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Abstract

This thesis studies the dynamics of Feshbach molecule production from a gas of

ultracold spin polarised Fermi atoms. A magnetic field is used to vary the strength

of the interaction between the atoms exploring the limits ofweakly paired atoms

and tightly bound diatomic molecules. A mean field approximation is used to

study the thermodynamics and dynamics of the system.

The two-body interaction is modelled using a separable potential that repro-

duces the near threshold behaviour of the system close to a Feshbach resonance.

For atoms in the same internal state interactions occur in the p-wave, such that

they have one quanta of relative orbital angular momentum (ℓ = 1). The presence

of a magnetic field fixes a quantisation axis for this angular momentum, leading

to a splitting of the resonance feature into three components. It is shown that in

certain cases these components may be treated separately onboth a two-body and

thermodynamic level. Consequently the many-body dynamicsare also treated as

if these components are distinct.

In order to study molecule production the gas is prepared in astate similar to

the Bardeen-Cooper-Schrieffer (BCS) state in a superconductor. A linear sweep

of the magnetic field through a Feshbach resonance is used to convert the weakly

paired atoms into tightly bound molecules. The variation ofthe molecule produc-

tion efficiency is studied as the initial temperature, density initial magnetic field

and final magnetic field are varied. Also studied is the variation of molecule pro-

duction as a function of the rate at which the magnetic field isvaried. It is shown

that high densities are needed to explore a range of initial magnetic fields and

sweep rates.
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Chapter 1

Introduction

In this chapter we lay the foundations for discussing the physics behind

p-wave Feshbach molecule formation. We give a general introduction to the

subject of cold gases and where the field stands in relation toother areas of

physics. In particular we look at Fermi gases of ultracold atoms and compare

them to condensed matter systems. We briefly look at the subject of the BCS-

BEC crossover and why it has sparked interest in the physics community. We

discuss some of the ways to cool and applications of cold molecules. Lastly

we look at Feshbach resonances and introduce some experiments relative to

the later content of the thesis. In particular we look atp-wave Feshbach reso-

nances andp-wave molecule formation in ultracold gases.

1.1 Quantum matter

Quantum statistics are an essential tool in our modern understanding of the way

the universe works. The restrictions imposed by them help usto understand the

structure of matter at the microscopic level and the interactions that take place on

that scale. The statistics that are derived in quantum mechanics are different from

those which govern classical mechanics and for this reason they seem unfamiliar

and at odds with our everyday experience. However, it is these strange laws that

are directly responsible for the macroscopic world we see around us.

We would describe a classical gas using the Maxwell-Boltzmann distribu-
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tion [5] which assumes that in principle every particle can be given a label that

is distinguishable from every other particle; a view that makes sense to us in our

everyday lives. With the birth of quantum mechanics it became obvious that the

Maxwell-Boltzmann distribution could not account for certain phenomena; for

example, the distribution of electrons in atomic orbitals.The explanation of the

blackbody radiation spectrum provided by Planck [6] gave early indications of

the non-classical behaviour of matter. Planck assumed the energy spectrum of a

black body would be discrete and was thus able to derive his famous blackbody

formula. It was the work of Bose [7] and Einstein [8] that extended this idea to

an ideal gas of identical Bose atoms and by considering the number of particles

in each mode they showed that at a sufficiently low temperature and high density

the lowest mode would be populated by a significant fraction of the gas. This

phenomenon has become known as Bose-Einstein condensation(see, for exam-

ple [9, 10]). However, this is not true for all gases of particles. For a gas of identi-

cal fermions there can only ever be one particle per single particle state [11]. For

this reason there will never be more than one particle in the lowest energy state. It

would be a natural assumption that in some ‘classical limit’the quantum statistics

are well approximated by the Maxwell-Boltzmann statistics, which is the case, for

example, at high temperature.

What is seen in fermions (particles with half-integer spin)is a manifesta-

tion of the Pauli exclusion principle which states that wavefunctions of identi-

cal fermions must be antisymmetric with respect to exchangeof space or spin

variables [11]. For identical bosons (particles with integer spin) the wave func-

tion must be symmetric. It is these statistics that lead to interesting non-classical

physics.

In general, quantum matter refers to a substance in a state where quantum

effects dominate over any others (e.g. thermal). One way of exploiting these

quantum effects is to cool the system down in order to ‘freeze’ out the motion of

the particles so that the only processes that can take place are those that are due to

quantum mechanics. Examples of quantum matter include liquid helium, super-

conductors and ultracold atomic gases [12]. These exampleshave an important

difference that we have neglected in the above discussion, whichhas only strictly

referred to ideal gases where the particles are non-interacting. It turns out that
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interactions between particles can significantly affect the behaviour of a system

even when the interaction is very weak. Interactions are also important in an ex-

perimental sense since they are required to thermalize the system in order to cool

it down to the point where the quantum nature of the substancecan be explored.

All of the examples just given require the presence of interactions to realise them

experimentally. However, recent advances in experimentaltechniques enable ex-

perimentalists to probe degenerate Fermi gases with a degree of control hitherto

unknown. For this reason they have attracted much attentionover recent years,

rewarding researchers with a wealth of new physics.

The physics of ultracold Fermi gases shares many propertieswith other Fermi

systems. For this reason we start with a very broad introduction to systems of

Fermi particles which should be familiar to an undergraduate student. This allows

us to make some comparisons between ultracold Fermi gases and other systems

of fermions.

1.1.1 Degenerate Fermi gases

An ideal gas of identical fermions will obey Fermi-Dirac statistics. This means

that the number of particles per single particle state will be given by [5]

n(T,E) =
1

eβ(E−µ) + 1
. (1.1)

Here,β = 1/kBT, wherekB is Boltzmann’s constant andT is the temperature of

the gas.E is the energy of the single particle state andµ is the chemical potential

of the gas. At zero temperature this becomes the step function

n(0,E) =















1 E < µ

0 E > µ
. (1.2)

In this case the chemical potential is referred to as the Fermi energy,EF , which we

have assumed to be positive, and all the single particle states are occupied by one,

and only one, particle up to the Fermi energy. This is referred to as a degenerate

Fermi gas. At finite temperatures the situation will not be sosimple. The distri-

bution function will deviate from the step function with increasing temperature.
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This smooths the Fermi distribution about the chemical potential, which at finite

temperature will no longer be equal to the Fermi energy. As the temperature is

increased further the Fermi distribution will approach thelimit

n(∞,E) =
1
2
, (1.3)

assuming that the chemical potential remains fixed and positive. This does not

correspond to the classical limit described by Maxwell-Boltzmann statistics. For

Maxwell-Boltzmann statistics to be valid we require that

eβ(E−µ) ≫ 1. (1.4)

This same condition also has to be fulfilled for gases of bosons to behave as a

classical gas. This limit is achieved for high values ofT, provided the factor

(E − µ) is positive.

1.1.2 The Fermi Liquid

The previous discussion refers only to a system of non-interacting fermions. When

interactions are introduced further phenomena arise due tothe quantum statistical

properties of the particles. A weakly interacting system ofFermi particles is com-

monly referred to as a Fermi liquid, the theory of which was first developed by

Landau [13, 14, 15, 16]. The foundation of this theory is to consider the excited

states of the macroscopic system as a collection of elementary excitations, referred

to as “quasi-particles”, that are free to move in the volume occupied by the sys-

tem. It is also assumed that the classification of the energy levels does not change

when adiabatically going from a non-interacting system to aweakly interacting

system. It can be shown that the quasi-particles that now form the system have a

similar distribution function to that of the non-interacting system, specifically,

n(T, ǫ[n]) =
1

eβ(ǫ[n]−µ) + 1
. (1.5)

Here,ǫ[n] is the quasi-particle energy and is itself a functional, dependent on the

specific density distribution. Again, a Fermi energy level,ǫF, will exist up to
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which all the energy levels are filled and this energy level will, in general, not be

the same as for the non-interacting system. This allows an effective mass to be

defined for the quasi-particles,

m⋆ =
pF

vF
. (1.6)

Here pF =
√

2m⋆ǫF is the Fermi momentum andvF =
∂ǫ
∂p p=pF

is the velocity of

the quasi-particles on the Fermi surface. The effective mass can then be used to

determine the thermodynamic properties of the liquid by replacing the mass in the

thermodynamic relations for the non-interacting gas by theeffective mass.

Interactions between quasi-particles can be considered inhow they affect the

quasi-particle energy spectrum

δǫ(p) =
∫

d3p′ f (p, p′)δn(p′), (1.7)

where the functionf (p, p′) is the second variational derivative with respect toδn

of the total energy of the system per unit volume (see, for example [16]). Explic-

itly, this equation implies that a change in the density distribution of the particles

will give rise to a change in the quasi-particle spectrum. Itis also based on the

assumption that the quasi-particles move in a self-consistent field due to the other

quasi-particles. This is also true of non-equilibrium states of the system where the

density distribution may also depend on spatial position and time. It can be shown

that at a low enough temperature sound waves can propagate through the medium

despite the fact that thermodynamic equilibrium is not established locally, a phe-

nomenon known as zero sound. Quite how the density distribution is affected

by the presence of interactions requires the use of the zero temperature Green’s

function method. It was shown by Migdal [17, 18] that the presence of interac-

tion perturbs the Fermi distribution at zero temperature. For weak interactions the

Fermi surface does not completely disappear and remains well defined. A detailed

discussion of these ideas will not be reproduced here, but they are introduced in

order to emphasise the importance of interactions in Fermi systems even at zero

temperature. For a more detailed discussion the reader is directed towards the

literature (for example [16]).
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1.1.3 Fermi systems in nature

For an isotropic ideal gas of fermionic particles in an infinite three-dimensional

square well it can be shown that there is a relationship between the volume of the

box,V, the number of particles,N, and the value of the Fermi energy,

EF =
~

2

2m

(

3π2N
V

)2/3

. (1.8)

This equation holds in the thermodynamic limit (N → ∞, V → ∞ with N
V remain-

ing constant). We can also define the Fermi temperature to beTF = EF/kB.

From the above relations we can get some idea of to what extentsystems of

Fermi particles can be considered a degenerate Fermi gas. Asa first example we

can consider the free electrons in a metal and assume that theelectrons are non-

interacting. From Eq. (1.8) we can immediately guess that the Fermi energy, and

hence Fermi temperature, is going to be high, unless the density is very small, due

to the small mass of the electron. Now, the free electron density in copper is about

8.48× 1028 m−3 which means that the Fermi temperature comes out on the order

of 104 K. By putting this number into the Fermi distribution function shows that

at room temperature ( 296 K) the function only deviates from the value 1 or 0 for

energy levels with±3 % of the Fermi energy. In other words the distribution of

electrons in a metal at room temperature is near to that of a degenerate Fermi gas

(See the solid blue line in Fig. 1.1).

Another naturally occurring Fermi system is a white dwarf star. White dwarf

stars are very high density systems as they have a mass on the order of a solar mass

but radii on the order of 10−2 solar radii. Under such conditions the electrons no

longer bind to individual nuclei. The density of electrons in a white dwarf far

exceeds that of metals at roughly 1036 m−3. This gives a Fermi temperature on

the order of 109 K. The internal temperature of a white dwarf is roughly 107 K

meaning that the distribution of electrons will once again closely resemble that of

a degenerate Fermi gas (see the dashed red line in Fig. 1.1).

These systems are interesting to study in themselves, however they can be dif-

ficult to access. In a solid the electrons have a complicated energy structure. The

way the electrons interact with the lattice in a metal is not trivial and may involve
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Figure 1.1: The Fermi distribution as a function ofE/µ, whereE is the single
particle energy levels andµ is the chemical potential, which in this case has be
taken to be constant and equal to the zero temperature Fermi energy. The red,
dashed line corresponds to a ratio ofTF/T ∼ 102 (for example, a white dwarf
star). The solid, blue line corresponds to a ratio ofTF/T ∼ 101 (for example,
electrons in Copper at room temperature). The solid, black line corresponds to a
ratio of TF/T ∼ 10−6 (for example, an atomic gas of40K at room temperature).
The atomic gas can be seen to be highly non-degenerate at roomtemperature.
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complex scattering processes. This also makes it difficult to have control over

the electron distribution in an experimental setting. White dwarfs are also exper-

imentally unreachable for the time being. Ultracold Fermi gases provide systems

that can be studied both theoretically and experimentally with a high degree of

accuracy. The interactions between the atoms in the gas are generally quite well

understood. The particles can also have few degrees of freedom making scattering

processes relatively simple. Although the microscopics ofthe systems discussed

here may differ considerably the macroscopics of the system can be quite similar.

For this reason ultracold Fermi gases can be used to simulatephenomena in other

Fermi systems and perhaps help us gain a better understanding of them.

1.2 Ultracold atomic gases

What about the Fermi energy/temperature of an atomic gas that has the density of

air at room temperature? Assume that the density of air is on the order of 1025

m−3 and, for the sake of later discussion and the main focus of thethesis, consider
40K, which is a fermionic isotope. In this case the Fermi temperature comes out

as being on the order of 10−3 K, so that the ratioTF/T is now on the order of 10−6.

The distribution function will now vary greatly from the step function associated

with a degenerate Fermi gas, in particular for low energies the limiting value of

the distribution is 0.5. In experiments performed on ultracold gases of atoms the

densities are generally below 1015 m−3 giving a Fermi temperature on the order

of 10−6 K and at room temperature the ratioTF/T is now on the order of 10−9

(see the solid black line in Fig. 1.1). In order to recover thedistribution that it

is indicative of a degenerate Fermi gas in an atomic gas we have to increase the

ratio TF/T to a value greater than one. According to Eq. (1.8) this can bedone

by increasing the density of the gas, thus increasing the Fermi temperature. This

is not always possible. The main reason for these gases beingso dilute in the

first place is to stop them forming solids. The main cause of solid formation

is three body scattering processes. At the low densities reached in an ultracold

gas the probability of three body scattering is negligible so that the gas state will

remain. Another way to increase the ratio is to decrease the temperature of the gas.

Recently, experimentalists have developed techniques that allow atomic Fermi
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gases to be cooled to quantum degeneracy.

The subject of this thesis is molecule production in ultracold gases of spin-

polarised Fermi atoms. Specifically we consider the case where a magnetic field

that varies linearly with time is used to associate weakly paired Fermi atoms

into tightly bound bosonic molecules [19]. From a descriptive point of view

this sounds like a relatively simple problem. However, the physics underlying

the problem can be complex and relies on phenomena associated with two-body

physics and emergent phenomena associated with many-body physics.

Motivated by recent experiments that have produced ultracold molecules from

single component Fermi gases [3, 20, 21, 22, 23] we study molecule production

under similar conditions at the many-body mean field level. This approach has the

advantage that it will include physics that is not included in a two-body approach.

However, the mean field approximation will not account for all the physics in the

experimental system. Further progress could be made by employing a Boltzmann

equation [24], which would be a natural extension of this work. For the conditions

we consider it should be possible to account for the majorityof the physics by

calculating the mean-field equations of the system.

We will see that there are differences between modelling a system of fermions

where all the particles are in a single state and a system of fermions where the

particles are in two different internal states. The source of this difference is the

Pauli exclusion principle which states that wave functionsof identical fermions

must be anti-symmetric with respect to exchange of any variables. This affects

the physics at a two-body level and consequently affects the physics at a many-

body level.

1.2.1 Cooling and trapping atomic gases

The basic idea behind the cooling of atoms by laser light is relatively simple. An

atom is subjected to two counterpropagating lasers such that the frequency of the

lasers is detuned slightly below a resonance transition in the atom. When the

atoms move in the direction of one of the lasers the Doppler shift will cause it to

absorb photons from that direction. The photons will then beemitted randomly

so that their velocity in the direction of the laser will decrease. Applied to a gas
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of atoms this will cool the gas [9].

In practise the cooling of atoms is a very complicated and technically demand-

ing procedure. Trapping the atoms so that they are able to stay in the path of the

laser long enough to cool them is one of the hurdles that must be overcome. Usu-

ally a magneto-optical trap is used to do this. Given that theatoms are now in a

magnetic field, a knowledge of their Zeeman structure becomes essential to under-

standing how they will behave. In fact it was shown that the Zeeman structure can

be used to cool atoms to below the Doppler limit imposed by laser cooling alone,

a technique now known as Sisyphus cooling [25]. The subject of laser cooling

and the trapping of atomic gases is vast and is mentioned hereto provide a back-

ground to the means by which atoms are cooled and the conditions under which

experiments take place. The basics of laser cooling are covered in undergraduate

textbooks [11] and several more advanced text books are available on the subject,

for example [26].

The first laser cooling experiments were performed in 1978 onMg ions [27]

and Ba+ ions [28]. These charged particles could be confined in an electric field

configuration known as a Penning trap. The task still remained to cool neutral

atoms that could not be contained in a Penning trap and did nothave the long-

range potential associated with an ion. This would mean cooling and then trapping

the atoms in contrast to how ions had been trapped. Initial studies focused on

solving two major problems: optical pumping and the changing Doppler shift.

Optical pumping is due to the fact that the simplified model oflaser cooling has

assumed that an atom is a two level system. This is not the caseand it can be

possible for the atom to be put in a state that shuts off the further absorption of

photons, thus precluding further cooling. This can be solved by using a repumping

laser to put the atoms back into the correct states to allow further cooling. The

changing Doppler shift is due to the slowing of the atoms as they cool. This

means that a once resonant transition becomes inaccessible; the atom is seeing a

different frequency of light. One solution to this was to change the frequency of

the laser light to keep at the resonance frequency of the atoms [29, 30, 31, 32, 33].

The other solution is to change the energy of the atomic levels with a magnetic

field to match them to the frequency of the laser [34, 35, 30, 36, 37, 38, 39].

Neutral atoms can still possess a magnetic moment which allows the atoms
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to be trapped by a magnetic field. A variety of different magnetic field config-

urations have been used to trap neutral atoms [40, 41, 42, 43,44]. One of the

apparent limitations of laser cooling is the so-called Doppler limit which arises

due to the equilibrium between the laser field and the spontaneous emission rate

of the atoms. This means that the atoms can only be cooled so far. Evidence for

cooling below the Doppler limit was observed [25] but not initially understood.

Further experimental and theoretical investigation lead to an explanation of this

occurrence [45]. The basic solution is that the atom is not a two level system, but

has two possible ground states. As the polarisation of the laser light varies spa-

tially it is possible to show that the potential an atom experiences is essentially an

infinite hill against which it continually loses energy. This is known as Sisyphus

cooling after the mythological Greek character condemned to repeatedly push a

boulder up a hill only to have it roll down again. The success of these cooling

methods, as well as the use of evaporative cooling, has lead to the achievement

of Bose-Einstein condensation [46, 47] in neutral atoms andthe onset of Fermi

degeneracy a few years later [48]. Consequently Nobel prizes were awarded in

1997 for contributions to laser cooling and in 2001 for the achievement of Bose-

Einstein condensation.

1.2.2 Ultracold Fermi gases as superfluids

The phenomenon of Bose-Einstein condensation (BEC) is characterised by a macro-

scopic occupation of the ground state of a many-particle system, such that the

number of particles in the ground state is of the same order asthe number of par-

ticles in the system [9, 10]. Bosons enter this region of quantum degeneracy when

the interparticle spacing,n−1/3, becomes comparable to the thermal de Broglie

wavelength of the particles,

λT =

√

2π~2

mkBT
. (1.9)

For a trapped gas the condensed fraction will now behave as a superfluid. An

estimate can be made for the temperature at which BEC occurs,TBEC ∼ 2π~2

mkB
n2/3

and for4He this temperature turns out to be roughly 3 K, remarkably close to the

experimentally measured temperature of 2.7 K. The masses ofatoms are generally
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within an order of magnitude of each other so it would be expected that the transi-

tion temperature for bosonic isotopes remains close to thisestimate. However, the

density of an atomic vapour can be of the order 1012-1015 cm−3 as opposed to that

of liquid 4He which is typically 1022 cm−3. This significantly lowers the transi-

tion temperature of the atomic vapour. We have already notedthat the degeneracy

temperature,EF, of electrons in a metal can be several thousand Kelvin, but will

not display any superfluid properties until roughly the sametemperature at which
4He displays superfluidity. To summarise this we can make a comparison between

the degeneracy temperature,TDeg, and the superfluid transition temperatureTTran

in bosons and in electrons in a metal (The term degeneracy temperature is here

used to describe bosons and fermions for comparative purposes)

Bosons :TDeg ∼ TTran,

Electrons in metal :TDeg≫ TTran.

In 1986 Bednorz and Müller found that the compound La2−xBaxCuO4 was a su-

perconductor at 35 K [49] and soon compounds were found with transition tem-

peratures of above 100 K. So now the ratioTTran/TDeg ∼ 10−2 for these so called

high-TC superconductors. It should be noted that the exact physics behind these

high-TC superconductors is not yet fully understood. What is important to note is

that the process believed to be behind all superfluidity in weakly attractive Fermi

systems is the formation of Cooper pairs. These are pairs of particles that have

a binding energy due to many-body effects. Remarkably this means that no two-

body bound state exists and the size of the pair can greatly exceed the average

spacing of particles in the system. It is these pairs that then condense in a similar

way to a system of bosons to form the superfluid state. This idea is the foundation

of Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity [50] which has

had great success in describing the superfluid properties ofFermi systems and will

be discussed in detail later. Up until now most of our discussion has focused on

systems of non-interacting particles but we have mentionedthat by adiabatically

turning on a weak interaction we can end up with a Fermi liquid. In the case

of superfluid Fermi systems this picture no longer applies asthe single particle

spectrum varies greatly from that of the non-interacting system. The many-body
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binding energy we have discussed provides a gap in the energyspectrum, which

is equal to the energy required to break a pair and, although no actual two-body

bound state is present, it is necessary for the particles to have an attractive inter-

action. The superfluid state is one of the ways in which two-body interactions can

lead to interesting many-body behaviour.

So what about the transition temperature in dilute gases of fermionic alkali

atoms? We have already noted that the Fermi temperature (or degeneracy temper-

ature),TF , of Fermi gases of alkali atoms is on the order of 10−3 K at a density

comparable to that of air and will be even smaller at the lowerdensities for which

experiments are performed. It turns out that by using so-called Feshbach reso-

nances the ratioTTran/TDeg can be as large as 0.2 for an ultracold gas of alkali

atoms. There is then some hope that the study of ultracold Fermi gases can help

with our understanding of high-TC superconductors. It should also be noted that

the existence of Feshbach resonances in gases of ultracold fermions is essential

to studying this superfluid behaviour. Feshbach resonancesallow the interaction

strength between two atoms to be varied using a magnetic fieldto the extent that a

pair with a large spatial extent can be converted to a molecule with a small spatial

extent [19, 51]. One important difference between these two limits is that in the

first the average spacing of the atoms in the gas is less than the average size of a

pair. In the other limit the average extent of the molecule ismuch less than the

average distance between atoms. There is a region in which the average distance

between the atoms and the spatial extent of a pair will be on the same scale. This

limit is referred to as the crossover (or BCS-BEC crossover,for reasons that will

be explained later) region, which will be looked at in more detail later. It is also

the case that electrons in high-TC superconductors have a similar ratio of their pair

size to their interparticle spacing as the atoms in this region. Another similarity

between these situations is that aboveTC both are expected to form non-condensed

pairs. This is usually referred to as the pseudo-gap region.Recent studies have

provided evidence for this ‘pre-pairing’ in Fermi gases [52, 53]. There is also

evidence that above the transition temperature the gas may behave as a normal

Fermi liquid [54, 55]. It should be remembered that in spite of these similari-

ties in behaviour between high-Tc superconductors and ultracold Fermi gases the

exact mechanisms behind the phenomena are very different in both cases.
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1.2.3 Analogies with other systems

Systems of ultracold atoms can be used as model systems for studying other com-

plex phenomena due to the level of control that can be implemented in a cold atom

experiment. Interactions between atoms are generally wellunderstood and have

been the subject of significant investigation from a varietyof disciplines. Fur-

thermore, the diluteness of atomic gases means that, in manycases, it is only the

long-range form of the interaction that is resolved and the short range behaviour

can be approximated. These facts make them attractive to theorists and experi-

mentalists alike and much progress has been made since atomswere first laser

cooled [10, 56, 57].

We have already seen that systems of Fermi atoms have something in common

with high-TC superconductors when the system is strongly interacting. It is there-

fore hoped that by understanding the cold atom system further progress can be

made into how high-TC superconductors work. Similarly the neutrons in a neutron

star will be strongly interacting. Other suitable stronglyinteracting systems can

be found in quark matter [58]. There have also been attempts to test string theory

by measuring the limit of the viscosity in a strongly interacting Fermi gas [59].

Cold atom systems therefore share some properties with systems from areas of

physics that may not, initially, seem intuitive.

1.2.4 Feshbach resonances

In general a scattering resonance occurs due to the existence of a metastable state

in the system [60]. This shows itself as an increase in the scattering cross-section

peaked about some energy. These are widely studied in all areas of physics as they

can provide so much useful information to test theory against experiment. Fesh-

bach resonances occur when the scattering energy of a particle pair is coincident

with a bound state of the two-body system [61, 62, 63]. In the context of cold

gases it is possible to create zero-energy Feshbach resonances by manipulating

the interparticle interaction using a magnetic field [19, 51]. What is remarkable is

that this can have a profound effect on the many-body state of the system.

For the sake of simplicity we can start off by considering two asymptotically

separated alkali atoms in a magnetic field. The hyperfine energy levels of the
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atoms will be split by the magnetic field into Zeeman states that have a magnetic

field dependent energy. As the atoms are brought together thevalence electrons

and the nuclei will start to respond to each other [11]. At some point the en-

ergy levels of the pair will deviate from that of a pair of asymptotically separated

atoms. By changing the strength of the magnetic field it is then possible to al-

ter the interaction between the particles to the extent thata two-body bound state

forms between the particles. Furthermore it is possible to spatially localise these

pairs so that they form a tightly bound diatomic molecule. Ifwe imagine that the

particles have zero relative motion then as the bound state appears in the system

the zero-energy scattering cross-section will display a resonance [60]. This is re-

ferred to as a zero-energy Feshbach resonance. A more detailed discussion of the

physics behind this two-body process is given in chapter 2.

Now what about the many-body system? If we start our system ofFermi atoms

in the same situation as the two-body case in which all the particles are asymp-

totically separated from each other we will start with a non-interacting Fermi gas.

We assume that the system is in the ground state and remains soas we increase the

attraction between the atoms to form a superfluid with long-range Cooper pairs.

We can further increase the interatomic attraction througha Feshbach resonance

to the limit where the pairs are localised molecules forminga Bose-Einstein con-

densate. This is referred to as the BCS-BEC crossover as it takes the many-body

state from a gas resembling a superconductor described by BCS theory to a a state

describe by a Bose-Einstein condensate [56]. Questions still remain as to what

happens in the intermediate region where the interparticlespacing is comparable

to the size of the pairs in the gas. This is referred to as the strongly interacting

region and it is where the zero energy two-body cross sectionis at its largest value.

We have here said nothing about the effects of the trapping potential. In a

cold atom experiment the trapping potential often resembles that of a harmonic

oscillator. The solution of the Schrödinger equation for a particle confined by a

harmonic potential is a common undergraduate physics problem. It is well known

that the single particle energy levels are evenly spaced andthe ground state has a

non-zero energy. For non-interacting fermions we could then fill up these single

particle states with one particle in each state if the particles are in the same internal

state. If the two particles interact we would have to solve the Schödinger equation
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in the centre of mass frame. We can allow the strength of the two-body interaction

to vary with a magnetic field across a Feshbach resonance so that a two-body

bound state may exist between the pair. It turns out that as the system passes

through the Feshbach resonance a molecular bound state onlyforms for the lowest

energy state of the pair [64]. The other energy levels are shifted to a lower energy.

This means that no matter how many Fermi particles are in the trap only two

will ever form a molecule. This is not what happens in the experiments where a

considerable fraction of the gas can be converted into molecules. The reason for

this difference between the theory above and experiment is that we have ignored

the many-body effects in the gas.

1.3 Cold molecules

The study of molecular gases and chemical reactions is complicated by the thermal

motion of particles [65]. This not only affects the external degrees of freedom but

the internal states of the participating particles. By cooling molecules it may be

possible to study chemical reactions with fewer degrees of freedom revealing the

mechanisms behind chemical reactions and perhaps discovering new chemistry.

At sub-mK temperatures scattering processes become relatively simple [66].

This regime of temperature is usually referred to as ultracold by cold molecule

researchers [67]. At slightly higher temperatures, on the range of 1 mK to 2

K, more scattering channels become energetically available and the situation be-

comes more complicated. However, at these temperatures there can still be a finite

number of scattering channels making the problem theoretically tractable. Even

at these temperatures quantum effects are important as the de Broglie wavelength,

Eq. (1.9), of even large molecules can start to exceed the interparticle spacing.

This can mean that the effects of the trapping potential can be be resolved by the

many-body system [68]. The ability to tune the trapping potential means that the

chemical reaction rate may be altered by changing the external potential. It has

been shown that chemical reaction processes are expected tobe very efficient in

these low temperature regions [69, 70, 71, 72].

Several methods for creating cold and ultracold molecules have been devel-

oped and can be broadly split into two categories. The first consists of cooling a
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gas of atoms and then associating the atoms into molecules. The second method

involves the direct cooling of preformed molecules. Molecules have a complex en-

ergy structure and this makes it difficult for them to be cooled using lasers, unlike

atoms that can be cooled to ultracold temperatures. Recently there has been evi-

dence of experimental success in laser cooling of a diatomicSrF molecule down

to 300µK [73]. This is possible due to the fortunate energy level structure of

SrF. Creating molecules from ultracold gases of atoms has been a popular method

of molecule production due to the success in laser cooling the atoms themselves.

This usually done by either photoassociation [74], where a light pulse is used to

excite the atoms into a molecular level, or by the use a Feshbach resonances [19]

and in some cases both methods are used. These methods have the drawback that

it is not yet possible to create large molecules of more than afew atoms and there

are a limited number of systems that lend themselves to thesetechniques. Meth-

ods for directly cooling molecules include using high pressure vapours, Starck

decelerators and buffer gas cooling. The drawback of these methods is that they

do not allow the molecules to reach temperatures as low as those achieved with

Feshbach association or photoassociation, but they can be applied to larger and

a wider variety of molecules. Many of these techniques are still in their infancy

but progress has been rapid since the first achievement of Bose-Einstein conden-

sation in 1995 and the prospect of future development with anaim to observing

cold chemistry looks extremely promising (see, for example, Krems [65] and the

references therein).

Other applications of cold molecules range from practical to fundamental. Re-

cently cold molecules experiments have been used to measurethe magnetic mo-

ment of the electron [75]. It is also possible that cold molecules can open up

new realisations of atomic and molecular lasers. There is also a lot of current re-

search into the possibility of realising quantum computing. It is believed that cold

molecules may be a candidate for realising such systems [76].

1.3.1 s-wave molecules

Even if we have restricted our discussion of molecule formation to fermions, quan-

tum statistics still have a further role to play in the story of Feshbach molecule
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production. We here briefly discuss some of the differences between molecules

formed from pairs of Fermi atoms in different internal states and molecules formed

from pairs of Fermi atoms in the same internal state. As already mentioned quan-

tum wave functions of identical fermions must be antisymmetric with respect to

exchange of any space or spin variables. So let us consider a gas of Fermi atoms

in two equally populated internal states. We can assume thatthe total spin of the

atom determines the internal state of the atom and label the two spin states ‘up’

and ‘down’, for the sake of argument. Furthermore, we choosethe spin part of the

wave function to be a spin singlet state. The total wave function of two particles

with opposite spin will now be a product

Ψ (r1, r2) = ψ (r1, r2)χ(↑, ↓). (1.10)

Under these circumstances the spin part of the wave functionwill be antisymmet-

ric leaving the spatial part as symmetric. In the limit of lowenergy this turns out to

be isotropic and assuming a spherical solution to the Schrödinger equation means

we can write the spatial part of the wave function as

ψ (r1, r2) = ψ (|r1 − r2|)Y00

(

r1 − r2

|r1 − r2|

)

, (1.11)

whereY00(Ω) = 1√
4π

is the lowest order spherical harmonic. In the first exper-

iments on creating Feshbach molecules from Fermi atoms a gaswas prepared

that has two spin states occupied like in the example above [77]. We refer to

the molecules formed ass-wave molecules due to the symmetry of the pair wave

function.

