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Abstract

In most transmissible spongiform encephalopathies prions accumulate in the lymphoreticular system (LRS) long before they
are detectable in the central nervous system. While a considerable body of evidence showed that B lymphocytes and
follicular dendritic cells play a major role in prion colonization of lymphoid organs, the contribution of various other cell
types, including antigen-presenting cells, to the accumulation and the spread of prions in the LRS are not well understood.
A comprehensive study to compare prion titers of candidate cell types has not been performed to date, mainly due to
limitations in the scope of animal bioassays where prohibitively large numbers of mice would be required to obtain
sufficiently accurate data. By taking advantage of quantitative in vitro prion determination and magnetic-activated cell
sorting, we studied the kinetics of prion accumulation in various splenic cell types at early stages of prion infection. Robust
estimates for infectious titers were obtained by statistical modelling using a generalized linear model. Whilst prions were
detectable in B and T lymphocytes and in antigen-presenting cells like dendritic cells and macrophages, highest infectious
titers were determined in two cell types that have previously not been associated with prion pathogenesis, plasmacytoid
dendritic (pDC) and natural killer (NK) cells. At 30 days after infection, NK cells were more than twice, and pDCs about seven-
fold, as infectious as lymphocytes respectively. This result was unexpected since, in accordance to previous reports prion
protein, an obligate requirement for prion replication, was undetectable in pDCs. This underscores the importance of prion
sequestration and dissemination by antigen-presenting cells which are among the first cells of the immune system to
encounter pathogens. We furthermore report the first evidence for a release of prions from lymphocytes and DCs of scrapie-
infected mice ex vivo, a process that is associated with a release of exosome-like membrane vesicles.
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Introduction

Transmissible spongiform encephalopathies (TSE) or prion

diseases are infectious and fatal degenerative disorders of the

central nervous system including Creutzfeldt-Jakob disease (CJD)

in humans, bovine spongiform encephalopathy (BSE) in cattle and

scrapie in sheep and goats [1]. Prions, the infectious TSE agents,

are thought to consist of abnormal forms of host-encoded cellular

prion protein (PrPc) and to replicate in a self-perpetuating manner

by recruitment of PrPc [2,3]. The disease-associated b-sheet rich

conformer of PrPc, PrPSc, is partially resistant to protease digestion

and is argued to represent the infectious TSE agent [3]. More

recently, protease-sensitive conformers of PrPSc have been

identified that showed marked strain- and protease-dependent

differences in their sensitivity to proteolysis [4–8].

In most TSEs, prions accumulate in the LRS long before they

reach the brain. While prion accumulation in the LRS is not

accompanied by any reported adverse effects, propagation of

prions in the central nervous system inevitably leads to a rapid and

progressive degeneration. Seminal work in the past two decades

helped to identify critical cell types involved in prion colonization

of the LRS [9–14]. Mobile hematopoietic as well as resident

stromal cells play a crucial role in the pathogenesis of prion

diseases [9,15–17]. The adoptive transfer of bone marrow from

wild type mice into PrP0/0 mice reconstituted the competence of

the spleen to accumulate prions [18,19]. However, scrapie

histopathology in Prnp+/+ neurografts was not observed under

these conditions, implying that prion neuroinvasion is mediated by

cells that cannot be reconstituted by bone marrow transfer [18].

There is good evidence that neuronal cells from the parasympa-

thetic and sympathetic nervous system form a physical link

between the LRS and the central nervous system [9,10,20]. The

use of immuno-deficient mice greatly contributed to our

understanding of peripheral prion colonization. The absence of

clinical disease in B-cell deficient mice after intraperitoneal

inoculation with prions was thought to indicate a direct role of

B cells during neuroinvasion [11]. However, clear evidence

suggests that the maintenance and differentiation of follicular

dendritic cells (FDC) and other stromal cells by B cell-dependent

lymphotoxin b receptor (LTbR) signalling may best explain the

role of B cells during prion colonization in the LRS and during

neuroinvasion [12–14,21,22]. Whilst FDCs were previously
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considered the prime candidate for the site of prion replication in

the LRS, observations of an unimpeded neuroinvasion in absence

of FDCs in mice deficient in TNFa signalling [22] suggested that

other stromal cells may also be prion-replication-competent. A

recently identified stromal cell type in granulomas, presumably

mesenchymal or fibroblastic reticular cells, that are dependent on

LTbR signalling has been shown to promote prion replication in

absence of FDCs [23].

Due to their pivotal role in immune defence against pathogens

and their migratory properties, antigen-presenting cells like

dendritic cells (DCs) and macrophages are likely candidates for

the dissemination of prions. DCs were suggested as mobile carriers

for prions from the gut to the LRS after intra-intestinal injection of

scrapie-associated fibrils [24]. Rag-12/2 mice injected intrave-

nously with infected DCs succumbed to scrapie [25], demonstrat-

ing that, at least under these experimental conditions, DCs can

transmit disease from the periphery to the CNS without prion

accumulation in the LRS. Prion infectivity was also found to be

associated with macrophages. Early fractionation experiments of

splenic cell types based on differences in their buoyant densities

identified prions in a macrophage-rich fraction, but an enrichment

of this fraction failed to enhance infectivity [26]. Immuno-electron

microscopic studies identified PrP deposits associated with tingible

body macrophages [27]. The temporal depletion of macrophages

in vivo led to increased PrPSc levels in the spleen [28] or Peyer’s

patches [29], suggesting a role of macrophages in the clearance of

infectivity. After oral infection, prions were detected in Peyer’s

patches of the gut-associated lymphoid tissue in different animal

species [30–33]. The transport of prions across the intestinal

epithelium is believed to be mediated by intestinal membranous or

microfold cells (M cells) [34,35].

In contrast to our understanding of molecular factors that

promote prion replication in lymphatic organs, the contribution of

mobile cells of hematopoietic origin to prion dissemination in the

LRS is not well characterized. A comprehensive study to

determine the infectious state of candidate cell types during early

stages of pathogenesis has not been performed to date due to the

prohibitively large number of animals required. The recently

established quantitative in vitro infectivity assay, the Scrapie Cell

Assay (SCA) [36,37] now renders such experiments feasible. We

here established a procedure to isolate various splenic cell types,

including B and T lymphocytes, dendritic cells (DC), the DC

subtype plasmacytoid DCs (pDC), macrophages and natural killer

cells by magnetic-activated cell sorting (MACS) followed by the

determination of infectious titers by SCA. Our results characterize

the time-dependent accumulation of prions in splenic cell types of

129Sv6C57BL/6 mice during the first four weeks after inocula-

tion with mouse prions, a time interval that yielded maximal prion

titers in the spleen, and demonstrate that pDCs and NK cells, two

cell types that have previously not been associated with prion

dissemination, are highly infected.

A reliable determination of prion titers is fundamental to the

study of prion diseases where differences in titers may be critical to

assess the efficacy of therapeutic interventions. Where the size of

experimental groups in animal bioassays is limited by ethical and

economic considerations, in vitro determination of prion titers can

overcome these limitations and allow rapid accurate bioassay of

large numbers of samples [38]. The estimation of statistically

robust titers in this study was obtained by statistical modelling

using the generalized linear model [39] along with maximum

likelihood estimation.

Molecular events that lead to the dissemination and neuroinva-

sion of prions are unknown. In vitro, several routes for the

transmission of prions, like direct cell-to-cell contact [40], prion

transmission via membrane nanotubes [41,42] and the release of

prions via exosomes [43] have been suggested. Exosomes, small

membrane vesicles secreted by most hematopoietic cells are

present in vivo in germinal centres [44] and body fluids [45–51].

We here present the first evidence that MACS-isolated lympho-

cytes and DCs from prion-infected mice secrete prions into the cell

supernatant when cultured ex vivo, a process that was associated

with the secretion of exosome-like particles. We furthermore

present experimental evidence that prions are physically associated

with exosome-like particles.

Results

Isolation of splenic cell types by magnetic-activated cell
sorting

The recent establishment of the SCA, a highly sensitive in vitro

infectivity assay [36,52] enables us to examine the kinetics of prion

accumulation in splenic cell types at early stages of prion

pathogenesis in an unprecedented manner. We used MACS to

isolate splenic cell types from a mixed population of splenocytes

with purities from about 87% (pDC) to more than 95% (NK, B

and T cells) (Figure 1) and then determined infectious titers.

