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ABSTRACT

BACKGROUND: Neuroendocrine tumours (NETs) are fairly rare neoplasms that

present many clinical challenges. The complexity, heterogeneity, and rarity of NETs

have contributed to their limited therapeutic options. To improve the outcome from

NETs, a better understanding of their biology is needed. Several receptor targets exist,

against whom agents such as antibodies or tyrosine kinase inhibitors are being

developed and tested in clinical trials. Several of these agents have been used in

combination with chemotherapy or radiation with promising results. These receptors

include the tyrosine kinases EGFR and C-KIT, and the somatostatin receptor SSTR2.

However, their role in neuroendocrine tumour growth remains unclear.

METHODS: We investigated the anti-proliferative effect of EGFR inhibitor gefitinib,

as single agent or in combination with widely used chemotherapeutic agents. The

chemotherapeutic agents were also examined for their effect on EGFR activity.

Cisplatin and radiation were studied for their effect in EGFR activity and localisation in

combination with gefitinib and the anti-EGFR antibody cetuximab by immunoblotting

and immunofluorescence, while the comet assay for quantitation of DNA damage was

used to examine modulation of DNA repair by radiotherapy. The cytotoxic efficacy of

agents against SSTR2 was also examined, while the expression of C-KIT was analysed

in 95 NET patients by immunohistochemistry.

RESULTS: Gefitinib demonstrated anti-proliferative effect associated with induction

of apoptosis but no cell cycle arrest. Cisplatin induced a transient activation of EGFR

and nuclear translocation, which was mediated through the Ras/MAPK and PI-3K/Akt

signalling cascades. Cisplatin and radiation-induced EGFR translocation was blocked

by gefitinib and cetuximab, and this was associated with a delay in the repair of

radiation-induced DNA strand breaks. Nuclear translocation was mediated by nuclear

pore complex importins and exportins, and utilized the EGFR nuclear localisation

sequence. C-KIT was identified in a number of NET patients. The drugs against SSTR2

had no effect on the growth of cells.

CONCLUSIONS: Targeting EGFR in combination with radiation may provide

therapeutic potential in neuroendocrine tumours patients.
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GENERAL   INTRODUCTION
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1.1 Cancer
Cancer is a disease involving dynamic changes in the human genome. The molecular

basis of cancer involves mutations which produce oncogenes with dominant gain of

function and tumour suppressor genes with recessive loss of function. Mutations vary

from specific point mutations to alterations in whole chromosomes; these differences

can affect the genes governing the normal regulatory mechanisms of cell growth and

proliferation (Vogelstein & Kinzler, 1993). Uncontrolled cell proliferation or inefficient

mechanisms of programmed cell death can result in tumour growth. There are well over

200 different forms of tumour subtypes arising in different organs.

As summarised by Hanahan & Weinberg, (2000), the vast majority of malignant

tumours can be identified by six fundamental changes; self-sufficient growth signals,

insensitivity to anti-growth signals, evading programmed cell death (apoptosis),

limitless replicating potential (immortality), sustained angiogenesis and tissue invasion

and metastasis. These characteristics can be acquired during the course of tumour

development through a series of genetic changes culminating in the uncontrolled and

eventual malignant transformation of a clonal cell population. This multi-step process

initiating from a normal cell population, develops through a series of pre-cancerous

lesions into a metastatic tumour.

Once transformed, a malignant tumour can become invasive and can spread into the

surrounding tissue. In some cases cancerous cells migrate away from the primary

tumour often via the lymphatic system. These micro-metastases can attach to new tissue

elsewhere in the body and form secondary tumours (Hanahan & Weinberg, 2000).

1.1.1 Incidence and Mortality

Each year more than a quarter of a million people are newly diagnosed with cancer in

the UK. Overall it is estimated that more than one in three people will develop some

form of cancer during their lifetime. Of the different types of cancer, four types

including breast, lung, large bowel (colorectal), and prostate account for over half of all

new cases. Breast cancer is the most common cancer in the UK. The latest available

mortality statistics for the United Kingdom (UK) are for 2004. In that year 153,397

people were registered as dying from a malignant neoplasm. Cancer is the cause of
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approximately a quarter of all deaths in the UK of which over one fifth (22%) are

caused by lung cancer. Colorectal cancer was the second most common cause of death

from cancer (11%). Breast cancer is the third most common cause of death from cancer

in all persons (8%).

1.2 Neuroendocrine tumours
Neuroendocrine tumours (NETs) constitute a heterogeneous group of tumours that

derive predominantly from cells of the diffuse endocrine system of the gut and pancreas

and can be found anywhere in the body (Rindi et al., 1999). This system includes

endocrine glands, such as the pituitary, the parathyroids and the adrenal medulla, as

well as endocrine islets within glandular tissue (thyroid or pancreatic) and cells

disseminated between exocrine cells, such as endocrine cells of the digestive and

respiratory tracts (Arnold et al., 1994; Kaltsas et al., 2004). Neuroendocrine tumours

were thought to rise from the so called APUD cells as they have the ability for Amine

Precursor Uptake and Decarboxylation (Somogyi et al., 2000). APUD cells are a group

of unrelated endocrine cells found throughout the body with similar characteristics,

which make a number of hormones with similar structures including serotonin (5-

hydroxytryptamine, or 5-HT) and neurotensin. This idea has now been abandoned and

the term neuroendocrine cell is defined by the cell’s secretory products and cytoplasmic

proteins, rather than its localisation or embryological derivation.

Neuroendocrine cells have distinctive characteristics presenting marker proteins and

cell type-specific hormonal products. The cells have uniform nuclei with abundant

granular or faintly stained cytoplasm and membrane-bound dense-core secretory

granules in the cytoplasm. Neuroendocrine cells form small organs, distinct cell clusters

within other tissues or a network of cells dispersed in thymus, thyroid, lung and gut.

Consequently, common properties of NETs include ectopic hormone and bioamine

release, the presence of tumour-associated antigens, and isozyme composition

(Bombardieri et al., 2001; Jensen, 2000).

1.2.1 Classification

NETs classification was traditionally based on site of origin and whether they are

functioning (with a clinical syndrome) or non-functioning (without a clinical
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syndrome). There are many types of neuroendocrine tumours including the medullary

thyroid cancers, paragangliomas, phaeochromoctomas, but the most common NETs are

the gastro-entero-pancreatic neuroendocrine (GEP NE) tumours. GEP NE tumours are

divided into:  a) carcinoid tumours originating in the foregut (lung, thymus, stromal and

proximal small bowel), midgut (ileum, caecum, proximal colon) or hindgut (distal

colon, rectum), b) pancreatic neuroendocrine tumours (PNETs) or islet cell tumours,

named after their main secretory product, including insulinomas, gastrinomas, VIPomas

(vasoactive intestinal peptide tumours), and glucagonomas, and c) non-functioning

tumours, which secrete peptides that do not cause any clinical syndrome (Solcia et al.,

1999). This old classification has been replaced by the new World Health Organisation

(WHO) classification which divides NETs according to histomorphology, size and the

presence of metastases into:

1. well-differentiated endocrine tumours

2. well-differentiated endocrine carcinomas

3. poorly differentiated endocrine carcinomas

4. mixed exocrine and endocrine carcinomas

5. tumour-like lesions

The old classification though, is still in use in clinical practise and in research papers

(Jensen, 2000; Oberg, 2004) and for practical reasons is used in this study.

NETs occur most commonly in the digestive system. But they can also be found in

other parts of the body. The commonest type of NET is the carcinoid tumour which

accounts for 55% of GEP NE tumours. This cancer mainly arises from neuroendocrine

cells of the appendix (38%), ileum (23%), rectum (13%), and bronchus (11.5%). But it

can also grow in the pancreas, kidney, ovaries and testicles. 10% of carcinoids usually

present with the so-called carcinoid syndrome characterised by flushing, diarrhoea,

bronchoconstriction and right-sided heart disease due to excessive secretion of

serotonin in the systemic circulation. The second type of NET is the group of pancreatic

NETs (PNETs). According to data from the Surveillance, Epidemiology and End

Results (SEER) registry on PNETs in the United States over the period from 1973-

2000, the most common PNET is the non-functional type (90.8%). The next most

common type of PNET is the gastrinoma (4.2%), a gastrin-releasing islet cell tumour of

the pancreas (30-40%) or duodenum (60-70%) that is associated with peptic ulceration

and the Zollinger-Ellison syndrome, which is caused by the over-production of gastrin,
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followed by the insulinoma (presented with hypoglycaemic syndrome) (2.5%), an islet

cell tumour that secretes excess insulin, the glucagonoma (1.6%) and the VIPoma

(0.9%) (Jensen, 2000; Oberg, 2004; Halfdanarson et al., 2008; Modlin et al., 2008).

1.2.2 Incidence and Mortality

NETs are rare, mostly benign or slow growing tumours (although a proportion

demonstrates aggressive tumour growth) with often differing phenotypes in their

clinical behaviour (Mignon, 2000). Neuroendocrine tumours account for only 2% of all

malignancies. In the last decades, the incidence of NETs has been rising. The incidence

is approximately 5/100,000 with more female patients under the age of 50 and with

metastases occurring in more than 80% of patients. According to the SEER registry on

NETs in the United States over the period from 1973-2004, the primary sites of NETs

differed considerably with sex and race. In total, 41% of NETs were foregut, 26%

midgut and 19% hindgut, whilst the rest 13% had unknown primary site. Most

neuroendocrine tumours are mainly sporadic, but association with the multiple

endocrine neoplasia type 1 (MEN-1) syndrome and clustering within families is known.

Survival is rated at 5-years according to stage: 93% in local disease, 74% in regional

disease and 19% in metastatic disease. In metastatic disease, survival increased since

1992, when treatment with octreotide became largely available in the Netherlands

(Taal, 2004; Yao et al., 2008; Srirajaskanthan et al., 2009).

1.2.3 NET markers

Most NETs produce and secrete a variety of cell type-specific peptide hormones and

amines which cause clinical syndromes and are used as markers for the diagnosis of

NET patients (Eriksson et al., 2000). Diagnosis was historically based on silver

stainings; the argyrophil staining by Grimelius, which is a general neuroendocrine

marker, and the argentaffin staining by Masson, which demonstrates the serotonin

content (Wilander et al., 1989). In the absence of any symptoms diagnosis is based on

detection of general NET markers, including the secretory granule proteins

chromogranins A, B, and C, (of which chromogranin A is increased in 70-90% of all

NETs), the synaptic vesicle membrane glycoprotein synaptophysin, the pancreatic

polypeptide which is mainly increased in PNET patients, the cytosolic neuron-specific

enolase, and the carcinoembryonic antigen (Lamberts et al., 2001, Eriksson et al.,

2000). Specific neuroendocrine markers include insulin, gastrin, glucagon, vaso
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intestinal polypeptide, urinary 5-hydroxyindoleacetic acid (5-HIAA), which is the main

breakdown product of serotonin, and somatostatin (Tomassetti, 2001). The presence of

somatostatin receptors has greatly aided the imaging of NETs.

1.2.4 Diagnosis and Treatment of NETs

The diagnosis of NETs is based on measurement of general or specific hormone and

biochemical marker levels in the plasma, as well as the histological immunostaining

including detection of the nuclear antigen Ki-67, which indicates the proliferative

capacity of NETs. Localisation of these tumours is based on imaging tests such as

ultrasound, computerised tomography (CT), magnetic resonance imaging (MRI), and

somatostatin recepror scintigraphy (SRS or Octreoscan®). SRS is a very useful imaging

modality as more than 80% of these tumour cells express somatostatin receptors, which

will be discussed in more detail later.

Treatment options for NETs include the use of somatostatin analogues (which are used

for the management of clinical symptoms caused by excessive hormone secretion),

alpha interferons1, chemotherapy, embolization, radionuclide receptor targeted therapy,

new agents including e.g. tyrosine kinase inhibitors and mTOR inhibitors, and surgery

(Jensen, 2000; Srirajaskanthan et al., 2009; Desai et al., 2009). The initial management

of NETs is surgical excision of the tumour, if possible. This is the only form of

treatment that cures NETs and is sufficient in the majority of benign tumours; however,

the majority of GEP tumours are recurrent, malignant or disseminated tumours and thus

require further treatment (Oberg et al., 2004).

SST analogues and interferon-alpha (IFN-) can achieve disease stabilization by

symptomatic control in functional tumours and rarely shrinkage of tumour may occur,

but in most cases, patients become refractory to therapy and additional treatment is

required. Other options for therapy in these cases include systemic chemotherapy or

radiotherapy (Oberg et al., 2004; Srirajaskanthan et al., 2009; Desai et al., 2009).

1 The mechanism of action for alpha interferon involves direct effects on the tumour cells by inhibiting

the cell proliferation via cell cycle arrest at the G1/S phase. Furthermore, INF-modulates the immune

system by stimulating natural killer cells, macrophages and also presents anti-angiogenetic effects.
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Chemotherapy can temporarily produce response in patients with fast-growing poorly

differentiated NETs, but many well-differentiated NETs are relatively chemoresistant

(Oberg et al., 2004). However, some types of NETs particularly those of foregut origin

e.g. pancreatic NETs may be sensitive to chemotherapy and using a streptozocin based

regimen may have a partial response rate of 30-50%, and similar responses have been

demonstrated with a combination of cisplatinum and etoposide. On the other hand,

chemotherapy in patients with slow growing NETs such as midgut carcinoids has

produced little response, and these tumours are mainly managed with somatostatin

analogues, interferon therapy, and more recently radionuclide receptor therapy (Oberg,

2001; Srirajaskanthan et al., 2009; Desai et al., 2009). Chemotherapy has significant

side effects including immunosuppression and myelosuppression and its use must be

weighed against potential adverse effects (Kaltsas et al., 2004).

Radionuclide therapy involves coupling a radioisotope to a peptide (e.g. somatostatin

analogue), which will be internalised with the peptide-receptor complex through

receptor uptake, and deliver a cytotoxic radiation dose to the tumour without damaging

the surrounding healthy tissues (Krenning et al., 1999). Aspects taken into

consideration include the amount of radiolabelled ligand that can be concentrated inside

tumour cells and the rates of internalization, degradation and recycling of the ligand-

receptor complex (Wiseman & Kvols, 1995). Examples of radiolabelled molecules

include the radionuclide labelled octreotide or octreotate (octreotide acid) with 111In

(Indium-111), 90Y (Yttrium-90) or 177Lu (Lutetium-177), as well as 131I-MIBG (Iodine-

131 labelled meta-iodobenzylguanidine).

Radionuclide labelled octreotide is generally used in neuroendocrine tumous, especially

GEP NETs. Indium-111 was initially the most commonly used radioisotope, but has

been replaced by Yttrium-90 and Lutetium-177. Therapy with 90Y-octreotide caused

stabilization of tumour growth and partial response in approximately 20% of NET

patients (Waldherr et al., 2002). 177Lu-octreotate was used in 504 patients with

gastroenteropancreatic tumours with complete response in 2% of patients, partial

response in 28% and minor tumour response in 16%. The overall survival was extended

by 40 to 72 months from time of diagnosis compared to previous controls

(Kwekkeboom et al., 2008). 131I-MIBG has been used to treat patients with

pheochromocytoma, neuroblastoma, carcinoid tumours, medullary thyroid carcinoma,
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and paragangliomas. The tumour responses have been variable with the most

encouraging results being in patients with pheochromocytoma (Wiseman & Kvols,

1995). The main side effect of radionuclide therapy is bone marrow suppression, which

is usually seen after a number of treatment cycles.

NET metastases are often found in the liver. Liver resection is carried out especially

when the tumour is isolated in one area of the organ, but is also considered when the

metastasis is more extended in order to slow the progression of the disease. In total,

liver resection is performed in approximately 10% of patients with a 5-year survival in

60-85% of the cases. Non-resectable liver metastases can also be treated with hepatic

artery embolization (HAE), with a 5-year survival in more than 50% of patients

(Srirajaskanthan et al., 2009; Desai et al., 2009). HAE is based on the observation that

tumor cells get nearly all their nutrients from the hepatic artery, while the normal cells

of the liver get about 75 percent of their nutrients (and about half of their oxygen) from

the portal vein, and thus can survive with the hepatic artery effectively blocked

(Pommier, 2003). HAE leads to tumour reduction by induction of ischaemia and

therefore decrease of hormone secretion. Embolisation can be achieved with

radionuclides or chemotherapeutic agents such as cisplatin and doxorubicin

(Srirajaskanthan et al., 2009; Desai et al., 2009).

Based on the above, it is clear that neuroendocrine tumours present a heterogeneous

group of tumours with different biological features and their treatment has been

challenging to physisians worldwide. Forms of treatment should be individualised for

each patient with consideration of the molecular biology and history of each tumour,

especially in patients with well-differentiated slow-growing NETs, as such patients can

have prolonged survival in the presence of extensive disease (Oberg et al., 2004).

Lately, treatment options for many types of tumours include targeting of specific

growth factors and their receptors. A number of different traditional growth factors

have been identified in neuroendocrine gut and pancreatic tumours such as IGF-1,

PDGF-, b-FGF, TGF-, and the TGF- family (Oberg, 1996), but the role of these

growth factors and their receptors in NETs is still under investigation. The limited

therapeutic options for NETs and the expression of growth factor receptors on the

surface of NET cells provided the rationale for my study, which focuses on
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identification of receptor proteins as potential therapeutic targets in neuroendocrine

tumours. The receptors analyzed are members of two large receptor families; the

protein tyrosine kinases (PTKs) and the G protein-coupled receptors (GPCRs). The

protein tyrosine kinases investigated for their role in NET growth include the epidermal

growth factor receptor (EGFR), which is expressed in a variety of cancer types, and C-

KIT, which is mainly expressed by gastrointestinal stromal tumour cells. The GPCRs

examined include the somatostatin receptors (SSTRs), which are well known markers

of neuroendocrine differentiation. Analysis of the therapeutic potential of each

receptor-target was mainly based on the efficacy of specific inhibitors, in the form of

synthetic compounds or antibodies, which block the expression of each receptor-target.

The receptors investigated as well as their respective inhibitors are analysed in detail in

the following sections.

1.3 Protein Tyrosine Kinases (PTKs)
More than 20 years ago animal tumour viruses were found to encode for protein

tyrosine kinases (Sawyers, 2002). PTKs play a fundamental role in multiple cellular

mechanisms such as cell proliferation, differentiation, migration as well as apoptosis,

all of which can lead to oncogenesis when deregulated. PTKs’ function, which is

literally the transfer of phosphate from ATP to tyrosine residues of target proteins

needed for their activation or inactivation, is tightly controlled under physiological

conditions (Skorski, 2002).

1.3.1    PTKs and Oncogenesis

Changes in more than 30 PTKs have been implicated in the development of neoplastic

diseases (Blume-Jensen & Hunter, 2001). There are four general mechanisms by which

tyrosine kinases become constitutively activated (figure 1). The first is as a result of

chromosomal translocation. In this case, reciprocal chromosomal translocations

generate fusion proteins, where the amino-terminal portion is responsible for

oligomerisation, and this enables constitutive activation of the catalytic activity of the

kinase domain located on the carboxy-terminal portion.
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Figure 1: Genetic alterations leading to uncontrolled activation of PTKs in cancers
Source: T Skorski, Nature Reviews Cancer, 2002

The second mechanism is as a result of overexpression of the cell-membrane receptor

tyrosine kinase which leads to spontaneous (or autocrine ligand-dependent)

dimerisation and constitutive kinase activation. Third, point mutations in the

juxtamembrane region of a receptor tyrosine kinase may cause constitutive ligand-

independent dimerisation of the receptor and activation of its kinase activity. Finally,

truncation of the carboxy-terminal portion may prevent phosphorylation of a tyrosine

residue that is involved in protein folding and stabilize tyrosine kinase in its active

conformation (Skorski, 2002). An overview of protein tyrosine kinases implicated in

human cancer is shown in Table 1. The PTKs investigated in our study, EGFR and C-

KIT, are analysed below.
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Table 1: Oncogenic Tyrosine Kinases

Adapted from Skorski T, Nature Reviews Cancer, 2002

1.3.2    EGFR (Epidermal Growth Factor Receptor)

Among the various families of growth factors known to contribute to the growth of

tumour cells are the EGF-related peptides and their receptors. The EGFR family is

another subset of the Receptor Tyrosine Kinase (RTK) super family. EGFR is also

known as Human Epidermal Growth Factor Receptor (HER1) or c-erbB1 (Wells,

1999).

1.3.2.1    EGFR structure and function

The ErbB family or EGFR family consists of four structurally related RTKs: EGFR

(ErbB1/HER1), ErbB2 (HER2/Neu in rodents), ErbB3 (HER3) and ErbB4 (HER4).

Activation of the EGFR family is accomplished by a multitude of ligands creating a

signal diversity that is critical to EGFR function (Holbro and Hynes, 2003). Three

ligand groups have been identified so far (Yarden and Sliwkowski, 2001). Receptors

and their ligands are illustrated in figure 2.

Members of the EGFR family contain an extracellular domain of approximately 620

amino acids involved in ligand binding and receptor dimerization, a single

transmembrane spanning region, and a cytoplasmic tyrosine kinase domain in all

receptors except for ErbB3 which lacks intrinsic kinase activity (Yarden, 2001). The

extracellular region is made up of four subdomains, L1, CR1, L2 and CR2, where L

OTK Cancer type Mechanism

ABL, ALK, FGFR,
JAK2, PDGFR-,

TRKC

Acute and chronic
leukaemias

Dysregulated by fusion
with BCR, TEL or NPM
causing oligomerisation

and activation of the
kinase by cross-
phosphorylation

ERBB1-4, IGF1R,
PDGFR-, FGFR 1-4

Breast and ovarian
carcinomas, lung cancer,

glioblastomas, gastric
and prostate carcinomas

Enhanced expression
causes receptor

dimerisation and
activation of intrinsic

kinase activity

Src, C-KIT
Gastrointestinal tumours,
leukaemias, lung cancers,

colon cancer

C-Terminal truncation or
gain-of-function point

mutations causing
increased kinase activity
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signifies a leucine rich repeat domain and CR a cysteine-rich region. These subdomains

are also referred to in literature as domains I-IV respectively (Garrett, et al., 2002;

Ward et al., 2007).

In EGFR, the intracellular domain is split into a short juxta-membrane domain, a

tyrosine kinase domain and a long carboxyl tail with autophosphorylation sites (Wells,

1999). The tail also has three internalisation sites, for when ligand occupied EGFR is

internalised and degraded. The ligands (secreted or membrane-bound glycoproteins)

constitute a group of proteins with diverse function, which have an important role in

early mammalian development (Salomon et al., 1995). These include proteins such as

EGF, TGF-a, amphiregulin, heparin-binding EGF-like growth factor, betacellulin, and

epiregulin (Toyoda et al., 1997; Wells, 1999). The related ErbB3 and ErbB4 receptors

are activated by neuregulins (NRGs). ErbB2 has no known direct activating ligand, and

may be in an activated state constitutively.

Figure 2: The EGFR family members
Adapted from PM Harari, Endocrine Related Cancer, 2004
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Activation of the receptor results in the initiation of a diverse array of cellular

pathways. In response to toxic environmental stimuli, such as ultraviolet irradiation, or

to receptor occupation, receptors form homo- or heterodimers with other family

members (Yarden, 2001; Harari, 2004). Ligand induced activation leads to activation of

a number of signalling pathways which cease after endocytosis or receptor

internalisation culminating in recycling or degradation of the receptor.  EGFR is the

only member of the family able to form a heterodimer with all other members of the

EGFR family. ErbB2 does not have a ligand and may be in an activated state

constitutively, but it is the preferred partner for the formation of a heterodimer. EGFR

dimerisation leads to autophosphorylation of five tyrosine (Y) residues in the C-

terminal domain of the receptor. These are Y992, Y1045, Y1068, Y1148 and Y1173.

Each dimeric receptor complex will initiate a distinct signalling pathway by recruiting

different Src homology 2 (SH2)-containing effector proteins. EGFR dimerization

results in autophosphorylation of tyrosine residues in the cytoplasmic C-terminal tail of

the receptor, initiating a downstream cascade of events, which produce an array of

cellular responses including cell proliferation, differentiation, adhesion, migration, or

apoptosis (Cohen, 2003; Wells, 1999).

1.3.2.2 EGFR signalling

The EGFR intracellular signal transduction pathways include the Ras/MAPK, the

phosphatidyl inositol-3 kinase (PI3K), the STAT pathway, and the phospholipase C

(PLC) pathways (Carpenter, 2000; Grant et al., 2002). Figure 3 shows a schematic

diagram of the EGFR intracellular signalling cascades.

The best known pathway is the serine/threonine mitogen-activated protein kinase

(MAPK) cascade (Schlessinger, 2004). Phosphorylated EGFR (ErbB1) is known to

recruit the adaptor proteins Shc and Grb2, which act through the exchange factor Sos to

activate Ras. This leads to the phosphorylation of the MAP kinase ERK1/2, which in

turn induces the expression of selected transcription factors including Elk-1 and c-fos

(Yarden & Sliwkowski, 2001). This pathway is associated with cell division and its

abnormal activity may be involved in the uncontrolled cell proliferation occurring in

tumours (Pal & Pegram, 2005).

Activation of the lipid kinase phosphotidylinositol-3 kinase (PI3K) leads to cell
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division and survival. In this pathway, the Gab1 adaptor protein activates PI3K which

initiates a positive feedback loop for Gab1 recruitment to the receptor. PI3K also

phosphorylates AKT (PKB, protein kinase B) leading to an anti-apoptotic response

through the transcription factor nuclear factor (NF)-B. This is also activated through

PKC, a pathway associated with cell cycle progression (Prenzel et al., 2001).

A third pathway is mediated by the cytoplasmic tyrosine kinase c-Src which is involved

in a number of cellular processes, including mitogenic signalling (Hynes & Lane,

2005). Amongst the known c-Src substrates, the signal transducer and activator of

transcription (STAT) family of transcription factors is known to be of particular

importance in the proliferation and survival of cancer cells. In fact, activation of

STAT3 initiates a TGF-induced autocrine growth of transformed epithelial cells (Yu &

Jove, 2004).

Figure 3: The EGFR signal transduction pathways
Source: G Atalay et al., Annals of Oncology, 2003
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Interestingly, ErbB mediated activation of STAT3 has also been implicated in the

resistance of tumour cells to cytotoxic therapy (Masuda et al., 2002). Furthermore,

ErbB-induced activation of the phospholipase C (PLC) pathway has been linked to

increased cell motility (Fedi et al., 1994). The interaction of the erbB receptor family

and the integrin signalling pathway is mediated by the focal adhesion kinase (FAK) and

is important for tumour invasion and metastasis. Here, EGFR inactivates FAK, leading

to the disturbance of cell–cell and cell–matrix interactions thus promoting cell motility

and invasiveness (Lu et al., 2001). EGFR also promotes angiogenesis. An example of

this is the STAT3 regulated production of the angiogenic factor vascular endothelial

growth factor (VEGF) (Niu et al., 2002). Other proto-oncogenes activated include fos,

jun and myc as well as a family of zinc-finger-containing transcription factors such as

Sp1, Egr1 and Ets family members (e.g. GA-binding protein (GABP)) (Yarden, 2001).

1.3.2.3 EGFR (ErbB) family regulation and signalling specificity

The family of ErbB RTKs is involved in a wide variety of cellular processes such as

proliferation, survival, angiogenesis and metastasis. ErbB RTKs activate multiple

signalling pathways and different second messengers may mediate the same cellular

response. In addition, the same ligand bound to the same receptor can activate multiple

signalling pathways. The mechanism leading to the activation of a specific signalling

pathway is complex and dependent on many parameters.

Activation of a specific pathway may occur in a tissue-specific or tumour-specific

manner, as overexpression of individual ErbB types results in activation of specific

groups of genes (Alaoui-Jamali et al., 2003; Amin et al., 2004). ErbB receptors upon

activation form homo- or heterodimers in which different combinations of receptors

activate distinct signalling pathways (Riese & Stern, 1998; Olayioye et al., 1998). The

specificity of the signalling cascade activated is also regulated by many other factors

including: a) the ligand binding to the receptor (Amin et al., 2004), b) the interaction

with distinct substrates through different autophosphorylation sites of EGFR (Yarden &

Sliwkowski, 2001), and c) the rate of endocytosis activated by ligand binding, which

acts as a negative feedback leading to downregulation of the receptor (Bogdan &

Klambt, 2001).
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Ligand binding to a receptor can modulate its activity in many ways. Apart from the

type of ligand, the concentration of ligand (or of the receptor itself) and the binding

affinity of the ligand can modulate the potency and duration of signalling as well as the

signalling pathway activated. Furthermore, it has been documented that the C-terminals

of ligands (e.g. heparin binding-EGF), which result from cleavage of transmembrane

ligand precursors, may translocate into the nucleus and regulate cell proliferation

(Yotsumoto et al., 2009).

The autophosphorylation sites in the kinase domain of EGFR serve as docking sites for

various substrates which can be adaptor proteins or enzymes. EGFR

autophosphorylated sites activate second messengers containing SH2 (Src homology

domain 2) or PTB (phosphotyrosine binding) domains. On the other hand, EGFR can

also be phosphorylated by other kinases such as PKC (protein kinase C), which

regulates EGFR membrane distribution, or the JAK (Janus kinase) protein for the

initiation of the JAK-STAT signalling pathway (Bogdan & Klambt, 2001; Yarden &

Sliwkowski, 2001).

Phosphorylation and internalisation of EGFR leads to desensitization and

downregulation of the receptor respectively. The mechanism of internalization

employed also regulates EGFR signalling as trafficking via clathrin-coated pits

(activated by EGF) leads to EGFR degradation within lysosomes, whereas

internalization into early endosomes (activated by TGF-) leads to receptor recycling.

It is worth noting that EGFR actually remains active till its storage inside late

endosomes (Bogdan & Klambt, 2001). The rate of receptor endocytosis may also

influence the duration and potency of distinct signalling pathways (Baulida et al.,

2009).

Finally, the signalling pathway activated is also influenced by the cross-talk between

EGFR and other membrane receptors including IGF-1R (insulin like growth factor

receptor) and GPCRs (G-protein coupled receptors), which may activate EGFR directly

via phosphorylation or indirectly by activating downstream members of EGFR

signalling pathways (van der Veeken et al., 2009; Bhola & Grandis, 2008).
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1.3.2.4 EGFR and cancer

Excessive ErbB signalling is associated with the development of a wide variety of types

of solid tumour. ErbB-1 and ErbB-2 are found in many human cancers and their

excessive signalling may be critical factors in the development and malignancy of these

tumours (Cho HS and Leahy DJ, 2002). EGFR activity has an important role in tumour

development and progression by promoting cell proliferation, angiogenesis, metastasis,

invasion, and inhibition of apoptosis. Enhanced activation of EGFR in cancer is either

due to activating mutations, or overexpression and coexpression with its ligands which

leads to constitutive autocrine stimulation of the receptor (Yarden Y, 2001).

Table 2: Tumour types with EGFR overexpression

Tumour Type Percentage of Tumours

Bladder 31-48
Breast 14-91

Cervix/uterus 90
Colon 25-77

Oesophageal 43-89
Gastric 4-33
Glioma 40-63

Head and Neck 80-100
Ovarian 35-70

Pancreatic 30-89
Prostate 40-80

Renal cell 50-90
Non small-cell Lung 40-80

Source: PM Harari, Endocrine Related Cancer, 2004

EGFR and its receptors are involved in a large number of tumours, mainly epithelial

malignancies such as bladder, brain, breast, prostate, ovary, gastrointestinal tract and

brain cancers (Levitzki, 2003; Salomon et al., 1995) (table 2). Overexpression of EGFR

has also been identified in squamous cell carcinoma of the head and neck (SCCHN)

and in non small cell lung cancer (NSCLC). In NSCLC, mutations are found in the

intracellular portion of EGFR involving exons 17 to 21 (amino acids 712-979), and

especially exon 19. Finally, mutations leading to EGFR overexpression have been

associated with glioblastoma multiforme in which a more or less specific mutation of

EGFR called EGFRvIII, where exons 2-7 (amino acids 6-273) are deleted, is often
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found. Consequently, EGFR has been identified as a molecular target with high

therapeutic potential in a variety of cancers. However EGFR overexpression alone does

not predict response to anti-EGFR therapy (Bishop et al., 2002).

1.3.3 C-KIT

C-KIT, the second receptor target studied, is a receptor tyrosine kinase (RTK) encoded

by a 5-kb gene in chromosome 5 of mice and in chromosome 4q12 of humans. Initial

characterisation was carried out on the viral oncogene v-KIT, a component of the

Hardy-Zuckerman strain of feline sarcoma virus (HZ4-FeSV) (Besmer et al., 1986).

This viral gene was shown by cDNA cloning to be a truncated version of the cellular

proto-oncogene C-KIT, the cleavage of which is thought to induce the activation of the

oncogene (Yarden et al., 1987; Qiu et al., 1988).

1.3.3.1 C-KIT structure and function

Spontaneous mutations in murine loci W (white spotting) and Sl (steel locus) resulted in

anaemia, lack of mast cells, pigmentation defects and infertility. These loci encode the

C-KIT protein (Chabot et al., 1988; Geissler et al., 1988) and its ligand, stem cell factor

(SCF, also known as mast cell growth factor, KIT ligand, steel factor) (Williams et al.,

1990; Zsebo et al., 1990). The nature of the mutations between the two loci showed

complementarity, suggesting the proteins encoded belonged to a receptor- ligand pair.

The receptor was shown to be expressed in haematopoietic cells, melanocytes, and

germ cells, whereas the ligand, which exists in either membrane-bound or soluble form,

was produced by accessory environmental cells (e.g. bone marrow stromal cells or

fibroblasts) that regulate the survival, proliferation, differentiation as well as the

secretory function of the receptor-bearing cells (Galli et al., 1994; Linnekin, 1999).

C-KIT belongs to the family of type III transmembrane receptor kinases that includes

the platelet derived growth factor receptor (PDGFR) and the macrophage colony

stimulating factor receptor (CSF-IR) (Besmer et al., 1986; Yarden et al., 1986). This

family of receptors is a subset of the Protein Tyrosine Kinase (PTK) super family,

comprising of transmembrane receptors with intrinsic protein tyrosine kinase activity.

A schematic diagram of C-KIT is shown in figure 4.
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Figure 4: The structure of C-KIT
Source: MC Heinrich et al., Journal of Clinical Oncology, 2002

The extracellular region of C-KIT contains five immunoglobulin domain repeats, three

of which are involved in ligand binding.  The binding of homodimerised ligand induces

receptor dimerisation, activation of the receptor’s intrinsic tyrosine kinase activity with

subsequent autophosphorylation and activation of signal transduction pathways. The

intracellular region of C-KIT contains two tyrosine kinase domains, TK1 and TK2, as

well as a juxtamembrane domain which negatively regulates the TK1 and TK2

domains. The TK1 contains the ATP binding site while TK2 has possible

autophosphorylation sites (Linnekin, 1999).

1.3.3.2 C-KIT signalling

Signalling downstream of C-KIT has been studied extensively using mast cells that

express C-KIT endogenously as a model system. In cells whose survival depends on C-

KIT signalling, apoptosis is inhibited through the PI3K/Akt pathway, while

proliferation is promoted by the Ras/Erk, and the JAK/STAT pathways (Linnekin,

1999) as shown in figure 5.

1. The PI3-K pathway

C-KIT signalling through phosphotidyl inositol-3 kinase (PI3K) induces a mitogenic

response via activation of Akt and phosphorylation of Bad pro-apoptotic protein in vivo

(Blume-Jensen et al., 1998). C-KIT also induces resistance to apoptosis by upregulation

of the anti-apoptotic protein Bcl-2 and Bcl-xL (Blume-Jensen et al., 1998). PI3K binds

tyrosine residue 721 of C-KIT via its p85 subunit. D816V, an activating mutation
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present in acute myelogenous leukaemia (AML) and mastocytosis, is characterised by

ligand- independent activation and transforming abilities and is associated with

constitutive phosphorylation of tyrosine residues on PI3K. The significance of PI3K in

the transforming ability of mutated D816V C-KIT was shown in immortalised murine

progenitor cells transduced with the Y721F mutant D816V C-KIT, a mutant incapable

of recruiting PI3K, where it was shown that tumourigenicity is PI3K-dependent (Chian

et al., 2001).

Figure 5: C-KIT signal transduction pathways

2. The Ras/Erk pathway

In a basic view of the Ras/Erk pathway, activated C-KIT recruits SH2-containing

adapter proteins such as Grb2 to associate to its intracellular domain. Grb2 is bound in

a complex with Sos, which then shifts to the plasma membrane and activates Ras.

Activation of Ras is followed by phosphorylation of downstream kinases Mek and Erk.

Erk kinases translocate to the nucleus and phosphorylate transcription factors such as c-

Fos, which induce proliferation (Lennartsson et al., 2005).

3. The JAK/STAT pathway

Ligand stimulation of C-KIT also leads to activation of the JAK (Janus kinase) protein

tyrosine kinases. This is followed by phosphorylation and activation of the signal

transducer and activators of transcription (STAT) proteins, which are transcription
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factors containing DNA binding domains. Upon activation, STATs dimerise and

translocate to the nucleus where they regulate the expression of genes promoting

proliferation and survival (Linnekin, 1999; Lennartsson et al., 2005).

1.3.3.3 C-KIT and Cancer

The association of C-KIT and its ligand SCF with defects in multiple cell lineages was

followed by an extensive analysis and characterisation of its expression in human

malignancies, shown in table 3. Normally C-KIT promotes the differentiation, survival

and proliferation of tissues affected by W locus mutations such as erythropoietic cells,

melanocytes, germ cells (Nocka et al., 1989), tissue mast cells (Mayrhofer et al., 1987),

and bone marrow progenitor cells especially of the myeloid lineage (Ashman et al.,

1991; Escribano et al., 1998). C-KIT immunoreactivity was more recently

acknowledged in the well documented interstitial cells of Cajal (ICC), the pacemakers

of the GI system (Torihashi et al., 1995; Huizinga et al., 1995).

The C-KIT oncogene has been associated with the aberrant proliferation of many

tumours. Amplification or overexpression of C-KIT has been reported in AML (acute

myeloblastic leukaemia) and in some cases of CML (chronic myelogenous leukaemia)

(Kanakura et al., 1993; Escribano et al., 1998). Somatic activating mutations of C-KIT

were also found in germ cell tumours (seminomas and dysgerminomas) (Ashman,

1999). Gain-of-function mutations of the receptor have been involved in the increased

numbers of mast cells in mastocytosis, and in the malignant transformation of mast

cells (Boissan et al., 2000; Feger et al., 2002; Tsujimura 1996). Activating mutations of

C-KIT have been identified in many gastrointestinal tumours (Hirota et al., 1998).

These mutations lead to constitutive, ligand-independent phosphorylation of C-KIT,

producing a growth and survival signal that is involved in the pathogenesis of the

disease. In other cases though, which include small cell lung carcinoma and ovarian

cancer the growth of the tumour was promoted by the paracrine or autocrine activation

of the receptor by its ligand SCF and not by mutation (Parrott et al., 2000; Krystal et

al., 1996).

Interestingly, gain of function mutations in the C-KIT gene occur at different sites in

different neoplastic disorders, suggesting that the pathologic phenotype is determined

both by the domain of mutation of the gene as well as the cell type in which the
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mutation occurs. Exons 1-9 constitute the extracellular domain of the C-KIT protein.

Mutations in this domain lead to ligand independent activation of the receptor and they

have been identified in AML and GISTs. Exon 10 encodes the transmembrane domain

with no mutations identified yet (Heinrich et al., 2002; Lennartsson et al., 2005).

Table 3: C-KIT expression in human malignancies

Tumour Type % Positive for KIT % C-KIT Mutation
Mastocytosis/mast cell
leukaemia 100 >90

Gastrointestinal stromal
tumour 100 >70

Sinonasal natural killer/T-
cell lymphoma NR 17

Seminoma/dysgerminoma 78-100 8.7
Thyroid carcinoma 100 NR
Small-cell lung carcinoma 91 NR
Malignant melanoma 0-90 NR
Adenoid cystic carcinoma 80-90 0
Ovarian carcinoma 71-87 NR
Acute myelogenous
leukaemia 60-80 Rare

Anaplastic large-cell
lymphoma (CD30+) 68 NR

Angiosarcoma 56 0
Endometrial carcinoma 44-100 NR
Paediatric T-cell ALL/
lymphoma 43 NR

Breast carcinoma Up To 81 NR
Prostate carcinoma 2 NR

Source: MC Heinrich et al., Journal of Clinical Oncology, 2002

The juxtamembrane domain of the receptor, which is encoded by exon 11, serves as an

antidimerisation domain and negatively regulates the two tyrosine kinase domains.

Mutations in the juxtamembrane domain promote ligand independent dimerisation of

the receptor and are found most commonly in GISTs. Exons 11-17 comprise the

intracellular domains, with exons 13 and 17 encoding the tyrosine kinase domains.

Mutations in exons 13 and 17 have been detected in systemic mastocytosis, GISTs and

AML. Mutations in these domains affect the ATP binding ability of C-KIT and can

yield gain of function or loss of function tyrosine kinase activity (Heinrich et al., 2002;

Lennartsson et al., 2005).
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The next group of receptors targeted includes the somatostatin receptors, which belong

to the group of G protein coupled receptors.

1.4 G Protein-Coupled Receptors (GPCRs)
G protein-coupled receptors (GPCRs) are the largest family of transmembrane

receptors with more than 800 members found in higher eukaryotes, including yeast,

plants, and, especially, animals. This class of membrane proteins can respond to a wide

range of agonists, including photon, odors, pheromones, amines, hormones,

neurotransmitters and proteins, and vary in size from small molecules to peptides to

large proteins. Their function is crucial, based on regulation of a wide range of

molecular mechanisms including neurotransmission, endocrine and exocrine secretions,

immune responses, cardiac and smooth muscle contraction, and blood pressure. GPCRs

are involved in many diseases and represent the target of around half of all modern

medicinal drugs (Dorsam & Gutkind, 2007).

1.4.1 GPCR Structure and Function

GPCRs are integral membrane proteins that possess seven membrane-spanning

domains or transmembrane helices, therefore are also known as heptahelical receptors.

The extracellular parts of the receptor may be glycosylated. These extracellular loops

also contain two highly conserved cysteine residues which build disulfide bonds to

stabilize the receptor structure. Some agonists bind to the extracellular loops of the

receptor while others may penetrate into the transmembrane region (Pierce et al., 2002).

The transduction of the signal through the membrane by the receptor is not completely

understood. In its inactive state the receptor is bound to an inactive G protein, a

heterotrimer of  and  subunits. Ligand binding induces a change in the receptor

conformation that mechanically activates the G protein, which detaches from the

receptor (Dorsam & Gutkind, 2007).

It is believed that a receptor molecule exists in a conformational equilibrium between

active and inactive biophysical states. The binding of ligands to the receptor may shift

the equilibrium toward the active receptor state. If a receptor in an active state

encounters a G protein, it may activate it. Some evidence suggests that receptors and G
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proteins are actually pre-coupled. For example, binding of G proteins to receptors

influences the receptor's affinity for ligands (Rubenstein & Lanzara, 1998).

1.4.2 GPCR Signalling

Inactive G proteins have GDP bound to the subunit. Agonist-induced interaction

between the GPCR and G protein causes the replacement of GDP for GTP in the

subunit and dissociation between  and  subunits of the G protein. The separated

 and  subunits stimulate distinct downstream intracellular targets. The  subunits of

G proteins are divided into four subfamilies: Gαs, Gαi, Gαq and Gα12, and a single

GPCR can couple to either one or more families of Gα proteins. Each G protein

activates several downstream effectors as shown in figure 6 (Neves et al., 2002).

Figure 6: G protein-coupled receptor signalling
Source: RT Dorsam & JS Gutkind, Nature Cancer Reviews, 2007

Typically Gαs stimulates adenylyl cyclase and increases the levels of cyclic AMP

(cAMP), whereas Gαi inhibits adenylyl cyclase and decreases cAMP levels and Gαq

binds to and activates phospholipase C (PLC), which cleaves phosphatidylinositol

bisphosphate (PIP2) into diacylglycerol and inositol triphosphate (IP3). The β and γ

subunits function as a dimer to activate many signalling molecules, including
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phospholipases, ion channels and lipid kinases. Besides the regulation of these classical

second-messenger generating systems, Gβγ subunits and Gα subunits such as Gα12 and

Gαq can also control the activity of key intracellular signal-transducing molecules,

including small GTP-binding proteins of the Ras and Rho families and members of the

mitogen-activated protein kinase (MAPK) family of serine-threonine kinases, including

extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK), p38 and

ERK5, through an intricate network of signalling events that has yet to be fully

elucidated (Pierce et al., 2002; Marinissen & Gutkind, 2001).