1.3.2 p-wave molecules

In the case of a Fermi gas where all the atoms occupy the same internal, or spin

state, the wave function of an atom pair can be written as

Ψ (r1, r2) = ψ (r1, r2)χ(↑, ↑). (1.12)
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The space part of the wave function must now be antisymmetricand for low ener-

gies the lowest partial wave solution to the Schrödinger equation will be

ψ (r1, r2) = ψ (|r1 − r2|)Y1m1

(

r1 − r2

|r1 − r2|

)

, (1.13)

whereY1m1(Ω) is theℓ=1 spherical harmonic. The subscriptm1 denotes the projec-

tion of the angular momentum onto the chosenz-axis. Because theℓ=1 component

is referred to spectroscopically as thep-wave we refer to the molecules that are

formed asp-wave molecules.p-wave Fermi gases (gases in which the particles in-

teract through ap-wave interaction) share some similar properties to3He [78, 79]

and highly ferromagnetic superconductors such as Strontium Ruthenate [80, 81].

In the case of ultracold gases the experimental set up provides a naturalz-axis for

the system; namely the magnetic field axis. This implies thatthere are three possi-

bilities for the projection of the angular momentum vector.This splitting between

projections of the angular momentum vector has been seen in experiments [2].

1.3.3 Towards creatingp-wave Feshbach molecules

The previous sections have given an introduction to where ultracold Fermi gases

stand in the wider context of physics and more specifically a gentle introduction

to the subject of cold molecule production. In this section we discuss the experi-

mental progress that has been made withp-wave Feshach molecules.

Extensive experiments and theoretical investigations have been carried out to

determine the parameters that classify the resonances in the fermionic species of
6Li and 40K. For theoretical purposes these parameters can be used to model the

Feshbach resonances for further calculations, as they are in this thesis. Initial

investigations on potassium isotopes determined the scattering lengths and low

energy scattering cross sections [82, 83]. These investigations indicated that40K

would be a likely candidate for cooling to the quantum degenerate regime. This

limit was subsequently achieved [48]. Further investigation led to the determina-

tion of ans-wave magnetic-field Feshbach resonance located at a magnetic field

strength of 202.1 G [84, 85]. It was this resonance that was first used to create

ultracold molecules from a gas of Fermi atoms [86]. This experiment created
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molecules in a gas at a temperature of less than 150 nK by usinga sweep of the

magnetic field with a linear time dependence. By changing themagnetic field

from a value above the resonance to a value below it at a rate ofdown to 12.5

G/ms they created molecules with lifetimes on the order of 1 ms and measured the

binding energy of these molecules. Subsequently a similar technique was used

to show that it was possible to produce a BEC of the molecules by observing

the emergence of a bimodal momentum distribution, a signature of BEC [87]. In

these experiments the ratioTF/T could be as high as 25 in the initial gas, meaning

it would be highly degenerate if we assumed it to be an ideal gas. This system

was also used to observe condensation of Cooper pairs on bothsides of the reso-

nance [88]. This differs from the previous case where molecules were condensed

due to the fact that the particles forming the condensate retain fermionic degrees

of freedom and the pairing occurs due to many-body effects. In this experiment

linear sweeps of the magnetic field were used with a different purpose. The initial

stage of the experiment involved holding the value of the magnetic field above the

resonance to allow the BCS state to form. The sweeps in to the BEC side were

performed at speeds that exceeded the average collision rate of the particles in the

gas but slow enough to allow the creation of molecules. This would mean that

any condensate fraction observed after the sweep would comefrom pairs con-

densed before the sweep and it was shown that this fraction could not come from

a condensate formed during the sweep itself. It should be emphasised that in both

the creation of the molecular condensate and the Cooper paircondensate a linear

sweep of the magnetic field was an essential ingredient.

Investigations into6Li identified the existence ofs-wave Feshbach resonances

located at 800 G and 19800 G [89]. The low field resonance was later determined

to be at 860 G, with a further narrow resonance existing at 530G [90]. The 860

G resonance was used to observe the gas on the strongly interacting regime and

subsequently, molecules have been created using both the 530 G [91] and the 860

G resonances [92]. Molecular condensation has also been achieved on the BEC

side of the resonance [93, 94], as well as reclaiming the degenerate Fermi gas by

sweeping the magnetic field back above the resonance [95].

Thes-wave experiments have attracted a lot of attention as theirexperimental

detection is somewhat easier. Interest in thep-wave resonances has arisen due
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to the study of non-s-wave pairing in fermion systems, such as unconventional

superconductors, as already mentioned. A variety of superfluid phenomena have

been predicted for non-s-wave pairing [96, 97] and it is hoped that they can be

realised in an ultracold gas of identical fermions withp-wave interactions [98, 99,

100].

Similar to the studies ons-wave molecules, initial experiments located the po-

sition of Feshbach resonances in40K [2, 101] and6Li [20, 102]. The first of these

experiments, performed by Regalet al. [101], concentrated on40K and measured

the firstp-wave Feshbach resonance in a single component atomic gas. Remark-

ably this was located at 198.8 G which is very close to the location of thes-wave

resonance in40K, but seemingly a complete coincidence. The JILA group con-

tinued to investigate this resonance [2] and identified a doublet feature of the res-

onance; as the gas was cooled below around 1µK two distinct peaks were seen

in the elastic cross section separated by about 0.5 G. This isexplained by a non-

vanishing dipole-dipole interaction in thep-wave, leading to the energy of the

resonance state to depend upon the projection of the pair’s relative orbital angular

momentum onto the magnetic field axis.

Experiments on6Li identified threep-wave Feshbach resonances correspond-

ing to three different hyperfine state combinations [20]. In one of these combi-

nations it was possible to create molecules using a linear sweeps of the magnetic

field. With a sweep rate of around 0.25 G/ms they were able to convert around

20 % of the atoms into molecules. A further experimental study by Schuncket

al. [102] located the same three resonances. Two of these resonances arise from

atoms prepared in the same internal state, while the other arises from atoms pre-

pared in two different internal states but at a higher temperature, where thep-wave

cross section is not yet suppressed. In contrast to the case of 40K these resonances

are at very different magnetic fields to thes-wave resonances. Another differ-

ence between the two atomic species is the absence of an observed dipole-dipole

splitting in 6Li.

More recentlyp-wave Feshbach molecules have been formed from a gas of
40K [21]. In this experiment molecules were formed using a resonantly oscillating

magnetic field and not by linear sweeps of the magnetic field. This allowed for a

measurement of the binding energies of the molecules and also a measurement of
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the magnetic moment. A similar method was used to create molecules in6Li [3].

A comparison of the results of these two experiments explains the reason why

the dipole-dipole splitting was not observed (and has not been observed) in6Li,

namely that the magnetic moment of the6Li 2 molecule is much larger than that of

the40K2 molecule.

Even more recently properties of the6Li 2 p-wave Feshbach molecules were

studied where the molecules were formed using linear sweep of the magnetic

field [22, 23]. In these experiments ramp speeds of less than 0.4 G/ms were used

to sweep the atoms into bound molecules, producing a comparatively small yield

of molecules with 15 % by Inadaet al. [22] and 3 % by Maieret al. [23]. Maier

et al. [23] attribute the difference between the two values of the molecule pro-

duction as coming from a temperature difference between the two experiments (9

µK [23] as opposed to 1µK in [22]). As yet no condensation of Cooper pairs has

been detected in these systems. These works also propose theuse of an optical

lattice to studyp-wave superfluidity where even richer phases are predicted [103].

There have already been experimental studies intop-wave Fermi gases in optical

lattices [104], where the interest is focused on Feshbach resonances and possible

superfluidity in low dimensions.

Some of these experiments have measured the lifetimes of Feshbach molecules.

Gaebleret al. [21] found them1 = ±1 40K molecules to have a lifetime of 1 ms

and them1 = 0 40K molecules to have a lifetime of 2.3 ms, where the lifetime is

defined as the time taken for the molecule density to reach 1/eof its initial value.

These measurements were taken on the positive scattering length side of the res-

onance where a true molecular bound state exists and are somewhat shorter than

predicted with a multichannel theory [21]. On the other sideof the resonance the

particles can be confined by the centrifugal barrier as ‘quasi bound’ molecules.

The lifetime of these molecules decreases as the magnetic field moves away from

the resonance and the tunnelling time through the centrifugal barrier decreases.

The same group had previously measured the lifetimes ofs-wave molecules for

which the ‘quasi bound’ state does not exist [87, 105]. They showed that on the

BEC side of the resonance the lifetime of the molecules can increase up to 100

ms. This is due to the long-range nature ofs-wave Feshbach molecules, so such

a situation is not expected to occur inp-wave Feshbach molecules as their spatial
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extent is limited by the centrifugal barrier.

For6Li it was initially only possible to holdp-wave molecules in the magnetic

trap for up to a few ms [3]. This is a short time compared tos-wave experiments

in which 1/e lifetimes were measured up to 500 ms [92] and molecules were

held in a trap for up to 1 s [91]. It was shown by Inadaet al. [22] that a large

contribution to molecule loss comes from atom-dimer collisions and it is possible

to increase the molecule lifetime by removing unpaired atoms from the system.

They also note that this still leaves a low elastic to inelastic collision ratio that

would preclude cooling into a condensed state.

1.4 Outline of the thesis

We have introduced the topic of Feshbach molecule creation in ultracold gases

and shown that it has links to many areas of physics from fundamental to practical.

These seemingly simple systems can provide rich physics that has already been

the subject of many studies and will continue to be so in yearsto come. We wish

to study the mean field effects ofp-wave Feshbach molecule production from a

linear sweep of a magnetic field. If an ideal experiment were to be performed to

test the results of this study it would follow this procedure:

1. The gas is cooled to a superfluid state at some fixed initial magnetic field,

Bi, on the side of the resonance where no two-body bound state exists. This

fixes the initial density and temperature of the gas.

2. The magnetic field is varied linearly with time to some finalmagnetic field

position,Bf , on the other side of the resonance. The atomic density and

temperature are held constant throughout the course of the experiment.

3. The number of molecules created from the gas is counted.

4. The experiment is repeated with the magnetic field varyingat a different

rate to before.

5. The whole process is repeated with varying values ofBi andBf .
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6. The initial temperature and density of the gas is varied and the process is

repeated.

For the above procedure we can identify five independent variables can be varied:

The initial atomic density,n, the initial temperature of the gas,T, the initial mag-

netic field,Bi, the final magnetic fieldBf and the rate at which the magnetic field

is varied,Ḃ. It should be noted that experimentalists may not have the ability to

control all of these variables in a real experiment. In orderto achieve the aims

of this study we have divided the thesis into three chapters,each providing a dif-

ferent ingredient. We have seen that Feshbach resonances are fundamental to our

approach to creating cold molecules. In order to include this phenomenon we have

to suitably model the two-body physics; the subject of Chapter 2. We have also

related the importance of the BCS theory of superconductivity to understanding

the behaviour of ultracold Fermi gases. This is the subject of chapter 3. Lastly,

in Chapter 4 we consider the mean field dynamics of a single component Fermi

gases and the role it plays in molecule production.



Chapter 2

Scattering theory and Bound states

The basics of single channel scattering are presented in a general man-

ner. This is applied to the situation of low energy scattering between atoms

in identical internal states. The two channel model is introduced so that scat-

tering parameters can be related to the experimentally measurable quantities

and the variation of these parameters in the vicinity of a Feshbach resonance

is discussed. A separable model for thep-wave interaction is introduced and

used to recover the binding energy of thep-wave molecule, as well as the low

energy scattering properties of two atoms.

We have seen in the previous chapter that quantum statisticsare important for

the study of molecule formation in a single component atomicFermi gas. In this

chapter we will see how these laws affect the physics at the two particle level. We

have also seen that the degeneracy temperature, the Fermi temperature, in these

systems is very low compared to that of electrons in a metal. The source of this

is the high mass of an atom (compared to an electron) and the low density of

the atomic cloud. In an ultracold gas the kinetic energy of the particles is low

and since we are considering ground state alkali atoms the collision energies will

also be small and it is common to take the low energy limit whenconsidering

scattering processes. Furthermore, the density of an ultracold atomic gas is, in

general, orders of magnitude lower than that of air, making collisions of more

than two particles rare. We therefore neglect the probability of three or more
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body collisions in the gas. This general statement about dilute ultracold gases has

implications on how it is possible to model two-body interaction. In particular

it is often the case that the all interactions are replaced bya single parameter, the

scattering length. This approach has had much success in describing dilute atomic

Bose-Einstein condensates [10, 9] and atomic Fermi gases [56]. The majority of

these studies have focused on the modelling ofs-wave interactions, due to their

relative simplicity and the accessibility of experiments.More recently there have

been studies into modelling interactions between fermionsin the same internal

state [97, 106, 99, 107], which have been motivated by experiments onp-wave

interacting gases [101, 2, 102, 20, 21, 3]. These theoretical studies have extended

methods used to models-wave interaction in ultracold gases due to the success

of these approaches in modellings-wave gases close to resonance. In this thesis

we take a similar approach to modelling thep-wave interaction by extending a

method previously used to model the two-body interaction close to ans-wave

Feshbach resonance.

In this chapter we review some of the basics of quantum scattering theory.

We then apply this to a an atomic system close to a zero-energyp-wave Fesh-

bach resonance. We derive a form of the two-body interactionthat can be used

in a many particle theory. To do this we require that our potential reproduces the

low energy spectrum of the system as it is this region that is accessed in an ultra-

cold gas of atoms and is especially relevant to the case of zero-energy Feshbach

resonances [19].

2.1 Basics of scattering theory

In quantum mechanics a pair of scattered particles in free space with relative mo-

mentump can be described in the centre-of-mass frame by a superposition of an

incoming plane wave and an outgoing spherical wave [11]

ψ(r ) =
1

(2π~)3/2

(

eipz/~ + f (p, θ)
eipr/~

r

)

. (2.1)

Here, p = |p|, the angleθ is measured with respect to the collision axisẑ, r is

the interparticle distance andf (p, θ) is the scattering amplitude. In scattering
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experiments the physically measurable quantity is the differential cross-section

given by,
dσ
dΩ
= | f (p, θ)|2 , (2.2)

whereΩ is the solid angle in the direction ofp̂. Quantum statistics modify the

elastic scattering amplitude and therefore the differential cross-section for iden-

tical particles. The indistinguishability of the scattering product under particle

exchange requires the scattering wave function to be symmetric (antisymmetric)

for bosons (fermions)

ψ(r ) =
1

√
2(2π~)3/2

(

eipz/~ ± e−ipz/~ +
[

f (p, θ) ± f (p, π − θ)
] eipr/~

r

)

, (2.3)

where the plus (minus) sign refers to bosons (fermions).

2.1.1 Single channel scattering in partial waves

In the case of a spherically symmetric potential it is often convenient to expand

the wave function into its angular momentum components. Theradial Schödinger

equation in the centre-of-mass system for theℓth partial wave is written [60]

[

d2

dr2
− ℓ

(ℓ + 1)
r2

− U(r) + k2

]

ψℓk(r) = 0, (2.4)

where

U(r) =
2µV(r)
~2

, (2.5)

andµ is the reduced mass of the particles. The distance between the atoms isr and

the angular wave number isk (p = ~k). V(r) is the interparticle potential which at

large interparticle separation is assumed to be of the form

V(r) = O

(

1
rν

)

, (2.6)

whereℓ < (ν − 3)/2. This ensures that the following discussion of threshold

behaviour is valid [60]. In the context of diatomic molecules V(r) is usually de-

termined by the Born-Oppenheimer approximation [11]. To describe scattering
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Eq. (2.4) has the boundary conditions

ψℓk(0) = 0, (2.7)

and

ψℓk(r) ∼
r→∞

ĵℓ(kr) + k fℓ(k)ĥ+ℓ (kr), (2.8)

where ĵℓ(kr) and ĥ+ℓ (kr) are the Riccati-Bessel and Riccati-Hankel functions re-

spectively. The Riccati-Bessel function is the solution toEq. (2.4) in the absence

of an interaction, so the presence of the potential is responsible for the second

term in Eq. (2.8). The effects of the interaction are described by the partial wave

scattering amplitude

fℓ(k) =
eiδℓ(k) sinδℓ(k)

k
, (2.9)

whereδℓ(k) is the partial wave phase shift. By using the asymptotic form of the

Riccati-Bessel functions asr → ∞, the long range asymptotic form of the wave

function can be written as

ψℓk(r) ∼
r→∞

eiδℓ(k) sin

(

kr −
ℓπ

2
+ δℓ(k)

)

. (2.10)

Hence, the phase shift describes the effect of the potential on the free radial wave

function at large interparticle separation. In the vicinity of a resonance in a partial

wave the corresponding cross-section is assumed to dominate. The partial wave

phase shift changes rapidly as the energy of the system is varied near such a reso-

nance. This causes a change in the partial wave scattering amplitude as given by

Eq. (2.9).

In the low energy limit, the free solution (i.e.V(r) = 0) to the Schrödinger

equation can be expressed using its asymptotic form

ĵℓ(kr) ∼
k→0

(kr)ℓ+1

(2ℓ + 1)!!
. (2.11)

By solving Eq. (2.4) at zero momentum it is possible to obtainthe zero-energy

radial functions. These are functions of position only and can be normalised to

recover Eq. (2.11) divided through bykℓ+1. As an illustrative example the zero-
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energy radial wave functions for thes-wave andp-wave are plotted in Fig. 2.1 for

a square well potential.

The partial wave “scattering length” is defined as

aℓ = lim
k→0

[

− tanδℓ(k)
k2ℓ+1

]

. (2.12)

For theℓ = 1 partial wave this quantity has the dimensions of volume. Asthe

energy of the system goes to zero the relevant scattering parameter becomes the

partial wave “scattering length” and it is related to the lowenergy scattering am-

plitude through

fℓ(k) ≈ −aℓk
2ℓ. (2.13)

The derivation of this quantity forℓ=0 andℓ=1 is presented in Appendix A for a

spherical well and plotted in Fig. 2.1. The phase shift can bemodified by varying

the strength of the interatomic potential. In turn this causes a change in the partial

wave scattering length according to Eq. (2.12). When the phase shift crossesπ/2

the scattering length has a singularity, associated with the appearance or disap-

pearance of a bound state in the potential [60]. The scattering length is positive

when the potential supports a bound state close to the dissociation threshold en-

ergy. When the bound state becomes degenerate with the threshold the scattering

length is singular and then becomes negative as the state becomes a resonance

state moving into the continuum.

2.2 Physical origin of Feshbach resonances

In general, atoms have a complicated internal structure. The spin of the nucleus

of the atom couples to the electronic spin which can also be coupled to the orbital

angular momentum of the electrons [11]. Alkali atoms have only one valence

electron and in the ground state this electron has no orbitalangular momentum

about the nucleus of the atom. This relative simplicity has made the study of

alkali atoms accessible to theorists and experimentalistsalike. The experimental

success in the trapping and cooling of clouds of alkali metalatoms [108, 109, 25],

culminating in the achievement of quantum degeneracy in both bosons [46] and
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Figure 2.1: zero-energy radial wave functions for the modelpotential of a square
well. The depth of the well is given by 2µV0/~

2 = 16.8 a.u., while its radius
is 3.15 a.u.. The dashed line is thes-wave solution and the solid line is thep-
wave solution of Eq. (2.4). Their long range behaviours can be compared with
Eq. (2.11) divided through by the appropriate factors ofk. The diamond marks
the position of thes-wave scattering length. This is also the point at which the
asymptotic form of the scattering wave function crosses theradial axis. The star
marks the position of the cube root of thep-wave scattering volume. This quantity
is related to the point at which the asymptotic form of the scattering wave function
crosses the radial axis throughr1 =

3
√

3a1.
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fermions [48], has made them the most studied in the cold gas community. Dif-

ferent combinations of nuclear spin and electronic spin will give rise to different

energy levels known as hyperfine energy levels and it is the value of the quantum

number representing this total angular momentum that designates the atom as a

composite boson (integer spin) or fermion (half-integer spin). This total angular

momentum will couple to an external magnetic field splittingthe hyperfine energy

levels due to the Zeeman effect [110]. In the field of ultracold gases magnetic

fields can be used to induce Feshbach resonances making it important to under-

stand the interatomic interaction between atoms in the presence of this magnetic

field.

A pair of asymptotically separated alkali metal atoms in a magnetic field can

be described by their individual hyperfine and Zeeman states. For a full descrip-

tion of the two atom problem it would be necessary to include all the different hy-

perfine and Zeeman state configurations in a coupled-channels calculation [111].

Each configuration, known as a channel, of a pair of atoms can be given a unique

labelα =
{

f1mf1 f2mf2ℓmℓ

}

, where fi labels the hyperfine state of atomi at zero

magnetic field,mfi labels the Zeeman state andℓ andmℓ give the relative angular

momentum of the two atoms and the projection of this vector onto the magnetic

field axis, respectively. For collisions of identical particles in the same internal

state there are restrictions on the values ofℓ for a given configuration: even val-

ues for bosons, odd values for fermions [60]. In other cases all values ofℓ are

permitted.

The concept of open and closed channels is important in the discussion of

magnetically induced Feshbach resonances in gases of ultracold atoms. Consider

a pair of atoms asymptotically prepared in a particular spinconfiguration which

we shall call the entrance channel. In the limit of zero-energy collisions the other

Zeeman configurations can be labelled with respect to the energy of this channel.

Configurations with energies lower than this channel are said to be open channels,

while configurations with greater energy are said to be closed channels. For a

single species of massm the coupled channels Schrödinger equation is given by

[111]
∂2Fα(r,E)

∂r2
+

m
~2

∑

β

[

Eδαβ − Veff
αβ(r)

]

Fβ(r,E) = 0. (2.14)
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Here, Fα(r,E) = rψα(r,E), whereψα(r,E) is the component of the full wave

function in the asymptotically separated atom channel. Theeffective potential is

given by

Veff
αβ(r) =

[

E f1mf1
+ E f2mf2

+
~

2ℓ(ℓ + 1)
mr2

]

δαβ + Vint
αβ(r), (2.15)

which now includes the centrifugal part of the kinetic energy. The Zeeman energy

of a non-interacting atom is given byE fimfi
. The part of the potential describing

interactions can be separated into two terms

Vint
αβ(r) = Vel

αβ(r) + Vss
αβ(r). (2.16)

The first term arises from the strong electronic interactionand does not couple

partial waves, but is non-diagonal in the single particle spin basis. This term usu-

ally contains the familiar Born-Oppenheimer potential curves. The second term

has off diagonal elements in all indices and arises from the weak relativistic spin-

spin interaction. When referring to ultracold gases a Feshbach resonance occurs

when a molecular bound state corresponding to one of the openor closed channels

is tuned to be degenerate with the zero energy threshold of the entrance channel.

Fig. 2.2 illustrates a two channel model of a magnetically induced Feshbach reso-

nance. The energy of the closed channel can be tuned with a magnetic field until

it is degenerate with the threshold energy of the open channel. This is due to the

individual Zeeman states of the atoms changing their energyas the magnetic field

strength is varied and in turn the energy of the molecular states will change. If

the open channel and close channel have different magnetic moments then their

energy will change relative to each other. In this figure we choose the dissoci-

ation threshold of the open channel as the zero of energy, so that the energy of

the closed channel is varied. When the resonance state supported by the closed

channel becomes degenerate with the open channel dissociation threshold a bound

state forms in the coupled system referred to as a Feshbach molecule.
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Figure 2.2: Cartoon of a Feshbach resonance. The two channels represent dif-
ferent Zeeman configurations of the asymptotically separated atoms. The atoms
are initially prepared in the entrance channel and the closed channel supports the
resonance state. The energy of the closed channel is tuned using a magnetic field.
As the energy of the resonance state becomes degenerate withthe zero of energy
in the open channel a Feshbach resonance occurs and a bound state of the system
appears.



Scattering theory and Bound states 46

2.3 Two-channel model of a Feshbach resonance

A full description of Feshbach resonance phenomena requires a solution to Eq. (2.14)

with the inclusion of an external magnetic field that couplesto the individual

Zeeman states. Including this full coupled channels treatment in a many-body

treatment is computationally taxing. Luckily, for many cases involving atom-

atom collisions it is sufficient to consider only two Zeeman channels. The general

Hamiltonian for the two-channel model is given by [112, 62, 61, 113]

H =















Hbg W

W Hcl















. (2.17)

WhereHbg supports the entrance channel scattering states in which the atoms are

initially prepared andHcl supports the resonance state,|φres〉, of energyEres, which

satisfies the Schrödinger equation

Hcl|φres〉 = Eres|φres〉. (2.18)

HereW describes the interchannel coupling. The Hamiltonian of Eq. (2.17) will

support two-component eigenstates corresponding to the entrance channel and a

single closed channel. To model the physics of a magnetic field induced Feshbach

resonance we allowHcl to be magnetic field dependent (Hcl = Hcl(B)), this cor-

responds to the entrance and closed channel states possessing different magnetic

moments. As the magnetic field is varied the energy difference between the two

states varies. The Feshbach resonance occurs when the energy of the resonance

state supported byHcl(B) is degenerate with the entrance channel dissociation

threshold. As in the coupled channels case described above,a bound state ap-

pears, referred to as a Feshbach molecule, on the positive scattering length side of

the resonance. This Feshbach molecule has components in both channels.

It is useful to formulate this problem in terms of Green’s operators with a

complex argument,z, that has dimensions of energy. For the entrance channel

component the Green’s operator is

Gbg(z) =
(

z− Hbg

)−1
. (2.19)
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For the closed channel component the Green’s operator is

Gcl(B, z) = (z− Hcl(B))−1 , (2.20)

where the magnetic field dependence of the closed channel Hamiltonian, and

hence the closed channel Green’s operator, has been made explicit. In the vicin-

ity of a resonance it can be assumed that the detuning of the resonance energy

from the entrance channel dissociation energy is small compared with the spac-

ing between different vibrational energy levels in the closed channel. Therefore

Eq. (2.20) will be dominated by the contribution from the resonance state leading

to the single resonance approximation [66, 114],

Gcl(B,E) ≈ |φres〉
1

E − Eres(B)
〈φres|. (2.21)

On the side of the resonance where the scattering “length” isnegative the Hamil-

tonian of Eq. (2.17) describes scattering for positive energies. In the case where

Hbg andHcl support no deeply bound states, such that the resonance state is the

only state supported by either Hamiltonian, the scatteringsolutions will be the

only solutions to the Schödinger equation. In this situation the resonance state

would be in the energetic continuum of the entrance channel and the components

of the scattering wave function at momentump, take the form

|φbg
p 〉 = |φ(+)

p 〉 +Gbg

(

p2

2µ
+ i0

)

W|φbg
p 〉, (2.22)

|φcl
p 〉 = Gcl

(

B,
p2

2µ
+ i0

)

W|φbg
p 〉 ≈ |φres〉

〈φres|W|φbg
p 〉

p2

2µ − Eres

, (2.23)

where the single resonance approximation of Eq. (2.21) has been made in Eq. (2.23).

The i0 term ensures the argument approaches the real axis from theupper half of

the complex plane and corresponds to an outgoing spherical wave. This is also

the meaning of the (+) superscript in the first term of Eq. (2.22). For the entrance
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channel component the scattering component can be written as

|φ(+)
p 〉 = |p〉 +G0

(

p2

2µ
+ i0

)

Tbg

(

p2

2µ
+ i0

)

|p〉, (2.24)

which is known as the Lippmann-Schwinger equation [115] andwould fully de-

scribe the scattering problem in the absence of the closed channel. HereTbg

(

p2

2µ + i0
)

is theT-matrix for background scattering [116], related to the background scat-

tering amplitude through

fbg(p, p′) = −(2π)2µ~〈p|Tbg

(

p2

2µ
+ i0

)

|p′〉. (2.25)

The plane wave state,|p〉, can be expanded in the partial wave basis

〈r |p〉 = ei p·r
~

(2π~)3/2
=

√

2
π~3

∑

ℓm

ei π2ℓ jℓ
( pr
~

)

Yℓm(r̂ )Y⋆
ℓm(p̂), (2.26)

where the functionsYℓm(Ω) are the spherical harmonics, a set of orthogonal angu-

lar solutions to Laplace’s equation normalised on the unit sphere. In the position

space basis Eq. (2.24) has the asymptotic long range expansion

φ(+)
p (r ) =

4π
(2π~)3/2

∑

ℓm

Yℓm(r̂ )

[

iℓ jℓ
( pr
~

)

+ f bg
ℓ

(p)
eipr/~

r

]

Y⋆
ℓm(p̂). (2.27)

The partial wave background scattering length is defined as the low energy limit

of the background partial wave scattering amplitude, such that in the limitp→ 0

f bg
ℓm(p) ≈ −abg

ℓm

p2ℓ

~2ℓ
. (2.28)

Here, abg
ℓm corresponds to the value of the scattering “length” at magnetic field

values far from resonance and would be equivalent to Eq. (2.13) in the absence of

the closed channel. By inserting Eq. (2.27) into Eq. (2.22) the full partial wave
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scattering amplitude can be written as

fℓm(p) = f bg
ℓm(p) − µπ~

〈φ(−)
pℓm|W|φres〉〈φres|W|φ(+)

pℓm〉
p2

2µ − Eres− 〈φres|WGbg

(

p2

2µ + i0
)

W|φres〉
. (2.29)

In the low energy limit these parameters can be related to thephysically relevant

parameters associated with a zero-energy resonance. The denominator of the sec-

ond term in Eq. (2.29) can be associated with the detuning of the resonance energy

with respect to the zero-energy threshold

Eres− 〈φres|WGbg

(

p2

2µ
+ i0

)

W|φres〉 = lim
p→0
−
∂Eres

∂B
(B− Bℓ0). (2.30)

Here,Bℓ0 represents the value of the magnetic field at which the resonance occurs

and ∂Eres
∂B is the magnetic moment difference between the Feshbach resonance state

and a pair of asymptotically separated atoms. The numeratorcan be identified

with

µπ~〈φ(−)
pℓm|W|φres〉〈φres|W|φ(+)

pℓm〉 = lim
p→0

p2ℓ

~2ℓ
abg
ℓm

∂Eres

∂B
∆Bℓ (2.31)

with ∆Bℓ representing the width of the resonance. This is measured asthe range of

magnetic fields from the resonance position to where the scattering length crosses

zero. We can put these expression into Eq. (2.29) and taking the low energy

limit we obtain an expression for the partial wave scattering “length” in terms

of experimentally measurable quantities [113, 107],

aℓ(B) = abg
ℓ

(

1− ∆Bℓ

B− Bℓ0

)

. (2.32)

As the magnetic field in Eq. (2.32) is changed from a value greater thanBℓ0 to a

value less thanBℓ0 the scattering length becomes singular and changes sign as re-

quired by the previous discussion of low energy Feshbach resonances. Therefore

Eq. (2.32) provides a simple parametrisation of the scattering length in the vicinity

of a resonance. A plot of the scattering length using this formula and the exper-

imentally measured parameters listed in appendix B is shownin Fig. 2.32 about

the 202.107 Gs-wave resonance in40K. In the vicinity of a resonance this for-

mula reproduces the experimentally measured scattering length very well. As the
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Figure 2.3: Variation of thes-wave scattering length about the 202.107 G reso-
nance in40K. The position of the resonance,B0, is indicated by a solid black line.
The other parameters appearing in Eq. (2.32) are also indicated.

magnetic field value moves away from the resonance it is possible for effects not

included in the two-channel model to have an influence on the scattering length.

For example, other bound states in the entrance channel or closed channel or other

Zeeman states. We will use Eq. (2.32) extensively throughout this thesis to model

to partial wave scattering length. The parameters we use to model the resonances

in 40K and 6Li are given in Tables 2.1, 2.2 and 2.3. An explanation of how these

parameters are calculated is given in Appendix. B.

Table 2.1: Bound state energiesE−1 associated with the highest excited vibrational
states,C6 coefficients, ands-wave scattering lengths for40K and 6Li. The values
of E−1 anda0 quoted for6Li 2 refer to the lithium triplet potential.

