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NOTES AND COMMENTS

LINEAR REGRESSION FOR PANEL WITH UNKNOWN NUMBER OF
FACTORS AS INTERACTIVE FIXED EFFECTS

BY HYUNGSIK ROGER MOON AND MARTIN WEIDNER1

In this paper, we study the least squares (LS) estimator in a linear panel regression
model with unknown number of factors appearing as interactive fixed effects. Assuming
that the number of factors used in estimation is larger than the true number of factors
in the data, we establish the limiting distribution of the LS estimator for the regres-
sion coefficients as the number of time periods and the number of cross-sectional units
jointly go to infinity. The main result of the paper is that under certain assumptions, the
limiting distribution of the LS estimator is independent of the number of factors used
in the estimation as long as this number is not underestimated. The important practical
implication of this result is that for inference on the regression coefficients, one does
not necessarily need to estimate the number of interactive fixed effects consistently.

KEYWORDS: Panel data, interactive fixed effects, factor models, perturbation theory
of linear operators, random matrix theory.

1. INTRODUCTION

PANEL DATA MODELS TYPICALLY INCORPORATE INDIVIDUAL AND TIME EF-
FECTS to control for heterogeneity in cross section and over time. While of-
ten these individual and time effects enter the model additively, they can also
be interacted multiplicatively, thus giving rise to so-called interactive effects,
which we also refer to as a factor structure. The multiplicative form captures
the heterogeneity in the data more flexibly, since it allows for common time-
varying shocks (factors) to affect the cross-sectional units with individual spe-
cific sensitivities (factor loadings).2 It is this flexibility that motivated the dis-
cussion of interactive effects in the econometrics literature, for example, Holtz-
Eakin, Newey, and Rosen (1988), Ahn, Lee, and Schmidt (2001, 2013), Pesaran
(2006), Bai (2009a, 2013), Zaffaroni (2009), Moon and Weidner (2014), and Lu
and Su (2013).

1We thank the participants of the 2009 Cowles Summer Conference “Handling Dependence:
Temporal, Cross-Sectional, and Spatial” at Yale University, the 2012 North American Summer
Meeting of the Econometric Society at Northwestern University, the 18th International Con-
ference on Panel Data at the Banque de France, the 2013 North American Winter Meeting of
the Econometric Society in San Diego, the 2014 Asia Meeting of Econometric Society in Taipei,
the 2014 Econometric Study Group Conference in Bristol, and the econometrics seminars at
USC and Toulouse for many interesting comments, and we thank Dukpa Kim, Tatsushi Oka, and
Alexei Onatski for helpful discussions. We are also grateful for the comments and suggestions of
the journal editors and anonymous referees. Moon acknowledges financial support from the NSF
via Grant SES-0920903 and the faculty grant award from USC. Weidner acknowledges support
from the Economic and Social Research Council through ESRC Centre for Microdata Methods
and Practice Grant RES-589-28-0001.

2The conventional additive model can be interpreted as a two factor interactive fixed effects
model.
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Let N be the number of cross-sectional units, T be the number of time peri-
ods, K be the number of regressors, and R0 be the true number of interactive
fixed effects. We consider a linear regression model with observed outcomes Y ,
regressors Xk, and unobserved error structure ε, namely

Y =
K∑

k=1

β0
kXk + ε� ε= λ0f 0′ + e�(1.1)

where Y , Xk, ε, and e are N×T matrices, λ0 is an N×R0 matrix, f 0 is a T ×R0

matrix, and the regression parameters β0
k are scalars—the superscript zero in-

dicates the true value of the parameters. We write β for the K-vector of re-
gression parameters, and we denote the components of the different matrices
by Yit , Xk�it , eit , λ0

ir , and f 0
tr , where i = 1� � � � �N , t = 1� � � � �T , and r = 1� � � � �R0.

It is convenient to introduce the notation β · X := ∑K

k=1 βkXk. All matrices,
vectors, and scalars in this paper are real valued.

We consider the interactive fixed effect specification, that is, we treat λ0 and
f 0 as nuisance parameters, which are estimated jointly with the parameters of
interest β.3 The advantages of the fixed effects approach are, for instance, that
it is semiparametric, since no assumption on the distribution of the interactive
effects needs to be made, and that the regressors can be arbitrarily correlated
with the interactive effect parameters.

We study the least squares (LS) estimator of model (1.1), which minimizes
the sum of squared residuals to estimate the unknown parameters β, λ, and f .4
To our knowledge, this estimator was first discussed in Kiefer (1980). Under an
asymptotic where N and T grow to infinity, the asymptotic properties of the
LS estimator were derived in Bai (2009a) for strictly exogeneous regressors,
and were extended in Moon and Weidner (2014) to the case of predetermined
regressors.

An important restriction of these papers is that the number of factors R0

is assumed to be known. However, in many empirical applications, there is
no consensus about the exact number of factors in the data or in the relevant
economic model. If R0 is not known beforehand, then it may be estimated
consistently,5 but difficulties in obtaining reliable estimates for the number of

3When we refer to interactive fixed effects, we mean that both factors and factor loadings
are treated as nonrandom parameters. Ahn, Lee, and Schmidt (2001) take a hybrid approach in
that they treat the factors as nonrandom, but treat the factor loadings as random. The common
correlated effects estimator of Pesaran (2006) was introduced in a context where both the factor
loadings and the factors follow certain probability laws, but it exhibits many properties of a fixed
effects estimator.

4The LS estimator is sometimes called concentrated least squares estimator in the literature,
and in an earlier version of the paper, we referred to it as the “Gaussian quasi maximum like-
lihood estimator,” since LS estimation is equivalent to maximizing a conditional Gaussian like-
lihood function. Note also that for fixed β, the LS estimator for λ and f is simply the principal
components estimator.

5See the discussion in the Supplemental Material of Bai (2009b) regarding estimation of R0.
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factors are well documented in the literature (see, e.g., the simulation results in
Onatski (2010) and also our empirical illustration in Section 5). Furthermore,
so as to use the existing inference results on R0, one still needs a good prelim-
inary estimator for β, so that working out the asymptotic properties of the LS
estimator for R ≥R0 is still useful when taking that route.

We investigate the asymptotic properties of the LS estimator when the true
number of factors R0 is unknown and R (≥ R0) number of factors are used in
the estimation.6 We denote this estimator by β̂R.

The main result of the paper, presented in Section 3, is that under certain
assumptions, the LS estimator β̂R has the same limiting distribution as β̂R0 for
any R ≥ R0 under an asymptotic where both N and T become large, while
R0 and R are constant. This implies that the LS estimator β̂R is asymptotically
robust toward inclusion of extra interactive effects in the model, and within the
LS estimation framework, there is no asymptotic efficiency loss from choosing
R larger than R0. The important empirical implication of our result is that the
number of factors R0 need not be known or estimated accurately to apply the
LS estimator.

To derive this robustness result, we impose more restrictive conditions than
those typically assumed with known R0. These include that the errors eit are
independent and identically (i.i.d.) normally distributed and that the regres-
sors are composed of a “low-rank” strictly stationary component, a “high-rank”
strictly stationary component, and a “high-rank” predetermined component.7
Notice that while some of these restrictions are necessary for our robustness
result, some of them (e.g., i.i.d. normality of eit) are imposed for technical
reasons, because in the proof we use certain results from the theory of ran-
dom matrices that are currently only available in that case (see the discussion
in Section 4.3). To demonstrate robustness of the result, in the Monte Carlo
simulations in Section 6, we consider data generating processes (DGPs) that
violate some technical conditions.

Under less restrictive assumptions, we provide intermediate results that se-
quentially lead to the main result in Section 4 and Appendixes A.3 and A.4.
In Section 4.1, we show

√
min(N�T) consistency of the LS estimator β̂R as

N�T → ∞ under very mild regularity conditions on Xit and eit , and without
imposing any assumptions on λ0 and f 0 apart from R ≥ R0. We thus obtain
consistency of the LS estimator not only for an unknown number of factors,
but also for weak factors,8 which is an important robustness result.

6For R<R0, the LS estimator can be inconsistent, since then there are interactive fixed effects
in the model that can be correlated with the regressors but are not controlled for in the estimation.
We therefore restrict attention to the case R ≥ R0.

7The predetermined component of the regressors allows for linear feedback of eit into future
realizations of Xk�it .

8See Onatski (2010, 2012) and Chudik, Pesaran, and Tosetti (2011) for a discussion of “strong”
versus “weak” factors in factor models.
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In Section 4.2 we derive an asymptotic expansion of the LS profile objective
function that concentrates out f and λ for the case R = R0. Given that the
profile objective function is a sum of eigenvalues of a covariance matrix, its
quadratic approximation is challenging because the derivatives of the eigen-
values with respect to β are not generally known. We thus cannot use a con-
ventional Taylor expansion, but instead apply the perturbation theory of linear
operators to derive the approximation.

