
Populated virtual urban environments are
important in many applications, from

urban planning to entertainment. At the current stage
of technology, users can interactively navigate through
complex, polygon-based scenes rendered with sophis-
ticated lighting effects and high-quality antialiasing
techniques. As a result, animated characters (or agents)
that users can interact with are also becoming increas-
ingly common. However, rendering crowded scenes
with thousands of different animated virtual people in
real time is still challenging.

To address this, we developed an
image-based rendering approach for
displaying multiple avatars. We take
advantage of the properties of the
urban environment and the way a
viewer and the avatars move within
it to produce fast rendering, based on
positional and directional discretiza-
tion. To display many different indi-
vidual people at interactive frame
rates, we combined texture com-
pression with multipass rendering.

Our system allows real-time ren-
dering of densely populated large-
scale environments. The rendering
speed is independent of the avatar

model’s complexity, although rendering the same num-
ber of humans would be impossible if using polygonal
models. We improved already existing methods by
three main contributions. (See the “Related Work” side-
bar for more information on other approaches.) First,
we adapted the choice of the impostor to the object to
render, thus minimizing popping effects when chang-
ing view. Second, we reduced the amount of texture
memory, letting us load many different kinds of peo-
ple. Finally, we used a multipass algorithm, taking
advantage of the alpha channel to select and color dif-
ferent regions of the body, which enabled the 10,000
people simulated in our experiment to all look differ-
ent. With the continuous increase of the texture mem-
ory available in common machines, we predict that
using such image-based rendering approaches will pro-
vide solutions to crowd visualization.

Approach in a nutshell
Rendering populated urban environments requires

the synthesis of two separate problems: real-time visu-
alization of large-scale static environments and visual-
ization of animated crowds and traffic. Because both are
expensive to render, it’s essential to reduce the amount
of time required to display each frame. We believe that
our effort on real-time animated crowd display, com-
bined with accelerating techniques for walk-throughs
in virtual environments, should allow high-quality visu-
alization of big cities.

Large-scale environments contain millions of poly-
gons. Although we can display and visualize thousands
of polygons at a real-time frame rate, delays appear
between frames for a larger number of polygons,
decreasing the visualization’s quality and the user’s abil-
ity to walk through. There has been a lot of published
work on this subject. In general, we can use three dif-
ferent classes of methods to accelerate rendering of large
environments: visibility culling, imaged-based render-
ing, and level-of-detail representation. In our case, we
need to reduce the number of polygons to display and
take care of the avatars’ real-time animation. Visibility
culling can be an efficient acceleration in urban scenes,
but we would still need to render many polygons. For
example, think about a crowded square. A user might
visualize thousands of virtual avatars and view the sur-
rounding city details. Even the additional use of level-of-
detail techniques results in too many polygons to display.

Considering these limitations, an image-based
approach seemed more suitable for both the animation
and the rendering of the avatars. We focused on the low-
est level, when the viewer is at a certain distance from
the virtual humans and potentially has many of them in
view. In applications where users need to have a closer
look, we can render only the close avatars with polygons.

To minimize geometrical complexity, we represent
each human with a single adaptive impostor. (See the
“Model Sampling and Collision Avoidance” sidebar on
p. 38 for more details.) We selected appropriate impos-
tor images depending on the viewpoint position and the
animation frame. A previous approach1 has already pro-
posed such a solution. However in that approach, the
required texture memory is excessive, resulting in a sim-

0272-1716/02/$17.00 © 2002 IEEE

Image-Based Modeling, Rendering, and Lighting

36 March/April 2002

We propose methods for

rendering real-time

animated crowds in virtual

cities. We developed an

image-based rendering

approach for displaying

multiple avatars.

Franco Tecchia and Céline Loscos
University College London

Yiorgos Chrysanthou
University of Cyprus

Image-Based
Crowd Rendering

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 13:03 from IEEE Xplore. Restrictions apply.

IEEE Computer Graphics and Applications 37

Related Work
The principle of image-based rendering techniques is to

replace parts of a scene’s polygonal content with images.
We can either compute these images dynamically or a
priori. Maciel and Shirley1 used prerender images to replace
polygonal parts of a static environment in a walk-through
application. They do this individually for single objects or
hierarchically for clusters of objects. These images are used
in a load-balancing system to replace geometry, which is
sufficiently far away. A year later Schaufler and Sturzlinger2

and Shade et al.3 independently presented the concept of
dynamically generated impostors. They generate object
images at runtime and reused them for as long as the
introduced error remained below a threshold.