MACS isolation is an excellent tool for isolating rare cell types

from large pools of mixed cell populations at reasonable processing

times. For the isolation of DCs, for instance, 66108 splenocytes

were processed in about an hour with an average yield of 4%

(2.46107), as compared to hundred-fold lower rates using

fluorescence-activated cell sorting (FACS). Where a surface

marker for specific cell types was expressed at low levels, or on

more than one cell type, the isolation procedure was adapted

accordingly. Three DC subtypes can be distinguished by means of

their surface markers: CD11+ CD11b+ myeloid DCs (mDC),

CD11+ CD8a+ lymphoid DCs (lDC) and CD11low B220+

plasmacytoid DCs (pDC). Since pDCs express low levels of

CD11 which may compromise their quantitative isolation with

CD11 microbeads we used microbeads coated with monoclonal

antibodies (mAbs) against murine plasmacytoid dendritic cell

antigen-1 (mPDCA-1), a protein that is specifically expressed in

mouse pDCs [53]. Accordingly, panDCs were isolated with a 1:1

mixture of CD11c and mPDCA-1 microbeads. CD11b, a surface

Author Summary

Prions, rogue proteins that cause the fatal brain disease
CJD in humans and BSE in cattle are not only found in the
brain, but also in other tissues, particularly in lymphoid
organs, long before they are detectable in the central
nervous system. It is of great interest to better characterize
how prions colonize the periphery after an infection and
how they ultimately reach the brain, since such knowledge
could help to develop treatments. By taking advantage of
a technique called magnetic cell isolation we determined
the infectious state of various immune cells, isolated from
spleens of prion-infected mice. A high proportion of prions
was detected in cells of the innate immune system,
particularly in dendritic cells and natural killer cells. We
furthermore found that small amounts of prions are
released from infected cells, a finding which raises the
question whether prions could spread in a similar manner
to some viruses. These results suggest that prion-carrying
immune cells that reside in the periphery may pose a
major risk for the dissemination of prions, once they are
mobilized, for example by an activation of the immune
system.

Kinetics of Prion Accumulation
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marker for myeloid cells that is broadly utilized for the isolation of

macrophages is also expressed on CD11c+CD11b+ mDCs. To

avoid an enrichment of mDCs in the macrophage cell population

we isolated DCs prior to macrophages. However, despite the

depletion of DCs by positive selection with CD11c beads, the

macrophage fraction contained a substantial amount of CD11+

CD11b+ myeloid DC contaminants (Figure 1B). This prompted us

to use fluorescence-activated cell sorting to separate CD11b+

macrophages from myeloid DC contaminants (Figure 1C).

Quantification of prion titers using a generalized linear
model

The SCA is based on the detection of single PrPSc-positive cells

that are formed by de-novo prion propagation after infection with

prion-containing samples [36]. A more sensitive version of the

assay, the Scrapie cell assay at endpoint format (SCEPA) exploits

the observation that the sensitivity for prion detection can be

significantly improved by varying the cell splitting ratio [36,52].

Using SCEPA, infectious titers are determined at limiting dilutions

of prion-containing samples [54]. Whilst in animal bioassays prion

titers are commonly expressed as simple median lethal doses (LD50

units) and estimated by non-parametric analysis [55], the average

number of infectious units in the SCEPA, here termed tissue

culture infectious units (TCIU) can be estimated by assuming that

the number of PrPSc-positive cells at a given dilution follows a

Poisson distribution [54]. Inherent to limiting dilution assays,

however, the error variance may not be constant over the studied

range of dilutions (Figure 2) and thus may lead to inflated errors

when ordinary regression analysis is used. To address this problem

we here established a generalized linear model (GLM) [39] for the

estimation of infectious titers. GLMs overcome restrictions of

ordinary linear regression models which are limited to normally

distributed response variables with constant variance and unify a

wide range of probability distributions, including normal,

binomial, Poisson and gamma by the use of a common method

for computing maximum likelihood estimates (Text S1). The GLM

Figure 1. Isolation of splenic cell types by magnetic-activated cell sorting. A: Schematic representation for the isolation of specific splenic
cell types from mice. Splenocytes were released by repeated collagenase digestion from freshly dissected spleens, followed by removal of
erythrocytes and purification of splenocytes on Lympholyte M gradients. Splenic cell types are isolated by positive selection with magnetic beads
coated with cell type-specific mAbs as specified. B: The purities of MACS-isolated cells were analysed by FACS using cell-type specific mAbs and
isotype controls as specified in Materials and Methods. One representative out of three experiments is shown. (Bv) CD11low B220+ pDCs, isolated with
murine plasmacytoid dendritic antigen-1 (mPDCA-1) showed a purity of about 90% in three independent experiments. (Bvi) The macrophage
population, isolated with CD11b microbeads after depletion of CD11c+ cells was contaminated with CD11c+ CD11b+ mDCs. Macrophages were
therefore isolated by FACS instead (C). C: Splenocytes labelled with mAbs against anti-CD11b (M1/70) and anti-CD11c (HL3) were isolated by FACS
using a DAKO cell sorter.
doi:10.1371/journal.ppat.1002538.g001
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framework can be equally applied to estimate infectious titers from

animal bioassays, where repeated measurements are available.

We first examined whether the number of PrPSc-positive cells in

the SCEPA follows a Poisson distribution. At limiting dilutions of

infectivity the number of positive wells in nj independent infections

at the jth dilution follows a binomial distribution with parameters

nj and Pj where Pj is the proportion of positive wells. If the

number of prion-infected cells is assumed to have a Poisson

distribution then the proportion of negative wells 1{Pj

� �
is equal

to exp {mcj

� �
, where m is the mean number of infectious units

per volume and cj the dilution. A complementary log-log

transformation converts this equation to

log {log 1{Pjð Þð Þ~log mzlog cj ð1Þ

Thus if the number of scrapie-infected cells follows a Poisson

distribution then a complementary log-log transformation is linear

with a slope of one. To check this hypothesis we prepared multiple

dilution series of brain homogenate, infected susceptible cells and

determined the number of negative wells. RML brain homogenate

I6200 was serially diluted 1:3 from 1027 to 1029 and cell layers of

12 wells per dilution were infected using eight technical repeats per

dilution. An initial linear regression analysis resulted in an

estimated slope of 1.0660.20 (Figure S1), in agreement with the

assumption of an underlying Poisson distribution for the number

of infected cells. This prompted us to calculate infectious titers

using a GLM, for which a flexible iterative method for maximum

likelihood estimation is available [39]. Using the GLM approach

we can fit the proportions of positive wells with the regression

model

g Pj

� �
~azbxj ð2Þ

where g is a link function, here the complementary log-log

transformation, a the log mean infectious units, b the regression

slope and xj the log dose. An estimated value for b of 0.96060.096

is consistent with the hypothesis of an underlying Poisson

distribution for the number of infected cells and the model

provides a good fit to the data (Figure 2 and Table S1). GLM

regression yielded an estimated titer of 8.6360.03 logTCIU/g

brain for eight technical repeats of serially diluted RML I6200

brain homogenate.

Determination of the sensitivity of SCEPA
To determine the relative sensitivity of SCEPA against the

mouse bioassay we performed endpoint titrations with RML I6200

in parallel experiments. Titers from eight independent in vitro

assays were highly reproducible and yielded an estimated titer of

8.7160.04 logTCIU/g brain by GLM (Table 1). On mouse

bioassay, infectious titers were about half a log higher, albeit with a

higher variance.

In summary, the SCEPA outperforms the mouse bioassay in

terms of statistical robustness, low cost and speed, while the

somewhat lower sensitivity may be addressed by increasing the

number of technical repeats. Of note, N2a-derived cells are

permissive to prion strains RML and 22L only, but not to other

mouse-adapted prion strains like Me-7, 22A and 301C. Prion-

susceptible cell lines with a broader susceptibility for mouse-

adapted prion strains have been identified recently [52,56] and

can be used instead of N2a cells. It should be noted, though, that

the sensitivity of the SCEPA is cell-type dependent.

