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Abstract 

 
Ginkgo biloba has been advocated as a neuroprotective agent for several years in glaucoma. 

In this study, immunohistochemistry was used to identify known potential molecular targets 

of Ginkgo biloba related to retinal ganglion cell (RGC) apoptosis in experimental glaucoma, 

including amyloid precursor protein (APP), Aß, cytochrome c, caspase-3 and tumor necrosis 

factor receptor-1 (TNF-R1). Furthermore, using apoptotic inducers related to mechanisms 

implicated in glaucoma, namely Dimethyl sulphoxide (DMSO), ultraviolet C (UVC) and 

Sodium Azide (NaN3),  the effects of the terpenoid fraction of Ginkgo biloba (Ginkgolide A, 

Ginkgolide B and Bilobalide)  were investigated separately in cultured retinal ganglion cells 

(RGC-5). Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) assay and morphological analysis of DMSO treated 

RGC-5 was performed using Hoechst 33342 stain. 

Immunohistochemistry showed a strong inverse correlation between Aß and APP in ocular 

hypertension (OHT) animals, with APP and Aß accumulation peaking at 1 and 12 weeks after 

intraocular pressure (IOP) elevation respectively. Cytochrome c and TNF-R1 expression 

peaked at 3 weeks, and active caspase 3 activity at 12 weeks after IOP elevation. 1% DMSO, 

UV40, 1mM NaN3 and 50µM Aβ25-35 dose dependently reduced RGC-5 survival at 24 

hours by 27%, 20%, 35% and 27% respectively. These effects were inhibited by Ginkgolide 

A, Ginkgolide B and Bilobalide in different assays at different levels. In these experiments, 

all three compounds showed a dose-related response although some intrinsic toxicity was 

observed with Ginkgolide A. 

Ginkgolide B had the most profound neuroprotective effects in the majority of assays at a 

concentration range of 0.5-5µg/ml, whereas Ginkgolide A and Bilobalide had variable 

activity.  
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Although the effect of simultaneous administration of all three fractions was not assessed, 

work in this thesis suggest that Ginkgolide B can be neuroprotective to RGCs in preventing 

apoptosis and cell death, therefore may be of use as a neuroprotective strategy in glaucoma 

management.  

 
Key Word: glaucoma, neuroprotection, retinal ganglion cell apoptosis, Ginkgo biloba 
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1. Introduction 
 

1.1 Glaucoma 

1.1.1 Overview 

 
Glaucoma is a distinctive group of progressive optic neuropathies characterized by gradual 

degeneration of neuronal tissue due to RGC loss, with accompanying loss of visual field over 

time (Quigley et al., 1995;Gupta and Weinreb, 1997). It is a leading cause of irreversible 

blindness estimated to affect 79.6 million people worldwide by 2020 (Quigley and Broman, 

2006). Glaucoma can be classified into congenital (developmental) or acquired, and based on 

the mechanism of aqueous outflow obstruction, it is further subdivided into open-angle 

glaucoma (OAG) and closed-angle glaucoma types. Each classification can be primary, when 

it is not associated with another cause and secondary, when there is an ocular or non-ocular 

disorder affecting aqueous dynamics.  

 

1.1.2 Glaucoma risk factors 

 

Risk factors have been identified both for developing OAG, and for its progression. Although 

intraocular pressure (IOP) is the most important risk factor in the pathogenesis of glaucoma, 

optic nerve cupping and visual field loss can progress despite successful reduction in IOP via 

medical and surgical approaches (Leske et al., 1999;Oliver et al., 2002;Rossetti et al., 2010). 

In the Early Manifest Glaucoma Trial (EMGT) around 27% of treated patients with 30% 

reduction in IOP showed progression even after 6 years of follow up (Leske et al., 

2003;Leske et al., 2007). Moreover, 12% of treated patients recruited in the Collaborative 

Normal Tension Glaucoma Study (CNTGS) revealed progression in the course of the disease 

after 7 years of follow up (Group, 1998). Table 1.1 shows risk factors for developing 
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glaucoma and table 1.2 shows risk factors for glaucoma progression. 

 

Table 1.1 Risk Factors for developing Glaucoma 

Parameter Risk factor                         References 

Age > 40 years  (Quigley and Vitale, 1997;Mukesh et al., 2002;de Voogd et 

al., 2005;Boland and Quigley, 2007;Leske et al., 2008)  

Ancestry African Caribbean (Tielsch et al., 1991;Wormald et al., 1994;Leske et al., 2008)   

Family 

History 

1st degree relatives (Tielsch et al., 1994;Boland and Quigley, 2007)   

IOP >21 mm Hg    (Kass et al.;Bengtsson et al., 2007;Leske et al., 2007)     

C/D Ratio >  0.7 (Le et al., 2003)   

Myopia > 2 D (Mitchell et al., 1999;Ramakrishnan et al., 2003)   

CCT < 555 µm (Leske et al., 2008) 

Lower Ocular  

SPP, DPP &  

MPP 

SPP=SBP-IOP 

DPP=DBP-IOP 

MPP= 2/3MAP-IOP 

(Leske et al., 2008) 

 
 

IOP= intra ocular pressure, C/D= cup to disc, D= diopter, CCT= central corneal thickness, SPP= systolic 

perfusion pressure, DPP= Diastolic perfusion pressure, MPP= mean perfusion pressure, MAP = mean arterial 

pressure. 
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Table 1.2 Risk factors for Glaucoma Progression 

Parameter Risk factor                         References 

Age > 68 years (Gordon et al., 2002;Leske et al., 2007)   

IOP > 21 mmHg  (Gordon et al., 2002;Heijl et al., 2002;Bengtsson et al., 

2007;Leske et al., 2007) 

Bilateral 

involvement 

positive (Leske et al., 2003;Leske et al., 2007)  

CCT < 555 µm   (Brandt, 2004;Leske et al., 2007;Miglior et al., 2007;Brandt 

et al., 2008)   

Greater V/F PSD 

per 0.2 dB 

 

positive (Gordon et al., 2002;Miglior et al., 2007) 

Disc haemorrhage positive   (Leske et al., 2003;Leske et al., 2007;Bengtsson et al., 

2008)  

Pseudoexfoliation positive   (Leske et al., 2003;Grodum et al., 2005;Leske et al., 2007)  

Vertical C/D ratio > 0.7 (Gordon et al., 2002;Miglior et al., 2007) 

Vertical C/D ratio 

asymmetry 

positive (Miglior et al., 2007) 

SPP ≤125 mmHg (Leske et al., 2007) 

SBP ≤160 mmHg (Leske et al., 2007) 

Diabetes mellitus positive (Lichter et al., 2001)  

Cardiovascular 

diseases 

positive (Leske et al., 2007;Miglior et al., 2007;Brandt et al., 2008)   

 

V/F= visual field, PSD=Pattern standard deviation, SPP=systolic perfusion pressure, SBP=systolic blood 

pressure.  
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1.1.3 Cell Death Mechanisms 

 

Cellular breakdown can be categorized into three widely identified forms: apoptosis, necrosis 

and autophagic cell death (Jellinger, 2001;Elmore, 2007;Kroemer et al., 2009;Levine and 

Kroemer, 2009). 

1.1.3.1 Apoptosis 

 

Apoptosis, a gene-directed programmed form of cell death, is an energy-dependent process 

essential in embryogenesis and tissue homeostasis (Wenzel et al., 2005). Inappropriate 

apoptosis is heavily implicated in the pathogenesis of many neurodegenerative diseases 

(Thompson, 1995;Perry et al., 1998) including glaucoma (Quigley et al., 1995;Cordeiro et al., 

2004). A specific series of morphological features including formation of apoptotic bodies, 

chromatin condensation and DNA fragmentation within an intact cell membrane are 

characteristically seen (Kerr et al., 1972;Kerr, 2002). Apoptosis is brought about by the 

intrinsic (mitochondrial) pathway mediated via cytochrome c release (Ekert and Vaux, 2005) 

or the extrinsic (the death receptor) pathway involving transmembrane receptors which are 

members of tumor necrosis factor (TNF) receptor superfamily (Locksley et al., 2001). The 

intrinsic apoptotic pathway can be either caspase-dependent or caspase-independent. In the 

dependant pathway the proteolytic activity of caspases, aspartate-specific cysteine proteases, 

appears to be central with initiators (caspase-8 and 9) and the executors (caspase-3, 6 and 7). 

A caspase-independent pathway can be activated by an increased intracellular calcium level 

and is mediated via the activity of other effectors such as calpain-mediated release of 

apoptosis inducing factor (AIF) and calpain-mediated release of caspase-12 (different from 

traditional caspases). AIF and caspase12 both translocate to the nucleus to participate in 

DNA damage (Tezel and Yang, 2004;Sanges et al., 2006;Sanges and Marigo, 2006). 

However, it has becoming increasingly apparent that the caspase-dependent and the caspase-
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independent pathways are not separate entities but that they are linked together at certain 

points (Igney and Krammer, 2002). Nonetheless, it is believed that each pathway has 

different mechanisms. So far, there are a variety of proposed triggers for apoptosis including 

abnormal aggregation of subcellular proteins, oxidative stress, inflammation and immune 

system modulation, and withdrawal of neurotrophic support, which will be discussed in 

further detail later. 

1.1.3.2 Necrosis 

 

In comparison with apoptosis, necrosis, which is considered to be a passive pathological 

process of cellular breakdown, involves swelling of the cytoplasmic membrane with 

formation of cytoplasmic vacuoles, loss of plasma membrane integrity and subsequently loss 

of intracellular contents in the absence of DNA fragmentation (Kerr et al., 1972;Nicotera et 

al., 1999a;Nicotera et al., 1999b). Although the causative factors of necrotic cell death are 

still unspecified, several interconnecting elements have been implicated including energy 

depletion and direct injury to the cell membrane (Kroemer et al., 2009). An activation of 

death domain receptors such as tumor necrosis factor receptor 1 (TNFR1) and Toll-like 

receptors such as TLR3 have been observed to provoke necrotic cell death (ibid).  

1.1.3.3 Autophagic cell death 

 

 The term "autophagy" from Greek means "self-eating", and autophagic cell death, another 

form of cellular breakdown, is characterized by sequestration and vacuolization of cytoplasm 

and organelles and degradation by the cell’s lysosomes. It is an energy-dependent process in 

which chromatin condensation, DNA fragmentation and phagocytosis are not seen (Kroemer 

and Levine, 2008;Levine and Kroemer, 2008;Kroemer et al., 2009;Levine and Kroemer, 
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2009). Activation of autophagy in RGCs has been demonstrated after optic nerve transection, 

and suggested to have a cell-protective role in neurodegenerative diseases (Kim et al., 2008). 

1.1.4 Mechanisms of RGC death in glaucoma 

 

 

In chronic glaucoma retinal ganglion cell (RGC) apoptosis appears to be an early event 

(Quigley et al., 1995;Kerrigan et al., 1997;Cordeiro et al., 2004). It is estimated that at least 

25% to 35% RGCs in human eye with glaucoma (Kerrigan-Baumrind et al., 2000) and up to 

50% RGCs in the animal model of experimental glaucoma (Harwerth et al., 2002) must have 

been lost before a visual filed defect can be detectable.  

 Several damaging mechanisms have been implicated in the pathogenesis of apoptotic RGC 

death in glaucoma; although a single causative mechanism has yet to be identified. Even 

though IOP may be viewed as a direct inducer of RGC stress and apoptosis (Guo et al., 

2005a;Kwon et al., 2009), damage to RGCs can occur even in the presence of a low level of 

IOP (Sommer, 1989;Drance, 2004). In conditions of elevated IOP, mechanical stress on the 

lamina cribrosa can lead to initial axonal degeneration, as suggested by Howell et al (2007) 

using the DBA/2J mouse model of glaucoma. This study also suggested that it is possible to 

protect RGCs against such damage using the Wallerian degeneration slow allele, which 

allowed functional protection from glaucoma in the DB2-J2.Wld
s
 mouse model (Howell et 

al., 2007). Glaucoma appears to be of a multifactorial nature with complex genetic and 

environmental factors (Fingert et al., 1999;Ray et al., 2003;Libby et al., 2005;Mabuchi et al., 

2007). In addition to IOP, several other stress inducer factors have been identified such as 

tissue hypoxia (Kaur et al., 2008;Tezel et al., 2010), and glial cell activation (Lebrun-Julien et 

al., 2009).     

The various proposed mechanisms of RGCs death in glaucoma have been investigated 
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through the use of a variety of in vitro and in vivo studies include: oxidative stress (Neufeld et 

al., 1999;Ko et al., 2005;Tezel, 2006), protein misfolding (McKinnon et al., 2002a;Yoneda et 

al., 2005;Guo et al., 2007a), inflammation (Tezel et al., 2001;Tezel et al., 2007), 

mitochondrial dysfunction (Mittag et al., 2000;Tatton et al., 2001;Tezel and Yang, 2004), and 

excitotoxicity (Dreyer et al., 1996;Osborne et al., 1999;Guo et al., 2006;Salt and Cordeiro, 

2006). These mechanisms will be discussed further below: 

1.1.4.1 Oxidative stress 

 

 

Oxidative stress is a pathological condition in which the rate of reactive oxygen species 

(ROS) production exceeds the body’s anti-oxidative capacity. ROS are partially reduced, 

highly reactive metabolites of molecular oxygen, containing an unpaired electron. ROS is 

generated primarily via the electron transport chain at relatively low levels during aerobic 

metabolism and plays an integral part in signal transduction. Ischemia potentially by vascular 

dysregulation and reperfusion injury to cells are critical inducers for oxidative stress 

(Flammer et al., 1999), leading to further ROS generation with ATP depletion and 

mitochondrial failure, triggering the caspase-dependent and caspase-independent 

mitochondrial cell death pathways (Murphy, 1999).  

The increased levels of ROS enhance lipid peroxidation, protein peroxidation (Siu and To, 

2002) and single strand breaks in nucleic acids (Finkel, 1998;Finkel and Holbrook, 2000). 

ROS have also been found to induce Muller cell activation and dysfunction, generating 

further oxidative material (Yuan and Neufeld, 2001;Neufeld and Liu, 2003;Tezel et al., 

2003). 

      ROS and NO pathways 

 

ROS generation has been implicated in the pathogenesis of glaucoma (Bonne et al., 
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1998;Levin, 1999), inducing remolding and excavation of the lamina cribrosa, damaging the 

trabecular meshwork and facilitating glutamate–dependant RGC death (Fern et al., 

1993;Chidlow et al., 2007;Cheung et al., 2008a). In glaucomatous stress, excessive 

production of ROS enhances the production of nitric oxide (NO) (Neufeld, 1999;Neufeld and 

Liu, 2003), which can have direct cytotoxic effects on the RGCs in a caspase-dependent and 

caspase-independent manner.  

 

The extent of the oxidative damage appears to depend on the type and reactivity of ROS, the 

rate of their production and the cellular antioxidant defense mechanism. The retinal 

protection against the damaging effects of ROS is composed mainly of glutathione 

peroxidase, glutathione reductase, glutathione S-transferase, ascorbic acid, catalase, and 

superoxide dismutase (Ferreira et al., 2004). An increased level of autoantibodies against 

glutathione S-transferase (Yang et al., 2001), and a compromised antioxidant capacity 

(Gherghel et al., 2005) have been documented in glaucoma patients. Corresponding data in 

the rat model of raised IOP displayed increased levels of antioxidant enzymes (Moreno et al., 

2004). Excessive production of ROS enhanced the production of NO in the rat model of 

glaucoma (Siu et al., 2002) and in astrocytes and glial cell at the optic nerve head of 

glaucoma patients, enhancing activation of the N type Ca
2+

 channels in RGCs (Hirooka et al., 

2000). NO can further interact with a superoxide anion (O2
-
) to form the highly potent 

oxidant peroxynitrite (ONOO-) (Luthra et al., 2005), as shown in figure 1.1  

 

Methods of reducing ROS production have been shown to enhance RGC survival following 

axotomy (Geiger et al., 2002), whilst intravitreal injection of a nitric oxide donor has been 

shown to induce RGC death (Oku et al., 1997). Therefore, blocking the production of NO 
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could arrest the development of glaucomatous optic neuropathy (Liu and Neufeld, 2000;Yuan 

and Neufeld, 2001). Complications, however, arise from the potential antiapoptotic action of 

ROS through the phosphorylation of nuclear factor (NF)- қB, via reduction of its inhibitory 

protein IКBα, and subsequent inhibition of caspases (Mattson et al., 2000). ROS has also been 

shown to up-regulate the expression of the antiapoptotic member of Ras proteins, which are 

phosphoinositide-3-kinases (PI3K) that enhance cell survival by inactivating bad proteins and 

Caspase-9 (Rebollo and Martinez, 1999;Mattson et al., 2000). 

 

 

Figure 1.1 Oxidative stress in RGCs 

In oxidative stress excessive production of ROS enhances the production of NO by the iNOS enzyme. NO will 

interact with a superoxide anion (O2-) to form the highly potent oxidant peroxynitrite (ONOO). ROS will also 

activate the phosphorylation of NF-қB and Ras proteins. The increased levels of ROS enhance cell membrane 

lipid peroxidation and the nuclear DNA fragmentation.  
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1.1.4.2 Protein Misfolding  

 

 

Amyloid deposits, consisting of aggregates of Aβ, are a characteristic feature of several 

neurodegenerative diseases such as Alzheimer’s (Pepys, 2006), Parkinson’s disease (Bayer et 

al., 2002) and mild cognitive impairment (Attems and Jellinger, 2006;Verwey et al., 

2008;Villemagne et al., 2008). They have also been recently implicated in the pathogenesis 

of retinal damage (Shimazawa et al., 2008), Age Related Macular Degeneration (AMD 

(Johnson et al., 2002), and glaucoma (McKinnon et al., 2002a;Yoneda et al., 2005;Goldblum 

et al., 2007;Guo et al., 2007a). 

      Amyloid-β pathway 

 

 

Amyloid precursor protein (APP) is a trans-membrane protein expressed by many cells, 

including CNS neurons and RGCs (Morin et al., 1993). APP cleavage involves three 

proteases: α-secretase generates the soluble non-pathogenic αAPP that serves trophic 

functions inside cells (Li et al., 1997), whereas β and γ secretase produce Aβ.  

The β-secretase enzyme is believed to be the primarily responsible initiator of the 

amyloidogenic processing of APP (Pastorino and Lu, 2006), with cleavage of APP by β-

secretase generating the βAPP and C99 fragments. Further proteolysis of βAPP by γ 

secretase enzyme yields the insoluble Aβ and P6 fragment (Augustin et al., 2009) as 

summarized in figure 1.2. Cleavage of the C-terminal cytoplasmic tail of APP to yield Delta 

C-APP, further potentiating Aβ production has been shown in neuronal cells and in apoptotic 

RGCs in a rat model of ocular hypertension (Gervais et al., 1999;McKinnon et al., 2002a). 
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Figure 1.2 The pathways for AB formation 

The production of Aβ, an amino-acid peptide, derived from the proteolytic processing of a larger plasma 

membrane bound protein known as amyloid precursor protein APP. APP is cleaved by β-secretase enzyme to 

produce βAPP and a C99 fragment. Further cleavage of C99 by γ-secretase will produce Aβ and P6.  

 

 

 

 

 

       Heat shock proteins (HSPs) 

 

Also of interest with regards to protein misfolding is Heat shock proteins (HSPs), a group of 

specialized molecular chaperons that mediate various physiological functions inside cells. 

HSPs are up-regulated in stressful conditions to restore normal structural integrity (Soti et al., 

2005). Several families of HSP have been implicated in glaucoma and other 

neurodegenerative diseases (Tezel et al., 1998;Tezel et al., 2000;Pepys, 2006) with increased 

levels of circulating autoantibodies to alpha-crystallins and HSP27 (Tezel et al., 1998), and 

increased immunostaining of HSP-60, HSP-27 in RGCs and the retinal blood vessels in 

glaucoma patients (Tezel et al., 2000). Systemic administration of Geranylgeranylacetone, an 
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anti-ulcer agent, in the rat glaucoma model has been shown to increase the expression of 

HSP-72 with a marked reduction in RGC loss (Ishii et al., 2003), possibly through interaction 

with different protein kinases such as Akt kinase, and the inhibiting NF-қB (Thomas et al., 

1998;Neckers, 2007).  

 

1.1.4.3 Inflammation 

 

Growing evidence in clinical and experimental studies strongly suggests the involvement 

of the immune system in glaucoma (Tezel, 2009). The sustained neuronal damage in 

glaucoma and other ischemic neurodegenerative conditions can trigger immune responses, 

leading to an excessive production of T-cells. The activated T cell subsequently attacks the 

antigen presented to its receptor by the major histocompatibility complex 9 (MHC 9). Up-

regulation of the MHC class II molecules on rat glial cells and stimulation of T cell activation 

in cultured retinal and optic nerve tissue have been demonstrated (Tezel et al., 2007). In a rat 

model devoid of T cells due to thymectomy there was increased RGC death after optic nerve 

crush (Yoles et al., 2001). Furthermore, several research studies showed that, augmentation 

of immune system by passive transfer of T cells directed against myelin basic proteins or 

active immunization with the myelin derived peptide, reduces RGC loss after optic nerve 

injury (Schwartz, 2001). A similar finding has been reported in rats injected with activated 

anti-myelin basic protein T cells after partial optic nerve crush (Moalem et al., 1999;Moalem 

et al., 2000) . The release of TNF-α, a potent proinflammatory cytokine, and its subsequent 

binding to the death receptor, TNF-α Recpor-1 (TNR-R1), triggers a caspase-dependent and a 

caspase-independent component of mitochondrial death promoting pathways. The TNF-α –R 

complex is able to recruit adaptor proteins that activate caspase 8, which in turn activates 

caspase 3 (Pastorino et al., 1996;Tezel et al., 2004). 
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      TNF-α  

 

TNF-α, also known as cachectin, is a cytokine that plays an important role in the regulation 

of immune cells, inflammation, as well as the induction of the caspase-dependent and caspase 

independent mitochondrial apoptotic pathways. TNF-α binding with TNF Receptor 1 (TNF-

R1) triggers a series of intracellular events initiated by recruitment of key adaptor proteins 

leading to activation of NF-қB, a redox sensitive transcription factor that is heavily 

implicated in apoptosis (Lu et al., 2010;Meinel et al., 2010). TNF-α-R1 complex upregulates 

IқB Kinases that activates the phosphorylation of the inhibitory protein IқB releasing 

activated NF-қB. The activated NF-қB can then translocate to the nucleus to exert its 

apoptotic effects (Karin and Delhase, 2000). Excessive expression of TNF-α has been 

documented on RGCs in vitro and in vivo (Fuchs et al., 2005;Kitaoka et al., 2006). Similar 

results were shown in cultured glial cells exposed to ischemic conditions and high IOP as 

well as in human glaucomatous eyes (Tezel and Wax, 2000;Tezel et al., 2001). Conversely, 

TNF-α is also proposed to have a neuroprotective action mediated through upregulating NF-

қB. TNF-α Receptor apoptotic pathway is shown in Figure 1.3 



 

 

 

 

 

29 

 

Figure 1.3 TNF-α death receptor pathways 

TNF-α binding with the death receptor TNFR1 has been implicated in the induction of caspase-dependent and 

caspase independent mitochondrial apoptotic pathways. It also up-regulates IқB Kinases that activates the 

phosphorylation of IқB to release active NF-қB. The activated NF-қB will then translocate to the nucleus to 

exert its apoptotic effects. Furthermore, activated NF-қB could exerts its proposed neuroprotective effects.  

 

 

      TNF Receptor 1 and TNF Receptor 2 

 

TNF-α activities are mediated via interaction with two distinct receptors, the death domain-

containing TNF-receptor 1 (TNF-R1) and the non-death domain-containing TNF-receptor 2 

(TNF-R2) (Wajant and Scheurich, 2001). TNFR1 has been confirmed to mediate majority of 

TNF-α biological activity (Chen and Goeddel, 2002) and has been suggested to be involved 

in the neurodegenerative process of glaucoma (Tezel et al., 2001), neuronal cell loss and 

retinal ischemia (Fontaine et al., 2002), whereas TNF-R2 showed neuroprotective activity 

and reduced retinal ischemia (ibid). 
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1.1.4.4 Mitochondrial Dysfunction  

 

Mitochondrial dysfunction is believed to play a major role in cell death due to changes in 

oxidative phosphorylation, ATP synthesis and ROS production. Mitochondria are the main 

energy source inside cells and the primary site of ROS production, making it a major target 

for reducing oxidative stress. A decrease in mitochondrial membrane potential and an 

increase in the membrane permeability have been implicated as a causative factor for RGC 

apoptosis in glaucoma (Mittag et al., 2000;Tatton et al., 2001;Tezel and Yang, 2004). 

Glaucoma-related stimuli such as hypoxia, TNF-α and oxidative stress can trigger the 

mitochondrial-mediated RGC death pathway. In glaucomatous stress, mitochondria buffer 

excess cytosolic Ca+2 leading to intra-mitochondrial accumulation of Ca2+, mitochondrial 

membrane depolarization and the production of ROS (Kristian and Siesjo, 1998). This has 

been shown to trigger the opening of the mitochondrial permeability transition pore (PTP) 

with subsequent release of apoptosis-inducing proteins, such as cytochrome c (Nickells, 

1999), and CPP32 (caspase 3 activators) (Marchetti et al., 1996;Hirsch et al., 1997).  

Released cytochrome c from the mitochondria, complexes with apoptotic protease-activating 

factor-1 (Apaf-1) and procaspase 9 to form the apoptosome, which in turn activates caspase 

3, leading to chromatin condensation and DNA fragmentation. Furthermore, cytochrome c 

release has been implicated in inducing mitochondrial dysfunction and ROS production 

(Ricci et al., 2003), creating a positive feedback loop. 

The release of cytochrome c is regulated by the competitive actions, at the surface of the 

mitochondria of a family of cell death regulators, the Bcl-2 protein family (Ow et al., 2008). 

This family of proteins includes both pro as well as anti-apoptotic molecules and the ratio 

between these molecules is crucial in a cell’s final decision to live or die (Gross et al., 

1999a). The members of BCL-2 family of proteins have been found to have up to four BCL-2 
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homology (BH) domains  that correspond to α-helical segments and nominated as BH1, BH2, 

BH3 and BH4 (Gross et al., 1999a). In figure 1.4 it can be seen that the BCL-2 family of 

proteins can be divided into the pro-survival Bcl-2 subfamily which includes Bcl-2, Bcl-XL, 

Bcl-w, Mcl-1 and A1, the pro-apoptotic Bax subfamily including Bax, Bak and Bok, and the 

pro-apoptotic BH3 subfamily that includes Bad, Bid, Bik, Blk, Hrk, BNIP3 and Bim (Gross 

et al., 1999a). 

 The Bcl-2 protein can prevent apoptosis induced by various stimuli and has a vital role in 

maintaining mitochondrial integrity, whereas conversely, Bax has been implicated in 

mitochondrial-mediated apoptosis in various neuronal cells by promoting the release of 

cytochrome c from the mitochondria  (Merry and Korsmeyer, 1997;Gross et al., 1999a). It is 

believed that a high Bax/Bcl-2 ratio affects mitochondrial outer membrane permeability via 

multiple mechanisms (Scorrano and Korsmeyer, 2003) and stimulates mitochondrial-induced 

death pathways (Deckwerth et al., 1996;Wei et al., 2001) as summarized in figure 1.4  

Mitochondria are also involved in the exacerbation of extrinsic or death receptor mediated 

apoptosis. Bid, a proapoptotic protein member of the Bcl-2 family is cleaved by death 

receptors and caspase-8 to yield a truncated Bid (Li et al., 1998), which is able to translocate 

to the mitochondria and mediate cytochrome c release. 
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Figure 1.4 Summary of anti and pro-apoptotic BCL-2 family members 

Taken from (Gross et al., 1999a) 

 

 
Figure 1.5 Mitochondrial death pathways 

The caspase-dependent mitochondrial death pathway is initiated by cytochrome c release inducing activation of 

caspase-9, and caspase-3, which is the primary activator of DNA fragmentation, whereas the caspase-

independent pathway, activated by calpain, will induce release of AIF, which will translocate to the nucleus to 

enhance DNA damage. Apoptotic stimuli, such as stress or activation of death receptors, converts Bid to tBid, 

which affects mitochondrial membrane permeability and leads to release of death inducing proteins such as 

cytochrome c. A high Bax/Bcl-2 ratio can also affect mitochondrial outer membrane permeability and stimulate 

the intrinsic mitochondrial pathway and cytochrome c independently of tBid. Trophic factor receptors and the 

antiapoptotic members of Bcl-2 family have inhibitory effects on cytochrome c release preventing activation of 

mitochondrial death pathways.  
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1.1.4.5 Excitotoxicity 

 

Excitotoxicity is the pathological process by which RGCs (Osborne et al., 1999;Casson, 

2006) and other neuronal cells die as a result of excessive extracellular glutamate (Olney, 

1969;Choi, 1992;Doble, 1999). As outlined in figure 1.5 glutamate released from the 

apoptotic cell can trigger necrotic death of surrounding cells that have been spared from the 

original insult initiating a cascade of autodestruction, further cellular injury and death 

(Osborne et al., 1999;Casson, 2006;Cheung et al., 2008a). Several studies have confirmed the 

neurotoxic effect of glutamate in the retina (Hyndman, 1984;Gross et al., 1999b;Kawasaki et 

al., 2000;Luo et al., 2001), whilst others have suggested that glutamate-mediated RGC injury 

and death contributes to glaucoma (Dreyer et al., 1996;Brooks et al., 1997;McIlnay et al., 

2004;Moreno et al., 2005;Guo et al., 2006;Salt and Cordeiro, 2006). 