Species C6 (a.u.) abg
0 (aBohr) |E−1| /h (MHz)

40K 3897 [117] 174 [118] 8.9 [119]
6Li 1393.39 [120] -2160 [121] 2.4× 104 [121]
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Table 2.2: Calculatedp-wave resonance parameters for40K. All values are based
on the experimental data found in Ticknoret al. [2]

Projection B10 (G) abg
1 (a3

Bohr) ∆B1 (G) ∂Eb

∂B (kHz/G)

m1 = 0 198.85 -1049850 -21.95 188±2

|m1| = 1 198.373 -905505 -24.99 193±2

Table 2.3: Calculatedp-wave resonance parameters for6Li taken from Fuchset
al. [3]. It should be noted that the dipolar splitting (DPS) is on the order of mG for
6Li. This is much lower than that observed in40K. In the experiments this splitting
was not resolvable. The data is provided for atoms prepared in two hyperfine states
|F,mF〉. In this case|1〉 = |1/2, 1/2〉 and|2〉 = |1/2,−1/2〉

Channels B0 (G) DPS (mG) ∂Eb

∂B (µK/G) abg
1 (a3

Bohr) ∆B1 (G)

|1〉-|1〉 159 10 113 -42360 -40.51

|1〉-|2〉 185 4 111 -45290 -39.54

|2〉-|2〉 215 12 118 -42800 -25.54

2.4 Dipolar splitting of p-wave resonances

Collisions of ultracold fermions in different internal states can have zero relative

angular momentum and therefore the wave function of the pairis isotropic. For

ultracold fermions in the same internal state the lowest angular momentum state

is the p-wave (ℓ = 1). In this thesis we are concerned with atoms interacting

with an external magnetic field. If we choose the axis of quantisation to be in the

direction of the magnetic field then the form of the interaction between two atoms

will now depend on the projection of the relative angular momentum vector onto

the external magnetic field axis. In this case the dipole-dipole interaction will be

modified depending on the relative position of the two atoms.

The operator for the spin-spin interaction between two alkali atoms is given

by

Hss= −α23(r̂ · ŝ1)(r̂ · ŝ2) − ŝ1 · ŝ2

r3
. (2.33)

Hereα = 1/137.0426 is the fine structure constant,r̂ defines the internuclear axis

andŝi is the spin of the valence electron on theith atom. The value of this splitting
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B

Figure 2.4: Semiclassical picture of the dipolar splitting. The thick white arrow
is the relative angular momentum vector of the atom pair. Thesmall blue arrows
are the angular momentum vectors of the total atomic spins. Them=0 state has a
lower energy due to the attractive interaction when the dipoles are on top of each
other.

has been calculated for40K atoms in the same internal state [2] and shown to be

responsible for the doublet feature of the resonance observed in the experiments

on 40K [21]. However, this splitting has not been resolved in the experiments on
6Li [3, 122, 20]. This is accounted for by the difference in magnetic moment

between the two species; the magnetic moment of the6Li molecule being approx-

imately 12 times larger than that of the40K molecule [3].

A semiclassical picture of the dipolar splitting would havethe two atoms with

a relative angular momentum between them (see Fig. 2.4). In one case the pro-

jection of the relative angular momentum vector on the magnetic field would be

unity, so the energy of the atoms remains constant as the two atoms rotate. In the

other configuration the projection of the relative angular momentum vector on the

magnetic field will be zero. In this situation when the dipoles are aligned verti-

cally they will attract each other. This causes the average energy of them1 = 0

state to be lower than that of them1 = 1 state. It is possible to draw an analogy

between thep-wave pairing in ultracold gases and pairing in liquid3He [78] as

well as superconductors withp-wave pairing [80, 81]. Our model will have to

include the effects this splitting has on the system.
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2.5 Models for ultracold interatomic potentials

For the purpose of studying the many-body behaviour of a system it may not be

practical to model the two-body physics with a coupled channels potential. In

many cases it is possible to replace the full two-body interaction by an approxi-

mate form that recovers a number of physically relevant parameters of the actual

potential. In Sec. 2.3 we simplified the Hamiltonian to include only two channels.

This enabled us to reproduce the resonance formula of Eq. (2.32). In this sec-

tion, and in the rest of the thesis, we further simplify our Hamiltonian to a single

channel while using Eq. (2.32) to parametrise the scattering length close to the

threshold. To this extent we replace the full potential of the system by a single

channel pseudo potential that recovers the bound state and scattering spectrum

close to threshold.

The large de Broglie wavelength of ultracold atoms means that the short-range

features of the interaction remain unresolved. Thus it is sufficient to use a poten-

tial that approximates this short-range behaviour by recovering the phase shift at

long-range. We are left with the problem of modelling the long-range part of the

potential. We will see that this leaves us with a simple expression for the po-

tential that will make our many particle calculations much less computationally

demanding.

2.5.1 Van der Waals potential

If one neglects interchannel coupling, the low energy boundstate and scattering

spectrum of alkali metal atom pairs is dominated at long distance by the van der

Waals interaction which arises from an induced dipole-induced dipole interaction

derived from second order perturbation theory [11]. This potential decays as 1/r6

at large distances, withr being the interatomic distance. In order to model this

long range behaviour we can introduce a potential of the form[60]

V(r) =















∞ for r < Rc

−C6

r6 for r > Rc

, (2.34)



Scattering theory and Bound states 54

whereC6 is the van der Waals coefficient andRc is the radius of a repulsive hard

sphere. We can choose this hard sphere potential because we will approximate the

short-range behaviour with a phase shift as explained above. A length scale can

be associated with such a potential,

lvdW =
1
2

(2µC6/~
2)1/4, (2.35)

referred to as the van der Waals length [123, 51]. The van der Waals length is

an important length scale in ultracold collisions [124]. For r < lvdW the wave

function oscillates rapidly sinceV(r) = −C6

r6 becomes large compared with typical

collision energies. At separations greater thanlvdW the wave function takes on its

asymptotic form and oscillates on the length scale of the de Broglie wavelength

of the particles.

We have therefore chosen a pseudo potential that has the correct long range

behaviour and we can alter the value ofRc to reproduce the phase shift caused

by the short range features of the potential. This phase shift will be independent

of how many bound states the potential holds, but sensitive to the energy of the

bound state closest to threshold. The potential can be fixed to support fewer bound

states than would be supported by a Born-Oppenheimer potential surface while

recovering the off-resonant scattering length. For the potential of Eq. (2.34) the

s-wave scattering length is given by [125]

a0 = ā0

[

1− tan

(

Φ −
3π
8

)]

, (2.36)

whereΦ is the semiclassical phase shift and

ā0 ≈ 0.95598lvdW (2.37)

is referred to as the means-wave scattering length [125], which is completely

determined by the asymptotic behaviour of the potential of Eq. (2.34). The semi-

classical phase shift is given by

Φ =
1
~

∫ ∞

Rc

dr
√

−2µV(r) =

√
µC6√
2~R2

c

. (2.38)
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This analytic formula allows the sphere radiusRc to be found for any givens-

wave scattering length (provided we know the species of participating atoms and

the C6 coefficient). Several values of the core radius can correspond to agiven

scattering length, depending on how many bound states one wishes to include

in the potential. Altering the value of the core radius also causes the energy of

the bound states within the potential to be altered. A singularity appears in the

scattering length at a sphere radius where a bound state becomes degenerate with

the zero-energy threshold of the potential. By decreasing the sphere radius below

this resonance value a new bound state can be added and by increasing it above

this resonance value a bound state can be removed. In this wayit is possible

to model a zero-energy resonance by changing the one parameter of the sphere

radius.

It has been shown in Gao [4] how it is possible to relate the parametersa0 and

a1 to the highest excited molecular levels of the−C6/r6 potential near threshold. In

order to compare these results, we have numerically solved the Schrödinger equa-

tion using the potential of Eq. (2.34) at zero-energy to determine the scattering

length. This is done using a propagation method and analysing the long-distance

behaviour of the scattering wave function. In a similar way the bound state en-

ergies can be found by ensuring that the wave function satisfies the appropriate

boundary conditions below threshold. For thes-wave the bound state energy and

the scattering length obtained from the numerical calculation have been plotted in

Fig. 2.5. For comparison, the solid curve refers to the following analytic formula

for the energy of the highest exciteds-wave bound state derived in [4]:

Es = −
1

(a0 − ā0)2

[

1+
c1

(a0 − ā0)
+

c2

(a0 − ā0)2

]

. (2.39)

Here the parametersa0 andā0 have been scaled by 2lvdW and the energy has been

scaled by~2/
[

2µ(2lvdW)2
]

with c1 = 0.4387552 andc2 = −0.2163139. Also

shown in Fig. 2.5 is the universal energy for ans-wave bound state near threshold

as given by [60]

Es = −
~

2

2µa2
0

. (2.40)
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Figure 2.5: The near resonants-wave bound state energy versus 1/a0 for different
pseudo potential models for40K. The solid line is the analytic result of Eq. (2.39).
The diamonds indicate the numerical bound state energy using the pseudo poten-
tial of Eq. (2.34). The dot-dashed line is the result using the separable potential.
The circles refer to the universal formula of Eq. (2.40). Alllengths have been
scaled by 2lvdW and the unit of energy is~2/

[

2µ(2lvdW)2
]

.

In a similar manner the values for the scattering volume, as well as the corre-

sponding bound state energies, were numerically calculated for thep-wave. These

results have been plotted in Fig. 2.6. According to [4] the highest excited bound

state energy is then well approximated by

Ep = −
(

5a1

a1 + a1

) 











1+ d1

(

1
a1 + a1

)1/2

+ d2

(

1
a1 + a1

)











. (2.41)

Here the parametersa1 andā1 have been scaled by (2lvdW)3, the energy has been

scaled by~2/
[

2µ(2lvdW)2
]

andd1 = 0.4430163 andd2 = 0.1639879. The average
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scattering volume is given by [4]

a1 = 0.1162277(2lvdW)3. (2.42)

Equation (2.41) has also been plotted in Fig. 2.6 as a comparison against the nu-

merical result.
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Figure 2.6: The near resonantp-wave bound state energy versus 1/a1 using a
hard sphere+ van der Waals pseudo potential for40K. The diamonds refer to the
numerical result using the pseudo potential of Eq. (2.34), while the solid line is
the analytical result of Eq. (2.41) for comparison. All lengths have been scaled by
2lvdW and the unit of energy is~2/

[

2µ(2lvdW)2
]

.

2.5.2 Separable potential

In the context of many-body calculations it is desirable to seek an even simpler

pseudo potential than the hard sphere plus Van der Waals potential to describe the
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two-body interaction. This can be achieved by using a separable potential. This

allows us to choose an analytic form for the potential that recovers the observables

we wish to study and also allows us to find an analytic formula for the energy of

the bound state, as we will see. A further advantage of this potential is that it is

convenient for numerical integration, as it can be chosen tobe continuous, with

a continuous derivative; this will be important when solving the many-particle

equations of later chapters. This form of potential has beenpreviously employed

in studies of few [126] and many-body systems [1, 127]. In ourcase we want

to choose our separable potential to recover the low energy resonance behaviour

close to a Feshbach resonance. Separable potentials have already been applied

in the case of boths-wave Feshbach resonances [19] andp-wave Feshbach reso-

nances [99, 97]. The model we use for the separable potentialclosely resembles

one already successfully applied tos-wave Fermi gases [19, 128, 129]. We con-

tinue to use a single channel approach as this will be the simplest approximation

to the problem.

The scattering wave function is formulated in terms of the Lippmann-Schwinger

equation,

|φ+p〉 = |p〉 +G0(Ek + i0)V|φ+p〉. (2.43)

HereG0(Ek + i0) is the free Green’s operator

G0(z) ≡ (z− H0)
−1, (2.44)

whereH0 is the interaction free Hamiltonian. The argumentz= Ep + i0 indicates

that the collision energyEp = p2/(2µ) is approached from the upper half of the

complex plane, as in Eq. (2.22) and Eq. (2.23). A Lippmann-Schwinger equation

can also be written for theT-matrix [116],

T(z) = V + VG0(z)T(z). (2.45)

Given the potential in the separable form

V = |χ〉ξ〈χ|, (2.46)
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where the parameterξ is referred to as the amplitude and|χ〉 is the form factor,

Eq. (2.45) can be iterated to infinite order to obtain the Bornseries. It is a feature

of the separable potential that this series can be summed analytically and theT-

matrix written as

T(z) =
|χ〉ξ〈χ|

1− ξ〈χ|G0(z)|χ〉
. (2.47)

TheT-matrix is related to the full scattering amplitude by

f (p, p′) = −(2π)2µ~〈p|T
(

p2

2µ
+ i0

)

|p′〉. (2.48)

It can also be shown that poles of theT-matrix correspond to bound state ener-

gies [60, 116]. In thes-wave case the scattering amplitude has the low energy

asymptotic behaviour [60]

f0(p) ∼
p→0
−a0, (2.49)

wherea0 is thes-wave scattering length. Thep-wave scattering amplitude has the

low energy behaviour [60]

f1(p) ∼
p→0
−a1

p2

~2
, (2.50)

wherea1 is here referred to as thep-wave scattering volume. The quantity〈p|χ〉,
which appears when Eq. (2.47) is inserted into Eq. (2.48), isthe momentum rep-

resentation of the form factor of the potential which we choose to determine the

resonant bound state through the relationG0(E−1)|χ〉 ∝ |φ−1〉. As the form factor

is unresolved for collisions in dilute, ultracold gases, a suitable and convenient

expression can be chosen that reproduces the asymptotic conditions of Eq. (2.49)

and Eq. (2.50).

s-wave

In the following, thes-wave form factor is chosen to be of Gaussian form [19],

〈p|χ〉 = 1
√

2π~3/2
e−p2σ2/2~2Y00(θ, φ). (2.51)

Here,p = |p| with θ as the zenith angle andφ as the azimuth angle ofp. The func-

tion Y00(θ, φ) is the spherical harmonic withℓ=0 andmℓ=0. Using this expression
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Figure 2.7: Variation of thep-wave bound state energy of40K2 with the inverse
scattering volume. The dashed line is the analytic formula of Eq. (2.41), while the
solid line is the numerical result using a separable potential. Here the energy scale
is given in MHz as compared to Fig. 2.6. The scattering volumehas been scaled by
(2lvdW)3. This demonstrates that the separable potential is a good approximation
over an energy range relevant to recent experiments. At higher binding energies
the separable potential ceases to be accurate.
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Figure 2.8: The emergence of the bound state for them=1 resonance at 198.373G
in 40 K. The green line is the bound state solution to Eq. (2.57). The black dotted
line is the result of Eq. (2.41). The dashed blue line is the low energy expansion
of Eq. (2.58).
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the parametersσ andξ can be chosen such that the condition

1− ξ〈χ|G0(z)|χ〉 = 0 (2.52)

reproduces the pole in theT-matrix when the argument is equal to the energy of

the least bound state of the potential,E−1. In the case of thes-wave there is the

additional condition, from the zero-energy limit of theT-matrix, that the scattering

length is given by

a0 = σ
x

1+ x/
√
π
, (2.53)

wherex = µξ/(2π~2σ) is dimensionless. The fulfilment of these conditions allows

the parameterξ to be varied in order to vary the position of the pole in theT-matrix

when the system is close to threshold. This gives the condition that

1+
x
√
π

[

1−
√
πyey2

erfc(y)
]

= 0, (2.54)

wherey = σ
√

−2µE−1/~ and erfc(y) = 2√
π

∫ ∞
y

exp(−u2) du is the complementary

error function. In the low energy limit the solution of Eq. (2.54) recovers the uni-

versal formula for thes-wave bound state energy given by Eq. (2.40). A numerical

calculation of the bound state energy versus 1/a0 for 40K using a separable poten-

tial in which the parameterσ is held constant is shown in Fig. 2.5. A formula for

σ given in appendix B. The parameters we use are given in Tables2.1, 2.2 and

2.3, and reproduced in the appendix B.

p-wave

Given the success of thes-wave separable potential in modelling interactions in an

ultracold Fermi gas [19, 128, 129] we seek a similar form to describep-wave in-

teractions. Thep-wave form factor can be chosen to be of the following Gaussian

form:

〈p|χ〉 = σ

π~5/2
pe−p2σ2/2~2Y1m(θ, φ). (2.55)

Here the extra factor ofp is due to the boundary condition on thep-wave bound

state and scattering spectrum due to the presence of the centrifugal barrier. Tak-

ing the zero-energy limit of theT-matrix gives an expression for the scattering
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volume,

a1 = 2σ3 x

1+ x/
√
π
, (2.56)

where thex is defined as before. The condition on the bound state energy is given

by the expression

1+
x
√
π

(

1− 2y2
[

1−
√
πyey2

erfc(y)
])

= 0. (2.57)

A low energy expansion of Eq. (2.57) gives rise to an expression for thep-wave

bound state energy close to threshold,

E−1 ≈ −
√
πσ~2

2µa1
. (2.58)

It should be noted that this is linear in the inverse scattering volume, in agreement

with the first order approximation to Eq. (2.41). This resultis also in agreement

with previous theoretical results [107, 106]. Equation (2.58) and Eq. (2.32) can

be used to find an expression for the magnetic moment close to the dissociation

threshold in terms of the resonance parameters and the parameters of the separable

potential. The value of the magnetic moment can be obtained from experiment [3,

21], allowing the value of the parameterσ to be fixed for a given resonance. For

the case of40K and6Li this is done in Appendix B. We have also used this potential

to calculate the low energy scattering amplitude and compare the cross-section

obtained to that of coupled channels calculation. The derivation and results of this

calculation are given in Appendix C.

The observed dipolar splitting of the resonance feature must also be accounted

for, given that one bound state would now exist corresponding to them = 0

molecules and one bound state corresponding to|m| = 1 molecules. This is done

by introducing separable terms representing each component

V = |χ1〉ξ1〈χ1| + |χ0〉ξ0〈χ0| + |χ−1〉ξ−1〈χ−1|. (2.59)

This allows for them = ±1 components to be non-degenerate. The observed

doublet feature of the experiments indicates, however, that they are degenerate.

This is intuitive due to the symmetry of the system about the magnetic field axis
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and we will investigate this further in Chapter 3.

2.5.3 Two channel model versus single channel model

It is common to see both single channel and two channel modelsused to model

Feshbach resonances in ultracold gases. The validity of either model depends on

the exact nature of the Feshbach resonance. It would seem intuitive that if it is

possible to describe the system with a single channel then this should be preferred

on the basis of simplicity. However, this is not always possible. We will begin

by discussings-wave resonances and then look at howp-wave resonances differ

from them.

We have already mentioned that in the two-channel model a Feshbach molecule

refers to an eigenstate of the Hamiltonian Eq. (2.17) which has components in the

entrance channel and the resonance channel. We can therefore write a wave func-

tion for the Feshbach molecule in terms of these components

|φmol〉 =
√

Z(B)|φcl〉 +
√

1− Z(B)|φbg〉, (2.60)

whereZ(B) is referred to as the wave function renormalisation constant [19] and

represents the fraction of the wave function in the closed channel. Using a sin-

gle resonance approximation, we can approximate the detuning of the resonance

energy to be linear in the magnetic field. We can therefore assume that if the

closed channel component of the Feshbach molecule is large then the energy de-

pendence of the Feshbach molecule will also be linear, to a good approximation.

However, we have seen that in the single channel model thes-wave bound state

varies quadratically with the magnetic field when close to resonance. We can

therefore assume that the energy of the molecule will vary quadratically when

the closed channel component is small. This is indeed the case for s-wave res-

onances [130, 51] and we tend to classify Feshbach resonances as either closed

channel dominated or entrance channel dominated dependingon the behaviour of

Z(B). The situation is complicated by the fact that the closed channel component

does not remain constant but varies as a function of the magnetic field. In the case

of an entrance channel dominated resonance the closed channel component will



Scattering theory and Bound states 65

be small on the negative scattering length side of the resonance. As the closed

channel bound state, referred to as the resonance state, approaches the threshold

the closed channel component will increase.Z(B) will continue to increase as

the binding energy of the Feshbach molecule increases. It should be noted that a

bound Feshbach molecule can exist when the resonance state is still above the en-

trance channel dissociation threshold. As the resonance energy crosses this thresh-

old and the molecule becomes tightly bound the single channel model will become

inadequate at some point and the binding energy of the Feshbach molecule will

follow that of the linearly varying resonance state in the closed channel.

In the closed channel dominated resonances a rapid increaseis seen in the

closed channel component when the magnetic field is close to the resonance po-

sition. In this case the bound state of the system appears at asimilar magnetic

field to which the resonance energy level crosses the threshold. As the molecule

becomes more tightly bound it may encounter a bound state supported by the en-

trance channel, in which case the closed channel component will decrease as the

Feshbach molecule populates this bound state. The differences between the en-

trance channel dominated and closed channel dominated resonances are illustrated

in a cartoon Fig. 2.9. The important factor here is that it is possible to use a single

channel approach for entrance channel dominated resonances as the behaviour of

the bound state of the coupled system is similar to that of thesingle channel model

when close to resonance.

p-wave resonances are intrinsically closed channel dominated due to the ex-

istence of the centrifugal barrier [97]. It has been shown that this means that the

amplitude of the closed channel remains large across the entire resonance [107]

and the Feshbach molecule is always dominated by the closed channel compo-

nent. When we compare this with thes-wave we could assume that this means we

would have to use a two-channel model to describe the resonance. However, we

have already seen that the energy of thep-wave bound state in the single channel

model varies linearly with magnetic field detuning from the resonance, just like

the resonance state supported by the closed channel. In the cases we have studied

we have seen that this single channel model is sufficient at reproducing the near

threshold properties of the Feshbach resonance. We therefore propose that this

single channel model is sufficient, at least for use in a first study, in the region
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Figure 2.9: Cartoon to illustrate the different behaviours of thes-wave bound
state in a closed channel dominated resonance and an open channel dominated
resonance as a function of the detuning from the zero of the resonance energy.
The solid blue line is the energy of the resonance state. The solid green dotted line
is the bound state energy of the Feshbach molecule in an open channel dominated
resonance. The dashed red line is the value of the Feshbach molecule energy in
a closed channel dominated resonance. In fact the energy of the closed channel
dominated resonance will still vary quadratically close tothe threshold, but over
a much smaller range of magnetic fields. This model diagram ignores effects far
from resonance where other bound states can interfere with the energy levels.
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close to the resonance.

2.6 Conclusion

In this chapter we have shown how one can model the two-body physics close to

a p-wave Feshbach resonance. We have used a separable potential to determine

the two-body bound state energy as a function of the magneticfield detuning from

resonance, as well as the low energy scattering properties.Using an approach

that has previously been successful in modelling the two-body physics close to an

s-wave resonance we have shown good agreement with previous studies that use

different models. We have seen that there are some differences betweens-wave

resonances andp-wave resonances. For instance, in thes-wave the resonance en-

ergy, as it approaches the threshold depends only on thes-wave scattering length,

see Eq. (2.40). In thep-wave the resonance energy close to threshold depends on

the p-wave scattering volume, but another length scale is neededin addition to

this (see Eq. (2.58)).

We have derived a model that considerably simplifies the microscopic details

involved in the collision of two ultracold alkali atoms. Themotivation behind this

has been to present a form of the interatomic potential that can be used in many-

particle calculations. We now have a convenient, analytic form of the potential

similar to one that has already been successfully employed in s-wave systems [19,

128, 129]. We now go on to use the potential of Eq. (2.59) with aform factor given

by Eq. (2.55) to study the many-body physics at the mean field level. Our ultimate

aim is to study the mean field dynamics of Feshbach molecule production. In

order to do this we need to give our gas an initial condition from which to create

molecules. The exact nature of this initial condition is thesubject of the next

chapter.



Chapter 3

Pairing in Fermi gases

The pairing approximation is introduced for a pair of particles interact-

ing in the presence of filled Fermi sea. The BCS theory is discussed in the

context of its historical development and its further application to Fermi sys-

tems including ultracold alkali gases. The model of the previous section is

implemented to fix the initial conditions of the gas prior to investigating the

many-body dynamics and molecule production. For the range of densities and

temperatures investigated it is shown that them1 = 0 andm1 = ±1 components

can be considered separately in40K. The results of our model are compared

with that of another model and are shown to agree reasonably well.

In this chapter we construct the initial state of the gas fromwhich we will create

molecules. In the introduction we mentioned that an ideal gas of Fermi atoms can

exhibit non-classical behaviour and the inclusion of interactions can dramatically

alter the state of the system. At zero temperature the particles of an ideal Fermi

gas will fill up all the energy levels to some energy,EF, called the Fermi energy.

It could be assumed that the state of the gas will not change considerably as a

weak interaction between the particles is introduced. However, we will see in this

chapter that under certain conditions the state of the gas can change a great deal,

even when the interaction is weak. The purpose of discussingthis phenomenon in

this thesis is that for our dynamic mean field equations (see Chapter 4) to produce

molecules we need the gas to have an initial state in which theFermi atoms form
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long range pairs, known as Cooper pairs. We use the single channel separable

potential proposed in the previous chapter to model this state of the gas close to a

p-wave Feshbach resonance. It should be noted that in an experiment it may not be

necessary to reach this paired state before creating molecules, but for studying the

dynamics of molecule formation at the mean field level it is necessary. It turns out

that the initial condition can be fixed by specifying two parameters, the chemical

potential and a parameter that measures the amount of pairing in the gas. These

parameters are in turn dependant on the temperature and density of the gas, as

well as the strength of the two-body interaction between particles, and it is these

physical parameters that we will choose to give us our initial state.

3.1 Introduction to the BCS theory

One of the greatest achievements in the study of systems at low temperature is

the explanation of superconductivity provided by Bardeen,Cooper and Schrief-

fer [50] (alternative derivations of some of the same results were given by Bogoli-

ubov [131] and Valatin [132]). Originally applied to superconducting metals and

alloys this theory explained that below a certain temperature the ground state of

the many body system would be one in which the electrons around the Fermi sur-

face are paired by a weak attractive interaction. These pairs, referred to as Cooper

pairs, can then condense into a state similar to that of a Bose-Einstein conden-

sate. It seems odd that two electrons would have an attractive force between them

since they are both negatively charged. However, the interaction is indirect and

is mediated by phonons in the lattice which cause the net force to be attractive.

Extensions of the BCS theory have been applied to other Fermisystems including

liquid 3He, ultracold gases and unconventional superconductors.

In metal alloys the transition to the superconducting stateis not associated with

any structural change in the crystal lattice so it is safe to assume that it is associated

with a change in the electronic structure of the metal. The BCS theory was the

first theory that explained the macroscopic properties of the superconductor from

a microscopic basis. An essential ingredient of this transition is the formation of

Cooper pairs.

In the BCS theory as originally proposed only a very weak attraction between
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the particles is needed to form a Cooper pair. Further study showed that the ap-

plicability of the BCS equations extended beyond the limit of a weakly attractive

interaction and in the case where the atoms form tightly bound molecules the BCS

theory can also give a good description of the gas [133, 134].However, in the in-

termediate region the BCS theory can only give a qualitativedescription of the

gas. This is due to the divergence of the scattering length inthis region so that

perturbation theory no longer applies. There have been manyattempts to extend

the BCS theory into this ’strongly interacting’ regime and it remains an active

field of research. We only wish to fix the initial condition of our gas on the BCS

side of the resonance in order to study the dynamics of molecule production at the

mean field level and therefore stick closely to the mean field approximation of the

BCS theory. We will then vary a magnetic field to produce tightly bound diatomic

molecules. In order to achieve these two limits we are going to use Feshbach res-

onances as already discussed in the previous chapter. The side of the resonance

where the scattering length is negative is associated with the BCS region of the

gas. The side where the scattering length is positive and thepotential supports a

molecular bound state is associated with the BEC region.

3.1.1 The Cooper pair problem∗

Cooper [135] showed that an attractive interaction betweena pair of fermions

above a filled Fermi sea will allow for a bound state no matter how weak the inter-

action is. This is in contrast to the normal three dimensional picture of a quantum

mechanical bound state which appears only when the interaction is sufficiently

strong. It should be emphasised that the existence of this bound state of two elec-

trons, a Cooper pair, is a many body effect that only exists in the presence of a

filled Fermi sea.

By considering a translationally invariant system with spin-independent forces

the pair wave function can be written as

ψ(r1, r2) = φq(r1 − r2)e
iq·R/~, (3.1)

∗This section follows Ref.[1]



Pairing in Fermi gases 71

whereR is the centre-of-mass coordinate of the pair andq is the centre of mass

momentum of the pair. In the limit of zero total momentum, thepart of the wave

function that describes the relative motion of the pair can be expanded in a plane

wave basis

φ(r1 − r2) =
∑

p

cpei(p·r1−p·r2)/~. (3.2)

Here the summation over the relative momentum,p, takes place over unoccupied

states above the Fermi surface. This illustrates that the pair function is a super-

position of states in which each pair has zero total momentum. The Schrödinger

equation for the pair of particles can be written as

(

E − 2Ep

)

cp =
∑

p′
〈p,−p|V|p′,−p′〉cp′ . (3.3)

HereEp =
p2

2m − µ is the single particle energy measured relative to the chemical

potential,µ. Again the sum only extends over unoccupied states. If the potential

is factorisable as a separable potential and spherically symmetric so that

〈p,−p|V|p′,−p′〉 =
∑

ℓm

λℓw
ℓ
pw

ℓ′

p′Yℓm(p̂′)Y⋆
ℓm(p̂), (3.4)

whereλℓ is an amplitude for the potential,wℓ
p is a form factor that depends on the

magnitude of the momentum andYℓm(p̂) is a spherical harmonic, then,

1
λℓ
=

∑

p

|wℓ
p|2

1
Eℓm− 2Ep

. (3.5)

For an attractive potential,λℓ < 0, it can be shown that there is a solution for

Eℓm < 0 corresponding to a bound state. It is this pairing that gives rise to the

superconducting state. This argument has only involved onepair of particles in-

teracting above a Fermi sea. In practise the system will contain many such in-

teracting pairs at a finite temperature, in which case the Fermi surface will not

be sharp. For this reason it is necessary to develop some formof many particle

theory that can include these effects. Fortunately methods of quantum field the-

ory can be employed to describe the thermodynamic state of the system at a mean
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field level. This is the BCS theory of superconductivity and has been successful in

describing the many-body properties of Fermi systems with attractive interactions

at low temperature [1, 127].

3.1.2 Liquid 3He

For a long time liquid3He remained the only experimentally accessible electri-

cally neutral Fermi system in which to study superfluidity and pairing. The two-

body interaction is then due to the electrostatic force between the electrons and

nuclei of the atoms. Even more relevant to the work of this thesis is the fact that

due to the dominant triplet nature of the helium pairs the atom-atom interactions

are in thep-wave. Early experiments on3He showed that at temperatures below

100 mK it behaved as a degenerate Fermi gas and this state remained stable down

to 3 mK (the lowest temperatures then available). At the sametime considerable

progress was being made to explain the phenomenon of superconductivity in met-

als, culminating in the microscopic BCS theory in 1957 [50].The BCS theory

described electrons that could occupy two spin states. In this case a pair will form

in which one of the electrons occupies a down spin state and the other electron oc-

cupies an up spin state. As discussed in the previous chapterthe antisymmetry of

the wave function requires this to bes-wave pairing at low enough energies. The

p-wave nature of the interaction between3He atoms, as well as the additional de-

grees of freedom in the spin state means that the original BCSstate is insufficient

to describe the liquid3He state.

Anderson and Morel [136] considered states in which pairs were in the same

state with respect to their centre-of-mass motion and also with respect to their

internal degrees of freedom. In many ways this is similar to the original BCS

treatment, however, the overall state is now anisotropic. They studied the case

for which pairs withp-wave orbital symmetry could have spin projectionSz =

±1 onto the axis of angular momentum. This state has acquired the name of

the Anderson-Brinkman-Morel (ABM) state. A second state was considered by

Balian and Werthamer [137]. In this (BW) state the pairs occupy a superposition

of all possible spin projections, and in turn it is possible to construct a state that is

isotropic in all its properties. This state was also shown tobe more stable than the
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ABM state.

Subsequent experimental observations and further theoretical investigation of

liquid 3He has established that the ABM state accounts for the A phaseof liquid
3He and the BW state accounts for the B phase of liquid3He. For a summary of

the vast amount of work devoted to superfluid3He the reader is directed to the

review articles [78, 79]. It should be noted that the system studied in this thesis

bears a resemblance to the A phase of liquid3He, or more specifically the A1

phase in which the symmetry is broken by the magnetic field.