1.4.3 GPCR  regulation

GPCRs become downregulated after exposure to their ligand for a prolongued period of

time. Two types of downregulation exist; the first one is homologous desensitization, in

which the activated GPCR is downregulated by intracellular kinases and the

heterologous desensitization, where an activated GPCR causes downregulation of a

different GPCR. Downregulation is caused by phosphorylation in the cytoplasmic

domain of the receptor by protein kinases. Phosphorylation is performed by c-AMP

dependent kinases or by G protein-coupled receptor kinases (GRKs).

 Phosphorylation by cAMP-dependent protein kinases

Cyclic AMP-dependent protein kinases (i.e. protein kinase A) are activated by the

signalling pathway initiated by ligand binding to GPCRs leading to activation of G

proteins and consequently adenylate cyclase and cyclic AMP. In a feedback

mechanism, these activated kinases phosphorylate the receptor. The longer the receptor

remains active, the more kinases are activated, and thus more receptors are

phosphorylated.

 Phosphorylation by GRKs

The G protein-coupled receptor kinases (GRKs) are protein kinases that phosphorylate

only active GPCRs. Phosphorylation of the receptor results in translocation of the

receptor, where the receptor is internalised into plasma membrane vesicles where it is

dephosphorylated and then brought back to the surface (recycling). This mechanism is

used to regulate long-term exposure, for example, to a hormone. The phosphorylated
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receptor may also become connected to arrestin molecules that prevent it from binding

to and activating G proteins for a short period of time.

(http://en.wikipedia.org/wiki/GPCR and references therein)

1.4.4 GPCRs  and Cancer

The critical role of GPCRs in cancer progression is based on a number of experimental

and clinical data. Constant GPCR stimulation by agonists produced and released from

tumour or surrounding stromal cells leads to autocrine and paracrine activation and

overexpression of the receptors in most tumour types (Heasley, 2001). Unregulated

GPCR function has recently been correlated with the ability of malignant cells to

proliferate independently, evade detection by the immune system, amplify their nutrient

and oxygen supply, and spread to surrounding tissues and other organs (Castellone et

al., 2005; Dorsam & Gutkind, 2007). Activating mutations of G proteins and GPCRs

were shown to promote the growth of some endocrine tumours, and constitutively

active GPCR expression has been found in the genomes of human oncogenic DNA-

viruses (Lyons et al., 1990; Sodhi et al., 2004). In colorectal cancer, GPCRs are also

stimulated by prostaglandins, the products of enzymes cyclooxygenases 1 and 2 that

cause inflammation, therefore providing a probable link between chronic inflammation

and cancer (Brown & Dubois, 2005; Gupta & Dubois, 2001). Finally, GPCRs have a

central role in tumour-induced angiogenesis, and tumour metastasis might involve the

GPCR-guided migration of cancer cells to their target organs (Richard et al., 2001).

Consequently, targeting GPCRs would be therapeutically valuable for patients with

GPCRs-driven cancers. The receptors targeted in this study are the group of

somatostatin receptors.

1.4.5 Somatostatin and Somatostatin Receptors

The group of GPCRs that have been targeted in this study includes the somatostatin

receptors. Somatostatin was discovered and its hormonal function was defined more

than 30 years ago. The wide range of anatomical distribution and actions of

somatostatin and its receptors have motivated intense scientific and clinical interest.

These receptors are strongly overexpressed in neuroendocrine tumours (NETs), therapy

of which is the objective of our research, which will be discussed later in this chapter.
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1.4.5.1 Structure and Function

Somatostatin (SST) is a cyclic disulphide-containing peptide hormone that was first

discovered in the hypothalamus as an inhibitor of growth hormone (GH) secretion

(Brazeau et al., 1973). Somatostatin is a mixture of two peptides, one of 14 amino acids

(SST-14), and the other of 28 (SST-28). They are produced throughout the central

nervous system and in other peripheral organs such as the pancreas, gut, thyroid and

adrenal glands, with a primary role in regulation of cell secretions (Patel, 1999). Both

forms of somatostatin are generated by proteolytic cleavage of prosomatostatin, which

itself is derived from preprosomatostatin (Patel, 1999). The relative amounts of SST-14

versus SST-28 secreted depend upon the tissue. For example, SST-14 is the

predominant form produced in the nervous system and apparently the sole form

secreted from pancreas, whereas the intestine secretes mostly SST-28. In addition to

tissue-specific differences in secretion of SST-14 and SST-28, the two forms of this

hormone can have different biological potencies. SST-28 is roughly ten-fold more

potent in inhibition of growth hormone secretion, but less potent that SST-14 in

inhibiting glucagon release (Tannenbaum et al., 1982).

SST acts on various targets to produce a broad spectrum of biological effects.  In the

brain SST acts as a neurotransmitter and a regulator of paracrine and autocrine

secretions (Epelbaum et al., 1994). It also inhibits the basal and stimulated release of

growth hormone and of the thyroid-stimulating hormone (TSH) (Patel & Srikant,

1986). Furthermore, it inhibits secretion of prolactin in vitro and diminishes elevated

prolactin levels in acromegaly (Reichlin, 1983; Patel & Srikant, 1986).

SST is also secreted by cells in the pancreas and in the intestine, where it inhibits the

secretion of a variety of other hormones.  In pancreas, SST appears to act primarily in a

paracrine manner to inhibit the secretion of both insulin and glucagon. It also has the

effect in suppressing pancreatic exocrine secretions, by inhibiting cholecystokinin-

stimulated enzyme secretion and secretin-stimulated bicarbonate secretion (Patel,

1999). SST is secreted by scattered cells in the GI epithelium, and by neurons in the

enteric nervous system. In the GI tract, SST inhibits the release of virtually every gut

hormone that has been tested, including gastrin, cholecystokinin, secretin and

vasoactive intestinal peptide. In addition to the direct effects of inhibiting secretion of

other GI hormones, SST has a variety of other inhibitory effects on the GI tract, which



44

may reflect its effects on other hormones, plus some additional direct effects. SST

suppresses secretion of gastric acid and pepsin, lowers the rate of gastric emptying, and

reduces smooth muscle contractions and blood flow within the intestine. Collectively,

these activities seem to have the overall effect of decreasing the rate of nutrient

absorption (Schubert, 2003; Patel et al., 1995).

Five somatostatin receptors have been identified and characterized, all of which are

members of the G protein-coupled receptor superfamily (Reisine & Bell, 1995). They

are termed SSTR1-SSTR5 with SSTR2 receptor giving rise to two isoforms SSTR 2A

and SSTR 2B through alternative splicing of the mRNA (Schindler et al., 1998). These

receptors are expressed in a variety of tissues including the brain, pituitary, pancreas

and gastrointestinal tract (Patel, 1999). Each of the receptors activates distinct

signalling mechanisms within cells, although all inhibit adenylyl cyclase (Benali et al.,

2000). Four of the five receptors do not differentiate SST-14 from SST-28. (Csaba &

Dournaud, 2001)

1.4.5.2 Somatostatin Receptors and Cancer

A large variety of tumour cells exhibit SSTR expression and more than one isoform is

usually present in each tumour. Most human tumours originating from SST target

tissues such as gastroenteropancreatic, brain tumours, and pituitary tumours have their

SSTRs conserved. SSTRs were first described in growth hormone producing adenomas

and TSH-producing adenomas (Reubi et al., 1992). Only half of endocrine inactive

adenomas display somatostatin receptors. While brain tumours contain SSTRs, the

receptor content varies with the tumour type. Medulloblastomas, oligodendrogliomas,

and differentiated astrocytomas display somatostatin receptors. High grade

glioblastomas lack SSTRs, whilst meningiomas express these receptors (Lamberts,

1991). A proportion of breast, prostate, colorectal and lung tumours also exhibit SSTRs

on their surface (Reubi et al., 1990). The expression of SSTRs and in particular of

SSTR2 in high densities is found in 55-95% of NETs (Behr & Behe, 2002).

Specifically, small cell lung cancer, medullary thyroid carcinomas and carcinoids

contain a high density of homogeneously distributed SSTRs (Reubi et al., 1990;

Bousquet et al., 2004).
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SST has been implicated as having an anti-proliferative effect on a wide range of cell

types. This may be an indirect effect, through suppression of secretion of growth factors

and hormones vital for tumour growth or by blocking angiogenesis (Bousquet et al.,

2004). SST antineoplastic activity has also been shown in vitro against various cancer

cell lines, in which cell cycle arrest or apoptosis is induced depending on the SSTR

subtype as well as the target cell (Pollak & Schally, 1998). This anti-proliferative

activity of SST led to the synthesis of analogues to the peptide that mimic the action of

SST but can be more selective in their binding affinity to SSTR subtypes and more

potent in their cytotoxic activity.
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CHAPTER 2

TARGETING OF ENZYME AND RECEPTOR PATHWAYS:
OVERVIEW AND IMPLICATIONS FOR THERAPY
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The aim of my thesis is the study of enzyme and receptor pathways and this chapter

provides an overview of the targets which I have explored.

2.1 Protein Tyrosine Kinases and Resistance to Genotoxic Therapies
PTKs can promote cancer through activation of the signalling pathways they control,

which promote uncontrolled proliferation (independently of environmental survival

factors such as growth factors), protection from apoptosis in the absence of external

growth signals, inhibition of differentiation, and even supporting invasion and

metastasis of cancer cells by deregulation of adhesion (Porter &Vaillancourt, 1998).  In

addition, it has recently been discovered that PTKs may also provide resistance to

chemotherapy and radiotherapy, which could explain the failure of many anti-tumour

treatments (Yu & Hung, 2000; Slupianek et al., 2001). This was initially thought to be

due to rapid detoxification, inactivation and efflux of drugs (El-Deiry, 1997). This was

not proved to be the case, as these mechanisms arise late in the tumour development as

a result of the selection of the tumour cells able to resist the genotoxins, whereas PTK-

induced drug resistance is an early event in the transformation of cells which increases

along with tumour progression and adds to its drug resistance (Masumoto et al., 1999;

Cambier et al., 1998). PTK-transformed cells can accumulate additional genetic

abnormalities, such as mutations or deletions of p53, p73, MSH2 or MLH1 which

further increase genotoxic resistance (Strano et al., 2001; Skorski, 2002). Resistance to

genotoxic therapies can be induced by means of at least three mechanisms:

1. Enhanced DNA Repair

Cells transformed with the PTK can repair DNA lesions more rapidly than non-

transformed cells. This was shown to be dependent on PTK activity (Majsterek et al.,

2002). The repair pathways activated by PTKs in cancer cells depend on the cytotoxic

agent used and the types of DNA damage it causes (Skorski, 2002). Cells transformed

by oncogenic fusion proteins such as the Bcr-Abl-like tyrosine kinases show

upregulation of homologous recombination (HR) repair, responsible for DNA DSBs.

This is through deregulated expression and phosphorylation of RAD51 (Slupianek et

al., 2002).  Increased levels of RAD51 proteins have been observed in many tumours

and correlate with drug resistance (Raderschall et al., 2002; Vispe et al., 1998). In

contrast non-homologous end joining (NHEJ), which also repairs double strand breaks
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(DSBs), appears to be downregulated in Bcr-Abl expressing cells (Deutsch et al.,

2001).

2. Checkpoint activation

Src PTK can dissociate cyclin-dependent kinase 2 (CDK2) from cyclin A in response to

etoposide thus inducing S-phase arrest (Chen & Hitomi, 1999). In addition, Bcr-Abl-

related PTKs induce pronounced G2/M-checkpoint activation in response to various

agents, including cisplatin (Raderschall et al., 2002). The mechanism of G2/M-

checkpoint arrest in PTK-transformed cells is not known, but probably involves

regulation of CDC2 phosphorylation (Slupianek et al., 2002). It is thought that by

prolonging the G2/M phase, PTKs allow for HR to repair more DSBs and allow tumour

cells to escape from the apoptotic pathway (Skorski, 2002).

3. Resistance to apoptosis

PTKs were shown to modulate the expression and post-translational modification of

members of the BCL-2 family in order to protect cancer cells from apoptotic signals.

Anti-apoptotic members such as Bcl-xL and Bcl-2 are stimulated, but proapoptotic

members such as Bad and Bax are inhibited (Skorski, 2002). Bcr-Abl was shown to

activate STAT5, a signal transducer and transcriptional activator responsible for BclXL

overexpression (Gesbert & Griffin, 2000). Additionally, Bcr-Abl also activates Akt

which associates with Bad and keeps it away from the mitochondria. Akt can also

stimulate the MDM2-dependent, ubiquitin-mediated degradation of p53 and subsequent

downregulation of Bax and upregulation of Bcl-2 (Zhou et al., 2001). C-KIT also

induces resistance to apoptosis by upregulation of the Bcl-2 anti-apoptotic protein, and

phosphorylation and inactivation of the pro-apoptotic Bad.  As a result, cytochrome c

release from mitochondria and consequent activation of caspase-3, events which are

vital to induction of cell death by apoptosis, are inhibited (Carson et al., 1994; Blume-

Jensen et al., 1998).

Resistance of cancer cells to chemotherapy or radiation due to overexpression of

oncogenic protein tyrosine kinases has led to the selective targeting of these receptors

as a new modality in the treatment of cancer patients.
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2.2 Tyrosine Kinase Inhibitors
Approximately 200-300 PTKs are present in every cell. The ATP binding site is highly

conserved within groups and this was initially a problem for the design of compounds

with high specificity (Traxler et al., 2001). The first drugs to be used against PTKs

were broad-spectrum compounds such as herbimycin and sraurosporin which inhibited

ATP binding at the active site of the enzyme targets.  These drugs showed anti-

proliferative activity against tumour cells expressing tyrosine kinases, but inactivation

of multiple PTK targets was lethal and was considered less advantageous for clinical

use than substrate based inhibitors (e.g. antibodies) (Sawyers, 2002).

Enormous progress in molecular, biochemical and cell biology technologies as well as

advances in synthetic chemistry on natural products, crystallography and computerised

molecular modelling have led to rational drug design of compounds with selective

kinase inhibition (Traxler et al., 2001, Sawyers, 2002). Screening for low molecular

weight therapeutic agents against various cancers has become an important component

of drug discovery. Recently, development of drugs such as imatinib (STI-571) which

preferentially binds the inactive ATP binding site of the Abl protein preventing its

activation, has led to a very important discovery: although the active binding site may

be common among PTKs, in their inactive state proteins have a different conformation

and therefore the binding site can be distinct allowing for selective drug targeting

(Sawyers, 2002). Over the past few years, the number of receptors and in particular

tyrosine kinases, being investigated as molecular targets in drug discovery has greatly

increased. As a consequence, a growing number of compounds have been developed

and used in clinical trials, as shown in table 4.

The extracellular domain of PTKs found in the plasma membrane is targeted with

monoclonal antibodies that bind and inhibit activation of the receptor by its ligand. This

may prevent receptor dimerisation, or promote receptor degradation. With the

extracellular region of each receptor being unique, these agents are highly specific and

do not cross react with other receptor tyrosine kinases. On the other hand, small

molecule tyrosine kinase inhibitors target the intracellular ATP-binding region of the

receptor and prevent its tyrosine kinase activity. These small molecule inhibitors have

the advantage of being able to enter the cell, thus acting also against non-membrane
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bound protein tyrosine kinases as well as receptors. The interaction with the target

protein can be studied more easily using X-ray crystallography and computer

modelling. As a result, their structure can be engineered in order to increase specificity

as well as pharmacokinetic characteristics (Traxler et al., 2001).

Table 4. Compounds targeted against tyrosine kinases

Source: CL Sawyers, Current Opinion in Genetics and Development, 2002

Clinical studies conducted over the past decade have established several of these drugs

as part of the standard treatment regimen for specific tumour types. These include

imatinib (directed against Bcr-Abl and other kinases), trastuzumab (trade name

Herceptin against HER2/ErbB2 receptor), and cetuximab (C225), erlotinib (OSI-774)

and gefitinib (ZD1839), which are directed against the EGFR/ErbB1. Analysis of all

the oncogenic tyrosine kinases and their inhibitors is beyond the scope of this

discussion. However, the tyrosine kinases targeted and the inhibitors used in this study

are outlined in detail below.

2.2.1 EGFR as a therapeutic target

Many types of EGFR inhibitors have been developed in the last decade, targeting

different parts of the receptor protein structure or the synthesis of the protein itself. Of

these, the most extensively studied drugs include monoclonal antibodies (table 5)

binding the extracellular domain of the receptor such as cetuximab (Erbitux; ImClone/

BMS/Merck KGaA), or small molecule tyrosine kinase inhibitors (TKIs), that target the
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intracellular (catalytic) tyrosine kinase domain of the receptor inhibiting downstream

signalling effects, such as gefitinib (Iressa; AstraZeneca Pharmaceuticals) and erlotinib

(Tarceva; ImClone Systems) (Harari, 2004).

Table 5. Monoclonal antibodies against EGFR
Agent Type Generic/Trade name Institution

IMC-C225 Chimeric IgG1 Cetuximab/Erbitux Imclone/BMS/Merck KGaA

ABX-EGF Fully human IgG2 Panitumumab Abgenix/Amgen

EMD72000 Humanized IgG1 Matuzumab EMDpharms/Merck KGaA

MDX-447 Humanized bispecific:
EGFR/FcRγ1

HuMab-Mouse Medarex/Merck KGaA

h-R3 Humanized TheraCIM YM biosciences/CIM

Mab 806 Anti-EGFR VIII - Ludwig Institute

Source: PM Harari, Endocrine Related Cancer, 2004

TKIs are synthetic, predominantly quinazoline derived molecules with low molecular

weight and interact with the ATP binding domain of EGFR (Ciardiello et al., 2000). A

number of classes of TKI exist; reversible, irreversible, reversible dual ErbB1/2 TKIs

and pan ErbB inhibitors (table 6) (El-Rayes and LoRusso, 2004). In July 2007 it was

discovered that the blood clotting protein fibrinogen inhibits EGFR, thereby blocking

re-growth of injured neuronal cells in the spine (Schachtrup et al., 2007).

Table 6. EGFR tyrosine kinase inhibitors
Agent Type Generic/trade name Institution

ZD1839 erbB1 Gefitinib/Iressa AstraZeneca

OSI-774 erbB1 Erlotinib HC1/Tarceva oSI/Genentech/Roche

CI-1033 Pan erbB1 Canertinib Pfizer

EKB-569 erbB1/2 - Wyeth Ayerst

GW2016 erbB1/2 - GlaxoSmithKline

PKI-166 erbB1/2 - Novartis

Source: PM Harari, Endocrine Related Cancer, 2004
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2.2.1.1 Gefitinib (Iressa, ZD1839)

Gefitinib (figure 7) is an orally active, synthetic quinazoline-derived reversible EGFR

inhibitor that interacts with the ATP-binding domain of EGFR, blocking its ligand-

induced phosphorylation which leads to receptor activation (Ciardiello, 2000).

Inhibition of EGFR by gefitinib has been shown both in cell lines and in xenograft

models both as a single agent or in combination with a variety of chemotherapeutic

agents, radiation therapy, or anti-sense oligonucleotides where additive or synergistic

effects were identified (Ciardiello et al., 2000; Ciardiello et al., 2001a; Huang 2002;

Friedmann et al., 2004). The antiproliferative effect was shown to be due to cell cycle

arrest or apoptosis. Inhibition of EGFR by gefitinib causes a reduction of the

transcription factor, cFOS, mRNA which forms part of the AP1 complex, and a shift of

cells from S phase into G0/G1 (Raben et al., 2002). Gefitinib also causes reduction of

VEGF, bFGF, and TGF-thereby inhibiting angiogenesis in a colon, breast, ovarian

and gastric cells in vitro (Ciardiello et al., 2000).

Gefitinib has shown antitumour activity and has been approved in many countries as a

single treatment for refractive NSCLC (Harari, 2004). Research in gefitinib-sensitive

patients with NSCLC showed that a mutation in the EGFR tyrosine kinase can facilitate

efficacy of the drug. This mutation leads to activation of the anti-apoptotic Ras pathway

which promotes cell proliferation. Malignant cell proliferation is inhibited by blocking

of the Ras signal transduction pathway by gefitinib as well as other tyrosine kinase

inhibitors (Lynch et al., 2004; Paez et al., 2004).

Figure 7: The chemical structure of gefitinib

Although the initial preclinical studies with gefitinib showed promising results a large

study undertaken for the efficacy of gefitinib in patients with NSCLC failed to show

improved survival in patients, and has been replaced in the United States by erlotinib,
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which functions in a similar manner to gefitinib and has shown a survival benefit in the

treatment of lung cancer in phase III trials (Shepherd et al., 2005). Erlotinib has been

approved by the FDA in November 2004 for the treatment of locally advanced or

metastatic non-small cell lung cancer that has failed at least one prior chemotherapy

regimen (Smith, 2005). In November 2005, the FDA approved the use of erlotinib in

combination with gemcitabine for treatment of locally advanced, unresectable, or

metastatic pancreatic cancer (Rocha-Lima et al., 2007; Moore et al., 2007).

2.2.1.2 Cetuximab (Erbitux, IMC-C225)

The first and most extensively studied antibody against EGFR is cetuximab (Erbitux;

ImClone Systems, Inc). Cetuximab is a chimeric human/mouse mAb composed of the

Fv (variable) regions of a precursor murine anti-EGFR antibody (mAb 225) with

human IgG1 heavy and kappa light chain constant regions produced in mammalian

(murine myeloma) cells. This recombinant antibody reduces the possibility of an anti-

mouse immunological reaction in patients (Herbst and Shin 2002).

As other anti-EGFR antibodies, cetuximab operates by binding to the extracellular

domain of EGFR, preventing ligand binding and activation of the receptor, and induces

receptor internalisation and downregulation (Kim et al., 2001). Studies in cell culture

cells as well as xenograft models have also shown that cetuximab has an anti-

angiogenic effect through inhibition of the vascular endothelial growth factor (VEGF),

interleukin-8, and basic fibroblast growth factor (bFGF), resulting in growth inhibition

of tumour cells (Perrotte et al., 1999; Huang & Harari, 1999). Cetuximab has also been

shown to mediate antibody dependent cellular cytotoxicity (ADCC) (Naramura et al.,

1993; Mendelsohn, 2001).

Studies of cetuximab in combination with various agents indicate dose-dependent

additive or synergistic increase in growth inhibition. Several in vitro experiments and in

vivo animal studies have also shown an enhancement of tumour response to radiation

by cetuximab in human epidermoid, head and neck, and colon cancer xenografts (Saleh

et al., 1999; Milas et al., 2000; Bianco et al., 2000; Prewett et al., 2002).

In 2004 cetuximab was approved by the Food and Drug Administration (FDA) to treat

patients with advanced or metastatic colorectal cancer and is often given concurrently
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with the chemotherapy drug irinotecan (Camptosar), a DNA topoisomerase I inhibitor,

or alone for the treatment of irinotecan-resistant colorectal cancer (Harari, 2004). A

large phase III randomised clinical trial showed that compared to radiation alone,

combined treatment of cetuximab and radiation therapy increased the median survival

and improved the duration of locoregional disease control in patients with head and

neck cancer that has not spread to other parts of the body (Bonner et al., 2006).

Cetuximab was approved by the FDA in March 2006 for use in combination with

radiation therapy for the treatment of locally or regionally advanced squamous cell

carcinoma of the head and neck (SCCHN) or as a single agent for the treatment of

patients with recurrent or metastatic SCCHN for whom prior platinum-based therapy

has failed (Rocha-Lima et al., 2007).

2.2.2 C-KIT inhibitor: Imatinib (STI571, Glivec, Gleevec)

Imatinib is an inhibitor against C-KIT, which has been extensively studied in literature.

Imatinib (Glivec or STI571 by Novartis Pharmaceuticals) is a tyrosine kinase inhibitor

that was initially developed to act against the fusion oncoprotein Bcr-Abl, a protein

resulting from the Philadelphia chromosome translocation between chromosomes 9 and

22, which occurs in 95% of chronic myelogenous leukaemia (CML) patients. It

suppresses CML primitive progenitors by decreasing their abnormal proliferation

without increasing their apoptosis. Inhibition of Bcr-Abl by imatinib reinstates normal

haematopoiesis. The drug also inhibits the tyrosine kinase activity of the normal Abl

protein, C-KIT, and PDGFR (both  and ), (Holtz et al., 2002; McGary et al., 2002).

In vitro studies have shown that imatinib inhibits growth of cell lines expressing Bcr-

Abl as will as primary cells (Druker et al., 1996; Le Coutre et al., 1999; Deininger et

al., 1997). Growth of cell lines transformed by Bcr-Abl, Tel–Abl, or Tel-PDGFR,

where Tel is a putative transcription factor which like Bcr activates Abl and is required

for the transforming function of the fusion protein, was inhibited by imatinib in the

absence of exogenous growth factors (Carroll et al., 1997). Imatinib also repressed

SCF-mediated C-KIT activation and growth of the small cell lung cancer cell line

H526. Growth reservation was accompanied by induction of apoptosis in media

containing SCF as the only exogenous factor, but not in serum containing media where

the effect of cell proliferation was cytostatic. Furthermore, imatinib efficiently blocked
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SCF-mediated activation of C-KIT and of the MAP kinase and Akt, downstream target

proteins involved in cellular proliferation and survival. The same effect was obtained

by treatment with imatinib using the murine lymphoid Ba/F3 cell line transfected with

various types of activating C-KIT mutant (Krystal et al., 2000; Chen et al., 2003).

Imatinib is a 2-phenylaminopyrimidine derivative (figure 8) that specifically inhibits

activation of receptor tyrosine kinases by competitive binding to the ATP-binding site

needed for autophosphorylation and stabilising the receptor in its inactive form

(Gambacorti-Passerini et al., 2003). Therefore, the drug can be effective in

malignancies where the above tyrosine kinase receptors are the driving force for

proliferation, and in mutations that do not affect the ATP-binding pocket conformation.

Indeed, in the case of C-KIT, imatinib was shown to be effective against activating

mutations in the juxtamembrane domain of the receptor (GISTs, mastocytosis) but not

as effective against mutants in the tyrosine kinase domain (Chen et al., 2003). The most

notable example is the D816V mutant (exon 17), found in AML and mastocytosis,

which results in constitutive activation of the receptor and resistance to imatinib due to

increased affinity of this isoform to ATP or possibly due to conformational changes that

inhibit binding of the drug (Heinrich et al., 2002; Lennartsson et al., 2005).

Figure 8: Chemical structure of imatinib

Addition of imatinib decreased the proliferation of GISTs and induced apoptosis in

preclinical experiments (Demetri, 2001; Dematteo et al., 2002). The drug is currently

being used for the treatment of chronic-phase CML patients in whom interferon therapy

has failed and for accelerated-phase and blast-crisis disease (Cohen et al., 2005).

Imatinib has also been approved for treatment of patients with unresectable and/or

metastatic GISTs (Dagher et al., 2002; Demetri et al., 2002), with prolonged

progression-free survival reported (Verweij et al., 2004). Imatinib can induce high rates
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of clinical response in patients with unresectable or metastatic dermatofibrosarcoma

protuberans (DFSP; a tumor that forms under the top layer of skin). This has led to the

approval of imatinib by the U.S. Food and Drug Administration for treating

unresectable DFSP (McArthur, 2007).

One study demonstrated that imatinib was effective in patients with systemic

mastocytosis, including those who had the D816V mutation (Droogendijk et al., 2006).

Imatinib is also increasingly being used in laboratory settings as an experimental agent

to suppress PDGF by inhibiting its receptor PDGFROne of its effects is delaying

atherosclerosis in mice with diabetes (Lassila et al., 2004). Recent mouse animal

studies at the Emory University in Atlanta have shown that imatinib and related drugs

may be valuable in treating smallpox (Reeves et al., 2005). Imatinib is also being used

in the treatment of certain brain tumours including high grade glioblastoma.

2.3 Resistance to Tyrosine Kinase Inhibitors
Despite the promising preclinical data in various cell lines and animal models, as well

as the initial responses of patients to single treatments using drugs against protein

tyrosine kinases, the developing resistance of patients to these agents is a recognised

problem. Mechanisms mediating resistance to TKI therapies include the presence of

redundant tyrosine kinase receptors, increased angiogenesis, constitutive activation of

downstream receptors, and development of specific mutations (Camp et al., 2005).

2.3.1 Resistance to EGFR inhibitors

EGFR promotes survival and proliferation through downstream signalling pathways.

Other tyrosine kinases also influence similar downstream pathways. An example of this

is IGF-1R (Insulin like Growth Factor Receptor-1), a tyrosine kinase that activates the

PI-3K/Akt downstream signalling pathway (Kulik et al., 1997). IGF-1R over

expression has been shown in EGFR inhibitor resistant cell lines (Chakravarti et al.,

2002). Activation of alternative tyrosine kinases such as IGF-1R allows tumour cells to

bypass the EGFR pathway and develop resistance to EGFR targeting therapies.

EGFR mediated pathways promote tumour angiogenesis via VEGF upregulation. The

EGFR ligands EGF and TGFα have been implicated in this process. Chronic
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administration of monoclonal antibodies or TKIs to athymic mice bearing GEO colon

cancer xenografts leads to development of resistant colon cancer cell lines showing a 5-

10 fold increase in VEGF expression (Ciardiello et al., 2003). These findings indicate

increased expression of angiogenic mediators such as VEGF cause resistance against

EGFR targeting therapies.

Constitutively active mediators of downstream signalling pathways cause resistance to

EGFR targeting therapies in cancer. Downstream constitutive activation allows tumour

cells to bypass the requirement for EGFR activation, decreasing the efficacy of EGFR

inhibition (Camp et al., 2005). Loss of PTEN phosphatase function commonly leads to

downstream constitutive activation within the EGFR signalling pathway. PTEN is a PI-

3K/Akt regulating tumour suppressor. Loss of PTEN causes over activation of the PI-

3K/Akt pathway, promoting expression of the anti apoptotic genes Bcl-2 and Bclx

(Marmor et al., 2004). Akt has a major role in resistance to EGFR therapies and is

implicated in resistance against both leading tyrosine kinase inhibitors gefitinib and

erlotinib (Ramsay Camp et al., 2005).

EGFR mutations such as the EGFRvIII mutation generate constitutively active EGFR.

Compared to wild type EGFR this mutation is resistant to gefitinib (Learn et al., 2004).

Some EGFR activating mutations have been shown to confer sensitivity to EGFR

targeting therapies such as gefitinib (Lynch et al., 2004). Unfortunately these tumour

cells have gone on to develop further mutations that confer resistance to gefitinib

(Kobayashi et al., 2005).

2.3.2 Resistance to imatinib

Resistance to imatinib is mainly due to mutations leading to constitutive

phosphorylation and ligand-independent activation of C-KIT. The most prominent

mutation associated with imatinib resistance is the D816V substitution, which is found

in the activation loop of the kinase domain (exon 17) and has been implicated in the

increased proliferation of cells in AML, germ cell tumours and mastocytosis (Kanakura

et al., 1993; Escribano et al., 1998; Ashman, 1999; Boissan et al., 2000; Feger et al.,

2002). Identification of such gain of function mutations in the cytoplasmic domain of

C-KIT by Hirota and co-workers in 1998 helped identify C-KIT as a potential target in

GISTs (Hirota et al., 1998). In fact, C-KIT is now used for the diagnosis of GISTs and
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for the differentiation between GISTs and other soft tissue sarcomas of the GI tract

(Jiang et al., 2008).

GIST-associated mutations have been identified in exons 9, 11, 13, and 17 of the

receptor. The most common mutations are found in exon 11, which is the intracellular

juxtamembrane domain of C-KIT, and they actually improve the response of patients to

imatinib. However, mutations in exon 9, which is the extracellular juxtamembrane

domain of C-KIT, are linked with decreased sensitivity to imatinib and shorter survival

rates in patients (Heinrich et al., 2006; Debiec-Rychter et al., 2004).

Another implication in GISTs relates to the activation of other tyrosine kinases as an

alternative route to signal transduction. Candidate proteins include the receptor tyrosine

kinase AXL. Analysis of gene expression in imatinib resistant cell lines showed

overexpression of AXL and not C-KIT compared to imatinib sensitive cells

(Mahadevan et al., 2007).  Using the same cell models, it was also shown that the PI3-

kinase pathway remains active in imatinib resistant cells probably through a different

receptor and that inhibition of the PI3-K signalling alone promoted inhibition of cell

growth (Bauer et al., 2007).

By far the biggest setback in GISTs is the acquisition of secondary mutations in

imatinib-treated patients (Braconi et al., 2008; Jiang et al., 2008). The most prevalent

mutation in relapsing patients is the V654A substitution found in the kinase domain

(exon 13), with the rest of the mutations occurring in exon 17, which corresponds to the

second tyrosine kinase domain of the receptor. These mutations lead to conformational

changes in the receptor which affect binding of imatinib (Heinrich et al., 2006). To

overcome this secondary resistance in GISTs, new tyrosine kinase inhibitors with

multiple targets are being developed. Sunitinib is such an alternative to imatinib,

targeting C-KIT, PDGFR, VEGFR, and FMS-related tyrosine kinase 3 receptor, and

has shown efficacy in a number of relapsing patients (Braconi et al., 2008; Jiang et al.,

2008).

Although most of our study has focused on protein tyrosine kinases and their inhibitors,

we also examined the therapeutic potential of somatostatin receptors.



59

2.4 Somatostatin analogue: Octreotide (Sandostatin, SMS201-995)
Octreotide (Novartis, Basel, Switzerland) is an octapeptide synthetic analog of

somatostatin (SST, figure 9) that possesses the same pharmacological properties as

SST, except that it is cleared from the circulation at a much slower rate by being

resistant to plasma degradation. The half life is 117 minutes as compared to

approximately 3 minutes for SST, making it more suitable for therapeutic and imaging

purposes (Degen & Beglinger, 1999). Octreotide, like SST, has been shown to inhibit

exocrine and endocrine secretions of the digestive system, including gastrin, serotonin,

growth hormone, insulin and glucagon. A number of signal transduction proteins are

regulated by somatostatin and its analogues, and these include cyclic AMP,

diacylglycerol (DAG), calcium and potassium channel proteins and tyrosine

phosphatases (Oberg, 1996). Octreotide is used for the symptomatic control and

inhibition of tumour growth in NET patients. It can also adjust the motility of the GI

tract and biliary system and has been shown to induce apoptosis.

Figure 9: Chemical structure of octreotide

Octreotide binds SSTR2 and SSTR5 with high affinity, SSTR3 with low affinity, and

has no affinity for SSTR1 and SSTR4 (Kulaksiz et al., 2002). Two long acting SST

analogues with similar efficacy to octreotide now in use in NETs include lanreotide

(Ipsen, Paris, France) and octreotide-LAR (long-acting release), which are both

administered monthly. SST analogues have shown anti-neoplastic activity in mammary,

pancreatic, colorectal and lung cancers (Weckbecker et al., 1993). Octreotide has also

shown anti-proliferative effects in vitro against gastric and pancreatic adenocarcinoma

cells (Hofsli et al. 2002, Wang et al., 2003). It has been introduced for the treatment of
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endocrine tumours of the gastrointestinal tract as it was shown to effectively control

symptoms resulting from excessive hormone release in patients with carcinoid, Verner-

Morrison and glucagonoma syndromes. In this way it improves the quality of life of

patients whose tumours produce the above hormones. SST analogues may also have

anti-tumour activity in a minority of carcinoid patients (Caplin, 1998). SST analogues

have also been used for the treatment of insulinomas, as they inhibit insulin secretion

(Bertherat et al., 2003).

Octreotide is registered in most countries for the treatment of patients with carcinoid

syndrome and also for glucagon and VIP producing tumours (Oberg, 2001). Long-term

studies have shown that somatostatin analogues are safe and that the most important

adverse effect is the development of gallstones. The antiproliferative potency of SST

and its analogues in vitro and in experimental tumour models prompted a number of

studies in patients with metastatic endocrine tumours that are generally unresponsive to

conventional chemotherapeutic protocols. Stabilisation of tumour growth lasting for

months to a few years was the most favourable result, occurring in 30 – 70% of patients

(Behr et al., 2002). In addition, a recent phase III PROMID study in patients with

midgut carcinoid tumours using octreotide-LAR showed that time to progression was

twice as long compared to placebo patients. These results indicate a possible anti-

tumour effect by octreotide in well differentiated midgut NETs (Rinke et al., 2009).

2.4.1 Somatostatin Receptor-Mediated Imaging and Therapy

The development of SST analogues such as octreotide has been very useful in the

treatment of endocrine diseases and cancer. The molecular cloning of five distinct

subtypes of SSTRs in the 1980s has led to the design and development of subtype-

selective peptides and nonpeptide agonists and antagonists. The development of in vivo

somatostatin receptor-mediated imaging known as somatostatin receptor scintigraphy

(SRS or Octreoscan) is a valuable tool for the identification and localization of NETs

and their metastases, and particularly GEP tumours, which mainly express SSTRs

(Breeman et al., 2001; Gibril & Jensen, 2004). This is based on visualisation of

radiolabelled octreotide or lanreotide, binding to SSTRs. The next step was the

exploitation of somatostatin analogues labelled with radionuclides emitting  or 

particles, including Auger or conversion electrons, for neuroendocrine tumour
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treatment, a technique called somatostatin receptor-targeted radiotherapy or peptide

receptor radionuclide therapy (PRRT). These types of radionuclide labelled octreotide

accumulate within tumour cells through receptor-peptide internalisation and are rapidly

cleared from the blood due to their relatively small size (Reubi, 2004).

The radioisotopes used include 111In (Indium-111), 90Y (Yttrium-90) or 177Lu

(Lutetium-177). The peptide labelled with a radioisotope is covalently linked to a

chelator, which stabilises the molecule. The chelator used for 111In is diethylene-

triamine-pentaacetic acid (DTPA) and 1,4,7,10-tetraazacyclododecane-N,N’,N’’,N’’’-

tetraacetic acid (DOTA) for 90Y and 177Lu. Octreotide labelled with 111In is very

effective in localising NETs (Kaltsas et al., 2004), whilst 90Y and 177Lu are preferred

for therapy (Srirajaskanthan et al., 2009; Desai et al., 2009).

Both 90Y-octreotide and 177Lu-octreotate have shown promising results in patients with

GEP NETs (Kaltsas et al., 2005). The use of 90Y-(DOTA)0-Tyr3-octreotide (90Y-

DOTATOC), resulted in 10–30% tumour response rates, and appears to be particularly

effective in generally large tumours (Waldherr et al., 2002). On the other hand, 177Lu-

(DOTA)0-Tyr3-octreotate (177Lu-DOTATATE) is better in small tumours. In a large

study of more than 500 patients 177Lu-DOTATATE produced 2% complete and 28%

partial tumour response, with a survival benefit of several years (Kwekkeboom et al.,

2008). A combination of these drugs could therefore be beneficial in patients carrying

both large and small tumours (Kaltsas et al., 2005).

2.5 Chemotherapeutic Drugs for Anticancer Therapy
Cancer therapy is a major area of research and new treatments are actively being

studied to target the leading cancers e.g. breast, lung, prostate and colon. Chemotherapy

or radiotherapy is usually most effective against fast proliferating tumour cells.

Neuroendocrine tumour cells are generally slow growing, so chemotherapy is therefore

considered to be helpful in a minority of tumour patients. This has created the need for

use of drugs with different mechanisms of action to treat patients, and the need to

assess both single agent and combination therapies. One such consideration is the

combination of growth factor inhibitors with chemotherapeutic agents.
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In some uncommon tumours such as childhood cancers, lymphomas and teratomas,

great progress has been made with the use of cytotoxic drugs. In other more common

tumours such as lung and pancreatic carcinoma, the results have been less impressive,

although modest improvements in survival have been obtained with chemotherapy and

endocrine therapy in breast and colorectal cancer (De Vita et al., 2005). Most anti-

cancer agents serve to inhibit tumour cell growth and division although there is

considerable potential for the development of agents which affect invasion,

vascularisation and metastasis. Cytotoxic agents can reduce tumour cell growth and

division by binding to DNA bases or impairing DNA synthesis to inhibit DNA

replication, by damaging the mechanisms of cell division, or by blocking the pathways

involved in cell growth. The main classes of chemotherapeutic agents are shown in

figure 10.

Figure 10: The different classes of anticancer drugs

To review all the chemotherapeutic agents is beyond the scope of this discussion.

However, the agents used in this study are outlined in detail below. The merits of

combination studies using growth factor inhibitors and chemotherapeutic agents will be

discussed in detail and separately for each receptor target in the following chapters.

Anticancer Drugs

Antimetabolites
e.g. Methotrexate

Mitotic
inhibitors

e.g. Paclitaxel

DNA-interactive
drugs

Topoisomerase
poisons

e.g. Etoposide

Non-covalent DNA
binding drugs

e.g. Doxorubicin

Covalent DNA
binding drugs

Nitrogen mustards
e.g. Melphalan

Platinum compounds
e.g. Cisplatin
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2.5.1 Cisplatin

Cisplatin or cis diaminedichloroplatinum (CDDP) is an inorganic compound with a

planar configuration (figure 11) that kills cancer cells by binding to DNA and

interfering with its repair mechanism, eventually leading to cell death by apoptosis. It

exists in cis and trans conformations, of which only the cis isomer is cytotoxic.

Cisplatin was discovered in a study by Barnett Rosenberg (1985) designed to study the

possible effect of electric current on the growth of Escherichia coli. Inhibition of cell

division but not cell growth leading to bacteria forming long filaments was identified

and this was due to the electrolytic product of the platinum electrode. Cisplatin is

clinically used for the treatment of a wide variety of tumours, including testicular,

ovarian, oesophageal, head and neck, and lung cancer (Loehrer & Einhorn, 1984)

Figure 11: The chemical structure of cisplatin

The anticancer properties of cisplatin are similar to alkylating agents and commence

with the substitution of one or both of its chloride ligands with hydroxyl groups after

diffusion into the cell. This aquated complex of cisplatin is a reactive electrophilic

agent that can form covalent bonds with nucleophilic species such as proteins, and

nucleic acid bases of a DNA or an RNA strand (Reed et al., 1999). DNA is the main

target of cisplatin and this function is believed to mainly contribute to its cytotoxicity.

Binding studies have shown a preference for nitrogen 7 (N7) on guanine.

As cisplatin is bifunctional, it can bind to DNA in several different ways. This results in

the formation of inter- and intra-strand crosslinks, monoadducts, or DNA-protein

crosslinks, which distort the shape of DNA, thus interfering with cellular transcription

and replication (Trimmer et al., 1999). The main adducts formed are shown in figure

12. The cisplatin-DNA complex attracts the HMG-1 (high mobility group-1) and other

DNA repair proteins which become irreversibly bound and prevent effective repair.
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Studies in vitro have shown cisplatin to react with DNA to form adducts of which 65%

are 1,2-intrastrand d(GpG) crosslinks (between adjacent N7-guanine sites), 25% are 1,2-

intrastrand d(ApG) crosslinks (between adjacent N7-guanine and N7-adenine sites),

with the remaining 10% of adducts in the form of other intrastrand crosslinks,

interstrand crosslinks, monofunctional adducts and DNA-protein crosslinks (Fichtinger-

Schepman et al., 1985; Dronkert & Kanaar, 2001). Cisplatin is not cell phase specific.
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Figure 12: Types of DNA adducts formed by cisplatin

2.5.2 Etoposide

Etoposide (VP-16) is a semisynthetic derivative of podophyllotoxin, a toxin found in

the Podophyllum peltatum plant (figure 13). It is used for the treatment of lung cancer,

testicular cancer, lymphoma, non-lymphocytic leukaemia, and is often given in

combination with other drugs. It belongs in the group of chemotherapeutic agents that

inhibit chromatin function by inhibiting topoisomerase II. DNA inside cells is

extensively twisted (supercoiled) to fit inside the nucleus. Topoisomerase II enzymes

are multisubunit proteins that permit selected regions of DNA to untangle to allow

replication and transcription to occur. Untangling involves transient breakage of DNA,

allowing for change of topology by passing an intact helix through the double-stranded

break, and then resealing the breaks.
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Figure 13: Chemical structure of etoposide

The mechanism of action of etoposide is in stabilizing the topoisomerase II-DNA

complex and preventing it from making a topological change. When the replication fork

encounters the DNA-topoisomerase complex it converts the transient break into an

irreversible double strand break which is lethal to cells in S and G2 phases of the cell

cycle. Permanent DNA double strand breaks then trigger apoptotic cell death (Hande,

1998).