We can find numerous algorithms in the literature that try
to generate better approximations. For example Chen and
Williams;4 Debevec, Taylor, and Malike;5 and McMillan and
Bishop6 warp the images to adapt them to different
viewpoints while Mark, McMillan, and Bishop7 and Darsa,
Silva, and Varshney8 apply the images on triangular meshes
to better approximate the object’s shape. Schaufler9

proposes a hardware-assisted approach to image warping,
and Dally et al.10 use an algorithm that efficiently stores
image data starting from a number of input images.

The literature on human modeling and rendering is also
extensive. However, the largest part of it concerns achieving
realistic approximations using complex and expensive
geometric representations. Even with the help of level-of-
detail techniques, it would be almost impossible to use a
large number of such representations in a real-time system.
An alternative, which Aubel and his colleagues11,12 recently
employed, is using impostors to render virtual humans. In
one work,11 they replace each human with a single
impostor, while in another,12 they replace each body part
with an impostor, overall using 16 impostors for each
human. In both methods, they compute the impostors
dynamically and use them only for a few frames before
discarding them.

Tecchia and Chrysanthou13 propose a less accurate but
more scalable method that uses fully precomputed images.
They show results with only one individual replicated many
times due to the excessive texture requirements. Part of our
work is based on this approach, which mapped an
appropriate texture onto an impostor to display walking
humans. To generate the impostors, Tecchia and
Chrysanthou created a set of textures, each corresponding
to an animation frame. Each texture is composed of a set of
images of the character taken from different positions. They
used a sampled hemisphere to capture the images, from 32
positions around the character and eight elevations. At
runtime, depending on the view position with respect to
each individual, they chose the most appropriate image and
displayed it on an impostor, which is a single polygon
dynamically oriented toward the viewpoint. No
interpolation is used between views, as this would be too
CPU-intensive. The appropriate texture to map depends on
the viewpoint and animation frame. To improve the
rendering speed, they draw the humans frame by frame of
animation and load the textures only once per frame of
rendering.

However, several limitations exist in the technique. First,
it needs a lot of texture memory because 32 × 8 sample
images need to be stored in one texture. We can also see
popping between frames of animation due to the sampling
of the view position—there are 11.25 degrees of difference
in the orientation of the object between each image.
Because of the texture memory’s cost, the authors showed
animation only for a single type of character. We decided
to use this method as a basis for his high efficiency, and we
tried to reduce memory requirements to the minimum.

References
1. P.W.C. Maciel and P. Shirley, “Visual Navigation of Large Envi-

ronments Using Textured Clusters,” P. Hanrahan and J. Winget,
eds., ACM Computer Graphics (Symp. Interactive 3D Graphics),
1995, pp. 95-102.

2. G. Schaufler and W. Sturzlinger, “A Three-Dimensional Image
Cache for Virtual Reality,” Computer Graphics Forum, vol. 15, no.
3, Sept. 1996, pp. C227-C235.

3. J. Shade et al., “Hierarchical Image Caching for Accelerated Walk-
throughs of Complex Environments,” H. Rushmeier, ed., Proc.
Siggraph 96, Addison Wesley, Reading, Mass., 1996, pp. 75-82.

4. S.E. Chen and L. Williams, “View Interpolation for Image Syn-
thesis,” J.T. Kajiya, ed., Computer Graphics (Siggraph 93 Proc.),
vol. 27, ACM Press, New York, 1993, pp. 279-288.

5. P.E. Debevec, C.J. Taylor, and J. Malik, “Modeling and Rendering
Architecture from Photographs: A Hybrid Geometry- and Image-
Based Approach,” Proc. Siggraph 96, Addison Wesley, Reading,
Mass., 1996, pp. 11-20.

6. L. McMillan and G. Bishop, “Plenoptic Modeling: An Image-Based
Rendering System,” Computer Graphics, vol. 29, 1995, pp. 39-46.

7. W.R. Mark, L. McMillan, and G. Bishop, “Post-Rendering 3D
Warping,” M. Cohen and D. Zeltzer, eds., Proc. 1997 Symp. Inter-
active 3D Graphics, ACM Press, New York, 1997, pp. 7-16.

