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Abstract

Let X̄ be the scheme P1
Q̄p
\ {0, 1,∞}. We can assign a fundamental group to each rational

basepoint on this scheme. These groups are non-canonically isomorphic, so they need not have

isomorphic Galois actions. We study a description of this map from points to groups with Galois

action, in terms of non-abelian cohomology. Using this description, we see that the fundamental

groups associated to different basepoints are not isomorphic.
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Chapter 1

Introduction

1.1 Overview

This work concerns the etale fundamental groups on the thrice punctured projective line over

Q̄p.

The usual, topological fundamental group of a space is a well-understood functorial in-

variant capturing certain topological data. From one point of view, the etale fundamental group

may be viewed as a generalisation of this functor to the category of schemes.

For another point of view, we quote the words of Nakamura, Tamagawa, and Mochizuki

in [17]

“This notion of ‘etale fundamental group’ was introduced into algebraic ge-

ometry in the 1960’s to keep track of the ‘Galois theory of schemes’.”

For a third viewpoint, which may be seen as a synthesis of the previous two, we recall that

the etale fundamental group of a scheme may be expressed as an extension of a Galois group

by (the profinite completion of) a topological fundamental group. Indeed, let k be a field of

characteristic 0, k̄ its closure, and G the group Gal(k̄/k). Then, for a scheme X defined over k,

and with a rational basepoint x, the following sequence is exact.

1 // π1(X̄, x̄) // π1(X, x) // G
sxxx

// 1
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The basepoint x gives a map from Spec k to X, and by functoriality this yields a splitting

of the left-hand map. Then the problem of understanding the structure of π1(X, x) is equivalent

to understanding the extension, or, equivalently, to understanding the action of G on π1(X̄, x̄).

It is an interesting problem to understand the extent to which one can recover X or x from

π1(X, x) or this extension data.

1.2 Formulation of Motivating Question

1.2.1 The Anabelian Conjectures of Grothendieck

This section follows the clear and illuminating exposition in [17]. We ignore basepoints for the

moment. This is equivalent to considering only the intrinsic group structure of π1(X, x) without

the splitting sx above.

Grothendieck made a series of conjectures on the data that can be recovered from the

fundamental groups of schemes. In particular, he conjectured that it is possible to recover

an “anabelian” scheme X from the fundamental group π1(X). The term “anabelian” here was

imprecisely defined in general, but was intended to suggest being ‘beyond’ or ‘far from’ abelian.

For curves, it can be more precisely defined as follows:

A curve X is said to be anabelian if π1(X̄) is not abelian.

With this definition, Grothendieck’s conjecture was proved, in various cases, and over

various fields, by Nakamura, Tamagawa, and Mochizuki, as is outlined in their summary paper,

[17]. Thus it is possible, from only the group structure on π1(X, x), to recover X. However, this

approach deliberately ignored the basepoint of the fundamental group, from which it might be

possible to recover more data.

1.2.2 Concerning Basepoints

One could ask whether it is possible to recover the pointed scheme (X, x) from the group π1(X, x)

with certain extra structures.

As mere groups, and with no additional structure, it is well known that the various fun-
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damental groups on a curve are isomorphic. However, additional structures on X will yield

additional structures on π1(X). Considered as groups with these additional structures, it is no

longer necessarily true that the various fundamental groups on X should agree.

In particular, if X is defined over k and if x ∈ X(k) is a rational basepoint, we note that G

acts on the pointed scheme (X, x). As discussed before, we may construct the group π1(X, x) as

an extension of G by π1(X̄, x̄). The intrinsic group structure of the latter does not depend on x,

so that understanding the G-structure of π1(X) for a particular x is the same as understanding

the G-structure on π1(X̄) for that x.

This action may also be understood as the conjugation action resulting from the splitting

sx above.

We can now formulate the motivating question of this work thus:

Motivating Question:To what extent does the Galois structure on π1(X̄, x̄) vary

with x?

1.2.3 Anabelian Revisited

We observe the following simple relation between the property of being anabelian and

basepoint-dependent variation in the G-structure of π1(X̄).

Let X be a curve. If π1(X̄, x̄) is abelian, then, for any x, we can make the identification

π1(X̄, x̄) � π1(X̄, x̄)ab � Het
1 (X̄, Ẑ)

which holds even when we consider the various G-actions on these objects. Since Het
1 has a

natural basepoint-free definition, we conclude that the G-structure on π1(X̄) is independent of

the basepoint. Since the anabelian property for a curve is equivalent to possessing a non-abelian

geometric fundamental group, we easily conclude the following inverse statement

If X is not Anabelian, then the G-structure on π1(X̄) does not vary with the basepoint.

Over an algebraically closed field of characteristic zero, the question of which curves have

non-abelian geometric fundamental groups is equivalent to the question of which algebraic,

complex 1-manifolds have non-abelian fundamental groups.
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It is well known that a r-times punctured C-manifold of genus g has the fundamental group

Πg,r :=
〈
a1, b1, ..., ag, bg, c1, ..., cr |

∏
i

[ai, bi]
∏

j

c j = 1
〉

This is non-abelian for g = 0 and r ≥ 3, for g = 1 and r ≥ 1, and for g ≥ 2.

We can therefore conclude that, in some sense, the simplest anabelian curves occur when

(g, r) is (0, 3), (1, 1), or (2, 0).

These cases correspond to a proper curve of genus 2, a punctured elliptic curve (since we

assume the existence of a k-rational basepoint), and the thrice-punctured projective line.

We will study our questions in the particular case of the last example, which we can,

without loss of generality, describe concretely as P1 \ {0, 1,∞}.

1.2.4 Approach

Our basic approach will be as follows. We fix a rational baspeoint b̄ ∈ X̄. To any other rational

basepoint, x̄ ∈ X̄, we can associate a paths torsor π1(X̄, x̄, b̄), and also the fundamental group

π1(X̄, x̄) at x̄.

We can therefore view the association of points to fundamental groups as a composition

{Points} → {Paths Torsors} → {Fundamental Groups}

We formulate algebraic descriptions of these two component maps and study them. In the

particular case of the punctured projective line, the first map may be understood easily in terms

of Kummer theory. The second map is thus the main focus of our attention.

1.3 Outline of Thesis

In chapter two we review some properties, and a slightly non-standard definition, of the funda-

mental group of a topological space.

We use this exposition to introduce the parallel theory of etale fundamental groups, taking

particular note of the analogous theories of universal covering spaces.

In chapter three we introduce the parallel theories of paths torsors in topology and in
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arithmetic. We discuss an algebraic classification, in terms of Galois cohomology, for the set of

arithmetic paths torsors on a scheme.

Building on the treatment of torsors, we discuss the rational universal covering space, and

treat two examples. In doing so, we develop some technical tools for later use.

In chapter four we introduce the notion of twists of groups, and recall some classifying

results for twists. This yields an algebraic description of the twists of a fundamental group on

X̄ which inculdes, in particular, all other fundamental groups on X̄.

Fix a particular basepoint b̄ on X̄. We now have algebraic descriptions of the torsors of

π1(X̄, b̄) and of the twists of π1(X̄, b̄). The former include path torsors such as π1(X̄, x̄, b̄), while

the latter includes other fundamental groups such as π1(X̄, x̄).

We end chapter four by recalling a result relating the algebraic description of π1(X̄, x̄, b̄)

to the algebraic description of π1(X̄, x̄). This will be seen to be closely related to the non-

commutativity of π1(X̄, b̄).

Chapter five concerns an earlier result of Hain that bears upon this work. Working in

the analytic category, Hain showed that the Hodge structure on the derived groups of π1(P1
C
\

{0, 1,∞}) varies faithfully with the basepoint. That is, it is possible to recover the basepoint x

from the second derived group of π1(P1
C
\ {0, 1,∞}, x) with its Hodge structure.

This issue is closely related to our motivating question, so we review the main features of

Hain’s proof. We then ask why a naive translation of that proof to the arithmetic case category

fails.

In chapter six we recall some constructions and basic properties of the unipotent comple-

tion of the fundamental group on X, as well as some known results concerning its structure.

We observe that this may be viewed as a ‘linearisation’ of the full profinite group and that it

naturally comes equipped with an associated Lie algebra.

In chapter seven we begin by formulating our question with greater rigour and understand

how the question arises naturally. In particular, we concentrate on the derived groups of the

unipotent completion of the fundamental groups.
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We combine the tools and lemmata developed over the previous chapters to understand

how the Galois structure of the second derived group of the fundamental group varies with the

basepoint. It turns out that the Galois structure of the second derived group is identical for any

rational basepoint.

In chapter eight we refine the structure used for the main result of chapter seven in an

attempt to extend our understanding. We study the variations of the Galois structure with the

basepoint on higher derived groups.



Chapter 2

Background - Definitions and Universal

Covers

2.1 The Topological Fundamental Group

We aim in this chapter to develop a theory of etale fundamental groups as an analogy and an

extension of the theory of topological fundamental groups.

Before doing so, we will review some aspects of the theory of topological fundamental

groups that will be of interest to us, and we will use these to develop a formulation of the

topological case that will be of use in the algebraic case.

2.1.1 Preliminaries in Topology

Let X be a path-connected, locally simply connected topological space. We recall that there

exists a space X̃ and a map u : X̃ → X such that

• u is a local homeomorphism

• X̃ is simply connected

Furthermore, this pair (X̃, u) is unique up to isomorphism. We also recall two universal

properties of X̃. Firstly, that it is a covering space of any space which is a covering space of X.

Secondly, that given a choice of basepoint b ∈ X, and a choice of a preimage b̃ ∈ X̃b = u−1(b),

the pointed space (X̃, b̃) is initial in the category of pointed covers of (X, b).
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2.1.2 Some Fundamental Isomorphisms - Topological Case

We present four descriptions of the fundamental group of a topological space and discuss their

relationships.

Fix a path connected, semi-locally simply connected topological space X, and a basepoint

b ∈ X. Denote the category of covering spaces of X by Cov(X).

We will begin by defining a fibre functor eb from Cov(X) to the category of sets as follows.

For a cover φ : Y → X,

eb(Y) := Yb = φ−1(b)

Now let [γ] ∈ π1(X, b) be the homotopy class of some loop γ in X based at b. For any

cover φ : Y → X we can define an action of γ on the set eb(Y) in the following way.

2.1.2.1 Automorphisms of a Fibre Functor

For each y ∈ eb(Y), define γ(y) to be the endpoint of the unique lift γY,y of γ that starts at y.

Since γ itself has an inverse, it is clear that this map on eb(Y) is a set automorphism. In fact, we

can say that

Lemma 2.1. The association above gives a canonical isomorphism

π1(X, b)→ Aut(eb)

Proof. This is [20], theorem 2.3.7. �

2.1.2.2 Fibres in the Universal Cover

We also will make use of a map between π1(X, b) and X̃b defined as follows.

Fix a point b̃ ∈ X̃b. Define a map

Tb̃ : π1(X, b) −→ X̃b

by Tb̃(γ) = (endpoint of γX̃,b̃), where, as before, the latter means the (unique) lift of γ to X̃ that

starts at b̃.

Lemma 2.2. The map Tb̃ is injective.
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Proof. Indeed, we have already shown that, for any ˜̃b ∈ X̃b, there is at most one automorphism

θ of eb with θ(b̃) = ˜̃b. Since every homotopy class of loops gives an automorphism of eb, the

result follows. �

Lemma 2.3. The map Tb̃ is surjective.

Proof. Let ˜̃b ∈ X̃b. Choose a path from b̃ to ˜̃b. Then the class γ of the associated loop in X

satisfies Tb̃(γ) = ˜̃b. �

2.1.2.3 Automorphisms of the Universal Cover

Finally, we define a map

Ω : AutX(X̃) −→ X̃b

by φ→ φ(b̃) for φ ∈ AutX(X̃).

The assertion that this map is bijective is simply a reformulation of the statement that (X̃, b̃)

is initial in the category of pointed covers of (X, b).

2.1.3 The Limits of this Analogy

We have defined three set isomorphisms:

π1(X, b) � Aut(eb)

π1(X, b) � X̃b

π1(X, b) � AutX(X̃)

The first of these is canonical, the second and third are not. To this list we may add a fourth

isomorphism; for any x ∈ X, choose a homotopy class of paths p from b to x and define a map

π1(X, b) −→ π1(X, x) (2.1)

by γ → pγp−1.

In this section, we have recalled some properties of the topological fundamental group. It

associates a group functorially to a pointed space. All groups associated to the various points
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on a space are isomorphic via the isomorphism 2.1. Since this depends on a choice of path, it is

non-canonical.

In the next sections, we shall recall the analogous theory of etale fundamental groups for

schemes. These will have extra structure that may be of interest, such as Galois actions, and,

if the association of a π1 group is to be functorial, so should the fundamental groups of these

schemes have extra structure.

For an appropriate notion of path, the isomorphism 2.1 will still hold. However, we stress

the fact that these non-canonical maps may alter the additional, more delicate structures on the

fundamental groups of schemes. In particular, we shall make use of the fact that, for two points

x and b on a scheme, it may be true that π1(X, b) � π1(X, x) in the category of groups but that it

is not true in the category of groups with an action by a certain Galois group.

2.2 The Etale Fundamental Group

2.2.1 Finite Etale Covers

We wish to develop a theory of the etale fundamental group in a manner analogous to the theory

of the topological fundamental group developed in section 1. For the rest of this work, all the

schemes we consider shall be Noetherian, geometrically connected, and of finite type.

First we describe a replacement for the category Cov(T ) of covering spaces of a topological

space T . A topological covering space is, locally, a topological isomorphism. We cannot replace

these by maps of schemes which are locally algebraic isomorphisms, as the Zariski topology is

far too coarse and would therefore yield a very poor theory.

Instead we will replace the category of covering spaces with the category of etale maps,

which we will define in stages below, first for local rings, then for arbitrary rings, and finally

for schemes:

Definition 1. Let (A,M) and (B,N) be local rings. Then a homomorphism

φ : (A,M) −→ (B,N)
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is called local etale if

• B is flat over A.

• φ(M) = N

• B
N

is a finite separable extension of A
M

Definition 2. Let A and B be rings. Then a homomorphism

φ : A −→ B

is called etale if, for all primes N ∈ Spec B, the local map φN : Aφ−1(N) → BN is local etale.

Definition 3. Let X and Y be schemes. A morphism

φ : X −→ Y

is called etale if, for some affine cover Y = ∪iUi and Ui = Spec Ai and some affine subcovers

φ−1(Ui) = ∪ jVi, j and Vi, j = Spec Bi, j, the induced ring maps Ai → Bi, j are etale for all i and j.

Finally, we will have frequent cause to refer to the notion of a finite etale cover. ([20],

5.2.1)

Definition 4. Recall that a finite morphism of schemes φ : X → Y is said to be locally free if

the direct image sheaf φ∗OX is a locally free OY -sheaf of finite rank. If, in addition, each fibre

scheme Xp is Spec of an etale k(p)-algebra, then we say that the morphism φ is finite etale.

Definition 5. An finite etale morphism of schemes that is surjective on points is called an etale

cover.

We can obtain the following structure theorem for etale maps of varieties over algebraically

closed fields:

Lemma 2.4. Let k be an algebraically closed field, and let X and Y be separated integral

schemes over k. Then, for a morphism φ : X → Y, we have

(φ is etale)⇔ (φ is a tangent cone isomorphism)
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See [13], chapter I, for the proof.

Tangent spaces are only useful when dealing with varieties over algebraically closed fields,

so the hypothesis of this result is, in some sense, necessary.

This lemma tells us that an etale morphism takes smooth points to smooth points, and

singularities to singularities of the same type. In fact, this continues to be true over base schemes

which are not algebraically closed fields. See [13] chapter I for details.

We will now review some basic properties of etale and finite etale maps. Though this will

be a very incomplete account of the subject, it will hopefully remind the reader of analogous

theories noted in the topological case, and further underline this analogy.

Lemma 2.5. Let X be a smooth variety of finite type over C. Let Xan denote its analytification.

Then the category of etale covers of X and the category of finite covering maps of Xan are

equivalent.

For the proof, which involves the local isomorphism theorem, the structure theorem above,

GAGA applied to sheaves of etale algebras, and a hard result of Grauert and Remmert, see [6],

XII.

In the topological category, we are often interested in the morphisms in Cov(X) (deck

transformations). Recall the following well-known result.

Lemma 2.6. Let (S , θ) and (T, φ) be two connected covering spaces of a connected, Hausdorff

space X. Let ω be the one point space, and s : ω → S a map to S . Let ψ1 and ψ2 be two maps

such that

S

θ ��???????
ψ1

ψ2

// T

φ���������

X

commutes. If ψ1s = ψ2s, then ψ1 = ψ2.

Proof. See [20], Proposition 2.2.2. �

We aim to make a similar statement in the algebraic case.
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We begin by listing some basic properties of compositions of etale maps and covers, which

are analogous to well-known properties of topological covering maps.

Lemma 2.7. Let

Z
ψ
→ Y

φ
→ X

be morphisms between schemes X, Y, and Z.

• If φψ and φ are finite etale and if ψ is separated, then ψ is finite etale.

• If φ and ψ are finite etale, then so is φψ. If φ and ψ are etale covers, then φψ is an etale

cover.

• If φψ and ψ are etale, φ need not be etale.

Proof. Omitted. See [20], chapter 5, or [13] for details. �

A map s̄ from the spectrum of an algebraically closed field k̄ to a scheme defined over k is

called a geometric point. It is equivalent to a choice of a closed point s on the scheme and an

embedding k(s) ↪→ k̄.

We shall see in the next section that these geometric points play the same role in the theory

of etale fundamental groups that ordinary points play in the theory of topological fundamental

groups.

With this terminology, we can formulate an analogy of Lemma 2.6 above.

Lemma 2.8. Let S , T , and X be schemes over a field k. Let (S , θ) and (T, φ) be two connected

etale covers of a connected scheme X. Let s̄ be a geometric point of S . Let ψ1 and ψ2 be two

deck transformations such that

S

θ ��???????
ψ1

ψ2

// T

φ���������

X

commutes. If ψ1 s̄ = ψ2 s̄, then ψ1 = ψ2.

Proof. This is a particular case of [20], Corollary 5.3.3. �
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We stress that this lemma would clearly fail if we replaced ‘geometric point’ with ‘point’.

This coincides with the general principle that the role of the point in the topological category is

taken by Spec k̄ in the category of Spec k schemes.