In Section 4.3, we provide an example that satisfies the typical assumptions
imposed with known R0, so that β̂R0 is

√
NT consistent, but we show that β̂R

with R > R0 is only
√

min(N�T) consistent in that example. This shows that
stronger conditions are required to derive our main result.

In Appendix A.3, we show faster than
√

min(N�T) convergence of β̂R under
assumptions that are less restrictive than those employed for the main result,
in particular allowing for either cross-sectional or time-serial correlation of
the errors eit . In Appendix A.4, we provide an alternative version of our main
result of asymptotic equivalence of β̂R0 and β̂R, R≥ R0, which is derived under
high-level assumptions.

In Section 5, we follow Kim and Oka (2014) in employing the interactive
fixed effects specification to study the effect of U.S. divorce law reforms on
divorce rates. This empirical example illustrates that the estimates for the co-
efficient β indeed become insensitive to the choice of R, once R is chosen
sufficiently large, as expected from our theoretical results.

Section 6 contains Monte Carlo simulation results for a static panel model.
For the simulations, we consider a DGP that violates the i.i.d. normality re-
striction of the error term. The simulation results confirm our main result
of the paper even with a relatively small sample size (e.g., N = 100, T = 10)
and non-i.i.d.-normal errors. In the Supplemental Material (Moon and Weid-
ner (2015)), we report the Monte Carlo simulation results of an AR(1) panel
model. It also confirms the robustness result in large samples, but in finite sam-
ples it shows more inefficiency than the static case. In general, one should ex-
pect some finite sample inefficiency from overestimating the number of factors
when the sample size is small or the number of overfitted factors is large.

A few words on notation. The transpose of a matrix A is denoted by A′.
For a column vector v, its Euclidean norm is defined by ‖v‖ = √

v′v . For an
m×n matrix A, the Frobenius or Hilbert Schmidt norm is ‖A‖HS = √

Tr(AA′)
and the operator or spectral norm is ‖A‖ = max0�=v∈Rn

‖Av‖
‖v‖ . Furthermore, we

use PA = A(A′A)†A′ and MA = 1 − A(A′A)†A′, where 1 is the m × m iden-
tity matrix and (A′A)† denotes some generalized inverse in case A is not of
full column rank. For square matrices B and C, we use B > C (or B ≥ C) to
indicate that B − C is positive (semi) definite. We use w.p.a.1 to denote with
probability approaching 1.
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2. IDENTIFICATION OF β0�λ0f 0′, AND R0

In this section, we provide a set of conditions under which the regression
coefficient β0, the interactive fixed effects λ0f 0′, and the number of factors R0

are determined uniquely by the data. Here, and throughout the whole paper,
we treat λ and f as nonrandom parameters, that is, all stochastics in the fol-
lowing discussion are implicitly conditional on λ and f . Let xk = vec(Xk), the
NT vectorization of Xk, and let x= (x1� � � � � xK), which is an NT ×K matrix.

ASSUMPTION ID—Assumptions for Identification: There exists a nonnega-
tive integer R such that the following statements hold:

(i) The second moments of Xit and eit exist for all i, t.
(ii) We have E(eit)= 0 and E(Xiteit)= 0 for all i, t.
(iii) We have E[x′(MF ⊗Mλ0)x] > 0, for all F ∈ RT×R.
(iv) We have R ≥R0 := rank(λ0f 0′).

THEOREM 2.1—Identification: Suppose that the Assumptions ID are satisfied.
Then β0, λ0f 0′, and R0 are identified.9

Assumption ID(i) imposes the existence of second moments. Assump-
tion ID(ii) is an exogeneity condition, which demands that xit and eit are not
correlated contemporaneously, but allows for predetermined regressors like
lagged dependent variables. Assumption ID(iv) imposes that the true number
of factors R0 := rank(λ0f 0′) is bounded by a nonnegative integer R, which can-
not be too large (e.g., the trivial bound R = min(N�T) is not possible), since
otherwise Assumption ID(iii) cannot be satisfied.

Assumption ID(iii) is a noncollinearity condition, which demands that the
regressors have significant variation across i and over t after projecting out
all variation that can be explained by the factor loadings λ0 and by arbitrary
factors F ∈ RT×R. This generalizes the within variation assumption in the con-
ventional panel regression with time-invariant individual fixed effects, which
in our notation reads E[x′(M1T ⊗ 1N)x] > 0.10 This conventional fixed effect
assumption rules out time-invariant regressors. Similarly, Assumption ID(iii)
rules out more general low-rank regressors;11 see our discussion of Assump-
tion NC below.

9Here, identification means that β0 and λ0f 0′ can be uniquely recovered from the distribution
of (Y�X) conditional on those parameters. Identification of the number of factors follows since
R0 = rank(λ0f 0′). The factor loadings and factors λ0 and f 0 are not separately identified without
further normalization restrictions, but the product λ0f 0′ is identified.

10The conventional panel regression with additive individual fixed effects and time effects re-
quires a noncollinearity condition of the form E[x′(M1T ⊗M1N )x] > 0.

11We do not consider such low-rank regressors in this paper. Note also that Assumption A in
Bai (2009a) is the sample version of our Assumption ID(iii).
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3. MAIN RESULT

The estimator we investigate in this paper is the least squares (LS) estimator,
which for a given choice of R reads12

(β̂R� Λ̂R� F̂R) ∈ argmin
{β∈RK�Λ∈RN×R�F∈RT×R}

∥∥Y −β ·X −ΛF ′∥∥2

HS
�(3.1)

where ‖·‖HS refers to the Hilbert Schmidt norm, also called the Frobenius
norm. The objective function ‖Y −β ·X−ΛF ′‖2

HS is simply the sum of squared
residuals. The estimator for β0 can equivalently be defined by minimizing the
profile objective function that concentrates out the R factors and the R factor
loadings, namely

β̂R = argmin
β∈RK

LR
NT(β)�(3.2)

with13

LR
NT(β) = min

{Λ∈RN×R�F∈RT×R}
1

NT

∥∥Y −β ·X −ΛF ′∥∥2

HS
(3.3)

= min
F∈RT×R

1
NT

Tr
[
(Y −β ·X)MF(Y −β ·X)′]

= 1
NT

T∑
r=R+1

μr

[
(Y −β ·X)′(Y −β ·X)

]
�

where μr(·) is the rth largest eigenvalue of the matrix argument. Here, we
first concentrated out Λ by use of its own first order condition. The resulting
optimization problem for F is a principal components problem, so that the op-
timal F is given by the R largest principal components of the T × T matrix
(Y − β · X)′(Y − β · X). At the optimum, the projector MF therefore exactly
projects out the R largest eigenvalues of this matrix, which gives rise to the final
formulation of the profile objective function as the sum over its T − R small-
est eigenvalues.14 We write L0

NT(β) for LR0

NT(β), the profile objective function
obtained for the true number of factors. Notice that in (3.2), the parameter set

12The optimal Λ̂R and F̂R in (3.1) are not unique, since the objective function is invariant under
right multiplication of Λ with a nondegenerate R × R matrix S and simultaneous right multipli-
cation of F with (S−1)′. However, the column spaces of Λ̂R and F̂R are uniquely determined.

13The profile objective function LR
NT(β) need not be convex in β and can have multiple local

minima. Depending on the dimension of β, one should either perform an initial grid search or
try multiple starting values for the optimization when calculating the global minimum β̂R numer-
ically. See also Section S.8 of the Supplemental Material.

14This last formulation of LR
NT(β) is very convenient since it does not involve any explicit op-

timization over nuisance parameters. Numerical calculation of eigenvalues is very fast, so that
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for β is the whole Euclidean space RK and we do not restrict the parameter set
to be compact.

ASSUMPTION SF—Strong Factor Assumption:
(i) We have 0 < plimN�T→∞

1
N
λ0′λ0 < ∞.

(ii) We have 0 < plimN�T→∞
1
T
f 0′f 0 < ∞.