Validation of a cell homogenization method
The dispersion state of prion-infected homogenates is a critical

parameter where limiting dilutions are used to determine

infectious titers. An increase in dispersion of an infected

homogenate will result in an apparent increase of infectivity at

limiting dilutions. We therefore sought to establish a standardized

method for tissue and cell homogenization. Homogenization by

shear force with needles, a method broadly used to generate tissue

Figure 2. Regression analysis of SCEPA endpoint titration assay using GLM. For the estimation of prion titers by SCEPA, prion-susceptible
cells were infected with serially diluted RML I6200 brain homogenate and the proportions of scrapie-positive wells were analysed using a GLM with
binomial family and complementary log-log link. A: Observed and estimated proportions of scrapie-positive wells with 95% confidence intervals. B:
Linearized link-transformed proportions of scrapie-positive wells. Here the four zero values at dilution 1028 were replaced by 0.5 in order to plot the
observed loglog values. Data represent eight technical assay repeats of serially diluted RML I6200 brain homogenate.
doi:10.1371/journal.ppat.1002538.g002
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homogenates for prion titer determination failed to homogenize

splenocytes as indicated by a high percentage of Trypan blue-

negative viable cells. We therefore tested two alternative homog-

enization methods, sonication and ribolyzation, both of which lead

to complete cell homogenization. Infectious titers of B lymphocytes

and pDCs were determined using the mouse bioassay and SCEPA

in parallel experiments (Table 2). Infectious titers of B cells

determined by mouse bioassay at 30 dpi were in agreement with

previously published data [57]. No significant differences in

infectious titers were observed between the two homogenization

methods for both cell types using SCEPA and bioassay, respectively,

except for pDCs where ribolyzation resulted in significantly higher

prion titers as compared to sonication when assayed by SCEPA (see

Table 1). An assay-dependent difference in titers for SCEPA and

bioassay of about one log was determined, which accounts for the

lower sensitivity of the in vitro assay. Remarkably, infectious titers of

pDCs exceeded those of B lymphocytes by more than half a log,

irrespective of the assay and homogenization method used. For all

subsequent experiments ribolyzation was used as a standard

homogenization method to exclude the risk of cross-contamination

during sonication of prion-infected samples.

Prion accumulation in the lymphoreticular system at
early stages of prion disease

To assess the rate of prion accumulation in the lymphoreticular

system at early stages of disease we first determined prion titers in

spleen tissue and mesenteric lymph nodes after intraperitoneal

inoculation of 129 Sv6C57BL/6 mice and Prnp0/0 mice with 1%

(w/v) RML I6200. Prion titers of more than 5 log TCIU/g spleen

tissue were determined at stages as early as 3 dpi (Figure 3A). In

contrast, in Prnp0/0 mice, prion titers which are due to residual

inoculum [58] were about a thousand-fold lower at the same

incubation time, suggesting an exceptional rate of prion replication

in wild-type mice and/or differences in the efficiency of trapping

prions. Prion titers in mesenteric lymph nodes were significantly

lower as compared to spleen titers in accordance to previous reports

[59]. At 30 dpi infectious titers in spleens and mesenteric lymph

nodes reached 6.6360.07 log TCIU/g tissue and 6.1560.10 log

TCIU/g tissue, respectively. Given the somewhat lower sensitivity

of SCEPA splenic prion titers are in agreement with previously

published bioassay data using the same mouse strain, infectious dose

and inoculation route (,7 ic LD50 units/g spleen) [60].

To test whether the fast splenic prion accumulation at early

stages of disease is in accord with the detection of abnormal PrP

deposits in lymphoid follicles we examined PrP accumulation by

PrP immunohistochemistry at 3, 7, 14 and 30 dpi (Figure 3C and

Table S2). Deposits of abnormal PrP were detected at low intensity

and frequency in follicles at 3 dpi, and both, the number of

positive follicles and the PrP intensity increased significantly over

the course of the incubation (Fig. 3 and Table S2). At 30 dpi 90%

of follicles were PrPSc-positive (Table S2). Abnormal PrP could not

be detected in lymphoid follicles of Prnp2/2 mice at 3 dpi and

7 dpi (data not shown). Furthermore, PrPSc could not be detected

by Western blotting in spleen tissue prior to 14 dpi (Figure 3B).

The kinetics of prion accumulation in splenic cell types
We next determined infectious titers of MACS-isolated cells in a

time-dependent manner to assess the propensity of distinct splenic

Table 1. Sensitivity for prion detection of SCEPA and mouse bioassay.

RML input
[LD50 units] SCEPA* Tga20 mouse bioassay 1 Tga20 mouse bioassay 2

PrPSc-positive/total wells sick/total Inc. time, days ± SD sick/total Inc. time, days ± SD

66103 ND 5/5 75.861.2 ND ND

66102 ND 5/5 83.263.6 5/5 86.262.8

66101 24/24 6/6 106.566.4 5/5 112.665.9

66100 15/24 3/4 110.364.0 3/5 122.366.3

661021 2/24 1/5 116 1/5 104

661022 0/24 2/6 159.561.0 1/6 136

661023 ND 0/6 .200 0/6 .200

Infectious titers Log TCIU/g 6 SE Log LD50/g 6 SE Log LD50/g 6 SE

Spearman-Karber{ 8.7060.19 9.3160.42 8.9960.41

GLM$ 8.7160.04 9.0260.23{

*The ratio between PrPSc-positive and total wells is shown for one representative out of eight independent experiments.
{Infectious titers were calculated with the Spearman-Karber formula [55] and expressed as tissue culture infectious units (TCIU)/g brain for SCEPA and LD50 units/g brain
for mouse bioassay, respectively.

$Infectious titers were calculated using a GLM with binomial family complementary log-log link and expressed as mean log TCIU/g brain 6 SE of 8 independent
experiments for SCEPA and mean log LD50 units/g 6 SE for two independent bioassays.

{Infectious titers were estimated for the combined two bioassays using a GLM regression with complementary log-log link function and expressed as log LD50 units/g
brain.

The sensitivity for prion detection of SCEPA and mouse bioassay was determined by endpoint titration using RML mouse brain homogenate I6200. Aliquots of I6200
(10% (w/v), 9.3 log LD50 units/g brain [7]) were serially diluted 1:10 into uninfected CD1 brain homogenate (10% w/v) in a range between 1024 and 10210. For mouse
bioassay, groups of six Tga20 mice were inoculated intracerebrally with 30 ml of 1% (w/v) RML homogenates and attack rates and scrapie incubation times (Inc. time)
were determined. In parallel experiments brain homogenates were diluted 1:1000 into OFCS and cell layers of highly prion susceptible N2aPK1-2 cells were infected with
300 ml aliquots. The input of prion infectivity for bioassay and SCEPA is expressed as mouse ic LD50 units. A 1027 dilution of I6200 corresponds to 200 LD50 units/ml or 6
LD50 units per 30 ml inoculum for the mouse bioassay and 60 LD50 units per 300 ml per well for SCEPA, respectively. Infectious titers for SCEPA, expressed as TCIU/g brain
represent mean values 6 SE of 8 independent experiments. For mouse bioassay, two independent experiments are shown and titers are expressed as LD50/g brain 6

SE.
doi:10.1371/journal.ppat.1002538.t001

Kinetics of Prion Accumulation
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Table 2. Infectious titers of MACS-isolated cells after homogenization by sonication and ribolyzation.

(A) SONICATION

Cell number SCEPA Mouse bioassay

Cell Types equivalents{ PrPSc-positive/total wells Attack rate Incub. time (d) ± SD

pDC 66103 12/12 5/5 8961

66102 5/12 5/5 11769

66101 1/12 2/6 131617

66100 0/12 0/6 .200

control# 66103 0/12 0/6 .200

Infectious titers Log TCIU/106 cells 6 SE Log LD50/106 cells 6 SE

Spearman-Karber{ 3.2160.08 4.0660.25

GLM$ 3.1360.04 -

B cells 66104 12/12 5/5 9264

66103 8/12 6/6 9962

66102 2/12 5/6 12467

66101 0/12 1/6 171

control# 66104 0/12 0/4 .200

Infectious titers Log TCIU/106 cells 6 SE Log LD50/106 cells 6 SE

Spearman-Karber{ 2.6160.19 3.7260.30

GLM$ 2.5360.03 -

(B) RIBOLYZATION

Cell number SCEPA Mouse bioassay

Cell Types equivalents{ PrPSc-positive/total wells Attack rate Incub. time (d) ± SD

pDC 66103 12/12 4/4 8561

66102 6/12 5/6 10565

66101 1/12 4/6 10868

66100 0/12 0/6 .200

control# 66103 0/12 0/4 .200

Infectious titers Log TCIU/106 cells 6 SE Log LD50/106 cells 6 SE

Spearman-Karber{ 3.3160.15 4.2260.33

GLM$ 3.2460.04 (p,0.05)* -

B cells 66104 12/12 6/6 8863

66103 9/12 5/5 10065

66102 2/12 5/5 107612

66101 0/12 1/5 174

control# 66104 0/12 0/3 .200

Infectious titers Log TCIU/106 cells 6 SE Log LD50/106 cells 6 SE

Spearman-Karber{ 2.7060.15 3.9260.29

GLM$ 2.5360.03 -

{Inputs of infectious cell homogenates are expressed as cell number equivalents. Aliquots of 30 ml were inoculated i.c. into groups of six Tga20 mice for mouse bioassay
and 300 ml aliquots were layered onto prion-susceptible cells per well for SCEPA, respectively.
{Infectious titers were calculated according to the Spearman-Karber method [55] and are expressed as log LD50/g 6 SE for bioassay and log TCIU/g 6 SE for SCEPA.
$Infectious titers were calculated using a GLM with binomial family complementary log-log link and expressed as mean log TCIU/g 6 SE of two independent
experiments with six technical repeats each.