2.2.2 Definition of the Etale Fundamental Group

We wish to define a concept for the category of schemes analogous to the fundamental group of

topology. As mentioned in the previous section, in the topological case, we have a canonical

isomorphism

π1(X, b) � Aut(eb)

Considered from another point of view, we could define the fundamental group of a topo-

logical space in as the automorphism group of a fibre functor, and thus avoid any use of path- or

loop-spaces. Since this is a canonical isomorphism, such a definition will preserve any higher

structures on the fundamental group.

This will therefore motivate our definition of the fundamental group of a scheme. Before

following this recipe, we will need to review some of the essential ingredients.

Definition 6. Let X be a scheme defined over a field k. Let Ω be the separable closure of X over

k. Then a geometric point of X is a map Spec Ω→ X.

That is, a geometric point is a topological point x on X and a choice of embedding k(x)→

Ω. Since we are working in the category of k-schemes, if x is a k-rational point, there is only

one choice of embedding.

We also have the following generalisation, from [5].

Definition 7. Let X, k, and Ω be as above. Then a tangential basepoint is a map Spec Ω((t))→

X.

We will replace the topological fibre functor of section 1 with

Definition 8. Let X be a scheme defined over a field k. Fix a geometric point b in X. We
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construct a functor

eb : Et(X) −→ Sets

by eb(φ : Y → X) := Y ×X b. The fibre product here means the product of Y and Ω, where Ω

maps to X by the geometric point b.

We can equivalently consider eb(Y) to be the set of lifts of the map b along the etale cover

φ.

We are now in a position to define the etale fundamental group.

Definition 9. We define the etale fundamental group of a scheme X/k with basepoint b to be

π1(X, b) := Aut(eb)

2.2.3 A Digression on Geometric Points

It is not unreasonable at this point to ask why we ought to use geometric points rather than

points in the usual sense.

We return to the earlier view that the etale fundamental group is ‘an accouting device to

keep track of the Galois theory of schemes’.

From this point of view, we consider that we are interested also in the Galois theory of the

residue field of the point (in the usual sense) that we choose as our basepoint for π1. We must

therefore distinguish between different geometric points.

2.3 Universal Covers

In the study of the topological fundamental group it was very convenient to make use of the

‘universal’ cover of the space under consideration.

This was shown to be a covering map of the base space which is also a covering map of

any other cover of the base space.

Fix a scheme X defined over a field k. To use the idea of universal covers, we want to build

an etale cover ˜̄X such that, for any other etale cover Y of X, ˜̄X is also an etale cover of Y . More
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precisely, we would like to construct a scheme ˜̄X and an etale cover θ : ˜̄X such that, for any

etale cover φ : Y → X, there exists an etale map ψ such that the triangle below commutes.

˜̄X
∃ψ //

θ ��>>>>>>>> Y

φ����������

X

The reason for the notation ˜̄X rather than X̃ will be explained in section 3.3.

It will also be shown that this universal cover ˜̄X has the (appropriately modified) universal

property that we should expect it to have: that, given a choice of a geometric point b̃ in the fibre

over some geometric basepoint b of X, ( ˜̄X, b̃) is initial among pointed covers of (X, b).

2.3.1 The Universal Cover Cannot be a Scheme

We begin by considering a motivating example.

Fix a natural number n. Let X := A1
Q̄
\ {0} be the punctured affine line over Q̄. We observe

that the map X → X defined on rings by sending x to xn is everywhere etale, and is of degree n.

If a scheme acting as the universal cover were to exist, it must would have degree at least

n, in order to cover this cover. Hence, a universal cover could not have finite degree over X.

On the other hand, an etale cover is finite by definition 5 and hence quasi-finite, so that

we are naturally driven to consider a definition of the universal cover as something other than a

scheme.

If we allow this possibility, the first required property of ˜̄X, that it be initial among pointed

cover of X, naturally suggests the following definition.

Definition 10. Let X be a scheme, and b a geometric point. We define the pointed universal

etale cover of (X, x) to be

( ˜̄X, x̃, θ) := lim
←−−

(Y, y, φ)

where the limit is taken over all connected pointed etale covers φ : (Y, y) → (X, x) of X by

schemes Y . We also write ˜̄X to mean the same pro-object, ignoring the basepoint.
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We write lim
←−−

here to mean the pro-object which corresponds to the entire inverse system

of pointed finite etale covers.

Note that all triangles in the system thus described must commute, by lemma 2.8.

Recall the following standard definition of a morphism of pro-objects. Given

two pro-objects corresponding to systems {Aα} and {Bβ}, we have Hom({Aα}, {Bβ}) :=

lim
←−−
β

lim
−−→
α

Hom(Aα, Bβ). We will often specify maps to pro-objects by specifying only maps

to cofinal subsystems.

To be explicit, a morphism from the universal cover to a pointed finite cover (Y, y) may be

defined by a map from any pointed cover in the system defining ˜̄X to (Y, y). In particular, we

can use the cover (Y, y) itself.

It is then simple to check that the first required property of the universal cover is satisfied.

Lemma 2.9. Let φ : Y → X be any finite etale cover of Y. Then there is a map ψ : ˜̄X → Y that

commutatively completes the following triangle.

˜̄X
∃φ //

θ ��>>>>>>>> Y

φ����������

X

The map ψ is simply projection onto the factor corresponding to Y , as described above.

2.3.2 Interlude on Galois Covers

Before we can consider the second of the properties which we require from our universal cover,

we need to make a brief digression to study Galois covers.

Definition 11. Let G be a finite group. An etale cover Y of the scheme X is said to be Galois

with Galois group G if there is a scheme-theoretic isomorphism:

Y ×X Y −→
∐
g∈G

Yg

Here the right hand side simply means finitely many disjoint copies of Y , indexed by the

elements of G.



2.3. Universal Covers 24

More explicitly, we can say:

Definition 12. Let φ : Y → X be an etale cover and let G be a finite group acting on Y over

X. We define two maps from
∐

G Yg to Y . The first sends each component Yg � Y to Y by the

identity, and the second map sends each Yg to Y by g. These two maps are clearly compatible

over X, so that they define a morphism

∐
G

Yg −→ Y ×X Y

If this morphism is an isomorphism, we say that the cover is Galois with Galois group G.

These particular covers are of great importance for the following reason.

Lemma 2.10. Let φ : Y → X be a connected Galois cover of schemes. Pick a geometric

basepoint b for X, and some geometric point y in eb(Y). Then the map

AutX(Y) −→ eb(Y)

given by θ → θ(y) is a bijection.

Proof. Injectivity follows from Lemma 2.8. Indeed, an automorphism θ ∈ AutX(Y) is exactly a

commutative triangle

Y
θ //

φ ��??????? Y

φ���������

X

and hence θ is etale. By lemma 2.8, if two such θ agree on y, they agree on Y . Hence the map

is injective.

The map

Y ×X Y �
∐

G

Y → Y

clearly has degree equal to the order of G; and it is a flat base change of the map Y
φ
→ X. Hence

the map φ also has degree equal to the order of G. Thus it will suffice to show that the order of

the group AutX(Y) is the order of the group G.
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Elements of G correspond to morphisms α : Y →
∐

G Y such that the composition of α

with the natural projection
∐

G Y → Y is the identity on Y . Under the isomorphism given in the

definition above, such morphisms correspond in turn to morphisms β : Y → Y × Y such that the

first projection map is the identity.

These morphisms in their turn correspond to pairs of maps (id : Y → Y) and (θ : Y → Y)

that are compatible with the map φ to X. But the group of such maps is exactly what we mean

by AutX(Y). �

Having defined the notion of Galois covers, we next turn our attention to their usefulness,

as highlighted by:

Lemma 2.11. Let φ : Y → X be an etale cover. Then there exists a Galois cover θ : Z → X

and a map ψ : Z → Y (necessarily etale) such that the triangle

Z

θ ��???????
ψ // Y

φ���������

X

commutes.

Proof. See Serre’s proof in [20], Proposition 5.3.9. �

The usefulness Galois covers is more evident when we reformulate the last result as:

Lemma 2.12. Let X be a scheme. The subcategory of finite Galois covers of X is cofinal in the

category of finite etale covers of X.

By lemma 2.12, we could replace the limit in definition 10 with the limit taken over all

pointed finite Galois covers.

2.3.3 The Second Universal Property of the Universal Cover

We now verify the second universal property of ˜̄X. To do this, we must better understand

what a basepoint in the universal cover is. We will continue to assume that X is geometrically

connected and separated.
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By the definition following definition 10, a map to an inverse limit of schemes must be a

compatible collection of maps to each of the schemes in the inverse system. Explicitly, in our

case:

Definition 13. A geometric (respectively tangential) basepoint b̃ ∈ ˜̄Xb is a compatible collection

of geometric (respectively tangential) basepoints y ∈ Yb for each etale cover Y of X.

By lemma 2.12, we could replace the phrase ‘every etale cover’ in this definition with

‘every Galois cover’.

With this definition in hand, the property of being initial among pointed covers may be

precisely formulated as

Lemma 2.13. Let b̃ ∈ ˜̄Xb be a compatible collection of basepoints as described above. Let

φ : (Y, y)→ (X, b) be any finite etale cover.

Then there exists a unique map ψ : ˜̄X → Y such that the following triangle commutes.

( ˜̄X, b̃)
ψ //

θ ##GGGGGGGG
(Y, y)

φ{{xxxxxxxxx

(X, b)

Proof. By lemma 2.12, we can take the limit of 10 over the system of pointed Galois covers.

By the same lemma, for any cover Y , we can find some Galois cover β : Z → X that covers Y ,

so that the following triangle commutes.

(Z, z) α //

β ##GGGGGGGGG (Y, y)

φ{{wwwwwwwww

(X, b)

The cover Z appears in the inverse system defining ˜̄X, and we denote by z′ the image of b̃

in Z. By the Galois property of Z, there is a unique X-automorphism of Z carrying z′ to z. Call

this σ.

It is sufficient to provide a map ψZ : ( ˜̄X, b̃)→ (Z, z); when composed with α, this will yield

ψ. Recall that a morphism from ˜̄X to Z is specified by a map from any member of the system

defining ˜̄X to Z. We observe that σ defines such a map, and carries b̃ to z.
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Thus the map induced byσ, composed with α, yields the required map ψ of pointed spaces.

�

Our final observation in this subsection will be

Lemma 2.14. Let X be a scheme, and φ : Y → X an etale cover. Then the universal cover ˜̄X of

X is also the universal cover of Y.

Proof. Fix a choice y ∈ Yb. We will define mutually inverse maps between ˜̄X and ˜̄Y . Indeed, let

(Z, z) be a cover of (Y, y). Then by composition (lemma 2.7), (Z, z) is also a cover of (X, b), and

so it appears in the system defining ˜̄X. We map (Z, z) appearing in ˜̄X to (Z, z) appearing in ˜̄Y , by

the identity. Since Z was arbitrary, this defines a map from ˜̄Y to ˜̄X.

Conversely, let (W,w) appear in the system defining ˜̄X. By base-change ([20], remark

5.2.3) and composition, (W,w)×(X,x) (Y, y) is an etale cover of (Y, y), and hence (by composition)

also of (X, x). We map the copy appearing in ˜̄Y to the copy appearing in ˜̄X by the identity. By

composition, this gives a map from a member of the system defining ˜̄Y to W. Since (W,w) was

arbitrary, and since the maps we have defined are compatible (by lemma 2.8), this defines a map

from ˜̄Y to ˜̄X.

The compositions of these two maps yield automorphisms of ˜̄X, respectively ˜̄Y , which is

the identity map on a cofinal susbsystem. The two maps are thus inverse.

�

In particular, we find that

Corollary. Let X/k. Let X̄ denote X ×k k̄, the base change of X to a separable closure of k.

Then the universal etale cover of X̄ is ˜̄X.

We will develop this idea further in the next chapter.

2.3.4 Some Fundamental Isomorphisms - Algebraic Case

Having established a useful definition of the universal cover ˜̄X of X, and having shown it to have

two universal mapping properties similar to those of a topological universal cover, our next aim
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is to establish results analogous to the fundamental isomorphisms that hold in the topological

case.

For this section, X will be a scheme, ˜̄X its universal cover as described above, b a chosen

geometric basepoint of X, and b̃ a chosen geometric basepoint lying over this in ˜̄X. We begin

with a reformulation of lemma 2.13.

Lemma 2.15. For any cover φ : Y → X, define a map

HomX( ˜̄X,Y) −→ Yb

by ψ→ ψ(b̃). This map is a bijection.

This formulation leads, by general nonsense, to the

Corollary. Fix a geometric basepoint b̃ ∈ ˜̄Xb. Then there is a bijective map

AutX( ˜̄X) −→ ˜̄Xb

Proof. For any finite etale cover Y , we have HomX( ˜̄X,Y) = Yb. By the definition of a morphism

of pro-objects, we have HomX( ˜̄X, ˜̄X) := lim
←−−

V

lim
−−→
W

HomX(W,V) where V and W range over all

finite pointed covers, as in definition 10.

We make the identifications lim
−−→
W

AutX(W,V) � Vb and lim
←−−

V

Vb �
˜̄Xb, to complete the proof.

�

The relationship between π1(X, b) := Aut(eb) and the two objects linked above is expressed

by

Lemma 2.16. Fix b̃ ∈ ˜̄Xb. Then the map

π1(X, x)→ ˜̄Xb

given by γ → γ(b̃) is a bijection.

Proof. Represent ˜̄X by a limit over Galois covers. Fix b̃ ∈ ˜̄Xb. Let ˜̃b ∈ ˜̄Xb. Define γ ∈ π1(X, b)

by defining γ| ˜̄X ∈ Aut(eb( ˜̄X)) via γ(b̃) = ˜̃b. This totally defines γ. Indeed, if b̄ ∈ ˜̄Xb, then by
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the second universal property there is some φ ∈ Aut ˜̄X such that φ(b̃) = b̄. Then for γ to be in

Aut(eb), we require that γ(b̄) = φ( ˜̃b), so that specifying γ(b̃) specifies γ(b̄) for any b̄. Hence the

map is surjective.

On the other hand, suppose that γ(b̃) and γ′(b̃) agree for some other loop γ′. By the same

argument, γ(b̃) specifies γ and γ′(b̃) specifies γ′, so that γ = γ′. Hence the map must be

injective. �

We take this opportunity to stress again that these isomorphisms are non-canonical. Thus

there is no reason why they should preserve any higher structures that π1, as a functor, may

inherit from the class of schemes to which we apply it.



Chapter 3

On Certain Properties of Torsors

On Torsors

The main reference for the results summarised in this chapter and the next is [19]

A torsor may be thought of as a group that has forgotten who its identity element is; just

as an affine space may be thought of as a vector space that has forgotten who its origin is.

Definition 14. Let G be a group. A left G-set T is called a torsor for G if, for all t ∈ T , the map

G −→ T

given by g→ gt is an isomorphism.

This explains the informal definition given above: for any t ∈ T , we can give T a group

structure such that t is the identity.

Indeed, for any t1, t2 ∈ T , we find the unique g1, g2 ∈ G such that git = ti, and then we

define t1t2 := g1g2t. The choices of g1, g2 are unique by the torsor axiom.

3.1 Paths Torsors

3.1.1 In topology

Let X be a topological space as in the previous chapter, and let b, x be two points on X. Then

the set of (homotopy classes of) paths from b to x is naturally a left torsor for the fundamental

group π1(X, b) based at b.
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Indeed, fix p ∈ π1(X, b, x). The for any p1 ∈ π1(X, b, x), the composition p1 p−1 is an

element of π1(X, b), and (p1 p−1)p = p in π1(X, b, x), so that the map

π1(X, b) −→ π1(X, b, x)

given by γ → γp is surjective. This map is injective because, if γ1 p and γ2 p are homotopic

paths, the composition (γ1 p)(γ2 p)−1 is a null homotopic loop. But (γ1 p)(γ2 p)−1 = γ1 pp−1γ−1
2 =

γ1γ
−1
2 , whence γ1 = γ2.

Taking a cue from our earlier canonical identification

π1(X, b) � Aut(eb)

we wish to consider the relationship between π1(X, b, x) and Isom(eb, ex). This is expressed in

Lemma 3.1. There is a canonical set isomorphism

π1(X, b, x) −→ Isom(eb, ex)

Sketch of Proof. Let p be a (homotopy class of) path(s) in X from b to x. Define fp ∈

Isom(eb, ex) as follows. Let φ : Y → X be any cover. For any y ∈ Yb, lift p to a path in Y

beginning at y, and define fp(y) to be the endpoint of this lift. As in Chapter 1, we can check

that any deck transformation moves this lift, so that this fp commutes with the action of any

deck transformation. That is, fp ∈ Isom(eb, ex).

To check that this association yields an isomorphism is very similar to the checks necessary

in the group case considered in chapter 2. �

The fact that this map is canonical suggests that the torsor structure ought to be preserved,

if we can formulate this correctly:

Lemma 3.2. Identifying π1(X, b) and Aut(eb) via the canonical isomorphism given in chapter

2, the map above defined by p→ fp produces a torsor isomorphism.
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Proof. We need only check that the actions of π1(X, b) on p and on fp are the same. Let

γ ∈ π1(X, b), and let Y be a cover of X, and let y ∈ Yb.

Then (γp)(y), by the uniqueness of path-lifting, is the endpoint of the lift of p that starts at

γ(y). On the other hand, (γ fp)(y) is the image of y under the composition of γ and fp, which is

fp(γ(y)), defined to be the endpoint of γ(y). �

3.1.2 In Arithmetic

In the algebraic case, the lemmata above motivate the following definition:

Definition 15. Let X be a separated scheme defined over a field k. Let b and x be two geometric

points on the scheme X.

Then we define the torsor of paths in X from b to x as

π1(X, b, x) � Isom(eb, ex)

We can prove, in a manner identical to the topological case, that this is a left torsor for the

fundamental group at b.

Next, we return our attention to the universal cover of X. We will develop this theory only

in the algebraic case although, as before, an analogous theory holds in the topological case as

well.

For this chapter, we let X be a geometrically connected, separated Noetherian scheme of

finite type over a field k, and let b and x be geometric points on X. Also, let ˜̄X be the universal

cover of X as in chapter 2.

Lemma 3.3. Fix a basepoint b̃ ∈ ˜̄Xb over b in the universal cover. Then the map

π1(X, b, x) −→ ˜̄Xx

given by p→ p(b̃) is an isomorphism.