 

      Mechanism of Excitotoxicity 

 

  

Glutamate binding of NMDA receptors depolarizes the RGCs, permitting the influx of Ca
2+

. 

Excess Ca
2+

 further increases Ca
2+

 entry through voltage-gated Ca
2+ 

channels, enhancing Ca
2+ 

release from the
 

endoplasmic reticulum, stimulating Ca
2+

/Na
+
 exchange and further 

increasing the Ca
2+

 dependent release of vesicular glutamate from the nerve terminal. This 

glutamate will induce further Ca
2+

 influxes through NMDA, AMPA and Kainate receptors 

(Casson, 2006). The high intracellular Ca
2+ 

triggers a cascade of events including disruption 

of mitochondrial function, leading to increased reactive oxygen species (ROS) production 

and the release of cytochrome c and apoptosis inducing factor (AIF) in mitochondria 

((Marigo, 2007). Subsequently AIF translocates from the cytoplasm to the nucleus where it 

initiates nuclear chromatin condensation and DNA fragmentation (Figure 1.5 a), thereby 
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triggering the caspase-independent apoptotic pathway (Zhang et al., 2002). Release of 

mitochondrial cytochrome c (Figure 1.5 b) triggers a range of events including the activation 

of caspase-9, and the subsequent activation of caspase-3. In addition, raised intracellular 

calcium as illustrated in figure 1.5, also stimulates calcium dependent proteases such as 

calpain (Zhang and Bhavnani, 2006), proteolytic enzymes such as lipases, proteases, and 

nucleases (Casson, 2006), and the inducible form of nitric oxide synthase enzyme (iNOS) 

generating nitric oxide and reactive oxygen species (ROS).  

 

 

Figure 1.6 Excitotoxicity in RGCs 

In excitotoxicity, the high intracellular Ca+2 levels lead to release of the mitochondrial apoptotic inducing factor 

(AIF) (a), which translocates to the nucleus and initiates nuclear chromatin condensation and DNA 

fragmentation thereby triggering the caspase-independent apoptotic pathway. Release of mitochondrial 

cytochrome c (b) induces activation of caspase-9, and caspase-3. Caspase-3 is the primary activator of DNA 

fragmentation, as well as stimulation of the calcium dependant protease. High Ca
+2

 levels (c) will also induce 

the production of the inducible form of Nitric Oxide Synthase enzyme (iNOS) generating free radicals such as 

nitric oxide.  
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1.1.4.6 Neurotrophin Deprivation 

 

Neurotrophic factors are small molecular weight peptides that are widely expressed in the 

RGCs (Jelsma et al., 1993) and have an indispensible role in growth, differentiation and 

survival. They include: nerve growth factor (NGF) which bind with one of the tropomyosin-

related kinase receptors known as  neurotrophic tyrosine kinase receptor type 1 (Trk A) 

(Kaplan et al., 1991), brain-derived neurotrophic factor (BDNF), Neurotrophine 4 and 5 

(NT4 and NT5) which exert their action via neurotrophic tyrosine kinase, receptor, type 2 

(Trk B) (Barde et al., 1982;Berkemeier et al., 1991) and NT3 which binds  neurotrophic 

tyrosine kinase receptor type 3 (TrkC) (Hohn et al., 1990;Rosenthal et al., 1990). Several 

research studies demonstrated that the flow of the neurotrophic factors from the superior 

colliculus in the CNS to the RGCs is markedly reduced in the animal model of glaucoma, 

where both the retrograde and the anti-retrograde axonal transport are compromised 

(Anderson and Hendrickson, 1974;Hayreh et al., 1979;Rudzinski et al., 2004). This leads to a 

reduction in neuronal trophic support, which in turn compromises neuronal survival and 

triggers a series of molecular events, stimulating the apoptotic cascade, as seen in RGCs 

following transection of the optic nerve (Berkelaar et al., 1994).   
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1.1.5 Neuroprotection in glaucoma 

 

 

Neuroprotection can be defined as a therapeutic approach aiming at directly preventing, 

hindering and, in some cases, reversing neuronal cell damage (Society, 2008) 

Neuroprotection in glaucoma is becoming a key research area as traditional strategies of 

lowering IOP have been shown to be unable to prevent progressive vision loss in all 

glaucoma patients, where  some patients can continue deteriorating in spite of an apparently 

controlled IOP (Group, 1998). 

Research studies have shown that RGC damage is not confined to the primary insulted 

neurons, but that secondary injury follows which affects the neighboring neurons as well 

(Chidlow et al., 2007). It is therefore believed that in glaucoma, treatment modalities that 

directly target both primary and secondary degeneration of the RGCs are required. This 

makes the prospect of discovering alternative therapeutic approaches independent of IOP 

reduction highly sought after, as IOP lowering therapy is indirect and not completely 

effective at preventing RGC loss.  

RGCs and the optic nerve are integral parts of the central nervous system (CNS) and a link 

has been demonstrated between mechanisms of cell death in glaucoma and Alzheimer's 

disease (AD) (Weber et al., 2000;Guo et al., 2006;Gupta et al., 2006;Guo et al., 2007b). 

Therefore, glaucoma may be viewed as a neurodegenerative disease of the CNS, and 

neuroprotective agents that have been approved for the treatment of neurodegenerative 

diseases such as AD (Reisberg et al., 2003) and Amyotrophic lateral sclerosis (ALS) 

(Bensimon et al., 1994;Lacomblez et al., 1996), are being assessed for the treatment of 

glaucoma (Cheung et al., 2008a).  
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1.1.6 Targets for neuroprotection in glaucoma  

 

The various proposed mechanisms of RGC cell death which have been detailed previously 

section (1.1.4); have been investigated through the use of both in vitro and in vivo models, as 

shown in Table 1.3. The advantages, disadvantages and how closely these different models 

correlate to primary open angle glaucoma (POAG) in humans have recently been the focus of 

some comprehensive reviews (Johnson and Tomarev, 2010).  It is important to recognize that 

there is still no perfect model of glaucoma, and translating results from preclinical to clinical 

studies is often problematic. 

 

The possible role of ROS in glaucoma has led to the investigation of multiple anti-oxidants as 

potential neuroprotective agents on RGCs both in vivo and in vitro as summarized in Table 

1.3 including Aminoguanidine, Brazilian Green Propolis, Carotenoids such as Lutein and 

Zeaxanthin, beta-carotene and Docosahexaenoic acid. Other drugs in this group are: Trolox, 

15d-PGJ2 and troglitazone.  

 

 Ginkgo biloba is perhaps the most promising antioxidant compound and will be discussed in 

detail in the second section of this chapter. Another compound with high neuroprotective 

potential within this group is Melatonin, a potent, naturally occurring antioxidant with free 

radical scavenging activity, which displays a critical role in aqueous humour circulation 

(Wiechmann and Wirsig-Wiechmann, 1994;Dubocovich et al., 1997;Sugden et al., 

1997;Wiechmann et al., 1999). Its neuroprotective actions are believed to be mediated via 

multiple mechanisms including reducing single and double strand breaks in DNA (Sun et al., 

2002), increasing Akt phosphorylation (Kilic et al., 2005a;Lee et al., 2006;Tajes Orduna et 

al., 2009), reducing NO-induced apoptosis (Siu et al., 2004) and inhibiting the mitochondrial 
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transition pores and cytochrome c release (Andrabi et al., 2004;Jou et al., 2004;Kilic et al., 

2004). Melatonin demonstrated a neuroprotective effect on RGCs in vivo (Siu et al., 

2004;Tang et al., 2006), it also protected rabbit retinal neurons in vitro (Cazevieille and 

Osborne, 1997). 

Modulation of NMDA receptor has constituted a major area of research in glaucoma 

neuroprotection (Guo et al., 2006;Dong et al., 2008). In vivo and in vitro studies have 

suggested that blocking both the NMDA and the non-NMDA receptors simultaneously offers 

optimal protection against ischemic neurodegeneration (Mosinger et al., 1991;Leinders-

Zufall et al., 1994). There are several anti-excitotoxic drugs that have been investigated in 

vivo and in vitro, that exert their neuroprotective actions by overcoming the glutamate-

induced excitotoxicity on the NMDA receptors such as the Ifennprodil, Eliprodil, Flupirtine 

and dextromethomethorphan as in Table 1.3 but the most prominent amongst them are 

MK801 and memantine. MK801, also known as (+)-5-methyl-10, 11-dihydro-5H-dibenzo [a, 

d]cyclohepten-5, 10-imine maleate, is a non-competitive antagonist of the NMDA receptor 

and has demonstrated neuroprotective potential in the CNS for many years (Foster et al., 

1988;el-Asrar et al., 1992;Tamura et al., 1993). 

 

MK-801 has also been found to protect RGCs both in vitro (Tsuda, 2004) and in vivo in the 

optic nerve injury model (Russelakis-Carneiro et al., 1996), the laser-induced retinal injury 

rat model (Solberg et al., 1997), and in the OHT models (Chaudhary et al., 1998;Guo et al., 

2006). Work on the experimental model of high IOP-induced retinal ischemia verified the 

neuroprotective effect of MK801 to be mediated through decreasing Bad expression (Russo 

et al., 2008). The effect of MK-801 in vivo on RGC apoptosis in a staurosporine-induced 

retinal toxicity model
 
showed a reduction in the number of

 
apoptotic RGCs in comparison to 
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the controls (Guo et al., 2006). Unfortunately, MK801 is not used clinically because of its 

neurotoxic effect (Olney et al., 1989;Fix et al., 1993), which is believed to be due to high 

affinity to the NMDA receptors and its long stay time in the channel (Lipton, 1993). 

 

Another interesting drug is Memantine, also known as 1-amino-3, 5-dimethyl-adamantane, is 

a three-ringed structural derivative of the anti-influenza drug, amantadine (Cheung et al., 

2008a). The additional amine (–NH2) and two methyl (–CH3) side groups are thought to be 

responsible for the increased residency with, and affinity for, NMDA receptors in relation to 

amantadine (Lipton, 2006). Memantine, however, exhibits strong voltage dependency with 

rapid blocking/unblocking kinetics, displaying weak potency during the normal synaptic 

transmission (Johnson and Kotermanski, 2006). 

 The Food and Drug Administration (FDA) approved Memantine, for treating moderate to 

severe Alzheimer’s disease (Reisberg et al., 2003). It is the only neuroprotective agent that 

has completed a phase III clinical trial in patients with OAG. Memantine’s efficacy as a 

neuroprotectant for glaucoma, however, was shown to be ineffective, with the variable 

mechanisms of retinal ganglion apoptosis being offered as an explanation (Osborne, 2008), 

although an inadequate design of study and an inappropriate end point could be the reasons 

for this result. 

 

Potential neuroprotective agents aimed at targeting AMPA/Kainite receptors has been widely 

studied, DNQX, 6,7-Dinitroquinoxaline-2,3-dione, is an AMPA receptor antagonist that has 

shown greater enhancement of RGC survival than MK-801 (Schuettauf et al., 2000), whilst 

Riluozole has been shown to decrease pressure induced apoptosis and enhance ERG wave 

recovery, highlighting the benefits of targeting multiple receptors in excitotoxic cell death. 
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Another potential neuroprotective pathway is through the mediation of acetylcholine (ACh) 

receptors, as has been seen in studies on the ACh esterase inhibitor, Galatamine, a drug 

clinically used in the treatment of AD. Galatamine potentially activates muscarine AChR, 

leading to RGC protection independent of IOP level (Almasieh et al., 2010). 

 

Drugs designated to target β-Amyloid (Aβ) include β-secretase inhibitors (ΒSI) such as N-

benzyloxycarbonyl-Val-Leu-leucinal (Z-VLL-CHO) which has been found to reduce RGC 

apoptosis in vitro and in vivo (Yamamoto et al., 2004;Guo et al., 2007a), as well as Congo 

red and Anti-Aβ antibodies (Lorenzo and Yankner, 1994;Guo et al., 2007a). Triple therapy, 

targeting different stages of the Aβ pathway using ΒSI, Anti-Aβ antibodies and Congo red, 

has a superior neuroprotective effect on RGC apoptosis in a rat ocular hypertension, both in 

vitro and in vivo in relation to singular treatments (Guo et al., 2007a). 

 

Several compounds, outlined in Table 1.3, have been proposed to enhance the available 

energy within the cell and prevent mitochondrial depolarization. Coenzyme Q10 (CoQ10), also 

known as Ubiquinone, plays an indispensable role in energy metabolism. It serves as a co-

factor within the respiratory chain, carrying electrons and facilitating ATP production. It has 

been found to be highly effective as a neuroprotectant in animal models of neurodegenerative 

diseases such as Parkinson's disease, Huntington's disease and Friedreich's ataxia (Beal, 

2003). Its neuroprotective effect on RGCs both in vivo and in vitro, is believed to be 

multifactorial (Nucci et al., 2007b;Nakajima et al., 2008), exerted not only through mediation 

of electron transport from complex I and II to complex III within the electron transport chain 

but also through its antioxidant properties, regulation of gene expression, and inhibition of 

the PTP (Papucci et al., 2003;Cheung et al., 2008a). 
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Anti-inflammatory drugs, which target the TNF-α signalling pathway and displayed 

neuroprotective activity has become an area of increasingly active investigation including as 

can be seen in Table.1, Agmatine, Curcumin, Pitavastatin, and GLC756. 

 

The most promising anti-inflammatory drug is Copolymer-1 (Cop-1), also known as 

glatiramer acetate, which was approved by the FDA to treat Multiple Sclerosis (MS). Cop-1 

is a low affinity synthetic non-encephalitogenic analogue to myelin basic protein, triggering a 

neuroprotective autoimmune response, by binding to MHC proteins and cross reacting with 

various T cell and CNS myelin. Cop-1 displayed neuroprotective activity on RGCs in vivo in 

the rat model of optic nerve crush (Kipnis et al., 2000), in animal models of high IOP 

(Bakalash et al., 2003;Ben Simon et al., 2006), and against glutamate-induced excitotoxicity 

(Schori et al., 2001). This neuroprotective effect is believed to be mediated by increasing the 

number of T-Lymphocytes in a rat model of glaucoma (Li et al., 2008). 

 

Various growth factors have successfully been investigated as a neuroprotectant, as seen in 

Table 1.3 Ocular application of the NGF has demonstrated neuroprotective effects both 

experimentally in the Morrison’s glaucoma model (Lambiase et al., 2009;Colafrancesco et 

al., 2010) and clinically in patients with progressive visual field defects despite controlled 

IOP (Lambiase et al., 2009).  However, sustainability remains a limitation. Following 

prolonged treatment with neurotrophins, RGCs exhibited a decrease in neurotrophin receptor 

expression reducing the effectiveness of the treatment. To overcome this a combination of 

neurotrophin and TrkB gene transfer has been performed to up regulate the receptors and 

protect RGCs in vivo in the axotomy model (Cheng et al., 2002). 
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The field of gene therapy in neuroprotection has been recently investigated and it is growing 

rapidly (Wax and Patil, 1994;Liu et al., 2009). In glaucoma it is becoming a highly accessible 

approach (Harvey et al., 2006), because trabecular meshwork, ciliary epithelium, ciliary 

muscle, Muller cells and RGCs are all appropriate target structures for gene therapy, with 

various delivery systems having been tested including: adenoviruses (Ads), 

adenoassociated viruses (AAVs), herpes simplex viruses (HSVs), lentiviruses (LVs; feline 

immunodeficiency virus (FIV) human immunodeficiency virus (Kroemer et al.), liposomes 

(LPs), and naked DNA(Borras et al., 2002). 

 

A promising agent for glaucoma therapy is BIRC-4, also known as XIAP (IAP: inhibitors of 

apoptosis protein). Intravitreal injection of adeno-associated viral vector using chicken-β-

actin (AAV-CBA) coding for human BIRC4 in the rat model of chronic glaucoma resulted in 

marked reduction in RGC apoptosis which lasted for 12 weeks. This neuroprotective effect is 

believed to be mediated either via direct inhibition of caspase-3 and caspase-8, or indirectly 

by maintaining the neurotrophin production from Muller cells and influencing aqueous 

humour circulation or a combination of both (McKinnon et al., 2002b).   

 

The last group in Table 1.6 includes compounds with multiple mechanisms of action: 

Estrogens, Brimonidine and Cannabinoids. Estrogens, cholesterol derived steroid hormones, 

maintain the normal function of various organs, with estrogen receptors ERα and ERβ widely 

expressed in human and animal retinal tissues (Kobayashi et al., 1998;Ogueta et al., 1999). 

Estrogen has demonstrated neuroprotective effects on animal models of Alzheimer's 

(Simpkins et al., 2005) and other neurological diseases (Hoffman et al., 2006) The 

neuroprotective action of estrogen is believed to be mediated via multiple mechanisms; the 
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binding with estrogen receptors ERα and ERβ (Singer et al., 1996;Dubal et al., 

2001;D'Astous et al., 2004), activation of antiapoptotic genes such as Bcl-2 and Bcl-xl 

(Garcia-Segura et al., 1998), inhibition of mitochondrial oxidative stress (Razmara et al., 

2007), inhibition of β-amyloid induced neuronal death, as well as stimulation of Akt/PI-3k 

pathway (Honda et al., 2000;Zhang et al., 2001). 17β-estradiol of rat cortical neurons exposed 

to glutamate demonstrated increased neuronal integrity and function mediated possibly via a 

reduction in the levels of caspase-3 and calpain (Sribnick et al., 2004).  

An Estradiol analogue has also demonstrated protective effects on the retinal pigment 

epithelium (RPE) (Dykens et al., 2004;Yu et al., 2005), and on the RGCs in vitro (Kumar et 

al., 2005) and in vivo (Nakazawa et al., 2006;Zhou et al., 2007).  

 

Brimonidine tartrate 0.2% is known also as UK-14, 304, is a third generation α2 adrenergic 

agonist that draws the interest of many researchers in the field of neuroprotection. The 

neuroprotective effect of Brimonidine on RGCs has been demonstrated in vivo (Wheeler et 

al., 1999;Donello et al., 2001;WoldeMussie et al., 2001) and in vitro (Knels et al., 2008). The 

mode of action for Brimonidine however remains unclear with various proposed 

mechanisms. The positive effect of Brimonidine on RGC survival, that includes a reduction 

in their soma size in a rat model of ocular hypertension, is believed to be mediated through 

the attenuation of glutamate toxicity and the up regulation of brain-derived neurotrophic 

factors (Hernandez et al., 2008). However, in a rat model of pressure-induced retinal 

ischemia, Brimonidine’s neuroprotective effect was suggested to be mediated via induction 

of anti-apoptotic genes Bcl-2 and Bcl-x, as well as extracellular-signal-regulated kinases and 

phosphatidylinositol-3′ kinase/protein kinase Akt pathways (Lai et al., 2002). Whilst, 

Brimonidine’s effect on RGCs in isolated rat retinas, as well as in vivo in rat and rabbit 

glaucoma models was shown to be mediated through the reduction of α2-adrenoceptor 
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mediated reduction of intracellular cAMP (Dong et al., 2008). 

A clinical trial assessing the non-IOP-related effects of Brimonidine, demonstrated a 

reduction in visual field deterioration in comparison to 360° laser trabeculoplasty (Gandolfi 

et al., 2004), whilst the promising result of Brimonidine treatment in the Low-Pressure 

Glaucoma Treatment Study are now published (Krupin et al., 2011). 
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Table 1.3 Summary of potential neuroprotective agents and their pro-apoptotic targets 

Pro-Apoptotic 

Mechanism  
Target      Compound   Model     References 

Oxidative stress NOS Ginkgo biloba in vitro Alloxan, Glutamate 
Dexamethsone. 
in vivo   OHT 

 (Thiagarajan et al., 2002)      

 

(Hirooka et al., 2004) 

  Aminoguanidine            in vitro explant                                                                                       
in vivo OHT                                                    

 (Katsuki et al., 2004)    

 (Neufeld et al., 1999;Neufeld, 2004)    

 ROS Brazilian green 
Propolis 

in vitro H2O2, SSP, Oxygen-Glucose 
deprivation/Reoxygenation 
in vivo   NMDA 

(Inokuchi et al., 2006;Nakajima et al., 2009a) 

 

(Inokuchi et al., 2006)    

  Carotenoids  in vitro H2O2, SS     
in vivo  OHT, Ischemia 

(Nakajima et al., 2009b) 

(Neacsu et al., 2003;Li et al., 2009) 

  Melatonin  in vitro     Ischemia, Kainate   
in vivo Ischemia, Kainate                    

(Cazevieille and Osborne, 1997) 

(Siu et al., 2004;Tang et al., 2006) 

  Tocopherol   in vitro H2O2 
in vivo ischemia 

(Nakajima et al., 2008) 

(Aydemir et al., 2004) 

  PPAR-g agonists             in vitro glutamate (Aoun et al., 2003)  

Protein Misfolding Aß Congo Red in vitro 
in vivo OHT,  Aß 

(Yamamoto et al., 2004) 

 (Lorenzo and Yankner, 1994;Guo et al., 2007a) 

  Anti-ß-amyloid in vitro 
in vivo OHT,  Aß 

(Yamamoto et al., 2004) 

 (Lorenzo and Yankner, 1994;Guo et al., 2007a) 

 ß-secretase  
 

Z-VLL-CHO                       in vitro 
in vivo OHT,  Aß 

(Lorenzo and Yankner, 1994) 

(Guo et al., 2007a) 

 HSP GGA in vivo OHT (Ishii et al., 2003) 

Mitochondrial 

Dysfunction 
ROS FK506 

 
in vivo Optic Nerve Crush 
in vitro Ischemia 

(Huang et al., 2005) 

(Chidlow et al., 2002) 

  Lipoic Acid In vivo (Aged, Ischemia) (Hagen et al., 1999;Chidlow et al., 2002;Liu et al., 

2002)                                                   
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Pro-Apoptotic 

Mechanism 
Target      Compound   Model     References 

 ROS, NF-kB 
 

 

Creatine 
 

in vitro Glutamate 
in vivo Animal Model, MPTP 

(Klivenyi et al., 1999;Juravleva et al., 2005) 

(Matthews et al., 1998;Klivenyi et al., 

1999;Matthews et al., 1999) 

  
Unknown 
 

 
EGCG 
 

In vitro Ischemia, Light insult, H2O2 
 
in vivo Ischemia. 
 

(Yang et al., 2007;Zhang et al., 2007;Zhang et al., 

2008) 

(Negishi et al., 2004;Zhang et al., 2007;Zhang et 

al., 2008) 

 PI3-Akt, NF-kB       
 

Erythropoietin 
 

in vivo Ischemia, Optic Neuritis, 

Axotomy, Cytokines, DBA/2J 
(Digicaylioglu and Lipton, 2001;Junk et al., 

2002;Sattler et al., 2004;Kilic et al., 2005b;Zhong 

et al., 2007) 

 Unknown Nicotinamide in vitro Ischemia, Light insult 
 

(Ji et al., 2008) 

 PTP CoQ10 in vitro SS, Antimycin A, Ceramide, 

UVC, H2O2     
in vivo Ischemia, NMDA 

(Papucci et al., 2003;Nakajima et al., 2008) 

 

(Nucci et al., 2007b;Nakajima et al., 2008)                                                                                                                                    

Inflammation and 

immunological 

strategies 

Multiple Curcumin in vitro IS, NMDA,  H2O2 
in vivo ATM 

(Mandal et al., 2009;Teiten et al., 2009) 

(Lim et al., 2001) 

 

 ROS   Pitavastatin  in vivo NMDA (Nakazawa et al., 2007) 

 Myelin Basic 

Protein 
Cop-1 in vivo OHT,Optic Nerve Crush, 

Glutamate 
(Kipnis et al., 2000;Schori et al., 2001;Bakalash et 

al., 2003;Ben Simon et al., 2006;Li et al., 2008) 

 TNF-α  
 

GLC756   in vitro IS 
in vivo IS 

(Laengle et al., 2006) 

 Unknown Agmatine  in vitro Hypoxia, NMDA, TNF-α  (Wang et al., 2006;Hong et al., 2007;Hong et al., 

2009) 
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Pro-Apoptotic 

Mechanism 
Taeget      Compound   Model     References 

Excitotoxicity NMDR Memantine in vitro NMDA 
in vivo OHT, Optic nerve crush, 

UEG, DBA/2J, Ischemia 

(Pellegrini and Lipton, 1993) 

(WoldeMussie et al., 2002;Yucel et al., 2006;Ju et 

al., 2009) 

  MK801 in vitro Hypoxia, Glutamate     
 

(Tsuda, 2004) 

(Russelakis-Carneiro et al., 1996;Solberg et al., 

1997;Chaudhary et al., 1998;Guo et al., 

2006;Russo et al., 2008) 

  Flupritine in vitro  NMDA 
in vivo  Ischemia                  

(Nash et al., 2000) 

(Nash et al., 2000) 

 

   DXM in vitro Hypoxia 
in vivo Laser, OHT, SSP, Subdural 

Hematoma 

(Goldberg et al., 1987) 

(Duhaime et al., 1996;Calzada et al., 2002;Guo et 

al., 2006) 

  Eliprodil     
 

in vitro Glutamate 
in vivo NMDA, Ischemia 

(Kapin et al., 1999;Pang et al., 1999) 

(Kapin et al., 1999) 

  Ifenprodil in vitro Glutamate 
in vivo OHT,SSP       

(Tamura et al., 1993) 

(Guo et al., 2006) 

  P38 inhibitor in vivo Axotomy (Kikuchi et al., 2000) 

 AMPA/Kainate-R Topiramate                 in vitro Glutamate, Kainate 
 
in vivo Ischemia 

(Gibbs et al., 2000;Skradski and White, 

2000;Yoneda et al., 2003) 

(Yoneda et al., 2003) 

  DNQX   in vitro Glutamate 
in vivo Optic Nerve Crush 

(Otori et al., 1998) 

(Schuettauf et al., 2000) 

  Arachidonic Acid in vitro Glutamate 
 
in vivo Kainate 

(Miller et al., 1992;Kovalchuk et al., 

1994;Kawasaki et al., 2002) 

(Cunha et al., 2004) 

 mGluR2/mGluR3 LY354740  in vivo Ischemia, OHT, SSP  (Guo et al., 2006) 
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Pro-Apoptotic 

Mechanism   
Target      Compound   Model     References 

 Ca+2 Flunarizine in vitro NMDA 
in vivo Axotomy, Ischemia, NMDA                                                   

(Osborne et al., 2002) 

(Eschweiler and Bahr, 1993;Osborne et al., 

2002) 

  Diltiazem in vitro Glutamate 
in vivo  Ischemia   

(Vallazza-Deschamps et al., 2005) 

(Vallazza-Deschamps et al., 2005) 

  Riluzole in vivo  Axotomy (Ettaiche et al., 1999) 

  TRPV1 agonist in vitro  hydrostatic pressure   
in vivo  DBA/2 mouse 

(Sappington et al., 2009) 

(Sappington et al., 2009) 

 Na+ channels Phenytoin in vivo  Optic Nerve Crush, OHT (Naskar et al., 2002;Hains and Waxman, 2005) 

 

 ACh-R Galantamine in vivo  Axotomy, OHT  
 

(Tamura et al., 1993) 

Neurotrophin 

withdrawal 
TrkB, p75 BDNF in vitro  BDNF withdrawal 

in vivo Axotomy, Superior Colliculus 

remova, OHT 

(Johnson et al., 1986;Rodriguez-Tebar et al., 

1989) 

(Mansour-Robaey et al., 1994;Cui and Harvey, 

1995) 

  NT-1 in vivo  Optic Nerve Crush, NMDA (Senaldi et al., 1999;Schuettauf et al., 2005) 

 TrkB NT-4/5 in vivo Superior Colliculus removal (Cui and Harvey, 1995) 

 CNTF receptor CNTF in vivo OHT (Ji et al., 2004;Pease et al., 2009) 

 GFRA-1,GFRA-2 GDNF in vivo OHT (Jing et al., 1996;Naskar et al., 2000;Jiang et 

al., 2007;Ward et al., 2007) 

 TrkA NGF TrkA agonist in vivo OHT, axotomy (Lambiase et al., 2009;Lebrun-Julien et al., 

2009;Colafrancesco et al., 2010) 

Gene therapy RrkB, BIRC-4, 

GDNF 
Viral Vectors in vivo OHT, axotomy (Cheng et al., 2002;McKinnon et al., 

2002b;Pease et al., 2009) 
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NMDA= N-methyl-D-aspartic acid, OHT= Ocular Hypertension, UEG= Unilateral experimental glaucoma, DBA/2J= Mouse model of Glaucoma, MCAO= Middle Cerebral 

Artery Occlusion, SSP= staurosporine, DXM= Dextromethorphan, DNQX= 6,7-Dinitroquinoxaline-2,3-dione, ROS=Reactive Oxygen Species, MPTP= 1methyl-4-phenyl-

1,2,3,6-tetrahydropyridine, EGCG= Epigallocatechin Gallate, PTP= Mitochondrial Permeability Transition Pore, SS= Serum Starvation, UVC= Ultraviolet Subtype C, Aß = 

Amyloid-ß,  HSPs= Heat Shock Proteins, GGA= Geranylgeranylacetone, NOS= Nitric Oxide Synthase, IS= Immune Stimulated, TNF-α = Tissue Necrosis Factor α , 

ATM=Alzheimer transgenic mouse, SHRSP= stroke-prone spontaneously hypertensive rats, ACh-R= acetylcholine receptors. Taken from (Baltmr et al., 2010)

Pro-Apoptotic 

Mechanism 
Target      Compound   Model     References 

Multiple 

mechanisms 
Multiple Estrogen in vitro Glutamate 

in vivo Ovariectomy, DBA/2J 
(Sribnick et al., 2004;Kumar et al., 2005) 

(Nakazawa et al., 2006) 

  Brimonidine in vitro NMDA, Glyoxal, H2O2 
in vivo Ischemia, Optic Nerve Crush, 

OHT 

(Knels et al., 2008) 

(Wheeler et al., 1999;Donello et al., 

2001;WoldeMussie et al., 2001;Lai et al., 

2002;Dong et al., 2008;Hernandez et al., 2008) 

  Cannabinoids in vitro Potassium Chloride, 

Ischemia 
in vivo NMDA, Ischemia 

(El-Remessy et al., 2003;Nucci et al., 2007a) 

 

(Opere et al., 2006) 
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1.2 Ginkgo biloba 
 

 

Ginkgo biloba has been integral part of traditional medicine for centuries, for treating 

a wide range of neurodegenerative diseases including Alzheimer’s disease (Kanowski 

et al., 1996;Ahlemeyer and Krieglstein, 2003;Yancheva et al., 2009), AMD 

(Lebuisson et al., 1986)  and low-tension glaucoma (Quaranta et al., 2003). Ginkgo 

biloba has attracted considerable interest because it is believed to have several 

biological actions which combine to make it a potentially significant agent in 

neurodegenerative diseases including improvement of central and peripheral blood 

flow, reduction of vasospasm, reduction of serum viscosity, antioxidant activity, 

platelet activating factor inhibitory activity, inhibition of apoptosis, and inhibition of 

excitotoxicity (Ahlemeyer and Krieglstein, 2003;Chan et al., 2007). 