3.1.3 Application to ultracold gases

In the introduction we explained that the physics of ultracold gases shares prop-

erties with many other systems including superconductors,but that the transition

temperatures are orders of magnitude lower than in other systems due to the low

density of the gas. For it to be possible to observe a superfluid state of an ultracold

atomic Fermi gas the transition temperature must be raised to a value accessible

by experiments. This is possible with the use of a Feshbach resonance. If we

consider a system of Fermi atoms close to ans-wave Feshbach resonance then on

the BCS side (a0 < 0) of the resonance the transition temperature is given by [56]

Tc ≈ 0.28TFe
π

2kF a0 , (3.6)

whereTF is the Fermi temperature defined by the Fermi energyEF = kBTF =
~

2k2
F

2m with kF as the Fermi wave number (in this sense we expect a difference in

the transition temperature between an ultracold gas and a superconductor due to

the high atomic mass relative to the electron mass). Expressing the Fermi wave

number in terms of the density of the gas,

kF = (3π2n)1/3, (3.7)

and remembering that the scattering length is negative, it is possible to see that

decreasing the density will lead to a decrease in the transition temperature to the

superconducting state. Similarly it is obvious that increasing the magnitude of

the scattering length will increase the transition temperature of the gas. It has
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Figure 3.1: Cartoon of the BCS-BEC crossover. On the left thecorrelation length
between two atoms greatly exceeds the interparticle spacing. In the crossover
region (centre) the inter-particle spacing is of the same order as the typical inter-
action length. On the right hand side is the BEC region where the atoms have
formed diatomic molecules whose equilibrium bond length ismuch less than the
typical inter-particle spacing.

already been outlined in the previous chapter that a magnetic field can tune the

interaction between atoms and thus make the scattering length large close to a

Feshbach resonance. Furthermore the scattering length canbe tuned to positive

values by sweeping the magnetic field across the resonance. The atoms can then

form tightly bound molecules and it is even possible to produce a condensate of

these molecules [87]. This is referred to as the BCS-BEC crossover. A cartoon

of this process is shown in Fig. 3.1. Much theoretical work has been devoted

to the study of the BCS-BEC crossover. Eagles [133] observedthat you could

hold the interaction between the particles, or the scattering length, constant and

increase the density of the gas. In the limit of very high density the size of the

pairs can become less than the interparticle spacing and canbe treated with Bose-

Einstein statistics. A contrary approach was implemented by Leggett [134] with

the density held constant and the scattering length varied to reach the same limit

of bound molecules.

Given that the gas can be reversibly tuned from weak interactions to strong

interactions the problem remains of determining the groundstate and excitation

spectrum of the system throughout the crossover region where the gas is both

dilute, but at the same time strongly interacting. We have already noted in the

introduction that this state of the gas is similar to that of ahigh temperature super-

conductor. It is not possible to find the ground state from themean field approx-
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imation provided by the BCS theory because perturbation theory can no longer

be applied. In order to achieve this higher order approximations must be made to

allow for the more complex processes in this region [138]. These ideas were later

applied to Fermi gases close to unitarity [139, 140]. These many-body approaches

introduced terms that couple free fermions to a bosonic molecule. This is often

referred to as the Bose-Fermi model and we will discuss it towards the end of the

chapter. It should be noted that the solution to the many-body problem throughout

the cross-over region is still debated.
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3.2 Thep-wave BCS equations

3.2.1 Green’s function equations in the pairing approximation

For the purposes of this study it is sufficient for our model to be valid on the

BCS side of the resonance where the gas is initially prepared. Previous work on

ultracold gases close to ap-wave Feshbach resonance have used the Bose-Fermi

model to study the predicted superfluid phases of the gas [96,97, 98]. This model

includes coupling between the Fermi fields and Bose fields, but excludes Fermi-

Fermi scattering in the entrance channel. Iskin and Williams employed a single

channel model with a separable potential [99] and solved theBCS equations for

a homogeneous system and in a harmonic trap. We choose to use the standard

fermionic Hamiltonian which has been shown to give indistinguishable results to

the Bose-Fermi model throughout the BCS-BEC crossover in the s-wave [128].

At the end of this chapter we will compare the results given byour model and the

Bose-Fermi model. In our model the many-body Hamiltonian for the system can

be written in second quantisation as [127]

H =
∑

i j

〈i|T | j〉a†i a j +
1
2

∑

klmn

〈kl|V|mn〉
(

〈a†ka
†
l 〉aman + a†ka

†
l 〈aman〉

)

, (3.8)

whereT is the single particle kinetic energy operator. Here theai anda†i are the

usual Fermion destruction and creation operators obeying the fermionic anticom-

mutation rules. The brackets〈...〉 represent an average over the thermodynamic

state of the system in the grand canonical ensemble where particle number is not

fixed. These are distinct from the single particle kets,|i〉 and two-particle kets,

|i j 〉.
The finite temperature Green’s functions of the system can bedefined as

grs(τ, τ
′) = −〈Tτ[ar(τ)a

†
s(τ
′)]〉, (3.9)

F†rs(τ, τ
′) = −〈Tτ[a

†
r (τ)a

†
r (τ
′)]〉. (3.10)

The latter representing pairing in the gas. HereTτ is the imaginary time ordering

operator that puts the smallest value ofτ to right. It is also useful to introduce a
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new ket that represents a paired state in the gas

|Φ〉 =
∑

i j

〈aia j〉|i j 〉. (3.11)

By working in the momentum representation and considering atranslationally

invariant system we can write down the Heisenberg equationsof motion for these

quantities (a detailed derivation of this section leading to Eq. (3.17) and Eq. (3.18)

is given in appendix D)

~
∂

∂τ
g(p, τ, τ′) = −~δ(τ − τ′) − Epg(p, τ, τ′) + ∆(p)F†(p, τ, τ′), (3.12)

~
∂

∂τ
F†(p, τ, τ′) = EpF

†(p, τ, τ′),+∆⋆(p)g(p, τ, τ′), (3.13)

where we have introduced the gap function

∆(p) = 〈p|V|Φ〉. (3.14)

HereEp is the single particle kinetic energy matrix element measured with respect

to the chemical potential of the system. By making a Fourier transform with

respect to the imaginary time variables these equations canbe solved to give

g(p, ωn) =
−~(i~ωn + Ep)

~2ω2
n + E2

p + |∆(p)|2
, (3.15)

F†(p, ωn) =
~∆⋆(p)

~2ω2
n + E2

p + |∆(p)|2
. (3.16)

Here the frequenciesωn = (2n+ 1)π/β~ are called the Matsubara frequencies and

ensure the correct Fermi statistics [141]. These equationshave poles ati~ωn =

±
√

E2
p + |∆(p)|2. These poles form the quasi particle excitation spectrum ofthe

system which has a minimum value of∆(p), interpreted as the minimum energy

required to break a Cooper pair. Equations (3.15) and (3.16)can be inserted into

Eq. (3.14) to give

∆⋆(p) = −
∫

d3q〈q|V|p〉
∆⋆(q)
2ǫq

tanh
(

β
ǫq

2

)

, (3.17)
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and
N
V
=

1
2

∫

d3q

[

1−
Eq

2ǫq
tanh

(

β
ǫq

2

)

]

. (3.18)

Hereǫq =

(

(

q2

2m − µ
)2
+ |∆(q)|2

)1/2

andβ = 1/kBT, wherekB is Boltzmann’s con-

stant andT is the temperature of the gas. Equation (3.17) is commonly called

the gap equation and Eq. (3.18) is commonly called the density equation. These

are the BCS equations for the system and must be solved simultaneously. Exper-

iments are usually performed at constant temperature, which fixes this parameter

in our system. Trapped gases usually have anisotropic and inhomogeneous den-

sity distributions. However, we fix the density which may amount to an average of

the density distribution over the trapped gas. This leaves the chemical potential,

µ, and the gap,∆(p), as parameters to be solved for.

3.2.2 Non-degeneratep-wave resonances

As stated in chapter 2 thep-wave potential consists of three components repre-

senting the projection of the angular momentum vector onto the magnetic field

axis. Previous work on ultracoldp-wave gases close to a Feshbach resonance has

studied the ground state of the many-body system by minimising the free energy

of the gas [96, 97], showing that the ground state of the gas isdependent on the

splitting in energy between them1 = ±1 and them1 = 0 state. We therefore study

what effect the coupling between the resonances has on the chemical potential and

the gap parameter for the case of the measured resonances. Using Eq. (2.59) the

energy gap can be written as

∆⋆(p) = 〈Φ|V|p〉 =
∑

m1

〈Φ|χm1〉ξm1〈χm1 |p〉 =
∑

m1

∆⋆m1
χm1(p)Y⋆

1m1
(p̂), (3.19)
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which can be inserted straight into the gap equation to give

∑

m1

∆⋆m1
Y⋆

1m1
(p̂)χ1m1(p) = (3.20)

−
∑

m1m′1

∫

d3q
χ1m1(q)Y1m1(q̂)ξm1Y

⋆
1m1

(p̂)χ1m1(p)∆⋆m′1
χ1m′1

(q)Y⋆
1m′1

(q̂)

2
(

(

q2

2m − µ
)2
+ |∆(q)|2

)1/2

× tanh

















β

2















(

q2

2m
− µ

)2

+ |∆(q)|2














1/2














.

This last line is written using the definition in Eq. (3.19). This can be done because

we have excluded the possibility of the two-body interaction scattering a pair in

anm1 = 0 state into anm1 = ±1 state, i.e.

V =
∑

m1m′1

|χm1〉ξm1m′1
〈χm′1
|δm1m′1

, (3.21)

whereξm1m′1
is the amplitude for the coupling between states of differentm1. We

can now remove the summation in Eq. (3.20) to give

∆⋆m1
= −

∑

m′1

∫

d3q
χ1m1(q)Y1m1(q̂)ξm1∆

⋆
m′1
χ1m′1

(q)Y⋆
1m′1

(q̂)

2
(

(

q2

2m − µ
)2
+ |∆(q)|2

)1/2
(3.22)

× tanh

















β

2















(

q2

2m
− µ

)2

+ |∆(q)|2














1/2














.

We can write this in the abbreviated form

∆⋆m1
= −

∑

m′1

∫

d3qgm1m′1
(q)Y1m1(q̂)ξm1∆

⋆
m′1

Y⋆
1m′1

(q̂). (3.23)

Here,

gm1m′1
(q) =

χ1m1(q)χ1m′1
(q)

2
(

(

q2

2m − µ
)2
+ |∆(q)|2

)1/2
tanh

















β

2















(

q2

2m
− µ

)2

+ |∆(q)|2














1/2














. (3.24)



Pairing in Fermi gases 80

Using the standard definition of the spherical harmonics

Y10(θ, φ) =

√

3
4π

cosθ, (3.25)

Y1±1(θ, φ) = ∓
√

3
8π

sinθe±iφ, (3.26)

we can expand the summation

∆⋆m1
= −

√

3
8π

∫

d3qY1m1(q̂)ξm1

[

gm1−1(q)∆⋆−1 sinθeiφ (3.27)

+
√

2gm10(q)∆⋆0 cosθ − gm11(q)∆⋆1 sinθe−iφ
]

.

We can use some of the properties ofgm1m′1
(q) to write a matrix equation for this

system. If we note that

g11(q) = g−1−1(q) = g1−1(q) = g−11(q), (3.28)

and

g01(q) = g0−1(q) = g10(q) = g−10(q), (3.29)

then we can write































∆−1
√

ξ1

ξ0∆0

∆1































=



























a b c

b⋆ d −b

c⋆ −b⋆ a

























































∆−1
√

ξ1

ξ0∆0

∆1































. (3.30)

The elements of the matrix are given by

a = −
3ξ1

8π

∫

d3qg11(q) sin2 θ, (3.31)

b = − 3
4π

√

ξ0ξ1

2

∫

d3qg10(q) sinθ cosθe−iφ, (3.32)

c =
3ξ1

8π

∫

d3qg11(q) sin2 θe−2iφ, (3.33)
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d = −
3
4π
ξ0

∫

d3qg00(q) cos2 θ. (3.34)

The factors in the vectors on either side are chosen as to ensure that the matrix is

Hermitian and so the eigenvalues will be real (as expected from physical consid-

erations).

Any solution of the full non-linear problem will also be a solution of the lin-

ear equation. By finding all the non-trivial linear solutions we can then impose

constraints to find which of these solutions correspond to the non-linear problem.

The matrix here is Hermitian and so has real eigenvalues. Three equations can be

written

(a− λ) X1 + bX2 + cX3 = 0, (3.35)

b⋆X1 + (d− λ) X2 − bX3 = 0, (3.36)

c⋆X1 − b⋆X2 + (a− λ) X3 = 0, (3.37)

where theXi are components of the eigenvector. By multiplying Eq. (3.35) by b⋆

and Eq. (3.37) byb and adding them we can show

|∆1| = |∆−1|. (3.38)

We can deduce some further properties of these equations by working in a carte-

sian basis. We can change basis with the following definitions

|χ±1〉 = ∓
1
√

2

(

|χx〉 ± i|χy〉
)

, (3.39)

|χ0〉 = |χz〉. (3.40)

This allows the gap to be similarly transformed to give

∆±1 = ∓
1
√

2

(

∆x ± i∆y

)

, (3.41)

∆⋆0 = ∆
⋆
z . (3.42)
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In general the components will be complex quantities so that,

∆x = Re∆x + iIm∆x, (3.43)

∆y = Re∆y + iIm∆y. (3.44)

So in general them1 = ±1 components will be complex and given by

∆±1 = ∓
1
√

2

((

Re∆x ∓ Im∆y

)

+ i
(

Im∆x ± Re∆y

))

, (3.45)

which multiplied by its complex conjugate gives

|∆±1|2 =
1
2

(

(

Re∆x ∓ Im∆y

)2
+

(

Re∆y ± Im∆x

)2
)

. (3.46)

Using Eq. (3.38) shows

Re∆xIm∆y = Re∆yIm∆x, (3.47)

so that,
Im∆x

Re∆x
=

Im∆y

Re∆y
= ± tanα, (3.48)

so∆x and∆y have the same phaseα up to a multiple ofπ. We can pull this phase

out of the definition of them1 = ±1 components to give

∆±1 = ∓
1
√

2
eiα

(

|∆x| ± ieinπ|∆y|
)

. (3.49)

Heren is an integer. From Eq. (3.36)

X2 =
1

d − λ
(

bX3 − b⋆X1
)

(3.50)

So that,

X2 =
−
√

2eiα

(d − λ)

(

Re{b|∆x|} − ieinπRe
{

b|∆y|
})

(3.51)

which shares a phase withX1 and X3. This means that all three components,

{x, y, z}, share a common phase that can be divided out on both sides of the gap
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equation. The gap equation is given by Eq. (3.17) with,

∆(p) = 〈p|V|Φ〉

= 〈p|χ−1〉ξ−1〈χ−1|Φ〉 + 〈p|χ0〉ξ0〈χ0|Φ〉 + 〈p|χ1〉ξ1〈χ1|Φ〉

= ∆xχx(p) + ∆yχy(p) + ∆zχz(p)

= ~∆ · ~χ(p). (3.52)

So we can write the gap equation with a vector notation,

~∆⋆ · ~χ(p) = −
∫

d3q
(

〈p|χx〉ξ1〈χx|q〉 + 〈p|χy〉ξ1〈χy|q〉

+〈p|χz〉ξ0〈χz|q〉)
~∆⋆ · ~χ(q)

2ǫq
tanh(β

ǫq

2
). (3.53)

We now divide out the common form factor on both sides to give an equation for

the components of the gap parameter

∆⋆i = −
∫

d3q ξi〈χi |q〉
~∆⋆ · ~χ(q)

2ǫq
tanh(β

ǫq

2
), (3.54)

with i = x, y, z andξi = ξ1 for i = x, y andξ0 for i = z. The components of the

form factor vector are given by

~χ(q) =

(

3
4π

)1/2



























χ11(q) sinθ cosφ

χ11(q) sinθ sinφ

χ0(q) cosθ



























. (3.55)

The gap equation can now be written in the new basis as

∆⋆i = −
∫

d3q ξiχi(q)
~∆⋆ · ~χ(q)

2
(

(

q2

2m − µ
)2
+ |~∆ · ~χ(q)|2

)1/2
(3.56)

× tanh

















β

2















(

q2

2m
− µ

)2

+ |~∆ · ~χ(q)|2














1/2














.

For every solution of this equation we will need to determinefour parameters:
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The three components of the gap function and the chemical potential (we fix the

density and the temperature of the gas). We now show that thiscan be reduced to

three parameters by eliminating one of the gap components. Assuming that there

exists a solution in a set of coordinates rotated in thex− y plane we can write

(

D~∆⋆
)

i
= −

∫

d3q ξiχi(q)

(

D~∆⋆
)

· ~χ(q)

2
(

(

q2

2m − µ
)2
+ |

(

D~∆
)

· ~χ(q)|2
)1/2

(3.57)

× tanh

















β

2















(

q2

2m
− µ

)2

+ |
(

D~∆
)

· ~χ(q)|2














1/2














whereD is a rotation matrix in thex − y plane. Now we can use the rotational

invariance of the dot product,D~∆⋆ · ~χ(q) = ~∆⋆ · D−1~χ(q), to write

(

D~∆⋆
)

i
= −

∫

d3q ξi

(

Dχ(D−1q)
)

i

~∆⋆ · D−1~χ(q)

2
(

(

q2

2m − µ
)2
+ |~∆ · D−1~χ(q)|2

)1/2
(3.58)

× tanh

















β

2















(

q2

2m
− µ

)2

+ |~∆ · D−1~χ(q)|2














1/2














.

We should first note that the volume element is rotationally invariant so this will

be the same in both coordinate systems. We have used the unitary property of the

rotation matrix to writeχi (q) =
(

Dχ
(

D
−1q

))

i
. In order to perform the integration

overφ it is instructive to make a change of variables. The originallimits of the

integration were from 0 to 2π, which means that the new range of integration will

be fromζ to 2π+ζ, whereζ is the angle through which we have rotated the system

in thex−y plane. This will give the same answer as the original integration limits

since it spans the entire space. We can therefore deduce thatEq. (3.58) is of the

same form as Eq. (3.57) and rotating the system in thex− y plane does not affect

the physics.

In the cartesian basis a component of the gap equation can be written in the
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form

∆⋆i (p) = −
∫

d3q
〈q|Vi |p〉 ~∆⋆ · ~χ(q)

2
(

(

q2

2m − µ
)2
+ |∆(q)|2

)1/2
tanh

















β

2















(

q2

2m
− µ

)2

+ |∆(q)|2














1/2














.

(3.59)

We can write the components of the gap parameter as

∆⋆i = −
∫

d3q f(q)〈q|χi〉ξi
~∆⋆ · ~χ(q), (3.60)

with i = {x, y, z}. In this equation a form factor has been divided out on both sides

and

f (q) =

tanh

[

β

2

(

(

q2

2m − µ
)2
+ |∆(q)|2

)1/2
]

2
(

(

q2

2m − µ
)2
+ |∆(q)|2

)1/2
. (3.61)

Expanding the dot product gives.

∆⋆i = −
(

3
4π

)1/2 ∫

d3q f(q)〈q|χi〉ξi
[

∆⋆x χ11(q) sinθ cosφ (3.62)

+∆⋆yχ11(q) sinθ sinφ + ∆⋆zχ0(q) cosθ
]

.

We have shown that the system is rotationally invariant in the x−y plane. The im-

plies that we can set they-component (or thex-component) to zero when solving

our system of equations. This is not totally unexpected as wewould suppose there

to be rotational symmetry about the magnetic field axis (which we have chosen to

be in thez-direction, see Fig. 2.4). This rotational invariance has been confirmed

by the experiments of Ticknoret al. [2] who observed a degeneracy of them1 = 1

andm1 = −1 states. We choose to set they-component to zero to give

∆⋆i = −
(

3
4π

)1/2 ∫

d3q f(q)〈q|χi〉ξi

[

∆⋆xχ11(q) sinθ cosφ + ∆⋆zχ0(q) cosθ
]

.

(3.63)
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Since the equation for∆y now has a trivial solution only two equations remain

∆⋆x = −
(

3
4π

) ∫

d3q f(q)ξx

[

∆⋆xχ
2
11(q) sin2 θ cos2 φ (3.64)

+∆⋆zχ11(q)χ0(q) cosθ sinθ cosφ
]

,

∆⋆z = −
(

3
4π

) ∫

d3q f(q)ξz

[

∆⋆xχ0(q)χ11(q) cosθ sinθ cosφ + ∆⋆zχ
2
0(q) cos2 θ

]

.

(3.65)

As a matrix equation we can write



















∆⋆x
√

ξx

ξz
∆⋆z



















=















〈Dx(q),Dx(q)〉 〈Dx(q),Dz(q)〉
〈Dz(q),Dx(q)〉 〈Dz(q),Dz(q〉

































∆⋆x
√

ξx

ξz
∆⋆z



















= A



















∆⋆x
√

ξx

ξz
∆⋆z



















.

(3.66)

Here,

Dx(q) = i

√

3 f (q)ξx

4π
χ11(q) sinθ cosφ, (3.67)

and

Dz(q) = i

√

3 f (q)ξz

4π
χ0(q) cosθ. (3.68)

The brackets〈..., ...〉 represent integrals of the product of these functions over all

space. The Cauchy-Schwartz inequality gives

〈Dx(q),Dx(q)〉〈Dz(q),Dz(q)〉 ≥ |〈Dx(q),Dz(q)〉|2. (3.69)

This is consistent with physical intuition in that the crossterms should not con-

tribute as much as the diagonal terms. The matrix is Hermitian, so the eigenvalues

are real. From this it can be seen that the eigenvalues are bounded by

0 < λ < 〈Dx(q),Dx(q)〉〈Dz(q),Dz(q)〉 (3.70)

The form factors in the equations for the components of the gap are given by

χ10(q) =
σ10

π~5/2
qe−q2σ2

0/2~
2

(3.71)
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χ11(q) =
σ1

π~5/2
qe−q2σ2

1/2~
2

(3.72)

as shown in Chapter 2. The equations become

∆⋆x = −
(

3σ1

4π3~5

) ∫

d3q f(q)q2ξx
[

∆⋆xσ1 e−q2σ2
1/~

2
sin2 θ cos2 φ (3.73)

+∆⋆zσ0e
−q2(σ2

1+σ
2
0)/2~2 cosθ sinθ cosφ

]

,

∆⋆z = −
(

3σ0

4π3~5

) ∫

d3q f(q)q2ξz

[

∆⋆xσ1e
−q2(σ2

1+σ
2
0)/2~2 cosθ sinθ cosφ (3.74)

+∆⋆zσ0e
−q2σ2

0/~
2
cos2 θ

]

.

In the cartesian basis the modulus squared of the gap appearing in the function

f (q) can be written as

|∆(q)|2 =
(

3
4π

)

[

χ11(q)2|∆x|2 sin2 θ cos2 φ + χ0(q)2|∆z|2 cos2 θ
]

. (3.75)

Now the matrix elements of Eq. (3.66) can be written as

A11 = −
(

3σ1

4π3~5

) ∫

d3q f(q)q2ξxσ1e
−q2σ2

1/~
2
sin2 θ cos2 φ (3.76)

A12 = A21 = −
(

3σ1

4π3~5

) ∫

d3q f(q)q2
√

ξxξzσ0e
−q2(σ2

1+σ
2
0)/2~2 cosθ sinθ cosφ

(3.77)

A22 = −
(

3σ0

4π3~5

) ∫

d3q f(q)q2ξzσ0e
−q2σ2

0/~
2
cos2 θ (3.78)

The corresponding density equation for this system is givenby Eq. (3.18) with the

gap function given by Eq. (3.19). In order to solve the systemof equations the tem-

perature and density are fixed as already mentioned. The density equation (3.18)

is solved for a range ofµ, ∆x and∆z. By interpolation it is then possible to find

the corresponding value ofµ for every{∆x,∆z} such that

µ = µ(∆x,∆z). (3.79)
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The matrix elements of equations (3.76), (3.77) and (3.78) can then be given as a

function of {∆x,∆z}. This is done at a fixed magnetic field where theξi is given

by Eq. (2.56), with the scattering volume given by the usual resonance formula,

Eq. (2.32). This will lead to two sets of eigenvalues; again these will be functions

of {∆x,∆z} and will form a surface in this space. The solution to the problem can

be found through the constraint

||AX − λAX|| = 0, (3.80)

whereX are the eigenvectors, corresponding to the correct values of {∆x,∆z} as a

solution to the system.

3.2.3 Evaluation of the cross terms

The magnitude ofA12 in Eq. (3.77) will determine to what extent it is possible

to exclude these cross terms when solving the BCS equations.It is only possible

to judge the magnitude of these terms in relation to the diagonal terms, which

according to Eq. (3.66) we would expect to be of order unity. We can write

a12 =

∫ ∞

0
q2dq

∫ π

0
sinθdθ

∫ 2π

0
dφΞ(q) cosφ, (3.81)

where the functionΞ(q) contains everything in the integrand of Eq. (3.77) except

the cosφ factor. It is easily seen that this integral will be zero ifΞ(q) is indepen-

dent ofφ. The terms containingφ are contained in the functionf (q) and appear

in such a way that they always give a positive contribution tothe integral. This

means that the magnitude of the cross termA12 will depend on how much weight

these terms give to the integral overφ. Eq. (3.18) suggests that an increased in-

tegrand will lead to an increased density. This can be achieved by increasing

the denominator of the second term. For a fixed chemical potential this can be

achieved by increasing the gap parameter. The corollary of this is that increasing

the density of the system for a fixed chemical potential will increase the value of

the gap parameter. This suggests that we would expect to see an increase in the

coupling between the two resonances as the density increases.
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The termsA11/ξx and A22/ξz have been plotted in Fig. 3.2 as a function of

the gap terms∆x/EF and∆z/EF for a density of 1013 cm−3 about the 198.85G

resonance in40K. For a comparison theA12/
√
ξxξz term is plotted in Fig. 3.3 for

the same density. It can be seen that this cross term is ordersof magnitude smaller

than the diagonal terms. Fig. 3.4 shows that the cross terms remain orders of

magnitude smaller than the diagonal terms up to a density of 1016cm−3. This is

likely to be a higher density than experiments would normally be performed at.

In this case then it may be possible to treat them1 = 0 andm1 = ±1 separately.

We now move on to implement this separation of the resonancesand see what

differences this introduces.
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Figure 3.2: Plot of the diagonal terms in the gap equation as afunction of∆x/EF

and∆z/EF at a density of 1013cm−3.
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Figure 3.4: Cross terms as a function of∆x/EF and∆z/EF at a density of A)
1014cm−3, B)1015cm−3 and C) 1016cm−3. It can be seen that the magnitude of the
cross term increases with increasing density. However, up to a density of 1016cm−3

this term remains orders of magnitude smaller than the diagonal terms.
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3.2.4 Separated resonances

In the cases where the coupling is small, such as the situation in the40K resonance,

it should be possible to treat them1 = ±1 andm1 = 0 resonances as if they are

independent of each other. Them1 = 0 resonance is easily treated by neglecting

the m1 = ±1 components leaving only one separable term in the potential. The

definition of them1 = ±1 resonance is slightly more subtle since we have to

consider two degenerate terms.

By inserting the expression for the spherical harmonics into the gap equation

we can write a matrix equation for them1 = ±1 components















∆⋆1

∆⋆−1















=















−
∫

d3qh(q)
∫

d3qh(q)e2iφ

∫

d3qh(q)e−2iφ −
∫

d3qh(q)





























∆⋆1

∆⋆−1















. (3.82)

The functionh(q) is given by

h(q) =
3

16π
|χ(q)|2 sin2 θξ

(

(

q2

2m − µ
)2
+ |∆(q)|2

)1/2
tanh

















β

2















(

q2

2m
− µ

)2

+ |∆(q)|2














1/2














, (3.83)

where the gap function includes only them1 = ±1 components,

∆(q) = 〈q|χ1〉ξ1∆1 + 〈q|χ−1〉ξ−1∆−1. (3.84)

By solving the eigenvalue problem and finding the eigenvectors it can easily be

shown that the values of∆⋆1 and∆⋆−1 differ only by a complex phase, which we

will label α. This leads to two equations from multiplying out the matrix

1 =
∫

d3qh(q)
(

ei(2φ+α) − 1
)

, (3.85)

1 =
∫

d3qh(q)
(

e−i(2φ+α) − 1
)

. (3.86)

By adding these two equations together we can show that

1 = −2
∫

d3qg(q) sin2
(

φ +
α

2

)

. (3.87)



Pairing in Fermi gases 94

The term containing the gap in the denominator can be writtenas

|∆(q)|2 = |∆1|2χ(q)2|Y11(q̂)|2 + |∆−1|2χ(q)2|Y1−1(q̂)|2 (3.88)

+ 2Re
[

∆⋆1∆−1χ(q)2Y⋆
11(q̂)Y1−1(q̂)

]

.

Using the fact that the gaps only differ by a phase allow this to be written as

|∆(q)|2 =
3
2π
|∆1|2χ(q)2 sin2 θ sin2

(

φ +
α

2

)

. (3.89)

We can therefore define a new function

H
(

q, sin2 θ sin2
(

φ +
α

2

))

= h(q) sin2
(

φ +
α

2

)

(3.90)

=
3

16π

|χ(q)|2 sin2 θ sin2
(

φ + α
2

)

ξ
(

(

q2

2m − µ
)2
+ 3

2π |∆1|2|χ(q)|2 sin2 θ sin2
(

φ + α
2

)

)1/2
(3.91)

× tanh
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



(

q2

2m
− µ

)2

+
3
2π
|∆1|2|χ(q)|2 sin2 θ sin2

(
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α

2

)




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
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

1/2

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





.

The phase can be absorbed into theφ integration and we can write

1 = −
3
8π

∫

d3q
|χ(q)|2 sin2 θ sin2 φξ

(

(

q2

2m − µ
)2
+ 3

2π |∆1|2|χ(q)|2 sin2 θ sin2 φ
)1/2

(3.92)

× tanh
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1/2
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







.

The two angular integrals in this equation can be reduced to one integral. We

show how this is achieved in Appendix E. This allows the entire gap equation to

be rewritten in terms of one linear integral and one parametrised angular integral

1 = −
3
2

∫

q2dq
∫ 1

0
dx|χ(q)|2x2ξ

(

(

q2

2m − µ
)2
+ 3

2π |∆1|2|χ(q)|2x2
)1/2

tanh

















β

2















(

q2

2m
− µ

)2

+
3
2π
|∆1|2|χ(q)|2x2















1/2














.

(3.93)
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Figure 3.5: Variation of the parameter∆m with magnetic field for thep-wave
resonance in40K for a density of 1013 cm−3 and a temperature of 70nK. The solid
green line is the value of them = 0 resonance and the dashed blue line is for the
|m| = 1 resonance. There is no significant difference between the value obtained
when coupling between the components is included and when the coupling is
excluded.

3.2.5 Results

Equation (3.93) is solved at fixed density and temperature together with the den-

sity equation to provide values for the separated gap parameters,∆0 and∆1, and

the chemical potential corresponding to each component. A plot of the gap param-

eters as a function of magnetic field is given in Fig. 3.5 for the p-wave resonance

in 40K close to 199 G for a temperature of 70 nK and a density of 1013 cm13. In

the BEC limit them1 = 1 component appears to be smaller by a factor of
√

2.

The origin of this factor is the degeneracy of them1 = ±1 states and they both

equally contribute to the value of the gap parameter. For this resonance the results

given by the coupled resonance model presented in the previous section and the

separated resonance model just described are indistinguishable. This was indi-

cated by the relatively small values calculated for the cross term Eq. (3.81). In

Fig. 3.6 we plot the value of the gap parameters,∆0, throughout the resonance

region for various densities with the temperature held constant. As the value of

the magnetic field is decreased further and further below theresonance the value
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Figure 3.6: The value of the gap parameter,∆0, around the resonance position as
a function of magnetic field. The different lines correspond to densities of 1015

cm−3 (top, red),1014 cm−3 (middle, green) and 1013 cm−3 (bottom, blue). The
temperature is held constant at 70 nK. The dashed line is the position of thep-
wave resonance at 198.85 G.

of the gap parameter changes less and less, but for a fixed magnetic field it can be

seen that the value of the gap parameter increases with increasing density. Simi-

larly, in Fig. 3.7 we present the results of keeping the density constant and varying

the temperature. We see that on the BCS side of the resonance the value of the

gap parameter increases with decreasing temperature. In the BEC limit the value

of the gap parameter is independent of the temperature and fixed by the density

of the gas. We have repeated these calculations for the observed resonances in
6Li and found similar conclusions. In particular we have found that the results of

the coupled system of Eq. (3.66) and the separated resonanceapproximation of

Eq. (3.93) are indistinguishable. For the remainder of thisthesis we therefore use

the separated resonance approximation when referring to our BCS state.