Proof. It is clear that π1(X, b, x) is also a right torsor for π1(X, x). Then, by [20] 5.5.1 we can

fix a choice of p ∈ π1(X, b, x), and use it to produce an isomorphism (by definition 14)

π1(X, b, x) � π1(X, x)
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defined by p1 → p−1 p1. Then , for any x̃ ∈ ˜̄Xx, lemma 2.16 gives an isomorphism

π1(X, x) � ˜̄Xx

by γ → γ(x̃).

We compose these two maps to obtain an isomorphism as required. �

We can also use these paths-torsors to create isomorphisms between the fundamental

groups associated to X with different basepoints.

Lemma 3.4. Let X, b, and x be as before. Then there is a non-canonical isomorphism

π1(X, b) � π1(X, x)

Proof. Choose p0 ∈ Isom(eb, ex). Then

π1(X, b) −→ π1(X, b, x)

given by γ → γp0 and

π1(X, b, x) −→ π1(X, x)

given by p→ p−1
0 p are both isomorphisms. Composing them gives the required map. �

We note that two such fundamental groups cannot be canonically isomorphic, since this

map naturally factors through a set, and a group cannot be canonically isomorphic to a set.

Indeed, this map is simply the algebraic analogy of the the standard change-of-basepoint

map used in topology. In the topological case too, one can think of the group homomorphism

as factoring through a torsor, so it is not canonical. In the next chapter, we will make use of the

non-canonicality of this map.

Specifically, we shall use the fact that it does not preserve extra Galois- and Hodge-

theoretic structures.
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3.2 A Classification Theorem for Torsors

We have now defined torsors, and have studied paths-torsors, which are the source of most

of the torsors we shall see. This section is devoted to a result on the classification of torsors.

Lemmata 3.5 and 3.6 follow the treatment of [19], I.5.2.

Let G be a group and let T be a left G torsor. Let Γ be a group acting on both G and T on

the right in a manner compatible with the torsor action. That is, for γ ∈ Γ, g ∈ G, and t ∈ T , we

insist that

(gt)γ = gγtγ

For a fixed t0 ∈ T , the action of Γ on T yields a map

Γ −→ T

given by γ → tγ0 . On the other hand, the action of G on T yields a map

T −→ G

where t → (g : gt0 = t). This is well-defined by the torsor axiom.

Composing these two maps gives a map ξ0 from Γ to G given by ξ0(γ) = (g|gt0 = tγ0).

Furthermore, we note that

Lemma 3.5. The map ξ0 described above is a 1-cocycle for Γ with coefficients in G.

Proof. We verify the cocycle condition by direct calculation.

ξ0(γ)γ
′

ξ0(γ′) =
(
gγ
′

h|gt0 = tγ0 and ht0 = tγ
′

0

)
=

(
gγ
′

h|gγ
′

tγ
′

0 = tγγ
′

0 and ht0 = tγ
′

0

)
= ξ0(γγ′)

�

In fact, we can go further and say that

Lemma 3.6. The cohomology class of the cocyle ξ0 is not dependent on the choice of t0 ∈ T.
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Proof. Let t1 ∈ T . There exists a unique g1 ∈ G such that g1t1 = t0. Let ξ1 be the cocycle

associated to t1. Then

ξ0(γ) =
(
h ∈ G|ht0 = tγ0

)
=

(
h|hg1t1 = (g1t1)γ

)
=

(
h|hg1t1 = gγ1tγ1

)
whence

ξ0(γ)g1t1 = gγ1tγ1

= gγ1ξ1(γ)t1

⇒ ξ0(γ)g1 = gγ1ξ1(γ)

⇒ ξ0(γ) = gγ1ξ1(γ)g−1
1

⇒ ξ0(γ) ≡ ξ1(γ)

as cocycles. �

Since the cohomology class of the cocycle arising from an element in a torsor depends

not on the choice of the element, but only on the torsor itself, we can talk about the cocycle

associated to a torsor. For a torsor T , from now on, we will write ξT to mean the class of ξt for

any t ∈ T . We have therefore defined a map

{
G-torsors with a compatible Γ-action

}
→ H1(Γ,G)

We observe that this map sends G, the trivial G-torsor, to the class of coboundaries. Indeed,

for g0 ∈ G, we have

ξG(γ) =
(
g|gg0 = gγ0

)
⇒ ξG(γ) = gγ0g−1

1 ∀γ ∈ Γ

It will turn out that this map is injective and, with certain extra conditions, surjective. We

can therefore interpret this map as a classification of G-torsors with compatible Γ-action.
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3.3 The Rational Universal Cover

The second idea that we need to introduce in this chapter is the rational universal cover of a

scheme, which we will denote by X̃. In this section we let X be Noetherian, separated, of

finite type, and geometrically connected, as before, and also quasi-projective. Let b, and x be

geometric points, and let the points of X underlying b and x be k-rational. We begin with the

following observation.

Lemma 3.7. Suppose X/k is quasi-projective. Then ˜̄X is the base-change of a pro-scheme

defined over k.

Proof. We will use the notation of [22], theorem 3. Let σ, τ ∈ G. Then we have the following

diagram.

σ∗ ˜̄X
φσ

  AAAAAAAA

τ∗σ∗ ˜̄X
φστ //

σφτ
;;wwwwwwww

˜̄X

where σ∗ ˜̄X is defined to be the inverse limit over the system defined by applying σ∗ (as in

[22]) to every scheme and morphism in the system defining ˜̄X. The rational basepoint b̃ ∈ ˜̄X

is fixed by G, so the triangle above must commute since, by lemma 2.13, ˜̄X is initial among

pointed covers.

By the definition of a morphism of ˜̄X, we know that, for any (Y, y) in the system defining

( ˜̄X, b̃), there is some (Y ′, y′) covering (Y, y) such that the descent datum for ( ˜̄X, b̃) defines a

descent datum for (Y ′, y′). We conclude that the corresponding diagrams for Y ′ commute.

Since X is quasi-projective, so is Y ′. We conclude that Y ′ is the base change of a cover defined

over k, and since such (Y ′, y′) are cofinal in ˜̄X, we are done.

�

Definition 16. We define the pointed rational universal cover of a scheme over a field k to be

(X̃, x̃, θk) := lim
←−−

(Y, y, φ)
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where this limit is taken over all pointed etale covers φ : (Y, y) → (X, x) such that (Y, y) and φ

are defined over k.

Once again, the commutativity of all triangles in this system follows from lemma 2.8. As

for ˜̄X, we can prove that X̃ has the following properties. We assume that X is again quasi-

projective.

Lemma 3.8. 1. Let b̃ ∈ X̃b. Then (X̃, b̃) is initial among rationally pointed rational covers

of (X, b).

2. X̃×k k̄ = ˜̄X. That is, the base change of the rational universal cover is the universal cover.

Here X̃ × k̄ means lim
←−−

(Y × K) where Y is an etale cover of X that is defined over k and K

is a finite extension of k. This limit is again over pointed maps of pointed schemes.

Proof. The proof of the first statement is nearly identical to lemma 2.13.

For the second, let Z be a cover appearing in ˜̄X. (We ignore points for clarity.) By lemma

3.7, it is covered by the base-change of a cover defined over k, say Z′ ×X K. Then Z′ appears in

the system X̃, so Z′ × K appears in X̃ × k̄. The identity map from the copy of Z′ × K in X̃ × K

to the copy in ˜̄X defines a map from X̃ × k̄ to ˜̄X.

Conversely, let Z ×K be a cover appearing in X̃. Then Z appears in ˜̄X, and Z ×K is a finite

cover of Z, so Z × K is a finite cover of X and appears in ˜̄X. The identity map from the copy of

Z × K in ˜̄X to the copy in X̃ × k̄ defines a map ˜̄X to X̃ × k̄.

One composition of these maps is an endomorphism of ˜̄X which is the identity on the

system Z × K where Z is rational. This system is cofinal by lemma 3.7, so this composition is

Id ˜̄X . The other composition is, by a similar observation, IdX̃×k̄.

�

We are now in a position to summarise, in a visually appealing form, the main results that

are of interest to us.
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Lemma 3.9. Let K be a finite separable extension of k. We have the following canonical

isomorphisms.

1. ˜Spec(k) � Spec(k̄)

2. ˜(X × K) � ˜̄X

Proof. 1. The connected etale covers of Spec k are simply the spectra of finite separable

extensions of k. Let Y = Spec K be such a scheme. A geometric point y of Y is a map

Spec k̄ → Y . It is therefore clear that the geometric points of Y correspond to the maps

from (Spec k̄, Id) to Y . In other words, (Spec k̄, Id) satisfies the universal property of the

pointed universal cover. Then the result follows by the uniqueness property.

2. We first give a map from ˜̄X to ˜(X × K). A general cover of X × K is, by base-change and

composition, also a cover of X. So we map the copy in ˜̄X to that in ˜X × K by the identity.

Conversely, covers of the form Y×K (where Y covers X) are cofinal in ˜̄X by base-change,

and are also covers of X × K by the property of the fibre product. Thus we can define

a map from ˜X × K to ˜̄X by sending such covers in the former to themselves in the latter

by the identity. These maps compose to give the identity on a cofinal subsystem of each

inverse system, so they are mutually inverse.

�

We end this section with a result that will allows us to facilitate the computation of the

Galois actions on fundamental groups. Let b be a rational basepoint of X, and let b̄ ∈ X̄b.

Lemma 3.10. X̃b �
˜̄Xb̄

Proof. We first claim that we can identify AutX̄( ˜̄X) with AutX(X̃).

Indeed, to give an automorphism of ˜̄X that preserves X̄ is to give a compatible collection

of automorphisms of each cover in ˜̄X that act as the identity on maps of the form X × K → X.

Since the system Y ×K → X, where Y is a rational cover of X, is cofinal in ˜̄X, this amounts

to giving automorphisms of Y × K that are K-invariant. By the properties of fibre products, this
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is the same as giving a compatible collection of automorphisms of Y → X defined over k. Such

a collection is precisely an automorphism of X̃ over X.

Now we conclude that

˜̄Xb̄ � AutX̄( ˜̄X) � AutX(X̃) � X̃b

The first equality relies on the universal property of the pointed universal cover, the second

follows from the claim above, and the third follows from the universal property of the pointed

rational universal cover. �

We can use the identification above to calculate the Galois action of G := Gal(k̄/k) on

π1(X̄, b̄). Combining lemmata 2.16 and 3.10, we obtain

π1(X̄, b̄) � ˜̄Xb̄� X̃b

G acts on the category of rational etale covers of (X, b). This yields a map

G → Aut(X̃b)

and thence an action on π1(X̄, b̄), which, we hope, is more tractable than following the original

definition via the action on each cover and thence on the fibre functor and its automorphisms.

Explicitly, we can describe the action in the following terms. Firstly, if b ∈ X(k), then the

data of b̄ ∈ X̄b includes a morphism k̄ = k(b̄) → k̄. This will be affected by G, so that b̄ is not

G-invariant. However, b itself includes only a morphism k = k(b)→ k̄, so is G-invariant.

Let

Ω : π1(X̄, b̄)→ ˜̄Xb̄→ X̃b

be the identification above, given by Ω(γ) = R(γ(b̄)). The map Ω itself is then acted on by G,

and we can calculate the action of g ∈ G on γ ∈ π1 by

γg = {σ : Ω(σ) = Ω(γ)g}

In the language of the topological fundamental group, we are lifting loops to the universal

cover and sending each loop to the end-point of this lift. If the start-point, b̃, of the lift is
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rational, then we can lift γg to the path that ends at the image, under g, of the end-point of the

lift of γ.

3.4 Two Examples

The final section in this chapter is devoted to the construction of two simple examples illustrat-

ing the ideas developed so far.

3.4.1 The Twice Punctured Projective Line

Our first example will be the scheme X := P1
Q
\ {0,∞}. We choose to work with the basepoint 1

for reasons which will be made clear later. Define X̄ := X × Q̄ = P1
Q̄
\ {0,∞}.

We know that the cyclic covers

φn : P1
C \ {0,∞} → P

1
C \ {0,∞}

given by φn : z → zn are surjective and everywhere non-trivial on tangent planes. For a curve,

this is equivalent to being etale.

Consider also the manifold Xan := (P1
C
\ {0,∞})an. We can analytify each cover φn to

give a map to this manifold which is surjective and a tangent plane isomorphism. By the local

isomorphism theorem, this is the same a topological covering map.

Furthermore, Xan is homotopic to S 1, and so has fundamental group Z. Since finite cover-

ing maps correspond to finite quotients of Z, we deduce that the φan are (up to homeomorphism)

all of the covering maps of Xan. Then, since any other etale cover of P1
C
\{0,∞}would analyitify

to yield a new covering map of Xan, we conclude that the φn are (up to biholomorphism) all of

the etale covers of P1
C
\ {0,∞}.

Next, we observe that all of these covers can be defined over Q̄, and even over Q. That is,

there are covers θn : X → X given by θn : z → zn such that θ̄n := θn × Q̄p give etale covers of

X̄, and θ̄n × C = φn. Again, there cannot be (up to isomorphism) any more etale covers of X̄,

as any such covers would base change to give etale covers of P1
C
\ {0,∞}, and we know that the

covers φn are cofinal here.
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We observe that the preimage of the basepoint 1 under the cover θn is the set µn of nth roots

of unity in Q̄. Let 1̄ be some lift of this basepoint to X̄. We can use lemma 3.10 to identify

˜̄X1̄ � X̃1 � lim
←−−

µn

The action of G := Gal(Q̄/Q) on lim
←−−

µn is given by the cyclotomic character, and we can

therefore use lemma 3.10 to write

π1(X̄, 1̄) � lim
←−−

µn

as groups with G-action.

3.4.2 An Elliptic Curve

Let E/Q be an elliptic curve. Let Y
φ
→ Ē be any etale cover of Ē := E × Q̄ and let 0̄ lie over 0.

By the Riemann-Hurwitz Theorem, we have

2gY − 2 = deg(φ)(2gĒ − 2) +
∑

[ramification terms]

The genus of Ē is 1, and we can ignore the ramification terms since φ is etale, whence we

conclude that gY = 1.

If we now choose any y ∈ φ−1(0̄), we can give (Y, y) the structure of an elliptic curve. Then

φ becomes a non-zero isogeny, and so there exists some n and a dual isogeny

φ∨ : (Ē, 0̄)→ (Y, y)

such that φ∨φ = [n], multiplication by n on Ē. By [14], theorem 8.2 or similar, we know that

[n] itself is etale, and we have just shown that it covers the (aritrary) cover φ. Hence the system

[n] : Ē → Ē

is cofinal in the system of all etale covers of Ē, and we can use it to study ˜̄E.

For E to be defined over Q as an abelian variety, we must have 0 ∈ E(Q). Clearly the

system [n] on Ē descends to [n] on E. Thus we can identify

π1(Ē, 0̄) � ˜̄E0̄ � Ẽ0
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and, again, this identification is compatible with the action of G.

Now we write ([n])−1(0) � E[n] for the n-torsion elements, so that

Ẽ0 � lim
←−−

E[n] � T (E)

Thus studying the G-structure on π1(Ē, 0̄) is the same as studying the G-structure on T (E).



Chapter 4

On Certain Properties of Twists

4.1 On Twists

We begin this section by introducing the second of our main ingredients.

Let Π be a group and let G be a group acting on Π. A G-twist of Π, roughly speaking, is

an alternative action of G on Π. Alternatively, we can consider it to be a group with an action

of G that is isomorphic to Π in the category of groups, but is not necessarily so in the category

of G-groups.

Formally, we have the following definition.

Definition 17. Let Π be a group. Let G be a group acting on Π.

A G-twist of Π is a group T , with an action of G, such that there exists a group isomorphism

φ : T −→ Π

We note that for a homomorphism φ as above, we must in general distinguish between pre-

and post-composition with the action of an element of G.

The former takes data from only the action of G on T ; and the latter takes data from only

the action of G on Π.

Since φ is a homomorphism relating Π and T , it is natural to let G act on φ by conjugation,

thus capturing the data of both actions above. We define

φg := gφg−1 : T → Π
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for each g ∈ G.

Our first aim in this chapter is to discuss an algebraic description of these twists. We begin

by associating a cocycle to a pair (T, φ) as above, of a twist and an isomorphism describing it

as a twist.

Lemma 4.1. Let G, Π, and T be as above. Then the map

G −→ Aut(Π)

given by g→ φg := φgφ−1 is a 1-cocycle of G.

Proof. Let g, h ∈ G. We have

g(φh)φg = gφhg−1φg

= (ghφh−1φ−1g−1)(gφg−1φ−1)

= ghφh−1g−1φ−1

= φgh

�

In fact, the cocycle produced is independent, up to coboundary, of the choice of isomor-

phism φ used to express the twisting relationship.

That is, if θ : T → Π is another isomorphism expressing the twist, then the cocyle g→ θg

differs from the cocycle g→ φg only by a coboundary. Formally, we have the following lemma.

Lemma 4.2. Let G, Π, T , φ, and θ be as above. Then the cohomology classes of g → φg and

g→ θg agree.

Proof. We have a commutative triangle as follows.

T

θ��������� φ

��???????

Π
φθ−1

// Π
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The cocycle associated to θ is

g→ θg = gθg−1θ−1

while the cocycle associated to φ = φθ−1θ is

g→ φg = gφg−1φ−1

= gφθ−1θg−1θ−1θφ−1

= (gφθ−1g−1)(gθg−1θ−1)(θφ)

= (φθ−1)gθg(φθ)−1

Since φθ−1 ∈ Aut(Π), we see that φg is related to θg by a coboundary. �

We can interpret this result as allowing us to define a map from the set of G-twists of Π to

the set H1(G,Aut Π).

Note that, the cocycles produced by this process express the difference between the ac-

tions of G on two groups related by any twisting isomorphism. In particular, it follows that an

automorphism of Π itself yields the trivial cohomology class, even if it is not G-equivariant.

It is reasonable to ask if this map is injective or surjective. However, as we shall only be

concerned with a specific subset of these twists, such questions are not immediately relevant

here.

Indeed, we shall concern ourselves mostly with the set of ’geometric’ twists; that is, twists

which arise geometrically. Formally, we make the following definition.

Definition 18. Let G := Gal(Q̄p/Qp). Let b be a chosen geometric basepoint on X, tangential

or otherwise. Let Π := π1(X, b).