8. L. Darsa, B.C. Silva, and A. Varshney, “Navigating Static Environ-
ments Using Image-Space Simplification and Morphing,” M.
Cohen and D. Zeltzer, eds., Proc. 1997 Symp. Interactive 3D Graph-
ics (ACM Siggraph), ACM Press, New York, 1997, pp. 25-34.

9. G. Schaufler, “Per-Object Image Warping With Layered Impos-
tors,” Proc. 9th Eurographics Workshop Rendering 98, Springer
Computer Science, New York, 1998, pp. 145-156.

10. W.J. Dally et al., The Delta Tree: An Object-Centered Approach to
Image-Based Rendering, tech. memo AIM-1604, Massachusetts
Inst. of Tech., Artificial Intelligence Laboratory, May 1996.

11. A. Aubel, R. Boulic, and D. Thalmann, “Animated Impostors for
Real-Time Display of Numerous Virtual Humans,” J.-C. Heudin,
ed., Proc. 1st Int’l Conf. Virtual Worlds (VW-98), vol. 1434, Springer,
Berlin, 1998, pp. 14-28.

12. A. Aubel, R. Boulic, and D. Thalmann, “Lowering the Cost of Vir-
tual Human Rendering with Structured Animated Impostors,”
Proc. 7th Int’l Conf. in Central Europe on Computer Graphics, Visu-
alization, and Interactive Digital Media (WSCG 99), Univ. of West
Bohemia Press, Czech Republic, Plzen, 1999.

13. F. Tecchia and Y. Chrysanthou, “Real-Time Rendering of Densely
Populated Urban Environments,” Proc. Rendering Techniques 2000,
Springer Computer Science, New York, 2000, pp. 83-88.

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 13:03 from IEEE Xplore. Restrictions apply.

ulation that includes only one type of avatar. Our work
increases rendering quality using aggressive optimiza-
tions and adds important environmental effects such as
shadows.

We analyzed all the improvements needed to allow
more variety with an increase of the visual quality, while
keeping a real-time frame rate. This led us to the set of
new techniques we present here, which together display

crowds with improved quality while keeping the ren-
dering cost low. We minimize the popping effect when
changing views by choosing the impostor representation
that best fits walking humans. We can apply the tech-
nique we used to select the best-fitting impostor, how-
ever, to other kinds of objects. We also decided on a
strategy to decrease the amount of texture memory
required for one human, as well as find new displaying

methods to make every avatar look
different. To minimize the memory
consumption, we dropped the
images’ regular-grid organization,
removing all the unused space in the
impostor images set, which reduces
the memory requirements by about
three-quarters. This compression
technique reduces the size of the
required texture memory for each
kind of human, letting us add sever-
al kinds of humans. To enhance the
crowd variety without increasing the
memory usage, we used multipass
rendering. Figure 1 shows an exam-
ple of the final rendering system.

Choosing the impostor
representation

When we use image-based repre-

Image-Based Modeling, Rendering, and Lighting

38 March/April 2002

Model Sampling and Collision
Avoidance

Tecchia and Chrysanthou1 initially reported the
idea of using prerendered animated impostors for
real-time crowd rendering. As in that work, we
took sample images of the detailed human model
from around a discretized hemisphere, using a
regular subdivision (32 views across and eight
different elevations). We created and animated the
original polygonal models using Curious Labs
Poser (see Figure A).

To develop some simple behavior simulation,
we implemented fast and efficient collision
detection using a regular grid.1 We call this grid a
height map, with each of its cells representing
about 30 × 30 cm of the environment and storing
the elevation at that point. We constructed this
information efficiently using rasterization
hardware.

At start-up, we take an orthographic rendering
of the static model with the camera looking down
from above. Then the contents of the z-buffer are
read making the height map (see Figure B). When
the humans move around, they access this
information to check the environment’s
properties. We interpret high discontinuities in the
elevation of adjacent cells as obstacles. Agents
moving around detect such discontinuities and
adjust their direction accordingly. (Tecchia et al.
also reported a more general use of a 2D grid to
control crowd behavior.2)

A Sampling the
models.

B A simple
collision test.
Particles
compare the
elevation of the
actual and
destination
cells.