It can be seen from Figs. 3.5, 3.6 and 3.7 that at a particular magnetic field

the value of the parameter∆m1 goes to zero. This is when there ceases to be any

pairing and the gas becomes a weakly interacting Fermi liquid. For the case of

using mean field dynamic equations to create molecules it is necessary for the gap
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Figure 3.7: The value of the gap parameter,∆0, around the resonance position
as a function of magnetic field. The different lines correspond to temperatures
of 100 nK (top, blue),1000 nK (middle, green) and 2000 nK (bottom, red). The
density is held constant at 1014 cm−3. The dashed line is the position of thep-wave
resonance at 198.85 G.

to have a non-zero value in the initial state. This limits therange of magnetic

fields that can be used as an initial condition and we cannot start infinitely far

away from the resonance. In Fig. 3.8 we plot the magnetic fieldposition at which

the gap parameter goes to zero as a function of density for them1 = 0 resonance

in 40K. As the density is increased the value of the magnetic field at which the

gap parameter disappears increases away from the resonance. This allows a larger

range of magnetic fields to be accessed by the initial conditions. Similarly as

the temperature is decreased the value of the magnetic field at which the gap

parameter goes to zero moves away from the resonance position; this can also

be seen in Fig 3.7. It would then seem that a high density and low temperature is

favourable to observe a paired BCS state of the gas and would therefore provide a

wider range of magnetic fields from which to begin the mean field calculations.

The question may be asked as to which species would be better suited to pro-

ducing p-wave Feshbach molecules from the mean field dynamics:6Li or 40K?

A comparison of the initial conditions may give some indication of the feasibility



Pairing in Fermi gases 98

0 1 2 3 4 5 6 7 8 9 10

x 10
13

198.85

198.9

198.95

199

199.05

199.1

199.15

199.2

199.25

199.3

199.35

Density (cm−3)

P
ha

se
 tr

an
si

tio
n 

(G
)

 

 

10nk

100nk

1000nk

Figure 3.8: Value of the magnetic field at which the gap disappears for them= 0
resonance in40K. The different lines represent different temperatures. It can be
seen that at reasonable experimental temperatures one has to go to a high density
in order to explore a significant range of magnetic fields on the BCS side of the
resonance.

of producing molecules in either system (We will see in chapter 4 that the value

of the initial gap parameter is related to the number of molecules produced in the

gas). Fig. 3.9 shows the value of the magnetic field detuning from the resonance

at which the gap parameter goes to zero as a function of density for both6Li and
40K. It can be seen that for40K it is possible to explore a wider range of magnetic

fields for the initial conditions than for6Li. This is due to the fact that the mag-

netic moment of the6Li molecules are approximately 12 times larger than that of

the40K molecules [3].

Fig. 3.10 shows a plot of the chemical potential form1 = 0 andm1 = ±1 pairs

about thep-wave resonance in40K. As the value of the gap parameter goes to zero

the value of the chemical potential approaches that of an ideal Fermi gas. On the

BEC side of the resonance the chemical potential approacheshalf the value of the

binding energy of the molecules. The slope of the chemical potential is therefore

given approximately by the value of the magnetic moment of the molecule. This

explains why the the gap parameter exists for a larger range of magnetic fields

in 40K than in 6Li; the lower magnetic moment. This suggests that40K would
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Figure 3.9: Variation of the magnetic field position at whichthe gap parameter
goes to zero for them1 = 0 resonance in40K at 198 G (solid line) and6Li(dashed
line) at 215 G. It can be seen that40K resonance offers a larger range of magnetic
fields in which to realise a BCS state on the negative scattering length side. This
is due to the magnetic moment of the6Li molecule being about 12 times larger the
magnetic moment of the40K molecule.

provide a more promising system from which to study the mean field dynamics

due to the larger range of available magnetic fields. For thisreason we will use

this 40K resonance to perform our mean field calculations in the nextchapter.

This, of course, does not take account of effects beyond the mean field and any

experimental issues that may have to be overcome.
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Figure 3.10: Values of twice thep-wave chemical potential for the resonance in
40K at around 198G. The solid line is the|m1| = 1 chemical potential. The dashed
line is them1 = 0 resonance. The values for coupled resonances at separate
resonances are indistinguishable. The red circle are the values of the respective
binding energies. The values of the binding energy and the chemical potential ap-
proach each other much more rapidly than in the case of thes-wave. The position
of the resonances is marked by the vertical line. The zero of chemical potential is
given by the horizontal dotted line.
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3.3 Bose-Fermi model

Our approach so far has been to calculate correlation functions in terms of ensem-

ble averages of products of Fermi operators. One alternative approach, referred

to here as the Bose-Fermi model, is to treat the bound molecules as composite

bosons and introduce a coupling between free fermions and bosonic pairs. This

model has been extensively studied in both thes-wave andp-wave [142, 97]. In

the case of thes-wave it was shown that there is no significant difference in the

results given by the single channel model and the Bose-Fermimodel when applied

about a Feshbach resonance [128]. In this section we comparethe results of the

model we have presented to one that uses a different form of the potential and a

different parameterisation of the scattering volume.

A Hamiltonian for the Bose-Fermi model can be generally written as

H2−ch =
∑

p

(

Ebare+
p2

4m

)

b†pbp+
∑

q

q2

2m
a†qaq+

∑

q,p

W(q)(bpa†
q+ p

2
a†−q+ p

2
+b†pa−q+ p

2
aq+ p

2
),

(3.94)

which is written in the momentum representation to avoid confusion between sin-

gle particle boson states and single particle fermion states. The operatorsa(†)
q are

the Fermi annihilation (creation) operators, while the theoperatorsb(†)
q are the

boson annihilation (creation) operators.W(q) is the coupling between the Fermi

channel and the Bose channel, its form depending on the nature of the interac-

tion. In this Hamiltonian it is obvious that scattering between fermions has been

neglected. The bosons in this case are the bound molecules with an energyEbare

when the molecule is not dressed by the surrounding atoms. The review of Gu-

rarieet al. [97] studies this Hamiltonian in both thes-wave and thep-wave. In the

p-wave the coupling is linear in its argument, reflecting the low energy properties

of the scattering amplitude. This is a similar constraint tothat which we imposed

in chapter 2 in order to derive our separable potential. A momentum cut off,Λ, is

introduced in order to calculate integrals. In contrast ourmodel uses a separable

potential that has a Gaussian factor so that our integrals converge automatically,

although we still need an extra range parameter,σ. In the Bose-Fermi model the

low energy parameters of the system are fitted by including the effective range in

the low energy expansion of the scattering amplitude.
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Neglecting scattering in the Fermi channel causes the parametrisation of the

scattering length to change, so that

a(B) = −
abg∆B

B− B0
(3.95)

For thep-wave model the coupling term is given by

W(q) =
gpq√

V
, (3.96)

whereV is a normalisation volume andgp is a coupling constant. In this model

the density equation is given by

n =
∫

d3q
2(2π~)3
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1−
q2

2m − µ
(

(

q2

2m − µ
)2
+ 4g2

p|∆B−F · q|2
)1/2

(3.97)

× tanh
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The gap equation is given by

(ǫα − 2µ)∆B−F,α =
∑

γ

I (T)
αγ [B]∆B−F,γ (3.98)

with

I (T)
αγ [B] = g2

p

∫

d3q
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.

The indicesα andγ refer to thex,y andzcomponents in the equations, and thegp

represents the Bose-Fermi coupling. The quantityǫα is the energetic detuning of

the molecular state to the zero energy Fermi collision state. As usualβ = 1/kBT

wherekB is Boltzmann’s constant andT is the temperature of the gas.
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Equations (3.97), (3.98) and (3.99) bear a relation to the BCS equations (3.17)

and (3.18) derived in our single channel approach and we can identify

∆(q) = 2gp∆B−F · q. (3.100)

The coupling constant can be related to the two-body parameters we introduced

in chapter 2

g2
p =

3πabg
ℓm

∂Eres

∂B ∆B

µ~2
. (3.101)

The momentum cut off is related to our resonance parameters through

Λ =
π~

2σ
. (3.102)

Here,σ is the range parameter we introduced in the form factor of theseparable

potential, Eq. (2.55). We use these definitions to solve the equations for the Bose-

Fermi model numerically. The solutions for the parameter∆0 have been plotted

in Fig. 3.11 for the case where we have treated the resonancesin 40K separately,

such that we have excluded coupling between them1 = 0 andm1 = ±1 states. This

shows that at low densities the solutions are very similar. At higher densities the

solutions deviate from each other, with the zero of the gap parameter appearing at

a higher magnetic field in our single channel model than in theBose-Fermi model.

This deviation is due to the inclusion of off resonant background scattering in the

parametrisation of the scattering length in our model. A comparison of the chem-

ical potentials has been plotted in Fig. 3.12. Here, the solutions agree well close

to the resonance and deviate from each other far from the resonance. This is also

to be expected due to the different parametrisation used in each model. Overall,

the solutions are qualitatively very similar and do not varygreatly quantitatively.
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Figure 3.11: Comparison of the parameter∆0 using the two channel model
(dashed blue line) and the single channel model (Solid greenline) for densities
of a) 1013 cm−3, b) 1014 cm−3, c) 1015 cm−3. All calculations were performed at
70nK for them= 0 resonance at around 198.85G in40K. At low densities the so-
lutions are very similar. At higher densities there is a deviation with the position
of the zero of the parameter being higher for the single channel model than for the
two channel model. This is due to the inclusion of the off resonant scattering in
the single channel model.
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Figure 3.12: Comparison of the chemical potential using thetwo channel model
(dashed blue line) and the single channel model (Solid greenline). In both figures
the density is 1013 cm−3 and the temperature is 70 nK. The top panel shows the
chemical potential for values of the magnetic field throughout the crossover. The
lower panel shows the chemical potential on the BCS side of the resonance up to
the points where the parameter∆0 falls to zero. The two models give very similar
predictions that differ as the magnetic field is tuned far from resonance.
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3.4 Conclusions

In this section we have presented the thermodynamic theory that fixes the initial

state of the gas from which we will study molecule productionusing a magnetic

field that varies linearly with time. We have implemented theseparable potential

derived in the previous chapter forp-wave interactions and shown that for the pa-

rameters studied it may be possible to treat them1 = 0 andm1 = ±1 resonances

as separate resonances. In chapter 4 we will continue to treat the resonances sepa-

rately and focus on the case of40K. We have studied how the relevant parameters

affect the feasibility of producing a BCS state underp-wave pairing. In particu-

lar we have seen that low temperatures and high densities will allow for a larger

range of magnetic fields to be accessed as initial conditionsfor the dynamic mean

field equations. This was expected from previous studies, but we have shown this

still applies about thep-wave Feshbach resonance by solving the BCS equations

numerically. There is also a suggestion that40K may be a more suitable candidate

than 6Li for observing a BCS state due to the fact that we can have a non-zero

value of the gap parameter on the BCS side of the resonance fora larger range of

magnetic fields. This feature is explained by the magnetic moment of thep-wave

molecules, which is approximately 12 times larger for6Li than for 40K. We have

also compared the results of our single channel approach against a Bose-Fermi

model showing that there is no significant difference between the two models in

the region close to the resonance, at least in the case of thep-wave resonance in
40K. In the next chapter we derive the time dependent equivalent of the BCS equa-

tions. We use the results of this section to fix the initial condition of our gas on the

BCS side of the resonance and then apply the dynamic equations while varying

the magnetic field linearly with time.



Chapter 4

Many Body dynamics

The dynamic mean-field equations are derived for fermions with p-wave

interactions. These are applied to a gas of Fermi atoms prepared in a BCS state

close to a Feshbach resonance. Linear sweeps of the magneticfield are applied

to convert the system from a weakly paired BCS gas into a BEC ofbound

molecules. The molecule production efficiency is calculated and studied as a

function of the initial conditions of the gas, as well as the rate at which the

magnetic field is varied.

Our aim is to produce Feshbach molecules from a single component Fermi gas

through a linear sweep of the magnetic field. In this chapter we study the dynamics

of this process using a mean-field approach similar to that ofref. [129]. We use the

results of the previous chapter to determine the initial state of the gas on the BCS

side of the resonance and the separable potential of chapter2 to model the two-

body interaction that appears in the dynamic equations. We calculate the molecule

production efficiency on the BEC side of the resonance and study the effects that

the initial and final conditions, as well as the rate at which we change the magnetic

field, have on the system.

The use of a time-varying magnetic field to tune the interaction strength be-

tween a pair of atoms in an ultracold gas makes use of the Zeeman splitting be-

tween different hyperfine states as explained in chapter 2. The interaction can be
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tuned such that free atoms can be associated into diatomic molecules by vary-

ing the magnetic field about a Feshbach resonance [19]. Diatomic Feshbach

molecules have been produced from atomic BECs of85Rb [143, 144, 145],133Cs

[146, 147],23Na and87Rb [148]. Two-component Fermi gases have also been used

to create Feshbach molecules in gases of40K [77] and 6Li [91, 92, 149]. More

recently experiments have been successful in producing heteronuclear Feshbach

molecules of40K87Rb [150, 151] and85Rb87Rb [152]. Subsequent experiments

on Fermi gases used Feshbach resonances to produce molecular BECs [87, 93],

as well as regaining the initial Fermi gas by sweeping the magnetic field back

into the BCS region [95]. The formation ofp-wave Feshbach molecules has been

achieved in single component ultra cold gases of40K [21] and6Li [20, 3, 22, 23].

More details on the experiments performed in Fermi gases have been given in

section 1.3.3.

4.1 Linear Sweeps

In the first experiments on molecule production via a magnetically tunable Fes-

hbach resonance in87Rb, a rapid pulse was applied close to the resonance posi-

tion [143]. This involved holding the magnetic field close tothe resonance for a

period of time and detecting atom loss from the gas resultingin a coherent super-

position of atoms and molecules. Despite its success this method suffered from a

low yield of molecules and atom loss due to heating of the gas.

In Fermi gases it is possible to produces-wave molecules by holding the mag-

netic field on the positive scattering length side and observing atom loss due to the

enhanced three body collision rate [149, 92]. Using this method it was possible to

achieve a conversion efficiency of up to 85% [92].

A further magnetic field variation was implemented by Thompson et al.[144]

to produce molecules in85Rb. They set the value of the magnetic field close to the

resonance position and applied a sinusoidal oscillation toassociate the molecules.

The production efficiency was shown to be strongly dependent on the frequency,

amplitude and duration of the field variation.

The method of sweeping a magnetic field across a Feshbach resonance has

been successful in producings-wave molecules from gases of fermions [77, 91]
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and bosons [146, 153, 148, 147, 145]. The production of molecules from bosonic

gases is suppressed due to an enhanced inelastic loss rate close to the resonance [148,

154], as well as problems caused by density dependent heating [145]. A much

higher production efficiency using magnetic field sweeps has been observed in

s-wave Fermi gases. Using this technique it was possible to convert a gas of

fermionic atoms into a BEC of diatomic molecules [87, 93] andsweep back in to

the BCS side of the resonance to regain the initial state [95].

We study the situation in which the magnetic field is varied linearly with time

B(t) = −Ḃt+ Bi, (4.1)

whereBi is the value of the initial magnetic field above the resonancepositionB0.

Several experiments have used linear sweeps of the magneticfield to associate

p-wave molecules of6Li [20, 22, 23]. In these experiments relatively low yields

were achieved, at most around 20 % by Zhanget al. [20]. This can be compared

to the 85 % achieved in thes-wave experiments of a similar nature [92]. For our

mean field study it is necessary to have a state that includes pairing in the initial

condition. It has not been shown that this state has been achieved experimentally

and it is possible that our initial condition differs from that of the experiment.

Other experiments have used sinusoidally modulated magnetic fields to associate

p-wave molecules [3, 21].

4.2 Two-body dynamics

Before we study the dynamics of the gas at the many-body mean-field level we

will look at the two-body dynamics of the system. This may highlight some dif-

ferences between the two-body and the many-body results andwill help establish

to what extent many-body effects are important in the systems we are looking at.

The results of this section are based on previous work [155] and only apply to the

case of two particles under tight harmonic confinement. Thissituation is exper-

imentally relevant, as atom pairs can be isolated on the siteof an optical lattice.

We later solve the mean-field equations in free space, so we would expect some

differences between the results given by the two approaches due to this change
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of circumstance. In appendix G we then solve the problem for two particles in

spherical box. In the limit of a large box we would then expectthe results of this

calculation to be analogous to those of a homogeneous gas andwe could therefore

compare this to our mean-field dynamics, which we solve for a homogeneous gas.

We consider the solution of the problem of a pair of particlesinteracting under

a time-dependent interatomic potential. We use the separable potential of chap-

ter 2 to include the effects of a magnetic field that can alter the strength of the

interaction between the particles through the Zeeman effect. Deep in the potential

well of an optical lattice the confinement is assumed to be harmonic and there-

fore the centre of mass and relative motion of the atoms can beseparated, just

as for particles in free space. It is then necessary to solve the time-dependent

Schrödinger equation to determine the pair dynamics,

i~
∂

∂t
|Ψ(t)〉 = H2B(t)|Ψ(t)〉. (4.2)

Here, |Ψ(t)〉 is the wave function of the pair andH2B(t) is the Hamiltonian gov-

erning their evolution. The two-body time evolution operator, U2B(t, t′), obeys a

similar Schrödinger equation

i~
∂

∂t
U2B(t, ti) = H2B(t)U2B(t, ti), (4.3)

whereti is the initial time. This can then be used to calculate the probability for

pair association through

Pf i = |〈φb(Bf )|U2B(t f , ti)|Ψ(ti)〉|2, (4.4)

whereti is the final time andφb(Bf ) is the bound state wave function at the fi-

nal magnetic field position. The exact structure of the wave function will depend

on how the system is modelled. In the approximation where only two Zeeman

configurations are considered, the wave function will have two components cor-

responding to the entrance channel and the closed channel. For a linear sweep of

the magnetic field, and when the closed channel supports a single resonance state,

it is possible to calculate the exact time evolution of the pair. This is the two-

channel model of chapter 2 where we discussed the time-independent problem to
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determine the near threshold behaviour. We also pointed outthat the Feshbach

molecule in this two-channel model is a linear superposition of the open channel

and closed channel components.

A generic approach that can be applied to the two-body dynamics was de-

veloped independently by Landau and Zener in 1932 [156, 157]. This is sim-

ilar to the approach above, but the entrance channel now contains just a single

state, effectively reducing the problem to a two-level system. In the limit of zero

ramp speed a pair of atoms prepared in the entrance channel will form a bound

molecule in the closed channel. This approach assumes that the sweep has the

limits ti → −∞ andt f → ∞. Finite ramp speeds will lead to states where the atom

pair is in a superposition of a bound molecule and a free pair.The probability

for molecule association can be calculated analytically ifthe same time limits are

assumed [158, 114].

This approach only accounts for the statistics of the participating particles in

the form of interaction introduced as in chapter 2. Experiments performed about

the 1007 G resonance in bosonic87Rb [159] have shown good agreement with the

Landau-Zener theory. For a system where the equilibrium state is described by

the BCS theory of the previous chapter, it would not be intuitive to include only

the two-body dynamics of an atom pair to calculate molecule production; we have

already seen that many-body effects are important in these systems. Given the

success of the BCS theory, we will later look at the time evolution of the distri-

bution functions at the mean-field level and use these to calculate the molecule

production.

The Landau-Zener formula for molecule association is givenby [19]

P = 1− e−2πδLZ , (4.5)

whereP is the probability of the atom pair forming a closed channel molecule at

the end of the magnetic field sweep. In thep-wave the Landau-Zener coefficient,

δLZ, is given by [155]

δ
p−wave
LZ =

5
√

10~

4πµa5
ho

∣

∣

∣

∣

∣

∣

∣

abg
1m∆B

Ḃ

∣

∣

∣

∣

∣

∣

∣

. (4.6)

Here,aho is the harmonic oscillator length,abg
1m is the background scattering vol-
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ume,∆B is the width of the resonance,Ḃ is the speed of the linear magnetic field

sweep andµ is the reduced mass of the atom pair. For a Fermi gas in a harmonic

trap a typical length scale is the Thomas-Fermi radius (see Giorgini et al. [56]

Section II. B.)

RTF = aho (48N)1/6 , (4.7)

whereN is the number of atoms in the trap and it has been assumed that the trap

is isotropic. It should be noted that this discussion is a very rough approximation

that enables us to relate the density, in a many-body sense, to the parameters that

can describe a tight harmonic trap, used to confine two particles. The density

distribution of the cloud is given by

n(r) =
8
π2

N

R3
TF













1−
(

r
RTF

)2










3/2

, (4.8)

wherer is the radial coordinate from the centre of the trap. In the centre of the

trap the density will then be

n(0) =
8
π2

N

R3
TF

. (4.9)

We can then find the harmonic oscillator length as a function of the density in the

centre of the trap

a3
ho =

√

4N
3

1
π2n(0)

. (4.10)

To analyse the behaviour of the Landau-Zener parameter we scale the equations

with a background scattering volume,abg
ℓm. More precisely we can define a length

scale as the cube-root of the modulus of the scattering volume,

asc = |abg
ℓm|

1/3. (4.11)

The Landau-Zener parameter now comes out as

δ
p−wave
LZ =

5
√

10

4πã5
ho

∣

∣

∣

∣

∣

∣

∆B
˜̇B

∣

∣

∣

∣

∣

∣

, (4.12)
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with aho = ascãho. In this equation

Ḃ =
~

µa2
sc

˜̇B. (4.13)

The harmonic oscillator angular frequency is defined by

ωho =
~

2µa2
ho

. (4.14)

This can be used along with Eq. (4.10) to estimate the densityin the centre of the

trap in terms of the trap parameters

n(0) =

(

~

2ωhoµ

)3/2
√

4N
3

1
π2
. (4.15)

We have plotted the Landau-Zener probability as a function of the sweep rate in
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Figure 4.1: The variation of the Landau-Zener probability for two atoms in a tight
harmonic trap as function of the sweep rate. The resonance parameters refer to the
m1=0, 198.85 Gp-wave resonance in40K. Nm is the number of molecules andN
is the number of atoms. This gives a clear indication that we expect the molecule
production efficiency to increase as we decrease the ramp speed and below about
10 G/ms we have complete conversion of atoms to molecules.
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Fig. 4.1. The molecule production increases as the ramp speed is lowered and

below about 10 G/ms there is a 100 % conversion of atoms to molecules. We have

used a harmonic oscillator frequency ofωho = 2π×70 kHz similar to that used in

experiments on Fermi gases [2].

4.2.1 Behaviour analysis
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Figure 4.2: A plot of the association probability for 2 (N=2) particles using the
Landau-Zener method as a function ofn(0). The black, blue and red lines repre-
sent ramp speeds of 0.1, 10 and 103 G/ms, respectively. The solid lines are the
association probability given by Eq. (4.5) while the dashedlines are the fast sweep
(low density) approximation given by Eq. (4.21)

We can use Eq. (4.10) to write the Landau-Zener parameter as afunction of

the density

δ
p−wave
LZ =

5
√

10
4π

(

3
6N

)5/6

π10/3ñ(0)5/3
∣

∣

∣

∣

∣

∣

∆B
˜̇B

∣

∣

∣

∣

∣

∣

∼ ñ(0)5/3, (4.16)

whereñ(0)5/3 = a5
scn(0)5/3 and the number of atoms remains fixed. A derivation

for the Landau-Zener parameter in a spherical well is given in appendix G, where
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Figure 4.3: A graphical comparison of the full Landau-Zenerformula against the
approximation of Eq. (4.21) for a sweep speed of 103 G/ms as a function of the
atomic density. The solid, blue line is the full Landau-Zener formula, while the
blue, dashed line is the approximation of Eq. (4.21). The red, dashed line is the
ratio of the full formula to the high speed approximation. Itcan be seen that at a
density of 1× 1014 cm−3 there is less than a 0.01% factor between the 2 values.
This has increased to over 10% by 5× 1015 cm−3. These two points correspond to
exponents of approximately 0.02 and 0.21, respectively.

we find the samen5/3 scaling. In terms of a sphere with volumeV = 4
3πR3, we

have

δSW
LZ = 570.236

~π

VµR2

∣

∣
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∣

∣

∣

∣

abg
1mℓ
∆B1

Ḃ

∣
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∣

∣

∣

∣

∣

, (4.17)

where the superscriptS Wdenotes a spherical well. Assuming a uniform density,

such thatn = N
V , gives

δSW
LZ = 570.236

~π

µ

(

4
3

)2/3
∣

∣

∣

∣

∣

∣

∣

abg
1mℓ
∆B1

Ḃ

∣

∣

∣

∣

∣
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∣

( n
N

)5/3

. (4.18)

This differs from Eq. (4.16) by only a numerical factor if we take the density

at the centre of the trap to be the uniform density in Eq. (4.18). It should be
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noted that in both cases the parameter remains dependent on the system size and a

thermodynamic limit can not be taken, even in the limit of fast sweeps, in contrast

to thes-wave [114]. We can compare this with the Landau-Zener expression for

thes-wave [19],

δs−wave
LZ =

√
6~

2µπa3
ho

∣

∣

∣

∣

∣

∣

abg∆B

Ḃ

∣

∣

∣

∣

∣

∣

. (4.19)

This equation can be scaled using thes-wave scattering length,abg to give

δs−wave
LZ =

√
6π
2

(

3
4N

)1/2

ñ(0)

∣

∣

∣

∣

∣

∣

∆B
˜̇B

∣

∣

∣

∣

∣

∣

∼ ñ(0). (4.20)

From these expressions for the Landau-Zener parameters it can be seen that in the

limit of fast sweep (and low enough density) we can approximate Eq. (4.5) to be

P ≈ 2πδLZ . (4.21)

This predicts that for fast ramp speeds thep-wave association probability will

behave like

Pp−wave∼ ñ(0)5/3. (4.22)

A comparison of the association probability of the Landau-Zener formula Eq. (4.5)

and its approximation Eq. (4.21) is plotted as a function of density in Fig. 4.2 for

them1 = 0 p-wave resonance around 198.85 G in40K for various ramp speeds.

The extent to which the approximation of Eq. (4.21) can be used can also be

analysed. In Fig. 4.3 we have plotted the ratio of the full formula to the high speed

approximation for a sweep speed of 103 G/ms (red, dashed line). We can see that

the production efficiencies stay within a factor of 0.01% of each other up to around

1014 cm−3. This corresponds to an exponent in Eq. (4.5) (or productionefficiency

in Eq. (4.21)) of around 0.02. This line is essentially a plotof the function

f (g(n(0))) =
1− e−g(n(0))

g(n(0))
, (4.23)

so we would expect a similar region of validity in terms of thevalue of the ex-

ponent no matter what partial wave we are looking at (assuming that the Landau-

Zener formula is valid). We can therefore compare the value of the exponent in
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the p-wave and thes-wave to give

δ
p−wave
LZ

δs−wave
LZ

=
5
√

5

4
√

2
π4/3n(0)2/3

|abg
1m∆Bp|
|abg

0 ∆Bs|
, (4.24)

where the superscripts denote thes-wave and thep-wave. In the limit of fast mag-

netic field sweeps this will also give an approximation of therelative molecule

production between thep-wave and thes-wave. It should be noted that this ex-

pression is independent of the ramp speed. Equation (4.24) has been plotted in

Fig. 4.4 as a function ofn(0). The s-wave parameters used correspond to the

202.1 G resonance in40K. It can be seen that the density has to be very high for

the molecule production to be comparable in thes-wave andp-wave, otherwise

the molecule production in thep-wave is significantly lower. For Eq. (4.24) to

estimate the relative molecule production the ramp speed would then have to be

very fast (greater than 108 G/ms).

Fig. 4.5 compares the probability fors-wave andp-wave molecule production.

At lower ramp speeds the value given by Eq. (4.24) gives a muchsmaller value

than the ratio of actual probabilities, so that the yield ofp-wave molecules is

under-represented by this approximation. However, Fig. 4.6 shows that there is a

range of densities at which thes-wave production can be 100 % while thep-wave

production can be less than 1 % and even at a low ramp speed of 10G/ms the

density must still be in excess of 1014 cm−3 to get a ratio of greater than 0.9.

We see that from a two-body point of view we expect different behaviour of the

s-wave andp-wave production efficiencies as a function of atomic density. This

analysis has been restricted to the case of a tightly confining harmonic trap, but

the main difference is the threshold behaviour reflected in the evaluation of matrix

elements when calculating the Landau-Zener parameter [155]. In appendix G we

find similar behaviour of the Landau-Zener parameter in a spherical box, to its be-

haviour in a tight harmonic trap, corroborating the above statement. Numerically,

the resonance parameters,abg
ℓmℓ

and∆B, will play a role in determining the overall

ratio of production efficiencies. In the system we have applied this to, we expect

that a higher atomic density will be required in thep-wave case than in thes-wave.

The limitations of the Landau-Zener approach lie in the neglecting of many-body
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Figure 4.4: The ratioδp−wave
LZ /δs−wave

LZ as a function of density. Thes-wave res-
onance values are given byabg

0 = 174 a.u. [118] and∆B = 7.8 G [87] for the
202.1 Gs-wave resonance in40K. This will also be an estimate for the relative
molecule production between thes-wave and thep-wave in the limit of a fast
sweep. The density has to be very high for the molecule production to be compa-
rable.

effects and in the requirement of an infinitely long sweep of the magnetic field.

We have seen in chapter 3 that many-body effects can have implications on the

thermodynamics and we will now look at the more comprehensive approach of

the mean-field dynamics. This will also enable us to study a range of different

initial and final conditions.
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Figure 4.5: The ratio Pp−wave/Ps−wave as a function of density. Thes-wave res-
onance values are given byabg

0 = 174 a.u. [118] and∆B = 7.8 G [87] for the
202.1 Gs-wave resonance in40K. This will also be an estimate for the relative
molecule production between thes-wave and thep-wave in the limit of a fast
sweep. The density has to be very high for the molecule production to be compara-
ble. The black, blue and red lines represent ramp speeds of 10, 103 and 105 G/ms,
respectively. The dashed, green line is the high ramp speed approximation of
Eq. (4.24).
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Figure 4.6: The ratio Pp−wave/Ps−wave as a function of density. Thes-wave res-
onance values are given byabg

0 = 174 a.u. [118] and∆B = 7.8 G [87] for the
202.1 Gs-wave resonance in40K. This will also be an estimate for the relative
molecule production between thes-wave and thep-wave in the limit of a fast
sweep. The ramp speed is 10 G/ms. The blue-dotted line is thes-wave production
efficiency as calculated from the Landau-Zener formula. The dashed, green line is
the high ramp speed approximation of Eq. (4.24). This shows that the production
efficiency of thes-wave molecules can be 100 % at densities where the efficiency
is less than 1 % for thep-wave molecules. At this low ramp speed a density in
excess of 1014 cm−3 is required to produce a 90 % production efficiency in the
p-wave
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4.3 Many-body Dynamics

Many-body approaches have previously been employed to calculates-wave molecule

production in ultracold gases [24, 114, 160, 161]. In the case of Bose gases the

Bose-Einstein condensate can be taken into account when calculating the many-

body dynamics of the system. Beyond this we would have to consider the density

of the non-condensed particles and pairs correlated in the gas. The situation can

be similar in the case of Fermi gases where no true condensateexists, but particles

can still be correlated to form Cooper pairs in the BCS state.

