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Abstract

This thesis studies the dynamics of Feshbach molecule ptiodgurom a gas of
ultracold spin polarised Fermi atoms. A magnetic field isiusevary the strength
of the interaction between the atoms exploring the limitsvefkly paired atoms
and tightly bound diatomic molecules. A mean field approxiomais used to
study the thermodynamics and dynamics of the system.

The two-body interaction is modelled using a separableniatiethat repro-
duces the near threshold behaviour of the system close teld&eh resonance.
For atoms in the same internal state interactions occurarpitvave, such that
they have one quanta of relative orbital angular momentumX). The presence
of a magnetic field fixes a quantisation axis for this angulameantum, leading
to a splitting of the resonance feature into three compa@ndhis shown that in
certain cases these components may be treated separabethantwo-body and
thermodynamic level. Consequently the many-body dynaareslso treated as
if these components are distinct.

In order to study molecule production the gas is preparedstai@ similar to
the Bardeen-Cooper-Schffier (BCS) state in a superconductor. A linear sweep
of the magnetic field through a Feshbach resonance is useavert the weakly
paired atoms into tightly bound molecules. The variatiothefmolecule produc-
tion efficiency is studied as the initial temperature, densityahitnagnetic field
and final magnetic field are varied. Also studied is the vameabf molecule pro-
duction as a function of the rate at which the magnetic fieldarged. It is shown
that high densities are needed to explore a range of initedmatic fields and
sweep rates.
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Chapter 1

Introduction

In this chapter we lay the foundations for discussing thesgsybehind
p-wave Feshbach molecule formation. We give a general intitioh to the
subject of cold gases and where the field stands in relatiathter areas of
physics. In particular we look at Fermi gases of ultracotdreg and compare
them to condensed matter systems. We briefly look at the sutj¢he BCS-
BEC crossover and why it has sparked interest in the physicgrnity. We
discuss some of the ways to cool and applications of cold cotds. Lastly
we look at Feshbach resonances and introduce some exp&siretive to
the later content of the thesis. In particular we loolpatvave Feshbach reso
nances angb-wave molecule formation in ultracold gases.

1.1 Quantum matter

Quantum statistics are an essential tool in our modern stateting of the way
the universe works. The restrictions imposed by them helfp usiderstand the
structure of matter at the microscopic level and the intevas that take place on
that scale. The statistics that are derived in quantum nmechare diferent from
those which govern classical mechanics and for this redsmngeem unfamiliar
and at odds with our everyday experience. However, it isetlsémnge laws that
are directly responsible for the macroscopic world we searat us.

We would describe a classical gas using the Maxwell-Boltemdistribu-
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tion [5] which assumes that in principle every particle cangiven a label that
is distinguishable from every other particle; a view thakesmsense to us in our
everyday lives. With the birth of quantum mechanics it beeavious that the
Maxwell-Boltzmann distribution could not account for @nt phenomena; for
example, the distribution of electrons in atomic orbitalfie explanation of the
blackbody radiation spectrum provided by Planck [6] gavdydadications of
the non-classical behaviour of matter. Planck assumedréryg spectrum of a
black body would be discrete and was thus able to derive meds blackbody
formula. It was the work of Bose [7] and Einstein [8] that exded this idea to
an ideal gas of identical Bose atoms and by considering th&eu of particles
in each mode they showed that at d&®iently low temperature and high density
the lowest mode would be populated by a significant fractibthe gas. This
phenomenon has become known as Bose-Einstein condengsgmnfor exam-
ple [9, 10]). However, this is not true for all gases of pdetsc For a gas of identi-
cal fermions there can only ever be one particle per singtécpastate [11]. For
this reason there will never be more than one particle indivest energy state. It
would be a natural assumption that in some ‘classical lith#’quantum statistics
are well approximated by the Maxwell-Boltzmann statistvelich is the case, for
example, at high temperature.

What is seen in fermions (particles with half-integer spsa manifesta-
tion of the Pauli exclusion principle which states that wawections of identi-
cal fermions must be antisymmetric with respect to exchasfggpace or spin
variables [11]. For identical bosons (particles with irgegpin) the wave func-
tion must be symmetric. It is these statistics that lead ter@sting non-classical
physics.

In general, quantum matter refers to a substance in a stageevguantum
effects dominate over any others (e.g. thermal). One way ofodxp these
guantum €&ects is to cool the system down in order to ‘freeze’ out theiomodf
the particles so that the only processes that can take pla¢kase that are due to
guantum mechanics. Examples of quantum matter includéligelium, super-
conductors and ultracold atomic gases [12]. These exanghes an important
difference that we have neglected in the above discussion, Wwaghbnly strictly
referred to ideal gases where the particles are non-iritegaclt turns out that
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interactions between particles can significantlieet the behaviour of a system
even when the interaction is very weak. Interactions are ialportant in an ex-
perimental sense since they are required to thermalizeyters in order to cool
it down to the point where the quantum nature of the substeacde explored.
All of the examples just given require the presence of imtoas to realise them
experimentally. However, recent advances in experimeetiiniques enable ex-
perimentalists to probe degenerate Fermi gases with aeed@ntrol hitherto
unknown. For this reason they have attracted much atteotrenrecent years,
rewarding researchers with a wealth of new physics.

The physics of ultracold Fermi gases shares many propeviie®ther Fermi
systems. For this reason we start with a very broad intrecludd systems of
Fermi particles which should be familiar to an undergradsadent. This allows
us to make some comparisons between ultracold Fermi gadestiaer systems
of fermions.

1.1.1 Degenerate Fermi gases

An ideal gas of identical fermions will obey Fermi-Dirac tstéics. This means
that the number of particles per single particle state vélpiven by [5]

1

n(T,E) = FEN L1

(1.2)
Here, = 1/kgT, wherekg is Boltzmann’s constant ant is the temperature of
the gasE is the energy of the single particle state and the chemical potential
of the gas. At zero temperature this becomes the step functio

1 E<u

: 1.2
0 E>u 12

n(0,E) = {
In this case the chemical potential is referred to as the Femergy,Er, which we
have assumed to be positive, and all the single particlestat occupied by one,
and only one, particle up to the Fermi energy. This is retetoeas a degenerate
Fermi gas. At finite temperatures the situation will not besisople. The distri-
bution function will deviate from the step function with measing temperature.
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This smooths the Fermi distribution about the chemical modé which at finite
temperature will no longer be equal to the Fermi energy. Astémperature is
increased further the Fermi distribution will approach lihet
1

(e, E) = 2. (1.3)

assuming that the chemical potential remains fixed andipesiiThis does not
correspond to the classical limit described by MaxwelliB@lann statistics. For
Maxwell-Boltzmann statistics to be valid we require that

EH > 1, (1.4)

This same condition also has to be fulfilled for gases of bedorbehave as a
classical gas. This limit is achieved for high valuesTgofprovided the factor
(E — w) is positive.

1.1.2 The Fermi Liquid

The previous discussion refers only to a system of nonaieterg fermions. When
interactions are introduced further phenomena arise dtetquantum statistical
properties of the particles. A weakly interacting systerir@imi particles is com-
monly referred to as a Fermi liquid, the theory of which wastfaeveloped by
Landau [13, 14, 15, 16]. The foundation of this theory is tasider the excited
states of the macroscopic system as a collection of elemyagaitations, referred
to as “quasi-particles”, that are free to move in the volurceupied by the sys-
tem. Itis also assumed that the classification of the enexgld does not change
when adiabatically going from a non-interacting system teeakly interacting
system. It can be shown that the quasi-particles that now tbe system have a
similar distribution function to that of the non-interagisystem, specifically,

1
n(T, E[n]) = m (15)

Here,e[n] is the quasi-particle energy and is itself a functionapetedent on the
specific density distribution. Again, a Fermi energy lewel, will exist up to
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which all the energy levels are filled and this energy levél, wi general, not be
the same as for the non-interacting system. This allowsfiactese mass to be

defined for the quasi-particles,
_ P
= v

m* (1.6)
Herepr = V2m*e: is the Fermi momentum ang: = g—gp:pF is the velocity of
the quasi-particles on the Fermi surface. THeaive mass can then be used to
determine the thermodynamic properties of the liquid bya@pg the mass in the
thermodynamic relations for the non-interacting gas byeffextive mass.

Interactions between quasi-particles can be considerbdvinthey d@fect the
quasi-particle energy spectrum

6e(p) = f d*p’f (p, p)on(p’), (1.7)

where the functiorf (p, p’) is the second variational derivative with respecéito
of the total energy of the system per unit volume (see, fongpta [16]). Explic-
itly, this equation implies that a change in the densityribstion of the particles
will give rise to a change in the quasi-particle spectrumis lilso based on the
assumption that the quasi-particles move in a self-castisield due to the other
quasi-particles. This is also true of non-equilibriumesadf the system where the
density distribution may also depend on spatial positiahtane. It can be shown
that at a low enough temperature sound waves can propagaigkithe medium
despite the fact that thermodynamic equilibrium is notladgthed locally, a phe-
nomenon known as zero sound. Quite how the density disimibu$ afected
by the presence of interactions requires the use of the penpdrature Green’s
function method. It was shown by Migdal [17, 18] that the prese of interac-
tion perturbs the Fermi distribution at zero temperatuoe.vieeak interactions the
Fermi surface does not completely disappear and remaihsigfeied. A detailed
discussion of these ideas will not be reproduced here, leytdhe introduced in
order to emphasise the importance of interactions in Feystess even at zero
temperature. For a more detailed discussion the readerdsted towards the
literature (for example [16]).
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1.1.3 Fermi systems in nature

For an isotropic ideal gas of fermionic particles in an irtérthree-dimensional
square well it can be shown that there is a relationship betwiee volume of the
box, V, the number of particledy, and the value of the Fermi energy,

Er

2/3
2 (3712N) . (1.8)

~om\ TV

This equation holds in the thermodynamic limit & oo, V — oo with % remain-
ing constant). We can also define the Fermi temperature 1¢ BeEg /Kg.

From the above relations we can get some idea of to what esyst¢ms of
Fermi particles can be considered a degenerate Fermi gas filss example we
can consider the free electrons in a metal and assume thaleitteons are non-
interacting. From Eq. (1.8) we can immediately guess thaE#rmi energy, and
hence Fermi temperature, is going to be high, unless thetgengery small, due
to the small mass of the electron. Now, the free electronitieinscopper is about
8.48 x 10?8 m~3 which means that the Fermi temperature comes out on the order
of 10* K. By putting this number into the Fermi distribution furami shows that
at room temperature ( 296 K) the function only deviates fromvtalue 1 or O for
energy levels with+3 % of the Fermi energy. In other words the distribution of
electrons in a metal at room temperature is near to that ofjardate Fermi gas
(See the solid blue line in Fig. 1.1).

Another naturally occurring Fermi system is a white dwaaf.sWhite dwarf
stars are very high density systems as they have a mass amléreba solar mass
but radii on the order of 16 solar radii. Under such conditions the electrons no
longer bind to individual nuclei. The density of electronsa white dwarf far
exceeds that of metals at roughly®ion~3. This gives a Fermi temperature on
the order of 18 K. The internal temperature of a white dwarf is roughly X0
meaning that the distribution of electrons will once agdasely resemble that of
a degenerate Fermi gas (see the dashed red line in Fig. 1.1).

These systems are interesting to study in themselves, leo\wesy can be dif-
ficult to access. In a solid the electrons have a complicatedyy structure. The
way the electrons interact with the lattice in a metal is notal and may involve
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n(T,E)

0.4

0.2

\

0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 18 2

1
E/u
Figure 1.1: The Fermi distribution as a function ©fu, whereE is the single
particle energy levels and is the chemical potential, which in this case has be
taken to be constant and equal to the zero temperature Fasrgye The red,
dashed line corresponds to a ratioTaf/T ~ 10 (for example, a white dwarf
star). The solid, blue line corresponds to a ratioTef T ~ 10' (for example,
electrons in Copper at room temperature). The solid, bleekdorresponds to a

ratio of Te/T ~ 1078 (for example, an atomic gas K at room temperature).
The atomic gas can be seen to be highly non-degenerate ateogperature.
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complex scattering processes. This also makedficdit to have control over
the electron distribution in an experimental setting. Whiwarfs are also exper-
imentally unreachable for the time being. Ultracold Feresgs provide systems
that can be studied both theoretically and experimentaiti & high degree of
accuracy. The interactions between the atoms in the gassaeraly quite well
understood. The particles can also have few degrees otineethking scattering
processes relatively simple. Although the microscopicthefsystems discussed
here may dter considerably the macroscopics of the system can be guoniies
For this reason ultracold Fermi gases can be used to sinplieteomena in other
Fermi systems and perhaps help us gain a better undersgasfdimem.

1.2 Ultracold atomic gases

What about the Fermi energgmperature of an atomic gas that has the density of
air at room temperature? Assume that the density of air iserotder of 18

m~ and, for the sake of later discussion and the main focus dhtss, consider
40K, which is a fermionic isotope. In this case the Fermi terap@e comes out

as being on the order of 19K, so that the ratid’s/T is now on the order of 10.

The distribution function will now vary greatly from the gtéunction associated
with a degenerate Fermi gas, in particular for low enerdieslimiting value of

the distribution is (. In experiments performed on ultracold gases of atoms the
densities are generally below*0n2 giving a Fermi temperature on the order
of 10°® K and at room temperature the rafig/T is now on the order of 16
(see the solid black line in Fig. 1.1). In order to recover dmribution that it

is indicative of a degenerate Fermi gas in an atomic gas we twmancrease the
ratio Te/T to a value greater than one. According to Eg. (1.8) this caddre

by increasing the density of the gas, thus increasing theaiRemperature. This

iIs not always possible. The main reason for these gases beindgute in the
first place is to stop them forming solids. The main cause & ormation

is three body scattering processes. At the low densitiesheghin an ultracold
gas the probability of three body scattering is negligildelsat the gas state will
remain. Another way to increase the ratio is to decreasethpdrature of the gas.
Recently, experimentalists have developed techniqudsatitav atomic Fermi
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gases to be cooled to quantum degeneracy.

The subject of this thesis is molecule production in ultfdagases of spin-
polarised Fermi atoms. Specifically we consider the caseavhenagnetic field
that varies linearly with time is used to associate weaklyegohFermi atoms
into tightly bound bosonic molecules [19]. From a descvitpoint of view
this sounds like a relatively simple problem. However, tiggics underlying
the problem can be complex and relies on phenomena assbuwidtetwo-body
physics and emergent phenomena associated with many-hgdicp.

Motivated by recent experiments that have produced ulldanolecules from
single component Fermi gases [3, 20, 21, 22, 23] we studyculderoduction
under similar conditions at the many-body mean field levilisBpproach has the
advantage that it will include physics that is not includea itwo-body approach.
However, the mean field approximation will not account foitla physics in the
experimental system. Further progress could be made byogimgla Boltzmann
equation [24], which would be a natural extension of thiskvéior the conditions
we consider it should be possible to account for the majarftthe physics by
calculating the mean-field equations of the system.

We will see that there areftierences between modelling a system of fermions
where all the particles are in a single state and a systenrwiidas where the
particles are in two dierent internal states. The source of thif§aetence is the
Pauli exclusion principle which states that wave functiohgentical fermions
must be anti-symmetric with respect to exchange of any bkesa This #fects
the physics at a two-body level and consequentiigcs the physics at a many-
body level.

1.2.1 Cooling and trapping atomic gases

The basic idea behind the cooling of atoms by laser lightlaixely simple. An
atom is subjected to two counterpropagating lasers suthh@drequency of the
lasers is detuned slightly below a resonance transitioménatom. When the
atoms move in the direction of one of the lasers the Doppliérshl cause it to
absorb photons from that direction. The photons will therebmtted randomly
so that their velocity in the direction of the laser will dease. Applied to a gas
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of atoms this will cool the gas [9].

In practise the cooling of atoms is a very complicated anlrteally demand-
ing procedure. Trapping the atoms so that they are able yarstae path of the
laser long enough to cool them is one of the hurdles that naust/brcome. Usu-
ally a magneto-optical trap is used to do this. Given thataioens are now in a
magnetic field, a knowledge of their Zeeman structure besa@sasential to under-
standing how they will behave. In fact it was shown that therdan structure can
be used to cool atoms to below the Doppler limitimposed bgrlasoling alone,
a technigue now known as Sisyphus cooling [25]. The subjetaser cooling
and the trapping of atomic gases is vast and is mentionedd@mvide a back-
ground to the means by which atoms are cooled and the comslitioder which
experiments take place. The basics of laser cooling areredve undergraduate
textbooks [11] and several more advanced text books arlbiabn the subject,
for example [26].

The first laser cooling experiments were performed in 1978&Igrions [27]
and Bd ions [28]. These charged particles could be confined in atreddield
configuration known as a Penning trap. The task still renthioecool neutral
atoms that could not be contained in a Penning trap and didhancg the long-
range potential associated with an ion. This would meangaind then trapping
the atoms in contrast to how ions had been trapped. Initimias focused on
solving two major problems: optical pumping and the chagdboppler shift.
Optical pumping is due to the fact that the simplified modelgkr cooling has
assumed that an atom is a two level system. This is not theazabé can be
possible for the atom to be put in a state that shiitshe further absorption of
photons, thus precluding further cooling. This can be sbhieusing a repumping
laser to put the atoms back into the correct states to alletlidu cooling. The
changing Doppler shift is due to the slowing of the atoms &y ttool. This
means that a once resonant transition becomes inaccesbibkEom is seeing a
different frequency of light. One solution to this was to charngeftequency of
the laser light to keep at the resonance frequency of thes@® 30, 31, 32, 33].
The other solution is to change the energy of the atomic $ewith a magnetic
field to match them to the frequency of the laser [34, 35, 3033638, 39].

Neutral atoms can still possess a magnetic moment whiclvsltbe atoms
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to be trapped by a magnetic field. A variety offdrent magnetic field config-
urations have been used to trap neutral atoms [40, 41, 421443,0ne of the

apparent limitations of laser cooling is the so-called Depfimit which arises

due to the equilibrium between the laser field and the speotamemission rate
of the atoms. This means that the atoms can only be cooled.sBvaence for

cooling below the Doppler limit was observed [25] but notiadly understood.

Further experimental and theoretical investigation leadrt explanation of this
occurrence [45]. The basic solution is that the atom is noial¢vel system, but
has two possible ground states. As the polarisation of ther leght varies spa-
tially it is possible to show that the potential an atom elgrares is essentially an
infinite hill against which it continually loses energy. $hs known as Sisyphus
cooling after the mythological Greek character condempe@peatedly push a
boulder up a hill only to have it roll down again. The succefthese cooling

methods, as well as the use of evaporative cooling, has tetltetachievement
of Bose-Einstein condensation [46, 47] in neutral atomstaedonset of Fermi

degeneracy a few years later [48]. Consequently Nobel prizre awarded in
1997 for contributions to laser cooling and in 2001 for theieagcement of Bose-
Einstein condensation.

1.2.2 Ultracold Fermi gases as superfluids

The phenomenon of Bose-Einstein condensation (BEC) isctensed by a macro-
scopic occupation of the ground state of a many-particléesyssuch that the
number of particles in the ground state is of the same ord#éreasumber of par-
ticles in the system [9, 10]. Bosons enter this region of tuardegeneracy when
the interparticle spacingy /3, becomes comparable to the thermal de Broglie

wavelength of the particles,
2nh?
Ar = : 1.9
r= Ve (1.9)

For a trapped gas the condensed fraction will now behave aperfhiid. An

estimate can be made for the temperature at which BEC ocCTis,~ ﬁ—znz/e’

and for*He this temperature turns out to be roughly 3 K, remarkaldgeto the
experimentally measured temperature of 2.7 K. The massgsiofs are generally




Introduction 24

within an order of magnitude of each other so it would be etgrethat the transi-
tion temperature for bosonic isotopes remains close testimate. However, the
density of an atomic vapour can be of the ordef?11D*® cm~3 as opposed to that
of liquid “He which is typically 18 cm3. This significantly lowers the transi-
tion temperature of the atomic vapour. We have already rnbigdhe degeneracy
temperaturekg, of electrons in a metal can be several thousand Kelvin, idut w
not display any superfluid properties until roughly the saemeperature at which
“He displays superfluidity. To summarise this we can make genison between
the degeneracy temperatuiig,.g, and the superfluid transition temperatiifga,
in bosons and in electrons in a metal (The term degeneragyeteture is here
used to describe bosons and fermions for comparative pespos

Bosons :TDeg ~ TTran,

Electrons in metal Tpeg > Tryan.

In 1986 Bednorz and Muller found that the compound_LBa,CuQ, was a su-
perconductor at 35 K [49] and soon compounds were found watisttion tem-
peratures of above 100 K. So now the rafigan/ Tpeg ~ 1072 for these so called
high-Tc superconductors. It should be noted that the exact physitsb these
high-T¢ superconductors is not yet fully understood. What is imgoairto note is
that the process believed to be behind all superfluidity inkkeattractive Fermi
systems is the formation of Cooper pairs. These are pairsuticfes that have
a binding energy due to many-bodffects. Remarkably this means that no two-
body bound state exists and the size of the pair can greatlyeekthe average
spacing of particles in the system. It is these pairs that domdense in a similar
way to a system of bosons to form the superfluid state. Theiglthe foundation
of Bardeen-Cooper-Schiter (BCS) theory of superconductivity [50] which has
had great success in describing the superfluid propertiesraii systems and will
be discussed in detail later. Up until now most of our disimushas focused on
systems of non-interacting particles but we have mentidhatdby adiabatically
turning on a weak interaction we can end up with a Fermi liguid the case
of superfluid Fermi systems this picture no longer appliethassingle particle
spectrum varies greatly from that of the non-interactingtsyn. The many-body
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binding energy we have discussed provides a gap in the espegptrum, which
is equal to the energy required to break a pair and, althoogictual two-body
bound state is present, it is necessary for the particleate An attractive inter-
action. The superfluid state is one of the ways in which twdylateractions can
lead to interesting many-body behaviour.

So what about the transition temperature in dilute gasesrofibnic alkali
atoms? We have already noted that the Fermi temperaturegeneracy temper-
ature),Tg, of Fermi gases of alkali atoms is on the order of’1R at a density
comparable to that of air and will be even smaller at the lasessities for which
experiments are performed. It turns out that by using sled¢dteshbach reso-
nances the ratidan/Toeg Can be as large asDfor an ultracold gas of alkali
atoms. There is then some hope that the study of ultracoluiFgases can help
with our understanding of higfic superconductors. It should also be noted that
the existence of Feshbach resonances in gases of ultragaohibhs is essential
to studying this superfluid behaviour. Feshbach resonaaltms the interaction
strength between two atoms to be varied using a magnetiadiele extent that a
pair with a large spatial extent can be converted to a madewith a small spatial
extent [19, 51]. One importantfiierence between these two limits is that in the
first the average spacing of the atoms in the gas is less teaavtrage size of a
pair. In the other limit the average extent of the moleculmigh less than the
average distance between atoms. There is a region in wheclvidrage distance
between the atoms and the spatial extent of a pair will be ersdéime scale. This
limit is referred to as the crossover (or BCS-BEC crossdeemeasons that will
be explained later) region, which will be looked at in mor¢adldater. It is also
the case that electrons in higla-superconductors have a similar ratio of their pair
size to their interparticle spacing as the atoms in thisoregiAnother similarity
between these situations is that abdydoth are expected to form non-condensed
pairs. This is usually referred to as the pseudo-gap redratent studies have
provided evidence for this ‘pre-pairing’ in Fermi gases,[53]. There is also
evidence that above the transition temperature the gas elagvb as a normal
Fermi liquid [54, 55]. It should be remembered that in spitehese similari-
ties in behaviour between high- superconductors and ultracold Fermi gases the
exact mechanisms behind the phenomena are végreint in both cases.
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1.2.3 Analogies with other systems

Systems of ultracold atoms can be used as model systemsifiyirsg other com-
plex phenomena due to the level of control that can be imphéeoan a cold atom
experiment. Interactions between atoms are generallywnelerstood and have
been the subject of significant investigation from a varigftyisciplines. Fur-
thermore, the diluteness of atomic gases means that, in ozm®g, it is only the
long-range form of the interaction that is resolved and ti@tsrange behaviour
can be approximated. These facts make them attractive toisteeand experi-
mentalists alike and much progress has been made since ateradirst laser
cooled [10, 56, 57].

We have already seen that systems of Fermi atoms have sogetitommon
with high-T¢ superconductors when the system is strongly interacting there-
fore hoped that by understanding the cold atom system fugiegress can be
made into how highFc superconductors work. Similarly the neutrons in a neutron
star will be strongly interacting. Other suitable strongiteracting systems can
be found in quark matter [58]. There have also been atterofiest string theory
by measuring the limit of the viscosity in a strongly inteamag Fermi gas [59].
Cold atom systems therefore share some properties witkeragstrom areas of
physics that may not, initially, seem intuitive.

1.2.4 Feshbach resonances

In general a scattering resonance occurs due to the exestéacmetastable state
in the system [60]. This shows itself as an increase in thitesaag cross-section
peaked about some energy. These are widely studied in al af@hysics as they
can provide so much useful information to test theory agargeriment. Fesh-
bach resonances occur when the scattering energy of aleaudic is coincident
with a bound state of the two-body system [61, 62, 63]. In thetext of cold
gases it is possible to create zero-energy Feshbach resmnby manipulating
the interparticle interaction using a magnetic field [19, 3¥hat is remarkable is
that this can have a profounéfect on the many-body state of the system.

For the sake of simplicity we can stafff &y considering two asymptotically
separated alkali atoms in a magnetic field. The hyperfineggnlevels of the
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atoms will be split by the magnetic field into Zeeman states tlave a magnetic
field dependent energy. As the atoms are brought togethesathace electrons
and the nuclei will start to respond to each other [11]. At egmoint the en-

ergy levels of the pair will deviate from that of a pair of agytatically separated
atoms. By changing the strength of the magnetic field it i thessible to al-

ter the interaction between the particles to the extentahat-body bound state
forms between the particles. Furthermore it is possiblgatially localise these
pairs so that they form a tightly bound diatomic moleculené¢fimagine that the
particles have zero relative motion then as the bound spgdeaas in the system
the zero-energy scattering cross-section will displaysamance [60]. This is re-
ferred to as a zero-energy Feshbach resonance. A moresdadiéscussion of the
physics behind this two-body process is given in chapter 2.

Now what about the many-body system? If we start our systdfeohi atoms
in the same situation as the two-body case in which all thegbes are asymp-
totically separated from each other we will start with a moteracting Fermi gas.
We assume that the system is in the ground state and remass\soincrease the
attraction between the atoms to form a superfluid with lcegge Cooper pairs.
We can further increase the interatomic attraction throagleshbach resonance
to the limit where the pairs are localised molecules fornarigpse-Einstein con-
densate. This is referred to as the BCS-BEC crossover deei tae many-body
state from a gas resembling a superconductor described BytlB£ory to a a state
describe by a Bose-Einstein condensate [56]. Questiolhsestiain as to what
happens in the intermediate region where the interpadjgdeing is comparable
to the size of the pairs in the gas. This is referred to as tloagly interacting
region and it is where the zero energy two-body cross sediarits largest value.

We have here said nothing about théeets of the trapping potential. In a
cold atom experiment the trapping potential often resemtilat of a harmonic
oscillator. The solution of the Schrodinger equation foragtiple confined by a
harmonic potential is a common undergraduate physics @noblt is well known
that the single particle energy levels are evenly spacedtangdround state has a
non-zero energy. For non-interacting fermions we could tiileup these single
particle states with one particle in each state if the pagiare in the same internal
state. If the two particles interact we would have to soleeSkhddinger equation
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in the centre of mass frame. We can allow the strength of tbelt@dy interaction
to vary with a magnetic field across a Feshbach resonanceas@a ttwo-body
bound state may exist between the pair. It turns out that @asyktem passes
through the Feshbach resonance a molecular bound stateanlyfor the lowest
energy state of the pair [64]. The other energy levels arfteshio a lower energy.
This means that no matter how many Fermi particles are inrdpe dnly two
will ever form a molecule. This is not what happens in the expents where a
considerable fraction of the gas can be converted into mtdec The reason for
this difference between the theory above and experiment is that veeidpaored
the many-body fects in the gas.

1.3 Cold molecules

The study of molecular gases and chemical reactions is ¢oated by the thermal
motion of particles [65]. This not onlyfiects the external degrees of freedom but
the internal states of the participating particles. By capimolecules it may be
possible to study chemical reactions with fewer degreeseafdom revealing the
mechanisms behind chemical reactions and perhaps discgvew chemistry.

At sub-mK temperatures scattering processes becomevetjasimple [66].
This regime of temperature is usually referred to as ultchby cold molecule
researchers [67]. At slightly higher temperatures, on #ege of 1 mK to 2
K, more scattering channels become energetically availabtl the situation be-
comes more complicated. However, at these temperatunesdae still be a finite
number of scattering channels making the problem theaidstitractable. Even
at these temperatures quantuffieets are important as the de Broglie wavelength,
Eq. (1.9), of even large molecules can start to exceed tleepaitticle spacing.
This can mean that thdfects of the trapping potential can be be resolved by the
many-body system [68]. The ability to tune the trapping po&s means that the
chemical reaction rate may be altered by changing the exdtpotential. It has
been shown that chemical reaction processes are expedbedviery dficient in
these low temperature regions [69, 70, 71, 72].