 

1.2.1 Plant Description and the available forms 

 

 

Ginkgo biloba tree is believed to be one of the oldest existing species, which has been 

used in non-conventional Chinese medicine since 3000BCE (Ritch, 2000) and it is  

amongst the most extensively studied plant–based drug nowadays (van Beek and 

Montoro, 2009).  

The Ginkgo biloba tree, which is also  known as Fossil tree, Kew tree and Maidenhair 

tree (Diamond et al., 2000), has short branches with two lobed, fan shaped leaves 

around 3 inches long with indigestible fruits. The fruit contains an inner seed (ibid). 
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Figure 1.7 Ginkgo biloba leaves and fruits 

Taken from (RAKSA THAI HERBS CO., 2010) 

 

The leaves of Ginkgo biloba are subjected to multistep extraction procedure to form a 

concentrated standardized extract, Ginkgo biloba extract (EGb761) (Chan et al., 

2007). EGb761 is a brown powder with a characteristic odor (van Beek and Montoro, 

2009), which contains two major pharmacologically active groups of compounds: 

24% flavone glycosides and 6% terpene trilactones (van Beek, 2002). Flavone 

glycosides are composed of quercetin, kaempferol and isorhamnetin glycosides (1–3) 

and the terpene trilactones are composed of A, B, C, and J ginkgolides and bilobalide. 

In addition, the extract also contains non-flavonol glycosides, proanthocyanidins, 

carboxylic acids that can be divided into non-phenolic and phenolic acids. The 

phenolic acid including ascorbic, D-glucaric acid, quinic acid and shikimic acid, and 

the phenolic acids includes 6-hydroxykynurenic acid (6-HKA). EGb 761 also contains 

alkylphenols, glucose, rhamnose and various other constituents (Ahlemeyer and 

Krieglstein, 2003;van Beek and Montoro, 2009). EGb761 constituents are illustrated 
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in table 1.4 and the chemical structure of the terpene trilactones fraction of Ginko 

biloba: Ginkgolides and Bilobalide, principle constituents of Ginkgo biloba, which 

have been used in this study are given in Figure 1.2 

Ginkgo biloba is available as the standardized extract EGb 761, in the form of 40-240 

mg tablets, 40 mg eye drops, fluid extract, alcoholic extract with 40-60% ethanol 

(tinctures), or fluid extract made with glycerites and as a dried leaf for tea (Chan et 

al., 2007). The recommended daily dose of EGb761 is 120-240 mg/day, with the 240 

mg having superior therapeutic effect (Diamond et al., 2000;Le Bars and Kastelan, 

2000).   

 

 

Table 1.4 Constituents of Ginkgo biloba extract EGb761Table  

Compound 

 

Percentage % 

Flavone glycosides: 

Quercetin, kaempferol and isorhamnethin 

24% 

Terpene trilactones: 

1. Bilobalide  

2. Ginkgolide A, B, C and  J 

6% 

2.9% 

3.1% 

Carboxylic acids  13% 

Proanthocyanidins 7% 

Non-flavonol glycosides 20% 

Water, solvent 3% 

Inorganic constituents 5% 

Various 3% 

Unknown 13% 

Alkylphenols ≤ 5 mg/kg 
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Figure 1.8 Chemical structure of Ginkgolide A and Bilobalide 

Taken from (Chan et al., 2007)     

 



 

 

 

 

 

54 

1.2.2 Pharmacokinetics of Ginkgo biloba 

 

 

 

The half-life of Ginkgo biloba extract after oral administration is around 4.5 hours 

(Diamond et al., 2000;Chan et al., 2007). The pharmacological effect of EGb 761 is 

believed to be mediated via its two main chemical constituents, flavone glycosides and 

terpene trilactones. Nevertheless, the poor lipid solubility of flavone glycosides 

remains the main reason for the poor bioavailability of EGb 761 (Chen et al., 2010), to 

overcome this obstacle a recent development of a novel formulation of flavone 

glycosides has been made by Chen et al (2010). This was through preparing Ginkgo 

biloba extract phospholipid complexes and Ginkgo biloba extract solid dispersions. 

The authors have shown that these formulation had superior bioavailability compared 

with the standardized EGb 761 (Chen et al., 2010). 

In an animal models, 21% of GBE is excreted in the urine and 29% is excreted in 

faeces, with an absorption estimated at 60% (Diamond et al., 2000;Chan et al., 2007). 

A summary of some of the pharmacokinetic studies that have been carried out in vitro 

and in vivo in experimental animals or in human is provided in table 1.5 
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Table 1.5 Pharmacokinetic studies on Ginkgo biloba  

Compound Model Half-life t 1/2 References 

Ginkgolide A, B, C and 

Bilobalide 

in vivo I/V, rat 0.97, 1.02, 0.67, 1.13 (Xie et al., 2008) 

Ginkgolide B in vitro rat urine, rat liver 

microsomes 

- (Wang et al., 2008) 

EGb 761 in vivo oral, humans, 

analysis of urine 

- (Wang et al., 2003) 

Quercetin, Kaempferol 

and Isorhamnetin 

in vitro human breast cancer 

cells 

- (Wang et al., 2005a) 

EGb761, bilobalide, 

Ginkgolide A and 

Ginkgolide B 

in vivo oral, humans, 

analysis of plasma 

2.33, 2.31, 2.34 (Woelkart et al., 2010) 

Ginkgolide B 

40mg/80mg 

in vivo oral, humans, 

analysis of plasma 

11.64 /4.31 (Drago et al., 2002) 

 

 
 

 

 

 

1.2.3 Pharmacological activities of Ginkgo biloba 

 

 

Ginkgo biloba has a broad spectrum of pharmacological activities, which are derived 

from its various constituents. The administration of each of these alone is expected to 

exert a different action, as compared to when it is given together with the other 

constituents of the extract (DeFeudis and Drieu, 2000). This range of pharmacological 

activities includes, effects on nitric oxide (Kobuchi et al., 1997;Bastianetto et al., 

2000b;Ahlemeyer and Krieglstein, 2003) and modulation of ROS (Szabo et al., 

1993;Oyama et al., 1996;Zhou and Zhu, 2000;Thiagarajan et al., 2002), preservation 

of mitochondrial function (Chandrasekaran et al., 2001;Tendi et al., 2002;Eckert et 

al., 2003;Wang et al., 2005b;Abdel-Kader et al., 2007) and platelet activating factor 

(Kobuchi et al., 1997) as well as the inhibitory action on some apoptosis related 

caspases (Luo et al., 2002;Smith et al., 2002;Massieu et al., 2004). Furthermore, 

Ginkgo biloba has demonstrated effects on cellular peptide such as APP and Aβ (Yao 

et al., 2001;Bastianetto and Quirion, 2002;Gong et al., 2005;Wu et al., 2006;Augustin 
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et al., 2009;Shi et al., 2009) and on inflammatory mediators (Jiao et al., 2005;Park et 

al., 2006;Zhou et al., 2006;Kotakadi et al., 2008;Tsao et al., 2008;Zhou et al., 2010). 

Ginkgo biloba appears also to influence an ionic channel such as the glutamate-gated 

cation channel (NMDA) (Zhu et al., 1997;Wang et al., 2005b;Xu et al., 2010;Li et al., 

2011), GABA-gated chloride channels (Kiewert et al., 2007), with modulatory action 

on  neurotransmitters such as glycine (Kiewert et al., 2008). 

 

The flavone glycosides including quercetin, kaempferol and isorhamnetin have the 

potential to modulate oxidative metabolism, and are believed by some authors to be 

responsible for the free radical scavenging effects of Ginkgo biloba. Oyama et al 

(1994) have investigated the antioxidant action of myricetin, quercetin and 

kaempferol, on oxidative metabolism of neuronal cells, and the authors found a 

significant reduction in oxidative metabolism in both resting and calcium loaded 

neurons in comparison with EGb 761, possibly via a reduction in the cellular content 

of superoxide anion (Oyama et al., 1994). Flavone glycosides have also been shown 

to protect and rescue rat hippocampal cells from nitric oxide-induced toxicity, via free 

radical scavenging effect, and blocking nitric oxide-induced stimulation of protein 

kinase C (Bastianetto et al., 2000b). 

 

The terpene trilactone fraction of Ginkgo biloba: Ginkgolides and Bilobalide is 

believed to mediate its anti-inflammatory effect. Park and colleagues (2006) 

compared the effect of EGb 761 and another Ginkgo biloba extract with a higher level 

of terpene, a lower level of flavonol glycosides, and none detectable 

proanthocyanidins, known as (GBB) on lipopolysacharide-induced nitric oxide (NO) 
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and prostaglandin (PGE2) release in the macrophage cell line RAW 264.7. They have 

shown that GBB was more potent than EGb 761 in blocking lipopolysacharide and 

TNF-α-induced expression of iNOS and COX-II via suppression of NF-κB (Park et 

al., 2006). Furthermore, treatment with terpene fraction extracted from EGb 761, 

showed a therapeutic effect parallel to treatment with indomethacin, an anti-

inflammatory agent, on Candida albicans-induced arthritic inflammation and 

suppressed NO production in lipopolysacharide-treated macrophages (Han, 2005). 

Ginkgo biloba extract enriched 10 times in terpene trilactones have been found to be 

more effective than EGb 761 in rescuing hippocampal neurons from Aβ-induced 

synaptic dysfunction and this protection is believed to be mediated mainly by 

Ginkgolide J (Vitolo et al., 2009). Another proposed mechanism for terpene 

trilactones is via antagonistic effects on the inhibitory glycine and GABA receptors 

(Ivic et al., 2003). 

 

Ginkgolides, particularly Ginkgolide B (GB), in addition to its anti-inflammatory 

action are selective agonists on platelet activating factor receptor (PAF-R), where it 

competes with the platelet activating factor (PAF) and acts as effective anti-platelet 

factor antagonists, therefore preventing platelet aggregation and thrombus formation 

(van Beek and Montoro, 2009;Chen et al., 2010). Ginkgolide B has also been shown 

to protect primary cultured neurons from glutamate-induced excitotoxicity. This 

protection was more pronounced than EGb 761 and inferior to MK-801 (Xu et al., 

2010). Another study has shown that Ginkgolide A (GA) has an inhibitory effect on 

Aβ oligomerization and Aβ-induced paralysis in transgenic caenorhabditis elegans 

(Wu et al., 2006).  
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The Bilobalide (Bil), which constitutes 2.9% of terpene trilactones (Chan et al., 2007), 

has been investigated by several in vivo and in vitro studies, and is believed to have 

anti-ischemic and anti-edematous effects on cerebral neurons, and to mediate the 

neuroprotective effects of ginkgo biloba (Defeudis, 2002). Kiewert et al (2007; 2008) 

investigated the interaction between bilobalide and neuronal transmission mediated by 

gamma-aminobutyric acid and glycine, in rat hippocampal slices exposed to NMDA 

(Kiewert et al., 2007;Kiewert et al., 2008). Other research studies have shown that 

bilobalide can modulate gene expression by enhancing expression of mRNA-encoded 

COX III subunit of cytochrome oxidase in the resistant hippocampal CA1 neurons, 

which are challenged by global brain ischemia (Chandrasekaran et al., 2001) and 

enhancing the level of mRNA for the mtDNA-encoded subunit 1 of NADH 

dehydrogenase in PC12 cells (Tendi et al., 2002). In addition, simultaneous treatment 

of PC12 cells with ROS and bilobalide has resulted in a dose dependent reduction in 

the apoptotic rate via reducing ROS-induced elevation of Bax and caspase-3 

activation (Zhou and Zhu, 2000). In another experiment, bilobalide, ginkgolides A 

and J have demonstrated anti-apoptotic effect in cultured chick embryonic neurons 

and in a mixed culture of hippocampal neurons subjected to staurosporine and serum 

deprivation, with more protection being observed with bilobalide (Ahlemeyer et al., 

1999).  

 

Although flavone glycosides and terpene trilactones fractions of EGb 761 are believed 

to be the neuroprotective constituents of Ginkgo biloba (Defeudis, 2002;Ahlemeyer 

and Krieglstein, 2003), other constituents are not devoid of pharmacological activity, 

and even though their precise contribution to the Ginkgo biloba neuroprotective effect 

http://en.wikipedia.org/wiki/Gamma-aminobutyric_acid
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are not clear in literature, future research studies should be directed to elucidate their 

neuroprotective properties. Those include proanthocyanidins, which are antioxidant 

oligomers and polymers of monomeric flavans, forming  approximately 7% of EGb 

761 and they occur in Ginkgo leaves as well in the standardized extract (van Beek, 

2002).  

The phenolic acid 6-HKA, a derivative of kynurenic acid, is among the carboxylic 

acids occurring in EGb 761. It is believed to have low affinity, antagonistic activity at 

the NMD and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors 

(Weber et al., 2001). In comparison to other derivatives of kynurenic acid, 6-HKA 

displayed superior affinity to AMPA receptors in hippocampal CA1 neurons. In 

addition its affinity to the NMDA receptors was half that of the parent compound, 

which reduces the side effects of the 6-HKA as compared with the high affinity 

antagonist, and adds to its therapeutic potentials (Weber et al., 2001). 

There are six different types of alkylphenols that have been reported to occur in leaves 

of Ginkgo biloba (ginkgolic acids, ginkgols, bilobols, urushiols, isourushiols and α-

hydroxycardanols), which constitute only less than 5 part per million of EGb 761 

because of their allergic, cytotoxic and mutagenic side effects (van Beek, 2002;van 

Beek and Montoro, 2009). 

Ginkgo biloba is generally a safe compound; however, there are some reported 

adverse effects including  spontaneous hyphema (Rosenblatt and Mindel, 1997), 

spontaneous subdural hematoma (Rowin and Lewis, 1996)mild GIT upset and 

headache. 
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1.2.4 Ginkgo biloba in clinical trials  

 

Ginkgo biloba has been advocated for the potential treatment of acute mountain 

sickness (Bartsch et al., 2004), tinnitus (Smith et al., 2005), diabetic nephropathy (Lu 

and He, 2005), bleeding disorders (Jiang et al., 2005) and intermittent claudication 

(Pittler and Ernst, 2000). However, there has been no substantial evidence of its 

therapeutic efficacy in these conditions. 

The potential efficacy of Ginkgo biloba in alleviating memory impairment and other 

cognitive disorders associated with Alzheimer’s and age related dementia, are widely 

suggested (DeFeudis and Drieu, 2000;Chan et al., 2007). However, clinical trials 

showed contradictory results about the benefits of Ginkgo biloba supplement in 

treating those conditions. A randomized clinical trial conducted for 6 weeks on 

patients with memory impairment, indicated that the Ginkgo biloba group did not 

differ from the controls, and that Ginkgo biloba supplement provided no enhancement 

in memory or related cognitive function (Solomon et al., 2002). Conversely, Le Bars 

et al (2002) documented improvement in the cognitive and social function in patients 

with mild and moderate Alzheimer’s disease (Le Bars et al., 2002). These conflicting 

results in fact necessitate the need for clinical trials with large sample sizes and long 

follow-up periods.  

Compared with the large number of clinical trials conducted to evaluate the effect of 

EGb 761 in other neurodegenerative diseases, only a few trials were conducted to 

evaluate its ophthalmic potential. EGb 761 has a demonstrated vasomodulatory effect 

on blood vessels, where it increases the ocular blood flow velocity by a mean of 24% 

compared to placebo (Chung et al., 1999). However, a randomized, double-masked, 
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placebo-controlled study was conducted over 2 years to investigate the effect of oral 

administration of 240 mg EGb 761 on ocular blood flow. This study on 15 healthy 

male volunteers failed to confirm a significant association between administration of a 

single dose of EGb 761 and the ocular blood flow (Wimpissinger et al., 2007), 

however, this result should not preclude its use in conditions with impaired ocular 

perfusion such as glaucoma, because it could be due to the small sample size, or the 

selected dose, or another possible neuroprotective mechanism for Ginkgo biloba. This 

is supported by an earlier prospective, randomized, placebo-controlled, double-

masked trial, which was conducted in a sample of 27 patients with normal tension 

glaucoma, to evaluate the effect of EGb 761 on preexisting visual field damage, and 

reported improvements in automated visual field indices, with no significant changes 

in IOP, blood pressure or heart rate (Quaranta et al., 2003).  

A summary of clinical trials that have demonstrated the effects of Ginkgo biloba 

supplementation in Alzheimer’s dementia and in the eye is provided in Table 1.6 
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Table 1.6 Clinical trials on Ginkgo biloba  

Neurodegenerative 

diseases 
Main outcome measure  Outcome 

 
Dose/Route  

of administration 

Duration/ No of 

participant 
References 

Alzheimer’s Psychopathological and 

cognitive function tests 
Improvement of dementia 

and cognitive impairment 

were same as cholinesterase 

inhibitors. 
 

160 mg EGb 761 per day, 

5mg donepezil 1x1/ oral 
 

24 weeks, 
76 patients 

(Mazza et al., 2006) 

Cognitive function and 

activity of daily living tests 
Decrease risk of developing 

Alzheimer’s dementia. 
 

- 7 years, 1462 

elderly women 
(Andrieu et al., 2003) 

Neuropsychological tests 
of cognitive functions 

Improve cognitive and social 

functions.  
40 mg EGb 761, 1x 3/oral 52 weeks, 168 

patients 
(Le Bars et al., 1997;Le 

Bars et al., 2002) 

 

Neuropsychological tests 
of cognitive functions 

No beneficial effects were 

observed. 
 

40 mg EGb 761, 1x 3/ 

oral 
 

6 weeks, 230 

elderly volunteers 
 

(Solomon et al., 2002) 

 

Neuropsychological tests Sig. improvement in memory 

and congnation. 
120mg per day/ oral 3o days, 61 

participants 
(Stough et al., 2001) 

Psychopathological 

neuropsychological,  and 

electrophysiological tests 

Sig. improvement of 

attention and memory 

function. 
 

40 mg EGb 761, 2x 3/ 

oral 
3 months, 20 

patients 
(Maurer et al., 1997) 

Psychopathological and 

neuropsychological tests of 

cognitive and behavioral  

functions 

Sig. improvement of 

attention and memory 

performance. 
 

120 mg EGb 761, 1x 2/ 

oral 
24 weeks, 216 

patients 
(Kanowski et al., 1996) 

 

 

 

 



 

 

 

 

 

63 

Ocular disease Main outcome measure Outcome 

 

Dose/Route of 

administration 
Duration/ No of 

participant 
References 

Glaucoma VF and any ocular or 

systemic complications 
Sig. improvement in VF 

parameters, no Sig. changes 

in IOP, BP or HR. 
 

40 mg EGb 761, 1x 3/ 

oral 
 

4 weeks/27 patients (Quaranta et al., 2003) 

Doppler imaging to 

measure EDV in OA 
Sig. increase in EDV in OA. 40 mg EGb 761, 1x 3/ 

oral 
2 days/11 

volunteers 
(Chung et al., 1999) 

Doppler imaging to 

measure OBF  
No Sig changes in ocular and 

systemic hemodynamics 

compared to controls. 
 

240 mg EGb 761,1x 1/ 

oral 
1 day/ 15 healthy 

volunteers 
(Wimpissinger et al., 

2007) 

PVCRD, RD Plasma and tear lipid 

peroxidation and 

antioxidative activity, 

Visual function 

Decrease lipid peroxidation 

and increase antioxidant 

activity in tear and plasma 

and improve visual function. 
 

- -/33 Patients with 

PVCRD, 135 with 

operated RD, 32 

with non-operated 

dystrophic RD, 22 

healthy volunteers. 

(Karazhaeva et al., 

2004) 

AMD Visual function Improve long distant visual 

acuity. 
 

- -/10 patients (Lebuisson et al., 1986) 

DM Anatomical and Visual 

function 
Improve colour vision. 40 mg EGb 761, 1x 3/ 

oral 
3 months/ 15 

patients. 
(Bernardczyk-Meller et 

al., 2004) 

 
SKT (Syndrome Kurz test), CGI (Clinical Global Impression), MMSE (Mini-Mental State Examination), Visual field (V/F), Significant (Sig.), intraocular pressure (IOP), 

blood pressure (BP), heart rate (HR), end diastolic velocity (EDV), ophthalmic artery (OA), Ocular blood Flow  (OBF), peripheral vitreochoreoretinal dystrophies (PVCRD), 

retinal detachment (RD), Age related macular degeneration (AMD), Diabetes Mellitus (DM). 
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1.2.5 Neuroprotective effects of Ginkgo biloba and its potential mechanisms of 

action 

 

1.2.5.1 In the Central Nervous System (CNS) 

 

 

 

Several of the above-mentioned clinical trials in section 1.2.4 as well as recent 

experimental evidence suggest neuromodulatory effect of Ginkgo biloba in the CNS 

and reported its benefit  in improving the symptoms of Alzheimer’s disease and other 

cognitive disorders (Wu and Zhu, 1999;Le Bars et al., 2002;Mazza et al., 

2006;Augustin et al., 2009).  

 

Many research studies attributed the neuroprotective effect of Ginkgo biloba to its 

outstanding antioxidant capacity (DeFeudis and Drieu, 2000). This was observed in 

aged brain and liver where EGb 761 protected mitochondrial DNA from free radical 

attack (Sastre et al., 2002), and from nitric oxide induced toxicity (Bastianetto et al., 

2000b).  The neuroprotective effect has also been observed  in cerebellar neurons 

stressed by H2O2 (Oyama et al., 1996). Bastianetto et al have shown that 100 µg/ml 

EGb 761 protects rat primary mixed hippocampal culture from sodium nitroprusside 

(SNP) induced neuronal loss which is believed to be mediated through blockade of 

Protein Kinase C (PKC) activity and superoxide scavenging properties (Bastianetto et 

al., 2000b).  

 

Aβ-induced neuronal death has been attributed in part to increased ROS production 

by Aβ and the resultant oxidative damage (Shi et al., 2009). An in vitro study looking 

at Aβ-induced apoptosis in a pheochromocytoma neuronal cell line (PC12) 

demonstrated that exposure to Aβ1-42 has increased ROS levels and that simultaneous 

administration EGb 761 completely prevented the toxic effect of Aβ (Yao et al., 
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2001). Furthermore, in the same experiment, higher concentrations of EGb 761 were 

associated with increased cell viability measured using 3-4,5-dimethyithiazol-2-yl-

2,5-diphenyl-tetrazolium bromide (MTT) and trypan blue assays. The mechanism of 

this neuroprotection of EGb 761 is thought to be through its inhibitory effect on Aβ 

derived diffusible neurotoxic ligands, presumably dimmer and tetramer of Aβ 

oligomer. This experiment also pointed out that flavone glycosides and terpene 

trilactones-free extract prepared from EGb 761 did not confer any protection against 

Aβ-induced apoptosis (Yao et al., 2001). 

 

The effect of EGb 761 and its constituents, the flavone glycoside quercetin, and the 

terpene trilactone ginkgolide B, were tested against 100 µg Aβ1-42-induced ROS 

accumulation and mitochondrial dysfunction in human neuroblastoma (SH-SY5Y) 

cells (Shi et al., 2009). The result showed mitochondrial protection mainly by EGb 

761 and to a lesser extent by ginkgolide B. This reduction in Aβ-induced 

mitochondrial dysfunction is believed to be mediated via modulation of downstream 

effectors in the apoptotic pathway such as JNK, ERK1/2 and Akt signalling pathways. 

Moreover, it was found that, EGb761 prevented both H2O2 and platelet activating 

factor-induced apoptosis (Shi et al., 2009). Constitutes of Ginkgo biloba have shown 

protective effects even on Aβ25-35 induced cytotoxicity. PC12 cells treated with 100 

µM/l Aβ25-35  for 24 hours were associated with cell loss, which was attenuated in a 

dose dependent manner by adding 25-100 µM/l bilobalide (Zhou et al., 2000). 

Furthermore, the inhibitory effect of ascending concentrations from 0.01-1 µM    

Aβ25-35, on cholinergic transmission in a rat hippocampal slices, was examined by Lee 
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et al. (2004). This inhibition was blocked by addition of Ginkgolide B 0.01-10 µM, 

possibly via suppressing potassium-evoked acetylcholine release (Lee et al., 2004). 

 

Augustin et al (2009) have investigated APP as a molecular target of Ginkgo biloba 

neuroprotective effects. The authors examined the effect of dietary supplementation 

with 300 mg/kg of EGb 761 for 1 and 16 months, on APP protein levels in a 

transgenic human APP (Tg2576), model of Alzheimer’s disease. Up to a 50% 

reduction in the APP level in the cortex of the 16 months group was reported by this 

group, whereas no such reductions were observed in the hippocampus or in young 

mice (Augustin et al., 2009). To examine the effect of EGb 761 on the α-secretase 

pathway, another study using a daily dose of 80 and 150mg/kg/day EGb 761 was 

administered orally for 5 days to normal Sprague-Dawley (SD) rats. 5 days after 

commencement of treatment, western blot analysis was used to measure soluble α 

APP in the cortex and hippocampus. EGb 761 at 150mg/kg/day was found to 

significantly increase α APP secretion (Colciaghi et al., 2004). Furthermore, the 

authors examined the effect of increasing concentration from 5-200 µg/ml of EGb 761 

on acute hippocampal slice for 30 min. They found that the dose response curve to 

increasing EGb 761 dosage was bell shaped, where immunoreactivity of α APP 

observed with the lowest concentrations and was not seen at higher doses (ibid). 

 

Accumulating evidence suggests a link between Aβ deposition, oxidative stress, and 

apoptosis. Luo et al have looked at the antioxidative, antiamyloidogenic and 

antiapoptotic effects effect of EGb 761 on Aβ accumulation and caspase-3 activation 

using a neuroblastoma cell line (Luo et al., 2002). In this experiment, 40µM Aβ1-40 

was incubated either alone or in the presence of 100g/ml of EGb 761. 
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Immunohistochemical labelling of Aβ showed that EGb 761 prevented Aβ 

accumulation both in vitro and in medium of Aβ producing cells. Furthermore, using 

Mitosensor, the authors have shown that EGb 761 attenuated caspase-3 activity (ibid).  

The effect of EGb 761 on cochlear caspase level has also been investigated as a 

possible mechanism in age related hearing loss. EGb 761 administered orally at a dose 

of 100mg/kg daily to 4 and 12 months old SD rats were associated with a significant 

reduction in age related caspase-3 and caspase-9 activation, an increase in ATP levels, 

and modulation of superoxide dismutase activity in rat cochlea (Nevado et al., 2010). 