The phenomenon of the BCS-BEC crossover opens up the possibility for physi-

cists to probe the fundamental question of what constitutesa fermion and what

constitutes a boson. We have already seen how many-body effects are important

in ultra cold Fermi gases in the previous chapter. Given thatwe can already see

many-body effects at the mean-field level in the thermodynamics of the system

we will study the mean-field dynamics in thep-wave using methods previously

applied tos-wave paired fermions [129]. In this study the time-evolution of the

order parameter describing the BCS state was studied following an abrupt switch

of the magnetic field values from the initial value. The time dependence of the

molecule density was also studied after the magnetic field variation. We will first

use a finite linear sweep of the magnetic field to study molecule production. Later,

we will repeat the study of Szymańskaet al. [129] for thep-wave resonance in
40K.

4.3.1 Mean-field dynamics

In Fermi gases the mean-field dynamics evolves a many-body state consisting of

pre-paired atoms. To describe the onset of pairing in the gaswe would have to use

a higher-order approximation, such as a quantum Boltzmann equation that has

already been applied to bosons [24], which is beyond the scope of this thesis.

The stationary solution of the previous chapter provides the initial state for the

study of molecule formation in the gas, determined by our chosen initial condi-

tions, such as temperature, density and initial magnetic field. We then dynamically
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evolve the pair function, defined by

Φi1i2(t) = 〈ai2ai1〉t, (4.25)

and the one body density matrix defined by

Γi j (t) = 〈a†j ai〉t. (4.26)

Here the indices represent single-particle states and the brackets〈...〉t are ensemble

averages at timet. The pair function is related to the gap parameter of the previous

chapter through the relation

∆i j =
∑

kl

〈i j |V|kl〉〈a†ka
†
l 〉 =

∑

kl

〈i j |V|kl〉Φlk(t). (4.27)

The equations of motion are derived in full in appendix F, butwe here give some

of the main results. The full Heisenberg equation of motion for the density matrix

is given by

i~
∂

∂t
Γi j (t) =

∑

k

〈i|H1B|k〉Γk j(t) −
∑

l

〈l|H1B| j〉Γil (t) (4.28)

+
∑

klh

〈il |V|kh〉
[

Γ
(2,2)
kh jl (t) + Φ

⋆
jl (t)Φkh(t) + Γk j(t)Γhl(t) − Γh j(t)Γkl(t)

]

−
∑

klh

〈lh|V| jk〉
[

Γ
(2,2)
iklh (t) + Φ⋆lh(t)Φik(t) + Γil (t)Γkh(t) − Γkl(t)Γih(t)

]

,

whereH1B is the single-particle Hamiltonian containing the single-particle kinetic

energy operator and any external potential. The corresponding equation for the

pair function is given by

i~
∂

∂t
Φi1i2(t) =

∑

k1k2

〈i1i2|H2B|k1k2〉Φk1k2(t) +
∑

k1k2lh

〈i1i2l|
2

∑

j=1

V j3|k1k2h〉 (4.29)

×
[

Γ
(3,1)
k1k2hl(t) + Γhl(t)Φk1k2(t) + Γk1l(t)Φk2h(t) − Γk2l(t)Φk1h(t)

]

.
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The higher-order terms in these equations are given by

Γ
(m,n)
i1...im, j1... jn

(t) = 〈a†j1...a
†
jn
aim...ai1〉ct . (4.30)

These represent correlations in the gas far from equilibrium. The superscript,c,

denotes these quantities as cumulants [162]. It can be seen that a full solution of

these equations would produce an infinite hierarchy of equations including higher

and higher-orders of these correlations. This is intractable, so at some point a trun-

cation of the series must take place if we wish to solve this system of equations.

Motivated by the success of the stationary theory in the mean-field approximation,

we can neglect the higher-order terms in whichn or m are greater than 1. The cu-

mulant approach allows this truncation to take place at arbitrary order provided

the system remains relatively close to equilibrium. It should be noted that for

fermions the cumulant of two creation/annihilation operators is equivalent to the

expectation value of the operators. Furthermore, given thediluteness of the gas

it should also be possible to neglect any terms that are products of single-particle

density matrices. In fact, this amounts to neglecting the Hartree-Fock contribu-

tions to the dynamical equations. A similar procedure is used to derive the BCS

equations and the Gross-Pitaevskii equation for Bosons.

By neglecting the higher-order terms one arrives at the mean-field equations

for fermions

i~
∂

∂t
Γi j (t) =

∑

k

〈i|H1B|k〉Γk j(t) −
∑

l

〈l|H1B| j〉Γil (t) (4.31)

+
∑

l

[

Φ⋆jl 〈il |V|Φ(t)〉 − 〈Φ(t)|V| jl 〉Φil (t)
]

,

i~
∂

∂t
Φi1i2(t) = 〈i1i2|H2B|Φ(t)〉+

∑

l

[

Γi1l(t)〈i2l|V|Φ(t)〉 − Γi2l(t)〈i1l|V|Φ(t)〉
]

. (4.32)

Here,H2B is the two-body Hamiltonian containing the kinetic energy and interac-

tion of two particles. For a homogeneous system in the momentum representation

these equations become

i~
∂

∂t
Γ(p, t) = 2(2π~)3/2iIm

(

Φ⋆(p, t)〈p|V|Φ(t)〉
)

, (4.33)
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i~
∂

∂t
Φ(p, t) = 〈p|H2b|Φ(t)〉−〈p|V|Φ(t)〉Γ(−p, t)(2π~)3/2−〈p|V|Φ(t)〉Γ(p, t)(2π~)3/2.

(4.34)

In the previous chapters we have expanded our single-particle state into the an-

gular momentum basis. Similarly we can express the many particle distribution

functions in terms of their partial wave components given by

Φℓm(p, t) = iℓ
∫

dΩY⋆
ℓm(Ω)Φ(p, t), (4.35)

Γℓm(p, t) = iℓ
∫

dΩY⋆
ℓm(Ω)Γ(p, t), (4.36)

whereΩ is the solid angle inp. This allows mean-field equations for the partial

wave components of the pair function and one body density matrix to be written

as

i~
∂

∂t
Γℓm(p, t) = 2(2π~)3/2iℓ+1

∫

dΩY⋆
ℓm(Ω) (4.37)

× Im















∑

ℓ′m′ℓ′′m′′

iℓ
′−ℓ′′Y⋆

ℓ′m′(Ω)Yℓ′′m′′(Ω)Φ⋆ℓ′m′(p, t)〈pℓ
′′m′′|V|Φ(t)〉















,

i~
∂

∂t
Φℓm(p, t) =

p2

m
Φℓm(p, t) + 〈pℓm|V|Φ(t)〉 (4.38)

− (2π~)3/2
∑

ℓ′m′ℓ′′m′′

iℓ−ℓ
′+ℓ′′

∫

dΩY⋆
ℓm(Ω)Yℓ′m′(Ω)Yℓ′′m′′(Ω)〈pℓ′m′|V|Φ(t)〉Γℓ′′m′′(p, t)

− (2π~)3/2
∑

ℓ′m′ℓ′′m′′

iℓ−ℓ
′−ℓ′′

∫

dΩY⋆
ℓm(Ω)Yℓ′m′(Ω)Yℓ′′m′′(Ω)〈pℓ′m′|V|Φ(t)〉Γℓ′′m′′(p, t).

It should be noted that this leads to an infinite set of equations corresponding to

the different values ofℓ andmℓ. However, the angular integrals over the spheri-

cal harmonics can be done analytically which may simplify the solution of these

equations, computationally, if the series converges sufficiently quickly.
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4.3.2 Lowest order approximation

As a first approximation we can retain the lowest order, inℓ, partial wave which

includes thep-wave interaction and from which we can calculate molecule pro-

duction. We note that in Eq. (4.38) we keep only theℓ=1 components, but in

Eq. (4.37) we go down to theℓ=0 component. We now have

i~
∂

∂t
Γ00(p, t) =

2(2π~)3/2i
√

4π
Im















∑

m′

χ1m′(p)ξm′

∫

q2dqχ1m′(q)Φ1m′(q, t)Φ
⋆
1m′(p, t)















,

(4.39)

i~
∂

∂t
Φ1m(p, t) =

p2

m
Φ1m(p, t) + χ1m(p)ξm

∫

q2dqχ1m(q)Φ1m(q, t) (4.40)

−
(2π~)3/2

√
π

χ1m(p)ξ1mΓ00(p, t)
∫

q2dqχ1m(q)Φ1m(q, t),

where the matrix elements have been rewritten using the separable potential of

chapter 2. There are actually three equations here with two for the pair function

components, corresponding tom = ±1 andm = 0 and one for theℓ = 0 density

matrix. In the previous chapter we showed that, in certain cases, it is possible

to treat them = 0 andm = 1 components separately. If we choose the initial

state to be a gas in which only one angular projection state ispresent then we

will prohibit the possibility of populating the other projection. This is one of

the limitations within the mean-field regime. We also showedin the previous

chapter that when we solved the BCS equations with coupling between the two

projections, the off diagonal terms were several orders of magnitude less than the

dominant component. This suggests that even if we included the possibility of

populating states in which the finalmℓ differed from the initial value we would be

justified in neglecting such terms.

4.4 Calculating molecule production

Once we have solved the dynamic equations we will be left witha final state from

which to calculate molecule production. The quantum mechanical observable for
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Figure 4.7: Initial pair functions,Φ10(p, 0), for a density of 1013 cm−3. Here
pF is the Fermi momentum of the non-interacting gas at zero temperature. As
shown in Chapter 2 the chemical potential goes to the Fermi energy of the non-
interacting gas as the potential gets weaker. The pair function reflects this fact
through the position of the peak which is close top/pF = 1 at high magnetic field
and decreases as the value of the magnetic field moves towardsthe resonance and
hence the chemical potential is lowered.

a bound state of two atoms with a relative positionr can be written as

O =
∫

dR|φb,R〉〈φb,R|, (4.41)

whereR is the centre of mass coordinate of the atom pair. By considering a box

of volumeV, the single-particle states can be treated as plane waves ofthe form

〈x|p〉 = 1
Vei p·x

~ , so that the matrix element of the bound state operator is

〈p1, p2|O|p3, p4〉 =
1
V

∫

dr1

∫

dr2δ (p1 + p2 − p3 − p4) (4.42)

× φb(r1)φ
⋆
b (r2)e

−ir1·(p1−p2)/2~eir2·(p3−p3)/2~.
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Defining the Fourier transform of the bound state,φb(p) = 1√
V

∫

dre−ip·r/~φb(r ), it

is possible to write

〈p1, p2|O|p3, p4〉 = δ (p1 + p2 − p3 − p4) φb

(p1 − p2

2

)

φ⋆b

(p3 − p4

2

)

. (4.43)

The second quantised operator that counts the number of molecules in the gas will

then be given by

Nmol =
1
2

∑

p1p2p3p4

δ (p1 + p2 − p3 − p4) φb

(p1 − p2

2

)

φ⋆b

(p3 − p4

2

)

a†p1
a†p2

ap3ap4.

(4.44)

The expectation value of this operator can be expanded usingWick’s theorem to

obtain an expression for the number of molecules in the gas. Asimilar argument

can be used to neglect the products of density as when deriving the mean-field

equations. This means the density of molecules can be written as

nmol =
1
2

∣

∣

∣

∣

∣

∫

d3pφ⋆b (p)Φ(p)
∣

∣

∣

∣

∣

2

. (4.45)

This allows us to calculate the molecule production from an overlap of the bound

state wave function with the pair function. We expand the pair function into the

partial wave basis, so in fact we are calculating various partial wave contribu-

tions to the molecule density, but note that we have done the same to the bound

state wave function and that different partial wave components will obey the or-

thogonality condition of the spherical harmonics. The probability of molecule

association will then be given as

P =
2nmol

n
, (4.46)

wheren is the atomic density of the gas that remains fixed throughoutthe time

dependent calculation.
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4.4.1 Bound state wave function

The wave function for the bound state can be calculated from the Lippmann-

Schwinger equation with appropriate boundary conditions

|φb〉 = G0(Eb)V|φb〉, (4.47)

where|φb〉 is the wave function for the bound state andG0(Eb) is the free Green’s

function evaluated at the value of the binding energy,Eb. This equation is, of

course, equivalent to the Schrödinger equation with the condition that the wave

function is zero at infinity and at the origin. Using the separable potential and the

fact that them= ±1 components are degenerate (as already shown), we can write

|φb〉 = G0(Eb)|χ1〉ξ1〈χ1|φb〉 +G0(Eb)|χ0〉ξ0〈χ0|φb〉. (4.48)

Them1 = 0 andm1 = ±1 components of the wave function would be expected to

be orthogonal to each other and, as already shown, it is possible in certain cases,

including those of this thesis, to treat the two resonances separately so that each

component can be given an independent energy argument

〈p|φb〉m1 =
〈p|χm1〉ξm1〈χm1 |φb〉m1

Eb − p2

2µ

. (4.49)

The factorξm1〈χm1 |φb〉m1 can be treated as a normalisation constant that can be

found numerically. This provides an analytic form for the bound state. The only

parameter to be determined is the bound state energy which wefound in chapter 2.

4.5 Results

Now we have all the parameters and functions necessary to perform the many-

body dynamic calculations. In the introduction we outlinedthe procedure of the

ideal experiment we would conduct to investigate all the variable parameters. In

this section we present the various investigations performed and give more de-

tails on what parameters were kept constant or varied in eachcalculation. We

then present the results of these calculations for the lowest order approximation
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introduced above.

Initially we vary the parameters that define the initial state of the system,

namely the the atomic density, the temperature and the initial magnetic field po-

sition at which to begin the linear sweep of the magnetic field. The mean-field

equations were propagated using an adaptive step size Runge-Kutta method. The

results presented below are for them1 = 0 resonance in40K. Later we will look at

how these compare to the results of them1 = 1 calculations.

4.5.1 Initial magnetic field

In this investigation we vary the value of the magnetic field at which we start the

magnetic field sweep and all other parameters are held constant. The result of this

is plotted in Fig.4.8. We have kept the temperature at 70 nK and plotted separate

lines to represent different atomic densities. All of the solutions are propagatedto

the same magnetic field value below the resonance which is located at 198.85 G.

For a given density it is possible to see that the number of molecules produced

increases as the initial magnetic field value gets closer to the resonance. This can

be explained by the fact that as we move closer to the resonance there is more

pairing present in the initial state and therefore more molecules are produced at

the end of the sweep. The parameter that determines the initial amount of pairing

in the gas is the gap parameter,∆0, and we have seen in the previous chapter that

this increases as the magnetic field moves towards the resonance from the BCS

side. The sweep rate of the magnetic field is held constant forall combinations

of density and initial field. Although we will see that the sweep rate does have

an effect on the molecule production we do not expect it to change the behaviour

of the molecule production as a function of initial magneticfield since the initial

value of∆0 will be independent of the sweep rate. It is important to notethat

at some value of the initial magnetic field the molecule production goes to zero.

This is due to there being no initial pairing in the gas and means that in the mean-

field dynamics it is not possible to start infinitely far away from the resonance in

contrast to the Landau-Zener problem studied above.
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Figure 4.8: Fraction of atoms converted into molecules as a function of initial
magnetic field position at the start of the sweep for them1 = 0 resonance at
198.85 G in40K. The different curves represent different densities. In these calcu-
lations the temperature was held constant at 70 nK and the sweep speed remained
constant at 60 G/ms. It can be seen that starting closer to the resonance increases
the molecule production efficiency and increasing the density also has the same
effect.
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4.5.2 Initial density and temperature

In a similar way to how we have studied the effect of the initial magnetic field

value on the molecule production, we can also study the effect of the initial atomic

density and the temperature. It should be remembered that both these quantities

remain constant throughout the calculation (and for the time being we hold the

sweep rate constant too). We can immediately deduce from Fig. 4.8 that by hold-

ing the temperature and the initial magnetic field position constant that we can

increase the molecule production by increasing the atomic density, a prediction

also made by the Landau-Zener approach. The explanation forthis comes from

an increased pairing in the initial state, which can be seen from the results of the

previous chapter where as we increased the density we also increased the value of

∆0 (see Fig. 3.8 and Fig. 3.9). However, we also note that the density plays a role

in the dynamics, due to the presence of the density matrix in the dynamic equation

governing the evolution of the pair function.

We can see the effect that temperature has on molecule production from Fig. 4.9.

In this graph each line represents a different temperature and the atomic density

is varied with the initial magnetic field held constant. It can clearly be seen that

the molecule production increases with decreasing temperature. Again we have

discussed in the previous chapter that a decrease in temperature will lead to an

increase in the parameter∆0, and this will cause there to be more pairing in the

gas and thus more molecules (see Fig. 3.8) at the end of the sweep.

4.5.3 Sweep rate

We now vary the rate at which the magnetic field is varied. The result of this is

shown in Fig. 4.10 for a density of 1013 cm−3, a temperature of 70 nK and an initial

magnetic field position of 198.9 G, fairly close to the resonance position. There is

only a small change in the production efficiency as the sweep rate is varied over a

large range of magnetic sweep speeds. It can be seen from Fig.3.8 and Fig. 3.9

that, at a density of 1013 cm−3 and a temperature of 70 nK, there is only 0.1 G

of available magnetic fields on the BCS side to act as the initial condition for the

dynamics.

By increasing the density above values at which experimentswould normally
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Figure 4.9: Fraction of atoms converted into molecules as a function of atomic
density at the start of the sweep for them1 = 0 resonance at 198.85 G in40K. The
different curves represent temperatures of 70 nK (solid blue), 100 nK (dot-dashed
green) and 200 nK (dashed red). In these calculations the sweep speed remained
constant at 60 G/ms. It can be seen that increasing the density and decreasingthe
temperature both increase the molecule production efficiency.
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Figure 4.10: Variation in final molecule production efficiency as a function of
inverse sweep rate of the magnetic field. The density is kept constant at 1013 cm−3

and the temperature at 70 nK. The initial magnetic field is close to the resonance at
Bi=199.9 G. It can be seen that over a large range of sweep speeds the production
efficiency does not greatly vary from its value at high ramp speeds. This suggests
that the dynamics are not significantly affected by the change in ramp speed.
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Figure 4.11: Molecule production efficiency as a function of initial magnetic field
position for the initial state pair function overlapped with the bound state wave
function at the final magnetic field position for a density of 1015 cm−3. This can
be compared with the values of the production efficiency for high ramp speeds in
Fig. 4.13.
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be performed, it is possible to use a greater range of magnetic fields for the

initial conditions. This may be feasible for a trappedp-wave gas. Iskin and

Williams [99] have shown that in a trappedp-wave superfluid it is possible to

achieve densities that are orders of magnitude greater thanin an s-wave super-

fluid. The result of increasing the density to a magnitude of 1015 cm−3 is shown

in Fig. 4.13. In this figure the molecule production efficiency is plotted as a func-

tion of the sweep speed of the magnetic field for four different initial values of

the magnetic field. As the initial value of the magnetic field moves away from

the resonance, it is possible to produce more molecules by sweeping the magnetic

field, such that although we may have less molecules with a fast sweep we can

have a comparable molecule production with slower sweeps. At high sweep rates

the production efficiency is well approximated by a jump in the magnetic field

value from the initial value above the resonance to the final value below the reso-

nance. Fig. 4.11 shows the molecule production for this caseand can be directly

compared with the values of the limit of fast sweeps in Fig. 4.13. In the limit of

slow sweep speeds, the molecule production becomes independent of the value of

the initial magnetic field at the start of the sweep. Allowingthe initial value of the

magnetic field to move away from the resonance position allows more molecules

to be produced due to the dynamics alone and not just from the initial pairing

in the gas. Fig. 4.12 shows the variation of the molecule production as the final

magnetic field position is changed for an infinitely fast sweep. The choice of the

final magnetic field position will provide a lower bound on howmany molecules

are produced from the atomic gas.

It may still be possible to find a lower density at which a significant number of

molecules can be produced from the dynamics. A natural test is to see how many

molecules are produced from a slow sweep in comparison to a fast sweep. It is

easy to deduce from Fig. 4.13 that this number will increase as the initial magnetic

field position is moved away from the resonance. However, this number should

also be sensitive to the density of the atomic gas since, according to Fig. 4.8, at

high density the number of molecules produced from the dynamics will be small

because there will already be so much pairing in the gas for initial magnetic fields

close to the resonance. For fields close to the point where pairing in the gas is lost,

it will be necessary to go very slow in sweep rate in order to produce a significant
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number of molecules. This suggests that there will be a valueof the magnetic field

at which there is an optimal production efficiency for a given density. Fig. 4.14

shows the molecule production efficiency from a sweep of the magnetic field at

10 G/ms minus the molecule production efficiency at a sweep speed of 500 G/ms.

This calculation is done for various initial magnetic fieldsdemonstrating that for

the range of densities and magnetic fields covered the fraction of molecules cre-

ated from the dynamics increases as the magnetic field increases provided the

density is high enough. At lower densities it may be that moremolecules can be

produced from the dynamics by starting closer to the resonance. This is due to the

fact that at some value of the magnetic field there will be so little pairing in the

gas that the sweep would have to be even slower to allow molecules to form. It

would be expected that for an infinitely slow magnetic field sweep for the lower

sweep rate more atoms would be converted to molecules from the dynamics the

further away from the resonance the initial magnetic field is, independent of the

density.
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Figure 4.12: Molecule production as a function of final magnetic field position
for an immediate projection of the initial state pair function onto the molecular
bound state at the given magnetic field. The lines represent initial magnetic fields
of 199.9 G (Blue dotted line), 200 G (Green dashed line) and 200.1 G (red solid
line). It would be expected that all lines converge toNm/Na = 0 in the limit that
the magnetic field is infinitely deep in the BEC side.
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Figure 4.13: Variation in final molecule production efficiency as a function of
inverse sweep rate of the magnetic field. The density is kept constant at 1015 cm−3

and the temperature at 70 nK. the different lines represent initial magnetic fields
of 200 G (solid light blue line), 199.7 G (dashed red line), 199.3 G (dotted green
line) and 199 G (dot-dashed blue line). It can be seen that it is possible to produce
more molecules from changing the ramp speed by changing the initial value of the
magnetic field to be further away from the resonance.
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Figure 4.14: The difference in the molecule production efficiency from a sweep
of 10 G/ms and a sweep of 500 G/ms as a function of density. Here,nḂ is the
number of molecules over the number of atoms after a sweep at aspeed equal tȯB
in G/ms for a temperature of 70 nK. This shows how many molecules are actually
produced during the dynamics. The different curves represent initial magnetic
field positions of 199.2 G (green dashed), 199.3 G (solid blue), 199.4 G (dot-
dashed red) and 199.5 G (dotted black). It can be seen that there is an optimum
density at which to produce molecules from the dynamics.
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4.5.4 Atom-molecule coherence

Donleyet al. [143] applied rapid variations of the magnetic field on a85Rb Bose-

Einstein condensate. In this experiment the value of the magnetic field was kept

on the positive scattering length side but rapidly varied toa value further from the

resonance positiontevolve. They observed persistent oscillations in the number of

atoms detected as a function oftevolve, with a frequency fixed by the value of the

molecule binding energy at the final magnetic field and an amplitude comparable

to the total atomic number. They concluded that the undetected atoms had been

transferred into molecules. This phenomenon is interpreted as a signature of atom-

molecule coherence.

In experiments ons-wave molecules rapid sweeps of the magnetic field were

used to probe the state of the Fermi gas in the region about theresonance. It was

hypothesised that if the magnetic field was swept into the BECside fast enough,

such that the typical sweep time was less than the typical collision time, then it

would be possible to extract information about the gas in thestrongly interacting

region [88]. The question then arises of how the state evolves after such a sweep.

If the final state, held at a fixed field value, undergoes processes that significantly

change it, then this method may not be a reliable way of probing the gas. For the

s-wave it has been shown that the under such a magnetic field variation the final

molecule production efficiency will oscillate but with a small, decreasing ampli-

tude [129]. We use an essentially identical method to show that this is also true

in the p-wave and it would not be possible to observe atom-molecule coherence

with this approach.

Fig. 4.15 shows the variation in the production efficiency as a function of time

after such a magnetic field variation. In this figure, the different lines correspond

to different final magnetic fields. The variation in the molecule production over

this time period is given as a percentage and seen to be on the order of 0.001 %,

which is very small. The oscillations in the production are heavily damped with

the frequency and damping of the oscillations increasing asthe final magnetic

field moves away from the resonance. For the case where the final field is located

at 196.5 G the oscillations are not visible on this scale after 20µs.

In Fig. 4.16 the initial magnetic field is varied and the final magnetic field
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held constant. Again the oscillations for all detunings areon the order of 10−3%.

Both the frequency and amplitude of the oscillations increase as the initial field

moves further from the resonance, but not significantly. It should be noted that this

appears to be in contrast to thes-wave where the amplitude increases as the initial

field moves towards the resonance [129]. However, in both cases the amplitude

of the oscillations is very small (the results compared to inthes-wave correspond

to a density of 1.5 × 1013 cm−3). The s-wave resonance studied by Szymańska

et al. [129] is the open-channel dominated resonance in40K that we looked at in

chapter 2. We have already mentioned thatp-wave resonances are closed channel

dominated and therefore note that in this respect the natureof the resonance does

not qualitatively affect the time dependence of the molecule density, but damping

appears to be higher in thep-wave. It is difficult to identify a single reason for the

increased damping in thep-wave because the problem is highly non-linear.
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Figure 4.15: Evolution of the molecule production efficiency after an infinitely
fast sweep of the magnetic field across the 198.85 G resonancein 40K. The initial
magnetic field is 199 G, just above the resonance. The different lines correspond
to differing final magnetic fields of 198.5 G (solid, green line), 197.5 G (dashed,
blue line) and 196.5 G (dot-dashed, red line). n(t) is the density of molecules as a
function of time where n(o) is the density of molecules directly after the magnetic
field variation.
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Figure 4.16: Evolution of the molecule production efficiency after an infinitely fast
sweep of the magnetic field across the 198.85 G resonance in40K. The final field
is held constant at 197.5 G. The different lines represent different initial magnetic
fields of 199 G (solid, blue line), 199.5 G (dashed, green line), 200 G (dot-dashed,
red line) and 200.5 G (dotted, black line). n(t) is the density of molecules as a
function of time where n(o) is the density of molecules directly after the magnetic
field variation.

We have also studied how the order parameter varies after such a magnetic

field variation. In this case the gap parameter is a function of time defined by

∆(t) = ξ
∫

d3q〈χ|q〉〈q|Φ(t)〉, (4.50)

where we have used the separable potential to divide out a form factor from each

side of the equation. We note that the value of the binding energy does not enter

this equation directly. We compare this value against the value of the gap param-

eter when the system is in equilibrium at the final magnetic field position. We

note that, in general, the quantity in Eq. (4.50) is complex.As for the case of the

density variation, we vary the initial and final magnetic fields.

We plot the time evolution of the gap parameter in Fig. 4.17. The top and bot-

tom panel refer to final magnetic fields of 197 G and 198 G, respectively. In each
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Figure 4.17: Variation of the quantity|∆(t)|/∆eq with time for final magnetic fields
of 197 G (top panel) and 198 G (bottom panel). The different lines correspond to
different initial magnetic field positions of 198.2 G (top, red),200.2 G (middle,
green) and 201.2 G (bottom, blue).

panel the different lines correspond to different initial magnetic field positions of

198.2 G (top, red), 200.2 G (middle, green) and 201.2 G (bottom, blue). It can be

seen that the closer the initial and final field are to each other the closer the value
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of the gap parameter is to the stationary state value at the final magnetic field po-

sition, denoted here by∆eq. In all case the oscillations have a small amplitude and

quickly decay.

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (ms)

co
m

po
ne

nt
s 

of
 ∆

 (
t)

/∆
eq

−1 0 1
−1

−0.5

0

0.5

1

Re ∆(t)/∆
eq

Im
 ∆

(t
)/

∆ eq

Figure 4.18: Real (solid, blue line) and imaginary (dashed,red line) parts of the
parameter∆(t)/∆eq for BI =199.2 G andBF =197 G. The inset shows a phase
space plot of the same data for which the absolute value remains largely un-
changed. The real and imaginary parts appear to differ by little more than a phase
shift.

Fig. 4.18 plots the real and imaginary parts of the gap parameter as a function

of time. In this plot it appears that both components quicklysettle into sinusoidal

oscillations with a fixed frequency and phase between the components. The inset

shows a phase space plot of the real and imaginary parts of thegap parameter

showing that the oscillations have essentially a fixed amplitude. To determine

the frequency of the oscillations we have performed Fouriertransforms of the

parameters studied in Fig. 4.17. The results of these Fourier transforms have been

plotted in Fig. 4.19 for a final field of 197 G and Fig. 4.20 for a final field of 198 G.

For each plot the real (blue lines) and a imaginary (red lines) parts oscillate at a

frequency that corresponds to the energy of the bound state at the final magnetic

field position. This is expected and serves as a test on the numerics. To evaluate

the Fourier transform of the absolute value we renormalise it by subtracting off the

value at large times, removing an initial large spike in the data. For this reason the
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Figure 4.19: Fourier transforms of the gap parameter as a function of the fre-
quencyν. The blue, red and green lines correspond to the real, imaginary and
absolute value respectively. The absolute value has been renormalised prior to
taking the Fourier transform in order to remove the initial spike in the data. The
final field is held constant at 197 G in all 3 figures with the initial field set to
199.2 G (top), 200.1 G (middle) and 201.2 G (bottom). The solid vertical line
is the value of the bound state energy at the final field. The dashed vertical line
represents the peak value of the absolute value frequency which is approximately
equal to (|Eb(BF)| + 2µ(BI ))/h.
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Figure 4.20: Fourier transforms of the gap parameter as a function of the fre-
quencyν. The blue, red and green lines correspond to the real, imaginary and
absolute value respectively. The absolute value has been renormalised prior to
taking the Fourier transform in order to remove the initial spike in the data. The
final field is held constant at 198 G in all 3 figures with the initial field set to
199.2 G (top), 200.1 G (middle) and 201.2 G (bottom). The solid vertical line
is the value of the bound state energy at the final field. The dashed vertical line
represents the peak value of the absolute value frequency and is approximately
equal to (|Eb(BF)| + 2µ(BI ))/h.
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BI (G) 2µ/h (kHz)
199.2 84.3
200.2 243.6
201.2 363.6

BF (G) Eb/h (kHz)
197 -420.6
198 -177.7

Table 4.1: Values of the chemical potential at the initial magnetic field (left table)
and the bound state energy at the final field (right table).

amplitude of the Fourier transform of the absolute value is much smaller than the

real and imaginary parts. We have plotted the data with a log yaxis since we only

wish to extract the peak frequency of the oscillations. The value of this frequency

increases as the initial magnetic field moves away from the resonance position and

approximately corresponds to the sum of the final bound stateenergy and twice

the initial chemical potential energy. The determination of the value of the peak

frequency is complicated by the fact that the oscillations are heavily damped and

soon reach an amplitude that is difficult to determine above numerical noise.

We have also studied the decay rate of the absolute value of the gap parameter.

In order to estimate this decay rate we have chosen the maximaof the functions

plotted in Fig. 4.17 and taken off the value of the function at large times. This

is plotted in Fig. 4.21, where the blue line represents the trend of these values,

but is, of course, not a continuous function. Also plotted are error estimates that

correspond to an estimate of the numerical noise about the specific data point.

In order to estimate the decay rate we have fitted the data to exponential curves

corresponding to either exp(bt + c) or exp(b
√

t + c).∗ Curves corresponding to

these estimates are plotted in Fig. 4.21 with the different colours denoting which

functions have been plotted. In all cases the fits are not verygood over the whole

range of data points, indicating that the decay does not follow a simple exponential

trend.

The conclusion of this section is that it would not be feasible to observe atom-

molecule oscillations in thisp-wave resonance due to the small, vanishing am-

plitude of the density oscillations. This is the essentially the same conclusion

reached in Szymánskaet al. [129] but extends this result to the closed channel

∗It should be noted that for the case where the initial field wasat 198.2 G, it was not possible
to extract enough data points to fit to a curve of this form accurately.
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Figure 4.21: Plot of the decay of the maximum of the oscillations seen in Fig. 4.17.
The blue stars are the data point and the line that connects them is simply illus-
trative. The blue dots are an estimate of the error on each value due to numerical
noise. The green, dashed lines are fits to exp(bt + c) while the solid red lines are
fits to exp(b

√
t + c). There is some suggestion that the exponent varies liket for

short times and like
√

t for long times. However, it is most likely that the decay is
not exponential at all.
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dominatedp-wave resonance in40K. This also suggests that the method of fast

sweeps to probe a fermionic pair condensate would be a suitable method to probe

the condensate were such conditions favourable. It remainsa question as to why

the magnitude of the oscillations in the molecule density relative to the initial

molecule density shows different behaviour with respect to the initial magnetic

field between thes-wave and thep-wave.
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4.6 Higher-order components

The results of the previous section depend on neglecting thehigherℓ partial wave

components of the pair function and the density matrix. The other components of

the pair function will be orthogonal to thep-wave bound state due to orthogonal-

ity of the spherical harmonics and will therefore only contribute to the molecule

production through the dynamic equations.