Then a geometric twist of Π is a G-twist T of Π such that there exists a geometric point x

on X with

T �G π1(X, x)

as G-groups.
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For any geometric point x on X, and for any path p ∈ π1(X, x, b), there is an isomorphism

π1(X, x) −→ π1(X, b)

given by γ → pγp−1. We make two observations.

1. The map above factors as

π1(X, x)
γ→γp−1

//

γ→pγ
��

π1(X, b, x)

γ→γp
��

π1(X, x, b)
γ→γp−1

// π1(X, b)

Either route from π1(X, b) to π1(X, x) factors through a torsor set. Since a set cannot be

canonically isomorphic to a group, we do not expect these two fundamental groups to be

canonically isomorphic. That is, while they are isomorphic as groups, we ought not to

expect them to have identical G-actions. They are, in fact, G-twists.

Indeed, our main theorem may be interpreted as a statement on the injectivity of the set

of geometric points of X into the set of G-twists of π1(X, b).

2. There are many choices of path p ∈ π1(X, x, b), and none of them need be G-invariant.

However, for any path p, we get a map expressing a twisting relationship between funda-

mental groups. Hence any path p yields a cocycle, with coefficients in Aut(Π), associated

to π1(X, x), and hence to the point x.

An obvious corollary of lemma 4.2 is that the cohomology class of the resulting cocycle

is independent of the choice of p.

Thus we have produced a map

X(Qp) −→ H1(G,Aut(Π))

The next section will involve the study of an algebraic description of these geometric

twists.
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4.2 Inner Twists

We summarise and review the two main structures established so far.

To a geometric point x on X we have associated a G-torsor of Π by

x −→ π1(X, x, b)

and also a G-twist of Π by

x −→ π1(X, x)

To the former we can associate a 1-G-cocycle with coefficients in Π. Though this cocycle

depends on the choice of a path from x to b, its cohomology class does not.

To the latter we can associate a 1-G-cocycle with coefficients in Aut Π. Though this cocy-

cle depends on a choice of an isomorphism of fundamental groups, which can be specified by a

choice of a path from x to b, its class does not.

Geometrically, we can relate the torsor associated to x and the twist associated to x by

π1(X, x, b) −→ π1(X, x)

γ −→ pγ

for any path p.

x

zzuuuuuuuuuu

##GGGGGGGGG

π1(X, x, b)
γ→pγ

// π1(X, x)

However, since we also have cohomology descriptions of the torsor and the twist asso-

ciated to x, it is natural to ask whether we can find an algebraic map, acting on cohomology,

relating these objects.

x

xxpppppppppppp

##HHHHHHHHH

{g→ γ|γp = pg}
?

//______ {g→ φg}
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(φ, as before, expressing the twisting relationship.)

In fact, we claim that the required map arises from conjugation in Π, in the following way.

Let

c : Π −→ Aut Π

be the conjugation map, given by γ → (σ → γσγ−1). This functorially yields a map, defined

by post-composition with c,

H1(c) : H1(G,Π) −→ H1(G,Aut Π)

that we can think of as taking torsors to twists. Indeed, we verify that this is the map that we

require: that it takes the geometric torsor associated to x to the geometric twist associated to x.

Lemma 4.3. Let x be a geometric point on X. The map H1(c) defined above carries the class

of the cocycle of π1(X, x, b) to the class of the cocycle of π1(X, x).

Proof. We have established in lemmata 3.6 and 4.2 that we can use any isomorphism

φ : π1(X, x) −→ π1(X, b)

and any path

p ∈ π1(X, x, b)

to define the associated cocycles. So we choose a path p and use the isomorphism defined by

φ(γ) := pγp−1.

Then the cocycle associated to π1(X, x) sends g ∈ G to φg. This acts on a loop τ ∈ π1(X, b)
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as

(φgφ−1)(τ) = (gφg−1φ−1)(τ)

= gφg−1(p−1τp)

= gφ(g−1(p−1)g−1(τ)g−1(p))

= g(pg−1(p−1)g−1(τ)g−1(p)p−1)

= g(p)p−1τpg(p−1)

= {σpp−1τp(σp)−1|σp = pg}

= {στσ−1|σp = pg}

= {H1(c)(σ)|σp = pg}(τ)

Since this holds for all τ ∈ π1(X, b), we can identify the functions

φg �
(
H1(c)

)
(σp = pg)

where we recognise the argument on the right as the cocycle associated to π1(X, x, b). �

In summary, we have asserted that the lower square in the following diagram commutes.

Here the top square represents the functor H1(G,−). The bottom arrow from the set of ‘geo-

metric torsors’ to ‘geometric twists’ carries the torsor associated to a rational basepoint to the

twist associated to the same basepoint.

Π
c:γ→(τ→γτγ−1) //

H1

���
�
�

H1

���
�
�
� Aut Π

H1

���
�
�

H1(G,Π)
H1(c)

// H1(G,Aut Π)

{Geometric Torsors}

OO

π1(X,x,b)→π1(X,x)
// {Geometric Twists}

OO



Chapter 5

Previous Results

Overview

5.1 The Work of Nakamura, Tamagawa, and Mochizuki

A slightly related class of problems was studied by Nakamura, Tamagawa, and Mochizuki,

as outlined in [17]. Specifically, for various fields k, they considered the ’augmented π1’ of

hyperbolic schemes U/k. (Here, π1(U) is the fundamental group based at the generic point of

U, which is isomorphic to Gal(k(U).) By constructing from this data certain invariants of the

field k(U), they were able to prove various theorems on the rigidity of this profinite fundamental

group.

For example, in [15], Mochizuki proved a result which includes the following statement.

For any smooth algebraic variety S and a hyperbolic X, both defined over a sub-p-adic field k,

the natural map

Homdom
k (S , X)→ Homopen

Gal(k)(π1(S ), π1(X))/c(π1(Ū))

is a bijection. Here Homdom denotes the set of dominant morphisms. The ’open’ super-

script on the right denotes the set of open homomorphisms (using the profinite topology), while

the Gal(k) subscript denotes the restriction that these morphisms are compatible with the given

augmentation maps. These homomorphisms are considered modulo conjugation by elements

of π1(Ū), the geometric fundamental group.
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This establishes the strong, (Hom) form of Grothendieck’s anabelian conjecture for curves.

By restricting to isomorphisms on both sides, we obtain a classification of hyperbolic curves by

their fundamental groups.

5.2 The Work of Hain

5.2.1 Analogy

Let M be a differentiable manifold. For any points b and x we can define the topological

fundamental groups π1(M, b) and π1(M, x) and the paths torsor π1(M, x, b) as in Chapter 2.

By conjugating a (class of) loops in π1(M, b) with a path from x to b, we obtain a (class of)

loops at x.

This association is clearly invertible, and can easily be seen to be a group isomorphism.

Hence, any two fundamental groups on M are ’intrinsically’ isomorphic. (That is, they are

isomorphic as groups.)

However, a differentiable manifold has more structure than the underlying topological

space. It is reasonable to ask if this extra structure can descend to the fundamental group;

and, if it can, to ask whether this additional structure is sufficient to distinguish the different

fundamental groups.

This section follows the development in [7].

5.2.2 Hodge Strucure on π1

We can attempt to use the Hodge filtration on H1(M) to induce a Hodge filtration on π1(X, b).

However, the usual line integral, sending a loop γ to the map ω →
∫
γ
ω can only ’see’ those

elements of π1(M, b) visible in H1(M). Indeed, this map must factor through the abelianisation

of π1(M, b). We note that H1(M) has a basepoint-free definition, so we cannot use line integrals

to distinguish the fundamental groups associated to different basepoints.

We can, however, use the iterated integrals introduced by Chen for this purpose. In the

formulation introduced here, iterated integrals may be viewed as generalisations of the usual

line integrals which are capable of seeing many elements of π1 that vanish in H1. This allows
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us to put a mixed Hodge structure on π1 and on its derived groups which lifts the Hodge structure

on H1. We can then hope that this provides sufficient structure on π1 to allow us to distinguish

the fundamental groups associated to different basepoints.

5.2.3 What is Possible

We refer the reader to [4], section 2, for a review of Deligne’s theory of Mixed Hodge Strucutres

and extensions in this category.

With this construction in place, Hain formulates the first main theorem of [7] as follows.

Let J(M, t) denote the augmentation ideal of the group ring Z[π1(M, t)]. We denote it by J alone

where V and t are understood.

Theorem (Hain). If V := P1\{a1, ..., an}, then the polarised mixed Hodge structure on J(V, t)/J3

determines (V, t) up to biholomorphism.

For n = 1 or n = 2, the result is trivial. Indeed, for any (V, t1) and (V, t2), there is a Mobius

transformation carrying t1 to t2 and preserving a1 (and a2). This invertible map of differentiable

manifolds must induce an invertible map of fundamental groups with all additional structures,

and hence an invertible map from the mixed Hodge structure on J(V, t1)/J3 with the mixed

Hodge structure on J(V, t2)/J3. The case of n ≥ 4 follows trivially from the case of n = 3. We

therefore outline only the main case, in which n = 3.

Hain begins with the assertion that the sequence

0 // J/J2 ⊗ J/J2 i // J/J3 p // J/J2 // 0

is exact, for any basepoint t. Here i is given by i(a ⊗ b) = a × b (well-defined up to J3) and p is

projection. Dualising, we obtain the following exact sequence.

0 // (J/J2)∨
p∗ // (J/J3)∨

i∗// (J/J2)∨ ⊗ (J/J2)∨

We can identify J/J2 with the singular homology group H1(V,Z), and hence (J/J2)∨ with

H1(V,Z). Now the image of i∗ may be identified with the kernel of the first cup product on
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H∗(V,Z), and since H2(V,Z)) is trivial, we conclude that i∗ is surjective. We can thus assert that

the following sequence is exact.

0 // H1(V,Z) // Hom(J/J3,Z) // H1(V) ⊗ H1(V,Z) // 0

This is therefore an extension of mixed Hodge structures. Moreover, it is a separated extension

of mixed Hodge structures. We recall the following definitions, following [4].

Definition 19. A separated extension of mixed Hodge structures is an exact sequence

0 // A // X // B // 0

of mixed Hodge structures, where A is pure of weight m, B is pure of weight n, and where

n > m.

Definition 20. Two separated extensions of mixed Hodge structures are congruent if there exists

an isomorphism of mixed Hodge structures φ : X1 → X2 such that the following diagram

commutes.

0 // A // X1 //

φ

��

B // 0

0 // A // X2 // B // 0

Note that separatedness is a condition on A and B only, so that the set of (congruence

classes of) separated extensions of B by A is the same as the set of (congruence classes of)

extensions of B by A.

We note also that mixed Hodge structures form an abelian category. Thus for fixed mixed

Hodge structures A and B, congruence classes of extensions of B by A naturally form a group

under Baer sum, as outlined in [21], Corollary 3.4.5.

The importance to us of separatedness lies in the following result of Carlson (See [4].)

Lemma 5.1. Let A, B be as above. Then there is a canonical, functorial group isomorphism

φ : Ext1F(B, A) �
HomC(B, A)

F0 HomC(B, A) + HomZ(B, A)



5.2. The Work of Hain 54

Here HomZ means morphisms respecting the integral lattice underlying the Hodge struc-

ture, and F0 Hom means morphisms respecting the Hodge filtration of the Hodge structure. The

subscript F indicates that we consider the extensions in the category of mixed Hodge structures.

The proof of this lemma uses separatedness to show that any extension is congruent to

some ‘normalised’ extension, that is, an extension such that

XZ � AZ ⊕ BZ

φ may be defined as follows.

0 // A i
// X p

//
rZ}}

B //
sF}}

0

If X as above is an extension, choose an integral retraction rZ of i and a Hodge filtration-

preserving splitting sF of p. The composition of these two maps will produce a map from B to A

well-defined up to F0 HomC(B, A)+HomZ(B, A). If we restrict our attention to only normalised

extensions, it is possible to show that the map φ in the lemma above is an isomorphism.

The proof of Hain’s theorem now proceeds as follows. We are given the data of J(V, t)/J3

with its polarised Hodge structure.

From the product in J/J3, we can recover the sequence

0 // H1(V) // Hom(J/J3,Z) // H1(V) ⊗ H1(V) // 0

which we know to be exact. The cohomology group H1(V) may be defined without regard to

the basepoint t. We can therefore view the association

(V, t) −→
{
0→ H1 → (J/J3)∨ → H1 ⊗ H1 → 0

}
as a map from the points of V to the group Ext1(H1 ⊗ H1,H1)

V(C) −→ Ext1F(H1 ⊗ H1,H1)

We stress again that the subscript F indicates that the extensions are considered in the

category of mixed Hodge structures. Indeed, our earlier observation that all of the fundamental
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groups on V are intrinsically isomorphic may be reinterpreted in this formulation as saying that

the composition

V(C) −→ Ext1F(B, A) −→ Ext1(B, A)

where the second Ext is in the category of C-algebras on integral lattices or anything coarser, is

trivial.

We now proceed with the outline of Hain’s theorem.

The polarisation on J/J3 allows us to pick out an integral basis for (J/J3)∨ and for H1.

This enables us to construct the integral retraction rZ expicitly.

Hain then applies Chen’s π1 theorem and his previous results on the Hodge structure of

J/J3 to construct the splitting sF .

Combining these yields a map µ from which Hain is able to recover the cross ratio of the

points {a1, a2, a3, t}. This proves the theorem in the case n = 3.

Indeed, as the biholomorphisms of P1 are mobius transformations, the biholomorphisms of

P1 \ {a1, a2, a3} are the six mobius transformations that permute the set {a1, a2, a3}. Let φ be one

such map. Then π1(φ) : π1(V, t) → π1(V, φ(t)) induces a morphism of Hodge structures from

J(t)/J3 to J(φ(t))/J3. This is invertible because φ itself is. The six possible choices for φ(t) are

the points such the the cross ratio < a1, a2, a3, φ(t) > agrees with the cross ratio < a1, a2, a3, t >.

For such φ(t), we cannot hope to distinguish the fundamental groups π1(V, φ(t)) from one

another, even by considering additional structures. If, therefore, we can distinguish such φ(t)

from all other points, it may be viewed as the best possible result.

5.2.4 What is Not Possible

It would seem reasonable to attempt a similar theorem in the arithmetic case.

We can reduce the problem to considering only (a1, a2, a3) = (0, 1,∞), as for any other

triple, there is a Möbius map carrying it to (0, 1,∞). Let X := P1
Q̄p
\ {0, 1,∞}.

In adapting the proof given by Hain for the analytic case above, we can again prove that
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the sequence

0 // J/J2 ⊗ J/J2 i // J/J3 p // J/J2 // 0

is exact, where J is now the augmentation ideal of, say, the Qp-algebra of the unipotent funda-

mental group πu
1(X, t).

We can dualise and proceed exactly as above, and we find that the sequence

0 // H1
et(V,Qp) // Hom(J/J3,Qp) // H1

et(V,Qp) ⊗ H1
et(V,Qp) // 0

is exact. We now encounter two problems.

Firstly, in constructing the unipotent group, we have applied the Malcev functor ⊗Q. As

described, this generalises the standard tensorisation functor. This has the effect of destroying

the integral structure of the original group. Thus there is no clear substitute for the integral

retraction rZ.

Secondly, our (perhaps rather naive) substitute for the Hodge structure on the topological

fundamental group πtop
1 of a manifold is the Galois structure of the unipotent etale fundamental

group πu
1 on X. Then the natural analogue for the Hodge filtration preserving splitting sF above

would be a Galois equivariant splitting sG of this new p∗. It is a consequence of one of our later

results that such a splitting cannot exist for general basepoints.



Chapter 6

The Unipotent Fundamental Group

Overview

The full, profinite, fundamental group of even a simple scheme can be an extremely intractable

and mysterious object.

For example, Grothendieck famously called πet
1 (P1

Q
\ {0, 1,∞}) ‘the most interesting object

in mathematics’.

It is an extension of Gal(Q̄/Q) by F̂2 (the completion of the free group on two generators),

and Belyi proved in [1] that this extension is sufficiently non-trivial that even the natural outer

representation is injective.

Fix a prime p. We shall be concerned with just the fundamental group of P1
Q̄p
\ {0, 1,∞},

for various basepoints. The Galois theory of the local field Qp is better understood, which

simplifies the task of understanding the Galois action.

As even this simpler fundamental group is quite hard to deal with, we shall attempt to

replace it with a ‘linearised’ version which is, on one hand, simpler to study and, on the other

hand, still sufficiently rich for our needs.

We also consider in this chapter the maximal pro-p quotient of the profinite etale funda-

mental group. In particular, we wish to relate the structure of this group to that of the Qp-

unipotent completion.
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6.1 Construction

In this section, we provide a construction of theQp-unipotent completion, U, of πet
1 (X̄). We also

review some basic properties of this object. We follow here the treatments in [8], Appendix A,

and [18], Appendix A.3.

We make the following definitions.

Definition 21. Let Γ be a group. The unipotent completion of Γ over Q consists of a pro-

unipotent algebraic Q-group Γun
/Q

and a group homomorphism θ : Γ → Γun
/Q

(Q). These have the

universal property of being initial among all pairs (W, θ) of pro-unipotent W/Q and θ → W(Q).

There is a natural extension of this definition to topological groups and topological fields.

See [8], section A.2.

Definition 22. Let Γ be a profinite group, and W/Qp an algebraic group. This implies that,

in particular, the Qp-points of W form a group. We call a group homomorphism Γ → W(Qp)

continuous if it is continuous with respect to the profinite topology on Γ and the topology on

W(Qp) induced by that on Qp.

Extending this, we define a group homomorphism θ : Γ → W(Qp) for a pro-algebraic

group W as follows. Such a map is, by definition, a compatible collection of maps θα : Γ →

Wα(Qp) for some inverse system {Wα} of algebraic groups defining W. We call θ continuous

when each θα is continuous.

We can now make the following definition:

Definition 23. The p-adic unipotent completion of Γ consists of a pro-unipotent Qp-group Γun
/Qp

and a continuous map θun : Γ → Γun
/Qp

(Qp). These have the universal property of being initial

among all pairs (W, θ) of pro-unipotent W/Qp and θ : Γ→ W(Qp).

The p-adic unipotent completion of a profinite group, Γ, may be seen to exist, by construc-

tion:

Γun
/Qp

:= lim
←−−

Uρ
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where this limit is taken over the inverse system of all pairs of unipotent algebraic group

Uρ/Qp and Zariski-dense maps Γ → Uρ(Qp). Furthermore, the universal mapping property

ensures that the p-adic unipotent completion is unique (up to unique isomorphism).