Several methods for creating cold and ultracold molecuée® tbeen devel-
oped and can be broadly split into two categories. The firssists of cooling a
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gas of atoms and then associating the atoms into molecukessdcond method
involves the direct cooling of preformed molecules. Molesthave a complex en-
ergy structure and this makes itidtult for them to be cooled using lasers, unlike
atoms that can be cooled to ultracold temperatures. Rgdatetle has been evi-
dence of experimental success in laser cooling of a diat@ritcmolecule down
to 300uK [73]. This is possible due to the fortunate energy levalicire of
SrF. Creating molecules from ultracold gases of atoms has a@opular method
of molecule production due to the success in laser cooliagaitbms themselves.
This usually done by either photoassociation [74], wherngla pulse is used to
excite the atoms into a molecular level, or by the use a Feshiesonances [19]
and in some cases both methods are used. These methodséddvavwback that
it is not yet possible to create large molecules of more thi@waatoms and there
are a limited number of systems that lend themselves to teebsaiques. Meth-
ods for directly cooling molecules include using high puessvapours, Starck
decelerators and Iffier gas cooling. The drawback of these methods is that they
do not allow the molecules to reach temperatures as low @& thchieved with
Feshbach association or photoassociation, but they cap@ea to larger and
a wider variety of molecules. Many of these techniques allarstheir infancy
but progress has been rapid since the first achievement efBiostein conden-
sation in 1995 and the prospect of future development withianto observing
cold chemistry looks extremely promising (see, for examidlems [65] and the
references therein).

Other applications of cold molecules range from practicdihdamental. Re-
cently cold molecules experiments have been used to metmireagnetic mo-
ment of the electron [75]. It is also possible that cold moles can open up
new realisations of atomic and molecular lasers. Theress alot of current re-
search into the possibility of realising quantum computihg believed that cold
molecules may be a candidate for realising such systems [76]

1.3.1 s-wave molecules

Even if we have restricted our discussion of molecule foromeb fermions, quan-
tum statistics still have a further role to play in the stofyFeshbach molecule
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production. We here briefly discuss some of thiedences between molecules
formed from pairs of Fermi atoms inféiéerent internal states and molecules formed
from pairs of Fermi atoms in the same internal state. As direaentioned quan-
tum wave functions of identical fermions must be antisymoetith respect to
exchange of any space or spin variables. So let us consides afg-ermi atoms

in two equally populated internal states. We can assumalibabtal spin of the
atom determines the internal state of the atom and labelbespin states ‘up’
and ‘down’, for the sake of argument. Furthermore, we cholosspin part of the
wave function to be a spin singlet state. The total wave fonaif two particles
with opposite spin will now be a product

W (re,ra) = ¢ (ra,r2) x(1, 1) (1.10)

Under these circumstances the spin part of the wave funatiibbe antisymmet-
ric leaving the spatial part as symmetric. In the limit of lemergy this turns out to
be isotropic and assuming a spherical solution to the Sangédequation means
we can write the spatial part of the wave function as

W(re,ro) :l//(|r1—|’2|)Yoo( rl_rz), (1.11)

[rqy—rof

whereYoo(Q) = \/%1_” is the lowest order spherical harmonic. In the first exper-
iments on creating Feshbach molecules from Fermi atoms avgagrepared
that has two spin states occupied like in the example abo¥ge [We refer to
the molecules formed aswave molecules due to the symmetry of the pair wave

function.

1.3.2 p-wave molecules

In the case of a Fermi gas where all the atoms occupy the sasreah or spin
state, the wave function of an atom pair can be written as

W(ry,ra) =y (ra, r2)x (T, 1) (1.12)
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The space part of the wave function must now be antisymmeatddor low ener-
gies the lowest partial wave solution to the Schrédingeag&qo will be

(0272 =0 (s = 1)V (2212, (1.13)
Iry—ro

whereYim, (Q2) is the¢=1 spherical harmonic. The subscnptdenotes the projec-
tion of the angular momentum onto the chogexxis. Because th&=1 component
is referred to spectroscopically as thevave we refer to the molecules that are
formed agp-wave moleculesp-wave Fermi gases (gases in which the particles in-
teract through g@-wave interaction) share some similar propertie¥e [78, 79]
and highly ferromagnetic superconductors such as StrorRuthenate [80, 81].
In the case of ultracold gases the experimental set up @ewadaturat-axis for
the system; namely the magnetic field axis. This impliesttiete are three possi-
bilities for the projection of the angular momentum vecidris splitting between
projections of the angular momentum vector has been seetqparienents [2].

1.3.3 Towards creatingp-wave Feshbach molecules

The previous sections have given an introduction to wheraadld Fermi gases
stand in the wider context of physics and more specificallgratlg introduction
to the subject of cold molecule production. In this sectiandiscuss the experi-
mental progress that has been made \pitiave Feshach molecules.

Extensive experiments and theoretical investigation feen carried out to
determine the parameters that classify the resonances feiritmionic species of
SLi and “°K. For theoretical purposes these parameters can be useddel the
Feshbach resonances for further calculations, as theynatas thesis. Initial
investigations on potassium isotopes determined theesoajtlengths and low
energy scattering cross sections [82, 83]. These inveitigindicated that’k
would be a likely candidate for cooling to the quantum degateeregime. This
limit was subsequently achieved [48]. Further investmgated to the determina-
tion of ans-wave magnetic-field Feshbach resonance located at a nagaket
strength of 202.1 G [84, 85]. It was this resonance that was dsed to create
ultracold molecules from a gas of Fermi atoms [86]. This expent created
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molecules in a gas at a temperature of less than 150 nK by assmgeep of the
magnetic field with a linear time dependence. By changingntlgnetic field
from a value above the resonance to a value below it at a radewn to 12.5
G/ms they created molecules with lifetimes on the order of 1 masmaeasured the
binding energy of these molecules. Subsequently a singtdrmique was used
to show that it was possible to produce a BEC of the molecueslserving
the emergence of a bimodal momentum distribution, a sigaaUBEC [87]. In
these experiments the rafig /T could be as high as 25 in the initial gas, meaning
it would be highly degenerate if we assumed it to be an idesl gdis system
was also used to observe condensation of Cooper pairs orsioeth of the reso-
nance [88]. This dters from the previous case where molecules were condensed
due to the fact that the particles forming the condensagenrétrmionic degrees
of freedom and the pairing occurs due to many-bofiigas. In this experiment
linear sweeps of the magnetic field were used withffedént purpose. The initial
stage of the experiment involved holding the value of themeéig field above the
resonance to allow the BCS state to form. The sweeps in to H@ 8de were
performed at speeds that exceeded the average colliseofrtte particles in the
gas but slow enough to allow the creation of molecules. Thosld/mean that
any condensate fraction observed after the sweep would é@mepairs con-
densed before the sweep and it was shown that this fractad oot come from
a condensate formed during the sweep itself. It should bénasiged that in both
the creation of the molecular condensate and the Coopec@adglensate a linear
sweep of the magnetic field was an essential ingredient.

Investigations intéLi identified the existence a-wave Feshbach resonances
located at 800 G and 19800 G [89]. The low field resonance vtasdatermined
to be at 860 G, with a further narrow resonance existing atG390]. The 860
G resonance was used to observe the gas on the stronglyctimgreegime and
subsequently, molecules have been created using both @@ §8L] and the 860
G resonances [92]. Molecular condensation has also beéevadhon the BEC
side of the resonance [93, 94], as well as reclaiming thertergée Fermi gas by
sweeping the magnetic field back above the resonance [95].

The s-wave experiments have attracted a lot of attention as #éxpierimental
detection is somewhat easier. Interest in fagave resonances has arisen due
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to the study of nors-wave pairing in fermion systems, such as unconventional
superconductors, as already mentioned. A variety of supeéiphenomena have
been predicted for nos-wave pairing [96, 97] and it is hoped that they can be
realised in an ultracold gas of identical fermions withvave interactions [98, 99,
100].

Similar to the studies os-wave molecules, initial experiments located the po-
sition of Feshbach resonance<9K [2, 101] and®Li [20, 102]. The first of these
experiments, performed by Regslal. [101], concentrated offK and measured
the firstp-wave Feshbach resonance in a single component atomic gasark-
ably this was located at 198.8 G which is very close to thetlonaf the s-wave
resonance if°K, but seemingly a complete coincidence. The JILA group con-
tinued to investigate this resonance [2] and identified etiideature of the res-
onance; as the gas was cooled below aroupd Two distinct peaks were seen
in the elastic cross section separated by about 0.5 G. Thigigained by a non-
vanishing dipole-dipole interaction in thewave, leading to the energy of the
resonance state to depend upon the projection of the palaBve orbital angular
momentum onto the magnetic field axis.

Experiments ofiLi identified threep-wave Feshbach resonances correspond-
ing to three diferent hyperfine state combinations [20]. In one of these ¢comb
nations it was possible to create molecules using a lineaeps/of the magnetic
field. With a sweep rate of around 0.25n& they were able to convert around
20 % of the atoms into molecules. A further experimental wtiogl Schuncket
al. [102] located the same three resonances. Two of theseanieses arise from
atoms prepared in the same internal state, while the otrssafirom atoms pre-
pared in two diferent internal states but at a higher temperature, whengweere
cross section is not yet suppressed. In contrast to the €4%¢ these resonances
are at very diferent magnetic fields to thewave resonances. Anothertlir-
ence between the two atomic species is the absence of arvethskpole-dipole
splitting in Li.

More recentlyp-wave Feshbach molecules have been formed from a gas of
40K [21]. In this experiment molecules were formed using a nesuly oscillating
magnetic field and not by linear sweeps of the magnetic fiekds &llowed for a
measurement of the binding energies of the molecules ancgatseasurement of
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the magnetic moment. A similar method was used to createaulele inLi [3].

A comparison of the results of these two experiments expltie reason why
the dipole-dipole splitting was not observed (and has nenhlmbserved) ifiLi,
namely that the magnetic moment of theé, molecule is much larger than that of
the“°K, molecule.

Even more recently properties of thki, p-wave Feshbach molecules were
studied where the molecules were formed using linear swédpeomagnetic
field [22, 23]. In these experiments ramp speeds of less thaG/Mhs were used
to sweep the atoms into bound molecules, producing a cortinggyesmall yield
of molecules with 15 % by Inadet al. [22] and 3 % by Maieket al. [23]. Maier
et al. [23] attribute the dference between the two values of the molecule pro-
duction as coming from a temperaturéédience between the two experiments (9
1K [23] as opposed to K in [22]). As yet no condensation of Cooper pairs has
been detected in these systems. These works also propossetlo an optical
lattice to studyp-wave superfluidity where even richer phases are predid@2]
There have already been experimental studiespat@ve Fermi gases in optical
lattices [104], where the interest is focused on Feshbasimances and possible
superfluidity in low dimensions.

Some of these experiments have measured the lifetimeslob&els molecules.
Gaebleret al. [21] found them, = +1 °K molecules to have a lifetime of 1 ms
and them;, = 0 “°K molecules to have a lifetime of 2.3 ms, where the lifetime is
defined as the time taken for the molecule density to redeloflits initial value.
These measurements were taken on the positive scattengtplside of the res-
onance where a true molecular bound state exists and arevd@mnghorter than
predicted with a multichannel theory [21]. On the other siflthe resonance the
particles can be confined by the centrifugal barrier as ‘gnasnd’ molecules.
The lifetime of these molecules decreases as the magnddicf@/es away from
the resonance and the tunnelling time through the centifbgrrier decreases.
The same group had previously measured the lifetimesvedive molecules for
which the ‘quasi bound’ state does not exist [87, 105]. THeynsed that on the
BEC side of the resonance the lifetime of the molecules carease up to 100
ms. This is due to the long-range naturesaflave Feshbach molecules, so such
a situation is not expected to occurprwave Feshbach molecules as their spatial
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extent is limited by the centrifugal barrier.

For®Li it was initially only possible to holg-wave molecules in the magnetic
trap for up to a few ms [3]. This is a short time compared-t@ave experiments
in which 1/e lifetimes were measured up to 500 ms [92] and molecules were
held in a trap for up to 1 s [91]. It was shown by Inaelaal. [22] that a large
contribution to molecule loss comes from atom-dimer culiis and it is possible
to increase the molecule lifetime by removing unpaired atémmm the system.
They also note that this still leaves a low elastic to inétasollision ratio that
would preclude cooling into a condensed state.

1.4 Outline of the thesis

We have introduced the topic of Feshbach molecule creatiaritiacold gases
and shown that it has links to many areas of physics from fomeshdal to practical.
These seemingly simple systems can provide rich physi¢htsalready been
the subject of many studies and will continue to be so in yeaceme. We wish
to study the mean fieldffects of p-wave Feshbach molecule production from a
linear sweep of a magnetic field. If an ideal experiment weree performed to
test the results of this study it would follow this procedure

1. The gas is cooled to a superfluid state at some fixed ini@gmatic field,
Bi, on the side of the resonance where no two-body bound stetis €khis
fixes the initial density and temperature of the gas.

2. The magnetic field is varied linearly with time to some fimagnetic field
position, B¢, on the other side of the resonance. The atomic density and
temperature are held constant throughout the course okfjexienent.

3. The number of molecules created from the gas is counted.

4. The experiment is repeated with the magnetic field varging diterent
rate to before.

5. The whole process is repeated with varying value; @ndB;s.
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6. The initial temperature and density of the gas is varietlitAe process is
repeated.

For the above procedure we can identify five independendlblas can be varied:
The initial atomic densityp, the initial temperature of the gak, the initial mag-
netic field,B;, the final magnetic fiel®; and the rate at which the magnetic field
is varied,B. It should be noted that experimentalists may not have thiyaio
control all of these variables in a real experiment. In ortdeachieve the aims
of this study we have divided the thesis into three chapéash providing a dif-
ferent ingredient. We have seen that Feshbach resonamcismdamental to our
approach to creating cold molecules. In order to includeghenomenon we have
to suitably model the two-body physics; the subject of Cea@t We have also
related the importance of the BCS theory of superconduygtiei understanding
the behaviour of ultracold Fermi gases. This is the subjechapter 3. Lastly,
in Chapter 4 we consider the mean field dynamics of a singlgpooent Fermi
gases and the role it plays in molecule production.



Chapter 2

Scattering theory and Bound states

The basics of single channel scattering are presented imergeman-
ner. This is applied to the situation of low energy scattgietween atoms
in identical internal states. The two channel model is ishiced so that scatt
tering parameters can be related to the experimentally unglale quantities
and the variation of these parameters in the vicinity of &nbash resonance
is discussed. A separable model for fhv@vave interaction is introduced and
used to recover the binding energy of fr@vave molecule, as well as the loy
energy scattering properties of two atoms.

<

We have seen in the previous chapter that quantum statecgnportant for
the study of molecule formation in a single component atdfeieni gas. In this
chapter we will see how these law$exct the physics at the two particle level. We
have also seen that the degeneracy temperature, the Fenperaure, in these
systems is very low compared to that of electrons in a metiaé Source of this
is the high mass of an atom (compared to an electron) and thelémsity of
the atomic cloud. In an ultracold gas the kinetic energy ef plarticles is low
and since we are considering ground state alkali atoms thisiao energies will
also be small and it is common to take the low energy limit whensidering
scattering processes. Furthermore, the density of ancalttaatomic gas is, in
general, orders of magnitude lower than that of air, makioljjscons of more
than two particles rare. We therefore neglect the prolgoli three or more



Scattering theory and Bound states 38

body collisions in the gas. This general statement aboutalilltracold gases has
implications on how it is possible to model two-body intdirac. In particular

it is often the case that the all interactions are replaced $ingle parameter, the
scattering length. This approach has had much successarildeg dilute atomic
Bose-Einstein condensates [10, 9] and atomic Fermi gagésThe majority of
these studies have focused on the modelling-afave interactions, due to their
relative simplicity and the accessibility of experimerit4ore recently there have
been studies into modelling interactions between fermiarthe same internal
state [97, 106, 99, 107], which have been motivated by exparis onp-wave
interacting gases [101, 2, 102, 20, 21, 3]. These theofestigdies have extended
methods used to modstwave interaction in ultracold gases due to the success
of these approaches in modellisgvave gases close to resonance. In this thesis
we take a similar approach to modelling thevave interaction by extending a
method previously used to model the two-body interactimselto ans-wave
Feshbach resonance.

In this chapter we review some of the basics of quantum soaijt¢heory.
We then apply this to a an atomic system close to a zero-eneiggve Fesh-
bach resonance. We derive a form of the two-body intera¢tiahcan be used
in a many particle theory. To do this we require that our padéneproduces the
low energy spectrum of the system as it is this region thateessed in an ultra-
cold gas of atoms and is especially relevant to the case ofameergy Feshbach
resonances [19].

2.1 Basics of scattering theory

In quantum mechanics a pair of scattered particles in fraeeswith relative mo-
mentump can be described in the centre-of-mass frame by a supeguosftan
incoming plane wave and an outgoing spherical wave [11]

eipr/h

P 1 f(p,0)

w(r) (2.1)

Here, p = |pl, the angled is measured with respect to the collision axjg is

the interparticle distance anf{p, 6) is the scattering amplitude. In scattering
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experiments the physically measurable quantity is tiiedintial cross-section
given by,

do
o= 1.0, 2.2)

whereQ is the solid angle in the direction @ Quantum statistics modify the
elastic scattering amplitude and therefore th&edential cross-section for iden-
tical particles. The indistinguishability of the scatteyiproduct under particle
exchange requires the scattering wave function to be synmfahtisymmetric)
for bosons (fermions)

jpr/h

— 1 ipz/h + —ipz/h + - e
() —ﬁ(m)g/z(é £e ™4 [f(po) £ f(pr-6)] ——|.  (23)

where the plus (minus) sign refers to bosons (fermions).

2.1.1 Single channel scattering in partial waves

In the case of a spherically symmetric potential it is oftenvenient to expand
the wave function into its angular momentum components.ratal Schodinger
equation in the centre-of-mass system for4tiepartial wave is written [60]

2
% ~ f(fr'zi‘ 1) —U(r) + K| wa(r) = 0, (2.4)
where V(r
u(r) = 2,uh2( ) (2.5)

andu is the reduced mass of the particles. The distance betweetdms is and
the angular wave numberkgp = 7k). V(r) is the interparticle potential which at
large interparticle separation is assumed to be of the form

V(r) = o(r—lv), (2.6)

where¢ < (v — 3)/2. This ensures that the following discussion of threshold
behaviour is valid [60]. In the context of diatomic moleaN&r) is usually de-
termined by the Born-Oppenheimer approximation [11]. Tecdde scattering
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Eq. (2.4) has the boundary conditions

Ya(0) =0, (2.7)

and
var) ~Je(kn) + k(O (kr), (2.8)

where j,(kr) and ﬁ;(kr) are the Riccati-Bessel and Riccati-Hankel functions re-
spectively. The Riccati-Bessel function is the solutiofEtp (2.4) in the absence
of an interaction, so the presence of the potential is resptanfor the second
term in EqQ. (2.8). Theféects of the interaction are described by the partial wave

scattering amplitude

e%® sing,(k
fe(k) = f{)()’
whered, (k) is the partial wave phase shift. By using the asymptotimforf the
Riccati-Bessel functions as— oo, the long range asymptotic form of the wave

function can be written as

(2.9)

vadr) ~ g sin(kr - %ﬂ + 6[(k)). (2.10)

Hence, the phase shift describes tffed of the potential on the free radial wave
function at large interparticle separation. In the vigirof a resonance in a partial
wave the corresponding cross-section is assumed to damifae partial wave
phase shift changes rapidly as the energy of the systemiedvaear such a reso-
nance. This causes a change in the partial wave scatteriptiaae as given by
Eq. (2.9).

In the low energy limit, the free solution (i.e/(r) = 0) to the Schrédinger
equation can be expressed using its asymptotic form

(+1
109, o oy 2.11)

By solving Eq. (2.4) at zero momentum it is possible to obthm zero-energy
radial functions. These are functions of position only aad be normalised to
recover Eq. (2.11) divided through Iky*X. As an illustrative example the zero-
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energy radial wave functions for tlsewave andp-wave are plotted in Fig. 2.1 for
a square well potential.
The partial wave “scattering length” is defined as

=lim
af k—0

(2.12)

tand, (k)
k2€+1

For the/ = 1 partial wave this quantity has the dimensions of volume.ths
energy of the system goes to zero the relevant scatteriragreder becomes the
partial wave “scattering length” and it is related to the lemergy scattering am-
plitude through

f (k) ~ —ak*. (2.13)

The derivation of this quantity fof=0 and/=1 is presented in Appendix A for a
spherical well and plotted in Fig. 2.1. The phase shift cambdified by varying
the strength of the interatomic potential. In turn this @sus change in the partial
wave scattering length according to Eq. (2.12). When the@lshift crosses/2
the scattering length has a singularity, associated wehatipearance or disap-
pearance of a bound state in the potential [60]. The scagiéength is positive
when the potential supports a bound state close to the digmocthreshold en-
ergy. When the bound state becomes degenerate with thédaeébe scattering
length is singular and then becomes negative as the stabenlesca resonance
state moving into the continuum.

2.2 Physical origin of Feshbach resonances

In general, atoms have a complicated internal structure spmn of the nucleus
of the atom couples to the electronic spin which can also beled to the orbital
angular momentum of the electrons [11]. Alkali atoms havly @me valence
electron and in the ground state this electron has no orditgular momentum
about the nucleus of the atom. This relative simplicity hasdenthe study of
alkali atoms accessible to theorists and experimentalldts. The experimental
success in the trapping and cooling of clouds of alkali me@mins [108, 109, 25],
culminating in the achievement of quantum degeneracy ih bosons [46] and
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Scattering Wavefunction (Unormalized)

o

4 5
Radius (ao)

Figure 2.1: zero-energy radial wave functions for the mgaeéntial of a square
well. The depth of the well is given byu®,/#?> = 16.8 a.u., while its radius

is 315 a.u.. The dashed line is tlsavave solution and the solid line is the
wave solution of Eg. (2.4). Their long range behaviours carcempared with
Eq. (2.11) divided through by the appropriate factork.ofThe diamond marks
the position of thes-wave scattering length. This is also the point at which the
asymptotic form of the scattering wave function crossesdlel axis. The star
marks the position of the cube root of thevave scattering volume. This quantity
is related to the point at which the asymptotic form of thetecang wave function
crosses the radial axis through= v/3a;.



Scattering theory and Bound states 43

fermions [48], has made them the most studied in the cold gasmunity. Dif-
ferent combinations of nuclear spin and electronic spihgwle rise to diterent
energy levels known as hyperfine energy levels and it is theevaf the quantum
number representing this total angular momentum that destg the atom as a
composite boson (integer spin) or fermion (half-integen)kspThis total angular
momentum will couple to an external magnetic field splitting hyperfine energy
levels due to the Zeemarttect [110]. In the field of ultracold gases magnetic
fields can be used to induce Feshbach resonances makingoittanpto under-
stand the interatomic interaction between atoms in thespiesof this magnetic
field.

A pair of asymptotically separated alkali metal atoms in @nedic field can
be described by their individual hyperfine and Zeeman sté&tesa full descrip-
tion of the two atom problem it would be necessary to inclutihe different hy-
perfine and Zeeman state configurations in a coupled-chanakulation [111].
Each configuration, known as a channel, of a pair of atoms eagiven a unique
label @ = {flmfl fszzfmg}, where f, labels the hyperfine state of atdnat zero
magnetic fieldm;, labels the Zeeman state ahdndm, give the relative angular
momentum of the two atoms and the projection of this vectdo time magnetic
field axis, respectively. For collisions of identical pal#is in the same internal
state there are restrictions on the valueg @r a given configuration: even val-
ues for bosons, odd values for fermions [60]. In other callesmkles of ¢ are
permitted.

The concept of open and closed channels is important in eusision of
magnetically induced Feshbach resonances in gases afalttratoms. Consider
a pair of atoms asymptotically prepared in a particular spinfiguration which
we shall call the entrance channel. In the limit of zero-gpeollisions the other
Zeeman configurations can be labelled with respect to theygré this channel.
Configurations with energies lower than this channel amdteede open channels,
while configurations with greater energy are said to be dadennels. For a
single species of mass the coupled channels Schrédinger equation is given by

[111] )
OF,(r,E) m
—57 * ; |Eus — VE()| Fs(r. E) = 0. (2.14)
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Here, F,(r,E) = ry,(r, E), wherey,(r, E) is the component of the full wave

function in the asymptotically separated atom channel. &feztive potential is

given by

(L + 1)

——— |0
mr

ng(r) = Eflmfl + Efszz + aﬁ + V(ilnﬁt(r), (215)

which now includes the centrifugal part of the kinetic eryeifhe Zeeman energy
of a non-interacting atom is given ;.. The part of the potential describing
interactions can be separated into two terms

Vii(r) = Vep(r) + Vag(r). (2.16)

The first term arises from the strong electronic interactad does not couple
partial waves, but is non-diagonal in the single particlia $@sis. This term usu-
ally contains the familiar Born-Oppenheimer potentiahv@s. The second term
has df diagonal elements in all indices and arises from the wealtivestic spin-
spin interaction. When referring to ultracold gases a Fashlbesonance occurs
when a molecular bound state corresponding to one of theapsosed channels
is tuned to be degenerate with the zero energy thresholcedrtrance channel.
Fig. 2.2 illustrates a two channel model of a magneticaliuiced Feshbach reso-
nance. The energy of the closed channel can be tuned with agtiageld until

it is degenerate with the threshold energy of the open chaiiihés is due to the
individual Zeeman states of the atoms changing their eresdlie magnetic field
strength is varied and in turn the energy of the moleculdestwill change. If
the open channel and close channel hakeint magnetic moments then their
energy will change relative to each other. In this figure weode the dissoci-
ation threshold of the open channel as the zero of energyhatahe energy of
the closed channel is varied. When the resonance state riseghfiny the closed
channel becomes degenerate with the open channel disso¢taeshold a bound
state forms in the coupled system referred to as a Feshbaelculm
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Figure 2.2: Cartoon of a Feshbach resonance. The two claremesent dif-

ferent Zeeman configurations of the asymptotically sepdratoms. The atoms
are initially prepared in the entrance channel and the dlekannel supports the
resonance state. The energy of the closed channel is tumegaisagnetic field.

As the energy of the resonance state becomes degeneratdevitbro of energy
in the open channel a Feshbach resonance occurs and a batendfshe system
appears.
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2.3 Two-channel model of a Feshbach resonance

A full description of Feshbach resonance phenomena resaselution to Eq. (2.14)
with the inclusion of an external magnetic field that coupleshe individual
Zeeman states. Including this full coupled channels treatnm a many-body
treatment is computationally taxing. Luckily, for many easnvolving atom-
atom collisions it is sfiicient to consider only two Zeeman channels. The general
Hamiltonian for the two-channel model is given by [112, 62, $13]

H:(+%g M’]. (2.17)
W H

WhereH,4 supports the entrance channel scattering states in whechttims are
initially prepared andH., supports the resonance stadg,, of energyE,es, which
satisfies the Schrddinger equation

Hcl|¢res> = Ere§¢res>- (2-18)

HereW describes the interchannel coupling. The Hamiltonian of(BEd.7) will
support two-component eigenstates corresponding to tharnee channel and a
single closed channel. To model the physics of a magnetetifidluced Feshbach
resonance we allow to be magnetic field dependeti = H(B)), this cor-
responds to the entrance and closed channel states pagséiffeirent magnetic
moments. As the magnetic field is varied the enerdiedence between the two
states varies. The Feshbach resonance occurs when thg ehéng resonance
state supported by (B) is degenerate with the entrance channel dissociation
threshold. As in the coupled channels case described abdveund state ap-
pears, referred to as a Feshbach molecule, on the posisttescg length side of
the resonance. This Feshbach molecule has componentsichzinels.

