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Abstract 
Differentiating neurones respond to extracellular signalling cues that affect the actin 

cytoskeleton and influence the outgrowth and retraction of cellular processes. Rac1 

belongs to the family of Rho GTPases that play a key role in actin organisation during 

neuronal development. Rac1 promotes lamellipodia formation and neurite outgrowth, 

and is also involved in axonal retraction pathways. α2-Chimaerin down-regulates 

Rac1 and is involved in neuronal plasticity and axonal guidance through a wide 

spectrum of interacting partners. The N5-glutamine methyltransferase HemK1 was 

previously identified in our lab as a novel interacting partner of α2-chimaerin, in a 

yeast two-hybrid screen. The aim of this study was to characterise HemK1 and 

investigate its role in neurite outgrowth. 

N5-glutamine methyltransferases are universally conserved in nature and little studied 

in vertebrates. HemK1 and related protein HemK2 are implicated in the control of 

translation termination by methylating the polypeptide chain release factors, a 

modification that mediates efficient translation termination in their bacterial and yeast 

homologues. Analyses of their transcript levels in rat embryonic brains by quantitative 

real-time PCR indicated that both HemK1 and HemK2 are expressed at comparable 

levels to α2-chimaerin in the brain and also in hippocampal neurones. HemK1 

monoclonal antibodies detected an endogenous protein in brain mitochondrial 

fractions, but not in cytosol. When over-expressed, HemK1 co-localised with its 

proposed mitochondrial substrate mtRF1a in cells and also exhibited partial co-

localisation with Dcp1b, a component of the mRNA decay machinery. Both HemK1 

and HemK2 associated with α2-chimaerin, as well as with their proposed substrates, 

mtRF1a and eRF1. α2-Chimaerin influences neuronal morphology and dendritic 

pruning. ShRNA knock-down of HemK1 or HemK2 in primary rat hippocampal 

neurones in culture promoted increased branching and complexity of neurites as 

assessed by confocal microscopy and Sholl analysis. These results suggest a novel 

link between translational control mechanisms and Rac signalling pathways in 

developing neurones.  
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The Brain 
The brain is the most complex part of the central nervous system in all vertebrate and 

most invertebrate animals, while it is the less-understood of the human organs. 

Electrochemical processes originating in the brain order the conscious and 

unconscious behaviour of an individual, be it thought, memory or involuntary actions 

and sensory perception among others. The complex functions of the brain are 

undertaken largely by neuronal cells whose well-being is maintained by glial cells that 

provide support and protection maintaining a stable environment for their growth and 

survival. It is estimated that the adult human brain contains an average of 86.1 billion 

neurones (Azevedo et al, 2009) while the total number of synapses in the neocortex, 

the outer layer of the cerebral hemispheres, can reach as much as 164 trillion (Tang et 

al, 2001a). The human brain develops in a series of orchestrated stages that give rise 

to the complex topology, compartmentalisation and organisation of this organ. In 

early embryonic development neurulation gives rise to the neural tube that eventually 

forms a closed cylinder that separates from the surface ectoderm. Differentiation of 

the neuronal tube gives rise to the brain and the spinal cord. On an anatomical level 

the neural tube and its lumen constrict to give rise to the chambers of the brain and the 

spinal cord. At the tissue level the cells of the neural tube wall rearrange to form the 

different functional regions of the central nervous system. At the cellular level the 

neuroepithelial cells differentiate to give rise to neurone cells and glial cells, the main 

components of the brain. The newly formed neurone cells migrate to different parts of 

the brain to self-organise to the different functional brain regions (Gilbert, 2003). At 

the final step of embryonic brain development the neurones extend dendrites and 

axons to form synapses with neighbouring cells, and thus give rise to the complex 

neural circuitry of the brain. 

 

The Neurones 
The neurones provide the lines of communication of the nervous system sending 

signals to each other and other cells in the body including muscle and endocrine cells. 

Neuronal cells are highly differentiated with complex morphology allowing 

specialisation of function. A generic representation of a neurone gives a picture of a 

polarised cell consisting of cell body, the long process of the axon that features a 
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growth cone ending, and smaller processes that protrude from the cell body that 

constitute the dendrites (Figure 1.1). Neuronal cells communicate through the release 

of chemical signals propagating action potentials from cell to cell through synapses. 

Synaptic connections between neurones can occur between axons, dendrites and the 

cell body, forming dendrodendritic, axoaxonic, axodendritic and axosomatic synapses 

(Figure 1.1). 

 

 

 

 

 

 

 

 

 

 

 

 

The early stages of neuronal differentiation see the development of an axon and 

multiple dendrites that will eventually form connections with neighbouring cells 

through synapses and mediate the formation of a neuronal network. Primary cultures 

of dissociated hippocampal neurones are a widely used model system in the study of 

neurone polarisation and axonal development (Arimura and Kaibuchi, 2007). An early 

study by Dotti et al described the development of hippocampal neurones in culture in 

five distinct stages (Figure 1.2) (Dotti et al, 1988). The freshly plated neurones 

initially extend lamellipodia around the soma (stage 1) that give rise to multiple 

processes of approximately equal length described as immature neurites (stage 2). 

Approximately 1.5 days in culture the cells begin to acquire polarisation with one of 

the immature neurites rapidly elongating and exhibiting axonal characteristics (stage 

3). After 2-3 days in culture the remaining neurites develop to give rise to multiple 

dendrites (stage 4). The final stage of neuronal development in culture comes with the 

further maturation of axons and dendrites and the formation of synaptic contacts after 

7 days in vitro (stage 5) (Dotti et al, 1988; Yoshimura et al, 2006). Studies have 

suggested that while neurites have equal chances of becoming an axon, the neurite 

Figure 1.1 Synapses between 
neurones. Neurones can form synapses 
between axons (axoaxonic), axons and 
dendrites (axodendritic), axons and the 
cell soma (axosomatic) and also 
between dendrites (dendrodendritic). 
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that is finally specified to become an axon negatively regulates the remaining neurites 

preventing them from becoming axons (Dotti and Banker, 1987; Goslin and Banker, 

1989). This suggests a model where neurites regulate their growth against each other, 

each one sending a growth promoting signal to it self and an inhibitory signal to 

neighbouring neurites maintaining a balance of opposite signals that gives rise to the 

symmetrical morphology of stage 2 neuronal development (Andersen and Bi, 2000). 

This balance is broken when one neurite elongates and over-takes the negative feed-

back from other neurites while sending growth inhibitory signals preventing 

simultaneous elongation of other neurites. This gives rise to initial polarisation 

observed in stage 3 neurones in culture, resulting in the formation of a single axon and 

multiple dendrites (Figure 1.2) (Bradke and Dotti, 2000). 

 

 

 

 

 

Studies on the intracellular signalling pathways that govern the axonal and dendritic 

development have revealed a series of factors that play a role in neuronal polarisation. 

The family of Rho GTPases regulates the actin cytoskeleton in developing processes 

in response to extracellular stimuli. The three best studies Rho GTPases, Rho that 

regulates the formation of stress fibers and focal adhesions (Ridley and Hall, 1992), 

Rac that is responsible for the formation of lamellipodia (Ridley et al, 1992) and 

Cdc42 that mediates filopodia formation (Kozma et al, 1997), all play an important 

role in regulating cell polarity. Furthermore the signalling pathway of 

Figure 1.2 Stages of development of hippocampal neurones in culture.  
The development of hippocampal neurones in culture can be described in five stages that see 
the development of neurites subsequently giving rise to an axon and dendrites. (adapted 
from Dotti et al, 1988). 
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phosphatidylinositol 3-kinase (PI3-kinase), Akt and GSK-3β has been shown to play a 

role in neuronal polarity. PI3-kinase is important in determining axonal specification 

and elongation (Shi et al, 2003). PI3-kinase activates Akt that in turn mediates the 

phosphorylation of GSK-3β, resulting in downregulation of GSK-3β activity, a step 

required for neuronal polarisation (Scheid and Woodgett, 2001; Yoshimura et al, 

2005; Jiang et al, 2005). GSK-3β regulates neuronal polarity by phosphorylating the 

collapsin response mediator protein-2 (CRMP-2) (Yoshimura et al, 2005), a protein 

that promotes microtubule assembly in vitro (Fukata et al, 2002), is highly expressed 

in axons and plays an important role in axonal formation (Yoshimura et al, 2005) 

 

Defects in neuronal development can give rise to cognitive disorders as well as motor 

disability and autism. The family of Rho GTPases is implicated in neuronal 

morphogenesis by regulating the actin cytoskeleton and directing morphological 

events of cell development, differentiation and establishment of polarity. A number of 

effector and regulator proteins have been identified mediating the effects of Rho 

GTPases to the cytoskeleton and mutations in these genes have been associated with 

neurological disorders, including mental retardation and amyotrophic lateral sclerosis 

(Kasri and Aelst, 2008). A number of Rho GTPase effectors and regulators involved 

in neuropathology are summarised in table 1.1. 

 

 

Gene (locus) Protein Function Clinical Manifestation 

OPHN1 (X-q12) Oligophrenin-1 Rho family GAP for RhoA/Rac1/Cdc42 non-syndromic X-linked 
Mental Retardation 

PAK3 (Xq22) PAK3 Ser/Thr kinase effector of Rac1/Cdc42 
non-syndromic X-linked 
Mental Retardation, 
Alzheimer's Disease 

ARHGEF6 
(Xq26) Cool2 GEF for Rac/Cdc42 interacts with PAK non-syndromic X-linked 

Mental Retardation 

FDG1 (Xp11) FDG1 GEF for Cdc42 
non-syndromic X-linked 
Mental Retardation, 
faciogenital dysplasia 

OCRL1 (Xq24) OCRL1 Rac GAP Lowe syndrome 

FMR1 (Xq27) FMRP RNA binding protein that interacts with CYFIP, a Rac 
effector Fragile X syndrome 

LIMK1 (7qQ11) LIMK1 Ser/Thr kinase effector of Rac and RhoA that 
inactivates cofilin 

Williams syndrome, 
Alzheimer's Disease 

MEGAP (3p25) MEGAP GAP for Cdc42 and Rac1 3p-syndrome 

 

 

 

Table 1.1 Mutations in Rho GTPase regulators and effectors are linked to neurodegenerative 
diseases. (Adapted from Kasri and Aelst, 2008). 
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The Cytoskeleton 
The cytoskeleton is a system of microscopic filaments that exist all through the 

cytoplasm of prokaryotic and eukaryotic cells and delivers shape, stability and 

movement to the cell while organising the position of the cellular organelles. The 

cytoskeleton consists of three main types of protein filaments: Actin filaments (also 

called microfilaments), microtubules, and intermediate filaments. The highly dynamic 

nature of the cytoskeleton allows for cell migration and morphological alterations in 

response to extracellular stimuli. The cytoskeleton is also responsible for cell division 

resulting into two daughter cells and also chromosome separation during mitosis and 

meiosis. 

Actin Filaments (microfilaments) 
 

Actin is one of the most highly conserved proteins in nature and participates in many 

important cellular processes including cell shape and motility, cell division, vesicle 

and organelle movement and cell signalling. Actin exists in two forms in the cell, as 

globular actin monomers (G-actin) and as actin filaments (F-actin). F-actin filaments 

are polarised fibres consisting of G-actin monomers, with a fast growing (+) end, and 

a relatively inert (-) end. The equilibrium observed between actin polymerisation at 

the plus end and depolymerisation at the minus end has been described as treadmilling 

process (Wegner, 1976). Actin forms structures at the edge of cells forming different 

network arrays. Filopodia and microspikes are formed when F-actin arranges in 

parallel bundles, in a way that the filaments have the same polarity. Stress fibres are 

formed across the cell when actin filaments are organised in opposite polarities, in 

structures called contractile bundles. Lamellipodia formation is the result of actin 

being organised in a network of open arrangement, where F-actin forms a meshwork 

of interconnecting filaments at the cell edge. (Pollard et al, 2000) 

Microtubules 
 

Microtubules are polar helical structures formed by the non-covalent polymerisation 

of tubulin, consisting of α- and β-tubulin heterodimers arranged in a head to tail 

fashion (Amos and Klug, 1974; Burns, 1991). Important to the function of 

microtubules is their polarity raised with the opposite arrangement of the two 
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monomers. Microtubules have a fast growing (+) end and a slower growing (-) end 

and β-tubulin is orientated towards the plus end while α-tubulin points the minus end 

(Desai and Mitchison, 1997). Microtubules form the mitotic spindle during cell 

division, physically segregating the chromosomes and orientating the point of 

cleavage. In some non-dividing cells the microtubules are the structural elements of 

flagella and cilia while they also organise the cytoplasm and position the nucleus and 

organelles. Tubulin is a GTPase and its activity is stimulated by polymerisation. 

Stable microtubules form when tubulin polymerises in the presence of GTP (Hymen 

et al, 1992). Microtubules can solely exert forces on the cell membrane and also act as 

tracks for the transport of organelles through the motor proteins kinesin and dynein 

(Vale and Fletterick, 1997; Reviewed in Howard & Hyman, 2003; Hirokawa, 1998). 

Dynamic microtubules also play a role in neurite morphogenesis, assisting in axonal 

guidance and dendritic spine maturation coupling with actin filaments (Geraldo and 

Gordon-Weeks, 2009; Arnold, 2009). While growing tips of both dendrites and axons 

exhibit increased microtubule polymerisation, dendrites exhibit more immature 

dynamic microtubules throughout their entire arbour compared to more stable 

microtubule structures observed in axons (Kollins et al, 2009). Local stabilisation of 

microtubules in a neurite gives a physiological signal for this process to develop to an 

axon (Witte et al, 2008). Microtubule associated proteins (MAPs) act as regulatory 

elements binding to microtubules and stabilising them while regulating the 

polymerisation of tubulin. The family of MAPs present in the brain includes the large 

proteins MAP-1 and MAP-2 and the smaller protein Tau. Neuronal MAPs strongly 

suppress the transition from microtubule polymerisation to depolymerisation (Desai 

and Mitchison, 1997). MAP-2 shows a dendrite specific localisation where 

microtubules show mixed orientation, with the plus end facing either the cell body or 

the process end. Tau is active primarily in axons where it provides stabilisation and 

flexibility on the microtubule assembly that shows a uniform orientation with the plus 

end facing the axon tip (Bernhardt and Matus, 1984; Cone and Cáceres, 2009). The 

microtubule associated protein Tau is the centre of a great scientific interest since it 

has been linked to neurodegeneration in Alzheimer and Parkinson’s disease and other 

tauopathies. While normal Tau is involved in microtubule assembly and stabilisation, 

abnormally hyperphosphorylated Tau can promote microtubule disruption (Iqbal et al, 

2009).  
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Intermediate Filaments 
 

Intermediate filaments have an average diameter in between that of actin filaments 

and microtubules, ranging from 8-10 nm. Intermediate filaments are the most 

insoluble part of the cell and while being cell specific they are prominent in cells that 

withstand mechanical stress, offering shock-resistance characteristics. Intermediate 

filaments exhibit conserved domain structure featuring an α-helical rod domain 

surrounded by a globular non-α-helical domain at the N and C termini. Intermediate 

filaments consist of different proteins in different cells. In astrocytes the main 

component of intermediate filaments is the glial fibrillary acidic protein (Eng, 1985), 

while in neuronal cells the neurofilaments NF-L, NF-M and NF-H compose 

intermediate filaments (Fuchs and Cleveland, 1998). NF-M and NF-H integrate on a 

backbone formed by NF-L, forming peripheral dimer arrays with protruding tails, 

allowing them to associate with microtubules in the cytoplasm. Two other examples 

of abundant intermediate filaments are keratins and lamins. Lamins are nuclear 

intermediate filaments offering functional structure to the nucleus. Keratins are the 

most diverse among intermediate filaments forming junctions between cells 

(desmosomes) and also attaching cells to the extracellular matrix (hemidesmosomes) 

(Herrmann et al, 2009). Mutations in intermediate filament genes have been linked to 

the Hutchinson-Gilford progeria syndrome and the fatal Alexander disease that affects 

the nervous system causing abnormal development of the brain and skull (Mounkes 

and Stewart, 2004; Li et al, 2002). Furthermore mutations in Lamin A have been 

associated with cardyopathy and muscular dystrophies (Gotzmann and Foisner, 2006). 

 

The Arp2/3 complex 
 

Actin-related proteins (Arp) feature sequence similarity to actin while the diverse Arp 

protein groups perform distinct and very different function in cells. The actin related 

protein 2/3 complex (Arp2/3) in an important regulator of the actin cytoskeleton. Its 

two subunits Arp2 and Arp3 closely resemble the structure of actin monomers 

promoting synthesis of new actin filaments by serving as nucleation sites for 

polymerisation (Machesky and Gould, 1999). Arp2/3 is responsible for the creation of 

branched actin networks by forming nucleation cores on the sides of already existing 
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actin filaments (mother) and initiating the synthesis of new filaments (daughter) at a 

distinctive 70° angle. The activity of Arp2/3 is regulated by proteins of the Wiskott-

Aldrich syndrome family including N-WASP and WAVE (Blanchoin et al, 2000). 

Arp2/3 requires ATP and activating proteins to initiate actin polymerisation. The 

activating factors in the presence of ATP cause a conformational change that allows 

Arp2 and Arp3 to come in close proximity activating the complex (Robinson et al, 

2001). The Arp2/3 complex rearranges the actin cytoskeleton in response to signals 

mediated by the activator proteins that in turn are part of signalling pathways 

governed by the Rho GTPases. 

 

The Rho GTPases 
 

The Rho GTPases comprise a family of small monomeric G proteins that belong to 

the Ras superfamily and are found in all eukaryotic cells. The Rho GTPases 

coordinate diverse cellular functions including the cell cycle, gene expression, 

vesicular trafficking and cell polarity (reviewed in Bustelo et al, 2007). While more 

than twenty Rho GTPases have been discovered, RhoA, Rac1 and Cdc42 are the best 

characterised members. In neurones Rac1 promotes the formation of lamellipodia and 

ruffles playing an important role in growth cone and neurite formation, while Cdc42 

is generally accepted to be involved in the formation of filopodia, and RhoA in cell 

contraction and formation of stress fibres and focal adhesions. Axon guidance cues 

mediated by the semaphorins, ephrins, netrins, and slit proteins are received by 

membrane receptors at the growth cone and initiate intracellular signal transduction 

pathways that converge onto the Rho GTPases.  The Rho GTPases orchestrate the 

morphological changes of the developing neurone signalling pathways that affect the 

actin cytoskeleton organisation (Govek et al, 2005).  

 

Rho GTPases are guanine nucleotide binding proteins and function as molecular 

switches cycling between an active GTP-bound state and an inactive GDP-bound state 

(Figure 1.3) (Nobes and Hall, 1994). While their inactive state is usually cytosolic, 

when active the Rho GTPases associate with the cell membrane mediating signals 
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from membrane receptors to effector proteins that in turn rearrange the actin 

cytoskeleton of the cell (Figure 1.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 The cycling of Rho 
GTPases. Rho GTPases are 
activated by GEFs that exchange 
bound GDP for GTP. GTP-
bound Rho GTPases rearrange 
the actin cytoskeleton through 
effectors. Their intrinsic GTPase 
activity is enhanced by GAPs 
and hydrolysis of GTP to GDP 
deactivates them. A GAP 
specific for Rac1 is chimaerin. 
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Figure 1.4 Rho GTPases act through effectors to rearrange the actin cytoskeleton. Rho 
GTPases interact with effector proteins when active and mediate changes in the actin 
cytoskeleton of the cell. Some effector proteins interact with more than one Rho GTPase 
establishing a cross-talk between different signalling pathways that can involve a co-ordinated 
regulation led by several Rho GTPases (Adapted from Iden and Collard, 2008) 
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Rho GTPase Regulatory Proteins 
 

An immediate control of the activity of Rho GTPases is achieved by the GTPase 

Activating Proteins (GAPs), the Guanine nucleotide Exchange Factors (GEFs) and the 

Guanine nucleotide Dissociation Inhibitors (GDIs). All three families of proteins 

regulate the GTPase cycle and hence specific functions in signalling pathways that 

rely on the intrinsic activity of the Rho GTPases as molecular switches. 

 

Guanine nucleotide Exchange Factors (GEFs) 
 

Guanine nucleotide Exchange Factors (GEFs) activate Rho GTPases by promoting the 

exchange of the bound GDP for a GTP molecule (Schmidt and Hall, 2002). GEF’s 

mediate their activity through two functional domains, a dbl homology domain (DH) 

and a pleckstrin homology domain (PH), in tandem placement. The dbl homology 

domain comprises the catalytic core while the pleckstrin homology domain mediates 

the intracellular localisation of the protein by recruiting the protein on the cell 

membrane or by assisting in interactions with other proteins. GEF’s can have a single 

specific substrate or can also activate different Rho GTPases. An example is the GEF 

Trio that features two DH/PH cassettes, one is specific for RhoA while the second can 

activate both Rac1 and RhoG (Bellanger et al, 1998; Blangy et al, 2000; Chhatriwala 

et al, 2007). Trio has been involved in neurite outgrowth in netrin-1 signalling through 

Rac1 (Briançon-Marjollet et al, 2008) and also in nerve growth factor differentiation 

signalling through RhoG (Estrach et al, 2002). A GEF protein family that features a 

novel domain structure, different to the Dbl/DH arrangement, is comprised of the 

dedicator of cytokinesis proteins (DOCK) that can catalyse both Rac1 and Cdc42 

(Yang et al, 2009a). 

 

Guanine nucleotide Dissociation Inhibitors (GDIs) 
 

The Guanine nucleotide Dissociation Inhibitors (GDIs) keep the GTPases in an 

inactive state by inhibiting the dissociation of GDP while also preventing the 

activation by GEFs (Fukumoto et al, 1990). GDIs can also prevent the Rho GTPases 
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from localising on the membrane, where they can be activated and mediate signalling 

cascades, by forming a complex with the GTPases in the cytoplasm. Furthermore Rho 

GDIs can interact with GTP bound Rho GTPases and block the interaction of these 

proteins with downstream effectors while inhibiting the hydrolysis of GTP by the 

intrinsic GTPase activity (reviewed in DerMardirossian and Bokoch, 2005). 

 

GTPase Activating Proteins (GAPs) 
 

The GTPase Activating Proteins bind to activated Rho GTPases and stimulate their 

intrinsic GTPase activity thereby promoting the hydrolysis of GTP and rendering the 

GTPase inactive, terminating the signalling event. The activity of GAPs is regulated 

by a variety of mechanisms including protein-protein interactions, phosphorylation, 

subcellular translocation, phospholipid interactions and proteolytic degradation 

(reviewed in Bernards and Settleman, 2004). GAPs outnumber the Rho GTPases they 

regulate by 2- to 3- fold, and recent findings have suggested three main reasons for 

this: a) GAPs can show preferential tissue expression and exhibit tissue-specific 

functions, b) the GAP domain may act as recognition module so the GAPs mediate 

cross-talk between Rho GTPases and their effectors, and c) some GAPs may regulate 

specific Rho GTPase signalling pathways, a notion supported by the fact that Rho 

GTPases are involved in a large number of biological processes (Tcherkezian and 

Lamarche-Vane, 2007). GAPs, like GEFs, can have a specific target or can down-

regulate a series of Rho GTPases. Plexin-B1 is a semaphorin 4D receptor and is an 

example of a GAP that has two substrates. By regulating the activity of both R-Ras 

and M-Ras GTPases it affects axonal and dendritic morphology respectively (Saito et 

al, 2009). 

 

A series of domains have been discovered in Rho GAPs that mediate their activation 

and specificity. As well as the GAP domain of Rho GAPs that mediates their binding 

to Rho GTPases and the down-regulation of Rho GTPase activity other domains may 

regulate their function. The cysteine-rich C1 domain found in a series of GAPs 

mediates binding to diacylglycerol and in the case of the Rac1 specific GAP 

chimaerin it mediates phorbol ester induced membrane translocation (Caloca et al, 

1999; Brown et al, 2004). While pleckstrin homology domains (PH) are mainly 
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associated with dbl homology domains in Rho GEFs, they are also found in some 

GAPs, as in the case of PSGAP, a PH containing GTPase that can regulate the activity 

of Cdc42 (Ren et al, 2001). Src homology 3 domains are well represented in Rho 

GAPs mediating interactions with other proteins and expanding their role in complex 

signalling pathways. The SH3 domain of p120Ras-GAP is responsible for its 

interaction with the Rho GAP DLC1, and this association can inhibit DLC1 GAP 

activity (Yang et al, 2009b). Moreover the two SH2 domains of p120Ras-GAP can 

individually bind p190Rho-GAP, suggesting a means of coordination between Rho- 

and Ras- mediated signalling pathways (Bryant et al, 1995). Chimaerin contains an 

SH2 domain that mediates its interaction with EphA4 and links this Rac1 GAP to 

EphA4 growth cone collapse signalling (Shi et al, 2007). 

 

Downstream signalling effectors of the Rho GTPases 
 

p21-activated kinases (PAK) 
 

One of the families of Rac1 and Cdc42 effector proteins are the p21-activated kinases 

(PAK). PAK was the first serine/threonine kinase identified to associate and be 

activated by Rho GTPases (Manser et al, 1994). PAK proteins have been involved in 

the regulation of actin dynamics and gene transcription. PAK proteins are found in an 

autoinhibitory state in the cytoplasm, where the conformation of an N-terminal region 

renders the C-terminal kinase domain unable to be activated (Lei et al, 2000). The 

autoinhibitory conformation of PAK is disrupted upon binding to Rac1-GTP and 

Cdc42-GTP resulting in its activation and autophosphorylation (Manser et al, 1994). 

Active PAK phosphorylates and activates LIM-domain kinase 1 (LIMK1) which in 

turn phosphorylates cofilin, an actin binding protein that causes depolymerisation at 

the minus end of actin filaments (Yang et al, 1998; Edwards et al, 1999). Rac1, Cdc42 

and PAK have also been implicated in microtubule dynamics, through the ability of 

PAK to phosphorylate the microtubule-destabilising protein stathmin and in turn 

promote microtubule stabilisation (Daub et al, 2001). As well as their role in actin 

dynamics, PAK proteins function in centrosome dynamics by regulating Aurora-A, an 

important factor in spindle assembly and stability during mitosis (Zhao et al, 2005). 
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Wiskott-Aldrich syndrome protein family  
 

Another family of downstream effectors for the Rho GTPases are the Wiskott-Aldrich 

syndrome family of scaffolding proteins that mediate signals to the actin cytoskeleton 

(reviewed in Smith and Li, 2004). Five members comprise this proteins family: 

WASP, the neuronal N-WASP, and WAVE1-3 also known as Scar proteins. Cdc42 

regulates the activity of the Wiskott-Aldrich syndrome proteins WASP and N-WASP 

(Rohatgi et al, 2000). The interaction of WASP and N-WASP with the activated 

Cdc42 causes a conformational change in these effectors that releases the WASP 

VCA region from autoinhibition and allows it to activate the Arp2/3 complex that in 

turn forms nucleation cores for actin polymerisation (Kim et al, 2000). WAVE1-3 

have been found to be part of Rac1 signalling mediating actin remodelling in the 

production of ruffles on the cell edges (Miki et al, 1998; Machesky et al, 1999; Yan et 

al, 2003). 

  

IRSp53 and IQGAP-1 
 

GTP bound Rac1 associates with the scaffolding proteins IRSp53 and IQGAP-1. 

IQGAP-1 appears to be involved in polarised actin organisation linking actin 

dynamics with microtubule stability (Fukata et al., 2002). IRSp53 binds both Rac1 

and Cdc42 (Govind et al. 2001; Miki and Takenawa, 2002) and links Rac1 to WAVE 

promoting actin polymerisation through the Arp2/3 complex.  

 

Rho kinase protein family and Diaphanous 
 

The Rho GTPase RhoA regulates the actin cytoskeleton through two prominent 

effectors, the Rho kinase family (ROK/ROCK) and Diaphanous (mDia). ROK 

associates with RhoA and translocates to the membrane playing a role in stress fibre 

and focal adhesion formation (Leung et al, 1995). ROK has been reported to 

phosphorylate the collapsin response mediator protein-2 (CRMP-2) (Arimura et al, 

2000) a protein that promotes microtubule assembly (Fukata et al, 2002) and has been 

involved in pathways of growth cone collapse (Goshima et al, 1995) and neuronal 

polarity (Inagaki et al, 2001). The Diaphanous gene mDia has been suggested to have 
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a role in forming and stabilising microtubules as well as actin dynamics (Palazzo et al, 

2001; Eng et al, 2006). 

 

Chimaerins 
 

Rac1 is down-regulated by the GTPase activating protein α2-chimaerin, which is 

involved in neurite formation and axonal guidance (Hall et al. 2001; Brown et al. 

2004). The family of chimaerins is involved in a variety of signalling cascades 

mediating control over pathways of cell morphology, proliferation and migration. 

 

The first member of the family of Chimaerin splice-variants was identified by Hall et 

al (Hall et al, 1990). The N-terminal of n-Chimaerin was found to share 50% identity 

with the C1 regulatory domain of protein Kinase C (PKC). The C-terminal was shown 

to have 42% identity with the C-terminal region of Breakpoint Cluster Region protein 

(BCR) involved in the Philadelphia chromosome translocation. The name Chimaerin 

was invented to represent the novel nature of this protein, consisting of two apparently 

unrelated domains and indicating an important function in neural outgrowth. 

  

There are two chimaerin genes each with two splice variants. The variants have 

related structures, with α1-chimaerin and β1-chimaerin consisting of an N-terminal 

C1 domain and a C-terminal GAP domain, and α2- and β2- having an N-terminal Src 

homology domain (SH2). α2-Chimaerin is highly expressed in the brain and also in 

testis and the highest expression pattern is observed in the hippocampus and the 

cerebral cortex (Hall et al, 1993). The biological functions of the members of the 

chimaerin family are been examined, and to the present, chimaerins have been 

reported to play a role in important biological processes including neural growth cone 

collapse (Brown et al, 2004; Iwasato et al, 2007; Beg et al, 2007, Shi et al, 2007; 

Takeuchi et al, 2009), inhibition of cancer proliferation (Yang et al, 2005) and the 

regulation of dendritic morphology and spine density in cultured hippocampal 

neurones (de Ven et al 2005, Buttery et al 2006). Chimaerins have also been 

implicated in the proliferation and migration of vascular smooth muscle cells (Maeda 
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et al, 2006) and in the regulation of cell number, cell-cell contacts, and the stability of 

adherens junctions in the Drosophila eye (Bruinsma et al, 2007). 

 

Structure and Function of α2-Chimaerin 
 

α2-Chimaerin has three functional domains: C1, SH2 and GAP domain (Figure 1.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The SH2 domain of α2-chimaerin 
 

 The SH2 domain mediates protein interactions that depend on tyrosine 

phosphorylation. It was first identified in the oncogenic v-Fps cytoplasmic tyrosine 

kinase as a sequence of 100 amino acids that although appeared to modulate the 

kinase activity and substrate recognition of the protein, was not necessary for the 

catalytic activity of the kinase. This domain was named Src homology since it was 

found conserved in the Src and Abl kinases (Sadowski et al, 1986). The SH2 domain 

is important in both intermolecular and intramolecular interaction involved in protein 

Figure 1.5 Chimaerin domains and 
structure. (A) The family of 
chimaerins is comprised of two genes: 
α- and β-chimaerin. Each is expressed 
as two splice variants with one 
encoding for an SH2 domain. (B) α2-
Chimaerin consists of an SH2, a C1 
and a GAP domain. The auto-
inhibitory conformation brought about 
by intermolecular interactions is 
released upon diacylglycerol binding to 
the C1 domain.  

A 

B 
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tyrosine kinases signalling pathways, primarily recognising phosphotyrosine as a 

prime target and in some cases phosphorylated serine and threonine. Also non-

phosphorylated ligands have been reported amongst the negatively charged binding 

targets of the Src homology domain. 

 

It was recently shown that α2-chimaerin is part of the EphA4 signalling pathway of 

axonal guidance (Figure 1.6) (Wegmeyer et al, 2007; Beg et al, 2007; Iwasato et al, 

2007; Shi et al, 2007). EphA4 (ephrin type-A receptor 4) belongs to the family of 

ephrin receptors of the protein-tyrosine kinase family that are key players in cell 

migration and synapse formation and plasticity in the developing nervous system (Lai 

and Ip, 2009; Wilkinson, 2001). α2-Chimaerin binds to the activated EphA4 receptor 

via its SH2 domain and this association is required for ephrin-induced growth cone 

collapse in cortical neurones (Beg et al, 2007). The ligand ephrin-B3 is an important 

molecule in neurite outgrowth, axonal guidance and synapse formation (Kadison et al, 

2006; Aoto et al, 2007, Benson et al, 2005). Active EphA4 stimulates an increase of 

tyrosine phosphorylation of α2-chimaerin and enhances chimaerins Rac1 specific 

GAP activity via the ephrin-B3/EphA4 signalling pathway (Iwasato et al, 2007, Shi et 

al, 2007). It was therefore suggested that ephrin-B3/EphA4 signalling prevents growth 

cone extension in motor circuit formation through inactivation of Rac1, mediated by 

α2-chimaerin. 

 

α2-Chimaerin also interacts with CRMP-2 via its SH2 domain and is involved in the 

Sema3A pathway (Figure 1.6) (Brown et al, 2004). Collapsin Response Mediator 

Protein-2 (CRMP-2) is involved in axonal outgrowth and microtubule dynamics. 

CRMP-2 is part of the growth cone collapse signalling pathway induced by 

Semaphorin 3A (Sema3A). Sema3A induces growth cone collapse through a Rac-

GTP dependent signalling pathway (Jin and Strittmatter, 1997). α2-Chimaerin can 

associate with Plexin A, that together with neuropilin-1 make up the Sema3A 

membrane receptor (Brown et al, 2004). Sema3A can act through Fyn that in turn will 

phosphorylate and activate Cyclin dependant kinase 5 (Cdk5) (Sasaki et al, 2002). 

Cdk5 can phosphorylate CRMP-2, priming it for phosphorylation by GSK3β, and this 

action is required for the collapse induced by Sema3A (Brown et al, 2004). CRMP-2 

is regulated via phosphorylation by Rho kinase (Arimura et al, 2000), to reversibly 

switch between RhoA (retraction) and Rac (outgrowth) phenotypes (Hall et al, 2001). 
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The association between α2-chimaerin and CRMP-2 appears to be promoted by 

phorbol ester binding to chimaerin’s C1 domain, possibly because of the release of the 

auto-inhibitory conformation that makes the SH2 domain accessible (Canagarajah et 

al, 2004; Colón-González et al, 2008). 

 

The C1 domain of α2-chimaerin mediates interactions with Phorbol 
Esters. 
 

The C1 domain was first identified in Protein Kinase C (PKC), where it was found to 

bind phorbol esters analogues of diacylglycerol causing PKC activation and initiation 

of intracellular signalling pathways (Figure 1.6).  The C1 region of PKC has been 

shown to consist of one or two copies of a cysteine-rich domain that bind phorbol 

esters and diacylglycerol in a phospholipid and zinc-dependant manner. Chimaerin 

was the first non-PKC protein to be shown to bear a C1 domain and bind phorbol 

ester (Ahmed et al, 1990). Subsequently the C1 domain has been identified in other 

proteins including RasGRP, a GEF for Ras that links diacylglycerol binding with 

activation of Ras GTPases (Lorenzo et al, 2001), and protein kinase D (PKD), a 

protein involved in signal transduction and important biological functions including 

cell survival, proliferation and differentiation (Chen et al, 2008; Rozengurt et al, 

2005). 

 

The GAP domain of α2-chimaerin mediates its Rac1 GAP activity. 
  

The conserved Rho-GAP domain of α2-chimaerin is composed of seven alpha helices 

and mediates its Rac1-specific GAP activity. The GAP domain of GTPase Activating 

Proteins is responsible for the enhanced hydrolysis of the GTP molecule to GDP and 

inorganic Pi by Rho GTPases. This offers a level of control over the activation state of 

the Rho family of small GTPases that transduce signals from plasma membrane 

receptors and regulate cytoskeletal dynamics. Chimaerin stimulates the intrinsic 

GTPase activity of Rac and promotes the inactive (GDP bound) Rac conformation. 

Rendering the GAP domain inactive by mutation inhibits the growth cone collapse 

induced via the Sema3A pathway indicating the importance of the Rac GAP activity 

on the signalling role of α2-chimaerin in neural retraction (Brown et al, 2004). The 
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GAP domain of α2-chimaerin is also responsible for its association with cyclin-

dependent kinase 5 (Cdk5) and its activator p35, that mediate CRMP-2 

phosphorylation as part of the Sema3A pathway (Brown et al, 2004). 

 

A structural study on β2-chimaerin revealed that the C1 residues involved in DAG 

phorbol ester binding are buried in the tertiary structure and form intermolecular 

interactions (Canagarajah et al, 2004). This suggests that intermolecular contacts 

compete with phospholipids for binding on the C1 domain while activation of β2-

chimaerin would cause a large conformational change in the protein. The current 

model of chimaerin activation proposes a conformational opening of the structure 

upon interaction of basic residues with acidic membrane phospholipids (Colón-

González and Kazanietz, 2006). This releases the auto-inhibitory constraints of the N-

terminal and unmasks the C1 domain enabling DAG and phospholipid binding and 

also GAP activity. 

 

Figure 1.6 outlines the two main signalling pathways that α2-chimaerin has been 

implicated in, and signifies parallels to PKC activation by DAG upon receptor 

activation on the membrane. Diacylglycerol is an activator of both PKC and 

chimaerins, through interaction with related C1 domains in both proteins. Protein 

kinase C phosphorylation of multiple substrates including MARCKS, GAP-43 and 

kinases can influence neuronal development (Ramakers et al, 1999; Girard and Kuo, 

1990). Furthermore PKC phosphorylation as a regulator of β2-chimaerin has recently 

been reported (Griner et al 2010). 
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Figure 1.6 Signalling pathways of α2-Chimaerin, lipid activation and PKC.  
α2-Chimaerin is implicated in Sema 3A signalling through its interaction with CRMP-2 and 
p35/Cdk5, via the SH2 and GAP domains respectively and may be part of the Plexin A receptor 
complex (Brown et al, 2004). Cdk5 phosphorylates CRMP-2, priming for phosphorylation by 
GSK3β, a further component of Sema 3A signalling (Brown et al, 2004; Eickholt et al 2003). 
Inactivating mutations of α2-chimaerin GAP domain and SH2 domain inhibit growth cone 
collapse while Rac1 is an essential component of this pathway (Jin and Strittmater 1997; Brown 
et al 2004).  Cdk5 is itself activated by Fyn phosphorylation of Cdk5Y15 (Sasaki et al 2002).  
Kinases such as ROCK and PAK modulate actin regulatory proteins downstream of Rac1 
activation.  α2-Chimaerin was also identified as a key component of EphA4 forward signalling 
involving Cdk5 and Fyn activation, and mediating growth cone collapse (Fu et al 2007; Shi et 
al 2007). In tyrosine receptor kinase signalling, phospholipase C is also activated, generating 
DAG and IP3 (which mobilizes Ca2+) from PIP2. PKC is activated by DAG and can 
phosphorylate many substrates affecting axonal growth cone development. PIP2 is also an 
activator of actin regulatory proteins including N-WASP and IRSp53 that rearrange the actin 
cytoskeleton and modulate outgrowth of neuronal processes. 
 