We quote without proof the following comparison theorem ([8], theorem A.4).

Lemma 6.1. If Γ is a finitely generated group with pro-p completion Γ(p) and profinite comple-

tion Γ̂, then

Γun
/Q ⊗Q Qp � (Γ(p))un

/Qp
� Γ̂un

/Qp

Proof. This is [8], theorem A.4. �

For the rest of this work, we will denote the p-adic unipotent completion of πet
1 (X̄) by U

when the basepoint is clear, or otherwise by πun
1 (X̄, x). We will also need to understand the

structure of Uab.

First, recall that we can also express the abelianisation of a group H in terms of a universal

mapping property. Indeed, every map from H to an abelian group factors uniquely through the

abelianisation. Now we observe that both (Γun)ab and (Γab)un have the same universal mapping

property. Indeed, they both have the property that they uniquely factor any map from Γ to an

abelian unipotent algebraic group. By uniqueness, we conclude that Uab � (πet
1 (X̄)ab)un.

Recall that the maximal pro-p quotient of the fundamental group satisfies
(
πet

1 (X̄)(p)
)ab
�

Z2
p as groups, and observe that the inclusion Z2

p ↪→ Q2
p has the required universal mapping

property to be the p-adic unipotent completion of Z2
p. We conclude that Uab � (Z2

p)un � Q2
p.

Note that this does not describe the Galois structure at all. By [5] or 3.4.1, we know

that the Galois action on the loop γ0 of πet
1 (X̄), based at

→
t and going clockwise once around

0 is by the cyclotomic character. Thus the action of G on the image of γ0 in πet
1 (X̄)ab is also

by the cyclotomic character. Recall that this abelianisation may be defined as the dual of the

etale cohomology group which has a basepoint-free definition. This implies that the G-action

on γ1, the clockwise loop once around 1, is also by the cyclotomic character. Thus we have

πet
1 (X̄)(p) � Zp(1)2 as G-groups.



6.2. Observations 60

(We could also have obtained this result from a direct application of lemma 6.1. Indeed,

take Γ to be the (finitely generated) topological fundamental group of the thrice-punctured pro-

jective line over C, so that Γ̂ is isomorphic to the profinite etale fundamental group of the

thrice-punctured projective line over Qp.)

Now, since the Galois action on (πet
1 )ab is by the cyclotomic character, and since taking

the unipotent completion is functorial, we conclude that the Galois action on Uab is also by the

cyclotomic character. We can thus write Uab � Qp(1)2 as G-groups.

In general, it is more difficult to understand the action of G on larger quotients of U. This

action is an object of interest in the subsequent chapters.

6.2 Observations

We make two final observations. Firstly, we recall that every affine group scheme is a linear

group scheme. Thus we conclude that we have functorially created from πet
1 a linear group.

Thus we are justified in describing this as a ‘linearisation’.

A second important reason for introducing the unipotent completion is the following well-

known fact (see, for example [9], page 1), of which we shall make use in the next chapters.

Lemma 6.2. The category of unipotent affine algebraic groups over Qp (alternatively Q) is

equivalent to the category of finite dimensional nilpotent Lie algebras over Qp (respectively Q).

Explicitly, we can pass from groups to algebras by the logarithm map and from algebras

to groups by exponentiation. The Baker-Campbell-Hausdorff formula tells us the effect of the

group multiplication in the algebra.

In fact, the equivalence above holds for any field of characteristic zero.



Chapter 7

First Result

7.1 Previous Results and Aims

7.1.1 The Full Fundamental Group

We are now ready to state our main aim, which we will formulate more precisely in our main

theorem. From the rest of this work, we require that p > 2. This is necessary, in particular, for

lemma 7.7 and for the calculation in section 7.2.1.

We have seen that the fundamental groups associated to a scheme via different basepoints

are non-canonically isomorphic. That is, they are isomorphic as groups, but need not be iso-

morphic as groups with, say, the action by G induced by the action of G on the scheme, where

G is the Galois group of the base field.

Nakamura proved in [16] that the fundamental group π1(X, x) contains sufficient data to

recover the basepoint x. That, the map

Ω∞ : X(Qp) −→ {Groups with G − action}

defined by x→ π1(X, x) is injective, even though

X(Qp) −→ {Groups}

defined by x→ π1(X, x) sends the entire domain to the same point.
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7.1.2 The Quotient of π1 by the first derived group

On the other hand, we have the identity, in the category of groups with G-actions

(
π1(X, x)(p)

)ab
� Het

1 (X,Zp)

Here the right-hand group may be identified with the dual of the first etale cohomology group,

again as groups with G-actions. Observe that the right hand side thus has a basepoint-free

definition. Hence we conclude that the map

Ω1 : X(Qp) −→ {Groups with G − action}

given by x→
(
π1(X, x)(p)

)ab
sends the entire domain to a single point.

This result could be expected by a believer in Grothendieck’s Anabelian philosophy. By

ignoring the non-commutativity of the fundamental group, we produce only the direct sum of

two abelian fundamental groups , say those of π1(P1 \ {0,∞}, x) and π1(P1 \ {1,∞}, x).

Then the map Ω1 factors through the equivalent maps for each of the component abelian

fundamental groups, which, according to Grothendieck, should have no data about the base-

point.

7.1.3 The Quotients of π1 by higher derived groups

We therefore turn our attention to the second derived group and the associated quotient of the

fundamental group.

Basepoint dependence at the level of this quotient would yield a result analogous to the

result of Hain discussed earlier, in section 5.2.

In fact, we wish to avail ourselves of the richer structure of the unipotent completion of the

fundamental group, for reasons that will become clear. We have therefore evolved the following

question.

Question When is the map

Ωn : X(Qp) −→ {Groups with G − action}
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given by x→ πun
1 (X, x)n, injective?

It is clear that the maps Ωn, as n varies, form a tower, and it is therefore clear that, if ΩN is

injective for some N, then any higher map must also be so.

Since the unipotent fundamental group may be constructed from the full profinite group,

it must contain at most as much information; so we can once again dismiss the case n = 1.

For larger n, our approach will be as follows. Recall that a tangential basepoint is a map

Spec k((t)) → X. We let b be a rational tangential basepoint corresponding to the map z → t

where z is the coordinate on X, then factor the map from points to fundamental groups as

follows.

X(Qp)→ {U-Torsors} → {U-twists}

sending x → πun
1 (X̄, x, b) → πun

1 (X̄, b). We study each of these two maps to understand how

injective the composition is.

7.2 Points to Torsors

We consider first the map from points of X̄ to torsors. To do this, we will start by studying the

map from points to torsors in the simpler case of the scheme P1
Q̄p
\ {0,∞}.

Let X̄1 := P1
Q̄p
\ {0,∞} with the basepoint 1. As discussed in chapter 2, the p-covers of X̄1

are

φn : X̄1 → X̄1

given by φn(z) = zpn
. In each cover, 1 lies over the basepoint, so we can take 1̃ := (1)n∈N to be a

G-invariant point in ˜̄X1
1 . Let q be a rational point on ˜̄X1. As discussed in chapter 2, we can use

any point q̃ ∈ ˜̄X1
q to define a path Q̃ ∈ π1(X̄1, 1, q). This is the unique element in Isom(e1, eq)

taking 1̃ to q̃.
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We can calculate the action of G on Q̃ as follows.

(Q̃g)(1̃) = gQ̃g−1(1̃)

= gQ̃(1̃)

= gq̃

= q̃g

so that Q̃g is the unique element of Isom(e1, eq) taking 1̃ to q̃g. This simple description allows

the following calculation. Consider the short exact sequence of G-groups

1 // µpn // Q̄×p
pn
// Q̄×p // 1

Taking a part of the associated long exact sequence in cohomology for each n yields a tower

like

Q×p
pn
// Q×p

δn // H1(G, µpn) // H1(G, Q̄×p)

Q×p

p

OO

// Q×p

1

OO

δn+1// H1(G, µpn+1)

H1(p)

OO

// H1(G, Q̄×p)

The right-hand objects are 1 by Hilbert’s Theorem 90. We check that the diagram commutes.

The commutativity of the first square is clear. For the second, let x ∈ Q×p . We have

H1(G, p)(δn+1)(x) = H1(G, p)(g→ ygy−1)

= (g→ (yp)g(yp)−1)

for any y such that ypn+1
= x. On the other hand, we have

(δn)(1)(x) = δn(x)

= (g→ zgz−1)

for any z such that zpn
= x. Since yp satisfies this condition, and since we know that we can use

any z to compute the bockstein, we are done.

Now Q×p maps to each member of the system (H1(G, µpn))n∈N in a manner compatible with

the connecting maps (H1(G, p))n∈N in the system. We can therefore use the inverse limit of this
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system to define a map

Q×p → lim
←−−

H1(G, µpn)

Such a system of maps gives rise (for example, by [21] Theorem 2.6.10) to a map

δ∞ : Q×p → H1(G,Zp(1))

This map is given by δ∞(x) = (g → (yg
ny−1

n )n) where ypn

n = x. The kernel of this map is the set

of points in Q×p with a rational (pn)th root for all n.

Lemma 7.1. The cocycle associated to the paths torsor π1(X̄1, 1, x) agrees with δ∞(x).

Proof. Let Y be the pn-fold cyclic etale cover of X̄1. Then we can identify Yp with {y : ypn
= x}.

Thus

˜̄X1
p � {(yn) : ypn

n = x}

Choose some such (yn), and let Q be the path sending 1̃ to (yn). We know that Qg sends 1̃ to

(yg
n), and Q−1 must be the unique path carrying (yn) to 1̃.

Combining these, we see that the cocycle associated to x, which is g→ QgQ−1, must send

1̃ to (yg
ny−1

n ).

This agrees with δ∞. �

7.2.1 A Calculation

We claim that the map from the Qp-points of X̄ to G-torsors for U1 := Uab, the abelianised

p-adic unipotent completion of πet
1 (X̄) is finite-to-one. We denote by π(p)

1 (X̄) the maximal pro-p

quotient of the fundamental group. Since we know that π(p)
1 (X̄)ab � Zp(1)2 and U1 � Qp(1)2,

we can factorise this map as

X̄(Qp)
f // {torsors for π(p)

1 (X̄)ab}
g // {torsors for U1}

H1(G,Zp(1)2) H1(G,Qp(1)2)
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We can further decompose the map f by noting that πet
1 (X̄)(p) � π

(p)
1 (P \ {0, 1})⊕π(p)

1 (P \ {0,∞}).

Applying the functor H1(G,−) to this, we can write

f (x) = (δ∞(x), δ∞(1 − x))

To show that f is finite-to-one, it will suffice to show that δ∞ is finite-to-one, so we first

consider the kernel of this homomorphism. We saw that the kernel of this map is the set of

elements y such that, for all n, there exists zn with (zn)pn
= y. We claim that for any such y, we

have yp−1 = 1. First note that, if |y| = λ, then λ must have a pn-th root for all n, from which

we conclude that λ = 1, so that y ∈ Z×p . We know that yp ≡ y modulo p, and we will show that

yp ≡ y modulo pn for all n, by induction. Assume this is true for n = k.

There is some z satisfying zpk
≡ y modulo pk+1, so that also zpk

, whence y ≡ z modulo pk.

So modulo pk+1 we have

y ≡ zpk

≡ (y + mpk)pk

≡ ypk

On the other hand, we must have y ≡ ypk+1
modulo pk+1, so that

ypk+1
≡ y ≡ ypk

⇒ (ypk
)p ≡ ypk

⇒ yp ≡ y

We conclude that yp−1 = 1 in Zp, so that δ∞ is p-to-one. An immediate consequence of this is

that f is finite-to-one.

We now study the map g, carrying torsors for the abelianised profinite fundamental group

to the abelianised unipotent fundamental group. Consider the following short exact sequence.

1 // Zp(1) // Qp(1) // Qp(1)/Zp(1) // 1
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Recall that, for the scheme P1 \ {0, 1}, passing from the profinite fundamental group to the

unipotent fundamental group can be identified with tensoring with Q. We can thus identify the

map from {torsors for the profinite fundamental group} to {torsors for the unipotent fundamental

group} with the second map in the sequence

H0(Qp(1)/Zp(1)) // H1(Zp(1)) // H1(Qp(1))

coming from the long exact sequence of Galois cohomology associated to the short exact se-

quence above. We have

Qp(1)/Zp(1) :=
Q ⊗Z lim

←−−
µpn

lim
←−−

µpn

�
Q ⊗Z (Zp ⊗Zp lim

←−−
µpn)

lim
←−−

µpn

�
(Q ⊗Z Zp) ⊗Zp lim

←−−
µpn

lim
←−−

µpn

�
Qp ⊗Zp lim

←−−
µpn

lim
←−−

µpn

� µp∞

The kernel of our map on torsors is therefore the image of the Galois invariants of

Qp(1)/Zp(1) � µp∞ , the set of all p-power roots of unity. Since p > 2, we know by Eisen-

stein that Qp has no p-power roots, so this image is trivial. Thus the following sequence is

exact.

1 = H0(µp∞) // {torsors for π(p)
1 (X̄)ab} // {torsors for πun

1 (X̄)ab}

We conclude that distinct torsors for the abelianised profinite group πet
1 (X̄)ab must produce

distinct torsors for the abelianised unipotent group πu
1(X̄)ab. We summarise this as follows.

Lemma 7.2. The map from Qp-rational points of X to torsors for the abelianised unipotent

fundamental group, U1, is finite-to-one.

The remainder of this work therefore concerns the fibres of the map from torsors to twists.
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7.3 General Background on Non-Abelian Group Cohomology

As outlined in the previous chapter, we can factorise the map Ωn into two maps, the first taking

points to torsors, and the second taking torsors to twists. The second map was given an algebraic

description in terms of cohomology, and so to study its fibre sets, we shall need to introduce

some elementary but non-standard results on non-abelian cohomology.

Let

0→ A
i
→ B

p
→ C → 0

be a short exact sequence of (possibly) non-abelian groups. Then

H0(G,C)→ H1(G, A)
j
→ H1(G, B)

is exact, and we assert that H0(G,C) acts on the fibres of j in the following way.

Let ξ ∈ H1(G, A), and let c ∈ CG. Define ξc by

ξc : g→ c̃gξgc̃−1

for some b ∈ B lifting c.

We observe that

Lemma 7.3. This construction is well-defined. Furthermore, if we let f denote the map H1(i) :

H1(G, A)→ H1(G, B), we have

H0(G,C) × ξ = f −1 f (ξ)

for any ξ ∈ H1(G, A). That is, the fibre sets of f are precisely the orbits of the action of CG.

Proof. We first check that the cocycle ξc is independent of the choice of a lift of c. Indeed, we

write C � A \ B, so that for any other lift, b′ of c, we have b′ = ab for some a ∈ A. Then

ξc defined via b′ sends g ∈ G to (b′)gξg(b′)−1. We can write this as agbgξgb−1a−1, which is

cohomologous to the definition of ξc via b.
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Secondly, we verify that ξc is indeed a cocycle. Let g and h be in G. We have

(ξc
g)hξc

h = (bgξgb−1)h(bhξhb−1)

= bghξh
g(b−1)hbhξhb−1

= bghξghb−1 = ξc
gh

Thirdly, we check that ξc does have coefficients in A. Indeed, A is normal in B, so bξgb−1 ∈

A for each g. Further, under the projection B → C, bgb−1 goes to cgc−1 = 1 since c is G-

invariant. So we write ξc
g = (bgb−1)(bξgb−1) which is in A.

Fourthly, we check that ξc has the same image under f as ξ itself. Indeed, by definition we

have the existence of b ∈ B such that, for each g, ξc
g = bgξgb−1, which is equivalent to saying

that these cocycles are cohomologous in B. That is, ξ and ξc are in the same fibre set of the map

f .

So we have shown that the action of CG on the fibre sets of H1(G, A) is well-defined, and

that, for any ξ ∈ H1(G, A), we have

H0(G,C) × ξ ⊆ f −1 f (ξ)

and we wish to obtain the reverse inclusion. Let ξ and ζ be two cocyles in the same fibre of

f . This means that there exists some b ∈ B such that ξg = bgζgb−1 for all g. Now ξg ∈ A

and bζgb−1 ∈ A by normality, so that bgb−1 ∈ A for all g. Then p(bgb−1) ∈ p(A) = 1. Hence

p(b)g = p(b) for all g, which says that p(b) ∈ CG. That is, ξ = ζ p(b). �

7.3.1 Notes

1. Lemma 7.3 is merely a restatement of [19], I, Propositions 38 and 39. We include full

proofs here because we will need to carry out explicit calculations using the action de-

scribed.

2. Since the conjugation map U2 → Aut(U2) factors as U2 → U1 → Aut(U2), we will

interest ourselves in the injectivity of the map H1(G,U1)→ H1(G,Aut(U2)) instead.
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U is centre-free; thus the conjugation map U1 → Aut U2 is injective, and yields an asso-

ciated long exact sequence in cohomology. Thus we can study the fibres of H1(U1) →

H1(Aut U2) more easily than we could study the fibres of H1(U2)→ H1(Aut U2).

7.4 Level 2 - Non-Torelli

This section will use the tools developed so far to construct our first important theorem. We aim

to show that

Theorem 1. The map

Ω2 : X(Zp) −→ {Groups with G − action}

given by x → πun
1 (X, x)2 is constant. Thus we cannot recover an integral basepoint from the

Galois structure on (the isomorphism class of) the associated fundamental group.

Here πun
1 (X, x)2 means the quotient of the Qp-unipotent fundamental group by the third

member of its lower central series.

Some Notation: From here onwards, we will let z denote the standard coordinate on X,

and let b denote the tangential basepoint corresponding under definition 7 to z → t. We let U

denote the unipotent completion πun
1 (X, b) of the fundamental group at b. U(n) will be the nth

member of the lower central series, and Un will be the quotient U/Un+1, indexed so that U1 is

the abelianisation of U.

We wish to study the map H1(c), where c : U2 → Aut(U2) is the conjugation map. This is

simply an algebraic description of the map from G-torsors of U2 to G-twists of U2 that carries

πun
1 (X, x, b) to πun

1 (X, b).

We first make the following observation.

Lemma 7.4. For each natural number n, there is a natural surejction Aut Un+1 → Aut Un.