It is useful to formulate this problem in terms of Green’s @gers with a
complex argumentz, that has dimensions of energy. For the entrance channel
component the Green'’s operator is

Gug(@ = (2 Hyg) - (2.19)
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For the closed channel component the Green'’s operator is
Gu(B,2) = (z- Ha(B) ™, (2.20)

where the magnetic field dependence of the closed channelltdaian, and
hence the closed channel Green’s operator, has been mdadstekpthe vicin-
ity of a resonance it can be assumed that the detuning of Humaace energy
from the entrance channel dissociation energy is small esetpwith the spac-
ing between dterent vibrational energy levels in the closed channel. dloee
Eqg. (2.20) will be dominated by the contribution from theaeance state leading
to the single resonance approximation [66, 114],

G (B, E) % |¢res (Pred- (2.21)

E — Ere(B)

On the side of the resonance where the scattering “lengtmégative the Hamil-
tonian of Eq. (2.17) describes scattering for positive giest In the case where
Hwg andH¢ support no deeply bound states, such that the resonaneasstae
only state supported by either Hamiltonian, the scattesolgtions will be the
only solutions to the Schddinger equation. In this situative resonance state
would be in the energetic continuum of the entrance chamettze components
of the scattering wave function at momentpntake the form

2
03 = 60y + Gbg(g’—ﬂ + iO) Wig), (2.22)
2 ed Wighp?
|¢§'> = Gy (B’ 5_ + iO) W|¢Bg> ~ |¢res>w’ (2.23)
H % Eres

where the single resonance approximation of Eq. (2.21) éas tmade in Eq. (2.23).
TheiO term ensures the argument approaches the real axis fronpgee half of
the complex plane and corresponds to an outgoing spherat.wThis is also
the meaning of theK) superscript in the first term of Eq. (2.22). For the entrance
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channel component the scattering component can be writen a

. P
|¢§)+)> =|p) + Go(Z + |0) Tbg(z + |0) P, (2.24)

which is known as the Lippmann-Schwinger equation [115]andld fully de-
scribe the scattering problem in the absence of the closathelh. Herdl (%2 + iO)
is the T-matrix for background scattering [116], related to theKggound scat-
tering amplitude through

2
fog(P, P) = _(2”)2Nh<p|Tbg(§_,u + iO) Ip"). (2.25)

The plane wave stat@), can be expanded in the partial wave basis

_é—%_ i 505 E PNV
) = G = Ve () YoOV®. (2:29)

where the function¥,,(Q2) are the spherical harmonics, a set of orthogonal angu-
lar solutions to Laplace’s equation normalised on the yshiese. In the position
space basis Eq. (2.24) has the asymptotic long range exjpansi

épr/h

e(2)+ 12 =

A
Opy = & ¢ * (R
4(0) = oy %} Yin(F) ]ng(p). (2.27)
The partial wave background scattering length is defineth@sobv energy limit
of the background partial wave scattering amplitude, sbhahit the limitp — O

£5900) ~ a2 P 2.28
fm(p) ~ _afmﬁ' ( . )

Here, a?f;’1 corresponds to the value of the scattering “length” at magrirld
values far from resonance and would be equivalent to Eg3)211the absence of
the closed channel. By inserting Eq. (2.27) into Eq. (2.22)full partial wave
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scattering amplitude can be written as

(@S o IWigres (red WG )
fin(p) = f29(p) — wrhpz : (2.29)
— Eres— (dred WG (£ +i0) Wigheo

In the low energy limit these parameters can be related tphlgsically relevant
parameters associated with a zero-energy resonance. mbmaweator of the sec-
ond term in Eq. (2.29) can be associated with the detuningsafdsonance energy
with respect to the zero-energy threshold

OEres
Eres — (¢red W Gyg (Z + |O) Wdres = |II’T(1)— B (B - B). (2.30)

Here, B, represents the value of the magnetic field at which the resmnaccurs
and==e 5E'es is the magnetic momentitierence between the Feshbach resonance state
and a pair of asymptotically separated atoms. The numecatoibe identified
with

pZ[ bg aEres

P Widred (Bred Wi ) = lim a0 =2

with AB, representing the width of the resonance. This is measuria aange of
magnetic fields from the resonance position to where theéesoaj length crosses
zero. We can put these expression into Eq. (2.29) and takiadow energy
limit we obtain an expression for the partial wave scattgfilength” in terms
of experimentally measurable quantities [113, 107],

AB; (2.31)

AB
2(B) = a?g(l_ B- éfO).

As the magnetic field in Eqg. (2.32) is changed from a valuetgrahanB,, to a
value less thaB,q the scattering length becomes singular and changes sign as r

(2.32)

quired by the previous discussion of low energy Feshbaanesges. Therefore
Eq. (2.32) provides a simple parametrisation of the saagéength in the vicinity
of a resonance. A plot of the scattering length using thisitda and the exper-
imentally measured parameters listed in appendix B is showAng. 2.32 about
the 202.107 Gs-wave resonance ifPK. In the vicinity of a resonance this for-
mula reproduces the experimentally measured scattenygHesery well. As the
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Figure 2.3: Variation of thes-wave scattering length about the 202.107 G reso-
nance inf°K. The position of the resonancB,, is indicated by a solid black line.
The other parameters appearing in Eq. (2.32) are also itedica

magnetic field value moves away from the resonance it is plesfir efects not
included in the two-channel model to have an influence on ¢h#eying length.
For example, other bound states in the entrance channelseathannel or other
Zeeman states. We will use Eq. (2.32) extensively througtiagithesis to model
to partial wave scattering length. The parameters we usettehthe resonances
in “°K and®Li are given in Tables 2.1, 2.2 and 2.3. An explanation of hbase
parameters are calculated is given in Appendix. B.

Table 2.1: Bound state energigs, associated with the highest excited vibrational
statesCg codficients, ands-wave scattering lengths f8?K and®Li. The values
of E_; anday quoted for®Li, refer to the lithium triplet potential.
Species  Cg (a.u.) ay’ (@gon)  |E_1l /h (MH2)
40K 3897 [117] 174 [118] 8.9[119]

SLi  1393.39[120] -2160[121] 2 x 10*[121]
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Table 2.2: Calculateg-wave resonance parameters 1&€. All values are based
on the experimental data found in Tickretral. [2]

Projection Bio(G) a°(a,,) ABi(G) 2 (kHZG)
m =0 198.85 -1049850 -21.95 183
my=1 198.373 -905505 -24.99 193

Table 2.3: Calculateg-wave resonance parameters fbor taken from Fuchst
al. [3]. It should be noted that the dipolar splitting (DPS) istbe order of mG for
8Li. This is much lower than that observed*iK. In the experiments this splitting
was not resolvable. The data is provided for atoms preparebi hyperfine states
|F, mg). Inthis casél) = 11/2,1/2) and|2) = |1/2,-1/2)

Channels By (G) DPS(mG) 22 (uK/G) &9(a3,) ABi(G)

[1)-1) 159 10 113 -42360 -40.51
|1)-|2) 185 4 111 -45290 -39.54
12)-|2) 215 12 118 -42800 -25.54

2.4 Dipolar splitting of p-wave resonances

Collisions of ultracold fermions in ¢lierent internal states can have zero relative
angular momentum and therefore the wave function of theipasotropic. For
ultracold fermions in the same internal state the lowestkEmgnomentum state
is the p-wave ¢ = 1). In this thesis we are concerned with atoms interacting
with an external magnetic field. If we choose the axis of gsatibn to be in the
direction of the magnetic field then the form of the interactbetween two atoms
will now depend on the projection of the relative angular neoiam vector onto
the external magnetic field axis. In this case the dipol®ldimteraction will be
modified depending on the relative position of the two atoms.

The operator for the spin-spin interaction between twolatkams is given

by

2368555

Hss = — r3

(2.33)

Herea = 1/137.0426 is the fine structure constantjefines the internuclear axis
ands is the spin of the valence electron on thieatom. The value of this splitting
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m=1

m=0

Figure 2.4: Semiclassical picture of the dipolar splittifidhe thick white arrow
is the relative angular momentum vector of the atom pair. Srhall blue arrows
are the angular momentum vectors of the total atomic spinen0 state has a
lower energy due to the attractive interaction when theldgpare on top of each
other.

has been calculated f6?K atoms in the same internal state [2] and shown to be
responsible for the doublet feature of the resonance obdemnvthe experiments
on %K [21]. However, this splitting has not been resolved in thpegiments on
SLi [3, 122, 20]. This is accounted for by thefiirence in magnetic moment
between the two species; the magnetic moment oflthaolecule being approx-
imately 12 times larger than that of tAf molecule [3].

A semiclassical picture of the dipolar splitting would hakie two atoms with
a relative angular momentum between them (see Fig. 2.4)néncase the pro-
jection of the relative angular momentum vector on the magrield would be
unity, so the energy of the atoms remains constant as thetomesaotate. In the
other configuration the projection of the relative angulanmentum vector on the
magnetic field will be zero. In this situation when the digoége aligned verti-
cally they will attract each other. This causes the averagegy of themy = 0
state to be lower than that of time, = 1 state. It is possible to draw an analogy
between thg-wave pairing in ultracold gases and pairing in liqdide [78] as
well as superconductors withrwave pairing [80, 81]. Our model will have to
include the &ects this splitting has on the system.
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2.5 Models for ultracold interatomic potentials

For the purpose of studying the many-body behaviour of sesyst may not be
practical to model the two-body physics with a coupled cledspotential. In
many cases it is possible to replace the full two-body imigwa by an approxi-
mate form that recovers a number of physically relevantrpatars of the actual
potential. In Sec. 2.3 we simplified the Hamiltonian to irdgwonly two channels.
This enabled us to reproduce the resonance formula of E8R)2In this sec-
tion, and in the rest of the thesis, we further simplify ountiléonian to a single
channel while using Eq. (2.32) to parametrise the scafjdangth close to the
threshold. To this extent we replace the full potential af f#ystem by a single
channel pseudo potential that recovers the bound statecatigrsng spectrum
close to threshold.

The large de Broglie wavelength of ultracold atoms meangiigsshort-range
features of the interaction remain unresolved. Thus it fSgent to use a poten-
tial that approximates this short-range behaviour by redag the phase shift at
long-range. We are left with the problem of modelling thegaange part of the
potential. We will see that this leaves us with a simple esgi@n for the po-
tential that will make our many particle calculations muekd computationally
demanding.

2.5.1 Van der Waals potential

If one neglects interchannel coupling, the low energy bostate and scattering
spectrum of alkali metal atom pairs is dominated at longagisé by the van der
Waals interaction which arises from an induced dipole-gedldipole interaction
derived from second order perturbation theory [11]. Thieptal decays as/1°

at large distances, with being the interatomic distance. In order to model this
long range behaviour we can introduce a potential of the {65h

o for r<R
V(r) :{ % for 1oR. (2.34)
16
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whereCg is the van der Waals céiecient andR; is the radius of a repulsive hard
sphere. We can choose this hard sphere potential becaus#l agproximate the
short-range behaviour with a phase shift as explained abdvength scale can
be associated with such a potential,

1
lvaw = E(Zﬂce/ 2y, (2.35)

referred to as the van der Waals length [123, 51]. The van dmlsNength is
an important length scale in ultracold collisions [124].r Fo< l,qw the wave
function oscillates rapidly sincé(r) = —% becomes large compared with typical
collision energies. At separations greater than the wave function takes on its
asymptotic form and oscillates on the length scale of the gl wavelength
of the particles.

We have therefore chosen a pseudo potential that has thecttwng range
behaviour and we can alter the valueRyfto reproduce the phase shift caused
by the short range features of the potential. This phaséwsHifoe independent
of how many bound states the potential holds, but sensibithe energy of the
bound state closest to threshold. The potential can be fixedgport fewer bound
states than would be supported by a Born-Oppenheimer jatsatface while
recovering the fi-resonant scattering length. For the potential of Eq. (RtB4
s-wave scattering length is given by [125]

d = Ao

1- tan(d) - 3_87;)] , (2.36)
where® is the semiclassical phase shift and

30 ~ 0.95598!,qw (2.37)

is referred to as the measwave scattering length [125], which is completely
determined by the asymptotic behaviour of the potentialepf(2.34). The semi-
classical phase shift is given by

I _ ViGs
D= thc dr v/—2uV(r) \/ihRg' (2.38)
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This analytic formula allows the sphere radigsto be found for any givers-
wave scattering length (provided we know the species ofgiaating atoms and
the Cq codticient). Several values of the core radius can correspondgives
scattering length, depending on how many bound states osigewito include
in the potential. Altering the value of the core radius alaoses the energy of
the bound states within the potential to be altered. A sigiyl appears in the
scattering length at a sphere radius where a bound statenesategenerate with
the zero-energy threshold of the potential. By decreasiagphere radius below
this resonance value a new bound state can be added and bgsmg it above
this resonance value a bound state can be removed. In thistwayossible
to model a zero-energy resonance by changing the one pamaofahe sphere
radius.

It has been shown in Gao [4] how it is possible to relate thampatersy, and
a; to the highest excited molecular levels of thes/r® potential near threshold. In
order to compare these results, we have numerically sohee8¢hrédinger equa-
tion using the potential of Eq. (2.34) at zero-energy to ieige the scattering
length. This is done using a propagation method and anglykanlong-distance
behaviour of the scattering wave function. In a similar wag bound state en-
ergies can be found by ensuring that the wave function sgisifie appropriate
boundary conditions below threshold. For thesave the bound state energy and
the scattering length obtained from the numerical calandtave been plotted in
Fig. 2.5. For comparison, the solid curve refers to the foilhy analytic formula
for the energy of the highest excitsavave bound state derived in [4]:

Ee = (2.39)

——1_ [1+ Cl_ + Cz_ )
(0-a)’| (a0—a) (a0—a)?
Here the parametegy anday have been scaled by,&y and the energy has been

scaled by#?/|2u(2l,ew)?| with ¢; = 04387552 anct, = -0.2163139. Also
shown in Fig. 2.5 is the universal energy forawave bound state near threshold
as given by [60]

Eoz———. (2.40)
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Inverse Scattering length

Figure 2.5: The near resonastvave bound state energy versysgfor different
pseudo potential models f6K. The solid line is the analytic result of Eq. (2.39).
The diamonds indicate the numerical bound state energyg tisenpseudo poten-
tial of Eq. (2.34). The dot-dashed line is the result usirgshparable potential.
The circles refer to the universal formula of Eq. (2.40). Kihgths have been
scaled by R,qw and the unit of energy i/ [2,u(2|vdw)2].

In a similar manner the values for the scattering volume, eltag the corre-
sponding bound state energies, were numerically calaifatehep-wave. These
results have been plotted in Fig. 2.6. According to [4] thghlest excited bound
state energy is then well approximated by

5a 1 \Y? 1
(2ol o)
a +a a+a

a1+
Here the parameters anda; have been scaled byl(gw)?, the energy has been
scaled byi?/ |2u(2l,aw)?| andd; = 0.4430163 andi, = 0.1639879. The average

. (2.41)
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scattering volume is given by [4]
a, = 0.1162277(Bqw)’. (2.42)

Equation (2.41) has also been plotted in Fig. 2.6 as a cosga#dgainst the nu-
merical result.

Boundstate energy

-12 : :
0 5 10 15 20
Inverse scattering volume

Figure 2.6: The near resonaptwave bound state energy versusgusing a
hard sphere- van der Waals pseudo potential f8K. The diamonds refer to the
numerical result using the pseudo potential of Eq. (2.34jlenthe solid line is
the analytical result of Eq. (2.41) for comparison. All Iémghave been scaled by
2l,qw and the unit of energy i/ [2p(2|vdw)2].

2.5.2 Separable potential

In the context of many-body calculations it is desirabledgeksan even simpler
pseudo potential than the hard sphere plus Van der Waalst@dt® describe the
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two-body interaction. This can be achieved by using a sépagotential. This
allows us to choose an analytic form for the potential thedvers the observables
we wish to study and also allows us to find an analytic formatetlie energy of
the bound state, as we will see. A further advantage of thisrpial is that it is
convenient for numerical integration, as it can be chosdretgontinuous, with
a continuous derivative; this will be important when sotyithe many-particle
equations of later chapters. This form of potential has lpgeniously employed
in studies of few [126] and many-body systems [1, 127]. In case we want
to choose our separable potential to recover the low en@ggnance behaviour
close to a Feshbach resonance. Separable potentials hesdyabeen applied
in the case of botls-wave Feshbach resonances [19] andave Feshbach reso-
nances [99, 97]. The model we use for the separable potefdsely resembles
one already successfully appliedgavave Fermi gases [19, 128, 129]. We con-
tinue to use a single channel approach as this will be theleshppproximation
to the problem.

The scattering wave function is formulated in terms of thgdomann-Schwinger
equation,

l#p) = IP) + Go(Ex +i0)VI|gp). (2.43)

HereGg(Ex + i0) is the free Green’s operator
Go(2) = (z— Ho) %, (2.44)

whereHy is the interaction free Hamiltonian. The argumest E;, + i0 indicates
that the collision energ§¥, = p?/(2u) is approached from the upper half of the
complex plane, as in Eq. (2.22) and Eq. (2.23). A Lippmanhw#icger equation
can also be written for th&-matrix [116],

T(2 =V +VG(2T(2. (2.45)
Given the potential in the separable form

V = )éxls (2.46)
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where the parametetis referred to as the amplitude apg is the form factor,
Eq. (2.45) can be iterated to infinite order to obtain the Bxemes. It is a feature
of the separable potential that this series can be summéytiaatty and theT-
matrix written as

bosi

T2 = : 2.47
9= T 2iGo@ 240
TheT-matrix is related to the full scattering amplitude by
P
F(p. ) = ~(@xuncoIT (5 + 0] ", (2.48)

It can also be shown that poles of tliematrix correspond to bound state ener-
gies [60, 116]. In thesswave case the scattering amplitude has the low energy
asymptotic behaviour [60]

fo(p) ~ —ao, (2.49)
p—0

whereg, is thes-wave scattering length. Thewave scattering amplitude has the

low energy behaviour [60]
2

P ~, —al%, (2.50)
wherea; is here referred to as thgwave scattering volume. The quant{ply),
which appears when Eq. (2.47) is inserted into Eq. (2.48y@anomentum rep-
resentation of the form factor of the potential which we cd®to determine the
resonant bound state through the relati@y(E_1)|y) « |¢_1). As the form factor
is unresolved for collisions in dilute, ultracold gasesudable and convenient
expression can be chosen that reproduces the asymptotltioos of Eq. (2.49)
and Eq. (2.50).

Swave

In the following, thes-wave form factor is chosen to be of Gaussian form [19],

Pl = e P 12Y00(6, 4). (2.51)

V2rhi3/2

Here,p = |p| with 6 as the zenith angle ardas the azimuth angle pf The func-
tion Ygo(0, ¢) is the spherical harmonic with=0 andm,=0. Using this expression
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Bound state energy / h [MHZ]
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Figure 2.7: Variation of thg-wave bound state energy K, with the inverse
scattering volume. The dashed line is the analytic formtiEaep (2.41), while the
solid line is the numerical result using a separable paértdere the energy scale
is givenin MHz as compared to Fig. 2.6. The scattering volhasbeen scaled by
(2l,aw)®. This demonstrates that the separable potential is a gguxémation
over an energy range relevant to recent experiments. Aehigimding energies
the separable potential ceases to be accurate.



Scattering theory and Bound states 61

197 197.5 198
T \ T

19?.5 1?9 19?.5 290

o
N
o

|
[
o
N

|
=
o
S
=
o

3% 108

|
N
ol
S
=

I
N
(=)
S
o
4]

|
N
a1
o
o

|
w
o
o

Scatterinngqume (aB)

|
w
(4]
o

|
-

Binding Energy/h (kHz)

|
N
o
S

T

|
=
ol

-450F -2

— 1 1 L 1 1 1 1

00 -2.5
196.5 197 1975 198 198.5 199 199.5 200 200.5

B(G)

Figure 2.8: The emergence of the bound state fonth& resonance at 198.373G
in 4° K. The green line is the bound state solution to Eq. (2.57§ Alack dotted
line is the result of Eq. (2.41). The dashed blue line is thedoergy expansion
of EqQ. (2.58).
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the parameters and¢ can be chosen such that the condition

1-&Gu@ly) =0 (2.52)

reproduces the pole in the-matrix when the argument is equal to the energy of
the least bound state of the potential;. In the case of tha-wave there is the
additional condition, from the zero-energy limit of thematrix, that the scattering
length is given by

=0 (2.53)

X
1+ x/\r’
wherex = ué/(2nh%0) is dimensionless. The fulfilment of these conditions aiow

the parameted to be varied in order to vary the position of the pole inThenatrix
when the system is close to threshold. This gives the camdibiat

X

1+ 77?
wherey = o /-2uE_1/h and erfcg) = % fyw exp(u?) duis the complementary
error function. In the low energy limit the solution of Eq.%2) recovers the uni-
versal formula for thes-wave bound state energy given by Eq. (2.40). A numerical
calculation of the bound state energy versya,for “°K using a separable poten-
tial in which the parameter is held constant is shown in Fig. 2.5. A formula for
o given in appendix B. The parameters we use are given in Té&ble.2 and
2.3, and reproduced in the appendix B.

1 - vrye erfcy)| = 0, (2.54)
[

p-wave

Given the success of tleawave separable potential in modelling interactions in an
ultracold Fermi gas [19, 128, 129] we seek a similar form tecdée p-wave in-
teractions. The-wave form factor can be chosen to be of the following Gaussia

form:
o

Pl) = —=
Here the extra factor gb is due to the boundary condition on tpevave bound
state and scattering spectrum due to the presence of thé&fwgaltbarrier. Tak-
ing the zero-energy limit of th&-matrix gives an expression for the scattering

pe P12y (0, ¢). (2.55)
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volume,
(2.56)

where thex is defined as before. The condition on the bound state engrgjyen
by the expression

1+ % (1- 2|1~ Vayelerfe()|) = . (2.57)

A low energy expansion of Eq. (2.57) gives rise to an expossfr the p-wave
bound state energy close to threshold,

E—l ~ - . (258)

It should be noted that this is linear in the inverse scattevolume, in agreement
with the first order approximation to Eq. (2.41). This ressilalso in agreement
with previous theoretical results [107, 106]. Equatiorb®.and Eqg. (2.32) can
be used to find an expression for the magnetic moment clogeetdissociation
threshold in terms of the resonance parameters and the paaof the separable
potential. The value of the magnetic moment can be obtanoaad €xperiment [3,
21], allowing the value of the parameterto be fixed for a given resonance. For
the case of°K and®Li this is done in Appendix B. We have also used this potential
to calculate the low energy scattering amplitude and coepa cross-section
obtained to that of coupled channels calculation. The d&ax and results of this
calculation are given in Appendix C.

The observed dipolar splitting of the resonance featurd aiss be accounted
for, given that one bound state would now exist correspandinthem = 0
molecules and one bound state correspondirigite: 1 molecules. This is done
by introducing separable terms representing each componen

V = [ynérlral + voXéolrol + ly-1)é-1{v-1l- (2.59)

This allows for them = +1 components to be non-degenerate. The observed
doublet feature of the experiments indicates, howevet,ttiey are degenerate.
This is intuitive due to the symmetry of the system about tlagnetic field axis
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and we will investigate this further in Chapter 3.

2.5.3 Two channel model versus single channel model

It is common to see both single channel and two channel mageld to model
Feshbach resonances in ultracold gases. The validityloéremodel depends on
the exact nature of the Feshbach resonance. It would seeitivathat if it is
possible to describe the system with a single channel thesltiould be preferred
on the basis of simplicity. However, this is not always pbkesi We will begin
by discussings-wave resonances and then look at hpwave resonancesftier
from them.

We have already mentioned that in the two-channel modellafaes molecule
refers to an eigenstate of the Hamiltonian Eq. (2.17) whashdomponents in the
entrance channel and the resonance channel. We can tleenefta a wave func-
tion for the Feshbach molecule in terms of these components

|¢mol> = VZ(B)|¢C|> + \Y 1- Z(B)|¢bg>a (260)

whereZ(B) is referred to as the wave function renormalisation corqte9] and
represents the fraction of the wave function in the closexhokl. Using a sin-
gle resonance approximation, we can approximate the agjwiithe resonance
energy to be linear in the magnetic field. We can thereforamassthat if the
closed channel component of the Feshbach molecule is laegethe energy de-
pendence of the Feshbach molecule will also be linear, tad gpproximation.
However, we have seen that in the single channel moded-thave bound state
varies quadratically with the magnetic field when close tsorance. We can
therefore assume that the energy of the molecule will vagdeatically when
the closed channel component is small. This is indeed the foais-wave res-
onances [130, 51] and we tend to classify Feshbach resomasceither closed
channel dominated or entrance channel dominated depeaditite behaviour of
Z(B). The situation is complicated by the fact that the closexhdlel component
does not remain constant but varies as a function of the niadgretd. In the case
of an entrance channel dominated resonance the closedetl@mponent will
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be small on the negative scattering length side of the resmnaAs the closed
channel bound state, referred to as the resonance stateaapps the threshold
the closed channel component will increas&B) will continue to increase as
the binding energy of the Feshbach molecule increasesoltidibe noted that a
bound Feshbach molecule can exist when the resonancessséiteabove the en-
trance channel dissociation threshold. As the resonarerggnrosses this thresh-
old and the molecule becomes tightly bound the single cHanoeel will become
inadequate at some point and the binding energy of the Fekhhalecule will
follow that of the linearly varying resonance state in theseld channel.

In the closed channel dominated resonances a rapid incieasen in the
closed channel component when the magnetic field is clodeetoesonance po-
sition. In this case the bound state of the system appearsiatilar magnetic
field to which the resonance energy level crosses the thicesAs the molecule
becomes more tightly bound it may encounter a bound statgostgul by the en-
trance channel, in which case the closed channel compornkieearease as the
Feshbach molecule populates this bound state. Tifiereinces between the en-
trance channel dominated and closed channel dominatettneses are illustrated
in a cartoon Fig. 2.9. The important factor here is that itasgble to use a single
channel approach for entrance channel dominated resamancthe behaviour of
the bound state of the coupled system is similar to that oditigle channel model
when close to resonance.

p-wave resonances are intrinsically closed channel doexhditie to the ex-
istence of the centrifugal barrier [97]. It has been shovat this means that the
amplitude of the closed channel remains large across the easonance [107]
and the Feshbach molecule is always dominated by the clds®thel compo-
nent. When we compare this with teevave we could assume that this means we
would have to use a two-channel model to describe the resen&towever, we
have already seen that the energy of ph@ave bound state in the single channel
model varies linearly with magnetic field detuning from tlesonance, just like
the resonance state supported by the closed channel. laghe we have studied
we have seen that this single channel model fi@ant at reproducing the near
threshold properties of the Feshbach resonance. We tihenefopose that this
single channel model is ficient, at least for use in a first study, in the region
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Figure 2.9: Cartoon to illustrate theftirent behaviours of the-wave bound

state in a closed channel dominated resonance and an opemetlitbminated
resonance as a function of the detuning from the zero of tbenance energy.
The solid blue line is the energy of the resonance state. dlitegreen dotted line
is the bound state energy of the Feshbach molecule in an dyaemel dominated
resonance. The dashed red line is the value of the Feshbdelsut®menergy in

a closed channel dominated resonance. In fact the enerdneafidsed channel
dominated resonance will still vary quadratically close¢he threshold, but over
a much smaller range of magnetic fields. This model diagrarargs &ects far

from resonance where other bound states can interfere hatariergy levels.
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close to the resonance.

2.6 Conclusion

In this chapter we have shown how one can model the two-boysyigdclose to
a p-wave Feshbach resonance. We have used a separable patedétermine
the two-body bound state energy as a function of the magieiticdetuning from
resonance, as well as the low energy scattering propertisgng an approach
that has previously been successful in modelling the twaylpiysics close to an
s-wave resonance we have shown good agreement with previadiesthat use
different models. We have seen that there are soffereinces betweeswave
resonances anglwave resonances. For instance, in shgave the resonance en-
ergy, as it approaches the threshold depends only osWee/e scattering length,
see EQ. (2.40). In thp-wave the resonance energy close to threshold depends on
the p-wave scattering volume, but another length scale is negdaddition to
this (see Eg. (2.58)).

We have derived a model that considerably simplifies theasmpic details
involved in the collision of two ultracold alkali atoms. Theotivation behind this
has been to present a form of the interatomic potential #wvate used in many-
particle calculations. We now have a convenient, analgiisifof the potential
similar to one that has already been successfully employsaviave systems [19,
128, 129]. We now go on to use the potential of Eq. (2.59) withrian factor given
by Eq. (2.55) to study the many-body physics at the mean #sfel| Our ultimate
aim is to study the mean field dynamics of Feshbach molecwadugtion. In
order to do this we need to give our gas an initial conditi@amfriwhich to create
molecules. The exact nature of this initial condition is subject of the next
chapter.



Chapter 3

Pairing in Fermi gases

The pairing approximation is introduced for a pair of pdetcinteract-
ing in the presence of filled Fermi sea. The BCS theory is dised in the
context of its historical development and its further apgiion to Fermi sys-
tems including ultracold alkali gases. The model of the jney section is
implemented to fix the initial conditions of the gas prior twestigating the
many-body dynamics and molecule production. For the rahdermsities and
temperatures investigated it is shown thatrthe= 0 andm, = +1 components
can be considered separately*#. The results of our model are compared
with that of another model and are shown to agree reasona#ly w

In this chapter we construct the initial state of the gas fwinich we will create
molecules. In the introduction we mentioned that an idealajd&ermi atoms can
exhibit non-classical behaviour and the inclusion of iat&ions can dramatically
alter the state of the system. At zero temperature the pestaf an ideal Fermi
gas will fill up all the energy levels to some energy, called the Fermi energy.
It could be assumed that the state of the gas will not changsiderably as a
weak interaction between the particles is introduced. Heweave will see in this
chapter that under certain conditions the state of the gasltange a great deal,
even when the interaction is weak. The purpose of discusBiaghenomenon in
this thesis is that for our dynamic mean field equations (se@r 4) to produce
molecules we need the gas to have an initial state in whické¢hnei atoms form
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long range pairs, known as Cooper pairs. We use the singlenehaeparable
potential proposed in the previous chapter to model thige sibthe gas close to a
p-wave Feshbach resonance. It should be noted that in aniexgueiit may not be

necessary to reach this paired state before creating mesedut for studying the
dynamics of molecule formation at the mean field level it isgssary. It turns out
that the initial condition can be fixed by specifying two pagsiers, the chemical
potential and a parameter that measures the amount of gpairihe gas. These
parameters are in turn dependant on the temperature andydehthe gas, as

well as the strength of the two-body interaction betweetiglas, and it is these
physical parameters that we will choose to give us our irstizte.