1 The crowd
rendering
system.

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 13:03 from IEEE Xplore. Restrictions apply.

sentation to render complex objects, two common forms
of artifacts may arise: missing data due to interocclusion
can cause black regions to appear, and popping effects
can occur when we warp and/or blend the image sam-
ples to obtain the final image. As we already mentioned,
we try to maximize the rendering speed using a minimal
geometric complexity for each impostor; this leads us to
use a single polygon as the plane on which to project a
sample. In this scenario, the main perceived artifact is
the popping between different samples as the viewpoint
changes. Unfortunately, the multipass algorithm our sys-
tem uses to improve the crowd variety prevents us from
blending different samples, a solution that could have
mitigated the problem.

Another way to reduce the popping effect could be to
augment the number of samples. However, because we
still want to minimize the memory consumption, we pre-
ferred to use some other methods. Because we have only
a limited number of image samples
available, we decided to accept this
popping effect up to a certain extent,
while attempting to minimize it.

The popping artifact occurs
because all the points on the surface
of the sampled object are projected
onto the same plane, from the direc-
tion that the camera is facing when
the sample is created. Obviously, as
the camera position changes, the
projection of such points on the
impostor can’t change, and the cur-
rent impostor is no longer an exact
replica of the object appearance.
The amount of error for a generic
point on the object surface is pro-
portional to the distance of the point
from the projection plane. Figure 2
demonstrates this.

The plane researchers commonly use as the projec-
tion plane for an impostor is usually the one perpendic-
ular to the view direction from which the sample image
was taken. This plane doesn’t take into account the
object’s shape nor any kind of special occlusion that
could be in the image. We then decided to try a different
approach: Given an object and the camera position from
where we created the sample image, we searched for
the projection plane passing through the object that
minimizes the sum of the distances of the sampled
points and the projection plane.

To apply this idea, we had to project back in the 3D
space the points visible in the impostor image to get 3D
visible samples of the object. We applied a Principal
Component Analysis (PCA) to the set of 3D points and
identified the two principal eigenvectors as directions
describing the projection plane. In the case of sample
human polygonal models, such a plane results in a sig-
nificantly better approximation of the position of the vis-
ible pixels with respect to the actual point positions in
3D. Unfortunately, other visual artifacts arose when we
used the best-fitting plane as the impostor plane. In fact,
the special orientation of this new plane asymmetrical-
ly warps the image depending on which direction the

camera moves away from the sampling position. In some
extreme cases, for a particular plane orientation and a
certain distance of the camera, perspective distortions
can also become too evident (see Figure 3a). This is
more visible when moving upward rather than around
because our object (the avatar) is longer along that
dimension.

Because we couldn’t use the best-fitting plane com-
puted with PCA as is, we reduced the artifacts by com-
bining the plane’s two candidate orientations. Starting
from an impostor plane purely perpendicular to the
camera, we “perturbed” its orientation using the result-
ing plane obtained from a PCA of the sample image (see
Figure 3b). This minimized the popping while limiting
the introduction of other artifacts. In practice, we found
that averaging the two directions worked well.

Image compression
Although the hardware texture memory available has

increased, we should still make an effort to reduce the
amount used to display virtual humans. First, because
humans are walking, the movement is symmetric.
Instead of 32 samples, we can then reduce it to 16 and
get the other 16 by mirroring the texture. We can see
such symmetry in other objects, such as cars or bicycles,

IEEE Computer Graphics and Applications 39

P1

P

Original
view

New
view

2 Error intro-
duced when
changing the
viewpoint. This
error is propor-
tional to the
distance
between the 3D
point and the
projection
plane.

Visible points (pixels)

View
direction

View
direction

3 Distance of
the visible
samples from
the impostor
plane.
(a) The plane is
perpendicular
to the camera
direction.
(b) We chose
the best-fitting
plane to mini-
mize the dis-
tance between
sample points
and the projec-
tion plane.