2.5.3 Doxorubicin

Doxorubicin is an anthracycline antibiotic produced by the fungus Streptomyces

peucetius (figure 14). Anthracyclines are intercalating drugs which have planar regions

allowing them to stack between paired DNA bases forming tight (non-covalent) drug-

DNA interactions. They include doxorubicin (adriamycin) and daunorubicin and have a

planar ring system attached to an amino sugar.

The drug interacts with DNA by intercalation. The quinone ring is metabolised

producing reactive oxygen species (ROS) which subsequently lead to free radical

cleavage of DNA. This results in partial unwinding of DNA, impaired DNA and RNA

synthesis and single strand breaks in DNA. It is also non-phase specific (Zhong et al.,

2001). It is therefore plausible that these multiple mechanisms which also have

downstream effects on cell-cycle checkpoints have a clinical advantage over an agent

with a single mechanism of action (Hurley, 2002). It has wide clinical activity for a

variety of solid tumours (breast, ovarian and lung cancer) and leukaemia.
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Figure 14: Chemical structure of anthracyclines

Doxorubicin shows an enhanced selectivity for cancer cells over normal cells.

Intercalation prevents the progression of topoisomerase II and induces protein-

associated strand breaks by stabilising the topoisomerase II – DNA complex after the

enzyme has broken the DNA for replication. Preventing the DNA double helix from

unwinding stops the process of replication (Fornari et al., 1994; Tewey et al., 1984).

Given that these processes  require protein binding to DNA, the selectivity of agents

that target these processes might be dependent on the level of the associated target

protein (for example, topoisomerase I or II), so cells with elevated levels of

topoisomerase would be more sensitive to doxorubicin, and this is the basis for

enhanced cancer-cell selectivity (Henderson & Hurley, 1995).

2.5.4 Melphalan

Melphalan is a chemotherapy drug that belongs to the class of nitrogen mustard

alkylating agents. This includes mechlorethamine; a derivative of war gas sulphur

mustard that was originally used in the 1940’s to treat lymphomas. Melphalan is the

phenylalanine derivative of mechlorethamine (figure 15) and it is used for the treatment

of multiple myeloma, malignant melanoma and carcinoma of the ovary and breast.
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Figure 15: Chemical structure of melphalan

The mechanism of action involves the loss of chloride ions in water resulting in a

carbonium ion that interacts with nucleophilic sites on DNA bases forming mono and

bi-adducts depending on the ionisation of one or both chloride groups. In addition to

N7-guanine adducts, melphalan also forms a large amount of adenine adducts with

properties consistent with the alkylation at the N3 position (Povirk & Shuker, 1994). It

should be noted that the N7-guanine atom faces into the major groove of the DNA

structure while the N3-adenine atom faces into the minor groove. Thus, the melphalan-

induced adduct exerts much greater pressure on DNA conformation than

mechlorethamine.

2.5.5 Methotrexate

Methotrexate is an antimetabolite drug used in the treatment of cancer and autoimmune

diseases. Antimetabolites are structurally related to naturally occurring compounds i.e.

vitamins, amino acids or nucleotides. These drugs interfere with the production of

nucleic acids by inhibiting specific enzymes needed for nucleoside triphosphate

synthesis or by substituting for normal purine or pyrimidine bases. They are usually cell

cycle dependent. Their action results in a decrease in DNA or RNA synthesis, thereby

interfering with cell growth and proliferation (Pratt et al., 1994).

Methotrexate (figure 16), an analogue of the vitamin folic acid, is an indirect inhibitor

of thymidine nucleotide production. It does this by competitively and reversibly

inhibiting dihydrofolate reductase (DHFR), a key enzyme in the biosynthesis of purines

and the conversion of dUMP to dTMP. Methotrexate acts specifically during DNA and

RNA synthesis, and thus it is cytotoxic during the S-phase of the cell cycle. Logically,

it therefore has a greater toxic effect on rapidly dividing cells such as cancerous cells

(Johnston et al., 2005).
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Figure 16: Chemical structure of methotrexate

2.5.6 Paclitaxel

Paclitaxel is a highly complex organic compound isolated from the bark of Pacific yew

tree Taxus Brevifolia. It is one of the most active anticancer drugs effective against

carcinomas of breast, head and neck and is also used in combination with cisplatin in

ovarian and lung carcinomas.  It belongs to the group of microtubule inhibitor drugs

which work by disrupting the equilibrium between polymerised and free tubulin dimers

(Pratt et al., 1994).

Taxanes such as paclitaxel (Taxol, figure 17) bind and stabilise microtubules and allow

for the formation of abnormal bundles. This destroys the cell's ability to use its

cytoskeleton in a flexible manner. Specifically, paclitaxel binds to the b subunit of

tubulin. Paclitaxel is an effective treatment for aggressive cancers because it adversely

affects the process of cell division by preventing the restructuring of the cytoskeleton

(Kumar, 1981). Further research has indicated that paclitaxel induces apoptosis in

cancer cells by arresting the function of the Bcl-2 anti-apoptotic protein.

Figure 17: Chemical structure of paclitaxel
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2.6 Ionising Radiation as Therapy in Cancer
Tyrosine kinase inhibitors were also used in this study in combination with x-rays

(called radiation in the context of this study). X-rays is a type of ionising radiation.

Ionising radiation in general refers to the energy transfer by a subatomic particle (alpha,

beta, or neutron) or by a short-wavelength electromagnetic wave (high-frequency

ultraviolet, X-ray, or gamma ray) which causes the detachment of electrons from atoms

or molecules (DNA in living tissue) and therefore ionises them.

The degree of biological damage depends on the ionisation potency and the energy of

the particle or electromagnetic wave. Alpha particles are heavily ionising and may cause

20 times more biological damage compared to x-rays, but they have little energy and a

low range; they are only harmful when ingested and cannot penetrate the skin. Beta

particles are less ionising than alpha and can penetrate a few millimeters into the tissue.

Gamma rays are very energetic and penetrate tissue easily. X-rays are less energetic

than gamma rays. Soft x-rays (0.12-12KeV) cannot penetrate matter. Hard x-rays (12-

120KeV) can penetrate tissue easily and are largely used in diagnostic radiography

(http://en.wikipedia.org/wiki/Ionising_radiation and references therein).

Ionising radiation is used for the treatment of malignant tumours (called radiation

therapy or radiotherapy). In clinical practice radiotherapy can be used alone, or as an

adjuvant treatment in combination with surgery, chemotherapy, or hormone therapy,

depending on the type, size and locality of the tumour. In cases where cure is not

feasible it can be used as a palliative treatment for the control of the disease and the

associated symptoms. Radiation damages the DNA mainly by the formation of highly

toxic free radicals, particularly hydroxyl radicals, by ionisation of the water molecules.

These radicals damage the DNA structure. The most common result of ionising

radiation is the formation of double strand breaks, which can be lethal to the cell.

Another effect is the production and accumulation of mutations in cancer cells, which

do not repair DNA as efficiently as healthy cells. These inherited mutations will finally

lead to apoptosis of cancer cells.
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2.7 Aims of this study
This study examines novel putative targets in neuroendocrine tumours. Combinations

of growth factor inhibitors with chemotherapy and radiotherapy were undertaken in

order to determine the best treatment options for therapy. This was examined using

various techniques to assess the impact on the putative targets in NETs. The mechanism

of interaction between the different agents used was also analysed with the intention to

understand the biology of neuroendocrine tumour cells and the reason behind the lack

of efficacy of previous treatment protocols in patients with NETs.

 In chapter 4 we combined chemotherapy and the EGFR inhibitor gefitinib with

the intention to identify possible synergies. This was followed by examination

of the effect of chemotherapeutic agents on EGFR activity. The

chemotherapeutic drugs used were cisplatin, etoposide, paclitaxel and

methotrexate. We identified activation of EGFR by cisplatin. This was further

investigated by analysis of EGFR localisation in response to cisplatin.

 In chapter 5 we examined the effect of radiation in combination with EGFR

inhibitors on cellular proliferation, EGFR activity and EGFR cellular

localisation. Activation and concurrent nuclear translocation of EGFR by

radiation was followed by investigation for a possible synergistic effect between

EGFR inhibitors and radiation on DNA repair. The DNA repair mechanism

impaired was investigated using the key DNA repair enzyme DNA-PKCS.

 In chapter 6 we investigated the mechanism of EGFR translocation to the

nucleus using nuclear import/ export inhibitors and analysed the possible role of

the putative nuclear localisation sequence of EGFR in the translocation of the

receptor into the nucleus. Finally, we tried to identify nuclear targets of EGFR

using the nuclear proteins i-NOS (inducible nitric oxide synthase), Rad-51 and

DNA-PKCS.

 In chapter 7 we aimed to immunohistochemically identify C-KIT in NET

patients.

 In chapter 8 we analysed the effect of the somatostatin receptor 2 inhibitor

octreotide in combination with chemotherapeutic agents on cell growth of NET

cell lines.
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CHAPTER 3

MATERIALS AND METHODS
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MATERIALS AND METHODS

3.1 Chemical Reagents and Cytotoxic Drug Source
All reagents and disposables were obtained from Sigma Chemical Co., Poole, UK or

VWR International Ltd., Poole, UK unless otherwise stated.

Cytotoxic drugs (Table 7) were prepared as stocks in advance, or as fresh prior to

individual experiments depending on stability and activity in solution as well as

experimental parameters. The concentration ranges used for experiments were modified

based on previous personal communications on the cytotoxicity of individual agents

where necessary.

Table 7: Cytotoxic drugs used in this study

Drug Chemical Structure Stock
Solution Solvent Supplier

Cisplatin 3.3mM
Injection
(Sterile

Concentrate)

DBL,
Warwick, UK

Melphalan Fresh
Ethanol +
1% conc.

HCl
Sigma, UK

Etoposide Fresh DMSO Sigma, UK

Doxorubicin 1mM H2O Sigma, UK

Methotrexate 10mM 1M NaOH
+PBS Sigma, UK

Paclitaxel
(Taxol) 1mM DMSO Sigma, UK
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3.2 Experimental Cell Lines
The cell lines used are outlined in table 8. CRI G1 (rat islet tumour), NCI-H727 (human

bronchial carcinoid), RIN-5F (rat islet tumour), and SHP-77 (human SCLC) were

obtained from ECACC. HCT-116 (human colon carcinoma), and BON-1 (human

pancreatic endocrine cell line) were kindly provided by Prof. Watson (Cancer Studies

Unit, Nottingham, UK).

NCI-H727 cell line was derived from non small cell carcinoma cells taken from the

lung of a 65 year old female, which expresses p53 mRNA (Takahashi et al., 1989).

SHP-77 cell line was derived from a non encapsulated primary tumour of the lung of a

54 year old male with a modal chromosome number of 54 before and after

1 Cetuximab is supplied at a concentration of 2mg/ml and is formulated in a preservative-free solution containing 8.48
mg/ml sodium chloride, 1.88 mg/ml sodium phosphate dibasic heptahydrate, 0.42 mg/ml sodium phosphate monobasic
monohydrate and water.

Drug Chemical
Structure

Stock
Solution Solvent Supplier

Octreotide 500g/ml
(~491M)

Injection vial
(Sterile

Concentrate)
Novartis

Gefitinib
(IressaTM,
ZD1839)

10mM DMSO AstraZeneca

Cetuximab
(Erbitux,

IMC-C225)
- 2mg/ml H2O1 (Sterile

concentrate)
ImClone

Systems, Inc

Wheat Germ
Agglutinin - 5mg/ml PBS Sigma, UK

Leptomycin
B1 5g/ml

Methanol:
H2O

7:3 (Sterile
Concentrate)

Sigma, UK
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transplantation in nude mice. SHP-77 cell line displays the biochemical properties of

classical SCLC shown by the presence of dense core secretory granules and the

expression of neuroendocrine markers such as NCAM (neural cell adhesion molecule)

and L-dopa decarboxylase (Fisher & Paulson, 1978). CRI-G1 cell line originated from a

NEDH (New England Deaconess Hospital) rat transplantable islet cell tumour, which

secretes insulin and glucagon (Carrington et al., 1986). RIN-5F cell line is a secondary

clone of the rat islet tumour cell line RIN-m (ECACC catalogue no. 95071701), which

expresses L-dopa decarboxylase, secretes insulin, and displays secretory granules

(Chick et al., 1977). BON-1 cell line is a human carcinoid-derived pancreatic tumour

with a modal chromosome number of 57, which expresses somatostatin receptors and

synthesizes serotonin and chromogranin A (Evers et al., 1991; Lopez et al., 2010).

Finally, HCT-116 cell line was one of three strains isolated from a human with colonic

carcinoma and is highly tumourigenic in nude mice (Brattain et al., 1981).

Table 8: Cell lines used in this study

Cell Line Origin
Culture

Conditions Supplier

NCI-H727 Human Bronchial
Carcinoid-Adult Female RPMI 1640 ECACC

CRI-G1 Rat islet tumour DMEM ECACC

RIN-5F Rat islet tumour RPMI 1640 ECACC

SHP-77 Human Small Cell Lung
Cancer- Adult Male RPMI 1640 ECACC

BON-1 Human pancreatic
endocrine tumour

DMEM:F12K
(50:50)

Cancer Studies Unit,
Nottingham, UK

HCT-116 Human Colon
Carcinoma- Adult Male RPMI 1640 Cancer Studies Unit,

Nottingham, UK

Cell lines were maintained in Dulbecco’s Minimal Essential Medium (DMEM) (for

CRI G1), RPMI 1640 (for NCI-H727, RIN-5F, HCT-116 and SHP-77 cell lines), or

50:50 DMEM: F-12K (F-12 Ham, Kaighn's Modification Nutrient Mixture) for BON-1

cells. All tissue culture media were supplied by Autogen Bioclear, Calne, UK apart

from the F-12K media which were supplied by Sigma Chemical Co., Poole, UK. All

media were supplemented with 10% foetal calf serum (FCS) (which was previously
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heat-inactivated for 30 minutes at 57oC for SHP-77 cells), and 1% glutamine. The

growth medium described for the routine propagation of exponentially growing cell

lines is referred to as complete growth medium throughout.

3.2.1 Cell line culture – strengths and weaknesses

Cell lines used in research are immortalised cells which can proliferate indefinitely.

Tumour-derived cell lines (like the ones used in this study) are immortalised

spontaneously by random mutations in genes promoting senescence. Normal cells can

also be used to establish cancer cell lines but these need to be immortalised artificially

by the introduction (via a plasmid or a virus) of foreign genes which block senescence.

The transduced genes usually inhibit aging of cells by the induction of oncogenes or the

inhibition of tumour suppressor genes. Immortalisation is commonly induced by the

transduction of normal cells with viral genes such as the gene for large T protein of the

simian virus (SV40), which inactivates tumour suppressor genes p53 and

Retinoblastoma (Rb) (Yeager & Reddel, 1999). Other transduced genes include the E6

and E7 genes of human papillomavirus (HPV), which also inhibit p53 and Rb and

partially activate telomerase, or the entire genome of the Epstein-Barr virus (EBV)

(Katakura et al., 1998). The artificial induction of the telomerase gene, which stabilises

DNA by maintaining the ends of chromosomes (telomeres), is also used for the artificial

immortalization of cells. This is carried out using hTETR (human telomerase reverse

transcriptase) expression vectors. The hTETR immortalised cell lines though are not

cancerous as they retain ‘normal cell’ characteristics (Yeager & Reddel, 1999).

Culturing of cell lines has greatly advanced medicine as it is used for drug testing as

well as the production of therapeutic biological compounds including proteins,

hormones or vaccines on a large scale. Cell lines offer a controlled environment (pH,

temperature, oxygen, carbon dioxide, etc.) in which a single homogeneous population

of cells can be observed and analysed. In this way, an unlimited number of carefully

characterized cells with a desired phenotype can be used in a multitude of applications.

This is in contrast with organs or in vivo models where the function of a number of

different cell types needs to be analysed, making the interpretation of results more

complex. Also, the use of cell lines for drug testing is time- and cost-effective

compared to in vivo models, and is carried out without the manipulation of animals,

which may raise serious ethical issues.
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On the other hand, cross-contamination of cell lines by other cell types (e.g. HeLa cell

line) has been identified in 15-20% of studies which invalidates any results obtained in

these cases. To this end, major cell line repositories such as ATCC (American Type

Culture Collection) and ECACC (European Collection of Cell Cultures) authenticate all

cell lines submitted by HLA typing and DNA fingerprinting using short tandem repeats

(STR) (Cabrera et al., 2006).

Tumour-derived cell lines are also genetically unstable and may present inconsistent

phenotypes over time due to accumulated mutations, leading to changes in morphology,

functions or range of genes expressed. Similarly, artificially immortalized cell lines may

show loss of the differentiated characteristics of normal cells they are derived from as

well as loss of normal cell cycle check-points (Yeager & Reddel, 1999). Genetic

instability of cell lines is difficult to overcome and the recently developed hTETR

immortalised cell lines may avoid unwanted genetic changes when studying normal cell

biology. In our study we examined putative targets in neuroendocrine tumours and

therefore made use of relevant tumour-derived cell lines.

It is a well known fact that differences in response have been observed between in vitro

drug testing and clinical trials in patients making the use of cell lines somewhat

controversial. These differences are generally due to the external environment of cells

in each case. Cancer cells in vitro are cultured in an isolated and externally controlled

environment whereas cancer cells in a patient’s organ receive a multitude of signals

from other cell types in the vicinity and from the entire human body. The acquisition of

mutations associated with the genetic instability of cancer cell lines may also contribute

to the differences seen. In vitro drug testing is therefore an initial step in the drug

screening process and should be validated when possible by in vivo models before

testing in humans.

3.3 Tissue Culture
3.3.1 Maintenance of Cell Lines

All cell lines were grown in 75cm2 (T75) flasks and maintained at 37oC with 5% CO2 in

dry incubators (Forma Scientific, UK). All procedures were carried out in Class II

MDH biological safety cabinet (Intermed MDH, UK) using aseptic techniques.
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Exponentially growing cells were maintained at a cell concentration according to the

European Collection of Cell Cultures (ECACC), Salisbury, UK.

Cells were routinely passaged at 80-90% confluence (biweekly). To this end, cells were

washed with 10ml of 0.01M phosphate buffered saline (PBS) to remove serum. To

detach the cells from the flask 5ml of 1X Trypsin/EDTA (Autogen Bioclear, Calne,

UK) was then added for 5 minutes at 37oC. 5ml of complete growth medium was then

added to inactivate the trypsin and the cell suspension was pelleted by centrifugation at

1,500rpm for 5 minutes at room temperature. Cells were then resuspended in complete

growth medium and re-plated at an appropriate passage ratio for the cell line. The

passage number was increased by one. Cells were discarded after approximately 25

passages and fresh cells were taken from the initial passage number used.

3.3.2 Cell Count

Trypsinised cells were resuspended in 10ml of complete growth medium and counted

using a haemocytometer. To this end, 20µl of cell suspension was mixed with 20µl

trypan blue (Sigma, UK) to exclude dead cells and the cell number was determined for

each of five separate 1mm2 fields. The average was multiplied by 2x104 to give the

number of cells per ml of suspension.

3.3.3 Determination of Cell Doubling Time

Cells were seeded out at an initial total cell number of 1x105 cells per 25cm2 (T25) flask

containing 10ml of complete growth medium with an individual flask for every time-

point. Cells were trypsinised, centrifuged, resuspended and counted using a

haemocytometer as described above and the subsequent concentration used to determine

the total cell count per flask. Further samples were taken every 24 hours until

confluence. The doubling time of each cell line was calculated by reading off the

exponential portion of the growth curve derived by plotting number of hours against

total number of cells counted.

3.3.4 Mycoplasma Testing

Cell cultures were routinely tested for Mycoplasma contamination every 6 months. A

total number of 5x104 cells for each cell line were seeded onto a sterile coverslip placed

in a flat bottom Falcon tube. Cells were allowed to adhere to the coverslips for 24 hours
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at 37oC with 5% CO2. Previously, the cell lines to be Mycoplasma tested had been set

up such that the cells reached confluency concurrently with the set-up of the

Mycoplasma test. Thus, from a flask containing a confluent cell population to be tested,

500µl of the supernatant growth medium was removed and transferred to the

Mycoplasma testing tube. The cell-free supernatant must not contain additives such as

hydrocortisone, cholera toxin or antibiotics that might interfere with Mycoplasma

growth. The cells were incubated until they reached confluence. The medium was

removed and the cells washed once with 0.01M PBS. The cells were then fixed in

absolute methanol for 5 minutes and subsequently washed twice with 0.01M PBS and

stained with 5g/ml of Hoechst 33258 dissolved in 0.01M PBS for 10 minutes.

Following two more washes with 0.01M PBS, the coverslips were carefully removed

from the Mycoplasma testing tube, placed cell surface upwards on a glass microscope

slide and covered with a coverslip. Analysis was performed under a fluorescent

microscope using a x40 objective and ultra-violet (UV) illumination. Control cells

showed intense blue-white staining of the nuclei only. Mycoplasma infected cells would

have been covered in a fine lawn of speckles all over.

3.3.5 Storage and Retrieval of Cells in Liquid Nitrogen

Frozen cell stocks in liquid nitrogen were routinely prepared. Cells were grown in a

175cm2 (T175) flask to semi-confluency. They were trypsinised and resuspended in

media with 20% FCS containing 10% dimethylsulphoxide (DMSO). 1ml aliquots were

frozen slowly in cryotubes in a styrofoam box at -80oC overnight before the cryotubes

were transferred to a liquid nitrogen tank the next day. Each cryotube contained cells at

a 10X higher concentration compared to the concentration at which they were grown.

Cells were recovered from liquid nitrogen by thawing rapidly in a 37oC water bath

before being transferred into a T25 flask containing 10ml of growth medium

supplemented with 20% FCS. Each cryotube was wiped off with paper towel sprayed

with 70% industrial methylated spirit (IMS) to prevent accidental contamination of cell

lines through bacteria and other cells stuck to the outer wall of the cryotube.  Cells were

split after 24 hours to remove any DMSO present in the media.
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3.4 Irradiation treatments
X-radiation is traditionally known to induce DNA damage in the form of double DNA

strand breaks. In our study x-radiation was also used to analyse possible changes in

EGFR and DNA-PKcs activity and location within the cell. In radiotherapy, ionising

radiation potency refers to the measurement of charge deposited in the tissue (unit is

coulomb/kg), which is called the exposure. However, for living tissue the measurement

of energy deposited is more relevant (unit is Gray or Gy, 1 Gy being the amount of

radiation required to deposit 1 Joule of energy in 1 kg of matter) and this is called the

absorbed dose.  The doses used in cancer patients typically range between 20 and 80 Gy

depending on the tumour type.

It is worth noting that an equal amount of absorbed dose (e.g. 1Gy) by different types of

ionizing radiation (alpha or beta particles, gamma rays and x-rays) can cause different

amounts of damage. To measure the biological damage the equivalent dose is

implemented, which is measured in Sievert (Sv). Sievert is the absorbed dose multiplied

by the quality factor, which depends on the radiation type. The quality factor for alpha

particles is 20 while for gamma rays or x-rays is 1. The ionizing radiation chosen for

use in this study is x-radiation as it has a low quality factor. X-ray radiation in our study

is measured in Gy and refers to the absorbed dose (or simply dose) of radiation of

neuroendocrine tumour cells (http://en.wikipedia.org/wiki/Ionising_radiation and

references therein).

For irradiation treatments, cells were placed on ice and irradiated using the General

Electric X-Ray source (250 Kv Newton victor). The x-ray machine was set up and

calibrated by an independent nuclear physicist at the Middlesex Hospital to a dose rate

of 2.35g/min; 212KV/12.5mA. The amount of absorbed dose is dependent on the

exposure, distance from x-ray source, and the use of appropriate filter.

 Cells used in immunofluorescence, electron microscopy, or immunoblotting for

EGFR or DNA-PKcs (in either whole lysates, or cytoplasmic and nuclear

extracts) including transiently transfected cells, were used for analysis of EGFR/

DNA-PKcs activity and cellular localisation. Radiation dose was 4 Gy for all

cells, except NCI-H727 cells which were radiated at 30Gy.
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 Cells used in COMET analysis including transiently transfected cells were used

to measure the amount of DNA damage and rate of repair. Radiation dose was

15 Gy for all cells, except NCI-H727 cells which were radiated at 30Gy.

For these studies cells were treated with either one or two drugs followed by

irradiation.

 Single drug treatments include gefitinib or cetuximab at a fixed concentration

for a period of 3 hours followed by irradiation at the appropriate dose.

 In double drug treatments gefitinib is added first for 3 hours with a second drug

(wheat germ agglutinin or leptomycin B1) added in the last 30 minutes followed

by irradiation.

 Irradiated cells are immediately transferred to a 370C incubator for suitable

intervals: a) 0-20 minutes for immunoblotting and immunofluorescence to

analyse EGFR activity and cellular localisation, and b) 0-120 minutes to

measure the amount of DNA damage and rate of repair.

3.5 In vitro Cytotoxicity Assay and Pharmacological Analysis
3.5.1 Sulphorhodamine B Growth Inhibition Assay

Cytotoxicity of drugs alone or in combination was determined using the

Sulphorhodamine B (SRB) assay in 96-well microtitre plates. As described previously

by Skehan et al., (1990), they developed a rapid, sensitive, and inexpensive method for

measuring the cellular protein content of adherent and suspension cultures based on the

binding of the SRB purple dye to cellular protein. They showed the SRB assay to

produce results linear with the number of cells and with values for cellular protein

measured by both the Lowry and Bradford assays at densities ranging from sparse sub-

confluence to multilayered supra-confluence. The signal-to-noise ratio at 564 nm is

favourable and the resolution is 1000-2000 cells/well. In addition, they showed that the

sensitivity of the SRB assay compared favourably with sensitivities of several

fluorescence assays and was superior to those of both the Lowry and Bradford assays

and to those of 20 other visible dyes. The SRB assay provides a colorimetric end point

that is non-destructive, indefinitely stable, and visible to the naked eye. It provides a

sensitive measure of drug-induced cytotoxicity, is useful in quantitating clonogenicity,

and is well suited to high-volume, automated drug screening. SRB fluoresces strongly
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with laser excitation at 488 nm and can be measured quantitatively at the single-cell

level by static fluorescence cytometry (Skehan et al., 1990; Voigt, 2005).

The optimal cell concentrations were determined from the previously calculated

doubling times in order to achieve a final cell concentration ideal for accurate optical

density (OD) measurement. Cells were plated in 96-well flat-bottomed microtitre plates,

each well containing 100µl cell solution (4 x 103 or 15 x 103 cells/well depending on

cell doubling time). Prior to drug treatment, cells were allowed to adhere at 37oC with

5% CO2 for 24 hours.

Following drug treatment, media was carefully removed and the cells subsequently

fixed with 100µl of 10% trichloroacetic acid solution for 20-30 minutes at 4oC. The

fixed cells were washed three times with tap water and any remaining water flicked out

of the wells. 100µl SRB stain (0.4% in 1% acetic acid) was then added to each well to

allow visualisation of cellular proteins and incubated at room temperature for 20-30

minutes. Any excess SRB was removed by washing 4-5 times with 1% acetic acid.

Plates were air-dried overnight. Finally the dye was dissolved in 100µl 10mM

Tris/1mM EDTA for 10 minutes on a plate shaker. Plates were read at an absorbance of

540nm on a Tecan Microplate reader and analysed using computer spreadsheet

(Microsoft Excel).

Growth inhibition was expressed as a percent proliferation of control and was calculated

using the following equation:

The data shown represents the averages of three different experiments, each performed

in triplicate and includes related standard deviations as calculated.  The IC50 is defined

as the drug concentration needed to produce a 50% growth inhibition. The dose-

response curves obtained for each treatment were used to calculate their respective IC50

values.

Single Agent Treatments

For single-agent studies, drugs were added at a range of concentrations to triplicate

wells. Incubations performed were continuous (24, 48, or 72 hours followed by 2 days

OD (treated)
OD (control) x 100 = Proliferation (%)
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drug-free medium). All drugs were diluted in complete growth medium and 100µl of

the relevant concentration added to the appropriate wells. One solvent control lane was

included in each experiment. The concentration range for each drug was optimised if

necessary following analysis of results from the first experiments. Following the 24, 48,

or 72 hour incubation with the drug, the drug solution was removed and replaced with

200l drug free complete growth medium. Plates were incubated at 37oC with 5% CO2.

Dual Agent Treatments

For combination studies, drugs were added simultaneously for 72 hours followed by 2

days in drug-free growth medium, or sequentially by delivering drug A for 24 hours,

then the drug B for 48 hours, followed by 2 days in drug-free growth medium.

For acute drug exposure, cells were incubated for 2 hours with drug A followed by 72

hours with drug B followed by 2 days drug-free-medium. Control wells were treated in

the same way with aspiration at each period respectively. Again, plates were incubated

at 37oC with 5% CO2.

For determination of synergy, one of the drugs was added at a fixed sub-toxic

concentration (e.g. producing 10% or 20% inhibition of proliferation) to a range of

concentrations for the other drug.

Combination studies with radiotherapy

Radiation doses used in proliferation studies were 4 Gy for all cells except NCI-H727

cells which were radiated at 30 Gy. These doses were chosen for their 50% inhibition of

proliferation.

In combinations treatments, cells were radiated on day 1 at the appropriate dose,

followed by treatment with a drug at a range of concentrations. The reverse order with

drug treatment preceding radiation was also performed. Treatments were followed by 2

days in drug-free growth medium.

3.5.2 Isobologram Analysis

Isobologram analysis can be applied in order to assess whether a combination dose of

any two given drugs behave in a synergistic or additive fashion. The methodology

applied has been previously described by Tallarida, (2001). Briefly, a particular effect



83

level is selected, in our case 50% of the maximal inhibition of proliferation (IC50) and

doses of each drug alone that give this effect are plotted as axial points in a Cartesian

plot. This is illustrated in figure 18 where Drug A (x-axis) has an IC50 of 20(µM) and

Drug B (y-axis) has an IC50 of 100(µM). The straight line connecting the IC50s of drugs

A and B is called the additivity line and defines the locus of all dose pairs (or isoboles)

that will produce 50% of maximal inhibition of proliferation in a simply additive

combination. This includes either one drug alone (points 0,100 and 20,0). This line of

additivity allows a comparison with the IC50 obtained when the two drugs are added

together experimentally. Thus, the IC50 for two drugs added together lying well above

this line have a sub-additive or antagonistic effect (illustrated by the letter R). If the IC50

for two drugs added lie on or close to the line they are said to have an additive effect

(illustrated by the letter P). And if they exist well below the line a super-additive or

synergistic effect is achieved (illustrated by the letter Q).

In our combination studies one of the two drugs e.g. drug A is added at a fixed dose,

while drug B is titrated. In this case the IC50 for the two drugs added together is defined

by values x = fixed dose for drug A and y = IC50 for the two drugs.

Figure 18: Illustrated isobologram for some particular effect.

Source: Tallarida RJ, J Pharmacol Exp Ther (2001)
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It is important to note, that the isobologram graph does not allow for absolute statistical

precision. For example, the so-called grey areas such as ‘on or close to the line’ do not

provide the conclusive ideal distinctions and so these values would be subject to further

pharmacological tests such as regression analysis. To continue with these tests is

beyond the aims of this study and the isobologram test provides the necessary

pharmacological analysis required.

3.6 Single Cell Gel Electrophoresis (COMET) Assay
The drug-induced DNA damage in the form of strand breaks and subsequent repair was

assessed using the single-cell gel electrophoresis (comet) assay as described previously

(Spanswick et al., 1999; Olive, 2002). The comet assay was originally developed as a

method for the detection and visualisation of DNA damage within individual cells and

is used extensively for the assessment of strand breaks in a range of applications.

3.6.1 Methodology

Exponentially growing cells were seeded at 2.5x104 cells/ml (5x104cells/well) in six

well plates (Nunclon, VWR) and incubated for 24h at 37ºC in 5% CO2. To examine

the extent of DNA damage and subsequent rate of repair, ideal doses of irradiation were

chosen for each cell line. To this end, cells were treated with a range of irradiation doses

to determine a suitable schedule. Cells were treated with drugs at a fixed concentration

(one drug alone for 3 hours or drug A for 3 hours with drug B added in the last 30

minutes). Cells were then irradiated at a specific dose and then immediately transferred

to a 37oC incubator for suitable intervals to measure the amount of DNA damage and

rate of repair.

All procedures were carried out on ice and in subdued lighting. Cells were embedded in

1% Type VII agarose and placed on precoated microscope slides with 1% Type 1-A

agarose, and lysed for 1 hour in lysis buffer (100mM disodium EDTA, 2.5 M NaCl,

10mM Tris-HCl, pH 10.5) containing 1% Triton X-100 (added immediately before

analysis). Following this, they were washed every 15 minutes in distilled water for 1

hour. Slides were then incubated in alkali buffer (50mM NaOH, 1mM disodium EDTA,

pH 12.5) for 45 minutes, followed by electrophoresis in the same buffer for 25 minutes

at 18 V (0.6 V/cm), 250 mA. The slides were finally rinsed in neutralising buffer (0.5 M
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Tris-HCl, pH 7.5) followed by saline. After drying, the slides were stained with

propidium iodide (2.5µg/mL) for 15 minutes and then rinsed in distilled water.

3.6.2 Analysis

Images were visualised with the use of a NIKON inverted microscope with a high-

pressure mercury light source (NIKON UK Limited, Kingston Upon Thames, UK), 510

to 560 nm excitation filter, and 590 nm barrier filter at x20 magnification.

Figure 19: Sample screen display of comets (with no tails) as seen using the Komet

Analysis Software.

Images were captured by using an on-line charge-couple device (CCD) camera and

analysed with Komet Analysis software (Figure 19) (Kinetic Imaging, Liverpool, UK).

For each duplicate slide 25 cells were analysed. DNA damage and subsequent repair

was measured by the increase in the tail moment (measured in µMetres), a function of

the amount of DNA in the tail and the length of the tail (Spanswick et al., 1999).

Analysis was then achieved using a computer spreadsheet (Microsoft Excel). The data

shown is a representation of three independent experiments, and include related

standard error bars as calculated. As can be seen in Figure 20, irradiating cells induces

strand breaks, which produce a tail moment dependent on the x-ray dose.
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Figure 20: Illustration of DNA tail as a result of irradiation.

The selection of fields for analysis in the comet assay was carried out visually.

Obviously, an effort was made to select representative fields and in two experiments

analysis was performed by Mrs. Janet Hartley, Department of Oncology, UCL, but

nevertheless analysis is subject to bias.

3.7 Detection of Apoptosis - Cell Death Detection ELISA
To address whether inhibition of EGFR leads to the induction of apoptosis, the ELISA

Cell Death Detection Assay was performed. This is a photometric enzyme-

immunoassay (Figure 21) for the qualitative and quantitative in vitro determination of

cytoplasmic histone-associated DNA fragments (mono- and oligonucleosomes) after

induction of apoptosis. Apoptosis is characterised by membrane blebbing (zeiosis),

condensation of cytoplasm and the activation of an endogenous endonuclease and

specific proteases. The endogenous endonuclease is Ca2+ and Mg2+ dependent and

cleaves DNA at the most accessible internucleosomal linker region generating mono-

and oligonucleosomes. In contrast, the DNA of nucleosomes is tightly complexed with

the core histones H2A, H2B, H3 and H4 and therefore is protected from cleavage by the

endonuclease. The DNA fragments yielded are discrete multiples of an 180 bp subunit

which is detected as a ‘DNA ladder’ on agarose gels after extraction and separation of

the fragmented DNA. The enrichment with mono- and oligonucleosomes in the

cytoplasm of apoptotic cells is due to the fact that DNA degradation occurs several

hours before plasma membrane breakdown.

DNA and histones are targeted using mouse monoclonal antibodies provided. The anti-

histone antibody is conjugated to biotin in order to bind the streptavidin-coated well of

the microplate. The anti-DNA antibody is bound to horse radish peroxidase (HRP)

which is determined photometrically using ABTS as a substrate.

X-Ray

Head Tail
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Figure 21: Apoptosis Detection ELISA Assay.
Source: Cell death detection ELISAPLUS assay, Roche

The experiment was performed according to the instructions of the Cell Death Detection

ELISAPLUS assay from Roche. Cells were plated (at 15 x 103 or  4 x 103 cells/well

depending on cell doubling time) in a total volume of 100l in flat 96-well plates and

left overnight at 37°C. Drug was added for a period of 72 hours. The plates were then

centrifuged at 200 x g for 10 minutes and the supernatant removed. The cell pellets

were resuspended in 200l of Lysis buffer (provided) and left for 30 minutes at room

temperature. Cell lysates were centrifuged at 200 x g for 10 minutes. 20l of each

supernatant was transferred to a streptavidin-coated microplate. 80l of immunoreagent

containing anti-histone-biotin and anti-DNA-HRP in incubation buffer was added per

well. The microplate was then covered in an adhesive foil and incubated on a shaker at

300rpm for 2 hours at room temperature. The solution was removed and unbound

components were removed by rinsing each well three times in incubation buffer. 100l

of ABTS solution was then pipetted into each well and incubated at room temperature

till colour development was sufficient for photometric analysis (approximately 10-20

minutes). Plates were read at an absorbance of 405nm against ABTS solution as a blank

(reference wavelength approx. 490nm) on a Tecan Microplate reader and analysed

using computer spreadsheet (Microsoft Excel).

3.8 Protein Extraction
3.8.1 Cell Lysis for Whole Cell Extracts

Cells cultured and treated in 75cm2 (T75) flasks were washed twice in PBS at room

temperature, drained well and placed in ice. To lyse the cells, 100µl RIPA buffer (1%

Streptavidin-coated
microplate

Anti-histone
biotin

Sample containing
nucleosomes

Anti-DNA
HRP

ABTS
substrate
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deoxycholic acid, 1% Triton X-100, 0.1% SDS, 250 mM NaCl, 50 mM Tris pH 7.5, 100

µg/ml AEBSF, 17µg/ml aprotinin, 1µg/ml leupeptin, 1µg/ml pepstatin, 5µM

fenvalerate, 5µM potassium bisperoxo (1,10-phenanthroline) oxovanadate (V)

(BpVphen) and 1µM okadaic acid) was added to each flask for 10 minutes with

occasional rocking. Cells were then scraped into a 1.5ml Eppendorf tube using a cell

scraper (VWR International Ltd.) and centrifuged at 13,000rpm for 10 minutes at 4oC.

The supernatant (containing total cell protein) was then carefully transferred to a fresh

tube and the pellet discarded. This is the total cell lysate and can be stored at -80oC.

3.8.2 Nuclear and Cytosolic Extraction

To separate out nuclear and cytosolic components of total cell lysates, the TransFactor®

Extraction Kit (Clontech Laboratories, UK) was used according to the manufacturer’s

instructions. Briefly, all steps were performed at 4oC unless otherwise specified.

Reagents were pre-cooled to 4oC, and not used until fully defrosted. Cells were

collected and transferred to an Eppendorf tube centrifuged at 13,000rpm for 10 minutes

at 4oC and the supernatant discarded. The pellet was then washed twice in PBS and the

pellet size estimated. Lysis buffer was prepared as follows: 150ml 10x Pre-lysis Buffer

(Hypotonic) (100mM HEPES pH 7.9, 15mM MgCl2, 100mM KCl), 15ml 0.1M DTT,

15ml Protease Inhibitor Cocktail (Aprotinin, Pepstatin A, Bestatin, trans-

Epoxysuccinyl-Lleucylamido (4-guanidino) butane, and 4-(2-aminoethyl)

benzenesulfonyl fluoride hydrochloride in DMSO) and 1.32ml ddH2O. Cells were

resuspended in a volume of lysis buffer equal to five times the cell pellet volume and

incubated on ice for 15 minutes. Following centrifugation at 13,000rpm for 10 minutes

at 4oC, the supernatant was carefully removed and the pellet resuspended in a volume of

lysis buffer equal to twice the cell pellet volume. Suspension was then slowly drawn

into a syringe through a narrow-gauge (No. 27) needle and then ejected with a single

rapid stroke. This was repeated ten times and centrifuged at 13,000rpm for 10 minutes

at 4oC. The supernatant was then transferred to a fresh Eppendorf tube and is the

cytosolic fraction. This can be snap-frozen and stored at -70oC.

Extraction Buffer was prepared as follows: 147ml Pre-extraction Buffer (20mM HEPES

pH 7.9, 1.5mM MgCl2, 0.42M NaCl, 0.2mM EDTA, 25% (v/v) glycerol), 1.5ml 0.1M

DTT and 1.5ml Protease Inhibitor Cocktail. The crude nuclear pellet was resuspended

in a volume of Extraction Buffer equal to two-thirds of the cell pellet volume. To
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disrupt the nuclei, the suspension was then syringed as before and placed on a shaker at

low speed for 30 min at 4oC. The nuclear suspension was then centrifuged at 13,000rpm

for 10 minutes at 4oC. The supernatant or nuclear fraction was transferred to a fresh

Eppendorf tube and can be snap-frozen and stored at -80oC.

3.8.3 Measurement of Protein Concentration in cellular extracts

To determine the protein concentration of a particular cell lysate (whole cell or

cytoplasmic and nuclear extracts), the Biorad Protein Assay kit was used. Briefly, 2µl

of each lysate is added to 18µl H2O in 1.5ml Eppendorf tubes. In a separate Eppendorf,

20µl Reagent S is mixed with 1ml Reagent A. 100µl of this is added to each 20µl lysate

sample and mixed well with a short spin. 800µl Reagent B is then added to each and

incubated at room temperature for 15 minutes. The optical density (O.D.) for each

sample is then read on a spectrophotometer (Beam PU 8600 Series UV/Vis Single,

Philips®) at 750nm and the protein concentration determined using the following

formula:    O.D. x25 =[ ]/µl (i.e. µg/µl)

3.9 Immunoblotting
3.9.1 Electrophoresis

Protein concentrations of total cell lysates were determined using the protein assay

outlined in Section 2.8. For each sample the required volume containing 30-50µg of

protein was transferred to a fresh Eppendorf tube. Loading (Laemmeli) buffer (4% SDS,

10% -Mercaptoethanol, 20% glycerol, 0.02% bromophenol-blue and 100mM Tris HCl

(pH 6.8)) was then added to each lysate before heating at 95oC for 4 minutes to denature

the proteins. Samples are then centrifuged at 13,000rpm for 10 minutes at 4oC and the

pellet discarded.

The NuPAGE® Electrophoresis System (Invitrogen, UK) was used. For analysis of

proteins with a molecular weight of between 120 and 410 KDa, lysates and

immunoprecipitates were loaded onto NuPAGE® Novex 3-8% Gradient Tris-Acetate

Pre-Cast Gels which were placed in the XCell SureLockTM Mini-Cell (two gels per cell)

and included an appropriate marker (Kaleidoscope pre-stained standards, BioRad,

Hemel-Hempstead, UK) or a positive protein control (A431+EGF cell lysate; BD

Biosciences, UK). Upper (200ml) and lower (600ml) buffer chambers were then filled
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with 1x NuPAGE® Tris-Acetate SDS Running Buffer (diluted from a 20x stock: 50mM

Tricine, 50mM Tris base, 0.1% SDS, pH 8.24) and Mini-Cells were run at 150V

constant at 4oC for approximately 1h 30min (Expected 40-55 mA/gel at start; 25-40

mA/gel at end).

For analysis of proteins with a molecular weight of between 10 and 180 KDa lysates

and immunoprecipitates were loaded onto NuPAGE® Novex 4-12% Gradient Bis-Tris

Pre-Cast Gels and placed in Mini-Cells as above. Upper (200ml) and lower (600ml)

buffer chambers were then filled with 1x NuPAGE® MOPS SDS Running Buffer

(diluted from a 20x stock: 50mM MOPS, 50mM Tris base, 0.1% SDS, pH 7.7) and

Mini-Cells were run at 200V constant at 4oC for approximately 50min (Expected 100-

125 mA/gel at start; 60-80 mA/gel at end).

3.9.2 Protein Transfer and Immunoblotting

Proteins were electrically transferred to ImmobilonTM polyvinylidenedifluoride (PVDF)

membranes (Millipore, UK). These extremely hydrophobic membranes will not wet in

aqueous solution and so were prepared as follows: blots were immersed in 100%

methanol for three seconds and then placed in H2O for 2 minutes to elute the methanol.

To equilibrate, membranes were then soaked in protein transfer buffer (diluted from a

10x stock: 3% TrisBase, 14.4% glycine and 20% methanol). Gels and prepared

membranes were then placed into the X-Cell IITM Blot Module (Novex®) as illustrated

in Figure 22.