3.1 Introduction to the BCS theory

One of the greatest achievements in the study of systemsvaeloperature is
the explanation of superconductivity provided by Barde@ogper and Schrief-
fer [50] (alternative derivations of some of the same resu#re given by Bogoli-
ubov [131] and Valatin [132]). Originally applied to supenclucting metals and
alloys this theory explained that below a certain tempeeatine ground state of
the many body system would be one in which the electrons arthenFermi sur-
face are paired by a weak attractive interaction. Thess paiferred to as Cooper
pairs, can then condense into a state similar to that of a-Bosstein conden-
sate. It seems odd that two electrons would have an attesfctice between them
since they are both negatively charged. However, the idiierais indirect and
is mediated by phonons in the lattice which cause the neeftorde attractive.
Extensions of the BCS theory have been applied to other Frsbéms including
liquid He, ultracold gases and unconventional superconductors.

In metal alloys the transition to the superconducting statet associated with
any structural change in the crystal lattice so it is safestume that it is associated
with a change in the electronic structure of the metal. Th&Bi@&ory was the
first theory that explained the macroscopic properties ®ftiperconductor from
a microscopic basis. An essential ingredient of this ttésrsis the formation of
Cooper pairs.

In the BCS theory as originally proposed only a very wealaation between
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the particles is needed to form a Cooper pair. Further sthdwed that the ap-
plicability of the BCS equations extended beyond the lim# eveakly attractive
interaction and in the case where the atoms form tightly doualecules the BCS
theory can also give a good description of the gas [133, 13djvever, in the in-
termediate region the BCS theory can only give a qualitadiescription of the
gas. This is due to the divergence of the scattering lengthignregion so that
perturbation theory no longer applies. There have been ratempts to extend
the BCS theory into this 'strongly interacting’ regime amndamains an active
field of research. We only wish to fix the initial condition afrogas on the BCS
side of the resonance in order to study the dynamics of midgroduction at the
mean field level and therefore stick closely to the mean fipf@imation of the
BCS theory. We will then vary a magnetic field to produce tighbund diatomic
molecules. In order to achieve these two limits we are gangse Feshbach res-
onances as already discussed in the previous chapter. ddefsine resonance
where the scattering length is negative is associated WalBICS region of the
gas. The side where the scattering length is positive angdtential supports a
molecular bound state is associated with the BEC region.

3.1.1 The Cooper pair problem*

Cooper [135] showed that an attractive interaction betweegrair of fermions
above a filled Fermi sea will allow for a bound state no mattev tveak the inter-
action is. This is in contrast to the normal three dimendipicure of a quantum
mechanical bound state which appears only when the intenai& suficiently
strong. It should be emphasised that the existence of thisdstate of two elec-
trons, a Cooper pair, is a many bodyeet that only exists in the presence of a
filled Fermi sea.

By considering a translationally invariant system withnspidependent forces
the pair wave function can be written as

U(r1.12) = gq(ry — ro)d ™, (3.1)

*This section follows Ref.[1]
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whereR is the centre-of-mass coordinate of the pair gnd the centre of mass
momentum of the pair. In the limit of zero total momentum, plaet of the wave
function that describes the relative motion of the pair carexpanded in a plane
wave basis

$(r1—r2) = ) ce®PrPraln, (3.2)
p

Here the summation over the relative momentpitakes place over unoccupied
states above the Fermi surface. This illustrates that tirefyozction is a super-
position of states in which each pair has zero total momentlime Schrodinger
equation for the pair of particles can be written as

(E - 2Ep)co = > (p, —pIVID', =p)Cy. (3.3)
.

HereE, = 5—; — u is the single particle energy measured relative to the otemi
potential,u. Again the sum only extends over unoccupied states. If thenpal
is factorisable as a separable potential and sphericatiyrstric so that

(P, =PIVID, =P’} = >~ Aoy Yem(5')Yin(D), (34)
tm

whereJ, is an amplitude for the potentia{lgf) is a form factor that depends on the
magnitude of the momentum aivg,(p) is a spherical harmonic, then,

1 1
== N WP 35
% Zp:' i — (3.5)

For an attractive potentia, < 0, it can be shown that there is a solution for
E/m < O corresponding to a bound state. It is this pairing thatgige to the
superconducting state. This argument has only involvedpaeof particles in-
teracting above a Fermi sea. In practise the system willatomhany such in-
teracting pairs at a finite temperature, in which case thenFsurface will not
be sharp. For this reason it is necessary to develop somedbmany particle
theory that can include theséects. Fortunately methods of quantum field the-
ory can be employed to describe the thermodynamic statedtstem at a mean
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field level. This is the BCS theory of superconductivity aiad been successful in
describing the many-body properties of Fermi systems withetive interactions
at low temperature [1, 127].

3.1.2 Liquid 3He

For a long time liquic®He remained the only experimentally accessible electri-
cally neutral Fermi system in which to study superfluiditglgrairing. The two-
body interaction is then due to the electrostatic force betwthe electrons and
nuclei of the atoms. Even more relevant to the work of thisithes the fact that
due to the dominant triplet nature of the helium pairs thenatdom interactions
are in thep-wave. Early experiments ofHe showed that at temperatures below
100 mK it behaved as a degenerate Fermi gas and this statmeshséable down
to 3 mK (the lowest temperatures then available). At the stime considerable
progress was being made to explain the phenomenon of suqglerciivity in met-
als, culminating in the microscopic BCS theory in 1957 [SUhe BCS theory
described electrons that could occupy two spin states.igrcéise a pair will form

in which one of the electrons occupies a down spin state anaittier electron oc-
cupies an up spin state. As discussed in the previous chitygtantisymmetry of
the wave function requires this to Isevave pairing at low enough energies. The
p-wave nature of the interaction betwe#te atoms, as well as the additional de-
grees of freedom in the spin state means that the original 8&18 is insflicient

to describe the liquidHe state.

Anderson and Morel [136] considered states in which painewethe same
state with respect to their centre-of-mass motion and aisio rgspect to their
internal degrees of freedom. In many ways this is similar® driginal BCS
treatment, however, the overall state is now anisotropieeyTstudied the case
for which pairs withp-wave orbital symmetry could have spin projectin =
+1 onto the axis of angular momentum. This state has acquiredame of
the Anderson-Brinkman-Morel (ABM) state. A second states wansidered by
Balian and Werthamer [137]. In this (BW) state the pairs pgca superposition
of all possible spin projections, and in turn it is possildleonstruct a state that is
isotropic in all its properties. This state was also showipganore stable than the
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ABM state.

Subsequent experimental observations and further thealragtvestigation of
liquid 3He has established that the ABM state accounts for the A pbfagpuid
3He and the BW state accounts for the B phase of lighid. For a summary of
the vast amount of work devoted to superfliide the reader is directed to the
review articles [78, 79]. It should be noted that the systamlied in this thesis
bears a resemblance to the A phase of ligikié, or more specifically the A1l
phase in which the symmetry is broken by the magnetic field.

3.1.3 Application to ultracold gases

In the introduction we explained that the physics of ulttdagases shares prop-
erties with many other systems including superconducburisthat the transition
temperatures are orders of magnitude lower than in othéersgsdue to the low
density of the gas. For it to be possible to observe a supgdtate of an ultracold
atomic Fermi gas the transition temperature must be rasadvalue accessible
by experiments. This is possible with the use of a Feshbastnesce. If we
consider a system of Fermi atoms close tsavave Feshbach resonance then on
the BCS sided, < 0) of the resonance the transition temperature is given @) [5

T, ~ 0.28T %%, (3.6)

where T is the Fermi temperature defined by the Fermi endtgy= kgTr =

% with ke as the Fermi wave number (in this sense we expecttardnce in
the transition temperature between an ultracold gas angercnductor due to
the high atomic mass relative to the electron mass). Eximigesise Fermi wave

number in terms of the density of the gas,
ke = (37°n)Y/3, (3.7)

and remembering that the scattering length is negativs, possible to see that
decreasing the density will lead to a decrease in the tianggmperature to the
superconducting state. Similarly it is obvious that insreg the magnitude of
the scattering length will increase the transition tempeeaof the gas. It has
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Figure 3.1: Cartoon of the BCS-BEC crossover. On the lefttreelation length
between two atoms greatly exceeds the interparticle spadin the crossover
region (centre) the inter-particle spacing is of the sangeioas the typical inter-
action length. On the right hand side is the BEC region whieeeatoms have
formed diatomic molecules whose equilibrium bond lengtimigh less than the
typical inter-particle spacing.

already been outlined in the previous chapter that a magfietd can tune the
interaction between atoms and thus make the scatteringhléage close to a
Feshbach resonance. Furthermore the scattering lengtbecamed to positive
values by sweeping the magnetic field across the resonamesatdms can then
form tightly bound molecules and it is even possible to poada condensate of
these molecules [87]. This is referred to as the BCS-BECsonas. A cartoon
of this process is shown in Fig. 3.1. Much theoretical work baen devoted
to the study of the BCS-BEC crossover. Eagles [133] obsetivatlyou could
hold the interaction between the particles, or the scageength, constant and
increase the density of the gas. In the limit of very high dgrtbe size of the
pairs can become less than the interparticle spacing andecairated with Bose-
Einstein statistics. A contrary approach was implementetdggett [134] with
the density held constant and the scattering length vaniedach the same limit
of bound molecules.

Given that the gas can be reversibly tuned from weak interasto strong
interactions the problem remains of determining the grostate and excitation
spectrum of the system throughout the crossover regionentier gas is both
dilute, but at the same time strongly interacting. We haveaaly noted in the
introduction that this state of the gas is similar to that bigh temperature super-
conductor. It is not possible to find the ground state fromnttegan field approx-
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imation provided by the BCS theory because perturbatioarthean no longer
be applied. In order to achieve this higher order approxonatmust be made to
allow for the more complex processes in this region [138kskhideas were later
applied to Fermi gases close to unitarity [139, 140]. Theary¥body approaches
introduced terms that couple free fermions to a bosonic cutde This is often
referred to as the Bose-Fermi model and we will discuss iatowthe end of the
chapter. It should be noted that the solution to the manyipooblem throughout
the cross-over region is still debated.
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3.2 Thep-wave BCS equations

3.2.1 Green’s function equations in the pairing approximaton

For the purposes of this study it isflaient for our model to be valid on the
BCS side of the resonance where the gas is initially prepdPeevious work on
ultracold gases close tomwave Feshbach resonance have used the Bose-Fermi
model to study the predicted superfluid phases of the ga®R®8]. This model
includes coupling between the Fermi fields and Bose fieldsekcludes Fermi-
Fermi scattering in the entrance channel. Iskin and Wildamployed a single
channel model with a separable potential [99] and solve®Bt8 equations for
a homogeneous system and in a harmonic trap. We choose tbeiséahdard
fermionic Hamiltonian which has been shown to give indgtiishable results to
the Bose-Fermi model throughout the BCS-BEC crossoverarstivave [128].
At the end of this chapter we will compare the results givelmbymodel and the
Bose-Fermi model. In our model the many-body Hamiltoniarthe system can
be written in second quantisation as [127]

- 1
H= > (ITIhaa + > > (KIVIM™ ((3]8) Yaman + 33 (anan)) (3.8)
i]

Kimn

whereT is the single particle kinetic energy operator. Hereahanqu are the
usual Fermion destruction and creation operators obefi@féermionic anticom-
mutation rules. The brackets.) represent an average over the thermodynamic
state of the system in the grand canonical ensemble whetielparumber is not
fixed. These are distinct from the single particle kdtsand two-particle kets,
i).

The finite temperature Green’s functions of the system catebired as

Ors(7. 7') = ~(Te[a (r)al(x)D), (3.9)

Fio(r.7) = ~(T[a] (n)a (7)) (3.10)

The latter representing pairing in the gas. HEras the imaginary time ordering
operator that puts the smallest valuerdb right. It is also useful to introduce a
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new ket that represents a paired state in the gas
@) = > (aai). (3.11)
i]

By working in the momentum representation and consideritigaaslationally
invariant system we can write down the Heisenberg equatbnsotion for these
quantities (a detailed derivation of this section leadmgdq. (3.17) and Eq. (3.18)
IS given in appendix D)

8 ’ ’ ’ /
hgg(p, 7,7) = -hé(r - 7') - Exg(p, 7, 7') + AP)F'(p, 7, 7)), (3.12)
h% Fi(p,7.7') = EoF (p, 7, 7), +A* (p)9(p, 7. 7'), (3.13)
where we have introduced the gap function
A(p) = (pIVID). (3.14)

HereE, is the single particle kinetic energy matrix element meagwvith respect
to the chemical potential of the system. By making a Foumandform with
respect to the imaginary time variables these equationbeaolved to give

_ —h(ihwy + Ey)
(P, wn) = 7ok + B2 T AP (3.15)
Fi(p, wn) = hA” (p) (3.16)

- n2w?+ B2+ [A(p)P
Here the frequencias, = (2n+ 1)x/Bh are called the Matsubara frequencies and
ensure the correct Fermi statistics [141]. These equahawme poles atfiw, =
+ ,/Eg +|A(p)2. These poles form the quasi particle excitation spectruthef
system which has a minimum value &fp), interpreted as the minimum energy
required to break a Cooper pair. Equations (3.15) and (&4d®)e inserted into
Eq. (3.14) to give
A

*(9) &
26, tanh(,BE) , (3.17)

A*(p) = - f d*q(qlVip)
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and N 1 E
N_2 [ gl 22 i
=3 f d q[l 2o tanh(,B 2)] (3.18)

Hereey = ((%1 - )2 + |A(q)|2)l/2 andpg = 1/kgT, wherekg is Boltzmann’s con-
stant andT is the temperature of the gas. Equation (3.17) is commonrlgda
the gap equation and Eq. (3.18) is commonly called the deegiiation. These
are the BCS equations for the system and must be solved ameoltisly. Exper-
iments are usually performed at constant temperature hihies this parameter
in our system. Trapped gases usually have anisotropic dmhogeneous den-
sity distributions. However, we fix the density which may amtto an average of
the density distribution over the trapped gas. This lealrechemical potential,

u, and the gapA(p), as parameters to be solved for.

3.2.2 Non-degeneratg-wave resonances

As stated in chapter 2 thg-wave potential consists of three components repre-
senting the projection of the angular momentum vector oméonbagnetic field
axis. Previous work on ultracolgtwave gases close to a Feshbach resonance has
studied the ground state of the many-body system by mimmgitie free energy

of the gas [96, 97], showing that the ground state of the gdspendent on the
splitting in energy between the, = +1 and them, = O state. We therefore study
what dtect the coupling between the resonances has on the chemieatial and

the gap parameter for the case of the measured resonandeg.Bds (2.59) the
energy gap can be written as

A*(p) = (@IVIP) = D (@lymém dmlD) = > Arxm (D)Yin B),  (3.19)

m
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which can be inserted straight into the gap equation to give

D A Y, O am () = (3.20)
m

) Z f qxlml(q)Ym(q)fnnz T (P2 (P)AT X 1m (@)Y, (G)
2((%-n) +|A(q)|2)

5 2 1/2
'g((;‘—m-u) +|A(q)|2] .

This last line is written using the definition in Eq. (3.19hi3 can be done because
we have excluded the possibility of the two-body interatoattering a pair in
anmy = O state into ammy, = +1 state, i.e.

x tanh

V= > Wm)mm O (3.21)
my

whereémm, is the amplitude for the coupling between states edentm;. We
can now remove the summation in Eq. (3.20) to give

Z f lel(Q)Ylml(Q)fmlA X am (Y, (@)
q

2 (3.22)
(& )" +18@0R)
B9 ’ 2 "
X tanh 5((% —ﬂ) + |A(Q)| ) .
We can write this in the abbreviated form
8 == Y, [ Gy (@Yo @7 Y () (3.23)
m,
Here,
X1my (D1 (0) 2 )2 2
Oyt (0) = e tanh[’g [(;_m —ﬂ) ; |A(q)|2) . (3.24)

2((%- 1)+ 1r@P)
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Using the standard definition of the spherical harmonics

/3
Y10(0, ¢) = In cosb, (3.25)
Y1:1(6, ) = ¥4/ 8—:; singe*™?, (3.26)

we can expand the summation
* 3 3 R N
A==\ g | 8Yim @ém [Gm-2()A"; sinve (3.27)
+ \/Egmlo(Q)Ag Ccosd — gmll(Q)AI Singe—iqﬁ] '

We can use some of the propertiesgefr (q) to write a matrix equation for this
system. If we note that

012(0) = 9-1-1(9) = 9:-1(9) = 9-11(q), (3.28)
and
Jo1(d) = Go-1(d) = 910(d) = 9-10(0), (3.29)
then we can write
Ay a b c A_q
o |=| b d -b 0o |- (3.30)
Ay ct -b* a A

The elements of the matrix are given by

a= —%f&qgn(q) S (3.31)

b 3 [Eb f dqgue(q) sind cosge ™, (3:32)
A 2

c= % f d3qou1(q) sir? e 29, (3.33)
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3
d= — 260 f d3qano(g) cos 6. (3.34)

The factors in the vectors on either side are chosen as toestisat the matrix is
Hermitian and so the eigenvalues will be real (as expectad fshysical consid-
erations).

Any solution of the full non-linear problem will also be a sbbn of the lin-
ear equation. By finding all the non-trivial linear solutsowe can then impose
constraints to find which of these solutions corresponde¢atim-linear problem.
The matrix here is Hermitian and so has real eigenvalues€eldguations can be
written

(a— /1) X1+ bX2 + CX3 =0, (335)
b*Xl + (d — /l) X2 - bX3 =0, (336)
C*X]_ - b*XZ + (a— /l) X3 =0, (337)

where theX; are components of the eigenvector. By multiplying Eq. (BI3bb*
and Eq. (3.37) by and adding them we can show

|Agl = JA_q]. (3.38)

We can deduce some further properties of these equationstkyng in a carte-
sian basis. We can change basis with the following defingtion

1 .
o) = - (b iy (3.39)
o) = lx2). (3.40)

This allows the gap to be similarly transformed to give

Au = F— (Ac£iAy), (3.41)

e

AL = AL (3.42)
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In general the components will be complex quantities sq that
Ay = ReAy + iImA,, (3.43)

A, = ReA, +ilmA,. (3.44)

So in general they, = +1 components will be complex and given by

1
A1 = F— ((ReA, FIMA) + 1 (ImA, £ ReAy)), 3.45
= )+ ). @
which multiplied by its complex conjugate gives
, 1 _ 2 2
Al :E((RGAXHmAy) + (R, + 1mA,) ) (3.46)

Using Eq. (3.38) shows

ReAIMAy = ReAyImA,, (3.47)
so that, mA
ReA,  Re, ¢ (3.48)

SsoA, andAy have the same phasgeup to a multiple ofr. We can pull this phase
out of the definition of then, = +1 components to give

1 . o
Ay = ¢$ea (18, = i€™]A, ). (3.49)

Heren s an integer. From Eq. (3.36)

1
XZ = m (bX3 - b*Xl) (350)

So that,

~Vze"
BECER)
which shares a phase witky and X3;. This means that all three components,
{X,y, z}, share a common phase that can be divided out on both sidbs gap

Xz

(RefblA} - i€""Re{blA,|}) (3.51)
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equation. The gap equation is given by Eq. (3.17) with,

A(p) = (pIVID)
= (Plr-1)§-1-1lP) + {Plro)§oxol D) + (Ply1)é1{x1|D)
= Axxx(P) + Ayxy(P) + Azx2(P)
=A-?(p). (3.52)

So we can write the gap equation with a vector notation,

-

A*-¥(p) = - f &g (Phexdér(exla) + (Pley)ériryla)
A* - x(@)
2¢

HPlKéotrda)) tanhs=)) (3.53)

We now divide out the common form factor on both sides to giveguation for
the components of the gap parameter

A* - ()
Zeq

=~ f d®q &xilg) tanhﬁe—zq), (3.54)
withi = x,y,zandé = & fori = x,y and&, fori = z The components of the

form factor vector are given by

3\12 x11(Q) sind cosg
7@ = (—ﬂ (@ sinosing |- (3.55)
Xo(Q) cosd

The gap equation can now be written in the new basis as

—fdgq &ixi(a) A9 172 (3.56)
(( ) +IA- (Q)IZ)

)
1/2
xtanh[’g( — —,u +A ')Z(q)lz] ]

For every solution of this equation we will need to deterniioer parameters:
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The three components of the gap function and the chemicahpat (we fix the
density and the temperature of the gas). We now show thatdhi®e reduced to
three parameters by eliminating one of the gap componerssuraing that there
exists a solution in a set of coordinates rotated inthey plane we can write

(DA*) - ¥(a)
2((§—m - )2 +|(DA) ')?(OI)IZ)U2

ﬁ 5 2 1/2
X tanh[z ((zq_m —,u) + | (DK) ‘)?(Q)Iz] )

whereD is a rotation matrix in thex — y plane. Now we can use the rotational
invariance of the dot produdDK* -x(Q) = A* D~1¥¢(q), to write

(o&) =~ [ Facx(@ (3.57)

A+ - D (@)
2((% - 1) +1&- DLE(@)P)

2 1/2
><tanh(’[—3((q—2 )+|K~D‘1)?(q)|2] ]

= (3.58)

(DA¥), = - f d°q & (Dx(0 ™)),

2llzm ™ H

We should first note that the volume element is rotationasariant so this will
be the same in both coordinate systems. We have used theyymitgerty of the
rotation matrix to writey; (q) = (DX (]D‘lq))i. In order to perform the integration
over ¢ it is instructive to make a change of variables. The origlmaits of the
integration were from 0 tos2, which means that the new range of integration will
be from{ to 27+ ¢, where/ is the angle through which we have rotated the system
in thex -y plane. This will give the same answer as the original intégmdimits
since it spans the entire space. We can therefore deducedh&.58) is of the
same form as Eq. (3.57) and rotating the system irxthe plane does notfeect
the physics.

In the cartesian basis a component of the gap equation camitbermin the
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form
Vi[p)A* - 2 v
((£-n)+ |A(q)|2)
(3.59)
We can write the components of the gap parameter as
= - f d*qf(a)al&a* - x (@), (3.60)

with i = {X,y, z}. In this equation a form factor has been divided out on batbssi

and , "
tanh 2 ((%- ) +|A(q)|2) ]
f(a) = — TER (3.61)
2((%-n) +1r@P)
Expanding the dot product gives.
1/2
AF = - ( ) [ @at@xaos (4 xuesingcoss (3.62)

+A} x12(0) Sind'sing + A} xo(0) coso|

We have shown that the system is rotationally invariant@xth y plane. The im-
plies that we can set thecomponent (or th&-component) to zero when solving
our system of equations. This is not totally unexpected awadd suppose there
to be rotational symmetry about the magnetic field axis (Whve have chosen to
be in thez-direction, see Fig. 2.4). This rotational invariance hasrbconfirmed
by the experiments of Ticknat al. [2] who observed a degeneracy of the= 1
andm, = -1 states. We choose to set faeomponent to zero to give

1/2
A = —( ) f d*af(@)al)é [ALxau(e) sind cose + A3 xo(q) cosd)].
(3.63)
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Since the equation fak, now has a trivial solution only two equations remain

3 .
5 = () [ Pat@elsid@sitocoss (3.64

+AZx11(Q)xo(0) cosdsing cose |

AL =- (4—37;) f A (A& [ AL vo(@)x1a(0) cososing cosg + AZx3(c) coS 6] .

(3.65)
As a matrix equation we can write
AL :[<Dx(q), Du(@)) (Dx(a). Dz(q)>) Ac Al &
Jea: |7 .0 aa).D@ J| (Ear | (A
(3.66)
Here,
.| 3f(g)éx .
D,(0) = i 2Py ) sindcoss (3.67)
and
. [3f(g)&;
DA(a) =i L o(a) cost (369

The brackets..., ...) represent integrals of the product of these functions oNer a
space. The Cauchy-Schwartz inequality gives

(D«(9), Dx(@)){D(a), D(a)) > KDx(a), D). (3.69)

This is consistent with physical intuition in that the crdsems should not con-
tribute as much as the diagonal terms. The matrix is Hermisia the eigenvalues
are real. From this it can be seen that the eigenvalues arelbdiby

0 < 4 <(Dx(q), Dx(a)X{D(q), DA(a)) (3.70)

The form factors in the equations for the components of tipeaga given by

010

e T (3.7)

x10(Q) =
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x11(0) = Wq RNl (3.72)

as shown in Chapter 2. The equations become

Af = (4 3h5)fd3qf(q)q & [Aroy €T sirt g cod ¢ (3.73)

+AJ oo™ F(o5+08)122 cosp sing cos¢] ,

A} = (4 3hS)fde’qf(q)q & [Arorie™ H(o3+08)/27 cospsingcosy  (3.74)

+AXooe T7/ cog 9] .

In the cartesian basis the modulus squared of the gap apgearthe function
f(q) can be written as

8@F = [ u(@a sirF o008 0+ v fooda]. @79

Now the matrix elements of EqQ. (3.66) can be written as

Au = (4 shs)f 2 (A)ePE1e T sirf g cog ¢ (3.76)

Paz = Aor = (%)f oq f(a) R VEEroe T (7782 cosgsing cosg
(3.77)
30—0 o /n?
Aoz = —| 75| | daf(@)a’&ooe 70" cos o (3.78)

The corresponding density equation for this system is dgoyelaq. (3.18) with the
gap function given by Eq. (3.19). In order to solve the systéaquations the tem-
perature and density are fixed as already mentioned. Theétylegsation (3.18)
is solved for a range qf, A, andA,. By interpolation it is then possible to find
the corresponding value affor every{A,, A,} such that

p= p(Ax Ay). (3.79)
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The matrix elements of equations (3.76), (3.77) and (3.28)tbhen be given as a
function of {Ay, A;}. This is done at a fixed magnetic field where ¢hés given
by Eg. (2.56), with the scattering volume given by the useabnance formula,
Eq. (2.32). This will lead to two sets of eigenvalues; aghest will be functions
of {Ay, A;} and will form a surface in this space. The solution to the f@bcan
be found through the constraint

IAX — AaX|| = 0, (3.80)

whereX are the eigenvectors, corresponding to the correct valugs,o\;} as a
solution to the system.

3.2.3 Evaluation of the cross terms

The magnitude of\;, in Eq. (3.77) will determine to what extent it is possible
to exclude these cross terms when solving the BCS equatioissonly possible
to judge the magnitude of these terms in relation to the diabterms, which
according to Eq. (3.66) we would expect to be of order unitg. d&n write

) T 21
Ay = f g’dq f singde f dp=(q) cose, (3.81)
0 0 0

where the functior€(q) contains everything in the integrand of Eq. (3.77) except
the cosp factor. It is easily seen that this integral will be zer&(f) is indepen-
dent of¢. The terms containing are contained in the functioh(q) and appear

in such a way that they always give a positive contributioth®integral. This
means that the magnitude of the cross tégnwill depend on how much weight
these terms give to the integral owgr Eq. (3.18) suggests that an increased in-
tegrand will lead to an increased density. This can be aeHidy increasing
the denominator of the second term. For a fixed chemical fatehis can be
achieved by increasing the gap parameter. The corollayigig that increasing
the density of the system for a fixed chemical potential widrease the value of
the gap parameter. This suggests that we would expect tonsieeraase in the
coupling between the two resonances as the density increase
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The termsA;;/&éx and Ayxp/&, have been plotted in Fig. 3.2 as a function of
the gap terms\,/Er andA,/E¢ for a density of 18 cm™ about the 198.85G
resonance if°K. For a comparison théy,/ V&&E, term is plotted in Fig. 3.3 for
the same density. It can be seen that this cross term is atieragnitude smaller
than the diagonal terms. Fig. 3.4 shows that the cross teemsin orders of
magnitude smaller than the diagonal terms up to a densitp8tm=3. This is
likely to be a higher density than experiments would noryna# performed at.
In this case then it may be possible to treatitihe= 0 andm, = +1 separately.
We now move on to implement this separation of the resonaacdssee what
differences this introduces.
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3.2.4 Separated resonances

In the cases where the coupling is small, such as the situatibe*°K resonance,
it should be possible to treat tme, = +1 andm, = 0 resonances as if they are
independent of each other. Thge = 0 resonance is easily treated by neglecting
them, = +1 components leaving only one separable term in the potertie
definition of them; = +1 resonance is slightly more subtle since we have to
consider two degenerate terms.