 

Ginkgo biloba is proposed to have multiple protective effects on mitochondrial 

function and apoptotic pathways, including stabilization of mitochondrial membrane 

potential, and enhancing respiratory chain energy production as well as down 

regulation of executor caspases. Abdel-Kader et al have investigated the effects of 

EGb 761 in vitro on mitochondrial functions in the PC12, dissociated mice brain cells, 

as well as on isolated mitochondria exposed to serum deprivation, SNP and complex 

inhibitors such as Sodium Azide (NaN3) (Abdel-Kader et al., 2007). They used ATP 

levels and mitochondrial membrane potential as indicators of mitochondrial function; 

and showed enhancement of mitochondrial function even with the lowest EGb 761 

concentration 0.01 mg/ml. Additionally in vivo, the authors found that treating two 

different age groups of mice with EGb 761 100mg/kg for 14 days was associated with 

beneficial effects on complexes I, IV and V of the mitochondrial respiratory chain 

(Abdel-Kader et al., 2007). Furthermore, Eckert and associates have demonstrated 

that EGb 761 protected PC12 cells mitochondria from H2O2, antimycin (complex III I 
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inhibitor) and Aβ-induced MTT reduction, and that 2 weeks treatment with EGb 761 

reduced ROS induced apoptosis in mice lymphocytes (Eckert et al., 2003).  

To examine the effect of Ginkgo biloba on the mitochondrial respiratory chain, one 

study looked at the effect of oral administration of 25-100mg/kg/day EGb 761 and 3 

and 6 mg/kg/day bilobalide on the level of mitochondrial DNA (mtDNA)-encoded 

cytochrome Oxidase COX subunit III in hippocampal CA1 neurons. The result 

showed that both EGb 761 and bilobalide fraction confer protection against ischemia-

induced reduction in COXIII mRNA and neuronal loss (Chandrasekaran et al., 2001). 

Furthermore Tendi et al reported that 100 µg/ml EGb 761 and 10 µg/ml bilobalide 

increases NADH Dehydrogenase (complex I) mRNA level and mitochondrial 

respiratory control ratio in PC12 cells (Tendi et al., 2002). 

 

The anti-inflammatory effect of Ginkgo biloba and its modulation of key-

inflammation related molecules in the CNS have been investigated by several 

research studies. Jiao et al (2005) studied the effect of Ginkgo biloba extract on 

protein and mRNA expression of pro and anti-inflammatory cytokines in the brain of 

a rat model of atherosclerosis. This group found that 100mg/kg/day EGb 761 for 8 

weeks inhibited the production of pro-inflammatory cytokines: IL-1β and TNF-α and 

up regulate the anti-inflammatory cytokines: IL-10 and IL-10R (Jiao et al., 2005). 

Another experiment looked at activated human T lymphocytes, isolated from whole 

blood and was conducted by Tsao and associates in 2008. This research reported that 

pretreatment with 25-100 µg Ginkgo biloba extract protected human T lymphocyte 

from TNF-α and H2O2 induced damage (Tsao et al., 2008). 
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 Recent studies have looked at the anti-inflammatory activity of Ginkgo biloba in 

inflammatory bowel disease, chronic relapsing inflammatory conditions mediated by 

overactive immune system, and have shown that EGb 761 suppresses the activation of 

inflammatory markers (iNOS, Cox-2 and TNF-α) and reduces the number of effector 

T cells (Kotakadi et al., 2008;Zhou et al., 2010).  

 

EGb761 has been reported to prevent glucose induced accumulation of ECM in rat 

mesengial cells cultured in hyperglycemic conditions, and this is believed to be 

mediated via multiple mechanisms including decreasing the level of transforming 

growth factor-ß1 (TGF-ß1), insulin-like growth factor-1 (IGF-1), connective tissue 

growth factor (CTGF) and decreasing the expression of collagen IV and laminin (Ji et 

al., 2009).     

 

The effect of Ginkgo biloba on excitotoxicity has also been investigated, and EGb761 

has been shown to reduce glutamate-induced elevation of calcium concentrations, 

enhance neuronal viability in primary cultures from mouse cerebral cortex (Zhu et al., 

1997), and prevent impairment of the Na/K-ATPase activity in a mouse model of 

focal cerebral ischemia (Pierre et al., 1999;Pierr et al., 2002). 

Xiao et al (2006) investigated the effect of EGb 761 pretreatment against 

excitotoxicity induced by NMDA receptor over-activation and focal cerebral 

ischemia. In this study EGb 761 enhanced cell viability and showed lower affinity to 

NMDA receptors compared with MK-801 (Xiao et al., 2006).  Furthermore, Li et al 

(2011) have investigated the modulatory effects of Ginkgo biloba on the NMDA 

receptor in acutely isolated hippocampal neurons. The authors showed that in addition 
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to antioxidation and free radical scavenging effect, Ginkgo also inhibited calcium 

influx via the NMDA receptors (Li et al., 2011). 

 

The potential neuroprotective effect of EGb 761, ginkgolides A and B administration 

in Parkinson’s disease has also been investigated in a 1-Methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP) induced mouse model. The result showed that EGb 761, 

compared to Ginkgolides A and B, effectively protects against MPTP-induced 

nigrostriatal dopaminergic neuronal death, possibly via inhibition of Monoamine 

Oxidase (MAO) (Wu and Zhu, 1999). 

 

Ginkgo biloba has also been used to improve cerebral insufficiency and enhances the 

cerebral blood flow, through inhibition of NO, PAF and catechol-O-methyltransferase 

(Diamond et al., 2000), and to recover the peripheral circulation and ameliorate 

peripheral vascular diseases such as intermittent claudication (Kleijnen and 

Knipschild, 1992). 
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1.2.5.2 In the Eye 

 

 

There are several reported ophthalmic beneficial effects of Ginkgo biloba both in 

experimental models and in patients, which encourage its use in the treatment of 

ischemic and neurodegenerative ocular diseases.  

As seen in the previous section (1.2.5.1), in studies on neuronal cells both in vivo and 

in vitro, mechanisms of oxidative stress, inhibition of the inducible pathological form 

of the NO synthase enzyme (iNOS), possible effect on the caspase-3 and Aβ pathway 

have all been proposed. In fact, in vivo and in vitro experiments conducted on Ginkgo 

biloba in the CNS thus far (summarized in table 1.7) appears suggestive of its 

potential in targeting mechanisms implicated in RGCs apoptosis in glaucoma.  

Ginkgo biloba has been shown to increase the ocular blood flow velocity in young 

healthy volunteers compared to a placebo (Chung et al., 1999) and improves visual 

field parameter in patients with normal tension glaucoma and preexisting visual field 

damage (Quaranta et al., 2003). Furthermore, a case report published in 2007, on a 

patient with primary OAG, reduced visual field and acuity, an IOP between a 15-32 

mmHg and on maximal tolerated medical therapy, showed that EGb 761 dramatically 

improved visual acuity over months, from counting finger occulus dexter (OD) and 

20/50 occulus sinister (OS), with -8.00 sphere OD and -7 sphere Os to 20/40 OD and 

20/30 OS after 30 months of follow-up. Although no improvement was observed in 

the visual field, the improvement in  visual acuity was believed to be mediated either 

through enhancement of the ocular blood flow or via an EGb 761 neuroprotective 

effect (Dorairaj et al., 2007). 

To investigate whether Ginkgo biloba usage could confer any protection against 

development of glaucoma over  a 12 month period, the National Health Interview 
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study was conducted, in which self-reported information was collected from 30,964 

participants over the age of 50 years and at risk of glaucoma. EGb 761 

supplementation was not associated with reducing risks of developing glaucoma in 

the study group, where patients who reported having glaucoma were 26% less likely 

to report EGb 761 usage (Khoury et al., 2009). However, no clear association between 

EGb 761 and glaucoma was demonstrated, possibly because of the cross sectional 

design and the lack of information on the duration of Ginkgo biloba use and glaucoma 

(ibid), which necessitate the need for prospective randomized clinical trial to see if 

prophylaxis supplement of EGb 761 could prevent glaucoma development.  

 

In a rat model of unilateral chronic glaucoma, Hirooka et al (2001) investigated the 

neuroprotective effects of EGb 761, and demonstrated that pretreatment and early post 

treatment with 100 mg/kg/day EGb 761 twice weekly protected and rescued RGCs. 

Although the exact mechanism of this protection was not investigated in this study, 

the authors attributed it to the antioxidant activity of EGb 76 (Hirooka et al., 2004).  

 

In a model of OHT in rabbits, EGb 761 was associated with multiple beneficial 

effects including: inhibition of dexamethasone-induced IOP elevation, accumulation 

of extracellular materials within the cribriform layers of the trabecular meshwork as 

well as improving meshwork cellularity (Jia et al., 2008). The authors further 

explored its mechanism of action in cultured human trabecular cells; EGb761 was 

shown to significantly reduce anti-Fas ligand-induced apoptosis and dexamethasone- 

induced myocilin expression (ibid). This suggests another possible mechanism for 

Ginkgo biloba via modulation of gene expression.  
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The effect of a mixture of herbal extracts including Ginkgo biloba have been shown to 

enhance viability of axotomized RGCs, although separate treatment with any single 

constituent did not confer such protection (Cheung et al., 2002). To further explore 

the possible mechanism of this neuroprotection in adult hamsters, the same group has 

confirmed recently the antioxidant effect of this herbal mixture, where they found a 

substantial decrease in the endogenous NO content in axotomized RGCs without any 

effect on the NOS activity, confirming the free radical scavenging activity of this 

mixture. In addition, this herbal mixture showed inhibitory effect on the caspase-3 

independent apoptotic pathway in RGCs (Cheung et al., 2008b). 

 

In a rat model of optic nerve crush, intraperitoneal injections of EGb 761 before and 

after the injury enhanced RGCs viability in comparison to the controls (Ma et al., 

2010). An earlier experiment by the same group in the same animal model showed a 

dose related enhancement  in RGC survival even when EGb 761 was administered 

intragastrically after the injury (Ma et al., 2009). Using the optic nerve transection 

model in guinea pigs, intraperitoneal administration of  EGb 761 showed anti-

apoptotic effects and improved RGCs function on electoretinograms (Xie et al., 

2009). 

 

The neuroprotective effect of EGb 761 on RGCs is perhaps due to its broad spectrum 

of pharmacological activities including its promising antioxidant activity which was 

advocated by Ritch in 2000 as the basis of its use as anti-glaucoma medication (Ritch, 

2000). The observed antioxidant activity of EGb 761 is believed to account for its 

beneficial effect not only in glaucoma, but also in other neurodegenerative diseases 

such as AMD (Rhone and Basu, 2008). This beneficial effect was also observed in a 
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double-blind trial comparing Ginkgo biloba extract with a placebo control in 10 

patients with AMD (Lebuisson et al., 1986), and in patients with peripheral vitreo-

chorioretinal dystrophies and dystrophic retinal detachment (Karazhaeva et al., 2004). 

 

Ginkgo biloba has been observed to modulate many inflammatory mediators (Jiao et 

al., 2005;Park et al., 2006;Kotakadi et al., 2008;Tsao et al., 2008;Zhou et al., 2010), 

and in glaucoma, there are several proposed stress factors for RGC apoptosis  (Mittag 

et al., 2000;Tatton et al., 2001;Tezel and Yang, 2004), including  the involvement of 

the immune system (Tezel, 2009). Glaucoma-related stimuli such as hypoxia, TNF-α 

and oxidative stress can trigger the mitochondrial-mediated RGC death pathway 

(Cheung et al., 2008a).  

An interesting study looked at the free radical scavenging effect of Ginkgo biloba on 

aged mitochondria. This study, which was performed on retinal Muller cells from 

guinea pigs, has confirmed that EGb761 treatment considerably enhanced 

mitochondrial membrane potential and preserved mitochondrial ultrastructure of the 

aged cells (Paasche et al., 2000). EGb761 has also been observed to protect primary 

cultured rat retinal neurons against glutamate-induced ischemic injury and  improve 

mitochondrial membrane potential (MMP), thus making it an effective antioxidant at 

the mitochondrial level (Wang et al., 2005b).  This ability to counteract the glutamate-

mediated neurotoxicity further enhances its potential as a possible ophthalmic drug in 

glaucoma management as these pathways have already been implicated in the 

apoptotic RGCs death in glaucoma (Osborne et al., 1999;Casson, 2006).  

 

 

Another interesting study, was conducted in the rat insulinoma cell line and the rabbit 

corneal cell line by Thiagarajan et al (2002). This group confirmed the potentials of 
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EGb 761 on alloxan and dexamethasone induced apoptosis and Photo-Fenton reagent 

induced hydroxyl radicals. Furthermore, in vivo EGb 761 halted the progression of 

selenite-induced cataract in rat through its antioxidant property (Thiagarajan et al., 

2002). 

 

Researches on retinal photoreceptor and EGb 761 have also been carried out; 

intraperitoneal injection of EGb761 protects photoreceptors against light induced 

injury, possibly by inhibiting apoptosis and preventing oxidative stress in rat retinas 

(Xie et al., 2007). Similar protection with intragastric administration of EGb761 on 

photoreceptors after light-induced injury has also been demonstrated using 

electrophysiological test (Ranchon et al., 1999). EGb761 has been found to 

significantly reduce the ischemia-reperfusion induced Na
+ 

and Ca
2+

 accumulation and 

K
+
 loss in ischemic-reperfused retinal tissue (Szabo et al., 1993). 

 

A summary of different molecular targets of Ginkgo biloba that have been identified 

in literature in CNS and Eye and the experimental work performed thus far are shown 

in Table 1.7 
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Table 1.7 Summary of different pro-apoptotic molecular targets of Ginkgo biloba   

Pro-Apoptotic 

Mechanism  
Target      Compound Model     References 

Oxidative stress NOS EGb 761, Ginkgolide B, 

Bilobalide and CP 205 
in vitro LPS, IFN-γ, SNP, 3-

morpholinosydnonimine 
 

(Kobuchi et al., 1997;Bastianetto et 

al., 2000b;Ahlemeyer and Krieglstein, 

2003) 

 ROS 
 

GBE, EGb 761, Ginkgolides 

A, B,Bilobalide, quercetin, 

kaempferol and isorhamnetin 
EGb 761 

in vitro H2O2, alloxan or 

dexamethasone SS, SSP 
 
in vivo ischemia-reperfusion, 

selenite cataract  

(Oyama et al., 1994;Oyama et al., 

1996;Ahlemeyer et al., 1999;Zhou and 

Zhu, 2000;Thiagarajan et al., 2002) 

(Szabo et al., 1993;Thiagarajan et al., 

2002) 

 MDA, T-SOD, GSH-Px, 

CAT 
EGb 761 in vivo LIRD (Xie et al., 2007) 

Mitochondrial 

Dysfunction 
Mitochondrial Respiratory 

Chain 
EGb 761, Bilobalide in vitro H2O2, glutamate, NaN3 

SNP, SS, antimycin, ischemia 
 
in vivo young and old mice, 

gerbil ischemia 

(Zhou and Zhu, 2000;Tendi et al., 

2002;Eckert et al., 2003;Wang et al., 

2005b;Abdel-Kader et al., 2007) 

(Chandrasekaran et al., 2001;Abdel-

Kader et al., 2007) 

 Caspases 1,3 and 9 EGb 761, Ginkgolides A, B, 

C, and J and Bilobalide.  
 in vitro  Aß (1-40), SS, SSP 
 
in vivo aged SD rats, Axotomy 

in hamster 

(Luo et al., 2002;Smith et al., 

2002;Massieu et al., 2004) 

(Cheung et al., 2008b;Nevado et al., 

2010) 

 ROS EGb 761, Ginkgolide B, 

quercetin 
in vitro Aß (1-42), H2O2, PAF 
 

(Shi et al., 2009) 

Protein Misfolding  Aß EGb761, Ginkgolide A, B 

and  J, Bilobalide,HE 208 

and CP 205, quercetin 

in vitro  Aß (25-35),  Aß (1-40) 

and (1-42) 
 
in vivo  Aß , transgenic 

Caenorhabditis elegans, 

transgenic mice for APP 

(Zhou et al., 2000;Yao et al., 

2001;Bastianetto and Quirion, 

2002;Luo et al., 2002;Shi et al., 

2009;Vitolo et al., 2009) 

(Wu et al., 2006;Augustin et al., 2009) 

 APP and caspase-3 GBE In vivo aluminum-treated rats (Gong et al., 2005) 
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Pro-Apoptotic 

Mechanism   
Target Compound Model References 

 α-secretase  
 

EGb 761 in vitro hippocampal slices 
in vivo SD rats 

(Colciaghi et al., 2004) 

 

Multiple MYO 
anti-Fas ligand-induced 

apoptosis, HSPs 

GBE in vitro DEX treatment 
in vivo  DEX induced OHT 

rabbit 

(Jia et al., 2008) 

 

Excitotoxicity NMDA-R 
 

 

 

GBE, EGb 761, Ginkgolide 

B,  Bilobalide 
 
GBE 

in vitro Glutamate, NMDA  
 

 
in vivo MCAO model 

(Zhu et al., 1997;Wang et al., 

2005b;Xiao et al., 2006;Kiewert et al., 

2008;Xu et al., 2010;Li et al., 2011) 

(Xiao et al., 2006) 

 Na/K ATPase EGb 761 in vivo mouse model of FCI (Pierre et al., 1999) 

 GABA-R, Glycine-R 
 

Ginkgolide, A, B, C and 

Bilobalide 
in vitro GABA, NMDA (Ivic et al., 2003;Kiewert et al., 

2007;Kiewert et al., 2008) 

 Unknown 
 

EGb 761, Bilobalide in vitro hypoxia-induced 

release of choline. 
(Klein et al., 1997) 

 ACh-R Ginkgolide A and B in vitro  Aß (25-35) (Lee et al., 2004) 

 MAO EGb761, Ginkgolide A and 

B 
in vivo C57 mouse treated with 

MPTP 
(Wu and Zhu, 1999) 

Inflammation and 

immunological 

strategies 

iNOS, Cox-2 TNF-α, IL-1 

beta,  IL-6, IL10,  IL-

10R,NF-κBp65, SOD, 

MDA  

GBE, EGb 761 in vitro  TNF-α 
in vivo TNBS-Induced Colitis, 

AS model, DDS mouse model 

(Kotakadi et al., 2008) 

(Jiao et al., 2005;Zhou et al., 

2006;Kotakadi et al., 2008) 

 NO, PGE2  
 

 Ecb 761, GBB, terpene in vitro   LPS, TNF-α 
in vivo C.albicans-induced 

inflammation in mouse 

(Han, 2005;Park et al., 2006) 

(Han, 2005) 

 AP-1 GBE in vitro H2O2, TNF-α  (Tsao et al., 2008) 
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CP 205= flavonoid fraction, LPS = Lipopolysaccharide, IFN-γ= interferon-gamma, SNP= Sodium nitroprusside,  NaN3= sodium azide, GBE= Ginkgo biloba extract, MDA= 

malondialdehyde, T-SOD= total superoxide dismutase, GSH-Px= glutathione peroxidase, CAT=catalase, LIRD= light-induced retinal damage SS= Serum Starvation, 

antimycin= complex III inhibitor, SSP= Staurosporin, PAF=platelet activation factor, MYOC= myocilin, HSPs= Heat shock proteins, FCI mouse model= focal cerebral 

ischemia mouse model, HE 208= terpene and flavonoid-free EGb 761, MAO= Monoamine Oxidase,  IL=interleukin, TNF-α= tumor necrosis factor-alpha, NF-κBp65 = 

nuclear factor-κBp65, SOD= Superoxide dismutase, MDA= malondialdehyde, TNBS = 2,4,6-trinitrobenzene sulfonic acid, ACh-R= acetylcholine receptors, AS= 

atherosclerosis, MCAO model= middle cerebral artery occlusion model, FCI= focal cerebral ischemia, GBB= Ginkgo biloba  extract with higher levels of terpene and 

biflavonoid than EGb, PGE2= prostaglandin E , SD rats= Sprague Dawley rats, AP1= activator protein-1,  DDS mice model=Dextran sulfate sodium mouse model of colitis, 

DEX treatment= Dexamethasone treatment.  
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Aims 
 

 

 

 

Ginkgo biloba has demonstrated neuroprotective effects in animal models of 

neurodegenerative disease such as Alzheimer’s disease, and experimental glaucoma. 

However, the exact mechanism of this neuroprotection is still unknown. The literature 

established Ginkgo biloba as targeting several neuroprotective pathways implicated in 

RGCs apoptosis in glaucoma, including the abnormal processing of amyloid precursor 

protein (APP) and amyloid-beta (Aß) deposition, abnormal mitochondrial function, 

modulation of the TNF-α pathway and regulation of apoptosis-related caspases such 

as caspase-3. The purpose of this study was:  firstly to perform histological 

assessment of known molecular targets of Ginkgo biloba related to RGCs apoptosis in 

an experimental glaucoma model (specifically the expression of APP, Aß, 

cytochrome c, caspase-3 and TNF-α protein); and secondly, to investigate 

neuroprotective effects of Ginkgo biloba targets in vitro, including assessment of  

Ginkgolide A, Ginkgolide B and Bilobalide against different apoptotic inducers 

(namely DMSO, UV40, the mitochondrial toxin Sodium Azide and Aß25-35) in 

cultured RGC-5 cells. 
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2 Materials and Methods 

 

2.1 Immunohistochemistry for Pro-Apoptotic target related to RGCs in OHT 

model 

2.1.1 Animals 

 

All conditions and experimental procedures were carried out in accordance with the 

UK Animals (Scientific Procedures) Act 1986 and associated guidelines. Animals 

were housed in a 12 hours light /dark cycle with unlimited access to food and water. 

2.1.1.1 OHT Rat Model 

 

Dr Li Guo, Senior Research Associate in the department performed all surgery to 

achieve elevated IOP in the Ocular Hypertension (OHT) model used in this study. 

OHT induction was performed in the left eye of 15 Adult Dark Agouti (DA) rats, 

weighing 150-200 g, using method established in the group, in which IOP was 

elevated by injecting 1.80 M of hypertonic saline solution into two episcleral veins 

(Cordeiro et al., 2004;Guo et al., 2005a;Guo et al., 2005b;Guo et al., 2006;Guo et al., 

2007a). This OHT rat model is modified from the previously described techniques by 

Morrison et al (Morrison et al., 1997;Morrison, 2005). The unoperated right eyes 

served as controls. IOP measurements of both eyes were performed at regular interval 

using a Tono lab Tonometer (Tiolat OY, Heisinki, Finland). Animals were deeply 

anaesthetized with intraperitoneal (IP) injection of Ketamix: ketamine (Ketaset 

37.5%, Fort Dodge Animal Health Ltd., Southampton, UK)/medetomidine (Dormitor 

25%, Pfizer Animal Health, Pfizer limited, Kent, UK)/ sterile water (37.5%, Pfizer 

Animal Health, Exton, PA) solution (0.75ml ketamine, 0.5 ml medetomidine, and 

0.75 ml sterile water) at 0.2 ml/100g. Animals were sacrificed at 1, 3 and 12 weeks 
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time points after IOP elevation. The eyes were rapidly enucleated and kept in 4% 

Paraformaldehyde (Sigma-Aldrich, UK). 

2.1.2 Preparation of Retinal Slices 

 
Expression of Amyloid Precursor Protein (APP), Aβ, the mitochondrial apoptosis 

related marker cytochrome-c, caspase 3 and TNF Receptor I was studied in OHT rat 

eyes using immunohistochemistry. Eyes were enucleated by making an incision 

posterior to the limbus; the cornea, iris and lens were removed. The retina and uveal 

tissue were dissected from the surrounding tissues and embedded in paraffin. 

Sequential 5µm thick paraffin-embedded retinal sections from OHT and age matched 

controls (n=5 per time point) were acquired and cut using the (MSE Ltd, Maidstone, 

UK) cutting microtome. Three sections were collected from each paraffin block and 

transferred to onto SuperFrost Plus microscope slides (VWR International bvba) for 

immunostaining. 

 

2.1.3 Immunohistochemical staining 

 

 

Retinal sections of OHT and age-matched controls at 3 time points: 1 week, 3 weeks 

and 12 weeks of IOP elevation were used. Sections were incubated with each of the 

following primary antibodies: goat polyclonal primary antibody to APP (Abcam 

ab2084) 1:1000 concentration, rabbit polyclonal to Aβ (Abcam ab68896) 1:750 

concentration, rabbit polyclonal to cytochrome c (Cell Signaling 4272) 1:400 

concentration, rabbit polyclonal to cleaved caspase-3 (Cell Signaling 9661) 1:300 

concentration and rabbit polyclonal to TNF-R1 Abcam (ab58436) 1:100 

concentration. 
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The following secondary antibodies directed against each primary were used, Donkey 

polyclonal anti-goat (FITC) to detect APP, Donkey anti-rabbit IgG (Cy3) to detect Aβ 

and cytochrome c, biotinylated goat anti-rabbit IgG to detect caspase-3 and TNFR1. 

A list of antibodies used in the study are shown in Table 2.1 

The final working concentration of APP, Aβ and cytochrome c were determined by 

prior titration of the antibodies by Shereen Nizari in the group, and the titration of 

active caspase-3 and TNF-R1 was performed by the writer using the manufacturers 

recommended dilution range.  

 

Table 2.1 Primary and Secondary antibodies used in the study 

Primary antibody Dilution Source Secondary 

antibody 
Dilution Source 

Polyclonal primary 

antibody to APP  

1:1000 Abcam (ab2084) Donkey polyclonal 

anti-goat (FITC) 

1:100 Abcam (ab6881) 

Anti-beta Amyloid  1:750 Abcam (ab68896) Donkey anti-rabbit 

IgG (Cy3) 

1:100 JacksonImmuno-

research Lab 

Anti-cytochrome c 1:400 Cell Signaling (4272) Donkey anti-rabbit 

IgG (Cy3) 

1:100 JacksonImmuno-

research Lab 

Cleaved Caspase-3 

 
1:300 

 
Cell Signaling (9661) 

 
Biotinylated goat 

anti-rabbit IgG  
DAB anti-rabbit kit 

 Abcam (ab64261) 

 

TNF R I  1:100 Abcam (ab58436) Biotinylated goat 

anti-rabbit IgG  
DAB anti-rabbit kit 

 Abcam (ab64261) 

 

 

 

2.1.3.1 Immunohistochemistry on retinal cross sections for APP, Aβ and 

cytochrome c using immunofluorescence staining technique 

 

The same immunohistochemical technique was used to stain retinal section with APP, 

Aβ and cytochrome c. 90 sections of OHT and age matched controls (n=5) were used 

in the study for each antibody, with 30 section per each time point 1 week, 3 weeks 

and 12 weeks of IOP elevation.  

 Retinal sections were de-waxed with Xylene 3 x for 5 minutes each and re-hydrated 

through a series of ethanol washes with descending concentration (100%-90% and 
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70%, 5 minutes each) before applying a final wash of running tap water for 5 minutes. 

Sections were then blocked by incubation in a 3% Hydrogen peroxide solution for 25 

minutes at room temperature (rtp). To permeabilize cell membranes for antigen 

retrieval and to enhance antibody staining, sections were placed in 10 mM Citrate 

buffer pH 6.0 (10 mM Citric acid, 25 mM Sodium Hydroxide in  1 L distilled water) 

and irradiated in a microwave at 650 W 2x for 2.5 minutes. Slides were then washed 

with water and Phosphate buffered saline (PBS) (Sigma-Aldrich, UK) for 5 minute 

each. Slides were then incubated in a 5% solution of normal donkey serum (Jackson 

Immuno Research) diluted in PBTA (1000 ml PBS, 0.5% w/v BSA, 0.1% v/v Tween, 

0.1% w/v Sodium Azide) for one hour at rtp to block non-specific binding. Sections 

were then rinsed with PBS containing 0.1% Triton to relieve surface tension and 

further permeabilize the cytoplasmic membrane and incubated with the primary 

antibodies. 

 

Goat polyclonal primary antibody to APP (Abcam ab2084), at a dilution of 1:1000, 

rabbit polyclonal to Aβ (Abcam ab68896) at a dilution of 1:750, and rabbit polyclonal 

to cytochrome c (Cell Signaling 4272) at a dilution of 1:400 were applied to retinal 

slides of OHT and age matched controls. Sections were incubated with Primary 

antibodies over night at 4°C in a humidified chamber. Sections were washed in PBS 

Triton for 5 minutes and incubated with secondary antibodies diluted in PBTA for one 

hour at rtp. Fluorescein isothiocyanate (FITC) Donkey polyclonal anti-goat antibody 

(abcam ab6881) at 1:100 concentrations was used as secondary antibody to detect 

APP, Cy3 donkey anti-rabbit IgG (Jackson ImmunoResearch Laboratories, INC) at 

1:100 concentrations was used to detect Aβ and cytochrome c. Sections were then 

washed with PBS Triton, PBS and water for 5 minutes each. 
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To stain the nuclear DNA retinal sections were stained with the fluorescent stain 4′, 6-

Diamidino-2-phenylindole dihydrochloride (DAPI) (D9542 Sigma-Aldrich) at 1:2500 

concentrations for 30 seconds then washed with PBS and water. Sections were then 

incubated in ascending concentration of ethanol (70%, 90%, 100%) 30 seconds each 

and then in Xylene for 5 minutes. Sections were then mounted with the glycerol-

based mounting medium Citifluor, to avoid possible dehydration –induced changes in 

retinal sections and dye bleaching (Citifluor Ltd, UK). The slides were then labeled 

and kept in the fridge, protected from light until imaging. 