Transfer was achieved at 40V for 2h using the XCell SureLockTM Mini-Cell (two blots

per cell) and filled with protein transfer buffer as described in the NuPAGE Novex®

protocol. Membranes were then blocked in 3% casein blocking buffer [(3% skimmed

milk powder (Marvel, UK) in TBS-Tween (TBS-T) (20mM TrisBase, 0.15M NaCl pH

7.5 in Elga H2O with 0.1% Tween-20)] for at least 1 hour on a shaker at 4oC.

Membranes being probed for phosphorylated proteins were blocked in 5% Bovine

Serum Albumin (BSA) in TBS-T. This is due to the fact that milk contains a number of

phosphorylated proteins which interfere with a phosphotyrosine antibody’s ability to

bind specific proteins of interest. Blots were then probed with primary antibody against

proteins of interest for at least 2h on a roller at room temperature. Antibodies used in
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this study are detailed in Table 9. All were diluted in a 1:1 mix of either Milk-TBS-T or

BSA-TBS-T and TBS as necessary. Following this, membranes were washed three

times for 5 minutes in TBS-T followed by three more washes for 5 minutes with TBS.

Membranes were then probed with an appropriate horseradish peroxidase conjugated

secondary antibody for at least 1h and washed as before.

Figure 22: Gel/Membrane sandwich for 2 gels.
Source: NuPAGE® Technical Guide, Invitrogen, UK

Immunocomplexes were visualised using the enhanced chemiluminescence (ECL)

system (Amersham Pharmacia, Little Chalfont, UK) by incubating the membranes in

the ECL system solution for 1 minute before wrapping the moist blots in cling film and

exposing the blots to Kodak X-OMAT™LS film for varying exposure times (two

seconds to 24h) (Sambrook et al., 1989).

In order to remove or ‘strip’ pre-bound antibody, membranes were rehydrated in TBS

for 5 minutes and placed in a hybridiser (Techne, UK) with 100ml of stripping buffer

(100mM -Mercaptoethanol, 2% SDS, 62.5mM Tris-HCl, pH 6.7) and left for 30

minutes at 50ºC. Membranes were then washed twice in TBS-T for ten minutes each,

blocked and reprobed as described above.
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Table 9: Primary and secondary antibodies used in this study.

Primary Antibodies

Antibody Description Supplier Antibody Description Supplier
C-KIT

145KDa
Rabbit,

Polyclonal DAKO, UK EGFR
170KDa

Mouse,
Monoclonal

Santa Cruz,
USA

C-KIT
145KDa

Mouse,
Monoclonal

Novocastra,
UK

EGFR
170KDa

Rabbit,
Polyclonal Abcam, UK

C-KIT
145KDa

Rabbit,
Polyclonal

Santa Cruz,
USA

P-EGFR
(PY20)

175KDa
Mouse,

Monoclonal

BD
Biosciences,

UK

SSTR-1
60KDa

Rabbit,
Monoclonal

Gramsch
Laboratories,

Germany

P-EGFR
(Tyr-1068)
175KDa

Rabbit,
Polyclonal

Cell Signaling
Technology,

USA

SSTR-2A
80KDa

Rabbit,
Monoclonal

Gramsch
Laboratories,

Germany

iNOS
130KDa

Rabbit,
Polyclonal

BD
Biosciences,

UK
SSTR-3

45,80KDa
Rabbit,

Monoclonal

Gramsch
Laboratories,

Germany

Rad51
37KDa

Rabbit,
Polyclonal

Santa Cruz,
USA

SSTR-5
65KDa

Rabbit,
Monoclonal

Gramsch
Laboratories,

Germany

P-AKT
(Ser-473)
70KDa

Rabbit,
Polyclonal Abcam, UK

DNA-PKCS
460KDa

Mouse,
Monoclonal Sigma, UK P-MAPK

43KDa
Rabbit,

Polyclonal Abcam, UK

-Tubulin
170KDa

Mouse,
Monoclonal Sigma, UK Lamin B1

67KDa
Mouse

Monoclonal Abcam, UK

3.10 Densitometric Analysis
To mathematically compare the intensity of particular bands produced by

immunoblotting, densitometric analysis was used. Briefly, blots were placed in the

imaging densitometer (Imaging Densitometer GS-670 BioRad, UK) and the bands of

interest selected. Intensity was then measured by computer and the background

Secondary Antibodies

Antibody Supplier Antibody Supplier
HRP-Conjugated
Goat Anti-Mouse BD Biosciences, UK FITC-Conjugated

Goat Anti-Mouse Abcam, UK

HRP-Conjugated
Goat Anti-Rabbit Abcam, UK Biotinylated goat anti-

mouse/rabbit antibody
DAKO
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subtracted. Data is represented as a percentage of control band intensity. The screen-

grab shown in Figure 23 illustrates the methodology. In this case V5 serves as a

background, V1 is the control and bands V2-4 represent different drug treatments.

Figure 23: Sample screen display of densitometric analysis as seen using the BioRad
Imaging Densitometer Software.

3.11 Immunofluorescent Staining
Exponentially growing cells were seeded at 2x104 cells per well on rectangular glass

slides with 8 chambers (Nunclon, VWR) and incubated for 24h at 37oC in 5% CO2.

Cells were then treated as required, the media subsequently removed and the cells

washed twice with cold PBS. Cells were then fixed using 500µl/well of 50% methanol /

50% acetone mix at 4oC for 8 minutes. Following this the slides were then washed twice

with cold PBS and permeabilized using 500µl/well of 0.5% TritonX-100 in PBS. Slides

were then blocked in 3% casein blocking buffer [(3% skimmed milk powder (Marvel,

UK) in TBS-Tween (TBS-T) (20mM TrisBase, 0.15M NaCl pH 7.5 in Elga H2O with

0.1% Tween-20)] overnight at 4oC.

Slides were then washed 3 times in cold PBS following which the cells were incubated

with anti-EGFR (1:50 dilution) or anti-DNA-PKCS antibody (1:100 dilution) for 1 hour.

Slides were then washed 3 times with washing buffer (0.1% TritonX-100 in PBS) and

then incubated for 1 hour at room temperature with FITC-labelled secondary antibody:

Alexa fluoro 488 goat anti-mouse IgG (green) (1:1000 dilution). Nuclear
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counterstaining was performed using 2µg/ml propidium iodide (red) for 3 minutes

followed by destaining with distilled water for 20 minutes. Slides were mounted using

VectaMount™ AQ mounting medium (Vector Laboratories) and covered with

coverslips before being viewed and photographed using a confocal microscope.

3.12 Transient Transfection Assay
Wild-type EGFR and a selected nuclear localisation sequence (NLS) - mutant EGFR

construct were transiently transfected into RIN-5F and CRI-G1 cells using the

GeneJuice® transfection reagent (Novagen® EMD Biosciences Darmstadt, Germany).

Exponentially growing cells were seeded at 1x104 cells per well on rectangular glass

slides in 8 well plates (Nunclon, VWR) or 1 x105 cells in six well plates (Nunclon,

VWR) and incubated for 24 or 48h at 37ºC in 5% CO2 prior to transfection. The

optimum amount of Genejuice® reagent recommended for successful transfection of

1µg of DNA is 3µl. This was added to eppendorf tubes containing 100µl of serum free

medium and allowed to incubate at room temperature for 5 minutes. Following this 1µg

DNA was added to each tube and incubated at room temperature for 15 minutes after

which the entire mixture was added slowly over the surface of the appropriate well.

Cells were then incubated for 24 or 48h allowing both cell recovery and transfection to

take place. The plasmid DNA used was the pUSEamp vector (Upstate Cell Signaling

Solutions, NY, USA) and its map is illustrated in Figure 24 with the key sites

highlighted.

The different EGFR constructs were kindly provided by Gianmaria Liccardi, Oncology

Department, UCL. There were two constructs made using the pUSEamp vector and

encoded wild-type EGFR and the NLS EGFR mutant. The NLS sequence in the

juxtamembrane domain of EGFR is RRRHIVRKRTLRR (Hsu SC & Hung MC, 2007),

which was changed into AAAHIVAKATLAA. In addition to using untransfected cells

as a control, cells transfected with the parental pUSEamp vector were also studied.

Transiently transfected cells at 48 hours were chosen for further experiments. After 24

hour incubation with the plasmid, cells were washed with complete media and

incubated for a further 24 hours before treatment. Cells were then treated with gefitinib,

irradiation or both, at appropriate concentrations and doses, based on previous studies

with the cell lines, and used for immunofluorescence and COMET analysis.
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Length 5400 bp

Figure 24: Map of the pUSEamp vector used for expressing various EGFR constructs.
Source: Upstate Cell Signaling Solutions

http://search.cosmobio.co.jp/cosmo_search_p/search_gate2/docs/UBI_/21147.2004020
4.pdf

3.13 Flow cytometry- FACS Analysis
This procedure utilizes ethanol to fix the cells and permeabilize the membrane, which

allows the dye (Propidium Iodide) to enter the cells. Propidium Iodide (PI) is a DNA-

binding fluorochrome that intercalates in the double-helix. Ribonuclease-A is used to

eliminate the staining of double-stranded RNA. This procedure uses DNA staining for

analysis of the cell cycle.

Collection and fixation

Exponentially growing cells were seeded at 2.5x104 cells/ml (5x104 cells/well) in six

well plates (Nunclon, VWR) and incubated for 24h at 37ºC in 5% CO2. Cells were

drug treated for 24 or 72 hours, the media subsequently removed and the cells washed

with PBS. 1ml of trypsin was added per well for approximately 2 minutes followed by

addition of 1ml of complete media. The cells were collected in 15ml sterile falcon tubes

and centrifuged for 5 minutes at 1500rpm. The pellets were resuspended in 1ml of ice-

cold 0.02% sodium azide –PBS per sample. Cells were fixed by addition of 7ml of 70%
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ethanol to each sample. For proper fixation and to prevent cell aggregation, gentle

vortexing was employed while fixing. The cells were wrapped in silver foil and left to

fix for one hour at 4oC. The cells can be left in this stage at 4oC for up to 3 days before

being stained.

Staining DNA for Cell Cycle Analysis

The fixed cells were centrifuged as above and washed in 7ml ice-cold 0.02% sodium

azide –PBS then centrifuged again. Each pellet is then resuspended in 50l propidium

iodide, 9l DNase-free RNAse A, and 941 l 0.02% sodium azide –PBS to make a total

of 1ml per pellet. Cells were gently mixed and left at 4oC or on ice (covered with silver

foil to protect from light) for a minimum of 30 minutes. The cells were analysed on a

FACSCalibur cytometer (Becton Dickinson, UK).

Figure 25 below shows an example of a graph derived using flow cytometry for cell

cycle analysis. The y-axis demonstrates the number of cells whereas the x axis shows

the intensity of fluorescence designated as FL2-H. ‘FL2-H’ denotes DNA content by

propidium iodide staining, Cells at the beginning of the FL2-H axis (below 140),

denotes cells with sub-G1 DNA content, indicative of apoptosis. The cells under normal

growth conditions form two populations designated by the bars M1 and M2, which are

shown by the two peaks. Cells in G1/S phase of the cell cycle are represented by the

first peak, whereas the second peak represents cells in the G2/M phase of the cell cycle.

Note that the peaks are respectively at 200 and 400.The intensity in the second peak is

double which signifies the presence of duplicated DNA in the cells of the G2/M phase.

Figure 25: DNA analysis of cells by flow cytometry on a FACSCalibur cytometer.
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3.14 Immunohistochemistry
Patient Sections

Tissue from 85 consecutive unselected patients at the Royal Free Hospital with

neuroendocrine tumours in various organs including liver, pancreas, small bowel, lung

and brain and normal control tissues for each patient whenever possible were assessed.

Tissue samples were fixed in formalin and embedded in paraffin. Sections were cut 3

m thick and placed on a water bath at 45oC before being positioned on top of

microscope slides. GIST sections were used as positive control. The presence of mast

cells in tissue samples was also used as an internal positive control. Negative controls

included omission of the primary antibody.

Immunohistochemistry

Tissue sections were dewaxed in xylene (Chemicon, UK) for 10 min, dehydrated in

100% alcohol and then rinsed in distilled water for 5 min. All sections were incubated

in 3% hydrogen peroxide for 10 min to inhibit endogenous peroxidase enzyme activity.

For exposure and detection of the C-KIT protein with both antibodies, the slides were

microwaved in prewarmed 0.01 M citrate buffer for 5 min and washed in distilled water

to cool the slides down. From this point onwards, the slides must be kept wet at all

times to facilitate staining. The sections are circled with a hydrophobic pen to prevent

drying of the slides.

Slides are incubated in tris-buffered saline (TBS) for 5 minutes to equilibrate. Non-

specific binding of the antibody to Fc fragments in the tissue was blocked by incubating

the sections in 10% normal goat serum (DAKO, UK) in TBS for 15 min. The serum is

tipped off and approximately 100l of anti-human C-KIT antibody (dilution 1:50 in

TBS) was added to each section for 1 hour. Negative control studies for each tissue

section were performed without primary antibody. Binding was detected using

biotinylated goat anti-mouse/rabbit antibody (DAKO) at a dilution of 1:200 in TBS for

30 minutes at room temperature, followed by 30 min with streptavidin-biotin/ horse

radish peroxidase mix (DAKO, 1:200 in TBS each). Sections were washed in TBS for 5

min then visualised using diaminobenzidine tetrahydrochloride (DAB; Vector

laboratories), a chromagen- substrate for HRP, by incubating the slides at room

temperature for 10 min. Sections were counterstained in Carrazi's haematoxylin (which
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stains nuclei blue), dipped in acid alcohol and blueing solution, dehydrated in alcohol

and xylene and mounted in DPX, a xylene-based adhesive.

Scoring of immunohistochemistry

All sections were scored independently by myself and two independent

histopathologists. Intensity of staining was made in comparison to the GISTs tumour

samples, which were used as positive control. Immunostaining was scored as follows:

strong 3; moderate 2; weak 1; no staining 0.

3.15 Electron Microscopy
Cells were left to reach 80-90% confluence in 75cm2 (T75) flasks. Cells were then

treated with gefitinib for 3 hours prior to irradiation at 4Gy. Control unirradiated

samples were also used.

Fixing and embedding:

Cells were fixed in 4% PFA/0.1% gluteraldehyde in 0.1M Phosphate buffer for 2 hours

at RT, and washed in 20mM glycine at RT. Cells were then scraped in 1% gelatin and

collected into 1.5ml eppendorf tubes, followed by spinning horizontally at 1500rpm for

1 min. Supernatant was removed and the pellet was resuspended in 12% gelatin at 37°C

and left to infuse for a few minutes at 37°C. The cells were then centrifuged

horizontally at 5000rpm for 1 min, the supernatant was removed and the tubes were

placed on ice for 15 minutes. The ends of the tubes were cut off and the pellet was

sliced in half into PBS in ice. The pellet was cut into blocks (block faces should be

approx 0.6 -0.4 x 0.3-0.4 mm) and infused with 2.3M sucrose overnight at 4°C on

rotation. Blocks were mounted onto pins (Agar) and stored in liquid nitrogen. 70nm

sections were cut at -120°C, picking the sections up in 2% methyl cellulose/ 2.3M

sucrose (1 / 1) onto formvar/carbon-coated copper grids. Sections were then stored at

4°C.

Staining:

Grids were placed on 2% gelatin in phosphate buffer and incubated at 37°C for 20

minutes and rinsed in PBS + 0.1% glycine 5 times for 1min. Sections were then blocked

in PBS +1% BSA/0.1% BSA-c for 5min, followed by incubation in primary sheep anti-
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EGFR antibody (Fitzgerald, 1:250 in 1% BSA) overnight at 4°C. Sections were then

washed in PBS 4 times for 2 minutes each and incubated in secondary anti-goat IgG

coupled to 15nm colloidal gold particles (1:40 in 1% BSA) for 45 minutes at RT.

Sections were rinsed in PBS 3 times for 5 seconds each, and washed as before in PBS 4

times for 2 minutes each. Sections were stabilised with 1% gluteraldehyde in PBS for 5-

30 minutes at RT, and washed in water 10 times for 1 minute. Cells were then stained in

methyl cellulose / uranyl acetate (9 / 1) on ice in the dark for 5 minutes and after excess

methyl cellulose / uranyl acetate was drained off on filter paper, sections were allowed

to air dry for 10 minutes (or left overnight) at RT.

Location of EGFR was analysed by viewing samples on a JEOL 1010 Transmission

Electron Microscope, and gathering images with a Gatan OriusSC100B CCD camera.

Staining of samples and viewing of images was performed by Emily Eden, UCL

Institute of Ophthalmology, London, UK.
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CHAPTER 4

INVESTIGATION OF COMBINATION TREATMENTS

USING EGFR INHIBITORS WITH CHEMOTHERAPEUTIC

AGENTS IN NET CELLS
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4.1 Introduction
4.1.1 EGFR and Cancer

Epidermal growth factor receptor (EGFR) is expressed in many cancers and is

associated with poor prognosis. EGFR activation pathways have been well

characterised using tumour cell lines and are known to involve EGFR activation

through autophosphorylation (Rusch et al., 1996; Hirono et al., 1995). Phosphorylation

of downstream signalling molecules, such as ERK1/2 (extra-cellular signal regulated

kinase 1 & 2,), and PKB/Akt (protein kinase B), leads to enhanced tumour cell survival

and proliferation (Yarden, 2001).

EGFR is frequently expressed in neuroendocrine tumours (Wang et al., 1997; Nilsson et

al., 1995; Rusch et al., 1996). A potential implication of EGFR in progression of

gastrointestinal carcinoids and PNETs was shown by the presence of activated EGFR in

these cells (Papouchado et al., 2005; Wulbrand et al., 1998; Peghini et al., 2002). Co-

expression of EGFR and TGF-alpha was shown in midgut and hindgut carcinoids,

phaeochromocytomas and MTCs suggesting an autocrine mechanism for tumour-

growth regulation (Nilsson et al., 1995). EGFR expression or overexpression was

shown to affect tumour growth and progression of NETs (Wulbrand et al., 1998;

Peghini et al., 2002).

Recent data suggests that there is no direct correlation between the results of EGFR

immunostaining and the response to anti-EGFR therapy (Dei Tos & Ellis, 2005).

However, a study by Shah et al. found EGFR in >90% of NET tumour patients. They

demonstrated expression of EGFR in 96% of tumour samples, while 63% were positive

for activated EGFR. The subsequent activation of intracellular signalling pathways was

demonstrated by the immunostaining for p-Akt and p-MAPK in NET tissue samples.

Importantly, the histological score for the activation of Akt and MAPK correlated with

the histological score for activated EGFR. These data provide a rationale for

considering EGFR inhibitors in the treatment of NETs (Shah et al., 2006).

4.1.2 EGFR inhibition by gefitinib

Gefitinib (Iressa or ZD1839) is a specific tyrosine kinase inhibitor of EGFR used for the

treatment of non-small cell lung cancer as well as for other solid tumours (Schiller,



102

2003; Herbst, 2002; Blackledge & Averbuch, 2004). Antineoplastic activity has been

shown in a variety of human cancers including prostate, breast, ovarian, colon and lung

cancer cells. Gefitinib has been shown to induce apoptosis and cell cycle arrest in a

variety of tumour cells including neuroendocrine gastrointestinal tumour cells (Hopfner

et al., 2003). EGFR targeting in NET cell lines by gefitinib has been investigated by

Hopfner and co-workers. They showed that inhibition of EGFR tyrosine kinase

promoted growth suspension by apoptosis and cell cycle arrest in NE gastrointestinal

tumour cells (Hopfner et al., 2003). Inhibition of EGFR by gefitinib as a single agent

has been shown both in cell lines and in xenograft models. Combination treatments with

a variety of chemotherapeutic agents (including cisplatin, carboplatin, paclitaxel,

etoposide and doxorubicin) or anti-sense oligonucleotides, demonstrated synergistic

effects in inhibition of proliferation, induction of apoptosis, and antitumor activity in

vitro and in vivo (Ciardiello, 2000; Ciardiello, 2001; Sirotnak et al., 2000). Similarly,

combination of gefitinib with radiation showed increased inhibition of proliferation and

had pro-apoptotic effects in vitro, while in human tumour xenografts there was

increased tumour growth delay (Huang et al., 2002; Bianco et al., 2002).

4.1.3 Chemotherapy on EGFR activity

Cisplatin has been shown to induce diverse cellular responses including the activation

of the JNK and p38 MAPK cascades as well as members of the ERK subfamily of

MAPKs (Benhar et al., 2001). It has been shown that cisplatin-induced ERK activation

is significantly elevated in transformed cells, such as NIH3T3 cells that overexpress

EGFR (Benhar et al., 2001). These findings led to further investigations confirming that

apart from cisplatin, other drugs such as doxorubicin, and camptothecin, which is a

topoisomerase I inhibitor, but not paclitaxel, induced activation of EGFR in NIH-3T3

human fibroblast and U87MG human glioma transformed cells lines that overexpress

EGFR (Benhar et al., 2002). EGFR activation by cisplatin was also shown in MCF-7

breast cancer cell line (Friedmann, 2004).

Aims

In the first part of this study we analysed the potential therapeutic value of EGFR in

NETs by proliferation studies. The cell lines used included the NCI-H727 human

bronchial carcinoid, the SHP-77 human small cell lung cancer (with neuroendocrine

features), and the CRI-G1 and RIN-5F rat islet tumour cells. Experiments were also
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performed in the HCT-116 colon cancer cell line, which expresses EGFR at levels

comparable to neuroendocrine cell lines. Initially, we assessed the potentially anti-

proliferative effect of gefitinib alone, or in combination with the widely used

chemotherapeutic drugs cisplatin, etoposide, paclitaxel and methotrexate. The effect of

gefitinib in NET cell lines was analysed further for cell cycle arrest or apoptosis. In the

second part of this study, based on the effect of chemotherapy on EGFR activation

reported in the literature, we also investigated the effect of cisplatin, etoposide,

paclitaxel, and methotrexate on EGFR activity in order to analyse to a greater extend

the mechanism of interaction between gefitinib and chemotherapeutic agents.

4.2    Results
4.2.1    Proliferation studies using gefitinib or chemotherapy as single agents

Cytotoxicity of drugs was determined by the Sulphorhodamine B (SRB) proliferation

assay. Initially, single agent treatments were carried out on all cell lines to obtain

suitable dose ranges for different exposure times. Single agent administration included

addition of drugs for 24, 48, or 72 hours followed by 2 days incubation in drug-free

media. Gefitinib as a single agent added for a period of 72 hours was cytotoxic to all

cells tested and had a dose response effect (figure 26), demonstrating 50% growth

inhibition  at the high doses of 18-20M in 4/5 cell lines and in RIN-5F cells at 32M

(IC50s shown in table within figure 26). The IC50s for the 48 hour treatments were very

similar, while the IC50s for the 24 hour treatment were much lower (data not shown).

Anti-cancer drugs also decreased tumour cell proliferation as single agents in a dose-

dependent fashion in all cell lines. IC50s are shown in table 10 for the standard 72 hour

treatment. The drugs were also administered as single agents for 24 and 48 hours with

lower cytotoxic abilities (data not shown). Paclitaxel was the most effective drug with

IC50s below 0.05M, followed by methotrexate with IC50s of approx. 0.2-25M.

Etoposide and cisplatin give slightly higher IC50s to methotrexate, but are nevertheless

effective in inhibiting proliferation of neuroendocrine cells.
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Gefitinib titration in SHP-77 cells
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IC50s of gefitinib in NET cells (M)
SHP-77 CRI-G1 NCI-H727 RIN-5F HCT-116

Gefitinib 20.3 ± 1.42 19.2 ± 1.78 21.1 ± 1.86 32.3 ± 0.95 18.6 ± 2.16

Figure 26: SHP-77, GRI-G1, NCI-H727, RIN-5F and HCT-116 cells were
incubated with gefitinib for 3 days at the indicated concentrations followed
by 2 days incubation in drug-free media. Proliferation was calculated as a
% of control untreated cells. IC50s values shown represent means of 3
independent experiments, each done in triplicate, with standard deviation.
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Table 10 : IC50s of chemotherapeutic agents in NET cells (M)

SHP-77 CRI-G1 NCI-H727 RIN-5F HCT-116

Cisplatin 9 ± 1.12 2.41 ± 0.34 10 ± 1.22 0.48 ± 0.029 12.7 ± 1.32

Etoposide 1.64 ± 0.32 1.3 ± 0.23 6.8 ± 0.86 0.5 ± 0.057 1.3 ± 0.46

Methotrexate 0.43 ± 0.062 0.75 ± 0.078 1.8 ± 0.38 2.6 ± 0.47 0.22 ± 0.051

Paclitaxel 0.033 ± 0.037 0.042 ± 0.036 0.047 ± 0.051 0.031 ± 0.029 0.033 ± 0.028
Note: IC50s of treatments with drugs for a period of 3 days followed by 2 days in
complete media. The values represent means of 3 independent experiments, each done
in triplicate, with standard deviation.

4.2.2    Combination treatments with gefitinib or chemotherapy

As mentioned in section 1.2.4, chemotherapy has shown temporary efficacy in

managing NETs of foregut origin, including pancreatic, but is of limited benefit in mid-

gut and hindgut carcinoid tumours. Therefore, the aim for combining two different

therapies such as chemotherapy and EGFR inhibitors in this study was to find the

conditions that sensitise cells to chemotherapy. The second aim was to use lower drug

concentrations than the ones used in single treatments. As a result, for combination

treatments, the subtoxic and clinically relevant concentration of 10M gefitinib, which

causes up to 20% inhibition of proliferation in all cell lines, was added to a range of

concentrations for chemotherapy. Cells were treated with anticancer drugs with a

variety of mechanisms of action, including the DNA crosslinking compound cisplatin,

the topoisomerase II poison etoposide, the mitotic inhibitor paclitaxel, and the

antimetabolite methotrexate, in order to identify possible synergisms in neuroendocrine

tumours.

Administered schedules included:

 Simultaneous addition gefitinib with cisplatin, etoposide, methotrexate or

paclitaxel, for a period of 72 hours

 Incubation with gefitinib for 24 hours followed by chemotherapy drugs for 48

hours

 Incubation with chemotherapy drugs for 24 hours followed by gefitinib for 48

hours
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o Cytotoxic drugs were added at 0-100M for cisplatin, methotrexate and

etoposide, and paclitaxel at 0-10M.

o Drug incubations were followed by 2 days incubation in drug-free media

before analysis

Cytotoxicity of drugs was determined by the Sulphorhodamine B (SRB) proliferation

assay. The isobologram analysis was used to determine inhibitory, additive or

synergistic effects between the two drugs used in combination. The IC50s of each of the

two agents combined are at the ends of the x and y axis respectively, and are connected

by a straight line called ’additivity line’. This line is the locus of all dose pairs that,

based on these potencies, should give the same effect for these two drugs added

together. Any point of combined IC50 found well below the line denotes positive

synergy, while all points found well above denote negative synergy.

The graphs and the IC50 values shown only include cases with synergistic or

additive effect by dual treatment. The rest of the combination treatments are

shown in the appendix 1A-1E for each cell line.

Etoposide

Etoposide displayed synergy with gefitinib when both drugs were added simultaneously

for 72 hours in 2/5 cell lines, leading to increased cytotoxicity of 20-50% (figures 27-

30). Etoposide with gefitinib combined gave an IC50 of 0.3M in SHP-77 and 0.32M

in CRI-G1 cells, 0.5M in HCT-116 and 1M in NCI-H727 cells respectively (table

11). The synergies were identified in CRI-G1 and SHP-77 cells, where at value 0.5M

of etoposide, simultaneous addition of gefitinib increased the anti-proliferative effect by

50% (figures 27-28). In NCI-H727 and HCT-116 cells (figures 29-30) simultaneous

treatment with both agents increased inhibition of proliferation by 37% and 40%

respectively at value 0.5M of etoposide and displayed an additive effect.

In NCI-H727 and CRI-G1 cells (but not in SHP-77 and HCT-116 cells) synergies were

identified when cells were treated with gefitinib for 24 hours followed by incubation

with etoposide for 48hours (figures 28-29), indicating that weakening of EGFR

signalling before etoposide administration may be of therapeutic value. The rest of the
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combinations analysed, shown in the appendix 1A-1E, did not increase the cytotoxic

effect of etoposide.

Table 11: IC50s  (M)

SHP-77 CRI-G1 NCI-H727 HCT-116
Gefitinib 72h 20.3 ± 1.42 19.2 ± 1.78 21.1 ± 1.86 18.6 ± 2.16
Etoposide 72h 1.64 ± 0.32 1.5 ± 0.23 6.8± 0.86 1.9 ± 0.36

Etoposide and
gefitinib for 72h 0.3 ± 0.052 0.32 ± 0.044 1 ± 0.21 0.5 ± 0.067

Gefitinib 24h, then
etoposide 48h 0.32 ± 0.047 1.7± 0.46

Note: IC50s of treatments with drugs in single or dual treatments for a period of 3 days
followed by 2 days in complete media. The values represent means of 3 independent
experiments, each done in triplicate, with standard deviation.

The isobologram graphs in figures 30-33 indicate the synergistic or additive effects of

etoposide and gefitinib. The IC50 values for etoposide and gefitinib as single agents are

at the ends of the x and y axis respectively, and are connected the ’additivity line’. This

line is the locus of all dose pairs that, based on these potencies, should give the same

effect for these two drugs added together. As can be seen in the figures 30-31, the IC50s

of simultaneous addition of etoposide with 10µM gefitinib for 72hours in SHP-77 and

CRI-G1 cells lie well below this line and therefore indicate a superadditive or

synergistic effect. Points well below the additivity line are also found when gefitinib is

added for 24hours followed by etoposide for 48 hours in NCI-H727 and CRI-G1 cells.

In fact, in GRI-G1 cells the point is the same for both types of double treatments.
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SHP-77 cells with gefitinib and etoposide
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Figure 27: Etoposide and gefitinib combination treatment in SHP-77 cells.

Top graph: Growth inhibition SRB assay. Cells were treated with etoposide at
the indicated concentrations alone, or simultaneously with gefitinib (10M) for
72 hours, followed by 48 hours in drug free medium. Proliferation was
calculated as a % of control untreated cells. Data represents the averages of three
different experiments, each performed in triplicate; bars, SD.

Bottom graph: Isobologram analysis. Red line is additivity line connecting the
IC50s ( ) of the two drugs. Points well below the line demonstrate synergistic
effect, while points close to the line demonstrate an additive effect. Combined
treatment IC50 (  ) of etoposide and gefitinib together.
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CRI-G1 cells with gefitinib and etoposide
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Figure 28: Etoposide and gefitinib combination treatment in CRI-G1 cells.

Top graph: Growth inhibition SRB assay.  Cells were treated with etoposide at
the indicated concentrations alone, simultaneously with gefitinib (10M) for 72
hours, or with gefitinib first and then etoposide, followed by 48 hours in drug
free medium. Proliferation was calculated as a % of control untreated cells. Data
represents the averages of three different experiments, each performed in
triplicate; bars, SD.

Bottom graph: Isobologram analysis. Red line is additivity line connecting the.
IC50s ( ) of the two drugs Points well below the line demonstrate synergistic
effect, while points close to the line demonstrate an additive effect. Combined
treatment IC50s (  ) of etoposide and gefitinib together.
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NCI-H727 cells with gefitinib and etoposide

0

20

40

60

80

100

120

0 1 10 100

Etoposide concentration (M)

%
 p

ro
lif

er
at

io
n Etoposide for 3 days

Etoposide and gefitinib
(10uM) for 3 days

Gefitinib (10uM) for 1 day
then etoposide for 2 days

NCI-H727 cells

0

2

4

6

0 5 10 15 20
Gefitinib concentration (M)

Et
op

os
id

e 
co

nc
. (

M
)

etoposide and gefitinib
(10M) for 3 days

gefitinib (10M) 24h, and
then etoposide 48h

Figure 29: Etoposide and gefitinib combination treatment in NCI-H727 cells.

Top graph: Growth inhibition SRB assay.  Cells were treated with etoposide at
the indicated concentrations alone, simultaneously with gefitinib (10M) for 72
hours, or with gefitinib first and then etoposide, followed by 48 hours in drug
free medium. Proliferation was calculated as a % of control untreated cells. Data
represents the averages of three different experiments, each performed in
triplicate; bars, SD.

Bottom graph: Isobologram analysis. Red line is additivity line connecting the.
IC50s ( ) of the two drugs Points well below the line demonstrate synergistic
effect, while points close to the line demonstrate an additive effect. Combined
treatment IC50s (  ), (  ) of etoposide and gefitinib together.
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HCT-116 cells with gefitinib and etoposide
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Figure 30: Etoposide and gefitinib combination treatment in HCT-116 cells.

Top graph: Growth inhibition SRB assay.  Cells were treated with etoposide at
the indicated concentrations alone, or simultaneously with gefitinib (10M) for
72 hours, followed by 48 hours in drug free medium. Proliferation was
calculated as a % of control untreated cells. Data represents the averages of three
different experiments, each performed in triplicate; bars, SD.

Bottom graph: Isobologram analysis. Red line is additivity line connecting the
IC50s ( ) of the two drugs. Points well below the line demonstrate synergistic
effect, while points close to the line demonstrate an additive effect. Combined
treatment IC50 (  ) of etoposide and gefitinib together.
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Cisplatin

Cisplatin showed synergy when combined with gefitinib in NCI-H727 cells (figure 31).

Treatment with cisplatin and gefitinib concurrently for 72 hours or with gefitinib for 24

hours followed by cisplatin for 48 hours resulted in a 40% increased anti-proliferative

effect at values 0.5 and 1M of cisplatin. When NCI-H727 cells were treated with

cisplatin alone the IC50 was 10M. Addition of gefitinib simultaneously or before

cisplatin gave IC50s of 1M and 2.2M respectively (table 12).

Also, in HCT-116 cells (figure 32), increased inhibition of proliferation was identified

when cisplatin treatment preceded gefitinib, with a joint IC50 of 6.3M compared to

12.7M of cisplatin alone (table 13). Isobologram analysis demonstrated this

combination to result in an additive effect, but no synergy. No synergistic or additive

effects were identified in any other cell line with cisplatin and gefitinib combinations

(data shown in the appendix 1A-1E).

Table 12: IC50s  (M) Table 13: IC50s  (M)

NCI-H727 HCT-116
Gefitinib 72h 21.1 ± 1.86 Gefitinib 72h 18.6 ± 2.16
Cisplatin 72h 10 ± 1.22 Cisplatin 72h 12.7 ± 1.32

Cisplatin and
gefitinib for 72h 1± 0.23

Cisplatin 24h,
then gefitinib 48h 6.3 ± 0.75

Gefitinib 24h,
then cisplatin 48h 2.2 ± 0.30

Note: IC50s of treatments with drugs in single or dual treatments for a period of 3 days
followed by 2 days in complete media. The values represent means of 3 independent
experiments, each done in triplicate, with standard deviation.
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NCI-H727 cells with gefitinib and cisplatin
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Figure 31: Cisplatin and gefitinib combination treatment in NCI-H727 cells.

Top graph: Growth inhibition SRB assay.  Cells were treated with cisplatin at
the indicated concentrations alone, simultaneously with gefitinib (10M) for 72
hours, or with gefitinib first and then cisplatin, followed by 48 hours in drug free
medium. Proliferation was calculated as a % of control untreated cells. Data
represents the averages of three different experiments, each performed in
triplicate; bars, SD.

Bottom graph: Isobologram analysis. Red line is additivity line connecting the.
IC50s ( ) of the two drugs Points well below the line demonstrate synergistic
effect, while points close to the line demonstrate an additive effect. Combined
treatment IC50s (  ), (  ) of cisplatin and gefitinib together.
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HCT-116 cells with gefitinib and cisplatin
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Figure 32: Cisplatin and gefitinib combination treatment in HCT-116 cells.

Top graph: Growth inhibition SRB assay.  Cells were treated with cisplatin at
the indicated concentrations alone, or with cisplatin first and then gefitinib
(10M), followed by 48 hours in drug free medium. Proliferation was calculated
as a % of control untreated cells. Data represents the averages of three different
experiments, each performed in triplicate; bars, SD.

Bottom graph: Isobologram analysis. Red line is additivity line connecting the.
IC50s ( ) of the two drugs Points well below the line demonstrate synergistic
effect, while points close to the line demonstrate an additive effect. Combined
treatment IC50 (  ) of cisplatin and gefitinib together.
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Paclitaxel

Paclitaxel’s effect on tumour cell growth was increased in NCI-H727 cells when

gefitinib and paclitaxel were added together, or when paclitaxel was added first for 24

hours and gefitinib was added second for 48 hours (figure 33). In both combination

treatments inhibition of proliferation was increased by 20% at values 0.05 and 1M of

paclitaxel. Joint treatments gave IC50 values of 0.03 for the simultaneous addition of

drugs, and 0.031M when paclitaxel administration preceded gefitinib, compared to the

IC50 of 0.047M of paclitaxel alone (table 14) demonstrating to an additive effect for

this combination. NCI-H727 was the only cell line where the combined treatment of

gefitinib and paclitaxel had an increased effect in inhibition of proliferation. No effect

was seen in the rest of the cell lines used.

Table 14: IC50s  (M)

NCI-H727
Gefitinib 72h 21.1 ± 1.86
Paclitaxel 72h 0.047 ± 0.051

Paclitaxel and
gefitinib for 72h 0.03 ± 0.004

Paclitaxel 24h, then
gefitinib 48h 0.031 ± 0.003

Note: IC50s of treatments with drugs in single or dual treatments for a period of 3 days
followed by 2 days in complete media. The values represent means of 3 independent
experiments, each done in triplicate, with standard deviation.

Methotrexate

Methotrexate showed no synergy with gefitinib in any of the cells tested and in any of

the administered schedules. Gefitinib had no effect in the anti-proliferative effect of

methotrexate as a single agent.



116

NCI-H727 cells with gefitinib and paclitaxel
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Figure 33: Paclitaxel and gefitinib combination treatment in NCI-H727 cells.

Top graph: Growth inhibition SRB assay.  Cells were treated with paclitaxel at
the indicated concentrations alone, simultaneously with gefitinib (10M) for 72
hours, or with paclitaxel first and then gefitinib, followed by 48 hours in drug
free medium. Proliferation was calculated as a % of control untreated cells. Data
represents the averages of three different experiments, each performed in
triplicate; bars, SD.

Bottom graph: Isobologram analysis. Red line is additivity line connecting the.
IC50s (  ) of the two drugs Points well below the line demonstrate synergistic
effect, while points close to the line demonstrate an additive effect. Combined
treatment IC50s (  ) of paclitaxel and gefitinib together.
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4.2.3 Gefitinib induces apoptosis in NET cell lines

To investigate whether the antineoplastic effect of gefitinib in neuroendocrine tumour

cells is associated with the induction of programmed cell death, we investigated the

presence of mono- and oligonucleosomes in the cytoplasmic fraction of cell lysates,

which indicates apoptosis. Apoptosis is primarily characterised by DNA fragmentation,

a phenomenon that is followed several hours later by plasma membrane degradation and

this results in the enrichment of the cytoplasm with mono- and oligonucleosomes (for

details on apoptosis see section 3.7). Mono- and oligonucleosomes were identified

using the ELISA cell death detection assay (figure 21), which is a quantitative

sandwich-enzyme immunoassay using a biotin-conjugated antibody against histone and

an anti-DNA antibody bound to horse radish peroxidase (HRP), which is determined

photometrically.

Cells were treated with 0-50M gefitinib for 72 hours as in the proliferation

experiments. As shown in figure 34, at the highest concentration of gefitinib DNA

fragmentation was mostly present in RIN-5F cells, followed by NCI-H727 and then

SHP-77 cells. It is worth noting that the results of apoptosis come in concordance with

the proliferation studies. Apoptosis is detected at the high concentrations of 25-50M

that correlate to the IC50s found in the growth inhibition assay (table 15 below taken

from section 4.2.1). In contrast, CRI-G1 cells showed no DNA fragmentation after 72

hours incubation with gefitinib.  Since CRI-G1 cells are the most responsive to gefitinib

(IC50 of 19.2M), a possible explanation would be that CRI-G1 cells undergo apoptosis

more readily than the rest of the cells and by 72 hours they are completely degraded.

Table 15: IC50s of gefitinib in NET cells (M)
SHP-77 CRI-G1 NCI-H727 RIN-5F

Gefitinib 72h 20.3 ± 1.42 19.2 ± 1.78 21.1 ± 1.86 32.3 ± 0.95
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Figure 34: Cells were incubated with 0-50M gefitinib for 72 hours. Absorbance of 0.5
or higher indicates the presence of mono- and oligonucleosomes. Columns represent
averages of three independent experiments, each done in triplicate; bars, SD.

4.2.4 Gefitinib does not induce cell cycle arrest in NET cell lines

To further examine the inhibition of neuroendocrine tumour growth by gefitinib, we

assessed gefitinib for its ability to induce cell-cycle arrest using flow-cytometric cell

cycle analysis. Cells were treated with gefitinib at 0-50M for 72 hours. Propidium

iodide staining of DNA was used to determine the cell cycle status of cells. For more

detailed information please refer to section 3.13 (p.90-92). All experiments were

repeated 3 times and representative graphs are shown in figures 35-38.

No effect on the cell cycle of cells was seen in any of the cell lines used with cells

treated with 10M gefitinib for 72 hours demonstrating the same percentages of cells in

G1 or G2/M phase of the cell cycle as in the control untreated cells (upper left graph in

each page). At the highest concentration of 50M, gefitinib induced apoptosis in RIN-

5F, NCI-H727, SHP-77 and CRI-G1 cells, represented as a movement of cells to the

beginning of the FL2-H axis (fluorescence axis, denotes DNA content by propidium

iodide staining), which indicates apoptosis. The effect was more prominent in CRI-G1

cells that undergo programmed cell death even at 25M gefitinib. This agrees with the



119

results obtained from the study of apoptosis in section 4.2.3, where CRI-G1 cells are

completely degraded at 50M gefitinib.
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Figure 35: CRI-G1 cells were treated with gefitinib at 0-50M for 72 hours. ‘FL2-H’
denotes DNA content by propidium iodide staining, while ‘counts’ denotes cell number.
Bars M1 and M2 indicate populations of cells at phases G1 and G2/M of the cell cycle
respectively. Cells at the beginning of the FL2-H axis (below 140), denotes cells with
sub-G1 DNA content, indicative of apoptosis.
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Figure 36: RIN-5F cells were treated with gefitinib at 0-50M for 72 hours. ‘FL2-H’
denotes DNA content by propidium iodide staining, while ‘counts’ denotes cell
number. Bars M1 and M2 indicate populations of cells at phases G1 and G2/M of the
cell cycle respectively. Cells at the beginning of the FL2-H axis (below 140), denotes
cells with sub-G1 DNA content, indicative of apoptosis.
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Figure 37: NCI-H727 cells were treated with gefitinib at 0-50M for 72 hours. ‘FL2-
H’ denotes DNA content by propidium iodide staining, while ‘counts’ denotes cell
number. Bars M1 and M2 indicate populations of cells at phases G1 and G2/M of the
cell cycle respectively. Cells at the beginning of the FL2-H axis (below 140), denotes
cells with sub-G1 DNA content, indicative of apoptosis.
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Figure 38: SHP-77 cells were treated with gefitinib at 0-50M for 72 hours. ‘FL2-H’
denotes DNA content by propidium iodide staining, while ‘counts’ denotes cell
number. Bars M1 and M2 indicate populations of cells at phases G1 and G2/M of the
cell cycle respectively. Cells at the beginning of the FL2-H axis (below 140), denotes
cells with sub-G1 DNA content, indicative of apoptosis.
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4.2.5 Modulation of EGFR activity by chemotherapy drugs

DNA damaging agents such as cisplatin, camptothecin and doxorubicin have been

proposed to activate EGFR in NIH-3T3 human fibroblast and U87MG human glioma

transformed cells lines that overexpress EGFR (Benhar M et al, 2002). EGFR activation

by cisplatin was also shown in MCF-7 breast cancer cell line (Friedmann B et al, 2004).

To investigate whether a similar effect was seen in NET cell lines, two different

experiments were set up:

A. Cisplatin, etoposide, methotrexate and paclitaxel were administered to NCI-

H727, CRI-G1, SHP-77 and RIN-5F cells at the cytotoxic concentration of

100M for cisplatin, etoposide, and methotrexate or at 10M paclitaxel for 0-24

hours. This experiment would assess the effect of drugs (at a specific

concentration) with time on EGFR activity (time-course analysis).

B. Cisplatin, etoposide, and methotrexate were administered at 0-100M, and

paclitaxel at 0-10M for 24 hours to see whether different dosages at the same

time duration have diverse effects on EGFR phosphorylation (dose-response

analysis).