By inserting the expression for the spherical harmonias ihé gap equation
we can write a matrix equation for time, = +1 components

[AI ]:[ - [dah@) [ daiee )[ Al ] (3.82)
A, [dPah@)e? ~ [dgh(@) J| A%, )

The functionh(q) is given by

h(q) = 11;’” |)((Q)2|2 sir? 6¢ = tanh[g ((2(1_2 —,u)2 n |A(q)|2)1/2] , (3.83)
(£ - 1) +a@P) m

where the gap function includes only thie = +1 components,

A(Q) = (dly1)é1A1 + (Qly-1)é1A 1. (3.84)

By solving the eigenvalue problem and finding the eigenvsatocan easily be
shown that the values &} andA*, differ only by a complex phase, which we
will label @. This leads to two equations from multiplying out the matrix

1= f d®gh(q) (€®* - 1), (3.85)
1= f d*gh(q) (e - 1). (3.86)

By adding these two equations together we can show that

1=-2 f Pag(@) sin2(¢ ; %) (3.87)
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The term containing the gap in the denominator can be wrégen

IA@)F = 1AL (@) Y22(@)F + A1 () Yo-1 (@) (3.88)
+ 2Re[ A7 A1 (0)2Y53(6) Yaa(8)

Using the fact that the gaps onlyfidir by a phase allow this to be written as
9 3.2 N2 : a
IA(Q)? = Sl (0) S|n293|n2(¢ + E)' (3.89)
We can therefore define a new function

8(asito sirt o+ 5)) = hi@)sirt (o + ) (3.90)
3 LV(CI)IZSinzesinz(¢ + %)g
16W((% )+ ZIAPI(QR Sir? osir? (¢ + c_zv))

- (391)

x tanh

B((? \ 3 o\’
g ((% —#) + Z|A1|2|)((q)|2sinzesin2(¢ + E)] ]

The phase can be absorbed intoghategration and we can write

3
1=-— [ d%
w] (& -4) + 2P osir? o)

B((? \ 3 e
5[(——#) lAllsz(q)lzsinzesin%) ]

Iy (Q)? sir? 6 sir? &

(3.92)

x tanh

2m +§

The two angular integrals in this equation can be reducecth&integral. We
show how this is achieved in Appendix E. This allows the engiap equation to
be rewritten in terms of one linear integral and one parasegtrangular integral

L3 Jfdafdxr(@Pxs

“((£ - 1)+ 2iPirape)

B(? \ 3 v
2 22
anh E((fn —,U) + 5 1Al ()l X) :

(3.93)
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Figure 3.5: Variation of the parametar, with magnetic field for thep-wave
resonance if%K for a density of 18° cm3 and a temperature of #&. The solid
green line is the value of tha = 0 resonance and the dashed blue line is for the
Im| = 1 resonance. There is no significanffeience between the value obtained

when coupling between the components is included and whertdhpling is
excluded.

3.2.5 Results

Equation (3.93) is solved at fixed density and temperatugetter with the den-
sity equation to provide values for the separated gap pdaesama, andA;, and
the chemical potential corresponding to each componentot#opthe gap param-
eters as a function of magnetic field is given in Fig. 3.5 far phwave resonance
in “°K close to 199 G for a temperature of 70 nK and a density 8f &6, In
the BEC limit them, = 1 component appears to be smaller by a factonat
The origin of this factor is the degeneracy of timg = +1 states and they both
equally contribute to the value of the gap parameter. Fenr#sonance the results
given by the coupled resonance model presented in the piegiection and the
separated resonance model just described are indistivaples This was indi-
cated by the relatively small values calculated for the £tesm Eq. (3.81). In
Fig. 3.6 we plot the value of the gap parameteys, throughout the resonance
region for various densities with the temperature held @ons As the value of
the magnetic field is decreased further and further belowedbenance the value
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Figure 3.6: The value of the gap parametgy;, around the resonance position as
a function of magnetic field. The fiierent lines correspond to densities of310
cm3 (top, red),16* cm™ (middle, green) and 0 cm™ (bottom, blue). The
temperature is held constant at 70 nK. The dashed line isdhkitign of thep-
wave resonance at 198.85 G.

of the gap parameter changes less and less, but for a fixedetafield it can be
seen that the value of the gap parameter increases withasingedensity. Simi-
larly, in Fig. 3.7 we present the results of keeping the dgmsinstant and varying
the temperature. We see that on the BCS side of the resonamelue of the
gap parameter increases with decreasing temperaturee BER limit the value
of the gap parameter is independent of the temperature agdl fix the density
of the gas. We have repeated these calculations for thew@sseesonances in
SLi and found similar conclusions. In particular we have fduhat the results of
the coupled system of Eq. (3.66) and the separated resoappceximation of
Eq. (3.93) are indistinguishable. For the remainder ofttnesis we therefore use
the separated resonance approximation when referringrtB@8 state.

It can be seen from Figs. 3.5, 3.6 and 3.7 that at a particuégnetic field
the value of the parameté, goes to zero. This is when there ceases to be any
pairing and the gas becomes a weakly interacting Fermidig&or the case of
using mean field dynamic equations to create molecules &iessary for the gap



Pairing in Fermi gases 97

A, (MH2)

1 1 1 1 1
197 197.5 198 198.5 199 199.5 200

B(G)

Figure 3.7: The value of the gap parametgy, around the resonance position
as a function of magnetic field. Thefirent lines correspond to temperatures
of 100 nK (top, blue),1000 nK (middle, green) and 2000 nK {@ot, red). The
density is held constant at ¥&m=. The dashed line is the position of thevave
resonance at 198.85 G.

to have a non-zero value in the initial state. This limits taege of magnetic
fields that can be used as an initial condition and we canmot sifinitely far
away from the resonance. In Fig. 3.8 we plot the magnetic fiekition at which
the gap parameter goes to zero as a function of density fanthe 0 resonance
in “°K. As the density is increased the value of the magnetic fielthach the
gap parameter disappears increases away from the resoifdmgallows a larger
range of magnetic fields to be accessed by the initial canditi Similarly as
the temperature is decreased the value of the magnetic tieldhiah the gap
parameter goes to zero moves away from the resonance poghis can also
be seen in Fig 3.7. It would then seem that a high density amddmperature is
favourable to observe a paired BCS state of the gas and wedefore provide a
wider range of magnetic fields from which to begin the meau fe@llculations.
The question may be asked as to which species would be betitied $o pro-
ducing p-wave Feshbach molecules from the mean field dynantidsor 4°K?
A comparison of the initial conditions may give some indicatof the feasibility
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seen that at reasonable experimental temperatures one gpasd a high density
in order to explore a significant range of magnetic fields aBICS side of the
resonance.

of producing molecules in either system (We will see in chagtthat the value

of the initial gap parameter is related to the number of mdecproduced in the
gas). Fig. 3.9 shows the value of the magnetic field detummm the resonance
at which the gap parameter goes to zero as a function of gednsiboth®Li and
40K. It can be seen that fdfK it is possible to explore a wider range of magnetic
fields for the initial conditions than fdiLi. This is due to the fact that the mag-
netic moment of théLi molecules are approximately 12 times larger than that of
the“°K molecules [3].

Fig. 3.10 shows a plot of the chemical potentialfigr= 0 andm, = +1 pairs
about thep-wave resonance f{K. As the value of the gap parameter goes to zero
the value of the chemical potential approaches that of aal FEermi gas. On the
BEC side of the resonance the chemical potential approdiethe value of the
binding energy of the molecules. The slope of the chemictdmi@l is therefore
given approximately by the value of the magnetic moment efrtiolecule. This
explains why the the gap parameter exists for a larger rahgeagnetic fields
in 4°%K than in ®Li; the lower magnetic moment. This suggests t#t would
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provide a more promising system from which to study the meeld fiynamics
due to the larger range of available magnetic fields. Forrdason we will use
this “°K resonance to perform our mean field calculations in the chsbpter.
This, of course, does not take account fieets beyond the mean field and any
experimental issues that may have to be overcome.
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of the resonances is marked by the vertical line. The zerbefgcal potential is
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3.3 Bose-Fermi model

Our approach so far has been to calculate correlation fumetn terms of ensem-
ble averages of products of Fermi operators. One altemagyproach, referred
to here as the Bose-Fermi model, is to treat the bound masad composite
bosons and introduce a coupling between free fermions asdnbopairs. This
model has been extensively studied in both $fveave andp-wave [142, 97]. In
the case of thes-wave it was shown that there is no significanfelience in the
results given by the single channel model and the Bose-Raodel when applied
about a Feshbach resonance [128]. In this section we cortiparesults of the
model we have presented to one that usedfarént form of the potential and a
different parameterisation of the scattering volume.
A Hamiltonian for the Bose-Fermi model can be generallytentas

2 2

Hoch =y (Ebare+ f—m) b+ > | ;—ma,gaq+2 W(A)(bpal, o +bja4.53.5):

p q a.p (3.94)
which is written in the momentum representation to avoidigsion between sin-
gle particle boson states and single particle fermion statbe operatorag) are
the Fermi annihilation (creation) operators, while the dp)eratorsbg) are the
boson annihilation (creation) operatol®/(q) is the coupling between the Fermi
channel and the Bose channel, its form depending on theeafuhe interac-
tion. In this Hamiltonian it is obvious that scattering beem fermions has been
neglected. The bosons in this case are the bound moleculesmwenergyEpare
when the molecule is not dressed by the surrounding atoms.ré&hew of Gu-
rarieet al. [97] studies this Hamiltonian in both tleewave and thg-wave. In the
p-wave the coupling is linear in its argument, reflecting & Energy properties
of the scattering amplitude. This is a similar constrairthi&t which we imposed
in chapter 2 in order to derive our separable potential. A maioim cut &, A, is
introduced in order to calculate integrals. In contrastroodel uses a separable
potential that has a Gaussian factor so that our integraigerge automatically,
although we still need an extra range parametein the Bose-Fermi model the
low energy parameters of the system are fitted by includiegdfiective range in
the low energy expansion of the scattering amplitude.
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Neglecting scattering in the Fermi channel causes the preation of the
scattering length to change, so that

_ agAB
a(B) = BB, (3.95)
For thep-wave model the coupling term is given by
gpd
== 3.96
W(a) = NYa (3.96)

whereV is a normalisation volume ang}, is a coupling constant. In this model
the density equation is given by

2

n= f ¢q 1, o (3.97)
~J 2@mB | e \2 172 '
() ((S—m - ) +4g3|Ap F - Q|2)

5 2 1/2
g ((Zq_m —H) + 4g3/As F - Q|Z) ]]

x tanh

The gap equation is given by

(0 ~ 20) A Z | [B1Asr, (3.98)
with
d’q 9.9
(M Y
10[B] = D e e (3.99)
(£~ 1) + 4086 ¢ - a?)

ﬁ q2 2 1/2

2 2
x tanh E ((?n - ) + 4gp|AB—F . ql ) ] .
The indicesy andy refer to thex,y andz components in the equations, and tie
represents the Bose-Fermi coupling. The quantjtis the energetic detuning of
the molecular state to the zero energy Fermi collision staseusualg = 1/kgT
wherekg is Boltzmann’s constant anf is the temperature of the gas.
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Equations (3.97), (3.98) and (3.99) bear a relation to th& BQuations (3.17)
and (3.18) derived in our single channel approach and wedsartify

A@) = 2gpAe - . (3.100)

The coupling constant can be related to the two-body paemhete introduced

in chapter 2

bg OEes
B 37ra[g]—aB AB (3.101)
—,U 2 ) .

The momentum cutfdis related to our resonance parameters through

9 =

A= n—h (3.102)
20

Here,o is the range parameter we introduced in the form factor os#parable
potential, Eq. (2.55). We use these definitions to solve tjuatons for the Bose-
Fermi model numerically. The solutions for the parameighave been plotted
in Fig. 3.11 for the case where we have treated the resonamé¥¢ separately,
such that we have excluded coupling betweemthe 0 andm, = +1 states. This
shows that at low densities the solutions are very similamigher densities the
solutions deviate from each other, with the zero of the gaprpater appearing at
a higher magnetic field in our single channel model than irBihge-Fermi model.
This deviation is due to the inclusion offsesonant background scattering in the
parametrisation of the scattering length in our model. A parnson of the chem-
ical potentials has been plotted in Fig. 3.12. Here, thetgwia agree well close
to the resonance and deviate from each other far from th@aese. This is also
to be expected due to thefiirent parametrisation used in each model. Overall,
the solutions are qualitatively very similar and do not vargatly quantitatively.
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Figure 3.11: Comparison of the paramefgy using the two channel model
(dashed blue line) and the single channel model (Solid glieeh for densities
of a) 10 cm3, b) 10" cm™3, ¢) 10" cm3. All calculations were performed at
70nK for them = 0 resonance at around 198.85G'9K. At low densities the so-
lutions are very similar. At higher densities there is a dgon with the position
of the zero of the parameter being higher for the single celemodel than for the

two channel model. This is due to the inclusion of tiresonant scattering in
the single channel model.
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3.4 Conclusions

In this section we have presented the thermodynamic théatyfikes the initial
state of the gas from which we will study molecule productismg a magnetic
field that varies linearly with time. We have implemented skeparable potential
derived in the previous chapter fprwave interactions and shown that for the pa-
rameters studied it may be possible to treatrthe= 0 andm, = +1 resonances
as separate resonances. In chapter 4 we will continue tdeeeesonances sepa-
rately and focus on the case8K. We have studied how the relevant parameters
affect the feasibility of producing a BCS state ungewave pairing. In particu-
lar we have seen that low temperatures and high densitiésaieNv for a larger
range of magnetic fields to be accessed as initial condifarthe dynamic mean
field equations. This was expected from previous studidsybithave shown this
still applies about thgp-wave Feshbach resonance by solving the BCS equations
numerically. There is also a suggestion t&t may be a more suitable candidate
than®Li for observing a BCS state due to the fact that we can havenazem
value of the gap parameter on the BCS side of the resonaneddager range of
magnetic fields. This feature is explained by the magnetimerd of thep-wave
molecules, which is approximately 12 times largerfoirthan for 4°K. We have
also compared the results of our single channel approadhsigaBose-Fermi
model showing that there is no significantfdrence between the two models in
the region close to the resonance, at least in the case @ktva/e resonance in
40K In the next chapter we derive the time dependent equivalfdhe BCS equa-
tions. We use the results of this section to fix the initialadition of our gas on the
BCS side of the resonance and then apply the dynamic egsatibite varying
the magnetic field linearly with time.



Chapter 4

Many Body dynamics

The dynamic mean-field equations are derived for fermioril piwave
interactions. These are applied to a gas of Fermi atoms @épaa BCS state
close to a Feshbach resonance. Linear sweeps of the mafigldtare applied
to convert the system from a weakly paired BCS gas into a BEGoahd
molecules. The molecule productioftieiency is calculated and studied as a
function of the initial conditions of the gas, as well as thé&rat which the

magnetic field is varied.

Our aim is to produce Feshbach molecules from a single coergdfermi gas
through a linear sweep of the magnetic field. In this chaptestwdy the dynamics
of this process using a mean-field approach similar to thiafof129]. We use the
results of the previous chapter to determine the initigdestéthe gas on the BCS
side of the resonance and the separable potential of chaptemodel the two-
body interaction that appears in the dynamic equations.aldeilate the molecule
production diciency on the BEC side of the resonance and studyffieets that
the initial and final conditions, as well as the rate at whieholhiange the magnetic
field, have on the system.

The use of a time-varying magnetic field to tune the inteoscstrength be-
tween a pair of atoms in an ultracold gas makes use of the Zeepidting be-
tween diferent hyperfine states as explained in chapter 2. The ini@nazan be
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tuned such that free atoms can be associated into diatom&cuotes by vary-
ing the magnetic field about a Feshbach resonance [19]. miatéeshbach
molecules have been produced from atomic BECESRbD [143, 144, 145]'33%Cs
[146, 147],2°Na and®’Rb [148]. Two-component Fermi gases have also been used
to create Feshbach molecules in gase®If[77] and®Li [91, 92, 149]. More
recently experiments have been successful in producireydraiclear Feshbach
molecules of'°K&Rb [150, 151] and®R¥’Rb [152]. Subsequent experiments
on Fermi gases used Feshbach resonances to produce moEEds [87, 93],

as well as regaining the initial Fermi gas by sweeping thematig field back
into the BCS region [95]. The formation gfwave Feshbach molecules has been
achieved in single component ultra cold gase¥kf[21] and®Li [20, 3, 22, 23].
More details on the experiments performed in Fermi gases baen given in
section 1.3.3.

4.1 Linear Sweeps

In the first experiments on molecule production via a magaé#yi tunable Fes-
hbach resonance fiRb, a rapid pulse was applied close to the resonance posi-
tion [143]. This involved holding the magnetic field closethe resonance for a
period of time and detecting atom loss from the gas resuitiregcoherent super-
position of atoms and molecules. Despite its success thisodesfered from a

low yield of molecules and atom loss due to heating of the gas.

In Fermi gases it is possible to produg@ave molecules by holding the mag-
netic field on the positive scattering length side and obsgratom loss due to the
enhanced three body collision rate [149, 92]. Using thigvoeit was possible to
achieve a conversiorfieciency of up to 85% [92].

A further magnetic field variation was implemented by Thoowpst al.[144]
to produce molecules fi¥Rb. They set the value of the magnetic field close to the
resonance position and applied a sinusoidal oscillati@ssociate the molecules.
The production iiciency was shown to be strongly dependent on the frequency,
amplitude and duration of the field variation.

The method of sweeping a magnetic field across a Feshbachareso has
been successful in producirsgvave molecules from gases of fermions [77, 91]
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and bosons [146, 153, 148, 147, 145]. The production of nuddsdrom bosonic
gases is suppressed due to an enhanced inelastic lososséathe resonance [148,
154], as well as problems caused by density dependent bgads]. A much
higher production ficiency using magnetic field sweeps has been observed in
swave Fermi gases. Using this technique it was possible twasd a gas of
fermionic atoms into a BEC of diatomic molecules [87, 93] amekep back in to
the BCS side of the resonance to regain the initial state [95]

We study the situation in which the magnetic field is varie@drly with time

B(t) = -Bt+ B;, (4.1)

whereB; is the value of the initial magnetic field above the resongusation By,
Several experiments have used linear sweeps of the madieddico associate
p-wave molecules ofLi [20, 22, 23]. In these experiments relatively low yields
were achieved, at most around 20 % by Zhahgl. [20]. This can be compared
to the 85 % achieved in thewave experiments of a similar nature [92]. For our
mean field study it is necessary to have a state that incluaieagin the initial
condition. It has not been shown that this state has beepathexperimentally
and it is possible that our initial conditionfters from that of the experiment.
Other experiments have used sinusoidally modulated miagredtls to associate
p-wave molecules [3, 21].

4.2 Two-body dynamics

Before we study the dynamics of the gas at the many-body rhielahlevel we
will look at the two-body dynamics of the system. This mayhhight some dif-
ferences between the two-body and the many-body resulte/éirttelp establish

to what extent many-bodyftects are important in the systems we are looking at.
The results of this section are based on previous work [15&]caly apply to the
case of two particles under tight harmonic confinement. Shigation is exper-
imentally relevant, as atom pairs can be isolated on theo§iéa optical lattice.
We later solve the mean-field equations in free space, so wédvaxpect some
differences between the results given by the two approacheodbis tchange
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of circumstance. In appendix G we then solve the problemvior particles in
spherical box. In the limit of a large box we would then expeetresults of this
calculation to be analogous to those of a homogeneous gageaoaould therefore
compare this to our mean-field dynamics, which we solve faradgeneous gas.

We consider the solution of the problem of a pair of partiaksracting under
a time-dependent interatomic potential. We use the sejgapaibential of chap-
ter 2 to include the féects of a magnetic field that can alter the strength of the
interaction between the particles through the Zeenfiéate Deep in the potential
well of an optical lattice the confinement is assumed to benbaic and there-
fore the centre of mass and relative motion of the atoms caseparated, just
as for particles in free space. It is then necessary to stlwditme-dependent
Schrddinger equation to determine the pair dynamics,

() = Has(O1(0). @2)

Here,|¥(t)) is the wave function of the pair andys(t) is the Hamiltonian gov-
erning their evolution. The two-body time evolution operat)s(t,t’), obeys a
similar Schrédinger equation

ihguzs(t, ti) = Hos(t)U2s(t, 1), (4.3)

wheret; is the initial time. This can then be used to calculate théabdity for
pair association through

Pri = Kepn(Br)IUaa(ts, )P (4)), (4.4)

wheret; is the final time ands,(Bs¢) is the bound state wave function at the fi-
nal magnetic field position. The exact structure of the wawvefion will depend
on how the system is modelled. In the approximation wherg tmb Zeeman
configurations are considered, the wave function will have ¢components cor-
responding to the entrance channel and the closed charored IfRear sweep of
the magnetic field, and when the closed channel supportgkesgsonance state,
it is possible to calculate the exact time evolution of the.p&his is the two-
channel model of chapter 2 where we discussed the time-@milgmt problem to
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determine the near threshold behaviour. We also pointedhatithe Feshbach
molecule in this two-channel model is a linear superpasitibthe open channel
and closed channel components.

A generic approach that can be applied to the two-body dycemas de-
veloped independently by Landau and Zener in 1932 [156,.15Fjs is sim-
ilar to the approach above, but the entrance channel novaicenjust a single
state, &ectively reducing the problem to a two-level system. In thetlof zero
ramp speed a pair of atoms prepared in the entrance chanhé&nw a bound
molecule in the closed channel. This approach assumeshihaweep has the
limits t — —oco andt; — oo. Finite ramp speeds will lead to states where the atom
pair is in a superposition of a bound molecule and a free pEie probability
for molecule association can be calculated analyticalilygfsame time limits are
assumed [158, 114].

This approach only accounts for the statistics of the padtog particles in
the form of interaction introduced as in chapter 2. Expenta@erformed about
the 1007 G resonance in bosofiRb [159] have shown good agreement with the
Landau-Zener theory. For a system where the equilibriute ssadescribed by
the BCS theory of the previous chapter, it would not be intaito include only
the two-body dynamics of an atom pair to calculate molectdeypction; we have
already seen that many-bodffexts are important in these systems. Given the
success of the BCS theory, we will later look at the time etvofuof the distri-
bution functions at the mean-field level and use these talzk the molecule
production.

The Landau-Zener formula for molecule association is ghwefi9]

P=1-e29z (4.5)

whereP is the probability of the atom pair forming a closed channeleuule at
the end of the magnetic field sweep. In ghrevave the Landau-Zener cieient,
oLz, is given by [155]

b
grovave _ SVIOH |, AB) (4.6)
Lz 47r,uaﬁo B

Here,a,, is the harmonic oscillator Iength;’r%] is the background scattering vol-
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ume,AB is the width of the resonancB,is the speed of the linear magnetic field
sweep and is the reduced mass of the atom pair. For a Fermi gas in a h&amon
trap a typical length scale is the Thomas-Fermi radius (Seeg(@i et al. [56]
Section Il. B.)

Rrr = ano (48N)"°, (4.7)

whereN is the number of atoms in the trap and it has been assumedéaap
is isotropic. It should be noted that this discussion is § veugh approximation
that enables us to relate the density, in a many-body sem#iee parameters that
can describe a tight harmonic trap, used to confine two pesticThe density
distribution of the cloud is given by

3/2

8 N r\
() = -5 (1— (R_TF) ) : (4.8)

F

wherer is the radial coordinate from the centre of the trap. In thareeof the

trap the density will then be

no)= >N (4.9)

R

We can then find the harmonic oscillator length as a functidhe@density in the

centre of the trap
4N 1
3 _
a3 = 4/ 3 22n(0) (4.10)

To analyse the behaviour of the Landau-Zener parameter ale 8& equations
with a background scattering volurm?,?]. More precisely we can define a length
scale as the cube-root of the modulus of the scattering v@lum

ase = [a212. (4.11)
The Landau-Zener parameter now comes out as

AB
B

sP-wave _ S \/E

= , 4.12
LZ 471_&'?0 ( )
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with an, = ascdho. In this equation

h =

B= B. 4.13
pas, 4-13)

The harmonic oscillator angular frequency is defined by

h

Who

This can be used along with Eq. (4.10) to estimate the demsitye centre of the
trap in terms of the trap parameters

3/2
IN 1
i ) i (4.15)

n©)= (tho,u 3 n?

We have plotted the Landau-Zener probability as a functich® sweep rate in

1
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Figure 4.1: The variation of the Landau-Zener probabilitytivo atoms in a tight
harmonic trap as function of the sweep rate. The resonamaegters refer to the
my=0, 198.85 Gp-wave resonance if’K. Ny, is the number of molecules am

is the number of atoms. This gives a clear indication that xpeet the molecule
production diciency to increase as we decrease the ramp speed and belotv abo
10 Gms we have complete conversion of atoms to molecules.
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Fig. 4.1. The molecule production increases as the rampdspdewered and
below about 10 @Gns there is a 100 % conversion of atoms to molecules. We have
used a harmonic oscillator frequencywf, = 27x70 kHz similar to that used in
experiments on Fermi gases [2].

4.2.1 Behaviour analysis

!
10 10"

n(0) cm™

Figure 4.2: A plot of the association probability for 2£R) particles using the
Landau-Zener method as a functionng®). The black, blue and red lines repre-
sent ramp speeds of 0.1, 10 ancd® ms, respectively. The solid lines are the
association probability given by Eq. (4.5) while the daslveek are the fast sweep
(low density) approximation given by Eq. (4.21)

We can use Eq. (4.10) to write the Landau-Zener parameteffascaon of
the density

_ 5v10( 3 >/6 AB
p-wave _ 10/3x/M\5/3 ~ Bln)°/3
0, = y (_GN ) 7~">f(0) _|_5, n(0)=, (4.16)

wherer{0)°® = a3 n(0)*® and the number of atoms remains fixed. A derivation
for the Landau-Zener parameter in a spherical well is gineapipendix G, where
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Figure 4.3: A graphical comparison of the full Landau-Zefoemula against the
approximation of Eq. (4.21) for a sweep speed of BIms as a function of the
atomic density. The solid, blue line is the full Landau-Zefegmula, while the
blue, dashed line is the approximation of Eq. (4.21). The dadghed line is the
ratio of the full formula to the high speed approximationcdn be seen that at a
density of 1x 10** cm3 there is less than a@L% factor between the 2 values.
This has increased to over 10% by 30" cm3. These two points correspond to
exponents of approximately 0.02 and 0.21, respectively.

we find the same®? scaling. In terms of a sphere with volurive= 37R®, we
have bg
alWABl

0
53V = 570236—— .

VuR2

, (4.17)

where the superscril@ Wdenotes a spherical well. Assuming a uniform density,

such than = §, gives

¥ ABy
B

hr 4\
53V = 570236;” (—)

. (3)5/3 . (4.18)

N

This differs from Eq. (4.16) by only a numerical factor if we take thesity
at the centre of the trap to be the uniform density in Eq. (.18 should be
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noted that in both cases the parameter remains dependdre system size and a
thermodynamic limit can not be taken, even in the limit ot &8eeps, in contrast
to thes-wave [114]. We can compare this with the Landau-Zener esgioe for
the sswave [19],

6s—wave_ \/@ abgAB

= —|—]. 4.19
Lz 2uﬂaﬁ0 B ( )
This equation can be scaled using theave scattering lengtla,y to give
Vér [ 3\"*_ |AB
S-wave _ P ~ N
o7 = > (_4N) f(0) _|§ n(0). (4.20)

From these expressions for the Landau-Zener parametens Idecseen that in the
limit of fast sweep (and low enough density) we can approieniay. (4.5) to be

P ~ 276, (4.21)

This predicts that for fast ramp speeds thr@ave association probability will
behave like
Ppwave ~ N(0)*3. (4.22)

A comparison of the association probability of the Landan&r formula Eq. (4.5)
and its approximation Eq. (4.21) is plotted as a functionexigity in Fig. 4.2 for
them, = 0 p-wave resonance around 198.85 GK for various ramp speeds.
The extent to which the approximation of Eq. (4.21) can belwsa also be
analysed. In Fig. 4.3 we have plotted the ratio of the fulirfata to the high speed
approximation for a sweep speed of I&ms (red, dashed line). We can see that
the production fficiencies stay within a factor of@1% of each other up to around
10** cm3. This corresponds to an exponent in Eq. (4.5) (or producificiency
in Eq. (4.21)) of around 0.02. This line is essentially a jpiiothe function

1 — g9n(0))
9(n(0))

so we would expect a similar region of validity in terms of tredue of the ex-
ponent no matter what partial wave we are looking at (assgithiat the Landau-
Zener formula is valid). We can therefore compare the vaiub@exponent in

f(g(n(0))) = (4.23)
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the p-wave and thes-wave to give

p— ave bg
6 " 5\/5 4/3 ( )2/3|a AB'

5s—wave 4 \/é 9 A le (4.24)

where the superscripts denote theave and thg-wave. In the limit of fast mag-
netic field sweeps this will also give an approximation of tekative molecule
production between thp-wave and thes-wave. It should be noted that this ex-
pression is independent of the ramp speed. Equation (4&ipéen plotted in
Fig. 4.4 as a function of(0). The sswave parameters used correspond to the
202.1 G resonance K. It can be seen that the density has to be very high for
the molecule production to be comparable in gh@ave andp-wave, otherwise
the molecule production in thp-wave is significantly lower. For Eq. (4.24) to
estimate the relative molecule production the ramp speaddaben have to be
very fast (greater than $@/ms).

Fig. 4.5 compares the probability fetwave andp-wave molecule production.
At lower ramp speeds the value given by Eq. (4.24) gives a nsuddller value
than the ratio of actual probabilities, so that the yieldpefvave molecules is
under-represented by this approximation. However, Figshows that there is a
range of densities at which tlsawave production can be 100 % while thevave
production can be less than 1 % and even at a low ramp speed Gfmi® the
density must still be in excess of #@&m to get a ratio of greater than 0.9.