#Controls represent MACS-isolated pDCs and B lymphocytes from spleens 129/Sv6C57BL/6 mice inoculated with 1% (w/v) uninfected CD1 brain homogenates and
sacrificed at 30 dpi.

*Level of significance for maximum likelihood estimates (GLM) between infectious titers of ribolyzed versus sonicated pDCs as determined by SCEPA.
Four 129/Sv6C57BL/6 mice were inoculated i.p. with 100 ml of 1% (w/v) RML and 1% (w/v) uninfected CD1 brain homogenate (control), respectively. At 30 d.p.i spleens were
dissected and pDCs and B cells isolated by MACS according to Figure 1. Aliquots of 16107 cells/ml OFCS, supplemented with protease inhibitors were homogenized by
sonication (A) or ribolyzation (B) according to Materials and Methods. To determine infectious titers the cell homogenates were serially diluted 1:10 and inoculated intracerebrally
into Tga20 mice or transferred onto layers of susceptible PK1-2 cells in parallel experiments. Infectious titers were determined by non-parametric statistical analysis for bioassay
(Spearman and Karber) and GLM for SCEPA and expressed as log LD50 units/106 cells and log TCIU/106 cells, respectively. A 1022 dilution of cell homogenates corresponds to
26105 cell equivalents/ml or 66103 cell equivalents per 30 ml inoculum for mouse bioassay and 66104 cell equivalents per 300 ml per well for SCEPA, respectively. Infectious
titers represent log mean values 6 SE of six independent experiments for SCEPA and log mean values 6 SE of a single experiment for mouse bioassay.
doi:10.1371/journal.ppat.1002538.t002
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cell types to accumulate prions. Whilst prions were detectable in

all cell types, including B and T lymphocytes, DCs, NKT cells and

macrophages, highest infectious titers were determined in two cell

types that have previously not been associated with prion

pathogenesis: pDCs and NK cells (Table 3). At 30 dpi mean

infectious titers of NK cells were more than two-fold higher than

those of lymphocytes, whereas titers of pDC exceeded those of

lymphocytes by a factor of seven. Prion titers were significantly

higher in pan-DCs as compared to those of lymphocytes (Table 3),

in agreement with previous studies [25]. Data were replotted for

30 dpi values in Figure S2. A relative increase of infectious titers

for all cell types by 30–50% from 3 dpi to 30 dpi correlated with

an increase of splenic prion titers during the same time interval

(Figure 3). We next investigated whether infectious inoculum was

detectable in splenic cell types of Prnp0/0 mice, i.e. in absence of

prion replication (Table S3). At 3 dpi, infectious titers of

macrophages (0.4760.17 TCIU/106 cells) and pan DCs

(0.2360.09 TCIU/106 cells) were about five to ten times higher

than those of lymphocytes (0.0660.06 TCIU/106 cells), indicating

that infectivity was primarily associated with antigen-presenting

cells.

The high prion titers in pDCs (Table 3) raise the question

whether pDCs replicate prions. Of note, the presence of PrPc, a

pre-requisite for prion replication was reportedly undetectable in

pDCs [61,62]. To exclude mouse strain-dependent differences in

PrPc expression levels we labeled MACS-isolated pDCs from

uninoculated 129 Sv6C57BL/6 mice with mAb ICSM18 against

PrPc (Figure S3). In agreement with previous reports [61] PrPc

expression in pDCs was undetectable, thus rendering pDCs

unlikely candidate cells for prion replication.

Prions have been detected at extremely low titers in blood of

rodents at presymptomatic and symptomatic stages and were

associated with buffy coat and plasma fractions [63–68]. In a

previous report, infectivity was not detected in peripheral blood

leukocytes in 129Sv6C57BL/6 mice at early stages of disease

regardless of relatively high titers in B and T lymphocytes of the

spleen [57]. In marked contrast to lymphocytes, DCs have a

Figure 3. High splenic prion titers at early stages after prion infection. Groups of four 129/Sv6C57BL/6 and Prnp0/0 mice were inoculated i.p.
with 100 ml 1% (w/v) RML I6200 (9.3 log LD50 units/g brain). At various time points after inoculation spleens and mesenteric lymph nodes were
dissected and prion titers and PrPSc levels determined. (A) Infectious titers of spleens (closed circles) and mesenteric lymph nodes (open circles) of
129/Sv6C57BL/6 mice. To account for residual inoculum infectious titers of spleens of RML-inoculated Prnp0/0 mice (closed square) were determined.
Prion titers were estimated by a GLM with binomial family complementary log-log link. Data represent mean infectious titers 6 SD of four repeats. (B)
Spleen homogenates were analyzed for levels of PK-resistant PrP (PrPSc) by Western blotting after NaPTA precipitation as described in Materials and
Methods. (C) Detection of PrPSc-positive deposits in spleens of prion-infected 129/Sv6C57BL/6 mice. At 3 dpi less than 5% of the total number of
follicles was weakly PrPSc-positive. An increase in the number of immunopositive follicles, but overall a weak immunostaining for abnormal PrP was
observed at 7 dpi. At 14 dpi, the number of positive follicles was similar, but the staining intensity increased to ‘moderate’ in two animals. At 30 dpi
90% of lymphoid follicles showed moderate or strong labeling. The scale bar corresponds to 100 mm (20 mm in the inserts).
doi:10.1371/journal.ppat.1002538.g003

Table 3. Time-dependent accumulation of prion infectivity in
isolated splenic cell types.

Infectious titers (TCIU/106 cells)

Cell types 3 dpi 7 dpi
14 dpi (95%
conf.int)#

30 dpi (95%
conf.int)#

Splenocytes 11 30 265664 (147, 480) 5446124 (311, 952)

DC 23 62614 265664 (147, 480) 677687 (518, 885)

pDC 41 106 370685 (211, 650) 17986298 (1252, 2579)

Myeloid cells{ 1 3769 127634 (67, 244) 472657 (365, 609)

Macrophages{ - - 243649 (345, 342)

B cells 9 2666 130635 (68, 249) 262628 (210, 328)

T cells 9 2562 135636 (71, 260) 208628 (156, 279)

NK(T) cells* - - 183 7216120 (491, 1059)

pDC (blood) - - - ,5

DC (blood) - - - ,5

PBC (blood) ,5

{Myeloid cells were isolated with CD11b magnetic beads after partial depletion
of DCs and contain CD11c2 CD11b+ macrophages and CD11c+ CD11b+ mDCs
(see Figure 1B).
{CD11b+ macrophages devoid of mDCs contaminants were isolated by FACS
(see Figure 1C).

#Infectious titers are represented as mean values 6 SE, and as lower and upper
limits of 95% confidence intervals (conf.int).

Groups of ten 129/Sv6C57BL/6 mice, inoculated i.p. with 100 ml aliquots of 1%
(w/v) RML brain homogenate I6200 were culled at various time points after
inoculation as specified above and splenocytes and splenic cell types were
serially isolated by MACS after Collagenase digestion and Lympholyte
purification according to Figure 1. Infectious titers were determined by SCEPA
using a GLM as specified above. Mean values 6 SE and 95% confidence
intervals for at least three independent experiments are shown at 14 and
30 dpi. Data from a single experiment are shown where no SE is reported. The
detection limit of the assay for splenic cell types was 0.15 TCIU/Mio, for MACS-
isolated cells from whole blood 5 TCIU/Mio.
doi:10.1371/journal.ppat.1002538.t003
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restricted capacity for recirculation, a propensity that may protect

the host by retaining a high density of peptide-MHC complexes

for improved antigen presentation [69]. Given the high infectious

titers of DCs we scrutinized the possibility of prion spread by

recirculation. To determine whether prion infectivity is associated

with pDCs in blood we isolated pDCs from EDTA-treated whole

blood. However, no infectivity was associated with pDCs,

lymphocytes and DCs from blood at 30 dpi under our

experimental conditions (Table 3, and Materials and Methods).