(a) (b)

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 13:03 from IEEE Xplore. Restrictions apply.

and this approximation may be useful for them as well.
Second, all the images are the same size. This results in

a considerable waste of space, because for some images,
the human fits a restricted area. We started by placing the
samples on a texture using a regular grid.1 Each sample
is a prerendered ray-traced image of 256 × 256 pixels of
the character, using an orthographic projection. Figure
4 shows the resulting image. In this way, extracting a par-
ticular sample is a trivial and fast operation, but there’s a
lot of unused texture space around each sample that gets
wasted. To minimize the amount of unused regions, dur-
ing the preprocessing phase, we computed the smallest
rectangle containing the character for each sample. Then,
we combined all these samples in a single image, reorga-
nizing them to minimize the unused space. Thanks to this
process, the resulting new image is much smaller than
the original without any loss of image quality.

With our current reorganization strategy, we can
reduce the amount of texture memory necessary to store
our human images to 25 percent of the original value. In
our case, to have a good trade-off between the quality and

the memory required for the samples, we stored each
animation frame using a single image of 512 × 512 pixel
as a total size. Figure 5 shows an example of the result-
ing texture. We then stored the texture using the OpenGL
compressed format (http://oss.sgi.com/projects/
ogl-sample/registry/EXT/texture compressions3tc.txt),
which gives a further memory compression ratio of 1:4.
This ratio is efficient, although the image loses part of its
quality. The compression format lets us keep alpha val-
ues and encodes them in 4 bits. Once loaded in texture
memory, each animation frame for a single human model
requires 256 Kbytes.

Because we no longer have a regular grid, we now
must precompute appropriate texture coordinates and
store them for each sample. Then, at rendering time, we
need to compute on the fly the right size and orienta-
tion for the impostor to avoid introducing distortions of
the sample image. It’s important to notice that, because
of our optimal samples placement strategy, these para-
meters generally vary for different frames of animation
even considering a fixed point of view. Figure 5 shows an

example of the mapping and the
choice of the impostor.

Increasing the variety of
avatars

With this texture compression
we gain texture memory that we
can use to simulate more humans
than Tecchia and Chrysanthou.1 To
simulate 10 different types of
human with 10 frames of anima-
tion each, we need about 25 Mbytes
of texture memory. Although we
improved the possibility of variety,
10 different avatars aren’t enough
to populate a city. Because we were
limited by the texture memory, we
decided to modify the texture on
the fly using multipass rendering.
We can't change the shape and the

Image-Based Modeling, Rendering, and Lighting

40 March/April 2002

4 Impostor
texture for an
animation
frame using the
Tecchia and
Chrysanthou
method.1

5 Rendering
impostors using
a compressed
texture. The
bottom right
shows the
texture after
compression.
We packed the
images so they
occupy only one
fourth of the
texture in
Figure 4.

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 13:03 from IEEE Xplore. Restrictions apply.

kind of human, but we can assign a different color to
significant parts of the body such as clothes, hair, and
skin color.

To identify such areas, we precomputed an alpha-
channel image with a different alpha value for each part
to modify (see Figure 6). (We did this using 3D Studio
Max. We had to turn off the antialiasing to avoid blurring
the borders of two adjacent regions.) Tuning the alpha
channel, we can define up to 256 different regions in the
texture without using compression, or up to 16 using the
s3tc compression (http://oss.sgi.com/projects/ogl-sam-
ple/registry/EXT/texture compressions3tc.txt) because
only 4 bits are available for the alpha channel. We per-
formed multipass rendering using the alpha channel to
select the parts to render. For each pass, we change the
impostor polygon color to the desired color, and we apply
the texture using the flag GL_MODULATE and set the
alpha threshold of the alpha test to the one associated
with the part of interest.

Computing a texture modulation preserves the shad-
ing because it’s already included in the texture. In our
experiments, we drew up to three passes, thus only
changing each individual’s shirt and trousers color.
More passes are possible because we can identify sev-
eral regions. However, the multipass rendering might
slow down the overall rendering rate, and there must
be a trade-off between variety and rendering time.

Implementation details and results
We implemented and tested the methods we discuss

here. For the simulation, we added some elements that
allow better quality for the results. To control the virtu-
al humans’ motion, we subdivided the floor of the envi-
ronment into regular-sized tiles. While the humans
move around, they check information corresponding to
the tile they occupy. Several types of information can be
stored,2 but presently, we only use this information for
collision detection and shadowing. We further subdi-

vided the tiles so that an avatar can be at different posi-
tions on the same tile.

If an avatar stays in the same tile in the next frame, it
just continues to move in its current direction and no
decision needs to be taken. In the case of the model we
used for the test, the collision detection map is binary.
When we encode the tile with black, it’s impassable and
the avatar needs to change direction. In addition, we
performed intercollision detection between humans by
checking if a destination tile is already occupied.