We see that from a two-body point of view we expedclatient behaviour of the
s-wave andp-wave production ficiencies as a function of atomic density. This
analysis has been restricted to the case of a tightly cogfinarmonic trap, but
the main diference is the threshold behaviour reflected in the evaluatimatrix
elements when calculating the Landau-Zener parametet.[Ib&ppendix G we
find similar behaviour of the Landau-Zener parameter in @gpal box, to its be-
haviour in a tight harmonic trap, corroborating the aboageshent. Numerically,
the resonance parametem% andAB, will play a role in determining the overall
ratio of production #&iciencies. In the system we have applied this to, we expect
that a higher atomic density will be required in fxgvave case than in thewave.
The limitations of the Landau-Zener approach lie in the eetyhg of many-body
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Figure 4.4: The ratia,"*"/65*¢ as a function of density. The-wave res-

onance values are given la@g = 174 a.u. [118] and\B = 7.8 G [87] for the
202.1 Gs-wave resonance ifK. This will also be an estimate for the relative
molecule production between tlsawave and thep-wave in the limit of a fast
sweep. The density has to be very high for the molecule ptamiuto be compa-
rable.

effects and in the requirement of an infinitely long sweep of tlagnetic field.
We have seen in chapter 3 that many-boffg@s can have implications on the
thermodynamics and we will now look at the more comprehenapproach of
the mean-field dynamics. This will also enable us to studyngeeof diferent
initial and final conditions.
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Figure 4.5: The ratio Pyav/Ps-wave as a function of density. Ths-wave res-
onance values are given la&?g = 174 a.u. [118] and\B = 7.8 G [87] for the
202.1 Gs-wave resonance ifK. This will also be an estimate for the relative
molecule production between tleawave and thep-wave in the limit of a fast
sweep. The density has to be very high for the molecule ptexuto be compara-
ble. The black, blue and red lines represent ramp speeds @fiand 16 G/ms,
respectively. The dashed, green line is the high ramp spppx@mation of
Eq. (4.24).
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Figure 4.6: The ratio Pwav/Ps-wave as a function of density. Ths-wave res-
onance values are given la&?g = 174 a.u. [118] and\B = 7.8 G [87] for the
202.1 Gs-wave resonance ifK. This will also be an estimate for the relative
molecule production between tleawave and thep-wave in the limit of a fast
sweep. The ramp speed is 1. The blue-dotted line is treewave production
efficiency as calculated from the Landau-Zener formula. Theethgyreen line is
the high ramp speed approximation of Eq. (4.24). This shtasthe production
efficiency of thes-wave molecules can be 100 % at densities where fi@ancy

is less than 1 % for th@-wave molecules. At this low ramp speed a density in
excess of 18 cm 3 is required to produce a 90 % productiofii@ency in the
p-wave
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4.3 Many-body Dynamics

Many-body approaches have previously been employed taleéés-wave molecule
production in ultracold gases [24, 114, 160, 161]. In theeaafsBose gases the
Bose-Einstein condensate can be taken into account wheunlai@hg the many-
body dynamics of the system. Beyond this we would have toidenthe density
of the non-condensed particles and pairs correlated indke §he situation can
be similar in the case of Fermi gases where no true condeesats, but particles
can still be correlated to form Cooper pairs in the BCS state.

The phenomenon of the BCS-BEC crossover opens up the dagsdriphysi-
cists to probe the fundamental question of what constitateesmion and what
constitutes a boson. We have already seen how many-ttetteare important
in ultra cold Fermi gases in the previous chapter. Givenweatan already see
many-body &ects at the mean-field level in the thermodynamics of theesyst
we will study the mean-field dynamics in thpewave using methods previously
applied tos-wave paired fermions [129]. In this study the time-evauatbf the
order parameter describing the BCS state was studied foigpan abrupt switch
of the magnetic field values from the initial value. The timepedndence of the
molecule density was also studied after the magnetic figlidtvan. We will first
use afinite linear sweep of the magnetic field to study mo&production. Later,
we will repeat the study of Szymakaet al. [129] for the p-wave resonance in
4OK.

4.3.1 Mean-field dynamics

In Fermi gases the mean-field dynamics evolves a many-badly sbnsisting of
pre-paired atoms. To describe the onset of pairing in thevgasould have to use
a higher-order approximation, such as a quantum Boltzmaguaaten that has
already been applied to bosons [24], which is beyond theesobfhis thesis.
The stationary solution of the previous chapter providegtittial state for the
study of molecule formation in the gas, determined by oursehanitial condi-
tions, such as temperature, density and initial magnetda: fi#e then dynamically
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evolve the pair function, defined by
iy, (1) = (@, (4.25)
and the one body density matrix defined by
Tij(t) = (ala. (4.26)

Here the indices represent single-particle states and#o&éts ...); are ensemble
averages at time The pair function is related to the gap parameter of theipusv
chapter through the relation

Ay = Y (iVIKIXala) = > GIVIKDDK(E). 4.27)
Kl Kl

The equations of motion are derived in full in appendix F,wathere give some
of the main results. The full Heisenberg equation of motmnttie density matrix
IS given by

ih%Fij(t) = Zk](ilHlslk)ij(t) — Z(”HlBlDFiI ® (4.28)
+ Z(il VIKh) [TED(t) + @ ) Din(t) + T (T (t) - Tnj(OTw ()|
kih
— Z<Ih|V“k> [Fl(lfl’l’?)(t) + (DIT‘I (t)d),k(t) + I (t)rkh(t) —Ty (t)rlh (t)] i
Kih

whereHsg is the single-particle Hamiltonian containing the singhaticle kinetic
energy operator and any external potential. The correspgretjuation for the
pair function is given by

9 . I
|haq)i1i2(t) = Z<|1|2|H28|k1k2>q)k1k2(t) + Z (o] Z Vijalkikzoh) (4.29)

kika kikolh j=1
X [T O + T (O Prgge (8) + Tt (OPicn(t) — Tt (O Pign(1)| -
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The higher-order terms in these equations are given by

I (1) =(@),..al a,.a,) (4.30)

i1..im.j1.-Jn

These represent correlations in the gas far from equiltbrifhe superscript,
denotes these quantities as cumulants [162]. It can be baea full solution of
these equations would produce an infinite hierarchy of egsitincluding higher
and higher-orders of these correlations. This is intrdetao at some point a trun-
cation of the series must take place if we wish to solve thitesy of equations.
Motivated by the success of the stationary theory in the riiedshapproximation,
we can neglect the higher-order terms in whiobr m are greater than 1. The cu-
mulant approach allows this truncation to take place atranyi order provided
the system remains relatively close to equilibrium. It dddoe noted that for
fermions the cumulant of two creati@mnihilation operators is equivalent to the
expectation value of the operators. Furthermore, giverdilweeness of the gas
it should also be possible to neglect any terms that are ptedd single-particle
density matrices. In fact, this amounts to neglecting thetrde-Fock contribu-
tions to the dynamical equations. A similar procedure ilusederive the BCS
equations and the Gross-Pitaevskii equation for Bosons.

By neglecting the higher-order terms one arrives at the rfielchequations
for fermions

0= 2 iIHislT () = 3 Il DT (4.31)

+ ) [@5iVIoE) - @@OIVIH®i ()],
|

ih%ﬂbim(t) = (iialHael®@(t))+ > [T (O IVIO() - T ()i VIO(E)] . (4.32)
|

Here,Hy is the two-body Hamiltonian containing the kinetic energg anterac-
tion of two particles. For a homogeneous system in the mounen¢presentation
these equations become

2T (0. 1) = 2(20)im (@ (o, Y4PIVIO)). (4.33)
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ih%ﬂl’(pt) = (PIHz/D(t)) — (PIVIO(X))T(=p, t)(277)*% ~ (PIVIDE)T (p, t) (2r) 2,

(4.34)
In the previous chapters we have expanded our single-jeastiate into the an-
gular momentum basis. Similarly we can express the manycfgadistribution
functions in terms of their partial wave components given by

Dym(p,t) = i° f dQY; (Q)0(p, 1), (4.35)

Cim(p,t) = i f dQy; () (p, 1), (4.36)

whereQ is the solid angle ip. This allows mean-field equations for the partial
wave components of the pair function and one body densityixtatbe written
as

ih%rfm(p, t) = 2(2rh)*/% ! f dQyY; (Q) (4.37)

xlm( Z iY R Q)Y e Q)P (P, )(PC M V(L)) |,

ome’m’

0 P
|ha®(’m(p’ t) = m
S @Y A [ A0 (Do (NP TV e (P

om e m’

- @AY [ Ao (DN (NP TIVIOOIT e (p.1)

Antdng

Dim(p, 1) + (PmIVID(t)) (4.38)

It should be noted that this leads to an infinite set of equatmorresponding to
the diferent values of andm,. However, the angular integrals over the spheri-
cal harmonics can be done analytically which may simplify slolution of these
equations, computationally, if the series convergéBently quickly.
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4.3.2 Lowest order approximation

As a first approximation we can retain the lowest orde, ipartial wave which

includes thep-wave interaction and from which we can calculate molecute p
duction. We note that in Eq. (4.38) we keep only thel components, but in
EqQ. (4.37) we go down to the=0 component. We now have

2(21h)32i

.. 0

|m(ZX1m(p)§mfqdeXflm(Q)(Dlm(qat)q)fmr(pat) ;
" (4.39)

.0 p2 2
in—®im(p,t) = E(Dlm(p’ t) + x1im(P)ém f q°dgy 1m(0)P1m(g, t) (4.40)

ot
(2xh)¥2
V7

where the matrix elements have been rewritten using theraaleapotential of
chapter 2. There are actually three equations here with dwithe pair function
components, correspondingro= +1 andm = 0 and one for thé¢ = 0 density
matrix. In the previous chapter we showed that, in certasesait is possible
to treat them = 0 andm = 1 components separately. If we choose the initial
state to be a gas in which only one angular projection stapedsent then we
will prohibit the possibility of populating the other pragon. This is one of
the limitations within the mean-field regime. We also showedhe previous
chapter that when we solved the BCS equations with coupletgden the two
projections, the fi diagonal terms were several orders of magnitude less tlean th
dominant component. This suggests that even if we includedbssibility of
populating states in which the finad, differed from the initial value we would be
justified in neglecting such terms.

an(P)mToo(p. ) f PG 2@ Pn(c 1)

4.4 Calculating molecule production

Once we have solved the dynamic equations we will be left withal state from
which to calculate molecule production. The quantum meicahobservable for
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Figure 4.7: Initial pair functionsdig(p, 0), for a density of 16 cm™=. Here

pr is the Fermi momentum of the non-interacting gas at zero ¢eatpre. As
shown in Chapter 2 the chemical potential goes to the Fereriggnof the non-
interacting gas as the potential gets weaker. The pair ifumceflects this fact

through the position of the peak which is closeof@r = 1 at high magnetic field
and decreases as the value of the magnetic field moves tothardssonance and

hence the chemical potential is lowered.

a bound state of two atoms with a relative positiczan be written as
0= [ dRign. RY@. R (4.41)

whereR is the centre of mass coordinate of the atom pair. By conisiger box
of volumeV, the single-particle states can be treated as plane wavhs &drm
X|p) = %e@ so that the matrix element of the bound state operator is

1
(P1, P2I0Ip3, pa) = 7 f dry f dr20 (p1 + P2 — P3 — Pa) (4.42)

« ¢b(r 1)¢; (I’ 2)e—ir1'(91—92)/27%@rz'(ps—ps)/Zﬁ_
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Defining the Fourier transform of the bound statgp) = \/—% fdre‘ip'”f’qﬁb(r), it
IS possible to write

(P1, P2IOIP3, Pay = & (P1 + P2 — P3 — Pa) ¢b(pl 5 p2)¢3 (p3 > p4)- (4.43)

The second quantised operator that counts the number otalegen the gas will
then be given by

NmoI:% Z 6(pl+p2_p3_p4)¢b(p1;p2)¢;(p3;p4)a;glagzap3ap4'

P1P2P3P4
(4.44)
The expectation value of this operator can be expanded gickjs theorem to
obtain an expression for the number of molecules in the gasmilar argument
can be used to neglect the products of density as when dgikien mean-field
equations. This means the density of molecules can be wate

2
. (4.45)

o = 5| [ P PIOE)

This allows us to calculate the molecule production from eriap of the bound
state wave function with the pair function. We expand the fpaiction into the
partial wave basis, so in fact we are calculating variousigdavave contribu-
tions to the molecule density, but note that we have doneaheego the bound
state wave function and thatftérent partial wave components will obey the or-
thogonality condition of the spherical harmonics. The @bty of molecule
association will then be given as
— 2nmoI

P e (4.46)

wheren is the atomic density of the gas that remains fixed througtiwitime
dependent calculation.
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4.4.1 Bound state wave function

The wave function for the bound state can be calculated fieenLippmann-
Schwinger equation with appropriate boundary conditions

lop) = Go(Ep)VIdp), (4.47)

where|gy) is the wave function for the bound state &Bgl(Ey) is the free Green’s
function evaluated at the value of the binding enelgy, This equation is, of
course, equivalent to the Schrédinger equation with thelitiom that the wave
function is zero at infinity and at the origin. Using the sejide potential and the
fact that then = +1 components are degenerate (as already shown), we can write

lon) = Go(Ep)ly1)é1{x1l#b) + Go(En)lxo)éolxoldn)- (4.48)

Them, = 0 andm, = +£1 components of the wave function would be expected to
be orthogonal to each other and, as already shown, it isldessicertain cases,
including those of this thesis, to treat the two resonaneparately so that each
component can be given an independent energy argument

Ep- 2

The factorém, (vm,lop)m, Can be treated as a normalisation constant that can be
found numerically. This provides an analytic form for theuhd state. The only
parameter to be determined is the bound state energy whibdbumd in chapter 2.

4.5 Results

Now we have all the parameters and functions necessary torpethe many-
body dynamic calculations. In the introduction we outliried procedure of the
ideal experiment we would conduct to investigate all theakde parameters. In
this section we present the various investigations perariand give more de-
tails on what parameters were kept constant or varied in ealdulation. We
then present the results of these calculations for the looreler approximation
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introduced above.

Initially we vary the parameters that define the initial staf the system,
namely the the atomic density, the temperature and thalimtagnetic field po-
sition at which to begin the linear sweep of the magnetic fi@lde mean-field
equations were propagated using an adaptive step size FRutgemethod. The
results presented below are for ting = 0 resonance if°K. Later we will look at
how these compare to the results of the= 1 calculations.

4.5.1 Initial magnetic field

In this investigation we vary the value of the magnetic fidlavhich we start the
magnetic field sweep and all other parameters are held can3tae result of this
is plotted in Fig.4.8. We have kept the temperature at 70 niKpdotted separate
lines to represent fierent atomic densities. All of the solutions are propagaied
the same magnetic field value below the resonance whichaddat 198.85 G.
For a given density it is possible to see that the number okoudés produced
increases as the initial magnetic field value gets closdr@égd¢sonance. This can
be explained by the fact that as we move closer to the resernhece is more
pairing present in the initial state and therefore more ©wks are produced at
the end of the sweep. The parameter that determines the eniount of pairing
in the gas is the gap parametag, and we have seen in the previous chapter that
this increases as the magnetic field moves towards the neserieom the BCS
side. The sweep rate of the magnetic field is held constardlf@ombinations
of density and initial field. Although we will see that the ssperate does have
an dfect on the molecule production we do not expect it to changddhaviour
of the molecule production as a function of initial magnéigtd since the initial
value of Ag will be independent of the sweep rate. It is important to rtbte
at some value of the initial magnetic field the molecule potidun goes to zero.
This is due to there being no initial pairing in the gas andmsdhat in the mean-
field dynamics it is not possible to start infinitely far awagrh the resonance in
contrast to the Landau-Zener problem studied above.
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Figure 4.8: Fraction of atoms converted into molecules asnation of initial
magnetic field position at the start of the sweep for e = 0 resonance at

198.85 G irf%K. The different curves representidirent densities. In these calcu-

lations the temperature was held constant at 70 nK and thepsgpeed remained
constant at 60 @ns. It can be seen that starting closer to the resonanceasese

the molecule productionfigciency and increasing the density also has the same

effect.
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4.5.2 Initial density and temperature

In a similar way to how we have studied thffeet of the initial magnetic field
value on the molecule production, we can also study ffeeeof the initial atomic
density and the temperature. It should be remembered thatihese quantities
remain constant throughout the calculation (and for thes tbaing we hold the
sweep rate constant too). We can immediately deduce fromF8ghat by hold-
ing the temperature and the initial magnetic field positionstant that we can
increase the molecule production by increasing the atomansitl, a prediction
also made by the Landau-Zener approach. The explanatidhifocomes from
an increased pairing in the initial state, which can be semn the results of the
previous chapter where as we increased the density we a@isased the value of
Ao (see Fig. 3.8 and Fig. 3.9). However, we also note that theigygplays a role
in the dynamics, due to the presence of the density matrhamynamic equation
governing the evolution of the pair function.

We can see theffect that temperature has on molecule production from Fg. 4.
In this graph each line represents &elient temperature and the atomic density
is varied with the initial magnetic field held constant. Ihadearly be seen that
the molecule production increases with decreasing tertyreraAgain we have
discussed in the previous chapter that a decrease in tetupersill lead to an
increase in the parametap, and this will cause there to be more pairing in the
gas and thus more molecules (see Fig. 3.8) at the end of thepswe

4.5.3 Sweep rate

We now vary the rate at which the magnetic field is varied. Tsult of this is
shown in Fig. 4.10 for a density of ¥cm3, a temperature of 70 nK and an initial
magnetic field position of 198.9 G, fairly close to the resm®position. There is
only a small change in the productiofiieiency as the sweep rate is varied over a
large range of magnetic sweep speeds. It can be seen fror8.Bignd Fig. 3.9
that, at a density of 28 cm=3 and a temperature of 70 nK, there is only 0.1 G
of available magnetic fields on the BCS side to act as thealr@andition for the
dynamics.

By increasing the density above values at which experimgatdd normally
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Figure 4.9: Fraction of atoms converted into molecules asnation of atomic
density at the start of the sweep for time = 0 resonance at 198.85 G4?K. The
different curves represent temperatures of 70 nK (solid bl@@)nK (dot-dashed
green) and 200 nK (dashed red). In these calculations thepss@eed remained
constant at 60 @ns. It can be seen that increasing the density and decrethging
temperature both increase the molecule productibciency.
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Figure 4.10: Variation in final molecule productioffieiency as a function of
inverse sweep rate of the magnetic field. The density is kapttant at 18 cm
and the temperature at 70 nK. The initial magnetic field iselo the resonance at
Bi=199.9 G. It can be seen that over a large range of sweep speepiotiuction
efficiency does not greatly vary from its value at high ramp speé&tis suggests
that the dynamics are not significantlfected by the change in ramp speed.
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Figure 4.11: Molecule productiorffeciency as a function of initial magnetic field
position for the initial state pair function overlapped wihe bound state wave
function at the final magnetic field position for a density 6#°lcm3. This can
be compared with the values of the productidificeency for high ramp speeds in
Fig. 4.13.
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be performed, it is possible to use a greater range of maygfietds for the
initial conditions. This may be feasible for a trapppdvave gas. Iskin and
Williams [99] have shown that in a trappgewave superfluid it is possible to
achieve densities that are orders of magnitude greaterithan s-wave super-
fluid. The result of increasing the density to a magnitude@? ¢m-3 is shown
in Fig. 4.13. In this figure the molecule productidfi@ency is plotted as a func-
tion of the sweep speed of the magnetic field for fodfedent initial values of
the magnetic field. As the initial value of the magnetic fieldwes away from
the resonance, it is possible to produce more molecules bg@wg the magnetic
field, such that although we may have less molecules withtasfasep we can
have a comparable molecule production with slower sweepbigh sweep rates
the production #iciency is well approximated by a jump in the magnetic field
value from the initial value above the resonance to the finhlevbelow the reso-
nance. Fig. 4.11 shows the molecule production for this easkecan be directly
compared with the values of the limit of fast sweeps in Fi@34.In the limit of
slow sweep speeds, the molecule production becomes indepieof the value of
the initial magnetic field at the start of the sweep. Allowthg initial value of the
magnetic field to move away from the resonance position allmere molecules
to be produced due to the dynamics alone and not just fromnikialipairing
in the gas. Fig. 4.12 shows the variation of the molecule petdn as the final
magnetic field position is changed for an infinitely fast spue€he choice of the
final magnetic field position will provide a lower bound on hovany molecules
are produced from the atomic gas.

It may still be possible to find a lower density at which a sfigaint number of
molecules can be produced from the dynamics. A naturalgeetsee how many
molecules are produced from a slow sweep in comparison tetasveeep. It is
easy to deduce from Fig. 4.13 that this number will increag@ainitial magnetic
field position is moved away from the resonance. Howeves, taimber should
also be sensitive to the density of the atomic gas since rdicgpto Fig. 4.8, at
high density the number of molecules produced from the dycsawmill be small
because there will already be so much pairing in the gas filmlimagnetic fields
close to the resonance. For fields close to the point whermgan the gas is lost,
it will be necessary to go very slow in sweep rate in order tpce a significant
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number of molecules. This suggests that there will be a \@ltiee magnetic field
at which there is an optimal productioffieiency for a given density. Fig. 4.14
shows the molecule productiofffieiency from a sweep of the magnetic field at
10 G@ms minus the molecule productioffieiency at a sweep speed of 50(h€3.
This calculation is done for various initial magnetic fielllsmonstrating that for
the range of densities and magnetic fields covered the dracti molecules cre-
ated from the dynamics increases as the magnetic field sesgarovided the
density is high enough. At lower densities it may be that mmoadecules can be
produced from the dynamics by starting closer to the resmmarhis is due to the
fact that at some value of the magnetic field there will be gk Ipairing in the
gas that the sweep would have to be even slower to allow meleto form. It
would be expected that for an infinitely slow magnetic fielceew for the lower
sweep rate more atoms would be converted to molecules frerdythamics the
further away from the resonance the initial magnetic fieJdndependent of the
density.
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Figure 4.12: Molecule production as a function of final magngeld position

for an immediate projection of the initial state pair fuoctionto the molecular
bound state at the given magnetic field. The lines represaéialimagnetic fields
of 199.9 G (Blue dotted line), 200 G (Green dashed line) arl2G (red solid

line). It would be expected that all lines converge\ig/N, = 0 in the limit that

the magnetic field is infinitely deep in the BEC side.
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Figure 4.13: Variation in final molecule productioffieiency as a function of
inverse sweep rate of the magnetic field. The density is kapdtant at 18 cm™
and the temperature at 70 nK. theéfdrent lines represent initial magnetic fields
of 200 G (solid light blue line), 199.7 G (dashed red line)93G (dotted green
line) and 199 G (dot-dashed blue line). It can be seen thapibssible to produce
more molecules from changing the ramp speed by changingitied value of the
magnetic field to be further away from the resonance.
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of 10 Gms and a sweep of 500/@s as a function of density. Hersg is the
number of molecules over the number of atoms after a sweegppsted equal t8
in G/ms for a temperature of 70 nK. This shows how many molecukeactually
produced during the dynamics. Thefdrent curves represent initial magnetic
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dashed red) and 199.5 G (dotted black). It can be seen thatithan optimum
density at which to produce molecules from the dynamics.
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45.4 Atom-molecule coherence

Donleyet al. [143] applied rapid variations of the magnetic field offRb Bose-
Einstein condensate. In this experiment the value of thenetagfield was kept

on the positive scattering length side but rapidly varied t@lue further from the
resonance positioR,ove They observed persistent oscillations in the number of
atoms detected as a functiontgf,e With a frequency fixed by the value of the
molecule binding energy at the final magnetic field and an #augd comparable

to the total atomic number. They concluded that the undedeatoms had been
transferred into molecules. This phenomenon is interdratea signature of atom-
molecule coherence.

In experiments ors-wave molecules rapid sweeps of the magnetic field were
used to probe the state of the Fermi gas in the region abouesomance. It was
hypothesised that if the magnetic field was swept into the BEE fast enough,
such that the typical sweep time was less than the typicébil time, then it
would be possible to extract information about the gas irsthengly interacting
region [88]. The question then arises of how the state egaiter such a sweep.
If the final state, held at a fixed field value, undergoes pEethat significantly
change it, then this method may not be a reliable way of pthie gas. For the
s-wave it has been shown that the under such a magnetic figltiearthe final
molecule productionféciency will oscillate but with a small, decreasing ampli-
tude [129]. We use an essentially identical method to shawtthis is also true
in the p-wave and it would not be possible to observe atom-moleitteience
with this approach.

Fig. 4.15 shows the variation in the productidhi@ency as a function of time
after such a magnetic field variation. In this figure, th@edent lines correspond
to different final magnetic fields. The variation in the moleculedpiion over
this time period is given as a percentage and seen to be omdbeaf Q001 %,
which is very small. The oscillations in the production aeavily damped with
the frequency and damping of the oscillations increasinthadinal magnetic
field moves away from the resonance. For the case where thédidas located
at 196.5 G the oscillations are not visible on this scaler &bg:s.

In Fig. 4.16 the initial magnetic field is varied and the finahgnetic field
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held constant. Again the oscillations for all detunings@mehe order of 16%.
Both the frequency and amplitude of the oscillations inseeas the initial field
moves further from the resonance, but not significantlyhdigd be noted that this
appears to be in contrast to teevave where the amplitude increases as the initial
field moves towards the resonance [129]. However, in botescH#se amplitude
of the oscillations is very small (the results compared tihes-wave correspond

to a density of 15 x 10'® cm™3). The s-wave resonance studied by Szymska

et al. [129] is the open-channel dominated resonanc@Krthat we looked at in
chapter 2. We have already mentioned thatave resonances are closed channel
dominated and therefore note that in this respect the nafuhe resonance does
not qualitatively &ect the time dependence of the molecule density, but damping
appears to be higher in thlewave. It is dificult to identify a single reason for the
increased damping in thewave because the problem is highly non-linear.
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Figure 4.15: Evolution of the molecule productiofii@ency after an infinitely
fast sweep of the magnetic field across the 198.85 G resomaffe€. The initial
magnetic field is 199 G, just above the resonance. Therdnt lines correspond
to differing final magnetic fields of 198.5 G (solid, green line), 59& (dashed,
blue line) and 196.5 G (dot-dashed, red line). n(t) is thesdgf molecules as a
function of time where n(0) is the density of molecules diseafter the magnetic
field variation.
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Figure 4.16: Evolution of the molecule productidfi@ency after an infinitely fast
sweep of the magnetic field across the 198.85 G resonarié.ifhe final field

is held constant at 197.5 G. Thefl@rent lines representftierent initial magnetic
fields of 199 G (solid, blue line), 199.5 G (dashed, green)Ji2@0 G (dot-dashed,
red line) and 200.5 G (dotted, black line). n(t) is the dgneftmolecules as a

function of time where n(0) is the density of molecules diseafter the magnetic
field variation.

We have also studied how the order parameter varies aftér ausagnetic
field variation. In this case the gap parameter is a functfdimee defined by

Alt) = ¢ f deaixlgialo(t)), (4.50)

where we have used the separable potential to divide outafetor from each
side of the equation. We note that the value of the bindingggn@oes not enter
this equation directly. We compare this value against tihaevaf the gap param-
eter when the system is in equilibrium at the final magnetid fgosition. We
note that, in general, the quantity in Eq. (4.50) is compkex for the case of the
density variation, we vary the initial and final magneticdgl

We plot the time evolution of the gap parameter in Fig. 4.17 %op and bot-
tom panel refer to final magnetic fields of 197 G and 198 G, re@spady. In each
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Figure 4.17: Variation of the quantifx(t)|/ Aeq With time for final magnetic fields
of 197 G (top panel) and 198 G (bottom panel). Thiedent lines correspond to
different initial magnetic field positions of 198.2 G (top, re2)0.2 G (middle,

green) and 201.2 G (bottom, blue).

panel the dierent lines correspond tofterent initial magnetic field positions of
198.2 G (top, red), 200.2 G (middle, green) and 201.2 G (battdue). It can be
seen that the closer the initial and final field are to eachrdtieecloser the value
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of the gap parameter is to the stationary state value at takefiagnetic field po-
sition, denoted here by, In all case the oscillations have a small amplitude and
quickly decay.
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Figure 4.18: Real (solid, blue line) and imaginary (dashed,line) parts of the
parameten\(t)/Aeq for By =199.2 G andBr =197 G. The inset shows a phase
space plot of the same data for which the absolute value rsmargely un-
changed. The real and imaginary parts appearfferddy little more than a phase
shift.