4.6.1 IncludingΓ20(p,t)

Equation (4.36) shows that any component of the density matrix that is non-zero

in the separated resonances approximation will havemℓ = 0. Now consider the

integral appearing in Eq. (4.38) and take the pair function to beΦ10(p, t) and

interactions to only be in thep-wave. This leaves an integral

∫

dΩY⋆
10(Ω)Y10(Ω)Yl′′0(Ω) =



























1√
4π

ℓ′′ = 0
1√
5π

ℓ′′ = 2

0 ℓ′′ , 2 or 0

(4.51)

showing that the next order correction in this equation comes from theΓ20(p, t)

component of the density matrix. A new equation for this component is

i~
∂

∂t
Γ20(p, t) = −

2(2π~)3/2i
√

5π
Im

(

χ10(p)ξ0

∫

q2dqχ10(q)Φ10(q, t)Φ
⋆
10(p, t)

)

. (4.52)

The equation for theΓ00(p, t) component remains unchanged. An extra term is

added to the equation forΦ10(p, t)

i~
∂

∂t
Φℓm(p, t) =

p2

m
Φℓm(p, t) + χℓm(p)ξℓm

∫

q2dqχℓm(q)Φℓm(q, t) (4.53)

−
(2π~)3/2

√
π

χ10(p)ξ0Γ00(p, t)
∫

q2dqχ10(q)Φ10(q, t)

− 2(2π~)3/2

√
5π

χ10(p)ξ0Γ20(p, t)
∫

q2dqχ10(q)Φ10(q, t).

This gives three coupled differential equations to be solved.



Many Body dynamics 150

4.6.2 IncludingΦ30(p,t)

The previous equations suppress a term present in the dynamic equation for the

Γ20(p, t) component of the density matrix. The relevant angular integral is

∫

dΩY⋆
20(Ω)Yℓ′0(Ω)Y10(Ω) =































1√
5π

ℓ′ = 1

3
2

√

3
35π ℓ′ = 3

0 ℓ′ , 3 or 1

(4.54)

Obviously the integral in Eq. (4.54) will vanish for anym′ , 0. This suggests that

we must calculate the time evolution of the pair function componentΦ30(p, t).

i~
∂

∂t
Φ30(p, t) =

p2

m
Φ30(p, t)−3(2π~)3/2

√

3
35π

χ10(p)ξ0Γ20(p, t)
∫

q2dqχ10(q)Φ10(q, t).

(4.55)

The equation for theΓ20(p, t) component becomes

i~
∂

∂t
Γ20(p, t) = −

2(2π~)3/2i
√

5π
Im

(

χ10(p)ξ0

∫

q2dqχ10(q)Φ10(q, t)Φ
⋆
10(p, t)

)

(4.56)

− 3(2π~)3/2

√

3
35π

Im

(

χ10(p)ξ0

∫

q2dqχ10(q)Φ10(q, t)Φ
⋆
30(p, t)

)

.

The equations for the other components remain unchanged. This now requires the

propagation of four equations.

4.6.3 Conclusion of adding higher-order terms

We have performed similar calculations to those performed using only the low-

est order partial wave components, but also including the next order terms given

above. The result of adding these terms does not change the molecule production

efficiency significantly (less than 1 %) over the range of parameters investigated,

such that the variation in the molecule production is not visible to the naked eye.

This means that the majority of the dynamic production is attributed to the lowest

order terms in them1 = 0 case.
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4.7 Comparison with Landau-Zener approach

We can compare the results of the mean-field dynamics with that of the Landau-

Zener approach. To do this the sweep rate is held constant andthe density is

varied. According to the Landau-Zener approach a power law in the density is ob-

served in the molecule production for two particles in a tight harmonic trap when

the sweep rate is sufficiently rapid, Eq. (4.16). This shows itself as a straight line

on a log-log plot. Fig. 4.22 shows a comparison of the mean-field dynamics with

the Landau-Zener formula. The initial conditions for the mean-field dynamics are

taken at two different magnetic fields. Over the range of densities availablethe

molecule production shows no indication of a power law in thedensity.
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Figure 4.22: A comparison of the Landau-Zener approach withmean-field dy-
namics. The solid, blue line is the Landau-Zener formula of Eq. (4.5) with dashed,
green line being the high speed (low density) approximation. The red stars are the
results of the mean-field dynamics at an initial magnetic field position of 198.9 G.
The black stars are the results of the mean-field dynamics at an initial magnetic
field position of 200 G. The sweep speed is kept constant at 1000 G/ms. For com-
parison the result of the mean-field theory with an infinite ramp speed has been
plotted (dotted, black line). Under these conditions the mean-field molecule pro-
duction closely follows that of the infinite sweep and displays no power law in the
density.
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4.8 |m1 = 1| dynamics

Using the same assumption of separated resonances there will also be a set of

equations for the|m1| = 1 projections of the orbital angular momentum. The

lowest order approximation for|m1| = 1 will be given by

i~
∂

∂t
Φ11(p, t) =

p2

m
Φ11(p, t) + χ11(p)ξ11

∫

q2dqχ11(q)Φ11(q, t) (4.57)

−
(2π~)3/2

√
π

χ11(p)ξ11Γ00(p, t)
∫

q2dqχ11(q)Φ11(q, t),

with an analogous equation for them1 = −1 component

i~
∂

∂t
Γ00(p, t) =

2(2π~)3/2i
√

4π
Im

(

χ11(p)ξ1

∫

q2dqχ11(q)Φ11(q, t)Φ
⋆
11(p, t) (4.58)

+χ1−1(p)ξ−1

∫

q2dqχ1−1(q)Φ1−1(q, t)Φ
⋆
1−1(p, t)

)

.

Using the previous definitions and assumptions about the|m1| = 1 states we can

assumeΦ11(p, t) = Φ1−1(p, t). This means that only one equation for the pair

function has to be propagated and the equation for theΓ00(p, t) component of the

pair function is modified in a trivial way. These lowest orderequations are then

nearly identical to those for them1 = 0 component of the pair function.

4.8.1 Comparison of them1 = 0 and |m1| = 1 dynamics

We note that the equations governing the dynamics of the|m1| = 1 and them1 = 0

states are identical. The differences will arise from the resonance parameters en-

tering the equations and we note that in the case of40K the resonance parameters

are very similar for both relative angular momentum projections, the main dif-

ference being the shift in the resonance position. We can therefore predict that

the numbers of molecules produced in each projection will bevery similar if we

use the same input conditions. From a physical point of view we may not expect

this similarity to be the case in every atomic species, especially in cases where

the dipole-dipole interaction dominates at low energy, butin this case we would

not be able to use our model potential because it relies on theassumptions about
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the long-range form of the potential at low energy. In the6Li experiments, there

was no observed dipole-dipole splitting so the resonances corresponding to the

different projections will have identical parametrisation in our model.

Fig. 4.23 shows the ratio of them1 = 0 molecules to them1 = ±1 molecules

as function of inverse ramp speed, where the molecule production is calculated

from the Landau-Zener formula. At low enough ramp speeds both components

produce 100 % molecules so the ratio is unity. At high ramp speeds the molecule

production can be approximated by 2πδm1
LZ and the ratio of this factor of the com-

ponents corresponds to the quantity
a0

bg∆B0

a1
bg∆B1 , where the superscripts denote the value

of m1. This quantity is marked on the figure by the dotted, black line. It should

be noted that this quantity is independent of the trap parameters and although we

expect both efficiencies to vanish as the ramp speed goes to infinity, the ratio of

the efficiencies goes to a constant that is not equal to unity.

We have already seen that in the many-body dynamics the molecule produc-

tion from an infinitely fast sweep of the magnetic field will not be expected to be

zero. In fact it is possible to produce a large number of molecules provided we

start close enough to the resonance. This is because of the many body pairing

in the initial state of the gas and the fact that we can only start at a finite mag-

netic field detuning from the resonance. In the other extremeof slow magnetic

field sweeps it is not so easy to predict the behaviour. The problem is highly non-

linear and it may be that many parameters play a role in determining the ratio of

molecule production between the two components.

In order to study how molecule production varies between thevarious projec-

tions of the relative angular momentum vector, we fix the density and the detuning

of the magnetic field for the initial and final states. We studythe variation as a

function of the sweep rate to produce a figure analogous to Fig. 4.23, but using

the mean-field equations.

To look at how the initial condition may affect the ratio of the molecule pro-

ductions in the different components we vary the initial magnetic field and cal-

culate the molecule production from an infinitely fast sweep. This is plotted in

Fig. 4.24 and it can be seen that in contrast to the Landau-Zener case plotted in

Fig. 4.23 the ratio is not constant but increases as the initial field detuning is in-

creased. However at some value of the detuning we expect the production from
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Figure 4.23: Comparison of the Landau-Zener association probability between
m1 = 0 andm1 = 1 molecules represented as a quotient. At high low ramp
speeds the two probabilities converge upon each other as they both approach 100
%. At higher ramp speeds the quotient approaches the value 1.018, shown by the

dotted line. This corresponds to the ratio
a0

bg∆B0

a1
bg∆B1 , where the superscripts denote the

projection of the angular momentum vector. The reason for this limit can be seen
from Eq. (4.6) and is dependent only upon the resonance parameters.

both components to be zero, with the|m1| = 1 going to zero before the other

component, so that if we extended this curve to higher detunings it would be dis-

continuous. In Fig. 4.25 we vary the final magnetic field at which the molecule

production is calculated. We see that the ratio does depend on the value of the

final magnetic field position, but the difference remains fairly small. In contrast

to the Landau-Zener approach, we see that the ratio is sensitive to the initial and

final conditions.

In Fig. 4.26 we have plotted the molecule production efficiency for both the

m1 = 0 (solid lines) and|m1| = 1 (dashed lines) molecules. The different colours

show different initial magnetic field positions. The final magnetic field is held con-

stant at a value below the resonance. It can be seen that the results of the|m1| = 1

dynamics are at least qualitatively similar to those of them1 = 0 molecules and
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Figure 4.24: Ratio of the molecule production in them1 = 0 component to the
|m1| = 1 component as a function of the initial magnetic field detuning from the
resonance. The sweep rate is infinite and the final magnetic field is held at a
constant detuning below the resonance. In contrast to Fig. 4.23 the ratio of the
molecule productions varies with the initial magnetic fielddetuning and increases
as the field moves away from the resonance. At some point the molecule pro-
duction in both components will be zero, so we would expect this curve to be
discontinuous if extended to higher detunings.

do not significantly differ in value. We make a comparison of the two projections

by plotting the ratio of the number of molecules produced as afunction of ramp

speed in Fig. 4.27 with each line corresponding to the same initial magnetic field

detuning in as Fig. 4.26. As the ramp speed is reduced the lines converge such that

the number of molecules produced is independent of the initial magnetic field and

the projection of the angular momentum vector. We conclude that there is no sig-

nificant difference between the molecule production in different relative angular

momentum projections.
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Figure 4.25: Ratio of the molecule production in them1 = 0 component to the
|m1| = 1 component as a function of the final magnetic field detuning from the
resonance. The sweep rate is infinite and the initial magnetic field is held at a con-
stant detuning above the resonance. The number ofm1 = 0 molecules increases
relative to the other component as the final field moves away from the resonance,
but the variation is small.
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Figure 4.26: Molecule production efficiency as a function of the inverse ramp
speed. The solid lines representm1 = 0 molecules the dashed lines represent
|m1| = 1 molecules. The different colours represent different magnetic field detun-
ings from the resonance of 0.727 G (red), 1.527 G (green) and 2G (blue).
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Figure 4.27: The ratio of the molecules produced for the different projections of
the angular momentum vector as a function of the inverse rampspeed. The differ-
ent colour lines represent different magnetic field detunings from the resonance
of 0.727 G (red), 1.527 G (green) and 2 G (blue). As the initialmagnetic field
approach the resonance the number of molecules produced in either component
becomes comparable. At low enough ramp speeds the ratios converge to unity.
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4.9 Conclusion

We have derived the dynamic mean-field equations for fermions in an ultra cold

gas and solved these equations to calculate the molecule production from a linear

sweep of the magnetic field across a Feshbach resonance, showing that the number

of molecules produced depends on the initial conditions. Inparticular, we have

shown that in order to produce a high yield of molecules from the dynamics a high

density is required, so that a larger range of magnetic fieldscan be accessed. We

have shown that it is possible to study the dynamics of the system by retaining

only lowest order partial wave components in the mean-field equations and have

taken this approach to both them1 = 0 and the|m1| = 1 dynamics.

We have shown that after a fast sweep of the magnetic field, thestate of the

system does not change significantly as the magnetic field is held constant at the fi-

nal magnetic field position. The oscillations in the molecule production are highly

damped and only slightly increase as the initial and final fields move away from

the resonance position. We have shown that there is no significant difference be-

tween the values of the molecule production between the different components

corresponding to the different projections of the relative angular momentum vec-

tor.

We have compared the results of a Landau-Zener calculation for two atoms

in a tight harmonic trap against our mean-field results. We have seen that there

are some qualitative similarities between the two cases in regards to the molecule

production as a function of inverse ramp speed. However, there are important dif-

ferences between the two approaches. Some of the differences stem from the fact

that in the many-body calculation we can have a variety of initial conditions. In

the Landau-Zener calculation we only consider the two-bodystates infinitely far

from the resonance. Another feature of the Landau-Zener approach is the presence

of a trapping potential that we have not included in the many-body calculation.

However, by looking at the solution to the Landau-Zener problem in a spherical

box (appendix G), it seems unlikely that the harmonic trap isthe source of the

discrepancy and there is some many-body effect behind the differing behaviour.

In principle we could produce 100 % conversion of atoms to molecules with

a slow enough ramp speed. In experiments onp-wave Feshbach molecules using
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linear sweeps of the magnetic field it has not been possible toachieve more than

25 % atom to molecule conversion. This suggests that there are processes that

have been neglected in our model. Most likely is that the initial state is not a BCS

paired state in the experiments. We have also neglected lossmechanisms, such as

three-body recombination and the finite lifetime of the molecules.



Chapter 5

Conclusion

We have studied molecule production in a single component ultracold Fermi gas

from linear sweeps of a magnetic field. We have shown that at the two-body level

the interactions will be dominated byp-wave scattering and have used the near

threshold behaviour of the system to derive a model separable potential. We have

then applied this to the BCS theory to fix the initial state of the gas from which

we will produce molecules. We have derived the dynamical mean field equations

and applied them to linear sweeps of the magnetic field acrossa p-wave Feshbach

resonance to study molecule production.

We have shown that in the two-body case it was possible to provide a reason-

able description of the system close to threshold using a single channel model.

We argued that although in the two channel modelp-wave Feshbach resonances

are dominated by the closed channel component, the behaviour of the bound

state and the resonance state mirror each other and therefore the use of a sin-

gle channel model is sufficient, at least for an initial study. The result is ap-

wave binding energy that, close to threshold, varies linearly with magnetic field

detuning from the resonance. This can be compared to thes-wave binding en-

ergy that varies quadratically with magnetic field detuningfrom the resonance.

Our results are in agreement with previous theoretical and experimental stud-

ies [20, 3, 21, 2, 97, 99, 101, 102, 106, 107].

We have shown that in the case of40K it is possible to have two separate

thermodynamic states corresponding to the different projections of the angular
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momentum vector onto the magnetic field axis. We have compared our model of

the BCS state to a Bose-Fermi model that neglects the background scattering in

the entrance channel and introduces a cut-off momentum, and shown that there is

little difference between the results of the two models.

To study the dynamics we have varied the temperature and density of the gas,

as well is the initial magnetic field, the final magnetic field and the rate at which

the magnetic field is varied across a Feshbach resonance. We have seen that the

initial state of the gas has a large impact on the molecule production. Specifically

high densities and low temperatures are needed to allow for abroad range of ini-

tial magnetic fields from which to produce molecules. Motivated by the results of

the BCS chapter we have treated them1 = 0 and the|m1| = 1 dynamics separately

and shown that there is little difference between molecule production in the two

components. We have used the equations for the lowest order partial wave com-

ponents, but shown that adding higher order components doesnot significantly

change the molecule production. Using the mean-field dynamical equations it is

possible to convert near to 100 % of atoms into molecules using linear sweeps of

the magnetic field. It is also possible to produce a significant number of molecules

by projecting the initial state of the gas onto the final boundstate.

We have studied the dynamics of the molecule production after an infinitely

fast sweep of the magnetic field and shown that there is littlevariation in the

molecule density following the magnetic field variation. Specifically we have

observed minute oscillations of the molecule density with very high damping,

more so than in thes-wave case [129]. In contrast to thes-wave case we have

found that the amplitude of the oscillations increases as the initial magnetic field

moves away from the resonance and the final magnetic field position. The reason

for this is not clear as the problem is highly non-linear and may be the subject of

a future study. What can be inferred from this is that it may not be possible to

observe atom-molecule coherence in these gases.

In certain cases we have compared our results with those of the Landau-Zener

approach for two atoms in a tight harmonic trap for which analytic results can

be derived. We have seen that there is some behavioural similarity between the

results of the Landau-Zener calculation and the the many-body calculation in re-

lation to varying ramp speed. This highlights an important restriction of both
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approaches; namely that the Landau-Zener sweep begins and ends infinitely far

from the resonance, whereas the many-body calculation muststart within a range

of magnetic field for which pairing already exists. A more numerically demanding

approach to the two-body problem could begin the sweep within a finite magnetic

field range. We have seen that the molecule production efficiencies in the many-

body and Landau-Zener approach have different dependencies on the density. By

solving the Landau-Zener problem in a spherical well we havefound that the

Landau-Zener parameter has the same dependence on the density as it does in a

harmonic trap. This demonstrates some difference in the results of the two-body

and many-body approaches.

The dynamical mean-field equations used in this thesis provide a lowest or-

der approximation to the many-body dynamics of a Fermi gas atlow tempera-

ture. These can act as a test on higher-order approximationsand determine to

what extent these higher-orders have an effect on the dynamics. In particular,

a non-Markovian Boltzmann equation, that includes contributions from higher-

order correlation functions, could be used to study molecule formation from un-

paired atoms; such an approach has already been implementedin Bose gases [24].

A natural extension of this thesis would be to apply the quantum Boltzmann equa-

tion to fermions with a view to studyp-wave molecule formation. This would

allow for a broader range of magnetic field variations and initial conditions from

which to produce molecules. In particular, it would be possible to study the forma-

tion of p-wave Feshbach molecules using a resonantly oscillating magnetic field,

similar to the experiments of Gaebleret al. [21] and Fuchset al. [3]. A Boltz-

mann equation requires the evolution of higher order correlation functions and is

significantly more computationally demanding than the mean-field approach of

this thesis.

A direct comparison of our results to experimental data is not currently possi-

ble, since when deriving our model we excluded certain processes. In particular,

we have neglected three-body processes and the molecule lifetime in our model,

which may be important in determiningp-wave molecule production efficiencies.

Experiments onp-wave molecules have failed to produce more than a 25 % yield

of molecules, despite the ramp speeds being less than 1 G/ms [20, 22, 23]. It

should be noted that these experiments were performed at temperatures on the
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order ofµK and it was not possible to extract density profiles of the gas. It has

been suggested that for thep-wave resonances studied that the formation of a su-

perfluid state may not be possible in 3D [163], due to high decay rates. Moreover,

experiments have shown thatp-wave molecules have a short lifetime [21] making

it difficult to study the properties of the molecules after their formation. Inadaet

al. [22] have shown that the ratio of inelastic to elastic collisions in the systems

studied may preclude cooling to quantum degeneracy via conventional techniques.

This case shares similarities with the difficulties encountered in Bose condensing

caesium. Initially it was not possible to cool caesium to quantum degeneracy due

to a large Feshbach resonance close to 0 G [164]. This caused the three-body loss

rate coefficient to be large in this region resulting in heating of the gas and atom

loss. Three body loss mechanisms can be very complex and can depend on the

Zeeman structure of a system, exhibiting maxima and minima that vary by several

orders of magnitude. A knowledge of the three body loss mechanisms in caesium

eventually led to the realisation of Bose-Einstein condensation of133Cs [164]. By

analogy, it could be hoped that further investigation may lead to the development

of new cooling techniques allowing quantum degeneracy to berealised in these

systems. Furthermore, there may be other spin configurations or atomic species

in which these challenges are easier to overcome.

The separable potential that we have derived could be adapted for use with

other atomic species, shouldp-wave Feshbach resonances be identified and mea-

sured in them. In fact, this potential was derived only to model the behaviour of

the system close to threshold and could therefore be used to study other scatter-

ing processes in this regime, for example modelling three-body scattering. The

model of the BCS state could be used to study other atomic species in the same

regime and perhaps assess the feasibility of producing a resonant condensate in

that system.

The methods given here may also be used to study molecule production in

higher order partial waves, should such systems become available for study. In

this case the interaction potential would have to be re-derived to account for the

threshold behaviour. Higher order partial wave symmetry has already been ob-

served in ultra cold gases [165] and is believed to play a rolein unconventional

superconductivity. The field of cold and ultracold atomic gases is expanding to an
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extent that it would be difficult to predict every topic to which this thesis would be

relevant but as stated in the introduction the inter disciplinary nature of research

in this field is indicative of wide applications in the future.



Appendix A

Spherical well scattering solution

In this appendix we consider the scattering of two particlesfrom a spherical well

potential. This is an illustrative example that we can solveanalytically to find the

low energy scattering probability in both thes-wave and thep-wave. Consider a

potential of the form

V(r) =















−V0 for r < rs

0 for r > rs,
(A.1)

wherer is the radial coordinate in the centre of mass frame. Starting with the

radial Schrödinger equation

[

d2

dr2
− ℓ(ℓ + 1)

r2
− U(r) + k2

]

ψℓk(r) = 0, (A.2)

whereℓ is the quantum number representing the magnitude of the relative angular

momentum,k is the angular wave number and

U(r) ≡ 2µV(r)
~2

(A.3)

is the reduced potential. The problem be separated into two regions; one forr < rs

and one forr > rs.
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Figure A.1: Spherical well potential.a is the radius of the well andV0 is the depth
of the well

A.1 r < rs

Inside the well the Schrödinger equation becomes

[

d2

dr2
−
ℓ(ℓ + 1)

r2
+ 2µV0 + k2

]

ψℓk(r) = 0. (A.4)

By defining

K2 = k2 + 2µV0, (A.5)

the solution inside the well is the Ricatti-Bessel function[60, 116]

ψi
ℓk(r) = ĵℓ(Kr), (A.6)

where the normalisation constant has been set to one. Detailed properties of

Bessel functions can be found in Abramowitz and Stegun [166].
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A.2 r > rs

Outside of the well the potential is equal to zero so that the solution for positive

energies will just be the free solution of the radial Schödinger equation

[

d2

dr2
− ℓ(ℓ + 1)

r2
+ k2

]

ψℓk(r) = 0, (A.7)

which is the linear combination

ψo
ℓk(r) = Bℓ ĵℓ(kr) +Cℓn̂ℓ(kr), (A.8)

where Bℓ and Cℓ are normalisation constants. For negative energies the wave

function will be zero forr > rs leading to bound state solutions. For a finite well

there will be a finite number of solutions that correspond to bound states.

A.3 Matching solutions

In order that the wave function is continuous the solutions and their derivatives

must now be matched atr = rs. Matching the wave functions gives

ĵℓ(Krs) = Bℓ ĵℓ(krs) +Cℓn̂ℓ(krs). (A.9)

Matching the derivatives yields

K ĵ′ℓ(Krs) = kBℓ ĵ′ℓ(krs) + kCℓn̂
′
ℓ(krs), (A.10)

where ĵ′ℓ(z) = d ĵℓ(z)/dz and n̂′ℓ(z) = dn̂ℓ(z)/dz. The logarithmic derivative can

then be matched to give the condition

K ĵ′ℓ(Krs)

ĵℓ(Krs)
=

k ĵ′ℓ(krs) + kCℓ

Bℓ
n̂′ℓ(krs)

ĵℓ(krs) +
Cℓ

Bℓ
n̂ℓ(krs)

. (A.11)
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Given the asymptotic form of the full scattering radial wavefunction

ψℓk(r)→ lim
r→∞

eiδℓ(k) sin

(

kr −
lπ
2
+ δℓ(k)

)

, (A.12)

whereδℓ(k) is the partial wave phase shift, and the asymptotic form of the Riccati

functions

ĵℓ(z)→ lim
z→∞

sin

(

z−
ℓπ

2

)

, (A.13)

n̂ℓ(z)→ lim
z→∞
− cos

(

z−
ℓπ

2

)

, (A.14)

it is possible to write

tanδℓ(k) = −
Cℓ

Bℓ

. (A.15)

This allows Eq. (A.11) to be solved for tanδℓ giving

tanδℓ(k) =
k ĵ′ℓ(krs) ĵℓ(Krs) − K ĵℓ(krs) ĵ′ℓ(Krs)

kn̂′
ℓ
(krs) ĵℓ(Krs) − Kn̂ℓ(krs) ĵ′

ℓ
(Krs)

. (A.16)

The partial wave scattering lengths are found from the definition

aℓ = lim
k→0
−

tanδℓ(k)
k2ℓ+1

. (A.17)

.

A.4 s-wave scattering length

Using the definitions of the Riccati functions forℓ = 0 [116]

ĵ0(z) = sin(z), (A.18)

ĵ′0(z) = cos(z), (A.19)

n̂0(z) = − cos(z), (A.20)

n̂′0(z) = sin(z). (A.21)
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We can then insert these into Eq. (A.16) to give

tanδ0(k) =
kcos(krs) sin(Krs) − K sin(krs)cos(Krs)
ksin(krs) sin(Krs) + K cos(krs) cos(Krs)

, (A.22)

and dividing out the cosine factors

tanδ0(k) =
k tan(Krs) − K tan(krs)
k tan(krs) tan(Krs) + K

. (A.23)

Using the fact that at low values ofk then tan(krs) ≈ krs we can write

a0 = rs

(

1− tan(K0rs)
K0rs

)

, (A.24)

whereK0 =
√

2µV0. It is interesting to note that at values ofK0rs = π the scatter-

ing volume is equal to the radius of the well. Fig. A.2 is a plotof the scattering

length as a function ofK0rs. The scattering length has singularities at values of

K0rs = π/2 which are associated with the appearance of a bound state inthe sys-

tem, as discussed in chapter 2

A.5 p-wave scattering volume

We start with the asymptotic expression for the Riccati functions in the limit of

small argument

ĵ1(z)→
z2

3
, (A.25)

ĵ′1(z)→
2z
3
, (A.26)

n̂1(z)→ −
1
z
, (A.27)

n̂′1(z)→
1
z2
. (A.28)

Substituting these into Eq. (A.16) and replacingK with Ko gives

tanδ1(k)
k3

=

2
3r3

s ĵ1(K0rs) − K0 ĵ′1(K0rs)
r4

s

3

ĵ1(K0rs) + rsK ĵ′1(K0rs)
. (A.29)
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Figure A.2: Plot ofa1/rs as a function ofK0rs/π. For fixedrs we can interpret the
increasing argument with an increasing well depth. ForK0rs = π the scattering
length is equal to the radius of the well. For values ofK0rs = π/2 there is a
singularity in the scattering length which is associated with a bound state entering
the system.
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Figure A.3: Plot ofa1/r3
s as a function ofK0rs/π. The scattering volume has a

singularity atK0rs = π and at integer multiples ofπ.

Given that forℓ = 1 the Ricatti-Bessell function is given by [60]

ĵ1(z) =
1
z

sin(z) − cos(z), (A.30)

and

ĵ′1(z) =
1
z

cos(z) + sin(z) − 1
z2

sin(z), (A.31)

the p-wave scattering volume can be written as

a1 =
r3

s cos(K0rs) +
K0r4

s

3 sin(Krs) − r2
s

K0

rsK0 sin(K0rs)
. (A.32)

Fig. A.3 is a plot of thep-wave scattering volume as a function ofK0rs. The

scattering volume has a singularity for values ofK0rs = π, associated with the
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appearance of a bound state in the system as discussed in Chapter 2. Interestingly

this aπ/2 phase shift from the values at which thes-wave bound state appears.

The values for whicha1 = r3
s can only be found numerically.

A.6 Plotting the s-wave radial function at zero en-

ergy

At zero energy the wave functions become functions of position only. For the

ℓ = 0 wave function we can match the solution at the edge of the well

sin(Kors) = B0rs−C0. (A.33)

We also match the derivative

K0 cos(K0rs) = B0. (A.34)

By combining these two equations we get

sin(Kors) = K0rs cos(K0rs) −C0. (A.35)

This allows the zero energy wave function in the outer regionto be written as

ψo
00(r) = K0 cos(K0rs)r + sin(K0rs) − K0rs cos(K0rs). (A.36)

By solving this equation for the point whereψo
00(r) = 0 it can be seen that the

value of the radius at this point coincides with the value of the scattering length

given in Eq. (A.24).
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A.7 Plotting the p-wave radial function at zero en-

ergy

Matching the solutions with the low momentum asymptotic conditions gives the

relations
1

K0rs
sin(K0rs) − cos(K0rs) = B1

r2
s

3
−C1

1
rs
, (A.37)

and
cos(K0rs)

rs
+ K0 sin(K0rs) −

sin(K0rs)
K0r2

s

= B1
2rs

3
+C1

1
r2

s

. (A.38)

These can be solved to give the constants

B1 =
K0

rs
sin(K0rs), (A.39)

and

C1 = rs cos(K0rs) +
r2

sK0

3
sin(K0rs) −

1
K0

sin(K0rs). (A.40)

The p-wave radial function in the outer region can be written as

ψo
10(r) =

K0

3rs
sin(K0rs)r

2 −
(

rs cos(K0rs) +
r2

sK0

3
sin(K0rs) −

1
K0

sin(K0rs)

)

1
r
.

(A.41)

Solving this equation forr3 at the point where the function crosses the radial axis,

r1, we can see that,

r3
1 = 3a1 (A.42)

on comparison with Eq. (A.32). Fig. 2.1 shows a plot of thes-wave andp-wave

radial function and the positions of thes-wave scattering length as well as the

position of the cube root of thep-wave scattering volume.
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Resonance and threshold

parameters

In this section we summarise the resonance parameters used to model both the

s-wave andp-wave Feshbach resonances. For thes-wave resonances we quote

values previously obtained in other studies. The parameters for modelling the two-

body interaction close to ap-wave resonance are calculated from the experimental

data given in Gaebleret al. [21] and Ticknoret al. [2] for 40K and Fuchset al. [3]

for 6Li. In the vicinity of a resonance the scattering length is given by Eq. (2.32)

aℓ(B) = abg
ℓ

(

1− ∆Bℓ

B− Bℓ0

)

. (B.1)

The inverse of this can be expanded in a Taylor series aboutB− Bℓ0 = 0,

1
a(B)

= −B− B0

abg∆B
− (B− B0)2

abg(∆B)2
+O(B− B0)

3, (B.2)

where theℓ dependence has been dropped for brevity. Provided the parameter

|∆Babg| >> 1 this can be written as a power series inB to second order,

1
a(B)

= −
∆B+ B2

0

abg(∆B)2
+

2B0 − ∆B
abg(∆B)2

B−
1

abg(∆B)2
B2. (B.3)
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This equation can be directly compared with Eq. (8) in Ticknor et al. [2] to give

the parameters for thep-wave resonance in40K. The results of this matching are

given in Table B.2. These can be checked by numerically solving the Schrödinger

equation and matching to the long-range form of the wave function. To do this

a C6/r6 potential was used where theC6 parameter is given in Table B.1. Thes-

wave binding energy was fixed by the value given in the same table. The scattering

length for thes-wave is given by

a0 = 174.82 a.u.

and for the scattering volume in thep-wave

a1 = −1126660 a.u.