 

Leica Microscopic Imaging 

 

Fluorescent images were taken using the Leica Image Capture Microscope and x40 

lens. Fluorescent signal of DAPI (excited at 358), Cy-3 (excited at 514 nm) was 

detected using the blue channel whereas FITC, (excited at 488nm) was detected by 

the green channel. 

 

2.1.3.2 Immunohistochemistry on retinal cross sections for Active caspase-3 and 

TNFR1 using Immunoperoxidase staining technique 

 

 Retinal sections were de-waxed with three Xylene washes (5 minutes each) before re-

hydrating through a descending serious of 5 minute ethanol (100%, 90% and 70%) 

washes followed by a wash under running tap water for 5 minutes. Sections were then 

blocked as described in section (2.1.3.1) and incubated with primary antibodies. 30 

retinal slides per time point were then incubated with cleaved caspase-3 antibody 

(Cell Signaling 9661) 1:300 concentration, and 18 retinal slides per time point were 

stained with TNF R1 Abcam (ab58436) a dilution of 1:100 overnight in a humidified 
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chamber. Slides were washed 4 times in PBS triton (5 minutes each) before 

incubating with biotinylated goat anti-rabbit IgG (Abcam ab64261) for 10 min at rtp. 

Excess IgG was removed by washing a further four times with PBS before; slides 

were incubated with Streptavidin Peroxidase complex (Abcam ab64261) for 10 min at 

rtp. Slides were subject to x4 PBS washes before incubating with substrate-

chromogen (Abcam ab64261) for 4 min. Finally, the slides were rinsed with water, 

dehydrated through a graded alcohol series (100%, 90% and 70 %) before staining 

with Hematoxylin and mounting in DPX. Slides were examined under Nikon Eclipse 

80i microscope. 

 

Nikon Eclipse Microscopic Imaging 

 

Light micrographs of the retinal sections were taken using the Nikon Eclipse 80i 

upright microscope under a x40 objective. 

 

2.1.4 Data Analysis and statistics 

 

Sections were graded for staining by three independent and masked observers on the 

basis of the presence and the intensity of immunoreactivity, thickness and the 

homogenous or heterogeneous character of staining as in table 2.2 positive (+) 

indicated brightest than control slide, and negative (–) stand for no labeling in 

comparison with the control. 
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Table 2.2 Grading of Retinal Micrographs 

Scale intensity 

+4 76-100% positive control 

+3 51-75% positive control 

+2 26-50% positive control 

+1 1-25% positive control 

0 Same as negative control 

-1 1-25% negative control 

-2 26-50% negative control 

-3 51-75% negative control 

-4 76-100% negative control 
 

           

This grading system and the method of analysis was originally described by Shah et al 

(Shah et al., 1994) and validated by the group (Cordeiro et al., 1999a;Cordeiro et al., 

1999b;Cordeiro et al., 2003;Guo et al., 2005a). 

 

Statistical analysis was performed using SPSS 14 software. One-way ANOVA was 

applied to compare grading among glaucoma and age-matched controls at 3 time 

points, *P < 0.05 was considered to be significant. 

 

 

2.2 Neuroprotective effects of Ginkgolide A, Ginkgolide B and Bilobalide in 

vitro against DMSO, UV40, NaN3, and Aβ toxicity in RGC-5  

 

2.2.1 Retinal ganglion cell (RGC-5) culture 

RGC-5, a rat ganglion cell line transformed using E1A virus (Krishnamoorthy et al., 

2001), was generously gifted to Prof. M F Cordeiro by Dr. Neeraj Agarwal (UNT 

Health Science Centre, Fort Worth, TX, USA). This cell line is used extensively in 

glaucoma research as an alternative to the primary RGCs because of the similarities 

between both cell lines and the troubles of culturing primary RGCs (Hu and Ritch, 
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1997). RGC-5 was identified on the basis of the selective expression of RGC markers 

such as Thy-1 (Krishnamoorthy et al., 2001), RGC-5 was cultured in T75 flasks and 

was maintained in filtered DMEM containing 10% FBS, 100U/ml penicillin, and 

100μg/ml streptomycin under a humidified atmosphere with 5% CO2 at 37 °C. The 

RGC-5 was grown to 80-90% confluence before washing with PBS and passaged by 

trypsinization using 3ml of 0.05% Trypsin-EDTA solution as described previously 

(Krishnamoorthy et al., 2001). Trypsin was then neutralized with 7 ml filtered DMEM 

and RGCs were centrifuged at ~200g for 3 minutes to pellet the cells. Pellets were 

then resuspended in filtered DMEM and split into new T75 flask at a 1×10
6 

concentration. These flasks were fed every other day by fresh filtered DMEM (Harper 

et al., 2009). 

 

2.2.2 Reagents 

Dulbecco's modified Eagle's medium (DMEM) from Lonza Walkersville, Inc., Fetal 

Bovine serum (FBS) from GIBCO invitrogen, Penicilline/Streptomycine by the cell 

culture company PAA-laboratories Gmbh, Trypsin-EDETA from GIBCO invitrogen, 

Dimethyl sulfoxide (DMSO), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT), N,N-Dimethylformamide (DMF) and Soduim Azide (NaN3) were 

purchased from Sigma-Aldrich, Company Ltd. UK, Aβ  peptides corresponding to the 

sequence of human Aβ 1-42 and Aβ 25-35  were obtained from Sigma-Aldrich, Company 

Ltd. UK, Ginkgolide A, Ginkgolide B and Bilobalide were purchased from (Sigma-

Aldrich, Company Ltd. UK), Hoechst 33342 and Trypan Blue from invitrogen, 

ApopTag® Fluorescein Direct In Situ Apoptosis Detection Kit from CHEMICON, 
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Paraformaldehyde and Propidium iodide solution (PI) from Sigma-Aldrich, UK. 

Ethanol and Acetic acid were purchased from Fisher Scientific, UK. 

 

2.2.3   Toxicity and pharmacological treatment of RGC-5 

 

For each of the following experiments RGC-5 was seeded at a density of 1×10
5
 viable 

cells per well into 96-well plates. This density was chosen from the published 

densities in literature (Munemasa et al., 2008) and based on the writer’s Preliminary 

experiments during this cell culture work to give 80-90% confluency in the 96 well 

plates after 24 hours incubation. Cell population counts were determined using a 

Haemocytometer with trypan blue exclusion assay. To plate the cells at 1×10
5
 viable 

cells per well into 96-well plates, 10µl Pellet (mass of cells after centrifuging) are 

mixed with 10µl Trypan Blue dye to mark dead cells which stain dark blue due to 

Trypan Blue uptake, this 20 µl of cells are then taken onto a hemocytometer, covered 

with a cover slide and counted under a light microscope. To minimize random errors, 

cells are counted in the four quadrants of the hemocytometer paying attention to count 

only cells which intersect two of the boundaries. The total number of counted cells are 

then divided by 4 and multiplied by 2 (to compensate for trypan blue cell dilution) 

and this should give the number of cells in 0.1µl of the original pellet, the 

concentration of the cells (how many cells) in the whole volume of the pellet can be 

then calculated and using the equation C1V1=C2V2, where C1= is the concentration of 

the cells in the original pellet, V1 is the volume to take from this pellet, V2 is the 

volume to be plated into the 96 well plate i.e 9600 µl if the whole 96 well plate are to 

be used and C2 is 1×10
5
. 
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Cells were then incubated in humidified atmosphere of 95% air and 5% CO2 at 37 °C. 

After 24 hours cells were examined under microscope to check their shape and 

confluence and pretreated for 2 hours before the insult with ascending concentration 

(0.5-25 µg) of Ginkgolide A, B and Bilobalide diluted in sterile filtered DMEM. After 

this pretreatment, the entire medium was replaced with the indicated concentration of 

the insult (1% DMSO, 1mM NaN3 and 50µM Aβ25-35 diluted in 0.5-25 µg 

Ginkgolide A, B and Bilobalide) or exposed to UV40. In every experiment 0.5% 

Triton was used as a negative control and filtered DMEM as positive control, 

furthermore, equal number of wells (n=5 in all experiment unless otherwise indicated) 

have been treated by 0.5-25µg Ginkgolide A, B and Bilobalide alone to make sure no 

toxicity is encountered from these drugs. RGC-5 viability in all experiment was 

measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 

assay. 

 

2.2.3.1 DMSO treatment of RGC-5  

Dimethyl sulfoxide (DMSO) is a widely used pharmaceutical solvent, has also been 

used to induce time and concentration dependent apoptotic effect in various cells 

(Trubiani et al., 1996;Liu et al., 2001). To examine the effects of increasing 

concentration of DMSO,  RGC-5 cells were seeded at a density of 1 × 10
5
 viable cells 

per well into 96-well plates, then incubated with filtered DMEM in a humidified 

atmosphere of 95% air and 5% CO2 at 37 °C. After 24 hours the entire media was 

replaced by filtered DMEM mixed with 1%, 2.5%, 5% and 10% DMSO and 

incubated for a further 24 hours. 
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To examine the neuroprotective effect of 0.5-25 µg of Ginkgolide A, B and Bilobalide 

on the RGC-5 death induced by 1% DMSO, RGC-5 were seeded as described above 

and incubated in filtered DMEM for 24 hours. Cells were next pre-treated with 0.5-25 

µg of Ginkgolide A, B and Bilobalide for 2-hours, following which the media was 

replaced with ascending concentrations of 0.5-25 µg of Ginkgolide A, B and 

Bilobalide mixed with 1% DMSO for a period of 24 hours. 

 

2.2.3.2 UV treatment of RGC-5  

 

UV light has been used by several researchers to induce ROS mediated apoptotic 

damage. It has been shown to produce a dose dependent reduction in the viability of 

RGC-5 (Dunkern et al., 2001;Balaiya et al., 2010). To investigate the cytotoxic effect 

of shortwave UV-C energy on RGC-5, cells were plated as described above in four 96 

well plates. In one 96 plate unexposed cells were used as control, and the other three 

plates were exposed to 40, 60 and 80 mj/cm
2
 UV-C light (254nm) for 2 minutes using 

CL-1000 Ultraviolet Crosslinker (Ultra Violet Products Ltd. Cambridge).  

 

To examine the neuroprotective effect of 0.5-25 µg Ginkgolide A, B and Bilobalide 

on UV40 stressed RGC-5; cells were pretreated with the indicated concentration of 

the potential neuroprotective agents for 2 hours before UV40 mj/cm2 exposure. RGC-

5 was then incubated for another 24 hours before an MTT assay was conducted. 

 

2.2.3.3  Sodium Azide (NaN3) treatment of RGC-5  

 

 

The mitochondrial failure induced by NaN3 has been used to investigate the 

mechanisms of ischemic and neurodegenerative diseases, and been advocated to 

screen potential neuroprotective agents (Selvatici et al., 2009). For this reason, NaN3 
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is employed in this study. Stock solution of 20mM of the mitochondrial toxin NaN3 

was prepared by dissolving 13mg of NaN3 in 10ml DMEM and titrated to prepare the 

desired concentrations (1mM, 2.5mM, 5mM and 10mM), RGC-5 were treated with 

the indicated concentration of NaN3 for 24 hours prior to MTT, based on the result of 

this experiment 1mM NaN3 was chosen to stress RGC-5 before Ginkgolide A, B and 

Bilobalide treatments.  

 

2.2.3.4  Aβ1-42 treatment of RGC-5  

 

To assess Aβ1-42 induced neuronal cell death RGC-5 was treated with concentration 

range of 10-100 µM Aβ1-42 for 24 hours. Stock solution of 1mM Aβ1-42 was prepared 

by dissolving 0.1mg Aβ1-42 powder in 22.15µl DMSO and stored in aliquots at -20 °C. 

On the day of experiment Aβ1-42 aliquots were thawed for 5 minutes in sonicating 

water bath and centrifuged for 15 minutes at 12.300 RPM then diluted to the final 

concentration in DMEM. RGC-5 were pre-incubated with DMEM containing the 

indicated concentration of Aβ1-42 (10,25,50 and 100 µM) for 24 hours following 

which an  MTT assay was performed to assess cell viability. 

 

2.2.3.5 Aβ25-35 treatment of RGC-5  

 

A stock solution of 5mM Aβ25-35 was prepared by dissolving 1mg Aβ25-35 in 200µl 

sterilized distilled water which was then stored at -20 °C and incubated at 37 °C for 3 

days to aggregate before usage (Ban et al., 2006c;Tsuruma et al., 2010). 

To investigate the toxicity of Aβ25-35 on RGC-5 line, cells were treated with 

5,10,25,50 and 100µM Aβ25-35 for 24 hours before MTT cell viability assay was 

performed. RGC-5 pretreated for 2 hours with 0.5-25µg Ginkgolide A, Ginkgolide B 

and Bilobalide were then insulted with 50µM Aβ25-35 mixed with the indicated 
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concentration of Ginkgolide A, B and Bilobalide for 24 hours. MTT assay was then 

performed.  

 

2.2.3.6 Neuroprotective Drugs  

 

Stock solution of 20mg/ml Ginkgolide A was prepared by dissolving 50mg 

Ginkgolide A powder in 2500 µl DMF and stored as 50µl aliquots.  Ginkgolide B 

stock solution of 50 mg/ml was prepared by dissolving 10mg Ginkgolide B in 200µl 

DMSO, aliquoted and stored at -20 °C whereas a stock solution of 25mg/ml 

Bilobalide was prepared by dissolving 10 mg Bilobalide in 400µl acetone and stored 

at  -20 °C as 40µl aliquots. 

 

 

2.2.4 Assessment of cell viability and cell injury 

 

2.2.4.1 MTT cell viability assay 

24 hours following each of the above experiments MTT assay was conducted. This 

test is commonly used for assaying cell viability and depends on the reduction of the 

MTT, a yellow tetrazolium salt into crystalline blue formazan in live cells, by the 

action of the mitochondrial enzyme oxidoreductase (Ban et al., 2006b). The amount 

of formazan produced is proportional to the number and activity of the viable cells 

(Mosmann, 1983). After incubating the cells with the allocated treatment, 10 µl of 

MTT (0.5mg/ml) were added to each well of the 96 well plate containing 100µl of 

media. After 2-4 hours incubation period at 37 °C, equal volume of MTT stop 

solution (5 g SDS+ 50 ml DMF) were added into each well and left for 2 hours at 37 

°C to dissolve the formazan crystal. The optical densities (absorbance) of the media in 
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the 96 well plates were determined using the (Safire II, Tecan, Switzerland) 

microplate reader at a wavelength of 570 nm with a reference wavelength of 630 nm. 

 

2.2.4.2 In Situ Apoptosis Detection 

A cell viability kit, usually referred to as the TUNEL assay, ApopTag® Fluorescein 

Direct In Situ Apoptosis Detection Kit; Chemicon was used in this study to detect 

apoptotic RGC-5 cells insulted by DMSO. This assay which is usually known as 

Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, 

detect apoptotic cells by specific staining by modifying fragmented DNA utilizing 

terminal deoxynucleotidyl transferase (TdT). RGC-5 was cultured in five of the 

35mm glass bottom microwell petri dishes (MatTek corporation) for 24 hours, after 

that cells were exposed to 1%, 2.5%, 5% and 10% DMSO, one petri dish was used as 

a control in which RGC-5 were treated by DMEM only. 24 hours later TUNEL assay 

was started by fixing the cells by adding 2ml of 1% fresh paraformaldehyde to each 

petri dish for 10 min at 37°C, then wash twice in PBS for 5 min. RGC-5 cells were 

then post fixed by adding 2ml of cooled ethanol: acetic acid 2:1 for 5 min at -20 °C. 

Before applying equilibrium buffer cells washed again twice in PBS for 5 min each 

wash, aspirate off excess and added 50 µl equilibrium buffers to each petri dish for 10 

sec. Excess liquid were gently taped and 30 µl of working concentration of TdT 

enzyme (105 µl reaction buffer and 45 µl TdT enzyme were applied to the central part 

of each petri dish and cells then incubated in humidity chamber for one hour at rtp. 

Later working concentration of stop buffer (1ml stop buffer in 34 ml d H2O) was 

applied, cells were agitated for 15 seconds and incubated at rtp for 10 min. The final 

step in this assay was to counterstain and mounts after fluorescence staining, so 

http://en.wikipedia.org/wiki/Terminal_deoxynucleotidyl_transferase


 95 

excess liquid gently tapped and 1.5 µl mounting media (1 µl of 1mg/ml PI in 1ml 

vector shield) was applied, glass cover slip then placed over and petri dishes placed in 

foil and stored at -20 °C until they were imaged using Leica Image Capture 

Microscope. 

2.2.4.3 Hoechst 33342 staining 

 

 

Hoechst 33342 is a trihydrochloride trihydrate blue fluorescent dye, capable of 

penetrating plasma membrane and staining the DNA of the apoptotic cell without 

needing permeabilization (Ban et al., 2006b). Compared to normal cells, the densely 

condensed chromatin of the apoptotic cells will uniformly take up the Hoechst 33342 

and can be visualized by fluorescent microscopy. In these studies, this vital stain was 

used to examine DMSO-induced morphological changes in the nuclei of apoptotic 

RGC-5. After treating the cells in the 12 well plates with 1% DMSO and ascending 

concentrations of Ginkgolide A, Ginkgolide B and bilobalide for 24 hours as 

described before, RGC-5 was gently washed with PBS then fixed with fresh 4% 

Paraformaldehyde for 25 minutes at room temperature. Cells were then stained with 

Hoechst 33342 dye at a concentration of 5µl/ml for 5 minutes, washed with PBS and 

stored at -20 °C until they were examined under the Leica Image Capture Microscope 

and x40 lens. RGC-5 with high fluorescence intensity due to chromatin condensation 

or nuclear fragmentation were considered to be apoptotic.  
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2.2.5 Data Analysis and statistics 

 

Data of the MTT reduction were expressed as the mean and 95% CI, statistical 

significance was further assessed by One-way ANOVA, *P < 0.05,  **P < 0.01 were 

considered to be significant. Dose-response curves of Ginkgolide A, Ginkgolide B 

and Bilobalide were fitted using Origin 8.5 (OriginLab, Northampton, MA). 

 

Data of Hoechst 33342 staining of DMSO-induced apoptotic nuclei was shown as 

apoptotic neurons as a percentage of total neurons (Massieu et al., 2004;Ban et al., 

2006b;Santiago et al., 2007). 
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3 Results:  
 

3.1 Investigation of pro-apoptotic targets in OHT model 
 
As discussed in section 1.2.5 several possible targets were identified as potentially 

modifiable by Ginkgo biloba and were investigated. Immunohistochemistry was used 

in this study to examine several of the potential targets for Ginkgo biloba in OHT rat 

eyes. 

3.1.1  Immunohistochemistry for Cytochrome c  

 

In this study the pattern of cytochrome c expression and the effect of IOP elevation    

was investigated in an OHT model that has been established by our group. OHT and           

age-matched controls at 1, 3 and 12 weeks after IOP elevation were assessed. 

 

Results of cytochrome c deposition on paraffin-embedded retinal sections, as 

presented in (figure 3.1 a-f, red), showed marked up-regulation of cytochrome c 

immunoreactivity one week post OHT surgery (arrow head), reaching a peak at three 

weeks (P < 0.05). The level of cytochrome c activity in normal retina was almost 

undetectable at all time points. As illustrated in (figure 3.1 g) masked grading of 

retinal sections showed that cytochrome c level in the OHT retina dropped after 3 

weeks to reach statistically non-significant level at 12 weeks, which is possibly due to 

the fact that mitochondrial damage is an early event in the apoptotic process, will lead 

to cytochrome c release, which then potentially contributes to RGCs apoptosis by 

activating caspases.  
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Leica Image Capture of Cytochrome c in OHT model and age–matched controls  

 
 

                        
Cytochrome c stained OHT retina                                          Cytochrome c stained control retina    

 at 1 week                                                                                 at 1 week 

                        
Cytochrome c stained OHT retina                                         Cytochrome c stained control retina    

 at 3 weeks                                                                               at 3 weeks 

                               
Cytochrome c stained OHT retina                                       Cytochrome c stained control retina    

at 12 weeks                                                                           at 12 weeks 

 

 
Figure 3.1 Cytochrome c Immunohistochemistry 

(Figure 3-1 a-f, red): shows cytochrome c immunoreactivity in the RGCs and NFL on paraffin-

embedded cross sections in the OHT retina and age-matched controls at 3 time points. Note that 

immunoreactivity was highest at 3 weeks in OHT eyes, with minmal changes in the controls, in (figure 

3-1 g): comparison of cytochrome c level in OHT and age-matched controls at 3 time points. n=30 

slide/time point. (All treatment groups were compared to each other and the control by one-way 

ANOVA followed by post hoc comparisons * P < 0.05, * * P < 0.01). 
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3.1.2 Immunohistochemistry for Active caspase-3 level  
 
Immunoreactivity of activated caspase-3, the ultimate executioner caspase, was next 

investigated in this study. There was an apparent increase in caspases-3 deposition 

(figure 3.2 a-f, brown) in the retina of OHT at all of the time points observed (arrow 

head), compared with age-matched controls, caspase-3 up-regulation in the OHT eyes 

was statistically significant at 3 and 12 weeks (P < 0.01) as illustrated in ( figure 3.2 

g). 
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Nikon Eclipse 80i Image Capture of active caspase-3 in OHT model and age–

matched controls  

 

                           
Caspase-3 stained OHT retina at 1 week                         Caspase-3 stained control retina at 1 week         

 

                        
Caspase-3 stained OHT retina at 3 weeks                     Caspase-3 stained control retina at 3 week 

    

                      
Caspase-3 stained OHT retina at 12 weeks                   Caspase-3 stained control retina at 12 week        

 

 
Figure 3.2 Active caspase-3 Immunohistochemistry 

(Figure a-f, brown) shows caspase-3 immunoreactivity on paraffin-embedded cross sections in the 

OHT retina and age-matched controls at 3 time points. Note labeling of the RGCs and NFL which was 

maximum at 3 weeks in the OHT eyes compared with the controls, (figure 3-2 g) shows histological 

grading of active caspase-3 level in OHT and age-matched controls at 3 time points. n=18 slide/time 

point (All treatment groups were compared to each other and the control by one-way ANOVA 

followed by post hoc comparisons * * P < 0.01). 
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3.1.3 TNF-R1 level in OHT model and age –matched controls 

  

To explore TNF expression in OHT eyes, retinal sections were then stained with 

TNF-R1 antibodies and the results are displayed in (figures 3.3 a-g, brown). Intense 

immunostaining of TNF-RI was observed in the ganglion cell layer as well as in the 

inner plexiform layer (arrow head) in OHT eyes, which peaked at 3 weeks after IOP 

elevation (P < 0.05 or P < 0.01) (figure 3.3, g), although positive immunoreactivity 

was seen in the control eyes as well, the intensity of the staining was lower in age 

matched controls.  
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Nikon Eclipse 80i Image Capture of TNF-R1 in OHT model and age–matched 

controls  

 

                     
TNF-R1 stained OHT retina at 1 week               TNF-R1 stained control retina at 1 week         
 

                 
TNF-R1 stained OHT retina at 3 weeks                TNF-R1 stained control retina at 3 weeks   

 

                   
TNF-R1 stained OHT retina at 12week             TNF-R1 stained control retina at 12 week         

 

Figure 3.3 TNF-R1 Immunohistochemistry 

(Figure a-f, brown) shows TNF R1 immunoreactivity on paraffin-embedded cross sections in the OHT 

retina and age-matched controls at 3 time points. Note labeling of the RGCs and inner plexiform layer. 
(Figure 3-3, g) illustrate comparison of TNF-R1 in OHT and age-matched controls, n=18 slide/time point 

(All treatment groups were compared to each other and the control by one-way ANOVA followed by 

post hoc comparisons * P < 0.05, * * P < 0.01). 

 

a

NFL
GCL
IPL

INL

OPL

ONL

NFL
GCL
IPL

INL

OPL

ONL

b

NFL
GCL
IPL

INL

OPL

ONL
c d

NFL
GCL
IPL

INL

OPL

ONL

NFL
GCL
IPL

INL

OPL

ONL
e f

NFL
GCL
IPL

INL

OPL

ONL

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

Ave

M
ea

n
 T

N
F-

R
1

 le
ve

l 

1Wk Controls

1Wk OHT

3Wks Controls

3Wks OHT

12Wks Controls

12Wks OHT

Time point 

( g ) 
** 

** 
* 

* 



 104 

3.2 Investigation of Aß in OHT 
 
To examine the potential role of Aß in RGCs apoptosis in glaucoma, APP and Aß 

expression in the same experimental glaucoma (OHT) model was examined in this 

study.  

3.2.1 Immunohistochemistry for APP and Aß  

 
 
 Leica image capture of APP in OHT eyes and age–matched controls are shown in 

(figure 3.4 a-f, green), enhanced expression of APP (arrow head) was found in the 

inner retinal layers (RGCs and nerve fiber layer) of OHT retinal sections while 

minimal immunoreactivity were observed in age-matched control; masked grading of 

the retinal sections (figure 3.4, g) illustrate significant reduction in APP expression in 

OHT rats over time (P < 0.05 or P < 0.01) to reach the lowest level at 12 weeks of 

OHT elevation. There was no apparent difference in APP labeling in the control 

sections. 

 

We have observed enhanced Aß immunohistochemical expression in RGCs of all 

OHT rats in comparison with the control, as shown in (figure 3.5 a-f) (arrow head). 

Aß accumulation in the OHT retinal sections increased gradually during the observed 

time points, and the maximum deposition was evident at 12 weeks after OHT surgery. 

The graph displayed in (figures 3.5, g) shows the masked grading of this retinal 

sections and the statistically significant Aß accumulation at 3 and 12 weeks time 

points in comparison with the control (p < 0.01).  
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Leica Image Capture of APP in OHT model and age –matched controls  

 

                  
 APP stained OHT retina at 1 week                                APP stained control retina at 1 week   

 

                       
APP stained OHT retina at 3 weeks                              APP stained control retina at 3 weeks   

  

                     
APP stained OHT retina at 12 weeks                            APP stained control retina at 12 weeks   

 

 
Figure 3.4 APP Immunohistochemistry 

(Figure 3-4 a-f, green) shows apparent reduction in APP immunoreactivity in RGC layer on paraffin-

embedded cross sections of the OHT retina compared to age-matched controls at 3 time points. Notice 

intense labelling of the RGCs and NFL in the OHT whereas no intensity observed in the age-matched 

controls, (figure 3-4 g) statistically significant reduction in APP level of OHT and age-matched 

controls at 3 time points, n=30 slide/time point. (All treatment groups were compared to each other and 

the control by one-way ANOVA followed by post hoc comparisons * P < 0.05, * * P < 0.01). 
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 Leica Image Capture of Aß in OHT model and age–matched controls  

 

  
Aß stained OHT retina at 1 week                                 Aß stained control retina at 1 week         

 

                     
Aß stained OHT retina at 3 weeks                               Aß stained control retina at 3 weeks         

 

 
Aß stained OHT retina at 12 weeks                             Aß stained control retina at 12 weeks    

 

 
Figure 3.5 Aß Immunohistochemistry 

(Figure 3-5 a-f, red) shows enhanced Aß immunoreactivity (red) in RGC and NFL on paraffin-

embedded cross sections in the OHT retina and age-matched controls at 3 time points. Notice increased 

immunofluorescence intensity of Aß over time in OHT eyes, whereas minimum increase observed in 

the age-matched controls, (figure 3-5, g) comparison of Aß level among glaucoma rats and age 

matched controls at 3 time points, n=30 slide/time point. (All treatment groups were compared to each 

other and the control by one-way ANOVA followed by post hoc comparisons * P < 0.05, * * P < 0.01). 
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3.3 Investigation of RGC apoptosis in vitro  
 
To mimic RGCs mitochondrial injury occurring in glaucoma, RGC-5 were exposed to 

the apoptotic inducers: DMSO, UVC and Na N3, and their effect on RGC-5 viability 

were examined using the MTT assay.  

3.3.1 Effect of DMSO on RGC-5 survival 

 
 
RGC-5 were treated with 1%, 2.5%, 5% and 10% DMSO, DMEM and 0.5% Triton 

and an MTT assay was performed 24 hours later to assess cell survival. Results 

showed all concentrations of DMSO significantly reduced RGC-5 viability compared 

to control (figure 3.6). DMSO treatment resulted in a dose dependent reduction in cell 

survival (MTT reduction) in comparison with the control (DMEM), 1% DMSO 

resulted in 27% reduction in RGC-5 viability, 57% cell survival reduction observed 

with 2.5% DMSO, 69% with 5% DMSO and 86% with 10% DMSO. Statistical 

analysis showed significant effects between different concentrations of DMSO and in 

comparison with the control (DMEM) (P < 0.01).                                                              

  

 

 

 

 

 

 

 



 108 

 
 

Figure 3.6 DMSO-induced RGC-5 death 

Treating RGC-5 with a concentration range of 1-10% DMSO were associated with a dose dependent 

reduction in cell survival as confirmed by MTT assay, in comparison with base line DMEM the 

indicated concentration of DMSO has resulted in 27%, 57%, 69% and 86% reduction in RGC-5 

viability, data are expressed as mean ± 95% CI, n=8. (All treatment groups were compared to each 

other and the control by one-way ANOVA followed by post hoc comparisons * * P < 0.01). 

