

1

Optical printed circuit board and connector technology

Dr David R. Selviah

Department of Electronic and Electrical Engineering, University College London, UCL, UK,

d.selviah@ee.ucl.ac.uk

And

Richard C. A. Pitwon

Xyratex Technology Ltd

Havant, UK

rpitwon@xyratex.com

IEC SC25 WG3 Presentation Madrid 27th February 2012 © UCL 2012

Outline

- Electronic versus Optical interconnects
- The OPCB project
- OPCB University Research Overview
 - Heriot Watt
 - Loughborough
 - UCL
- System Demonstrator

Copper Tracks versus Optical Waveguides for High Bit Rate Interconnects

- Copper Track
 - EMI Crosstalk
 - Loss
 - Impedance control to minimize back reflections, additional equalisation, costly board material
- Optical Waveguides
 - Low loss
 - Low cost
 - Low power consumption
 - Low crosstalk
 - Low clock skew
 - WDM gives higher aggregate bit rate
 - Cannot transmit electrical power

On-board Platform Applications

On-board Platform Applications

The Integrated Optical and Electronic Interconnect PCB Manufacturing (OPCB) project

- Hybrid Optical and Electronic PCB Manufacturing Techniques
- 8 Industrial and 3 University Partners led by industry end user
- Multimode waveguides at 10 Gb/s on a 19 inch PCB
- Project funded by UK Engineering and Physical Sciences Research Council (EPSRC) via the Innovative Electronics Manufacturing Research Centre (IeMRC) as a Flagship Project

• 3 year, £1.6 million project

Integration of Optics and Electronics

- Backplanes
 - Butt connection of "plug-in" daughter cards
 - In-plane interconnection
- Focus of OPCB project

- Out-of-plane connection
 - □ 45° mirrors
 - Chip to chip connection possible

HERIC **Direct Laser-writing Setup: Schematic** 60 µm square aperture. Polarisation Beamsplitter Shutter Half-wave plate 1: APPLY POLYMER TO SUBSTRATE Lens He-Cd Laser SUBSTRATE 325 nm, TEM00 2: LASER WRITE STRUCTURES **BASEPL** Motion

 Slotted baseplate mounted vertically over translation, rotation & vertical stages; components held in place with magnets

Translation stages

Sample / substrate

 By using two opposing 45° beams we minimise the amount of substrate rotation needed

Controller

Computer

3: DEVELOP POLYMER

HERIOT

WATT

OPCB ESTC Conf, Greenwich, Sep 2008 - © ACW

Writing sharply defined features – flat-top, rectangular laser spot

HERIC

Laser written polymer structures

SEM images of polymer structures written using imaged 50 µm square aperture (chrome on glass)

- Writing speed: ~75 µm / s
- Optical power: ~100 μW
- Flat-top intensity profile
- Oil immersion
- Single pass

Optical microscope image

45° surfaces

showing end on view of the

Waveguide terminated with 45-deg mirror

Out-of-plane coupling, using 45-deg mirror (silver)

Microscope image looking down on mirror coupling light towards camera

OPTICAL INPUT

HERIC

Results with a Gaussian spot profile (2)

Laser-writing Parameters:

- Profile: Gaussian, 1 mm $1/e^2$ TEM₀₀ beam with 40 mm EFL lens
- Optical power available: ~9 mW
- Cores written in air
- Variable writing speed

Approximate height of waveguide cores: 45 - 50 µm Approximate width (µm)

-Writing speed (mm/s)

(Waveguide cores on a 125 µm pitch)

HERI

Results with an imaged circular aperture

Laser-writing Parameters:

- Profile: imaged aperture, 100 µm diameter, illuminated by Gaussian truncated at ~50% peak, 0.5 magnification onto writing plane
- Optical power available for writing: ~2 mW
- Cores written in air, on a 125 µm pitch

End-on view of back-illuminated guides

OPCB ESTC Conf, Greenwich, Sep 2008 - © ACW

Large Board Processing: Writing

- Stationary "writing head" with board moved using Aerotech sub-µm precision stages
- Waveguide trajectories produced using CAD program

- 600 x 300 mm travel
- Requires a minimum of
 700 x 1000 mm space
 on optical bench
- Height: ~250 mm
- Mass:
 - 300 mm: 21 kg
 - 600 mm: 33 kg
 - Vacuum tabletop

Test Structures

Spirals:

x5, 250 μm pitch 700 mm long **Curves:** x10, 250 μm pitch 170 mm long **Straights:** x20, 125 μm pitch 100 mm long

OPCB ESTC Conf, Greenwich, Sep 2008 - © ACW

Large area writing: Spiral Test Structure

- 100
 10
 120
 130
 140
 150
 160
- The guides shown include two parallel spirals plus a number of "straight through" waveguides
- Each spiral has a total path length of ~650 mm
- Minimum bend radius is 16 mm (input/output regions & spiral reversal). Large radius is ~ 32 mmmmm
- Spiral cores are on a 250 µm pitch, straight waveguides are on a 125 µm pitch