 38 

Novel interacting partners for α2-chimaerin 
 

Research has granted α2-chimaerin with an array of interacting factors mediating 

morphogenetic effects in diverge signalling pathways. It associates with Rac1 via its 

GAP domain and mediates down-regulation of Rac1 activity. α2-Chimaerin associates 

with CRMP-2 through its SH2 domain and with Cdk5/p35 through its GAP domain 

mediating growth cone collapse in the Sema3A pathway (Brown et al, 2004). It also 

associates with Plexin A, a protein part of the Sema 3A receptor (Brown et al, 2004). 

Recently, α2-chimaerin was reported to associate with the EphA4 receptor mediating 

motor neurone growth cone extension control via the ephrin-B3/EphA4 signalling 

pathway (Wegmeyer et al, 2007; Beg et al, 2007; Iwasato et al, 2007; Shi et al, 2007). 

Research is increasingly supporting that chimaerins play important roles in diverge 

biological processes and a search for novel interacting partners for these multi-

functional proteins is of high scientific interest. A yeast two-hybrid screen in our lab 

has recently identified the N5-glutamine methyltransferase HemK1 as a possible 

interacting partner for α2-chimaerin. The interaction of the little studied N5-glutamine 

methyltransferase HemK1 with α2-chimaerin is the subject of this study. 
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N5-glutamine methyltransferases 

HemK/PrmC family of proteins and their role in translation 
termination 
 

The function of HemK or PrmC has been misidentified twice in literature. The hemK 

gene encoding for the bacterial HemK homologue was first identified in E.coli as a 

member of the hem family of genes that encode enzymes involved in the biosynthesis 

of heme (Nakayashiki et al, 1995). HemK was initially thought to be involved in the 

oxidation of protoporphyrinogen, a function that was questioned when in 1999 Guen 

and colleagues published data of yeast phenotypic analyses and enzyme activity 

measurements that failed to suggest a direct involvement of HemK in the heme 

biosynthetic pathway (Guen et al, 1999). Sequence analysis of HemK identified the 

catalytic motif NPPY initially thought to be restricted to cytosine N4 and adenine N6 

DNA methylases. This suggested a possible S-adenosyl-L-methionine 

(SAM/AdoMet) dependent DNA methyltransferase activity for the HemK1 homolog 

in yeast (Bujnicki and Radlinska, 1999). However no evidence has ever been 

published that HemK can methylate DNA. 

 

Homologues of the bacterial HemK are found in eukaryotes including yeast, fly, 

mouse and humans, suggesting an important biological role for the ubiquitously 

expressed protein (Heurgué-Hamard et al, 2002). The HemK family of proteins has 

been characterised as a methyltransferase involved in translation termination by 

modifying the glutamine residue of the conserved GGQ motif of polypeptide chain 

release factors. HemK has been shown to be important for the correct translation 

termination mediated via the release factors.  

HemK in Prokaryotes 
 

In E.coli the HemK gene lies in the hemA-prfA-hemK operon where prfA encodes for 

polypeptide chain release factor 1 (RF1). In two studies published in the same year the 

bacterial HemK (PrmC) was found to methylate the two polypeptide chain Release 

Factor  proteins RF1 and RF2, on the glutamine residue of a highly conserved GGQ 

motif in vitro (Nakahigashi et al, 2002; Heurgué-Hamard et al, 2002). HemK was also 
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shown to be required for the methylation of RF1 in the tryptic fragment containing the 

GGQ in RF1 in vivo. Furthermore Nakahigashi and colleagues showed an increased 

read-through rate of UAG and UGA stop codons recognised by RF1 and RF2 

respectively during protein translation in hemK knock-out E. coli K12 derivative 

strains, as well as an impaired growth of the cells and a global shift of gene expression 

to anaerobic respiration (Nakahigashi et al, 2002). HemK inactivation reduces the 

specific termination activity of RF1 and RF2 by approximately 3 to 4 fold in E.coli 

K12 strain (Mora et al, 2007). The growth defects of hemK knock-out in K12 strain 

E.coli are suppressed by recombinant HemK of Chlamydia Trachomatis origin whose 

ability to methylate release factors within the tryptic fragment containing the GGQ 

motif has also been shown in vivo (Pannekoek et al, 2005). Similarly the growth 

defects of a HemK deletion mutant in E.coli were complemented by a predicted 

HemK homologue in Porphyromonas gingivalis (Kusaba et al, 2003). 

 

The name PrmC was proposed for the N5-glutamine methyltransferase HemK in the 

light of the two previously identified methyltransferases PrmA and PrmB that are 

close orthologues of HemK and are involved in translation (Heurgué-Hamard et al, 

2002). PrmA methylates the large ribosomal subunit L11 in bacteria and this 

modification affects translation accuracy by modulating nonsense suppression at 

specific stop codons (Colson et al, 1979; Vanet et al, 1994; Bouakaz et al, 2006). 

PrmB has been shown to methylate the L3 ribosomal subunit that is believed to play a 

role in coordinating the binding of elongation factors during translation (Colson et al, 

1979; Heurgué-Hamard et al, 2002; Meskauskas and Dinman, 2007). A protein family 

involved in gene transcription are the protein arginine methyltransferases (PRMTs). 

PRMTs have been shown to methylate proteins involved in signal transduction, 

transcriptional regulation and RNA processing and recently have been implicated in 

the expression of translation elongation factor eIF4E and the synthesis of tumour 

suppressor protein p53 (Mowen et al, 2001; Yoshimoto et al, 2006; Scoumanne et al, 

2009; Lee and Stallcup, 2009). The terms HemK and PrmC have both been used in 

literature. 
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HemK in yeast 
 

In 2005, Heurgué-Hamard et al published their results on the YDR140w gene in 

Saccharomyces cerevisiae, encoding a HemK/PrmC homolog. Their findings suggest 

that the product of YDR140w gene is required for the methylation of the GGQ motif 

of eRF1 in vivo in yeast, and is necessary for optimal cell growth. This protein was 

able to methylate both yeast and human eRF1. The authors also propose that the 

substrate for the YDR140w methyltransferase is the ternary complex eRF1-eRF3-

GTP (Heurgué-Hamard et al, 2005). The product of the YDR140w gene was later 

described as Mtq2p (HemK2) in yeast by Polevoda and colleagues (Polevoda et al, 

2006). This study was the first to report the existence of two HemK homologues in 

eukaryotes that recognise different substrates. The authors show evidence that the 

HemK homologues Mtq1p (also termed HemK1) and Mtq2p (also termed HemK2 and 

Ydr140w) methylate the mitochondrial Mrf1p and the cytoplasmic Sup45p (yeast 

orthologue of mammalian eRF1) release factors respectively (Polevoda et al, 2006). 

Deletion of Mtq1 causes moderate growth defects in yeast, while deletion of Mtq2 

was responsible for multiple phenotypes including sensitivity to translation fidelity 

antibiotics. Furthermore the deletion of Mtq1 suppressed a mitochondrial mit(-) 

mutation cox2-V25 containing a premature stop codon. In a further study by Heurgué-

Hamard et al, methylation of eRF1 by the yeast HemK2 required the 15-kDa zinc-

binding protein Ynr046w as a co-factor (Heurgué-Hamard et al, 2006). 

HemK in mice 
 

In mice a HemK2 homologue was identified as PRED28 initially (also termed 

N6amt1 as a putative DNA methyltransferase) which has two splice variants termed 

PRED28α and PRED28β that differ in a missing exon but both contain the NPPY 

motif (Ratel et al, 2006). The two splice variants were ubiquitously detected in the 

tissues examined including mouse brain and testis, with PRED28α showing higher 

levels to PRED28β. The two splice variants of HemK2 were reported to exist in 

humans too, with one of them missing the NPPY motif (Ratel et al, 2006). A later 

study confusingly designated the two mouse HemK2 splice variants PRED28α and 

PRED28β as mHemK1 and mHemK2 (Nie et al, 2009). This study confirmed the 

previous findings of Ratel and colleagues (Ratel et al, 2006) that the two splice 
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variants are found in testis and brain and that over-expressed HemK2 can localise in 

the cell nucleus (Nie et al, 2009). The same team also reported that a HemK2 knock-

down by RNAi in mice led to a decrease in cell proliferation (Liu et al, 2009). The 

authors also report an association between HemK2 and polypeptide chain release 

factor eRF1. 

HemK in human 
 

The functions of the human HemK homologues were very recently described. A study 

by Ishizawa and colleagues indicated that the human mitochondrial HemK/PrmC 

homologue HMPrmC (HemK1) methylates the mitochondrial release factor HMRF1L 

(also termed mtRF1a in Soleimanpour-Lichaei et al, 2007). They show that HemK1 is 

targeted to mitochondria and depletion of this protein in HeLa cells leads to decreased 

mitochondrial translation activity in the presence of translation fidelity antibiotics 

(Ishizawa et al, 2008).  Figaro and colleagues reported that the human HemK2 

homologue can methylate both human and yeast eRF1-eRF3-GTP complexes in vitro 

and the catalytic subunit of human HemK2 can complement growth defects caused by 

deletion of Mtq2p in yeast (Figaro et al, 2008). 

HemK1 and HemK2 are highly conserved in nature 
 

Homologues of the bacterial PrmC exist in all organisms and the function of these 

N5-methyltransferases are conserved in yeast, mice and human (Heurgué-Hamard et 

al, 2002; Polevoda et al, 2006; Ratel et al, 2006; Ishizawa et al, 2008; Figaro et al, 

2008). The mouse and rat gene orthologues of HemK1 show higher than 80% 

similarity to the human HemK1 gene that is located in chromosome 3 

(http://www.genecards.org/). HemK1 is a 338 amino-acids long protein of 38.2kDa 

size. HemK2 is encoded in chromosome 21 in human and is predicted to be a 22.9kDa 

protein. Close HemK2 gene orthologues are found in chimpanzee, mouse and rat. 

HemK proteins share two highly conserved motifs: the catalytic motif comprised of 

the GxGxG sequence, and the substrate binding site of the NPPY motif (Figure 1.7). 

The human HemK1 and HemK2 protein sequences share only 25.7% identity, while 

HemK2 has two splice-variants with one of them missing the exon containing the 

substrate binding NPPY motif. The yeast HemK1 homologue mtq1p shares 20.6% 
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sequence identity with the human HemK1, while the yeast HemK2 homologue, 

mtq2p, share a 34.6% identity with human HemK2.  

 

In a phylogenetic analysis the HemK homologues show their common origin through 

their related conserved sequences. Both HemK1 and HemK2 are highly related to 

their homologues in Rhesus monkey, following a similar pattern of sequence 

divergence through domestic cow, mouse, chicken, zebrafish and bacteria (Figure 

1.8). The HemK1 yeast homologue mtq1p seems to have diverged more than HemK2 

homologue mtq2p to an extent that is widely different to the HemK1 primary 

sequences in all tested organisms including bacteria. (Figure 1.8). 
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Figure 1.7 Sequence alignment of HemK homologues reveals highly conserved motifs. 
Primary sequences of HemK1 and HemK2 proteins in human (Hu), Saccharomyces cerevisiae 
(mtq1p and mtq2p) and E.coli were aligned by the Clustal W method in Lasergene MegAlign. 
The conserved AdoMet binding site GxGxG and the release factor binding site NPPY are 
underlined in red. The panel on the bottom right shows the percent identity in the protein 
sequences of HemK homologues. 
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Figure 1.8 Phylogenetic analysis of HemK homologues. Phylogenetic analysis of HemK1 
and HemK2 homologues in human, Rhesus monkey, cow, mouse, chicken, zebrafish, E.coli 
and Saccharomyces cerevisiae was performed in Lasergene Megalign. (A) Macaca mulata 
holds the closest relative to the human HemK1 and HemK2, while the most distant is the yeast 
mtq1p for HemK1 and the bacterial PrmC for HemK2. (B) The yeast HemK1 homologue 
mtq1p is more diverged than the bacterial PrmC when the two phylogenies are combined. 

A 

B 
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HemK/PrmC structure 
  

Structural analyses by Schubert and colleagues described similarities in structure of 

the active site of HemK in Thermotoga maritima to that of DNA methyltransferases, 

namely the (D/N)PPY motif, and also suggest a common mechanism for all 

methyltransferases of orienting and modifying their substrates, signifying a high 

flexibility of these enzymes to select and modify a wide variety of substrates 

involving the highly conserved AdoMet-binding motif (Schubert et al, 2003). In a 

further study by Yang and colleagues, the structure of the E.coli HemK was found 

similar to that of the Thermotoga maritima consisting of two domains: a putative RF1 

substrate binding domain comprised of a five helix bundle containing the NPPY 

motif, and a catalytic domain with a seven-stranded β-sheet that harbours the AdoMet 

binding sequence GxGxG (Figure 1.9) (Yang et al, 2004a). The authors describe the 

binding of S-adenosyl-L-homocysteine, which is the chemical that AdoMet is 

converted to upon donation of a methyl group, to the GxGxG motif. (Yang et al, 

2004a). Furthermore an apparent hinge mobility of approximately 10°of the two 

domains has been described, suggesting a functional importance during substrate 

binding and modification (Yang et al, 2004a). Figure 1.10 shows the structure of RF1 

in complex with HemK1, where the close proximity of the catalytic NPPY motif and 

the GGQ motif on the release factor glutamine mediates methylation that ensures 

efficient dissociation of the nascent peptide from the ribosome mediated by RF1. The 

HemK proteins mediate addition of a methyl group on the nitrogen at position 5 of 

glutamine, in the GGQ motif of release factors (Figure 1.11). 
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Figure 1.9 HemK1 structure. The structure of HemK1 was described in Thermotoga maritime. 
(A) The seven-stranded catalytic domain harbors the GxGxG sequence motif where AdoMet 
binds. (B) The substrate binding NPPY motif is in close proximity to the AdoMet binding site 
allowing for the addition of a methyl group on to RF1 (Schubert et al, 2003; Yang et al, 2004a) 
(PDB ID: 1NV9) 

Figure 1.10 The RF1 GGQ motif comes in 
proximity to HemK1 NPPY motif. The 
glutamine side residue in RF1 GGQ motif is 
methylated by HemK1, and the HemK1 NPPY 
motif is important for this modification. The 
structure of RF1 in complex with HemK1 reveals 
a compact RF1 structure where the GGQ motif is 
in contact with HemK1 NPPY motif (Heurgue-
Hamard et al, 2005) (PDB ID: 2B3T). 

Figure 1.11 Methylation of Glutamine in the GGQ motif of release factors. The addition of a 
methyl group on the nitrogen at carbon 5 (N5) of the GGQ motif of release factors is mediated by 
the HemK proteins, mediating efficient translation termination. S-adenosyl-L-methionine is the 
methyl donor that is converted to S-adenosyl-L-homocycteine upon efficient methylation. 
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Mechanisms of Translational Control 
Translation of mature mRNA into protein is the final stage of protein synthesis, and 

the process is scrutinised by a wide range of control mechanisms. Translation is 

tightly controlled from embryonic development to cell differentiation in a spatial and 

temporal manner, and specifically in polarised cells like neurons, the processes of 

localised translation provides a means of stimulus-induced local protein synthesis that 

takes place in the growing tips of cell processes and synapses (Twiss and Minnen, 

2006; Campbell and Holt, 2001). The mechanisms of translational control can provide 

global control, where by modulating initiation factor acivity the translation of most 

mRNAs is affected, or mRNA-specific control, where factors that recognise specific 

elements on target mRNAs regulate their translation (reviewed in Gebauer and 

Hentze, 2004). Elements on mRNA that provide recognition sites for translational 

control complexes include the m7G cap on 5′ end and the poly(A) tail on the 3′ end 

that strongly promote translation initiation. Furthermore, Internal Ribosome-Entry 

Sequences (IRES) which mediate translation intitiation in a cap-independent manner, 

Upstream Open Reading Frames (uORF) which can mediate translation of the normal 

ORF, secondary or tertiaty RNA structures such as hairpins, and recognition sites of 

translation control complexes, all provide control on the translation fate of the specific 

mRNA (Figure 1.12) (reviewed in Gebauer and Hentze, 2004). A mature mRNA, 

once exported from the nucleus, can be targeted for local translation mediated by 

Staufen, a protein involved in microtubule-dependent transport of mRNAs (Lasko, 

1999; Kloc et al, 2002). Another level of control is ordered by microRNA-mediated 

gene silencing, where RNA-induced silencing complexes (RISC) mediate degradation 

of target mRNA sequences (Liu et al, 2005). Repression of translation of specific 

mRNAs can be mediated by FMRP, a protein also involved in mRNA local 

translation (Zalfa et al, 2003). The best studied and most accredited mechanisms of 

translational control involve modulation of the activity of intitiation factors, 

eventhough control of translation elongation and termination mechanisms also 

constitute important processes of translational control. At the translation initiation 

stage, eIF2 bound to GTP delivers the Methionine-tRNA to the 40S ribosomal subunit 

to initiate start codon recognition, and once a start codon has been recognised eIF2-

GTP is hydrolysed to eIF2-GDP and translation can commence (Figure 1.12). The 
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GTP/GDP binding state of eIF2 is modulated by the guanine nucleotide exchange 

factor eIF2B, and the phosphorylation of eIF2 by RNA-regulated protein kinase 

(PKR) and eIF2α kinase (PERK) (de Haro et al, 1996; Gebauer and Hentze, 2004). 

The formation of the closed-loop mRNA model, that is believed to occur in the initial 

stages of translation, is mediated by recruitment of initiation factors eIF3 and eIF4G, 

to form a complex with eIF4E that binds to the 5′ mRNA cap and poly(A)-binding 

protein PABP that binds to the poly-A 3′ end of mRNA (Gingras et al, 1999). 

Signaling events initiated by membrane-receptor substrate-binding can also modulate 

translation initiation. The stability of the 40S small ribosomal subunit is regulated by 

phosphorylation of ribosomal subunit S6 by S6K1, in downstream signalling events of 

ERK activation, upon recognition of NMDA by its specific receptor (Chiaberge et al, 

1998; Banko et al, 2004). Furthermore, mTOR (Mammalian Target of Rapamycin) is 

activated by downstream signalling of PI3K initiated by growth factors or insulin, and 

phosphorylates the eIF4E-binding protein 4E-BP that allows eIF4E to join the pre-

initiation complex (Figure 1.12) (Gingras et al, 2004; Foster and Fingar, 2010). The 

elongation stage sees the delivery of an aminoacyl-tRNA to the A site of the 

ribosomal complex by eEF1A-GTP, whose GTP binding is controlled by eEF1B 

(Andersen et al, 2001). eEF2 mediates the shift of the translation machinery to the 

next codon upon formation of a peptidyl-tRNA bond, and its activity is regulated by 

PP2A (Chung et al, 1999). Translation termination is initiated by stop codon 

recognition by release factors, and methylation of eRF1 by HemK mediates efficient 

termination and release of the newly formed peptide (Schubert et al, 2003). Upon 

recognition of a premature stop codon the release factors form a complex with SMG-1 

and Upf1, factors involved in mRNA decay (Kashima et al, 2006). 
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Figure 1.12 General diagram of translational control mechanisms. A wide variety of 
mechanisms exist that regulate the translation of mRNA into protein. Signaling cascades in 
response to extracellular cues mediate translation initiation, while control mechanisms also 
regulate elongation and termination of translation. Elements on the mRNA that can mediate 
translation control include secondary structures, Internal Ribosome-Entry Sequences, the m7G cap 
and the poly(A) tail situated on either end of the transcript. The areas in green on the depicted 
mRNA denote further recognition sites of factors that can modulate translation. The mRNA 
depicted is adapted from a review by Gebauer and Hentze (Gebauer and Hentze, 2004). 
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Polypeptide Chain Release Factors in Translation 
Termination 
 

“DNA makes RNA makes Protein” (Crick, 1970). This has been the central dogma of 

molecular biology since the second half of the 20th century, and many mechanisms of 

this complex machinery still remain elusive. Translation, the process by which RNA 

is used as a template to synthesise proteins in cells is driven and also tightly controlled 

by a myriad of components that raise check-points for correctly synthesised proteins. 

Translation termination occurs when a stop codon occupies the ribosomal A site and 

the newly synthesised polypeptide chain is released from the P site tRNA. The 

decoding of stop codons and initiation of translation termination occur through release 

factor proteins that recognise the three almost universal trinucleotide sequences on 

mRNA and signal for the ultimate hydrolysis of the completed peptide chain from the 

ribosome. The first report on proteins regulating translation termination was published 

more than forty years ago (Capecchi, 1967) and even though our understanding of 

these processes has since greatly advanced, elucidation of the complex interactions 

between protein and RNA in the last stages of protein synthesis is still ongoing.  

Class I Polypeptide Chain Release Factors 
 

Two types of polypeptide chain release factor proteins have been identified as part of 

translation termination machinery. The class I release factors recognise the stop 

codons and occupy the A site of the prokaryotic 50S ribosomal subunit initiating the 

peptide release reaction. In bacteria there are two class I release factors: RF1 and RF2. 

RF1 recognises the UAA and UAG stop codons and similarly RF2 recognises UAA 

and UGA in mRNA (Scolnick et al, 1968). This stop codon specificity of RF1 and 

RF2 arises through their tripeptide motifs Proline-Alanine-Threonine and Serine-

Proline-Phenylalanine respectively (Ito et al, 2000). Class I RFs cause polypeptide 

chain release by preventing peptidyl transferase from adding amino acids to the chain 

and triggering hydrolysis of the bond between peptide chain and tRNA. 

  

In eukaryotic organisms there is only one class I release factor, eRF1 that recognises 

all three stop codons (Konecki et al, 1977; Frovola et al, 1994). Class I release factors 
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in both eukaryotic and prokaryotic kingdoms share a universally conserved GGQ 

motif surrounded by positively charged amino acids which is located near the site of 

the peptidyl-tRNA ester bond that is cleaved during translation termination. This 

tripeptide motif is thought to be involved in translation termination but not stop codon 

recognition (Frovola et al, 1999). Mutation or deletion of the conserved GGQ motif 

abolishes peptidyl-tRNA hydrolysis induced by RF1 and therefore translation 

termination (Moffat and Tate, 1994; Frovola et al, 1999). This GGQ motif is 

methylated by HemK1 and this modification is important for efficient translation 

termination mediated by the release factors (Figure 1.10) (Schubert et al, 2003). 

Class II Polypeptide Chain Release Factors 
 

The class II release factors are GTPases in both prokaryotic and eukaryotic kingdoms 

and share distinct functions. The bacterial Class II release factor RF3 is required for 

the release of RF1 and RF2 after polypeptide chain release and the dissociation of the 

ribosomal complex (Freistroffer et al, 1997). Ribosomes in complex with RF1 or RF2 

act as guanine nucleotide exchange factors (GEF) promoting the exchange of GDP for 

GTP on RF3 (Zavialov et al, 2001). Binding of RF3 to the ribosomal complex induces 

great conformational changes in both the GTPase-associated centre and the decoding 

centre of the ribosome that break the interactions with class I release factors and lead 

to their release from the translation machinery (Gao et al, 2007). The eukaryotic class 

II release factor eRF3 shares homology with RF3 in the GTP-binding domain. eRF1 

and eRF3 form a stable complex in cells through their C-terminal domains (Stansfield 

et al, 1995; Ebihara and Nakamura 1999) and eRF1 acts as a GTP dissociation 

inhibitor on eRF3 stabilising the ternary complex GTP-eRF1-eRF3 (Pisareva et al, 

2006). The interaction between the two release factors is required for eRF3 to 

stimulate peptide chain release mediated by eRF1 (Figure 1.13) (Alkalaeva et al, 

2006).  
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Figure 1.13 A basic model of translation termination. Normal translation termination 
involves the recognition of a stop codon on mRNA and recruitment of release factors RF1 and 
RF3 (B). HemK1 methylates RF1 in the conserved GGQ motif (C) and mediates the release of 
the synthesized peptide and tRNA (D). The final stage sees the dissociation of the ribosomal 
subunits and the translation termination machinery (E). 
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Mitochondrial Polypeptide Chain Release Factors 
 

In mitochondria the metabolic process of oxidative phosphorylation produces the 

required ATP for the cell to maintain life. Thirteen of the proteins that are important 

for this process are encoded by the mitochondrial genome (Anderson et al, 1981). The 

process of mitochondrial protein translation is not fully understood and data so far 

suggest that it employs a distinct translation machinery. Factors involved in 

mitochondrial protein synthesis are encoded by nuclear genes that have been related 

to human diseases through pathological mutations that could affect the mitochondrial 

peptide translation system (Jacobs and Turnbull, 2005; Valente el at, 2007). 

Translation in mitochondria employs a different codon recognition system to the 

universally standard code of prokaryotes and eukaryotes that seems to differ between 

organisms (Elzanowski and Ostell, 2008). The decoding of AUA as methionine and 

the universal stop codon UGA as tryptophan is found in but not restricted to human 

mitochondria (Barrell et al, 1979; Elzanowski and Ostell, 2008). Soleimanpour-

Lichaei and colleagues identified the release factor mtRF1a in human mitochondria 

that shows sequence similarity to many other release factors and also retains the 

universally conserved GGQ motif (Soleimanpour-Lichaei et al, 2007). The authors 

show that mtRF1a is targeted to mitochondria and is capable of terminating 

translation termination at stop codons UAA and UAG but not UGA, both in vivo and 

in vitro. Finally depletion of mtRF1a in HeLa cells caused growth defects and led to 

elevation of reactive oxygen species production. In a similar study mtRF1a was 

renamed HMRF1L and the authors presented results that are in accordance with the 

previous study (Nozaki et al, 2008). 

Polypeptide Chain Release Factors in RNA 
degradation 
 

In eukaryotic organisms protein expression is tightly regulated by mRNA quality 

check-points that ensure translation of functioning peptides. Before mRNA is 

exported from the nucleus it undergoes post-transcriptional modifications that include 

the removal of introns and the addition of a poly(A) tail on the 3′ end. The fate of 

mature mRNA is decided upon exiting the nucleus where it can be a) immediately 
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translated, b) maintained in a translationally repressed state, c) transferred to a 

specific cellular location to be translated, or d) degraded. Translational repression and 

mRNA degradation can be directed by specific RNA binding proteins and also by 

small complementary RNAs (miRNAs) that eventually target mRNA for degradation. 

A number of the factors involved in mRNA surveillance, degradation and translation 

repression are found in the cytoplasm localising in cytoplasmic foci described as 

mRNA processing bodies (P-bodies) and stress granules.   

 

Besides their role in mediating translation termination, the eukaryotic polypeptide 

chain release factors eRF1 and eRF3 are also involved in normal and nonsense-

mediated mRNA decay (NMD) through its association with certain mRNA processing 

factors. eRF3 associates with the poly(A)-binding protein (PABP) that mediates 

mRNA stability and also with DCP1 (mRNA decapping protein 1) that removes the 5′ 

mRNA cap prior to degradation. eRF1 and eRF3 can also exist in a complex with the 

nonsense mediated mRNA decay proteins Upf1 and SMG1.  

General mRNA decay mechanism 
 

The stability of mRNA in the cytoplasm is sustained by its 5′ N7-methyl guanosine 

(m7G) cap. The m7G cap protects mRNA from 5′3′ degradation and offers control 

over translation in the cytoplasm (Cougot et al, 2004a). Stability of the transcript and 

translation is mediated through the interaction of the eukaryotic initiation factor 

complex eIF4F with the mRNA cap and with the poly(A)-binding protein (PABP) that 

resides on the poly(A) tail of the message. The components of the eIF4F complex, the 

eukaryotic initiation factors eIF4E and eIF4G associate with the 5′ cap and PABP 

respectively (Cougot et al, 2004a; Amrani et al, 2008). RNA degradation is initiated 

by deadenylation, where the poly(A) tail of mRNA is removed by specific 

deadenylase complexes. eRF3 interacts with PABP via its N-terminal domain and it 

regulates the initiation of deadenylation and normal mRNA decay through this 

association that is conserved from yeast to humans (Hoshino et al, 1999; Hosoda et al, 

2003). Furthermore eRF3 has been shown to exist in a complex with the initiation 

factor eIF4G through PABP suggesting a role in ribosome recycling taking place upon 

translation termination (Uchida et al, 2002). Following deadenylation the mRNA can 

be degraded by either 3′5′ exonucleolytic digestion catalysed by the exosome 
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whose activity is regulated by the SK1 complex, or by 5′3′ digestion that requires 

the removal of the 5′ cap. Removal of the 5′ cap halts translation and targets the 

mRNA for degradation (Eulalio et al, 2007a). The mRNA decapping proteins DCP1 

and DCP2 have been shown to be responsible for decapping the messenger RNA prior 

to degradation. Removal of the 5′ mRNA cap structure allows XRN1 to proceed with 

exonucleolytic degradation of the mRNA. In yeast DCP2 interacts with DCP1 and this 

interaction is required for decapping in vivo and in vitro (Dunckley and Parker, 1999; 

Sakuno et al, 2004; She et al, 2008). DCP1 also binds the release factor eRF3 in yeast 

(Kofuji et al, 2006). In human there is one DCP2 homologue and two DCP1 

homologue proteins, hDcp1a and hDcp1b. While hDcp1a, hDcp1b and hDcp2 have 

been shown to localise in mRNA processing bodies (Cougot et al, 2004b; van Dijk et 

al, 2002), hDcp1a and hDcp2 have also been shown to associate with the nonsense 

mediated mRNA decay protein Upf1 (Cho et al, 2009; Lykke-Andersen, 2002). This 

suggests that mRNA decapping factors may be recruited by the mRNA surveillance 

complex at premature translation-termination sites as part of nonsense mediated 

mRNA decay. The majority of the proteins involved in 5′3′ mRNA decay localise 

in P-bodies. 

Nonsense-mediated mRNA decay 
 

In eukaryotes the nonsense-mediated mRNA decay (NMD) is a mechanism that is 

highly conserved through evolution. NMD ensures that mRNAs that feature a 

premature termination codon are degraded (Figure 1.14) (Conti and Izaurralde, 2005; 

Isken and Maquat, 2007). Premature termination codons in mRNA translation result 

in the production of non-functioning and potentially toxic proteins. Approximately 

30% of disease-linked mutations generate premature termination codons, and 

mutations in the factors involved in NMD resulting in abnormal function of the 

mRNA degradation pathway have been implicated in human disease highlighting the 

medical significance of this process (Tarpey et al, 2007; Holbrook et al, 2004). 

Furthermore recent studies have suggested that NMD may constitute a translation-

dependent post-transcriptional control mechanism for gene expression, as non-

aberrant mRNAs have been reported substrates for this mRNA decay pathway 

(reviewed in Stalder and Mühlemann, 2008). This is also supported by the observation 

that approximately one third of alternatively spliced transcripts contain a premature 



 57 

termination codon, while as much as 95% of multi-exon genes undergo alternative 

splicing in human (Lewis et al, 2003; Pan et al, 2008). These observations suggest a 

wider role of NMD in gene expression control beyond aberrant transcript degradation. 

 

The factors involved in NMD comprise the so called mRNA surveillance complex 

that is recruited upon recognition of a nonsense termination codon, and include the 

proteins UPF1, UPF2 and UPF3 that are conserved from yeast to humans and the 

effectors SMG-1, SMG-5, SMG-6 and SMG-7 (Conti and Izaurralde, 2005; He et al, 

1997). The process of mRNA intron splicing sees the deposition of a protein complex 

20-24 nucleotides upstream of the splice junction called the exon junction complex 

(EJC) (Kataoke et al, 2000; Hir et al, 2000). In mammals UPF3 is a component of the 

EJC interacting with the EJC core factor Y14 (Kim et al, 2001). UPF2 binds directly 

to UPF3 in yeast (Weng et al, 1996) and mammals (Lykke-Andersen et al, 2000) and 

recruits the RNA helicase UPF1 to the EJC. UPF1 binds to eRF1 and eRF3 and is 

phosphorylated by the phosphatidylinositol 3-kinase-related protein kinase SMG1 

kinase upon premature translation termination, in a complex described as SMG-1–

Upf1–eRF1–eRF3 (SURF) (Kashima et al, 2006). SMG-1 is thought to be recruited to 

the NMD machinery by the recently discovered SMG-8, while its kinase activity is 

modulated by SMG-8 and SMG-9, two protein components of the SMG-1 complex 

(Yamashita et al, 2009). A kinase-deficient point mutant of SMG-1 suppressed 

premature termination codon dependent mRNA degradation, while wild type SMG-1 

enhanced it in experiments by Yamashita and colleagues (Yamashita et al, 2001) 

indicating the importance of UPF1 phosphorylation by SMG-1 in NMD. In fact a later 

study described that phosphorylation of UPF1 by SMG-1 induces an association with 

SMG-5 and SMG-7 that eventually lead to its dephosphorylation, suggesting a 

important role of the UPF1 phosphorylation/dephosphorylation cycle in remodeling of 

the mRNA surveillance complex and NMD (Ohnishi et al, 2003).  

 

The association of the yeast eRF3 orthologue with poly(A)-binding protein (PABP) is 

important for the dissociation of the terminating ribosome from mRNA (Amrani et al, 

2004). In recent experiments mammalian cells not expressing PABP exhibited 

increased read-through of termination codons (Ivanov et al, 2008). The association 

between eRF3 and PABP is antagonised by UPF1 in the case of premature 

termination codons resulting in NMD (Singh et al, 2008). In fact when PABP is 
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tethered downstream of a premature termination codon it abolishes NMD (Silva et al, 

2008). A recent study suggested that binding of the GTP to the eRF1-eRF3 complex 

accompanies major structural rearrangements upon the formation of the eRF1-eRF3-

GTP complex, and this is essential for the association of eRF3 with PABP 

(Kononenko et al, 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.14 Premature translation termination and nonsense-mediated mRNA decay. 
Translation of an mRNA transcript (step 1) leads to recognition of a premature stop codon by 
eRF1 and eRF3 that recruit Upf1 (step 2). UPF1 recruits SMG-1 which together with eRF1 
and eRF3 form the SURF complex (step3). The SURF complex interacts with the exon 
junction complex downstream (step 3) and this association leads to phosphorylation of UPF1 
by SMG-1 (step 4). Translation termination sees the dissociation of release factors and the 40S 
and 60S ribosomal subunits (step 5). Recruitment of SMG-5 and SMG-7 by UPF1 leads to 
dephosphorylation of UPF1 and this may lead to dissociation of SMG-5 and SMG-7, and loss 
of the m7G mRNA cap mediated by decapping enzyme Dcp1 (step 7). mRNA not protected 
by the m7G cap is rapidly degraded by the 5′3′ exonuclease Xrn (step 8). 
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Staufen and its role in mRNA processing 
 

Staufen is an mRNA binding protein that is principally known to be involved in the 

transport of mRNAs to achieve their localised translation (Johnston et al, 1991; 

Ferrandon et al, 1994; Wickham et al, 1999; Kim-Ha et al, 1995). Staufen was 

initially described in Drosophila oocytes, where it was found to localise in granules 

involved in microtubule-dependent localisation of maternal mRNAs (Lasko, 1999; 

Kloc et al, 2002). 

In mammals the two homologues Staufen1 and Staufen2 are components of 

ribonucleoprotein complexes that travel along microtubules from the cell soma to the 

dendrites (Vessey et al, 2008). Staufen1 is ubiquitously expressed in human tissues 

and is involved in translation control and mRNA decay (Kim et al, 2005, Kim et al, 

2007). In human Staufen2 is primarily found in neuronal cells where it is involved in 

mRNA transport and dendritic spine morphogenesis (Goetze et al, 2006; Tang et al, 

2001b). Human Staufen1 has been shown to localise in RNA granules together with 

ribosomes, the proteins PABP1 and FMRP that are involved in protein synthesis, 

cytoskeletal proteins tubulin and actin as well as Rac1, Cdc42 and IQGAP1 (Villacé 

et al, 2004). These Staufen1 RNA granules were found to localise in the dendrites of 

differentiated neuroblasts supporting a role of Staufen1 in mRNA transport and 

localised translation control (Villacé et al, 2004). Mammalian Staufen1 has also been 

shown to enhance translation in experiments of translationally repressed mRNAs 

(Dugré-Brisson et al, 2005). It was suggested that Staufen1 can facilitate translation of 

mRNAs by associating with their 5′ end. Staufen has also been found to localise in 

stress granules in rodent oligodendrocytes upon oxidative stress (Thomas et al, 2005). 

It has become evident that Staufen can exist in a number of different 

ribonucleoprotein complexes localising in different mRNA granules, and this is 

considered an important attribute for mediating its multiple functions (Dahm et al, 

2008). 

 

A mammalian mRNA decay mechanism responsible for degrading mRNAs that 

feature a stop codon upstream of a Staufen1 (STAU1) binding site (SBS) is the 

Staufen1-mediated mRNA decay pathway (SMD) (Kim et al, 2005; Kim et al, 2007). 

When translation terminates sufficiently upstream of a SBS, the dsRNA binding 

protein Staufen1 recruits Upf1 to the SBS triggering the SMD pathway (Kim et al, 
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2005; Kim et al, 2007). In NMD Upf1 is recruited to an exon-junction complex by 

Upf2 triggering the RNA decay mechanism (Lykke-Andersen et al, 2000). In a recent 

study it was shown that the NMD and SMD mechanisms are in fact competitive 

pathways (Gong et al, 2009). The sites on Upf1 where Staufen1 and Upf2 bind 

overlap, suggesting that the association of the two proteins with Upf1 is mutually 

exclusive. Furthermore, inhibition of SMD by down-regulating Staufen1 cellular 

abundance increases the efficiency of NMD, and similarly SMD efficiency is 

increased when NMD is inhibited by down-regulating Upf1 abundance. Therefore it 

appears that there is a balance between the NMD and SMD pathways in translation 

termination-dependent mRNA degradation (Gong et al, 2009). 

 

In recent studies Staufen1 has been implicated in dendrite development and synapse 

formation in neurones. In experiments in mice a Staufen1 loss of function allele 

caused significant decrease in Staufen1-containing ribonucleoprotein particles 

delivered down the dendrites of cultured hippocampal neurones (Vessey et al, 2008). 

Furthermore it was demonstrated that cultured hippocampal neurones from mice 

lacking Staufen1 showed deficits in dendritic length and branching during 

development, and exhibited fewer synapses (Vessey et al, 2008). Staufen1 was also 

shown to be important for long-term potentiation in hippocampal synapses suggesting 

a role in maintaining synaptic efficacy (Lebeau et al, 2008). The emerging 

involvement of Staufen1 in dendritic spine morphogenesis is in parallel with its 

homologue Staufen2 that is expressed mainly in the brain and plays a role in the 

dendritic development (Goetze et al, 2006). 

 

RNA processing bodies (P-bodies) 
 

The RNA processing bodies (P-bodies / Dcp bodies / GW bodies) are discrete 

cytoplasmic domains that contain proteins involved in mRNA degradation, mRNA 

surveillance, translational repression and RNA-mediated gene silencing along with 

their substrate mRNAs (Eulalio et al, 2007a). P-bodies were first discovered with the 

observation that the mRNA decapping enzymes Dcp1 and Dcp2 involved in NMD 

localise in specific cytoplasmic foci (van Dijk et al, 2002). Exogenously expressed 
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human Dcp1a and Dcp1b localise in the cytoplasm, nearly exclusively concentrated in 

bright foci (Cougot et al, 2004b). Subsequently the proteins Lsm1-7 and Xrn1 that are 

also involved in mRNA degradation were found to localise in cytoplasmic foci 

containing Dcp1 and Dcp2. (Ingelfinger et al, 2002). Another component of P-bodies 

is the conserved family of GW182 proteins that associate with the miRNA-induced 

silencing complex and have been shown to be crucial factors in microRNA-mediated 

gene silencing (Ding et al, 2007). GW182 co-localises in ribonucleoprotein P-body 

cores with Dcp1 and Lsm4 (Eystathioy et al, 2003) and is important for maintaining 

P-bodies stability during the cell cycle (Yang et al, 2004b). Moreover, shRNA 

targeting of GW182 and Lsm1 and 4 inhibits the assembly of P-bodies (Ohn et al, 

2008) while cells induced to proliferate show an incremental expression of GW182 

and larger as well as more numerous P-bodies (Yang et al, 2004b).  