 

 

 

3.3.2 Effect of UVC on RGC-5 survival 

 
Figure 3.7 shows the influence of UVC exposure on the viability of cultured RGC-5. 

There was a dose dependent reduction in RGC-5 viability following exposure to 40, 

60 and 80 mj/cm
2
, compared with cells incubated without UV treatment; RGC-5 

viability has been reduced by 20% following UV40 and 47% after increasing the dose 

to 60 mj/cm
2
, while doubling the radiation to 80 mj/cm

2
 has resulted in 67% reduction 

in RGC-s viability by MTT assay. Compared with the control (DMEM), the effect of 

all UVC exposure on RGC-5 viability was statistically significant (P < 0.01).                                                              
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Figure 3.7 UV-induced RGC-5 toxicity 

RGC-5 exposed to 40, 60 and 80 mj/cm
2
 UV, were associated with a dose dependent reduction in cell 

survival as confirmed by MTT assay, in comparison with base line DMEM the indicated exposure of 

UV,  has resulted in 20%, 47% and 67% reduction in cell survival, data are expressed as mean ± 95% 

CI, n=8. (All treatment groups were compared to each other and the control by one-way ANOVA 

followed by post hoc comparisons * * P < 0.01). 

 

 

                                                                                                                                                                                                                    
    

3.3.3 Effect of NaN3 on RGC-5 survival 

 
As shown in figure 3.8, 24 hours exposure of RGC-5 to 1, 2.5, 5 and 10mM NaN3 

resulted in a concentration dependent decline in cell survival. Exposing RGC-5 to the 

indicated concentration of NaN3 had the effect of reducing viability on MTT assay to 

35%, 49%, 51% and 62% of control level respectively. In comparison with the control 

(DMEM) this effect was statistically significant at all used concentrations of NaN3 

(P < 0.01 or P < 0.05).                                                              
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Figure 3.8 NaN3-induced RGC-5 toxicity 

RGC-5 treated with 1, 2.5, 5 and 10mM NaN3, were associated with a dose dependent reduction in cell 

survival as confirmed by MTT assay, in comparison with base line DMEM RGC-5 exposure to the 

indicated concentration of NaN3 has resulted in 35%, 49%, 51% and 62% reduction in cell survival, 

data are expressed as mean ± 95% CI, n=8. (All treatment groups were compared to each other and the 

control by one-way ANOVA followed by post hoc comparisons * P < 0.05, * * P < 0.01). 

 

 

 
 

3.4 Effect of Ginkgolide A, Ginkgolide B and Bilobalide on RGC-5 

viability 
 

From the previous section, it has been shown that all 3 pro-apoptotic insults decreased 

RGC survival, and before carrying on these investigations, it was necessary to 

examine and compare effects of Gingko biloba constituents alone on RGC-5 viability. 

RGC-5 were incubated with different concentrations (0.5-25µg/ml) of GA, GB and 

Bil alone for 24 hours to access any possible cytotoxicity using these agents alone 

might have on RGC-5 viability. As shown in (figure 3.9), toxicity was observed with 

higher doses of GA (5, 10, and 25 µg/ml). These doses has largely reduced RGC-5 

viability leading to 78%, 65% and 55% reduction in cell viability respectively in 

comparison with the control (DMEM), whereas lower doses (0.5, 1 and 2.5µg/ml) of 

GA appear to have no significant differences in comparison to control (DMEM) 
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(P < 0.01), and were associated with 99%, 92% and 88% reduction in cell viability, 

suggesting that GA is not cytotoxic at lower doses. 

  

 

 

 

 

 
 
Figure 3.9 Effects of Ginkgolide A on RGC-5 

RGC-5 treated with a concentration range (0.5-25µg) Ginkgolide A, and MTT assay to access cell 

viability was performed after 24 hours, as in (figure 3.9) in comparison with baseline DMEM the 

indicated concentration of GA were associated with dose dependent reduction in the mitochondrial 

activity of living RGCs with no apparent toxicity at the lower doses in comparison with control 

(DMEM), data are expressed as mean ± 95% CI, n=5, Y axis= Abs 570nm. (All treatment groups were 

compared to each other and the control by one-way ANOVA followed by post hoc comparisons * * 

P < 0.01). 

 

Looking at the effect of Ginkgolide B (Figure 3.10), it is visible that higher RGC-5 

viability than the control (DMEM) were observed with (0.5, 1 and 2.5µg/ml) GB 

leading to 134%, 115% and 107% higher RGC-5 survival in comparison with the 

control while (5, 10, and 25 µg/ml) GB were found to be associated with 100%, 91% 

and 85% reduction in RGC-5 survival. No toxicity was evident with (0.5-10 µg/ml) 

GB. Statistical analysis revealed significant difference between the control and the 

lowest and the highest used concentration (P < 0.01).  
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Figure 3.10 Effect of Ginkgolide B on RGC-5 

A concentration range (0.5-25µg) Ginkgolide B was used to treat RGC-5 and MTT assay was 

performed 24 hours later. (Figure 3.10) displays RGC-5 viability in comparison with baseline DMEM, 

higher cell viability  than the control (DMEM) were observed with (0.5, 1 and 2.5µg/ml) GB with no 

apparent toxicity at the doses (0.5-10µg/ml), data are expressed as mean ± 95% CI, n=5, Y axis= Abs 

570nm. (All treatment groups were compared to each other and the control by one-way ANOVA 

followed by post hoc comparisons * * P < 0.01). 

 

 

 

 

The comparison of the effect of Bilobalied and the control (DMEM) are illustrated in 

(figure 3.11). Bil application has resulted in enhancement of cell survival at the lower 

dose and then dose dependent reduction in RGC-5 viability in comparison with the 

control, 0.5 µg/ml Bil were associated with 104% higher viability than the control 

while Bil at (1, 2.5, 5, 10 and 25 µg/ml ) were associated with about 99%, 89%, 86%, 

82% and 58% reduction in cell viability respectively, no significant difference 

(P < 0.01) was observed with the control at (0.5, 1, 2.5 and 5 µg/ml) Bil suggesting 

lack of cytotoxicity at these concentrations.  
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Figure 3.11 Effect of Bilobalide on RGC-5 

Treating RGC-5 with a concentration range of (0.5-25µg) Bilobalide has resulted in enhancement of 

cell survival at the lower dose and then dose dependent reduction in RGC-5 viability in comparison 

with the control. No significant difference was observed at (0.5, 1, 2.5 and 5 µg/ml) Bil and the control 

suggesting lack of cytotoxicity at these concentrations, data are expressed as mean ± 95% CI, n=5, Y 

axis= Abs 570nm. (All treatment groups were compared to each other and the control by one-way 

ANOVA followed by post hoc comparisons * * P < 0.01). 

 

 

 

 

3.5 Neuroprotective effect of Ginkgolide A, Ginkgolide B and Bilobalide 

against DMSO, UV40 and NaN3 toxicity 
 

To screen neuroprotective potential of Ginkgolide A, Ginkgolide B and Bilobalide on 

RGC-5 exposed to those apoptotic inducers discussed in section 3.3, the following 

studies were then performed at doses where RGC-5 viability was 20-35%. Hence, for 

DMSO, 1% was identified as UV40 and 1mM NaN3 were chosen as the average 

reduction in RGC-5 viability using these protocols was between 20-35% and using 

higher concentrations of those insults would result in massive reduction in RGC-5 

viability where cell damage may not be prevented by GA, GB and Bil.  
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3.5.1 Effects of Ginkgolide A, B and Bilobalide on 1% DMSO-induced RGC-5 

death 

3.5.1.1 Effects of Ginkgolide A, B and Bilobalide on DMSO-induced toxicity 

using MTT assay  

 
From the results illustrated in the previous section 3.4, no cytotoxicity was observed 

with (0.5, 1 and 2.5 µg/ml) GA, (0.5, 1, 2.5, 5 and 10 µg/ml) GB and (0.5, 1, 2.5 and 

5 µg/ml) Bil. However, all the following experiments were conducted using the full 

range of (0.5-25 µg/ml) of these compounds to examine their EC50 on dose response 

curve. In these investigations, the effect of GA was dose dependent, and it appeared 

that the lowest doses of GA (0.5 and 1µg/ml) were the most effective in enhancing 

cell viability, however, no statistically significant difference was observed in 

comparison with baseline 1% DMSO (figure 3.12). In comparison with baseline 

1%DMSO, 0.5 and 1µg/ml GA had resulted in 10% and 9% enhancement in cell 

viability compared to baseline 1% DMSO respectively. The reduction in RGCs 

survival at higher doses is most probably related to the toxicity of the drug by itself as 

shown earlier in figure 3.9 in which toxic effect was observed at 5, 10 and 25µg/ml 

GA. 

 

 

 

 

 

 

 

 

 

  
Figure 3.12 Effects of Ginkgolide A on 1% DMSO-induced RGC-5 death 

0.5-25 µg/ml Ginkgolide A was applied to RGC-5 for 2 hours before DMSO treatment. MTT 

absorbance at 570nm was performed 24 hours later, as seen in (figure 3-12). There is a trend for 0.5-1 

to induce RGC survival, this was statistically not significant, the effects of 1% DMSO on RGC-5 was 

dose dependent, and in comparison with baseline1% DMSO, 0.5 and 1 µg/ml GA were associated with 

10% and 9% enhancement in RGC-5 viability, each experiment was performed five times and the 

result is expressed as mean ± 95%CI, Y axis= Abs 570nm. (All treatment groups were compared to each 

other and the control by one-way ANOVA followed by post hoc comparisons  * * P < 0.01). 
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Ginkgolide B treatment in presence of 1%DMSO was associated with neuroprotective 

effect at 0.5-2.5 µg/ml (P < 0.01), and the best protection was seen at the lowest 

concentration tested (0.5 µg/ml) as displayed in (figure 3.13 a). The range of used 

concentration of GB of 0.5, 1, 2.5, 5, 10 and 25 µg/ml was associated with about 52%, 

30%, 29%, 19%, 17% and 14% higher RGC-5 viability respectively in comparison  

with baseline 1% DMSO. GB effect on RGC-5 was dose dependent with EC50 of 

2.21µM as shown in (figure 3.13, b). 

 

 

 

 

 

 
 
 
 
 

 

 
 
Figure 3.13 Protective effect of Ginkgolide B on 1% DMSO-induced RGC-5 toxicity 

Ginkgolide B 0.5-25 µg/ml was applied to RGC-5 2 hours before 1% DMSO treatment. 24 hour later 

cell viability was assessed using MTT assay. In (figure 3-13 a) there was a significant inhibition in 

RGC-5 viability by 1%DMSO, which was blocked by 0.5-2.5 µg/ml GB. GB enhancement of cell 

viability ranged between 52% with 0.5 µg/ml and 14% with 25µg/ml GB. (Figure 3-13 b) illustrate 

dose response curve of GB+1%DMSO showing dose dependent effect with an EC50 of 2.21µM. Each 

experiment was performed five times and the result is expressed as mean ± 95%CI, Y axis= Abs 570nm. 

(All treatment groups were compared to each other and the control by one-way ANOVA followed by 

post hoc comparisons  * * P < 0.01). 

** 
** ** 

(a) 
 

(b) 
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The profile of protection observed with Bilobalide was similar to GA as displayed in 

(figure 3.14) 0.5 and 1µg/ml Bil had the most pronounced effect on 1%DMSO 

neurotoxicity in cultured RGC-5, however, the effect was statistically not significant 

(P < 0.01). In comparison with baseline 1%DMSO, those doses enhanced RGC-5 

survival by 23% and 18%. 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.14 Effects of Bilobalide on 1% DMSO-induced RGC-5 death 

0.5-25 µg/ml Bilobalide were applied to RGC-5 for 2 hours before1% DMSO treatment. MTT 

absorbance was performed 24 hour later. As seen in (figure 3-14) the DMSO induced reduction in cell 

viability was attenuated by 0.5 and 1 µg/ml Bil. Each experiment was performed five times and result 

is expressed as mean ± 95%CI, Y axis= Abs 570nm. (All treatment groups were compared to each other 

and the control by one-way ANOVA followed by post hoc comparisons * * P < 0.01). 

                       

 

3.5.1.2 Effects of Ginkgolide A, B and Bilobalide on DMSO-induced toxicity 

using Hoechst 33342 staining  

 
 
To examine the apoptotic potential of DMSO in cultured RGC-5 and to further assess 

the neuroprotective effect of Ginkglide A, Ginkgolide B and Bilobalide on 1% DMSO 

induced RGC-5 death; cells were stained by Hoechst 33342. This viable dye allows 

condensation of DNA, a feature of apoptosis, to be detected. After 24 hours of 1% 

DMSO, GA, GB and Bil treatment, cells were fixed and stained with Hoechst 33342 

dye at a concentration of 5µl/ml for 5 minutes. On observing the 12 well plates under 

the Leica Image Capture Microscope, as seen in figures 3.15-3.17, the majority of 

** 
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RGC-5 in the control culture (DMEM) had normal cell density, whereas the density 

of RGC-5 reduced markedly in the 1% DMSO treated culture with higher percentage 

of apoptotic nuclei. The apoptotic cells in all wells with condensed chromatin and 

fragmented DNA take up the Hoechst 33342 stain and fluorescence typical for 

apoptotic nuclei (arrows head). Apoptotic cells were counted from 5 field per well and 

their proportion was calculated and the results are shown as apoptotic cells as a 

percentage of the total number of cells (Massieu et al., 2004;Ban et al., 

2006b;Santiago et al., 2007).  

In figure 3.15 the effect of GA on the 1% DMSO treated cells was illustrated, when 

RGC-5 was exposed to DMEM only (figure 3.15 a) this resulted in 3.9% apoptosis 

whereas 1% DMSO (figure 3.15 e) increased the number of apoptotic cells to 5%, 

among the used concentration of GA 0.5, 1 and 2.5 µg/ml showed neuroprotective 

effect as measured by reduction in RGC apoptosis (figure 3.15 b, f, c). These doses 

had the lowest proportion of apoptosis of 3.4%, 3.7% and 4% respectively and 

reversed the DMSO-induced cytotoxicity, on the other hand 5, 10 and 25 µg/ml 

(figure 3.15 d, g, h) were associated with 5.5%, 5.9%, and 6.8% apoptotic nuclei 

respectively. 

 

 It was clearly evident on examining those plates that 0.5, 1 and 2.5 µg/ml GA had 

remarkably reduced the number of condensed and apoptotic nuclei; quantitative data 

of apoptotic cells as a percentage of the total number of cells are displayed in (figure 

3.15, i). At 0.5, 1 and 2.5 µg/ml GA was found to be neuroprotective (P < 0.01). This 

result using the Hoechst 33342 staining to measure reduction in RGC apoptosis, was 

different from the previous MTT assay results of the effect of 0.5, 1 and 2.5µg/ml GA 



 118 

against 1% DMSO-induced cytotoxicity, because each assay has different implication 

for cell death.  

 

Figure 3.16 illustrates the neuroprotective effects of GB on 1% DMSO-induced 

toxicity. From this data it is apparent that cell density of the GB treated RGC-5 was 

maintained at all concentration range 0.5-25 µg/ml used in the study. The control 

culture (DMEM) in (figures 3.16, a) shows the majority of cells with apparently 

normal nuclear morphology resulting in only 2.9% apoptosis, while 1% DMSO 

treated RGC-5 (figures 3.16, e) led to 4.6% apoptotic cells. Pretreatment with 0.5, 1, 

2.5, 5, 10 and 25 µg/ml GB two hours before DMSO exposure (figures 3.16 b, c, d, f, 

g, h) reduced nuclear condensation (arrow head) and the percentage of apoptotic 

nuclei to 1.8%, 1.9%, 2%, 2.5%, 2.8%, and 2.6% respectively. Figures 3.16, i 

illustrate that, at 0.5 and 1 µg/ml GB was found to be neuroprotective P < 0.01 as 

measured by a reduction in RGC apoptosis. 

 

Figure 3.17 shows the Hoechst 33342 staining of Bil and 1% DMSO treatment. In 

(figures 3.17, a) the control culture with 2.9% apoptosis and maintained cellular 

density was displayed. Figures 3.17, e shows 1% DMSO treatment, which resulting in 

4.4% apoptosis with visible reduction in cell density. In (figures 3.17 b, f, c) the effect 

of 0.5, 1, 2.5 µg/ml of Bil on DMSO treated RGC-5 was shown, which has inhibited 

the percentage of apoptotic RGC-5 to 2.3%, 3.4%, 3.9%, while Hoechst staining of 5, 

10, 25 µg/ml Bil treated cultures failed to reduce the apoptosis and increased the 

apoptotic cells to 4.7%, 5.5 and 5.5% respectively. Nevertheless, at all concentrations 

Bil effect on RGC apoptosis was statistically not significant. 
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Figure 3.15 Fluorescent microscopy images of Hoechst 33342 staining of GA and 1% DMSO 

treated RGC-5 

RGC-5 were pre-treated with the indicated concentration of GA, 2 hours later 1% DMSO was added 

and cells were incubated for 24 hours, after that RGC-5 stained with Hoechst 33342. Five fields for 

each indicated concentration were counted and tabulated using Microsoft excel software, the brightly 

stained RGCs with condensed nuclei were considered to be apoptotic whereas the lightly stained 

smooth RGCs were considered as normal non apoptotic cells. The apoptotic degree was calculated by 

dividing the number of counted apoptotic cells over the total number of visible cells in the field and 

displayed as percentage. (Figure 3.15, a) shows normal RGC-5 density and fewer apoptotic cells in the 

control culture, (figure 3.15, e) RGC-5 loss with higher number of apoptotic nuclei in 1% DMSO 

treated cells, (figures 3.15, b, c, f) reduced nuclear condensation with 0.5, 1 and 2.5 µg/ml GA 

treatment, (figures 3.15, d, g, h) RGC-5 loss with higher percentage of apoptotic nuclei with 5, 10 and 

25 µg/ml, quantitative data are displayed in (figure 3.15, i) as shown in the graph At 0.5, 1 and 2.5 

µg/ml GA was found to be neuroprotective. Each column represents mean ± 95%CI. (All treatment 

groups were compared to each other and the control by one-way ANOVA followed by post hoc 

comparisons * * P < 0.01).                 
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Figure 3.16 Fluorescent microscopy images of Hoechst 33342 staining of GB and 1% DMSO 

treated RGC-5 

Representitive fluorescence microscopy of Hoechst 33342 after 1% DMSO and Ginkgolide B 

treatment. RGC-5 were pretreated with the indicated concentration of GB and two hours later 1% 

DMSO was added, after 24 hours incubation, RGC-5 stained with Hoechst 33342. Five fields for each 

indicated concentration were counted and tabulated using Microsoft excel software, fluorescent cells 

were counted and expressed as a percentage of the number of Hoechst positive cells. (figure 3.16, a) 

shows maintained cell density and fewer apoptosis in the control culture, (figure 3.16, e) RGC-s loss 

and higher apoptosis percentage, (figures 3.16 b, c, d, f, g, h) relatively maintained density and 

reduction in apoptosis with all the used concentration of GB. Quantitative data are displayed in (figures 

3.16, i), at 0.5 and 1µg/ml GB was found to be neuroprotective, each column represents mean ± 

95%CI. (All treatment groups were compared to each other and the control by one-way ANOVA 

followed by post hoc comparisons * * P < 0.01). 
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Figure 3.17 Fluorescent microscopy images of Hoechst staining of  Bil and 1% DMSO treated 

RGC-5 

Hoechst 33342 after 1% DMSO and Bilobalide treatment. RGC-5 were pre-treated with the indicated 

concentration of Bil and 2 hours later 1% DMSO was added and cells were incubated for 24 hours, 

after that RGC-5 stained with Hoechst 33342. Five fields for each indicated concentration were 

counted and tabulated using Microsoft excel software, cells were counted and expressed as percentage 

of the number of Hoechst positive cells. In (figure 3.17, a) the control culture displays normal cells 

density with 2.9% apoptosis, (figure 3.17, e) 1% DMSO treatment with resultant reduction in RGC-5 

density and increasing the percentage of apoptotic cells to 4.4%, applying 0.5, 1 and 2.5 µg/ml Bil as in 

(figures 3.17 b, c, f) has inhibited the percentages of apoptosis. No protection was observed with the 

higher doses of Bil which failed to reduce the apoptosis as in (figures 3.17 d, g, h).  Quantitative data 

are displayed in (figures 3.17, i) at all concentrations Bil effect on RGC apoptosis was statistically not 

significant, the apoptotic degree was calculated by dividing the number of counted apoptotic cells over 

the total number of visible cells in the field and displayed as percentage. Each column represents mean 

± 95% (All treatment groups were compared to each other and the control by one-way ANOVA 

followed by post hoc comparisons). 
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To detect DNA fragmentation and identify the apoptotic features of DMSO toxicity in 

RGC-5 line, the TUNEL assay was performed on cells treated with the indicated 

concentration of DMSO for 24 hours using the protocol described previously in 

section 2.2.4. Micrographs of DMSO treated RGC-5 were taken using Leica Image 

Capture microscope and the number of The TUNEL-positive cells were counted. No 

quantitative evidence of apoptosis in the DMSO treated RGC-5 was detected with the 

TUNEL assay (data not shown). 
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3.5.2 Effects of Ginkgolide A, B and Bilobalide on UV40-induced RGC-5 death 

 
 

UVC light is a known apoptotic inducer in several cell lines and has been associated 

with oxidative cellular damage. In these experiments RGC-5 survival fell significantly 

following two minutes exposure to 40 mj/cm
2
 of UVC light (254nm) and Ginkgolide 

B and Bilobaliode were able to significantly restore cell viability. As displayed in 

(figure 3.18), UV40 has reduced RGC-5 viability, Ginkgolide A at concentration (0.5-

2.5 µg/ml) was respectively associated with 10%, 17 % and 14% enhancement in 

RGC-5 survival in comparison with baseline UV40. However, this enhancement was 

not significant using one way-ANOVA. 

 

Figure 3.18 Effect of Ginkgolide A on UV40-induced RGC-5 death 

 

Pre-exposing RGC-5 cells to 0.5, 1 and 2.5 µg/ml GA for 2 hours before UV40 treatment has 

increased RGC-5 survival in comparison with baseline UV40, n=6 and the result is expressed as mean 

± 95%CI, Y axis= Abs 570nm.  (All treatment groups were compared to each other and the control by 

one-way ANOVA followed by post hoc comparisons). 

 

 

 

Figure 3.19 shows the MTT assay result of incubating RGC-5 with Ginkgolide B 

prior to UV40 mj/cm2 exposure. As illustrated in figure 3.19, a the decline in RGC-5 

viability was significantly blocked by (0.5-5µg/ml) GB with maximal effect at 0.5 

µg/ml (P < 0.01), which has resulted in 22%, 21%, 21% and 12% enhancement in cell 
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viability respectively. The dose response curve of GB protective effect is illustrated in 

(figure 3.19, b) with an EC50 of 15μM. 

 

 

 

  

 

 

 

 

Figure 3.19 Effect of Ginkgolide B on UV40-induced RGC-5 toxicity 

0.5-25 µg Ginkgolide B were applied to RGC-5 for 2 hours before exposure to UV40. MTT absorbance 

was performed 24 hours later; there was a decline in RGC-5 viability after UV-C exposure which was 

dose dependently blocked by (0.5-10 µg/ml) GB (figure 3.19, a). Figure 3.19, b displays dose response 

curve of GB with an EC50 of 1.53 µM. n=6 and result is expressed as mean ± 95% CI, Y axis= Abs 

570nm. (All treatment groups were compared to each other and the control by one-way ANOVA 

followed by post hoc comparisons * * P < 0.01). 

 

The effect of Bilobalide on UV40 treated RGC-5 is displayed in (figure 3.20), and as 

seen UV40-induced cell death was significantly (P < 0.01) reversed by 0.5 and 

1µg/ml Bil, with the best protection observed at 1µg/ml Bil. The illustrated 

concentration range of 0.5-5 µg/ml Bil in (figure 3.20), has resulted in 18%, 23%, 

17% and 12% enhancement of cell viability as compared with baseline UV40.  

** ** 
** 

** 

( a ) 
 

( b ) 
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Figure 3.20 Protective effect of Bilobalide on UV40-induced RGC-5 death 

0.5-5 µg Bilobalide were applied to RGC-5 for 2 hours before exposing RGC-5 to UV40, MTT 

absorbance was performed 24 hours later; (figure 3.20) shows significant reduction in RGC-5 survival 

which was totally and dose dependently blocked by the applied Bil, the percentage of RGC-5 

protection by  (0.5-5 1µg/ml) Bil in comparison with baseline UV40 was 18%, 23%, 17% and 12% 

respectively, n=6 and result is expressed as mean ± 95% CI, Y axis= Abs 570nm.  (All treatment groups 

were compared to each other and the control by one-way ANOVA followed by post hoc comparisons * 

* P < 0.01). 
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3.5.3 Effects of Ginkgolide A, B and Bilobalide on 1Mm NaN3-induced RGC-5 

death 

 

Applying 1mM NaN3 to RGC-5 has resulted in a significant fall in cell viability as 

estimated by MTT assay and Ginkgolide A, B and Bilobalide pretreatment failed to 

demonstrate a protective effect. Interestingly, the reduction in RGC-5 viability 

following NaN3 treatment was attenuated by GA, GB and Bil at 0.5µg/ml 

concentration. However, the result of ANOVA revealed that this effect was not 

significant (P < 0.01). 

As shown in (figure 3. 21) pre-incubating RGC-5 with the lowest concentration used 

0.5µg/ml GA led to 24% enhancement in RGC-5 viability as compared with baseline 

1 mM NaN3, GA at 1 and 2.5 µg/ml GA were associated with dose dependent 

reduction in RGC-5 viability.  

 

Figure 3.21 Effect of Ginkgolide A on NaN3-induced toxicity 

Ginkgolide A 0.5-2.5 µg/ml was applied to RGC-5 for 2 hours before 1Mm NaN3 treatment. MTT 

assay was performed 24 hours later; as shown in (figure 3.21) there was a reduction in RGC-5 survival 

with 1 mM NaN3 that is attenuated by 0.5 µg/ml GA.  In comparison with baseline 1Mm NaN3, 0.5 

µg/ml GA were associated with 24% increase in RGC-5 viability, whereas, GA at 1 and 2.5 µg/ml GA 

were associated with dose dependent reduction in RGC-5 viability, n=5, result is expressed as mean ± 

95% CI, Y axis= Abs 570nm.  (All treatment groups were compared to each other and the control by one-

way ANOVA followed by post hoc comparisons). 
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The profile of Ginkgolide B on NaN3 treated RGC-5 was similar to GA as displayed 

in (figure 3.22), GB at 0.5µg/ml was associated with statistically not significant 

enhancement in RGC-5 viability of 1% compared to baseline NaN3, whereas (1-

25µg/ml) were associated with dose dependent reduction in RGC-5 viability. 

 

Figure 3.22 Effect of Ginkgolide B on NaN3-induced RGC-5 toxicity 

0.5-25 µg/ml Ginkgolide B was applied to RGC-5 for 2 hours before 1 mM NaN3 exposure. MTT 

absorbance was performed 24 hours later; as seen in (figure 3.22) there is a decline in RGC-5 survival 

with 1 mM NaN3, this was attenuated by 0.5 µg/ml GB leading to 1% enhancement in cell viability in 

comparison with baseline1 mM NaN3. Other doses 1-25µg/ml GB failed to improve RGC-5 survival, 

the effect of GB on 1Mm NaN3-induced cytotoxicity was dose dependent and statistically not 

significant (P < 0.01), n=5 and result is expressed as mean ± 95% CI, Y axis= Abs 570nm. (All treatment 

groups were compared to each other and the control by one-way ANOVA followed by post hoc 

comparisons). 
 

The effect of Bilobalide on 1mM NaN3-induced cytotoxicity in RGC-5 line was 

interestingly similar to GA and GB as displayed in (figure 3.23). Only the smallest 

used concentration of 0.5 µg/ml Bil was able to rescue RGC-5 increasing the cellular 

viability by 10% in comparison to baseline 1mM NaN3. Other doses (1-5 µg/ml Bil) 

were associated with 6%, 22% and 24% reduction in RGC-5 viability respectively.  
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Figure 3.23 Effect of Bilobalide on NaN3-induced RGC-5 toxicity 

0.5-5 µg/ml Bilobalide was applied to RGC-5 for 2 hours before applying1 mM NaN3. MTT 

absorbance was performed 24 hours later; as displayed in (figure 3.23) there is a significant fall in 

RGC-5 survival with 1 mM NaN3 which is attenuated by 0.5 Bil. (figure 3.23) in comparison with 

baseline1 mM NaN3, 0.5 µg/ml Bil were associated with 2% enhancement in RGC-5 survival while 

other doses failed to protect the cell resulting in 4%, 11%, 12%, 14% and 4% reduction in RGC-5 

survival. Each experiment was performed five times and result is expressed as mean ± 95% CI, Y axis= 

Abs 570nm. (All treatment groups were compared to each other and the control by one-way ANOVA 

followed by post hoc comparisons * * P < 0.01). 