Laser Ablation of Optical Waveguides

- Research
 - Straight waveguides
 - 2D & 3D integrated mirrors
- Approach
 - Excimer laser Loughborough
 - CO₂ laser Loughborough
 - UV Nd:YAG Stevenage Circuits Ltd
- Optical polymer
 - Truemode® Exxelis
 - Polysiloxane Dow Corning

Schematic diagram (side view) showing stages in the fabrication of optical waveguides by laser ablation

Machining of Optical Polymer with CO₂ Laser

System

- 10 Watt(max.) power CW beam
- Wavelength = 10.6 µm (infrared)
- Process
 - Thermally-dominated ablation process

Machining quality

- Curved profile
- Waveguide fabrication underway

Machined trench

Side view of machined trench

Waveguides (side view)

UV Nd:YAG machining in collaboration with Stevenage Circuits Ltd

- Waveguide of 71 µm x 79 µm fabricated using
- Waveguide detected using back lighting

Side view

EHT = 5.00 k Signal A = SE2 20µm Mag = 707 X Plan view

355 nm (UV) Pulsed laser with 60 ns pulse width and Gaussian beam (TEM₀₀) or "Tophat" profile at Stevenage Circuits Ltd.

Process

System

- Photochemically-dominated ablation process.
- Waveguide quality
 - Minimum Heat Affected Zone
 - Propagation loss measurement underway

Machining of Optical Polymer with Excimer Laser

- Straight structures machined in an optical polymer.
- Future work to investigate preparation of mirrors for in and out of plane bends.

Machined trenches

Waveguide structure

Inkjetting as a Route to Waveguide Deposition

Challenges of Inkjet Deposition

- Viscosity tailored to inkjet head via addition of solvent
- "Coffee stain" effects

Contact Angles

Core material on cladding

Large wetting - broad inkjetted lines

Loughborough University

Core material on modified glass surface (hydrophobic)

Reduced wetting – discrete droplets

Identical inkjetting conditions - spreading inhibited on modified surface

Towards Stable Structures

Stable line structures with periodic features

Cross section of inkjetted core material surrounded by cladding (width 80 microns)

A balance between wettability, line stability and adhesion

Waveguide components and measurements

- Straight waveguides 480 mm x 70 µm x 70 µm
- Bends with a range of radii
- Crossings
- Spiral waveguides
- Tapered waveguides
- Bent tapered waveguides
- Loss
- Crosstalk
- Misalignment tolerance
- Surface Roughness
- Bit Error Rate, Eye Diagram

Optical Power Loss in 90° Waveguide Bends

Schematic diagram of one set of curved waveguides.

Light through a bent waveguide of R = 5.5 mm - 34.5 mm

- Radius *R*, varied between 5.5 mm < R < 35 mm, ΔR = 1 mm
- Light lost due to scattering, transition loss, bend loss, reflection and backscattering
- Illuminated by a MM fiber with a red-laser.

BPM, beam propagation method modeling of optical field in bend segments

Differences in misalignment tolerance and loss as a function of taper ratio

- Graph plots the differences between a tapered bend and a bend
- There is a trade off between insertion loss and misalignment tolerance
 Copyright © 2009 UCL

Crosstalk in Chirped Width Waveguide Array

100 μm 110 μm 120 μm 130 μm 140 μm 150 μm

- Light launched from VCSEL imaged via a GRIN lens into 50 µm x 150 µm waveguide
- Photolithographically fabricated chirped with waveguide array
- Photomosaic with increased camera gain towards left

Surface roughness

RMS side wall roughness: 9 nm to 74 nm

 RMS polished end surface roughness: 26 nm to 192 nm.

UCL

Design rules for waveguide width depending on insertion loss and cross-talk

Bit error rate for laterally misaligned 1550 nm 2.5 Gb/s DFB laser

Contour map of VCSEL and PD misalignment

- (a) Contour map of relative insertion loss compared to the maximum coupling position for VCSEL misalignment at z = 0.
- (b) Same for PD misalignment at z = 0. Resolution step was $\Delta x = \Delta y = 1 \ \mu m$.
- Dashed rectangle is the expected relative insertion loss according to the calculated misalignments along *x* and *y*.
- The minimum insertion loss was 4.4 dB, corresponded to x = 0, y = 0, z = 0

Coupling Loss for VCSEL and PD for misalignments along optic axis

UCL

Fabrication Techniques and Waveguides Samples

Straight waveguides – Optical InterLinks

90° Crossings – Heriot Watt University

90° Crossings – Dow Corning

Photolithographic Fabrication of Waveguides

Copyright © 2009 UCL

Optical Loss Measurement

VCSEL Array for Crosstalk Measurement

Copyright © 2009 UCL

- 70 μm × 70 μm waveguide cross sections and 10 cm long
- In the cladding power drops linearly at a rate of 0.011 dB/ μm
- Crosstalk reduced to -30 dB for waveguides 1 mm apart

