shear flow it shows mild
shear-thinning (the shear viscosity decreases with shear rate, which is a common
physical phenomenon), and in extensional flow the anomalous negative viscosity has
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been eliminated; the viscosity increases with flow rate but does not asymptote to
infinity at a finite flow rate.

Finally, the FENE-CR model [3] is slightly more empirical. The function g, which
naturally corresponds (apart from a scaling factor) to the nonlinear spring law f in
the derivation of FENE-P, is modified to artificially eliminate shear-thinning. The
model still avoids the unphysical problems of OB in extensional flow, and although
it is not microscopically derived, is very useful in modelling to separate the effects of
shear-thinning from truly elastic effects such as the first normal stress difference and
a high extensional viscosity.

1.1. Dimensionless groups

In seeking to clarify the mechanism of any phenomenon, it is helpful to make the
governing equations dimensionless. If we choose a lengthscale L, velocity scale U , and
timescale T (which may not be equal to L/U) based on the physical scenario, we have
a natural viscous stress scale ηU/L (introducing η = ηs + ηp for the total zero shear
viscosity). We can then form several standard dimensionless groups related to the
flow, shown in table 1.

Reynolds number Re = ρUL/η Ratio of inertial to viscous forces
Weissenberg number We = λU/L Ratio of elastic to steady viscous terms
Deborah number De = λT Elasticity relative to flow time

β = ηs/η Ratio of solvent to total viscosity
L Dimensionless length of FENE dumbbell

Table 1: Dimensionless groups in viscoelastic fluid mechanics.

Of these groups, the Reynolds number Re will be familiar to those working
in Newtonian fluid mechanics. This will be the least important group in the
discussions which follow, as I have chosen phenomena which cannot be reproduced
using Newtonian fluids and thus cannot be driven by inertia alone.

2. The rise velocity jump discontinuity for a gas bubble

Consider a gas bubble rising through a viscoelastic fluid. Whatever initial transients
there are, there will be a long-term average rise velocity which one can plot against
bubble volume. The resultant plot shows a very sharp rise which effectively represents
a discontinuity, as shown in the experimental results of figure 1a. This phenomenon
was first studied by Astarita & Apuzzo in 1965 [4] and has been the focus of intense
study ever since.

There is good experimental evidence of a correlation between the size at which we
see the velocity discontinuity, and two related observations: a cusp on the trailing end
of the bubble [5], and a negative wake behind the bubble [6]. The negative wake is a
recirculation behind the rising bubble in which the fluid is locally moving downwards
relative to the quiescent fluid far from the bubble. These two phenomena appear at
around the same time, but cannot be inextricably linked as the negative wake can
also be created behind a solid sphere [7]. The negative wake alone does not cause the
discontinuity, as falling solid spheres show no such phenomenon. However, the most
recent work on this subject, by Lind & Phillips [8], suggests that the cusp alone is also
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(a) Experimental results. (b) Schematic bubble shape.

Figure 1: (a) Measured rise velocity UT of a gas bubble in a dilute polymer solution,
plotted against bubble volume V . Taken from figure 6 of [5] with permission. (b)
Schematic of the generic shape of a cusped bubble. From the side the cusp is sharp;
from the front it has a 2D, blade-like profile.

insufficient to predict the velocity discontinuity: their simulation method captures
many aspects of bubble dynamics, including the trailing cusp, but its formulation
explicitly excludes the formation of a negative wake and they did not see any velocity
discontinuity. This work [8] uses the UCM model (5); another recent paper [9], using
the OB model (like UCM except that ηs 6= 0) did predict the jump discontinuity
using a numerical scheme which captures both the cusp and the negative wake. The
introduction to [8] provides an excellent and thorough review of the history and current
state of play for this phenomenon.

Because of the essential presence of a free surface to reproduce the velocity
discontinuity, there is an extra ingredient to this problem compared to the other
two. In addition to the governing equations (1–7), we need to specify the jump in
normal stress across the air-fluid interface. In general, this jump depends not just on
the stress in the fluid matrix, but also on surface tension, described with coefficient
σ. The final boundary condition for this problem becomes:

s · n = [−pg + σκ]n at the interface, (8)

in which n is the unit normal to the interface, κ the curvature of the interface, and
pg is the pressure inside the bubble. The introduction of an extra physical parameter,
σ, introduces a further dimensionless group in addition to those shown in table 1: the
Capillary number, Ca = ηU/σ, which is the ratio of viscous stresses to surface tension.

To some extent the cause of the sharp cusp behind the bubble is intuitively
obvious: polymer molecules which become stretched by the flow around the bubble
tend to align behind it, naturally “pulling” the soft gas surface of the bubble
backwards. Surface tension acts to counteract this effect, which accounts (very loosely)
for the size dependence, as the polymer stretch will increase with increasing bubble
size (and hence speed), whereas surface tension effects are larger for smaller bubbles
with a smaller radius of curvature. However, there is little physical understanding of
the negative wake, nor of the acceleration that takes place when the trailing cusp first
appears.
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3. Helical instabilities upstream of a contraction flow

Contraction flows occur in many polymer manufacturing processes, as molten polymer
is extruded to form (ideally) a smooth, uniform thread. However, like so many flows,
contraction flows can be subject to instabilities. This iconic, and as yet unexplained,
instability was first observed by Nguyen & Boger in 1979 [10] using a dilute polymer
solution: in figure 2a we see images from page 361 of that paper (which also appear
in [11]), taken upstream of a cylindrical 8:1 contraction. A steady, axisymmetric flow
would be left-right symmetric in the laser-sheet images shown here. In the first image
the vortex on the left dominates; in the second, that on the right dominates. The
third and fourth images do not show the large vortices. Essentially an asymmetric
pattern as seen in the first figure is rotating about the central axis: the final two
images show a different cross-section of the flow pattern from the first two. The fluid
used in their experiments [10] was a dilute polyacrylamide solution, which should be
well modelled by a FENE dumbbell model such as those presented in (6–7). A more
recent observation of the same phenomenon may be seen in [12].