 

Translational inhibitors are known to stabilise mRNA and therefore down-regulate 

mRNA degradation pathways (Jacobson and Peltz, 1996). When mRNA decay is 

inhibited by treatment with the translation inhibitor cycloheximide the P-bodies 

disappear indicating that they are sites of active mRNA decay (Cougot et al, 2004b). 

Furthermore blocking P-body assembly does not inhibit mRNA degradation, 

indicating that proteins of the mRNA degradation machinery are fully competent even 

when not recruited in P-bodies (Eulalio et al, 2007b). Therefore P-bodies may also 

function as sites of mRNA storage, harbouring untranslated mRNAs awaiting for the 

decay machinery, and thus regulating translational silencing (Parker and Sheth, 2007; 

Franks and Lykke-Andersen, 2007). While arsenite treatment can induce P-body 

assembly in a signalling pathway distinct to that of stress granule induction, the stress-

induced P-body assembly mechanism still remains elusive (Ohn et al, 2008). 

 

P-bodies have also been visualised in neuronal cells. Dcp1a containing P-bodies have 

been shown to assemble in the soma and dendrites of mammalian neurones, while 

they can also relocate to distant sites in response to synaptic activation (Cougot et al, 

2008). While these foci are heterogeneous compared to the non-neuronal P-bodies, 

they were positive for GW182 and other P-body markers. These P-bodies observed in 

hippocampal neurones may mediate local translation in dendrites by storing 

translationally repressed ribonucleoprotein complexes and releasing them upon 

synaptic activation (Cougot et al, 2008). In Drosophila neurones, P-body-like 
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ribonucleoprotein particles have been visualised containing Dcp1, Xrn1, Upf1 as well 

as FMRP (Barbee et al, 2006). Another conserved P-body protein, Me31B, is present 

in staufen-containing neuronal ribonucleoprotein complexes and has been shown to be 

required for dendrite morphogenesis and microRNA-mediated gene silencing in vivo 

while also regulating P-body assembly in the Drosophila wing disk (Hillebrand et al, 

2007). These emerging studies indicate an important role of neuronal P-body proteins 

in the regulation of dendrite localised mRNAs and synaptic plasticity. 

 

Stress Granules 
 

Stress granules are ribonucleoprotein granules compositionally related to P-bodies 

(Anderson and Kedersha, 2006). Stress granules are non-membranous cytoplasmic 

foci whose assembly is triggered by a variety of environmental stresses, including 

oxidative stress, heat shock, hyperosmolarity and viral infection (Anderson and 

Kedersha, 2009). Stress-induced translation arrest sees mRNAs encoding 

constitutively expressed “housekeeping” genes being redirected from polysomes to 

stress granules (Kedersha et al, 2005). Pharmacological studies have indicated that 

polysome stability and stress granule assembly are in a dynamic equilibrium 

(Kedersha et al, 2000). Treating cells with polysome stabilising drugs like 

cycloheximide inhibits the assembly of stress granules and results in stress granule 

disassembly under conditions of prolonged stress. In contrast, drugs like puromycin 

that release ribosomes from mRNAs and therefore destabilise polysomes promote 

stress granule assembly. (Kedersha et al, 2000). It was therefore proposed that stress 

granules may be the sites of mRNA triage where untranslated mRNAs accumulate 

during stress, and are either degraded or repackaged in ribonucleoprotein complexes 

to reinitiate translation (Kedersha et al, 2000).  

 

 

In mammalian cells the assembly of stress granules is initiated by the phosphorylation 

of the translation initiation factor eIF2α, an event that inhibits translation initiation 

and promotes the accumulation of untranslated mRNAs (Anderson and Kedersha, 

2009). Unlike P-bodies, stress granules are primarily composed of the translationally 
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silent 48S preinitiation complexes that contain mRNAs bound to small ribosomal 

subunits and translation initiation factors (Kedersha et al, 2002; Kimball et al, 2003). 

Stress granules also contain PABP (Kedersha et al, 1999), Xrn1 (Kedersha et al, 

2005) and the mRNA binding proteins TIA-1 and TIAR that act downstream of eIF2α 

phosphorylation to promote stress granule assembly (Anderson and Kedersha, 2002). 

A protein that is required for stress granule assembly and localises in stress granules 

but not P-bodies is the RasGAP-associated G3BP that has a phosphorylation-

dependent sequence-specific endoribonuclease activity in vitro (Tourrière et al, 2001; 

Tourrière et al, 2003). 

 

P-bodies and stress granules have a lot of similarities. They are simultaneously 

assembled in cells under environmental stress, both are in dynamic equilibrium with 

polysomes assembling on untranslated mRNAs and both have been linked to 

microRNA-mediated gene silencing while they also share a subset of identical 

component proteins. However they do have distinctive differences. P-bodies contain 

factors of the mRNA decay machinery while stress granules are defined by translation 

initiation factors. Stress granules are only found in cells under environmental stress 

and their assembly requires the phosphorylation of eIF2a (reviewed in Anderson and 

Kedersha, 2008). Finally stress granules are relatively fixed in the cytoplasm where 

they change shape and appear to fuse and divide, while P-bodies change their position 

without changing their shape, as observed by time-lapse video microscopy (Kedersha 

et al, 2005). 

Local translation in Neurones 
 

Asymmetric localisation of mRNAs is an evolutionary conserved mechanism of 

restricting protein translation to specific subcellular locations and is widely exploited 

in nature (Lécuyer et al, 2007). The concept of mRNAs being translated locally in 

neurones, in contrast to translation occurring only in the cell soma, was introduced in 

the early 1980’s with a study that revealed a preferential localisation of polyribosomes 

to dendritic spines (Steward and Levy, 1982). It is now well established that stimulus-

induced local translation allows neurones to alter the protein composition of synapses 

with great spatial and temporal resolution and provides a fast and efficient mechanism 
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of adjusting to novel environmental conditions (reviewed in Schuman et al, 2006). 

Local translation in axons allows the growth cone to autonomously respond to 

guidance cues by rapidly changing its direction of outgrowth (Twiss and Minnen, 

2006). Guidance cues that require local axonal translation to induce chemotropic 

responses include netrin-1, Sema3A (Campbell and Holt, 2001), Slit2 (Piper et al, 

2006) and brain-derived neurotrophic factor (BDNF) (Yao et al, 2006). A large 

number of mRNAs encoding for a wide variety of proteins have been shown to be 

transported to distal dendritic sites. mRNAs encoding for receptors, ion channels, 

translation factors, RNA-binding proteins, ribosomal proteins, cytoskeletal proteins 

and growth factors are among the identified dendritic messages (Zhong et al, 2006). 

Most notably dendritic mRNAs encoding for RhoA have been discovered, whose 

local translation is enhanced by BDNF stimulation (Troca-Marín et al, 2010). RhoA 

transcripts have also been described to localise in developing axons and growth cones 

where their local translation is induced by Sema3A (Wu et al, 2005). Intra-axonal 

translation of RhoA is in fact necessary and sufficient for Sema3A-mediated growth 

cone collapse (Wu et al, 2005). Other transcripts found to localise in dendrites include 

mRNAs encoding for the eukaryotic translation elongation factor 1A (eEF1A) and 

also for ribosomal proteins (Zhong et al, 2006). The presence of ribosomal protein 

mRNAs in dendrites raises the intriguing possibility of local ribosome assembly in 

distal sites (Zhong et al, 2006). 

 

Regulatory proteins that couple synaptic activity to local translation include staufen 

(Vessey et al, 2008) and Fragile-X Mental Retardation Protein (FMRP) (Zalfa et al, 

2006). The role of staufen in mRNA transport in neurones has been discussed 

previously. 

 

Fragile-X Mental Retardation Protein (FMRP) 
 

Fragile-X Mental Retardation Protein is encoded in humans by the Fmr1 gene. 

Mutations in the Fmr1 gene that resides on the X chromosome are causative of the 

Fragile X Syndrome, a major cause of inherited mental retardation (D'Hulst and 

Kooy, 2009). In the majority of cases the Fragile X Syndrome is caused by the 

expansion of a polymorphic CGG repeat located in the 5′ untranslated region of Fmr1 
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gene. This expansion up to more than 200 CGG repeats triggers hypermethylation of 

the upstream CpG island of the gene promoter causing transcriptional silencing 

(Verkerk et al, 1991; Zalfa et al, 2006). FMRP is highly conserved in vertebrates and 

is expressed in various organs, showing a particularly high expression in the brain. In 

the brain FMRP is restricted to differentiated neurones particularly in the 

hippocampus and granular layer of the cerebellum, while its expression has been 

localised to proximal dendrites and synapses but not axons (Hinds et al, 1993; Feng et 

al, 1997). FMRP regulates the expression of specific mRNAs at synapses (Zalfa et al, 

2003). It has been suggested that FMRP forms ribonucleoprotein complexes with 

target mRNAs in the nucleus which are transported to dendrites and spines where 

FMRP is involved in the regulation of local translation in response to stimuli (Bassell 

and Warren, 2008). Targets of FMRP translation regulation include mRNAs encoding 

Rac1 (Lee et al, 2003), profilin (Reeve et al, 2005) and microtubule-associated protein 

1B (Lu et al, 2004). FMRP has been shown to modulate actin organisation in the brain 

by directly controlling profilin, an actin-binding protein that regulates the actin 

cytoskeleton (Reeve et al, 2005). FMRP binds to mRNA encoding for the profilin 

homolog in Drosophila and negatively regulates profilin protein synthesis. Up-

regulation of profilin expression mimics the phenotype of FMRP mutants, while 

down-regulation suppresses the phenotype (Reeve et al, 2005). The function of FMRP 

has been linked to actin cytoskeleton remodelling and specifically Rac1 signalling. In 

Drosophila the CYFIP protein, orthologue of the vertebrate Cytoplasmic-FMR1-

interacting proteins 1 and 2, interacts with FMRP and Rac1, acting as a Rac1 effector 

that antagonises FMRP function (Schenck et al, 2003). FMRP has been shown to 

associate physically and functionally with known components of the microRNA 

pathway (Li et al, 2009) and recent advances indicate that phosphorylation of FMRP 

modulates its function in microRNA-mediated gene silencing (Cheever and Ceman, 

2009). FMRP may regulate the expression of the RasGAP-associated 

endoribonuclease G3BP that has been linked to stress granule assembly and the 

ubiquitin proteosome pathway (Zhong et al, 1999; Tourrière et al, 2001; Tourrière et 

al, 2003; Soncini et al, 2001). 
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G3BP in RAS signalling and RNA processing 
 

RasGAP SH3-Domain Binding Protein, G3BP, is an evolutionarily conserved 

endoribonuclease that was initially characterised through its interaction with a Ras 

GTPase-activating protein (p120 RasGAP) (Parker et al, 1996). The endoribonuclease 

activity of G3BP can initiate mRNA degradation and this RNase activity is 

phosphorylation dependent (Gallouzi et al, 1998). It has been suggested that G3BP 

regulates the transport and translation of mRNAs encoding for proteins involved in 

cellular proliferation and migration (Solomon et al, 2007). High expression of G3BP 

has been described in several human cancer derived cell lines and various cancer 

tissues, while G3BP can stimulate S phase entry in cultured cells in a function 

dependent on its RNA binding ability (Guitard et al, 2001). Furthermore, the 

expression of G3BP has been found to be closely related to the lymph node metastasis 

and survival in oesophageal squamous carcinoma patients (Zhang et al, 2007). 

 

G3BP is recruited to stress granules in cells exposed to arsenite while over-expressing 

G3BP can dominantly induce stress granule assembly, suggesting a role in 

determining the fate of mRNAs during cellular stress (Tourrière et al, 2003). In fact 

G3BP has been implicated in the transport and translation of mRNAs encoding for 

proteins involved in synaptic plasticity in neurones (Solomon et al, 2007). G3BP has 

been shown to directly down-regulate the translation of Tau mRNA through an 

interaction mediated by the 3′ untranslated region of the Tau transcript (Atlas et al, 

2007). 

 

G3BP has been implicated in ubiquitin-dependent protein degradation via its 

association with the ubiquitin-specific protease USP10, where data suggests that it 

inhibits the ability of USP10 to disassemble ubiquitin chains (Soncini et al, 2001). A 

study on fragile X lymphoblast cell lines revealed lowered levels of G3BP mRNA 

compared to controls, suggesting a regulation of G3BP mRNA by microRNA-

mediated gene silencing involving FMRP (Zhong et al, 1999). 
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Aim of this study: 
 

A yeast two-hybrid screen previously identified HemK1 as a potential binding partner 

for the neuronal α2-chimaerin. HemK1 is a ubiquitously expressed but little studied 

protein and the function of mammalian HemK1 has been described to a little extent 

very recently. α2-Chimaerin is a brain specific protein and an established player in 

signalling pathways of neuronal development and differentiation. The aim of this 

study was to characterise HemK1 and elucidate its function in neuronal morphology. 

Objectives: 
 

The objectives of this study were to:  

a) Investigate and map the interaction between HemK proteins and α2-chimaerin. 

b) Investigate the expression of HemK1 and HemK2 mRNA in the developing brain 

and characterise three monoclonal and two polyclonal anti-HemK1 antibodies in order 

to investigate native protein expression in rat brain. 

c) Characterise the interaction of HemK1 and HemK2 with release factors eRF1 and 

mtRF1a and investigate their intracellular localisation in respect to subcellular 

organelle markers, release factors, and proteins involved in RNA processing. 

d) Investigate the effects of HemK proteins in neuronal morphology by shRNA 

knock-down in rat hippocampal neurones. 
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Reagents/Materials 

General reagents 
 

Water was distilled and deionised through an ELGA purification system and was 

autoclaved prior to use. The general laboratory chemicals used were from BDH. 

Reagents for bacterial work 
 

Bacto Tryptone, Bacto Yeast Extract and Agar were from DIFCO. An initial stock of 

competent XL1-BLUE E.coli was obtained from Stratagene and subsequent stocks of 

competent cells were prepared by the CaCl2 method as described in the Bacterial 

Procedures section.  

Reagents for DNA procedures 
 

Agarose was from Sigma and the DNA ladder markers were x174 (HaeIII) and λ 

(HindIII) from Invitrogen. Tris-Acetone-EDTA buffer was from Millipore and 

ethidium bromide was from Sigma. The kit for DNA agarose gel extraction and kits 

for plasmid DNA purification from bacterial cultures were from Qiagen. Restriction 

enzymes used in cloning were from New England Biolabs. Calf intestinal alkaline 

phosphatase was from Promega and DNA ligase from Invitrogen. The site-directed 

mutagenesis kit was from Stratagene.  

 

The vectors used were the mammalian expression pXJ40 vectors (with FLAG, HA, 

GST, GFP and RFP tags) and the bacterial expression pGEX vector (GST tag). The 

HIS-Biotin dual-tag vectors used were the mammalian pXJ40-8xHIS-precission-SBP 

and the bacterial pGEX-T4. 

Reagents for RNA procedures 
 

The DNase/RNase-free water (DEPC-treated) and TRIzol were obtained from 

Invitrogen. DNase/RNase-free disposable consumables were from Greiner Bio-One. 

The RNeasy kit from Qiagen was used for RNA purification from cultured 

mammalian cells. The SuperScript III First-Strand Synthesis System by Invitrogen 
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was used for first-strand cDNA synthesis and the SYBRGreen PCR Master Mix by 

the same company was used for RT-PCR. 

Reagents for protein procedures 
 

In mammalian cell lysis and protein pull-down assays, the protease inhibitors used 

were the reducing agent dithiothreitol (DTT) and the phosphatase inhibitors Sodium 

ortho-Vanadate, Sodium Fluoride and Phenylmethanesulfonyl Fluoride (PMSF) 

obtained from Sigma and a protease inhibitor cocktail obtained from Roche. Anti-

FLAG and anti-HA antibody conjugated affinity beads were from Sigma. The BCA 

protein assay kit was from Thermo Scientific. 

 

In Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE), 

Acrylamide/Bis-acrylamide (37.5:1) was from Severn Biotech, TEMED from Bio-

Rad, -mercaptoethanol from BDH and prestained protein size-standards were from 

Invitrogen (SeeBlue Plus2). In western blotting Triton X-100 was from BDH and the 

PVDF membrane from Perkin-Elmer. Dried skimmed milk powder was from Marvel. 

Autoradiography film, ECL Hyperfilm and the ECL solutions were from Amersham 

and the film developing and fixing solutions were from Kodak. Glutathione Sepharose 

was from Amersham Biosciences, Centriprep Concentrators from Amicon and S-

Adenosyl[methyl-3H]methionine from GE Healthcare. The autoradiography enhancer 

spray was En3hance from Perkin-Elmer. 

Reagents for tissue culture procedures 
 

Dulbecco's Modified Eagle's medium (DMEM), Minimal Essential Eagle’s media 

(MEM), Opti-MEM, Neurobasal Medium, B-27, Lipofectamine, Lipofectamine 2000, 

DMSO, Hanks Buffered Saline Solution, Antibiotics/Antimytotics, Trypsin and FBS 

were from Gibco-Invitrogen. Disposable supplies were from Greiner and Bovine 

Serum Albumin (BSA) from Jackson Laboratories. Poly-D-lysine was from ICN. The 

slides and coverslips were from BDH and the mountant was from DAKO. G-418 

Sulfate was from Calbiochem. The electroporator device (Nucleofector) and the 

solutions used in primary neurone electroporation were from Amaxa. 
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cDNA constructs 
 

The cDNA constructs used in this project and their source is summarised in table 2.1, 

 

Construct Gene ID Chromosome Clone ID DNA accession 
N6AMT1/ 
HemK2 

21904 21q21.3 NIH MGC 119 BI520047, BI520047, 
BI520950 

TRMT112 51504 11q13.1 IMAGE  
30524659 

CF780526.1 
 

DCP1b 196513 12p13.33 IMAGE  
5296928 

BC043437 

STAU1 
Staufen1     

6780 20q13.1 IMAGE 
30528051 

CF594111, BC095397 
 

eRF1 2107 5q31.1  IMAGE 
3677482 

BE561367, BC014269 

eRF3b 23708 Xp11.23 IMAGE 
5313878 

BC036077, 
BI669954 

 
 
 
The constructs that were obtained from others are summarised in table 2.2. 

Construct Gene ID Chromosome Source DNA accession 
HemK1 51409 3p21.3  In house(C.Monfies) NM_01617.3 
G3BP1 10146 5q33.1 E. Manser 

(sGSK,IMCB) 
NM_005754 

FMR1 54516 6q25-q26 E. Manser 
(sGSK,IMCB) 

NM_002024 

mtRF1 9617 13q14.1 Z. Chrzanowska-
Lightowlers 

 

mtRF1a 54516 6q25-q26 Z. Chrzanowska-
Lightowlers 

 

 

 

Bacterial procedures 

Luria-Bertani (LB) media 
 

The LB medium used in the bacterial procedures was 10% (w/v) Bacto Tryptone, 5% 

Bacto Yeast Extract and 10% NaCl diluted in distilled/deionised water and 

subsequently autoclaved. Amount of 15% (w/v) agar was added before sterilisation to 

make the agar plates. A final concentration of 100mg/ml Ampicillin was added when 

selection was needed. 

Table 2.1 List of constructs cloned during this project. 

Table 2.2 List of constructs that were kindly provided by others. 
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Preparation of competent cells 
 

XL-1 BLUE E.coli were spread on a 10cm2 agar plate using a sterile plastic loop and 

incubated inverted at 37°C overnight. A colony was picked with a sterile plastic loop 

and used to inoculate 100ml of LB medium (in a ventilated flask) that was 

subsequently incubated in a shaking incubator (approximately 225-250 rpm) at 37°C. 

When the absorbance of the culture at 600nm wavelength reached A=0.35 the flask 

was placed on ice for 5 minutes. The cells were pelleted by centrifugation at 3,000 g 

for 10 minutes at 4°C in pre-chilled 50ml polypropylene tubes and the supernatant 

was decanted. Remaining medium was removed by inverting the tubes and blotting on 

absorbent paper. The cell pellet was resuspended in a total of 30ml of ice-cold 50mM 

CaCl2 and incubated on ice for 10 minutes. The cells were re-pelleted as above and 

the supernatant removed. The final cell pellet was resuspended in 50mM CaCl2/15% 

glycerol and stored at -80°C. 

 

Transformation of competent E.coli 
 

Transformation of XL1-Blue competent cells (Stratagene) 
 

Competent E.coli obtained from Stratagene were thawed on ice and β-

mercaptoethanol was added to a final concentration of 24.12mM (1.7µl of 1.42M in 

100µl) to 100µl of bacteria, and incubated on ice for 10 minutes. A total of 5µg for 

miniprep or 1µg for maxiprep plasmid DNA was added and the tubes were incubated 

on ice for 30 minutes after gentle mixing. The difference in the DNA amount used 

depending on the method of DNA purification takes in consideration the higher 

concentration and purity of maxiprep DNA (250ml starting culture) compared to 

miniprep DNA (5ml starting culture). The tubes were heat-pulsed in a 42°C water 

bath for 45 seconds and subsequently incubated on ice for two minutes. When 

maxiprep DNA was used the cells were plated on ampicillin-containing agar plates 

and incubated at 37°C overnight. When miniprep DNA was used, 1ml of pre-warmed 

LB medium was added and the tubes were incubated at 37°C for 1 hour with shaking 

at 225–250 rpm. The cells were then pelleted by pulse-centrifugation and 800µl of the 
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supernatant were decanted. The cells were resuspended in the remaining 200µl LB 

and streaked on ampicillin-containing agar plates and incubated at 37°C overnight. 

Transformation of XL1-Blue CaCl2 prepared competent cells 
 

Competent E.coli prepared by the CaCl2 method were thawed on ice and 100µl of 

bacteria were mixed with a total of 5µg for miniprep or 1µg for maxiprep plasmid and 

incubated on ice for 30 minutes. The tubes were heat-pulsed in a 42°C water bath for 

90 seconds and subsequently incubated on ice for two minutes. The last steps of this 

procedure were as described above for the commercial competent cells obtained from 

Stratagene, depending on the purification scale of the DNA used. 

Bacterial cultures for DNA purification 
 

For a maxi-prep scale of DNA purification, a single bacterial colony was picked with 

the aid of a sterile plastic loop and used to inoculate 5ml of ampicillin-containing LB 

medium that was subsequently incubated at 37°C with shaking at 225-250 rpm, for 4-

6 hours. This starter culture was then used to inoculate a total of 250ml of ampicillin-

containing LB that was incubated at 37°C in a shaking incubator. 

 

For mini-prep scale of DNA purification a single colony was used to inoculate 5mls 

of ampicillin-containing LB that was incubated at 37°C with shaking at 225-250 rpm 

overnight. 

Bacterial stocks 
 

Glycerol stocks of transformed bacteria were made by transferring 700µl of an 

overnight culture to a 1.5ml tube and adding 300µl of 50% sterile glycerol solution to 

obtain a final 15% (v/v) glycerol content. After mixing the tubes were stored at -80°C. 

Plasmid DNA purification 
 

Plasmid DNA was purified using the relevant kits from Qiagen and following the 

commercial protocol. Briefly, the overnight bacterial cultures were pelleted by 

centrifugation and resuspended in a Tris-based buffer. Subsequent alkaline lysis of the 

cells followed neutralisation of the lysate by the addition of a low-salt and low-pH 
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buffer. An anion-exchange resin was used to bind the DNA while RNA, proteins and 

low molecular weight impurities were removed by washing with a medium-salt 

buffer. The plasmid DNA was purified in a high-salt buffer and subsequently 

concentrated and desalted by isopropanol precipitation. The purified DNA was finally 

resuspended in 1ml of 10mM Tris-HCl pH8.0. 

Determination of purified DNA concentration and purity 
 

Amount of 10µl of the purified DNA was added to a cuvette containing 1ml of 10mM 

Tris pH 8.0. The absorbance was measured with the aid of a spectrophotometer at 

wavelengths 260 and 280 nm, against a blank sample of Tris pH 8.0. DNA absorbs 

ultraviolet light with an absorption peak at 260 nm, and protein shows an absorption 

peak at 280 nm. A ratio of the absorptions at the two wavelengths (A260/A280) gives an 

indication of the purity of the DNA with respect to protein contamination, with a 

product of 1.8 to be considered a “pure” DNA sample. The concentration of DNA is 

assessed by the formula:  

Concentration (mg/ml) = [(total volume/DNA volume) x A260 reading x 50] / 1000 

DNA procedures 
In cloning the various cDNAs in mammalian and bacterial expression vectors, a 

sequence of techniques was used. Initially the cDNAs were amplified by PCR that 

generated restriction enzyme recognition sites on either end of the amplified product. 

These restriction sites generated by the primers were chosen to allow ligation of the 

amplified cDNA in the multiple cloning site of the target plasmid. It was therefore 

important that these generated sites are unique in the cDNA and the relevant 

restriction enzymes will only cut at the designed sites. The PCR product was 

subjected to agarose gel electrophoresis and the corresponding band was excised off 

the gel and the DNA was purified. The DNA was digested with the corresponding 

restriction enzymes and purified, before it was ligated to the target plasmid, also 

digested with the same enzymes. The ligation products were used to transform E.coli, 

and select for the positive colonies. All these techniques are outlined here. 
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Polymerase Chain Reaction (PCR) 
 

The method of PCR was used to (a) amplify cDNA to clone in vectors, (b) test if 

bacterial colonies were positive in carrying a plasmid containing the cDNA insert, (c) 

raise a mutation in a cDNA by site-directed mutagenesis and (d) investigate on the 

expression of different transcripts in cells/tissues by quantitative Real-Time PCR 

(explained in RNA methods).  

PCR in cloning 
 

The method of PCR was used to clone cDNAs of HemK1, HemK2, eRF1, eRF3, 

Dcp1b, Staufen1 and TRMT112 in (a) mammalian expression vectors pXJ40 carrying 

an HA, FLAG, GST, GFP or RFP tag, and (b) bacterial expression vector pGEX 

carrying a GST tag. HemK1 and HemK2 cDNAs were also cloned in the HIS-Biotin 

dual tag vectors pXJ40-8xHIS-precission-SBP (for mammalian expression) and 

pGEX-T4 pBIOTIN-HIS (for bacterial expression). 

 

For PCR in cloning, the Taq Polymerase (bacterial recombinant) from SIGMA was 

used, as well as the 10x PCR buffer and 25mM MgCl2 solutions provided. The 

amounts of PCR buffers, cDNA, dNTPs, primers and Taq Polymerase used in a 50µl 

reaction volume are outlined: 

 

Component Final concentration Volume in reaction 
PCR buffer 10mM Tris-HCl Ph8.3, 

50mM KCl 
5µl of 10x reaction buffer  

MgCl2 1.5mM 3µl of 25mM MgCl2 solution 
Primer 1 0.8µM 0.4µl of 100µM stock 
Primer 2 0.8µM 0.4µl of 100µM stock 
dNTPs 200µM of each dNTP 1µl of 10mM [dATP, dTTP, 

dCTP, dGTP] mix (1:1:1:1) 
DNA template 0.5µg  
Taq Polymerase 0.05units/µl 0.5µl of 5units/µl 
ddH2O  Up to 50µl total reaction 

volume 
 

 

 

 

Table 2.3 Reaction condition in PCR in cloning. 
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The conditions used in the PCR varied depending on the predicted Tm of the primers 

and the length of the cDNA amplified in each case. A general outline is as follows: 

 

  94°C  1′   Initial Denaturation step 

  94°C  45′′   Denaturation 

30 Cycles 50-60 °C 30′′   Annealing 

  72°C  1′/1000 bp of cDNA Elongation 

  72°C  5′   Final Elongation step 

  

 

The primers used to clone each cDNA into each vector are listed in table 2.4. 

 
cDNA  Target vector Primers (5′ to 3′). Complementary to cDNA sequence in BLACK, 

Restriction Enzyme site in GREEN and extra sequence allowing  
restriction enzyme positioning in BLUE 

Restriction 
Enzyme site 
generated 

F GACGTCAAGCTTATGGAGCTTTGGGGCCGAATGC HindIII Human 
HemK1 

C-terminal 
FLAG pXJ40 R GACGTCCTGCAGCCTGGCCCAGACCTCCGGATATG PstI 

F GACGTCGAATTCATGGAGCTTTGGGGCCGAATGC EcoRI Human 
HemK1 

pGEX T4 
Biotin-His 

R GACGTCGTCGACTGGCCCAGACCTCCGGATATG SalI 

F GACGTCGAATTCATGGCAGGGGAGAACTTCG EcoRI Human 
HemK2 

pGEX T4 
Biotin-His 

R GACGTCGTCGACAGACTTGGTGAACTTGAGG SalI 

F GACGTCAAGCTTATGGCAGGGGAGAACTTCGCTACG HindIII Human 
HemK2 

pXJ40-
8xHIS-
precision-SBP 
vector 

R GACGTCGCGGCCGCCTAAGACTTGGTGAACTTGAG NotI 

F (a) CTTATGGCAGGGGAGAACTTCGCTACG 
(b) GACGTCAAGCTTATGGCAGGGGAG 

HindIII Human 
HemK2 

pXJ40 (N 
term. GST, 
FLAG, HA) R GACGTCCTGCAGCTAAGACTTGGTGAAC PstI 

F GACGTCAAGCTTATGATATCATTGATCATTCC HindIII eRF1 pXJ40 (N 
term. GST, 
FLAG, HA) 

R GACGTCCTGCAGCTAGTAGTCATCAAGGTC PstI 

F GACGTCAAGCTTATGGATTCGGGTAGCAGC HindIII eRF3 pXJ40 (N 
term. GST, 
FLAG, HA) 

R GACGTCCTGCAGTTAGTCCTTCTCTTGGAC PstI 

F GACGTCCCATGGATGAAACTGCTTACCC NcoI Human 
TRMT112 

pGEX-GST 
R GACGTCGTCGACCTCAACTCTCAGTTTCC SalI 
F GACGTCAAGCTTATGAAACTGCTTACCC HindIII Human 

TRMT112 
pXJ40 (N 
term. GST, 
FLAG, HA) 

R GACGTCAGATCTTCAACTCTCAGTTTCC BglII 

F GACGTCGCGGCCGCCATGAAACTTGGAAAAAAACGA NotI Staufen1 GFP(n)-Pxj40 
R GACGTCAGATCTTCAGCACCTCCCACACAC BglII 
F GACGTCCTCGAGATGGCAGCCGTGGCG XhoI Dcp1b GFP(n)-Pxj40 
R GACGTCCCCGGGTCACATAGTCTTTTTCAT SmaI 

 

 

 

 

Table 2.4 Primers used in cloning of cDNA constructs. 



 78 

The antibodies and probes used in this project are summarised in table 2.5. 

 
Antibody/Probe Dilution for 

immunoblotting 
Dilution for cell 
immunostaining 

Donor Animal Company 

Primary Antibodies 
α2-Chimaerin 1:2,000 1:100 Rabbit In House 
FLAG 1:2,000 1:100 Rabbit/ Mouse Sigma 
HA 1:2,000  Rabbit Bethyl Laboratories 
GST 1:1,000  Rabbit/Mouse Sigma 
Lamp-1  1:100 Mouse BD Biosciences 
EEA1:FITC  1:100 Mouse BD Biosciences 
GM130:FITC  1:100 Mouse BD Biosciences 
Clathrin Heavy 
Chain:FITC 

 1:100 Mouse BD Biosciences 

HSP60:FITC  1:100 Mouse BD Biosciences 
6D2 anti-HemK1 1:500 1:100 Mouse In House 
8F3 anti-HemK1 1:500 1:100 Mouse In House 
7D7 anti-HemK1 1:500 1:100 Mouse In House 
Rabbit-5 anti-HemK1 1:500 1:100 Rabbit In House 
Rabbit-6 anti-HemK1 1:500 1:100 Rabbit In House 
Mouse anti-HemK1 
H00051409-B01 

1:500  Mouse Abnova 

Mouse anti-HemK2 
H00029104-A01 

1:500  Mouse Abnova 

Rabbit anti-HemK2 
H00029104-M01 

1:500  Rabbit Abnova 

MitoTracker Green FM 
(M-7514) 

 1:100  Molecular probes 

Dcp1a (ab47998)  1:100 Goat Abcam 
Secondary Antibodies 
Mouse HRP 1:1,000  Rabbit DAKO 
Rabbit HRP 1:1,000  Swine DAKO 
Trueblot HRP 1:1,000  Mouse eBioscience 
Trueblot HRP 1:1,000  Rabbit eBioscience 
Rabbit:Cy5  1:100 Donkey Jackson Laboratories 
Mouse:FITC  1:100 Donkey Jackson Laboratories 

 

 

PCR testing for positive colonies 
 

The PCR method was used to test for positive colonies in cloning. Colonies of 

bacteria transformed with cDNA-vector ligation products were picked from LB-agar 

plates with a yellow tip and used to inoculate 20µl of 10mM Tris-HCl Ph8.0 in a 

1.5ml tube. Amount of 10µl of the bacterial suspension was used to inoculate 5ml of 

LB containing ampicillin, and incubated at 37° C with shaking at 225-250 rpm 

overnight. The rest 10µl of the bacterial suspension were used as template in a PCR 

designed to amplify the specific insert cDNA (same primers used for amplifying the 

cDNA before ligating with the vector). The products of this PCR were analysed by 

Table 2.5 Antibodies used in immunoblotting and immunostaining. 
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agarose gel electrophoresis to identify the colonies that contained a vector+cDNA 

construct, as opposed to an empty re-ligated vector (only the positive colonies would 

give a product of the expected size in the PCR). The positive colonies were analysed 

further by purifying the plasmid DNA of the 5ml cultures and performing restriction 

digests that would give products of predicted sizes. 

 

The final volume of this PCR was 25µl and the amounts of reaction components used 

are outlined in table 2.6. 

Component Final concentration Volume in reaction 
PCR buffer 10mM Tris-HCl Ph8.3, 50mM 

KCl 
2.5µl of 10x reaction buffer  

MgCl2 1.5mM 1.5µl of 25mM MgCl2 solution 
Primer 1 0.8µM 0.2µl of 100µM stock 
Primer 2 0.8µM 0.2µl of 100µM stock 
dNTPs 200µM of each dNTP 0.5µl of 10mM [dATP, dTTP, 

dCTP, dGTP] mix (1:1:1:1) 
DNA template  10µl 
Taq Polymerase 0.05units/µl 0.25µl of 5units/µl 
ddH2O  9.85µl total reaction volume 
 

 

 

All the cloned constructs were sequenced to check for sequence integrity and possible 

errors incorporated during PCR. The primers used in sequencing are listed bellow: 

 

cDNA Target Vector Primers used in sequencing 
eRF1 pXJ40 F: GATCATTCCTCCCAAAGACC 

F: CAAAGTGAATGTGGCTGGTC 
R: CTTTTGATTGTAACCTCTGATC 

eRF3 pXJ40 F: CCATGGATTCGGGTAGCAG   
F: GTGCACCTAAGAAAGAACACG 
F: CATTCACTTTATGCCCTGCTCAGG 
R: CTGAGCAGGGCATAAAGTG 
R: CTTCTGGGGGCCCTGAATC 

HemK1 pXJ40 F: ATGGAGCTTTGGGGCCGAATGCTG 
R: CCACCTCTTCCAGCACCCACTC 

primers upstream and downstream 
of pXJ40 multiple cloning site 

T7: TAATACGACTCACTATAGGG 
R: CGACCAGACATGATAAGATAC 

 

 

 

Table 2.6 Reaction conditions used in PCR in positive clone identification. 

Table 2.7 Primers used in PCR of positive clones. 
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PCR in site-directed mutagenesis 
 

The conserved substrate binding NPPY motif of the human HemK1 was mutated in 

order to investigate the methyltransferase activity and possible effect in neuronal 

growth. The NPPY motif in the bacterial HemK1, PrmC, has been shown to be 

important for the interaction with, and methylation of, release factor RF1. As 

published by Graille et al (Graille et al, 2005), the Asparagine to Alanine mutation in 

the NPPY motif inhibits the interaction with RF1 and abolishes methylation by PrmC. 

The QuikChange XL Site-Directed Mutagenesis Kit from Stratagene was used to raise 

the Asn239Ala mutation in the human HemK1 homologue. This kit is based on PCR, 

where the pXJ40-HemK1 plasmid constructs carrying a FLAG, HA or GST tag were 

amplified. The primers incorporated a nucleotide mismatch that generated the desired 

mutation. The primers used are outlined below and the mismatch nucleotides are 

highlighted in red: 

 

Forward: 

5′ GACCTGATTGTCAGCGCCCCTCCCTACGTCTTC 3′ 

Reverse: 

3′ GAAGACGTAGGGAGGGGCGCTGACAATCAGGTC 3′ 

 

Figure 2.1 illustrates the principle of this technique, where the primers bind on either 

side of the target sequence. The mismatch nucleotides that give rise to the Asn239Ala 

mutation are in lower case, and the red nucleotides at the forward primer indicate the 

affected codon: 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Principle of N239A site-directed mutagenesis of HemK1 by PCR. 
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In the PCR, the Pfu polymerase was used to take advantage of its high fidelity so as 

no random mutations are incorporated in the long elongation steps. The amounts and 

conditions used are outlined bellow: 

 

PCR: 

5µl 10x reaction buffer (provided in kit) 

10ng of double-stranded plasmid DNA (cDNA: HemK1) 

125ng primer 1 

125ng primer 2 

1µl dNTP mix (provided in kit) 

3µl QuickSolution (provided in kit) 

ddH2O to final volume 50µl 

 

  94°C  1′   Initial Denaturation step 

  94°C  50′′   Denaturation 

18 Cycles 60 °C  50′′   Annealing 

  68°C  5′   Elongation 

  68°C  7′   Final Elongation step 

 

After the completion of the PCR, the samples were incubated with the restriction 

enzyme Dpn1, to digest the methylated parental DNA template. The PCR products 

were used to transform E.coli, that were subsequently plated on ampicillin containing 

LB agar plates. The colonies picked were used to prepare DNA that was sequenced to 

reveal the colonies containing the successfully mutated HemK1 construct. 

DNA agarose gel electrophoresis 
 

DNA was analysed by agarose gel electrophoresis when a) purification of a digestion 

product was needed (in preparing the insert for ligation in cloning), b) to test for 

positive colonies by restriction digest of bacterial colony plasmid DNA and c) to 

check PCR products in optimising reaction conditions. The agarose gels used ranged 

from 1 to 2% agarose, depending on the size of the expected DNA. The recipe was as 

follows: 
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1-2g of Agarose 

100ml TAE buffer (40mM Tris, 20mM Acetate, 1mM EDTA) 

 

After dissolving the agarose by heating the solution, the mix was cooled to about 

50°C and ethidium bromide was added at a final concentration of 5µg/ml. The gel was 

poured in a gel-tray than incorporated 20 wells, and left to set before use.  

The DNA samples were prepared by adding 1/5 volume of 6x DNA loading buffer 

and mixing. The DNA loading buffer consist of 30% glycerol, 0.25% Bromophenol 

blue, made up in Tris-Acetate-EDTA buffer. 

 

The gel then immersed in a TAE buffer containing running tank, and the samples 

containing 6x DNA loading buffer were loaded in the wells. The gel was run for 1 

hour at 125V before visualising on a UV light source.  A digital camera and the 

Kodak Molecular Imaging software were used to obtain pictures of the DNA gel 

electrophoresis. 

To excise bands off the agarose gel, a scalpel was used to cut off the band in the gel 

visualised under UV. DNA was extracted from the agarose piece by using the 

QIAquick Gel Extraction kit by Qiagen. 