Proof. We define the image of an automorphism φ of Un+1 as φ restricted to Un. This is well-

defined because the elements of the lower central series are characteristic subgroups, so that φ

must induce an automorphism of U(n+1)/U(n+2) ⊂ Un+1.
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The map is surjective because U is the unipotent completion of (the profinite completion

of) a free group. �

To study H1(c), we will fit the map c into an intelligible short exact sequence, using the

lemma above.

Lemma 7.5. The sequence of G-groups

0→ U1 → Aut(U2)→ Aut(U1)→ 0

is exact.

Proof. For each n, we can consider the elements of Un as inner automorphisms of Un, acting

by conjugation, and so we see that

0→ Z(Un)→ Un → Aut(Un)→ Out (Un)→ 0

is exact. U itself is centre-free, so that Z(Un) � Un/Un+1. Thus

0→ U1 → Aut(U2)→ Out (U1)→ 0

is exact. This says that the conjugation action of U1 on U2 is well-defined.

Let K be the kernel of the projection Aut(U2) → Aut(U1). The conjugation action of U1

on U2 projects to the trivial action on U1, so that U1 → Aut(U2) must factor through K.

This yields maps U1 → K and Out (U2) → Aut(U1), so that the following diagram com-

mutes.

0

��
U1

��

θ

{{vvvvvvvvvv

0 // K1
2

// Aut(U2) //

��

Aut(U1) // 0

Out (U2)

��

99rrrrrrrrrr

0
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Here the exactness of the horizontal sequence follows from an application of lemma 7.4 with

n = 2. We aim to show that θ is an isomorphism.

As Qp vector spaces, we can write

U2 � U1 ⊕ U2/U3

Thus we can represent an automorphism φ of U2 as a matrix

φ =


M11 M12

M21 M22


where M11 ∈ Aut(U1), M12 ∈ Hom(U2/U3,U1), M21 ∈ Hom(U1,U2/U3), and M22 ∈

Aut(U2/U3).

Let φ ∈ K. Then we must have M11 = 1.

Since φ is a group morphism, M22 is fully determined by M11, so that M22 = 1.

Again, since φ is a group morphism, it must preserve the lower central series, so that

M12 = 0.

However, the condition φ ∈ K places no restrictions on M21, so we can identify K with

Hom(U1,U2/U3). U1 is generated by the images A and B of the single loops around 1 and

0, and U2/U3 is generated by ABA−1B−1. Thus, as Qp vector spaces, Hom(U1,U2/U3) �

Hom(Q2
p,Qp) � Q2

p.

Now U1 → Aut(U2) is injective, so U1 → K must be injective. It is an injective map

between vector spaces of dimension 2, so it is an isomorphism. It follows that the quotient map

Out (U2)→ Aut(U1) is also an isomorphism.

We can therefore identify the two short exact sequences in the diagram above, so that

0→ U1 → Aut(U2)→ Aut(U1)→ 0

is exact, as claimed. �

By the factorisation of the conjugation map, discussed in the preceeding lemma, we obtain
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the factorisation

H1(G,Un)

((PPPPPPPPPPPP

H1(G,Un+1)

77ooooooooooo
// H1(G,Aut Un+1)

We have seen that X(Qp) maps to H1(G,Ui) with finite fibres for any i ≥ 1, so that we are

reduced to studying the fibres of H1(G,Un)→ H1(G,Aut Un+1) to understand our problem.

By considering the long exact sequence associated to the short exact sequence in lemma

7.5, we see that

H0(G,Aut U2)→ H0(G,Aut U1)→ H1(G,U1)→ H1(G,Aut U2)

is exact. By lemma 7.3, we conclude that H0(G,Aut U1) acts on the fibres of the level two

torsor-to-twist map.

To better understand the structure of H0(G,Aut U1), we introduce the following two lem-

mata.

Lemma 7.6. H0(G,Aut U1) � Aut U1 � GL2(Qp)

Proof. Let α and β be the single loops around 0 and 1 in πun
1 (X, b). We know that G acts on α by

χ, the cyclotomic character, and that any g ∈ G acts on β by sending it to a conjugate of βχ(g).

Thus, in U1 � π
un
1 (X, b)ab, G acts on the images of α and β by χ; hence it acts by χ on all

of U1.

Therefore, as G-groups, we can write

U1 � Qp(1)2

By the calculation

Hom(Qp(1)2,Qp(1)2) � (Qp(1)2)∗ ⊗ Qp(1)2

� Qp(−1)2 ⊗ Qp(1)2

� Q4
p
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we can identify Hom(U1,U1) with Hom(Q2
p,Q

2
p) as G-groups. This essentially says that, since

G acts homogeneously on U1, the automorphisms of U1 are G-equivariant.

The invertible elements on each side must be identified too, yielding

Aut U1 � Aut(Q2
p)

� GL2(Qp)

Finally, we have (Aut U1)G � (GL2(Qp))G � GL2(Qp) �

This is a full description of the automorphisms of U1 on its own, as a G-group. To under-

stand it in relation to Aut U2, we have the following lemma.

Lemma 7.7. Let L2 be the nilpotent Lie algebra associated by the Baker-Campbell-Hausdorff

equivalence to U2, and similarly for L1 and U1. Then there exists a G-equivariant splitting

L2 // L1
p //

sGzz
0

of the surjection p corresponding to the surjection U2 → U1.

Proof. This may be proved in a manner identical to the proof of Lemma 1.1 of [12], except for

the following simple ammendment. The involution map i used in [12] may be replaced with

the map x → x
x−1 , which is the Mobius transformation which swaps 1 and ∞ and fixes 0. The

construction given in [12] to construct a G-invariant path from −b to b gives us a G-invariant

path from (−
→
t ) to (

→
t ).

This proof requires us to find a rational system of pre-images of the basepoint −1 ∈ P1
Q̄p
\

{0,∞} in every etale cover that is visible in the unipotent fundamental group. By lemma 6.1,

these are only the covers having degree equal to a power of p. Since p > 2, then −1 is such a

system of basepoints. �

Corollary. The induced map

(Aut U2)G → (Aut U1)G

is surjective.
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Proof. By the Baker-Campbell-Hausdorff equivalence, it suffices to prove the equivalent result

for the Lie algebras associated to these groups.

Let φ ∈ (AutL1)G. Let A and B generate L1. Lift these to Ã and B̃; then Ã, B̃, and

C̃ := [Ã, B̃] generate L2.

Define φ̃ ∈ AutL2 by φ̃(Ã) = sGφp(Ã), and φ̃(B̃) = sGφp(B̃). For φ̃ to be a Lie algebra

morphism, we must have φ̃(C̃) = [φ̃(Ã), φ̃(B̃)], so that φ̃ is defined on all of L2 by linearity.

We check that φ̃ is G-invariant.

Indeed, we have Ã, we have φ̃g(Ã) = sg
Gφ

g pg(Ã), but each component morphism is G-

invariant, so their composition must be; and similiarly for B̃. For C̃, since the action of G must

preserve the Lie bracket, and we have defined φ̃ so that it also does, we have

φ̃g(C̃) = (gφ̃g−1)[Ã, B̃]

= [(gφ̃g−1)(Ã), (gφ̃g−1)(B̃)]

= [φ̃(Ã), φ̃(B̃)]

= φ̃(C̃)

�

We note that this corollary allows us to lift G-equivariant automorphisms of U1 to G-

equivariant automorphisms of U2. We make use of this in studying explicitly the action of

(Aut U1)G on H1(G,U1).

Lemma 7.8. Let ξ ∈ H1(G,U1) and let φ ∈ (Aut U1)G. The action of (Aut U1)G on H1(G,U1)

is given by ξφg = φ(ξg).

Proof. We identify U1 � Inn U2 to understand the action of φ ∈ (Aut U1)G. The automorphism
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φ acts on c(ξ) in the following way.

c(ξ)φg = φ̃gc(ξg)φ̃−1

= c(φ(ξg))φ̃gφ̃−1

' c(φ(ξg))φ̃φ̃−1

' c(φ(ξg))

This says that ξφ = φ(ξ). Here c(x) means conjugation in U2 by the element x of U1, and φ̃ is a

lift of φ to Aut U2, which, by the corollary to lemma 7.7, we can insist is also G-equivariant. �

We are now ready to assemble the proof of our first important theorem.

Proof of Theorem 1.

X(Zp)

�� ''PPPPPPPPPPPP

(Aut U2)G // (Aut U1)G // H1(G,U1) // H1(G,Aut U2)

We know that the set of integral points of X maps to the two rightmost sets in the diagram above.

We call the images of these maps ‘geometric’ torsors and twists, respectively. We will consider

the map from the geometric U1-torsors to geometric U2-twists. We know from lemma 7.5 that

the fibres of this map are the orbits of the action of (Aut U1)G. Lemma 7.6 identifies (Aut U1)G

with GL2, and lemma 7.8 gives us an explicit description of this action.

As in [3] definition 3.7.2, we define the restricted cohomolgy set H1
g(G,V) of a G-

representation to be the kernel of the map H1(G,V) → H1(G,V ⊗ BDR). We defer further

discussion of this object until section 8.5.2.

[10], Proposition 5, tells us that, in fact, the ‘geometric’ torsors lie within the sub-

set H1
g(G,U1). We choose a basis, {A, B} of U1, and write H1

g(G,U1) � H1
g(G,Qp(1)) ⊕

H1
g(G,Qp(1)). H1

g(G,Qp(1)) is a subspace of H1(G,Qp(1)) = Q2
p cut out by a non-trivial linear

form, so it must be one-dimensional. Hence H1
g(G,U1) is two-dimensional and contains all

geometric torsors. Thus the basis of U1 yields a basis for H1
g(G,U1).
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We want to check that the action of any φ ∈ (Aut U1)G preserves this Selmer condition; this

would imply that (Aut U1)G acts on the subset H1
g(G,U1). Let ξ ∈ H1

g(G,U1). This means that

there exists some b ∈ U1⊗BDR such that ξg⊗1BDR = bgb−1 for all g. Define Φ ∈ Aut(U1⊗BDR)

by Φ(u ⊗ b) = φ(u) ⊗ b, so Φ is G-equivariant. Then we know from lemma 7.8 that φ simply

sends the cocyle ξ to the cocyle g→ φ(ξg), so we have

ξ
φ
g ⊗ 1 = φ(ξg) ⊗ 1

= Φ(ξg ⊗ 1)

= Φ(bgb−1)

= Φ(b)gΦ(b)−1

which says that, in H1(G,U1 ⊗ BDR), the image ξφ is trivialised by Φ(b), so that ξφ also satisfies

the Selmer conditions.

We can decompose any geometric cocycle as ξ = (ρ, σ), where ρ ∈ H1
f (G, π1(X̄1)1 and

σ ∈ H1
f (G, π1(X̄0)1. Let ζ ∈ H1

f (G,U1) be another geometric torsor, which we decompose

similarly as ζ = (τ, υ). Recall that, by lemma 7.1, such geometric cocycles corresponding to

torsors are non-trivial.

Considering ξ and ζ as elements of Q2
p with the basis given by {A, B}, we find a matrix

M such that ξ ' Mζ. This is possible since ξ and ζ are both non-trivial. Note that, although

M ∈ GL2(Qp) also acts on U1, it does not necessarily follow that ξg = Mζg pointwise. Now let

φ be the automorphism of U1 given by the matrix M with respect to the basis {A, B}. By lemma

7.6, this is G-equivariant, and by lemma 7.8, we see that the action of φ moves ξ to ζ.

This argument allows us to move any non-trivial geometric torsor to any other by the

action of some element of (Aut U1)G. Since these orbits coincide with fibres of the map H1(c),

we conclude that all geometric torsors lie in the same fibre set. This means that the map {G −

torsors of U1} −→ {G − twists of U2} is trivial on geometric torsors.

In other words, for any two rational points, x and y, the fundamental groups πun
1 (X̄, x)2 and

πun
1 (X̄, y)2 are identical G-twists of U2. Thus they are isomorphic as G-groups. �



Chapter 8

Higher Levels

This chapter will extend the methods introduced in the previous chapter and apply them to

higher levels of the unipotent fundamental group; that is, to the quotients of U by higher derived

groups.

Some notation: LetX be P1
Zp
\{0, 1,∞}, so we recover X as the base-change ofX toQp. A

Zp-point, x, ofX includes the data of aQp-point of X, so to this point we can associate elements

of H1(G,Un) and in H1(G,Aut Un+1). By a slight abuse of notation, we write x ∈ X(Zp) for this

point.

8.1 Construction

We begin by considering the following construction as an analogy, at the nth level, of theorem

7.5.

Let Km
n be the kernel of the natural map from Aut Un to Aut Um, for n > m. For each n, we

have a short exact sequence of the form

0 // Un−1 // Aut Un // Out Un // 0

given by considering elements of Un−1 as inner automorphisms on Un. Since U1 is abelian and

has no inner automorphisms, it is clear that every inner automorphism of Un must lie in the

kernel K1
n . Hence the following diagram commutes. The exactness of the horizontal sequence

again follows from lemma 7.4.
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0

��
Un−1

{{xxxxxxxxx

��
0 // K1

n
// Aut Un

��

// Aut U1 // 0

Out Un

::tttttttttt

��
0

While it is no longer true, for n > 2, that the map Un−1 → K1
n is an isomorphism, we can aim

to use this construction to study the map Un−1 → Aut Un . Indeed, the construction yields a

decomposition of the torsors-to-twists map as

H1(G,Un−1) // H1(G,K1
n ) // H1(G,Aut Un)

Our mains aims will thus be to understand the kernels of these two component maps. We will

also consider a geometric interpretation for the set in the middle, of G-cocycles with coefficients

in Aut1Un.

8.2 The First Map

We consider first the map H1(Un−1) → H1(K1
n ). We observe that the surjection Aut Um →

Aut Un for each m > n induces commutative squares like

Un //

��

K1
n+1

��
Un−1 // K1

n

which fit into a tower indexed over all n.
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By functoriality, this extends to a tower

H1(Un+2) //

��

H1(K1
n+1)

��
X(Qp)

::tttttttttt f //

g

$$JJJJJJJJJJ

��777777777777777777 H1(Un+1)

β

��

α // H1(K1
n+2)

γ

��
H1(Un)

δ //

��

H1(K1
n+1)

��
H1(Un−1) // H1(K1

n )

which is commutative. g has finite fibres because the composition

X(Qp)→ H1(Un)→ H1(U1)

has finite fibres by lemma 7.2. Similarly, f is injective.

We observe that

δg = δβ f

= γα f

We recall that the map H1(U1) → H1(K1
2 ) is an isomorphism by lemma 7.5, and observe

that this map is simply δ for n = 1. To show that α is injective on the image of f for n = k, we

can therefore proceed inductively, assuming that δ is injective on the image of g for n = k.

However, the fibres of the map α f cannot be bigger than those of the map γα f . We know

that g injects, and δ injects on the image of g. The fibres of γα f = δg are thus trivial, and hence

so are the fibres of α f .

We conclude that α injects on the image of f for n = k, which is equivalent to δ injecting

on the image of g for n = k + 1.

We have thus proved

Theorem 2. The map of sets

H1(G,Un) −→ H1(G,K1
n+1)
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is injective on the set of ‘geometric’ torsors.

8.3 The Second Map

Our attention for this section will be focused on the properties of the Second map of section

8.1, S n : H1(K1
n )→ H1(Aut Un).

We consider the difference between the profinite and unipotent cases, and this leads us to a

geometric interpretation of the set H1(K1
n ) of cocycles with coefficients in K1

n . We observe that

the difference between K1
n and Aut Un is the main obstruction to our theorem.

We can compare the kernels of the maps S n and S n+1 in the following way. Let Ki
j be

defined as the kernel of the natural projection from Aut U j to Aut Ui. We observe that

Lemma 8.1. Kn
n+1 is naturally isomorphic to the kernel of the map from K1

n+1 to K1
n .

Proof. Indeed, we call the latter kernel K. We define a map f from K to Kn
n+1 as follows.

Compose the map α from K to K1
n+1 with the map β from K1

n+1 to Aut Un+1. We observe that,

since every element of K maps to 1 in K1
n , the image of βα must lie in Kn

n+1. We can therefore

take this to be the map f .

K
f //

α

��

Kn
n+1

γ

��
1 // K1

n+1
β //

ε

��

Aut Un+1

��

δ // Aut U1 // 1

1 // K1
n

// Aut Un // Aut U1 // 1

Let φ ∈ Kn
n+1. By definition, φ acts trivially on Aut Un, so it certainly acts trivially on U1. That

is, δγ(φ) = 1, so that γ(φ) ∈ K1
n+1. Again, since φ acts trivially on Un, we have γ(φ) ∈ ker(ε),

so γ(φ) ∈ K. It follows that f surjects. Finally, β and α are individually injective, so it follows

that f injects. �

8.3.0.1 Graded Pieces

Write Vn(x) for πu
1(X̄, x)n for each rational basepoint x. If x is the tangential basepoint b, we of

course have Un = Vn(x). Our first tool will involve the use of the individual graded pieces of
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the graded group associated to V3(x).

As G-groups, we know that V1 � Qp(1)2. That is, G acts on the generators of V1 by

the cyclotomic character, χ. It does not follow that G acts on the generators of Vn(x) by the

cyclotomic character.

Indeed, for n = 2, the content of lemma 7.7 is that the action of G on the generators of U

is by χ, at least modulo U(3). Then, by theorem 1, this cannot be true for any other basepoint

(where we identify basepoints up to geometric morphisms). Indeed, one part of the content of

the theorem is that the map from U1-torsors to U2-twists is injective on the privileged point.

Hence, for any other point x, we conclude that G cannot act on V2(x) in the same way that it

acts on U2. Since the action of G on V2(x) is specified by its action on the two generators, G

cannot act on both generating loops by χ.

However, for any x, we observe that G must act on the generator of V(x)(2)/V(x)(3) by χ2.

We aim to make use of the simple G-structure of these graded pieces of Vn(x) in general. Our

first step towards generalising this is

Lemma 8.2. There is an isomorphism

Kn
n+1 � Hom(Un+1,Zn+1)

where Zn+1 is the kernel of the surjection Un+1 → Un.

Proof. For f ∈ Kn
n+1, we define h f : Un+1 → Zn+1 by h f (u) := f (u)u−1. We claim that

this is a well-defined homomorphism, and that is induces an isomorphism h from Kn
n+1 to

Hom(Un+1,Zn+1).

Let f and u be as above. To see that h f is well-defined, we reduce modulo U(n+1), to get

h f (u) = f (u)u−1 = uu−1 = 1. Hence h f (u) ∈ Zn+1.