All experiments were repeated at least 3 times with representative blots shown for each

experiment. Results are shown for cisplatin and etoposide with the effects of paclitaxel

and methotrexate added in appendix 1F-1I. For immunoblots of phosphorylated EGFR,

the A431 cells that overexpress EGFR were used as positive control (figure 39). The

amounts of phosphorylated EGFR were calculated by densitometry analysis of the

bands. The figure below shows basal expression of phosphorylated EGFR in all cell

lines tested.

Figure 39: Whole cell lysates of A431 cells (positive control), NCI-H727 human
bronchial carcinoid, SHP-77 human small cell lung cancer, CRI-G1 and RIN-5F rat islet
tumour cells untreated, were immunoblotted for phosphorylated EGFR (PY20,170kDa).
A-tubulin bands (50kDa) were used as loading control.
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A. Time-course analysis

Cisplatin

Cisplatin at 100M induced activation of EGFR in all cell lines, as shown in the

western blots in figure 40. This activation is transient lasting up to 3 hours in NCI-

H727, SHP-77, and RIN-5F cells, or 6 hours in CRI-G1 cells. At 12 hours

phosphorylated EGFR levels are decreased and are less than in the control samples

showing a downregulation of the receptor which is also evident at 24 hours (blots

shown in figure 42). The blots were stripped and immunoblotted for EGFR showing

similar results (data not shown).

Cisplatin at 100M

Figure 40: Tyrosine phosphorylation of EGFR in NET cell lines determined by
immunoblotting for PY20 (170kDa). Cells were treated with cisplatin at 100M for 3, 6
or 12 hours. A-tubulin bands (50kDa) were used as loading control. Amounts of P-
EGFR in percentages were determined by densitometry analysis.
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Etoposide

Etoposide treatment at 100M upregulated EGFR at 3 hours in NCI-H727 and CRI-G1

cells but had no effect in the other cells (figure 41). In RIN-5F cells a transient

downregulation is seen up to 6 hours but is probably due to less amount of lysate being

loaded as shown by the -tubulin control. In all cells the receptor activity is equal to

control levels by 12 hours.

Etoposide at 100M

Figure 41: Tyrosine phosphorylation of EGFR in NET cell lines determined by
immunoblotting for PY20 (170kDa). Cells were treated with etoposide at 100M for 3,
6 or 12 hours. A-tubulin bands (50kDa) were used as loading control. Amounts of P-
EGFR in percentages were determined by densitometry analysis.
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Methotrexate

Interestingly, as seen in appendix 1F, methotrexate induced downregulation of EGFR in

all NET cell lines. By 3 hours, EGFR activation is at lower levels than in control

untreated cells. EGFR downregulation persists at 6, 12 and 24 hours (appendix 1H), and

almost abolishes any EGFR activity. Methotrexate is the only chemotherapeutic agent

that induced downregulation of EGFR in all cell lines.

Paclitaxel

Paclitaxel also induces downregulation of EGFR in NCI-H727, CRI-G1 and SHP-77

cells, (appendix 1G) showing that paclitaxel shuts down EGFR as part of its mechanism

of cell growth inhibition. This downregulation is continued at 24 hours post treatment

(appendix 1I). In RIN-5F cells paclitaxel treatment at 10M shows a very small

activation of EGFR at 6 hours but downregulation of the receptor there after.

B. Dose-effect analysis

Cisplatin

Treating cells for 24 hours with increasing amounts of cisplatin (figure 42) decreased

the amounts of activated EGFR in all NET cell lines tested in a dose-dependent fashion.

This downregulation agrees with the results from the time course analysis, where

activation of EGFR by toxic amounts of cisplatin lasts for 3 hours and EGFR activation

is decreased thereafter. In RIN-5F cells the effect of cisplatin is most dramatic, with

almost complete shut-down of the receptor even at 10M. The downregulation is also

strong in SHP-77 cells. In NCI-H727 cells only the highest dose blocked EGFR activity

completely, while the two highest doses had the same effect in CRIG1 cells.
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Cisplatin for 24 hours

Figure 42: Tyrosine phosphorylation of EGFR in NET cell lines determined by
immunoblotting for PY20 (170kDa). Cells were treated with cisplatin at 0, 10, 25, 50 or
100M for 24 hours. Bottom panel shows -tubulin bands (50kDa) as loading control.
Amounts of P-EGFR in percentages were determined by densitometry analysis.
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Increasing the dosage of etoposide led to downregulation of EGFR in CRI-G1 and RIN-

5F cells (figure 43). In NCI-H727 cells the levels of P-EGFR remained relatively

unaffected, while in SHP-77 cells EGFR activity was slightly decreased. As mentioned

previously, etoposide induced activation of EGFR up to 3 hours in NCI-H727 and

CRIG1 cells, but at 12 hours the receptor was back to normal levels. This is in

accordance to these results where in NCI-H727 cells the receptor activity is slightly

decreased, while the downregulation in CRIG1 cells is more evident.
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Etoposide for 24 hours

Figure 43: Tyrosine phosphorylation of EGFR in NET cell lines determined by
immunoblotting for PY20 (170kDa). Cells were treated with etoposide at 0, 10, 25, 50
or 100M for 24 hours. Bottom panel shows -tubulin bands (50kDa) as loading
control. Amounts of P-EGFR in percentages were determined by densitometry analysis.
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At 24 hours of methotrexate treatment (appendix 1H), as in the time course experiment

(appendix 1F), EGFR is downregulated in all neuroendocrine cell lines. The effect of

methotrexate on EGFR is dose-dependent with highest inhibition of EGFR activation at

the highest concentrations.
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Paclitaxel

Increase of paclitaxel concentration induces receptor downregulation in all cell lines

tested (appendix 1I), which agrees with the results obtained from the time-course

experiment. Like methotrexate, the effect of the paclitaxel is dose-dependent and agrees

with the results obtained from the time-course experiment. The effect is most evident in

CRI-G1 cells in both time-course and dose response analyses. The effects on EGFR

activity by chemotherapeutic drugs are summarised in table 16.

Table 16

A: Time-course effect (0-24hours of 100M) of chemotherapy drugs on
activity of EGFR in NET cell lines

B: Dose response effect (0-100M for 24hours) of chemotherapy drugs
on activity of EGFR in NET cell lines

Cisplatin Etoposide Methotrexate Paclixatel

RIN-5F
Upregulation

up to 3 hours
No effect Downregulation

Upregulation

up to 6 hours

NCI-H727
Upregulation

up to 3 hours

Upregulation

up to 3 hours
Downregulation Downregulation

CRI-G1
Upregulation

up to 6 hours

Upregulation

up to 3 hours
Downregulation Downregulation

SHP-77
Upregulation

up to 3 hours
No effect Downregulation Downregulation

Cisplatin Etoposide Methotrexate Paclitaxel

RIN-5F Downregulation Downregulation Downregulation Downregulation

NCI-H727 Downregulation No effect Downregulation Downregulation

CRI-G1 Downregulation Downregulation Downregulation Downregulation

SHP-77 Downregulation No effect Downregulation Downregulation
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4.2.6 Activation of EGFR signalling pathways by cisplatin

Cisplatin is the only chemotherapeutic agent that induces activation of the receptor in

all neuroendocrine cell lines in our study. Activation of the EGFR pathway traditionally

results in downstream signalling pathways including the lipid kinase

phosphatidylinositol (PI) 3-kinase (involving PKB/Akt) and the serine/threonine kinase

(Ras/MAPK) pathways. Based on this and in the correlation between phosphorylated

EGFR and phosphorylated PKB/Akt and MAPK also found recently in NET tissue

samples by immunostaining (Shah et al., 2006), we decided to further investigate the

upregulation of EGFR by cisplatin.

Cisplatin at 100M

Figure 44: Blots for phosphorylated EGFR in NCI-H727 and SHP-77 cell lines were
stripped of antibody and re-blotted for P-Akt and P-MARK. A-tubulin bands (50kDa)
were used as loading control.
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Cisplatin was analysed for its effect in PKB/Akt and MAPK signalling pathways, by

immunoblotting for p-Akt and p-MAPK. Our results (figures 44-45) show that

activation of EGFR by cisplatin leads to activation of the PI-3K and Ras/ MAPK

signalling pathways in a fashion that follows EGFR activation. Therefore Akt and

MAPK are activated up to 3 hours post-treatment in NCI-H727, SHP-77, and RIN-5F

cells and up to 6 hours in CRI-G1 cells, followed by downregulation there after.

Cisplatin at 100M

Figure 45: Blots for phosphorylated EGFR in CRI-G1 and RIN-5F cell lines were
stripped of antibody and re-blotted for P-Akt and P-MARK. A-tubulin bands (50kDa)
were used as loading control.
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EGFR aberrant expression is implicated in a variety of human tumours. Blockade

therefore of EGFR signalling pathways represents a promising strategy for anti-cancer
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P-EGFR

P-Akt

P-MAPK

Tubulin

CRI-G1

RIN-5F

hours
0 3          6         12

hours
0         3          6         12

P-EGFR

P-Akt

P-MAPK

Tubulin



132

clinical use (Harari, 2004). Gefitinib alone or in combination with other anti-cancer

therapies, such as chemotherapy drugs and radiation therapy has demonstrated efficacy

against tumour growth in a variety of cancer cell lines and in xenograft models

(Ciardiello et al., 2000; Ciardiello et al., 2001b; Huang, 2002; Magne, et al., 2002;

Sirotnak, et al., 2000).

4.3.1 Anti-proliferative effect by gefitinib and chemotherapy

In this study, gefitinib demonstrated an antineoplastic effect on a panel of

neuroendocrine tumour cell lines; two rat islet tumour cell lines CRI-G1 and RIN-5F,

the NCI-H727 human lung carcinoid cell line and the SHP-77 human SCLC cell line.

The colorectal cancer cell line HCT-116, expressing moderate levels of constitutively

active EGFR (Cunningham et al., 2006), was also tested. Gefitinib was used both as a

single agent and in combination with the commonly used anti-cancer drugs cisplatin,

etoposide, methotrexate and paclitaxel. Gefitinib showed a dose-response cytotoxic

effect in all cell lines, with an IC50 of 19-32M in neuroendocrine tumour cells and of

18.6M in the colon cancer cells. These concentrations are considerably higher than

the ones used in previous in vitro studies as well as to the clinical dose of gefitinib used

in patients (Ciardiello et al., 2000). Neuroendocrine cells are therefore resistant to doses

which are clinically relevant. A possible explanation would be that the cell lines used by

others had high EGFR levels and therefore increased sensitivity to gefitinib.

Neuroendocrine cells and HCT-116 colon cancer cells have moderate levels of EGFR

expression and are relatively resistant to gefitinib. Also, the cell lines in this study are

generally slow growing and cytotoxic effects are less evident than in fast growing cells.

Finally, the SRB proliferation assay used in our study measures inhibition of

proliferation and is therefore largely dependent on cell growth rate, and could not be

compared with clonogenic assays which measure colonies after a period of 2 weeks

including 6 days of daily replenished drug treatment as performed by other groups.

On the other hand, in a study by McKillop et al., it was shown that the concentration of

gefitinib in tumour tissue of breast cancer patients was 16.7M, which is much higher

than the routinely measured plasma concentration of gefitinib (McKillop et al., 2005).

This value is more agreeable to the values obtained in our study. Moreover, it must be

noted that although the IC50 of gefitinib required for EGFR inhibition is 20nM, the
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concentration needed for tumour growth inhibition in a variety of cell lines is much

higher reaching 20M, and varies considerably between different cell types (Moasser et

al., 2006). The reason for such a higher concentration may rely on the fact that more

than one signalling cascades may be involved in tumour growth inhibition.

Gefitinib demonstrated synergy with etoposide in CRI-G1 and SHP-77 cell lines when

the two drugs were added simultaneously, or when gefitinib preceded etoposide in CRI-

G1 and NCI-H727 cells. Gefitinib also displayed synergy with cisplatin in NCI-H727

cells either when the two drugs were added simultaneously or when gefitinib preceded

cisplatin. This is in agreement with studies on the schedule-dependence of gefitinib and

chemotherapy or radiation, where simultaneous addition or pre-treatment with gefitinib

produced increased tumour growth inhibition ((Magné et al., 2002). Clinical as well as

in vitro studies have previously shown optimal therapeutic effect when chemotherapy

preceded gefitinib which was not shown in this study. The reason for such differences

probably relies on the cell type as well as the dosages, schedules (gefitinib added daily

vs. added once only) and methods used for measurement of tumour growth (Ciardiello

et al., 2000; Sirotnak et al., 2000). Nevertheless, gefitinib can increase the efficacy of

various cytotoxic agents with different mechanisms of action. This co-operation may

not therefore be dependent at the original site of action of each drug but may be

downstream of all drugs’ pathways, at the level of growth control signalling. This

ability of gefitinib to affect the cytotoxicity of various chemotherapeutic agents is

shared by monoclonal antibodies against EGFR, which were shown to  potentiate the

effects of cisplatin or doxorubicin (Baselga et al., 1993; Fan et al., 1993) and by

antisense oligonucleotides  targeting EGFR that showed co-operation with cisplatin,

doxorubicin, paclitaxel and topotecan (Ciardiello et al., 2001a).

Paclitaxel displayed an additive effect with gefitinib in NCI-H727 cells only.

Methotrexate on the other hand, did not synergise or show any additive effect with

gefitinib in any of the cell lines tested, indicating that the mechanism employed by

methotrexate to kill NET cells is probably independent of the EGFR pathway inhibited

by gefitinib. To our knowledge, no synergy between methotrexate and gefitinib has

been demonstrated so far in the literature, confirming that the pathways of the two

drugs may be independent of each other. No synergy or additive effect with any of the
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drugs tested was evident in RIN-5F cells, indicating that EGFR signalling blockade by

gefitinib utilizes a route that does not engage with chemotherapeutic agents at any point

of their cytotoxic pathway.

The same principle applies for all combinations of gefitinib with all four cytotoxic

agents not leading to an additive or synergistic inhibition of proliferation. The anti-

proliferative effect of gefitinib administered with an anti-cancer drug was different for

each cell line. The chemotherapeutic drugs used in our study have well-characterised

and specific mechanisms of DNA damage and ultimately of inhibition of cell growth.

The reason for a synergy seen between an anti-cancer drug and gefitinib in one cell line

but not in another cell line is therefore purely cancer cell type-dependent. Even if the

pathways used by both drugs are the same at the initiation stage where the drug makes

its contact with the cell, proteins downstream their pathways are regulated in different

ways from one cell type to another and probably even more so from one type of cancer

cell to another.

4.3.2 Gefitinib induces apoptosis but no cell cycle arrest in neuroendocrine cells

Gefitinib has demonstrated tumour cell growth inhibition both by arresting cells in the

G1/G0 phase of the cell cycle and by inducing apoptosis in a variety of human cultured

cells (Ciardiello et al., 2000; Hopfner et al., 2003). Hopfner M and co-workers also

postulated that fast growing cells mainly arrested in G1/G0 phase but slow-growing

cells mainly underwent apoptosis when treated with gefitinib (Hopfner et al., 2003).

Based on this, the NET cells used in our study, which are generally slow growing,

would be expected to mainly undergo apoptosis. Using the same dosage with Hopfner’s

published data this phenomenon was demonstrated in all four cell lines. As mentioned

before, CRI-G1 cells show no DNA fragmentation probably because by 72 hours they

are degraded due to apoptotic cell death. Apoptosis is induced at really high

concentrations of gefitinib, which are not specific to EGFR, indicating that other

tyrosine kinase signalling mechanisms may be involved in the gefitinib-induced

apoptosis of neuroendocrine cells. Experiments examining the induction of apoptosis by

gefitinib will be carried out with shorter exposures and concentrations up to 10M of

the drug to these cells. In addition, cell cycle studies showed no cell cycle arrest of NET

cells at 72 hours treatment with gefitinib, but induction of apoptosis in all cell lines,
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which would agree with our results and the results exhibited from by Hopfner and his

co-workers (Hopfner et al., 2003).

Protein tyrosine kinases have been shown to modulate the expression and post-

translational modification of members of the BCL-2 family in order to protect cancer

cells from apoptotic signals. Anti-apoptotic members such as Bcl-xL and Bcl-2 are

stimulated, but proapoptotic members such as Bad and Bax are inhibited (Skorski,

2002). Stimulation of apoptosis by gefitinib has therefore been attributed to inhibition

of anti-apoptotic proteins and induction of pro-apoptotic ones. In a study by Magné et

al. gefitinib induced upregulation of the pro-apoptotic protein Bax and downregulation

of the anti-apoptotic protein Bcl-2 (Magné et al., 2003). Induction of apoptosis by

gefitinib has been proposed to be a general mechanism in sensitising cancer cells to

chemotherapeutic agents. In our study, gefitinib was shown to induce apoptosis but this

did not result in synergy with all cytotoxic drugs used, therefore apoptosis alone cannot

account for the presence of absence of synergy.

4.3.3 Effect of chemotherapeutic agents on EGFR activity

Analysis of the effect of chemotherapeutic drugs on EGFR activity showed activation of

EGFR after 3 or 6 hours of cisplatin treatment in all the NET cell lines, after 3 hours of

incubation with etoposide in CRI-G1 and NCI-H727 cell lines, and after 6 hours of

incubation with paclitaxel in RIN-5F cell line. Activation of EGFR was due to increased

expression and phosphorylation of the receptor. Increased levels of phosphorylated

EGFR in response to cytotoxic drug treatment have also been shown by other groups in

cell lines that express functional EGF receptors (Benhar et al., 2002; Friedmann et al.,

2004). This phenomenon is probably a shock response of the cell to counteract the

cytotoxic effect of the anti-cancer agent. The mechanism involved in upregulation of

EGFR by cisplatin was analysed further for downstream signalling pathways involved.

Activation of EGFR by cisplatin was found to be mediated through the Ras/MAPK and

PI-3K/Akt signalling cascades These signalling cascades have been implicated in a

variety of processes including proliferation, angiogenesis and metastasis of cancer cells

(Carpenter G, 2000; Grant S et al, 2002).Therefore highly toxic amounts of cisplatin

induce EGFR-dependent survival pathways in neuroendocrine tumour cells. The anti-

proliferative effect of gefitinib has been suggested to involve inhibition of PI-3K/Akt,

and this could in part explain the lack of synergy between cisplatin and gefitinib in ¾
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neuroendocrine cells in our study (She et al., 2003; Janmaat et al., 2003).

It is worth noting is that activation of EGFR in the NET cells used is always transient

and not evident in samples treated with the same drug for 6 or 12 hours. In fact by 12 or

24 hours EGFR is downregulated in all cells. This phenomenon indicates that this shock

response lasts up to 3 hours (or up to 6 hours in CRI-G1 cells treated with cisplatin),

after which EGFR signalling is paused along with induction of cell death. Benhar M

showed prolonged EGFR activation for up to 24 hours in transformed NIH3T3 cells that

overexpress EGFR, and this could be because these cells are more drug-resistant than

the ones used in our study (Benhar et al., 2002). Indeed, high levels of EGFR

expression have been found in drug-resistant cell lines (Wosikowski et al., 1997) and

EGFR inhibition can sensitise cells to chemotherapeutic agents. For example, inhibition

of EGFR activation by gefitinib in MCF-7 breast cancer cells led to inhibition of repair

of etoposide-induced DNA damage for more than 24 hours, compared to 4 hours for

complete DNA repair after removal of etoposide. Similar results were obtained with the

repair of cisplatin-induced interstrand cross-links, showing that EGFR activation is

needed for drug-resistance (Friedmann et al., 2004).

Finally, the cytotoxic drugs formed two groups depending on their effect on EGFR

phosphorylation, with methotrexate and paclitaxel mainly causing downregulation of

the receptor, and cisplatin and etoposide mainly causing upregulation of EGFR in a

time-dependent fashion. Methotrexate and paclitaxel are known to induce DNA damage

indirectly by inhibiting DNA synthesis and arresting cells in metaphase respectively,

whereas cisplatin and etoposide promote direct DNA damage in the form of interstrand

cross-links and double DNA strand breaks respectively. This separation indicates that

direct forms of DNA damage such as the mechanisms employed by cisplatin and

etoposide are more toxic to cells and may thus produce the acute response of EGFR

activation, which would explain the fact that this activation is only seen transiently up

to 3 hours post-treatment, but not there after.

4.3.4 Conclusions

This study has shown that sensitivity to chemotherapeutic agents can be enhanced

significantly by inhibition of growth factor pathways such as the EGFR signalling pathway.

In contrast to the preclinical data from other groups and ours, a number of large phase III
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clinical trials in patients with either locally advanced solid tumours or stage IV NSCLC

failed to show any benefit for combined treatment of gefitinib or erlotinib (EGFR tyrosine

kinase inhibitor similar to gefitinib) with cisplatin, carboplatin, gemcitabine or paclitaxel

(Giaccone et al., 2004; Herbst et al., 2004; Gatzemeier et al., 2007; Smith, 2005). The

upregulation of phosphorylated receptor following treatment with chemotherapeutic agents

shown by us and other groups (Benhar et al., 2002) could explain the failure of combination

treatments in clinical trials. Therefore, the investigation of the appropriate agents to be used

in combination, the concentrations the drugs should be added at, and the optimal scheduling

of administration, is vital for the development of suitable therapies in cancer patients.

Furthermore, investigation of the mechanism of interaction between two drugs with

different modes of action may help unravel why certain combinations of drug treatments are

more efficient in promoting cell death than others in human cancer cells, which may help in

the future drug development techniques.

In this study so far, etoposide or cisplatin along with inhibition of EGFR tyrosine kinase

activity by gefitinib have shown promising results, which could help identify a novel

therapeutic modality in neuroendocrine tumour patients. Further advances in EGFR targeted

anti-tumour therapy may follow the full characterisation of EGFR mutations, including the

commonly occurring EGFRvIII deletion mutation, which can determine tumour behaviour

as well as response to anti-EGFR therapy. In particular, a number of mutations have been

discovered, occurring at the region encoding for the ATP binding site of EGFR, which

result in enhanced EGFR activation as well as a higher susceptibility to TKIs (Lynch et al.,

2004; Paez et al., 2004). These mutations however, have been shown not to occur in

neuroendocrine tumours (Gilbert et al., 2005), whereas the role of EGFRvIII in

neuroendocrine tumours has not yet been determined. Whether specific mutations affect

response to a chemotherapeutic agent is still unclear. Although gefitinib has not shown

clinical benefit with the addition of chemotherapy, cetuximab antibody has shown

superadditive effects in chemotherapy-refractory colon cancer (Cunningham et al., 2004).

Cetuximab has been reported to induce sensitisation to chemotherapy through DNA repair

mechanisms, which will be discussed in detail in the next chapter. On the other hand, small

molecule inhibitors of Akt and MAPK are also currently under development. The

demonstration of activated Akt in a majority of NET samples and activated MAPK in

virtually all the NET tissue samples (Shah et al., 2006) signals a promising future for the

role of Akt and MAPK inhibitors in the treatment of NET patients.
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CHAPTER 5

INVESTIGATION OF EFFECTS OF RADIATION AND
EGFR INHIBITORS ON EGFR LOCALISATION IN NET

CELLS
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5.1    Introduction
5.1.1 Cisplatin- and radiation-induced mechanisms of DNA repair

Cisplatin is a widely used chemotherapeutic agent that damages DNA by the formation

of cisplatin-DNA adducts. These adducts are recognised by a number of cellular

proteins, including the DNA damage-recognition factors XPC, hHR23b, MSH2, MSH6

and the high-mobility group protein HMG1 (Wang & Lippard, 2005). Cisplatin-DNA

adducts are subject to repair by several pathways, including nucleotide excision repair,

mismatch repair and homologous recombination. Cisplatin treatment has also been

linked to activation of other repair factors including the DNA-dependent protein kinase

(DNA-PK), a serine/threonine kinase that consists of a 350-kDa catalytic subunit

(DNA-PKCS) and a heterodimeric regulatory complex Ku70/80. DNA-PK is a member

of phosphatidylinositol (PI) 3-kinase superfamily which includes ATM (Ataxia-

telangiectasia mutated) and ATR (Ataxia-telangiectasia and Rad3-related) (Reeves et

al., 1997). DNA-PK is widely known for its participation in the repair of double strand

DNA breaks by the non-homologous end joining (NHEJ) repair pathway. Double

strand DNA breaks can be introduced by external sources such as ionizing radiation, by

chemotherapeutic drugs such as topoisomerase poisons and by normal biological

processes such as V(D)J recombination. DNA-PK has been implicated in both NHEJ

repair pathway and in V(D)J recombination, as mutations in DNA-PKCS cause both x-

ray sensitivity and defective V(D)J recombination (Khanna & Jackson, 2001).

The role of DNA-PK in signalling pathways following DNA damage has been studied

extensively. It has been shown that the Ku70/80 heterodimer can bind to DNA ends at

double-strand breaks and to DNA fragments with cisplatin-DNA adducts (Turchi et al.,

1999). DNA-PKCS is autophosphorylated following exposure to radiation (Ding et al.,

2003; Lou et al., 2004). This modifies its binding with Ku and has been implicated in

the phosphorylation of a wide range of DNA damage/checkpoint proteins (Block et al.,

2004). MDC1, which is generally associated with the regulation of both intra S-phase

and G2/M phase checkpoints, directly binds to DNA-PK via repeat regions and

augments these early auto-phosphorylation events (Lou et al., 2004). DNA-PK has also

been implicated in the phosphorylation of a number of other substrates including c-

ABL, p53, replication factor A and H2AX but as yet there have been no links to

function (Collis et al., 2005). Furthermore, DNA-PK activity has also been shown to be
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regulated by a number of proteins. One such example is the oncogenic tyrosine kinase

c-ABL which phosphorylates DNA-PK thus modulating DNA-PK/Ku/DNA

interactions (Kharbanda et al., 1997).

5.1.2 EGFR is linked to cisplatin- and radio-resistance

Oncogene-transformed cells in vitro are characterised by sensitivity to stress stimuli

such as chemotherapy or radiation. In contrast, cells from advanced tumours often lose

this sensitivity and become resistant to stress-induced apoptosis. To investigate the

mechanism of resistance, the effect of cisplatin was analysed by Benhar et al. who

postulated that transformed mouse embryonic fibroblast NIH-3T3 cells overexpressing

EGFR (DHER14 cells) displayed enhanced sensitivity to cisplatin-induced apoptosis

compared to parental cells. Cisplatin-induced apoptosis was mediated by the induction

of stress kinases including the c-Jun N-terminal kinase (JNK) and the p38 MAPK, and

the associated increased production of reactive oxygen species (ROS). Sensitisation of

EGFR-overexpressing cells to cisplatin through JNK and p38 MAPK was independent

to the overexpressed EGFR (Benhar et al., 2001). In HT29 colon cancer cells, which

derive from a well-differentiated human tumour, these stress kinases are suppressed

indicating that downregulation of JNK and p38 MAPKs may be involved in the

chemoresistance displayed by advanced tumour cells.

On the other hand, cisplatin also induced the activation of downstream effector proteins

ERK1,2 in DHER14 cells and U87MG human glioma transformed cells lines that

overexpress EGFR, and this was found to be mediated by EGFR. The same effect was

produced by other chemotherapeutic agents including doxorubicin and camptothecin,

but not by paclitaxel. In this case though, EGFR activation by cisplatin promoted cell

survival as inhibition of EGFR phosphorylation enhanced the sensitivity of cells to

cisplatin (Benhar et al., 2002). Similar results were obtained using the MCF-7 breast

cancer cells, with cisplatin-induced EGFR activation. In these cells inhibition of EGFR

by gefitinib significantly delayed the repair of cisplatin-induced interstrand cross-links,

enhancing sensitivity of cells to cisplatin (Friedmann et al., 2004). As a result, EGFR

upregulation can be associated to the resistance to DNA-damaging agents.

EGFR has also been linked to radiotherapy resistance. EGFR blockade by cetuximab, a

humanised anti-EGFR antibody, led to increased radiosensitivity of cells and radiation-
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induced apoptosis (Huang & Harari, 2000). Several in vitro and in vivo experiments

with human glioblastoma and head and neck squamous cell cancer xenografts have also

shown an enhancement of tumour response to radiation by cetuximab (Huang et al.,

1999; Eller et al., 2005). The increased sensitivity to radiotherapy induced by

cetuximab may be due to a number of factors including accumulation of cancer cells in

the more radiosensitive cell cycle phases (G1, G2/M), inhibition of radiation-induced

DNA repair mechanisms, and reduction of VEGF which is important for tumour

angiogenesis (Huang & Harari, 2000; Ciardiello & Tortora, 2001). The association of

EGFR to radioresistance was recently proven clinically. A phase III trial in squamous

cell carcinoma of the head and neck (SCCHN) showed that the addition of cetuximab to

radiotherapy improved survival rates and enhanced local control as compared with

radiation alone (Bonner et al., 2006).

Sensitisation to radiotherapy can also be obtained by blocking the signal transduction

downstream of EGFR. Using antisense oligonucleotides to raf-1, or the specific

MEK1/2 inhibitor PD98059 in irradiated human monocytic leukaemia cells

(U937/pREP4) caused a reduced proliferation and increased apoptosis as compared to

single agent treatments (Pirollo et al., 1997; Cartee et al., 2000).

5.1.3 Nuclear EGFR

Further investigation of the radio- or chemoresistance association with EGFR

overexpression was carried out by Dittmann et al. using the A549 human bronchial

carcinoma cells. They showed that cisplatin, hydrogen peroxide, and ionising radiation

induced EGFR phosphorylation (in a ligand-independent manner) and translocation to

the nucleus along with proteins Ku70/80, involved in regulation of DNA-PKCS activity.

Subsequently, complex formation between EGFR and DNA-PKCS was detected in the

nucleus, which was associated with an increase in DNA-PKCS activity (Dittmann et al.,

2005a; Dittmann et al., 2005b). Therefore, in mammalian cells one consequence of

EGFR activation by irradiation is its internalisation and nuclear translocation,

concomitant with nuclear translocation of DNA-PK subunits present in lipid rafts

(Lucero et al., 2003) or cytoplasm. These data suggest modulation of DNA repair by

EGFR possibly via direct activation of DNA- PKCS under stress conditions.
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After exposure to irradiation multiple signalling pathways are activated including

EGFR activation and increased signalling through the Ras/MAPK pathway (Dent et al.,

2003). Thus exposure to irradiation triggers intracellular signalling cascades that

overlap with pathways initiated by ligand binding to EGFR.

5.1.4 EGFR inhibition in DNA repair

It has been demonstrated that cetuximab but not ligand (EGF, TGF-α) treatment

triggers a specific physical interaction between EGFR and DNA-PKCS or its regulatory

heterodimeric complex Ku70/80 in a variety of cell types both in vitro and in vivo

(Bandyopadhyay et al., 1998). Furthermore, it has been shown that the cetuximab-

induced EGFR/DNA-PKCS association was accompanied by a redistribution of DNA-

PKCS from the nucleus to the cytosol, and this caused a decrease in the activity of

nuclear DNA-PK by about 70% with a concomitant increase in the activity of

cytoplasmic DNA-PK (Bandyopadhyay et al., 1998; Huang & Harari, 2000). In

agreement to these studies, Dittmann et al. showed that cetuximab was able to block

radiation-induced EGFR import to the nucleus and activation of DNA-PK. Incubation

with cetuximab for 1 hour prior to irradiation caused the formation of a complex

between EGFR and DNA-PK in the cytoplasm within 10 minutes after irradiation. This

resulted in inhibition of radiation-induced DNA damage repair and sensitization of cells

to radiation (Dittmann et al., 2005a; Dittmann et al., 2005b).

Similar results to cetuximab on EGFR have also been obtained with gefitinib.

Friedmann et al. observed that gefitinib inhibited the repair of DNA damage following

cisplatin and etoposide treatment in cell lines with different EGFR expression levels.

Immunoprecipitation experiments showed an association between EGFR and DNA-

PKCS, which was increased following gefitinib treatment (Friedmann et al., 2004).

Further investigation of the effects of gefitinib on the functional activity of DNA-PKCS

and the interaction between EGFR and DNA-PKCS showed that gefitinib reduced DNA-

PKCS activity in cells expressing high or moderate levels of EGFR. Furthermore,

gefitinib-induced EGFR/ DNA-PKCS association was accompanied by a redistribution

of DNA-PKCS from the nucleus to the cytosol (Friedmann et al., 2006). Figure 46

summarises the events reported in all the above studies in association to EGFR. Based

on the above, molecular blockade of EGFR signalling may influence the ability of

tumour cells to repair DNA lesions effectively after irradiation or cytotoxic damage.
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Aims

The results shown in chapter 4 indicate that synergy between gefitinib and

chemotherapeutic agents in neuroendocrine tumours is possible but appropriate

scheduling of treatments is needed to overcome the upregulation of EGFR signalling

caused by chemotherapeutic agents leading to chemoresistance. Furthermore, targeted

radiotherapy is a major modality of treatment for NET patients with moderate results in

foregut NETs but has no effect in midgut or hindgut NETs. Based on the reported

clinical failure of gefitinib in combination with chemotherapy, and the success of

cetuximab in radiosensitising patients with head and neck squamous cell carcinoma, we

decided to investigate any interaction between radiation treatment and EGFR inhibition

by gefitinib and cetuximab which could be exploited clinically, and to study the

underlying mechanisms. To investigate their interaction, radiation in combination with

EGFR inhibitors were assessed for their collective effect in cell proliferation, EGFR

expression and EGFR localization within the cell.

Figure 46: EGFR pathway in response to radiation or cisplatin-induced DNA damage.
(D-NHEJ: DNAPK-dependent NHEJ; RTKI: receptor tyrosine kinase inhibitors)

Adapted from I Szumiel, Cellular Signalling, 2006
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5.2 Results
5.2.1 Proliferation studies with radiation and EGFR inhibitors

Radiotherapy and EGFR inhibitors (gefitinib and cetuximab) were combined in this

study in order to identify possible synergisms in neuroendocrine tumours. In

proliferation experiments the irradiation dose of 4Gy was used in CRI-G1, RIN-5F and

SHP-77 cells and 30Gy for NCI-H727 cells. These doses cause approximately 30%

inhibition of proliferation as measured by SRB proliferation assays (data not shown).

Administered schedules included:

 Incubation with gefitinib or cetuximab on day1, followed by irradiation on day

2.

 Irradiation on day 1, followed by gefitinib or cetuximab on day 2 (for 24 hours).

o Drugs were added at 0-25M for gefitinib, and at 0-60nM for cetuximab.

o Treatments were followed by 2 days incubation in drug-free media

before analysis.

Growth inhibition was determined by the Sulphorhodamine B (SRB) proliferation

assay. Graphs are shown for CRI-G1 and RIN-5F cells only, with results for the other

cell lines added in the appendix 2A-2B.

As seen in figure 47, gefitinib as a single agent in CRI-G1 cells caused 16% and 60%

inhibition of growth at 10M and 25M respectively, while the doses for cetuximab

(30nM and 60nM) caused 13% and 25% inhibition of proliferation. Irradiation at 4Gy

in CRI-G1 cells combined with gefitinib resulted in increased inhibition of proliferation

by 47% at 10M and 19% at 25M gefitinib. A similar result was obtained in the

combined treatment of radiation and cetuximab, with an increase in inhibition of

growth by 49% at 30nM cetuximab, which stays at 45% with 60nM. Therefore,

radiation effects on proliferation are increased by EGFR inhibition.

In RIN-5F cells (figure 48) gefitinib caused 22% and 35% inhibition of growth at

10M and 25M respectively, while cetuximab at 30nM and 60nM caused 20% and

23% inhibition of proliferation. Combination treatments between radiation and EGFR

inhibitors led to a lesser increase in inhibition of proliferation by 18% and 22% with

gefitinib or by 22% and 20% with cetuximab. No differences were observed between

the two different sequences of administration as shown in figures 47-48.
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The combination treatments of radiation with gefitinib in CRI-G1 and RIN-5F cells

were examined for synergistic or additive effect by isobologram analysis as shown in

figure 49.  Even though isobologram analysis is used to study combinations of two

drugs rather than combinations of drugs with radiotherapy, we used them as a basis for

analysing our results. In RIN-5F cells the point of combination appears very close to

the additivity line, indicating an additive effect, while CRI-G1 cells show the point of

combination below the additivity line, and therefore demonstrate synergy of gefitinib

with radiation.

Figure 47: Growth inhibition SRB assay.  CRI-G1 cells were treated with radiation at
4Gy on day 1 and gefitinib or cetuximab at the indicated concentrations on day 2, or in
reverse order, followed by 48 hours in drug free medium. Proliferation was calculated
as a % of control untreated cells. Data represents the averages of three different
experiments, each performed in triplicate; bars, SD.
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Figure 48: Growth inhibition SRB assay.  RIN-5F cells were treated with radiation at
4Gy on day 1 and gefitinib or cetuximab at the indicated concentrations on day 2, or in
reverse order, followed by 48 hours in drug free medium. Proliferation was calculated
as a % of control untreated cells. Data represents the averages of three different
experiments, each performed in triplicate; bars, SD.
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Figure 49: Isobologram analysis for combination treatment of radiation and gefitinib in
CRI-G1 and RIN-5F cells. Cells were treated with radiation (4Gy) on day 1, followed
by gefitinib on day 2 or in reverse order, followed by 48 hours in drug free medium.
Red line is additivity line connecting the IC50s ( ) of the two drugs. Combined treatment
IC50s ( ) of radiation and gefitinib together.

5.2.2 DNA repair modulation by EGFR inhibitors

To further investigate the interaction between radiotherapy and EGFR inhibitors, we

analysed their effect on DNA repair using the Single Cell Gel Electrophoresis

(COMET) Assay. The comet assay allows for detection and visualisation of DNA

damage within individual cells. As an example, figure 50 shows screen images of

individual CRI-G1 cells after irradiation treatment alone. Irradiation produces DNA

strand breaks causing the DNA to migrate further on an agarose gel than undamaged

DNA. This forms a tail moment which is a function of the amount of DNA in the tail

Radiation (4Gy)
and gefitinib
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and the length of the tail (measured in µmeters). Within 10 minutes after irradiation

treatment, the strand breaks start to be repaired as measured by a shortened tail moment

(bottom left-hand panel). After 80 minutes, almost complete repair is achieved with

very low detectable tail moment (bottom right-hand panel). For analysis, the average

tail moment of 50 individual cells is calculated from two independent slides and plotted

for each time point.

Figure 50: Sample screen display of comet images for irradiation (15Gy) induced
damage and repair after 10 and 80 minutes in CRI-G1 cells. Images were viewed using
an inverted fluorescence microscope and analysed using the Komet Analysis Software.

Radiation-induced DNA damage in the form of double DNA strand breaks is repaired

within approximately 2 hours (figures 47-48). As a result, for our combined studies,

treatment with EGFR inhibitors preceded radiation treatment. Gefitinib and cetuximab

were added (at the low doses of 10M and 30nM respectively, causing no more than

10% growth inhibition at 3 hours) for 3 hours followed by irradiation treatment in order

CRI-G1 unirradiated CRI-G1 irradiated at 15Gy t=0 mins

CRI-G1 irradiated at 15Gy t=10mins CRI-G1 irradiated at 15Gy t=80mins
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to assess the effect of acute drug treatment in DNA repair. Furthermore, for accurate

analysis of DNA repair kinetics, significant DNA damage must be induced. The

radiation dose of 15Gy produces an adequate amount of DNA damage (producing a tail

moment of approximately 16 in the CRI-G1 cell line and 13 in the RIN-5F cell line),

which is needed for accurate analysis of DNA repair kinetics. This dose was used for

all cells except for NCI-H727 cells which were radiated at 30Gy. The doses were

calculated following a titration of radiation treatments in all cell lines (data not shown).
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Figure 51: Measurement of irradiation-induced DNA strand breaks and their repair in
CRI-G1 cells. Strand break formation quantitated as tail moment, plotted against time
after irradiation. Cells were treated with gefitinib at 10M or cetuximab at 30nM for 3
hours, drug was removed, and then cells were irradiated at 15 Gy and incubated for up
to 120 minutes at 37oC. Data represents the averages of three different experiments,
each performed in triplicate; bars, SD.



150

As shown in figures 51 and 52, following treatment with radiation alone the repair of

strand breaks is complete at 120 minutes in both cell lines. The repair of strand breaks

starts almost immediately with a 28% decrease in tail moment at 10 minutes post-

treatment and 67% repair at 40 minutes post radiation in CRI-G1 cells. A similar result

is seen in RIN-5F cells which exhibit a 27% and a 62% decrease in tail moment at 10

and 40 minutes after radiation treatment respectively. Incubation of cells with 10M

gefitinib for 3 hours before radiation resulted in delayed repair of strand breaks in the

CRI-G1 cell line (figure 51) by 42% at 40 minutes post radiation and 31% at 120

minutes post radiation.

Radiation and gefitinib in RIN-5F cells
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Figure 52: Measurement of irradiation-induced DNA strand breaks and their repair in
RIN-5F cells. Strand break formation quantitated as tail moment, plotted against time
after irradiation. Cells were treated with gefitinib at 10M or cetuximab at 30nM for 3
hours, drug was removed, and then cells were irradiated at 15 Gy and incubated for up
to 120 minutes at 37oC. Data represents the averages of three different experiments,
each performed in triplicate; bars, SD.
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Inhibition of DNA repair was also found in SHP-77 and NCI-H727 cells (appendix 2C-

2D). In contrast, gefitinib treatment in the RIN-5F cell line had no effect on the kinetics

of DNA repair. In the CRI-G1 cell line inhibition of DNA repair was found following

treatment with cetuximab with a 27% difference in tail moment at 40 minutes after

radiation, which falls at 11% at 120 minutes. However in the RIN-5F cell line, as with

gefitinib, treatment with cetuximab had no effect on repair of radiation-induced DNA

damage.

5.2.3 Radiation induces EGFR phosphorylation and translocation to the nucleus

Recent reports have associated gefitinib or cetuximab with DNA repair enzyme  DNA-

PKCS (Benhar et al., 2002; Dittmann et al., 2005; Friedmann et al., 2006), via

inhibition of radiation-induced activation and translocation of EGFR to the nucleus.

Based on these reports and our results on DNA repair inhibition by gefitinib and

cetuximab, we decided to investigate whether ionising radiation has such an effect on

EGFR activity and localization in neuroendocrine tumour cells.

For this, cells were irradiated at 4Gy apart from NCI-H727 cells, for which the dose of

30Gy was applied as in the proliferation studies. Expression of EGFR was analysed by

immunoblotting at 5 and 20 minutes after treatment. After irradiation treatment and

incubation at 37oC for 5 or 20 minutes, nuclear and cytosolic fractions were isolated

and immunoblotted for P-EGFR. In addition to the use of -tubulin as a loading

control, blots were stripped and re-probed for lamin 1. Lamin 1 interacts with

nuclear membrane components and nuclear chromatin and is a commonly used as a

loading control for nuclear proteins (Dittmann et al., 2005). The amounts of

phosphorylated EGFR were calculated by densitometry analysis of the bands.

As shown in figures 53-54, basal expression of EGFR was detectable in the nucleus of

all cells although expression was predominantly cytoplasmic. Within 5 minutes after

irradiation treatment, increased EGFR was detectable in the nucleus, and this persists at

20 minutes post-irradiation. This occurs in all cell lines except the RIN-5F cells, where,

nuclear EGFR levels show no significant change. In the cytosolic fractions, EGFR is

decreased in the 3 cell lines showing increase in nuclear EGFR, while RIN-5F cells

show a slight increase in cytosolic EGFR.
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Figure 53: CRI-G1 and SHP-77 cells were irradiated (4Gy) and incubated for up to 20
minutes at 37oC. Cytosolic and nuclear extracts were immunoblotted for P-EGFR.
Alpha-tubulin was used as a loading control. Lamin 1 was used as a nuclear marker.
Amounts of P-EGFR in percentages were determined by densitometry analysis.
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Figure 54: RIN-5F and NCI-H727 cells were irradiated at 4Gy and 30Gy
respectively and incubated for up to 20 minutes at 37oC. Cytosolic and nuclear
extracts were immunoblotted for P-EGFR and EGFR. Alpha-tubulin was used as a
loading control. Lamin 1 was used as a nuclear marker.
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Figure 55: CRI-G1, SHP-77, and RIN-5F cells were irradiated at 4 Gy, and NCI-H727
cells were irradiated at 30 Gy, followed by incubation at 37oC for 5 minutes. Cells were
then fixed and stained for EGFR (green) using a fluorescein isothiocyanate (FITC)
conjugated antibody and nucleus was stained with propidium iodide (red).
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The observed translocation of EGFR by irradiation was further validated by

immunofluorescent staining using a confocal microscope (figure 55). Cells were

irradiated as before and the presence of EGFR was identified using a FITC-labelled

antibody. Propidium iodide was used for nuclear counter staining and is shown in red.