 

DNA Phenol-Chloroform extraction and Ethanol precipitation 
 

To purify DNA from protein contaminants the method of Phenol-Chloroform 

extraction was used. An equal volume of Phenol/Chloroform/Isoamyl alcohol 

(25:24:1) was added to the DNA sample and was mixed by brief vortexing. It was 

centrifuged in a microcentrifuge at 14,000rpm for 5 minutes. The upper aqueous 

phase was carefully transferred to a fresh tube, avoiding the white interphase 

containing  the protein impurities. The process was repeated and the final aqueous 

phase was transferred to a fresh tube. 

 

Amount of two volumes of pure Ethanol was added to the sample and Sodium  

Acetate pH 5.2 was added to a final concentration of 0.3M. The solution was mixed 

and incubated on dry-ice for 10 minutes. The tube was centrifuged in a 

microcentriguge at 14,000rpm for 10 minutes. The supernatant solution was carefully 
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removed and the DNA pellet was washed with 200 µl of 70% ethanol. The tube was 

centrifuged for 2 minutes at 14,000rpm and the solution was carefully removed. The 

pellet was dried in a vacuum centrifuge for 5 minutes and the DNA was finally 

resuspended in 10mM Tris pH8. 

DNA restriction enzyme digestion 
 

Digestion of DNA was used when preparing insert and plasmid DNA for ligation and 

also when testing for positive bacterial colonies, in cloning. In digesting the insert 

(often a PCR product that was extracted/purified by agarose gel electrophoresis) and 

the plasmid in cloning, amount of 10µg of DNA were used in the reaction. The 

reaction was set up as follows: 

 

DNA (10µg) 

Restriction enzyme(s) [7% of reaction volume] 

ddH2O up to the desired volume 

 

When needed amount of 0.1mg/ml BSA was also included in the reaction (provided 

by New England Biolabs as a 100x stock containing 20mM KPO4 pH 7.0, 50 mM 

NaCl, 0.1 mM EDTA and 5% glycerol). 

The reaction was mixed and incubated at 37° C overnight. The digested DNA in the 

reaction was then purified by Phenol/Chloroform extraction and Ethanol precipitation. 

Dephosphorylation of linearised vector DNA prior to insert 
ligation 
 

Linearised vector DNA was dephosphorylated prior to insert ligation to avoid re-

ligation of the vector and false positives, when the vector ligates back to itself without 

containing an insert. The Calf Intestinal Alkaline Phosphatase (CIAP) from Invitrogen 

was used. The dephosphorylation reaction was set up at the end of a restriction digest 

of the vector, without purifying the DNA. The provided buffer and Phosphatase were 

added directly to the completed restriction reaction as follows: 
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100 µl of vector digestion reaction 

13 µl of 10x CIAP buffer  

11 µl of 1:100 diluted CIAP enzyme  

 

The samples were mixed and incubated for 30 minutes at 37 °C.  

 

A further amount of 11 µl 1:100 CIAP enzyme was added and the samples were 

incubated for 30 minutes at 37 °C. The samples were run on agarose gel 

electrophoresis and the desired linearised vector was excised off the gel and purified 

with the QIAquick Gel Extraction Kit before setting up an insert ligation reaction. 

DNA ligation 
 

Linearised vector DNA was ligated with insert DNA, that is the purified cDNA to be 

cloned in a mammalian or bacterial expression vector. The T4 DNA ligase from 

Invitrogen was used. The two purified DNA fragments were briefly checked for purity 

and concentration by running a small amount in an agarose gel and visualising on a 

UV light source. The vector and insert DNA were mixed in a tube and initially heated 

up to 65° C for 5 minutes, to break any secondary structures. Then they were allowed 

to cool at room temperature and transferred on ice so as the ligation buffer and ligase 

enzyme can be added. The amounts of vector and insert DNA varied on each cloning 

experiment, depending on the concentration of the purified DNA samples, but a 

general initial set up would use 3:1 insert to vector amounts. Also when a ligation 

reaction would yield no colonies the reaction would be repeated increasing the 

amount of insert. As an example, the reaction set up for cloning HemK1 and HemK2 

in the His-Biotin pXJ40 vectors were as follows: 

 

0.5 µl of linearised/dephosphorylated Vector DNA 

7 µl of Insert DNA  

2 µl of 10x T4 DNA Ligase Buffer 

1 µl of T4 Ligase Enzyme 

 

A negative control reaction was set up in parallel, were no insert DNA was included, 

so as to control for the re-ligation of the vector and false positives. 
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The reaction was incubated at 16° C overnight and was then used to transform 

bacteria, as explained in the Bacterial Procedures section. The transformed bacteria 

were plated on ampicillin containing plates to select for successfully transformed 

E.coli. Six colonies were picked and a used to inoculate 5mls of LB with ampicillin 

selection. This starter culture was used to make a mini-prep of DNA as described in 

the Bacterial Procedures section. 

 

A small amount of the DNA purified from the colonies was digested with restriction 

enzymes to check if they successfully contain the insert. The enzymes used were most 

often the same used to clone the insert at the first place. Running the digestion 

products on an agarose gel, the positive colonies would produce two DNA bands, the 

linearised vector and the insert, and colonies that do not contain the insert would 

produce only the linearised vector band. DNA from the positive colonies was used to 

transform E.coli and make a maxi-prep of DNA.  

 

RNA procedures 

Knock-down of gene expression by shRNA 
 

To investigate the effect of HemK1 and HemK2 in neurite morphogenesis, the 

expression of the two genes was knocked-down by double-stranded RNA 

interference. The siSTRIKE U6 hairpin cloning system by Promega was used, that 

utilises a psiSTRIKE vector containing the U6 promoter. We designed 

oligonucleotides that contain the hairpin shRNA target and U6 terminator sequence, 

that were ligated in the psiSTRIKE vector. In cells, RNA polymerase III recognises 

the U6 promoter driving the transcription of the hairpin RNAs. The antisense RNA 

molecules generated bind to complementary RNA molecules in the cell that target the 

complex to cleavage by the RNA-induced silencing complexes (RISCs). The 

oligonucleotides were cloned in two psiSTRIKE vectors, one containing a GFP 

marker (for detection of transfected cells in rat embryonic hippocampal primary 

neurones experiments) and one containing a neomycin gene giving resistance to G-

418 for selecting transfected cells in experiments with N1E-115 cells. Also the two 
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vectors contain an Ampr gene that offers selection of E.coli, in cloning the 

oligonucleotides in the psiSTRIKE vectors. 

 

All the oligonucleotides were HPLC purification grade and ordered from Sigma. The 

oligonucleotides were designed using the on-line shRNA oligonucleotide designer 

tool provided by Invitrogen. The target sequence of HemK1 and HemK2 returned 20 

possible oligonucleotide pairs, three of which were chosen that were not 

complementary to the human sequence (so HemK1/2 expression can be restored by 

transient transfection of human cDNA) and were complementary to both rat and 

mouse cDNAs. The oligonucleotides used are outlined in the following table: 

 
Target 
RNA 

Complement
ary to species 

name Oligonucleotide sequence (5′ to 3′) 

ACCGGATGCCGGTGCAGTATATTTCAAGAGAATATACTGCACCGGCATCCTTTTTC Rat, mouse 1A 
TGCAGAAAAAGGATGCCGGTGCAGTATATTCTCTTGAAATATACTGCACCGGCATC 
ACCGGAACCCATGACTGATTCTTTCAAGAGAAGAATCAGTCATGGGTTCCTTTTTC Rat, mouse 2A 
TGCAGAAAAAGGAACCCATGACTGATTCTTCTCTTGAAAGAATCAGTCATGGGTTC 
ACCGGGAATCCAGTGAGTACATTTCAAGAGAATGTACTCACTGGATTCCCTTTTTC 

HemK1 

Rat, mouse 3A 
TGCAGAAAAAGGGAATCCAGTGAGTACATTCTCTTGAAATGTACTCACTGGATTCC 
ACCGGGCTGTTCTACTTAGTTATTCAAGAGATAACTAAGTAGAACAGCCCTTTTTC Rat, mouse 1B 
TGCAGAAAAAGGGCTGTTCTACTTAGTTATCTCTTGAATAACTAAGTAGAACAGCC 
ACCGAAACGGCCGGGAAGTCATTTCAAGAGAATGACTTCCCGGCCGTTTCTTTTTC Rat, mouse 2B 
TGCAGAAAAAGAAACGGCCGGGAAGTCATTCTCTTGAAATGACTTCCCGGCCGTTT 
ACCGGAGGACACGTTCCTGTTATTCAAGAGATAACAGGAACGTGTCCTCCTTTTTC 

HemK2 

Rat, mouse 3B 
TGCAGAAAAAGGAGGACACGTTCCTGTTATCTCTTGAATAACAGGAACGTGTCCTC 

 

 

 

 

Also, two pairs of scrambled sequence oligonucleotides were used, as a control for 

non-specific RNA interference. These scrambled oligonucleotides were based on pairs 

1A and 2A described above, and their sequences are as follows: 

 

Scrambled 1: 

ACCGGATGCCGGTGCAGTATATTTCAAGAGAATATACTGCACCGGCATCC

TTTTTC  

               

TGCAGAAAAAGGATGCCGGTGCAGTATATTCTCTTGAAATATACTGCACC

GGCATC 

 

Table 2.8 Primers used in shRNA knock-down of HemK1 and HemK2. 
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Scrambled 2: 

ACCGTTTGGCTCGATGATTATCTTCAAGAGAGATAATCATCGAGCCAAAC

TTTTTC 

               

TGCAGAAAAAGTTTGGCTCGATGATTATCTCTCTTGAAGATAATCATCGAG

CCAAA 

 

Initially the oligonucleotides were diluted in nuclease-free water to a final 

concentration of 1 µg/µl. The annealing reaction was set up as follows: 

 

Oligonucleotide A (1 µg/µl)   2 µl 

Oligonucleotide B (1 µg/µl)   2 µl 

Oligo annealing buffer 46 µl 

 

The reaction was incubated at 90° C for 3 minutes, and then transferred to a 37° C 

water-bath and incubated for 15 minutes. The annealed hairpin nucleotides were 

diluted further to a final concentration of 4ng/ µl to set up a ligation reaction with the 

already linearised psiSTRIKE vectors: 

 

2x rapid ligation buffer    5 µl 

psiSTRIKE vector (50ng/µl)    1 µl 

Annealed oligonucleotides A and B (4ng/ µl each) 1 µl 

Nuclease-free water     2 µl 

T4 DNA ligase (3 units/µl)    1 µl 

 

The reactions were mixed by pipetting and incubated at room temperature for 3 hours. 

The ligation products were used to transform E.coli bacteria as described in the 

Bacterial Procedures section. Five colonies were picked from each oligonucleotide-

pair and were used to purify DNA to screen for positives. The psiSTRIKE vectors 

contain a single PstI restriction site. Successful ligation of the annealed 

oligonucleotides in these vectors results in the creation of a second PstI site. Therefore 

the colonies were screened for positives by digesting the DNA with PstI, since empty 

religated vectors would produce in linearised plasmids (one ~4.5kb band in agarose 
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gel electrophoresis) and the insert-containing vectors would produce two bands 

(~3.6kb and 1kb). The PstI digestion was set up as follows: 

 

DNA   10 µl 

NEB Buffer 2    2 µl 

Pst 1     1 µl 

ddH2O     7 µl 

 

The digestion reactions were incubated at 37° C for three hours before they were 

analysed by agarose gel electrophoresis. The positive colonies were used to re-

transform E.coli and finally prepare DNA to be used for mammalian cell 

transfections. 

 

Quantification of gene expression by Real-Time RT-PCR 
 

RNA purification from cells 
 

To investigate the expression of HemK1 and HemK2 genes in specific cells and the 

effectiveness of knocking-down their expression by shRNA, RNA was purified and 

used in a real-time PCR. The purification of RNA from cells was performed using the 

RNeasy mini kit from Qiagen. RNA was purified from e18 rat brain hippocampal 

neurones plated on PDL/Laminin coated 5cm2 plates, 3 days in vitro. RNA was 

purified from N1E-115 cells plated on 10cm2 plates. The whole purification was 

performed on ice, using RNase-free solutions and consumables. Briefly, the medium 

was removed from the plates and the cells were washed once in PBS that was 

subsequently completely aspirated. The cells were lysed on the plates by addition of a 

denaturing guanidine-thiocyanate containing buffer (buffer “RLT” in the kit). The 

cells were harvested using a rubber policeman and the lysate was homogenised by 

centrifugating through a QIAshredder spin column (Qiagen). Ethanol was added to 

the lysate and total RNA was bound to a silica-based column (RNeasy Mini spin 

column) and was subsequently washed with provided buffers and eluted in 35µl 

RNase/DNase-free water. Amount of 1µl of purified RNA was used to measure the 
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RNA concentration with the aid of a NanoDrop spectrophotometer. The purified RNA 

was stored at -80° C. 

RNA purification from tissues 
 

RNA was purified from brain sections to quantify the gene expression of HemK1 and 

HemK2. The TRIzol reagent used (Invitrogen) is a phenol and guanidine 

isothiocyanate solution that disrupts the cells in the lysis/homogenisation step while 

suppressing the activity of RNases by being a strong protein denaturant and therefore 

maintaining RNA integrity. 

 

Initially, sections from embryonic rat brains were dissected and weighted out. Amount 

of 1ml of TRIzol was added to 0.1g of tissue. The tissue was pulverised with the aid 

of a glass homogeniser, on ice. The homogenate was transferred to RNase-free tubes 

and incubated at room temperature to allow for the complete dissociation of 

nucleoprotein complexes. Amount of 0.2ml of chloroform was added and the tubes 

were vigorously mixed by hand for 15 seconds and incubated at room temperature for 

3 minutes.  The samples were subsequently centrifuged at 12,000g for 15 minutes at 

4° C.  The resulting aqueous phase was transferred to new tubes and 0.5mls of 

isopropyl alcohol were added. After incubating the tubes for 10 minutes at room 

temperature they were centrifuged at 12,000g for 10 minutes at 4° C. The supernatant 

was subsequently removed and the RNA precipitate was washed by the addition of 

1ml of 75% ethanol and brief vortexing. The tubes were further centrifuged at 7,500g 

for 5 minutes at 4°C. The ethanol was removed and the pellet was briefly air-dried for 

10 minutes. The purified RNA was resuspended in 35µl of RNase-free water, and 

stored at -80° C. 

Determination of purified RNA concentration and purity 
 

The concentration and purity of purified RNA was assessed with the aid of the 

cuvette-free spectrophotometer Nanodrop that allows for the analysis of 1µl sample 

volume. That allowed for the normalisation of RNA amounts used in reverse-

transcription reactions where comparable amounts of cDNA product were desired, 

assuming that the total mRNA content in the reaction will be transcribed to cDNA.  
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Reverse Transcription of cDNA 
 

RNA purified from tissues/cells was used to reversely transcribe cDNA from mRNA, 

to be subsequently used in quantitative Real-Time PCR. The amounts used in the 

“SuperScript III First-Strand Synthesis for qRT-PCR” kit from Invitrogen, and the 

conditions used are outlined in table 2.9. 

 

Component Amount used 
2X RT Reaction Mix 10 µl 
RT Enzyme Mix 2 µl 
RNA (up to 1 µg) 
DEPC-treated water to 20 µl total reaction volume 
 

 

The reaction was set up in an RNase/DNase free 0.2ml PCR tube on ice and incubated 

at 25°C for 10 minutes. Subsequently, the tube was incubated at 50°C for 30 minutes, 

before terminating the reaction at 85°C for 5 minutes. The tube was chilled on ice and 

1 µl (2 U) of E.coli RNase H was added, and incubated at 37°C for 20 minutes. The 

tube was finally stored at -20°C.  

Quantitative Real-Time PCR 
 

The method of real-time PCR allowed us to estimate the relative abundance of 

specific transcripts in cells and tissues. In this PCR, we amplify the transcript of a 

gene of interest, so the template used is the cDNA made from RNA purified from 

cells/tissues, while the primers used are specific for the cDNAs in question (i.e. 

HemK1, HemK2, α2-chimaerin, β-actin and HPRT1). Real-time PCR employs a 

DNA-binding fluorescent reporter molecule to monitor the reaction in real-time. We 

used the dye SYBR Green that binds to the minor groove of the DNA double helix, 

and when excited it exhibits fluorescence that is detected by the real-time thermal-

cycler. The fluorescence of the reporter increases as the product accumulates in each 

cycle. This allows us to create an amplification curve, where the reading of the 

fluorescence emission on each cycle is plotted against the cycle. The software will 

automatically set a threshold of fluorescence, at the point where fluorescence of 

amplified product is first detected above the “noise” level. The cycle at which the 

fluorescence from a sample crosses the threshold is called Ct, and that parameter is 

Table 2.9 Reaction conditions used in Reverse Transcription of mRNA. 
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used to compare amounts of specific mRNA transcripts. In this method, we used the 

dye ROX in the reactions as a passive signal to normalise experimental results for 

non-PCR-related fluctuations in fluorescence signal. To quantitate the alteration of the 

HemK1 and HemK2 transcript by shRNA knock-down, a standard curve was 

constructed using cDNA from untransfected cells, in a series of known dilutions. The 

standard curve was then used as a reference standard for extrapolating quantitative 

information for mRNA targets of unknown concentrations.  

 

The real-time thermal cycler determines the melting point of the product at the end of 

the amplification reactions. It constructs a dissociation curve, where the temperature is 

raised while the fluorescence is being measured. At the melting point, the DNA 

strands will denature and the fluorescence reading will drop rapidly. Since SYBR 

Green will bind any double-stranded DNA, it will also give fluorescence in the case of 

DNA contamination in the reaction, formation of primer-dimer and also mispriming, 

where DNA products are made due to primers annealing to non-target DNA. Thus, 

this reading is an important quality control, since the melting temperature of a DNA 

double helix depends on its length and base composition and so the PCR products of a 

particular primer pair should have the same melting temperature. The plot constructed 

by the software shows the rate of change of fluorescence with time (-d(RFU)/dT 

where RFU is Relative Fluorescence Units and T is time) versus the temperature. The 

peak in the graph represents the melting temperature (Tm) (see Chapter 4). All 

reactions of each primer-pair were checked for similar melting temperatures as a non-

similar peak would indicate contamination or non-specific priming and primer-dimers 

would manifest in lower melting temperatures. Negative controls were also included 

in the reaction set up, to check for possible DNA contamination and also primer-

dimers.  

 

The Power SYBR Green PCR Master Mix (Invitrogen) was used for the real-time 

PCR analysis. The real-time PCR thermal cycler used was the Stratagene Mx3000P 

along with the MxPro QPCR software for reaction set up and data analysis. The 

primers were designed so the amplicons (cDNA target sequence to be amplified) span 

two introns to avoid amplification of genomic DNA. The amplicon size was kept to 

the range of 180-250 base-pairs. The GC content of the primers was kept in the 20 to 
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80% range and runs of an identical nucleotide were avoided. The primers were 

designed to have a melting temperature between 58.5 and 61 °C. 

 

The primers used in the real-time PCR are listed in table 2.10. 

Transcript Species Product 
size 
(bb) 

Primers Tm 
(°C) 

F: TTGCGAGGTAGAAAACAGACC 59.4 α2-Chimaerin Rat 211 
R: CCCAACAAAGTGCTTTCCAT 59.9 
F: CCAGGAGCTGTGTAACCATAGA 59.3 HemK1 Rat 201 
R: AGAATGAGGGGACCATCTTG 58.9 
F: ATGGTACCCCCAGTGTTCAT 59.0 HemK1 Mouse 211 
R: CAGCAGCTTCCTCCTTATCC 58.9 
F: TCCTTCCTGGGTATGGAATC 58.8 β-Actin Rat 247 
R: CCAGGATAGAGCCACCAATC 59.5 
F: CTAGGCACCAGGGTGTGAT 58.5 β-Actin Mouse 177 
R: CCACACGCAGCTCATTGTA 59.4 
F: GGAAAGAACGTCTTGATTGTTG 58.7 HPRT-1 Rat 229 
R: TCAAATCCCTGAAGTGCTCA 59.4 
F: TCAGTCAACGGGGGACATA 59.9 HPRT-1 Mouse 216 
R: CCAACAAAGTCTGGCCTGTA 58.8 
F: CGAGCTAGCAGGAGTGGAAA  60.7 HemK2 Mouse 181 
R: GATCACTGGCTGAACATGGA 59.6 
F: GGGTGGTGTCTGCATTCCTA 60.9 HemK2 Rat 186 
R: GCAGGTCTACTTTCCCCTTCA 60.6 

 

 

 

The reactions were set up in an RNase-DNase free 96-well PCR plate on ice. Filter 

tips were used to avoid cross-contamination. The reactions were set up as follows: 

 

Component Final concentration Volume in reaction 

SYBR Green PCR 

MasterMix (2x) 

1x 12.5µl 

Primer 1 1.5mM 3µl of 25mM MgCl2 solution 

Primer 2 0.8µM 0.4µl of 100µM stock 

cDNA template 0.8µM 0.4µl of 100µM stock 

ddH2O  Up to 25µl total reaction volume. 

 

 

 

Table 2.10 Primers used in real-time PCR. 

Table 2.11 Reaction conditions used in real-time PCR. 
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The 96-well plate was sealed with PCR cap strips and pulse-centrifuged at 500g 

before placing in the ABI 7300 PCR thermal cycler and initiating the reaction cycles. 

 

The conditions used in the PCR are as follows: 

 

  94°C  1′   Initial Denaturation step 

  94°C  45′′   Denaturation 

30 Cycles 50-60 °C 30′′   Annealing 

  72°C  1′/1000 bp of cDNA Elongation 

  72°C  5′   Final Elongation step 

  

The reaction data collected by the ABI 7300 were exported from the MX Pro software 

and processed in Microsoft Excel. 

Protein Procedures 

Analysis of proteins by Western Blotting 
 

Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis 
(PAGE) 
 

Proteins were separated according to their size by polyacrylamide gel electrophoresis, 

using a Tris based 12% polyacrylamide gel.  The recipe for making a 12% 

polyacrylamide gel was as follows: 

 
ddH2O 3.4ml 
3M Tris pH 8.8 1.25ml 
10% SDS 100µl 
Acrylamide/Bis-acrylamide (37.5:1) 4ml 
10% ammonium persulfate (APS) 50µl 
Temed 10µl 
 

The stacker gel used was as follows: 
ddH2O 3ml 
Stacking mix (0.4% SDS, 1.5M Tris pH6.8) 1.25ml 
Acrylamide/Bis-acrylamide (37.5:1) 650µl 
10% ammonium persulfate (APS) 25µl 
Temed 10µl 
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An amount of 4x SDS loading buffer was added to the protein samples that were 

incubated for 10 minutes in a heat-block set at 100° C (volume of 4x loading buffer 

added equals 1/3rd of the initial sample volume). The samples were then pulsed-

centrifuged and 20-35µl were loaded in the gel. The gels were ran at 170 Volts for 

one hour, or until the ion front (marked by the migration of the bromophenol blue 

dye) reached the bottom end of the gel. 

 

The 4x SDS loading buffer was made as follows: 200mM Tris pH6.8, 8% (w/v) SDS, 

0.4% (w/v) bromophenol blue, 40% (v/v) glycerol and 400mM β-mercaptoethanol. 

Electroblotting of proteins to PVDF membrane 
 

The proteins resolved in the polyacrylamide gel were transferred to PVDF membrane 

to facilitate the detection of specific proteins by immunodetection. The PVDF 

membrane was first soaked in methanol and then in transfer buffer together with a 

total of eight 3mm chromatography paper pieces (of equal size to the membrane). The 

gel was removed from the electrophoresis apparatus and the stacker was removed. 

The gel was immersed in transfer buffer and left to equilibrate for 5 minutes with 

gentle shaking. A semi-dry blotter was used, where a sandwich of the membrane and 

the gel was placed with four chromatography papers on either side. The gel was 

placed on the side of the negative pole while the membrane on the side of the positive 

pole and air-bubbles between the gel and membrane were removed with the aid of a 

roller. The transfer was at 22V for 40 minutes. 

 

The transfer buffer was made as a 10x stock as follows:  

48mM Tris, 39mM glycine, 1.3mM SDS. To make the 1x working solution 100ml of 

10x were mixed with 200ml of methanol and 700ml of ddH2O. 

Coomassie Blue staining of the PVDF membranes 
 

The PVDF membrane were removed from the transfer apparatus and left to dry. A pen 

was used to mark on the standard protein sizes on the membrane and the membrane 

was immersed in Coomassie Blue stain solution for 15 minutes with gentle shaking.  

Excess Coomassie stain was washed off with water and the membrane was destained 



 95 

in destain solution for a total of 20 minutes. This allowed us to visualise the proteins 

as well as check for equal loading and quality of samples (in the case of brain extracts 

where excess lipids will cause a smear on the gel that will not resolve to a clean 

immunodetection). 

 

The Coomassie stain was as follows:  

0.1% (w/v) Coomassie Brilliant Blue, 45% (v/v) methanol, 45% ddH2O and 10% 

(v/v) acetic acid. After dissolving the solution was filtered through 3mm 

chromatography paper to remove and Coomassie Brilliant Blue lumps. 

 

The destain solution was as follows: 

45% (v/v) methanol, 45% ddH2O and 10% (v/v) acetic acid. 

Immunodetection of proteins 
 

After destaining the PVDF membrane was washed in PBS and blocked in 5% 

milk/0.1% Tween/PBS at room temperature for 30 minutes. It was then washed five 

times for five minutes in PBS/0.1% Tween and incubated with the appropriate 

antibodies in PBS/0.1% Tween for one hour at room temperature. After washing as 

above the membrane was incubated with the HRP-conjugated secondary antibody in 

PBS/0.1% Tween for an hour. After washing as above the membrane was immersed 

in ECL reagent for one minute. The excess ECL reagent was then carefully blotted off 

the bottom end of the membrane with a tissue, and the membrane was wrapped in 

plastic wrap before it was placed in a cassette with an ECL-hyperfilm to detect the 

immunofluorescence. 

Cell Biology procedures  

Solutions 
 

Growth Media for COS-7 and N1E-115 cells: DMEM, 10% FCS, 1% 

Antibiotic/antimycotic. 

Growth Media for HeLa cells: Eagle Minimum Media, 10% FCS, 1% 

Antibiotic/antimycotic, 4 mM L-Glutamine. 

Freezing stock Solution: 10% DMSO, 90% FCS. 
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Primary Neurones Plating Media: OptiMEM, 10 % FCS, 20 mM Glucose, 1 % 

Antibiotic/ antimycotic. 

NB plus Media: Neurobasal media, 1:50 dilution of B-27 supplement, 0.5 mM L-

glutamine, 1 mM Sodium Pyruvate, 0.06 mg/ml Cysteine, 1% Antibiotic/ antimycotic. 

COS-7 Lysis Buffer: 20 mM TrisHCl pH 7.4, 5 mM EDTA, 150 mM NaCl, 10% 

glycerol, 1% triton-X100. 

N1E-115 Lysis Buffer: 25 mM HEPES pH 7.5, 0.3 M NaCl, 1 mM MgCl, 1 mM 

EGTA, 20 mM p-glycerophosphate, 5% glycerol, 1% triton-X100. 

Inhibitors: 0.1 mM Sodium Vanadate, 10 mM Sodium Flouride, 5 mM DTT, 1x 

Protein inhibitor cocktail, 1 mM PMSF. 

Recovery of Cells from Frozen Stocks 
 

Vials of cells stored in liquid nitrogen were thawed in a 37° C water bath. Cells were 

re-suspended in pre-warmed media and centrifuged at 150 g for 5 minutes. The 

medium was decanted the cell pellet re-suspended in fresh media and plated onto cell 

culture dishes. 

Freezing Down Cell Stocks 
 

Cells were removed from the plate by pipetting or trypsinisation and centrifuged at 

150 g for 5 minutes. Supernatant was decanted and the cell pellet was re-suspended in 

1.5 ml of freezing stock solution and placed into a Cryovial. Cells were frozen 

gradually to -80 °C over night in an isopropanol-insulated container, before being 

stored in liquid nitrogen. 

Cell Maintenance 
 

All mammalian cells used in this study were maintained in 37° C, 5 % CO2 

incubators. 

 

COS-7 cells (monkey) were maintained at the required density by splitting the culture. 

Cells were washed in PBS, trypsinised, and centrifuged at 150 g for 5 minutes. The 

supernatant was aspirated and the cells were re-suspended in media and plated at the 

desired densities. 
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Neuroblastoma N1E-115 cells (mouse) were plated on laminin-coated tissue culture 

dishes. They were maintained by detaching the cells from the tissue culture plate by 

pipetting, and re-plated at the required densities. The shRNA transfected 

neuroblastoma N1E-115 cells were selected in 400 µg/ml neomycin G418-containing 

media.  

 

HeLa cells (human) were maintained at the desired density by trypsinisation and re-

plating like COS-7 cells. 

 

The primary hippocampal neurones isolated from e18 rat brains were maintained by 

replacing half of their NB plus media every 2-3 days.  

Preparation of Coverslips 
 

Glass coverslips (24 x 24mm2, thickness 1) were treated with 40 % HCl/60 % ethanol 

for 10 minutes with shaking, and washed thoroughly with water. Coverslips were 

dried on blotting paper and baked overnight at 80° C wrapped in foil. 

Coverslips were coated with laminin (1 hour in 10 µg/ml laminin) when used in N1E-

115 neuroblastoma experiments. In plating primary neurones the coverslips were 

treated with 30µg/ml Poly-D-Lysine and 2 µg/ml laminin for an hour. The coverslips 

were washed in water and dried before being used in cell culture experiments. 

Transient Transfection  
 

For Pull-Down assays: COS-7 and N1E-115 neuroblastoma were plated at around 

70% confluency in 10cm2 dishes. A mix of 1 ml of DMEM, 2-5 µg DNA and 15 µl 

lipofectamine reagent (COS-7) or lipofectamine 2000 (N1E-115) was prepared and 

incubated at room temperature for 45 minutes. Cells were serum starved in DMEM 

for 45 mins and the transfection mix was added for 4 hours. The DMEM was replaced 

with normal media for 16 hours before harvesting.  

For Immunocytochemistry: COS-7 and N1E-115 neuroblastoma were plated at around 

70% confluency on coverslips in 3cm2 dishes. A mix of 200 μl of DMEM, 1 µg DNA 

and 7 µl lipofectamine reagent (COS-7) or lipofectamine 2000 (N1E-115) was 

prepared and incubated at room temperature for 45 minutes. Cells were serum starved 
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in DMEM for 45 mins and the transfection mix was added for 4 hours. The DMEM 

was replaced with normal media for 16 hours before staining the cells. 

 

HeLa cells were only used in immunocytochemistry experiments and were treated as 

above, while the cells were starved in 1 ml of Optimem medium and the transfection 

mix consisted of 100 µl Optimem medium, 6 µl Lipofectamin reagent and 1.5 µg 

DNA. 

Cell Treatment with Phorbol 12-myristate 13-acetate (PMA) 
 

PMA stock solution was made at 1 mM in DMSO and added to cells at a final 

concentration of 1 µM for 1 hour at 37° C, 5% CO2. 

Cell Treatment with Pervanadate 
 

A 20 mM Na3VO4 stock was made in 600 µl of PBS, and activated by the addition of 

1 µl of 30% v/v H2O2, followed by a 5 minute incubation at room temperature. A 20 

mg/ml catalase stock was made in 50 mM Potassium Phosphate buffer pH 7.0, and 0.6 

µl were added to the activated pervanadate solution, and incubated at room 

temperature for 5 minutes. The pervanadate stock was used at 1:200 dilution in the 

culture media and the cells were treated for 30′ at 37° C, 5% CO2. 

Affinity Purification of Proteins (pull-down assay) 
 

Culture dishes (10cm2) of COS-7 or N1E-115 transfected cells were placed on ice 

while the media was aspirated and the cells gently washed in cold PBS. Amount of 

500 µl COS-7 or N1E-115 lysis buffer containing protease/phosphatase inhibitors was 

added to the dish and incubated for 30 minutes on ice. The cells were harvested using 

a rubber-policeman and the lysates centrifuged at 14,000 g for 15 minutes at 4° C. 

Amount of 100 µl of the soluble lysate was kept to be analysed by SDS-PAGE and 

western blotting for protein expression. The rest of the supernatant was incubated with 

30 µl of the appropriate affinity beads (FLAG / HA antibody conjugated or 

glutathione sepharose beads) for 3 hours at 4° C on a rotary shaker. The beads were 

washed three times in 1 ml lysis buffer and re-suspended in 4x SDS sample buffer. 

Samples were stored at -20° C for further analysis by SDS-PAGE and western blot. 
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Preparation of dissociated e18 rat hippocampal neurones 
 

Hippocampi were dissected from e18 rat brains while the procedure was performed in 

ice cold Hanks buffered saline solution (HBSS). The dissected tissue was incubated in 

2 ml HBSS, 0.2 µg/ml of DNase 1, 0.05% trypsin for 15 minutes at 37° C. The 

solution was aspirated and the tissue was washed three times with 1 ml of plating 

media. The tissue was dissociated by pipetting with a glass Pasteur pipette. The end of 

the pipette had been narrowed by briefly holding in a Bunsen burner flame. Amount 

of 9 ml of plating media were added to the homogeneous cell suspension and the cells 

were counted by flow cytometry and centrifuged for a 5 minutes at 20 g. If the cells 

were to be plated they were re-suspended in plating media and plated at 200,000 cells 

per coverslip. The media was then replaced with NB plus media after allowing the 

cells to adhere to the coverslip for 3 hours. If cells were to be transfected by 

electroporation, they were treated as described below. 

Electroporation of Neuronal Cells 
 

After centrifugation the cells were resuspended in 100 µl of rat neurone nucleofector 

solution (Amaxa) per 2 million cells. Amount of 2 µg of DNA was transferred into the 

electroporation cuvettes and 100 µl of the resuspended cells added. The cuvettes were 

placed in the Nucleofector II electroporator and the standard programme 0-003 was 

used, recommended for electroporation of rat primary hippocampal neurones. 

Subsequently amount of 100 µl of plating media was added and the whole mix was 

plated onto coverslips in plating media. After 3 hours the plating media was changed 

to NB plus media. 

Cell Immunostaining 
 

Cells on coverslips were fixed in 4 % paraformaldehyde/PBS for 10 minutes at room 

temperature and subsequently washed two times in PBS for 10 minutes. Cells were 

permeabilised in 0.2 % triton/PBS for 7 minutes and blocked in PBS/3 % BSA for 30 

minutes incubated at 37° C tissue culture incubator with controlled humidity. Primary 

antibodies were added at the appropriate dilution (see antibody table) in PBS/1 % 

BSA and the cells incubated in a 37° C incubator for 2 hours. The cells were washed 

three times for 10 minutes each in PBS. Secondary antibodies or probes were added at 
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the appropriate dilution and the cells were incubated for one hour at 37° C. Cells were 

washed three times for 10 minutes each in PBS. The coverslips were dried and 

mounted onto slides to be analysed by microscopy. 

Microscopy 
 

The cells were visualised using a Zeiss Axioplan fluorescent microscope or a Zeiss 

LSM 510 confocal microscope. The excitation channels FITC (488 nm), TRITC (568 

nm) and Cy5 (633 nm) were used. 

Subcellular fractionation of rat brain 
 

Subcellular fractions were prepared from e14, e18 and adult rat brain homogenate in 

isotonic sucrose. The procedure was adapted from pioneering fractionation studies and 

is outlined in figure 2.2 (Whittaker and Barker, 1972; Booth and Clark, 1978). The 

tissue was homogenised in 10% (w/v) 50mM Tris/HCl pH 7.4, 75mM KCl, 5mM 

MgCl2, 1mM DTT, 0.32M sucrose plus Protease Inhibitors and an initial 

centrifugation at 1000 g for 11 minutes obtained the crude nuclear fraction. The 

supernatant was spun at 17,000 g for 13 minutes to obtain a pellet fraction containing 

mitochondria, myelin, and synaptosomes. This pellet was resuspended in 50mM 

Tris/HCl pH 7.4, 75mM KCl, 5mM MgCl2, 1mM DTT, 0.32M sucrose plus Protease 

Inhibitors and was fractionated through a discontinuous sucrose gradient (0.8M and 

1.2M sucrose), separating the myelin, synaptosomal and pure mitochondria fractions 

under centrifugation at 63,000 g for 2 hours. The 17,000 g supernatant fraction was 

centrifuged at 100,000 × g for 1 hour to obtain the microsomal and cytosolic fractions. 

Pellet fractions were washed in isotonic solution before solubilising in SDS 

electrophoresis buffer, and soluble fractions were concentrated using Centriprep 

concentrators (Amicon, Beverly, MA). 
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Figure 2.2 Subcellular fractionation of rat brain. Brains from e14, e18, 5d and 20d old rats 
were fractionated by a series of centrifucagtions in isotonic sucrose solution and through 
sucrose gradient cushions. The fractions obtained were crude nuclear, microsomal, myelin, 
pure mitochondria, synaptosomal and cytosolic. 
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Methyltransferase Assay 
 

For the two in vitro methyltransferase assays presented here, two different reaction 

set-ups were followed. The reaction conditions were adapted from the work of 

Heurgué-Hamard and colleagues (Heurgué-Hamard et al, 2002). The reactions were 

carried in methylation assay buffer, that was prepared as 10x stock. 

 

Methylation Assay Buffer: 

10mM Tris/HCl, pH 7.6 

50mM KCl 

10mM MgAcetate 

1mM DTT 

 

Methylation Assay 1:  

For the preparation of the enzyme proteins, three confluent COS-7 plates were 

transfected with HA-HemK1, two with HA-HemK1 and three with HA-HemK1 + 

HA-TRMT112. After 16 hrs expression the cells were lysed in 0.5 ml/plate hypotonic 

buffer: 20mM Tris/HCl pH 7.0, 10mM KCl, 2mM PMSF, 1mM NaF, 1mM NaVO4, 

0.5mM DTT, Roche Protease Inhibitor Cocktail. The cells were harvested with a 

rubber policeman and centrifuged for 10 mins at 14,000 rpm, 4° C in a 

microcentrifuge. The supernatant was kept on ice and used in the methylation assay. 

 

For the preparation of the substrate proteins, six confluent plates of COS-7 cells were 

transfected with GST-eRF1 + HA-eRF3. After 16 hrs expression the cells were lysed 

in 1ml/plate COS-7 lysis buffer, the cells were harvested and the lysates centrifuged 

for 10 min at 14,000 rpm, 4° C in a microcentrifuge. The supernatant was incubated 

with 350µl of GST beads for 3hrs, rotating at 4° C. The beads were washed three 

times in methylation assay buffer and resuspended in 500µl methylation assay buffer. 

 

The methylation reactions were prepared in 1.5ml microcentrifuge tubes on ice, and 

the enzyme protein lysate and S-adenosyl-L-[methyl-3H]methionine were added last. 

Table 2.12 summarises the reaction set-up. 
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 1 2 3 4 5 6 

eRFs - 120 120 120 - - 

HA-HemK1 COS-7 lysate - 700 - - 300 - 

HA-HemK1+TRMT112 COS-7 lysate - - 700 - - 300 

HA-HemK1 N239A+TRMT112 Cos 7 lysate - - - 500 - - 

10x Methylation Assay Buffer 96 96 96 96 36 36 

S-adenosyl-L-[methyl-3H]methionine 25 25 25 25 18 18 

GTP (50mM stock) 19 19 19 19 7 7 

ddH2O 820 - - 200 - - 

Total Volume 960 960 960 960 361 361 

 

 

 

The reactions were incubated for 2 hrs at 37° C with rotation. After the completion of 

the reaction, amount of 10µl of samples 1, 2, 3 and 4 was washed with methylation 

buffer to wash off the COS-7 lysate from the GST beads, and blotted on a PVDF 

membrane. Amount of 10µl of samples 5 and 6 was blotted on PVDF membranes. 