Using the impostor approach, we can also compute
and display the moving humans’ shadows.3 To project
the humans’ shadows on the ground, we exploit the fact
that the shadow of a virtual human is the projection onto
the ground of its silhouette as seen from the light source
(see Figure 7). We can thus display the humans’ shadow
on the ground using one of the images already stored in
the database that we use for the impostor. In this way,
with the cost of only one additional polygon corre-
sponding to the projection of the impostor polygon on
the ground, we create a shadow corresponding to the
human posture.

IEEE Computer Graphics and Applications 41

6 Example avatars. On the left, an
avatar rendered with ray tracing in
3D Studio Max. In the middle, an
avatar with alpha channels to
identify parts to modify. On the
right, an avatar rendered with
multipasses regarding the alpha
channel. Notice how these four
avatars look different although they
are built from the same 3D model.

7 A virtual
human’s
shadow is the
projection onto
the ground of
its silhouette as
seen from a
single light
source.

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 13:03 from IEEE Xplore. Restrictions apply.

We also cast the buildings’ shadows onto each virtu-
al human extending the function of the regular grid
used for collision detection. We compute and store in a
2D image the information about the height of a build-
ing’s shadow volumes. For each virtual human travers-
ing the grid, we compare its height with the height of

the shadow stored in the cell it occu-
pies. The impostor polygon appro-
priately darkens to reflect the
shadow coverage.

We developed the system on an
800-MHz PC Pentium III with an
Nvidia GeForce GTS2 video card.
We populated our environment with
six different avatars and performed
three passes to draw different col-
ors, chosen randomly. For the
results in Figures 8 and 9, we dis-
played 2,000 avatars for each of four
types of humans and 1,000 for each
of the two last type, thus displaying
10,000 different humans. One of
these types is a jogger, thus having
an animation different from the oth-
ers. These humans move in a village
modeled with 41,260 polygons. The
display updates between 12 and 20
frames per second (frames/sec),
depending on the displayed polygo-
nal complexity. Although the ren-
dering is in real time, there’s no
trade-off made to decrease the qual-
ity. The rendering quality is as good
as if we hadn’t used optimization
algorithms. Visit http://www.cs.ucl.
ac.uk/research/vr/Projects/Crowds/
CGA/ for sample videos of this
implementation.

To evaluate our simulation’s scal-
ability, we simulated different sized
crowds. The frame per second rate
for 0 people was 26.20; for 1,000
people, it was 24.08; for 5,000 peo-
ple, it was 18.26; and for 10,000
people, it was 13.35. We ran the sim-
ulation on an identical camera path
for each simulation.

Rendering the city model itself already uses a lot of
the resources because the average display is only 26
frames/sec. In Figure 10, we plotted the same data but
as time per frame versus the number of humans, and we
can clearly see that the relation is almost linear. We
believe that an occlusion culling algorithm performed
on the static model could help speed up the rendering.
The frame rate then decreases as the number of poly-
gons (those for the avatars) displayed increases. These
timings also include the collision detection performed
for each of the virtual humans simulated. A visibility test
and an occlusion culling algorithm applied to both the
collision detection and the display of the humans could
accelerate the frame rate.

Future work
Although we’ve already achieved good results, we

believe that there’s room for further improvements and
developments. In our implementation, we made a num-
ber of assumptions that we can now reexamine. For
example, we assumed that the viewer will be at a cer-

Image-Based Modeling, Rendering, and Lighting

42 March/April 2002

8 The crowd
visualization.
Notice the
number of
different peo-
ple. Using the
optimization
techniques in
this article, we
visualized thou-
sands of differ-
ent humans in
real time.

9 A closer view
of the humans.

80
70
60
50
40
30
20
10

Ti
m

e
p

er
 fr

am
e

(m
s)

5 10

Number of humans (thousands)

10 Number of
humans versus
the time per
frame.

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 13:03 from IEEE Xplore. Restrictions apply.

tain distance away from the avatars. This lets us use
impostors that we created with orthographic projection
and limited texture dimensions. If we let users get clos-
er, they will notice the artifacts. One way around this is
to use a hybrid approach where polygonal human mod-
els are used instead of impostors for the few avatars that
come right up to the viewpoint.