Fig. 4.18 plots the real and imaginary parts of the gap pat@nas a function
of time. In this plot it appears that both components quidditle into sinusoidal
oscillations with a fixed frequency and phase between thegooents. The inset
shows a phase space plot of the real and imaginary parts @ahearameter
showing that the oscillations have essentially a fixed anonhd. To determine
the frequency of the oscillations we have performed Fouremnsforms of the
parameters studied in Fig. 4.17. The results of these Fausiesforms have been
plotted in Fig. 4.19 for a final field of 197 G and Fig. 4.20 forrefifield of 198 G.
For each plot the real (blue lines) and a imaginary (red Jipasts oscillate at a
frequency that corresponds to the energy of the bound dt#te &inal magnetic
field position. This is expected and serves as a test on themcsn To evaluate
the Fourier transform of the absolute value we renormatisg subtracting & the
value at large times, removing an initial large spike in tagad For this reason the
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Figure 4.19: Fourier transforms of the gap parameter as etibmof the fre-
quencyv. The blue, red and green lines correspond to the real, irmagend
absolute value respectively. The absolute value has beemmalised prior to
taking the Fourier transform in order to remove the init@iks in the data. The
final field is held constant at 197 G in all 3 figures with theialifield set to
199.2 G (top), 200.1 G (middle) and 201.2 G (bottom). Thedseértical line
is the value of the bound state energy at the final field. Thbaathsertical line
represents the peak value of the absolute value frequenichwghapproximately

equal to [En(Bg)l + 2u(By))/h.
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Figure 4.20: Fourier transforms of the gap parameter as etibmof the fre-
guencyv. The blue, red and green lines correspond to the real, irmagiand
absolute value respectively. The absolute value has beemmalised prior to
taking the Fourier transform in order to remove the init@ike in the data. The
final field is held constant at 198 G in all 3 figures with theialifield set to
199.2 G (top), 200.1 G (middle) and 201.2 G (bottom). Thedseértical line
is the value of the bound state energy at the final field. Theeathsertical line
represents the peak value of the absolute value frequerttysaapproximately

equal to [Ex(Bg)| + 2u(By))/h.
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B (G) | /M (KH2) | 5=y TE,/h (kFiz)
199.2 84.3

197 -420.6
200.2 243.6 198 177.7
201.2 363.6 ’

Table 4.1: Values of the chemical potential at the initiagmetic field (left table)
and the bound state energy at the final field (right table).

amplitude of the Fourier transform of the absolute valueugimsmaller than the
real and imaginary parts. We have plotted the data with a lagjysince we only
wish to extract the peak frequency of the oscillations. Talee of this frequency
increases as the initial magnetic field moves away from thenance position and
approximately corresponds to the sum of the final bound stag¢egy and twice
the initial chemical potential energy. The determinatiénhe value of the peak
frequency is complicated by the fact that the oscillatiomsheeavily damped and
soon reach an amplitude that igfiult to determine above numerical noise.

We have also studied the decay rate of the absolute value giih parameter.
In order to estimate this decay rate we have chosen the mafith& functions
plotted in Fig. 4.17 and takenffathe value of the function at large times. This
Is plotted in Fig. 4.21, where the blue line represents teadrof these values,
but is, of course, not a continuous function. Also plotteel @mror estimates that
correspond to an estimate of the numerical noise about thefgpdata point.
In order to estimate the decay rate we have fitted the dataponextial curves
corresponding to either expi(+ ¢) or expp vt + ¢).* Curves corresponding to
these estimates are plotted in Fig. 4.21 with thféedent colours denoting which
functions have been plotted. In all cases the fits are notgeog over the whole
range of data points, indicating that the decay does naivicdl simple exponential
trend.

The conclusion of this section is that it would not be feastblobserve atom-
molecule oscillations in thig-wave resonance due to the small, vanishing am-
plitude of the density oscillations. This is the essentisiie same conclusion
reached in Szynfekaet al [129] but extends this result to the closed channel

*It should be noted that for the case where the initial field atak98.2 G, it was not possible
to extract enough data points to fit to a curve of this form eataly.
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Figure 4.21: Plot of the decay of the maximum of the oscolasiseen in Fig. 4.17.
The blue stars are the data point and the line that connests ith simply illus-
trative. The blue dots are an estimate of the error on eaclehle to numerical
noise. The green, dashed lines are fits to ketxp(c) while the solid red lines are
fits to expp vVt + ¢). There is some suggestion that the exponent varieg fike
short times and likeyt for long times. However, it is most likely that the decay is
not exponential at all.



Many Body dynamics 148

dominatedp-wave resonance iffK. This also suggests that the method of fast
sweeps to probe a fermionic pair condensate would be a fiitadthod to probe
the condensate were such conditions favourable. It ren@agueestion as to why
the magnitude of the oscillations in the molecule densitgtres to the initial
molecule density shows fierent behaviour with respect to the initial magnetic
field between thes-wave and the-wave.
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4.6 Higher-order components

The results of the previous section depend on neglectingigtesrs partial wave
components of the pair function and the density matrix. Ttherocomponents of
the pair function will be orthogonal to thewave bound state due to orthogonal-
ity of the spherical harmonics and will therefore only cdmite to the molecule
production through the dynamic equations.

4.6.1 Including I'xo(p,t)

Equation (4.36) shows that any component of the densityixiat is non-zero
in the separated resonances approximation will maye- 0. Now consider the
integral appearing in Eqg. (4.38) and take the pair functmre ®4(p,t) and
interactions to only be in thp-wave. This leaves an integral

1 " o
= ¢ =0
f dQY( QY1 QYo(Q) = | = (" =2 (4.51)
0 ¢’ +2o0r0

showing that the next order correction in this equation cofinem thel,(p, t)
component of the density matrix. A new equation for this comgnt is

3/2
ih%FZO(p, t) = —Z(ZR—\;%IIm(Xlo(p)fofqqu)(lo(q)d)lo(q t)q) (p, t)) (4.52)

The equation for th&sg(p,t) component remains unchanged. An extra term is
added to the equation fdr;o(p, t)

0 2
5 Pun(P.) = T0nlp. ) 4 xen(Pém [ Fn(@Pm(@D)  (453)

(2n)¥2 2
NE x10(P)éol0o(P, t) f q°day10(q)P10(0, t)

~ 2(2nn)*?
\5r

This gives three coupledfiierential equations to be solved.

———x10(P)éol 20(p, ) f oy 10(a) P10(al t).
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4.6.2 Including ®3g(p,t)

The previous equations suppress a term present in the dgrejuation for the
I'20(p, t) component of the density matrix. The relevant angulawgirates

1 ’r_
= =1
f dQY;5(Q) Yeo() Y1o(2) = % ,/% =3 (4.54)
0 " +#3orl

Obviously the integral in EqQ. (4.54) will vanish for any # 0. This suggests that
we must calculate the time evolution of the pair function pomentdsq(p, t).

., 0 2 3
lhaqho(p, t) = %q)e,o(p, t)—3(277h)3/2\/ ﬁ)(lo(p)forzo(p, t) f qPday10(Q)P10(a) 1).

(4.55)
The equation for th&,q(p, t) component becomes

3/2;
ih%l“zo(p, t)=- Z(ZH—\/%IIm (Xlo(p)fofqzd@ao(q)d)lo(q, t)(DIO(p, t)) (4.56)

— 3(2nh)*? \ %Im (X 10(P)éo f 0°day10(q)P10(G, ) D3P t)) .

The equations for the other components remain unchangesin®t requires the
propagation of four equations.

4.6.3 Conclusion of adding higher-order terms

We have performed similar calculations to those performs&dguonly the low-

est order partial wave components, but also including thx oreler terms given
above. The result of adding these terms does not change tleeuteoproduction
efficiency significantly (less than 1 %) over the range of paramsatvestigated,
such that the variation in the molecule production is noblesto the naked eye.
This means that the majority of the dynamic production iskatted to the lowest
order terms in then, = O case.
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4.7 Comparison with Landau-Zener approach

We can compare the results of the mean-field dynamics withofithe Landau-
Zener approach. To do this the sweep rate is held constanthendensity is
varied. According to the Landau-Zener approach a powerriaiva density is ob-
served in the molecule production for two particles in atiigdwrmonic trap when
the sweep rate is fliciently rapid, Eq. (4.16). This shows itself as a straighe li
on a log-log plot. Fig. 4.22 shows a comparison of the medd-fignamics with

the Landau-Zener formula. The initial conditions for theamdield dynamics are
taken at two dterent magnetic fields. Over the range of densities availdige
molecule production shows no indication of a power law indbasity.

10°

10+

!
13 14

10 10 '

10

n(0) (cm™>)

Figure 4.22: A comparison of the Landau-Zener approach migan-field dy-
namics. The solid, blue line is the Landau-Zener formulaaf(&.5) with dashed,
green line being the high speed (low density) approximatldre red stars are the
results of the mean-field dynamics at an initial magnetidfpasition of 198.9 G.
The black stars are the results of the mean-field dynamics atitgal magnetic
field position of 200 G. The sweep speed is kept constant & Gfs. For com-
parison the result of the mean-field theory with an infinitepaspeed has been
plotted (dotted, black line). Under these conditions thamaield molecule pro-
duction closely follows that of the infinite sweep and digglao power law in the
density.
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4.8 |my = 1] dynamics

Using the same assumption of separated resonances théadsoibe a set of
equations for themy| = 1 projections of the orbital angular momentum. The
lowest order approximation fomy| = 1 will be given by

.0 2

|ha®11(p’ t) = %(Dn(p, t) +X11(p)§11fqdek’ll(Q)(Dll(q, t) (4.57)
()2

NE

with an analogous equation for thg = —1 component

x11(P)é11000(p, 1) f oy 11(a)D11(aL 1),

3/2;
ih%FOO(p,t) :2(232 Ilm(/\,’ll(p)fl f qPday1a(a)P1a(q, )Py 1) (4.58)

+x1-1(P)é-1 f 0°day1-1(Q)@1-1(a, )@ 4 (P, t)) :

Using the previous definitions and assumptions aboujnthie= 1 states we can
assumedy(p,t) = dy_1(p,t). This means that only one equation for the pair
function has to be propagated and the equation fof ghig, t) component of the
pair function is modified in a trivial way. These lowest oréguations are then
nearly identical to those for th®e, = 0 component of the pair function.

4.8.1 Comparison of themy = 0 and |my| = 1 dynamics

We note that the equations governing the dynamics ofitiie= 1 and them, = 0
states are identical. Theftkrences will arise from the resonance parameters en-
tering the equations and we note that in the cas€kothe resonance parameters
are very similar for both relative angular momentum progew, the main dif-
ference being the shift in the resonance position. We carefibre predict that
the numbers of molecules produced in each projection willdyg similar if we

use the same input conditions. From a physical point of vi@xnvay not expect
this similarity to be the case in every atomic species, aafpgdn cases where
the dipole-dipole interaction dominates at low energy,ibuhis case we would
not be able to use our model potential because it relies oagkemptions about
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the long-range form of the potential at low energy. In theexperiments, there
was no observed dipole-dipole splitting so the resonancegsponding to the
different projections will have identical parametrisation um model.

Fig. 4.23 shows the ratio of the; = 0 molecules to they, = +1 molecules
as function of inverse ramp speed, where the molecule ptaiuis calculated
from the Landau-Zener formula. At low enough ramp speedk bomponents
produce 100 % molecules so the ratio is unity. At high ramgdpé¢he molecule
production can be approximated bay&.?z and the ratio of this factor of the com-

ponents corresponds to the quan?ﬁ—l, where the superscripts denote the value
of my. This quantity is marked on the figure by the dotted, black.lift should

be noted that this quantity is independent of the trap patersmiand although we
expect both fficiencies to vanish as the ramp speed goes to infinity, the oti
the dficiencies goes to a constant that is not equal to unity.

We have already seen that in the many-body dynamics the oielpcoduc-
tion from an infinitely fast sweep of the magnetic field willtrie expected to be
zero. In fact it is possible to produce a large number of mdécprovided we
start close enough to the resonance. This is because of thg lnealy pairing
in the initial state of the gas and the fact that we can onlt stiaa finite mag-
netic field detuning from the resonance. In the other extrefridow magnetic
field sweeps it is not so easy to predict the behaviour. Thelgnois highly non-
linear and it may be that many parameters play a role in dét@rgithe ratio of
molecule production between the two components.

In order to study how molecule production varies betweervénmus projec-
tions of the relative angular momentum vector, we fix the dgasid the detuning
of the magnetic field for the initial and final states. We sttigly variation as a
function of the sweep rate to produce a figure analogous to4FR3, but using
the mean-field equations.

To look at how the initial condition mayfigct the ratio of the molecule pro-
ductions in the dferent components we vary the initial magnetic field and cal-
culate the molecule production from an infinitely fast swe&pis is plotted in
Fig. 4.24 and it can be seen that in contrast to the Landae+Zease plotted in
Fig. 4.23 the ratio is not constant but increases as thalifiéld detuning is in-
creased. However at some value of the detuning we expectadldeigtion from



Many Body dynamics 154

1.025

1.02

1.005

1 L L L L L
10° 10° 10 10° 107 10" 10° 10" 107 10
Inverse ramp speed (ms/G)

Figure 4.23: Comparison of the Landau-Zener associatiobglnility between
m; = 0 andm; = 1 molecules represented as a quotient. At high low ramp
speeds the two probabilities converge upon each other gybttk approach 100
%. At higher ramp speeds the quotlent approaches the vadd8,Ishown by the

dotted line. This corresponds to the rai"iéAg, where the superscripts denote the

projection of the angular momentum vector The reason feiithit can be seen
from Eg. (4.6) and is dependent only upon the resonance jgheasn

both components to be zero, with the| = 1 going to zero before the other
component, so that if we extended this curve to higher degsit would be dis-
continuous. In Fig. 4.25 we vary the final magnetic field atekhihe molecule
production is calculated. We see that the ratio does deperiieovalue of the
final magnetic field position, but thefterence remains fairly small. In contrast
to the Landau-Zener approach, we see that the ratio is sensitthe initial and
final conditions.

In Fig. 4.26 we have plotted the molecule productidiiceency for both the
my, = 0 (solid lines) andmy| = 1 (dashed lines) molecules. Thefdrent colours
show diferent initial magnetic field positions. The final magnetitdfis held con-
stant at a value below the resonance. It can be seen thasthlesref thgmy| = 1
dynamics are at least qualitatively similar to those ofrtiae= 0 molecules and
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Figure 4.24: Ratio of the molecule production in tmg = 0 component to the
my| = 1 component as a function of the initial magnetic field detgrfrom the
resonance. The sweep rate is infinite and the final magnelitifeneld at a
constant detuning below the resonance. In contrast to F23. #he ratio of the
molecule productions varies with the initial magnetic fidetuning and increases
as the field moves away from the resonance. At some point thecale pro-
duction in both components will be zero, so we would expeist thrve to be
discontinuous if extended to higher detunings.

do not significantly dier in value. We make a comparison of the two projections
by plotting the ratio of the number of molecules produced asation of ramp
speed in Fig. 4.27 with each line corresponding to the sartialimagnetic field
detuning in as Fig. 4.26. As the ramp speed is reduced thedmverge such that
the number of molecules produced is independent of thelimitagnetic field and
the projection of the angular momentum vector. We conclbdethere is no sig-
nificant diference between the molecule production ifieslent relative angular
momentum projections.
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Figure 4.25: Ratio of the molecule production in tmg = 0 component to the
Imy| = 1 component as a function of the final magnetic field detuniogfthe
resonance. The sweep rate is infinite and the initial magfietd is held at a con-
stant detuning above the resonance. The numbar of 0 molecules increases
relative to the other component as the final field moves away the resonance,
but the variation is small.
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Figure 4.26: Molecule productionfficiency as a function of the inverse ramp
speed. The solid lines represent = 0 molecules the dashed lines represent
Imy| = 1 molecules. The dlierent colours representftérent magnetic field detun-
ings from the resonance of 0.727 G (red), 1.527 G (green) d@dlue).
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Figure 4.27: The ratio of the molecules produced for tieedent projections of
the angular momentum vector as a function of the inverse isgrapd. The dier-

ent colour lines representftBrent magnetic field detunings from the resonance
of 0.727 G (red), 1.527 G (green) and 2 G (blue). As the inmalgnetic field
approach the resonance the number of molecules producetth@n eomponent
becomes comparable. At low enough ramp speeds the ratigsrgato unity.
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4.9 Conclusion

We have derived the dynamic mean-field equations for fersioran ultra cold
gas and solved these equations to calculate the molecudegiion from a linear
sweep of the magnetic field across a Feshbach resonancengtibat the number
of molecules produced depends on the initial conditionspdrticular, we have
shown that in order to produce a high yield of molecules frobendynamics a high
density is required, so that a larger range of magnetic fiedtisbe accessed. We
have shown that it is possible to study the dynamics of theery®dy retaining
only lowest order partial wave components in the mean-figlthBons and have
taken this approach to both thg = 0 and thgmy| = 1 dynamics.

We have shown that after a fast sweep of the magnetic fieldsttte of the
system does not change significantly as the magnetic fielldsdonstant at the fi-
nal magnetic field position. The oscillations in the molegododuction are highly
damped and only slightly increase as the initial and finatl§ehove away from
the resonance position. We have shown that there is no signifdiference be-
tween the values of the molecule production between tiferdint components
corresponding to the fierent projections of the relative angular momentum vec-
tor.

We have compared the results of a Landau-Zener calculatiotwb atoms
in a tight harmonic trap against our mean-field results. Weetseen that there
are some qualitative similarities between the two casesgards to the molecule
production as a function of inverse ramp speed. However thiee important dif-
ferences between the two approaches. Some of ffexeices stem from the fact
that in the many-body calculation we can have a variety dfahconditions. In
the Landau-Zener calculation we only consider the two-b&idies infinitely far
from the resonance. Another feature of the Landau-Zenepaph is the presence
of a trapping potential that we have not included in the mbogy calculation.
However, by looking at the solution to the Landau-Zener [@obin a spherical
box (appendix G), it seems unlikely that the harmonic trafhéssource of the
discrepancy and there is some many-bofiiget behind the diering behaviour.

In principle we could produce 100 % conversion of atoms toeoales with
a slow enough ramp speed. In experimentpamave Feshbach molecules using
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linear sweeps of the magnetic field it has not been possikdel@ve more than
25 % atom to molecule conversion. This suggests that ther@racesses that
have been neglected in our model. Most likely is that theahstate is not a BCS
paired state in the experiments. We have also neglectedleskanisms, such as
three-body recombination and the finite lifetime of the neales.



Chapter 5
Conclusion

We have studied molecule production in a single componergadid Fermi gas
from linear sweeps of a magnetic field. We have shown thatsattb-body level
the interactions will be dominated ywave scattering and have used the near
threshold behaviour of the system to derive a model sepapdiéntial. We have
then applied this to the BCS theory to fix the initial statelt gas from which
we will produce molecules. We have derived the dynamicalmiiedd equations
and applied them to linear sweeps of the magnetic field aerpssave Feshbach
resonance to study molecule production.

We have shown that in the two-body case it was possible tageareason-
able description of the system close to threshold using glesichannel model.
We argued that although in the two channel mopl@lave Feshbach resonances
are dominated by the closed channel component, the behavfaine bound
state and the resonance state mirror each other and therb®use of a sin-
gle channel model is shicient, at least for an initial study. The result ispa
wave binding energy that, close to threshold, varies ligeaith magnetic field
detuning from the resonance. This can be compared te-thave binding en-
ergy that varies quadratically with magnetic field detunirgn the resonance.
Our results are in agreement with previous theoretical aqutr@mental stud-
ies [20, 3, 21, 2, 97, 99, 101, 102, 106, 107].

We have shown that in the case K it is possible to have two separate
thermodynamic states corresponding to th@edent projections of the angular
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momentum vector onto the magnetic field axis. We have cordpaure model of
the BCS state to a Bose-Fermi model that neglects the baskdrscattering in
the entrance channel and introduces a ¢iitrmmentum, and shown that there is
little difference between the results of the two models.

To study the dynamics we have varied the temperature andtglehthe gas,
as well is the initial magnetic field, the final magnetic fietalahe rate at which
the magnetic field is varied across a Feshbach resonanceaWesken that the
initial state of the gas has a large impact on the moleculdyntion. Specifically
high densities and low temperatures are needed to allowliooad range of ini-
tial magnetic fields from which to produce molecules. Mdihby the results of
the BCS chapter we have treated the= 0 and thgm| = 1 dynamics separately
and shown that there is little fierence between molecule production in the two
components. We have used the equations for the lowest oadalpvave com-
ponents, but shown that adding higher order components matesignificantly
change the molecule production. Using the mean-field dycalneiquations it is
possible to convert near to 100 % of atoms into moleculesgusiear sweeps of
the magnetic field. Itis also possible to produce a signifinamber of molecules
by projecting the initial state of the gas onto the final bosatade.

We have studied the dynamics of the molecule productiom aftanfinitely
fast sweep of the magnetic field and shown that there is higation in the
molecule density following the magnetic field variation. eBifically we have
observed minute oscillations of the molecule density wignyvhigh damping,
more so than in the-wave case [129]. In contrast to tlsevave case we have
found that the amplitude of the oscillations increases asrtiial magnetic field
moves away from the resonance and the final magnetic field@osihe reason
for this is not clear as the problem is highly non-linear arad/rbe the subject of
a future study. What can be inferred from this is that it may lm® possible to
observe atom-molecule coherence in these gases.

In certain cases we have compared our results with those dfathdau-Zener
approach for two atoms in a tight harmonic trap for which gt@lresults can
be derived. We have seen that there is some behaviourabsiyibetween the
results of the Landau-Zener calculation and the the mamwly-balculation in re-
lation to varying ramp speed. This highlights an importaestriction of both
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approaches; namely that the Landau-Zener sweep beginsndsdrdinitely far
from the resonance, whereas the many-body calculation steustwithin a range
of magnetic field for which pairing already exists. A more rarivally demanding
approach to the two-body problem could begin the sweep miHinite magnetic
field range. We have seen that the molecule productidciencies in the many-
body and Landau-Zener approach havéetdent dependencies on the density. By
solving the Landau-Zener problem in a spherical well we Hawend that the
Landau-Zener parameter has the same dependence on thiy dsnsidoes in a
harmonic trap. This demonstrates som@aence in the results of the two-body
and many-body approaches.

The dynamical mean-field equations used in this thesis geoailowest or-
der approximation to the many-body dynamics of a Fermi gdevatempera-
ture. These can act as a test on higher-order approximagiothsletermine to
what extent these higher-orders have #iec on the dynamics. In particular,
a non-Markovian Boltzmann equation, that includes coatrims from higher-
order correlation functions, could be used to study mokeéotmation from un-
paired atoms; such an approach has already been implemeese gases [24].
A natural extension of this thesis would be to apply the quiernBoltzmann equa-
tion to fermions with a view to studp-wave molecule formation. This would
allow for a broader range of magnetic field variations antlahconditions from
which to produce molecules. In particular, it would be pbiesio study the forma-
tion of p-wave Feshbach molecules using a resonantly oscillatirgnete field,
similar to the experiments of Gaeblet al. [21] and Fuch=t al. [3]. A Boltz-
mann equation requires the evolution of higher order catieh functions and is
significantly more computationally demanding than the mgld approach of
this thesis.

A direct comparison of our results to experimental data tscnorently possi-
ble, since when deriving our model we excluded certain e In particular,
we have neglected three-body processes and the moleaitlméfin our model,
which may be important in determiningwave molecule productiorfigciencies.
Experiments orp-wave molecules have failed to produce more than a 25 % yield
of molecules, despite the ramp speeds being less thammk (20, 22, 23]. It
should be noted that these experiments were performed gietabres on the
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order ofuK and it was not possible to extract density profiles of the dabas
been suggested that for tpewvave resonances studied that the formation of a su-
perfluid state may not be possible in 3D [163], due to high geates. Moreover,
experiments have shown thatwave molecules have a short lifetime [21] making
it difficult to study the properties of the molecules after theimfation. Inadaet

al. [22] have shown that the ratio of inelastic to elastic sodins in the systems
studied may preclude cooling to quantum degeneracy viaesdinnal techniques.
This case shares similarities with thefaiulties encountered in Bose condensing
caesium. Initially it was not possible to cool caesium torguen degeneracy due
to a large Feshbach resonance close to 0 G [164]. This causddree-body loss
rate codficient to be large in this region resulting in heating of the gad atom
loss. Three body loss mechanisms can be very complex andeg@nd on the
Zeeman structure of a system, exhibiting maxima and miniragMary by several
orders of magnitude. A knowledge of the three body loss ntashes in caesium
eventually led to the realisation of Bose-Einstein condénn of 1**Cs [164]. By
analogy, it could be hoped that further investigation mayll® the development
of new cooling techniques allowing quantum degeneracy toebbsed in these
systems. Furthermore, there may be other spin configusaboatomic species
in which these challenges are easier to overcome.

The separable potential that we have derived could be adidptaise with
other atomic species, shoutdwave Feshbach resonances be identified and mea-
sured in them. In fact, this potential was derived only to eldde behaviour of
the system close to threshold and could therefore be usdddyg sther scatter-
ing processes in this regime, for example modelling thregdylscattering. The
model of the BCS state could be used to study other atomidespacthe same
regime and perhaps assess the feasibility of producingamaas condensate in
that system.

The methods given here may also be used to study moleculeigirod in
higher order partial waves, should such systems becom&bleafor study. In
this case the interaction potential would have to be revddrto account for the
threshold behaviour. Higher order partial wave symmetry &dleeady been ob-
served in ultra cold gases [165] and is believed to play airolenconventional
superconductivity. The field of cold and ultracold atomisegis expanding to an
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extent that it would be dlicult to predict every topic to which this thesis would be
relevant but as stated in the introduction the inter digegpl nature of research
in this field is indicative of wide applications in the future



Appendix A

Spherical well scattering solution

In this appendix we consider the scattering of two partifies a spherical well
potential. This is an illustrative example that we can salwalytically to find the
low energy scattering probability in both tisevave and thg-wave. Consider a
potential of the form

-\ f
v(r) = o for r<rg (A1)
0 for r>rs,

wherer is the radial coordinate in the centre of mass frame. Stasiith the
radial Schrodinger equation

—U(r) + K |ya(r) =0, (A.2)

& (e+1)
dr2 r2

where/ is the quantum number representing the magnitude of thimesngular
momentumk is the angular wave number and

2uV(r)
72

u(r) = (A.3)

is the reduced potential. The problem be separated intodgioms; one for < rg
and one for > rs.
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Figure A.1: Spherical well potentiad is the radius of the well and, is the depth
of the well

Al r<rsg

Inside the well the Schrédinger equation becomes

dz (6 +1)

-z Vo K?| ya(r) = 0. (A.4)

By defining
K2 = k2 + 2uVo, (A.5)

the solution inside the well is the Ricatti-Bessel functi6, 116]
W) = Je(Kr), (A.6)

where the normalisation constant has been set to one. &gtprbperties of
Bessel functions can be found in Abramowitz and Stegun [166]
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A2 1 >r14

Outside of the well the potential is equal to zero so that tilet®n for positive
energies will just be the free solution of the radial Schgdimequation

@ ae+1)
dr2 r2

+ K ya(r) = 0, (A.7)
which is the linear combination
Yo (1) = Beje(kr) + Cey(kr), (A.8)

where B, and C, are normalisation constants. For negative energies the wav
function will be zero for > rgleading to bound state solutions. For a finite well
there will be a finite number of solutions that corresponddorl states.

A.3 Matching solutions

In order that the wave function is continuous the solutiomd #heir derivatives
must now be matched at= rs. Matching the wave functions gives

Je(Krg) = Byje(Krs) + Coig(Krs). (A.9)
Matching the derivatives yields
KT, (Krs) = KBy J(krs) + KC,Y,(Krs), (A.10)

where fg(z) = dj,(2)/dzand m,(2) = dn,(2)/dz The logarithmic derivative can
then be matched to give the condition

KJZ;(KI’S) B k]\’g(krs) + k%ﬁé(krs)

- - . . (A.11)
Je(Krs)  Je(krs) + gRy(krs)
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Given the asymptotic form of the full scattering radial wéwection
o . I
va(r) — lim go® sm(kr - Eﬂ + 6€(k)), (A.12)

whered,(K) is the partial wave phase shift, and the asymptotic fornmefRiccati
functions

j/(2) = lim sin(z— %”) (A.13)
Z—00
N . {r
Ny(2) — lim — cos(z— 7), (A.14)
it is possible to write
tans (k) = —g. (A.15)
B¢

This allows Eg. (A.11) to be solved for tapgiving

K (Krs) Je(Krs) — KJ(krs) J,(Krs)

tand (k) = — - = - . (A.16)
kA, (krs) jo(Krs) — KRg(krs) j;(Krs)
The partial wave scattering lengths are found from the dedmi
. tand, (k)
a = LILQ)— TS (A.17)
A.4 swave scattering length
Using the definitions of the Riccati functions 6= 0 [116]
jo(@ = sin@). (A.18)
Jo(2) = cosp), (A.19)
No(2) = — cosf), (A.20)

Mo(2) = sin(@. (A.21)
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We can then insert these into Eq. (A.16) to give

kcosfrs) sin(Krs) — K sin(krg)cogKry)

tando(k) = — . , A.22
ando(k) ksin(krs) sin(Krs) + K coskrs) cosKrs) (A.22)
and dividing out the cosine factors
ktanKrg) — K tan(krs)

tando(k) = . A.23
ando(k) ktankrs) tanKrsg) + K ( )

Using the fact that at low values &fthen tankrs) ~ krs we can write
do = fs(l - M) (A.24)

KOrs

whereKq = \/m It is interesting to note that at valueskrs = = the scatter-
ing volume is equal to the radius of the well. Fig. A.2 is a mbthe scattering
length as a function oKors. The scattering length has singularities at values of
Kors = /2 which are associated with the appearance of a bound sttite 8ys-
tem, as discussed in chapter 2

A.5 p-wave scattering volume

We start with the asymptotic expression for the Riccati fioms in the limit of
small argument

12 — é (A.25)
52 - 252 (A.26)
Mu(2) — —%, (A.27)
(2 — 2—12 (A.28)

Substituting these into Eq. (A.16) and replackgvith K, gives

~ ~ 4
tans; (k) 573ja(Kors) = KoJj(Kors)s
S il(KOrs) + rsKjA’l(KOrs) .