The membranes were washed with methylation buffer and a scintillation counter was 

used to measure the radioactivity of the washed membranes. Furthermore, 30µl of the 

same samples was analysed by SDS-PAGE, where the polyacrylamide gel was 

transferred on a PVDF. The membrane was dried, sprayed with enhancer spray 

(En3hance) and left to expose an autoradiography film for 3 weeks at -80° C. 

 

Methylation Assay 2: 

For the preparation of the enzyme proteins, three confluent COS-7 plates were 

transfected with each of the constructs GST-HemK1 and FLAG-HemK1. The cells 

were lysed in COS-7 lysis buffer after 16 hrs expression. GST and FLAG beads were 

used to immunopurify the expressed proteins. 

 

For the preparation of the substrates, E.coli cells were transformed with mtRG1 and 

mtRF1a GST constructs, plated on agar plates and incubated at 37° C overnight. 

Colonies were inoculated in 400ml of LB media supplemented with ampicillin and 

grown at 37° C until an absorbance of OD600 = 1 was achieved. Protein expression 

was induced by addition of 0.25 mg/ml IPTG and the cells were incubated for 3 hrs at 

Table 2.12 Reaction conditions of Methylation Assay 1. The amounts of each reagent used in 
each reaction are stated in µl. 



 104 

room temperature with agitation. The cells were centrifuged for 10 minutes at 6,000 

rpm at 4° C and the cell pellet was frozen at -80° C. The pellet was thawed on ice and 

resuspended in 40ml of cold bacteria cell lysis buffer (PBS, 1 % Triton X-100, 0.5 

mM MgCl2, Protease Inhibitors). The cells were sonicated for five minutes (with 5 

seconds pause every 20 seconds sonication) on ice and centrifuged at 14,000 g, 4° C 

for 30 minutes. Amount of 500µl of Glutathione sepharose (GST) beads were 

incubated in the supernatant for 3 hrs at 4° C and subsequently washed three times in 

cold bacterial lysis buffer. The proteins were eluted off the beads by incubation in 

10ml of elution buffer (10mM glutathione, 50mM Tris-HCL pH 8.0, 5% glycerol) for 

15 minutes at room temperature. The protein eluate was concentrated in Centricon 

columns, down to 150µl final volume. 

 

The methylation reactions were set-up as described in table 2.13. 

 1 2 3 4 5 6 7 8 9 10 11 

GST-HemK1 45 - - - - 45 80 80 - - - 

FLAG-

HemK1 

- 45 - - - - - - 45 80 80 

GST-mtRF1 - - 50 - - - 50 - - 50 - 

GST-mtRF1a - - - 50 - - - 50 - - 50 

COS-7 lysate - - - - 50 50 - - 50 - - 

GTP (50mM 

stock) 

3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 

S-adenosyl-L-

[methyl-
3H]methionine 

10 10 10 10 10 10 10 10 10 10 10 

BSA 5 5 - - - - - - - - - 

ddH2O 80 80 80 80 80 35 - - 35 - - 

10x 

Methylation 

Assay Buffer 

16 16 16 16 16 16 16 16 16 16 16 

 

 

 

The reactions were incubated rotating for 2 hrs at 37 °C. Amount of 10µl of the 

reactions were blotted on PVDF membranes that were washed in methylation buffer 

Table 2.13 Reaction conditions of Methylation Assay 2. The amounts of each reagent used 
in each reaction are stated in µl. 
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and radioactivity was measured in a scintillation counter. Amount of 40µl of the 

reactions was analysed by SDS-PAGE and transferred on PVDF membrane that was 

dried, sprayed with enhance spray and placed in a cassette with an autoradiography 

film for two weeks at -80° C, before developing the film. 
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Chapter 3 
[Results I] 

HemK proteins associate with α2-chimaerin 
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α2-Chimaerin interacts with HemK1 
 

The neuronal protein α2-Chimaerin is involved in EphA4 signalling pathways via its 

GAP and SH2 domains, and also interacts with CRMP-2 and Cdk5 as part of the 

Sema3A collapse pathway. There has been an increasing amount of findings 

supporting an important role of α2-chimaerin in Rac1-dependent signalling pathways 

and neurite morphology, and therefore an investigation of novel interacting partners is 

of great interest. In previous experiments in our laboratory a yeast two-hybrid screen 

on a human brain cDNA library identified HemK1 as a possible novel partner. The 

screen involved the deletion mutant Δ1-39 α2-chimaerin, which renders chimaerin 

active by abolishing intra-molecular interactions mediated by the N-terminal that 

would otherwise support an auto-inhibitory conformation. In order to verify the 

interaction between α2-chimaerin and HemK1 in mammalian cells, the two proteins 

were used in pull-down experiments in COS-7 cells. Both proteins had been cloned in 

pXJ40 mammalian expression vectors carrying N-terminal GST, HA or FLAG tags. A 

brief over-expression experiment in COS-7 cells indicated that FLAG-fusion HemK1 

protein was highly insoluble in COS-7 cells in 1% Triton-containing buffer (Figure 

3.1). The GST-HemK1 construct was therefore used in these pull-down experiments 

(Figure 3.2). 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1 FLAG-HemK1 is 
predominantly insoluble in 1% 
Triton-containing lysis buffer. 
Lysates of COS-7 cells transfected 
with FLAG-HemK1 were analysed by 
western blotting (mouse anti-FLAG 
antibody). In 1% Triton X-100 lysis 
buffer FLAG-HemK1 was mostly 
detected in the insoluble fraction. 



 108 

α2-Chimaerin associates with HemK1 in over-expression 
studies 
 
In order to verify the interaction between HemK1 and α2-chimaerin in mammalian 

cells, the two cDNA constructs were used in a pull-down assay performed in COS-7 

cells. The human α2-chimaerin and HemK1 cDNA clones were co-expressed as 

FLAG and GST tag fusion proteins constructs respectively. The cells were lysed and 

SDS-PAGE and western blot analysis using anti-FLAG and anti-GST antibodies 

revealed the expression of FLAG-α2-chimaerin and GST-HemK1. FLAG-α2-

chimaerin was affinity purified from cell lysates using anti-FLAG conjugated beads 

and western blot analysis with anti-GST-antibodies revealed association with GST-

HemK1 (Figure 3.2A). The association was further enhanced when the cells were 

treated with the phorbol ester analogue PMA that can activate chimaerin by binding to 

its C1 domain. The negative control for this experiment is presented in figure 3.2B 

where it is shown that GST-HemK1 or GST-HemK2 do not associate with anti-FLAG 

beads, when over-expressed in COS-7 cells. 
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Figure 3.2 α2-Chimaerin and HemK1 can associate in cells. (A) COS-7 cells were 
transfected with FLAG-α2-chimaerin, GST-HemK1 and GST-vector control construct 
and were lysed after over-night expression. FLAG beads were used to affinity purify α2-
chimaerin and analysed by SDS-PAGE. Western blot with rabbit anti-FLAG and mouse 
anti-GST antibodies revealed co-precipitated HemK1, while no co-precipitation of the 
GST-vector control protein was detected (top panel). (B) Control experiment showing 
that GST-HemK1 and GST-HemK2 do not associate with anti-FLAG beads when over-
expressed in COS-7 cells. 

A 

B 
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To identify the α2-chimaerin domains responsible for the association with HemK1, a 

series of α2-chimaerin deletion constructs encoding for different parts of the protein 

were used in a similar pull-down assay (Figure 3.3). The constructs used were: a) full-

length α2-chimaerin, b) amino acids 39-459 where the short N terminal region 

important for the inactive auto-inhibiting conformation is deleted, c) amino acids 196-

459 that include the C1 and GAP domains, d) amino acids 268-459 that comprise the 

GAP domain and e) amino acids 1-137 that contain the SH2 domain. All constructs 

were able to associate with HemK1 as shown in the pull-down with a clear increase in 

association when chimaerin is missing the first 38 amino acids. The association was 

observed with all the chimaerin constructs indicating a number of interacting residues 

between the two proteins. The best binding was observed with the SH2 domain of 

chimaerin (aa 1-137), and this finding was reproducible, raising the possibility of a 

phosphotyrosine-dependent association.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 HemK1 can associate with deletion constructs of α2-Chimaerin in cells. 
COS-7 cells were transfected with FLAG-conjugated α2-chimaerin deletion constructs, 
GST-HemK1 and GST-vector control constructs and were lysed after over-night expression. 
FLAG beads were used to affinity purify the α2-chimaerin proteins and SDS-PAGE analysis 
with relevant antibodies revealed co-precipitated HemK1 with all α2-chimaerin deletion 
constructs, while no co-precipitation of the GST-vector control protein was detected.  
 

FLAG-Chim. [39-459] 

GST-HemK1 

GST-HemK1 

GST-control 

FLAG-Chim. 

FLAG-Chim. [196-459] 
FLAG-Chim. [268-459] 

FLAG-Chim. [1-137] 
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It was observed that HemK1 showed the highest association with the SH2 domain of 

α2-chimaerin [aa 1-137]. This raised the possibility of a phospho-tyrosine dependent 

interaction. To investigate if the association between HemK1 and chimaerin is 

phospho-tyrosine dependent, a pull-down experiment was carried out in which GST-

HemK1 and FLAG-α2-chimaerin [aa 1-137] were co-expressed in COS-7 cells and 

immuno-precipitated with anti-FLAG beads. The COS-7 cells were treated with 

pervanadate before lysis, a protein-tyrosine phosphatase inhibitor, to upregulate 

tyrosine phosphorylation. The immunoprecipitated samples were analysed by SDS-

PAGE and western blot, and probed for anti-GST antibody to check for increased 

amount of co-immunoprecipitated HemK1 in pervanadate-treated cells, and with 

4G10 anti-phospho-tyrosine antibody to detect if co-immunoprecipitated HemK1 is 

tyrosine phosphorylated (Figure 3.4). An increase in tyrosine-phosphorylated species 

present in the lysates of pervanadate-treated COS-7 cells was observed as probed with 

4G10 (data not shown). No increase in the amount of HemK1 that co-

immunoprecipitated with FLAG-α2-chimaerin [aa 1-137] was observed in 

pervanadate-treated cells. Probing the immunoprecipitation blot with 4G10 did 

however detect GST-HemK1, indicating that co-immunoprecipitated HemK1 is 

tyrosine phosphorylated (Figure 3.4). This suggests that the association between 

FLAG-α2-chimaerin and HemK1 is unlikely to be phospho-tyrosine dependent, while 

the SH2 domain of α2-chimaerin is adequate to mediate association between the two 

proteins, and co-immunoprecipitated HemK1 is tyrosine-phosphorylated. The SH2 

domain of α2-chimaerin is slightly atypical and so far no phospho-tyrosine peptide 

target sequences have been identified, nevertheless mutation of the essential arginine 

amino acid of the SH2 domain inactivates chimaerin in the growth cone collapse 

EphA4 pathway (Songyang et al, 1993; Shi et al, 2007). 
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Figure 3.4 HemK1 is tyrosine phosphorylated but this does not increase association 
with the SH2 domain of α2-Chimaerin in cells. COS-7 cells were transfected with FLAG-
conjugated α2-chimaerin [aa 1-137], GST-HemK1 and GST-vector control constructs and 
were treated/untreated with pervanadate after over-night expression, before being lysed. 
FLAG beads were used to affinity purify α2-chimaerin [aa 1-137] and SDS-PAGE analysis 
with relevant antibodies revealed co-precipitated HemK1, while no co-precipitation of the 
GST-vector control protein was detected. Pervanadate treatment did not increase the 
association between HemK1 and α2-chimaerin [aa 1-137]. The immunoprecipitation blot 
was probed with 4G10 anti-phospho-tyrosine antibody revealing phosphorylated GST-
HemK1, co-immunoprecipitated with FLAG- α2-chimaerin [aa 1-137]. A contaminating 
band of around 40kD can be seen in the expression of GST-HemK1 and GST Vector 
Control blot. 
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α2-Chimaerin interacts with HemK2 

 

The unique function of HemK1, to methylate glutamine residues at the conserved 

GGQ motif of polypeptide chain release factors, is shared with close homologue 

HemK2. HemK1 is predicted to be mitochondrial, something not supported for 

HemK2. α2-Chimaerin has not been linked to mitochondria and HemK1 and HemK2 

are closely related and highly conserved in species. The possibility that α2-chimaerin 

can associate with HemK2 was therefore investigated, that if true it could constitute 

HemK2 as α2-chimaerin’s real biological partner. 

Cloning of human HemK2 cDNA 
 
The cDNA encoding for the human HemK2 was obtained from Source Bioscience 

Gene Service (clone ID: 5163231). The cDNA obtained was missing the first eight 

nucleotides of the coding region, so the primers used in cloning were designed to 

incorporate the missing nucleic acids as well as the restriction sites HindIII and PstI 

for insertion in the vector (see Materials and Methods chapter). HemK2 cDNA was 

cloned in pXJ40 vectors carrying the tags FLAG, HA and GST. These vectors carry 

the mammalian CMV promoter and the AmpR gene used in E.coli selection in 

cloning. The HemK2 cDNA was amplified by a two step PCR, since the missing base 

pairs from the 5′ end had to be incorporated along with the restriction sites for 

cloning, and thus the extra sequence that had to be generated was too long to be 

accomplished by using one set of primers. The initial amplification incorporated the 

first eight base pairs of the coding sequence on the 5′ end and a PstI site on the 3′ end 

of the cDNA. This PCR product was subjected to a second amplification using the 

same 3′ end primer and a 5′ end primer that incorporated the HindIII site (Figure 3.5). 

 

 

 Figure 3.5 PCR strategy followed in cloning HemK2. The HemK2 cDNA obtained was missing 
the first 8 base pairs of the 5′ end. A two step PCR strategy incorporated the missing base pairs 
along with the restriction sites used to clone HemK2 in pXJ40 mammalian expression vectors. 
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The conditions of the PCR were optimised by increasing the annealing temperature of 

the reaction, to give one clean band on the gel and to ensure that the correct and 

complete sequence would be cloned in the expression vectors (Figure 3.6A). After 

successful cloning all the positive clones were sequenced using a universal primer 

complementary to the pXJ40 T7 promoter region and a designed oligo that primes 

downstream of the multiple cloning site of the pXJ40 vectors (see Materials and 

Methods). The clones were tested for protein expression in COS-7 mammalian cells 

(Figure 3.6B). 

 

 

 

 

 

 

 

 

 

 

α2-Chimaerin interacts with HemK2 in over-expression 
studies 
 
The hypothesis that HemK2 can associate with α2-chimaerin was tested in over-

expression pull-down experiments in COS-7 cells (Figure 3.7). In this experiment 

HemK1 and HemK2 were co-expressed as GST fusion constructs and over-expressed 

FLAG-α2-chimaerin was immunoprecipitated using anti-FLAG antibody associated 

beads. Both HemK1 and HemK2 associated with chimaerin in the pull-down. 

 

 

 

 

 

 

 

 

Figure 3.6 Cloning of HemK2 in 
mammalian expression vectors. (A) The 
amplified HemK2 DNA and vector 
constructs digested with the restriction 
enzymes were analysed by agarose gel 
electrophoresis before ligation. (B) 
HemK2 expression of HA-fused protein 
as analysed by western blot of lysates of 
transfected COS-7 cells. 

A B 
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To determine which part of chimaerin is responsible for the observed association with 

HemK2. A series of FLAG-tag chimaerin constructs were used in a similar pull-down 

assay where GST-HemK2 was co-precipitated with chimaerin deletion constructs. 

HemK2 associated with α2-chimaerin [39-459] where the deletion of the first 38 

amino acids allows for an “open” conformation and would allow access of HemK1 to 

interacting sites. Weaker association was observed with full length and the C1-GAP, 

GAP and SH2 domains separately, suggesting a number of sites on α2-chimaerin that 

are involved in HemK2 association (Figure 3.8) 

 

 

 

 

 

Figure 3.7 HemK1 and HemK2 can associate with α2-chimaerin in cells. COS-7 cells 
were transfected with FLAG-α2-chimaerin, GST-HemK1, GST-HemK2 and GST-vector 
control constructs and were lysed after over-night expression. FLAG beads were used to 
affinity purify the α2-chimaerin and SDS-PAGE analysis with relevant antibodies revealed 
co-precipitated HemK1 and HemK2, while no co-precipitation of the GST-vector control 
protein was detected. 
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Figure 3.8 HemK2 can associate with deletion constructs of α2-Chimaerin in cells. 
COS-7 cells were transfected with FLAG-conjugated α2-chimaerin deletion constructs, 
GST-HemK2 and GST-vector control constructs and were lysed after over-night expression. 
FLAG beads were used to affinity purify the α2-chimaerin proteins and SDS-PAGE analysis 
with relevant antibodies revealed co-precipitated HemK2 with all α2-chimaerin deletion 
constructs, while no co-precipitation of the GST-vector control protein was detected. The 
highest association was observed with FLAG-α2-chimaerin [39-459] that is believed to exist 
in an open conformation making possible interacting sites more accessible. A contaminating 
band is observed in the lower panel where expression of α2-chimaerin constructs is detected 
using a rabbit anti-FLAG primary antibody. The non-specific band recognised by the rabbit-
anti-FLAG antibody is between 36 and 50 kDa and partially overlaps with FLAG-α2-
chimaerin [196-459], that can be observed directly below it. 
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HemK1 but not HemK2 can associate with CRMP-2 
 

α2-Chimaerin associates with CRMP-2, a protein involved in growth cone collapse 

through the Rac dependent Sema3A pathway (Brown et al, 2004). The association of 

both HemK1 and HemK2 with α2-chimaerin raises the possibility the two N5-

methyltransferases are involved in signalling pathways affecting neuronal 

morphology through α2-chimaerin and its interacting partners. The hypothesis that 

HemK1 and HemK2 are involved in an α2-chimaerin signalling pathway involving 

CRMP-2 was tested by pull-down experiments in mammalian cells. In a pull-down 

experiment in N1E-115 neuroblastoma cells over-expressed FLAG-CRMP-2 co-

precipitated HA-HemK1 but not HA-HemK2 (Figure 3.9). This preliminary finding 

was not investigated further due to time restrictions. It does however suggest that 

HemK1 is the bona fide partner of α2-chimaerin implicating HemK1 in pathways of 

neuronal morphology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 HemK1 can associate with CRMP-2 in cells. COS-7 cells were transfected 
with FLAG-conjugated CRMP-2, HA-HemK1 and HA-HemK2 and were lysed after over-
night expression. FLAG beads were used to affinity purify CRMP-2 and SDS-PAGE 
analysis with relevant antibodies revealed co-precipitated HemK1, while no co-precipitated 
HemK2 was observed.  
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Summary 
 

Following an initial observation of HemK1 associating with α2-chimaerin in a yeast 

two-hybrid screen, the interaction was verified in a mammalian system. The two 

proteins were over-expressed and affinity purified revealing an association between 

the two full length proteins. This association was enhanced under treatment with 

PMA, a phorbol ester analogue that causes a conformational change on chimaerin 

rendering it more accessible to interacting proteins. A GST tag conjugated HemK1 

construct was used in this assay since it was found to be more soluble in 1% Triton X-

100, than the FLAG and HA tag conjugated constructs. HemK1 associated with 

partial clones of α2-chimaerin indicating a number of sites on chimaerin that are 

responsible for the association.  

The HemK1-related protein HemK2 was tested for association with α2-chimaerin 

since the two related proteins share a conserved function across species, methylating 

release factors as part of translation termination machinery. HemK2 was found to 

associate with full length and also partial constructs of α2-chimaerin in pull-down 

assays. In both HemK1 and HemK2 pull-down studies, the two proteins showed 

increased association with the α2-chimaerin constructs that were missing the first 38 

amino acids that contribute to the auto-inhibiting closed conformation of chimaerin. 

HemK1 but not HemK2 was able to associate with CRMP-2, suggesting possible 

involvement of HemK1 in signalling pathways led by α2-chimaerin and involving its 

established interacting partner CRMP-2. 
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Chapter 4 
[Results II] 

HemK1 and HemK2 expression in the brain 
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HemK1 and HemK2 transcript levels in brain 
 

The mRNA transcript levels of N5-methyltransferases HemK1 and HemK2 were 

investigated and compared to α2-chimaerin in rat brains using quantitative real-time 

PCR methodology. RNA was purified from rat brains and reverse transcribed to 

cDNA to be used in the real-time PCR analysis.   

Assessment of RNA purity and integrity 
 

The quality of the purified brain RNA was determined by formaldehyde agarose gel 

electrophoresis and spectrophotometric analysis. Formaldehyde agarose gel 

electrophoresis was used to check the integrity of the purified RNA. Figure 4.1 shows 

RNA purified from embryonic day 12 and 18, and from cortex and cerebellum of day 

5 and day 20 rat brains. The 28S and 18S ribosomal RNA complexes are clearly 

visible on the gel. The 28S rRNA band is approximately twice as intense as the 18S 

and this is a good indicator that the purified RNA is not degraded.  

 

 

 

 

 

 

 

 

 

 

 

 

Purity and concentration of the purified RNA were analysed by using a Nanodrop 

spectrophotometer. The absorbance ratios A260/A280 and A260/A230 give an indication 

of possible protein and guanidium thiocyanate contamination respectively. All RNA 

preparations had A260/A280 and A260/A230 ratios of ≥ 2.0, which indicates high RNA 

purity. 

 

Figure 4.1 Integrity check for 
purified rat cortex and cerebellum 
RNA. RNA purified from e12 and e18 
rat brains, and from cortex and 
cerebellum of d5 and d20 rat brains 
was analysis by formaldehyde agarose 
gel electrophoresis and visualised by 
UV after staining with ethidium 
bromide. The 28S rRNA band is 
approximately twice as intense as the 
18S and smaller degradation products 
were also absent. 

28S 
18S 
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Real-Time PCR setup/analysis 
 
The primers used in the real-time PCR analysis to amplify sections of the mature 

mRNA sequences were designed to intercept mRNA intron-exon boundaries, to avoid 

possible genomic DNA amplification. This was initially tested by using the on-line In-

Silico PCR on the UCSC Genome Browser website (http://genome.ucsc.edu/cgi-

bin/hgPcr) that retrieved no genomic amplification products using the designed 

primers. The size of the amplified regions varied between 180-250 base-pairs, and the 

PCR conditions were optimised by varying the annealing temperature of the reaction. 

The specificity of the real-time primers and the reaction conditions were tested by 

agarose gel electrophoresis of the reaction products that revealed a single band of the 

expected size for each amplification reaction (Figure 4.2). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Agarose gel 
electrophoresis of Real-Time PCR 
products. The specificity of the real-
time primers PCR primers and the 
reaction conditions were checked by 
agarose gel electrophoresis of the 
reaction products. The template was 
cDNA reverse transcribed from e18 rat 
brain mRNA. The gel shows a single 
band for all real-time amplification 
reactions: α2-chimaerin, HemK1, 
HemK2 and the house-keeping genes 
β-actin and HPRT-1. 
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The efficiency of each reaction was calculated by the real-time PCR software MxPro, 

based on the values obtained from the constructed standard curve (Figure 4.3). A 

standard curve of amplification was constructed for each primer pair by the 

amplification of a series of dilutions of a known concentration cDNA template. The 

standard curve shows the Ct values for each reaction plotted against the initial 

template quantity of each of the dilutions. This is used by the software to calculate the 

efficiency of the reaction, a value that reflects on the specificity of the primers as well 

as the reaction conditions. All primer pairs featured a calculated PCR efficiency of 

higher than 90% indicating optimal conditions. The standard curve is used by the 

software to calculate the relative levels of transcripts in “unknown” samples by 

extrapolating initial template quantity data from the standard curve dilution samples. 

The standard curve also gives an indication of pipetting error, since each reaction was 

set in triplicate, and the plot shows all three values of each reaction. 

 

 

 

 

 

 

 

 

 

 

 

A second checkpoint for the conditions used in the PCR was provided by the real-time 

PCR program MxPro that generates a dissociation curve for each PCR run. At the end 

of the reaction the temperature is raised in step-wise fashion and the fluorescence of 

SYBR Green is measured, revealing a big drop in emission when the PCR products 

denature to single stranded DNA. Since SYBR Green intercalates with all double 

stranded DNA the dissociation curve will show an additional peak of fluorescence 

change in the case of DNA contamination, non-specific priming and also formation of 

primer-dimer complexes. The software plots the rate of fluorescence change with time 

(-d(RFU)/dT) versus the temperature of each step. Dissociation curves were 

constructed for all reactions and the real-time PCR of HemK1, HemK2, β-actin and 

Figure 4.3 Standard Curve 
for β-actin real-time PCR. 
The construction of a standard 
curve on known cDNA 
dilutions allows the researcher 
to estimate by extrapolation 
the initial quantity amounts of 
unknown samples. The 
efficiency of the real-time 
reaction is also calculated by 
the Standard Curve and 
triplicate values can give an 
indication of possible pipetting 
error. 
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HPRT-1 all showed a single peak of fluorescence drop, indicating the presence of a 

single product (Figure 4.4). 

 

 

 

 

 

 

 

 

 

 

Figure 4.5A shows the dissociation curves of three α2-chimaerin real-time 

amplification reactions on rat brain RNA. The dissociation curve of α2-chimaerin 

PCR showed two peaks, indicating the presence of two products (Figure 4.5A). The 

two peaks featured very close melting temperatures (approximately 2 °C difference) 

and also comparable -d(RFU)/dT values. These data indicate that if there are indeed 

two products of the PCR, they are very similar in length and GC content and their 

final quantities at the completion of the amplification reaction are comparable. On the 

dissociation curves plot (Figure 4.5A) the red graph represents a PCR with 9.52 ng of 

corresponding initial RNA template and the orange a reaction with 0.38 ng initial 

RNA template, so the two reactions differed by a factor of 1:25 in initial cDNA 

template. The green graph represents the negative control where no cDNA template 

was included in the reaction. The fact that both peaks drop when less template is used 

and that the negative control does not show any peaks indicate that there are no 

primer-dimer products formed under the conditions used. When the PCR products 

were analysed by agarose gel electrophoresis only a single band was observed (Figure 

4.5B). Sequencing of the α2-chimaerin real-time PCR products retrieved a sequence 

that matched the human α2-chimaerin cDNA. It was therefore concluded that the two 

peaks in the dissociation curve represent an anomaly in respect to the PCR product’s 

denaturation that could be a consequence of its GC content or the formation of a 

secondary structure.  

 

 

Figure 4.4 Dissociation 
Curve of β-actin real-time 
PCR. The construction of a 
dissociation curve allows for 
the detection of non-specific 
PCR products, DNA 
contamination or primer-
dimers. A single peak of 
fluorescence-change was 
detected indicating the 
presence of a single PCR 
product. 
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Relative transcript levels of HemK1 and HemK2 
 

The transcript levels of HemK1, HemK2, β-Actin and HPRT1 were investigated by 

real-time PCR in RNA purified from rat e18 primary hippocampal neurones. Figure 

4.6 shows the relative mRNA levels of the two N5-methyltransferases and the house-

keeping gene HPRT1, normalised to β-actin as calculated by the linear equation 

generated by the standard curve method.  

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Dissociation Curve of α2-chimaerin real-time PCR. (A) The Dissociation 
Curve of α2-chimaerin revealed two peaks of similar melting temperature and 
fluorescent change amplitude indicating that the two possible products have similar 
length, GC content and also final quantity after the reaction completion. (B) Agarose gel 
electrophoresis of the real-time reaction product revealed a single band indicating that 
the two peaks in the Dissociation Curve represent an anomaly in the detection of a 
single PCR product.  

A B 

Figure 4.6 Relative transcript 
levels of HemK1, HemK2 and 
HPRT1 in e18 rat hippocampal 
neurones. Real-time PCR 
analysis revealed comparable 
levels of HemK1, HemK2 and 
HPRT1 trancripts in e18 rat 
hippocampus. The relative 
transcript quantities were 
normalised to β-actin levels. 
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The mRNA transcript levels of HemK1, HemK2 and α2-chimaerin were investigated 

in e12, e18, 5d and 20d rat brains (Figure 4.7). RNA was purified from e12 and e18 

whole brain and 5d and 20d cortex and cerebellum sections. The levels of the two N5-

methyltransferases were found comparable to those of α2-chimaerin, following a 

similar pattern of increase in the developing brain. The green bars represent relative 

HemK1 transcript levels, showing an increase from pre-natal to post-natal brain. 

HemK2 transcript levels, represented by the blue bars, show higher levels in e12 brain 

compared to HemK1 but follow a similar increase with development. α2-Chimaerin 

levels are relatively low in e12 brain and show an increase in the e18, 5d and 20d 

cortex as previously shown by Hall and colleagues (Hall et al, 1993). Furthermore the 

levels of α2-chimaerin transcript drop from 5d to 20d cerebellum, as suggested in the 

aforementioned study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Relative transcript levels of HemK1, HemK2 and α2-chimaerin in e12, 
e18, 5d and 20d rat brains. Real-time PCR analysis was used to examine the 
transcript levels of HemK1, HemK2 and α2-chimaerin in different ages rat brain 
sections. HemK1 and HemK2 showed different levels in e12 brain, but followed a 
similar increase with age thereafter. α2-Chimaerin showed low levels in e12, an 
increase with development and a drop comparing 5d and 20d cerebellum sections. The 
relative transcript quantities were normalised to β-actin levels. The samples were 
generated once while the real-time PCRs were performed in triplicate. The error bars 
represent standard deviations of triplicate real-time PCRs. 
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Characterisation of HemK1 and HemK2 antibodies 
 

A series of antibodies have been raised against the human HemK1. Three monoclonal 

antibodies were raised against a C-terminal partial clone of human HemK1 protein  

(C. Monfries). Two polyclonal antibodies were also raised against a synthesised 

peptide of the last 16 amino acids on the C-terminal of the human HemK1 protein. 

The three monoclonal (7D7, 8F4 and 6D2) and the two polyclonal antibodies (R5 and 

R6) were initially tested for specificity on detecting the cloned HemK1 protein, and 

the antibodies that gave promising results were tested further in the investigation of 

endogenous HemK1 expression in brain and localisation in cells. 

 

Antibodies against HemK1 
 

The three monoclonal and two polyclonal antibodies were tested on western blots of 

lysates of COS-7 cells transfected with HA-fused or GST-fused HemK1 constructs 

(Figure 4.8). 6D2 and 7D7 detected a single band compared to a number of smaller 

proteins detected by the 8F3 antibody. This could suggest that the 8F3 antibody 

recognises an epitope present in HemK1 degradation products. The polyclonal 

antibodies detected a number of proteins in COS-7 lysates indicating low specificity 

to HemK1 protein. The monoclonal antibodies were further used on western blots of 

rat brain homogenates and fractions. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Antibody specificity to 
cloned HemK1 protein. Lysates of 
COS-7 cells transfected with HA-
HemK1 and GST-HemK1 were 
used in a western blot analysis 
where the specificity of the anti-
HemK1 antibodies was tested. The 
monoclonal antibodies 7D7 and 
6D2 detected a single band of the 
expected size, while 8F3 also 
detected a number of smaller 
proteins. The two polyclonal 
antibodies were not specific to the 
cloned HemK1 protein. 
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Antibodies against HemK1 on fractionated rat brains 
 

HemK1 has an N-terminal mitochondrial localisation sequence and cloned HemK1 

was highly insoluble when conjugated to a small tag like HA or FLAG. A preliminary 

western blot experiment with monoclonal 6D2 antibody used on total rat brain 

homogenates revealed no apparent bands (Figure 4.9). This suggests that the 

endogenous HemK1 protein is expressed at low levels in the brain, and/or that the 

antibody cannot detect the native protein (in the case of a structurally-buried epitope). 

To test whether the native protein can be detected in enriched brain fractions, e14, e18 

and adult rats brains were fractionated to the following enriched fractions: (a) Crude 

Nuclear, (b) Mitochondrial, (c) Myelin, (d) Synaptosomal, (e) Microsomal and (f) 

Cytosolic fractions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 Native HemK1 cannot 
be detected in e18 rat brain 
homogenate. Homogenate from 
e18 rat brain was analysed by 
western blot where the monoclonal 
6D2 anti-HemK1 antibody did not 
detect an endogenous protein. 
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The three monoclonal antibodies 7D7, 6D2 and 8F3 were used on western blots of 

brain fractions from e14, e18 and adult rat brains.  

 

The 8F3 antibody detected bands of higher molecular weight compared to the cloned 

HA-HemK1 in all fractions including the cytosolic fraction. This raises doubts on the 

specificity of 8F3 since HemK1 bears a mitochondrial localisation sequence and the 

cloned protein was predominantly insoluble in earlier experiments. It was therefore 

concluded that the 8F3 antibody was not specific to the HemK1 protein and was not 

investigated further (Figure 4.10). 

 

The 7D7 antibody detected a strong band of similar size to the cloned HA-HemK1 in 

the crude nuclear, mitochondrial, microsomal and synaptosomal fractions of e14 rat 

brains, between 36 and 50 kDa. In e18 brains a similar pattern was observed but the 

protein band was detected in the myelin fraction too. In adult brains a band of similar 

size to the cloned HA-HemK1 was detected only in the microsomal fraction. A band 

of smaller size was detected in the microsomal fractions of e18 and adult brains, just 

under the 36kDa size marker and in most fractions of e14 brains. The 7D7 antibody 

did not detect any proteins in the enriched cytosolic fraction as opposed to the 8F3 

antibody. 

 

The 6D2 antibody detected a distinct band in the e14 brain mitochondrial fraction of 

smaller size compared to the cloned HA-HemK1 protein. This could represent the 

endogenous HemK1 protein localised in mitochondria where the mitochondrial 

localisation sequence has been cleaved off.  

 

Moreover, both 6D2 and 8F3 antibodies detected a number of bands in the crude 

nuclear fraction of e18 and adult rat brains (Figure 4.10). 
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Figure 4.10 Three monoclonal 
antibodies tested on e14, e18 and 
adult rat brain fractions. 
Subcellular fractions from e14, e18 
and adult rat brain were analysed by 
western blotting, with the 8F3, 7D7 
and 6D2 HemK1 antibodies. The 
protein concentration of the 
fractions was analysed by the BCA 
protein assay and equal amounts of 
protein were loaded in each well. 
The left panel of each blot shows 
the lysate of COS-7 cells 
transfected with HA-HemK1. 
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The specificity of the 7D7 antibody was further investigated by western blot analysis 

of Triton X-100 insoluble and soluble fractions of COS-7, N1E-115 neuroblastoma 

and HeLa cells. The untransfected cells were lysed in 1% Triton X-100 containing 

buffer and were centrifuged to separate the two fractions that were subsequently 

analysed by western blotting (Figure 4.11). A strong band of similar size to the cloned 

HemK1 was detected in the soluble fractions of both mouse and monkey origin cells 

but not in HeLa cells. Considering that each well represents cells from only one 

confluent 10cm2 dish and the blot shown below is a 1′ exposure when the primary 

antibody 7D7 mouse anti-HemK1 was used in the same dilution as in the rat brain 

fractions experiment (1:100), the band detected is surprisingly strong.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We therefore aimed to characterise the mouse monoclonal 7D7 anti-HemK1 antibody 

further by using it on a western blot of cell lysates where HemK1 expression has been 

knocked down by shRNA (see Chapter 5). HemK1 expression was knocked-down 

using two HemK1-specific shRNA sequences cloned in the psiSTRIKE shRNA 

vector that carries the neomycin resistance gene and offers growth selection in 

neomycin G418. In the first experiment (Figure 4.12A) the cells were transfected with 

the psiSTRIKE constructs shRNA1, shRNA2 and a scrambled sequence and then 

selected in Neomycin G418 for five days. Figure 4.12A shows the successful knock-

down of HemK1 transcript levels as analysed by real-time PCR (upper panel). The 

middle panel in figure 4.12A shows western blot analysis of cell lysates with the 7D7 

Figure 4.11 The monoclonal 7D7 antibody detects a strong band of similar size to cloned 
HemK1 in mammalian cells. N1E-115, HeLa and COS-7 cells were lysed in 1% Triton X-
100 containing buffer and the soluble and insoluble fractions were separated by centrifugation 
and analysed by western blotting. The monoclonal 7D7 antibody detected a strong band of 
similar size to the cloned HemK1 in the Triton X-100 soluble fraction of mouse and monkey 
cells, but not human. 
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mouse anti-HemK1 antibody, and the lower panel shows the expression of β-actin as 

detected by a rabbit anti-β-actin antibody. The different levels of the protein band 

detected by the 7D7 antibody do not correspond to the HemK1 RNA transcript levels. 

The untransfected cells show the highest HemK1 mRNA levels while the protein band 

detected is the weakest of all samples. Transfecting N1E-115 cells with the 

psiSTRIKE vectors affects their growth. ShRNA1 transfected cells showed the 

greatest growth abnormalities, with more than 50% of transfected cells loosing their 

adherence and detaching from the dish, and the remaining cells exhibiting a much 

contracted morphology. These growth effects are amplified when the cells are treated 

with G418. It is known that G418 affects polypeptide synthesis and reduces the 

efficiency of translation termination (Manuvakhova et al, 2000) so it is possible that 

HemK1 protein levels in the cells are affected by this treatment. The experiment was 

therefore repeated by transfecting with the same psiSTRIKE shRNA vectors and 

without G418. Figure 4.12B shows the HemK1 RNA transcript levels and western 

blot analysis of cell lysates using the 7D7 mouse anti-HemK1 antibody. Not treating 

with G418 resulted in more consistent data between RNA and protein levels, even 

though the scrambled and shRNA2 samples show protein bands of equal intensities 

and very different RNA levels.  