Because we used the same textures to generate the
avatar shadows, we also assumed that the light source at
infinite. This wasn’t a limitation for our examples because
the only light source was the sun. However, if we want to
simulate the city at night with street lights, then we will
have to warp the textures before applying them.

The impostors are currently shaded when we render
them in 3D Studio Max. This effectively fixes the shad-
ing to the particular light defined at that time, making
the sources static. However, we believe that we could
shade the impostors on the fly using normal maps indi-
cating each pixel’s orientation. This would let the shad-
ing be consistent if we modified the light source.

An interesting extension to our system, that could
greatly improve its impact, would be using real photo-
graphic images of humans instead of synthetic models.
Of course, the problem here would be acquiring all the
sample images. Possibly, we could scan a person in color
and then take the samples from the scan.

Methods to cull polygons could speed up rendering
times, selecting for display both polygons from the sta-
tic environments and the moving people.4

We could certainly use the current algorithms to ren-
der different kinds of objects such as cars, pets, children,
or groups of people (such as children holding an adult’s
hands). Also, several animations could be possible, with
an appropriate texture load. Particular care should be
taken for transitions in between animations. Moreover,
using the multipass rendering algorithm, we could sim-
ulate simple animation such as turning a head to the left
or right.

Finally, for each new type of object, we should do more
work on developing appropriate behavior. Although
researchers have done a lot of work on behavior in cities,
there are still many problems to solve, especially for real-
time simulation of thousands of agents. �

Acknowledgments
This work was in part supported by the UK Engineer-

ing and Physical Sciences Research Council (EPSRC)
project GR/R01576/01 and the EPSRC Interdisciplinary
Research Centre Equator, an interdisciplinary research
project at University College London. (See http://www.
cs.ucl.ac.uk/research/equator/ for more information.)

References
1. F. Tecchia and Y. Chrysanthou, “Real-Time Rendering of

Densely Populated Urban Environments,” Proc. Rendering
Techniques 2000, Springer Computer Science, New York,
2000, pp. 83-88.

2. F. Tecchia et al., “Agent Behaviour Simulator (abs): A Plat-
form for Urban Behaviour Development,” Proc. Game Tech-
nology (GTEC 2001), CD-ROM, 2001.

3. C. Loscos, F. Tecchia, and Y. Chrysanthou, “Real-Time
Shadows for Animated Crowds in Virtual Cities,” Proc. ACM
Symp. Virtual Reality Software and Technology, ACM Press,
New York, 2002, pp. 85-92.

4. F. Tecchia, C. Loscos, and Y. Chrysanthou, “Real Time Ren-
dering of Populated Urban Environments,” ACM Siggraph
Technical Sketch, ACM Press, New York, Aug. 2001.

Franco Tecchia is a research fel-
low at the University College London,
working on real-time rendering of
populated complex environments.
His research interests include real-
time computer graphics, virtual and
augmented reality, and software

engineering. He received his DrEng degree in computer
engineering from the University of Pisa.

Céline Loscos is a lecturer at the
University College of London. Her
research interests include inverse illu-
mination and realistic illumination
for complex environments. She par-
ticipates in European Union and
other funded projects for real-time

rendering for mixed interfaces, such as real-world data or
haptics. She received an MSc and a PhD in computer sci-
ence from the Université Joseph Fourier in Grenoble,
France. She is an ACM and Eurographics member.

Yiorgos Chrysanthou is an
assistant professor at the University
of Cyprus. His research interests are
in computer graphics, virtual reali-
ty, and computational geometry. He
received a BSc in computer science
and statistics and a PhD in comput-

er graphics from Queen Mary and Westfield College. He is
an IEEE, ACM, and Eurographics member. He also coau-
thored the book Computer Graphics and Virtual Envi-
ronments: From Realism to Real Time (Addison Wesley,
2001).

Readers may contact Franco Tecchia at the Dept. of Com-
puter Science, Univ. College London, Gower St., WC1E 6BT,
London, UK, email f.tecchia@cs.ucl.ac.uk.

For further information on this or any other computing
topic, please visit our Digital Library at http://computer.
org/publications/dlib.

IEEE Computer Graphics and Applications 43

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 13:03 from IEEE Xplore. Restrictions apply.