It has been broadly acknowledged that prions do not mount a

humoral immune response in the host [70–72]. However, a recent

study showed an abnormal germinal center reaction in the spleen

of scrapie-infected mice which was associated with increased

maturation and numbers of B lymphocytes and hypertrophy of

FDC dendrites at 70 dpi and endstage [73]. A further report

showed variations in the number of CD21+ B cells in lymph nodes

of prion-infected sheep [74]. We therefore examined whether B

cells or DCs from 129Sv6C57BL/6 mice were activated at

preclinical stages. However, the proportions of marginal zone B

cells (CD21hi CD232) and follicular B cells (CD21int CD23hi) in

scrapie-infected versus age-matched mock-infected mice were

unchanged at 80 and 100 dpi and no activation of DCs was

evident at preclinical stages of disease (Figures S4 and S5).

Ex-vivo release of prions from scrapie-infected splenic
cells

The molecular underpinnings of prion dissemination in vivo are

unknown. Several routes for the horizontal transmission of prions

have been suggested, including direct cell-to-cell contact [40], the

release of prions via exosomes [43,75,76], and prion transmission

via membrane nanotubes [41,42]. The in vivo relevance of these

processes has not been demonstrated and poses major experimen-

tal challenges. Exosomes are small vesicles of endosomal origin

that were detected on the surface of FDCs in vivo [44]. Since

hematopoietic cells like reticulocytes, mast cells, B and T

lymphocytes, DCs and macrophages release exosomes [77–81],

we investigated whether prions are released from scrapie-infected

splenic cells ex vivo. Freshly isolated B and T lymphocytes and DCs

from scrapie-infected mice were cultured for 38 h and culture

supernatants were sequentially centrifuged according to exosome

isolation protocols [82–84] (see Material and Methods). After

ultracentrifugation, pellets were resuspended in medium and prion

infectivity was determined by SCEPA. As evident from prelimi-

nary experiments, splenic cells, particularly B and T lymphocytes,

showed a limited viability ex vivo which may bias the determination

of prion secretion where prions are released by passive leakage

from necrotic cells. To account for the contribution of passive

leakage of prions from dead cells we cultured isolated cells at

atmospheric CO2 at 37uC in parallel experiments, a treatment

that led to rapid necrosis of B and T lymphocytes (Table 4). Where

exposure of cells to atmospheric CO2 did not suffice to trigger

rapid necrosis as in the case of DCs, we added low concentration

of Triton X-100 (0.01% final) to the culture medium to

permeabilize cells. A more than 30-fold increase of infectivity

was detected in supernatants of B lymphocytes and DCs under

basal conditions as compared to passive release controls,

demonstrating that prions are released from scrapie-infected cells

(Table 4). Supplementation of medium with IL-4, a treatment that

leads to activation of lymphocytes improved the viability of B cells

with a moderate increase in prion titers of supernatants.

Incubations of isolated B lymphocytes with bacterial lipopolysac-

charide (LPS) which differentiates B cells into plasmablasts lead to

a significant decrease of prion release. This may indicate that the

pool of secretable prions is reduced by an increased proteolytic

activity of DCs under these conditions [85]. The titers of released

prions constitute about 1–3% of the cellular infectivity of B

lymphocytes and DCs. Similar data have been reported for the in

vitro release of PrPSc from cell lines [86]. To examine whether

prion secretion in B lymphocytes is associated with a release of

exosomes we pelleted cell culture supernatant from cells cultured in

basal medium or atmospheric CO2 by ultracentrifugation and

resuspended pellets in PBS and absorbed small aliquots onto EM

grids for microscopic analysis (Figure 4). The number of exosomes,

identifiable by their typical cup-shaped morphology [48,87,88],

ranging in diameter from 20 to 100 nm [89], under basal conditions

exceeded the number of exosomes during passive leakage by a factor

of more than fifteen (1.461.2 versus 22.866.5 per count area,

p%0.001, Figure 4). Microparticles, shed by apoptotic or stimulated

cells ranging from 200 to 1000 nm in diameter [89–92] were

detected infrequently under our experimental conditions with rates

Table 4. Prions are released from scrapie-infected splenic cell cultures ex vivo.

Culture conditions B cells T cells Dendritic cells

Release
(TCIU/106 cells) Necrosis (%)

Release
(TCIU/106 cells) Necrosis (%)

Release
(TCIU/106 cells) Necrosis (%)

atm. CO2
{ 0.260.3 100 ,0.1 100 0.2, 0.4 100

basal 5.661.0 63 1.160.3 48 6.8, 10.8 51

basal+IL4 6.361.2 34 1.960.4 22 - -

basal+LPS 4.460.8 28 - - -. -

Cellular infectivity 227 188 898

{Control incubations were performed in basal medium at atmospheric (atm.) CO2 and 37uC. For dendritic cell cultures Triton X-100 was added to a final concentration of
0.01% in basal medium.

Fifteen 129Sv6C57BL/6 were inoculated i.p. with 100 ml RML I6200 and culled at 60 d.p.i. Splenic cell types were isolated by Collagenase perfusion according to the
experimental procedure depicted in Figure 1. The levels of cellular infectivity were determined after MACS isolation. MACS-isolated B and T lymphocytes were then
cultured at a concentration of 16106/ml in basal medium (IMDM medium, 10% FBS) in absence or presence of LPS (50 mg/ml) and IL-4 (10 ng/ml). DCs were cultured in
basal medium, supplemented with 200 ng GM-CSF. To remove cells and debris the conditioned medium was collected after 36 h of culture, centrifuged at 3006g for
10 min, 5,0006 g for 15 min and 10,0006g for 30 min and the supernatant was collected at each of the sequential centrifugations. The supernatant was then
centrifuged for 2 h at 100,0006g and resuspended in PBS, serially diluted and infectious titers were determined using SCEPA. The detection limit for SCEPA was 0.1
TCIU/Mio cells. Mean values 6 SE of three independent experiments are shown. Data from two independent experiments are shown for the release of infectivity
from DCs.
doi:10.1371/journal.ppat.1002538.t004
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below 0.4 microparticles per count area with no significant

difference between basal medium and passive leakage control.

The minute amounts of released exosomes under our ex vivo culture

conditions did not allow the detection of exosome-associated

proteins by Western blotting. To investigate whether prions are

physically associated with exosomes we immunoisolated prions from

concentrated cell supernatants of B cell and splenocyte cultures with

antibodies against exosome markers CD81 [93–95] and Rab 5B

[96] (Material and Methods). A more than 4-fold (8.5 TCIU) and 2-

fold (3.8 TCIU) enrichment of prions was determined after

immunoisolation with anti-Rab 5B and anti-CD81, respectively,

as compared to isotype controls (1.8 TCIU). A four-fold enrichment

of prions from splenocyte cultures was determined after immunoi-

solation with anti-CD81 (35 TCIU) as compared to an isotype

control (8.5 TCIU).

Discussion

We characterized the rate of prion accumulation in hemato-

poietic cells of the spleen at early stages of prion disease and

identified highest infectious titers in two cell types that have

previously not been associated with prion pathogenesis, pDCs and

NK cells. We furthermore report the first experimental evidence

for a release of prions from lymphocytes and DCs from scrapie-

infected mice ex vivo, a process that is associated with the secretion

of exosome-like membrane vesicles.

In contrast to the well-defined role of stromal cells during prion

colonization in the LRS, the contribution of mobile cells of

hematopoietic origin to prion dissemination is not well character-

ized. Whilst previous studies reported high infectious titers of

gradient-enriched cells of low buoyant densities [26,97] and more

specifically of MACS-isolated DCs [25] and lymphocytes [60],

data were restricted to single time points and a limited number of

cell types. The recent establishment of an in vitro infectivity assay,

the SCA now enabled us to study the dynamics of prion

accumulation in hematopoietic cells of the LRS in a systematic

manner. The surge of prions in lymphoid tissues and MACS-

isolated cells during the first weeks after inoculation provides

evidence for the exceptional rate of prion colonization. In

particular, three days after i.p. inoculation, prion titers in spleens

of 129Sv6C57/BL6 mice were three orders of magnitude higher

than those of prion replication-deficient Prnp0/0 mice, implying

highly efficient pathways for prion dissemination and replication.