 

 

 

 

Figure 4.12 Protein levels detected by 7D7 antibody do not correspond to HemK1 mRNA 
levels. N1E-115 were transfected with the psiSTRIKE vector carrying shRNA1, shRNA2 or a 
scrambled sequence. Cells were treated with neomycin G418 (A) or untreated (B) and HemK1 
mRNA levels were analysed by real-time PCR showing efficient HemK1 mRNA knock-down. 
The difference in levels of the band detected by the monoclonal 7D7 antibody in western blots 
of knock-down cells lysates did correspond to the mRNA levels. The cell lysate and purified 
RNA samples were generated once and the error bars represent standard deviation of transcript 
levels from real-time PCR performed in triplicate. 
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The monoclonal and polyclonal antibodies used in these experiments were raised 

against human HemK1 sequences and the rat and human HemK1 protein sequences 

show 79% sequence conservation. We investigated the possibility that the antibodies 

were species specific only detecting the human sequence. Human frontal cortex brain 

homogenates in PBS were analysed by western blot using the mouse and rabbit anti-

HemK1 antibodies (Figure 4.13). Interestingly the monoclonal 7D7 antibody did not 

detect any strong bands, and this is consistent to the HeLa lysate western blot shown 

in figure 4.11. The monoclonal 6D2 antibody detected a band between 36 and 50 kDa 

in size, consistent with the data from the mitochondrial fraction of adult rat brain in 

figure 4.10. The 8F3 antibody detected a higher molecular weight band as it did in rat 

brains. The two rabbit polyclonal antibodies gave much cleaner results although 

different. The rabbit 5 antibody detected a strong band between the 36 and 50 kDa 

markers of comparable size to the cloned HemK1. The rabbit 6 antibody detected a 

band closer to the 36 kDa marker that matched the results of a commercially available 

mouse monoclonal anti-HemK1 antibody raised against full-length human HemK1 

(Cat#: H00051409-B01 from Abnova).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 Antibodies against HemK1 tested on human frontal cortex brain 
homogenate. Human frontal cortex homogenate in PBS was analysed by SDS-PAGE and 
the available anti-HemK1 antibodies were used to detect endogenous protein in a western 
blot. 7D7 does not recognise a band of the expected size, while 6D2, rabbit-6 and a 
commercially available monoclonal antibody detect a band between 36 and 50 kDa that 
could represent native HemK1 after cleavage of the mitochondrial localisation sequence. 
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Antibodies against HemK1 on cells 
 

To investigate the efficiency of the monoclonal and polyclonal anti-HemK1 on 

detecting endogenous and exogenously expressed HemK1 in cells, untransfected or 

HemK1 expressing N1E-115 neuroblastoma cells were fixed and stained with the 

relevant antibodies (Figure 4.14). The monoclonal 6D2 and 8F3 successfully detected 

the exogenous HA-HemK1 in loci in the cytoplasm (Figure 4.14B and D) while they 

showed non-specific cytoplasmic and nuclear staining on untransfected cells (Figure 

4.14A and C). The 7D7 antibody stained all through the cytoplasm and nucleus and 

did not show high specificity for HemK1 protein when compared to HA-HemK1 

staining by an anti-HA antibody (Figure 4.14 E). 
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Figure 4.14 Immunocytochemistry with monoclonal antibodies against HemK1. N1E-115 
neuroblastoma cells were untransfected or transfected with HA-HemK1 and were fixed and 
stained with mouse 6D2, 8F3 and 7D7 anti-HemK1 antibodies. The 6D2 antibody revealed a 
weak non-specific cytoplasmic and nuclear staining when used on untransfected cells (A) while 
it detected the over-expressed HA-HemK1 when used on transfected cells (B). The 8F3 antibody 
showed weak staining through the cytoplasm in untransfected cells (C) while it successfully 
detected over-expressed HA-HemK1 (D). The 7D7 antibody did not show high specificity for 
HA-HemK1 as revealed by comparing with HA-HemK1 staining by anti-HA antibody (E). The 
scale bar represents 10µm. 
 

Channels:  
(A) FITC(green):m6D2 antibody (endogenous 
staining) and TRITC(red):Phalloidin,  
(B) FITC(green):m6D2 antibody (HA-HemK1) 
and TRITC(red):Phalloidin,  
(C) FITC(green):m8F3 antibody (endogenous 
staining) and TRITC(red):Phalloidin,  
(D) FITC(green):m8F3 antibody (HA-HemK1) 
and TRITC(red):Phalloidin,  
(E) FITC(green):m7D7 antibody, 
TRITC(red):HA-HemK1 (anti-HA antibody) 
and Cy5(blue):Phalloidin. 
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The specificities of the two rabbit polyclonal antibodies rabbit-5 and rabbit-6 were 

tested on untransfected and HA-HemK1 transfected HeLa and N1E-115 cells 

respectively (Figure 4.15).  They both revealed a cytoplasmic punctate staining in 

untransfected cells that could represent endogenous HemK1. When the antibodies 

were used on HA-HemK1 transfected cells they did not show high specificity towards 

the exogenously expressed protein when compared to anti-HA antibody staining. 
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Figure 4.15 Immunocytochemistry with polyclonal antibodies against HemK1. (A) 
HeLa cells were fixed and stained with the polyclonal rabbit-5 and rabbit-6 antibodies. No 
nuclear staining was observed while a punctate staining was observed in the cytoplasm. 
(B) N1E-115 neuroblastoma cells were transfected with HA-HemK1 and were fixed and 
stained with rabbit-5 and rabbit-6 antibodies. Both antibodies showed background staining 
in the cytoplasm and the nucleus. Comparison of the polyclonal antibodies staining with 
that of anti-HA antibody revealed that both rabbit antibodies could detect some 
exogenously expressed HA-HemK1. The scale bars represent 10µm. 
 
Channels: (A) FITC(green):endogenous HemK1 (rabbit anti-HemK1 antibodies), (B) 
FITC(green):HA-HemK1 (rabbit anti-HemK1 antibodies) and TRITC(red):HA-HemK1 
(mouse anti-HA antibody). 
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Antibodies against HemK2 
 

For the detection of endogenous HemK2 two commercially available antibodies were 

obtained from Abnova. (Cat#:  polyclonal H00029104-A01, monoclonal H00029104-

M01). The two antibodies were initially tested on lysates of COS-7 cells over-

expressing FLAG-HemK2 (Figure 4.16). The polyclonal anti-HemK2 antibody was 

able to detect the cloned HemK2 protein that was partially insoluble in Triton X-100 

containing lysis buffer. The monoclonal antibody did not successfully detect the 

protein.  

 

 

 

 

 

 

 

 

 

 

 

The two antibodies were used to detect endogenous HemK2 on western blots of E13, 

E17 and 5d rat brain homogenates (Figure 4.17A). The two antibodies gave similar 

results detecting a number of protein bands in the two embryonic stages that could 

correspond to the HemK2 protein size. On a western blot of human frontal cortex 

brain homogenate in PBS the monoclonal anti-HemK2 antibody detected a strong 

band between 50 and 64 kDa in size and a faint band that could correspond to the 

expected size, between 22 and 36 kDa (Figure 4.17B). 

 

 

 

 

 

 

 

Figure 4.16 Antibody specificity to 
cloned HemK2 protein. COS-7 cells 
were transfected with FLAG-HemK2 and 
lysed in 1% Triton X-100 containing 
buffer. Two anti-hemK2 antibodies were 
tested on western blots where the 
polyclonal antibody detected FLAG-
HemK1 in the soluble and insoluble 
fractions. The monoclonal antibody 
failed to detect the cloned protein in the 
soluble fraction.  
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Figure 4.17 Antibodies against HemK2 tested on rat brain and human 
frontal cortex brain homogenates. (A) Brain homogenates from e13, e17 and 5d 
rats were analysed by western blotting. The polyclonal antibody detected two 
bands mostly in the e13 rat brain that could correspond to the cloned HemK2 
protein size. The monoclonal antibody gave similar results with the same two 
bands being detected in e17 brains as well. (B) Human frontal cortex homogenate 
in PBS was analysed by western blot and the commercially available monoclonal 
anti-HemK2 antibody detected a strong band ~55kDa in size, and a faint band 
between 22kDa and 36kDa that could match the predicted size of HemK2. 
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HemK1 expression in cells 
 

Human HemK1 cDNA was transiently transfected in COS-7 cells that were 

subsequently fixed and stained to reveal the subcellular localisation of the expressed 

protein by confocal microscopy analysis. 

HemK1 subcellular localisation  
 

When FLAG-HemK1 was expressed in COS-7 cells it localised in distinct dots in the 

cytoplasm (Figure 4.18). The HemK1 construct used in these experiments carried the 

FLAG tag on the N-terminal of the full length protein. A series of organelle markers 

were used to investigate the localisation of HemK1 in co-staining experiments. Figure 

4.18 shows COS-7 cells expressing FLAG-HemK1 (red) and co-stained with 

antibodies targeting: a) Clathrin, a marker for Clathrin-coated vesicles involved in 

receptor-mediated endocytosis, b) GM130, a marker for the Golgi apparatus, c) 

EEA1, a protein localising in early endosomes, d) HSP60, a heat shock protein that 

localises in the mitochondria and e) Lamp-1, a lysosomal membrane protein. HemK1 

showed partial co-localisation with the mitochondrial marker HSP60, while its 

localisation was largely distinct from the lysosomal, clathrin, early endosomes and 

Golgi markers. It was noted however than in some cells HemK1 staining partially 

over-lapped with the markers for clathrin and early endosomes, mainly in cell 

expressing high levels of FLAG-HemK1. The partial co-localisation between HemK1 

and HSP60 was consistent and reproducible, observed in low and high expressing 

cells too. 
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Figure 4.18 HemK1 cellular localisation as compared to organelle markers. (A) The 
localisation of exogenously expressed FLAG-HemK1 was compared to antibody staining 
of markers for Clathrin, golgi (GM130), early endosomes EEA1, mitochondria (HSP60) 
and lysosomes (Lamp-1). Partial co-localisation was observed between FLAG-HemK1 
and HSP60. (B) A close up of the combined staining images. Scale bars: 10µm. 
 
Channels: FITC(green):relevant cell organelle antibodies, TRITC(red):FLAG-HemK1 
(rabbit anti-FLAG antibody), Cy5(blue):Phalloidin. 

A 
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HemK1 is predicted to localise in the mitochondria through a mitochondrial leader 

sequence on the N terminal of the protein (see Chapter 1 - Introduction). To minimise 

the possibility that the FLAG tag on the N terminal of the cloned human HemK1 

interferes with the function of the mitochondrial sequence, HemK1 was cloned in a 

mammalian expression vector incorporating a FLAG tag on the C-terminal of the 

protein (Figure 4.19D). To investigate the localisation of HemK1 in mitochondria the 

human N- and C- terminal FLAG-tag HemK1 proteins were expressed in HeLa cells 

and compared to the green-fluorescent mitochondrial stain MitoTracker Green FM. 

Both N- and C-terminal FLAG-HemK1 constructs showed strong co-localisation with 

the mitochondrial stain (Figure 4.19A, B). Some nuclear staining is evident for 

HemK1 in these experiments, which is a characteristic of the mouse anti-HemK1 6D2 

antibody used. In an experiment where the N- terminal HA and C-terminal FLAG 

conjugated HemK1 constructs were co-expressed in N1E-115 cells the two proteins 

exhibited very high co-localisation as analysed by confocal microscopy, suggesting 

that the FLAG tag on the N-terminal of the protein does not interfere with the 

mitochondrial localisation sequence (Figure 4.19C). 
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A 

B 

C 

D 

Figure 4.19 N- or C-terminal FLAG-tag fusion does not interfere with HemK1 localisation. 
The localisation of exogenously expressed N- or C-terminal FLAG-tag fused HemK1 was 
compared to a mitochondrial stain in HeLa cells (A, B) and to each other when the two 
constructs were co-expressed (C). (D) Successful cloning of HemK1 in a C-terminal FLAG 
pXJ40 vector was tested by western blot analysis of lysates of transfected COS-7 cells, with 
anti-FLAG antibodies. The scale bars represent 10µm. 
 
Channels: (A) FITC(green):MitoTracker and TRITC(red):N-FLAG-HemK1 (mouse 6D2 anti-
HemK1 antibody), (B) FITC(green):MitoTracker and TRITC(red):C-FLAG-HemK1 (mouse 
6D2 anti-HemK1 antibody), (C) FITC(green):N-HA-HemK1 (mouse anti-HA antibody), 
TRITC(red):C-FLAG-HemK1 (rabbit anti-FLAG antibody) and Cy5(blue):Phalloidin. 
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The intracellular localisation of exogenously expressed HemK1 was compared to a 

stain for cytoplasmic RNA that would reveal RNA localised in the nucleus, 

mitochondrial and other cytoplasmic locations (Figure 4.20). HemK1 showed some 

co-localisation with the RNA stain in the cytoplasm in some cells, possibly reflecting 

mitochondrial RNA. 

 

 

 

 

 

Figure 4.20 HemK1 can co-localise with cytoplasmic RNA. FLAG-HemK1 was 
expressed in N1E-115 neuroblastoma cells that were fixed and stained with rabbit anti-
FLAG (TRITC) antibody as well as the RNA specific stain SYTO RNASelect. The RNA 
stain revealed a highly nuclear localisation with weaker staining in the cytoplasm. HemK1 
showed some co-localisation with RNA in the cytoplasm possibly reflecting mitochondrial 
structures. The scale bar represents 10µm. 
 
Channels: FITC(green):SYTO RNA select, TRITC(red):FLAG-HemK1 (rabbit 
anti-FLAG antibody), Cy5(blue):Phalloidin. 
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Summary 
 

The transcript levels of HemK1 and HemK2 were investigated in the developing rat 

brain. Real-time PCR revealed higher levels of HemK2 mRNA in e12 rat brain than 

HemK1. In e18 brain the levels of both N5-methyltransferases were comparable and 

followed a steady increase through e18, 5d and 20d ages. The levels of the two 

transcripts in 20d rat cortex were higher to cerebellum tissue of the same age. α2-

Chimaerin mRNA was detected at lower levels to HemK1 and HemK2 in e12 rat 

brain, but followed an increase with development, as previously published.  

  

Characterisation of three monoclonal and two polyclonal antibodies raised against 

human HemK1 protein sequences was performed on western blots of fractionated e14, 

e18 and adult rat brain. The bands detected by the antibodies on brain samples were 

compared to the cloned human HemK1. The 7D7 monoclonal antibody revealed a 

band of the expected size in fractionated rat brain as well as in lysates of monkey and 

mouse senescent cells but not in HeLa cells or human brain homogenate. In HemK1 

knock-down N1E-115 neuroblastoma cells the protein band detected did not follow 

the pattern of the knock-down transcript levels, indicating that it may not represent 

HemK1 protein. Furthermore the band was not detected in human-origin cells and 

brain, indicating that it is a non-specific antigen that is present in monkey and rat cells 

but not in human.  

 

The monoclonal 6D2 antibody detected two bands of smaller size than the cloned 

HemK1 in the mitochondrial fraction of e14 rat brain, at 36-40kDa and at 22-36kDa. 

One of these bands could represent the product of the mitochondrial leader sequence 

cleavage upon translocation of HemK1 to mitochondria. MitProtII (v1.101) predicts 

the cleavage site of HemK1 mitochondrial export at 24 amino acids, which would 

decrease the size of HemK1 by approximately 2.7kDa, down to a 34.3kDa. The 

cloned HemK1 is predicted to be 37kDa but on a 10% polyacrylamide gel it runs just 

below the 50kDa marker. This suggests that the higher of the two bands in the 

mitochondrial fraction could be mitochondrial HemK1, since a band of similar size is 

observed in the control lane where lysate of COS-7 cells transfected with FLAG-

HemK1 was analysed, possibly representing mitochondrial translocated FLAG-

HemK1. 
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The 8F3 monoclonal antibody detected a series of strong bands of around 64kDa in 

fractionated rat brain, a pattern reproduced in human brain homogenate. Though this 

could represent a HemK1-dimer, it is rare for protein dimers to remain associated in 

denaturing SDS-PAGE. This was not investigated further. 

 

The two polyclonal antibodies showed high background when used on western blots 

of lysates of cells exogenously expressing HemK1. The antibodies gave more 

comparable results when used on human brain homogenate, with rabbit-5 antibody 

revealing a band of the expected size and 6D2, rabbit-6 and a commercial antibody 

revealing a band of smaller size (36-50kDa) that could represent native HemK1 

protein translocated to the mitochondria. All antibodies revealed some endogenous 

staining when used on fixed mammalian cells and 6D2 and 8F3 detected exogenously 

expressed protein localising in bright foci in the cytoplasm. The commercially 

available antibodies against HemK2 failed to detect a clear band of comparable size in 

rat brain homogenates. 

 

The cellular localisation of HemK1 was compared to markers for lysosomes, golgi, 

mitochondria, early endosomes and clathrin. Exogenously expressed HemK1 showed 

strong co-localisation with the mitochondrial marker. In the vast majority of cells 

analysed HemK1 showed distinct localisation to clathrin and early endosomes. No 

HemK1 co-localisation was observed with markers for golgi and lysosomes. 

Furthermore, HemK1 showed partial co-localisation with an RNA stain in areas 

around the nucleus, possibly revealing RNA contained in mitochondrial structures. 

HemK1 was cloned as a C-terminal FLAG-fusion protein and cell staining 

experiments revealed that C- and N-terminal FLAG-fusion HemK1 proteins co-

localised with each other and their subcellular localisation was detected in 

mitochondria, suggesting that the FLAG tag does not interfere with the potential 

mitochondrial leader sequence of HemK1.  
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Chapter 5 
[Results III] 

Functional Associations of HemK proteins with 
Release Factors and RNA granules 
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HemK1 and HemK2 association with Release Factors 
 

HemK1 and HemK2 are predicted N5-glutamine methyltransferases suggested to 

methylate release factors as part of translation termination machinery. When this 

project started only the function of the bacterial HemK1 homologue PRMC was 

known mediating translation termination by methylating prokaryotic release factor 

RF1 at the conserved GGQ motif (Nakahigashi et al, 2002; Heurgué-Hamard et al, 

2002). Subsequently, the structure and function of the yeast HemK1 homologue was 

elucidated (Heurgué-Hamard et al, 2005), and it became evident that the function of 

HemK1 homologues is conserved in different organisms and the GGQ domain target 

of methylation in release factor is conserved in evolution.  A BLAST search in the 

human cDNA library had revealed one PRMC homologue, and that was what we now 

know as HemK2. The clear distinction between the two homologues HemK1 and 

HemK2 came much later when HemK1 was characterised as a mitochondrial protein 

with an N5-glutamine methyltransferase activity (Polevoda et al, 2006; Ishizawa et al, 

2008). In the meantime cDNA clones of the predicted release factor substrates eRF1 

and eRF3 had been acquired and cloned as part of this study and used on enzymatic 

activity experiments with HemK1. When the mitochondrial release factor mtRF1a 

was characterised (Soleimanpour-Lichaei et al, 2007) the cDNA clone was acquired 

and cloned to be used in pull-down experiments with HemK1 to investigate their 

association. 

Cloning of release factors eRF1, eRF3 and mtRF1a 
 

Human cDNA clones of eRF1, eRF3 and mtRF1a release factors were acquired (for 

details see Materials and Methods). They were cloned in mammalian expression 

vectors pXJ40 carrying an HA, FLAG and GST tag and sequenced to verify correct 

cloning. The expression of the cloned constructs was tested on COS-7 cells by 

western blot analysis of transfected COS-7 cells lysates (Figure 5.1). 
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Cloning of the human homologue of the yeast zinc finger 
protein Ynr046w 
 

A study by Heurgué-Hamard and colleagues (Heurgué-Hamard et al, 2006) indicated 

that the 15 kDa zinc-binding protein Ynr046w was required in the eRF1-eRF3 

complex to mediate methylation of eRF1 by HemK in yeast. The human homologue 

of Ynr046w, TRMT112, was acquired and cloned in pXJ40 mammalian expression 

vectors to investigate the methyltransferase activity of HemK1 in an enzymatic assay. 

The expression of TRMT112 was tested by western blot analysis of cell lysates of 

transfected COS-7 cell (Figure 5.2). 

 

 

 

 

 

 

 

 

Mutation on the NPPY active site of HemK1 
 

Graille and colleagues have shown that the single amino acid substitution Asn183Ala 

in the conserved RF1 binding site NPPY of the bacterial HemK1 (PrmC) was 

adequate to abolish methylation activity down to 2% (Heurgue-Hamard, et al, 2005). 

To investigate on the methylation activity of HemK1 we raised the Asn239Ala 

Figure 5.1 Expression of cloned mtRF1a. The expression 
of the mtRF1a, eRF1 and eRF3 release factors cloned in 
pXJ40 vectors were tested by western blot. Lysates of 
COS-7 cells over-expressing the constructs were probed 
with anti-FLAG, anti-GST and anti-HA antibodies 
respectively. 

Figure 5.2 Expression of cloned TRMT112. The 
expression of TRMT112 cloned in pXJ40 vectors was 
tested by western blot. Lysates of COS-7 cells over-
expressing the constructs were probed with anti-FLAG, 
anti-GST and anti-HA antibodies respectively revealing a 
protein band of the expected size. 
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mutation in the 239NPPY242 active site of the human cDNA clone by PCR site-directed 

mutagenesis, in the mammalian expression vectors pXJ40. The amino acid 

substitution was verified by DNA sequencing and the expression of HemK1 N239A 

was tested by western blot of transfected COS-7 cells (Figure 5.3). 

 

 

 

 

 

 

 

 

HemK1 and HemK2 associate with release factors in cells 
 

To investigate the interaction of Hemk1 and HemK2 with the polypeptide chain 

release factors the human cDNA clones were used in pull-down experiments in COS-

7 cells. FLAG tag conjugated HemK1 and HemK2 constructs were used to pull down 

the HemK2 predicted substrates eRF1 and eRF3 that were GST and HA tag 

conjugated respectively. HemK2 was able to pull-down eRF1 and eRF3 individually 

and also when co-expressed with both release factors, though higher amount of eRF3 

associated with HemK2 when eRF1 was not present. HemK1 showed some 

association with eRF1 that increased in the presence of eRF3 (Figure 5.4).  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Expression of HemK1 N239A. The expression 
of HemK1 N239A was tested by western blot. Lysates of 
COS-7 cells over-expressing the constructs were probed 
with the mouse-6D2 anti-HemK1 antibody revealing a 
protein band of the expected size. 
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Figure 5.4 HemK1 and HemK2 associate with eRF1 and eRF3 in cells. (A) COS-7 cells were 
transfected with FLAG-HemK1, FLAG-HemK2, GST-eRF1, HA-eRF3 and GST-vector control 
constructs and were lysed after over-night expression. FLAG beads were used to affinity purify 
HemK1 and HemK2 and SDS-PAGE analysis with relevant antibodies revealed eRF1 co-
precipitated with both HemK1 and HemK2, while no co-precipitation of the GST-vector control 
protein was detected. Some co-precipitation of eRF3 was observed with both N5-
methyltransferases that increased with HemK2 when co-expressed with its predicted substrate 
eRF1. (B) Control experiment in COS-7 cells showing that over-expressed GST-eRF1 or HA-
eRF3 do not immunoprecipitate with anti-FLAG beads. The left panels show expression of the 
protein constructs while the FLAG immunoprecipitation samples are presented on the right panels. 
A contaminating band of approximately 40 kDa size can be seen with the anti-FLAG antibody on 
cell lysates (bottom right panel). 
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Next we aimed to investigate the interaction between the two N5-glutamine 

methyltransferases and the HemK1 mitochondrial predicted substrate mtRF1a. The 

proteins were over-expressed in COS-7 and pull down analysis revealed that both 

HemK1 and HemK2 were able to associate with mtRF1a (Figure 5.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HemK1 and HemK2 localisation in relation to Release Factors 
 

The two N5-methyltransferases HemK1 and HemK2 were shown to associate with 

both eRF1 and mtRF1a substrates in cells. This poses a question on the cellular 

localisation of the two enzymes and substrates since HemK1 and mtRF1a localise in 

the mitochondria, while HemK2 and its substrate eRF1 are not predicted to be 

mitochondrial. The mitochondrial localisation of mtRF1a (Soleimanpour-Lichaei et 

al, 2007) was verified in N1E-115 cells, where mtRF1a expression was compared to a 

mitochondrial stain (Figure 5.6). The localisation of HemK1 and HemK2 in cells was 

therefore investigated in relation to the localisation of the release factors. The proteins 

Figure 5.5 HemK1 and HemK2 associate with mtRF1a in cells. COS-7 cells were 
transfected with GST-HemK1, GST-HemK2, FLAG-mtRF1a and GST-vector control 
constructs and were lysed after over-night expression. FLAG beads were used to affinity 
purify mtRF1a and SDS-PAGE analysis with relevant antibodies revealed co-purified 
HemK1 and HemK2. Only a minimal amount of HemK1, HemK2 and GST-vector control 
proteins immunoprecipitated with FLAG beads in the control samples verifying the 
association between the two N5-methyltransferases and HemK1 proposed substrate 
mtRF1a. 
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were over-expressed in cells that were subsequently fixed and stained with the 

relevant antibodies, and analysed by confocal microscopy to reveal possible co-

localisation (Figure 5.7). Strong co-localisation was observed between HemK1 and its 

proposed substrate mtRF1a and between HemK2 and its proposed substrate eRF1. 

However, HemK1 also showed some co-localisation with eRF1 in some cells when 

the two proteins were co-expressed. HemK2 expression was largely cytoplasmic but 

there were some areas of over-lap with the mtRF1a expression, despite their 

predominantly distinct expression pattern. 

 

 

 

 

 

 

 

 

 

Figure 5.6 mtRF1a localises in mitochondria. N1E-115 neuroblastoma cells were 
transfected with FLAG-mtRF1a and were fixed and stained after over-night expression. 
FLAG-mtRF1a (red) was stained with rabbit anti-FLAG (TRITC) antibody while the 
MitoTracker Green FM marker revealed the localisation of mitochondria under analysis 
by confocal microscopy. mtRF1a showed a distinct mitochondrial localisation. The scale 
bar represents 10µm. 
 
Channels: FITC(green):MitoTracker and TRITC(red):FLAG-mtRF1a (rabbit anti-FLAG 
antibody). 
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Figure 5.7 HemK1 and HemK2 co-localise with release factors mtRF1a and eRF1 
respectively. N1E-115 neuroblastoma and HeLa cells were transfected with HA-HemK1, HA-
HemK2 and FLAG-mtRF1a constructs and were fixed and stained after over-night expression. 
Relevant antibodies were used to stain HemK1 and HemK2 (TRITC, red), and mtRF1a (FITC, 
green) localisation in the cells that were analysed by confocal microscopy. HemK1 co-localised 
with proposed mitochondrial substrate mtRF1a (C) and HemK2 with its proposed substrate eRF1 
(B). Some co-localisation was observed between HemK1 and eRF1 (A), and also between HemK2 
and mtRF1a (D). A close up of the four combined cell images is presented in (E). The scale bars 
represent 10µm. 
Channels: (A) FITC(green):FLAG-eRF1 (rabbit anti-FLAG antibody) and TRITC(red):HA-HemK1 (mouse 
anti-HA antibody), (B) FITC(green):FLAG-eRF1 (rabbit anti-FLAG antibody) and TRITC(red):HA-
HemK2 (mouse anti-HA antibody), (C) FITC(green):FLAG-mtRF1a (rabbit anti-FLAG antibody) and 
TRITC(red):HA-HemK1 (mouse anti-HA antibody), (D) FITC(green):FLAG-mtRF1a (rabbit anti-FLAG 
antibody) and TRITC(red):HA-HemK2 (mouse anti-HA antibody). 
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HemK1 methyltransferase activity 
 

An enzymatic assay was attempted to investigate the methyltransferase activity of 

human HemK1. When these experiments were performed the only known homologue 

of the bacterial PrmC in mammals was HemK1. The hypothesis that the homologue 

protein of RF1 in mammals, eRF1 would be methylated by HemK1 was tested in an 

in vitro methylation assay. In addition, the human homologue of the yeast Ynr046w, 

TRMT112 was cloned. Ynr046w has been previously shown to be required for eRF1 

methylation in yeast. The methylation assay was performed in vitro with 

immunopurified proteins from transfected COS-7 cells, and S-adenosyl-L-[methyl-
3H]methionine was used as a methyl donor to detect methylation by measuring 

retained radioactivity in a scintillation counter and also by autoradiography of 

reactions separated by SDS-PAGE and transferred onto PVDF. The reaction 

conditions were adapted from the work of Heurgué-Hamard and colleagues (Heurgué-

Hamard et al, 2002).  Figure 5.8 shows the [3H] counts and autoradiography analysis 

of a representative experiment, where immuno-precipitated release factors GST-eRF1 

and HA-eRF3 were incubated with cell lysates of COS-7 cells transfected with 

HemK1 and TRMT112. After the reaction completion the release factors bound on 

beads were washed to remove the HemK1(+/-TRMT112) cell lysate, and they were 

analysed in lanes 1-4. In lanes 5 and 6 the total transfected COS-7 lysates were 

analysed, presented as positive controls for the methylation reaction conditions. 

Increased counts are observed with eRF1 and eRF3 (eRFs) incubated with HemK1 

transfected cells lysated (lane 2) compared to the no-protein blank control (lane 1) 

control. In the presence of HemK1 and TRMT112 the release factors show some 

increased methylation (lane 3) compared to when incubated with HemK1 alone (lane 

2). When the HemK1 N239A mutant is used along with TRMT112 the signal drops 

(lane 4) compared to wt HemK1+TRMT112 (lane 3), suggesting that HemK1 can 

methylate eRFs and the N239A mutation can affect HemK1 methyltransferase activity 

(Figure 5.8A). The autoradiography analysis of this experiment revealed a number of 

bands but did not detect a band at the expected protein size of eRF1. There was an 

increase in the intensity of the bands in lanes 5 and 6 where lysates of COS-7 cells 

were analysed, reflecting on the different methyltransferases found in COS-7 lysates.  
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The enzymatic assay to investigate methylation of eRFs by HemK1 was performed 7 

times in total but following different methodologies. In the initial experiments 

HemK1, eRF1 and eRF3 proteins were produced in E.coli and purified using GST and 

HIS tag affinity beads. They were then eluted to be used in the methylation assay. 

This methodology did not give promising results as far as detected methylation is 

concerned, possibly due to incorrect protein folding occurring in the bacterial 

expression system that did not allow for enzymatic function. The data presented in 

figure 5.8 represent the only experiment performed with the described methodology, 

the exact protein combinations in the reactions, and also the single experiment that 

gave promising results. The experiment was not repeated due to time constraints and 

also since new data presented in literature described the enzymatic function of 

HemK1 using mass spectrometry as a more sensitive technique of detection (Ishizawa 

et al, 2008). Figure 5.8 therefore represents a single experiment and standard 

deviation bars cannot be applied. 

 
 

 

 

 

 

 

Figure 5.8 HemK1 methylation assay with eRFs. Immunopurified eRFs were incubated 
with lysate of COS-7 cells transfected with HemK1 and TRMT112, that was washed off 
after the reaction. (A) Some increase in eRFs [3H] signal is observed when HemK1 and 
TRMT112 are present (lane 3) while HemK1 N239A affects the incorporation of [3H]-
methyl to eRFs with the [3H] counts lowered to control levels (lane 4). (B) 
Autoradiography did not detect a band at the predicted size of eRF1. The experiment was 
performed once and each reaction in monoplicate. Lanes 5 and 6, where total COS-7 cell 
lysates were analysed, represent positive controls for the conditions of the methylation 
reaction. 

B A 
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In 2007 Soleimanpour-Lichaei and colleagues suggested that the predicted release 

factor mtRF1 is mitochondrial but it does not show detectable peptide release activity. 

They were however able to show release activity for another homologue protein, the 

mitochondrial mtRF1a. The cDNA clones encoding for mtRF1 and mtRF1a were 

kindly provided by Z. Chrzanowska-Lightowlers and used in a methylation assay with 

HemK1. GST-HemK1 or FLAG-HemK1 were immuno-precipitated from lysates of 

transfected COS-7 cells and incubated with purified recombinant proteins GST-

mtRF1 or GST-mtRF1a. When the reaction products were analysed by SDS-PAGE 

and the radioactivity detected by autoradiography, it was possible to detect GST-

mtRF1 (a) and GST-mtRF1a (b) in lanes 3, 4, 7 and 8 (Figure 5.9). The two release 

factor homologues seemed to have been labelled with [3H] in the absence of HemK1 

in the reaction (lanes 3 and 4). This is an interesting finding since the only 

methyltransferases that could possibly exist in the reaction would have been bacterial 

proteins bound to the release factors during protein purification. A number of bands 

were detected in the COS-7 lysate-containing reactions reflecting the plethora of 

active methyltransferases under the reaction conditions (lanes 5, 6 and 9). No increase 

was detected in the mtRF1 and mtRF1a bands when HemK1 was included in the 

reaction (comparing lanes 3, 4 with 7,8 and 10,11). An increase in the band intensities 

of lysate methylated proteins was observed in the presence of FLAG-HemK1 (lane9), 

a difficult to interpret finding that could suggest that either: a) HemK1 methylates a 

myriad of proteins in the COS-7 lysate, or b) degraded forms of the successfully 

methylated substrates of HemK1 can be detected on the film, or c) the difference in 

band intensities is due to technical error in loading the polyacrylamide gel 
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The investigation in the methylation activity of HemK1 was not pursued further since 

the limitations of the technique were considered too critical to allow for an accurate 

observation of successfully methylated substrate. It was not possible to analyse the 

reaction product for methylation by mass spectrometry and the detectable levels of 

[3H] incorporation were believed to be close to the detection thresholds of 

autoradiography. 

 
 

Figure 5.9 Autoradiography detection of methylated mtRF1 and mtRF1a. 
Autoradiography analysis revealed that radiolabelling of mtRf1 and mtRF1a by [3H]-
methyl can be observed even in the absence of enzyme in the reaction (bands are 
annotated as: mtRf1 (a) and mtRF1a (b)). 
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HemK functional association with RNA granules 
 

HemK1 and HemK2 are part of translation termination machinery in cells methylating 

release factors and mediating release of the synthesised peptide chains. HemK2 

associates with the release factors eRF1 and eRF3 (see Figure 5.4) and methylates 

eRF1 in mammalian cells (Figaro et al, 2008). Release factors eRF1 and eRF3 are 

also part of the nonsense-mediated mRNA decay machinery (NMD) through their 

association with Upf1 (Ivanov et al, 2008; Kashima et al, 2006).  

HemK1 co-localises with P-body protein Dcp1b 
 

When HemK1 was over-expressed in mammalian cells it localised in distinct foci in 

the cytoplasm not solely confined to the mitochondria, assuming a localisation pattern 

reminiscent of P-body staining described in literature. In a search to identify possible 

localisation of HemK1 in RNA processing bodies it was compared to the localisation 

pattern of Dcp1b, a protein that is localised to and induces the formation of P-bodies 

(Cougot et al, 2004b). The human cDNA of the p-body component Dcp1b was 

acquired and cloned in a GFP tag pXJ40 mammalian expression vector (see Materials 

and Methods). The expression of the cloned GFP-Dcp1b protein was tested by 

western blotting of lysates of transfected COS-7 cells (Figure 5.18). When HemK1 

and Dcp1b were over-expressed in HeLa cells the two proteins showed strong co-

localisation as analysed by confocal microscopy, suggesting that HemK1 can localise 

in RNA processing bodies (Figure 5.10C). 

The co-localisation of HemK1 with Dcp1b, albeit a very interesting finding, raised the 

question if this is actually possible in nature since HemK1 is expected to be 

mitochondrial and a localisation of HemK1 outside the mitochondria has not been 

documented in literature. The possibility that Dcp1b can localise in the mitochondria 

was investigated in HeLa cells where its sub-cellular localisation was compared to 

that of mtRF1a. Confocal microscopy analysis revealed no co-localisation between 

Dcp1b and the distinct mitochondrial expression pattern of mtRF1a, indicating that 

over-expressed Dcp1b does not localise in mitochondria (Figure 5.10B). This 

indicated that HemK1 and Dcp1b co-localise outside of the mitochondrial space 

suggesting that either exogenous expression of HemK1 can induce P-bodies, or that 
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Dcp1b-induced P-bodies recruit HemK1. It was noted that over-expression of HemK1 

altered the localisation of Dcp1b to aggregated cytoplasmic foci, an effect that was 

not observed when Dcp1b was co-expressed with mtRF1a (Figure 5.10C and A). This 

was observed to at least 70% of the cells analysed and it was reproducible between 

experiments, but was not quantified. Direct comparison between GFP-Dcp1b and 

MitoTracker stain was not possible since they both emit on the green wavelength. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 HemK1 co-localises with P-body marker Dcp1b. In (A), GFP-Dcp1b was expressed in 
HeLa cells that were fixed and stained for actin (Phalloidin:Cy5), while in (B) GFP-Dcp1b was co-
expressed with FLAG-mtRF1a, subsequently stained with anti-FLAG (TRITC) antibody. Dcp1b, that 
is believed to localise in RNA processing bodies and also induce their formation when over-expressed, 
localised in cytoplasmic loci with distinct localisation to mitochondrial mtRF1a. When GFP-Dcp1b 
was co-expressed with FLAG-HemK1 (TRITC) strong co-localisation was observed between the two 
protens. It was also noted that GFP-Dcp1b localisation pattern changed in the presence of over-
expressed HemK1, concentrating in less distinct cytoplasmic foci and revealing a rather aggregated 
and irregular cytoplasmic expression pattern. The scale bars represent 10µm. 
 
Channels: (A) FITC(green):GFP-Dcp1b and Cy5(blue):Phalloidin, (B) FITC(green):GFP-Dcp1b, 
TRITC(red):FLAG-mtRF1a (rabbit anti-FLAG antibody) and Cy5(blue):Phalloidin, and  
(C) FITC(green):GFP-Dcp1b, TRITC(red):FLAG-HemK1 (rabbit anti-FLAG antibody) and Cy5(blue):Phalloidin. 
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The data so far indicated that HemK1 can co-localise with its proposed mitochondrial 

substrate mtRF1a but also with the P-body marker Dcp1b in separate experiments in 

cells. In fact, in an experiment where all three proteins were co-transfected in cells, 

HemK1 co-localised with both Dcp1b and mtRF1a in separate areas, while Dcp1b and 

mtRF1a showed a distinct localisation pattern (Figure 5.11). This indicated that 

HemK1 intracellular localisation can in fact be shared between P-bodies and 

mitochondria. 
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A 

Figure 5.11 HemK1 can localise in mitochondria and P-bodies. HA-HemK1, GFP-Dcp1b and 
FLAG-mtRF1a were co-expressed in N1E-115 neuroblastoma cells that were subsequently fixed 
and stained with rabbit anti-FLAG (TRITC) and mouse anti-HA (Cy5) antibodies. Panels (A), 
(B) and (C) show monochrome images of HA-HemK1 (Cy5), GFp-Dcp1b and FLAG-mtRF1a 
(TRITC) staining, respectively. Panels (D) and (E) are red/green merge images for comparison, 
showing HA-HemK1 (red) with FLAG-mtRF1a (green) in (D) and GFP-Dcp1b (green) in (E). 
The scale bars represent 10µm. 
Channels: FITC:GFP-Dcp1b, TRITC-FLAG-mtRF1a (rabbit anti-FLAG antibody) and Cy5:HA-
HemK1 (mouse anti-HA antibody). 
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To investigate whether HemK1 expression can induce P-body formation, P-bodies 

were visualised in HeLa cells exogenously expressing FLAG-HemK1 using an 

antibody against endogenous Dcp1a, a homologue of Dcp1b that can localise in P-

bodies (Cougot et al, 2004b). At the time of the experiment an antibody against 

Dcp1b was not available. This commercial antibody raised against human Dcp1a had 

not been tested for reactivity in other species, so the experiment was performed in 

HeLa cells. Arsenite treatment was also used to induce P-body formation in 

untransfected cells (Kedersha et al, 2005). Arsenite treatment induced an increase in 

Dcp1a staining, compared to untransfected or mock transfected cells, where cells were 

treated with lipofectamine reagent as in normal transfections but no DNA was added. 

A similar increase was observed in FLAG-HemK1 transfected cells suggesting that 

HemK1 expression can induce P-body formation (Figure 5.12). Even though HemK1 

exogenous expression seemed to induce an increase in Dcp1a staining no co-

localisation was observed. 
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Figure 5.12 Arsenite as well as HemK1 can induce P-body formation. HeLa cells were 
untreated (A), treated with arsenite (C), mock transfected (B) or tranfected with FLAG-
HemK1 (D), and anti-Dcp1a antibody (FITC) was used to detect endogenous Dcp1a 
localisation under confocal microscopy. An increase in Dcp1a staining was observed in 
arsenite treated (C) as well as HemK1 transfected cells (D) suggesting that HemK1 can 
induce the formation of P-bodies. The scale bars represent 10µm. 
 