Next we check that, for a fixed f , h f is an homomorphism. Observe that Zn+1 is central

in Un+1. We let u ∈ U + n + 1 and z ∈ Zn+1, so that v ∈ V (n+1)/V (n+2), whence [u, v] =
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V (n+2)/V (n+2) = 1. Now let u, v ∈ Un+1. We have

h f (u)h f (v) = f (u)u−1( f (v)v−1)

= f (u) f (v)v−1u−1

= f (uv)(uv)−1

= h f (uv)

Next, we show that h itself is an homomorphism. The group law in Kn
n+1 is composition,

while the group law on Hom(Un+1,Zn+1) comes from the group law on Zn+1. Thus we have

h f g(u) = ( f g)(u)u−1, while (h f hg)(v) = h f (v)hg(v) = f (u)u−1g(u)u−1. It will thus suffice to

show that ( f g)(u) = f (u)u−1g(u). We compute

[( f g)(u)][ f (u)u−1g(u)]−1 = ( f g)(u)[g(u)−1u] f (u−1)

= ( f g)(u) f (u)−1g(u)−1u

= f (g(u)u−1)(g(u)u−1)−1

= h f (g(u)u−1) = h f (hg(u))

(Here we use the facts that Zn+1 is central, and that [g(u), u−1] = 1. ) But hg(u) lies in Zn+1 by

the note above, so that h f (hg(u)) = 1.

Finally, we check that h is an isomorphism. Suppose that there exist f , g such that h f = hg.

That is, ∀u ∈ Un+1, we have f (u)u−1 = g(u)u−1. Then f (u) = g(u) for all u ∈ Un+1, so that

f ≡ g.

On the other hand, let φ ∈ Hom(Un+1,Zn+1). Since Un+1 is (a quotient of the unipotent

completion of) the free group on two generators u1 and u2, it follows that φ is uniquely specified

by φ(u1) and φ(u2), and, conversely, that any two such choices will give rise to an homomor-

phism φ. For surjectivity, we wish to find some f such that

h f (ui) = f (ui)u−1
i = φ(ui) i = 1, 2

We can choose to define f by f (ui) = φ(ui)ui (with inverse f −1 = (−φ)(u) × u), and, as above,

this uniquely and completely specifies f ∈ Aut(Un+1). It is then clear that h f = φ. �
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Furthermore, we note that Zn+1 is abelian, and we recall that there is a correspondence

between maps from Un+1 to Zn+1 and maps from the abelianisation of Un+1 to Zn+1. Indeed, we

have the following corollary.

Corollary. There is an isomorphism

Kn
n+1 � Hom(U1,Zn+1)

where Zn+1 is the kernel of the surjection Un+1 → Un.

8.4 On the Central Obstruction to our Aim

Our aim at the beginning of this work was to be able recover the geometric point x from the

G-group πu
1(X̄, x)n.

This hope was made more precise and elaborated on in the previous chapters; and was

shown to be false for n = 2.

We now attempt to make precise an observation into the obstruction that caused this failure.

We first recall our earlier definitions of Ki
j as the kernel of the natural surjection Aut U j →

Aut Ui, and Aut1Un := K1
n . Recall also that we can interpret the set H1(G,Un) as the set of G-

twists of Un. That is, the two associated cocycles with coefficients in Aut Un are cohomologous

if there is an automorphism of Un (as a group only) relating the two corresponding G-actions.

In a similar light, we can view H1(G,Aut1Un) as follows. A cocycle corresponds to a

G-action on Un, and two cocycles are cohomologous exactly when there is an automorphism φ

of Un relating the actions; such that φ induces 1 on U1.

We know that the set of Qp-points of X maps with finite fibres to H1(Aut1UN). This

says that only finitely many ‘geometric’ cocycles with coefficients in Aut Un can be related by

automorphisms in (Aut1Un)G. Concretely, for a fixed x, there are only finitely many y such that

∃ a G-equivariant isomorphism θ : πu
1(X̄, x)n → πu

1(X̄, y)n such that θ|1 : πu
1(X̄, x)1 → πu

1(X̄, y)1

is 1. (Here we canonically identify both of these abelian groups with Het
1 (X̄,Qp).)
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However, theorem 1 tells us that, for any x, y ∈ X̄(Qp), there is some G-equivariant isomor-

phism θ : πu
1(X̄, x)2 → πu

1(X̄, y)2. Having understood H1(Aut1Un) in this way, a natural question

related to our theorem is whether, for larger n, Un has ‘too many’ G-equivariant automorphisms.

The corollary to lemma 7.7 proves that U2 has too many G equivariant automorphisms. Indeed,

in this case, every automorphism of U1 is G-equivariant, and every G-equivariant automorphism

of U1 lifts to a G-equivariant automorphism of U2. This viewpoint motivates further questions

about the G-structure of Aut Un, Aut1 Un, and K1
n .

We begin by noting the following generalisation of lemma 8.2, the proof of which is very

similar to the proof of the latter.

Lemma 8.3. Let i ≤ n. Then

Ki
n/K

i+1
n � Hom(U1,U(i+1)/U(i+2))

Proof. Let φ ∈ Ki
n/K

i+1
n . Define hφ : Un → U i+1/U i+2 by hφ(u) = φ(u)u−1. We verify the many

assumptions that are implicit in this definition.

We first check that this map is well-defined. Indeed, since φ acts trivially on Ui+1, we have

φ(u) = u modulo U i+1. Thus φ(u)u−1 ∈ U i+1. And if we use some other ψ = φ modulo Ki+1
n ,

we have φ(u) = ψ(u) modulo U i+2, whence hφ(u) = φ(u)u−1 = ψ(u)u−1 = hψ(u).

Secondly, we check that h(φ) is actually a homomorphism. We have

h(φ)(uv) = φ(uv)(uv)−1

= φ(u)φ(v)v−1u−1

= (φ(u)u−1)(uφ(v)v−1u−1)

= (φ(u)u−1)(φ(v)v−1)

The last line holds φ(v)v−1 ∈ U i+1, which implies uφ(v)v−1u−1 = φ(v)v−1, all modulo U i+2.

Thirdly, since h(φ) is an homomorphism from Un to an abelian group, it must factor

through U1 = Uab
n . Abusing notation, we have a map

h : Ki
n/K

i+1
n → Hom(U1,U i+1/U i+2)



8.4. On the Central Obstruction to our Aim 86

Fourthly, we check that h itself is an homomorphism. Let ψ and φ be any two elements of

Ki
n/K

i+1
n . We have

hφψ(u) = (φψ)(u)φ(u)−1φ(u)u−1

= φ(ψ(u)u−1)φ(u)u−1

= φ(ψ(u)u−1)(ψ(u)u−1)−1(ψ(u)u−1)(φ(u)u−1)

= hφ(hψ(u))hψ(u)hφ(u)

However, we know that h(ψ)(u) ∈ U i+1. We write it as [v,w]. Then, since h(φ) is an homomor-

phism, we have

hφ(hψ(u)) = hφ([v,w])

= [hφ(v), hφ(w)]

which lies in U i+2, since we may assume that v ∈ U i+1. Therefore, modulo U i+2, we have

hφψ(u) = hφ(hψ(u))hψ(u)hφ(u)

= 1 × hφ(u)hψ(u)

Here we have swapped the last two factors because U i+1/U i+2 is abelian. We can thus conclude

that h is an homomorphism.

We check that h is injective. Indeed, suppose h(φ) = 1. Then φ(u)u−1 vanishes modulo

U i+2, for all u. This is equivalent to the statement that φ ∈ Ki+1
n .

To check that h is surjective, we work at the level of the lie algebras associated to each

group by the Baker-Campbell-Hausdorff formula. Indeed, let f̄ : Ln → L
i+1/Li+2. Since h(φ)

is defined as u→ φ(u) − u, we simply have to find some f̄ such that φ(u) = u + f̄ (u). Let u1, u2

generate Ln as an algebra. We simply define f̄ (ui) := φ(ui) − ui. This produces a well-defined

morphism f̄ because Ln is a quotient of a free Lie algebra. Then φ defined as above will yield

h(φ) = f̄ . �
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We recover lemma 8.2 in the case where i = n−1. The usefulness of this structure theorem

is revealed when we combine it with the following observation of Serre.

Lemma 8.4. Let

1→ A→ B→ C → 1

be a short exact sequence of G-groups. Let A be central in B. Then H1(A) acts naturally on

H1(B) and the fibres of H1(B→ C) are exactly the orbits of this action.

Proof. Let χ ∈ H1(A) and ξ ∈ H1(B). We define the action by χ : ξ → (g→ χ(g)ξ(g)).

We first check that this is a cocylce. Indeed, we have

(χξ)(g) = χ(gh)ξ(gh)

= χ(g)χ(h)gξ(g)ξ(h)g

= χ(g)hξ(g)hχ(h)ξ(h)

= (χξ)(g)h(χξ)(h)

where the third line follows from the centrality of A.

It is clear that each orbit of this action is contained in a fibre. We check that the fibres

coincide with orbits. So let ξ and ζ lie in the same fibre. That is, there exists some c ∈ C such

that ξ(g) = cgζ(g)c−1 for all g. Lift c to some b ∈ B, and define χ(g) := bgζ(g)b−1ξ(g)−1. We

check that this is a cocycle:

χ(gh) = bghζ(gh)b−1ξ(gh)

= bghζ(g)hζ(h)b−1ξ(h)−1(ξ(g)h)−1

= [bghζ(g)h(b−1)hξ(g)h][ξ(g)hbh)][ζ(h)b−1ξ(h)−1(ξ(g)h)−1]

= [bgζ(g)b−1ξ(g)]h[bhζ(h)b−1ξ(h)]

since
(
bhζ(h)b−1ξ(h)−1

)
(ξ(g)h)−1 = (ξ(g)h)−1

(
bhζ(h)b−1ξ(h)−1

)
, again by the centrality of A.

�



8.4. On the Central Obstruction to our Aim 88

Applying this lemma to the first vertical exact sequence in lemma 8.1 yields the stronger

result

Lemma 8.5. H1(Ki
i+1) acts freely on H1(Aut1Ui+1), and the orbits of this action are the fibres

of the map H1(Aut1Ui+1)→ H1(Aut1Ui).

Proof. Identifying unipotent groups with their associated Lie algebras, we first check that Ki
i+1

is central in Aut1Ui+1. Choose a Qp-linear splitting of the surjection Li+1 → Li, We can

then write any u ∈ Li+1 as (ui, v), where ui lies in the image of the splitting map and v ∈

Li+1/Li+2. Let θ ∈ Ki
i+1 and let φ ∈ AutLi+1. By the structure theorem, and the fact that φ

and θ are both group homomorphisms, we can write them as φ =
(
φ11 0
φ12 φ22

)
and θ =

(
1 0
θ12 1

)
. θ is

a group homomorphism, and the generators for Li+1/Li+2 must come from Lie brackets of the

generators of Li. Hence θ11 = θ|Li = 1 implies that θ22 = 1. Then we have

θφθ−1(u) = θφ(un,−θ12(un) + v)

= θ(φ11(un), φ12(un) − φ22(θ12(un)) + φ22(v))

= (φ11(un), θ12φ11(un) + φ12(un) − φ22θ12(un) + φ22(v))

= (φ11(un), φ12(un) + φ22(v)) + (0, θ12φ11(un) − φ22θ12(un))

= φ(u)

by the relation θ12φ11(un) = φ22θ12(un), which follows from the fact that φ is a group homo-

morhpism. This establishes the centrality of Kn
n+1 in Aut Un+1, so that it is necessarily central

in Aut1Un+1.

Next, suppose χ ∈ H1(Ki
I+1) fixes ξ ∈ H1(Aut1Ui+1). Then there is some φ ∈ Aut1Ui+1

such that χ(g)ξ(g) = φgξ(g)φ−1. Reducing to Aut1Ui, this becomes ¯ξ(g) = φ̄g ¯ξ(g)φ̄−1, whence

φ̄g = ¯ξ(g)φ̄ ¯ξ(g)−1. By induction and by lemma 8.3, φ̄ is trivial. Then χ(g) = φgξ(g)φ−1ξ(g)−1 =

φgφ−1 is a coboundary. �
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8.4.1 A Finiteness Result of Nakamura

For comparison, we recall here a result of Nakamuara on the outer G-automorphisms of the

profinite fundamental group of U := P1
k \ {0, 1,∞}, for k an number field. This is the main result

of [16].

Fixing an odd prime l, Nakamura defines Jl to be the kernel of the natural projection

π1(Uk̄) → πl
1(Uk̄), and π′1(U) := π1(U)/Jl. That is, π′1(U) contains all the Galois-theoretic

structure of π1(U), but only the pro-l part of the geometric fundamental group.

1 // π1(Uk̄) //

����

π1(U) //

����

Gk // 1

1 // πl
1(Uk̄) // π′1(U) // Gk // 1

Then [16], theorem 1 states that

AutGk (π
′
1(U))

Inn πl
1(Uk̄)

� Aut
k

(U)

and we know that Autk(U) � S 3 is simply the group of Mobius transformations fixing the set

{0, 1,∞}. We conclude that (Out πl
1(Uk̄) is finite. Hence, by the construction of 7.5, we conclude

the finiteness of the map

H1(G, πl
1)→ H1(G,Aut πl

1)

sending paths-torsors to fundamental groups.

This result highlights again the extra rigidity possessed by the profinite fundamental group

(and, indeed, even by its pro-l quotients), which the unipotent completion lacks.

8.5 Main Theorem

This section is devoted to the proof that the second map in section 8.1 is finite-to-one.

Theorem 3. Let p ≥ 7. The map from Zp-points of X to groups with Galois action given by

x −→ πun
1 (X̄, x)

is finite-to-one.
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8.5.1 Representability

An important step in this proof is to view the set H1(Aut1Un) as the Qp-points of a scheme,

which we will, by slightly abusing notation, also refer to H1(Aut1Un). To this end, we have

Lemma 8.6. Let R be a Qp-algebra. Then the functor

H1(Aut1Un) : R −→ H1(Aut1Un(R))

is representable.

Proof. We prove this in a manner similar to Kim’s proof of this statement for H1(Un) ([10],

Proposition 2). The proof is by induction on n, and relies on lemma 8.3, which may be inter-

preted as saying that Aut1Un+1 is an n-fold extension of vector groups.

It is clear that the result is true for n = 1. Indeed, H1
f (Aut1U1) is represented by SpecQp.

So we inductively assume that the result is true for H1(Aut1Un).

We first need to know that H0(Li
i+1) = 0 for all i, where Li

i+1 is the kernel of the map

from Aut1Ui+1 to Aut1Ui. But lemma 8.1 tells us that Li
i+1 � Ki

i+1, and lemma 8.3 gives us

an explicit understanding of the structure of the graded quotients of these kernels. Indeed, we

have Li
i+1 � Hom(U1,U i+1/U i+2) � Hom(Qp(1)2,Qp(i + 1)r(i)), for some r(i). This is then just

a product of Qp(i)’s, and consequently has trivial H0.

It follows that H0(Li
i+1)(R) = 0 for any Qp-algebra R with trivial G-action. Indeed, we

have Li
i+1(R) = Hom(R, Li

i+1), the G-invariants of which must come from the G-invariants of

Li
i+1.

Next, we observe that H0(G,Aut1Ui) = 0 for all i. Indeed, this is true for i = 1, and for

i ≥ 2 we have the following short exact sequence.

1 // H0(Ki−1
i )(R) // H0(Aut1Ui)(R) // H0(Aut1Ui−1)(R)

Thirdly, we claim that H1(Li
i+1) is representable. Indeed, we have seen that Li

i+1 is a vector

group, and lemma 6 of [10] shows us that H1 of a vector group is representable.
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Since the sequence 1 → Li
i+1 → Aut1Ui+1 → Aut1Ui → 1 is exact, we can realise

Aut1Ui+1 as a Li
i+1 torsor over Aut1Ui. Since Aut1Ui is affine, this torsor must split. We choose

an algebraic splitting

s : Aut1Ui −→ Aut1Ui+1

to the natural projection map. This gives us splittings Aut1Ui(X) → Aut1Ui+1(X) for each X,

functorial in X.

Similarly, the surjectivity of the map Z1(Aut1Ui) → H1(Aut1Ui) gives us surjective maps

Z1(Aut1Ui)(X) → H1(Aut1Ui)(X) for each X. In particular, we must have a surjection from

Z1(Aut1Ui)(H1(Aut1Ui) to H1(Aut1Ui)(H1(Aut1Ui), under which a pre-image of the identity

yields a splitting, t, of the the original surjection.

We compose this map t with s∗ : Z1(Aut1Ui) → Z1(Aut1Ui+1) and the boundary map

d : C1(Aut1Un+1)→ C2(Ki
i+1). Recall that d is defined by

d(c) : (g1, g2) −→ c(g1g2)(c(g2)g1)−1c(g1)−1

The image of Z1(Aut1Ui) need not lie in Z1(Aut1Ui+1). However, it is clear that dsi composed

with the quotient map q : Z2(K)→ H2(K) is yields the bockstein, δ.

Now q and dsi are natural maps, and so are algebraic by lemma 8.7. B2(K) = q−1(1) is

thus a closed subscheme of Z2(K). Then (dsi)−1(B2(K)) is a closed subscheme of H1(Aut1Ui).

Since, by [10], lemma 6, we know that C1(K)(X) = C1(K(X)) and B2(K(X)) = B2(K)(X),

we can choose a linear splitting aB : B2(G,K(B)) → C1(G,K(B)) of the boundary map, which

yields a functorial splitting a : B2(G,K)→ C1(G,K).

We proceed with the construction of the map b : x → (si)(x) × (adsi)(x)−1 exactly as in

[10], Proposition 2. Then we have a square like

I(Aut1Un)
b //

��

Z1(Aut1Un+1)

��
H1(Aut1Un) H1(Aut1Un+1)oo
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The lower arrow here comes from the map Aut1Un+1 → Aut1Un constructed above. Its

codomain is I(Aut1Un) ⊆ H1(Aut1Un) because I(Aut1Un) := δ−1(1).

Now we have a short exact sequence

1 // H1(Kn
n+1) // H1(Aut1Un+1) // H1(Aut1Un) // 1

By lemma 8.5, and since H0(Aut1Un) = 1, there is a free action of H1(Kn
n+1) on H1(Aut1Un+1),

and the orbits of this action are the fibres of the the second map.

This free action allows us to construct an isomorphism

H1(Kn
n+1) × I(Aut1Un) � H1(Aut1Un+1)

given by (ξ, ζ)→ ξS (ζ).