EGFR in untreated cells is present in the cytoplasm (shown in green). However, within

5 minutes after irradiation treatment EGFR is redistributed to the nucleus in NCI-H727,

CRI-G1 and SHP-77 cells but not in RIN-5F cells.

5.2.4 Gefitinib or Cetuximab inhibits radiation-induced EGFR nuclear

translocation

To examine whether EGFR inhibitors could prevent radiation-induced EGFR activation

and shift to the nucleus, we treated cells with gefitinib at 10M and cetuximab at 30nM

for 3 hours before irradiation, and detected EGFR by immunofluorescent staining. As

shown in figures 56-59, gefitinib and cetuximab abrogated radiation-induced EGFR

import to the nucleus in cells pre-treated with the above agents prior to irradiation.

Since In RIN-5F cells with no EGFR nuclear translocation, treatment with EGFR

inhibitors had no effect on EGFR locality within the cells, but nevertheless inhibited

activation of the receptor.

Furthermore, gefitinib in unirradiated cells (bottom left pictures) caused a decrease in

EGFR activation in all cell lines. Cetuximab alone (middle left pictures) caused

downregulation of the receptor in all cells except NCI-H727 cells, which might be more

resistant to cetuximab compared to the other cell lines. Interestingly, in RIN-5F cells

incubation with gefitinib or cetuximab alone, not only inhibited EGFR phosphorylation,

but also caused an assembly of EGFR molecules in the perinuclear region (figure 59).

5.2.4.1   Electron microscopy analysis

It has been suggested that nuclear EGFR identified by confocal microscopy may be

contaminated by EGFR present in the endoplasmatic reticulum, which is closely

attached to the nuclear membrane. To investigate this hypothesis, radiation-induced

EGFR import to the nucleus was also analysed by electron microscopy using ultrathin

sections of CRI-G1 and RIN-5F cells and labelling EGFR with 15nm gold particles

(figures 60-61).
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Figure 56: CRI-G1 cells were treated with gefitinib at 10M or cetuximab at 30nM for
3 hours followed by irradiation at 4Gy and incubation at 37oC for 5 minutes. Cells were
then fixed and stained for EGFR (green) and nucleus was stained with propidium iodide
(red).
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Figure 57: NCI-H727 cells were treated with gefitinib at 10M or cetuximab at 30nM
for 3 hours followed by irradiation at 4 Gy and incubation at 37oC for 5 minutes. Cells
were then fixed and stained for EGFR (green) and nucleus was stained with propidium
iodide (red).
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Figure 58: SHP-77 cells were treated with gefitinib at 10M or cetuximab at 30nM for
3 hours followed by irradiation at 4 Gy and incubation at 37oC for 5 minutes. Cells were
then fixed and stained for EGFR (green) and nucleus was stained with propidium iodide
(red).
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Figure 59: RIN-5F cells were treated with gefitinib at 10M or cetuximab at 30nM for
3 hours followed by irradiation at 4Gy and incubation at 37oC for 5 minutes. Cells were
then fixed and stained for EGFR (green) and nucleus was stained with propidium iodide
(red).

RIN-5F untreated +irradiationRIN-5F untreated +irradiation

+cetuximab

+gefitinib

+cetuximab/radiation

+gefitinib/radiation
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Figure 60: EGFR nuclear import in CRI-G1 cells (left panels) and RIN-5F cells
(right panels). Cells were prepared for cryo-immuno-EM 5 min after exposure to
10M gefitinib for 3 hours and irradiation at 4Gy. Ultrathin sections were labelled
for EGFR with 15nm gold (arrows). Panel A: control unirradiated cells. Panel B:
irradiated cells and Panel C: gefitinib + irradiation.  EGFR nuclear labelling (large
arrows) and non-nuclear staining (small arrows). Data provided by Emily Eden,
UCL Institute of Ophthalmology, London, UK.

B.

A.

C.

B.

A.
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Staining of samples and viewing of images was performed by Emily Eden, UCL

Institute of Ophthalmology, London, UK. The graph in figure 61 shows that while

treatment with x-ray radiation had no effect on the ratio of nuclear to non-nuclear EGFR

labelling in RIN-5F cells, irradiation in CRI-G1 cells increased the amounts of nuclear

EGFR, making the ratio of nuclear/non-nuclear EGFR increase by a factor of 5 (control

cell ratio=0.46 to irradiated cell ratio=2.28).  This effect was blocked by treatment with

gefitinib, which returned the ratio to control levels (gefitinib-treated and irradiated cell

ratio=0.48).

Figure 61: Effect of x-ray radiation on EGFR distribution.  EGFR distribution was
quantified by cryo-immuno-EM. Non-nuclear (solid bars) and nuclear (striped bars)
EGFR staining is expressed as mean (n=10 cells) numbers of gold particles per m2.
Con, control cells; x-ray, cells exposed to 4Gy radiation; x-ray + gefitinib, gefitinib-
treated and irradiated cells. Data provided by Emily Eden, UCL Institute of
Ophthalmology, London, UK.

5.2.5 Cisplatin induces EGFR nuclear translocation

In chapter 4, treatment with cisplatin in neuroendocrine tumour cells induced activation

of EGFR, which was associated with activation of growth promoting signalling

pathways. To see whether cisplatin (CDDP) had the same effect on EGFR as radiation,

we treated cells with cisplatin at 5M for 5 or 20 minutes (figures 62-63). The

experiment was initially performed using 50M cisplatin, which showed similar results

(data not shown).
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EGFR in untreated control cells is mainly detected in the cytoplasm, with small

amounts also present in the nucleus. Cisplatin treatment even at 5M induces activation

and redistribution of EGFR from the cytoplasm to the nucleus within 5 minutes after

treatment in all cells except RIN-5F cells, as with irradiation experiments.

NCI-H727

CRI-G1

Figure 62: NCI-H727 cells (top panel) and CRI-G1 cells (bottom) were treated with
5M cisplatin for 5 or 20 minutes. Cytosolic and nuclear extracts were isolated and
immunoblotted for P-EGFR. Alpha-tubulin was used as a loading control. Lamin 1
was used as a nuclear marker. Levels of P-EGFR were measured by densitometry.

At 20 minutes post-treatment cisplatin-induced activation persists in NCI-H727 and

CRI-G1, but in SHP-77 the levels of nuclear EGFR fall back to control levels.

Cytosolic EGFR expression is decreased in CRI-G1, NCI-H727, and SHP-77 cells,

while RIN-5F cells show activated EGFR, which remains in the cytoplasm.
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SHP-77

RIN-5F

Figure 63: SHP-77 cells (top panel) and RIN-5F cells (bottom) were treated with 5M
cisplatin for 5 or 20 minutes. Cytosolic and nuclear extracts were isolated and
immunoblotted for P-EGFR. Alpha-tubulin was used as a loading control. Lamin 1
was used as a nuclear marker. Levels of P-EGFR were measured by densitometry.

5.2.6 EGFR inhibition and DNA-PKCS expression

Cytosolic translocation of DNA-PKCS following inhibition of EGFR by gefitinib or

cetuximab has been reported by many groups (Bandyopadhyay et al., 1998; Huang &

Harari, 2000; Friedmann et al., 2006). To see if translocation of EGFR is associated

with DNA-PKCS redistribution to the cytosol, we treated cells with gefitinib at 10M

for 3 hours alone or followed by irradiation and analysed DNA-PKCS expression by

immunofluorescent staining (figure 64).

Cytoplasmic Nuclear

C
on

tr
ol

C
D

D
P/

 5
m

in
s

C
D

D
P/

20
m

in
s

C
on

tr
ol

C
D

D
P/

 5
m

in
s

C
D

D
P/

20
m

in
s

P-EGFR

-tubulin

lamin 1

P-EGFR

-tubulin

lamin 1

Densitometry:  100%     125%   177%            100%     97%     85%

Densitometry:  100% 18%     21%             100%   212%    99%



164

Figure 64: Cells were left untreated or incubated with 10M gefitinib for 3 hours. Cells
were then fixed and stained for EGFR (green) and nucleus was stained with propidium
iodide (red or blue).

BON-1 untreated +gefitinib

SHP-77 untreated +gefitinib

NCI-H727 untreated +gefitinib

+gefitinibRIN-5F untreated
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DNA-PKCS in untreated cells is detected in the nucleus. Treatment with gefitinib caused

a redistribution of DNA-PKCS from the nucleus to the cytosol in BON-1 cells and to

less extent in SHP-77 cells. Gefitinib did not modify DNA-PKCS expression in RIN-5F

cells. In NCI-H727 there was no sub-cellular redistribution of DNA-PKCS but a

decrease in expression levels was identified.

5.3 Discussion
In the previous chapter, synergy between gefitinib and cisplatin was demonstrated in

neuroendocrine cell lines. In addition, cisplatin induced activation of EGFR which lead

to activation of cell survival pathways, and this could explain the lack of synergy

between gefitinib and chemotherapeutic agents in improving survival of patients in

clinical trials. This chapter examines the use of radiation combined with EGFR

inhibitors as a novel therapeutic strategy for neuroendocrine tumour patients, based on

previous reports of cetuximab and radiotherapy combined effect in prolonging survival

and enhancing local control in patients with head and neck squamous cell carcinoma.

5.3.1 Anti-proliferative effect of EGFR inhibitors and radiation

Combined treatments with radiation and EGFR inhibitors demonstrated synergy in

inhibition of proliferation in CRI-G1, NCI-H727 and SHP-77 cells (NCI-H727 and

SHP-77 cells shown in the appendix 2A-2B). Inhibition of proliferation was increased

by 40-50%, showing that EGFR inhibitors sensitise cells to radiotherapy as shown by

other groups (Huang et al., 1999; Eller et al., 2005). RIN-5F cells showed an additive

effect with a moderate 20% increase of the anti-tumour activity of EGFR inhibitors by

radiotherapy. The dose of irradiation used (4Gy) causes approximately 20% inhibition

of proliferation in both CRI-G1 and RIN-5F cell lines, therefore the differences

observed are probably due to gefitinib or cetuximab, and consequently due to EGFR

and its signalling in RIN-5F cells.

5.3.2 Synergy between EGFR inhibitors and radiation in DNA repair

Synergy between EGFR inhibition and ionising radiation has been correlated to

impediment of DNA repair (Huang & Harari, 2000; Dittmann et al., 2005b). To

understand the mechanism underlying synergism, we investigated radiation and EGFR

inhibition dual treatment for any effect in DNA repair. As in proliferation studies,
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synergy in DNA repair kinetics was shown in CRI-G1, NCI-H727, and SHP-77 cells.

Gefitinib and cetuximab both caused a delay in repair of radiation-induced DNA strand

breaks indicating interference of EGFR in DNA repair mechanisms. Radiation-induced

strand breaks are repaired by the NHEJ pathway, therefore the results indicate that

synergism between gefitinib or cetuximab and radiotherapy is due to modulation of

NHEJ, and this is a novel role of EGFR in response to stress stimuli.

No delay in DNA repair was observed in RIN-5F cells treated with EGFR inhibitors,

which agrees with the lack of synergy found between radiation and EGFR inhibition in

the proliferation assay. This is not the first time a lack of synergy is displayed in RIN-

5F cells as this was the only cell line where EGFR inhibitors did not increase the

cytotoxicity of four different chemotherapeutic agents tested, which was shown in

chapter 4. It seems that the EGFR pathway in RIN-5F cells, which were also the most

resistant to gefitinib (with an IC50 of 32M) as seen in chapter 4, is probably of minor

consequence to the growth of these cells but also the EGFR pathway is likely

independent to the pathways utilized by stress stimuli such as radiation or the

chemotherapeutic agents analysed in our study. To understand why EGFR inhibition

may affect the radiosensitivity of one cell line but not another, we analysed the effect of

radiation on EGFR activity, based on results published by other groups discussed in the

next section.

5.3.3 Radiation-induced nuclear EGFR translocation

EGFR is responsive to irradiation and this has been shown to result in translocation of

the molecule into the nucleus (Dittmann et al., 2005b). Entry of EGFR into the nucleus

in cells exposed to genotoxic stress such as irradiation or cisplatin is done in a ligand-

independent manner. On the other hand activation of EGFR by its ligand EGF, results

in phosphorylation of the receptor but without entry into the nucleus (Dittmann et al.,

2005a). Nuclear EGFR has also been detected in various tissues and cell lines with a

different role, that of a transcription factor, which will be discussed in detail in the next

chapter (Lin et al., 2001). We have clearly shown that after 5 minutes of irradiation

treatment at 4 Gy (or 30Gy in NCI-H727 cells) EGFR enters the nucleus of ¾ NET

cells except in RIN-5F cells. This was shown by three methods: immunoblotting,

immunofluorescent staining, and visualization of cells with the help of electron
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microscopy. The EGFR entering the nucleus is phosphorylated as shown by

immunoblotting, and the increase in total EGFR demonstrated by immunofluorescent

staining is accompanied by activation of the receptor. These results may explain the

association of EGFR with DNA repair reported previously. Furthermore, it accounts for

the absence of delay in repair of radiation-induced strand breaks by gefitinib and

cetuximab in RIN-5F cells. Therefore, in RIN-5F cells EGFR does not enter the

nucleus in response to radiation and there are probably other mechanisms activated.

Different mechanisms can therefore be evoked by stress stimuli, which reflect cell type

specific differences that could form a future step in our study.

5.3.4 Nuclear EGFR translocation is blocked by EGFR inhibitors

EGFR nuclear entry was completely abrogated by gefitinib and cetuximab in CRI-G1,

NCI-H727 and SHP-77 cells, whereas in RIN-5F cells, in which EGFR does not enter

the nucleus, gefitinib as a single agent stimulated gathering of EGFR in the area around

the nucleus. This is a phenomenon not demonstrated before and it is unclear why it

happens. Inhibition of EGFR nuclear import by cetuximab indicates that EGFR

transferred to the nucleus comes from the plasma membrane of cells where the antibody

binds to the extracellular portion of EGFR, and not from cytoplasmic sites of EGFR

synthesis such as ribosomes of the endoplasmic reticulum. One of the events following

irradiation is activation of the intracellular Ras/MAPK signalling pathway which is

traditionally initiated by ligand binding to EGFR (Dent et al., 2003). To examine the

relation between signalling initiated by EGFR and double strand break (DSB) repair

after exposure to ionising radiation Grądzka et al. examined the effect of PD98059,  a

specific inhibitor or MEK1/2 kinases, on two glioma cell lines: M059K and M059J.

M059J cells are deficient in DNA-PKcs and are more sensitive to radiation than the

M059K cells. PD98059 did not significantly affect the rate of DSB repair in both cell

lines, indicating that DNA repair targeted signals initiated by EGFR activation after

irradiation are not transduced to the nucleus by means of the EGFR kinase cascade but

by internalisation and nuclear translocation of EGFR (Szumiel, 2006, reference

therein). Examination of this hypothesis could form the next step in our research.

5.3.5 Effect of EGFR inhibitors on DNA-PK

Blockade of EGFR has been shown to cause redistribution of DNA-PKCS from the

nucleus to the cytosol (Huang & Harari, 2000; Dittmann et al., 2005b; Friedmann et al.,
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2006). This phenomenon was not proven in NET cells. Radiation did not increase

DNA-PK expression, and co-treatment with gefitinib did not stimulate exit of DNA-PK

amounts from the nucleus. Gefitinib alone caused a redistribution of DNA-PK in BON-

1 cells, a human pancreatic endocrine tumour. These cells were then analysed for

radiation-induced EGFR import and synergy with radiotherapy and EGFR inhibitors

showing results similar to CRI-G1 cells (data not shown). Gefitinib also caused

downregulation of DNA-PK in NCI-H727 cells, but this was not associated with DNA-

PK subcellular redistribution. Therefore association of EGFR with gefitinib might

actually exist in our cells but could not be proven under the conditions used. Our results

though, provoked the hypothesis that nuclear EGFR in NET cells might also have a

different role such as that of a transcription factor, which has been reported previously

(Lin et al., 2001). These experiments will be discussed in the next chapter.

5.3.6 Cisplatin-induced EGFR nuclear translocation

Cisplatin was also tested for its effect on translocation of EGFR based on results from

chapter 4 showing phosphorylation of EGFR by cisplatin. In our study cisplatin, like

radiation, induced activation and translocation of EGFR to the nucleus in ¾ NET cell

lines, as shown previously by others (Dittmann et al., 2005; Friedmann et al., 2006).

Since both cisplatin and radiation stimulate entry of EGFR into the nucleus, it is not

double strand breaks that generate this response, but DNA damage in general. In fact,

production of radicals such as reactive oxygen species may have a role since addition of

the radical scavenger acetylcysteine was able to abrogate the radiation-induced EGFR

translocation (Dittmann et al., 2005a; Dittmann et al., 2005b).

The role of DNA-PKCS in repair of DNA crosslinks produced by cisplatin is unclear,

but cellular sensitisation to cisplatin has been related to DNA-PK inhibition by vanillin.

Vanillin, a natural plant-derived compound, inhibited DNA-PK activity via interaction

with specific lysine residues in the active site of the enzyme and was shown to be

specific to NHEJ and selective for DNA-PKCS over other members of the family of

phosphatidylinositol-3 kinase-related kinases (PIKK) such as ATM and ATR (Durant

& Karran, 2003). In RIN-5F cells cisplatin stimulated EGFR phosphorylation, but this

did not result in EGFR transport to the nucleus. A possible explanation could be that

EGFR upregulation by cisplatin in these cells leads to transient activation of EGFR-

dependent cell survival pathways, but this does not include activation of DNA repair
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mechanisms or any other nuclear function by the receptor due to impaired mechanisms

for nuclear transport or mutations in the receptor hindering its nuclear transport, which

could be a future step in our study.

5.3.7 Conclusions

Nuclear EGFR, a phenomenon provoked by cytotoxic drugs or ionising radiation is a

protection mechanism that enhances DNA repair. The discovery of the described

mechanism opens a renewed perspective on factors affecting the intrinsic radiation

sensitivity of mammalian cells. In concert with the initiation of signalling pathways and

EGFR internalisation, nuclear translocation of DSB repair proteins (Ku 70/80 subunits)

from the cytoplasmic stores takes place; therefore agents that disturb trafficking of

EGFR can be expected to act as radiosensitisers. Efficiency of such defence may vary

between cell types, depending on the status of EGFR, on how many supplementary

DNA-PK subunits are stored for use under stress conditions, to what extent does the

cell rely on NHEJ for DSB repair (this also depends on position in the cell cycle) and

how effective is the translocation machinery. Our study proved that anti-EGFR therapy

can block translocation of EGFR to the nucleus and sensitise neuroendocrine tumour

cells to radiotherapy. These results provide a rationale for EGFR inhibition in

combination with radiotherapy for the treatment of neuroendocrine tumours.
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CHAPTER 6

CHARACTERISATION OF NUCLEAR EGFR IMPORT
MECHANISM AND NUCLEAR TARGETS IN NET

CELLS
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6.1 Introduction
6.1.1 Nuclear EGFR function

In the previous chapter results provided evidence for a new mode of action of EGFR in

response to radiation and cisplatin that involves nuclear translocation and modulation of

DNA repair, via interaction with DNA repair genes which could include DNA-PKCS.

Gefitinib and cetuximab both blocked this nuclear translocation, causing a delay in the

repair of radiation-induced DNA damage. This mechanism is different from EGFR’s

well characterised signalling pathway that mediates mitogenic signals through multiple

signalling pathways. However, nuclear EGFR and its ligands have long before been

identified in cancer cell lines, the human placenta and in regenerating liver, but its

function was unknown (Lin et al., 2001). Additionally, EGFR is not the only receptor

tyrosine kinase with nuclear activity. Other kinases including HER-2, HER-3, truncated

C-terminal HER-4, fibroblast growth factor receptor and cytokine receptors have also

been identified in the nucleus of cells, and their nuclear expression has been linked to

enhanced tumour proliferation and progression (Lo & Hung, 2006). Recently,

expression of nuclear EGFR in breast cancer was shown to correlate positively with

increased levels of Ki-67, showing an inverse correlation between high nuclear EGFR

and overall survival. Nuclear EGFR therefore has a prognostic value in breast cancer

(Lo et al., 2005a).

Another role of nuclear EGFR, identified recently, involves regulation of gene

expression by transcriptional activation. Figure 65 summarises reported cytoplasmic

and nuclear EGFR signalling pathways. Nuclear entry of EGFR functioning as a

transcription factor involves translocation of the receptor in a ligand–dependent fashion.

EGFR was shown to activate gene transcription by binding indirectly through its C-

terminal transactivation domain (involving formation of an EGFR complex) to the

promoter of cyclin D1 leading to its increased expression (Lin et al., 2001).

Furthermore, nuclear EGFR was shown to interact with signal transducers and

activators of transcription 3 (STAT3) on the promoter of inducible nitric oxide synthase

(iNOS), or with E2F1 transcription factor on the promoter of B-Myb, leading to their

transcriptional activation (Lo et al., 2005b; Hanada et al., 2006). All the above genes

are frequently overexpressed in human cancers; upregulation of cyclin D1 and B-Myb is

involved in increased cell proliferation by accelerating the G1/S phase progression,
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while elevated iNOS is associated with tumour proliferation, angiogenesis, and

metastasis (Lo & Hung, 2006). Inducible NOS expression has also been found to be a

powerful prognostic indicator in breast cancer and this correlates with nuclear

expression of EGFR (Lo et al., 2005b).

Figure 65: The EGFR cytoplasmic and nuclear signalling pathways.
Source: H-W Lo & MC Hung, British Journal of Cancer, 2006

However, EGFR’s transcriptional activity is not independent to DNA repair as shown

by us and other groups (Huang & Harari, 2000; Dittmann et al., 2005). Nitric oxide

synthase (NOS) activity has been detected in many human tumours and has been shown

to significantly increase expression of DNA-PKCS thus protecting cells from the toxic

effects of NO and DNA-damaging agents such as cisplatin and radiation (Xu et al.,

2000). On the other hand, EGFR interaction with STAT3 in the nucleus was shown to

lead to transcriptional activation of iNOS, thus providing another link between EGFR

and DNA repair following cisplatin and irradiation treatment (Lo et al., 2005b; Xu et

al., 2000). Therefore EGFR inhibition could result in inhibition of the DNA-PK

pathway and subsequently of DNA repair both by physical association with DNA-PKCS

and by transcriptional activation of iNOS.
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6.1.2   Mechanisms of EGFR nuclear translocation

Further investigation of the radiation-induced EGFR nuclear import led to the analysis

of the molecular mechanisms underlying this event. EGFR at the plasma membrane is

known to be localised with caveolin-1 in lipid rafts and caveolae (Pike, 2005). Lipid

rafts are specialised membrane microdomains enriched in sphingolipids and cholesterol

that integrate proteins participating in endocytosis, cholesterol traffic and signal

transduction from receptors. After stimulation by a specific ligand, EGFR is rapidly

internalised into clathrin-coated pits and the signalling continues from the early

endosomes (Miaczynska et al., 2004). EGFR may then either be recycled back to the

cell surface from the early endosomes, or become polyubiquitinated and degraded in

late endosomes fused with lysosomes (Le Roy & Wrana, 2005). Additionally, EGF-

dependent nuclear translocation of EGFR may occur (Lo & Hung, 2006).

The fate of EGFR is different after ligand-independent activation. Phosphorylation of

EGFR is increased at tyrosine 845 and abrogated at tyrosine 1045; the latter is the

docking site for the ubiquitin ligase, c-Cbl. Thus, EGFR is unable to recruit c-Cbl and

be ubiquitinated and degraded (Ravid et al., 2002). Internalisation however was shown

to take place under oxidative stress when caveolin-1 is phosphorylated at tyrosine 14 by

c-Src kinase. In this case EGFR remains complexed with caveolin-1 and is moved to a

perinuclear compartment (Khan et al., 2006).  It seems possible that the same chain of

events takes place after exposure to ionising radiation and it precedes the transport of

EGFR into the nucleus. Dittmann et al. showed that treatment with 20mM -methyl

cyclodextrin, which inhibits the well documented EGFR internalisation from the cell

surface by clathrin-coated pits, had no effect on EGFR nuclear transport suggesting that

nuclear EGFR may originate mainly from the perinuclear region and not only the cell

surface (Dittmann et al., 2005a), which agrees with the results obtained from our study

with confocal microscopy (see figure 83), where EGFR was not specifically localised to

the cell membrane in control untreated cells.

This assumption was supported by a recent observation that Src tyrosine kinase

inhibitor (PP2) suppresses ERK1/2 activation and EGFR transactivation by irradiation

(Li et al., 2006). Figure 66 summarises the fate of EGFR after ligand-dependent or

independent activation, as described in recent reports. Since clathrin-dependent
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internalisation also involves EGFR molecules from lipid rafts (Puri et al., 2005) and

there may be a relation between early endosomes and caveosomes (Helms & Zurzolo,

2004), these two scenarios may not be necessarily exclusive.

Figure 66: The fate of EGFR after ligand dependent or independent activation.
Source: I Szumiel, Cellular Signalling, 2006

An arginine rich putative nuclear localisation signal (NLS) sequence was identified in

amino acids 645-657 of the EGFR’s juxtamembrane region. The EGFR putative NLS

contains a polypeptide sequence with three clusters of basic amino acids, and is

conserved among the EGFR family members (Lin et al., 2001; Hsu & Hung, 2007).

Fusing -galactosidase to this polypeptide led to its nuclear translocation through the

nuclear pore. Thus EGFR nuclear entry could be through the conventional nuclear

importing system, an energy dependent system that is associated with the nuclear pore

complex (ImportinRan pathway3) (Lin et al., 2001). Indeed, two separate studies have

3 Classical NLS-protein importation begins with importin  first binding to the NLS sequence, and acts
as a bridge for importin  to attach. The importin  -importin  - cargo complex is then directed towards
the nuclear pore and diffuses through it. In the nucleus, RanGTP binds to Importin  and displaces it from
the complex. Then CAS, an exportin which in the nucleus is bound to RanGTP, displaces importin 
from the cargo. The NLS-protein is thus free in the nucleoplasm. The Importin -RanGTP and importin
-CAS-RanGTP complex diffuses back to the cytoplasm where GTPs are hydrolyzed to GDP leading to
the release of importin  and importin  which become available for a new NLS-protein import round
(Peters, 2006).



175

shown interaction of EGFR with importin  (karypherin Ran, and importin 1,

which are essential for the formation of the nuclear import complex needed for import

of proteins exhibiting the NLS (Dittmann et al., 2005a; Lo et al., 2006). Nuclear pore

entry of proteins can be inhibited by wheat germ agglutinin (WGA), a lectin (sugar

binding protein) which inhibits nuclear import of proteins containing the NLS. WGA

specifically inhibits active protein import rather than passive diffusion of proteins into

the nucleus (Yoneda et al., 1987). Further evidence of a NLS sequence in EGFR was

provided by complete blockade of radiation-induced EGFR nuclear entry by incubation

with WGA (Dittmann et al., 2005a).

In the classical export scheme, proteins with a nuclear export sequence (NES) can bind

inside the nucleus to form a heterotrimeric complex with an exportin (i.e. the exportin

chromosome region maintenance protein CRM1) and RanGTP (Peters, 2006). Export

via the exportin CRM1 can be inhibited by leptomycin B. Leptomycin B is an

unsaturated, branched-chain fatty acid, and is a specific inhibitor of proteins containing

the NES. The suggested inhibition mechanism involves the direct binding of

leptomycin B to exportin CRM1, which blocks the binding of CRM1 to proteins

containing the NES, via the interaction with a cysteine residue in the conserved CRM1

control region (Fukuda et al., 1997). Existence of a NES has not been identified in

EGFR, but association with CRM1 was suggested as inhibition with leptomycin B led

to increased nuclear levels of EGFR (Lo et al., 2006; Dittmann et al., 2005a).

6.1.3 DNA repair protein targets of EGFR

As mentioned previously, iNOS expression can be modulated by nuclear EGFR acting

as a transcription factor and this may lead to increased DNA-PKCS expression and

resistance to stress stimuli such as cisplatin and irradiation. Furthermore, altered

expression of Rad51, a protein involved in homologous recombination of DNA double

strand breaks, was shown by addition of an EGFR inhibitor, erlotinib. Erlotinib used in

combination with radiation inhibited Rad51 expression and increased radiosensitivity,

providing another evidence of modulation of DNA repair mechanisms by EGFR

inhibitors (Chinnaiyan et al., 2005). Therefore, not only non-homologous end joining,

but also homologous recombination can be modulated by anti-EGFR therapy.
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Aims

Based on the above studies and the results from chapter 5 showing EGFR translocation

to the nucleus following irradiation or cisplatin, we decided to investigate the

mechanism of EGFR transport using nuclear import and export inhibitors WGA and

leptomycin B. We also transfected CRI-G1 and RIN-5F cells with an NLS mutant to

enable the mapping of the EGFR regions involved in nuclear translocation. Finally, we

investigated possible activation of iNOS or rad51 by nuclear EGFR.

6.2 Results
6.2.1 DNA repair modulation by WGA and leptomycin B

To investigate the mechanism of EGFR nuclear translocation CRI-GI, RIN-5F, NCI-

H727, and SHP-77 cells were incubated as before with gefitinib at 10M for 3 hours,

and/or WGA or leptomycin for 30 minutes prior to radiation treatment. Cells were then

irradiated at 15Gy, or at 30Gy for NCI-H727 cells and DNA damage was quantitated

using the comet assay (section 5.2.2, figure 50). Figures show results for CRI-GI and

RIN-5F cells only (the rest of the cell lines are shown in appendix 3A-3B).

As shown in figure 67, pre-treatment with WGA alone prior to irradiation, inhibited

DNA repair in CRI-G1 cells by 26% and 16% at 80 and 120 minutes after irradiation. A

double treatment of gefitinib and WGA induced an additional delay in DNA repair by

37% at 80 minutes after irradiation, which remains at 37% at 120 minutes post

radiation. In contrast, leptomycin B in CRI-G1 cells led to a slight increase of 19% in

DNA repair at 40 minutes after irradiation, with DNA repair kinetics falling to levels

similar to radiation alone in later time points. In RIN-5F cells (figure 68) WGA or

leptomycin B had no effect in the kinetics of strand break repair. These results indicate

that radiation-induced EGFR import may utilise proteins associated with the nuclear

pore complex.
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Figure 67: Measurement of irradiation-induced DNA strand breaks and their repair in
CRI-G1cells. Strand break formation quantitated as percentage of control cell tail
moment, plotted against time after irradiation. Cells were treated with gefitinib at 10M
for 3 hours, with WGA (0.05mg/ml) or leptomycin B (2nM) added in the last 30
minutes. Drug was removed, and then cells were irradiated at 15 Gy (a dose which
produces a tail moment of approximately 16) and incubated for up to 120 minutes at
37oC. Data represents the averages of three different experiments, each performed in
triplicate; bars, SD
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Figure 68: Measurement of irradiation-induced DNA strand breaks and their repair in
RIN-5F cells. Strand break formation quantitated as percentage of control cell tail
moment, plotted against time after irradiation. Cells were treated with gefitinib at
10M, followed by 30 minutes treatment with WGA (0.05mg/ml) or leptomycin B
(2nM). Drug was removed, and then cells were irradiated at 15 Gy (a dose which
produces a tail moment of approximately 16) and incubated for up to 120 minutes at
37oC. Data represents the averages of three different experiments, each performed in
triplicate; bars, SD
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6.2.2 WGA and Leptomycin B effect on EGFR localisation

The effect of WGA and leptomycin B on EGFR localization in CRI-G1 and RIN-5F

cells was established by immunohistochemistry. For this, cells were treated as before

with gefitinib and/or WGA or leptomycin B and irradiated at 4Gy, and EGFR was

detected by immunofluorescent staining using a confocal microscope. Data is shown for

CRI-G1 and RIN-5F cells only with the rest of the cell lines shown in appendix 3C-3D.

As shown in figure 69, WGA alone had no effect on EGFR localization in CRI-GI cells,

but in combination with radiation WGA blocked the radiation-induced EGFR nuclear

entry in a similar fashion to gefitinib. On the other hand leptomycin B as a single agent

had no effect on locality of EGFR in CRI-GI cells, but when it was added prior to

irradiation it led to increased levels of nuclear EGFR compared to untreated cells. In

RIN-5F cells (figure 70) which do not express nuclear EGFR, WGA or leptomycin B

had no effect EGFR locality in the cell. These results confirmed the employment of

nuclear pore complex proteins for EGFR transportation to and out of the nucleus.

The data from comet analysis and immunofluorescent staining were also confirmed by

immunoblotting in cytoplasmic and nuclear extracts. CRI-GI and RIN-5F cells were

treated with WGA or leptomycin for 30 minutes prior to irradiation at 4Gy. After

irradiation treatment and incubation at 37oC for 5 minutes, nuclear and cytosolic

fractions were isolated and immunoblotted for EGFR. In addition to the use of -

tubulin as a loading control, blots were stripped and re-probed for lamin 1, which was

used as a loading control for nuclear proteins (Dittmann et al., 2005). The amounts of

EGFR were calculated by densitometry analysis of the bands.

As seen in figure 71, WGA completely blocked radiation-induced EGFR import to the

nucleus in CRI-G1 cells, while leptomycin led to increased nuclear EGFR levels. Even

as a single agent, WGA led to decreased nuclear EGFR levels. Cytoplasmic EGFR

levels were decreased in irradiated cells, but were unaffected by WGA or leptomycin.

In RIN-5F cells shown in figure 72, no nuclear EGFR is detected. WGA or leptomycin

had no effect on the amounts of nuclear EGFR except for an increase in cytoplasmic

EGFR by WGA as a single agent.
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Figure 69: CRI-G1 cells were treated with gefitinib at 10M for 3 hours and/or WGA
(0.05mg/ml) or leptomycin B (2nM) added in the last 30 minutes. Cells were then
irradiated at 4Gy and incubated for 5 minutes at 37oC. Cells were then fixed and
stained for EGFR (green) and nucleus was stained with propidium iodide (red).
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Figure 70: RIN-5F cells were treated with gefitinib at 10M for 3 hours and/or WGA
(0.05mg/ml) or leptomycin B (2nM) added in the last 30 minutes. Cells were then
irradiated at 4Gy and incubated for 5 minutes at 37oC. Cells were then fixed and
stained for EGFR (green) and nucleus was stained with propidium iodide (red).
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CRI-G1 CELL EXTRACTS

Cytoplasmic

Nuclear

Figure 71: CRI-G1 cells were treated with WGA (0.05mg/ml) or leptomycin B (2nM)
for 30 minutes, irradiated at 4Gy and incubated for 5 minutes at 37oC. Cytosolic and
nuclear extracts were immunoblotted for EGFR. Alpha-tubulin was used as a loading
control. Lamin 1 was used as a nuclear marker. Amounts of EGFR in percentages
were determined by densitometry analysis.
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RIN-5F CELL EXTRACTS

Cytoplasmic

Nuclear

Figure 72: RIN-5F cells were treated with WGA (0.05mg/ml) or leptomycin B (2nM)
for 30 minutes, irradiated at 4Gy and incubated for 5 minutes at 37oC. Cytosolic and
nuclear extracts were immunoblotted for EGFR. Alpha-tubulin was used as a loading
control. Lamin 1 was used as a nuclear marker. Amounts of EGFR in percentages
were determined by densitometry analysis.
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To investigate whether the putative nuclear localisation signal (NLS) sequence was
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cells with wt EGFR or an NLS mutant to enable the mapping of the EGFR regions

involved in nuclear translocation. The NLS sequence in the juxtamembrane domain of

EGFR is RRRHIVRKRTLRR (Hsu & Hung, 2007) containing three clusters

(underlined) of basic arginine (R) and lysine (K) amino acids. The sequence was

changed into AAAHIVAKATLAA, with hydrophobic alanine replacing the arginine

residue. Replacing any of the three clusters with alanine (one cluster at a time), as

examined by Hsu & Hung, led to inhibition of EGFR entry to the nucleus (Hsu &

Hung, 2007).

CRI-G1 and RIN-5F cells were transfected for 48 hours, followed by treatment with

gefitinib at 10M and irradiation at 15Gy for DNA repair analysis by the comet assay

(figure 73), or at 4Gy for immunofluorescent staining and the use of confocal

microscopy (figures 74-75).

As seen in figure 73, CRI-G1 cells transfected with wtEGFR and irradiated at 15Gy

repair DNA strand breaks in approximately 120 minutes as with untransfected cells

(dark blue). When CRI-G1 cells are treated with gefitinib (light blue), the repair of

radiation-induced DNA damage is delayed by 25% at 80 minutes post irradiation and by

22% at 120 minutes. Irradiation-induced DNA strand breaks in CRI-G1 cells transfected

with the mutant NLS EGFR (dark green) repair more slowly compared to the cells

transfected with wtEGFR showing 15% more strand breaks at 80 minutes after radiation

treatment, but at 120 minutes DNA strand breaks are completely repaired. Addition of

gefitinib before irradiation in cells transfected with mut NLS EGFR (light green) did

not change significantly the kinetics of DNA repair compared to cells transfected with

mut NLS EGFR and irradiated (dark green), but compared to cells transfected with

wtEGFR there is a small delay of 13% at 80 minutes post irradiation which remains at

13% at 120 minutes. This difference is probably due to wt EGFR molecules already

present in the CRI-G1 cell line before and after transfection.

In RIN-5F cells (figure 73), DNA repair kinetics between cells transfected with wt (dark

and light blue) and mutant NLS EGFR (dark and light green) are almost identical, with

the former showing 5-10% increased repair activity at 80 and 120 minutes post-

irradiation compared to the latter. Addition of gefitinib did not produce any further
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delay compared to the respective radiation control cells. These results indicate that the

putative NLS sequence may be involved in EGFR transport to the nucleus in CRI-G1

cells.

CRI-G1 cells transfected with wt or mutant NLS EGFR
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Figure 73: Measurement of irradiation-induced DNA strand breaks and their repair by
comet analysis. Strand break formation was quantitated as percentage of control cell tail
moment, plotted against time after irradiation. CRI-G1 and RIN-5F cells were
transfected with wt or mutNLS-EGFR for 48hours. Cells were then treated with 10M
gefitinib for 3 hours, irradiated at 15Gy and incubated for 0-120 minutes at 37oC. Data
represents the averages of three different experiments, each performed in triplicate;
bars, SD
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The effect of irradiation on CRI-G1 and RIN-5F cells transfected with wt or mut NLS

EGFR was also studied by immunohistochemistry. Cells were transfected as previously

and treated with gefitinib followed by irradiation and labelling for wt and mutant

EGFR.

CRI-G1 cells (figure 74) demonstrated wt EGFR but not mutant EGFR entering the

nucleus at 5 minutes after irradiation. However, amounts of cytoplasmic EGFR were

also present with wt EGFR, probably due to the excess amount of EGFR present inside

the cells. Addition of gefitinib abrogated EGFR nuclear entry in cells transfected with

wt EGFR as with control untransfected cells, but had no effect in CRI-G1 cells

transfected with the mut NLS EGFR.

In RIN-5F cells however (figure 75), no nuclear EGFR was observed after irradiation in

either wt or mutant EGFR transfected cells. As expected, gefitinib had no effect in

EGFR localization but inhibited activation of the receptor in both wt and mutant EGFR

transfected cells.

6.2.4 Nuclear targets of EGFR

Previous reports have stated that EGFR may alter the expression of genes associated

with DNA repair: iNOS and Rad51 (Lo et al., 2005b; Chinnaiyan et al., 2005). Rad51

is involved in homologous recombination and iNOS was shown to lead to activation of

DNA-PKCS, a member of NHEJ. Based on these reports we decided to test this

hypothesis in neuroendocrine tumour cells. Since nuclear EGFR acting as a

transcription factor on the promoter of iNOS needs activation by EGF, we serum

starved cells for 12 or 24 hours and treated them with EGF for 6 hours, a length of time

shown previously to lead to activation of EGFR.

Figure 76 shows immunoblotting for iNOS in six neuroendocrine tumour cell lines.

Serum starvation but not EGF-dependent activation of EGFR caused differences in

expression levels of iNOS in all cell lines tested. For Rad51, we stripped the nuclear

extract blots for EGFR (shown in section 6.2.2) and re-probed the membranes for

Rad51 shown in figure 77. No change in Rad51 expression by irradiation and

consequently radiation-induced nuclear EGFR was identified in any of the cell lines.

WGA or leptomycin had no effect in Rad51 levels in nuclear extracts isolated.
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Figure 74: CRI-G1 cells were transfected for 48 hours with wtEGFR or mutant NLS-
EGFR. Cells were treated with gefitinib at 10M for 3 hours, irradiated at 4Gy and
incubated for 5 minutes at 37oC. Cells were then fixed and stained for EGFR (green)
and nucleus was stained with propidium iodide (red).
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Figure 75: RIN-5F cells were transfected for 48 hours with wtEGFR or mutant NLS-
EGFR. Cells were treated with gefitinib at 10M for 3 hours, irradiated at 4Gy and
incubated for 5 minutes at 37oC. Cells were then fixed and stained for EGFR (green)
and nucleus was stained with propidium iodide (red).
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Figure 76: Cells were serum starved (SS) in 0% serum for 12 or 24 hours followed by
incubation with EGF (100ng/ml) for 6 hours and immunoblotting of whole cell extracts
for iNOS.

Figure 77: Cells were treated with WGA (0.05mg/ml) or leptomycin B (2nM) for 30
minutes, irradiated at 4Gy (or 30Gy for NCI-H727 cells) and incubated for 5 minutes at
37oC. Nuclear extracts were immunoblotted for Rad51.
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6.3 Discussion
The previous chapter demonstrated EGFR movement to the nucleus in cells exposed to

cisplatin and radiation. Radiation-induced nuclear entry of EGFR was blocked by

EGFR inhibitors gefitinib and cetuximab, showing that phosphorylation of EGFR is

needed for the nuclear translocation of the receptor. Anti-EGFR therapy also led to

radiosensitisation of cells by delaying the repair of radiation-induced DNA damage.

Apart from stress-dependent, ligand-dependent nuclear transit of EGFR can occur and

this event leads to activation of genes including iNOS, B-Myb, and cyclin D1, which

have been associated with increased proliferation of tumour cells, as mentioned in

detail in section 6.1.1 (Lo et al., 2005b; Lin et al., 2001; Hanada et al., 2006).

6.3.1 WGA and leptomycin B modulation of DNA repair and EGFR localisation

To understand how EGFR transport occurs, we analysed the effect of two proteins

involved in nuclear trafficking through the nuclear pore complex; wheat germ

agglutinin (WGA), and leptomycin B. The first is a nuclear import inhibitor

cooperating with importins and  and protein Ran, and the second is a nuclear export

inhibitor associated with exportin CRM1 (Yoneda et al., 1987; Fukuda et al., 1997).

Our results demonstrated that WGA works in a similar way to gefitinib or cetuximab,

by inhibiting nuclear entry of EGFR and causing a delay in repair of radiation-induced

DNA strand breaks in all cells except RIN-5F cells, as shown by immunofluorescent

staining and comet analysis respectively. Leptomycin B had no effect as a single agent,

but abrogated the gefitinib-induced delay in the repair of strand breaks. Furthermore,

treatment with radiation and leptomycin led to increased levels of nuclear EGFR. This

is in concordance with previous studies postulating that EGFR nuclear entry is via

interaction with importin  (karypherin Ran, and importin 1, while export is via

association with exportin CRM1, all of which are constituents of the nuclear pore

complex (Dittmann et al., 2005a; Lo et al., 2006).

6.3.2 The role of the NLS sequence in EGFR

The nuclear pore complex facilitated transport is an energy-dependent mechanism that

facilitates import of proteins with a nuclear localisation signal (NLS) sequence.

Interestingly, a putative NLS sequence (RRRHIVRKRTLRR) was identified in the

juxtamembrane domain of EGFR by Hsu & Hung (2007), which contains three clusters
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of basic amino acids. The presence of basic amino acids is characteristic of NLS

sequences indicating their importance in the mechanism of interaction with nuclear

pore importins. Replacing any of the three clusters with the hydrophobic amino acid

alanine (one cluster at a time), led to inhibition of EGFR entry to the nucleus (Hsu &

Hung, 2007). In our study, CRI-G1 and RIN-5F cells were transfected with the wild

type and a mutant EGFR at the NLS (sequence was changed into

AAAHIVAKATLAA). Transfection was performed so that transfected EGFR

molecules would be in excess compared to EGFR expressed naturally in both cell

types. Transfection with wtEGFR, which was used as a control for our experiments,

showed  similar results with confocal microscopy to untreated cells in both cell lines,

with nuclear EGFR presented only in CRI-G1 cells, indicating that its not the receptor

itself but the mechanism for nuclear transport that may be impaired in RIN-5F cells.