ASSUMPTION NC—Noncollinearity of Xk: Consider linear combinations
α ·X := ∑K

k=1 αkXk of the regressors Xk with K-vector α such that ‖α‖ = 1. We
assume that there exists a constant b > 0 such that

min
{α∈RK�‖α‖=1}

T∑
r=R+R0+1

μr

[
(α ·X)′(α ·X)

NT

]
≥ b w.p.a.1�

ASSUMPTION LL—Low Level Conditions for the Main Result:
(i) Decomposition of Regressors: We have Xk = Xk + X̃ str

k + X̃weak
k for

k = 1� � � � �K, where Xk, X̃str
k , and X̃weak

k are N × T matrices, and the follow-
ing statements hold:

(a) Low-Rank (strictly exogenous) Part of Regressors: We have that
rank(Xk) is bounded as N�T → ∞ and 1

NT

∑N

i=1

∑T

t=1 X
2

k�it =OP(1).
(b) High-Rank (strictly exogenous) Part of Regressors: We have ‖X̃str

k ‖ =
OP(N

3/4), as can be justified, for example, by Lemma A.1 in the Appendix.
(c) Weakly Exogenous Part of Regressors: We have X̃weak

k�it = ∑t−1
τ=1 γτei�t−τ,

where the real valued coefficients γτ satisfy
∑∞

τ=1 |γτ| <∞.
(d) Bounded Moments: We assume that E|Xk�it |2, E|(Mλ0XkMf 0)it |26,

E|(Mλ0Xk)it |8, and E|(XkMf 0)it |8 are bounded uniformly over k, i, j, N , and T .
(ii) Errors are i.i.d. Normal: The error matrix e is independent of λ0, f 0, Xk,

and X̃str
k , k = 1� � � � �K, and its elements eit are independent and identically dis-

tributed as N (0�σ2) across i and over t.
(iii) Number of Factors not Underestimated: We have R ≥ R0 :=

rank(λ0f 0′).

REMARKS: (i) Assumption SF imposes that the factor f 0 and the factor
loading λ0 are strong. The strong factor assumption is regularly imposed in
the literature on large N and T factor models, including Bai and Ng (2002),
Stock and Watson (2002), and Bai (2009a).

(ii) Assumption NC demands that there exists significant sampling varia-
tion in the regressors after concentrating out R + R0 factors (or factor load-
ings). It is a sample version of the identification Assumption ID(iii) and it is

the numerical evaluation of LR
NT(β) is unproblematic for moderately large values of T . Since

the model is symmetric under N ↔ T , Λ ↔ F , Y ↔ Y ′, and Xk ↔ X ′
k, there also exists a dual

formulation of LR
NT(β) that involves solving an eigenvalue problem for an N ×N matrix.
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essentially equivalent to Assumption A of Bai (2009a), but avoids mentioning
the unobserved loadings λ0.15

(iii) Assumption NC is violated if there exists a linear combination α ·X of
the regressors with α �= 0 and rank(α · X) ≤ R + R0, that is, the assumption
rules out low-rank regressors like time-invariant regressors or cross-sectionally
invariant regressors. These low-rank regressors require a special treatment in
the interactive fixed effect model (see Bai (2009a) and Moon and Weidner
(2014)) and we do not consider them in the present paper. If one is not inter-
ested explicitly in their regression coefficients, then one can always eliminate
the low-rank regressors by an appropriate projection of the data, for example,
subtraction of the time (or cross-sectional) means from the data eliminates all
time-invariant (or cross-sectionally invariant) regressors; see Section 5 for an
example of this.

(iv) The norm restriction in Assumption LL(i)(b) is a high-level assump-
tion. It is satisfied as long as X̃str

k�it is mean zero and weakly correlated across i
and over t; for details, see Appendix A.1 and Lemma A.1 there.

(v) Assumption LL(i) imposes that each regressor consists of three parts:
(a) a strictly exogenous low-rank component, (b) a strictly exogenous compo-
nent satisfying a norm restriction, and (c) a weakly exogenous component that
follows a linear process with innovation given by the lagged error term eit . For
example, if Xk�it ∼ i�i�d�N (μk�σ

2
k), independent of e, then we have Xk�it = μk,

X̃ str
k�it ∼ i�i�d�N (0�σ2

k), and X̃weak
k = 0. Assumption LL(i) is also satisfied for

a stationary panel vector autoregression (VAR) with interactive fixed effects
as in Holtz-Eakin, Newey, and Rosen (1988). A special case of this is a dy-
namic panel regression with fixed effects, where Yit = βYi�t−1 + λ0′

i f
0
t + eit ,

with |β| < 1 and “infinite history.” In this case, we have Xit = Yi�t−1 = Xit +
X̃ str

it + X̃weak
it , where Xit = λ0′

i

∑∞
τ=1 β

τ−1f 0
t−τ, X̃

str
it = ∑∞

τ=t β
τ−1ei�t−τ, and X̃weak

it =∑t−1
τ=0 β

τ−1ei�t−τ.
(vi) Assumption LL(i) is more restrictive than Assumption 5 in Moon and

Weidner (2014), where R0 is assumed to be known. However, it is more gen-
eral than the restriction on the regressors in Pesaran (2006), where—in our
notation—the decomposition Xk = Xk + X̃ str

k is imposed, but the lower rank
component Xk needs to satisfy further assumptions, and the weakly exogenous
component X̃weak

k is not considered. Bai (2009a) requires no such decomposi-
tion, but imposes strict exogeneity of the regressors.

15By dropping the expected value from Assumption ID(iii) and replacing the zero lower bound
by a positive constant, one obtains infF [x′(MF ⊗Mλ0)x/(NT)] ≥ b > 0 w.p.a.1, which is equivalent
to Assumption A of Bai (2009a) and can also be rewritten as min‖α‖=1 infF Tr[Mλ0(α · X)′MF(α ·
X)/(NT)] ≥ b. A slightly stronger version of the assumption, which avoids mentioning the un-
observed factor loading λ0, reads min‖α‖=1 infF infλ Tr[Mλ(α · X)′MF(α · X)/(NT)] ≥ b, where
F ∈ RT×R and λ ∈ RN×R0 , and this slightly stronger version is equivalent to Assumption NC.
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(vii) Among the conditions in Assumption LL, the i.i.d. normality condition
in Assumption LL(ii) may be the most restrictive. In Appendix A.4, we provide
an alternative version of Theorem 3.1 that imposes more general high-level
conditions. Verifying those high-level conditions requires results on the eigen-
values and eigenvectors of random covariance matrices, which can be verified
for i.i.d. normal errors by using known results from the random matrix theory
literature; see Section 4.3 for more details. We believe, however, that those
high-level conditions and thus our main result hold more generally, and we ex-
plore nonnormal and serially correlated errors in our Monte Carlo simulations
below.

THEOREM 3.1—Main Result: Let Assumptions SF, NC, and LL hold, and
consider a limit N�T → ∞ with N/T → κ2, 0 < κ< ∞. Then we have

√
NT

(
β̂R −β0

) = √
NT

(
β̂R0 −β0

) + oP(1)�

Theorem 3.1 follows from Theorem A.3 and Lemma A.4 in the Appendix,
whose proof is given in the Supplemental Material. The theorem guarantees
that the asymptotic distribution of β̂R, R ≥ R0, is identical to that of β̂R0 in
(3.4) below.

The limiting distribution of
√

NT(β̂R0 −β0) with known R0 is available in the
existing literature. According to Bai (2009a) and Moon and Weidner (2014),

√
NT

(
β̂R0 −β0

) ⇒N
(−κplimW −1B�σ2 plimW −1

)
�(3.4)

where W is the K×K matrix with elements Wk1k2 = 1
NT Tr(Mλ0Xk1Mf 0X ′

k2
) and

B is the K-vector with elements Bk = 1
N

Tr[Pf 0E(e′Xk)].16

The result (3.4) holds under the assumptions of Theorem 3.1 and also as-
suming that plimW −1B and plimW −1 exist, where plim refers to the probability
limit as N�T → ∞. Note that Assumption NC guarantees that W is invertible
asymptotically. The asymptotic bias in (3.4) is an incidental parameter bias due
to predetermined regressors and is equal to zero for strictly exogenous regres-
sors (for which E(e′Xk)= 0); it generalizes the well known Nickell (1981) bias
of the within-group estimator for dynamic panel models.

16The asymptotic distribution in (3.4) can also be derived from Corollary 4.3 below under more
general conditions than in Assumption LL (see Moon and Weidner (2014) for details). Here we
have used the homoscedasticity of eit to simplify the structure of the asymptotic variance and bias.
Bai (2009a) finds further asymptotic bias in β̂R0 due to heteroscedasticity and correlation in eit ,
which in our asymptotic result is ruled out by Assumption LL(ii), but is studied in our subsequent
Monte Carlo simulations. Moon and Weidner (2014) work out the additional asymptotic bias in
β̂R0 due to predetermined regressors, which is allowed for in Theorem 3.1.
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Estimators for σ2, W , and B are given by17

σ̂2
R = 1

(N −R)(T −R)−K

N∑
i=1

T∑
t=1

(̂eR�it)
2�

ŴR�k1k2 = 1
NT

Tr
(
MΛ̂R

Xk1MF̂R
X ′

k2

)
�

B̂R�k =
T∑
t=1

t+M∑
τ=t+1

PF̂R�tτ

[
1
N

N∑
i=1

êR�itXk�iτ

]
�

where êR�it denotes the (i� t)th element of êR = Y − β̂R · X − Λ̂RF̂
′
R, PF̂R�tτ

denotes the (t� τ)th element of PF̂R
= 1T − MF̂R

= F̂R(F̂
′
RF̂R)

†F̂ ′
R, and M ∈

{1�2�3� � � �} is a bandwidth parameter that also depends on the sample size
N�T . Let ŴR and B̂R be the matrix and the vector with elements ŴR�k1k2 and
B̂R�k, respectively.