A titer of 2.5 log TCIU/g in spleens of Prnp0/0, on the other hand

is indicative of PrP-independent mechanisms of prion sequestra-

tion and dissemination from the site of infection to lymphoid

organs. Similar titers were detected in spleen tissue after i.c.

inoculation of Prnp0/0 mice with RML brain homogenate (2.3 log

LD50/ml) [58]. In the absence of prion replication in Prnp0/0

mice, infectivity accumulated preferentially in DCs and macro-

phages and at 5 to 10-fold lower rates in lymphocytes which

confirms a role for antigen-presenting cells in prion sequestration

[27,29,32,98–100].

At 30 dpi, pDCs and NK cells were 7-fold and .2-fold more

infectious than lymphocytes, respectively (Table 3 and Figure S2).

In agreement with other reports [99] PrPc expression was

undetectable in pDCs (Figure S3). Although prion replication-

competence of cells cannot be predicted solely on the basis of PrPc

expression levels [101,102], pDCs seemed a priori a poor candidate

for a role in prion replication. However, that pDCs are instead

highly infectious, as shown in this study, underscores the

importance of prion sequestration and dissemination by antigen-

presenting cells. PDCs are natural type 1 IFN-producing cells,

located in the T cell rich periarteriolar lymphoid sheath of

lymphoid organs. Their distribution differs from conventional DCs

which are predominantly found in the marginal zone and outer

PALS, but not in the red pulp of the spleen [103]. Interestingly, in

a steady state, NK cells are also found in areas of antigen entry to

lymphoid organs, in perifollicular regions, in the paracortex, and

especially in the medulla zone within lymphatic sinuses [104].

Whether the distribution of pDCs and NK cells in lymphoid

organs is related to their high prion titers has to be further

investigated. A bidirectional cross-talk between DCs and NK cells

has recently been shown to play a key role in host defense

[105,106]. In contrast to highly infected pDCs, macrophages

showed about eight fold lower prion titers. Of note, the in vivo

depletion of macrophages shortened scrapie incubation times [98],

suggesting that macrophages have a protective role on disease

progression.

The maturation state of DCs has major implications on antigen

processing and cell trafficking and may be critical to better

understand the role of DCs in prion pathogenesis. Even though

immature DCs are poor in T cell priming, they are efficient in

antigen capture and processing [107,108]. Migration is greatly

affected by the maturation state of DCs and immature and

activated DCs are recruited by distinct chemokines [107].

Upregulation of CCR7 during maturation renders DCs sensitive

to the chemoattractants CCL19/CCL21 [109] and are conse-

quently recruited to T-cell rich areas [107]. Accordingly, mice

with a recessive loss of CCL21 and CCL19 expression showed

defects in the migration of naı̈ve T cells and activated DCs [110].

When inoculated with mouse prions, however, these mice only

showed marginal effects on disease incubation times, indicating

that CCL19/CCL21-dependent DC migration to T-cell zones

does not seem to contribute to prion accumulation in lymphoid

organs [111].

An important study reported a change of tissue tropism of prion

accumulation in otherwise non-permissive tissues during experi-

mental inflammatory conditions of the kidney, pancreas, and liver

[112]. Follicular inflammatory foci with FDC networks and

discrete B220+ areas correlated with the propensity of inflamed

tissue to replicate prions [112]. Under these conditions, a

Figure 4. Exosomes are released from scrapie-infected B cells
ex vivo. Spleens were dissected from 129/Sv6C57BL/6 mice 30 days
after i.p. inoculation with 1% (w/v) RML I6200. MACS-isolated B
lymphocytes were cultured under passive leakage (A) and basal (B)
conditions essentially as described in Table 4 and tissue culture
supernatants were isolated by sequential centrifugation (Materials and
Methods). After centrifugation at 100,0006 g for 2 h pellets were
resuspended in PBS, absorbed onto carbon-coated grids and negatively
stained with 1% uranyl acetate. Cup-shaped exosome-like membrane
particles of different sizes (see arrows) are shown in Figure 1B. Twenty
randomly recorded images (surface area: 2.82 mm2) from each condition
were counted and the number of exosome-like particles (1.761.2 (A)
and 22.866.5 (B) per surface area, p%0.001) determined in a blinded
manner. Scale bar: 0.2 mm.
doi:10.1371/journal.ppat.1002538.g004
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mobilization of prion-infected immune cells to sites of infection is

also likely to transport prions from lymphoid to affected organs.

Under certain neurological conditions DCs are recruited into

the CNS. PDCs, for example are the major CNS-infiltrating cells

during experimental autoimmune encephalomyelitis (EAE) [113].

Of note, prion disease progression was accelerated by induction of

EAE in scrapie infected mice [114].

Despite a rapid increase of prion titers in the LRS at early stages

of disease, prions were only detected at extremely low titers in

blood of presymptomatic and symptomatic animals [63–68]. Four

weeks after inoculation DCs and pDCs in blood did not contain

detectable infectivity. The limited capacity of DCs for recirculation

[69] may greatly restrict the dissemination of prions through the

hematogenous route. Recirculation of NK cells is also restricted

under steady-state conditions [115]. While restricted recirculation

of DCs may protect the host by retaining a high density of

particular peptide-MHC complexes for improved antigen presen-

tation [69], inflammatory signals induce tissue-resident DCs to

undergo maturation and to migrate into inflamed tissues [116].

Our evidence for a release of prions from scrapie-infected DCs

and lymphocytes suggests a potential route for the lateral spread of

prions and may contribute to the striking rate of prion colonization

in the LRS. Antigen-presenting cells, like DCs, macrophages and

B cells are specialized to phagocytose pathogens and to present

processed antigen, loaded onto MHC class II molecules to T

lymphocytes. While it is a matter of debate whether exosomes

bearing MHC class II peptide complexes actively support the

immune response of the host [84,117–119], the dissemination of

pathogens via exosomes is not a novel concept. Retroviruses were

shown to redirect the cellular protein sorting machinery to egress

infected cells at the level of the plasma membrane and to usurp the

existing cellular machinery for exosomal release, respectively (for

recent reviews see [120–123]). Of note, the release of prion-

infected exosomes was enhanced by retroviral infection [124],

suggesting the existence of synergistic mechanisms during

endosomal processing. Irrespective of their sites of conversion,

prions will reach the endosomal route, a cellular pathway that

renders prion-infected lymphocytes and DCs at risk for a lateral

spread of prions. A segregation of prions into the exosomal route

would enable a transfer of infectivity between cells without direct

cell-to-cell contact. Of note, B cell-derived exosomes bind

preferentially to surface receptors on FDCs [44]. Exosome release

as a potential dissemination route has also been suggested for other

misfolded proteins, like Ab peptides in Alzheimer’s disease andv a-

synuclein in Parkinson’s disease and dementia with Levy bodies,

respectively [125,126].

Materials and Methods

Ethics statement
All animal experiments were performed in compliance with

United Kingdom Home Office regulations and were approved by

both the Home Office and the MRC Prion Unit ethical review

committee.

Mice and scrapie infection
Six to eight week old female 129/Sv6C57BL/6 mice were

purchased from Harlan UK Ltd. (Oxfordshire, UK). Prnp0/0 mice

used here were derived from the original Zurich I mice [127] and

crossed onto the FVB/N background for 10 generations [128].

Mice were inoculated intraperitoneally (i.p.) with 100 ml of 1%

Rocky Mountain Laboratory (RML) prion strain I6200 [38] or 1%

uninfected CD1 brain homogenate and culled at early stages of

prion disease prior to the manifestation of neurological symptoms.

Where prion titers were determined by mouse bioassay, mice were

inoculated intracerebrally (i.c.) with 30 ml inoculum and the

incubation time until manifestation of neurological signs of scrapie

was recorded. All mice were observed daily for indications of ill-

health.