(A.29)
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1.2 14 1.6 18 2

1
KOrS/n

0.6 0.8

Figure A.2: Plot ofay /rs as a function oKgr¢/z. For fixedrs we can interpret the
increasing argument with an increasing well depth. Kgrs = 7 the scattering
length is equal to the radius of the well. For valueskgfs = 7/2 there is a
singularity in the scattering length which is associateithw@ibound state entering

the system.
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1
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Figure A.3: Plot ofa;/r? as a function oKors/7. The scattering volume has a
singularity atkors = 7 and at integer multiples of.

Given that forf = 1 the Ricatti-Bessell function is given by [60]
A 1 .
112 = > sin(z2) — cos@), (A.30)

and 1 1
1) = ~ €0s@) + sin@) -  sin@), (A.31)
the p-wave scattering volume can be written as

4 2
r2cosors) + ~5= sin(Krs) e

a = (A.32)

rsKo Sin(Kor's)

Fig. A.3 is a plot of thep-wave scattering volume as a function kfrs. The
scattering volume has a singularity for valueskgfs = n, associated with the
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appearance of a bound state in the system as discussed iteChalmterestingly
this an/2 phase shift from the values at which teevave bound state appears.
The values for whicla, = r2 can only be found numerically.

A.6 Plotting the s-wave radial function at zero en-
ergy

At zero energy the wave functions become functions of pmsitnly. For the
¢ = 0 wave function we can match the solution at the edge of the wel

sin(Kors) = Bors — Co. (A.33)
We also match the derivative
Ko cosKors) = Bo. (A.34)
By combining these two equations we get
sin(Kors) = KorscosKors) — Co. (A.35)
This allows the zero energy wave function in the outer re¢olpe written as
Yoo(r) = Ko cosKors)r + sin(Kors) — Kors COSKor's). (A.36)

By solving this equation for the point wheyg (r) = O it can be seen that the
value of the radius at this point coincides with the valuehaf $cattering length
given in Eq. (A.24).
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A.7 Plotting the p-wave radial function at zero en-
ergy

Matching the solutions with the low momentum asymptoticdibans gives the
relations

r2 1
sin(Kors) — cosKor's) = By—= — C;—, A.37
Kors I ( 0 s) «O s) 13 lrs ( )
e Koro) inory) _ - 2rg 1
cosKors . sin(Kors rs
—=+K Kors) — ——— = B1— + C;=. A.38
e + Ko sin(Kor s) Kor2 173 + 1rg ( )
These can be solved to give the constants
Ko .
B, = ' sin(Korg), (A.39)
S
and
rgKo . 1 .
Cy =rscosKors) + 3 sin(Kors) — K sin(Kors). (A.40)
0

The p-wave radial function in the outer region can be written as

2
SKO

. 1 . 1
sin(Kors) — — sin(Korg) | —.
Ko r
(A.41)
Solving this equation for® at the point where the function crosses the radial axis,
r,, we can see that,

Ko . r
W?o(r) = 3_I’0 S”‘](Kors)r2 - (rs COS«OrS) +
s

r3=3a (A.42)

on comparison with Eq. (A.32). Fig. 2.1 shows a plot of theave andp-wave
radial function and the positions of treewave scattering length as well as the
position of the cube root of thp-wave scattering volume.



Appendix B

Resonance and threshold
parameters

In this section we summarise the resonance parameters aiseddel both the
s-wave andp-wave Feshbach resonances. For ¢$heave resonances we quote
values previously obtained in other studies. The paramé&iemodelling the two-
body interaction close toprwave resonance are calculated from the experimental
data given in Gaeblest al. [21] and Ticknoret al. [2] for 4°K and Fuchst al. [3]

for SLi. In the vicinity of a resonance the scattering length igegiby Eq. (2.32)

AB
_ Sbo _ ¢
a/(B) = a, (1 5= Bm). (B.1)
The inverse of this can be expanded in a Taylor series ébeuB, = 0,
1 B-B B — Bp)?
= o _ (BB, O(B - By)?, (B.2)

a(B)  aAB  an(AB)

where thef dependence has been dropped for brevity. Provided the ptegam
|ABaygl >> 1 this can be written as a power seriedSito second order,

1 _ _AB+B; 2B,-AB 1
a(B)  ag(AB)  ang(AB)? T apg(AB)*

(B.3)
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This equation can be directly compared with Eq. (8) in Tiagkebal. [2] to give
the parameters for the-wave resonance it’K. The results of this matching are
given in Table B.2. These can be checked by numerically sglthe Schrédinger
equation and matching to the long-range form of the wavetfanc To do this
a Cg/r® potential was used where ti} parameter is given in Table B.1. Tise
wave binding energy was fixed by the value given in the sanie.tabe scattering
length for thes-wave is given by

ap = 17482 au.
and for the scattering volume in thgewave
a; = —1126660 au.

Another check on these values is the use of Eq. (25) of Gadn@]relates the-
wave length ang-wave scattering volume. The result of each angular monnentu
projection is given in Table. B.3. Having established theoreince parameters it
IS now necessary to relate these to the parameters of theabéppotential. The
low energy expansion of the-wave binding energy is given by

E,~-— , (B.4)

where than, dependence has been dropped. The values of the magnetiartsome
of the 4°K molecules was measured in Gaebétral [21] and are reproduced
in Table. B.2. Using the parametrisation of the scatterenggth Eq. (2.32) an
expression for the magnetic moment close to threshold cabtaéned

E 2
9E _ oNmh® (B.5)
0B 2uABayg
and rearranging this gives
2uABOE
X ———— B.6
a \/%hz 6Babg ( )

This same procedure can be used to fix the parametier ®Li. In this case
the magnetic moment was measured in Fusthal. [3] and is reproduced in Ta-
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ble. B.4. As far as we are aware a similar formulaorto Eqg. (8) in Ticknor
et al.. [2] does not exist. The width\B, was therefore calculated [167] and is
reproduced in Table. B.4.

Table B.1: Bound state energi€s; associated with the highest excited vibra-
tional statesCg codficients, ands-wave scattering lengths fdPK and®Li. The
values ofE_; anday quoted forLi, refer to the lithium triplet potential.

Species  Cg(au) @’ (ason) |E-1l/h (MH2)
MK 3807[117]  174[118]  8.9[119]

SLi  1393.39[120] -2160[121] 2 x 10*[121]

Table B.2: Calculateg-wave resonance parametersfd. All values are based
on the experimental data found in Tickredral. [2]

Projection Bio(G) a,°(a,,) ABi(G) 22 (kHZG)
m =0 198.85 -1049850 -21.95 188
my=1 198.373 -905505 -24.99 193

Table B.3: Values of thes-wave scattering length calculated using Eq. (25) of
Gao [4]. The inputs are the scattering volumes given in Tabl2. The values
given are close to the literature value of 174 a.u. given inldaB.1
Im| & (au.)
0 182349
1 203526
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Table B.4: Calculategp-wave resonance parameters fai taken from Fuchs
et al. [3]. It should be noted that the dipolar splitting (DPS) is the order of
mG for Li. This is much lower than that observed4?K. In the experiments
this splitting was not resolvable. The data is provided tonss prepared in two
hyperfine stated=, me). In this casel) = |1/2,1/2) and|2) = |1/2,-1/2)
Channels By (G) DPS(mG) 22 (uK/G) a9(3,) AB:i(G)
|1)-|1) 159 10 113 -42360 -40.51
|1)-|2) 185 4 111 -45290 -39.54

12)-|2) 215 12 118 -42800 -25.54




Appendix C

The scattering cross-section

As well as finding the binding energy of tiewave molecule we can use the
separable potential of Chapter 2 to study the low energyesaag cross-section
and compare this to the result of a coupled channels calonlathe T-matrix for

a partial wave component is given by

LYlml >'flm1 <lel|
Tim (2) = . C.1
1ml( ) 1 - flnn(le1|G0(Z)|/\/lm1> ( )
This is related to the partial wave scattering amplitudeugh
m 2
fem () = —%(pfdegm[ (% + |0) |ptmy), (C.2)

where it should be remembered timats the single particle mass ang denotes
the projection of the relative angular momentum vector ¢inéz-axis. We there-
fore need to calculate the quantity

p2 . < pfrnf I/\/lml >§1ml <le1| p€m€>
T m\ 5 O = . C3
(pemdTe (Z,U " )|p€m€> 1 - &1m vaimGo(@ v amy) (3)
Remembering that = mg,, /(4rh%0y,) and
(PEMely1m,) = POy -p2o?, /2 (C.4)

ho/2
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SO,
q20.2/h2
1 flnn(leﬂGO(Z)Ilel) 1 é:m Zhs/zfq q—|0 (C5)
+
m
2
1
=1-&n zhsfq“dqeq"m/h |7T5(E-%)+PE 7
_ . m /2=3/2 _mEa.%.'/EZ é‘:mo-m 4 e CIO' /h2
_1+I§m2nh5m5 E ﬂ2h57>fq dqg

o2
1 i M B/2E3/2g-mErd/n? Emm Emo mm2
_1+I§m2nh5ms E¥2e™ t g e e

where a low energy expansion has been used in the last lin® agpresents the
principal part. Writing = =

~-mpo? g P/
flm(p) = Zih4m§m 2 Emm Emomm (C'6)
1 + |é‘_‘m2ﬂh5mp’3e—p20'm/h A S/Eno. hZ + 2:3/2%4 p2
Using the low energyféective range expansion
20 2 in2t+1
e e (C.7)
ffm( p)hZ[ a 2h2 h2[+1
in the limit p — O we find that
3 1
a = 20'm H (C8)
Xm | xll2
2
rl = —m (Cg)

By looking for the pole in the scattering amplitude (and leetiee T-matrix) we
can show that in the limip — 0
’ o i

P = (C.10)

which is the same expression that is obtained for the lowggnexpansion of the
bound state energy. This shows that the resonance energytisiwous going
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Figure C.1: p-wave elastic scattering cross section f8K colliding in the
|9/2,-7/2) channel as a function of collision energy. The solid blue loorre-
sponds to the pseudo potential model. The red crosses arafcoupled-channel
calculation [168].

from positive to negative detuning. The partial wave cresston is given by
o = 4rn (20 + 1) | f(p)l? (C.11)

A comparison of the result obtained using the separablenpatenodel presented
in this thesis and a coupled channels calculation using-Bppenheimer poten-
tials is given in Fig. C.1 [168] for a range of magnetic fielti®ae the resonance.



Appendix D

BCS Solution

D.1 The Green’s function and the pairing function

In the pairing approximation the many-body Hamiltonian barwritten in second
guantisation as

S 1 . 1 .
H =) (ITIpaja; + 5 ) GjIVikba/aj@ao + 5 ) (jlVIkixaa)aa. (D.1)
i

ijkl ijkl
Here, T andV are the single particle kinetic energy operator and the tartigle
interaction operator, respectively. The brackets represent averages over the
thermodynamic state where the particle number is not ceaderin the finite-
temperature formalism the equations of motion for the sirggrticle creation
and annihilation operators in the pairing approximatiangven by

hgaf () = Y (ilTIna/(x) - Z(cblvlrwa(ﬂ, (D.2)

har) = - Z<r|T|i>a(r) 4 Zm VY (7). (D.3)

with the useful definition
|D) = E (@aplij). (D.4)
ij
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Herer is imaginary time as explained in the literature [127]. Twier facts have
also been used that correspond to systems of fermions:

i) = —ji), (D.5)

(aaj) = —(aja). (D.6)

The single-particle Green'’s function is defined as

Ors(r. 7') = ~(Te[ar (1)al(™)]). (D.7)

HereT. is the imaginary time ordering operator that places the shwalue ofr
to the right. We can find the equation of motion for this fuantto be

1 Gur. ) = (T fael( ], (08)

d N a3 .
e gio(r, ) = 0T~ s - T @al(@)),  (09)

0 ’ ’ ; ’ i 4
heGre(r.7') = ~ho(r— )6rs+<TT[Z(rITII>a,-(T)a£(T )—Zm VDYl (r)al(«')]).
(D.10)
We define a new function that represents pairing in the gas

Fio(r. 7) = ~(T[a] (r)al())). (D.11)

This allows us to write the equation of motion as
= grs(r v') = ~ho(r = 7)rs - Z<r|T||>g.s(r )+ Zm VI®)F (7, 7). (D.12)
The equation for the pair function can be written as

he F*(TT)——<T [Z<IIT|r>a,(T)as(T) Z<<1>|vm>a(r)as(1)]> (D.13)
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Using the definition of the Green'’s function
= FT (7)) = Z<||T|r>FjS(T, ) = > (@IVINi)gs(r, 7). (D.14)

Now putting the equation in the momentum representationsatishg the spin
indices on the LHS of the equation we define

Ir) = [p1), (D.15)
1S) = IP2B), (D.16)
i) = lay). (D.17)

Equation (D.14) can now be written as

0 f ) — T ’
he—F (P, P2, 7, 7) = ;mymmmaﬁ(q, P2, 7. 7)

= > (ONIP1GeY)Gs(d, P2 7. T).  (D.18)
qy

Using the properties of a translationally invariant systeenwrite

73(P1 + P2) o (27rh)3/2F 5(P1.7.7) =
Z Epd(d — PS(d + P2)8,a(211)72F (0. 7.7)

- Z@M b1
qy

907)6(q + P1)S(a - )5, (211)*20,5(q. 7, 7).
(D.19)

The delta functions come from functions expressing paaslitave zero momen-
tum and also from the single particle Green’s function eggpirgg translational
invariance. The factors of £2)*? come from the normalisation of the pair and
Green'’s function. Evaluating the summations using theadaltctions and divid-
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ing out the common delta function gives
hLE ) = EoF (p.r ) = > (DIVIpay)gs(p. 7. 7') (D.20)
o7 aﬁp,, - pa,ﬁp” pygyﬂp” . .
Y

We have used the fact thats(p,7,7") = 9,5(-p,7,7'). The equation for the
Green'’s function can be written using a similar represéonat

9
hggaﬁ(pla P2, T, T/) = - h(S(T - T/)d(pl - p2)5aﬁ
~ > (P1a1TIay)g,s(a. P2, 7. 7')
qy

+ ) (padayVIOF (a,p2, 7. 7). (D.21)
qy

We again use the properties of the homogeneous system to fadt the delta
functions

9 , ) ,
76(P1 = P2)5-Gas(P1, 7. 7) = — (2 ¥26(t — 7)0(P1 — P2)Jap
= > Epo(p1 — 0)6uy8(d - P2)By(0, 7. T)

qy
+ > P A anVIows(a + p2)ops + AF (e . 7).
qy
(D.22)

We evaluate the summations and divide out the common deitdiéun to give

0 , - / ,
fi2=Gup(P. 7. 7) = = 1(2) V26(r — ') ~ EyQus(P. 7. 7)
+ ) (PayVI®)F (-p, 7, 7).
Y

(D.23)

We introduce the notation

Aap(P) = (PaBIV|D). (D.24)
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This quantity is commonly referred to as the gap function.néie write Eq. (D.23)
as

a / — / ’ ’
hggaﬁ(p, T ) = —h(27'(h) 3/26(T -7 ) - Epgaﬁ(p, T ) - Z Aay(p)F;ﬁ(p, T )’
Y

(D.25)
and Eq. (D.20) as
0
h—Fiy(p.7.7) = EpF (. 7.7) - ZA (P)Gys(P. 7. 7). (D.26)
We define the Fourier representation to be
’ 1 —lwn(t—7")
Qs(P- 7.7 = 22 ) € g(p.wn)
n
1
T AN —ion(r-7) = T
Fl(p.7,7) = 7 Z e Fi (. wn) (D.27)

wherew, = (2n + 1)x/hB provides the correct statistics for fermions [127]. The
equations can be written as algebraic expressions

~il1wnGup(Ps wn) = ~T(2h) "% — EpGus(p, wn) — ZAW(D)F (p,wn), (D.28)

—ifwnF (P, wn) = EpF y(p, wn) = ZA 2(P)Gys(=P, wn). (D-29)

These are the BCS equations and can be solved for the Greecson and the
function we introduced to represent pairing

,Wn) = , D.30
o)™ 2 (120 + B3 + @) o
E'(p, wn) = hA™(p) (D.31)

(27h)32 (h2w? + B2 + |A(P)R)
In the last lines we have dropped the spin indices since wh wislescribe a
single component spin polarised gas.
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D.2 Evaluation of the gap function

We wish the evaluate Eq. (D.24) at a fixed temperature andtgieWi¢e therefore
write

N (2rn)3/? i
30)= TG [ FaY e pvaF o). (03
* _ _} 3 E —iwn hA*(Q)
o) = —— [diqS eer RSO
v o) = [ Fay e ovapTl 039

where we have defineg = EZ + |A(q)I>. Now,

N e A(Q) [ 1 1
AP = f I ( _ . (0.35)

We can now use Cauchy’s integral formula to calculate thensation over the
frequenciesw, through

1
%fcf(z)dz_zn:f(zn). (D.36)
We now define the function
1 1
f(2) = ot (D.37)

so that the sum over the residues is given by
s=% > (@) (D.38)
2 n

where
ﬁhwni 2n+1 i
= = T

5 5 (D.39)
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that ensures the correct Fermi statistics, as already oradi it can be seen that
tanh{) has poles at the positiozs= z,. Now we can consider the sum

S= g%fcdzf(z) tanh@) (D.40)

The contour encloses the imaginary axis but will not enctbseoles on the real
axis atz = +ﬁek The contour can thus be deformed to travel around thesespoin
The contour around the outside of these points will not coute as|z — .
This leaves the summation of the function evaluated at thesp@hus

S= —ﬁtanh(ﬁe—zf‘). (D.41)

The minus sign comes from the fact that the contour enclds=poles in the
mathematically negative sense. This gives the gap equiatially as

A*(p) = - f FPo(pIVia) *(:') tanh(). (D.42)

Now the separable potential can be used to write the gapiequed

*(OI)

2 (p) = - [ dapinecin =5 P ann(s3). (043)

Furthermore the gap terms contain a separable term so that

A)ExIP)

> tanh(ﬁe—zq) (D.44)

PLOEID) = — f a(ploEla)

Dividing out the common factors gives

2 2\1/2
. f Pac(la)al) (B +1A@F) ) (D.45)

2(E2 + IAQP) 2 ta”h(ﬂ >
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D.3 Evaluation of the particle density

The density of a system can bw related to the single partickess function
through
n(x) = gx, X, 7,7%), (D.46)

wherer* denote that’ — 7 from positive values. We therefore consider

1 .
g7 ) = o f d°q ) (g, w), (D.47)
Neoet (g Y gomhent Eo)
PR EE f d qzn:e' PATe (D.48)

We can expand the integrand to give

1 - ificw E
XX TT) = —— | d® gonn n 9 |, (D.49
Now we consider only the first term of the integrand
1 - 1 1
— | & genn : - ) D.50

The terms in the brackets can be written as integrals witmanayitime variable

% f d’q ) e [ fo dte (Catifoni _ fo dte—<fq—ihwn>%]. (D.51)
n

This can be rearranged to give

% f d3q2[ fo dte™ 7 gientt=n _ fo dte—%wn<t+">]. (D.52)
n

This expression can be rewritten using the fact that theufrrgies are restricted
to wn = (2n + 1)x/fB and the Dirac comb relation

% DT = X st - mT). (D.53)

m
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We can write the expression with= g7 as

1 ©  a o © o a x
- f d3qZ[ f dte 7 5(—t + n — mgr)e ) — f dte 6(t + i — mph)es
2 —~1Jo 0

(D.54)

By splitting the summations and ignoring the = O term in the second term
because andr are positive quantities we arrive at the expression

1 e = eqt in
5 f d3q [ f dt > e T o(-t+ 7y - mpr)e H?
0 Me—oo
+ f dtZ e T (=t + 5 — mBR)e AL
0 m=1
o L .
—f dt Z e 7 5(t + n — mBh)es
0 Moo
- f dtZ e 6(t + 1 — mBH)eR )
0 m=1
+ f dte 7 5(t — y)ef D . (D.55)
0
By evaluating the delta functions and at last allowinig go to zero we get

% f d3q[1] (D.56)

This has to be added to the contribution from the second ternich can be
deduced by comparison with the gap equation. This finallggthe equation for
the density to be

1 E
g, X, 7, 77) = ST fd3q [1 -4 tanh(ﬁ%)] (D.57)

€q



Appendix E

Angular integral in the gap equation

We want to do the integral

T 21
f sinedef dgH(sir? 0 sir? ¢). (E.1)
0 0
By making the substitution that= siné sing we can write
Z sing 2

8f2 d&f dx—20) (E.2)

0 0 1- X

sinf g

Now we make the substitution= siné to give

1 Y 2
8[ dyf dx— Y209 (E.3)
o TJo {A-y)(2-2)
This equation can be rewritten so as to give new limits onntegrations
1 1 2
8[ dyf Y20 (E.4)
x Jo {A-yA)(2- %)

This integral is of the form

o yf?)
I_fxfodx¢1-y2¢y2-x2 (E.5)
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This can be integrated by parts to give

fo " 4x10d) ([in (sim(2), xz)]i ~i f l dyF(sin‘l(%/(),Xz))- (E.6)

Here,F (¢, m) is an elliptical integral of the first kind defined by [169]

Sing
F(g,m) = dk : (E.7)
0o V1I-KV1-nrk?

It should be noted that the term

- (YY) 2\

iyF{sin= (=], x| , (E.8)
X X

is ill-defined on the upper limit since S_I]ﬂ(%() has no inverse fox < 0. However,

we will see that this term cancels out. The indefinite intefgnathe second term

can be defined on the intervals<Ox < 1 andx < y < 1 so that,

fdyF sint ) = iyF (sin‘l (%/() : x2) —iln (2x(i VI-y2+ Y2 - x2)).
(E.9)
The first term is seen to cancel Eq. (E.8). This allows Eq.)(t&.be written as

1 1
i f dx () [In(@2x(V1-x2 + \/yz—xz)]x (E.10)

o [ 2XV1 xz)
f ax1x )ln(ZXM/W

_ - 2
_Zj; dx f(x°).

We can therefore write

T 2n 1
f sin@d@f degH(Sir? g sirf ¢) :47rf dxH(x?). (E.11)
0 0 0



Appendix F

Derivation of the dynamical
mean-field equations

The two body Hamiltonian operator is given by
HZB = Tl + T2 + V12, (Fl)

whereT; are the kinetic energy operators of single particles\&nds the operator
for the interparticle interaction. We write the second disma operator as

L lwe
Has = 5 ZKI:<IJ|stlkI>aJa,Taka+, (F2)
ij

where the indices represent single particle states. Fahthamics operators obey
the Heisenberg equation of motion

in—0=[0,H]|. (F.3)

The pair function is a thermal average of the operatga, so we can find an
equation of motion from the commutator

|aman, @/ aa | = aadmidn — & anakadh — &@oniomi + 8 Bnd@om  (F.4)
+ 8 Bndka0n; — 8 BnAAOm] + & @) BmBnid.
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This gives us

0 i i i i
7= (@meo) = ;<an28|k|>akal + > [(miHzslkhajaaca + (inHzslkhal anaca|

jki
(F.5)
The single particle Hamiltonian parts of the second sum enrigiht hand side
cancel to give

8 | .
i (@ndn) = ) (nmHaelkba@+ ) [(mVidkhajawaa + (inVidkajanaca|
ki i

F.6
By introducing a Kronecker delta with a summation we write o
ih% (aman) = ;(anZB“(l)akal + %; (<Ml V12lkl)Snna) anaway (F.7)
+(iNV12lkl)omral anaa |
Now using the normalisation of the single particle states
ih% (aman) = ;(anZB“(l)akal + %; [(nmjVoslkih)a) anaay (F.8)

+(nm jVigkih)al anaa |,

which can be abbreviated to

0 2
i (@nao) = ) (mHzlkhaa + > (nmj ) Vikibajaaa  (F.9)
ki jkih b=1

For the density matrix the Hamiltonian is given by

O 1o,
H = dThala + 5 ) (iiVikha'ajaa. (F.10)
i]

ikl
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A direct calculation of the quantit[;ainan, H] leads to the equation

0

0
o

(ahan) = D (nHaslpala; = > (iIHisima/a, (F.11)
j i
+ > jivikhahalaa - > (jIVikma'ajaa,
ikl ki

Thermal averages can be taken of both sides of the equailitisleads to ther-
mal averages of products of four operators in each equatibase products can
be expanded using Wick’s theorem for cumulants [162]

(@ anaca) = (a anaay)® + (al an) (@)’ — (@ a(ana)® + (@a)(@an)’, (F.12)

(@ aja@n) = (a/alaan) (@ a)(adn)’— (& a)®(ala,) +(a a)<ala)’. (F.13)

The cumulant expansion allows the subsequent hierarchguaitens to be trun-
cated at any desired order, provided we assume the systesineralatively close
to equilibrium. By inserting these definitions into Eq. (B and Eq. (F.9), we ob-
tain Eq. (4.28) and Eq. (4.28).



Appendix G

Landau-Zener parameter for a
spherical well

In this section we give an expression for the Landau-Zenerpeater in a spher-
ical well of volumeV = §R3, whereR is the radius of the well. In free space the
solutions to thep-wave Schrodinger equation are given by

ja(kr) = % sin(kr) — coskr), (G.1)

ny(kr) = % coskr) + sin(kr). (G.2)

Only Eq. (G.1) is finite at the origin, so we choose these gmist By requiring
J1(kR) = 0 we get the condition on the wave number to satisfy

tankR) = kR (G.3)

The Landau-Zener parameter is given by [114]

(¢redWidborm)|

oL
L-z = hIEI

(G.4)

We can write the closure relation for box states and it'si@feto scattering states
as

Z|¢nfm><¢n[m| f pdpigl) MeS - (G.5)
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Now we want to relate the spacing of the energy levels in thetbdhe spacing
of the momentum states in free space. The energy levels inak¢hen depend
onRandn, a quantum number that denotes the box state level. We defjunass:

momentum as
Pr = \24E. (G.6)

We can use the chain rule to write

dprdE
Apr = E%An. (G.7)
Now, we know that
dpr _ [ K
dE ~ V2F’ (G.8)

and we use this to write

/ dE
Z |¢n€m><¢n[m| Z |¢n[m><¢nl’m| (dn) ApR’ (G,9)

where we have used the fact that = 1. In the limit that we take the spacing to
be continuoug\pgr — dpr, we can approximate this expression as

f dpR|¢ngm><¢ngm|,/ ( ) f A PlpS XD (G.10)

We can identify
p (dE ;
|nem) = o (%)pRWLg)m)- (G.11)

We are now left with finding an appropriate expressionﬁ)rwhich comes from
solving Eq. (G.3) fok = pr/%. By using a series solution to Eq. (GKRis given

by [170] (see also [171])
1 2
kRNq—a— 3@ (G.12)
where

q=an+D, (G.13)
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andnis a positive integer. The series in Eq. (G.12) has beenateda@s it usually
possible to retain only these terms. Including higher otdems in this series
would only change our final answer by a numerical factor andsgeime that this
change is small. This gives us our box state quasi-momenta,

h 1 2
pR~§(q—a—3—q3)- (G.14)
Now we use the chain rule to write
dE dEdprdq
an dp.dg dn’ (G.15)
This can easily be evaluated to give
dE _ pRh 1 2 _ pRh
% = /JR (1+ q2 q4) = ﬂR ns (G16)

whereC, is a numerical factor with an obvious definition. We can thaiten
Eq. (G.11) as
L IIE

Putting this into the Landau-Zener formula gives

|¢n€m> =

Co . NBredWIgh) P

= — G.18

OL-z

Using the relation between the coupling matrix elementstardesonance pa-
rameters [155] we can rewrite this as

bg
Ch 4 a‘lm/A&L
Oz = . ) G.19
L-Z R/J?ThB R B ( )
Using the numerical values
C, = 1.04909 (G.20)

PR = 4.4934092, (G.21)
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we write the Landau-Zener paramter as

bg
o |amAB
Oz =427677—— . : 22
L-z Rl B (G.22)
In terms of the volumey, of the box this is
bg
hr |8y, ABL
7z =5702 . )
6z = 570236, 5 | = (G.23)
Assuming a uniform density, such that , gives
5., = 570236~ (4] |Aam 2t (ﬂ) . (G.24)
u \3 B N

This expression is dependent on the size of the system andretiee case of fast
sweeps it is not possible to take the thermodynamic limitis Thdifferent from
the sswave case where an expression for the association prdigaibilhe limit of
fast ramps is independent of the system size [114].
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