The next theorem establishes the consistency of these estimators. Let λred ∈
RN×(R−R0) and f red ∈ RT×(R−R0) be the leading R−R0 principal components ob-
tained from the N × T matrix Mλ0eMf 0 , that is, λred and f red minimize the
objective function ‖Mλ0eMf 0 − λredf red′‖2

HS, analogous to Λ̂R and F̂R defined in
(3.1).18

THEOREM 3.2—Consistency of Bias and Variance Estimators: (i) Let the
conditions of Theorem 3.1 hold. Then we have ‖PF̂R

− P[f 0�f red]‖ = op(1),
‖PΛ̂R

− P[λ0�λred]‖ = op(1), σ̂2
R = σ2 + oP(1), and ŴR = W + oP(1).

(ii) In addition, let Xk�·t = (Xk�1t� � � � �Xk�Nt)
′, and assume that (a) γτ in As-

sumption LL(i)(c) satisfies |γτ| < cτ−d for some c > 0 and d > 1, (b) ‖λ0
i ‖

and ‖f 0
t ‖ are uniformly bounded over i� t and N�T , (c) maxt ‖Xk�·t‖ =

OP(
√
N logN),19 and (d) the bandwidth M → ∞ such that M(logT)2T−1/6 → 0.

Then we have B̂R = B + oP(1).

Combining Theorems 3.1 and 3.2 and the asymptotic distribution in (3.4)
allows inference on β for R ≥ R0. In particular, the bias corrected estimator

17The first factor in σ̂2 reflects the degree of freedom correction from estimating Λ, F ,
and β, but could simply be chosen as 1/NT for the purpose of consistency. Note also that
PF̂R�tτ

= OP(1/T), which explains why no 1/T factor is required in the definition of B̂R�k.
18The superscript “red” stands for redundant, because it turns out that λred and f red are asymp-

totically close to the R−R0 redundant principal components that are estimated in (3.1).
19The high-level assumption maxt ‖Xk�·t‖ = OP(

√
N logN) can be shown to be satisfied for the

regressor component X̃weak
k�it above, and can be justified for the other regressor components, for

example, by assuming that Xk and X̃str
k are uniformly bounded.
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β̂BC
R = β̂R + 1

T
Ŵ −1

R B̂R satisfies20

√
NT

(
β̂BC

R −β0
) ⇒N

(
0�σ2W −1

)
�

Heuristic Discussion of the Main Result

Intuitively, the inclusion of unnecessary factors in the LS estimation is simi-
lar to the inclusion of irrelevant regressors in an ordinary least squares (OLS)
regression. In the OLS case, it is well known that if those irrelevant extra re-
gressors are uncorrelated with the regressors of interest, then they have no
effect on the asymptotic distribution of the regression coefficients of interest.
It is, therefore, natural to expect that if the extra estimated factors in F̂R are
asymptotically uncorrelated with the regressors, then the result of Theorem 3.1
should hold. To explore this, remember that F̂R is given by the first R principal
components of the matrix (Y − β̂R ·X)′(Y − β̂R ·X), and write

Y − β̂R ·X = λ0f 0′ + e− (
β̂R −β0

) ·X�

The strong factor assumption and the consistency of β̂R guarantee that the
first R0 principal components of (Y − β̂R · X)′(Y − β̂R · X) are close to f 0

asymptotically, that is, the true factors are correctly picked up by the principal
component estimator. The additional R − R0 principal components that are
estimated for R>R0 cannot pick up anymore true factors and are thus mostly
determined by the remaining term e− (β̂R −β0) ·X . The key question for the
properties of the extra estimated factors, and thus of β̂R, is therefore whether
the principal components obtained from e − (β̂R − β0) · X are dominated by
e or by (β̂R −β0) ·X . Only if they are dominated by e can we expect the extra
factors in F̂R to be uncorrelated with X and, thus, the result in Theorem 3.1
to hold. The result on PF̂R

in Theorem 3.2 shows that the additional estimated
factors are indeed close to f red, that is, are mostly determined by e, but this
result is far from obvious a priori, as the following discussion shows.

Under our assumptions, we have ‖e‖ = OP(
√
N) and ‖Xk‖ = OP(

√
NT) as

N and T grow at the same rate. Thus, if the convergence rate of β̂R is faster
than

√
N , that is, ‖β̂R − β0‖ = oP(

√
N), then we have ‖e‖ � ‖(β̂R − β0) · X‖

asymptotically and we expect the extra F̂R to be dominated by e. A crucial step
in the derivation of Theorem 3.1 is therefore to show faster than

√
N con-

vergence of β̂R. Conversely, we expect counterexamples to the main result to
be such that the convergence rate of the estimator β̂R is not faster than

√
N ,

20Instead of estimating the bias analytically, one can use the result that the bias is of order T−1

and perform split panel bias correction as in Dhaene and Jochmans (2015), who instead of the
conditions of Theorem 3.2(ii), only requires some stationary condition over time.
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and we provide such a counterexample—which, however, violates Assump-
tions LL—in Section 4.3 below. Whether the intuition about “inclusion of ir-
relevant regressors” carries over to the “inclusion of irrelevant factors” thus
crucially depends on the convergence rate of β̂R.

4. ASYMPTOTIC THEORY AND DISCUSSION

Here we introduce key intermediate results for the proof of the main the-
orem, Theorem 3.1, stated above. These intermediate results may be useful
independently of the main result, for example, Moon and Weidner (2014) and
Moon, Shum, and Weidner (2014) crucially use the results established in Sec-
tion 4.2 for the case of known R = R0. The assumptions introduced below are
all implied by the low-level Assumptions LL above; see to Lemma A.4 in the
Appendix.

4.1. Consistency of β̂R

Here we present a consistency result for β̂R under an arbitrary asymptotic
N�T → ∞, that is, without the assumption that N and T grow at the same rate,
which is imposed everywhere else in the paper. In addition to Assumption NC,
we require the following high-level assumptions to obtain the result.

ASSUMPTION SN—Spectral Norm of Xk and e:
(i) We have ‖Xk‖ =OP(

√
NT), k= 1� � � � �K.

(ii) We have ‖e‖ =OP(
√

max(N�T)).

ASSUMPTION EX—Weak Exogeneity of Xk: We have 1√
NT

Tr(Xke
′)=OP(1),

k= 1� � � � �K.

THEOREM 4.1: Let Assumptions SN, EX, and NC be satisfied, and let R≥R0.
For N�T → ∞, we then have

√
min(N�T)(β̂R −β0)=OP(1).

REMARKS: (i) One can justify Assumption SN(i) by use of the norm inequal-
ity ‖Xk‖ ≤ ‖Xk‖HS and the fact that ‖Xk‖2

HS = ∑
i�t X

2
k�it = OP(NT), where the

last step follows, for example, if Xk�it has a uniformly bounded second mo-
ment.

(ii) Assumption SN(ii) is a condition on the largest eigenvalue of the ran-
dom covariance matrix e′e, which is often studied in the literature on random
matrix theory (e.g., Geman (1980), Bai, Silverstein, and Yin (1988), Yin, Bai,
and Krishnaiah (1988), and Silverstein (1989)). The results in Latala (2005)
show that ‖e‖ =OP(

√
max(N�T)) if e has independent entries with mean zero

and uniformly bounded fourth moment. Weak dependence of the entries eit
across i and over t is also permissible; see Appendix A.1.
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(iii) Assumption EX requires exogeneity of the regressors Xk, allowing for
predetermined regressors, and some weak dependence of Xk�iteit across i and
over t.21

(iv) The theorem imposes no restriction at all on f 0 and λ0, apart from the
condition R ≥ rank(λ0f 0′).22 In particular, the strong factor Assumption SF is
not imposed here, that is, consistency of β̂R holds independently of whether the
factors are strong, weak, or not present at all. This is an important robustness
result, which is new in the literature.

(v) Under an asymptotic where N and T grow at the same rate, which is
imposed everywhere else in the paper, Theorem 4.1 shows

√
N (or equivalently√

T ) consistency of the estimator β̂R. To prove the consistency, we do not use
the argument of the standard consistency proof for an extremum estimator that
is to apply a uniform law of large numbers to the sample objective function
to find the limit function that is uniquely minimized at the true parameter.
Deriving the uniform limit of the objective function LR0

NT(β) is difficult. In the
proof that is available in the Supplemental Material, we find a lower bound of
the objective function LR0

NT(β) that is quadratic in β − β0 asymptotically and
we establish the desired consistency, extending the consistency proof in Bai
(2009a).