Isolation of splenocytes
Splenocytes were isolated by enzymatic digestion from freshly

dissected spleens. To maximize the release of non-haematopoietic

stromal cells and other resident cells that are strongly attached to

connective tissue, spleens were digested in successive cycles as

described previously with minor modifications [129]. Briefly,

spleens were cut into small pieces and incubated at 37uC with an

enzyme cocktail, containing 2.5 mg/ml collagenase IV (Worthing-

ton Biochemical Corp., Lakewook, NJ), 0.05% dispase 2 (Sigma-

Aldrich, UK) and 1 mg/ml DNase I (Roche Diagnostics Limited,

West Sussex, UK) in Iscove’s Modified Dulbecco’s Media

(Invitrogen, Paisley, UK), supplemented with 10% heat-inactivat-

ed FBS, 100 U/ml Pen-strep, 2 mM L-glutamine and 50 mM 2-

mercaptoethanol (complete IMDM) per spleen. After 15–20 min,

partially digested tissue was gently dispersed with a serological

pipette and released cells were transferred into a tube on ice. Fresh

enzyme cocktail was added to the remaining tissue fragments and

digested for another three cycles. Pooled cells were passed through

a 70 mm nylon mesh and pelleted at 3006 g for 10 min. To

remove erythrocytes splenocytes were resuspended in 10 ml

erythrocyte lysis buffer (155 mM NH4Cl, 10 mM KHCO3,

0.1 mM EDTA, pH 7.0) and incubated at room temperature for

no more than 1 min. After adding 40 ml complete IMDM

medium to stop lysis cells were pelleted. Splenocytes were then

layered onto Lympholyte M (Cedarlane Laboratories, Hornby,

Ontario, Canada) gradients and centrifuged at 15006g for 20 min

to remove dead cells and debris essentially as described by the

manufacturer. Purified splenocytes were washed in complete

IMDM and centrifuged for 10 min at 8006 g. Cells were

resuspended in chilled MACS buffer (0.5% bovine serum albumin

(BSA) and 2 mM EDTA in phosphate-buffered saline) and the

number of splenocytes was determined using a Coulter counter Z2

(Beckman Coulter) at an upper threshold of 15 and a lower

threshold of 5.

Isolation of splenic cell types by magnetic-activated cell
sorting

Specific cell populations were enriched from total splenocytes by

sequential MACS using antibody-coated magnetic beads (Miltenyi

Biotech Ltd., Surrey, UK) as depicted in Figure 1. To block

unwanted binding of antibodies to cells expressing Fc receptors

(FcR) splenocytes were suspended at a concentration 26108 cells/

ml MACS buffer and incubated with 25 ml FcR blocking reagent

(Miltenyi) per 108 cells. Cells were magnetically labelled essentially

as specified by the manufacturer (Miltenyi) using the following

microbeads: CD11c for DCs, mPDCA-1 for pDCs, CD11b for

myeloid cells, CD49b for NK, CD19 for B cells and CD90 for T

cells. Splenic DCs comprise three distinct subsets of CD11c+ cells,

CD11c+ CD11b+ myeloid DCs, CD11c+ CD8+ lymphoid DCs

and CD11clow CD45R (B220+) pDCs. To avoid a loss of pDCs

which express low levels of CD11c during panDC isolation a

combination of CD11c and murine plasmacytoid dendritic cell

antigen-1 (mPDCA-1) beads was used. In murine spleen, bone-

marrow and lymph nodes, mPDCA-1 is exclusively expressed on

interferon-producing cells which are CD11c+ CD45R (B220+) Ly-

6C+ [130]. Positive selection of CD11c+ dendritic cells prior to

isolating CD11b+ macrophages did not suffice to deplete

CD11c+CD11b+ myeloid dendritic contaminants (Figure 1). We
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therefore purified macrophages by fluorescence-activated cell

sorting (FACS) using a MoFlo cell sorter (Dako). Briefly, MACS-

isolated CD11b+ cells were incubated with FITC-conjugated anti-

CD11c (clone HL3, 1:100) and PE-conjugated anti-CD11b (clone

M1/70, 1:50) (BD Biosciences, Oxford, UK) and CD11c2

CD11b+ cells were sorted at a concentration of 5–106106 cells

per ml. Isolated cells were counted with a Coulter Counter, snap-

frozen in liquid N2 and stored at 280uC until further processing.

The purity of isolated cell types was determined by FACS using a

FACS calibur (BD Bioscience).

Analytical flow cytometry
Isolated cell types were characterized by flow cytometry using

the following fluorescent-conjugated mAbs: anti-B220/CD45R

(RA3-6B), anti-CD90/Thy1.2 (30-H12), anti-CD11c (HL3), anti-

CD49b (DX5), anti-CD21/CD35 (76G), anti-CD23/FceRII

(B3B4) and anti-CD86 (GL1) were purchased from BD Pharmin-

gen (Oxford, UK). Anti-CD11b (M1/70) and anti-CD49b (DX5)

were purchased from eBioscience (Hatfield, UK). All fluorescence-

or biotin-conjugated isotype controls (rat IgG2b, rat IgG2a,

Armenian hamster IgG1, mouse IgG1, k, rat IgG M) were

purchased from eBioscience. Briefly, aliquots of 1–26106 cells

were resuspended in MACS buffer, incubated for 15 min with

FcR blocking reagent (1:20, Miltenyi) on ice and labeled with

fluorescent-conjugated antibodies or isotype controls for 30 min.

Data acquisition and analysis was performed using a FACS calibur

and CellQuest software (BD Biosciences).

Isolation of lymphocytes and pDCs from blood
Whole blood was obtained from euthanized mice by cardiac

puncture and collected in buffered EDTA-containing syringes with

a final EDTA concentration of 2 M. Blood samples were diluted

one in four into MACS buffer, layered onto Lympholyte M and

centrifuged for 20 min at 15006g at 22uC. Cells from the interface

were collected and erythrocytes removed as described before. After

washing, blood cells were resuspended in MACS buffer and pDCs

and lymphocytes were isolated by MACS as described above. To

check the efficacy of cell capture from blood samples by MACS

whole blood was spiked with 2 Mio prion-infected B lymphocytes

(44 TCIU) and cells were isolated as described above. A 82% (36

TCIU) recovery of infectious B lymphocytes confirms the excellent

performance of MACS isolation from blood samples.

Isolation of exosome-enriched membrane fractions and
analysis by electron microscopy

Exosomes were isolated by differential centrifugations described

as previously [82–84]. Briefly, supernatants from cell cultures of

splenic cell types were retrieved after 38 h and sequentially

centrifuged at 3006 g for 10 min, 5,0006 g for 20 min and

10,0006 g for 30 min, and finally at 100,0006 g for 2 h. Pellets

were resuspended in PBS and used immediately or stored at 270uC
until further use. For analysis by electron microscopy 3 ml aliquots of

1:10 dilutions of resuspended pellets were adsorbed onto glow-

discharged carbon-coated grids and negatively stained with 1%

uranyl acetate. Grids were examined by electron microscopy at the

Bloomsbury Centre for Structural Biology (Birkbeck College,

London, UK). To determine the number of exosome-like

membrane particles 20 random images were recorded per condition

and the number of particles was counted in a blinded manner.

Immunoisolation of exosomes
Exosomes from cultured B lymphocytes or splenocytes were

enriched with antibodies against exosome markers Rab 5B [96]

and CD81 [93–95] using a mMACS streptavidin kit (Miltenyi).

Briefly, concentrated cell culture supernatants of 56107 cells were

obtained by differential centrifugation as described above,

resuspended in 150 ml PBS and incubated for 30 min with

10 mg biotinylated antibodies anti-CD81 (clone Eat-2, Biolegend),

anti-Rab 5B (clone A 20, Santa Cruz Biotechnology) or isotype

controls (rabbit and Armenian hamster IgG, eBioscience). After

addition of 100 ml mMACS beads immune complexes were

incubated for 10 min and captured on mMACS columns

according to the specifications of the manufacturer. Infectious

titers of immuno-isolated fractions were determined by SCEPA.

Preparation of the RML standard dilutions
RML standard dilutions used for in vitro and in vivo infectivity

assays were prepared by serial 10-fold dilutions (from 1022 to

1029) of 10% RML homogenates into 10% uninfected CD1 brain

homogenate. Diluted brain homogenates were further diluted 1:10

into 1% normal CD1 for inoculation into Tg20 mice and 1:1000

into OFCS for infection of cells, respectively.

Preparation of tissue and cell homogenates
To determine infectious titers of tissue samples spleens and

mesenteric lymph nodes from scrapie-infected and control mice

were minced and transferred into 2 ml microtubes (Sarstedt Ltd.,

Leicester, UK) containing zirconium beads. Ten percent homog-

enates (w/v) were prepared in PBS-buffered sucrose (0.32 M) in

presence of a 1:100 dilution of Protease Inhibitor Cocktail Set I

(Pierce, Leicestershire, UK) and 25–50 U benzonase (Novagen,

Madison, WI) using a Ribolyser (Hybaid, Cambridge, UK) at

maximum speed for two cycles of 45 s. Aliquots of tissue

homogenates were serially diluted 1:10 into 10% uninfected

CD1 brain homogenate (w/v) to minimize binding to surfaces and

stored at 280uC until infectious titers were determined in vitro and

on mouse bioassay, respectively.