 

 

 

3.6 Aβ toxicity in RGC-5 line 
  

 

Since Aβ expression in the retinal sections from the OHT model established in the 

group has been demonstrated, using immunohistochemistry (section 3.2). The effect 

of the full length peptide Aβ1-42 and Aβ25-35 on RGC-5 survival in vitro was next 

examined in the following experiments. 

3.6.1 Effect of Aβ1-42 on RGC-5 survival 
 

To investigate the ability of the full length peptide Aβ1-42 to induced RGC-5 death, 

RGC-5 was incubated with 10, 25, 50 and 100 µM Aβ1-42, cell viability assay which 

was performed 24 hours after the insult failed to show significant reduction in RGC-5 

survival, as shown in figure 3.24. Interestingly, in comparison with the control 

(DMEM) addition of 10 µM Aβ1-42 led to 6% increase in RGC-5 survival, other 
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doses were associated with 6%, 5% and 4% reduction in RGC-5 viability 

respectively.  

 

Figure 3.24 Effect of Aβ1-42 on RGC-5 survival 

The effect of 10, 25, 50 and 100µM Aβ1-42 on RGC-5 viability was measured after 24 hours. Aβ1-42 25-

100µM Aβ1-42 resulted in mild insignificant reduction in cell viability as determined by MTT assay, 

absorbance was measured at 570nm. There has been 6%, 5% and 4% reductions in cell survival 

compared with baseline DMEM. Result is expressed as mean ± 95% CI, n=8, Y axis= Abs 570nm. (All 

treatment groups were compared to each other and the control by one-way ANOVA followed by post 

hoc comparisons). 

 

 

3.6.2 Aβ25-35 leads to RGC-5 death 

 
The apoptotic effect of Aβ25-35 has been demonstrated in vitro in many neuronal cell 

lines. Thus in this experiment RGC-5 was challenged with a concentration range of 

Aβ25-35 up to 100µM that has been used by other researchers to stress PC12 cell line 

(Zhou et al., 2000) as displayed in figure 3.25. The colorimetric MTT assay was 

performed to investigate the effect of 24 hours exposure to concentration range of 5-

100µM Aβ25-35 on RGC-5. A concentration dependent decrease in RGC-5 survival 

was observed on treating RGC-5 with 5µM, 10µM, 25µM, 50µM and 100µM Aβ25-35, 

which led to a 16%, 17%, 18%, 27% and 60% reduction in survival respectively, in 

comparison with the control (DMEM). One way-ANOVA showed significant 

reduction in RGC-5 viability (P < 0.01) compared with the control (DMEM). The 
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50µM Aβ25-35 was associated with nearly 30% reduction in cell viability and was used 

in the next experiment for the determination of neuroprotective effect of Ginkgolide 

A, Ginkgolide B and Bilobalide on Aβ25-35-induced RGC-5 cytotoxicity. 

 

 

 

 

 

 

 

 

 

 

Figure 3.25 Effect of AB25-35  on RGC-5 survival 

RGC-5 was exposed to concentration range of 5-100µM Aβ25-35 and MTT assay done 24 hours later. 

There was a concentration dependent reduction in RGC-5 viability which was statistically significant 

at all used concentration; absorbance was measured at 570nm. Results are expressed as mean ± 95% 

CI, Y axis= Abs 570nm.  (All treatment groups were compared to each other and the control by one-way 

ANOVA followed by post hoc comparisons * * P < 0.01). 

 

 

 

 

3.7 Effects of Ginkgolide A, Ginkgolide B and Bilobalide aganist Aβ25-35-

induced toxicity in RGC-5 

 
 

To examine the effect of Ginkgolide A, Ginkgolide B and Bilobalide on RGC-5 death 

induced by 50µM Aβ25-35, RGCs were pretreated with various doses (0.5-25µg) GA, 

GB and Bil for 2 hours, followed by simultaneous administration of the indicated 

concentration of Aβ25-35, cells were then incubated for 24 hours. As estimated by 

MTT assay, the result of these experiments showed that 1 µg/ml GA and 0.5µg/ml 

** 
** 

** 

** 

** 

** ** 
** 

** 
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GB had a protective effect on RGCs and were able to significantly reverse the 

neuronal toxicity of 50µM Aβ25-35. 

(Figure 3.26) shows that, Ginkgolide A at 1µg/ml had significantly (P < 0.01) 

prevented 50µM Aβ25-35-induced RGC-5 death. Applying 0.5, 1 and 2.5µg/ml GA to 

RGC-5 resulting in 21%, 28% and 11% enhancement in cell viability in comparison 

with the baseline Aβ25-35, higher doses of GA (5, 10 and 25 µg/ml) were associated 

with reduction in cell viability (data not shown). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.26 Protective effect of Ginkgolide A on AB25-35-induced RGC-5 toxicity 

RGC-5 were pre-treated with 0.5-2.5 µg/ml Ginkgolide A for 2 hours and then exposed to 50µM Aβ25-

35.  MTT absorbance was performed after 24 hours to access cell viability, in (figure 3.26) as displayed 

the reduction in cell viability after exposure to 50µM Aβ25-35 was reversed by 1 µg/ml GA.  At 0.5, 1, 

2.5 and 5 µg/ml GA there was 11%, 15% and 6% enhancement in cell survival in comparison with the 

control. Each experiment was performed five times and the result is expressed as mean ± 95%CI, Y 

axis= Abs 570nm. (All treatment groups were compared to each other and the control by one-way 

ANOVA followed by post hoc comparisons * * P < 0.01). 
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Figure 3.27 illustrates the dose dependent effect with 0.5-25µg/ml GB on Aβ-induced 

toxicity. In comparison with baseline, 50µM Aβ 25-35, pre-treating RGC-5 with these 

concentrations of GB was associated with 27%, 21%, 13% and 11% enhancement of 

cell viability. However, one-way ANOVA showed significant protective effect only at 

0.5 µg/ml concentration (P < 0.01). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.27 Protective effect of Ginkgolide B on Aβ25-35-induced Rgc-5 toxicity 

0.5-25µg/ml Ginkgolide B were applied to RGC-5 for 2 hours before insulting the cells with 50µM 

Aβ25-35.  MTT absorbance was performed after 24 hours and seen in (figure 3.27) GB enhanced RGC-5 

survival resulting in 27%, 21%, 13%, 11% increase in cell viability at 0.5, 1, 2.5 and 5 µg/ml 

concentration whereas 10 and 25 failed to protect RGC-5. However, the protective effect was observed 

at 5µg/ml. Each experiment was performed five times and the result is expressed as mean ± 95% CI, Y 

axis= Abs 570nm.  (All treatment groups were compared to each other and the control by one-way 

ANOVA followed by post hoc comparisons * * P < 0.01). 
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The effect of Bilobalide on Aβ25-35-induced toxicity in RGC-5 is displayed in (figure 

3.28), among the used concentrations only 1 µg/ml Bil was able to enhance cell 

viability by 16%, as compared with baseline Aβ 25-35, Nevertheless, this enhancement 

was statistically not significant (P < 0.01). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.28 Protective effects of Bilobalide on AB25-35-induced RGC-5 toxicity 

 
RGC-5 was incubated with 0.5-25 µg/ml Bilobalide for 2 hours before 50µM Aβ25-35 exposure.  MTT 

absorbance was performed after 24 hours and as displayed in (figure 3.28, a) 1 µg/ml Bil reversed Aβ 

toxicity resulting in 16%, reduction in RGC-5 apoptosis as compared with 50µM Aβ25-35. Each 

experiment was performed five times and the result is expressed as mean ± 95% CI, Y axis= Abs 570nm.  

(All treatment groups were compared to each other and the control by one-way ANOVA followed by 

post hoc comparisons * * P < 0.01). 

                                   
 

 
 

 

 
 
 
 
 
 
 
 
 
 
 

** 
** 



 134 

 

 

 

 

 

 

Chapter Four 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 135 

4 Discussion 
 
 
In glaucoma, the major cause of global irreversible blindness (Quigley and Broman, 

2006), there is an urgent need for treatment modalities that directly target RGCs 

(Cheung et al., 2008a;Baltmr et al., 2010). The discovery of an alternative therapeutic 

approach, independent of IOP reduction, is highly sought after, due to the indirect 

nature and limited effectiveness of IOP lowering therapy in preventing RGC loss 

(Oliver et al., 2002;Leske et al., 2007). As discussed in the introduction (section 

1.1.4), several mechanisms have been implicated in initiating the apoptotic cascade in 

glaucomatous retinopathy, and numerous drugs have been shown to be 

neuroprotective in animal models of glaucoma. Ginkgo biloba, a naturally occurring 

herb, has been advocated as a neuroprotective agent for several years in progressive 

glaucoma, especially when IOP-lowering strategies are ineffective (Ritch, 2000). 

However, the mechanism by which Ginkgo biloba exerts its action is not well 

established, although several pathways have been implicated (Diamond et al., 

2000;Ahlemeyer and Krieglstein, 2003). These include reduction of oxidative stress 

via Aβ (Yao et al., 2001;Bastianetto and Quirion, 2002;Luo et al., 2002;Shi et al., 

2009), mitochondrial dysfunction (Tendi et al., 2002;Abdel-Kader et al., 2007), and 

regulation of apoptosis-related caspases (Luo et al., 2002;Massieu et al., 2004;Gong et 

al., 2005). All of these mechanisms ultimately lead to programmed cell death with 

loss of RGCs (Osborne et al., 1999;Tatton et al., 2001;McKinnon et al., 2002a;Tezel, 

2006).  
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4.1 Summary of immunohistochemical findings  
 

The aim of the immunohistochemical work in this thesis was to examine several of 

the potential molecular targets of Ginkgo biloba related to RGC-5 apoptosis in OHT 

retinal sections and their correlation with IOP elevation. Immunohistochemistry 

showed cytochrome c and TNF-R1 expression peaking at 3 weeks (Fig 3.1 and 3.3), 

and active caspase 3 activity at 12 weeks after IOP elevation (Fig 3.2). Furthermore, 

the results have revealed a strong inverse correlation between Aß and APP in OHT 

animals, with APP and Aß accumulation peaking at 1 and 12 weeks after IOP 

elevation respectively (Fig 3.4 and 3.5). 

4.2 Interpretation 
 

4.2.1 Mitochondrial dysfunction and RGC apoptosis in OHT 

 

Mitochondrial dysfunction has previously been described as one of the key 

intracellular lesions associated with the pathogenesis of glaucoma (Mittag et al., 

2000;Tatton et al., 2001;Tezel and Yang, 2004), and many experimental studies have 

demonstrated the protective effect of Ginkgo biloba on mitochondrial function (Tendi 

et al., 2002;Eckert et al., 2003;Abdel-Kader et al., 2007). Literature does not show a 

direct link between Ginkgo biloba treatment and cytochrome c, nevertheless, Cheung 

et al (2003) who correlated mitochondrial failure with cytochrome c release and 

subsequent activation of the executor caspase, caspase-3, have observed cytochrome c 

release in RGCs post axotomy (Cheung et al., 2003). The activation of the death 

receptors TNF-R1 can also lead to caspase-3 activation in RGCs (Tezel and Yang, 

2004). Therefore, in these experiments, the expression of those molecular targets has 

been investigated in retinal sections of OHT and age-matched controls at different 

time points following IOP elevation. 
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4.2.1.1 Cytochrome c release in RGCs  

 

Work in this study provides evidence that cytochrome c, a water soluble protein 

located in the mitochondrial intermembrane space (Cheung et al., 2003), is detected in 

the cytoplasm of RGCs in OHT eyes. The results displayed in section 3.1.1, showed 

marked up-regulation of cytochrome c  immunoreactivity 1 week post OHT surgery 

to reach a peak at 3 weeks’ time point, which coincides with the development of peak 

RGC apoptosis in the same model as previously described (Cordeiro et al., 2004;Guo 

et al., 2005a). The diffuse cytoplasmic staining pattern of cytochrome c in RGCs post 

IOP elevation and the absence of obvious nuclear chromatin condensation in this 

study was similar to those described in RGCs post axotomy (Cheung et al., 2003;He 

et al., 2004). Relocation of cytochrome c from the inner mitochondrial membrane to 

the cytoplasm has also been reported in neuronal cells post transient focal cerebral 

ischemia (Fujimura et al., 1998), post cold injury induced brain trauma (Morita-

Fujimura et al., 1999) and in traumatic axonal brain injury (Buki et al., 2000).  

 

Cytochrome c expression in the normal control retinas was nearly undetectable in 

substantial agreement with Cheung et al (2003), who looked at cytochrome c in 

normal and axotomized RGCs (Cheung et al., 2003) and in the control cortex of post 

cold injury induced brain trauma (Morita-Fujimura et al., 1999). The decline in 

cytochrome c immunoreactivity in the OHT retinal sections after 3 weeks may be 

explained by considering the fact that mitochondrial damage is an early event in the 

apoptotic process in glaucoma, and will lead to cytochrome c release, which then 

potentially contributes to RGCs apoptosis by activating caspases (Tezel and Yang, 

2004). Additionally cytochrome c expression appears to be related to the type and 

duration of insult. While work in this thesis has shown cytochrome c expression to be 
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inconstant at different time points of IOP elevation (Fig 3.1), Cheung et al (2003) 

documented localized cytochrome c immunoreactivity increasing in one day to reach 

a peak at three days post axotomy (Cheung et al., 2003). Furthermore, in a study, 

which was conducted on adult hamsters, He et al 2004, who also looked at caspase-3 

as will be shown later, have observed more RGCs death and a significantly higher 

number of RGCs releasing cytochrome-c when optic nerve transection was performed 

closer to the optic disc (He et al., 2004). Released cytochrome-c has been shown to 

activate Apaf-1 and procapse-9 resulting in caspase-3 activation, ending in nuclear 

DNA fragmentation in an experimental model of traumatic brain injury (Morita-

Fujimura et al., 1999). In addition, the balance between Bcl-2/Bax also appears to be 

essential in the activation of cytochrome c (Ow et al., 2008). 

 

4.2.1.2 Active caspase-3 level in RGCs 

 
In addition to cytochrome c, activation of caspases has also been shown to be 

involved in the death of cultured RGCs exposed to different apoptotic stimuli (Tezel 

and Wax, 1999, 2000), in optic nerve axotomy induced RGC death (Chaudhary et al., 

1999;Kermer et al., 1999), and in rat models of experimental glaucoma (McKinnon et 

al., 2002a). Moreover, gene therapy conveying a potent caspase inhibitor, in a rat 

glaucoma model has been found to promote optic nerve axon survival (McKinnon et 

al., 2002b).  

 

Caspases, cysteine-aspartic proteases, are naturally occurring as proenzymes, which 

are activated in response to apoptotic insult (Tezel and Wax, 1999). Among them, 

activated caspase-3 is believed to be the primary effecter enzyme in neuronal 

apoptosis (Cheng et al., 1998;Thornberry and Lazebnik, 1998;Wang et al., 2007). In 
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this study, as shown in section 3.1.2, there was gradual enhancement in active 

caspase-3 expression over time in the retinal sections of OHT animals peaking at 12 

weeks of IOP elevation compared to age-matched controls. The intense labeling of 

active caspase-3 in RGC layer after IOP elevation was similar to that observed in 

RGCs after axotomy, additionally, the level of caspase-3 in the control retina was 

similar, indicating the presence of baseline level of caspase-3 in control retinas  

(Kermer et al., 1999). This result was also consistent with previous research 

conducted by McKinnon et al (2002), who examined the involvement of active 

caspase-3 in experimental glaucoma model, using several assays including 

immunohistochemistry. In that experiment, an active caspse-3 antibody was detected 

in the RGC layer of OHT retinas more extensively than the control retinas. However, 

unlike work presented in this thesis, the animals were observed for a period of 4 

weeks only after IOP elevation (McKinnon et al., 2002a).  

 

The peak of caspase-3 expression at 12 weeks of IOP elevation in this study was 

rather delayed. This is in agreement with previous groups who suggested activation of 

caspase-3 may be a delayed event in traumatic and ischemic brain injury (Buki et al., 

2000) and in RGCs after optic nerve transection (He et al., 2004). This delay is 

probably due to the presence of other effectors downstream of cytochrome c such as 

caspase-9 which might affect the activation of caspase-3 (Tezel and Yang, 2004). 

 

Caspase-3 activation has also been considered as the underlying mechanism of 

Ginkgo biloba’s neuroprotective effect in age related hearing loss (Nevado et al., 

2010), and in Aß treated neuroblastoma cell line (Luo et al., 2002;Nevado et al., 

2010), which could be via either the mitochondrial or the death receptor pathway. 
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 A similar mechanism could therefore be involved in RGCs apoptosis in the OHT 

model established by the group, caspase-3, similar to other caspases is produced as 

proenzyme and is usually sliced after its activation to smaller subunits of 12 kDa and 

17 kDa (Liu et al., 1999). A higher level of the 12 kDa subunit of caspase-3 was 

observed using immunoblotting analysis in the retina of transgenic rats with 

Rhodopsin mutation than in age-matched controls (ibid). 

 

Activation of apoptotic pathways in AD brains has been widely reported, where 

caspase activation was implicated in neurofibrillary tangle formation (Rohn et al., 

2001b;Rohn et al., 2002b). Furthermore, the brain section from Down Syndrome 

patients showed extensive Aß deposition and neurofibrillary tangle formation which 

was associated with accumulation of caspase-3 cleavage products of fodrin (Head et 

al., 2002). Gervais et al (1999) have previously shown APP cleavage by caspases 

during apoptosis, resulting in elevated Aß production in hippocampal neurons 

(Gervais et al., 1999).  

There appears to be more than one way of involving activated caspase-3 in apoptosis: 

one is through APP cleavage which is supported by substantial elevation of caspase-3 

and its implication in APP cleavage in Alzheimer's disease (Gervais et al., 1999) and 

the other is as a key executor of the mitochondrial pathway (Tezel and Yang, 2004). 

 

4.2.1.3 TNF-R1 in RGCs 

 
 
Up-regulation of pro-inflammatory cytokines and excessive expression of TNF-α has 

been documented in RGCs incubated in ischemic conditions (Fuchs et al., 2005), as 

well as in coculture of RGCs and glial cells exposed to elevated hydrostatic pressure 



 141 

(Tezel and Wax, 2000). Further evidence to support this hypothesis was provided by 

Kitaoka et al (2006) who observed substantial RGC loss following intravitreal 

injection of TNF-α in rat model of optic nerve axonal degeneration (Kitaoka et al., 

2006). Moreover, TNF-R1 was also found to be localized to RGCs in glaucomatous 

eyes (Tezel et al., 2001;Tezel, 2008) and TNF-α and its subsequent binding to the 

death receptor, TNF-R1, in RGCs has been proposed to trigger a caspase-dependent 

and a caspase-independent component of the mitochondrial death pathways in 

glaucoma (de Kozak et al., 1997;Tezel, 2008). 

 

Immunohistochemical staining of TNF-R1 (section 3.1.3), documented enhanced 

TNF-RI receptor expression on the RGC’s surface and in the cytoplasm, that peaked 

at 3 weeks after IOP elevation. This appears to follow a similar profile of developing 

RGC apoptosis in the OHT model, leading to the assumption that blockade of TNF-

R1 signaling could be an effective strategy to protect RGCs in glaucoma. 

 

 Ginkgo biloba is known to suppress expression of TNF-α in the brain of 

atherosclerotic rats (Jiao et al., 2005). It also inhibits TNF-α and H2O2 activated 

primary human T lymphocytes through down-regulation of activator protein-1 signal 

transduction (Tsao et al., 2008). As TNF-α pathway has been implicated in initiating 

RGCS apoptosis (Tezel, 2008), this result highlights its neuroprotective potential in 

glaucoma.   

 

In this study, positive immunoreactivity for TNF-R1 was observed in the cytoplasm in 

addition to the RGCs surface, and was more intense in OHT eyes in comparison to 

control (Fig 3.3). This observation further indicates that binding of TNF-α to the 
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death receptor is essential for signaling the apoptotic pathway (Tezel et al., 2001). The 

result of this study was in agreement with previous observations on cultured RGCs 

exposed to ischemia or elevated hydrostatic pressure (Tezel and Wax, 2000) and on 

retinal section from 20 eyes of glaucoma patients, in which excessive expression of 

TNF-α and TNF-R1 was observed in glaucoma eyes compared to age-matched normal 

subjects (Tezel et al., 2001). 

 

The role of the TNF-R1 and TNF-R2 has been investigated, with substantial evidence 

that TNF-R1 promotes neurodegeneration (Tezel et al., 2001), whereas TNF-R2 is 

neuroprotective (Fontaine et al., 2002). In mice deficient for TNF, TNF-R1 and TNF-

R2, TNF has been observed to aggravate cell death, and absence of TNF-R1 was 

associated with reduction of neurodegenerative process, furthermore, selectively 

activating TNF-R2 was found to promote neuroprotection, in the ischemia–

reperfusion model. This was associated with the presence of activated Akt/protein 

kinase B (Fontaine et al., 2002).  

 

Receptor mediated death of RGCs through TNF-R1 has been observed and it is 

believed to involve a caspase-dependent and caspase–independent component of the 

mitochondrial cell death pathway (Tezel et al., 2001). In this process caspase-8 

cleaves a proapoptotic member of the Bcl-2 family, Bid, and the activated Bid 

consequently participates in the activation of the mitochondrial cell death pathway (Li 

et al., 1998;Luo et al., 1998). 

 

Rohn et al (1999) examined the role of TNF-R1 activation in Alzheimer’s disease and 

found that receptor activation can initiate the apoptotic cascade by recruiting adaptor 
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proteins that activate the proximal effector caspase, caspase-8 (Rohn et al., 2001a), 

and caspase-8 in turn activates the final executor caspase, caspase-3 (Stadelmann et 

al., 1999). Inhibition of caspase-8 in RGCs exposed to TNF-α has resulted in a 

relatively greater protection than in RGCs exposed to hypoxia. This enhancement in 

RGC survival was, however, temporary and caspase inhibition was not sufficient to 

block RGC death if the mitochondrial membrane potential was depleted and 

mitochondrial mediators including cytochrome c and AIF were released (Tezel and 

Yang, 2004).  

 

TNF- R1 and c-Jun N-terminal protein kinase (JNK) signaling have been implicated 

in the secondary degeneration of RGCs following optic nerve injury, where RGCs 

loss was remarkably lower in TNF-R1 deficient mice compared to controls (Tezel et 

al., 2004). In addition, this RGC loss was more prominent two weeks after optic nerve 

crush. This time period was correlated with the period of glial activation and 

increased glial immunoreactivity for TNF-α in these eyes (ibid). 

 

4.2.2 Aß and RGC apoptosis in OHT 

 
Apoptosis of RGCs has been demonstrated in experimental animal models of 

glaucoma as well as in human glaucoma. Many mechanisms have been implicated in 

initiating RGCs apoptosis in literature as in section 1.1.4, and it is believed that more 

than one mechanism might be involved in different glaucoma patients at different 

stages of disease progression (Yin et al., 2008).  

 

Colocalization of Aß and RGC apoptosis in experimental glaucoma has been shown 

earlier by the group in vivo, where a dose and time dependent apoptosis has been 
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confirmed with Aß administration (Guo et al., 2007a). Aß, polypeptide of 39-43 

amino acids that is generated by proteolytic cleavage of APP, is believed to play a 

significant role in RGC apoptosis, and blocking Aß cytotoxicity may help to prevent 

the occurrence or progression of glaucoma (McKinnon et al., 2002a). This work 

showed a strong inverse correlation between Aß and APP immunohistochemistry in 

retinal cross sections of OHT animals, and in the in vitro section of this study as 

shown in the next section, Aß 25-35-induced toxicity in RGC-5 was confirmed, which 

was blocked by Ginkgolide A and Ginkgolide B treatment. This converse association 

between Aß and APP is believed to be due to an increase in APP proteolysis and Aß 

formation that accompanies neuronal apoptosis in glaucoma. This is consistent with 

Aß colocalization with apoptotic RGCs, that was previously investigated by the group 

in vivo in experimental glaucoma (Guo et al., 2007a).  

 

In section 3.2.1, the presence of APP in the inner retinal layers (RGCs and nerve fiber 

layer) of OHT rats and age-matched control was demonstrated, however, more intense 

labeling was observed in the OHT eyes. This observation is in agreement with 

previous studies that examined APP and Aß in the OHT model (McKinnon et al., 

2002a;Guo et al., 2007a). McKinnon et al (2002), using immunoblots, confirmed 

significant reduction in the level of APP and elevation in Aß in hypertensive eyes in 

comparison with the controls (McKinnon et al., 2002a). In partial disagreement with 

this result, however, is the work of, Goldblum et al 2007 who documented higher 

intensity of both APP and Aß labeling in retinal sections of old DBA/2J glaucomatous 

mice than young and old controls (Goldblum et al., 2007). This study showed a 

reduction in APP immunoreactivity in OHT rats over time, which was highest at 12 

weeks of OHT elevation. This is postulated to be due to cleavage of APP into Aß by 
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caspase-3 during apoptosis (Gervais et al., 1999;McKinnon et al., 2002a). The 

predominant site of caspase-mediated proteolysis of APP in hippocampal cells was 

found to be within its cytoplasmic tail, and two mechanisms have been proposed to be 

responsible for caspases mediated processing of APP: the cleavage of APP at 

endogenous caspase sites and, probably interfering with the normal intracellular 

processing of APP that would otherwise prevent it from Aß formation (Gervais et al., 

1999). The result in this study has also showed minor increases in APP 

immunohistochemistry in all age-matched controls over time, which could be 

attributed to the physiological aging changes (Loffler et al., 1995). 

 

Abnormal metabolism of APP, a neuronal transmembrane precursor of Aß, has been 

implicated in the pathogenesis of several neurodegenerative diseases such as 

Alzheimer’s disease (Anandatheerthavarada and Devi, 2007). Accumulation of APP 

and Aβ in the mitochondria has been proposed as a causative role in impairing 

mitochondrial functions (ibid). Furthermore, knocking down of APP inhibited Aß-

induced RGCs death (Tsuruma et al., 2010). APP which is believed to play a critical 

role in growth (Saitoh et al., 1989) and synaptogenesis (Moya et al., 1994) is hugely 

synthesized in RGCs and then transported into the optic nerve in small transport 

vesicles, from where it is then transferred to the axonal plasma membrane, as well as 

to the nerve terminals and metabolized (Morin et al., 1993). A reduction in APP level 

on chronic administration of EGb 761 have been reported by Augustin and associates 

(2009) in the cortex of transgenic mouse model of AD (Augustin et al., 2009) which 

indicated that APP is an important molecular target of Ginkgo biloba. Furthermore, 

Colciaghi et al  (2004) have reported that EGb 761 was capable of inducing the 

metabolism of APP toward the non amyloidogenic pathway in hippocampal slices 
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therefore blocking the formation of Aß (Colciaghi et al., 2004). 

 

Using immunohistochemical techniques Gong and colleagues (2005) have observed 

that EGb 761 treatment reduced the content of APP and caspase-3 in the hippocampus 

of aluminum-treated rats in a dose dependent manner (Gong et al., 2005). Conversely, 

Luo et al (2003) using immunohistochemistry have shown that EGb 761 raises the 

levels of caspase-3 and APP in the hippocampus of a normal rat (Luo et al., 2003), 

and this could be due to the controversial effect of Ginkgo biloba on the normal and 

degenerated tissues. 

 

Atypical processing of APP has been implicated in the pathogenesis of glaucoma as 

well (McKinnon et al., 2002a;Goldblum et al., 2007), additionally, elevated levels of 

Aß either due to intracellular accumulation or extracellular administration possibly via 

interaction with the death receptor, has been suggested to act as a stimulus to initiate 

the apoptotic pathway within neurons (Du and Yan, 2010).  This triggers the 

activation of caspases that subsequently cleave fodrin, a neuronal cytoskeletal protein 

and known molecular target for caspase-3, APP tau and protein (Head et al., 2002), 

which is supported by the strong association between Aß deposition and caspase-3 

activation that has been observed in neuronal section from patients with Down 

syndrome, where neuronal cells found to be positive for caspase-3 cleavage product 

of fodrin (Head et al., 2002), and in patients with Alzheimer’s disease (Stadelmann et 

al., 1999). 

 

This study has observed enhanced Aß immunohistochemical expression in RGCs of 

all OHT rats, with maximum deposition at 12 weeks after OHT surgery. A similar 
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pattern of Aß accumulation was found in the rat ocular hypertensive model by others 

(McKinnon et al., 2002a). The strong inverse correlation between Aß and APP 

immunohistochemistry observed in this work is believed to be due to an increase in 

APP proteolysis and Aß formation that accompanies neuronal apoptosis in glaucoma. 

This is consistent with Aß colocalization with apoptotic RGCs, that was previously 

investigated in vivo in experimental glaucoma (Guo et al., 2007a). 