(vi) The
√
N consistency of β̂R implies that the residuals Y − β̂R · X will

be asymptotically close to λ0f 0′ + e.23 This allows consistent estimation of R0

under a strong factor Assumption SF by employing the known techniques
on factor models without regressors (by applying, e.g., Bai and Ng (2002) to
Y − β̂R ·X), as also discussed in Bai (2009b).24

(vii) Having a consistent estimator for R0, say R̂, one can calculate β̂R̂, which
will be asymptotically equal to β̂R0 . In practice, however, the finite sample
properties of the estimator β̂R̂ crucially depend on the finite sample proper-
ties of R̂. Many recent papers have documented difficulties in obtaining re-
liable estimates for R0 at the finite sample (see, e.g., the simulation results of
Onatski (2010) and Ahn and Horenstein (2013)), and those difficulties are also
illustrated by our empirical example in Section 5.

4.2. Quadratic Approximation of L0
NT(β) (:=LR0

NT(β))

To derive the limiting distribution of β̂R, we study the asymptotic properties
of the profile objective function LR

NT(β) around β0. The expression in (3.3)
cannot easily be discussed by analytic means, since no explicit formula for the

21Note that 1√
NT

Tr(Xke
′)= 1√

NT

∑
i

∑
t Xk�iteit .

22This is the main reason why we use a slightly different noncollinearity Assumption NC, which
avoids mentioning λ0, compared to Bai (2009a).

23In the sense that ‖(Y − β̂R ·X)− (λ0f 0′ + e)‖ = ‖(β̂R −β) ·X‖ = OP(
√
N).

24Bai (2009b) does not prove the required consistency and convergence rate of β̂R for R>R0.
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eigenvalues of a matrix is available. In particular, a standard Taylor expansion
of LR

NT(β) around β0 cannot easily be derived. Here, we consider the case of
known R = R0 and we perform a joint expansion of the corresponding profile
objective function L0

NT(β) in the regression parameters β and in the idiosyn-
cratic error terms e. To perform this joint expansion, we apply the perturbation
theory of linear operators (e.g., Kato (1980)). We thereby obtain an approxi-
mate quadratic expansion of L0

NT(β) in β, which can be used to derive the first
order asymptotic theory of the LS estimator β̂R0 ; see Appendix A.2 for details.
In addition to the K × K matrix W already defined in Section 3, we now also
define

C(1)
k = 1√

NT
Tr

(
Mλ0XkMf 0e′)�(4.1)

C(2)
k = − 1√

NT

[
Tr

(
eMf 0e′Mλ0Xkf

0
(
f 0′f 0

)−1(
λ0′λ0

)−1
λ0′)

+ Tr
(
e′Mλ0eMf 0X ′

kλ
0
(
λ0′λ0

)−1(
f 0′f 0

)−1
f 0′)

+ Tr
(
e′Mλ0XkMf 0e′λ0

(
λ0′λ0

)−1(
f 0′f 0

)−1
f 0′)]�

Let C(1) and C(2) be the K-vectors with elements C(1)
k and C(2)

k , respectively.

THEOREM 4.2: Let Assumptions SF and SN be satisfied. Suppose that
N�T → ∞ with N/T → κ2, 0 < κ<∞. Then we have

L0
NT(β) = L0

NT

(
β0

) − 2√
NT

(
β−β0

)′(
C(1) +C(2)

)
+ (

β−β0
)′
W

(
β−β0

) +L0�rem
NT (β)�

where the remainder term L0�rem
NT (β) satisfies, for any sequence cNT → 0,

sup
{β : ‖β−β0‖≤cNT }

∣∣L0�rem
NT (β)

∣∣(
1 + √

NT
∥∥β−β0

∥∥)2 = op

(
1

NT

)
�

The bound on the remainder25 in Theorem 4.2 is such that it has no effect
on the first order asymptotic theory of β̂R0 , as stated in the following corollary
(see also Andrews (1999)).

25The expansion in Theorem 4.2 contains a term that is linear in β and linear in e (C(1) term), a
term that is linear in β and quadratic in e (C(2) term), and a term that is quadratic in β (W term).
All higher order terms of the expansion are contained in the remainder term L0�rem

NT (β).



PANEL WITH UNKNOWN NUMBER OF FACTORS 1557

COROLLARY 4.3: Let Assumptions SF, SN, EX, and NC be satisfied. In the
limit N�T → ∞ with N/T → κ2, 0 < κ < ∞, we then have

√
NT(β̂R0 − β0) =

W −1(C(1) +C(2))+ oP(1 + ‖C(1)‖). If we furthermore assume that C(1) =OP(1),
then we obtain

√
NT

(
β̂R0 −β0

) = W −1
(
C(1) +C(2)

) + oP(1)=OP(1)�

Note that our assumptions already guarantee C(2) = OP(1) and that W is
invertible with W −1 = OP(1), so this need not be explicitly assumed in Corol-
lary 4.3.

REMARKS: (i) More details on the expansion of L0
NT(β) are provided in Ap-

pendix A.2 and the formal proofs can be found in Section S.2 of the Supple-
mental Material.

(ii) Corollary 4.3 allows to replicate the results in Bai (2009a) and Moon
and Weidner (2014) on the asymptotic distribution of β̂R0 , including the result
in formula (3.4) above.26 The assumptions of the corollary do not restrict the
regressors to be strictly exogenous and do not impose Assumption LL.

(iii) If one weakens Assumption SN(ii) to ‖e‖ = oP(N
2/3), then Theorem 4.2

still continues to hold. If C(2) =OP(1), then Corollary 4.3 also holds under this
weaker condition on ‖e‖.

4.3. Remarks on Deriving the Convergence Rate and Asymptotic Distribution
of β̂R for R>R0

An Example That Motivates Stronger Restrictions

The results in Bai (2009a) and Corollary 4.3 above show that under appropri-
ate assumptions, the estimator β̂R is

√
NT consistent for R = R0. For R>R0,

we know from Theorem 4.1 that β̂R is
√
N consistent as N and T grow at

the same rate, but we have not yet shown faster than
√
N converge of β̂R for

R > R0, which according to the heuristic discussion at the end of Section 3, is
a very important intermediate step to obtain our main result.27 However, one

26Let ρ, D(·), D0, DZ , B0, and C0 be the notation used in Assumption A and Theorem 3 of Bai
(2009a), and let Bai’s assumptions be satisfied. Then our κ, W , C(1), and C(2) satisfy κ = ρ−1/2,
W = D(f 0) →p D > 0, C(1) →d N (0�DZ), and W −1C(2) →p ρ1/2B0 + ρ−1/2C0. Corollary 4.3 can,
therefore, be used to replicate Theorem 3 in Bai (2009a). For more details and extensions of this,
refer to Moon and Weidner (2014).

27One reason why β̂R might only converge at
√
N rate, but not faster, is weak factors (both for

R>R0 and for R =R0). A weak factor (see, e.g., Onatski (2010, 2012) and Chudik, Pesaran, and
Tosetti (2011)) might not be picked up at all or might only be estimated very inaccurately by the
principal components estimator F̂R, in which case that factor is not properly accounted for in the
LS estimation procedure. If this happens and the weak factor is correlated with the regressors,
then there is some uncorrected weak endogeneity problem, and β̂R will only converge at

√
N

rate. We do not consider the issue of weak factors any further in this paper.
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might not obtain a faster than
√
N convergence rate of β̂R for R>R0 without

imposing further restrictions, as the following example shows.

EXAMPLE: Let R0 = 0 (no true factors) and K = 1 (one regressor). The true
model reads Yit = β0Xit + eit and we consider the data generating process
(DGP)

Xit = aX̃it + λx�ifx�t� e =
(

1N + c
λxλ

′
x

N

)
u

(
1T + c

fxf
′
x

T

)
�

where e and u are N × T matrices with entries eit and uit , respectively,
λx is an N-vector with entries λx�i, and fx is a T -vector with entries fx�t .
Let X̃it and uit be mutually independent i.i.d. standard normally distributed
random variables. Let λx�i ∈ B and fx�t ∈ B be nonrandom sequences with
bounded range B ⊂ R such that 1

N

∑N

i=1 λ
2
x�i → 1 and 1

T

∑T

t=1 f
2
x�t → 1 asymp-

totically.28 Consider N�T → ∞ such that N/T → κ2, 0 < κ < ∞, and let
0 < a < (1/2)2/3 min(κ2�κ−2) and c ≥ (2+√

2)(1+κ)(1+√
3a−1/4)

min(1�κ)[1/2−a3/2 max(κ�κ−1)] .
29 For this DGP,

one can show that β̂1, the LS estimator with R = 1 > R0, only converges at a
rate of

√
N to β0, but not faster.