Aliquots of MACS-isolated splenic cells were ribolyzed at a

concentration of typically 26107 cells/ml complete medium,

supplemented with protease inhibitors as described above. All

homogenates were kept on ice until further processing.

Where sonication was used to homogenize cells, aliquots of

MACS-isolated cells were transferred into 0.2 ml Thermo tubes

(Thermo Fisher Scientific, West Sussex, UK) and placed beneath

the sonication probe in ice water. Cells were homogenized in five

cycles of 30 s at 30% power using a Status 200 sonicator (Philip

Harris Scientific, Hyde, UK). Brain homogenates were prepared

by repeated passing through syringe needles as described

elsewhere [131].

Quantification of prion titers by Scrapie Cell Assay and
mouse bioassay

Infectious titers were determined in vitro by Scrapie Cell Assay in

endpoint format (SCEPA) as described previously [36,52] with

minor modifications. Briefly, 26104 PK1-2 cells in Opti-MEM-

10% FCS (OFCS) were plated into wells of 96-well plates. After

16 h cells were incubated with 300 ml aliquots of serially diluted

homogenates. Three days later cells were initially split twice 1:2

every other day and 1:3 two days after the second split. Prior to

resuspending cells half the medium was replaced with fresh OFCS

for all previous cell passages. After three days cells were split 1:6

every 3–4 d. Aliquots of 25,000 cells were transferred onto Elispot

plates after the sixth and seventh split (MultiScreen HTS-IP Filter

Plate, Millipore) and the number of PrPSc-positive cells was

determined by ELISA after incubation with 4.4 mU (1 mg)

recombinant PK (Roche Diagnostics, West Sussex, UK) per ml
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lysis buffer as described previously [36]. The sensitivity of SCEPA

was determined from serial dilutions of titered mouse RML brain

homogenate I6200 (9.3 log LD50 units/g brain). Infectious titers

obtained in vitro were expressed as tissue-culture infectious units

(TCIU). Mouse bioassay were performed by intracerebral

inoculation of groups of six Tga20 mice [132] with 30 ml of

serially diluted samples.

Detection of protease K-resistant PrP
To determine the levels of protease K (PK)-resistant PrP 10%

spleen homogenates were prepared by ribolyzing freshly dissected

spleens in PBS-buffered sucrose (0.32 M) in presence of protease

inhibitors as described above. The levels of PK-resistant PrP were

determined by Western Blotting after precipitation of PrP with

sodium phosphotungstic acid (NaPTA) as described previously

[133].

Immunohistochemistry
Spleens were fixed in 10% buffered formal saline for 24 h prior

to tissue processing and paraffin wax embedded. All spleen

samples were coded prior to sectioning and histological analysis of

spleens sections was carried out blinded. Sections were cut at a

nominal thickness of 4 mm, and stained with hematoxylin and

eosin using conventional methods. To detect abnormal PrP

deposition, mounted sections were placed on a Ventana

automated immunohistochemical staining machine (Ventana

Medical Systems, Tuscon, AZ, USA), heated to 95uC in a

proprietary buffer, for 90 minutes (Ventana Medical Systems),

incubated in Superblock for 10 minutes, then exposed to

biotinylated ICSM35 (1:25 dilution of 1.6 mg/mL stock; D-Gen

Ltd, London, UK), followed by an avidin-biotin horseradish

peroxidase conjugate (DABmap, Ventana Medical Systems) and

developed with 3-39-diaminobenzidine tetrahydrochloride. Hema-

toxylin was used as counterstain. Appropriate controls were used

throughout. Photographs were taken using the slide scanner

LEICA SCN400 (LEICA Microsystems).

Supporting Information

Figure S1 Initial validation of Poisson distribution. To

check whether the experimental data from in-vitro endpoint

titrations indicate an underlying Poisson distribution for the

number of infected cells serial 1:3 dilutions of RML brain

homogenate within a range between 10-7 and 10-9 were prepared

and cell layers of 12 wells per dilution were infected. Comple-

mentary log-log transformed proportions of negative wells are

shown for eight technical assay repeats. Linear regression analysis

was performed for dilutions were the proportion of positive wells

for all eight repeats were .0 and ,12 per total number of wells

and a slope factor b of 1.0660.20 was calculated.

(TIF)

Figure S2 Differences in prion accumulation in splenic
cells at 30 dpi. Infectious titers of MACS-isolated splenic cell

types at 30 dpi were replotted from Table 3 for clarity. Significant

differences between distinct cell types and lymphocytes are

indicated (*p,0.05; ** p,0.001). Infectious titers of the

CD11b+ myeloid cells decreased by about 50% after FACS

purification of CD11c2 D11b+ macrophages (see Fig. 1).

(TIF)

Figure S3 Protein expression levels of PrPc are unde-
tectable in pDCs of 129Sv6C57BL/6 mice. PDCs isolated

from uninfected 129Sv6C57BL/6 or Prnp2/2 mice were

labeled with biotinylated monoclonal anti-PrP antibody ICSM

35 followed by allophycocyanin (APC)-streptavidin and PrPc

expression levels were analysed by flow cytometry. No difference

in PrPc expression levels between pDCs from 129Sv6C57BL/6

(wildtype) and Prnp2/2 mice was detected. As a control for PrPc

expression mouse neuroblastoma cells (N2a) were labeled with

biotinylated ICSM35 and biotinylated mouse IgG2b isotype

control.

(TIF)

Figure S4 DCs are not activated at preclinical stages of
Scrapie. 129Sv6C57BL/6 mice were inoculated i.p. with 100 ml

1% RML I6200 or 100 ml 1% uninfected CD1 homogenate and

splenocytes were isolated at 110 dpi. DCs were isolated by MACS

using a 1:1 mix of CD11 and mPDCA-1 microbeads and labelled

with a specific mAb against CD86. No evidence for an expression

difference of CD86 between scrapie-infected and age-matched

control mice were detected at preclinical stages.

(TIF)

Figure S5 No abnormalities of splenic B cell subsets at
preclinical disease. 29Sv6C57BL/6 mice were inoculated i.p.

with 100 ml 1% RML I6200 or 100 ml 1% uninfected CD1

homogenate and culled at 80 dpi (A) and 100 dpi (B). Splenocytes

were isolated according to Materials and Methods. To analyse B

cell subsets splenocytes were labelled with mAbs against anti-

CD19, anti-CD23 and anti-CD21. The CD19-gated B cell

population was examined for CD21/35 and CD23 expression.

No alterations were detected in the ratios of CD21high D23-

marginal zone (MZ) and CD21int D23high follicular (FO) B cells.

(TIF)

Table S1 In-vitro endpoint titration of RML 6200 using
SCEPA. Serially diluted RML 6200 was transferred onto layers of

prion-susceptible PK1 cells and the number of positive and

negative wells was determined by SCEPA as described in

Materials and Methods. The complementary log-log transformed

data were plotted in Figure S1.

(RTF)

Table S2 Immunohistological characterisation of scra-
pie-infected spleen tissue at early stages after infection.
An increase in the number of lymphoid follicles containing

follicular dendritic cells containing abnormal prion protein

(ICSM35 immunostaining) as well as an increase in the density

of PrPSc deposition is seen with increasing incubation time.

Positive follicles were determined as the ratio of the number of

ICSM35-positive follicles and the total number of follicles (counted

on an adjacent H&E section. PrPSc density in follicles was

determined semi-quantitatively as weak (shown in Figure 3C, 3

and 7 dpi), moderate (Figure 3C, 14 and 30 dpi) and strong.

(RTF)

Table S3 Infectious titers of MACS-isolated splenic cell
types in the absence of prion replication at 3 dpi. A group

of four Prnp2/2 mice were inoculated intraperitoneally with

100 ml 1% (w/v) RML I6200 and spleens were dissected at 3 dpi.

Different cell types were isolated by magnetic sorting, infectious

titers determined by SCEPA and titers estimated by GLM.

(RTF)

Text S1 Determination of infectious titers from SCEPA
using GLM regression.
(RTF)
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