Channels: (A-C) FITC(green):endogenous Dcp1a (goat anti-Dcp1a antibody) and 
Cy5(blue):Phalloidin, (D) FITC(green):endogenous Dcp1a (goat anti-Dcp1a antibody), 
TRITC(red):FLAG-HemK1 (rabbit anti-FLAG antibody) and Cy5(blue):Phalloidin. 
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The observation that over-expressed HemK1 does not co-localise in Dcp1a-containing 

bodies while it seems to induce their formation (Figure 5.12) was investigated further 

by comparing GFP-Dcp1b induced cytoplasmic loci with endogenous Dcp1a. HeLa 

cells over-expressing GFP-Dcp1b were stained for Dcp1a and even though some 

over-lapping of the stains was observed the localisation pattern of the two markers 

was different suggesting that they do not co-localise (Figure 5.13). This could be 

explained taking in consideration that Dcp1b and Dcp1a do not solely localise in P-

body structures (Cougot et al, 2004b). 

 

 

 

 

 

 

To investigate if Dcp1b-induced P-body formation would recruit endogenous HemK1 

in cells the rabbit-5 anti-HemK1 antibody was used on HeLa cells. This antibody was 

chosen because in other experiments it showed a convincing endogenous staining in 

untransfected cells and also a clean band corresponding to the cloned HemK1 protein 

on a western blot of human brain lysate (see Chapter 4). When GFP-Dcp1b was over-

expressed in HeLa cells the staining pattern of the rabbit-5 anti-HemK1 antibody did 

not change compared to that of untransfected cells, and while some over-lapping of 

the Dcp1b and HemK1 localisation occurred it would not indicate co-localisation 

(Figure 5.14). These data are hard to interpret since the specificity of the rabbit-5 anti-

HemK1 antibody to the endogenous HemK1 protein is still questionable.  

 

Figure 5.13 Dcp1a is not excusively detected in GFP-Dcp1b-containing cytoplasmic 
loci. HeLa cells were tranfected with GFP-Dcp1b and anti-Dcp1a antibody (TRITC) was 
used to detect endogenous Dcp1a localisation under confocal microscopy. Even though 
some over-lapping of Dcp1a and GFP-Dcp1b was observed the localisation pattern of the 
two markers does not suggest co-localisation. The scale bars represent 10µm. 
Channels: FITC(green):GFP-Dcp1b and TRITC(red):endogenous Dcp1a (goat anti-Dcp1a 
antibody). 
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Involvement of HemK proteins and Release Factors in P-
bodies 
 

Since HemK1 can associate with eRF1 and mtRF1a in cells, and there is a published 

link between eRF1 and P-bodies through the nonsense-mediated mRNA decay 

machinery, we aimed to investigate the involvement of the release factors in P-body 

formation. The localisation of eRF1 in P-bodies was investigated using the Dcp1a 

antibody and also by inducing P-body formation through GFP-Dcp1b exogenous 

expression (Figure 5.15A). In cells transfected only with FLAG-eRF1 the Dcp1a 

localisation showed some over-lap with eRF1 but the two stains followed a distinct 

pattern not indicating strong co-localisation. However, when FLAG-eRF1 was co-

transfected with GFP-Dcp1b the eRF1 localisation changed dramatically in high 

expressing cells, showing strong co-localisation with Dcp1b (figure 5.15B). Strong 

co-localisation was not observed in cells expressing low levels of eRF1, but it was 

persistent in the majority of high expressing cells. Therefore figure 5.15B is a 

Figure 5.14 Endogenous localisation of HemK1 in GFP-Dcp1b transfected HeLa 
cells. HeLa cells were transfected with GFP-Dcp1b and the rabbit-5 anti-HemK1 antibody 
was used to detect endogenous HemK1. No difference was observed in the anti-HemK1 
antibody staining between untransfected (A) and GFP-Dcp1b transfected cells (B).  The 
scale bars represent 10µm. 
Channels: FITC:GFP-Dcp1b, TRITC(red): endogenous HemK1 (rabbit anti-HemK1) and 
Cy5(blue):Phalloidin. 

A 

B 
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representative image of cells expressing high levels of eRF1, revealing a consistent 

alteration in eRF1 localisation in the presence of Dcp1b. This indicated that inducing 

P-body formation through Dcp1b expression can recruit eRF1 to P-bodies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.15 GFP-Dcp1b recruits eRF1 in P-bodies. (A) HeLa cells were tranfected with 
FLAG-eRF1 (TRITC, red) and stained for endogenous Dcp1a (FITC, green). eRF1 
localised in the cytoplasm in a particulate localisation pattern. When eRF1 was co-
transfected with GFP-Dcp1b, eRF1 localised in large loci in the cytoplasm and revealed a 
significant co-localisation with Dcp1b in many cells (B). The scale bar represents 10µm. 
 
Channels: (A) FITC(green):endogenous Dcp1a (goat anti-Dcp1a antibody) and 
TRITC(red):FLAG-eRF1 (rabbit anti-eRF1 antibody), (B) FITC(green):GFP-Dcp1b and 
TRITC(red):FLAG-eRF1 (rabbit anti-eRF1 antibody). 

A 
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Next we aimed to investigate the effect of HemK1 in the Dcp1b-induced recruitment 

of eRF1. Cells expressing HA-HemK1 and FLAG-eRF1 were stained for P-bodies 

using the Dcp1a antibody or by co-expressing GFP-Dcp1b (Figure 5.16). As 

previously described in this chapter, over-expressed HA-HemK1 and FLAG-eRF1 co-

localised as revealed by confocal analysis. Interestingly the P-body stain as revealed 

by endogenous Dcp1a antibody co-localised with HemK1 and eRF1 in some cells. 

This co-localisation is much stronger compared to when HemK1 and eRF1 are 

expressed individually suggesting that co-expression of HemK1 and eRF1 can induce 

the formation of Dcp1a-containing P-bodies in some cells (Figure 5.16A). When 

GFP-Dcp1b was co-expressed with HA-HemK1 and FLAG-eRF1 all three proteins 

showed partial co-localisation in some cells (Figure 5.16B). 



 168 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.16 HemK1 can co-localise with eRF1 and Dcp1b. (A) HeLa cells were tranfected 
with HA-HemK1 (TRITC) and FLAG-eRF1 (Cy5) and stained with relevant antibodies. Some 
co-localisation was observed between HemK1 (red), eRF1 (blue) and endogenous Dcp1a 
(green). When the cells were transfected with HemK1, eRF1 and GFP-Dcp1b partial co-
localisation was observed between the three proteins (B). The scale bars represent 10µm. 

A 

B 

Channels:  
(A) FITC(green):endogenous 
Dcp1a (goat Dcp1a antibody), 
TRITC(red):HA-HemK1 
(mouse anti-HA antibody) and 
Cy5(blue):FLAG-eRF1 (rabbit 
anti-FLAG antibody),  
(B) FITC(green):GFP-Dcp1b, 
TRITC(red):HA-HemK1 
(mouse anti-HA antibody) and 
Cy5(blue):FLAG-eRF1 (rabbit 
anti-FLAG antibody. 
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The localisation pattern of eRF1 and P-bodies was further investigated in a similar 

experiment in relation to eRF1 bona fide partner HemK2. HA-HemK2 and FLAG-

eRF1 were exogenously expressed in HeLa cells and were compared to staining of P-

bodies stained with the anti-Dcp1a antibody (Figure 5.17A). Some partial co-

localisation was observed between HA-HemK2 and FLAG-eRF1 while the 

localisation distribution of Dcp1a was similar. When GFP-Dcp1b was co-expressed 

with HA-HemK2 and FLAG-eRF1 the co-localisation of the three proteins was 

significant in some cells (Figure 5.17B). HemK2 can in fact co-localise with Dcp1b 

when eRF1 is not present, but the co-localisation is only partial (figure 5.17C). 
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Figure 5.17 HemK2 can co-localise with eRF1 and Dcp1b. (A) HeLa cells were 
transfected with HA-HemK2 (TRITC, red) and FLAG-eRF1 (Cy5, blue) and stained with 
relevant antibodies. Some co-localisation was observed with HemK1, eRF1 and 
endogenous Dcp1a. When the cells were transfected with HemK2, eRF1 and GFP-Dcp1b 
significant co-localisation was observed between the three proteins (B). HemK2 can 
partially co-localise with GFP-Dcp1b in the absence of eRF1 (C).  Scale bars: 10µm. 
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Channels:  
(A) FITC(green):endogenous 
Dcp1a (goat Dcp1a antibody), 
TRITC(red):HA-HemK2 
(mouse anti-HA antibody) and 
Cy5(blue):FLAG-eRF1 (rabbit 
anti-FLAG antibody),  
(B) FITC(green):GFP-Dcp1b, 
TRITC(red):HA-HemK2 
(mouse anti-HA antibody) and 
Cy5(blue):FLAG-eRF1 (rabbit 
anti-FLAG antibody, 
(C) FITC(green):GFP-Dcp1b, 
TRITC(red):HA-HemK2 
(mouse anti-HA antibody) and 
Cy5(blue):Phalloidin. 
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Involvement of HemK proteins in stress granules 
 

The data so far indicated that HemK1 and HemK2 are linked to P-bodies as revealed 

by over-expression experiments and when compared to P-body marker Dcp1b. In an 

attempt to investigate further the involvement of HemK1 and HemK2 in P-bodies and 

also to compare their localisation to stress granules an array of proteins involved in 

RNA processing was obtained and cloned in mammalian expression vectors. The 

obtained cDNAs and the localisation/function of the encoded proteins are summarised 

in table 5.1.  

 

Component Localisation/Associates Known Functions/Involved in 
Dcp1 P-bodies mRNA decapping enzyme, mRNA 

decay 
G3BP Stress granules Ras signalling, Endoribonuclease, 

mRNA decay, ubiquitin proteosome 
pathway 

FMRP Associates with microRNA 
components, P-bodies, SGs 

Local translation in dendrites 

Staufen1 Localises with 
ribonucleoprotein complexes, 
FMRP, PABP. P-bodies 

mRNA transport along microtubules, 
SMD. Recruits UPF1 to SMD. 

Upf1 P-bodies? Can co-localise with 
Dcp1a, Dcp2 

NMD 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.1 Proteins involved in RNA processing. A list of proteins involved in RNA 
processing and transport and their localisation in respect to stress granules and P-bodies. 
References: Dcp1: (van Dijk et al, 2002; Cougot et al, 2008), G3BP (Tourrière et al, 
2003), FMRP: (Antar et al, 2005; Zalfa et al, 2006; Li et al, 2009; Cheever and 
Ceman, 2009) Staufen: (Johnston et al, 1991; Goetze et al, 2006; Tang et al, 
2001b), Upf1: (Lykke-Andersen et al, 2000; Barbee et al, 2006). 
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The expression of the cloned cDNA constructs was tested in over-expression 

experiment COS-7 cells where lysates were analysed by SDS-PAGE and 

immunoblotting. Figure 5.18 shows expression of GFP-Dcp1b and GFP-Staufen1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A survey on the localisation of FMRP, Staufen1 and Upf1 was undertaken in relation 

to HemK1 and HemK2. The proteins were expressed in N1E-115 cells that were 

subsequently fixed and stained. The confocal images obtained for Staufen1 were 

difficult to interpret since a homogeneous cytoplasmic expression was observed at 

high expression levels. Nevertheless, HemK1 and HemK2 stain over-lapped with 

Staufen1. Upf1 showed a nuclear localisation in contrast to published research 

suggesting that Upf1 is mainly cytoplasmic (Brogna et al, 2008). FMRP revealed a 

dot-like expression in the cytoplasm while in cells expressing a comparable amount of 

Hemk2 protein no substantial co-localisation was observed between the two proteins 

(Figure 5.19) 

 

 

 

 

 

 

Figure 5.18 Expression of GFP-Dcp1b 
and GFP-Staufen1. GFP-Dcp1b and GFP-
Staufen1 were transfected in COS-7 cells 
that were lysed after over-night expression. 
Under SDS-PAGE analysis of the lysates 
immunoblotting with anti-GFP antibody 
revealed a single band of the expected size 
for both cloned constructs. 
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Figure 5.19 Survey on cellular localisation of Staufen1, Upf1 and FMRP. GFP-Staufen1, 
GFP-Upf1 and HA-FMRP were expressed in N1E-115 neuroblastoma cells along with HemK1 
and HemK2. Under confocal analysis of the fixed and stained cells GFP-Staufen1 revealed a 
diffused cytoplasmic expression pattern, though some over-lap in staining was observed with 
the co-expressed N5-methyltransferases (A, B). Upf1 expressed largely in the nucleus not co-
localising with either HemK1 or HemK2 (C, D). In (E), the cells that show moderate 
expression of HemK2 revealing its localisation do not suggest co-localisation with FMRP. The 
scale bars represent 10µm. Channels: (A) FITC:GFP-Staufen1, TRITC:HA-HemK1 (anti-HA) and 
Cy5:Phalloidin, (B) FITC:GFP-Staufen1, TRITC:HA-HemK2 (anti-HA) and Cy5:Phalloidin, (C) FITC:GFP-Upf1, 
TRITC:HA-HemK1 (anti-HA) and Cy5:Phalloidin, (D) FITC:GFP-Upf1, TRITC:HA-HemK2 (anti-HA) and 
Cy5:Phalloidin, (E) FITC:HA-FMRP (anti-HA), TRITC:FLAG-HemK2 (anti-FLAG) and Cy5:Phalloidin. 
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The stress granule marker G3BP was investigated in terms of subcellular localisation 

in relation to Hemk1 and HemK2. Initially it was demonstrated that G3BP-containing 

stress granules are largely distinct to Dcp1b-containing P-bodies in an over-

expression experiment in N1E-115 cells, as previously reported by Ohn and 

colleagues (Ohn et al, 2008) (Figure 5.20). 

 

 

 

 

 

 

 

 

The localisation of G3BP was compared to exogenously expressed HemK1 and 

HemK2 in N1E-115 cells. Over-expressed G3BP showed largely distinct localisation 

to that of HemK1 and HemK2, but both showed some regions of over-lap (Figure 

5.21). 

 

 

 

 

 

 

 

 

 

Figure 5.20 P-bodies are distinct to stress granules. The localisation of Dcp1b-induced 
P-bodies was compared to G3BP-induced stress granules in N1E-115 cells. Both proteins 
were overexpressed and FLAG-G3BP was stained with anti-FLAG antibody (TRITC, 
red). The loci induced by the two proteins show largely distinct localisation while some 
co-localisation is observed, a finding which is in agreement with the current literature 
suggesting a link between P-bodies and stress granules. The scale bar represents 10µm.  
Channels: FITC(green):GFP-Dcp1b and TRITC(red):FLAG-G3BP (rabbit anti-FLAG 
antibody). 
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Interestingly, in a pull-down experiment in N1E-115 neuroblastoma cells, HemK1 

and HemK2 were able to associate with GFP-G3BP when over-expressed (Figure 

5.22). 

 

 

 

 

 

 

 

Figure 5.21 G3BP localisation compared to HemK1 and HemK2. The localisation of 
G3BP-induced stress granules was compared to HemK1 and HemK2 in N1E-115 cells. 
Even though some over-lap of the stains was observed the localisation pattern of G3BP 
and the two N5-methyltransferases was distinct therefore not suggesting significant co-
localisation. The scale bars represent 10µm. 
Channels: (A) FITC(green):FLAG-G3BP (rabbit anti-FLAG antibody), TRITC(red):HA-
HemK1 (mouse anti-HA antibody) and Cy5(blue):Phalloidin, (B) FITC(green):FLAG-
G3BP (rabbit anti-FLAG antibody), TRITC(red):HA-HemK2 (mouse anti-HA antibody) 
and Cy5(blue):Phalloidin. 
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Summary 
 

A possible association between the HemK proteins and peptide release factors eRF1, 

eRF3 and mtRF1a was investigated. In pull-down assays in cells HemK1 associated 

with mtRF1a, and with eRF1 which is the predicted substrate of HemK2. HemK2 

associated with eRF1 and mtRF1a. To investigate HemK1 and HemK2 intracellular 

localisation in respect to release factors, the proteins were exogenously expressed in 

cells that were fixed and stained with relevant antibodies. HemK1 co-localised with 

mitochondrial release factor mtRF1a and showed some co-localisation with eRF1. 

HemK2 co-localised with eRF1 and showed some partial co-localisation with 

mtRF1a. To investigate the methyltransferase activity of HemK1, the NPPY motif of 

HemK1, that mediates its association with release factors, was mutated to N239A. 

Methyltransferase assays in vitro indicated that eRF1 may be methylated by HemK1 

in the presence of TRMT112, while the N239A mutation seemed to have an effect in 

HemK1 activity.  

Figure 5.22 G3BP can associate with HemK1 and HemK2 in cells. FLAG-HemK1 and 
FLAG-HemK2 were co-expressed with GFP-G3BP and were immunopurified using 
FLAG beads. Western blot analysis revealed a significant amount of co-
immunoprecipitated GFP-G3BP in the HemK2 pull-down, while some G3BP was 
detected co-precipitating with HemK1. 
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The subcellular localisation of HemK1 and HemK2 was investigated in respect to 

markers for P-bodies and stress granules, following published data supporting a role 

of eRR1 and eRF3 in RNA NMD, that takes place in RNA processing bodies. Table 

5.2 summarises the co-localisations observed between the HemK proteins and the 

components of P-bodies and stress granule investigated. HemK1 co-localised with 

mtRF1a that was highly mitochondrial. HemK1 also co-localised with P-body protein 

Dcp1b, in the cytoplasm. Dcp1b showed distinct localisation when compared to a 

mitochondrial marker, indicating that HemK1 and Dcp1b co-localise outside the 

mitochondria. Exogenous expression of HemK1 seemed to increase endogenous 

staining of Dcp1a, a protein involved in RNA processing that can localise in P-bodies. 

eRF1 localised in foci-like structures in the cytoplasm in the presence of Dcp1b and 

strong co-localisation between the two proteins was observed. Partial co-localisation 

between HemK1, eRF1 and Dcp1b was observed when all three proteins were 

exogenously expressed in HeLa cells. HemK2 showed partial co-localisation with 

Dcp1b, and this was enhanced in the presence of eRF1. HemK1 and HemK2 showed 

partial over-lap in staining with Staufen1, possibly suggesting co-localisation. The 

localisation of stress granule protein G3BP was distinct to the P-body protein Dcp1b, 

when exogenously expressed in cells. Even though no significant co-localisation was 

observed between the two N5-glutamine methyltransferases and G3BP, HemK2 was 

able to associate with G3BP in a pull-down assay in cells. These results collectively 

demonstrate a possible involvement of HemK1 and HemK2 in RNA processing that 

takes place in P-bodies and stress granules in the cytoplasm. 

 

 HemK1 HemK2 mtRf1a eRF1 Dcp1a Dcp1b G3BP1 Staufen1 
HemK1   strong partial partial strong partial partial 
HemK2   partial strong partial Partial partial partial 
mtRF1a strong partial    No   
eRF1 partial strong   partial strong   
Dcp1a partial partial  partial  No   
Dcp1b strong partial No strong No  No  
G3BP1 partial partial    No   
Staufen partial partial       
 
Table 5.2 Summary of the co-localisations observed between the HemK proteins and 
components of RNA processing machinery. HemK1 and HemK2 were expressed in 
cells along with proteins involved in RNA processing, and the cells were fixed and stained 
to visualise any possible co-localisations. Strong co-localisation was observed between the 
HemK proteins and their corresponding proposed substrates. HemK1 strongly co-localised 
with Dcp1b, while no co-localisation was observed between mtRF1a and Dcp1b, or 
Dcp1b and G3BP. The description “partial” in the co-localisation table denotes that 
further analysis would have to be performed to verify the observation. 
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Chapter 6 
[Results IV] 

HemK proteins in neuronal morphology 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 180 

HemK1 and HemK2 shRNA knock-down 
 

In the course of this study it was discovered that the two N5-glutamine 

methyltransferases HemK1 and HemK2 are able to associate with the neuronal α2-

chimaerin in cells. α2-Chimaerin plays an established role in neurite outgrowth 

dynamics regulating Rac1 activity and participating in signalling pathways of EphA4-

dependent axonal guidance (Wegmeyer et al, 2007). An involvement of the two 

translation termination machinery proteins in neuritogenesis has not been documented 

and in fact the role of translation control mechanisms in neuronal outgrowth is still 

minimally understood. Our real-time PCR data indicate that both HemK1 and HemK2 

are expressed in hippocampal neurones of developing rat brain (see figures 4.6, 4.7 in 

chapter 4). Hippocampal neurones of embryonic day 18 offer an attractive system of 

tracking the morphology of developing neurones in vitro since the hippocampus 

contains a relatively pure population of neurones that are at the beginning stages of 

developing cell polarity and the hippocampus is easily distinguishable under a light 

microscope and therefore easy to excise (Dotti et al, 1988). To examine the effects of 

the two proteins in neurite development a gene expression knock-down strategy was 

followed. The expression of the two genes was knocked-down by shRNA in primary 

hippocampal neurones isolated from e18 rat brains and the morphology of the 

developing neurones was analysed for complexity assessed by the Sholl analysis 

method (Sholl, 1953). This gave an indication of dendrite complexity reflecting the 

effect of the protein knock-down in neurite development. The efficiency of the 

shRNA sequences used was initially determined in N1E-115 neuroblastoma cells by 

quantitative real-time PCR, and subsequently in hippocampal primary neurones. 

mRNA transcript levels instead of protein levels were analysed since western blot 

experiments with the antibodies against HemK1 generated inconclusive data as far as 

specificity in detecting the endogenous HemK1 protein is concerned (see Chapter 4). 

shRNA protein knock-down system 
 

The expression of HemK1 and HemK2 was knocked down by double-stranded RNA 

interference. The system used was the siSTRIKE shRNA (Promega) that uses a 

psiSTRIKE vector incorporating a U6 eukaryotic promoter and an Ampr gene. The 

psiSTRIKE vector used in primary neurones carried a GFP expression gene that 
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allowed us to analyse successfully transfected cells by confocal microscopy. The 

psiSTRIKE vector used in N1E-115 cells carried a neomycin gene allowing selection 

of successfully transfected cells for analysis of transcript levels by real-time PCR. 

Three shRNA sequences and a scrambled sequence control were designed for each 

protein (see Materials and Methods). The shRNA oligonucleotides used were 

designed to be complementary to both rat and mouse HemK1 and HemK2 transcript 

sequences and different from the human sequences. This allowed us to re-introduce 

expression of the two proteins in shRNA knock-down rat hippocampal neurones by 

transfecting with the two human cDNA constructs.  

Real-Time PCR analysis of HemK1 and HemK2 transcripts 
 

The mRNA levels of the targeted genes were analysed by quantitative real-time PCR 

based on the standard curve method. The primers used in the quantitative real-time 

PCR analysis of transcript levels were designed to intercept intron-exon boundaries to 

eliminate possible genomic amplification. The verification of knock-down 

experiments was done in triplicate in N1E-115 neuroblastoma cells and in 

monoplicate in primary hippocampal neurones due to the large number of cells 

needed to obtain adequate amount of RNA for the analysis. 

 

HemK1 knock-down in N1E-115 neuroblastoma cells 
 

Initially the efficiency of the shRNA sequences in knocking down HemK1 expression 

was verified in N1E-115 neuroblastoma cells. The cells were transfected with three 

shRNA constructs, a scrambled sequence control and psiSTRIKE vector control and 

grown in neomycin G-418 selection. The HemK1 mRNA levels were analysed by 

real-time PCR after 7 days of psiSTRIKE-shRNA expression, a time window 

proposed by the shRNA kit manual and supported by preliminary data of different 

time-points. The experiments were performed in triplicate and real-time PCR data 

verified knock-down in N1E-115 neuroblastoma cells. The shRNA sequence 

H1shRNA2 showed the lowest HemK1 transcript levels knocking-down expression 

by 80% compared to controls (Figure 6.1).  
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Knocking down the expression of HemK1 in N1E-115 cells using the siSTRIKE 

shRNA system severely affected the growth and morphology of the transfected cells, 

within 7 days expression and when selected with neomycin G-418. The H1shRNA1 

and H1shRNA3 transfected cells showed a 20-30% survival rate, and the surviving 

cells exhibited a contracted phenotype and did not divide at an observable rate. 

H1shRNA2 cells survived at a higher rate but exhibited the most severe phenotype 

effects with many cells spreading to a surface area up to 10 times larger than the 

control cells (Figure 6.2). The scrambled sequence shRNA transfected cells exhibited 

only minimal alterations in morphology and growth compared to the empty vector 

control cells. The image analysis software ImageJ was used to quantify the observed 

size difference, and examining 11 shRNA2 and 7 Vector Control cells the average cell 

sizes were calculated as 7,967 µm2 and 1,803 µm2 respectivally, while a two-tailed t-

test revealed that the size difference is statistically significant (Figure 6.4A).  

 

Figure 6.1 Efficient knock-
down of HemK1 expression in 
N1E-115. The HemK1 transcript 
levels of shRNA transfected 
N1E-115 cells were analysed by 
real-time PCR and normalised to 
β-actin mRNA levels. Sequence 
H1shRNA2 showed the highest 
knock-down. The bar graphs 
represent SDs of three 
experiments. 

Figure 6.2 Knocking-down HemK1 expression affected the phenotype of N1E-115 
cells. The shRNA knock-down sequence H1shRNA1 affected the phenotype of 
transfected N1E-115 cells. Along with compromised growth the cells exhibited a much 
enlarged phenotype when compared to unstransfected or empty vector controls. The scale 
bar represents 10µm. 
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In this study a link was indicated between HemK1 and P-body formation, involving 

Dcp1b as a P-body marker. To investigate the effect of knocking-down HemK1 

expression on P-body formation H1shRNA2 knock-down cells were transfected with 

GFP-Dcp1b and analysed by confocal microscopy (Figure 6.3). The much enlarged 

knock-down cells exhibited a much higher number of Dcp1b-containing bright foci in 

the cytoplasm compared to control cells (Figure 6.3). The Dcp1b expression was 

observed as individual foci as well as in clustered foci. The number of clustered and 

non-clustered foci was quantified using the ImagePro Plus v7.0 software in 11 

shRNA2 and 7 Control Vector cells as analysed by confocal imaging. The numbers of 

foci counted were divided by the cell size (µm2) to reveal the foci density, that is, 

number of foci per µm2. No statistical difference was observed between total foci 

numbers of shRNA2 and Control Vector cells or when comparing only the non-

clustered foci (Figure 6.4 B and C). The average Dcp1b foci size was calculated using 

the ImagePro Plus v7.0 and revealed a statistically significant difference, indicating 

that the foci formed by Dcp1b are smaller when HemK1 expression is knocked-down 

(average Dcp1b foci: shRNA2=0.32 µm2, Vector Control=0.41 µm2) (Figure 6.4D). 

Futhermore, it was indicated that HemK1 expression can affect clustering of 

expressed Dcp1b, since in Vector Control cells an average of 70.6% of foci were in 

clusters while in shRNA2 only 45.6% of total foci was clustered (Figure 6.4E). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 Dcp1b-induced P-bodies in HemK1 knock-down cells. HemK1 knock-down 
N1E-115 cells were transfected with GFP-Dcp1b to induce P-body formation and were 
analysed by confocal microscopy. The scale bars represent 10µm. Channels: 
FITC(green):GFP-Dcp1b and TRITC(red):Phalloidin. 
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Figure 6.4 Knock-down of HemK1 expression can influence clustering and size of 
Dcp1b foci, but not foci density, in N1E-115 Neuroblastoma cells. HemK1 expression 
was knocked-down in N1E-115 cells that were subsequently transfected with GFP-Dcp1b, 
stained and analysed by confocal microscopy. The ImagePro Plus v7.0 software was used to 
analyse Dcp1b foci density, foci size and clustering, while the ImageJ software was used to 
analyse cell size. A total of 11 shRNA2 and 7 Vector Control cells were analysed. Knock-
down of HemK1 expression caused a dramatic increase in cell size (A) but did not affect the 
density of total or non-clustered Dcp1b foci (B and C). A decrease in the average size of 
Dcp1b foci was observed in knock-down cells (D) while a lower percentage of foci found in 
clusters were observed in knock-down cells as compared to Vector Control cells (E).   
[p(A)=1.3061x10-8, p(B)=0.2882, p(C)=0.1330, p(D)=0.0251, p(E)=0.0131]. 
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HemK1 knock-down in primary hippocampal neurones 
 

The effects of HemK1 knock-down in neurite development were investigated in 

primary hippocampal neurones isolated from e18 rat brains. The primary neurons 

were isolated as described in the materials and methods and transfected with the 

shRNA constructs cloned in a GFP psiSTRIKE, by electroporation. Initially the 

efficiency of knock-down was investigated, by transfecting primary neurons and 

plating them at a 400,000 cells per 5cm2 plate, previously coated with Poly-D-

Lysine/Laminin. RNA was isolated and cDNA was transcribed as described in the 

materials and methods, after three days in vitro. FLAG-HemK1 was co-transfected 

with shRNA2 in one experiment. The efficiency of all three shRNA knock-down 

sequences was validated by real-time PCR (Figure 6.5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This study focused on the effects of H1shRNA2 which showed the maximum HemK1 

knock-down in N1E-115 neuroblastoma cells. We compared the morphology of 

primary hippocampal neurones transfected with: a) H1shRNA2, b) a scrambled 

shRNA control sequence, c) GFP vector control and d) H1shRNA2 plus human 

HemK1, where HemK1 expression was restored by co-transfecting FLAG-HemK1 

cDNA. Due to the low efficiency of the standard transfection methods when used on 

Figure 6.5 Efficient knock-down 
of HemK1 expression in e18 rat 
hippocampal neurones. The 
HemK1 transcript levels of shRNA 
transfected e18 rat primary 
hippocampal neurones were 
analysed by real-time PCR and 
normalised to β-actin mRNA 
levels. Sequence H1shRNA2 
showed the highest knock-down. 
The experiment was performed 
once and the SD bars represent 
amplification reactions performed 
in triplicate on the same cDNA 
samples. 
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plated primary neurones (eg lipofectamin, calcium phosphate), the H1shRNA2 and 

FLAG-HemK1 constructs were co-transfected by electroporation. All the cells were 

fixed at four days in vitro. The cells were stained with anti-Tau1 (Cy5) antibodies to 

reveal the developing axons and with phalloidin (TRITC) (Figure 6.6). FLAG-

HemK1 was stained with anti-FLAG on the FITC channel. Therefore, both FLAG-

HemK1 and GFP-H1shRNA2 occupied the FITC channel due to limitations on 

secondary antibodies and available channels. Cells successfully expressing FLAG-

HemK1 were distinguished under confocal microscopy by the high level of signal on 

the FITC channel, since GFP-shRNA construct expression shows a distinctivally 

lower emission, mainly focused on the cell body.  FLAG-HemK1 showed strong 

expression in the neuronal body also localising down axons and dendritic processes. 

The cells that gave a strong emission on the FITC channel were assumed to be co-

expressing GFP-shRNA and FLAG-HemK1 constructs. Cell images obtained by 

confocal microscopy were analysed for neurite complexity by the Sholl method 

(Sholl, 1953).  No dendrite-specific staining (MAP2) was used due to limitations in 

the available fluorescence channels. The Tau staining however did not stain for these 

processes, indicating that they do not constitute axonal processes. It was therefore 

assumed that the processes observed are immature dendrites (or neurites). Initial 

observation of the knock-down cells revealed a more complex morphology of a net-

like arrangement of presumed dendrites close to the soma, as compared to the empty 

vector and the scrambled sequence controls. Co-transfection of HemK1 with 

H1shRNA2 in neurones abolished the complex neurite morphology of the knock-

down (Figure 6.6). Tau1 staining revealed no accountable differences in the number 

or length of neuronal axons between knock-down and controlled cells.  

Figure 6.6 Knocking-down HemK1 expression in hippocampal neurones affects their 
morphology. Rat e18 hippocampal neurones were transfected with knock-down sequences 
H1shRNA1, H1shRNA2, H1shRNA3, empty vector control, scrambled sequence control and 
H1shRNA2+HemK1 where HemK1 expression was reintroduced. The knock-down sequences 
caused a much complex neurite phenotype compared to vector and scrambled sequence 
controls. The phenotype was restored when HemK1 expression was reintroduced by 
transfecting with human HemK1 cDNA. This experiment was performed three times and a total 
of 31 of H1shRNA2, 9 of H1shRNA2+HemK1, 6 of the scrambled sequence control and 21 for 
GFP vector control cells were analysed. The scale bars represent 20µm. 
 
Channels: (A, B, C, E, F) FITC:GFP-psiSTRIKE-shRNA constructs, TRITC:Phalloidin and Cy5:Tau1,  
(D) FITC:GFP-psiSTRIKE-shRNA2 and FLAG-HemK1, TRITC:Phalloidin and Cy5:Tau1. 
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Sholl analysis of HemK1 knock-down morphological effects 
 

The Sholl analysis was first developed by D. A. Sholl in 1953 to describe the dendritic 

organisation in neurones of the visual and motor cortices of cats (Sholl, 1953). The 

analysis involves drawing a series of concentric circles around the cell soma of a 

neuron. The circles feature the centroid of the cell soma as the centre and a fixed step 

in radii increase between them. The number of times that each circle intersects a cell 

process is counted and the data are plotted as number of intersections versus distance 

from the cell soma (Figure 6.7). The public domain image processing and analysis 

program ImageJ along with the Sholl analysis plug-in was used to generate these data. 

The starting and ending radii used were 0 and 250 µm respectively, with a step size 

increase of 2 µm. A margin of 0.5 µm radius span around each radius value was used 

to make continuous measurements of intersections and calculate the median for each 

radius step (Figure 6.7). 

 

 

 

 

 

 

 

 

 

 

The data collected from the Sholl analysis were analysed by the linear Sholl analysis 

and the semi-log Sholl analysis methods (Ristanović et al, 2006). 

 

In the linear Sholl analysis the data were plotted as number of intersections (N) versus 

radius (r) (Figure 6.8). The plot represents the average intersection values of each 

radius of all the cells imaged and analysed. The H1shRNA2 expressing neurones 

showed much higher dendritic complexity in the range of 10 to 40 µm radius 

compared to the GFP vector and the scrambled sequence controls. Upon 

reintroduction of human HemK1 expression the H1shRNA2-induced complexity was 

abolished and reduced to a level lower than the control cells (Figure 6.8). 

Figure 6.7 Analysis of neuronal 
morphology complexity by the Sholl 
method. The Sholl analysis was used to 
investigate the complexity of shRNA 
transfected primary neurones. A series of 
concentric circles are drawn around the 
soma and the number of intersections with 
the cell processes per increasing radii gives 
a measure of dendritic complexity. 



 189 

 

 

 

 

 

 

 

To evaluate the statistical significance of the observed difference in complexity 

between knock-down and control cells, the average intersections of all cells in the 

radius range 10-40µm was calculated and plotted as a bar graph (Figure 6.9). Two-

tailed t-tests for a difference in mean intersections revealed that the difference in 

complexity between H1shRNA2 and the control GFPvector, scrambled and 

shRNA2+HemK1 is statistically significant.  

 

 

 

 

 

 

 

 

Figure 6.8 Linear Sholl analysis of neurite complexity of HemK1 knock-down rat 
hippocampal neurones. The data collected from the Sholl analysis were plotted as number 
of intersections versus the radius (linear analysis). H1shRNA2 (dark blue) showed 1.5 fold 
increase in intersections compared to empty vectror (green) and scrambled control (orange), 
between 10-40µm distance from the cell soma. Reintroducing HemK1 expression dropped 
the complexity to levels lower than the controls (light blue). The number of cells analysed 
were: a) 31 of H1shRNA2, b) 9 of H1shRNA2+HemK1, c) 6 of the scrambled sequence 
control and d) 21 for GFP vector control. 
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To further evaluate the morphological changes observed between shRNA2 and 

control cells, the semi-log Sholl analysis method was applied (Sholl, 1953). The data 

were plotted as the log of the number of intersections per circle area versus the 

corresponding radius, and the graph presented the data in an approximate straight line 

(Figure 6.10). The slope of the fitted straight line which is represented by the Sholl 

regression coefficient k is a measure of the rate of decay of branches with the distance 

from the cell body and it was originally used by Sholl to characterise the morphology 

of basal dendrites of pyramidal neurones from the cerebral cortex (Sholl, 1953). The 

data collected from H1shRNA2, H1shRNA2+HemK1, GFPvector control and 

scrambled control expressing neurones were plotted as log of the number of dendritic 

intersections/unit area versus circle radius of the cells (Figure 6.11). The rate of decay 

of branches with the distance was greater for H1shRNA2 neurones as represented in 

Figure 6.10. The Sholl regression coefficient k values were calculated for each cell 

and the difference between H1shRNA2 and GFPvector control was found to be 

significant by means of a t-test (Figure 6.12).  

 

Figure 6.9 Linear Sholl analysis of neurite complexity of HemK1 knock-down rat 
hippocampal neurones in radius range 10-40µm. The difference in number of 
intersections between the shRNA constructs was analysed in the radius range 10-40µm 
shown in light green (B). The average number of intersections (10-40µm radius range) for 
each shRNA construct was plotted and the difference in complexity between shRNA2 and 
controls was found to be statistically significant by means of a t-test (two-tailed, unequal 
variance). SDs are indicated. [p=3.034x10-8 for shRNA2/GFPv, p=5.088x10-6 for 
shRNA2/Scrambled, p=9.9x10-8 for shRNA2/shRNA2+HemK1]. 

A B 
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Figure 6.10 Semi-log Sholl analysis of 
neurite complexity of HemK1 knock-down 
rat hippocampal neurones. The difference 
in number of intersections between the 
shRNA constructs was analysed by the semi-
log method where the log of the average 
number of intersections per circle area 
(log(N/S)) was plotted versus the radius. This 
method obtained the Sholl regression 
coefficient k for each group of neurones. This 
graph is a representative example of the 
semi-log plot. 

Figure 6.11 Distribution of 
regression lines over the different 
shRNA constructs. The lines are 
plotted as the log of number of 
intersections per circle area (N/S) 
versus the corresponding radius. The 
slope of each line is determined by the 
Sholl regression coefficient k. The rate 
of decay of log(N/S) with the distance 
r from the cell body is largest for 
H1shRNA2. 

Construct k 
shRNA2 -0.03057+0.00959 
GFPv -0.02387+0.008029 
Scrambled -0.02511+0.007029 
shRNA2+HemK1 -0.02426+0.006727 
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Figure 6.12 Semi-log Sholl analysis of neurite complexity of HemK1 knock-down 
rat hippocampal neurones. The difference in number of intersections between the 
shRNA constructs was analysed by the semi-log Sholl method where the mean Sholl 
regression coefficient was calculated for each group of neurones. Significant difference 
was found between H1shRNA2 and GFPvector control by means of a t-test. [p=0.011 
for shRNA2/GFPv, p=0.051 for shRNA2/shRNA2+HemK1]. 
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HemK2 knock-down in N1E-115 neuroblastoma cells 
 

Three shRNA sequences specific to HemK2 were tested in N1E-115 neuroblastoma 

cells for knock-down efficiency. Real-time PCR analysis indicated that the H2-

shRNA1 sequence was the most efficient in knocking-down HemK2 expression, 

lowering the HemK2 transcript by almost 90% as compared to scrambled sequence 

and empty GFP vector controls (Figure 6.13).  

 

 

The shRNA knock-down transfected N1E-115 neuroblastoma cells featured limited 

compromised growth compared to the scrambled and GFP vector controls. A similar 

enlarged phenotype to that of HemK1 knock-down was observed with the HemK2 

knock-down H2-shRNA1 sequence that featured the lowest HemK2 transcript levels 

in real-time analysis (Figure 6.14). 

 

 

 

Figure 6.13 Efficient knock-
down of HemK2 expression in 
N1E-115. The HemK2 transcript 
levels of shRNA transfected 
N1E-115 cells were analysed by 
real-time PCR and normalised to 
β-actin mRNA levels. Sequence 
H2shRNA1 showed the highest 
knock-down. The bar graphs 
represent SDs of three 
experiments. 