The proof of the last statement is provided in the Supplemental Material.
The DGP in this example satisfies all the assumptions imposed in Corollary 4.3
to derive the limiting distribution of the LS estimator for R = R0, including√

NT consistency of β̂R for R = R0 (= 0 in this example). It also satisfies all
the regularity conditions imposed in Bai (2009a).30 The aspect that is special
about this DGP is that λx and fx feature both in Xit and in the second mo-
ment structure of eit . The heuristic discussion at the end of Section 3 provides
some intuition as to why this can be problematic, because the leading principal
components obtained from only the error matrix e will have a strong sample
correlation with Xit for this DGP.

Faster Than
√
N Convergence of β̂R

In Appendix A.3, we summarize our results on faster than
√
N convergence

of β̂R for R ≥ R0. The above example shows that this requires more restric-
tive assumptions than those imposed for the analysis of the case R =R0 above,

28We could also allow λx and fx to be random (but independent of e and X̃), and we could let
the range of B be unbounded. We only assume nonrandom λx and fx to guarantee that the DGP
satisfies Assumption D of Bai (2009a), namely that X and e are independent (otherwise we only
have mean independence, i.e., E(e|X) = 0). Similarly, we only assume bounded B to satisfy the
restrictions on eit imposed in Assumption C of Bai (2009a).

29The bounds on the constants a and c imposed here are sufficient, but not necessary for the
result of no faster than

√
N convergence of β̂1. Simulation evidence suggests that this result holds

for a much larger range of a, c values.
30See Section S.9 in the Supplemental Material for details.
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but the assumptions that we impose for this intermediate result are still signif-
icantly weaker than the Assumption LL required for our main result; in par-
ticular, either cross-sectional correlation or time-serial correlation of eit is still
allowed.

In Appendix A.3, we also provide one set of assumptions (Assumption
DX-2) for faster than

√
N convergence such that no additional conditions on

e are required, but where the regressors are restricted to essentially be lagged
dependent variables in an AR(p) model with factors.

On the Role of the i.i.d. Normality of eit

We establish the asymptotic equivalence of β̂R and β̂R0 in Theorem 3.1 by
showing that the LS objective function LR

NT(β) can, up to a constant, be uni-
formly well approximated by L0

NT(β) in shrinking neighborhoods around the
true parameter. For this, we need not only the faster than

√
N convergence

rate of β̂R, but also require the Assumption EV in Appendix A.4. This is a
high-level assumption on the eigenvalues and eigenvectors of the random co-
variance matrices EE′ and E′E, where E = Mλ0eMf 0 . The assumption essen-
tially requires the eigenvalues of those matrices to be sufficiently separated
from each other, as well as the eigenvectors of those matrices to be sufficiently
uncorrelated with the regressors Xk, and with ePf 0 and Pλ0e.

We use the i.i.d. normality of eit to verify those high-level conditions in Sec-
tion S.4.2 of the Supplemental Material. There are three reasons why we can
currently only verify those conditions for i.i.d. normal errors:

(i) The random matrix theory literature studies the eigenvalues and eigen-
vectors of random covariance matrices of the form ee′ and e′e, while we have
to deal with the additional projectors Mλ0 and Mf 0 in the random covariance
matrices. These additional projections stem from integrating out the true fac-
tors and factor loadings of the model. If the error distribution is i.i.d. normal,
and independent from λ0 and f 0, then these projections are unproblematic,
since the distribution of e is rotationally invariant from the left and the right in
that case, so that the projections are mathematically equivalent to a reduction
of the sample size by R0 in both panel dimensions.

(ii) In the i.i.d. normal case, one can furthermore use the invariance of the
distribution of e under orthonormal rotations from the left and from the right
to also fully characterize the distribution of the eigenvectors of EE′ and EE′.31

The conjecture in the random matrix theory literature is that the limiting dis-
tribution of the eigenvectors of a random covariance matrix is “distribution
free,” that is, is independent of the particular distribution of eit ; see, for ex-
ample, Silverstein (1990) and Bai (1999). However, we are not currently aware
of a formulation and corresponding proof of this conjecture that is sufficient

31Rotational invariance implies that the distribution of the normalized eigenvectors is given by
the Haar measure of a rotation group manifold.
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for our purposes, that is, that would allow us to verify our high-level Assump-
tion EV more generally.

(iii) We also require certain properties of the eigenvalues of EE′ and EE′.
Eigenvalues are studied more intensely than eigenvectors in the random matrix
theory literature, and it is well known that the properly normalized empirical
distribution of the eigenvalues (the so-called empirical spectral distribution)
of an i.i.d. sample covariance matrix converges to the Marčenko–Pastur law
(Marčenko and Pastur (1967)) for asymptotics where N and T grow at the
same rate. This result does not require normality, and results on the limiting
spectral distribution are also known for non-i.i.d. matrices. However, to check
our high-level Assumption EV, we also need results on the convergence rate of
the empirical spectral distribution to its limit law, which is an ongoing research
subject in the literature (e.g., Bai (1993), Bai, Miao, and Yao (2003), Götze
and Tikhomirov (2010)), and we are currently only aware of results on this con-
vergence rate for the case of either i.i.d. or i.i.d. normal errors. To verify the
high-level assumption, we furthermore use a result from Johnstone (2001) and
Soshnikov (2002) that shows that the properly normalized few largest eigenval-
ues of EE′ and EE′ converge to the Tracy–Widom law, and to our knowledge
this result is not established for error distributions that are not i.i.d. normal.

In spite of these severe mathematical challenges, we believe that, in princi-
ple, our high-level Assumption EV could be verified for more general error
distributions, implying that our main result of asymptotic equivalence of β̂R

and β̂R0 holds more generally. This is also supported by our Monte Carlo simu-
lations, where we explore nonindependent and nonnormal error distributions.

5. EMPIRICAL ILLUSTRATION

As an illustrative empirical example, we estimate the dynamic effects of uni-
lateral divorce law reforms on the statewise divorce rates in the United States.
The impact of the divorce law reform has been studied by many researchers
(e.g., Allen (1992), Peters (1986, 1992), Gray (1998), Friedberg (1998), Wolfers
(2006), and Kim and Oka (2014)). In this section, we revisit this topic, extend-
ing Wolfers (2006) and Kim and Oka (2014) by controlling for interactive fixed
effects and also a lagged dependent variable.

Let Yit denote the number of divorces per 1000 people in state i at time t,
and let Di denote the year in which state i introduced the unilateral divorce
law, that is, before year Di, state i had a consent divorce law, while from Di

onward, state i had a unilateral “no-fault” divorce law, which lowers the barrier
for divorce. The goal is to estimate the dynamic effects of this law change on
the divorce rate. The empirical model we estimate is

Yit = β0Yi�t−1 +
8∑

k=1

βkXk�it + αi + γit + δit
2 +μt + λ′

ift + eit�(5.1)
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where we follow Wolfers (2006) in defining the regressors as biannual dum-
mies:

Xk�it = 1
{
Di + 2(k− 1)≤ t ≤ Di + 2k− 1

}
for k= 1� � � � �7�

X8�it = 1
{
Di + 2(k− 1)≤ t

}
�

The dummy variable and quadratic trend specification αi + γit + δit
2 + μt is

also used in Friedberg (1998) and Wolfers (2006). The additional interactive
fixed effects λ′

ift were added in Kim and Oka (2014) to control for additional
unobserved heterogeneity in the divorce rate, for example, due to social, cul-
tural, or demographic factors. We extend the specification further by adding a
lagged dependent variable Yi�t−1 to control for state dependence of the divorce
rate, but we also report results without Yi�t−1 below. We use the data set of
Kim and Oka (2014),32 which is a balanced panel of N = 48 states over T = 33
years, leaving T = 32 time periods if the lagged dependent variable is included.