Small amounts of cytoplasmic EGFR were also present in irradiated CRI-G1 cells, but

the majority of EGFR molecules were found at the inner side of the nuclear membrane.

Treatment with gefitinib abrogated nuclear transfer of EGFR as in untransfected cells.

Mutant NLS EGFR CRI-G1 cells showed very little nuclear transit which is probably

due to the receptor naturally present in the cells. Gene sequencing analysis of nuclear

EGFR would confirm whether the small amounts of EGFR molecules found in the

nucleus are wild type (already present in the cells) and not mutant, and this would form

the next step in our study.

Measurement of DNA damage repair by the comet assay in cells transfected with the

wild type receptor, as expected showed repair of irradiated cells within two hours after

exposure, and a gefitinib-induced delay in repair in CRI-G1 but not in RIN-5F cells.

CRI-G1 cells transfected with the mutant receptor exposed to irradiation alone also

showed delay in DNA repair, which could not be further increased by gefitinib. This

shows that lack of the NLS inhibits EGFR nuclear entry associated with an increase in

DNA-PKCS activity and this leads to the impediment of DNA repair (Dittmann et al.,

2005a; Dittmann et al., 2005b). In RIN-5F cells, transfection with the wild type or

mutant EGFR had no effect in DNA repair kinetics. Gefitinib did not alter DNA repair

in RIN-5F cells transfected with either EGFR construct, supporting the view that EGFR

does not modulate DNA repair in these cells due to impaired nuclear traffic.
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6.3.3 EGFR nuclear targets?

Further analysis of EGFR nuclear transport led to the search for possible nuclear target

proteins. Of the proteins already identified including iNOS, B-Myb, and cyclin D1 (Lo

& Hung, 2006), the most interesting target for our study was iNOS. EGFR was shown

to interact with STAT3 on the promoter of iNOS and this led to transcriptional

activation of the enzyme (Lo et al., 2005b). INOS has been associated with increased

proliferation as have the other two target proteins, but is the only of the three to be also

associated with DNA repair by increasing the expression of DNA-PKCS, an event shown

to provide protection to cells from the cytotoxicity of nitric oxide and DNA-damaging

agents such as cisplatin and radiation (Xu et al., 2000). Since association of EGFR and

DNA-PKCS was not identified (even though gefitinib caused DNA-PKCS

downregulation in some cells), it was suggested that modulation of DNA repair might

not be by direct physical association of EGFR to DNA-PKCS but indirectly through

transcriptional activation of iNOS. EGF-dependent activation of EGFR did not have any

effect in the expression of iNOS. Minor changes were caused by serum starvation in

some cell lines, but no significant upregulation was seen by EGF. Perhaps, in

neuroendocrine tumour cells ligand dependent activation does not induce nuclear import

of EGFR. This was also shown by Dittmann et al. who found increased phosphorylation

of the receptor by EGF treatment but no increase in nuclear EGFR amounts (Dittmann

et al., 2005a). The next step would thus be to analyse the effect of EGF on EGFR

localisation, as done with cisplatin and radiation. It would be interesting to see whether

this pathway leads to EGFR import in RIN-5F cells, which would prove that the

mechanisms of ligand dependent or independent transport are distinct as previously

postulated (Szumiel, 2006).

EGFF has also been shown to modulate expression of another DNA repair protein,

Rad51 (Chinnaiyan et al., 2005). This protein has a role in homologous recombination,

which also repairs DNA strand breaks. Radiation or gefitinib had no effect in Rad51

expression, indicating that EGFR may not be associated with the homologous

recombination system in neuroendocrine tumour cells.

6.3.4 Conclusions

The results obtained in our study demonstrate that cisplatin and radiation induce EGFR

entry to the nucleus and activation of DNA repair mechanisms that protect cells from
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the toxic effects of radiation. Apart from activating traditional signalling pathways such

as the PI-3 kinase and the MAPK pathway, EGFR probably undergoes internalisation in

caveosomes and transferred to the perinuclear compartment (Khan et al., 2006). From

that area, as shown from confocal microscopy, nuclear transport commences that is

mediated by the nuclear pore complex. EGFR nuclear entry may utilise the putative

NLS sequence of the receptor. Nuclear presence of EGFR is associated with DNA

repair, since gefitinib or cetuximab block EGFR entry, an event leading to the

impediment of DNA repair. Our study has tried to elucidate the mechanism behind

nuclear EGFR. The identification of novel EGFR nuclear targets following radiation

would form a next step in our research which would help understand the role of this

receptor under stress conditions.

In the next chapter we investigate c-KIT, a tyrosine kinase receptor found in

haematopoietic stem cells, as a putative receptor target in neuroendocrine tumour

patients.
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CHAPTER 7

INVESTIGATION OF C-KIT EXPRESSION IN
NEUROENDOCRINE TUMOUR PATIENTS: COMPARISON

OF MONOCLONAL & POLYCLONAL ANTIBODIES
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7.1 Introduction
Tyrosine phosphorylation by protein tyrosine kinases is of particular importance in

cellular signalling and can mediate signals for major cellular processes, such as

proliferation, differentiation, apoptosis, attachment, and migration. Tumour growth is

based on deregulation of the above tasks, suggesting that targeting these enzymes could

help inhibit cancer growth and induce apoptosis of malignant cells (Traxler et al.,

2001). C-KIT , the human homologue of the v-kit Hardy-Zuckerman 4 feline sarcoma

viral oncogene, codes for a receptor tyrosine kinase normally expressed by a variety of

cell types including the interstitial cells of Cajal, germ cells, bone marrow stem cells,

melanocytes, breast epithelium and mast cells (Besmer et al., 1986). The role of C-KIT

expression has mainly been studied in haematological and solid tumours, such as acute

leukaemias (Cortes et al., 2003), and gastrointestinal stromal tumours (GIST) (Fletcher

et al., 2002). C-KIT may also have a role in germ cell tumours, breast

adenocarcinomas, malignant melanomas, small cell lung cancers, and in the malignant

transformation of mast cells.

The clinical importance of C-KIT expression in malignant tumors relies on the

existence of imatinib (STI571, Gleevec®, Novartis Pharma AG Basel, Switzerland), a

compound which specifically inhibits C-KIT (Lefevre et al., 2004), as well as other

tyrosine kinase receptors such as the fusion BCR-ABL protein in chronic myelogenous

leukaemia (CML). The receptor targets of imatinib are described in detail in section

2.2.2 (p.52). Moreover, a clinically relevant breakthrough has been the finding of

notable anti-tumour effects by imatinib in GISTs, a group of tumours regarded as being

generally resistant to conventional chemotherapy (De Silva & Reid, 2003). Imatinib has

been approved by the United States FDA for the treatment of C-KIT positive GISTs

and Philadelphia chromosome - positive chronic myelogenous leukaemias (Cohen et

al., 2005; Dagher et al., 2002).

On the other hand, the data regarding C-KIT expression by immunohistochemistry have

shown variability with no C-KIT detected in neuroendocrine tumours by various groups

including Tsuura et al., (1994) and Welin et al., (2006). On the other hand, 92% of

PNETs were found immunoreactive to C-KIT by Fjallskog et al., (2003) and 26% of

neuroendocrine carcinomas were found positive for C-KIT by Ishikubo et al., (2006).
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Marked differences in the expression of C-KIT have also been found in other types of

tumours such as pancreatic adenocarcinomas and soft tissue sarcomas which may

resemble GISTs (Sabah et al., 2003; Bateman et al., 2008), and in cases of desmoid

fibromatosis (Hornick & Fletcher, 2003), and this has been ascribed to the differences

in immunostaining protocols as well as antibodies used by each group.

Aims

The purpose of this study was to study the immunoexpression of C-KIT in NET

patients and raise the possibility of treating these tumours with imatinib. The additional

purpose was to determine if there was any difference in expression between the

monoclonal and polyclonal antibodies. For this, we stained a variety of NET tissue

samples using two different antibodies (one polyclonal and one monoclonal), but the

same immunohistochemical protocol. The two antibodies used, which have also been

used by other groups, recognise and bind to two different regions of the antigen.

As described in the methods section (see p.92), the first antibody is the polyclonal anti

C-KIT/ CD117 antibody from DAKO, a rabbit antibody against the 963 to 976 amino

acid residues at the C-terminus of the human C-KIT oncoprotein. The second antibody

is a monoclonal anti C-KIT antibody from Novocastra which recognizes the three C2-

like extracellular domains at the N-terminus of C-KIT and was raised in mice. For

simplicity, the two antibodies are referred in the text as ‘polyclonal’ and ‘monoclonal’.

In the second part, the presence of C-KIT was also investigated in human and rat

neuroendocrine cell lines by immunoblotting, with the intention to analyze the anti-

proliferative effect of imatinib in these cell lines. For immunoblotting, a rabbit

polyclonal C-KIT antibody from Santa Cruz with an epitope mapping to the C-terminus

was used.

7.2 Results
Immunohistochemistry was performed in specimens from 85 NETs patients. Of these

39 patients had foregut NETs including 3 ampullary NETs, 7 bronchial carcinoids, 1

duodenal carcinoid, 6 gastric carcinoids, 1 oesophageal carcinoid, and 21 pancreatic

neuroendocrine tumours. 27 patients were presented with midgut carcinoids including 7

appendiceal carcinoids, 18 ileal carcinoids, 1 caecal carcinoid, and 1 jejunal carcinoid.

The 4 hindgut carcinoid patients included 1 colon carcinoid, 2 rectal carcinoids, and 1
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cervical carcinoid. Finally we analysed 15 more patients with 5 paragangliomas, 5

medullary carcinomas of the thyroid and 5 NETs of unknown primary site. The patients

and their tumour type are shown in table 17.

Staining was repeated twice to three times depending on the availability of tissue.

Staining was scored as strong to weak, diffuse or present in nests of tumour cells rather

than covering the whole tumour area. GIST tumour samples were used as positive

control. In most cases, mast cells found in the arterial vessels of the tumours or in the

surrounding epithelium provided an additional positive control. The differentiation

between mast cells and tumour cells was based on the morphology of the cells as well

as their topology in the tissue.

Table 17: Neuroendocrine tumour types of patients

Neuroendocrine Tumour types (No of patients)

Foregut NETs (39) Ampullary NETs (3)

Bronchial carcinoids (7)

Duodenal carcinoids (1)

Gastric carcinoids (6)

Oesophageal carcinoids (1)

Pancreatic NETs (21)

Midgut NETs (27) Appendiceal carcinoids (7)

Ileal carcinoids (18)

Caecal carcinoids (1)

Jejunal carcinoids (1)

Hindgut NETs (4) Colon carcinoids (1)

Rectal carcinoids (2)

Cervical carcinoids (1)

Medullary Thyroid Carcinomas (5) -

Paragangliomas (5) -

Unknown Primary (5) -
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7.2.1 Polyclonal antibody

Staining with the polyclonal antibody revealed C-KIT expression in 24% (20 out of 85)

of the patients (examples shown in figure 78 (b-f), positive control GIST section in

78a). The detailed results of the staining with the polyclonal antibody are outlined in

table 18, where the intensity of the staining in comparison to the positive control GIST

is also demonstrated.

Positive tumour samples included 5/11upper gastrointestinal NETs, 8/27 midgut NETs,

and 4/21 patients with pancreatic neuroendocrine tumours. The rest of the positive

samples were 1 case of hindgut NET, and 2 cases of NET of unknown primary site.

Staining with the polyclonal anti-C-KIT antibody revealed lack of C-KIT expression in

patients with paragangliomas and medullary thyroid carcinomas as shown in figure

78e-f.

Staining with the polyclonal antibody identified C-KIT primarily in the cytoplasm,

except in 4 cases where the receptor was also identified in the nucleus or the

perinuclear region. Nuclear staining did not correlate with the type of neuroendocrine

tumour. For example, figure 79 shows two patients with ileal carcinoid (a-b) with

cytoplasmic staining in case (a), and cytoplasmic and nuclear staining in case (b).

Paradigms of nuclear staining are also illustrated in figure 79c-d, in nests of tumours

cells of a patient with appendiceal carcinoid. Figure 78 also provides two examples of

perinuclear staining seen in a patient with oesophageal carcinoid (c), and a patient with

ampullary NET (d), in comparison to cytoplasmic staining in a patient with a NET of

unknown primary site (b). In 2 of the patients with a gastric carcinoid and a PNET

respectively, neuronal staining was also observed (data not shown).
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Table 18: Staining with the polyclonal antibody

Specimen (No of +ve patients/total) Intensity Comments

Foregut Ampullary NET (1/3) 2 Perinuclear staining

Bronchial carcinoid (0/7) 0

Duodenal carcinoid (1/1) 0.5

Gastric carcinoid (2/6)
2

1 case with cytoplasmic

and neuronal staining

Oesophageal carcinoid (1/1) 2.5 Perinuclear staining

Pancreatic NET (4/21) 1.5
1 case with cytoplasmic,

neuronal and islet staining

Midgut Appendiceal carcinoid (3/7) 1

1 case with cytoplasmic

and nuclear staining

Ileal carcinoid (5/18) 1.5

1 case with cytoplasmic

and nuclear staining

Caecal carcinoid (0/1) 0

Jejunal carcinoid (0/1) 0

Hindgut Colon carcinoid (0/1) 0

Rectal carcinoid (1/2) 0

Cervical carcinoid (0/1) 0

MTC (0/5) - 0

Paraganglioma

(0/5) - 0

Unknown

primary (2/5) - 1.5
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Figure 78: Cases of positive and negative staining with the polyclonal anti-C-KIT
antibody. (a) Gastrointestinal stromal tumour (used as a positive control) with strong
cytoplasmic staining of tumour cells, (b) Retroperitoneal mass NET of unknown
primary site containing partly crushed epithelial cells with moderate to strong
cytoplasmic staining, (c) Oesophageal carcinoid with moderate to strong cytoplasmic
and perinuclear staining of tumour cells, (d) Ampullary NET with staining of the
cytoplasm and nuclear membranes, (e) Paraganglioma where we have no staining of
the tumour but positive staining of mast cells, (f) Medullary carcinoma of thyroid
negative for C-KIT. Magnification a-e: (x20) and f: (x40)

a

dc

b

e f
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Figure 79: Examples of cytoplasmic and nuclear C-KIT staining with the
polyclonal anti-C-KIT antibody. (a) Ileal carcinoid with strong cytoplasmic
staining of tumour cells, (b) Ileal carcinoid with cytoplasmic staining and sporadic
nuclear staining, (c-d) Appendiceal carcinoids (photos from same patient) of
positively stained tumour cells infiltrating the submucosa of the appendix, where
nuclei also stain positive. Magnification a,b,d: (x20) and c: (x10)

7.2.2 Monoclonal antibody

The results for the staining with the monoclonal antibody are outlined in detail in table

19. A significant increase in C-KIT expression was identified in the

immunohistochemical analysis with the monoclonal antibody, with 64% (50 out of 79 –

due to lack of available tissue) of the patients expressing the receptor. C-KIT

expression was predominantly increased in pancreatic NETs and in NETs of unknown

primary site, which were both 80% positive (16/20 PNETs and 4/5 unknown). High

levels of expression were also found in midgut NETs (19/26), and upper G.I NETs

(7/11). Staining with the monoclonal antibody also identified the receptor in one patient

with bronchial carcinoid and one patient with paraganglioma, both of which types of

NETs were negative for the polyclonal antibody.

c

ba

d
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Table 19: Staining with the monoclonal antibody

Specimen (No of +ve patients/total) Intensity Comments

Foregut Ampullary NET (2/3) 1.5 1 case with apical staining

Bronchial carcinoid

(1/4) 1.5

Duodenal carcinoid

(1/1) 1

Gastric carcinoid (3/6) 2 1 case with nuclear staining

Oesophageal carcinoid

(1/1) 1

Pancreatic NET (16/20) 2

7 cases with apical staining and 1

with both cytoplasmic and apical

staining

Midgut

Appendiceal carcinoid

(5/6) 2.5 3 cases with apical staining

Ileal carcinoid (13/18)

3

7 cases with apical staining and 2

with both cytoplasmic and apical

staining

Caecal carcinoid (1/1) 2 Apical staining

Jejunal carcinoid (0/1)

Hindgut Colon carcinoid (1/1) 1

Rectal carcinoid (1/1) 2 Cytoplasmic and apical staining

Cervical carcinoid (0/1) 0

MTC (0/5) 0

Paraganglioma

(1/5) 2

Unknown

primary (4/5) 2.5 1 case with apical staining

With the monoclonal antibody, the expression of the receptor in half of the patients was

markedly increased around the edges of tumour nests, with low concentrations in the

cytoplasm. Examples of this so called apical staining are shown in figure 81a and 81c.
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Nuclear staining was identified in one patient only with gastric carcinoid. Medullary

thyroid carcinoma sections were all negative with the monoclonal antibody as with the

polyclonal one.

7.2.3 Comparison of the two immunohistochemical studies

As the aim was to determine any differences in C-KIT expression between the

polyclonal and monoclonal antibody, we used sequential tissue sections from each

patient (tissue for comparison was available in 79/85 patients). The differences in

staining of neuroendocrine tumour cell types between the two antibodies are outlined in

table 20.

Table 20: Expression C-KIT in NET patients using the monoclonal and the
polyclonal anti C-KIT antibodies

Specimen Specimen Monoclonal Polyclonal

Foregut NETs Bronchial
NETs 1/4 (25%) 0/7 (0%)

Upper G.I
NETs 7/11 (64%) 5/11 (45%)

Pancreatic
NETs 16/20 (80%) 4/21 (19%)

Midgut NETs 19/26 (73%) 8/27 (30%)

Hindgut NETs 2/3 (66%) 1/4 (25%)

MTCs 0/5 (0%) 0/5 (0%)

Paragangliomas 1/5 (20%) 0/5 (0%)

Unknown
primary 4/5 (80%) 2/5 (40%)

Comparison between the two immunostainings revealed 13 patients showing positivity

with both antibodies (examples shown in figure 80), 37 patients showing expression of

C-KIT with the monoclonal antibody only (examples shown in figure 81), 7 patients

being positive for C-KIT with the polyclonal antibody only, and 27 cases negative for

both antibodies, most notably all cases of medullary thyroid carcinoma (examples

shown in figure 82). The main divergence between the two antibodies is seen in

pancreatic NETs and midgut NETs, where positivity is increased by a factor of 4 and

2.4 respectively with the monoclonal antibody.
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Figure 80: C-KIT expression by both antibodies: (a-b) Ileal carcinoid where strong
cytoplasmic staining is seen in tumour cells, (c-d) pancreatic neuroendocrine tumour
with strong cytoplasmic staining with the monoclonal antibody and medium staining
with the polyclonal antibody, (e-f) pancreatic neuroendocrine tumour where stronger
cytoplasmic staining is seen with the polyclonal antibody. Magnification a-f: (x20)

a

c

b

d

e f
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Figure 81: C-KIT expression with the monoclonal antibody only: (a-b) Ileum
carcinoid where the more common apical staining of tumour cells is seen with the
monoclonal antibody, but no cells stain positive with the polyclonal antibody (C-KIT
positive mast cells are seen that serve as an internal positive control), (c-d) carcinoid
tumour of the pancreas with moderate apical staining of tumour cells with the
monoclonal antibody and again no staining with the polyclonal one. Magnification a-
d: (x20)

a b

c d
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Figure 82: No C-KIT expression of tumour cells with either antibody: (a-b)
medullary thyroid carcinoma, (c-d) carcinoid tumour of the duodenum, (e-f) PNETs
showing normal pancreatic islets expressing C-KIT when stained with the
monoclonal antibody, but no staining of tumour cells with either antibody.
Magnification a-f: (x20)

The expression of C-KIT was also analysed in a panel of neuroendocrine tumour cell

lines including the human bronchial carcinoid NCI-H727 cells, the human small cell

lung cancer SHP-77 cells, and the rat islet CRI-G1and RIN-5F cell lines, as shown in

appendix 4. Following the established expression of C-KIT in our cells, we conducted

preliminary experiments to examine the anti-proliferative effect of imatinib in these

e f

a b

c d
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cells. Imatinib showed no effective cytotoxic activity in any of the cell lines used and

experiments were discontinued.

7.3 Discussion
7.3.1 C-KIT prognostic value in cancer

For the past decade C-KIT has been identified in a variety of tumour cells and its

expression could be associated with a poor outcome for patients. C-KIT has therefore

become an attractive target for the use of tyrosine kinase inhibitors such as imatinib that

is used for the treatment of C-KIT positive GISTs.

Although much research has been performed on the expression of C-KIT in tumour

cells, information in the literature about the significance of the receptor’s mutations or

autocrine activation in tumour progression is not comprehensive. In a study by

Scotlandi et al., (2003) C-KIT had no significant prognostic or therapeutic value in

Ewing’s sarcoma, which is characterised by autocrine/paracrine activation of the

receptor. Treatment with STI-571 yielded a low degree of inhibition with small clinical

importance but could be used in patients that overexpress C-KIT. In addition, no

correlation was found between developmental stage of endocrine pancreatic tumours

and expression of C-KIT (Fjallskog et al., 2003). No examination of mutations or

overexpression of the oncoprotein was demonstrated by this group to account for the

role of C-KIT in tumour development. Analysis of C-KIT mutations in tumour

development by Sakurai et al., (1999) showed that the mutated form of the receptor

(activating mutation in exon 11 of the C-KIT gene) was found equally in low- and high-

risk groups of GIST patients, showing no correlation to the Ki-67 labelling index.

Based on these results C-KIT may be considered a target for therapy with tyrosine

kinase inhibitors but its role in tumour growth remains unclear.

In contrast to Sakurai’s results, clinical analysis of 48 patients with GISTs by a

different group (Blanke et al., 2001) proved that the type of C-KIT mutation may

predict the behaviour of the tumour. Deletions/insertions in exon 11 had the lowest

recurrent free survival rate of all other mutations including missense mutations in exon

11 or mutations in exons 9, 13 or 17 or when compared with patients who had no

identified mutations. Also, treatment with imatinib was shown to be more effective in

GIST patients that carry a mutation in C-KIT than in those without a mutation, which
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proves the significance of mutations in the clinical outcome of GISTs (Blanke et al.,

2001). Furthermore, C-KIT mutations appear to be important in tumour progression of

mast cells in dogs (Zemke et al., 2002). In this study mutations in the juxtamembrane

domain of the oncoprotein were found in 12/64 grade II and grade III tumours but none

were found in grade I tumours (grade I being the least aggressive tumour type, grade II

intermediate, and grade III characterises poorly differentiated tumour cells, which grow

rapidly). The mutations were mainly duplications and deletions which lead to

constitutive activation of the receptor. Interestingly, a study in 36 GIST patients, which

were all C-KIT positive, showed co-expression of the C-KIT ligand SCF in 21 cases,

and this was associated with a higher MIB-1 proliferation index, indicating that co-

expression of receptor and ligand could be a marker of tumour proliferation (Hirano et

al., 2008). In addition, a study by Erler et al. showed that C-KIT was overexpressed in

a high percentage (66%, 54/82) of high-grade NETs but was not overexpressed in low

or intermediate-grade NETs. Overexpression of C-KIT did not appear though to affect

the aggressiveness of the tumour growth in terms of affecting survival (Erler et al.,

2004).

Recent studies have demonstrated association of C-KIT expression with

neuroendocrine tumour development. C-KIT expression was related to poor prognosis

in patients with small cell lung cancer (SCLC) and large cell neuroendocrine carcinoma

(LCNEC), as it was associated with advanced disease and poor response to

chemotherapy for SCLC patients or decreased survival and recurrence in LCNEC

patients (Micke et al., 2003; Casali et al., 2004). In addition, C-KIT immunoreactivity

was also identified in 26% of patients with gastrointestinal neuroendocrine carcinoma,

a tumour characterised by aggressive behaviour and poor prognosis (Ishikubo et al.,

2006). Finally, Ferrari et al. evaluated the correlation between C-KIT and the Ki-67

proliferation index in neuroendocrine tumours and showed that 8 out of 11 samples

immunoreactive for C-KIT had poorly differentiated histology, which is associated with

a high proliferation index. No reference was made on mutations present in the C-KIT

oncoprotein (Ferrari et al., 2006). Based on the above results, and the therapeutic

efficacy of imatinib in GISTs expressing C-KIT, we investigated the expression of C-

KIT in a large number of NET patients with the aim to justify the use of imatinib for

therapy.
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As discussed earlier in this chapter, our primary interest was to study the variability in

C-KIT immunoexpression in neuroendocrine tumour cells, which has been previously

demonstrated by other groups (Tsuura et al., 1994; Welin et al., 2006; Fjallskog et al.,

2003; Ishikubo et al., 2006). As these differences have been attributed to different

antibodies or different immunohistochemical protocols used, we decided to use two

commonly used antibodies, one polyclonal and one monoclonal antibody, while

keeping the same protocol for the two staining procedures.

7.3.2 Comparison of monoclonal and polyclonal immunohistochemical studies

Our immunohistochemical analysis identified the C-KIT receptor in 24% of the patients

with the polyclonal antibody and in 64% of the patients with the monoclonal antibody.

This difference was not correlated with the type of tumour carried by the patient or with

the organ affected by the tumour. With the polyclonal antibody from DAKO, C-KIT

immunoreactivity was mostly observed in carcinoids. On the other hand, the

monoclonal antibody from Novocastra identified the expression of C-KIT mostly in

PNETs. By comparing the two immunohistochemical procedures we conclude that the

monoclonal antibody showed a 2-fold increase in C-KIT expression in carcinoid

patients (65% mAb versus 28% pAb) and a 4-fold increase in PNET patients (80%

mAb versus 19% pAb).

The difference could not be accounted for by lack of specificity of the polyclonal

antibody (DAKO). Assessment of the two most common antibodies from DAKO and

Santa Cruz used in research against C-KIT supported the view of the DAKO product

being the more specific antibody (Lucas et al., 2003). The polyclonal antibody by

DAKO is widely used and in a large comparative study of seven C-KIT antibodies in

more than 3000 tumours, the DAKO antibody was found to be the most specific (Went

et al., 2004). Is the variability due to the different epitope being recognised by the two

antibodies? If it is easier for an antibody to bind the extracellular portion of an antigen

(recognised by the monoclonal antibody), heat-induced epitope retrieval should

diminish such a possibility. On the other hand, the tissue sections used in this study

derived from tumour tissue samples which were formalin fixed and embedded in

paraffin, and were up to 5 years old. Prolonged storage has been associated with

epitope fading and this could explain the fewer positive cases observed with the

polyclonal antibody, if its particular epitope was affected. Finally, mutations present in
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the cytoplasmic part of the receptor, which is recognised by the polyclonal antibody,

could account for the smaller number of positive cases observed. In this case the

difference could only be explained by mutation studies in both extracellular and

intracellular sequences recognised by the two antibodies in all patients tested and this

forms the next step in our research.

For analysis of the two antibody stainings, proper precautions were taken to ensure

accuracy of the results. Firstly, sections of GIST, which is known to overexpress C-

KIT, were used as a primary positive control. In addition, since C-KIT is a

haematopoietic stem cell marker, mast cells present in the tissue served as a

supplementary internal positive control, and have been used as such by other groups

(Lucas et al., 2003; Miettinen & Lasota, 2005). For negative controls, we used

sequential sections for each sample where the primary antibody was omitted. GIST and

mast cells strongly expressed C-KIT with both antibodies used. Analysis of the sections

was carried out by two separate histopathologists at the Royal Free Hospital, with years

of experience in immunohistochemistry. To further prove the accuracy of our results, it

is a well known fact that one characteristic element of true positive staining is the

difference in the intensity of staining among cells, commonly known as ‘cell to cell

heterogeneity’, a feature observed in all of our sections with both antibodies. Finally,

for each antibody appropriate titrations were made to identify the most appropriate

dilution, in order to avoid non-specific binding of the antibody.

It is worth noting that the polyclonal antibody has positioned C-KIT mainly in the

cytoplasm whereas the monoclonal antibody has, in more than half the cases, identified

the receptor mostly in the plasma membrane with low concentrations in the cytoplasm.

C-KIT is a plasma membrane protein which would justify the accuracy of the

monoclonal antibody. On the other hand, although the polyclonal antibody identified

the protein mostly in the cytoplasm, there were cases where C-KIT was also identified

in the plasma membrane with the same antibody. In addition, C-KIT cytoplasmic

staining was also identified with the monoclonal antibody, but in fewer cases. Finally,

the polyclonal antibody also revealed nuclear or perinuclear staining in 4 patients, not

correlating to the type of NET present, while the monoclonal antibody shown nuclear
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C-KIT expression in one patient, a phenomenon which, to our knowledge, has not been

discussed previously.

Nevertheless, diagnosis of NETs is not based solely on a single marker. Patients tested

with both antibodies should combine this with identification of other NETs markers

such as the chromogranins, the NSE or CEA (Lamberts et al., 2001, Eriksson et al.,

2000), the secretion of peptide hormones and amines such as serotonin, insulin, gastrin,

glucagon, or VIP, as well as the presence of clinical syndromes associated with NETs.

7.3.3   Comparison of this study with results from other groups

Our immunohistochemical study demonstrated the presence of C-KIT (CD117) in

gastroenteropancreatic neuroendocrine tumours. Positive immunoreactivity was

established in a range of tumours that included foregut NETs (mainly pancreatic NETs

and gastric carcinoids), midgut NETs (mainly ileal and appendiceal carcinoids),

hindgut NETs, and NETs of unknown primary site. This is in contrast with a study by

Tsuura et al., (1994) where no expression of C-KIT was detected in NETs. The

antibody used by Tsuura and co-workers (1994) was the same polyclonal DAKO

antibody used in our analysis, so any discrepancy observed may be due to the method

employed or other reagents used.

The difference in results obtained by different scientific groups is difficult to examine,

not only due to different immunohistochemical procedures being used but also due to

the biological heterogeneity of NETs. NETs are divided into many different groups

according to the tissue type they arise from and they have different receptor expression

patterns, and this could also depend on whether the tumour is malignant or not. Welin

et al. found no immunoreactivity to C-KIT in malignant midgut carcinoid tumours

(Welin et al., 2006). On the other hand, a group from Sweden showed a 92%

expression of C-KIT in malignant endocrine pancreatic tumours (Fjallskog et al.,

2003).

7.3.4 Imatinib as a therapeutic option for NET patients

In vitro studies have demonstrated positive antitumour activity by imatinib in a variety

of tumours. Imatinib was shown to inhibit the growth of aggressive neuroblastic

tumours (Vitali et al., 2003). Furthermore, Lankat-Buttgereit et al. showed that imatinib
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inhibits the cell growth of insulinomas, gastrinomas, and carcinoids independently of

KIT expression (Lankat-Buttgereit et al., 2005). Preliminary proliferation studies in

neuroendocrine tumour cell lines expressing C-KIT showed no effect on growth of cells

by imatinib (data not shown). As a result, this part of the study was not pursued any

further.

For patients with neuroendocrine tumours, treatment with imatinib as a single agent has

not shown promising response rates. In a phase II trial of imatinib in patients with

advanced carcinoid tumour, only a modest effect on tumour growth was shown (Carr et

al., 2004). C-KIT is overexpressed in up to 70% of cases of small cell lung cancer.

Based on this fact 29 patients with recurrent and refractory small cell lung cancer

immunoreactive to C-KIT were treated with imatinib at 400 mg twice a day for 28

days. Imatinib did not demonstrate an objective response or confirm stable disease (Dy

et al., 2005). Similar results were obtained in a phase II clinical trial by Krug et al.

(Krug et al., 2005). In another phase II trial in patients with advanced metastatic

melanoma imatinib demonstrated lack of efficacy (Ugurel et al., 2005). Finally, in a

phase II multi-center study of 15 patients with disseminated endocrine tumours

including medullary thyroid carcinomas (MTC), adrenocortical carcinomas (ACC),

malignant pheochromocytomas, carcinoids, and neuroendocrine tumours, imatinib was

not found useful for treatment and caused increased toxicity in the group of patients

(Gross et al., 2006).

The above findings might suggest that the use of imatinib as a single agent does not

prove sufficient antitumour activity, but combination with other chemotherapeutic

agents could be of benefit. Gronchi et al. recently showed auxiliary treatment with

imatinib in patients with GISTs can delay the progression of the disease (Gronchi et al.,

2007). In addition, Blackstein et al. demonstrated that the response rate and

progression-free survival in patients with GISTs that are C-KIT negative was not

different from those with C-KIT positive GISTs, implying that a therapeutic trial of

imatinib may be helpful for all patients with GISTs regardless of C-KIT expression

(Blackstein et al., 2006).

Finally, a most recently identified problem with imatinib treatment is that GIST patients

treated with imatinib usually develop resistance to the drug after about 2 years of drug
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administration (Braconi et al., 2008; Jiang et al., 2008). This is mainly due to the

acquisition of secondary mutations in the tyrosine kinase domain of C-KIT, which is

recognized by the drug. This problem has led to the development of new tyrosine

kinase inhibitors with multiple targets, such as sunitinib, which targets C-KIT, PDGFR,

VEGFR, and FMS-related tyrosine kinase 3 receptor, and has shown efficacy in a

number of relapsing patients (Braconi et al., 2008; Jiang et al., 2008). Recent clinical

trials of sunitinib in NETs have shown very promising results (Kulke et al., 2008), and

most recently a study of sunitinib versus placebo in non-functioning NET patients had

to be stopped early after interim analysis demonstrated a significant survival benefit in

the sunitinib treated group (Raymond et al., 2009).

7.3.5 Conclusions

Based on our study C-KIT may play a pivotal role in neuroendocrine tumour growth

and affect the clinical outcome. We have identified C-KIT expression using

immunohistochemical studies with two antibodies against different epitopes in a

significant percentage of patients with NETs. Further exploration of its expression

status as well as sequence analysis is needed in order to investigate its role in the

pathology of NETs. Generally, the lack of clinically relevant anti-proliferative activity

by imatinib in neuroendocrine tumour patients could be because C-KIT is not the

driving force in these tumours. Expression of an oncogene in specific tumour cell types

may not necessarily imply therapeutic potential of drugs against this oncogene, and a

prime example for this is gefitinib, a widely used inhibitor of EGFR that failed to

prolong survival in 90% of patients with non-small cell lung cancer overexpressing

EGFR, in contrast to preclinical studies. Another reason could be the presence of

mutations in the tyrosine kinase domain of the receptor that disable efficacy of the drug

in neuroendocrine tumour cells. This justifies the need for analysis of the C-KIT

receptor for mutations in individual patients to help prognosis and evaluation of the

appropriate therapeutic modes. Finally, it is a well known fact that tyrosine kinase

inhibitors may cross-react with other tyrosine kinases, in the case of imatinib with

PDGFR (both  and ), and this may result in different activity profiles. Therefore

identification of other tyrosine kinases such as PDGFR, which have also shown

response to imatinib, may help unravel the mechanism of drug action in these patients.
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CHAPTER 8

INVESTIGATION OF COMBINATION TREATMENTS
USING OCTREOTIDE WITH CHEMOTHERAPEUTIC

AGENTS IN NET CELLS
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8.1 Introduction
The final receptor target analysed for any anti-proliferative effect in NETs was the

group of somatostatin receptors. Somatostatin (SST) is a gastrointestinal and

hypothalamic peptide hormone found in the gastric mucosa, the pancreatic islets, the

nerves of the gastrointestinal tract, and in the central nervous system. It inhibits

endocrine and exocrine secretions, intestinal motility and cell proliferation (Bousquet et

al., 2004). Somatostatin binds somatostatin receptors (SSTR1-SSTR5), which belong to

the family of G-protein coupled receptors. Somatostatin receptors are expressed in

neuroendocrine tumours, with the SSTR2 subtype being the most frequently expressed.

The presence of SST receptors has greatly aided diagnosis and treatment of

neuroendocrine tumours via binding of SST analogues. These compounds are not only

used for symptomatic relief of patients but also for the localisation and treatment of

primary and metastatic tumours expressing SSTRs via somatostatin receptor

scintigraphy (SRS) and somatostatin receptor-targeted radiotherapy respectively. Of all

existing somatostatin analogues, octreotide has been the most extensively investigated.

Octreotide, binds SSTR2 and SSTR5 with high affinity, SSTR3 with moderate affinity,

but does not bind SSTR1 and SSTR4 subtypes. Somatostatin analogues have

demonstrated anti-neoplastic activity in a variety of experimental models in vitro and in

vivo including mammary, pancreatic, colorectal, and lung cancers (Weckbecker et al.,

1993). Octreotide has also shown anti-proliferative effects in vitro against gastric and

pancreatic adenocarcinoma cells (Hofsli et al., 2002, Wang et al., 2003). In addition,

combinations of octreotide with cytotoxic drugs such as 5-fluorouracil, mitomycin C,

paclitaxel, and doxorubicin resulted in synergistic or additive interactions in AR42J

cells (Weckbecker et al., 1996), and with rofecoxib in gastric cancer SGC-7901 cells

(Tang et al., 2004). In human studies the effects have been variable with tumour growth

stabilisation reported in up to 50% of NET patients. Less than 10% of the patients

demonstrated tumour regression, and in most of these cases octreotide treatment was

combined with chemotherapy, chemoembolisation or alpha-interferon, making it

difficult to assess the anti-proliferative effect of octreotide alone (Leong & Pasieka,

2002).
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Aims

Our aim was to investigate the role of somatostatin receptors in neuroendocrine tumour

cell growth. To this end, we examined the expression of SST receptors in

neuroendocrine tumours cell lines and whether such receptors, when expressed, may

transmit growth inhibitory signals following binding of the somatostatin analogue

octreotide. Treatments included octreotide acting as a single agent or together with

commonly used chemotherapy drugs cisplatin, etoposide, melphalan as well as the non-

covalent DNA binding agent doxorubicin. The SRB proliferation assay was used to

determine survival in octreotide-treated cells with or without the cytotoxic agents. Flow

cytometry was also used to investigate any effect of octreotide on the cell cycle of NET

cells. The presence of SSTR2A and SSTR5, but not SSTR1 or SSTR3 was identified by

immunoblotting.

8.2 Results
8.2.1    SSTR expression in NETs

Initially, the expression of SSTR2A and SSTR5 but not SSTR1 or SSTR3 was

demonstrated by immunoblotting in NCI-H727 human bronchial carcinoid, BON-1

human pancreatic endocrine cells, and the two rat islet tumour cells RIN-5F and CRI-

G1 (figure 83). The expression of SST receptors was also identified in HCT-116 colon

cancer cell line. For this, we used four monoclonal rabbit antibodies against human

SSTR1, SSTR2A, SSTR3 and SSTR5 from Gramsch Laboratories, Germany. This

experiment confirmed the expression of SST receptors with high affinity to octreotide

in neuroendocrine tumours cells, justifying the use of octreotide in our proliferation

studies.

Figure 83: Total cell lysates of CRI-G1, HCT-116, NCI-H727, RIN-5F and BON-1
cells were immunoblotted for A. SSTR2A (80kDa) B: SSTR5 (65kDa). The antibodies
were used at a 1:4000 dilution from a 25l stock in distilled water.
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8.2.2    Proliferation studies using octreotide with chemotherapy

Octreotide, alone or in combination with cisplatin, etoposide, doxorubicin or

melphalan, was tested for its cytotoxic effect in NCI-H727, CRI-G1, BON-1, and RIN-

5F cells. Graphs show results for NCI-H727 cells only, with results for the other cell

lines added in the appendix 5A-5D.

Administered schedules included:

 Simultaneous addition of octreotide (at 10 or 1000nM) and cisplatin, etoposide

doxorubicin or melphalan for a period of 72 hours

 Incubation of cells with octreotide (at 10 or 1000nM) for 24 hours, followed by

48 hour incubation with cisplatin, etoposide doxorubicin or melphalan

o Cytotoxic drugs were added at 0-100M for cisplatin, etoposide and

melphalan, and at 0-10M for doxorubicin

o Drug incubations were followed by 2 days incubation in drug-free media

before analysis

Single treatments

Octreotide was added at 0-1000nM for 24 or 72 hours. Treatment with octreotide as a

single agent had no effect on the proliferation of NCI-H727, CRI-G1, BON-1 and RIN-

5F cells (figure 84, appendix 5A for all other cell lines). All chemotherapy drugs used

had a dose-dependent effect on all four cell lines tested (figures 85-86, appendix 5B-5D

for all other cell lines). The IC50s of cytotoxic drugs for the standard 3-day experiment

are outlined in table 21.

Doxorubicin is the most effective drug with an average IC50 of less than 1M in all 4

cell lines. Cisplatin follows with an average IC50 of less than 10M in 3 out of the 4 cell

lines used, but is less potent in BON-1 cells, where 50% decrease in cell proliferation is

seen at 50M. Etoposide and melphalan are most effective against the rat islet tumour

cells CRI-G1 and RIN-5F, with an average IC50 of less than 10M.  Etoposide is also

effective in NCI-H727 bronchial carcinoid cells where proliferation was inhibited by

50% at 9M. Melphalan is the least cytotoxic drug for NCI-H727 and BON-1 cell

lines.
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Table 21: IC50s of chemotherapy drugs in NET cell lines

BON-1 CRI-G1 NCI-H727 RIN-5F

Cisplatin (M) 53  ± 6.21 8.2 ± 0.75 8.9 ± 0.87 1.7 ± 0.48

Etoposide (M) 55 ± 5.63 3.5 ± 0.39 9.2 ± 0.68 2.3 ± 0.63

Doxorubicin (M) 0.33 ± 0.051 0.37 ± 0.072 0.67 ± 0.084 0.028 ± 0.003

Melphalan (M) 82 ± 7.25 8.1 ± 0.93 51 ± 4.34 3.1 ± 0.64

Note: IC50s of treatments with drugs for a period of 3 days followed by 2 days in
complete media. The values represent means of 3 independent experiments, each
done in triplicate, with standard deviation.

Double treatments

To test whether addition of octreotide to the chemotherapy treatment would increase the

anti-proliferative effect of either single treatment, we decided to treat cells with

octreotide and each chemotherapeutic agent either simultaneously or with one type of

drug treatment following the second as mentioned in the administered schedules above.

In simultaneous combination treatments (figures 85-86) with cisplatin, etoposide,

doxorubicin or melphalan, octreotide -at 10 or 1000nM- did not increase the anti-

proliferative effect of the anti-cancer drugs. Data are shown for NCI-H727 cells while

treatments for all other cell lines are included in the appendix 5B-5D. Cytotoxic drugs

had a dose-dependent effect on cell proliferation in all cell lines. The most cytotoxic

drug was doxorubicin with IC50s below 1M in all cells. Cisplatin and etoposide have

a similar cytotoxic effect in all cell lines, with NCI-H727 bronchial carcinoid cells and

CRI-G1 and RIN-5F rat islet cells being more sensitive to these agents compared to

BON-1 cells. BON-1 pancreatic endocrine cells are more chemo-resistant compared to

all other cell lines used, while CRI-G1 and RIN-5F cells are the most chemo-sensitive.