H1(Kn
n+1) is representable because it is H1 of a vector group, while I(Aut1Un) is a closed

subscheme of the scheme H1(Aut1Un). We conclude that H1(Aut1Un+1) is representable. �

Observe that the initial step, that H1(Aut1Un) is representable (because it is a vector

group), fails if we replace Aut1 by Aut.

By the same argument, we can show that the functor R → H1(Aut1(Un(R ⊗ B))) is repre-

sentable. From [10], Proposition 2, we already know that the functor H1(Un) is representable,

so we turn our attention to the map

H1(Un)→ H1(Aut1Un)

now understood to be a map between two representable functors. We need the following tech-

nical lemma

Lemma 8.7. Let X and Y be k-schemes. Suppose that we have a functor morphism

φ : Hom(−, X)→ Hom(−,Y)

Then there is a scheme morphism Φ : X → Y inducing φ.
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Proof. This functor map must include a map φ(X) : X(X) → Y(X). Let Φ be the image of

IdX . We check that Φ∗ : Hom(−, X) → Hom(−,Y) is equal to φ. Let Z/k be a scheme, and let

θ ∈ X(Z). There is a map f : X(X) → X(Z), carrying α : X → X to αθ : Z → X, which takes

Idx to θ. We consider the application of φ to this map:

X(X)
f //

φ(Z)
��

X(Z)

φ(X)
��

Y(X)
φ( f )
// Y(Z)

Here we have F(IdX) = θ, and φ(X)(IdX) = Φ, so that, by the commutativity of this square, we

must have φ( f )(Φ) = φ(Z)(θ). But φ( f ) carries Φ to Φθ = Φ∗(θ), so that Φ∗ = φ. �

Note that this result may be viewed as merely an interpretation of the Yoneda Lemma.

We now apply this lemma repeatedly. First, observe that H1(Un) satisfies the hypotheses,

as does H1(Un(B)), where B is anyQp-algebra, and by a slight abuse of notation we write Un(B)

to mean Un × Spec B. In particular, we can take B to be BDR as defined in [3], definition 1.15.

H1
f (Un) := ker[H1(Un)→ H1(Un(B))]

must, as a closed subscheme of H1(Un), also be representable. Secondly, H1(Aut1Un) and

H1
f (Aut1Un(B)) satisfy the hypotheses, so that

H1
f (Aut1Un) := ker[H1(Aut1Un)→ H1(Aut1Un(B))]

must also be representable.

Thirdly, we apply the lemma to H1(Un) and H1(Aut1Un), and conclude that the map

H1(Un) −→ H1(Aut1Un)

is algebraic. Finally, since the squares

H1(Un)(R) //

��

H1(Aut1Un)(R)

��
H1(Un)(R ⊗ B) // H1(Aut1Un)(R ⊗ B)
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commute, we can conclude that there is an algebraic map H1
f (Un)→ H1

f (Aut1Un).

We also have a natural action of H0(Aut U1) on H1(Aut1Un), given by the connecting

homomorphism of the long exact sequence associated to the horizontal short exact sequence in

8.1.

Coupled with the identification

Lemma 8.8. H0(Aut U1) � GL2 as group schemes.

Proof. Let R be a Qp-algebra. By lemma 8.7, we need only show that H0(Aut U1)(R) � GL2(R)

functorially.

Indeed, we have GL2(R) = Hom(Spec R,GL2), while on the other hand

H0(Aut U1) = H0(Aut Hom(Spec R,U1))

= H0(Aut Hom(Qp(1)2 ⊗ R))

= H0(Aut(Qp(1)2)∗ ⊗ R)

= H0(Aut(Qp(−1)2 ⊗ R)

= H0(Aut(Qp(−1) ⊗ R)2)

= {φ ∈ Aut((Qp(−1) ⊗ R)2)|gφg−1 = φ}

= GL2(R)

Since this equality is functorial in R, we are done. �

This allows us to conclude that there is a geometric action of GL2 on the scheme

H1
f (Aut1Un) such that the orbits of the action on the set H1

f (G,Aut1Un)(Qp) are the fibres of the

map H1
f (G,Un)(Qp)→ H1(G,Aut1Un)(Qp), which is the ‘second map’ from 8.1.

8.5.2 De Rham realisations

We make the following definitions.

Definition 24. Let B be the crystalline period ring Bcr defined in [3], definition 1.10, and let W

be a G representation.
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We defineD(W) := (W ⊗ B)G. In particular, we will often have cause to refer toD(Un) :=

(Un ⊗ B)G, which we will denote by UDR
n .

We are concentrating our attention here on H1
f (G,Un) because of the following observa-

tion. Recall the definition of ‘geometric’ Un-torsors as torsors that arise from rational points on

X.

Lemma 8.9. Let P be a ‘geometric’ torsor for Un. Then the corresponding class [ξ] ∈ H1(Un)

lies in H1
f (Un).

Proof. Following [10], we know that ‘geometric’ torsors are of De Rham type, and [10], Propo-

sition 5 tells us that De Rham torsors lie in H1
f . �

We will also make use of the following construction of Kim (the ‘level-n Albanese map’).

H1
f (Un) � UDR

n

The map here may be defined, from left to right, as follows. As in [10], lemma 8, we

specify this map of affine schemes on the sets of R points, for arbitrary R - this is sufficient by

lemma 8.7. Let [ξ] ∈ H1
f (Un(R)) be represented by ξ : G → Un(R). By the definition of H1

f ,

this must be trivialised by some a ∈ Un(B ⊗ R). Indeed, consider the set

Ω := {a ∈ Un(B ⊗ R)|g(a)a−1 = ξ(g)}

There is a natural map Ω × (Un(B ⊗ R))G → Ω given by (ω, u) → ωu. We know that Ω is

non-empty, and we observe that, for any ω ∈ Ω, the induced map {ω} × (Un(B ⊗ R))G → Ω is

an isomorphism. Hence we can conclude that Ω is a (Un(B ⊗ R))G-torsor.

By the argument of Besser ([2], corollary 3.2), there is a unique γF ∈ Ωφ=1, and by the

argument of Kim ([10]), there is a unique γDR ∈ F0Ω. We map [ξ] to ‘γDRγ
−1
F ’. Since Ω is a

set, we mean by this the unique transporter from γF to γDR.

The following proof, (a near verbatim reproduction of a proof due to Kim, with Aut1Un

replacing Un), interprets De Rham torsors in terms of the De Rham fundamental group.
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Lemma 8.10.

H1
f (Aut1Un) � Aut1(UDR

n )

The proof follows immediately from the following four lemmata. First, note that the func-

torD commutes with the functor Aut1. Indeed we have

Lemma 8.11.

D(Aut1Un) � Aut1(D)

Proof. Let φ ∈ (Aut1Un ⊗ B)G, and γ ∈ UDR
n . We have

φ(γ)g = gφ(g−1γ) since γg−1
= g

= (gφg−1)(γ)

= φg(γ)

= φ(γ) since φg = φ

Thus φ(γ) is G-invariant whenever γ is G-invariant. Hence φ ∈ Aut1(Un ⊗ B)G, and we have

shown that

(Aut1Un ⊗ B)G ↪→ Aut1((Un ⊗ B)G)

We note that Aut1((Un ⊗ B)G) should mean ker(Aut(UDR
n ) → Aut(UDR

1 )), so that, in

particular, Aut1(U1 ⊗ B)G = 1; while on the other hand, (Aut1U1 ⊗ B)G should mean

ker(Aut(Un ⊗ B)→ Aut(U1 ⊗ B))G, so that (Aut1U1 ⊗ B)G = 1.

Inductively, we will suppose that (Aut1Un ⊗ B)G � Aut1((Un ⊗ B)G), for some n. We also

note that the map set up above will also induce an inclusion

(AutnUn+1 ⊗ B)G ↪→ Autn((Un+1 ⊗ B)G)
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Passing via the associated Lie algerbas

(Autn(Un+1 ⊗ B))G � (Autn(Ln+1 ⊗ B))G

�

(
Hom(L1 ⊗ B,

Ln+1

Ln+2 ⊗ B)
)G

� Hom
(
(L1 ⊗ B)G, (

Ln+1

Ln+2 ⊗ B)G
)

� Autn((Ln+1 ⊗ B)G)

so we are done by the equality of the dimensions of these objects. �

We need the following technical lemma equating the three restricted cohomology sets of

[3].

Lemma 8.12. We have the following (in)equalities, where H1
e , H1

f , and H1
g are the restricted

cohomology sets defined as in [3], definition 3.7.2.

H1
e (Aut1Un) � H1

f (Aut1Un) ⊆ H1
g(Aut1Un)

Proof. Recall that, by definition, Bφ=1
cr ⊆ Bcr ⊆ BDR. We also know that these restricted coho-

mology sets all lie naturally inside the set H1(Aut1Un). For any rings A1 ⊆ A2, a cocycle with

coefficients in Aut1Un that is trivialised by base-changing to A1 is clearly trivialised over A2, so

we conclude that

H1
e (Aut1Un) ⊆ H1

f (Aut1Un) ⊆ H1
g(Aut1Un)

By the corollary to lemma 8.2, we know that Kn
n+1 � Hom(U1,Zn+1), which is

Hom(Qp(1)2,Qp(n + 1)dn) for some dn. Thus, as in the calculation of lemma 7.6, Kn
n+1 may

be written as a direct sum of copies of Qp(n).

By [3], example 3.9, we know that the dimensions of H1
e (G,Qp(n)) and H1

f (G,Qp(n)) agree

for all n >= 1. Since Aut1(U1) is trivial, we have H1
∗ (G,Aut1U1) = 1 for ∗ = e, f . We proceed

by induction. Suppose the equality holds for n = k. Then, since dim(H1
∗ (G,Aut1Uk+1)) =

dim(H1
∗ (G,Aut1Uk)) + dim(H1

∗ (G,K
k
k+1)), and since the right hand side of this equation takes

the same value for ∗ = e, f , we conclude that the equality holds for n = k + 1. �
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Lemma 8.13. There is an isomorphism

Exp : Aut1(UDR
n ) −→ H1

f (Aut1Un)

Proof. Recall the following fundamental exact sequence.

1 // Qp // Bφ=1
cr

// BDR/B+
DR

// 1

from which we obtain the exactness of

1 // Aut1Un
// Aut1Un(Bφ=1

cr ) // Aut1Un(BDR/B+
DR) // 1

The connecting homomorphism of the associated long exact sequence yields a surjection of

(Aut1Un(BDR/B+
DR))G surjects onto H1

e (Aut1Un), which coincides with H1
g(Aut1Un) by lemma

8.12.

Now the inclusion B+
DR ↪→ BDR yields the exact sequence

1 // Aut1Un ⊗ B+
DR

// Aut1Un ⊗ BDR
// Aut1Un ⊗ (BDR/B+

DR) // 1

BDR is flat and these objects are all De Rham, so the following two rows are identical short

exact sequences.

1 // (Aut1Un(B+
DR)) ⊗ BDR // (Aut1Un(BDR)) ⊗ BDR

// (Aut1Un( BDR
B+

DR
)) ⊗ BDR // 1

1 // (Aut1Un(B+
DR))G ⊗ BDR // (Aut1Un(BDR))G ⊗ BDR

// (Aut1Un( BDR
B+

DR
))G ⊗ BDR // 1

Since BDR is faithfully flat, we can ‘un-tensor’. Furthermore, we recall that the Hodge filtration

on Un, and hence on Aut1Un, is trivial, so that

H0(Aut1Un ⊗ B+
DR) = H0(Aut1Un ⊗ F0BDR)

= F0H0(Aut1Un ⊗ BDR)

= F0Aut1UDR
n = 1

Combining our results so far, we have surjections

Aut1UDR
n = (Aut1Un ⊗ (BDR/B+

DR))G → H1
g(Aut1Un)
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for each n. These maps fit into a tower like

Aut1UDR
n+1

// //

����

H1
g(Aut1Un+1)

��
Aut1UDR

n
// // H1

g(Aut1Un)

so that we can deduce the surjectivity of the right-hand map. Our understanding of the structure

of Aut1Un, expressed in lemma 8.2, shows that H0(Aut1Un) = 1, so we know that the left-hand

map on the bottom row of

1 // (Kn
n+1)DR

����

// Aut1UDR
n+1

//

����

Aut1UDR
n

//

����

1

1 // H1
g(Kn

n+1) // H1
g(Aut1Un+1) // H1

g(Aut1Un) // 1

is injective. By considering dimensions (see [3], corollary 3.8.4), we see that the left-hand

vertical map is an isomorphism. By inductively applying the 5-lemma, we can conclude that

the middle vertical map is also an isomorphism, and we are done. �

We make the following two observations about this construciton. Firstly, the map Exp

may be regarded as simply the projection from Aut1(UDR
n ) to Aut1(Un(BDR/B+

DR)), followed by

the connecting homomorphism to H1(Aut1(B+
DR)).

Secondly, the isomorphism Exp in the last lemma is inverse to the map, D, from

H1
f (Aut1Un) to Aut1UDR

n described before the statement of lemma 8.10. We prove this in

Lemma 8.14.

Exp ◦ D = 1

Proof. Having defined the isomorphism Exp, we will show that the composition Exp◦D is the

identity, so that D is an isomorphism.

Indeed, we see from the construction above that H1
e = H1

f , so that an element of H1
f is

already trivialised in Aut1Un ⊗ Bφ=1
cr . By the same process as above, we can then associate a
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(Aut1Un ⊗ Bφ=1
cr )G-torsor to the class [ξ]. But since φ acts trivially on Aut1Un, we have

(Aut1Un ⊗ Bφ=1
cr )G = ((Aut1Un ⊗ Bcr)φ=1)G

= ((Aut1Un ⊗ Bcr)G)φ=1

⊆ (Aut1UDR
n )φ=1

= {1}

by the uniqueness of Frobenius-invariance. A (Aut1Un⊗Bφcr)-torsor, therefore, must be a single

element u0 ∈ Aut1Un ⊗ Bcr satisfying ξ(g) = g(u0)u−1.

Recall that [ξ] ∈ H1
f (Aut1Un) ⊆ H1(Aut1Un) may be explicitly identified with the Aut1Vn-

torsor given by the underlying set Aut1Un and the twisted G action

g : u −→ ξ(g)−1g(u)

(where g(u) means the G-action in Aut1Un). So to say that u0 trivialises the class of ξ is to say

that ξ(g) = g(u0)u−1
0 , which in turn may be re-written as u0 = ξ(g)−1g(u0), which is equiva-

lent to saying that u0 is the unique G-invariant element of Aut1Un(ξ) with the twisted action

corresponding to ξ.

Then D([ξ]) must be the transporter from γDR = 1 (since F0 is trivial) to γF = u0, so that

D([ξ]) = u0.

We can therefore write

Exp ◦ D([ξ]) = Exp(u0)

= δ(ū0)

where δ is the connecting homomorphism from (Aut1Un ⊗ BDR/B+
DR)G to H1(Aut1Un) and ū0

is the image of u0 in (Un ⊗ B/B+)G. But this connecting homomorphism may be realised as

sending ū0 to {g → g(u0)u−1
0 }. By the construction of u0, this is just {g → ξ(g)}, so that

Exp ◦ D([ξ]) = [ξ] as required. �
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8.5.3 Proof

Proof of theorem 3.

UDR
n

� � // Aut1(UDR
n+1)

Ω(Zp)

;;w
w

w
w

w
//

**UUUUUUUUUUUUUUUUUUUU H1
f (Un) // H1

f (Aut1Un+1)

/GL2

��
H1(Aut Un+1)

We are now ready to assemble our proof. As discussed earlier in the chapter, let X be

the scheme P1
Zp
\ {0, 1,∞}, so that we recover X as the base-change of X to Qp. A Zp-integral

point of X includes the data of a Qp point of X, so to such an integral point we can associate

points in H1(Un) and in H1(Aut1Un) as we can to a rational point of X. Let x ∈ X(Zp). We

denote by Pn(x), U1
n(x), and Un(x) the images of x in H1(Un), H1(Aut1Un+1), and H1(Aut Un+1)

respectively.

Let y ∈ X(Zp) be any point with Un(y) �G Un(x). We know, by lemma 8.9, that U1
n(x) and

U1
n(y) lie in H1

f (Aut1Un+1). Since they map to the same point in H1(Aut Un+1), we know that

these torsors lie in the same H0(Aut U1)-orbit, by lemma 7.3.

Recall also that H1
f (Aut1Un+1) is representable by lemma 8.6, that H0(Aut U1) � GL2, and

that by lemma 8.7 the action of the latter on the former is algebraic. The orbits of this action

are locally closed, so that this orbit is contained in some closed subscheme Z with U1
n(x) ∈ Z ⊆

H1
f (Aut1Un+1) such that any y with Un(y) �G Un(x) satisfies Un(y) ∈ Z.

The pre-image, W, of Z in H1
f (Un) is also a closed subscheme, since the map H1

f (Un) →

H1
f (Aut1Un+1) is algebraic. That is, W ⊆ H1

f (Un) is a closed subscheme containing Pn(y) for all

y with Un(y) �G Un(x).

W is the pre-image of an orbit of GL2 under the map H1
f (Un) → H1

f (Aut1Un+1). By the

identifications H1
f (Un) � UDR

n and H1
f (Aut1Un+1) � Aut1UDR

n+1, we identify this map with the

injection (since U is centre-free) UDR
n → Aut1UDR

n+1. It follows that the dimension of W is

not greater than dim(GL2) = 4, so that whenever dim(UDR
n ) > 4, W must be a proper closed
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subscheme. This happens if n ≥ 3.

Now set n = 3. Let p ≥ 7, so that (p − 1)/2 ≥ (n + 1), satisfying the hypotheses of the

main theorem of [10].Let f be any non-zero function on UDR
n that vanishes on W. Following

[11], we know that the map from the Zp-points of X to UDR
n is analytic, and that the function

f pulls back to a non-constant analytic function on each residue disc of X(Qp). This therefore

has only finitely many zeroes, from which we conclude that only finitely many points of X(Zp)

can map to Z.

We conclude that, whenever p ≥ 7, every W as above must be contained in a proper closed

subscheme. Then W ∩ im(X(Zp)) is finite, so the map from integral points to H1(G,Aut U3) is

finite to one. The fibres of the map to H1(G,Aut Um) for any m > 3, or the map to H1(G,Aut U),

cannot be larger; so these must also be finite. �
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