 

4.3 Summary of in vitro experimental findings 
 
 
Table 4.1 Neuroprotective effects of Ginkgolide A, B and Bilobalide on RGC-5 

 
Apoptotic 
Inducers 

Assay Ginkgolide A 
Effect/Dose 

Ginkgolide B 
Effect/Dose 

Bilobalide 
Effect/Dose 

1%  DMSO 
 

MTT assay 
 

- +/ 0.5,1 and 

2.5µg/ml 
- 

 Hoechst 33342 +/ 0.5,1 and 

2.5µg/ml 
+/ 0.5 and 

1µg/ml 
- 
 

UV40 MTT assay - 
 

+/ 0.5,1, 2.5 and 

5µg/ml 
+/ 0.5 and 1µg/ml 

1mM NaN3 
 

MTT assay 
 

- 
 

- 
 

- 
 

50µM Aβ25-35          MTT assay +/ 1µg/ml +/ 0.5µg/ml - 

 
 

 
 

In the in vitro section of this study, RGC-5 was exposed to different concentrations of 

DMSO, UVC, NaN3 and Aβ25-35. This has led to a dose dependent reduction in cell 

viability at 24 hours. To screen the neuroprotective potential of Ginkgolide A, 

Ginkgolide B and Bilobalide on RGC-5, 1% DMSO, UV40, 1mM NaN3 and 50µM 

Aβ25-35 were used as apoptotic inducers, as the average reduction in RGC-5 viability 

using these concentrations was between 20-35% and using higher concentrations of 
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those insults would result in a loss of RGC-5 viability that may not be recovered by 

Ginkgo biloba treatment. 

To prove the apoptotic potential of 1% DMSO, Hoechst 33342, which is capable of 

penetrating plasma membranes and staining the DNA of apoptotic RGCs has been 

used on DMSO treated RGCs. While all three compounds showed a dose-related 

response on RGC-5, some intrinsic toxicity was observed with GA. As shown in table 

4.1 using the MTT assay, the significant protective effect of Ginkgolide A was 

observed only against 50µM Aβ25-35 at 1µg/ml concentration. Although GA failed to 

rescue RGCs from DMSO toxicity on the MTT assay, Hoechst 33342 staining 

showed that 0.5,1 and 2.5µg/ml of this compound was able to reduce the percentage 

of apoptotic RGCs after DMSO treatment. 

 

Work in this thesis shows that Ginkgolide B had the most profound neuroprotective 

effects, against different apoptotic inducers in the majority of assays at a 

concentration range of 0.5-5µg/ml. Using the MTT assay, 0.5- 2.5µg/ml GB treatment 

was found to significantly enhance RGC viability after 1% DMSO insult. In addition, 

on Hoechst staining, the lower two doses 0.5-1µg/ml were able to reduce DMSO-

induced apoptosis in RGCs.  The protective potential of GB was also observed against 

UV40 at 0.5-5µg/ml and against 50µM Aβ25-35 at 0.5µg/ml, whereas Bilobalide was 

effective only against UV40 at a concentration of 0.5-1µg/ml. Interestingly, none of 

the Ginkgo biloba constituents tested in this work were able to rescue RGC-5 from 

the toxic effect of sodium azide in both assays. 
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4.4 Interpretation 
 

4.4.1 1% DMSO and the effects of Ginkgolide A, Ginkgolide B and Bilobalide  

 
DMSO, a widely used solvent, has been reported to have a multitude of actions both  

in vivo and in vitro (Santos et al., 2003) and it has been implicated in apoptotic death 

in several cell lines (Trubiani et al., 1996;Marthyn et al., 1998;Liu et al., 2001;Koiri 

and Trigun, 2011). In section 3.3.1 of this study, applying ascending concentrations of 

1-10% DMSO to RGC-5, resulted in a dose dependent decline in cell survival as 

accessed by the MTT assay. In this study DMSO was found to cause significant 

toxicity to RGCs even with the smallest used concentration of 1%. This is consistent 

with an earlier finding by Cao et al 2007, who found ≥ 10% reduction in cell viability 

and increased cellular apoptosis in human lens epithelial cell line (HLECs) line 

treated with 1% DMSO in addition to up regulation of Bax expression in HLECs (Cao 

et al., 2007). In another study, which was conducted in the EL-4 murine lymphoma 

cell line, Liu et al (2001) found no apoptotic changes with 0.5% and 1.5% DMSO 

treatment but with 2.5% DMSO (Liu et al., 2001). This could be due to variable 

sensitivity of different cell lines to DMSO. Furthermore, the previous research has 

confirmed that, DMSO-induced apoptosis in the EL-4 murine lymphoma cell line is 

mediated via caspase cascade of the mitochondrial death pathways (ibid). 

 

DMSO has been observed to promote death receptor mediated apoptosis in human 

myeloid leukemia cell line via enhancement of mitochondrial membrane 

depolarization (Vondracek et al., 2006).  Involvement of the mitochondrial pathway 

in DMSO-induced toxicity through stimulation of TNFα-p53 in vitro has also been 

investigated (Brown et al., 2007) and more recently in Dalton lymphoma cells in vivo, 
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DMSO-induced apoptosis have been found to be mediated via inducing TNFα-p53 

mitochondrial apoptotic pathway and caspase-9 activation (Koiri and Trigun, 2011),  

 

To evaluate the neuroprotective potential of Ginkgo biloba constituents against 1% 

DMSO, cells were pre-treated with GA, GB and Bil for two hours before DMSO 

treatment at a dose range chosen based on previous descriptions in various cell lines 

and disease models as will be shown in section 4.4.5. Using the MTT assay, GA 

failed to demonstrate significant protective effects on RGCs viability at all used 

concentrations, which was expected at higher doses as this cannot be attributed only 

to DMSO toxicity, but as displayed in section 3.4 at 5, 10 and 25 µg/ml GA was also 

toxic to RGC. However, lower doses of GA were also insufficient to rescue RGCs. 

GB treatments on the other hand were associated with significant neuroprotective 

effects on RGCs, observed at 0.5,1 and 2.5 µg/ml with the greatest protection seen at 

the smallest used concentration. This protection was dose dependent with an EC50 of 

2.21µM. 

 

As the MTT assay relies on activity of the mitochondrial succinate dehydrogenase 

enzyme of living cells, any drug that affects cellular mitochondrial function could 

unduly influence the result. This possibility could be ruled out using a more sensitive 

mitochondrial test such as direct evaluation of the mitochondrial membrane potential 

(Tezel and Yang, 2004;Abdel-Kader et al., 2007) and the mitochondrial ROS level 

using fluorescence dyes, bioluminescent measurement of ATP level and measurement 

of caspase-9 activity (Abdel-Kader et al., 2007). 
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To demonstrate that apoptosis occurred after 1% DMSO treatment and to assess the 

anti-apoptotic potential of GA, GB and Bil on these cells, Hoechst 33342 staining was 

used as displayed in section 3.5.1.2. The morphological changes of apoptotic RGCs 

on Hoechst 33342 staining, such as chromatin condensation seen in this study was the 

same confirmed by others in different cell lines (Massieu et al., 2004;Griffin et al., 

2007;Santiago et al., 2007). In this study, Hoechst 33342 staining of 1% DMSO 

treated RGC-5 was associated with higher level of apoptosis and contrasting the MTT 

results 0.5, 1 and 2.5 µg/ml GA treatment significantly reduced the percentage of 

apoptotic RGCs. A significant reduction of apoptotic RGCs number was also 

observed on treatment with 0.5 and 1 µg/ml GB. However, surprisingly no significant 

protective effect was observed with Bil using both MTT and Hoechst assays. 

 

To confirm the apoptosis inducing potential of DMSO on RGC-5, the TUNEL assay 

was carried out. However, no quantitative data of apoptotic RGCs were obtained. This 

failure to obtain positive results with the TUNEL assay in this study might be 

attributed to cell line resistance or the used protocol.  

 

4.4.2 UV40 and the effects of Ginkgolide A, Ginkgolide B and Bilobalide 

 

UV light induced apoptosis has been linked to several cytoplasmic and membrane 

bound molecular targets (Schwarz, 1998). Several other research studies have 

investigated whether UV light-induced DNA damage was associated with apoptotic 

or necrotic process. In a study which looked at DNA repair deficient and proficient 

isogenic cells, UVC (200-280nm) induced DNA damage has been found to be mainly 

due to apoptotic pathway (Dunkern et al., 2001). 
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UVB (280-320nm) has also been found to induce apoptosis in RGC-5. In the RGCs, 

UVB induced a dose dependent reduction in cell viability, which was also associated 

with enhanced expression of cytochrome c, Bax and absence of bcl2 (Balaiya et al., 

2010). A similar observation was reported by another group who documented 

caspase-3 and Bax activation after exposing RGC-5 culture to visible light (more than 

400nm) for 48 hours (Wood et al., 2008). 

 

The duration of UVC exposure in this experiment was 2 minutes in all treated RGCs, 

but another group (Balaiya et al., 2010) have exposed RGC-5 to a different time 

period of UVB light, and they have observed a dose dependant reduction in cell 

viability corresponding with increased cytochrome c expression in cultured RGC-5. In 

1994 Sachsenmaier et al investigated the involvement of growth factor receptors in 

UVC induced apoptosis in HeLa cells. This group found that UVC and growth factor 

have common signal transduction pathway to the nucleus, which involves Ras, Raf, 

Src and MAP kinases (Sachsenmaier et al., 1994).  

 

In this study, the MTT assay indicated that the viability of RGC-5 culture was 

significantly and dose dependently declined after exposure to 40, 60 and 80 mj/cm
2
 

UVC light, which is likely due to chronic oxidative damage in those cells. The 

protective effect of Ginkgolide A, Ginkgolide B and Bilobalide against UV40 was 

further accessed.  As shown in table 4.1, no significant effect was observed with GA, 

whereas GB at 0.5, 1. 2.5, and 5 µg/ml, and Bil at 0.5 and 1 µg/ml were associated 

with significant enhancement in cell viability, which is probably mediated via their 

antioxidant potential (Ahlemeyer et al., 1999;Zhou and Zhu, 2000). This result is in 
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line with a recent observation by Liu and Yu, 2008, who used UVC as an apoptotic 

inducer in a primary culture of rat cortical neurons. Here; significant increase in MTT 

absorbance and neuroprotective effect was observed with green tea polyphenols (Liu 

and Yu, 2008). 

 

4.4.3 NaN3 and the effects of Ginkgolide A, Ginkgolide B and Bilobalide 

 
 
Examining the effects of 24 hours exposure of RGC-5 to 1, 2.5, 5 and 10mM of the 

mitochondrial complex inhibitor NaN3, it has been observed that concentration 

dependent reduction in RGC-5 viability was produced, which is in agreement with 

another group who had dose dependent reduction in cellular viability and 

mitochondrial membrane potential of primary cortical neuron, using 1, 3 and 10 mM 

NaN3 (Selvatici et al., 2009). In that study, Selvatici and coworkers confirmed that 

MK801, trolex, N-acetyl-L-carnitine, and the nitric oxide synthase inhibitor, L-

NAME were able to prevent the cytotoxicity of 10 minutes exposure to NaN3, which 

disagree with the result of this experiment in which no neuroprotection was achieved 

with Ginkgolide A, B and Bilobalide. However, the protective effect of EGb 761 on 

mitochondrial respiratory chain function in PC 12 cells using complex inhibitors 

including NaN3 has been documented (Abdel-Kader et al., 2007). Possible 

explanations for this effect is NaN3, which is known to cause irreversible loss of 

cytochrome c oxidase activity (Leary et al., 2002), and is also known to cause 

mitochondrial failure leading to both apoptotic and necrotic effects depending on dose 

and duration of exposure to NaN3 as well as on the type of cultured cells (Selvatici et 

al., 2009). As mentioned in section 3.3.3 in this thesis RGCs were exposed to NaN3 

for 24 hours. 
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 It is conceivable to assume that RGCs death after NaN3 treatment in this experiment 

was via non-apoptotic pathway. That is why on using the same assay (MTT), RGC-5 

viability was reduced after NaN3 exposure and GA, GB and Bil failed to reuse them. 

This is actually supported by the absence of a significant increase in annexin V-FITC 

labeling of phosphatidyl serine (PS) which is believed to signal early apoptosis on the 

external surface of cortical neurons after NaN3 (Selvatici et al., 2009). Additionally, 

as mentioned earlier our assessment of neuroprotective potential of Ginkgo biloba 

constituents was through the MTT assay which is a measure of mitochondrial 

function, so its validity may be criticized. 

 

4.4.4 Aß and the effects of Ginkgolide A, Ginkgolide B and Bilobalide 

 

In these experiments RGC-5 were resistant to 10-100 µM Aß 1-42 treatment, unlike 

human neuroblastoma SH-SY5Y cells which showed significant apoptosis and its 

viability dropped to around 50% after exposure to 100µg/ml Aß 1-42 (Shi et al., 2009). 

One possible explanation is that RGC-5 are much more resistant cell line with ability 

of survival in the presence of high level of ROS (Maher and Hanneken, 2005). The 

result of these experiments was also partly inconsistent with Bastianetto et al 2000 

who observed reduction in hippocampal primary cells survival on MTT assay after 

exposure to 5 µM Aß 1-40, 25 µM Aß 1-42 and 25 µM Aß 25-35 (Bastianetto et al., 

2000a). The authors also found that the whole extract EGb 761 and the flavonoid 

fraction of the extract were able to rescue rat hippocampal primary cells from the 

indicated concentrations of Aß toxicity, interestingly; with Aß 25-35. This protection 

was significant even if EGb 761 was applied 8 hours after Aß 25-35 treatment. On the 
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other hand, in the same research Ginkgolide B and Bilobalide failed to protect 

neuronal cells from Aß-induced neurodegenerative process (Bastianetto et al., 2000a).  

 

In the present in vitro study Aß 25-35 caused significant reduction in RGC-5 viability in 

agreement with previous observation showing similar effect at similar concentrations: 

at 5-20 µM Aß25-35 in RGC-5 (Tsuruma et al., 2010), at 10 µM Aß 25-35 in cultured rat 

cerebral cortical neurons (Ban et al., 2006a) and finally at  50 µM Aß 25-35 (Zhang et 

al., 2010) and at 100 µM Aß 25-35 (Zhou et al., 2000) in PC 12 cell line. 

 

In this work, the protective effect of 1µg/ml GA and 0.5µg/ml GB against 50 µM Aß 

25-35-induced death in RGC-5 was confirmed, while Bilobalide failed to confer any 

protection. Krieglstein et al (1995) hypothesised that Ginkgolides exert their action on 

neurons possibly via PAF receptors, whereas bilobalide could act on both neurons and 

astrocyte (Krieglstein et al., 1995). Despite this, the exact mechanism of protection by 

the Ginkgolides against Aß 25-35 toxicity was not addressed in this thesis and remains 

to be elucidated. Ginkgolides especially Ginkgolide B have demonstrated protective 

effects against apoptotic inducers known to target mitochondrial pathway such as 

DMSO, given the fact that the mitochondrial permeability transition pore (mPTP) is 

believed to be involved in Aß-induced toxicity (Du and Yan, 2010). It is possible that 

this Ginkgolid’s neuroprotection was mediated via this pathway. 

 

In literature, there are several proposed mechanisms through which Aß exert its 

apoptotic effect including: oxidative stress and Ca
2+

 influx (Abramov et al., 2011), 

mitochondrial dysfunction (Du and Yan, 2010) and modulation of apoptosis related 

caspases (Troy et al., 2000;Rohn et al., 2002a). Moreover, Tsuruma and coworkers 
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2010 strongly suggested that Aß 25-35 up-regulation of APP is the leading cause for 

RGC-5 death (Tsuruma et al., 2010). A recent research on mixed culture of 

hippocampal neurons and astrocytes has implicated astrocyte membrane cholesterol 

content in mediating Aß neurotoxicity (Abramov et al., 2011). This recent work might 

provide an explanation for an earlier finding by Yao and colleagues 2004 in PC12 

cells where they observed that EGb 761 inhibited overproduction of APP and Aß 

induction by free cholesterol (Yao et al., 2004).   

 

 Ginkgo biloba has exerted its protective effect on Aß treated cells via several 

mechanisms including a direct inhibitory effect against Aß aggregation and Aß 

induced apoptosis in neuronal cell culture (Yao et al., 2001;Shi et al., 2009). This 

property of EGb 761 is believed to be mediated via direct interaction with Aß in 

neuroblastoma cell line expressing AD-associated double mutation (Luo et al., 2002). 

In that experiment, EGb 761 and Bilobalide were more powerful than GA and GB in 

inhibiting Aß aggregation. Furthermore, EGb 761 significantly attenuates 

mitochondrial initiated apoptotic pathway and decreased the activity of caspase-3 in 

neuroblastoma cells (Luo et al., 2002). 

 

4.4.5 Comparison of in vitro effects of Ginkgolide A, Ginkgolide B and 

Bilobalide 

 

Despite having certain structural and chemical properties in common, especially three 

lactone groups and a tertiary-butyl group (Krieglstein et al., 1995;Ivic et al., 2003), 

the pharmacological activity of  Ginkgolide A, Ginkgolide B and Bilobalide  is 

different as shown in section 1.2.3, and the effective neuroprotective concentration of 
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GA, GB and Bil on RGC-5 in these experiments was also variable in different 

experimental conditions as displayed in table 4.1  

 

In this work, overall the most profound neuroprotective effects were observed with 

Ginkgolide B against 1% DMSO, UV40, and 50µM Aβ25-35 at a concentration range 

of 0.5-5 µg/ml, with the best protection against all apoptotic inducers observed at 0.5 

µg/ml. This raises a question of whether doses lower that 0.5µg/ml would confer 

greater protection, however, the dose range used in these experiments was based on 

previous work by (Ahlemeyer et al., 1999;Bastianetto et al., 2000b;Shi et al., 2009) in 

different neuronal cells. Similar neuroprotective effect by GB was observed at 0.25-1 

µg/ml, in iNOS producing THP-1 macrophages which were treated with 

lipopolysaccharide and TNF-α (Cheung et al., 2001) which is believed to be mediated 

via the anti-oxidant property of GB. Conversely, Bastianetto et al (2000) have 

observed a negative effect with 1–5 µg/ml GB in hippocampal cells, treated with the 

NO donor SNP (Bastianetto et al., 2000b).  

 

 GB has also demonstrated neuroprotective anti-oxidant effects against serum 

deprivation and staurosporine-induced ROS production and apoptosis in chick 

embryonic neurons and in mixed cultures of neurons and astrocytes from neonatal rat 

hippocampus, however, higher concentrations were used to achieve anti-apoptotic 

effects (Ahlemeyer et al., 1999). In those experiments, GB at 10µM was required to 

rescue serum deprived and staurosporine treated chick neurons whereas in the mixed 

neuronal culture 100 µM GB was found to be effective against staurosporine-induced 

apoptosis (Ahlemeyer et al., 1999). GB at 100 µM has also been found to protect 

primary culture of hippocampal neurons against glutamate-induced excitotoxicity (Xu 
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et al., 2010). The neuroprotective effect of GB on glutamate and NMDA-induced 

excitotoxicity has been investigated by another group, Zhu et al (1997), who have 

observed enhancement in neuronal viability with reduction of Ca
2+

 level in primary 

culture of cerebral cortical neurons with 2mg/L GB (Zhu et al., 1997).   

 

In contradiction with the results of this study, both Ginkgolide A and B treatment 

enhanced cellular viability and were associated with enhancement of the 

mitochondrial membrane potential after SNP treatment in PC12 cells at a 

concentration of 0.01 mg/ml and in dissociated brain cells at concentrations of 0.05 

mg/ml (Abdel-Kader et al., 2007).  

 

In this study, no significant effect was observed with Ginkgolide A after 1% DMSO, 

UV40 and NaN3 treatment. However, GA at 0.5, 1 and 2.5µg/ml reduced the number 

of apoptotic RGCs after DMSO treatment as revealed by Hoechst staining. In line 

with these findings, no protection was observed with Ginkgolide A in either serum-

deprived or staurosporine-treated neuronal cells (Ahlemeyer et al., 1999). However, 

dose dependent protective effect was observed with GA at 0.25-1 µg/ml with the best 

protection at the lower dose in THP-1 macrophages (Cheung et al., 2001). 

 

This discrepancy in the potency between GA and GB has been described by Ivic et al 

(2003) when they were examining the effect of terpenoid fraction of Ginkgo biloba on 

the glycine and GABA, type A receptors. These authors noticed that GB was 

significantly more potent than GA, and they have explained this by the fact that GB 

have a 1-OH group whereas GA does not, and the higher potency of GB is due to the 

direct interaction of the 1-OH group with the receptor. Furthermore, the position of 
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the lactone group in GA and GB was found to be different which has an implication 

on receptor binding (Ivic et al., 2003). 

 

In this work, the protective effect of 1µg/ml GA and 0.5µg/ml GB on 50 µM Aß 25-35-

induced death in RGC-5 was confirmed, which is partially consistent with an earlier 

finding in SH-SY5Y cells were both GA and GB were able to block neurotoxicity of 

Aß 1-42 (Bate et al., 2004). However, it seems that the effective concentration of 

different Ginkgo biloba constituents is variable in different cell lines, and in different 

models of inducing cell death. GB has previously demonstrated its best protection 

against 100µg/ml  Aß 1-42-induced toxicity in SH-SY5Y cells at 10µg/ml whereas 5 

and 20µg/ml GB could not display any protection (Shi et al., 2009). Another 

experiment highlighted the lower potency of GA when they found that GB but not 

GA was able to suppress the K
+
-evoked Ach release in rat hippocampal slices treated 

with Aß 25-35 (Lee et al., 2004). 

 

In these experiments only 0.5 and 1 µg/ml Bil were able to protect RGC-5 from 

UV40-induced cell loss with higher neuroprotection at 1 µg/ml. No other used 

concentration of Bil was effective in enhancing cell survival with other apoptotic 

induces: 1% DMSO, NaN3 and 50mM Aβ25-35 treated RGC-5. This discrepancy in the 

neuroprotective potential of Bilobalide was observed by other researchers, where the 

prominent protective effect of Bil was observed at 10 µM against hypoxic damage of 

chick neurons, while poor effect was seen against excitotoxic damage of hippocampal 

neurons (Krieglstein et al., 1995). The same group also found that Bil demonstrated 

neuroprotective effects in the rat model of focal cerebral ischemia but no effect was 

seen in the rat model of global ischemia (ibid).   
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The effective concentration of Bilobalide in our experiments were 0.5 and 1 µg/ml, 

which is equal to 1.53, 3.06 µM. Similar protection by Bil was observed in 

macrophages derived from a human monocytic cell line at a concentration range of 

0.25-1 µg/ml, via selective inhibitory effect on iNOS mRNA expression (Cheung et 

al., 2001). In agreement with Cheung et al (2001), Bil (25-100µM) demonstrated a 

dose dependent reduction in apoptosis which was induced in PC12 cells with the ROS 

producer, xanthine, in addition to the anti-oxidant property of Bil, in the same 

experiment the authors found reduction in ROS-induced elevation of Bax and active 

caspase-3 (Zhou and Zhu, 2000). The anti-oxidant effect of Bil was also observed in 

chick embryonic neurons exposed to serum deprivation and staurosporine  

(Ahlemeyer et al., 1999),  Bil protection was observed at 1 µM in chick embryonic 

neurons exposed to serum deprivation and at 10 µM in those exposed to staurosporine 

(ibid). Furthermore, Bil at 100 µM was found to rescue mixed culture of hippocampal 

neurons and astrocytes from serum deprivation induced apoptosis (ibid). Conversely, 

no protective effect with Bilobalide was observed in work by other groups in the same 

cell line.  Rapin et al 1998  found that addition of 0.1-1 µg/ml  (0.3-3 µM) Bil failed 

to protect hippocampal neurons from peroyl radical-induced apoptosis (Rapin et al., 

1998) and Bastianetto et al (2000) have also documented that treatment with 1–5 

µg/ml Bil did not protect hippocampal cells from the SNP-induced toxicity. In this 

research the authors believed that the documented neuroprotective potential of EGb 

761 against NO-induced toxicity was attributed to its flavonoid fraction (Bastianetto 

et al., 2000b).  

 

The neuroprotective effects of Bilobalide have been attributed to its positive effects 

on mitochondrial membrane potential (Abdel-Kader et al., 2007), and to enhancement 
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of the mitochondrial respiratory chain (Tendi et al., 2002). The protective effects of 

Bil which were observed in, PC 12 cells, at 10 µg/ml, a higher concentration than our 

study, is believed to be mediated via up regulation of mitochondrial gene expression 

of NADH dehydrogenase (ibid).  

 

Glycine and GABA receptors antagonism are also  believed to mediate the 

neuroprotective effects of Bil (Ivic et al., 2003). This was recently investigated by 

another group where Bilobalide at concentration of 10 μM was able to decrease 

NMDA-induced choline release by more than 90% (Kiewert et al., 2008), and exert 

antagonistic effect on GABA receptors (Kiewert et al., 2007).  

 

In this work Bilobalide failed to confer any protection against 50 µM Aß25-35 induced 

toxicity. This result was partially consistent with another group where they found that 

both Bil and GB failed to confer any protection against  Aß toxicity in primary culture 

of hippocampal cells (Bastianetto and Quirion, 2002). Conversely in PC12 cells 25-

100 µM Bil, dose dependently blocked the toxicity of 100 µM Aß 25-35 (Zhou et al., 

2000). 

Beside cell line variations and the differences in apoptotic inducers used, another 

reason that might explain the discrepancies in the neuroprotective potential of GA, 

GB and Bil in this experiments and work conducted by other groups is the solvent 

used to dissolve Ginkgo biloba constituents, while most other groups have used 

DMSO and ethanol to dissolve GA, GB and Bil, in this work GA was dissolved in 

DMF, GB in DMSO and Bil in Acetone according to the manufacturer’s instruction.   
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5. Conclusion and summary 
 
 
Managing glaucoma patients can be clinically challenging to ophthalmologist due to 

the fact that most glaucoma patients are asymptomatic until a considerable amount of 

visual field loss occurs. However, during the last years, much progress has been made 

in understanding pathogenic mechanisms involved in glaucoma and mechanism of 

action of neuroprotective agents. Even though, there has historically been a problem 

in translating preclinical and experimental drugs to patients for many reasons in 

particular: the lack of good experimental models of disease; the narrow therapeutic 

index of the neuroprotective drugs due to undesirable side effects on the patients 

(Levin and Peeples, 2008), as well as the lack of good clinical end points. It is now 

believed that better clinical end points are necessary to access the new therapeutic 

agents. Unfortunately a failure of phase III clinical trial of memantine in glaucoma 

patients has reduced enthusiasm for those drugs as neuroprotective (Osborne, 2008), 

however, recent advance in imaging technology should provide clinician and 

researchers with more reliable tools to access the efficacy neuroprotective agents 

(Cordeiro et al., 2004;Cordeiro et al., 2010;Cordeiro et al., 2011).  The results of a 

recently published, well-designed glaucoma clinical trial, the Low Pressure Glaucoma 

Treatment Study (LoGTS), showing evidence of Brimonidine neuroprotection 

(Krupin et al., 2011) is highly encouraging for using the non IOP lowering agents in 

 glaucoma patients (Cordeiro and Levin, 2011). 

Ginkgo biloba has been shown to have neuroprotective effect in several 

neurodegenerative diseases via modulation of APP, Aß, inflammatory mediators and 

apoptosis related caspases, in the this study we investigated the immunoreactivity of 

cytochrome c, caspase-3,TNF RI, APP and  Aß, in the normal and OHT rat retina as 

potential pharmacological target for Ginkgo biloba. We can report that RGCs in the 
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OHT model established by the group,  express these molecular targets and that could 

be used to slow the progression of RGCs loss in glaucoma.  

 

We can conclude with certainty that individual component of Ginkgo biloba terpene 

fraction: Ginkgolide A, Ginkgolide B and Bilobalide have some neuroprotective 

effect on RGC-5 death whether it was produced by 1% DMSO, UV40, 1mM NaN3 or 

50 µM Aß25-35 toxicity with Ginkgolide B having the profound neuroprotection. 

However, the neuroprotective potential of GA, GB and Bil was different depending 

on the apoptotic stimuli used.  More studies are needed to understand the precise 

mechanism by which DMSO, UV40, Aß 25-35 induced RGC-5 death and to clarify the 

mechanism of neuroprotection by Ginkgo biloba constituents in blocking RGC-5 

apoptosis, which will help to provide the pharmacological basis of its use in 

preventing or retarding RGCs loss in glaucoma patients.  

 

5.1 Future perspective 
 
Work in this study support the role of neuroprotection in glaucoma management by 

using non-IOP treatment modalities that directly target RGCs. in the in vitro 

experiments Ginkgolide B showed the most profound nuroprotective effects on RGC-

5 against apoptotic inducers which simulate glaucomatous stress. Therefore, it could 

be the most active ingredient of the commonly used herb Ginkgo biloba in glaucoma 

and it would be very interesting to do a clinical trial to access the nuroprotective 

potential of Ginkgolide B in glaucoma patients.  
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