For estimation, we first eliminate αi, γi, δi, and μt from the model by
projecting the outcome variable and all regressors accordingly, for example,
Ỹ =M1NYM(1T �t�t2), where 1N and 1T are N and T vectors, respectively, with all
entries equal to 1, and t and t2 are T vectors with entries t and t2, respectively.
The model after projection reads Ỹit = β0Ỹi�t−1 + ∑8

k=1 βkX̃k�it + λ̃′
if̃t + ẽit ,

which is exactly the model we have studied so far in this paper.33 We use the LS
estimator described above to estimate this model. The projection reduces the
effective sample size to N = 48 − 1 = 47 and T = 32 − 3 = 29, which should
be accounted for when calculating standard errors, for example, in the formula
for σ̂2

R above (degrees of freedom correction). Our theoretical results are still
applicable.34

We need to decide on a number of factors R when implementing the LS es-
timator. As already mentioned in the last remark in Section 4.1, we can apply
known techniques from the literature on factor models without regressors to
obtain a consistent estimator of R0. To do so, we choose a maximum number
of factors of Rmax = 9 to obtain the preliminary estimate β̂Rmax and then cal-
culate the residuals ûit = Ỹit − β̂Rmax�0Ỹi�t−1 − ∑8

k=1 β̂Rmax�kX̃k�it . We then apply
the information criteria (IC), panel Cp criteria (PC), and Bayes information
criterion (BIC3) of Bai and Ng (2002),35 the criterion described in Onatski

32The data are available from http://qed.econ.queensu.ca/jae/2014-v29.2/kim-oka/.
33To construct Ỹi�t−1, we first apply the lag operator and then apply the projections M1N and

M(1T �t�t2).
34If eit is i.i.d. normal, then ẽit is not, but one can apply appropriate orthogonal rotations in

N and T space such that ẽit becomes i.i.d. normal again, although with the sample size reduced
to N = 47 and T = 29. The rotation has no effect on the LS estimator, that is, it does not matter
whether we work in the original or the rotated frame.

35Following Onatski (2010) and Ahn and Horenstein (2013), we report only BIC3 among the
Akaike information criterion (AIC) and BIC criteria of Bai and Ng (2002).

http://qed.econ.queensu.ca/jae/2014-v29.2/kim-oka/
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TABLE I

ESTIMATED NUMBER OF FACTORS IN THE RESIDUALS û, USING DIFFERENT CRITERIA FOR
ESTIMATION AND Rmax = 9a

Criterion R̂ Criterion R̂ Criterion R̂

IC1 9 PC1 9 Onatski 1
IC2 7 PC2 9 ER 1
IC3 9 PC3 9 GR 3
BIC3 6

aThe IC, PC, and BIC criteria are described in Bai and Ng (2002), the ER and GR criteria are from Ahn and
Horenstein (2013), and we also use the criterion of Onatski (2010).

(2010), and the eigenvalue ratio (ER) and growth ratio (GR) criteria of Ahn
and Horenstein (2013) to û.36 Most of these criteria also require specification
of Rmax, and we continue to use Rmax = 9. The corresponding estimation results
for R are presented in Table I. In addition, we also report the log scree plot,
that is, the sorted eigenvalues of û′û, in Figure 1.

The log scree plot already shows that it is not obvious how to decompose
the eigenvalue spectrum into a few larger eigenvalues stemming from factors
and the remaining smaller eigenvalues stemming from the idiosyncratic error
term.37 This problem is also reflected in the very different estimates for R that

FIGURE 1.—Log scree plot. The natural logarithm of the sorted eigenvalues (corresponding
to the principal components, or factors) of û′û are plotted.

36To include R = 0 as a possible outcome for the Ahn and Horenstein (2013) criterion, we use
the mock eigenvalue used in their simulations.

37The first largest eigenvalue is 2.2 times larger than the second eigenvalue, the second is 1.6
times larger than the third, and the third is 1.9 times larger than fourth. So the largest view eigen-
values are larger than the remaining ones, and the strong factor assumption might not be com-
pletely inappropriate here. However, deciding on a cutoff between factor and nonfactor eigen-
values is difficult.
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one obtains from the various criteria. It might appear that IC1, IC3, PC1, PC2,
and PC3 all agree on R̂ = 9, but this is simply R̂ = Rmax, and if we choose
Rmax = 10, then all these criteria deliver R̂ = 10, so this should not be consid-
ered a reliable estimate.

On the other hand, our asymptotic theory suggests that the exact choice of
R in the estimation of β̂R should not matter too much, as long as R is chosen
large enough to cover all relevant factors. Table II contains the estimation re-
sults for the bias corrected β̂R for R ∈ {0�1� � � � �9}. Table III contains estimates
when the lagged dependent variable is not included in the model.38 For all re-
ported estimates, we perform bias correction and standard error estimation as
described in Bai (2009a) and Moon and Weidner (2014).39

When ignoring the lagged dependent variable coefficient, one finds that in
both Tables II and III, the estimation results for β̂R and the corresponding t-
values are quite sensitive to changes in R for very small values of R, but become
much more stable as R increases and actually do not change too much from
roughly R= 2 onward. These findings are very well in line with our asymptotic
theory, and the dynamic effects of divorce law reform that we find are also
similar to the findings in Wolfers (2006) and Kim and Oka (2014). The effect
of the law reform on the divorce rates initially increases over time, is certainly
significant in year 3–4 after the reform, and declines and becomes insignificant
afterward.40

In contrast, the estimated coefficient on the lagged dependent variable in
Table II is quite large and highly significant for small values of R, but decreases
steadily with R until it gets close to zero and is insignificant for R ≥ 8. A plau-
sible interpretation of this finding is that the model that includes the lagged
dependent variable is misspecified, and that the estimated value of β0 for small
values of R does not correspond to a true state dependence of Yit , but simply
reflects the time-serial correlation of the error process being picked up by the

38The result for R = 7 in Table III should be equal to column 6 in Table III of Kim and Oka
(2014). The discrepancy is explained by a coding error in their bias computation. Note also that
the result for R = 0 in Table III does not match the one in Wolfers (2006), because he uses
weighted least squares (WLS) with state population weights, while we use OLS for simplicity.
Kim and Oka (2014) estimate both WLS and OLS, and find that the difference between the
resulting estimates becomes insignificant once a sufficient number of interactive fixed effects are
controlled for.

39We correct for the biases due to heteroscedasticity in both panel dimensions worked out
in Bai (2009a), as well as for the dynamic bias worked out in Moon and Weidner (2014). For
the latter, we use the formula for B̂R�k above, with bandwidth M = 2. For the standard error
estimation, we allow for heteroscedasticity in both panel dimensions, also following Bai (2009a)
and Moon and Weidner (2014). The bias and standard error formulas in those papers assume
R = R0 known, but we strongly expect that those formulas are robust toward R > R0, as partly
justified by Theorem 3.2. For the model without lagged dependent variable, we also allow for
serial correlation in eit when estimating the bias and standard deviation of β̂R.

40The magnitude of the estimates is smaller than those in Wolfers (2006), that is, controlling
for unobserved factors reduced the effect size, as already pointed out by Kim and Oka (2014).



1564
H

.R
.M

O
O

N
A

N
D

M
.W

E
ID

N
E

R

TABLE II

DYNAMIC EFFECTS OF DIVORCE LAW REFORMa

R= 0 R = 1 R = 2 R= 3 R = 4 R = 5 R = 6 R= 7 R = 8 R = 9

Lagged Y 0�432∗∗ 0�623∗∗ 0�573∗∗ 0�411∗∗ 0�369∗∗ 0�191∗∗ 0�137∗∗ 0�154∗∗ 0�063 −0�026
(4�84) (15�38) (13�81) (8�69) (8�19) (4�21) (2�93) (3�24) (1�31) (−0�53)

Years 1–2 0�043 0�089 0�098 0�105 0�112 0�043 0�087 0�064 0�089 0�039
(0�48) (1�79) (1�93) (1�80) (1�90) (0�70) (1�45) (1�08) (1�50) (0�68)

Years 3–4 0�016 0�116∗ 0�147∗∗ 0�214∗∗ 0�242∗∗ 0�170∗ 0�206∗ 0�162∗ 0�204∗ 0�149
(0�18) (2�15) (2�83) (3�31) (3�47) (2�21) (2�53) (1�98) (2�41) (1�61)

Years 5–6 −0�040 0�058 0�102 0�165∗ 0�183∗ 0�115 0�179 0�125 0�148 0�221∗

(−0�41) (0�82) (1�53) (2�01) (1�99) (1�19) (1�84) (1�30) (1�49) (2�00)
Years 7–8 −0�010 0�072 0�114 0�190 0�177 0�140 0�163 0�082 0�093 0�153

(−0�08) (0�80) (1�19) (1�64) (1�46) (1�16) (1�34) (0�67) (0�73) (1�15)
Years 9–10 −0�126 0�043 0�041 0�112 0�119 0�013 0�048 −0�032 0�011 0�054

(−0�84) (0�40) (0�37) (0�86) (0�87) (0�09) (0�34) (−0�23) (0�08) (0�36)
Years 11–12 −0�122 0�088 0�062 0�122 0�109 0�000 0�042 −0�018 −0�015 0�025

(−0�71) (0�70) (0�48) (0�81) (0�69) (0�00) (0�25) (−0�11) (−0�09) (0�14)
Years 12–14 −0�122 0�163 0�097 0�143 0�109 −0�029 0�017 −0�032 −0�045 −0�040

(−0�59) (1�09) (0�64) (0�83) (0�61) (−0�15) (0�08) (−0�17) (−0�24) (−0�21)
Years 15+ −0�004 0�301 0�216 0�272 0�232 0�102 0�130 0�081 0�042 0�028

(−0�02) (1�59) (1�15) (1�33) (1�09) (0�46) (0�56) (0�37) (0�19) (0�13)
aWe report bias corrected LS estimates for the regression coefficients in model (5.1). Each column corresponds to a different number of factors R ∈ {0�1� � � � �9} used in the

estimation; t-values are reported in parentheses.