(a) Dilute solution. (b) Polymer melt.

Figure 2: Helical instabilities in extrusion. (a) Helical instability in a dilute PAM
solution upstream of an 8:1 contraction. The images are taken at different times.
Taken from [10], page 361. (b) Helical extrudate following extrusion of a linear silicone
oil through a cylindrical orifice die. Taken from figure 6 of [13].

There is a related, but possibly different, instability in polymer melts (which have
a very different fluid rheology). As flow speed is increased in die extrusion, the first
bulk (rather than surface) distortion seen in the extrudate is often helical in form, as
seen in figure 2b. It has long been proposed (White [14, 15]) that the origin of this
helical distortion is a spiral fluid instability upstream of the contraction.

Perhaps it is because of the inherently 3D nature of these instabilities (helical
disturbance around an axisymmetric flow), but as yet there has been no analytical
or numerical reproduction of either instability. There is a large literature of planar
simulations of entry flows, but to my knowledge no fully three-dimensional studies
which could capture this phenomenon. The critical mechanism must depend on the
elastic stresses created in the polymer fluid; at this stage it is not possible to speculate
further on the mechanism (or mechanisms) of instability.
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4. Symmetry-breaking instability in the cross-slot device

(a) Experiments. (b) Computation: flow. (c) Bifurcation diagram.

Figure 3: Asymmetry in a cross-slot device. (a) Experiments with a polyacrylamide
fluid, taken from figure 1 of [16]. The fluid entering from the left is preferentially
leaving by the top outlet. (b) Numerical simulation using the FENE-CR model, taken
from figure 4(d) of [17]. (c) Numerical calculation of the dependence of the asymmetry
parameter DQ on dimensionless flowrate De for the FENE-CR model with ηp = 9ηs,
L2 = 100 (as in (b)). The Deborah number is defined here as De = λU/d where U
is the average velocity across each of the inlet channels, and d is the width of each
channel. Data taken from table 2 of [17].

The phenomenon here is a symmetry-breaking instability. It was first observed by
Gardner et al [18], and forgotten for many years, but recently rediscovered by Arratia
et al [16] using a polymer solution in a micro-scale apparatus (in which inertia can be
neglected). The geometry is a cross-slot device, as illustrated in figure 3, in which fluid
enters through two opposing channels (say, at the left and right) and leaves through
the other two (say, top and bottom). At very low flow rates the flow is steady and
symmetric; at higher flow rates it is observed to become asymmetric, as shown in
figure 3.

This instability has been reproduced numerically by Poole and coworkers [19, 17]
using both the UCM model of (5), which is an unsatisfactory model for any extensional
flow, and the two FENE models described in (6–7). If we denote by δ the proportion
of the fluid leaving the top outlet which originated in the left inlet, the asymmetry was
parametrised using DQ = 2δ−1; the results look like a textbook pitchfork bifurcation.
However, as yet there is no prediction (numerical or analytical) of the corresponding
linear instability beyond the bifurcation point. The closest attempt to date is an early
work by Lagnado et al. [20], who found an instability in the idealised flow at the
centreline (plane strain without the influence of the walls) for an OB/UCM fluid, but
only for relatively short waves out of the plane of flow, whereas the perturbations seen
here all lie within that plane.

Physically, it seems that the driving force for the symmetry-breaking is the natural
need of the system to find the least dissipative flow solution. The highly-extended
polymers produced at the stagnation point of the steady, symmetric flow can store
elastic energy and produce a central strand which feels almost solid to the surrounding
fluid, effectively separating the outgoing channel into two half-width channels, causing
much more viscous dissipation than the equivalent flow through a single side channel.
The asymmetric states have two advantages. First, the outflow is effectively split into
a wide channel and a narrow channel in each slit, which can (between them) produce a
greater flow for the same viscous pressure drop than two half-width channels. Second,
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and perhaps more important, the stagnation point changes its nature and becomes
the centre of a small region of shear flow, which produces much lower elastic stresses
than steady strain for the dumbbell models used here. Thus at least two physical
mechanisms can be postulated by which the system flows more effectively after the
bifurcation. Which is the correct one remains an open question.

5. Discussion

This paper has presented a small selection of open problems in non-Newtonian fluid
mechanics. It is not intended to provide a comprehensive list, or a really full
description of each problem; it is simply an overview of my personal selection of
interesting problems. Arguably, some of these are physical rather than mathematical
problems; nonetheless, they all have an applied-mathematical aspect: the problem lies
in constructing a predictive mathematical model that captures these phenomena. I
hope that the descriptions I have given here will prompt some readers to follow up
the references and bring their own expertise to this exciting area.
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