Figure 6.14 Knocking-down HemK2 expression affected the phenotype of N1E-115 
cells. The knock-down sequence H2shRNA1 affected the phenotype of transfected N1E-
115 cells. Along with some compromised growth the cells exhibited an enlarged 
phenotype similar to that observed for HemK1 knock-down. The bar represents 10µm. 
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HemK2 knock-down in primary hippocampal neurones 
 

A similar methodology to the HemK1 knock-down morphological analysis was 

followed to investigate whether knocking-down HemK2 expression affects the 

morphology of developing neurones. The efficiency of the shRNA sequences to 

knock-down HemK2 expression was tested in primary neurones in a single 

experiment that verified the real-time data collected in N1E-115 neuroblastoma cells 

that the H2shRNA1 sequence featured the maximum knock-down (Figure 6.15). 

 

 

 

 

 

 

 

 

 

 

 

 

The morphology of primary hippocampal neurones transfected with the three HemK2 

shRNA sequences was investigated by confocal microscopy. The HemK2 shRNA 

sequences were compared to scrambled control, and to neurones co-transfected with 

rodent shRNA and human FLAG-HemK2 cDNA (Figure 6.16). The confocal images 

obtained were analysed by the linear Sholl analysis and the average number of 

intersections versus the corresponding radii was plotted for each cell group (Figure 

6.17). The H2shRNA1 expressing neurones showed higher complexity at a radius 

between 10 and 40 µm compared to the scrambled sequence control. The morphology 

of these neurones was distinct to the morphology of HemK1 knock-down neurones, 

since the presumed dendrites did not form net-like inter-connections. Instead, the 

HemK2 knock-down neurones exhibited bud-like structures with extending neurites, 

sprouting from processes mainly close to the cell soma. Upon reintroduction of 

HemK2 expression the H2shRNA1 complexity abolished to a level comparable to 

control cells (Figure 6.18). 

Figure 6.15 Efficient knock-
down of HemK2 expression in 
e18 rat hippocampal neurones. 
The HemK2 transcript levels of 
shRNA transfected e18 rat primary 
hippocampal neurones were 
analysed by real-time PCR and 
normalised to β-actin mRNA 
levels. Sequence H2shRNA1 
showed the highest knock-down. 
The experiment was performed 
once while the SD bars represent 
three amplification reactions 
performed on the same cDNA 
sample (triplicate). 
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Figure 6.16 Knocking-down HemK2 expression in hippocampal neurones affects 
their morphology. Rat e18 hippocampal neurones were transfected with knock-down 
sequences H2shRNA1, scrambled sequence control and H2shRNA1+HemK2 where 
HemK2 expression was reintroduced. The knock-down sequences caused an increase in 
dendritic complexity compared to the scrambled sequence controls. The phenotype was 
restored when HemK2 expression was reintroduced by transfecting with human HemK2 
cDNA. This experiment was performed two times and a total of 16 of H2shRNA1, 13 
H2shRNA1+HemK2 and 18 of scrambled control cells were analysed. The scale bars 
represent 20µm. 
 
Channels: (A, C) FITC:GFP-psiSTRIKE-shRNA constructs, TRITC:Phalloidin and 
Cy5:Tau1, (B) FITC:GFP-psiSTRIKE-shRNA1 and FLAG-HemK2, TRITC:Phalloidin 
and Cy5:Tau1. 
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Figure 6.17 Linear Sholl analysis of neurite complexity of HemK2 knock-down rat 
hippocampal neurones. The data collected from the Sholl analysis were plotted as 
number of intersections versus the radius (linear analysis). H2shRNA1 (dark blue) showed 
an increase in intersections compared to scrambled control (orange), between 10-40µm 
distance from the cell soma. Reintroducing HemK2 expression dropped the complexity to 
levels comparable to controls (light blue). The number of cell analysed were: 16 of 
H2shRNA1, 13 H2shRNA1+HemK2 and 18 of scrambled control 

Figure 6.18 Linear Sholl analysis of neurite complexity of HemK2 knock-down rat 
hippocampal neurones in radius range 10-40µm. The difference in number of 
intersections between the shRNA constructs was analysed in the radius range 10-40µm. 
The average number of intersections (10-40µm radius range) for each shRNA construct 
was plotted and the difference in complexity between H2shRNA1 and the scrambled 
control was found to be statistically significant by means of a t-test (two-tailed, unequal 
variance). SDs are indicated. [p=0.741x10-3 for H2shRNA1/Scrambled, p=0.2x10-2 for 
H2shRNA1/H2shRNA1+HemK2. 
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Summary 
 

To determine whether HemK1 and HemK2 influence the morphology of 

differentiating neurones the morphological effects of knocking-down the expression 

of the two N5-glutamine methyltransferases were examined in e18 rat hippocampal 

neurones. Efficient knock-down of the shRNA sequences was verified by real-time 

PCR in N1E-115 transfected cells. For both HemK1 and HemK2, shRNA knock-

down resulted in growth compromise and an enlarged phenotype when compared to 

cells transfected with empty vector or scrambled sequence. The phenotypic effects of 

knock-down in N1E-115 neuroblastoma cells were most prominent with HemK1 

knock-down. In HemK1 knock-down cells significant alterations were observed in the 

size of Dcp1b foci formed under transient expression of the P-body factor, as well as 

in Dcp1b foci clustering. This indicates that HemK1 may be involved in the formation 

of P-bodies as induced by Dcp1b. These results are preliminary as the number of cells 

analysed were low, and further analysis in a larger cell number and experiments 

would have to be carried out to evaluate startistical significance. 

  

In primary neurones HemK1 knock-down caused a significant increase in neurite 

complexity close to the soma, at a 10-40µm distance from the centroid of the neuronal 

soma, with presumed dendrites forming net-like structures of interconnecting 

processes. This phenotype was rescued upon reintroduction of HemK1 expression by 

transient transfection of human HemK1. The effect in neuronal processes morphology 

was quantified by the Sholl analysis method, where a series of concentric rings with 

regular radial increments centered in the neuronal soma are traced around the neurone 

and the number of processes intersecting each ring is counted and plotted against the 

corresponding radius. Analysis by the semi-log Sholl method revealed that HemK1 

knock-down primary neurones exhibit a different rate of decay of neuronal processes 

with distance from the soma compared to control cells. The increase in neurite 

complexity and rate of decay of processes with distance between HemK1 knock-down 

and controls was statistically significant as revealed by a t-test, though more cells 

would need to be analysed before the data are fully reliable. 
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When HemK2 expression was knocked-down in e18 rat hippocampal neurones an 

increase in neuronal processes complexity was observed at 10-40µm distance from the 

neuronal soma centroid, with bud-like structures extending multiple thin neurites from 

processes close to the soma. This phenotype was restored upon reintroduction of 

HemK2 expression. 

 

These results indicate that modifying the expression levels of the two N5-

methyltransferases can affect neuronal outgrowth in primary neurones. This suggests 

an involvement of HemK1 and HemK2 in signalling pathways orchestrating dendritic 

development, but not necessarily involving Rac1 or α2-chimaerin. It is certainly a 

possibility that the two N5-methyltransferases are involved in morphogenetic events 

mediated by Rac1 or α2-chimaerin, since both HemK1 and HemK2 can associate with 

α2-chimaerin in cells, and HemK1 can also associate with CRMP-2. On the other 

hand, both HemK1 and HemK2 play important roles in maintaining intracellular 

global translation control, and one would presume that modulating their expression 

would have severe effects in cell growth and morphology. For this to be analysed 

further, a neuronal morphology experiment where α2-chimaerin expression is 

modulated as well as HemK1 or HemK2 would have to be carried out. Furthermore, 

α2-chimaerin contructs where the functional domains SH2 and GAP have been 

mutated inhibiting the functional associations mediated by these domains could reveal 

involvement of HemK1 or HemK2 in pathways of α2-chimaerin morphogenesis.  
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Chapter 7 
[Discussion] 
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HemK proteins in neurite outgrowth dynamics 
 

A yeast two-hybrid screen on a human cDNA library previously identified HemK1 as 

a potential interacting partner for α2-chimaerin. This study aimed to characterise this 

novel interaction between the neuronal α2-chimaerin and the ubiquitously expressed 

HemK1, which is believed to modulate mitochondrial translation termination. It was 

shown that both HemK1 and related protein HemK2 can associate with α2-chimaerin, 

while investigation of HemK1 and HemK2 transcript levels as well as an antibody 

characterisation study aimed to reveal the expression of these proteins in the brain. A 

novel functional link of the two N5-glutamine methyltransferases with cytoplasmic 

RNA processing machinery was suggested by immunocytochemistry and protein 

association studies in cells, involving factors of P-bodies and stress granules. A 

possible role of HemK1 and HemK2 in the differentiation of developing neurones was 

suggested by knock-down experiments in rat hippocampal primary neurones that 

revealed a selective effect on neurite complexity. Possible roles of HemK1 and 

HemK2 in morphology of developing neurones are discussed in the context of: a) 

association with α2-chimaerin, b) effect on mitochondrial translation, and c) dynamics 

of cytoplasmic RNA processing bodies. 

 

HemK1 and HemK2 associate with α2-chimaerin 
 

α2-Chimaerin is expressed specifically in brain and testis and is involved in pathways 

of axonal growth cone collapse through EphA4 signalling while it also mediates the 

activity of the RhoGTPase Rac1 (Hall et al, 1993; Hall et al, 2001; Brown et al, 2004; 

Shi et al, 2007; Wegmeyer et al, 2007). HemK1 is ubiquitously expressed in nature 

and is found in a variety of human tissues, while there is evidence that it methylates 

mitochondrial release factor mtRf1a (NCBI:AceView, Thierry-Mieg et al, 2006; 

Soleimanpour-Lichaei et al, 2007; Ishizawa et al, 2008). The related protein HemK2, 

also a homologue of the bacterial PrmC, has been shown to methylate eukaryotic 

release factor eRF1 (Figaro et al, 2008). In this study it was shown that both HemK1 

and HemK2 can associate with α2-chimaerin in pull-down experiments in cells. In 

fact, in an experiment where partial constructs of α2-chimaerin were tested for 
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association with HemK1, the strongest association was observed between HemK1 and 

the SH2 domain of α2-chimaerin, indicating a phospho-tyrosine-dependent 

interaction. In a similar experiment it was shown that HemK1 protein that co-

immunoprecipitated with the SH2 domain of α2-chimaerin is tyrosine phosphorylated 

in cells (Figure 3.4). An in silico tyrosine phosphorylation analysis predicted a few 

strong candidate residues on both proteins (Figure 7.1). Interestingly, the tyrosine on 

the NPPY motifs of both HemK1 and HemK2 showed the highest score on tyrosine 

phosphorylation prediction, that if true, it would suggest a further functional 

significance on their association with α2-chimaerin. It is possible that the association 

observed occurs between the SH2 domain of α2-chimaerin and the NPPY motif of 

HemK upon tyrosine phosphorylation. Furthermore, if tyrosine phosphorylation on 

the release factor binding motif NPPY occurs in nature, it could affect substrate 

binding and methyltransferase activity and possibly constitute a control mechanism 

for HemK activity and translation termination. This would raise implications on a 

possible involvement of α2-chimaerin in the proposed function of the N5-

methyltransferases. 

 

 



 202 

Figure 7.1 In silico tyrosine phosphorylation analysis of human HemK1 and HemK2. 
A tyrosine phosphorylation prediction was performed on the human HemK1 
(NM_01617.3) and HemK2 (BI520047) sequences on the NetPhos 2.0 Server 
(www.cbs.dtu.dk/services/NetPhos/). Interestingly, the tyrosine on the NPPY motif of 
both HemK1 and HemK2 gave the highest score for predicted phosphorylation, raising the 
possibility of a phospho-tyrosine-dependent association between the SH2 domain of α2-
chimaerin and the release factor binding site of the two N5-methyltransferases. 
 



 203 

HemK1 is predicted to bear a mitochondrial localisation sequence (TargetP) and in 

experiments by Ishizawa and colleagues Myc-tagged HemK1 co-localised with the 

MitoTracker stain for mitochondria, in transiently transfected HeLa cells (Ishizawa et 

al, 2008). Binding of diacylglycerol to the C1 domain of chimaerins is thought to 

mediate their translocation to membranes. α2-Chimaerin is known to translocate to the 

plasma membrane where it can bind the EphA4 receptor, while β2-chimaerin can 

translocate to the Golgi apparatus (Shi et al, 2007; Caloca et al, 2001; Colón-González 

et al, 2008). This poses the question if the association observed between HemK1 and 

α2-chimaerin is actually possible in nature, since the two proteins may be expressed in 

and confined to different subcellular spaces. HemK2 is believed to be part of the 

translation machinery ordered by the ribosomes in the endoplasmic reticulum, and this 

would give higher chances for HemK2 to meet α2-chimaerin intracellularly and 

therefore be its real biological partner. However, unpublished data in our lab have 

suggested that α2-chimaerin can be found in mitochondria co-localising with 

mitochondrial marker HSP60 in N1E-115 neuroblastoma cells permanently 

expressing the EphA4 receptor while native α2-chimaerin has been detected in 

purified mitochondria (C. Hall and C. Porchetta, personal communication). The 

observation that HemK1 but not HemK2 can associate with CRMP-2, an established 

a2-chimaerin partner reinforces the hypothesis that HemK1 is a bona fide interacting 

partner of α2-chimaerin possibly part of a signalling pathway involving CRMP-2. It is 

still possible however that the association of α2-chimaerin with the two N5-glutamine 

methyltransferases is not biological and is a result of the high exogenous expression 

of the proteins driven by the CMV promoter of the mammalian expression vectors 

used. To address this, an endogenous immunoprecipitation would have to be 

performed in neurones or brain tissue where chimaerin is expressed. Anti-chimaerin 

antibodies coupled on beads could be used to immunoprecipitate endogenous α2-

chimaerin from brain homogenates and western blot analysis would reveal if native 

HemK1 protein was co-precipitated. The limitation of this technique is that the 

available anti-HemK1 and anti-HemK2 antibodies cannot reliably detect endogenous 

protein. To over-come this, mass spectrometry could be used to identify the proteins 

co-precipitated with α2-chimaerin. Furthermore, the association could be mapped on 

the two N5-glutamine methyltransferases, generating a series of HemK1 and HemK2 

deletion mutants to be used in pull-down experiments in cells. This could indicate if 

the substrate binding site and/or the catalytic site of the two proteins are involved in 
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the association with α2-chimaerin and could help characterise the interaction in terms 

of a biological function. Following the effect of HemK1 knock-down in primary 

neurones where a significant increase in dendritic complexity was observed, the effect 

of the two HemKs on the GAP activity of α2-chimaerin should be investigated, that 

could offer a direct link to neurite outgrowth dynamics through modulating the 

activity of Rac1. The effect of HemK1 and HemK2 in the GAP activity of α2-

chimaerin could be explored by means of an assay that measures the dissociation of 

Rac1-bound GTP to GDP+Pi, in the presence of α2-chimaerin and HemK proteins. 

Furthermore, the levels of normal or phosphorylated levels of α2-chimaerin in 

HemK1 knock-down neurones could be investigated, since increase in 

phosphorylation of α2-chimaerin and GAP activity towards Rac1 have been linked to 

its association to the EphA4 receptor in the context of growth cone collapse (Shi et al, 

2007). 

Possible Morphogenetic Signalling Pathways 
 

The morphological effects of HemK1 or HemK2 knock-down in cultured primary 

neurons are quite distinct with an increase in complexity of processes close to the 

soma, but no significant effect on axonal length. A review of the literature on cultured 

hippocampal neurons can give some clues as to which signalling pathways could be 

affected that may be relevant to HemK proteins. Even though the literature on 

cultured hippocampal neurons morphology is a vast one, with a wide variety of 

proteins attributed an involvement in signalling pathways affecting outgrowth of 

neuronal processes, the phenotype observed for HemK1 knock-down still appears 

quite unique in terms of its neurite complexity. In a recent large-scale gain-of-function 

screen done in primary hippocampal neurons by Buchser and colleagues, a wide 

spectrum of proteins was identified affecting neuronal morphology (Buchser et al, 

2010). These included protein kinases and phosphatases, and HemK1 was also 

identified in this screen, causing a moderate decrease in total neurite length (Buchser 

et al, 2010). A prime example of a signalling pathway involved in neuronal 

morphogenetic events is the PI3K pathway that is activated upon binding of growth 

factors to membrane receptors, and mediates remodelling events on both actin and 

microtubules via activation of GSK-3β, Akt and the Rho GTPases (Cosker and 

Eickholt, 2007). In a recent paper it was demontrated that the phosphatidylinositol 
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transfer protein PITPα induces increase in axonal length of e18 hippocampal neurons, 

an effect mediated by the PI3K pathway (Cosker et al, 2008). Furthermore, the PI3K 

pathway has been involved in dendritic development through the action of tyrosine 

receptor kinase B TrkB, affecting dendritic growth cone dynamics and filopodia 

motility in cultured hippocampal neurons (Luikart et al, 2008). A phenotype that 

shows some similarity to the HemK1 knock-down phenotype is provided by a study 

by Kumar and colleagues, where activation of the PI3K-Akt-mTOR pathway 

increased the dendritic size in cultured hippocampal neurons, while a coordinated 

activation together with the Ras-MAPK pathway increased dendrite complexity 

(Kumar et al, 2005). In a different study, an increase in the number of primary 

dendrites in cultured hippocampal neurons was observed under over-expression of 

glutamate receptor interacting protein 1 GRIP1, while knock-down had the opposite 

effect, and it was suggested that GRIP1 controls dendrite morphogenesis by mediating 

the transport of EphB receptors to dendrites (Hoogenraad et al, 2005). This phenotype 

is distinct to the HemK1 knock-down phenotype, in which primary dendrites could 

not be counted since the processes sprouting from the cell soma formed net-like 

structures, making the identification of primary dendrites impossible. The phenotype 

of HemK2 knock-down is perhaps even more difficult to interpret, since it is a subtle 

effect but still statistically significant in the number of cells analysed. The growth 

cone-like structures observed near the soma could relate the phenotype to the function 

proteins involved in actin and microtubule polymerisation, such as the Arp2/3 

complex and CRMP-2 mediating the effects of Rho GTPases. 
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HemK1 expression and function is not confined to the 
mitochondria 
 

The human Hemk1 bears a mitochondrial localisation sequence as predicted by 

TargetP with a probability of 0.808, but this prediction is not consistent across other 

mitochondrial localisation prediction logarithms. MitProtII (v1.101) predicted a 

0.4597 probability of HemK1 to be mitochondrial while Mitpred (v2.0) could not 

detect a mitochondrial leader sequence at all when used in default settings (Kumar et 

al, 2006). It is therefore possible that the transport of HemK1 to mitochondria is not 

the sole possible fate of the native protein, and HemK1 can have a function outside 

the mitochondria. It was shown that HemK1 can localise with mitochondrial mtRF1a 

but also with eRF1 that is believed to associate with ribosomes in the cytoplasm. 

HemK1 also co-localised with Dcp1b, a protein that constitutes an important marker 

for cytoplasmic P-bodies, even in the presence of its substrate mtRF1a. This clearly 

demonstrates that HemK1 intracellular expression, and possibly function, is not 

confined to the mitochondria. 

 

HemK1 could affect neuronal morphology through 
mitochondrial function 
 

In preliminary experiments, a significant increase in dendritic complexity in range of 

10-40µm distance from the neuronal soma centroid was observed when HemK1 

expression was knocked-down in e18 rat hippocampal primary neurones. Furthermore 

knock-down of HemK1 expression in N1E-115 for 7 days with antibiotic selection 

cells caused a large phenotype and compromised growth suggesting impaired 

mitochondrial function (McBride et al, 2006). Since antibiotics such as gentamicin 

and neomycin also affect translational fidelity this may also have contributed to the 

severity of the phenotype in HemK1 knockdown in these cells (Schroeder et al, 2000; 

Mehta and Champney, 2003). These data indicate obvious and severe morphological 

effects of shRNA knock-down of HemK1 in N1E-115 neuroblastoma cells. Taking in 

consideration that HemK1 has been found to localise in mitochondria as part of the 

translation machinery and HemK1 knockdown cells show a significant reduction in 
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mitochondrial protein synthesis (Ishizawa et al, 2008), the morphological effect of 

abolishing HemK1 expression could be due to alteration of mitochondrial protein 

translation functions. When eukaryotic cells are grown in glucose-free galactose-

containing media glycolysis is inhibited and the cells are forced to produce ATP by 

oxidative phosphorylation that takes place in the mitochondria. The process of 

oxidative phosphorylation requires proteins encoded by the mitochondrial genome 

and therefore non-compromised mitochondrial translation machinery is imperative for 

cell growth under these conditions (Anderson et al, 1981). In fact, a study has shown 

that depletion of the HemK1 mitochondrial substrate mtRF1a in HeLa cells 

compromised cell growth in galactose and promoted increased production of reactive 

oxygen species (Soleimanpour-Lichaei et al, 2007). To investigate further the effect of 

HemK1 knock-down in mitochondrial function, HemK1 shRNA cells could be 

cultured in galactose-containing media, and their rate of division compared to 

untransfected cells. Furthermore, a possible mitochondrial dysfunction in HemK1 

knock-down N1E-115 cells could be investigated in live cell imaging by tracking the 

accumulation of ROS. This can be done using a MitoSOX Mitochondrial Superoxide 

Indicator that translocates to mitochondria and emits red fluorescence under oxidation 

by superoxide ion, the predominant ROS in mitochondria (Kudin et al, 2004). 

(http://products.invitrogen.com/ivgn/product/M36008).  

 

Mitochondria are important for cell survival and death and impaired function can lead 

to increased generation of reactive oxygen species (ROS) and reduced ATP 

production (Beal, 2005).  Many lines of evidence suggest that mitochondrial 

dysfunction and oxidative stress are causative to the pathogenesis of 

neurodegenerative diseases (Lin and Beal, 2006). Impaired energy metabolism and 

mitochondrial dysfunction are a feature of autopsied brain tissue from Alzheimer’s 

disease patients while cell damage from ROS can occur before the development of 

plaque pathology (Pratico and Delanty, 2000; Small et al, 1995). Biochemical studies 

have suggested that mitochondria function is also involved in the pathogenesis of 

Parkinson’s disease (Schapira et al, 1990), and mutations in mitochondrial genes have 

been associated with parkinsonism (Casali et al, 2001; Thyagarajan et al, 2000). 

HemK1 could affect mitochondrial function or ROS signalling by modulating the 

expression of mitochondrial proteins being part of the mitochondrial translation 

machinery.  
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In neurones, mitochondria are found in the cell soma as well as in distal dendritic and 

axonal sites where they are believed to have a direct effect in neurite arborisation and 

synaptic activity (Li et al, 2004; Verstreken et al, 2005). Studies have suggested that 

reduction of dendritic mitochondrial content leads to loss of spines and synapses 

while increase in mitochondrial content and activity leads to increased number of 

dendritic spines and synapses (Li et al, 2004). A direct link between mitochondrial 

translation and dendritic morphology was set by Chihata and colleagues in a study of 

the GARS gene encoding for glycyl-tRNA synthetase (Chihara et al, 2007). Glycyl-

tRNA synthetase catalyses the synthesis of glycyl-tRNA that mediates the addition of 

glycine during protein synthesis. (Freist et al, 1996). In experiments in Drosophila 

olfactory projection neurones, GARS mutants showed compromised terminal 

branching of both axons and dendrites (Chihara et al, 2007). Combined with data of 

mitochondrial ribosomal protein S12 null mutants affecting mitochondrial translation, 

the authors propose that cytoplasmic translation is required for arborisation of both 

developing dendrites and axons while mitochondrial translation preferentially affects 

dendritic arborisation (Chihara et al, 2007). A role of HemK1 in neuronal morphology 

through an effect in mitochondrial translation and/or function is a plausible hypothesis 

that could account for the complex dendritic morphology observed in HemK1 knock-

down neurones. 

HemK1 could affect neuronal morphology by modulating       
P-body assembly 
 

An effect of HemK1 in neuronal morphology could be linked to its involvement in P-

body dynamics. It was found that HemK1 expression can induce the formation of 

Dcp1a-containing cytoplasmic foci while exogenously expressed HemK1 co-localises 

with P-body protein Dcp1b. Knock-down of HemK1 expression affected the 

clustering and size of Dcp1b-induced P-bodies, and this was statistically significant in 

a small number of analysed cells. HemK1 also associated with eRF1 that is part of the 

nonsense mediated mRNA decay machinery and was shown to co-localise with 

Dcp1b suggesting its presence in P-bodies and indicating a possible role in mRNA 

degradation. P-bodies are cytoplasmic sites of RNA processing and have been 

implicated in nonsense mediated mRNA decay and local translation in distal neuronal 
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sites where translationally repressed mRNA can be expressed in response to synaptic 

activity (Cougot et al, 2008). Furthermore P-bodies have been shown to contain 

translationally silent mRNA that can return to polysomes to resume translation 

(Brengues et al, 2005). If HemK1 can induce P-body assembly it could have an effect 

on synaptic-induced translation and mediate morphological changes in the developing 

neurite. One hypothesis is that HemK1 is directly involved in P-body assembly as part 

of the RNA processing machinery found in these cytoplasmic foci, as suggested by 

the strong co-localisation of HemK1 with Dcp1b. On the other hand, the induction in 

Dcp1a-containing cytoplasmic foci in HemK1 transfected cells could also be due to 

an effect of HemK1 in mitochondrial translation, possibly causing cell stress that is 

linked to P-body and stress granule assembly. 

 

A link between mitochondrial translation and P-bodies has been previously set with 

Rpm2p, a protein subunit of mitochondrial RNase P (Stribinskis and Ramos, 2007; 

Dang et al, 1993). RNase P is involved in processing ribosomal RNA and subunit 

Rpm2p has also been implicated in the translation of mitochondrially encoded 

cytochrome c oxidase subunits in mitochondria (Stribinskis et al, 2001). In a recent 

study Rpm2p was found to localise in cytoplasmic P-bodies and regulate their 

stability while it was also able to associate with mRNA decapping protein Dcp2 

(Stribinskis and Ramos, 2007). It is therefore evident that an interplay between 

different factors primarily localised in different intracellular organelles is occurring in 

the formation of cytoplasmic RNA processing bodies. This reinforces the hypothesis 

that HemK1 has a new previously unknown function linked to RNA degradation and 

cytoplasmic P-bodies function and dynamics. 

HemK2 knock-down could affect neuronal morphology 
through modulating stress granules function 
 

P-bodies show similarities with stress granules sharing a subset of identical 

component proteins and also through their involvement in miRNA-mediated gene 

silencing (Anderson and Kedersha, 2008). Both stress granules and P-bodies are in 

equilibrium with polysomes as suggested by experiments that show the dissociation of 

these cytoplasmic foci when polysomes are stabilised (Brengues et al, 2005; Eulalio et 

al, 2007b). Stress granules have been involved in holding translationally silent 
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mRNAs that can either be degraded or retargeted to the translation machinery 

(Kedersha et al, 2000).  Staufen is thought to regulate the equilibrium between 

polysomes and stress granules by stabilising polysomes under stress conditions 

(Thomas et al, 2009), while the two human Staufen homologues have been involved 

in mRNA transport and localised translation control in dendritic spines (Villacé et al, 

2004; Goetze et al, 2006; Tang et al, 2001b). G3BP has been implicated in the 

localised translation of proteins involved in cellular proliferation and migration 

(Solomon et al, 2007), while it has been shown to be required for stress granule 

assembly (Tourrière et al, 2003).  In preliminary experiments, HemK2 was shown to 

associate with G3BP in cells and some partial co-localisation between the two 

proteins was observed in N1E-115 cells. Furthermore, some partial co-localisation 

was observed between HemK2 and Staufen1. Together with the observation that 

HemK2 shRNA knock-down in primary hippocampal neurones causes an increase in 

neurite complexity, these results could indicate a link between HemK2 and RNA 

processing proteins involved in transport of mRNA to distal dendritic sites and control 

of local translation. The formation and dynamics of stress granules and P-bodies have 

been shown to be regulated by the proteins dynein and kinesin suggesting an 

important role of these two microtubule associated proteins in the shuttling of 

ribonucleoproteins and RNA processing factors in these RNA regulation foci (Loschi 

et al, 2009). CRMP-2, a binding partner of α2-chimaerin that is involved in 

microtubule assemblies and axonal outgrowth, directly binds to dynein and modulates 

its activity (Brown et al, 2004; Fukata et al, 2002; Yoshimura et al, 2005; Arimura et 

al, 2009). It is therefore possible that the HemK2 could hold a role in the assembly of 

RNA processing bodies through its association with α2-chimaerin. The role of 

HemK1 or HemK2 in the assembly of stress granules could be investigated by looking 

at endogenous G3BP by means of an immunocytochemistry on knock-down cells as 

well as cells exogenously expressing HemK1 or HemK2. 

 

HemK1 could play a role in escort complexes linking it to 
Chimaerin 
 

Results have shown that exogenously expressed HemK1 can show partial over-lap 

with markers for clathrin and early endosomes in some cells. Endosomes order the 
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cellular processes of endocytosis that mediate the uptake of nutrients and the 

transmission of neuronal and proliferative signals. Clathrin is a key player in 

internalisation of membrane-bound ligands ordering the formation of endoplasmic 

vesicles that selectively sort cargo at the cell membrane, endosomes and trans-Golgi 

network for various membrane traffic pathways (Mellman, 1996). The endocytotic 

pathway sees the delivery of internalised membrane receptors to early endosomes, 

where they can be targeted for degradation in lysosomes by ubiquitination, recycled 

back to the plasma membrane or destined to the trans-Golgi network (Jovic et al, 

2010). A molecule that follows this endocytotic pathway is the epidermal growth 

hormone (EGF) that plays a key role in cell proliferation, growth and differentiation. 

Studies in yeast have suggested that the process of sorting ubiquitinated proteins for 

degradation in late endosomes requires the recruitment of the ESCRT (endosomal 

sorting complex required for transport) complexes (Hurley, 2008). The ESCRT-I 

complex is composed of Vps23, Vps28, and Vps37 (Katzmann et al, 2001). A yeast 

two-hybrid screen in our lab has previously identified Vps28 as a potential interacting 

partner for α2-chimaerin. Furthermore, the chimaerin-related protein Bcr has been 

shown to be required for the turnover of EGF receptor through its interaction with 

Vps28 and other components of ESCRT-I complex, implicating it in processes of 

cellular trafficking at growth cone receptors (Raiborg et al, 2003). It is therefore 

possible that α2-chimaerin plays a role in processes of endocytosis in recycling 

membrane receptors, and partial co-localisation of HemK1 with molecules 

representing these cellular pathways could also indicate a possible involvement of 

HemK1 as a chimaerin interacting partner.  

 

A possible role of HemK in endosomal trafficking could also be linked to a function 

in P-bodies and RNA processing. A link between P-bodies and the ESCRT complexes 

has been set with the P-body proteins GW182 and Argonaute 2 (AGO2), two main 

components of the RNA-induced silencing complex (RISC) (Liu et al, 2005). GW182 

and AGO2 have been shown to localise in late endosomes while miRNA silencing 

and the formation of GW182-containing bodies is dependant on the presence of 

ESCRT complexes (Gibbings et al, 2009; Lee et al, 2009). 
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Endogenous HemK1 detection 
 

The expression of HemK1 and HemK2 mRNA in brain development was investigated 

by real-time PCR in rat brains, and compared to α2-chimaerin. Results showed a 

parallel increase in transcript levels between the three proteins with development, in 

e12 and e18 whole brains, and 5d and 20d cortices. The transcript levels of the two 

N5-glutamine methyltransferases were generally comparable to those of α2-

chimaerin, as detected by real-time PCR. Specifically for the 20d rat brains 

cerebellum, the expression of the three transcripts was similar, with HemK1 being the 

lowest, followed by of α2-chimaerin and HemK2. In the 20d cortex, α2-chimaerin 

was detected at much lower levels to HemK1 and HemK2. However the Allen Brain 

Atlas revealed very low levels of HemK1 in cerebellum and cortex compared to 

HemK2 and α2-chimaerin in 55 days old mice (Figure 7.2A and B). The difference in 

transcript levels as presented by the Allen Brain Atlas is not consistent with the 

findings of this project, probably reflecting the intrinsic differences and limitations of 

the two techniques in comparison, in situ hybridisation and real-time PCR.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2 Relative transcript levels of HemK1, HemK2 and α2-chimaerin in mouse 
brain as described by the Allen Brain Atlas. The relative transcript levels of HemK1, 
HemK2 and α2-chimaerin in (A) cerebellum and (B) cortex in adult mice as revealed by in 
situ hybridisation are not consistent to the comparable levels obtained by real-time PCR in 
adult rat brains in this study. Picture adapted from the Allen Brain Atlas. 
[(http://mouse.brain-map.org) in situ analyses: (Strain: C57BL/6J, Sex: M, Plane of Section: 
sagittal. Mouse age: 55 days for HemK1, 56 days for HemK2 and α2-chimaerin); Lein et 
al, 2007] 
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In an attempt to characterise three monoclonal and two polyclonal antibodies raised 

against HemK1, western blots of fractionated e14, 18 and adult rat brain obtained 

different results between the antibodies. The monoclonal antibodies have been raised 

against the C terminal of human HemK1 while the two polyclonal ones were raised 

against a synthesised peptide of the last 16 amino acids of the human protein. In these 

experiments an anomalous separation of recombinant HemK1 in 10% polyacrylamide 

gel was observed since the protein was detected just below the 50kDa size marker. 

The human HemK1 protein is predicted to be 37kDa. 

 

The monoclonal 7D7 antibody detected a strong band corresponding to the expected 

size of the cloned HemK1 in rat brain, as well as in untransfected mouse and monkey 

cell lines, but not in human brain or HeLa cells. In the western blot experiment of 

fractionated rat brains the control lane was lysate of COS-7 cells transfected with HA-

HemK1. Since 7D7 could detect a strong band of the expected size in untransfected 

COS-7 cells, the band detected in this experiment is not believed to be exogenously 

expressed HA-HemK1. This means that to date there is no indication that this 

antibody can detect cloned HemK1 protein. Furthermore, the band detected in N1E-

115 neuroblastoma cells did not decrease in intensity when HemK1 was knocked-

down by shRNA as verified by real-time PCR. These data indicate that the band 

recognised by 7D7 is a non-specific antigen not detected in human origin cells.  

 

The most promising antibody was 6D2 that detected a band of lower molecular weight 

than the cloned HemK1 in the mitochondrial fraction of e14 rat brain as well as in 

human brain homogenate of frontal cortex, possibly representing native HemK1 

protein translocated to the mitochondria. This band was also detected by the 

polyclonal rabbit-5 and the commercially available monoclonal antibody (Cat#: 

H00051409-B01 from Abnova). The different results obtained with the 7D7, rabbit-5 

and rabbit-6 antibodies when used in rat or human brain indicates that they show 

species specificity but not necessarily their ability to detect native protein. The 

synthesised peptide that the rabbit-5 and rabbit-6 polyclonal antibodies were raised 

against shows 62.5% residue identity to the corresponding rat sequence (Figure 7.3). 

This could account for the inconsistent results when used cross-species.  
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To further characterise these antibodies one would map the epitope recognised by the 

monoclonal antibodies on human HemK1 sequence, and compare to the rat sequence. 

Furthermore, the proteins detected by the antibodies could be analysed by mass 

spectrometry that would confirm their identity and the specificity of the antibodies. 

Lastly, the antibodies should be used on fractionated human brain to reveal the 

localisation of native HemK1, since an obvious difference in detected proteins is 

observed across species. This could also detect a size difference between the 

mitochondrial and the cytoplasmic HemK1 proteins. 

 

Interchangeability of HemK1 and HemK2 substrates 
 

An interesting finding of this project was that HemK1 can associate and also partially 

co-localise with eRF1 as well as its proposed substrate mtRF1a. Also HemK2 was 

shown to associate and partially co-localise with its proposed substrate eRF1 as well 

as mtRF1a. This suggests interchangeability between the release factor substrates of 

HemK1 and HemK2. Even though the two N5-glutamine methyltransferases share the 

conserved NPPY substrate-binding motif and the GxGxG AdoMet-binding motif, 

their primary structure only shows a 25.7% residue identity. It is therefore possible 

that interchangeability of substrates is based on similar tertiary structure. Comparing 

the described tertiary structure of Thermotoga maritima HemK1 to the predicted 

structure of human HemK2 reveals the conservation of the a five helix bundle 

containing the NPPY motif, as well as the seven-stranded β-sheet that harbours the 

AdoMet binding sequence (Figure 7.4). 

Figure 7.3 The C-terminal HemK1 synthetic peptide that the two polyclonal 
antibodies were raised against. The two polyclonal antibodies rabbit-5 and rabbit-6 
were raised against a 16 amino acid synthetic peptide of the human HemK1 C-terminal 
that shows 62.5% sequence identity to the rat sequence. 
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Conclusion 
 

This study investigated the interaction between α2-chimaerin and HemK1, initially 

observed in a yeast two-hybrid screen in our lab. At first, an association between a 

protein that is specifically expressed in the brain and is involved in pathways affecting 

neuronal morphogenesis, with a protein that is expressed in every cell and holds the 

ubiquitous and important function of mediating translation termination, seemed 

unlikely to be reflecting a real biological function. During the course of this study 

however, a number of interacting partners and cellular processes have been involved 

in what seems to be a complex interplay of different factors that could bridge distinct 

cellular pathways to mediate morphogenetic events in the developing neurone (Figure 

7.5).  

Figure 7.4 Comparison of HemK1 and HemK2 predicted structures. The published 
structure of HemK1 in Thermotoga maritime is shown (left) and compared to the predicted 
tertiary structure of human HemK2 (right). The seven-stranded β-sheet and the five helix bundle 
that harbour the catalytic domain and the susbtrate binding motif respectively are conserved. 
The structure prediction was done by the SwissModel online algorithm based on the human 
HemK2 sequence NCBI: NM_013240. [(http://swissmodel.expasy.org); Arnold et al, 2006; 
Schwede et al, 2003; Guex et al, 1997]. [HemK1 structure: (PDB ID:1NV9); Schubert et al, 
2003; Yang et al, 2004a). 
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It was found that α2-chimaerin can associate with HemK1 and related protein 

HemK2. HemK1 also associated with CRMP-2, a bona fide interacting partner of α2-

chimaerin and showed strong co-localisation with P-body protein Dcp1b, involved in 

RNA degradation. HemK2 also associated with G3BP, a protein involved in localised 

translation. HemK1 and HemK2 were able to associate and co-localise with both 

eRF1 and mtRF1a release factors, possibly reflecting their conserved secondary 

structure. Furthermore, both HemK1 and HemK2 showed some over-lap in cell 

staining for Staufen1, a protein involved in localised mRNA translation in dendritic 

spines and axons. ShRNA knock-down of HemK1 in primary hippocampal neurones 

caused a significant increase in dendritic complexity close to the soma. Knock-down 

of HemK2 by shRNA caused a similar effect though of much less amplitude. It has to 

be noted that the N numbers for some of the experiments presented in this work are 

relatively low and the data are therefore presented as preliminary and would have to 

be repeated before their evaluation would be statistically significant. These data shed 

a pioneer light to a complex interplay between RNA processing and neuronal 

morphogenetic pathways, possibly choreographed by HemK1 and HemK2, while 

rediscovering the beautiful economy of nature. 

Figure 7.5 Protein associations and co-localisations observed in this study. A number 
of associations and protein co-localisation in cells were suggested by this study. HemK1 
and HemK2 could bridge previously distinct pathways of translation termination, RNA 
processing and localised translation to mediate morphogenetic events in developing 
neurones through α2-chimaerin.  
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