Schematic Diagram Of Waveguide Crossings at 90° and at an Arbitrary Angle, θ

Design Rules for Arbitrary Angle Crossings

- Loss of 0.023 dB per 90° crossing consistent with other reports
- The output power dropped by 0.5% at each 90° crossing
- The loss per crossing (L_c) depends on crossing angle (θ), $L_c=1.0779 \cdot \theta^{-0.8727}$

Loss of Waveguide Bends

Width (µm)	Optimum Radius (mm)	Maximum Power (dB)
50	13.5	-0.74
75	15.3	-0.91
100	17.7	-1.18

System Demonstrator

Fully connected waveguide layout using design rules

Copyright © 2009 UCL

Power Budget

Input power (dBm/mW)	-2.07 / 0.62						
	Bend 90°						
Radii (mm)	15.000	15.250	15.500	15.72	25	16.000	16.250
Loss per bend (dB)	0.94	0.91	0.94	0.9	4	0.95	0.95
	Crossings						
Crossing angles (°)	22.27	29.4	5 36	6.23	4	2.10	47.36
Loss per crossing (dB)	0.078 0.056		6 0.	0.047).041	0.037
Min. detectable power (dBm)	-15 / 0.03						
Min. power no bit error rate	-12 / 0.06						

Demonstrator Dummy Board

Copyright © 2009 UCL

The Shortest Waveguide Illuminated by Red Laser

Copyright © 2009 UCL

Waveguide with 2 Crossings Connected 1st to 3rd Linecard Interconnect

Output Facet of the Waveguide Interconnection

Copyright © 2009 UCL

Data storage protocol and form factor trends

Hard Disk Drive Sizes Decreasing

Data Storage Interconnect Speeds Increasing

	12Gb/s SAS			
6Gb/s SAS				
3Gb/s SAS				

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Source: SCSI Trade Association Sep 08

www.scsita.org

Optical Printed Circuit Board and Connector Technology

Copyright © Xyratex Technology Limited 2010

Design and performance constraints

Embedded copper and optical architectures

Electro-Optical Midplane

Polymer optical waveguide layer

Active optical midplane connector

Parallel optical transceiver

- Mechanically flexible optical platform
- □ MT compatible optical interface
- Geometric microlens array
- Quad VCSEL driver and TIA/LA
- □ VCSEL / PIN arrays on pre-aligned frame

vratex

Optical Printed Circuit Board and Connector Technology

Copyright © Xyratex Technology Limited 2010

Active pluggable connector

Parallel optical transceiver

Connector module

Spring loaded platform

Microcontroller

nector Technology Copyright © Xyr

Optical Printed Circuit Board and Connector Technology

Connector engagement mechanism

xvratex

Dual lens coupling interface

Free space coupling

- □ Optimised for loss minimisation
- □ Maximum beam expansion

Dual lens coupling solution

- □ Beam expansion at coupling interface
- □ Reduces susceptibility to contamination

xvratex

Peripheral test cards

Optical Printed Circuit Board and Connector Technology

Copyright © Xyratex Technology Limited 2010

Demonstration platform

High speed data transmission measurements

Optical Printed Circuit Board and Connector Technology

xyratex.

High speed data transmission measurements

Test data captured on 8 waveguides

- Data rate: 10.3 Gb/s
- □ Typical Pk to Pk jitter: 26 ps

BERT on waveguides

- Measured by UCL and Xyratex on all waveguides
- □ BER less than 10⁻¹² measured

Acknowledgments

- University College London, UK
 - Kai Wang, Hadi Baghsiahi, F. Aníbal Fernández, Ioannis Papakonstantinou
- Loughborough University, UK
 - David A. Hutt, Paul P. Conway, John Chappell, Shefiu S. Zakariyah
- Heriot Watt University
 - Andy C. Walker, Aongus McCarthy, Himanshu Suyal
- Xyratex Technology Ltd., UK
 - Dave Milward, Ken Hopkins, Malcolm Muggeridge
- BAE Systems, UK
 - Henry White
- Stevenage Circuits Ltd. (SCL), UK
 - Dougal Stewart, Jonathan Calver, Jeremy Rygate, Steve Payne, Witold Kandulski
- Exxelis Ltd
 - Navin Suyal, Habib Rehman
- Dow Corning
 - Dave DeShazer, Jon DeGroot
- Cadence
 - Gary Hinde, Martin Cole
- National Physical Laboratory, NPL
 - David Ives, Robert Fergusson
- EPSRC, IeMRC and all partner companies for funding + IBM Zurich for fabrication