Another check on these values is the use of Eq. (25) of Gao [4] that relates thes-

wave length andp-wave scattering volume. The result of each angular momentum

projection is given in Table. B.3. Having established the resonance parameters it

is now necessary to relate these to the parameters of the separable potential. The

low energy expansion of thep-wave binding energy is given by

E−1 ≈ −
√
πσ~2

2µa1
, (B.4)

where them1 dependence has been dropped. The values of the magnetic moments

of the 40K molecules was measured in Gaebleret al. [21] and are reproduced

in Table. B.2. Using the parametrisation of the scattering length Eq. (2.32) an

expression for the magnetic moment close to threshold can beobtained

∂E
∂B
≈ σ

√
π~2

2µ∆Babg
, (B.5)

and rearranging this gives

σ ≈ 2µ∆B
√
π~2

∂E
∂B

abg. (B.6)

This same procedure can be used to fix the parameterσ in 6Li. In this case

the magnetic moment was measured in Fuchset al. [3] and is reproduced in Ta-
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ble. B.4. As far as we are aware a similar formula for6Li to Eq. (8) in Ticknor

et al.. [2] does not exist. The width,∆B, was therefore calculated [167] and is

reproduced in Table. B.4.

Table B.1: Bound state energiesE−1 associated with the highest excited vibra-
tional states,C6 coefficients, ands-wave scattering lengths for40K and 6Li. The
values ofE−1 anda0 quoted for6Li 2 refer to the lithium triplet potential.

Species C6 (a.u.) abg
0 (aBohr) |E−1| /h (MHz)

40K 3897 [117] 174 [118] 8.9 [119]
6Li 1393.39 [120] -2160 [121] 2.4× 104 [121]

Table B.2: Calculatedp-wave resonance parameters for40K. All values are based
on the experimental data found in Ticknoret al. [2]

Projection B10 (G) abg
1 (a3

Bohr) ∆B1 (G) ∂Eb

∂B (kHz/G)

m1 = 0 198.85 -1049850 -21.95 188±2

|m1| = 1 198.373 -905505 -24.99 193±2

Table B.3: Values of thes-wave scattering length calculated using Eq. (25) of
Gao [4]. The inputs are the scattering volumes given in Table. B.2. The values
given are close to the literature value of 174 a.u. given in Table. B.1

|mℓ| a0 (a.u.)
0 182.349
1 203.526
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Table B.4: Calculatedp-wave resonance parameters for6Li taken from Fuchs
et al. [3]. It should be noted that the dipolar splitting (DPS) is on the order of
mG for 6Li. This is much lower than that observed in40K. In the experiments
this splitting was not resolvable. The data is provided for atoms prepared in two
hyperfine states|F,mF〉. In this case|1〉 = |1/2, 1/2〉 and|2〉 = |1/2,−1/2〉

Channels B0 (G) DPS (mG) ∂Eb

∂B (µK/G) abg
1 (a3

Bohr) ∆B1 (G)

|1〉-|1〉 159 10 113 -42360 -40.51

|1〉-|2〉 185 4 111 -45290 -39.54

|2〉-|2〉 215 12 118 -42800 -25.54
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The scattering cross-section

As well as finding the binding energy of thep-wave molecule we can use the

separable potential of Chapter 2 to study the low energy scattering cross-section

and compare this to the result of a coupled channels calculation. The T-matrix for

a partial wave component is given by

T1m1(z) =
|χ1m1〉ξ1m1〈χ1m1|

1− ξ1m1〈χ1m1 |G0(z)|χ1m1〉
. (C.1)

This is related to the partial wave scattering amplitude through

fℓmℓ
(p) = −

πm~
2
〈pℓmℓ |Tℓmℓ

(

p2

2µ
+ i0

)

|pℓmℓ〉, (C.2)

where it should be remembered thatm is the single particle mass andmℓ denotes

the projection of the relative angular momentum vector ontothez-axis. We there-

fore need to calculate the quantity

〈pℓmℓ|Tℓmℓ

(

p2

2µ
+ i0

)

|pℓmℓ〉 =
〈pℓmℓ|χ1m1〉ξ1m1〈χ1m1 |pℓmℓ〉
1− ξ1m1〈χ1m1 |G0(z)|χ1m1〉

. (C.3)

Remembering thatx = mξm1/(4π~
2σm1) and

〈pℓmℓ|χ1m1〉 =
pσm1

π~5/2
e−p2σ2

m1
/2~2 (C.4)
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so,

1− ξ1m1〈χ1m1 |G0(z)|χ1m1〉 =1− ξm
σ2

m

π2~5/2

∫

q4dq
e−q2σ2

m/~
2

E − q2

m + i0
(C.5)

=1− ξm
σ2

m

π2~5

∫

q4dqe−q2σ2
m/~

2

















−iπδ

(

E −
q2

m

)

+ P
1

E − q2

m

















=1+ iξm
σ2

m

2π~5
m5/2E3/2e−mEσ2

m/~
2 −

ξmσ
2
m

π2~5
P

∫

q4dq
e−q2σ2

m/~
2

E − q2

m

=1+ iξm
σ2

m

2π~5
m5/2E3/2e−mEσ2

m/~
2
+

ξmm
4π3/2σm~

2
+
ξmσmm2

2π3/2~4
E

where a low energy expansion has been used in the last line andP represents the

principal part. WritingE = p2

m

f1m(p) =
−mp2σ2

mξm

2π~4

e−p2σ2
m/~

2

1+ iξm
σ2

m

2π~5 mp3e−p2σ2
m/~

2
+

ξmm
4π3/2σm~

2 +
ξmσmm
2π3/2~4

p2
(C.6)

Using the low energy effective range expansion

p2ℓ

fℓm(p)~2ℓ
= − 1

aℓ
+

rℓp2

2~2
− ip2ℓ+1

~2ℓ+1
, (C.7)

in the limit p→ 0 we find that

a1 = 2σ3
m















1
1
xm
+ 1

π1/2















(C.8)

r1 = −
2

π1/2σm
(C.9)

By looking for the pole in the scattering amplitude (and hence theT-matrix) we

can show that in the limitp→ 0

p2 = −
√
πσm~

2

a1
(C.10)

which is the same expression that is obtained for the low energy expansion of the

bound state energy. This shows that the resonance energy is continuous going
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Figure C.1: p-wave elastic scattering cross section for40K colliding in the
|9/2,−7/2〉 channel as a function of collision energy. The solid blue line corre-
sponds to the pseudo potential model. The red crosses are from a coupled-channel
calculation [168].

from positive to negative detuning. The partial wave cross-section is given by

σℓ = 4π (2ℓ + 1) | fℓ(p)|2 (C.11)

A comparison of the result obtained using the separable potential model presented

in this thesis and a coupled channels calculation using Born-Oppenheimer poten-

tials is given in Fig. C.1 [168] for a range of magnetic fields above the resonance.
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BCS Solution

D.1 The Green’s function and the pairing function

In the pairing approximation the many-body Hamiltonian canbe written in second

quantisation as

H =
∑

i j

〈i|T | j〉a†i a j +
1
2

∑

i jkl

〈i j |V|kl〉a†i a
†
j 〈alak〉 +

1
2

∑

i jkl

〈i j |V|kl〉〈a†i a
†
j 〉alak. (D.1)

Here,T andV are the single particle kinetic energy operator and the two particle

interaction operator, respectively. The brackets〈...〉 represent averages over the

thermodynamic state where the particle number is not conserved. In the finite-

temperature formalism the equations of motion for the single-particle creation

and annihilation operators in the pairing approximation are given by

~
∂

∂τ
a†r (τ) =

∑

i

〈i|T |r〉a†i (τ) −
∑

i

〈Φ|V|ri 〉ai(τ), (D.2)

~
∂

∂τ
ar(τ) = −

∑

i

〈r |T |i〉ai(τ) +
∑

i

〈ri |V|Φ〉a†i (τ), (D.3)

with the useful definition

|Φ〉 =
∑

i j

〈aia j〉|i j 〉. (D.4)
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Hereτ is imaginary time as explained in the literature [127]. Two other facts have

also been used that correspond to systems of fermions:

|i j 〉 = −| ji 〉, (D.5)

〈aia j〉 = −〈a jai〉. (D.6)

The single-particle Green’s function is defined as

grs(τ, τ
′) = −〈Tτ[ar(τ)a

†
s(τ
′)]〉. (D.7)

HereTτ is the imaginary time ordering operator that places the lowest value ofτ

to the right. We can find the equation of motion for this function to be

~
∂

∂τ
grs(τ, τ

′) = −~ ∂
∂τ
〈Tτ[ar(τ)a

†
s(τ
′)]〉, (D.8)

~
∂

∂τ
grs(τ, τ

′) = −~δ(τ − τ′)δrs − ~〈Tτ[
∂

∂τ
ar(τ)a

†
s(τ
′)]〉, (D.9)

~
∂

∂τ
grs(τ, τ

′) = −~δ(τ−τ′)δrs+〈Tτ[
∑

i

〈r |T |i〉ai(τ)a
†
s(τ
′)−

∑

i

〈ri |V|Φ〉a†i (τ)a
†
s(τ
′)]〉.

(D.10)

We define a new function that represents pairing in the gas

F†rs(τ, τ
′) = −〈Tτ[a

†
r (τ)a

†
s(τ
′)]〉. (D.11)

This allows us to write the equation of motion as

~
∂

∂τ
grs(τ, τ

′) = −~δ(τ−τ′)δrs−
∑

i

〈r |T |i〉gis(τ, τ
′)+

∑

i

〈ri |V|Φ〉F†is(τ, τ
′). (D.12)

The equation for the pair function can be written as

~
∂

∂τ
F†rs(τ, τ

′) = −〈Tτ[
∑

i

〈i|T |r〉a†i (τ)a
†
s(τ
′) −

∑

i

〈Φ|V|ri 〉ai(τ)a
†
s(τ
′)]〉. (D.13)
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Using the definition of the Green’s function

~
∂

∂τ
F†rs(τ, τ

′) =
∑

i

〈i|T |r〉F†is(τ, τ
′) −

∑

i

〈Φ|V|ri 〉gis(τ, τ
′). (D.14)

Now putting the equation in the momentum representation andsetting the spin

indices on the LHS of the equation we define

|r〉 = |p1α〉, (D.15)

|s〉 = |p2β〉, (D.16)

|i〉 = |qγ〉. (D.17)

Equation (D.14) can now be written as

~
∂

∂τ
F†αβ(p1, p2, τ, τ

′) =
∑

qγ

〈qγ|T |p1α〉F†γβ(q, p2, τ, τ
′)

−
∑

qγ

〈Φ|V|p1qαγ〉gγβ(q, p2, τ, τ
′). (D.18)

Using the properties of a translationally invariant systemwe write

~δ(p1 + p2)
∂

∂τ
(2π~)3/2F†αβ(p1, τ, τ

′) =
∑

qγ

Ep1δ(q − p1)δ(q + p2)δγα(2π~)
3/2F†γβ(q, τ, τ

′)

−
∑

qγ

〈Φ|V|p1 − q
2

αγ〉δ(q + p1)δ(q − p2)δβγ(2π~)
3/2gγβ(q, τ, τ′).

(D.19)

The delta functions come from functions expressing pairs that have zero momen-

tum and also from the single particle Green’s function expressing translational

invariance. The factors of (2π~)3/2 come from the normalisation of the pair and

Green’s function. Evaluating the summations using the delta functions and divid-
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ing out the common delta function gives

~
∂

∂τ
F†αβ(p, τ, τ

′) = EpF
†
αβ(p, τ, τ

′) −
∑

γ

〈Φ|V|pαγ〉gγβ(p, τ, τ′). (D.20)

We have used the fact thatgγβ(p, τ, τ′) = gγβ(−p, τ, τ′). The equation for the

Green’s function can be written using a similar representation

~
∂

∂τ
gαβ(p1, p2, τ, τ

′) = − ~δ(τ − τ′)δ(p1 − p2)δαβ

−
∑

qγ

〈p1α|T |qγ〉gγβ(q, p2, τ, τ
′)

+
∑

qγ

〈p1qαγ|V|Φ〉F†γβ(q, p2, τ, τ
′). (D.21)

We again use the properties of the homogeneous system to factor out the delta

functions

~δ(p1 − p2)
∂

∂τ
gαβ(p1, τ, τ

′) = − ~(2π~)−3/2δ(τ − τ′)δ(p1 − p2)δαβ

−
∑

qγ

Epδ(p1 − q)δαγδ(q − p2)gγβ(q, τ, τ′)

+
∑

qγ

〈
p1 − q

2
αγ|V|Φ〉δ(q + p2)δ(p1 + q)F†γβ(q, τ, τ

′).

(D.22)

We evaluate the summations and divide out the common delta function to give

~
∂

∂τ
gαβ(p, τ, τ′) = − ~(2π~)−3/2δ(τ − τ′) − Epgαβ(p, τ, τ′)

+
∑

γ

〈pαγ|V|Φ〉F†γβ(−p, τ, τ′).

(D.23)

We introduce the notation

∆αβ(p) = 〈pαβ|V|Φ〉. (D.24)
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This quantity is commonly referred to as the gap function. Wenow write Eq. (D.23)

as

~
∂

∂τ
gαβ(p, τ, τ′) = −~(2π~)−3/2δ(τ − τ′) − Epgαβ(p, τ, τ′) −

∑

γ

∆αγ(p)F†γβ(p, τ, τ
′),

(D.25)

and Eq. (D.20) as

~
∂

∂τ
F†αβ(p, τ, τ

′) = EpF†αβ(p, τ, τ
′) −

∑

γ

∆⋆αγ(p)gγβ(p, τ, τ′). (D.26)

We define the Fourier representation to be

gαβ(p, τ, τ′) =
1
β~

∑

n

e−iωn(τ−τ′)gαβ(p, ωn)

F†αβ(p, τ, τ
′) =

1
β~

∑

n

e−iωn(τ−τ′)F†αβ(p, ωn) (D.27)

whereωn = (2n + 1)π/~β provides the correct statistics for fermions [127]. The

equations can be written as algebraic expressions

−i~ωngαβ(p, ωn) = −~(2π~)−3/2 − Epgαβ(p, ωn) −
∑

γ

∆αγ(p)F†γβ(p, ωn), (D.28)

−i~ωnF
†
αβ(p, ωn) = EpF

†
αβ(p, ωn) −

∑

γ

∆⋆γα(p)gγβ(−p, ωn). (D.29)

These are the BCS equations and can be solved for the Green’s function and the

function we introduced to represent pairing

g(p, ωn) =
−~(i~ωn + Ep)

(2π~)3/2
(

~2ω2
n + E2

p + |∆(p)|2
) , (D.30)

F†(p, ωn) =
~∆⋆(p)

(2π~)3/2
(

~2ω2
n + E2

p + |∆(p)|2
) . (D.31)

In the last lines we have dropped the spin indices since we wish to describe a

single component spin polarised gas.
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D.2 Evaluation of the gap function

We wish the evaluate Eq. (D.24) at a fixed temperature and density. We therefore

write

∆⋆(p) = −
(2π~)3/2

β~

∫

d3q
∑

n

e−iωnη〈p|V|q〉F†(q, ωn), (D.32)

∆⋆(p) = −1
β

∫

d3q
∑

n

e−iωnη〈p|V|q〉 ~∆⋆(q)
~2ω2

n + E2
q + |∆(q)|2

, (D.33)

∆⋆(p) = −
1
β~

∫

d3q
∑

n

e−iωnη〈p|V|q〉
~∆⋆(q)
~2ω2

n + ǫ
2
q

, (D.34)

where we have definedǫ2
q = E2

q + |∆(q)|2. Now,

∆⋆(p) =
1
β~

∫

d3q
∑

n

e−iωnη〈p|V|q〉~∆
⋆(q)

2ǫq

(

1
i~ωn − ǫq

− 1
i~ωn + ǫq

)

. (D.35)

We can now use Cauchy’s integral formula to calculate the summation over the

frequencies,ωn, through

1
2πi

∫

c
f (z)dz=

∑

n

f (zn). (D.36)

We now define the function

f (z) =
1

z− β

2ǫq

− 1

z+ β

2ǫq

, (D.37)

so that the sum over the residues is given by

S =
β

2

∑

n

f (zn) (D.38)

where

zn =
β~ωn

2
i =

2n+ 1
2

πi (D.39)
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that ensures the correct Fermi statistics, as already mentioned. it can be seen that

tanh(z) has poles at the positionsz= zn. Now we can consider the sum

S =
β

2
1

2πi

∫

C
dz f(z) tanh(z) (D.40)

The contour encloses the imaginary axis but will not enclosethe poles on the real

axis atz= ±β
~
ǫk. The contour can thus be deformed to travel around these points.

The contour around the outside of these points will not contribute as|z| → ∞.

This leaves the summation of the function evaluated at the poles. Thus

S = −β tanh
(

β
ǫq

2

)

. (D.41)

The minus sign comes from the fact that the contour encloses the poles in the

mathematically negative sense. This gives the gap equationfinally as

∆⋆(p) = −
∫

d3q〈p|V|q〉
∆⋆(q)
2ǫq

tanh
(

β
ǫq

2

)

. (D.42)

Now the separable potential can be used to write the gap equation as

∆⋆(p) = −
∫

d3q〈p|χ〉ξ〈χ|q〉
∆⋆(q)
2ǫq

tanh
(

β
ǫq

2

)

. (D.43)

Furthermore the gap terms contain a separable term so that

〈p|χ〉ξ〈χ|Φ〉 = −
∫

d3q〈p|χ〉ξ〈χ|q〉〈q|χ〉ξ〈χ|Φ〉
2ǫq

tanh
(

β
ǫq

2

)

(D.44)

Dividing out the common factors gives

1 = −
∫

d3qξ〈χ|q〉〈q|χ〉
2(E2

q + |∆(q)|2)1/2
tanh













β
(E2

q + |∆(q)|2)1/2

2













. (D.45)
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D.3 Evaluation of the particle density

The density of a system can bw related to the single particle Green’s function

through

n(x) = g(x, x, τ, τ+), (D.46)

whereτ+ denote thatτ′ → τ from positive values. We therefore consider

g(x, x, τ, τ′) =
1
β~

∫

d3q
∑

n

eiωnηg(q, ωn), (D.47)

g(x, x, τ, τ′) = − 1
β~(2π~)3/2

∫

d3q
∑

n

eiωnη
~(i~ωn + Ep)

~2ω2
n + ǫ

2
q

. (D.48)

We can expand the integrand to give

g(x, x, τ, τ′) = − 1
β(2π~)3/2

∫

d3q
∑

n

eiωnη

[

i~ωn

~2ω2
n + ǫ

2
q

+
Eq

~2ω2
n + ǫ

2
q

]

. (D.49)

Now we consider only the first term of the integrand

1
2β

∫

d3q
∑

n

eiωnη

[

1
ǫq + i~ωn

− 1
ǫq − ~ωn

]

. (D.50)

The terms in the brackets can be written as integrals with a dummy time variable

1
2β~

∫

d3q
∑

n

eiωnη

[∫ ∞

0
dte−(ǫq+i~ωn) t

~ −
∫ ∞

0
dte−(ǫq−i~ωn) t

~

]

. (D.51)

This can be rearranged to give

1
2β~

∫

d3q
∑

n

[∫ ∞

0
dte−

ǫqt
~ e−iωn(t−η) −

∫ ∞

0
dte−

ǫqt
~ eiωn(t+η)

]

. (D.52)

This expression can be rewritten using the fact that the frequencies are restricted

toωn = (2n+ 1)π/~β and the Dirac comb relation

1
T

∑

n

ei2πnt/T =
∑

m

δ(t −mT). (D.53)
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We can write the expression withT = β~ as

1
2

∫

d3q
∑

m

[∫ ∞

0
dte−

ǫqt
~ δ(−t + η −mβ~)e−

iπ
β~ (t−η) −

∫ ∞

0
dte−

ǫqt
~ δ(t + η −mβ~)e

iπ
β~ (t+η)

]

(D.54)

By splitting the summations and ignoring them = 0 term in the second term

becauset andτ are positive quantities we arrive at the expression

1
2

∫

d3q















∫ ∞

0
dt

−1
∑

m=−∞
e−

ǫqt
~ δ(−t + η −mβ~)e−

iπ
β~ (t−η)

+

∫ ∞

0
dt

∞
∑

m=1

e−
ǫqt
~ δ(−t + η −mβ~)e−

iπ
β~ (t−η)

−
∫ ∞

0
dt

−1
∑

m=−∞
e−

ǫqt
~ δ(t + η −mβ~)e

iπ
β~ (t+η)

−
∫ ∞

0
dt

∞
∑

m=1

e−
ǫqt
~ δ(t + η −mβ~)e

iπ
β~ (t+η)

+

∫ ∞

0
dte−

ǫqt
~ δ(t − η)e

iπ
β~ (t−η) ] . (D.55)

By evaluating the delta functions and at last allowingη to go to zero we get

1
2

∫

d3q[1] (D.56)

This has to be added to the contribution from the second term,which can be

deduced by comparison with the gap equation. This finally gives the equation for

the density to be

g(x, x, τ, τ+) =
1

2(2π~)3/2

∫

d3q

[

1−
Eq

ǫq
tanh

(

β
ǫq

2

)

]

(D.57)



Appendix E

Angular integral in the gap equation

We want to do the integral

∫ π

0
sinθdθ

∫ 2π

0
dφH(sin2 θ sin2 φ). (E.1)

By making the substitution thatx = sinθ sinφ we can write

8
∫ π

2

0
dθ

∫ sinθ

0
dx

H(x2)
√

1− x2

sin2 θ

. (E.2)

Now we make the substitutiony = sinθ to give

8
∫ 1

0
dy

∫ y

0
dx

yH(x2)
√

(1− y2)(y2 − x2)
. (E.3)

This equation can be rewritten so as to give new limits on the integrations

8
∫ 1

x
dy

∫ 1

0
dx

yH(x2)
√

(1− y2)(y2 − x2)
. (E.4)

This integral is of the form

I =
∫ 1

x

∫ 1

0
dx

y f(x2)
√

1− y2
√

y2 − x2
(E.5)
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This can be integrated by parts to give

∫ 1

0
dx f(x2)

(

[

iyF
(

sin−1
(y
x

)

, x2
)]1

x
− i

∫ 1

x
dyF

(

sin−1
(y
x

)

, x2
)

)

. (E.6)

Here,F(φ,m) is an elliptical integral of the first kind defined by [169]

F(φ,m) =
∫ sinφ

0

dk
√

1− k2
√

1−m2k2
. (E.7)

It should be noted that the term

[

iyF
(

sin−1
(y
x

)

, x2
)]1

x
, (E.8)

is ill-defined on the upper limit since sin−1
(

1
x

)

has no inverse forx < 0. However,

we will see that this term cancels out. The indefinite integral for the second term

can be defined on the intervals 0< x < 1 andx < y < 1 so that,

i
∫

dyF
(

sin−1
(y
x

)

, x2
)

= iyF
(

sin−1
(y
x

)

, x2
)

− iln
(

2x
(

i
√

1− y2 +
√

y2 − x2
))

.

(E.9)

The first term is seen to cancel Eq. (E.8). This allows Eq. (E.5) to be written as

I = i
∫ 1

0
dx f(x2)

[

ln(2x
(√

1− x2 +
√

y2 − x2
)]1

x
(E.10)

= i
∫ 1

0
dx f(x2)ln













2x
√

1− x2

2xi
√

1− x2













=
π

2

∫ 1

0
dx f(x2).

We can therefore write

∫ π

0
sinθdθ

∫ 2π

0
dφH(sin2 θ sin2 φ) = 4π

∫ 1

0
dxH(x2). (E.11)



Appendix F

Derivation of the dynamical

mean-field equations

The two body Hamiltonian operator is given by

H2B = T1 + T2 + V12, (F.1)

whereTi are the kinetic energy operators of single particles andV12 is the operator

for the interparticle interaction. We write the second quantised operator as

Ĥ2B =
1
2

∑

i jkl

〈i j |H2B|kl〉a†i a
†
j akal, (F.2)

where the indices represent single particle states. For thedynamics operators obey

the Heisenberg equation of motion

i~
∂

∂t
Ô =

[

Ô, Ĥ
]

. (F.3)

The pair function is a thermal average of the operatoraman so we can find an

equation of motion from the commutator

[

aman, a
†
i a
†
j akal

]

= akalδm jδni − a†j amakalδni − akalδn jδmi + a†j anakalδmi (F.4)

+ a†i amakalδn j − a†i anakalδm j + a†i a
†
j amanakal .
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This gives us

i~
∂

∂t
(aman) =

∑

kl

〈nm|H2B|kl〉akal+
∑

jkl

[

〈m j|H2B|kl〉a†j anakal + 〈 jn|H2B|kl〉a†j amakal

]

.

(F.5)

The single particle Hamiltonian parts of the second sum on the right hand side

cancel to give

i~
∂

∂t
(aman) =

∑

kl

〈nm|H2B|kl〉akal+
∑

jkl

[

〈m j|V12|kl〉a†j anakal + 〈 jn|V12|kl〉a†jamakal

]

.

(F.6)

By introducing a Kronecker delta with a summation we write

i~
∂

∂t
(aman) =

∑

kl

〈nm|H2B|kl〉akal +
∑

jklh

[

〈m j|V12|kl〉δnha
†
j ahakal (F.7)

+〈 jn|V12|kl〉δmha
†
j ahakal

]

.

Now using the normalisation of the single particle states

i~
∂

∂t
(aman) =

∑

kl

〈nm|H2B|kl〉akal +
∑

jklh

[

〈nm j|V23|klh〉a†j ahakal (F.8)

+〈nm j|V13|klh〉a†j ahakal

]

,

which can be abbreviated to

i~
∂

∂t
(aman) =

∑

kl

〈nm|H2B|kl〉akal +
∑

jklh

〈nm j|
2

∑

b=1

Vb3|klh〉a†j ahakal (F.9)

For the density matrix the Hamiltonian is given by

H =
∑

i j

〈i|T | j〉a†i a j +
1
2

∑

i jkl

〈i j |V|kl〉a†i a
†
j akal. (F.10)
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A direct calculation of the quantity
[

a†man,H
]

leads to the equation

i~
∂

∂t

(

a†man

)

=
∑

j

〈n|H1B| j〉a†ma j −
∑

i

〈i|H1B|m〉a†i an (F.11)

+
∑

jkl

〈n j|V|kl〉a†ma†j akal −
∑

jkl

〈l j |V|km〉a†i a
†
j akan

Thermal averages can be taken of both sides of the equations.This leads to ther-

mal averages of products of four operators in each equation.These products can

be expanded using Wick’s theorem for cumulants [162]

〈a†j ahakal〉 = 〈a†j ahakal〉c+ 〈a†j ah〉c〈akal〉c− 〈a†j ak〉c〈ahal〉c+ 〈a†j al〉c〈akah〉c, (F.12)

〈a†i a
†
j akan〉 = 〈a†i a

†
j akan〉c+〈a†i a

†
j 〉

c〈akan〉c−〈a†i ak〉c〈a†j an〉c+〈a†i an〉c〈a†j ak〉c. (F.13)

The cumulant expansion allows the subsequent hierarchy of equations to be trun-

cated at any desired order, provided we assume the system remains relatively close

to equilibrium. By inserting these definitions into Eq. (F.11) and Eq. (F.9), we ob-

tain Eq. (4.28) and Eq. (4.28).



Appendix G

Landau-Zener parameter for a

spherical well

In this section we give an expression for the Landau-Zener parameter in a spher-

ical well of volumeV = 4
3R3, whereR is the radius of the well. In free space the

solutions to thep-wave Schrödinger equation are given by

j1(kr) =
1
kr

sin(kr) − cos(kr), (G.1)

n1(kr) =
1
kr

cos(kr) + sin(kr). (G.2)

Only Eq. (G.1) is finite at the origin, so we choose these solutions. By requiring

j1(kR) = 0 we get the condition on the wave number to satisfy

tan(kR) = kR. (G.3)

The Landau-Zener parameter is given by [114]

δL−Z =
|〈φres|W|φ0ℓm〉|
~|Ė|

. (G.4)

We can write the closure relation for box states and it’s relation to scattering states

as
∑

n

|φnℓm〉〈φnℓm| ≈
∫

p2dp|φ(+)
pℓm〉〈φ

(+)
pℓm|. (G.5)
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Now we want to relate the spacing of the energy levels in the box to the spacing

of the momentum states in free space. The energy levels in thebox then depend

onRandn, a quantum number that denotes the box state level. We define aquasi-

momentum as

pR =
√

2µE. (G.6)

We can use the chain rule to write

∆pR =
dpR

dE
dE
dn
∆n. (G.7)

Now, we know that
dpR

dE
=

√

µ

2E
, (G.8)

and we use this to write

∑

n

|φnℓm〉〈φnℓm| ≈
∑

n

|φnℓm〉〈φnℓm|

√

2E
µ

(

dE
dn

)−1

∆pR, (G.9)

where we have used the fact that∆n = 1. In the limit that we take the spacing to

be continuous∆pR→ dpR, we can approximate this expression as

∫

dpR|φnℓm〉〈φnℓm|

√

2E
µ

(

dE
dn

)−1

≈
∫

p2dp|φ(+)
pℓm〉〈φ

(+)
pℓm|, (G.10)

We can identify

|φnℓm〉 =

√

µ

pR

(

dE
dn

)

pR|φ(+)
pℓm〉. (G.11)

We are now left with finding an appropriate expression fordE
dn , which comes from

solving Eq. (G.3) fork = pR/~. By using a series solution to Eq. (G.3)kRis given

by [170] (see also [171])

kR≈ q− 1
q
− 2

3q3
, (G.12)

where

q =
π

2
(2n+ 1), (G.13)
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andn is a positive integer. The series in Eq. (G.12) has been truncated as it usually

possible to retain only these terms. Including higher orderterms in this series

would only change our final answer by a numerical factor and weassume that this

change is small. This gives us our box state quasi-momenta,

pR ≈
~

R

(

q−
1
q
−

2
3q3

)

. (G.14)

Now we use the chain rule to write

dE
dn
=

dE
dpR

dpR

dq
dq
dn
. (G.15)

This can easily be evaluated to give

dE
dn
=

pR~

µR

(

1+
1
q2
+

2
q4

)

=
pR~

µR
Cn, (G.16)

whereCn is a numerical factor with an obvious definition. We can then write

Eq. (G.11) as

|φnℓm〉 =
√

~Cn

R
pR|φ(+)

pℓm〉. (G.17)

Putting this into the Landau-Zener formula gives

δL−Z =
Cn

R|Ė|
p4

R lim
p→0

|〈φres|W|φ(+)
pℓm〉|

2

p2
. (G.18)

Using the relation between the coupling matrix elements andthe resonance pa-

rameters [155] we can rewrite this as

δL−Z =
Cn

Rµπ~3
p4

R

∣

∣

∣

∣

∣

∣

∣

abg
1mℓ
∆B1

Ḃ

∣

∣

∣

∣

∣

∣

∣

. (G.19)

Using the numerical values

C1 = 1.04909, (G.20)

pR = 4.493409
~

R
, (G.21)
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we write the Landau-Zener paramter as

δL−Z = 427.677
~

R5µπ

∣

∣

∣

∣

∣

∣

∣

abg
1mℓ
∆B1

Ḃ

∣

∣

∣

∣

∣

∣

∣

. (G.22)

In terms of the volume,V, of the box this is

δL−Z = 570.236
~π

VµR2

∣

∣

∣

∣

∣

∣

∣

abg
1mℓ
∆B1

Ḃ

∣

∣

∣

∣

∣

∣

∣

. (G.23)

Assuming a uniform density, such thatn = N
V , gives

δL−Z = 570.236
~π

µ

(

4
3

)2/3
∣

∣

∣

∣

∣

∣

∣

abg
1mℓ
∆B1

Ḃ

∣

∣

∣

∣

∣

∣

∣

( n
N

)5/3

. (G.24)

This expression is dependent on the size of the system and even in the case of fast

sweeps it is not possible to take the thermodynamic limit. This is different from

thes-wave case where an expression for the association probability in the limit of

fast ramps is independent of the system size [114].
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