In sequential combination treatments (figures 87-88, data shown for NCI-H727 cells

only), octreotide or medium alone (control) was added to the cells for 24 hours,

followed by addition of chemotherapy drugs for 48 hours. Again, as in the simultaneous

double treatments, addition of octreotide did not increase the cytotoxic effect of

chemotherapy alone. All chemotherapeutic agents were less cytotoxic in this
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experiment as they were added for 48 hours instead of 72. Pre-treatment with

chemotherapeutic agents before addition of octreotide was also tested with similar

results in all cell lines (data not shown).
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Figure 84: Titration of octreotide in NCI-H727 cells. Cells were treated with octreotide
at 0-1000nM for 24 or 72 hours followed by 2 days incubation in drug free media. In
the graphs, the ‘0’ point of the x-axis is represented as ‘0.001’ due to the logarithmic
scale of the x-axis. Proliferation was calculated as a % of control untreated cells. The
values represent averages of 3 different experiments, each performed in triplicate; bars,
SD.
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NCI-H727 cells with cisplatin and octreotide for 3 days
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Figure 85: NCI-H727 cells were treated with octreotide (at 10 or 1000nM) and
cisplatin or etoposide (both at 0-100M) for 72 hours, followed by 48 hours in drug-
free media. In the graphs, the ‘0’ point of the x-axis is represented as ‘0.001’ due to the
logarithmic scale of the x-axis. Proliferation was calculated as a % of control untreated
cells. The values represent averages of 3 different experiments, each performed in
triplicate; bars, SD.
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NCI-H727 cells with melphalan and octreotide for 3
days
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Figure 86: NCI-H727 cells were treated with octreotide (at 10 or 1000nM) and
melphalan (0-100M) or doxorubicin (0-10M) for 72 hours, followed by 48 hours in
drug-free media. In the graphs, the ‘0’ point of the x-axis is represented as ’0.1’ or
‘0.001’ due to the logarithmic scale of the x-axis. Proliferation was calculated as a % of
control untreated cells. The values represent averages of 3 different experiments, each
performed in triplicate; bars, SD.
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NCI-H727 cells with octreotide (1 day) and then
cisplatin (2 days)
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Figure 87: NCI-H727 cells were treated with octreotide (at 10 or 1000nM) for 24 hours
and then cisplatin or etoposide (both at 0-100M) for 72 hours, followed by 48 hours in
drug-free media. In the graphs, the ‘0’ point of the x-axis is represented as ‘0.001’ due
to the logarithmic scale of the x-axis. Proliferation was calculated as a % of control
untreated cells. The values represent averages of 3 different experiments, each
performed in triplicate; bars, SD.
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NCI-H727 cells with octreotide (1 day) and then
melphalan (2 days)
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Figure 88: NCI-H727 cells were treated with octreotide (at 10 or 1000nM) for 24 hours
and then melphalan (0-100M) or doxorubicin (0-10M) for 72 hours, followed by 48
hours in drug-free media. In the graphs, the ‘0’ point of the x-axis is represented as
’0.1’ or ‘0.001’ due to the logarithmic scale of the x-axis. Proliferation was calculated
as a % of control untreated cells. The values represent averages of 3 different
experiments, each performed in triplicate; bars, SD.
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Many studies analysing the effect of drugs in cellular proliferation use drugs dissolved

in serum-free media to avoid any interaction of the drug with serum proteins, which

might affect the results. To assess whether lack of serum could have any effect in the

cytotoxicity of octreotide, we treated cells with octreotide at 0-10M for 24, 48 or 72

hours in media containing 5, 0.5 or 0% serum. In addition, octreotide in this study was

added fresh daily to enhance effectiveness. An example of this experiment is shown for

NCI-H727 cells in appendix 5E. Any anti-proliferative effect seen was due to the lack

of serum, confirming that octreotide is not cytotoxic to the cell lines used.

8.2.3    Octreotide effect on cell cycle of NET cell lines

Octreotide demonstrated lack of an anti-proliferative effect. As the results of the SRB

proliferation assay depend on the rate of cellular proliferation and not proliferation

itself, the lack of cytotoxicity shown by octreotide could have occurred for the reason

that the effect of octreotide is cytostatic, causing the cells to arrest in a specific phase of

the cell cycle.  To test this hypothesis, cells were treated with octreotide and analysed

by flow cytometry for DNA content, which denotes the cell cycle phase.

As seen in the upper left graph of figure 89, untreated cells in a histogram plot of events

(counts) vs fluorescence intensity (FL2-H) are presented as two peaks. The first peak

(on the left) represents cells in phase G1/S of the cell cycle, while the second peak

represents cells in the G2/M phase of the cell cycle. In any given cell population, more

cells are found in the G1/S phase of the cell cycle than in the G2/M phase. Any drug

causing cell cycle arrest will shift cells from one to the other peak of the histogram.

NCI-H727 cells were treated with octreotide at 0-10M for 72 hours. Even at the

highest dose, octreotide did not induce cell cycle arrest in NCI-H727 cells, as there is

no difference in cell counts between treated and untreated cells. A similar effect was

seen in the rest of the cell lines (appendix 5F-5H). The only difference was that at the

highest dose of octreotide (10M), which is at toxic and clinically irrelevant levels,

BON-1 cells move to the beginning of the x-axis, which indicates cell death by

apoptosis. This did not occur with any of the other cell lines tested which did not

undergo apoptosis at any dose given.
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Figure 89: NCI-H727 cells were treated with octreotide at 0-10,000nM for 24
hours. ‘FL2-H’ denotes DNA content by propidium iodide staining, while ‘counts’
denotes cell number. Bars M1 and M2 indicate populations of cells at phases G1
and G2/M of the cell cycle respectively.
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8.3 Discussion
8.3.1 Proliferation studies

In the second part of this study, the somatostatin analogue octreotide was assessed for

its effect on the cell growth of two rat islet tumour cell lines CRI-G1 and RIN-5F, the

NCI-H727 human lung carcinoid cell line and the BON-1 human pancreatic endocrine

cell line. Although, the receptors selective for octreotide were expressed in all cell lines,

octreotide treatment did not demonstrate any anti-proliferative or cytostatic activity

under the conditions used. All cell lines displayed resistance to octreotide even at toxic

doses.

Somatostatin analogues and in particular octreotide have been widely tested for their

effect on growth of cells in vitro and in xenograft models. The proliferation of AR42J

pancreatic cells was abolished by octreotide at concentrations as low as 0.1nM. The

growth of AR42J cells was either induced by EGF or gastrin, all of which promote the

growth of pancreatic cells (Charland et al., 2001; Hofsli et al., 2002). A similar effect

was seen in pancreatic growth in rats induced by caerulein (Charland et al., 2001).

Octreotide also inhibited the serum and bFGF stimulated growth of NIH3T3 cells

transfected with human SSTR2 receptor at doses up to 1nM via activation of tyrosine

phosphatases (Buscail et al., 1994). In our study the effect of the drugs was investigated

on the basal proliferation of neuroendocrine tumour cells, without induction by external

growth factors. The presence of exogenous factors may justify cytotoxicity observed by

the other groups.

8.3.2 Drug treatments in serum-free media

The cells in our study were also treated with drugs dissolved in complete media

containing 10% foetal calf serum. In both studies mentioned above using AR42J cells,

octreotide decreased proliferation of cells deprived of serum (Charland et al., 2001;

Hofsli et al., 2002). Cholangiocarcinoma cells also grown in serum-free conditions or

transplanted in nude mice showed reduction in tumour growth when octreotide was

added for 48 hours at 1-104 ng/ml (Zhao, 2002). A similar effect was seen in serum

deprived gastric adenocarcinoma SGC-7901 cells and in xenograft models with

octreotide added at concentrations up to 104 nM (Wang, 2003). Based on these facts,

we also treated cells with octreotide in 5, 0.5 or 0% serum-containing media. In this
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case, cell proliferation was inhibited by the lack of serum and not by octreotide,

confirming our previous results.

On the other hand, studies exist which, in concordance with our results have shown no

effect of octreotide on cell proliferation. Liebow and co-workers showed inhibition of

growth of the pancreatic cells Mia PaCa-2 by another somatostatin analogue, the RC-

160, but not by octreotide which was also tested (Liebow et al., 1989). Octreotide also

inhibited the GLP-1 induced insulin secretion in RIN-5F cells, but showed no effect on

basal or GLP-1 induced proliferation even in 1% serum, which agrees with our results

(Stark & Mentlein, 2002). Most recently, Ono et al. showed that the somatostatin

analogue SOM230 inhibited proliferation of NCI-H727 cells but octreotide did not

which confirms our results (Ono et al., 2007).

8.3.3 Apoptosis and cell cycle analysis

Other groups have shown an apoptotic or a cytostatic effect of octreotide. Oberg

showed that a high-dose octreotide treatment in a xenograft model resulted in an

increase of apoptotic cells, but tumour growth inhibition was related to cell cycle arrest

and not induction of apoptosis by octreotide (Imam et al., 1997). Octreotide treatment

in IL-6 dependent and independent multiple myeloma cells at 0-1000nM resulted in

inhibition of growth by blocking the cell cycle rather than decreasing the cell viability

(Georgii-Hemming, 1999). Finally, apoptosis and inhibition of angiogenesis was

induced in human rectal neuroendocrine carcinoma cells in vitro and in vivo by

octreotide, which resulted in tumour necrosis (Koizumi et al., 2002). In contrast to the

above groups, our results showed no blocking of the cell cycle or induction of apoptosis

by octreotide in four neuroendocrine cell lines.

8.3.4 Conclusions

Octreotide is a somatostatin analogue that is widely used for the detection of

neuroendocrine tumours due to its high affinity binding to somatostatin receptor 2A. As

part of the therapeutic treatment of gastrointestinal endocrine tumours it is mainly used

for the control of symptoms resulting from excessive hormone release in patients with

carcinoid, Verner-Morrison and glucagonoma syndromes. Despite the promising results

in in vitro models (Hofsli et al. 2002, Wang Chun-Hui et al., 2003), and the

stabilisation of tumour growth in 30 – 70% of neuroendocrine tumour patients (Behr et
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al., 2002), in our study, octreotide showed no cytotoxic or cytostatic activity. As

previously mentioned, the doses chosen were based on preclinical studies. Combined

treatment with chemotherapy had no added value in inhibition of proliferation of

neuroendocrine cells. As a result, a further examination of the conditions used will be

needed to examine the role of somatostatin receptors in the molecular biology of

neuroendocrine tumours.
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CHAPTER 9

CONCLUSIONS AND FUTURE WORK
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Three therapeutic targets in neuroendocrine tumours have been analysed in this study.

In chapters 4-6 we analysed the therapeutic potency of a well-known receptor tyrosine

kinase; EGFR. EGFR is expressed in many cancers and is associated with poor

prognosis. EGFR is frequently expressed in neuroendocrine tumours and has been

implicated with tumour growth and progression in gastrointestinal carcinoids and

PNETs (Wang et al., 1997; Nilsson et al., 1995; Rusch et al., 1996; Papouchado et al.,

2005; Wulbrand et al., 1998; Peghini et al., 2002). Blockade therefore of EGFR

signalling pathways represents a promising strategy for anti-cancer therapy.  Gefitinib

(Iressa or ZD1839) is a specific tyrosine kinase inhibitor of EGFR used for the

treatment of non-small cell lung cancer as well as for other solid tumours.

Antineoplastic activity has been shown in a variety of human cancers including

prostate, breast, ovarian, colon and lung cancer cells (Schiller, 2003; Herbst, 2002;

Blackledge & Averbuch, 2004).

Gefitinib alone or in combination with other anti-cancer therapies, such as

chemotherapy drugs and radiation therapy has demonstrated efficacy against tumour

growth in a variety of cancer cell lines and in xenograft models (Ciardiello et al., 2000;

Ciardiello et al., 2001b; Huang, 2002; Magne, et al., 2002; Sirotnak, et al., 2000). In

our study, gefitinib displayed a dose-response cytotoxic effect in four neuroendocrine

tumour cell lines, though in very high and clinically irrelevant doses. Gefitinib is known

to inhibit EGFR homodimers but not EGFR heterodimers, therefore the presence of

EGFR heterodimers could explain the relative resistance of the neuroendocrine tumour

cell lines to gefitinib. This is a theory worth further exploration. Gefitinib anti-

proliferative effect was associated with induction of apoptosis but no cell cycle arrest.

Gefitinib was also used in combination with anticancer drugs with a variety of

mechanisms of action, including the DNA cross-linking compound cisplatin, the

topoisomerase II poison etoposide, the mitotic inhibitor paclitaxel, and the

antimetabolite methotrexate. Gefitinib demonstrated synergy with etoposide in ¾ NET

cell lines and with cisplatin in NCI-H727 cell line. Gefitinib-induced apoptosis did not

result in synergy with all cytotoxic drugs used, therefore apoptosis alone cannot account

for the presence of absence of synergy.

The reason why gefitinib co-treatment led to synergistic anti-tumour effect with

etoposide but not methotrexate or paclitaxel, or why cisplatin increased the anti-
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proliferative effect of gefitinib in one cell line but not in the rest is unclear. It would be

interesting to see whether synergy shown with etoposide is also seen with other

topoisomerase II inhibitors such as teniposide or even doxorubicin, which intercalates

DNA resulting in impediment of topoisomerase II and DNA biosynthesis. In the same

mode, do other alkylating-like agents such as carboplatin or oxaliplatin have the same

effect as cisplatin, and is it cell type specific? This investigation would help understand

whether synergy occurs with anti-cancer agents according to their mechanism of action

and their direct or indirect effect on DNA, and lead to better combinations that can be

exploited in the clinic.

Analysis of the effect of chemotherapeutic drugs on EGFR activity showed transient

activation of EGFR after 3 hours of cisplatin treatment in all the NET cell lines, after 3

hours of incubation with etoposide in CRI-G1 and NCI-H727 cell lines, and after 6

hours of incubation with paclitaxel in RIN-5F cell line. Activation of EGFR by cisplatin

was mediated through the Ras/MAPK and PI-3K/Akt signalling cascades that promote

cell proliferation and survival. Therefore cisplatin may induce EGFR-dependent

survival pathways in neuroendocrine tumour cells. The etoposide-induced activation of

EGFR has not been assessed for downstream signalling and this could form a future

step in our research to see whether activation of EGFR-dependent survival pathways

applies to other anti-cancer drugs as well.  Again the question why cisplatin, which

synergised with gefitinib in one cell line only, led to EGFR activation but not paclitaxel

or methotrexate remains unanswered. The reason behind this may be associated with the

mode of action of each drug, and more agents of the same class with cisplatin should be

tested to delineate this effect. On the other hand, small molecule inhibitors of Akt and

MAPK are also currently under development. The demonstration of activated Akt and

MAPK after exposure to cisplatin identifies therapeutic potential in combination of

chemotherapy with Akt/MAPK inhibitors in neuroendocrine tumours.

This study has shown that sensitivity to chemotherapeutic agents can be enhanced

significantly by inhibition of growth factor pathways such as the EGFR signalling

pathway. In contrast to the preclinical data from other groups and ours, four large phase

III clinical trials in patients with either locally advanced stage III disease or stage IV

NSCLC failed to show any benefit for combined treatment of gefitinib with cisplatin,

carboplatin, gemcitabine or paclitaxel (Giaccone et al., 2004; Herbst et al., 2004;
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Gatzemeier et al., 2004; Moore et al., 2005). The upregulation of phosphorylated

receptor following treatment with chemotherapeutic agents shown by us and other

groups (Benhar et al., 2002) could explain the failure of combination treatments in

clinical trials, and further analysis of combined treatment scheduling as well as dosage

is needed for optimal results. In addition, recent studies have indicated that EGFR

mutations, including the commonly occurring EGFRvIII deletion mutation, can

determine tumour behaviour and response to anti-EGFR therapy. In particular, a

number of mutations have been discovered, occurring at the region encoding for the

ATP binding site of EGFR, which result in enhanced EGFR activation as well as a

higher susceptibility to TKIs (Lynch et al., 2004; Paez et al., 2004). These mutations

however, have been shown not to occur in neuroendocrine tumours (Gilbert et al.,

2005), whereas the role of EGFRvIII in neuroendocrine tumours has not yet been

determined. Whether specific mutations affect response to a chemotherapeutic agent is

still unclear and should be investigated.

To understand modulation of EGFR by cisplatin we analysed the effect of this agent on

EGFR localisation based on previous reports showing cisplatin-induced EGFR

translocation to the nucleus (Dittmann et al., 2005a). Also based on the clinical failure

of gefitinib with chemotherapy, but the success of cetuximab in radiosensitising

patients with head and neck squamous cell carcinoma (Bonner et al., 2006), we

investigated whether any interaction exists between radiation treatment and EGFR

inhibition. Cisplatin induced translocation in ¾ NET cell lines within 5 minutes after

drug exposure. X-ray irradiation at 4Gy induced EGFR nuclear entry in the same cell

lines as cisplatin also within 5 minutes after irradiation. This event was completely

abrogated by EGFR inhibitors gefitinib and cetuximab. Abortion of EGFR nuclear

entry was associated with a delay in the repair of radiation-induced double DNA strand

breaks. Inhibition of EGFR has previously been correlated to a decrease in DNA-PKCS

activity along with redistribution of this non-homologous end joining (NHEJ)-DNA

repair enzyme to the cytosol (Huang & Harari, 2000; Dittmann et al., 2005b;

Friedmann et al., 2006). Gefitinib treatment in neuroendocrine cells led to a small

increase in cytosolic amounts of DNA-PK but no direct association between EGFR

inhibition and DNAPK have been proved so far. Since there is a definite effect of anti-

EGFR therapy on DNA repair, the effect of nuclear EGFR and its inhibitors on

DNAPK will be studied further. Any physical association of the EGFR and DNA-PK
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can be analysed by immunoprecipitation experiments after irradiation and gefitinib

treatment. To further examine the relation between EGFR and DNA-PKcs activity after

exposure to ionising radiation, DNA repair can be examined by the comet assay using

two glioma cell lines: M059K and M059J. M059J cells are deficient in DNA-PKcs and

are more sensitive to radiation than the M059K cells, therefore any effect by EGFR

inhibitors should be identified in M059K cells only.

Further studies should also be carried out to determine whether cisplatin-induced

EGFR nuclear translocation is inhibited by co-treatment with gefitinib or cetuximab,

and whether anti-EGFR agents have any effect on DNA repair of interstrand cross-

links (ICL) produced by exposure to cisplatin. Although pathways of ICL repair have

been reported to involve excision repair (Sarkar et al., 2006), inhibition of the DNA-

PK was shown to modulate resistance to cisplatin (Durant & Karran, 2003). DNA-PK

involvement in ICL repair can be analysed as before by co-immunoprecipitations with

EGFR after cisplatin as well as quantitation of ICL repair by the comet assay. Apart

form DNA-PK, other DNA repair enzymes can also be analysed including ERCC1 and

XRCC1 (both involved in excision repair) to investigate whether other DNA repair

pathways can be modulated by nuclear EGFR.

Nuclear translocation of EGFR in response to irradiation or cisplatin is a novel function

of EGFR even though nuclear EGFR has been identified in breast cancer cells and its

locality has been associated with increased expression of Ki-67 proliferation index (Lo

et al., 2005a). Another mode of EGFR nuclear translocation is by ligand binding. EGF-

dependent translocation of EGFR was shown to lead to transcriptional activation of

genes involved in increased proliferation of tumours, including cyclin D1, B-Myb, and

inducible nitric oxide synthase (iNOS) (Lo & Hung, 2006). The last protein was shown

to induce activation of DNA-PK, thus connecting proliferation with increased DNA

repair (Xu et al., 2000). This mode of EGFR nuclear transfer has not been investigated

in neuroendocrine tumour cells, although activation of EGFR by EGF was shown not

to induce alterations in iNOS expression. It would be interesting to see whether EGF

can induce EGFR translocation and if this is associated with activation of proliferation

genes or with DNA repair.
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RIN-5F rat islet tumour cells was the only cell line not demonstrating EGFR nuclear

transfer by radiation or cisplatin, and treatment with EGFR inhibitors had no effect on

EGFR localisation or the kinetics of DNA repair of radiation-induced strand breaks.

Activation though of EGFR by cisplatin (but not radiation) was shown, even though it

had no effect on EGFR localisation, but it led to activation of Akt and MAPK survival

pathways. Taken together, the results in RIN-5F cells indicate a non-significant role of

EGFR in the growth of RIN-5F cells, or even an impairment of their nuclear transport

mechanism and this should be further investigated. It would be interesting to see

whether EGF leads to EGFR import in RIN-5F cells, which would prove that the

mechanisms of ligand dependent or independent transport are distinct as previously

postulated (Szumiel, 2006).

Chapter 6 analysed the possible mechanisms for EGFR nuclear transport using RIN-5F

cells as a negative control. Nuclear transport of EGFR is mediated through the nuclear

pore complex via association with karypherins (nuclear importins and exportins). The

inhibitor of nuclear import wheat germ agglutinin (WGA) blocked EGFR import in

CRI-G1 but not in RIN-5F cells and caused a delay in repair of radiation-induced DNA

strand breaks, while nuclear export inhibitor leptomycin B had no effect as a single

agent, but abrogated the gefitinib-induced delay in the repair of strand breaks.

Association with nuclear importins requires a nuclear localisation signal (NLS)

sequence. Transfection with mutant EGFR in the putative NLS identified by Hsu &

Hung (2007), inhibited EGFR nuclear transit, confirming the involvement of the NLS

sequence in EGFR nuclear transport. Furthermore, similar studies on the mutant EGFR

cell lines and other specific EGFR deletion constructs will enable the mapping of the

EGFR regions that may be involved in transcriptional activation of genes by EGFR.

Further investigation is needed to understand where the EGFR nuclear transport is

initiated and what mechanisms are involved, for example if internalisation of EGFR

takes place in clathrin-coated pits or caveosomes (see section 6.1.2 for details). For

this, the inhibitor of clathrin-coated pit formation -methyl cyclodextrin can be used. In

addition, we don’t know whether radiation-induced EGFR nuclear transport involves

activation of downstream EGFR signalling pathways. Thus, the effect of SR13668
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inhibitor of Akt, or of PD98059 specific inhibitor of MEK1/2 kinases can be analysed

to identify connection between EGFR signalling and nuclear entry.

It must be noted that this study has been qualitative rather than quantitative as time was

a limiting factor. Statistical analysis of the results obtained would involve the use of

comparative tests such as the ANOVA (analysis of variance) and the t-test.

A. The three-way ANOVA test would be used for statistical analysis of dose response

curves shown in proliferation studies of:

1. Gefitinib alone or in combination with chemotherapeutic agents

2. Radiation alone or in combination with gefitinib or cetuximab

The three-way ANOVA is based on the equation y=x1+x2+x3+where the dependent

variable y denotes the % proliferation, x1 is the concentration of the single or double

treatments (values of the x-axis), x2 denotes the presence or absence of treatment A

(1=gefitinib, 2=radiation) with values of 1 or 0 respectively, x3 denotes the presence or

absence of treatment B (1=chemotherapeutic agent, 2=gefitinib) with values of 1 or 0

respectively, and is the error.

The reason for using the three way ANOVA is because the y value can predicted when

the values of the x factors called independent variables or fixed factors is known. The

level of significance, which is the probability to reject the null hypothesis (the null

hypothesis always states that there is no difference between two sets of data) is 0.05. P

values are calculated for x1, x2, and x3. If for any of the fixed factors p> 0.05 then the

fixed factor is not statistically significant.

B. For comet analysis data of double treatments using radiation alone, or radiation in

combination with gefitinib, or of triple treatments (chapter 6) using radiation with

gefitinib and WGA/leptomycin, the three-way ANOVA and the five-way ANOVA

tests would be used. The equations would be in the form of y= x1+x2+x3+y=

x1+x2+x3+x4+ x5+where the dependent variable y denotes the % tail moment, the

independent variable x1 denotes the time (values of the x-axis), x2 denotes the

presence or absence of treatment A (radiation) with values of 1 or 0 respectively, x3

denotes the presence or absence of treatment B (gefitinib) with values of 1 or 0
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respectively, x4 denotes the presence or absence of treatment C (WGA) with values

of 1 or 0 respectively, x5 denotes the presence or absence of treatment D

(leptomycin) with values of 1 or 0 respectively, and is the error. The level of

significance is 0.05 and p values are calculated for each of the x factors. Statistical

significant factors have p<0.05.

C. For comet analysis in cells transfected with wild type or mutant EGFR the four-

way ANOVA test would be used. In the equation y= x1+x2+x3+x4+, y denotes the

% tail moment, x1-x4 factors denote the time,  presence or absence or radiation,

presence or absence of gefitinib, and presence of wild type or mutant EGFR, and

is the error. The calculation of p values is same as above.

D. For western blots, the amounts of P-EGFR, P=MAPK, and P-Akt would be

quantified in relation to alpha tubulin control and total unphosphorylated protein

level in each case. In this study the densitometry analysis amounts where quantified

only in relation to the untreated control band and this quantification may be

different to the results that would be obtained with the new quantification. To

assess the statistical significance of treatments with chemotherapeutic agents at

different doses or for different time intervals the two-way ANOVA test would be

employed, as only two factors (concentration and time) affect the y value (level of

protein). The equation would be y= x1+x2+, where x1 denotes the concentration, x2

denotes the time, and is the error. The calculation of p values is same as above.

E. For western blots of EGFR in cells treated with radiation alone or in combination

with WGA or leptomycin, the level of the protein would be compared with each

one of the factors (radiation, WGA, or leptomycin or combinations of two)

separately. As the amount of each band separately (three sets of experiments for

each sample), which is called the test variable, follows a normal distribution, the t-

test can be employed. The equation would be y=x1+wherex would denote the

appropriate factor and is the error. The calculation of p values is same as above.

NOTE: The equations presented above represent the relation between the dependent (y)

and independent (x) variables and are not the actual equations used in the statistical

analysis, which are much more complex and are not dealt with in this study.



237

In chapter 7, we examined C-KIT, a tyrosine kinase inhibitor that has also been

identified in a variety of tumour cells including gastrointestinal stromal tumours

(GISTs) (Fletcher et al., 2002), and its expression has been associated with a poor

outcome for patients (Ferrari et al., 2006). Based on the clinical efficacy of imatinib

mesylate tyrosine kinase inhibitor (TKI) against C-KIT in GISTs (Cohen et al., 2005)

we investigated the presence of C-KIT in neuroendocrine tumour patients by

immunohistochemistry.

Expression of C-KIT was established in a range of tumours that included foregut NETs

(mainly pancreatic NETs and gastric carcinoids), midgut NETs (mainly ileal and

appendiceal carcinoids), hindgut NETs, and NETs of unknown primary site. Therefore,

C-KIT has been identified as a receptor tyrosine kinase with therapeutic potential.

Unfortunately, clinical trials for imatinib mesylate as a single agent have not

demonstrated objective responses or stability of disease in patients with neuroendocrine

tumours (Carr et al., 2004; Dy et al., 2005; Krug et al., 2005; Gross et al., 2006). The

efficacy of imatinib mesylate being used as an adjuvant therapy is still not clear. Some

investigators have suggested using C-KIT expression as a prognostic marker (Erler et

al., 2004; Ferrari et al. 2006), but whether this is true for neuroendocrine tumours

remains to be shown.

Nevertheless, new tyrosine kinase inhibitors with multiple targets including C-KIT

have been synthesised, proving that therapies interacting with C-KIT-signalling

pathway should be taken into account for possible future clinical trials. A recently

developed drug named sunitinib (SU011248; Sutent) is a multi-targeted tyrosine kinase

inhibitor with selectivity for PDGF receptors, VEGF receptors, FMS-like tyrosine

kinase 3 (FLT3), and C-KIT, that was known to inhibit angiogenesis (Chow &

Eckhardt, 2007). Sunitinib has demonstrated in vitro inhibition of C-KIT

phosphorylation and cell proliferation at nanomolar concentrations, and is therefore 10

times more potent that imatinib (Abrams et al., 2003). Compared with imatinib,

sunitinib is also more effective against PDGFR and inhibits additional receptors

including VEGFR2, and this may account for its efficacy in imatinib-resistant GISTs

(Demetri et al., 2009). Recently completed phase II and III trials in renal cell carcinoma

(RCC) and imatinib-refractory GISTs, respectively, have led to approval of sunitinib by
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the US FDA for these diseases in 2006. Additionally, phase II clinical trials with

sunitinib have shown anti-tumour activity in patients with advanced malignancies,

including neuroendocrine tumours, breast cancer, and colorectal cancer (Chow &

Eckhardt, 2007). Clinical trials of sunitinib in NETs have shown very promising results

(Kulke et al., 2008) The most successful outcome was recently released in a clinical

trial of sunitinib in patients with non-functioning NET, which had to be stopped early

after interim analysis demonstrated a significant survival benefit in the sunitinib treated

group (Raymond et al., 2009). Therefore, targeting C-KIT in combination with other

biomarkers may prove useful for the treatment of neuroendocrine tumour patients.

Chapter 8 included assessment of somatostatin analogue octreotide for any effect on

growth of neuroendocrine tumour cells. Somatostatin binds somatostatin receptors

(SSTR1-SSTR5), all of which are overexpressed in NET patients with the SSTR2

subtype being the most frequently expressed. The molecular cloning of five distinct

subtypes of somatostatin receptors in the 1980s significantly increased our insight into

the biology of somatostatin and its receptor subtypes and led to the development of

subtype-selective peptides and nonpeptide agonists and antagonists (Öberg, 2004).

Somatostatin analogues octreotide and lanreotide are widely accepted as the main

treatment for symptomatic relief of NET patients, especially those tumours

characterised by hypersecretion of hormones such as VIPoma, glucagonoma and

carcinoid syndrome. Somatostatin receptor scintigraphy is the main imaging technique

for the localization and staging procedure in these tumours (Melen-Mucha et al., 2006).

Clinical trials with long-term somatostatin analogues have not demonstrated significant

anti-tumour activity with less than 5% of patients showing objective tumour regression,

although about 50% of patients showed stabilisation of tumour size (Modlin et al.,

2008).  In agreement with this, our results showed no effect on tumour growth of

neuroendocrine tumour cells by octreotide. Octreotide was used at high concentrations

and added to cells in both serum-free and serum-containing media. No effect on cell

proliferation or cell cycle was observed in any of the cells tested. However,

somatostatin receptors are biologically specific receptor-targets to NETs and new

strategies are being developed for their utilisation. Somatostatin receptors targeted with

somatostatin analogues conjugated to cytotoxic drugs have shown promising results

and are being further developed in clinical trials (Melen-Mucha et al., 2006; Modlin et
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al., 2008). New biological agents and somatostatin-tagged radionuclides are under

investigation. Furthermore, treatment of neuroendocrine gut tumours with ultra-high

doses of somatostatin analogues has demonstrated significant clinical effects in patients

resistant to standard-dose treatment with the same somatostatin analogue. Finally, new

somatostatin analogues are being designed with specificity to one somatostatin receptor

subtype or all subtypes (pan-receptor analogues) that can bind the receptor(s) with

higher affinity but causing less toxic effects (Öberg, 2004; Modlin et al., 2008).

Somatostatin receptors are molecular targets closely associated to NETs and novel

treatment regimens for NET patients should take advantage of this distinctive

relationship.

Finally, apart from the three receptors analysed in this study, other protein targets have

been identified in neuroendocrine tumours including the proangiogenic VEGFR and its

ligand, PI-3K and Akt, and the mammalian target of rapamycin (mTOR). Drugs against

these proteins have been developed and some have been tested in clinical trials, and

these could be analysed for efficacy in combination with chemotherapy or radiotherapy

as with EGFR.

Taken together, our results may explain why EGFR has been associated with chemo- or

radioresistance of tumour cells, and it may also explain the lack of efficacy of

chemotherapy or radiotherapy in neuroendocrine tumour patients. We conclude by

suggesting a combination modality using radiotherapy and anti-EGFR therapy for the

treatment of neuroendocrine tumours. Indeed, based on our study, a clinical trial will

take place at the Royal Free Hospital to evaluate the effect of radiotherapy combined

with cetuximab in selected neuroendocrine tumour patients.
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Appendix 1A: Gefitinib and chemotherapeutic agents in SHP-77 cells
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Cells were treated with chemotherapeutic agents at the indicated concentrations alone,
simultaneously with gefitinib (10M) for 72 hours, or with drug A for 1 day followed
by drug B for 2 days and vice versa, followed by 48 hours in drug free medium.
Proliferation was calculated as a % of control untreated cells. Data represents the
averages of three different experiments, each performed in triplicate; bars, SD.
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Appendix 1B: Gefitinib and chemotherapeutic agents in CRI-G1 cells
CRI-G1 cells w ith gefitinib and cisplatin
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Cells were treated with chemotherapeutic agents at the indicated concentrations alone,
simultaneously with gefitinib (10M) for 72 hours, or with drug A for 1 day followed
by drug B for 2 days and vice versa, followed by 48 hours in drug free medium.
Proliferation was calculated as a % of control untreated cells. Data represents the
averages of three different experiments, each performed in triplicate; bars, SD.
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Appendix 1C: Gefitinib and chemotherapeutic agents in NCI-H727 cells
NCI-H727 cells w ith gefitinib and cisplatin
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Cells were treated with chemotherapeutic agents at the indicated concentrations alone,
simultaneously with gefitinib (10M) for 72 hours, or with drug A for 1 day followed
by drug B for 2 days and vice versa, followed by 48 hours in drug free medium.
Proliferation was calculated as a % of control untreated cells. Data represents the
averages of three different experiments, each performed in triplicate; bars, SD.
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Appendix 1D: Gefitinib and chemotherapeutic agents in RIN-5F cells
RIN-5F cells w ith gefitinib and cisplatin
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Cells were treated with chemotherapeutic agents at the indicated concentrations alone,
simultaneously with gefitinib (10M) for 72 hours, or with drug A for 1 day followed
by drug B for 2 days and vice versa, followed by 48 hours in drug free medium.
Proliferation was calculated as a % of control untreated cells. Data represents the
averages of three different experiments, each performed in triplicate; bars, SD.
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Appendix 1E: Gefitinib and chemotherapeutic agents in HCT-116 cells
HCT-116 cells with gefitinib and cisplatin
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Cells were treated with chemotherapeutic agents at the indicated concentrations alone,
simultaneously with gefitinib (10M) for 72 hours, or with drug A for 1 day followed
by drug B for 2 days and vice versa, followed by 48 hours in drug free medium.
Proliferation was calculated as a % of control untreated cells. Data represents the
averages of three different experiments, each performed in triplicate; bars, SD.
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Appendix 1F: Time course analysis of the effect of methotrexate on EGFR
activity

Methotrexate at 100M

Tyrosine phosphorylation of EGFR in NET cell lines determined by immunoblotting
for PY20 (170kDa). Cells were treated with methotrexate at 100M for 3, 6 or 12
hours. Bottom panel shows -tubulin bands (50kDa) as loading control. Amounts of P-
EGFR in percentages were determined by densitometry analysis.
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Appendix 1G: Time course analysis of the effect of paclitaxel on EGFR
activity

Paclitaxel at 10M

Tyrosine phosphorylation of EGFR in NET cell lines determined by immunoblotting
for PY20 (170kDa). Cells were treated with paclitaxel at 10M for 3, 6 or 12 hours.
Bottom panel shows -tubulin bands (50kDa) as loading control. Amounts of P-EGFR
in percentages were determined by densitometry analysis.
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Appendix 1H: Dose response analysis of the effect of methotrexate on
EGFR activity

Methotrexate for 24 hours

Tyrosine phosphorylation of EGFR in NET cell lines determined by immunoblotting
for PY20 (170kDa). Cells were treated with methotrexate at 0, 10, 25, 50 or 100M for
24 hours. Bottom panel shows -tubulin bands (50kDa) as loading control. Amounts of
P-EGFR in percentages were determined by densitometry analysis.
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Appendix 1I: Dose response analysis of the effect of paclitaxel on EGFR
activity

Paclitaxel for 24 hours

Figure 67: Tyrosine phosphorylation of EGFR in NET cell lines determined by
immunoblotting for PY20 (170kDa). Cells were treated with paclitaxel at 0, 1, 2.5, 5 or
10M for 24 hours. Bottom panel shows -tubulin bands (50kDa) as loading control.
Amounts of P-EGFR in percentages were determined by densitometry analysis.
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Appendix 2A: Radiation and EGFR inhibitors in proliferation study using
NCI-H727 cells
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Cells were treated with radiation at 30Gy on day 1 and gefitinib or cetuximab at the
indicated concentrations on day 2, or in reverse order, followed by 48 hours in drug
free medium. Proliferation was calculated as a % of control untreated cells. Data
represents the averages of three different experiments, each performed in triplicate;
bars, SD.
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Appendix 2B: Radiation and EGFR inhibitors in proliferation study using
SHP-77 cells
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Cells were treated with radiation at 4Gy on day 1 and gefitinib or cetuximab at the
indicated concentrations on day 2, or in reverse order, followed by 48 hours in drug
free medium. Proliferation was calculated as a % of control untreated cells. Data
represents the averages of three different experiments, each performed in triplicate;
bars, SD.
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Appendix 2C: Radiation and EGFR inhibitors in DNA repair analysis
using NCI-H727 cells

Radiation and gefitinib in NCI-H727 cells
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Measurement of irradiation-induced DNA strand breaks and their repair in NCI-H727
cells. Strand break formation quantitated as tail moment, plotted against time after
irradiation. Cells were treated with gefitinib at 10M or cetuximab at 30nM for 3
hours, drug was removed, and then cells were irradiated at 30 Gy and incubated for up
to 120 minutes at 37oC. Data represents the averages of three different experiments,
each performed in triplicate; bars, SD.
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Appendix 2D: Radiation and EGFR inhibitors in DNA repair analysis
using SHP-77 cells

Radiation and gefitinib in SHP-77 cells

0
2
4
6
8

10
12
14
16

0 50 100 150

Time (minutes)

ta
il 

m
om

en
t

Radiation control

Gefitinib then radiation

 Radiation and cetuximab in SHP-77 cells

0
2
4
6
8

10
12
14
16

0 50 100 150

Time (minutes)

ta
il 

m
om

en
t Radiation

control
Cetuximab then
radiation

Measurement of irradiation-induced DNA strand breaks and their repair in SHP-77
cells. Strand break formation quantitated as tail moment, plotted against time after
irradiation. Cells were treated with gefitinib at 10M or cetuximab at 30nM for 3
hours, drug was removed, and then cells were irradiated at 15 Gy and incubated for up
to 120 minutes at 37oC. Data represents the averages of three different experiments,
each performed in triplicate; bars, SD.
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Appendix 3A: Radiation with gefitinib and EGFR nuclear transport
inhibitors in DNA repair analysis using NCI-H727 cells

Measurement of irradiation-induced DNA strand breaks and their repair in NCI-H727
cells. Strand break formation quantitated as percentage of control cell (irradiated cell at
t=0) tail moment, plotted against time after irradiation. Cells were treated with gefitinib
at 10M for 3 hours, and/or WGA (0.05mg/ml) or leptomycin B (2nM) for 30 minutes.
Drug was removed, and then cells were irradiated at 15Gy and incubated for up to 120
minutes at 37oC. Data represents the averages of three different experiments, each
performed in triplicate; bars, SD



255

Appendix 3B: Radiation with gefitinib and EGFR nuclear transport
inhibitors in DNA repair analysis using SHP-77 cells

Measurement of irradiation-induced DNA strand breaks and their repair in SHP-77
cells. Strand break formation quantitated as percentage of control cell (irradiated cell at
t=0) tail moment, plotted against time after irradiation. Cells were treated with gefitinib
at 10M for 3 hours, and/or WGA (0.05mg/ml) or leptomycin B (2nM) for 30 minutes.
Drug was removed, and then cells were irradiated at 15Gy and incubated for up to 120
minutes at 37oC. Data represents the averages of three different experiments, each
performed in triplicate; bars, SD
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Appendix 3C: Radiation with gefitinib and EGFR nuclear transport
inhibitors in immunofluorescent analysis using NCI-H727 cells

NCI-H727 cells were treated with gefitinib at 10M for 3 hours and/or WGA
(0.05mg/ml) or leptomycin B (2nM) added in the last 30 minutes. Cells were then
irradiated at 30Gy and incubated for 5 minutes at 37oC. Cells were then fixed and
stained for EGFR (green) and nucleus was stained with propidium iodide (red).
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Appendix 3D: Radiation with gefitinib and EGFR nuclear transport
inhibitors in immunofluorescent analysis using SHP-77 cells

SHP-77 cells were treated with gefitinib at 10M for 3 hours and/or WGA
(0.05mg/ml) or leptomycin B (2nM) added in the last 30 minutes. Cells were then
irradiated at 4Gy and incubated for 5 minutes at 37oC. Cells were then fixed and
stained for EGFR (green) and nucleus was stained with propidium iodide (red).
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Appendix 4: Titration of anti-gastrin pathway drugs in SW1222 and
HCT-116 colon cancer cells

Immunoblot of lysates from CRI-G1, NCI-H727, SHP-77 and RIN-5F cell lines using
1µg/ml anti-c-KIT antibody for 2 hours. The bands of 145kDa were revealed using an
HRP-conjugated goat anti-rabbit antibody.

NCI-H727    SHP-77    CRI-G1    RIN-5F
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Appendix 5A: Titration of octreotide in CRI-G1, RIN-5F and BON-1 cells

Titration of octreotide in CRI-G1, RIN-5F and BON-1 cells. Cells were treated with
octreotide at 0-1000nM for 72 hours followed by 2 days incubation in drug free media.
In the graphs, the ‘0’ point of the x-axis is represented as ‘0.001’ due to the logarithmic
scale of the x-axis. Proliferation was calculated as a % of control untreated cells. The
values represent averages of 3 different experiments, each performed in triplicate; bars,
SD.
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Appendix 5B (part I): Chemotherapeutic agents with octreotide in
CRI-G1 cells

CRI-G1 cells were treated with octreotide (at 10 or 1000nM) and cisplatin or etoposide
(both at 0-100M) for 72 hours, followed by 48 hours in drug-free media. In the
graphs, the ‘0’ point of the x-axis is represented as ‘0.001’ due to the logarithmic scale
of the x-axis. Proliferation was calculated as a % of control untreated cells. The values
represent averages of 3 different experiments, each performed in triplicate; bars, SD.
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Appendix 5B (part II): Chemotherapeutic agents with octreotide in
CRI-G1 cells

CRI-G1 cells were treated with octreotide (at 10 or 1000nM) and melphalan (0-
100M) or doxorubicin (0-10M) for 72 hours, followed by 48 hours in drug-free
media. In the graphs, the ‘0’ point of the x-axis is represented as ‘0.001’ due to the
logarithmic scale of the x-axis. Proliferation was calculated as a % of control untreated
cells. The values represent averages of 3 different experiments, each performed in
triplicate; bars, SD.
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Appendix 5C (part I): Chemotherapeutic agents with octreotide in
RIN-5F cells

RIN-5F cells were treated with octreotide (at 10 or 1000nM) and cisplatin or etoposide
(both at 0-100M) for 72 hours, followed by 48 hours in drug-free media. In the
graphs, the ‘0’ point of the x-axis is represented as ‘0.001’ due to the logarithmic scale
of the x-axis. Proliferation was calculated as a % of control untreated cells. The values
represent averages of 3 different experiments, each performed in triplicate; bars, SD.
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Appendix 5C (part II): Chemotherapeutic agents with octreotide in
RIN-5F cells

RIN-5F cells were treated with octreotide (at 10 or 1000nM) and melphalan (0-100M)
or doxorubicin (0-10M) for 72 hours, followed by 48 hours in drug-free media. In the
graphs, the ‘0’ point of the x-axis is represented as ‘0.001’ due to the logarithmic scale
of the x-axis. Proliferation was calculated as a % of control untreated cells. The values
represent averages of 3 different experiments, each performed in triplicate; bars, SD.
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Appendix 5D (part I): Chemotherapeutic agents with octreotide in
BON-1 cells

BON-1 cells were treated with octreotide (at 10 or 1000nM) and cisplatin or etoposide
(both at 0-100M) for 72 hours, followed by 48 hours in drug-free media. In the
graphs, the ‘0’ point of the x-axis is represented as ‘0.001’ due to the logarithmic scale
of the x-axis. Proliferation was calculated as a % of control untreated cells. The values
represent averages of 3 different experiments, each performed in triplicate; bars, SD.
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Appendix 5D (part II): Chemotherapeutic agents with octreotide in
BON-1 cells

BON-1 cells were treated with octreotide (at 10 or 1000nM) and melphalan (0-100M)
or doxorubicin (0-10M) for 72 hours, followed by 48 hours in drug-free media. In the
graphs, the ‘0’ point of the x-axis is represented as ‘0.001’ due to the logarithmic scale
of the x-axis. Proliferation was calculated as a % of control untreated cells. The values
represent averages of 3 different experiments, each performed in triplicate; bars, SD.
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Appendix 5E: Octreotide effect in cell proliferation in media containing
5%, 0.5% or 0% serum

NCI-H727 cells with octreotide for 72 hours (changed daily)
in 5, 0.5 and 0% serum-containing media
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Octreotide at 0-10M added for 72 hours (changed daily) in media containing 5, 0.5 or
0% serum. Proliferation was calculated as a % of control untreated cells. The values
represent averages of 2 different experiments, each performed in triplicate; bars, SD.
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Appendix 5F: Octreotide effect on the cell cycle in BON-1 cells

BON-1 cells were treated with octreotide at 0-10,000nM for 24 hours. ‘FL2-H’
denotes DNA content by propidium iodide staining, while ‘counts’ denotes cell
number. Bars M1 and M2 indicate populations of cells at phases G1 and G2/M
of the cell cycle respectively.
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Appendix 5G: Octreotide effect on the cell cycle in CRI-G1 cells

CRI-G1 cells were treated with octreotide at 0-10,000nM for 24 hours. ‘FL2-
H’ denotes DNA content by propidium iodide staining, while ‘counts’ denotes
cell number. Bars M1 and M2 indicate populations of cells at phases G1 and
G2/M of the cell cycle respectively.
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Appendix 5H: Octreotide effect on the cell cycle in RIN-5F cells

RIN-5F cells were treated with octreotide at 0-10,000nM for 24 hours. ‘FL2-
H’ denotes DNA content by propidium iodide staining, while ‘counts’ denotes
cell number. Bars M1 and M2 indicate populations of cells at phases G1 and
G2/M of the cell cycle respectively.
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