PA
N

E
L

W
IT

H
U

N
K

N
O

W
N

N
U

M
B

E
R

O
F

FA
C

T
O

R
S

1565

TABLE III

SAME AS TABLE II, BUT WITHOUT INCLUDING THE LAGGED DEPENDENT VARIABLE IN THE MODEL

R= 0 R = 1 R= 2 R = 3 R = 4 R = 5 R = 6 R = 7 R = 8 R = 9

Years 1–2 0�023 0�034 0�048 0�102 0�053 0�042 0�088 0�095 0�071 0�107
(0�27) (0�54) (0�70) (1�63) (0�86) (0�66) (1�48) (1�57) (1�21) (1�70)

Years 3–4 0�049 0�146∗ 0�155∗ 0�265∗∗ 0�221∗∗ 0�186∗ 0�223∗∗ 0�251∗∗ 0�210∗ 0�228∗∗

(0�58) (2�12) (2�05) (3�51) (2�95) (2�37) (2�81) (3�09) (2�57) (2�70)
Years 5–6 −0�055 0�058 0�045 0�201∗ 0�154 0�106 0�207∗ 0�215∗ 0�175 0�204∗

(−0�51) (0�67) (0�46) (1�97) (1�59) (1�08) (2�22) (2�23) (1�84) (2�13)
Years 7–8 −0�024 0�044 −0�011 0�192 0�136 0�113 0�190 0�212 0�149 0�159

(−0�18) (0�39) (−0�09) (1�37) (1�03) (0�92) (1�59) (1�78) (1�25) (1�30)
Years 9–10 −0�148 −0�041 −0�151 0�044 −0�023 −0�050 0�070 0�093 0�018 0�056

(−0�93) (−0�31) (−0�99) (0�27) (−0�15) (−0�35) (0�49) (0�64) (0�13) (0�40)
Years 11–12 −0�195 −0�029 −0�195 −0�011 −0�079 −0�109 0�045 0�071 0�020 0�030

(−1�10) (−0�19) (−1�13) (−0�06) (−0�46) (−0�66) (0�27) (0�42) (0�12) (0�19)
Years 12–14 −0�191 0�043 −0�183 −0�043 −0�135 −0�159 0�012 0�032 −0�004 −0�001

(−0�91) (0�23) (−0�92) (−0�21) (−0�70) (−0�85) (0�06) (0�16) (−0�02) (−0�01)
Years 15+ −0�007 0�284 −0�004 0�094 −0�005 −0�019 0�125 0�152 0�112 0�065

(−0�03) (1�23) (−0�02) (0�41) (−0�02) (−0�09) (0�54) (0�65) (0�50) (0�29)
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autoregressive model. According to this interpretation, once we include more
and more factors into the model we control for more and more serial depen-
dence of the unobserved error term, thus uncovering the true insignificance of
β0 in the estimates for R≥ 8.

This empirical example shows that instead of relying on a single estimate R̂
for the number of factors and reporting the corresponding β̂R̂, it can be very
informative to calculate β̂R for multiple values of R. Whether the estimated
coefficients become stable for sufficiently large R values, as our asymptotic
theory suggests, is a useful robustness check for the model. When reporting
the final results, then, it is better, within a reasonable range, to choose an R
that is too large than one that is too small.

We also perform a Monte Carlo simulation that is tailored toward the em-
pirical application. For this, we use the static model without lagged dependent
variable. To generate Yit in equation (5.1) with β0 = 0, we use the observed
regressors Xk�it , as described above, and as true parameters, we use the β (bias
corrected), αi, γi, δi, μt , λi, and ft obtained from the estimation with R = 4
(i.e., βk as reported in the R= 4 column of Table III). We generate eit from an
MA(1) model with t(5) distributed innovations. Note that this error distribu-
tion violates Assumption LL(ii).

In this “empirical Monte Carlo,” we have N = 48, T = 33, and true number
of factors R0 = 4. We find that the bias corrected estimates for βk, k= 1� � � � �8,
are essentially unbiased when R ≥ R0 factors are used in the estimation, but
for R<R0, the coefficient estimates are often biased. For βk, k ≥ 3, there are
only small changes in the standard deviation of the estimator between R = 4
and R = 9, but for βk, k = 1�2, we observe standard deviation inflation of
up to 25% between R = 4 and R = 9. Given the relatively small sample size,
the difference between R = 9 and R0 = 4 is relatively large, and some finite
sample inefficiency is not too surprising. The detailed results are available in
the Supplemental Material.

6. MONTE CARLO SIMULATIONS

In addition to the empirical Monte Carlo discussed above, we now inves-
tigate the finite sample properties of β̂R and β̂BC

R further. In the simulations
in this section, we use a generated regressor Xit that is correlated with the
interactive fixed effects. The serial correlation of the error term eit together
with the data generating process (DGP) for Xit , λi, and ft are such that the
naive LS estimator has an asymptotic bias. This allows us to verify whether the
bias is essentially unchanged for R > R0 and whether bias correction works
well for R > R0 in finite samples. We also study various combinations of N
and T .
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The model is a static panel model with one regressor (K = 1), two factors
(R0 = 2), and the DGP

Yit = β0Xit +
2∑

r=1

λ0
irf

0
tr + eit�(6.1)

Xit = 1 + X̃it +
2∑

r=1

(
λ0
ir +χir

)(
f 0
tr + f 0

t−1�r

)
�

eit = 1√
2
(vit + vi�t−1)�

The random variables X̃it , λ0
ir , f

0
tr , χir , and vit are mutually independent, with

X̃it and f 0
tr ∼ i�i�d�N (0�1), λ0

ir and χir ∼ i�i�d�N (1�1), and vit ∼ i�i�d� t(5), that
is, vit has a Student’s t-distribution with 5 degrees of freedom.

Note that this model satisfies Assumptions SF, NC, and LL(i), but not LL(ii).
The error term eit is not distributed as i.i.d. normal. The time series of eit fol-
lows an MA(1) process with innovations distributed as t(5).

We choose β0 = 1, and use 10�000 repetitions in our simulation. The true
number of factors is chosen to be R0 = 2. For each draw of Y and X , we com-
pute the LS estimator β̂R according to equation (3.1) for different values of R,
namely R ∈ {0�1�2�3�4�5}.

Table IV reports biases and standard deviations of the estimator β̂R for dif-
ferent combinations of R, N , and T . For R<R0 = 2, the model is misspecified
and β̂R turns out to be severely biased. There is also bias in β̂R for R ≥R0, due
to time-serial correlation of eit . This bias was worked out in Bai (2009a), which
also discusses bias correction.

Table V reports various quantiles of the distribution of
√

NT(β̂R − β0) for
N = T = 100 and N = T = 300, and different values of R ≥ R0. From these
tables, we see that as N�T increases, the distribution of β̂R gets closer to that
of β̂R0 .

Table VI reports the size of a t-test with nominal size equal to 5% for R≥R0.
We use the results in Bai (2009a) to correct for the leading 1/N (not actually
present in our DGP) and 1/T (present in our DGP) biases in β̂R before calcu-
lating the t-test statistics, allowing for heteroscedasticity in both panel dimen-
sions and for time-serial correlation when estimating the bias and standard
deviation of β̂R. The finite sample size distortions are mostly due to residual
bias after bias correction, but also partly due to some finite sample downward
bias in the standard error estimates. The size distortions increase with R, but
for all values of R ≥ R0 in Table VI, the size distortions decrease rapidly as T
increases.

Monte Carlo simulation results for an AR(1) model with factors can be
found in Section S.7 of the Supplemental Material. Those additional simu-
lations show that the finite sample properties (e.g., for T = 30) of β̂R0 and β̂R,
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TABLE IV

FOR DIFFERENT COMBINATIONS OF SAMPLE SIZES N AND T , WE REPORT THE BIAS AND
STANDARD DEVIATION OF THE ESTIMATOR β̂R, FOR R = 0�1� � � � �5, BASED ON SIMULATIONS

WITH 10�000 REPETITION OF DESIGN (6.1), WHERE THE TRUE NUMBER OF FACTORS IS R0 = 2

T = 10 T = 30 T = 100 T = 300

R Bias SD Bias SD Bias SD Bias SD

N = 100
0 0�2286 0�0321 0�2301 0�0167 0�2305 0�0117 0�2305 0�0103
1 0�1061 0�0552 0�1155 0�0296 0�1191 0�0195 0�1200 0�0160
2 −0�0385 0�0342 −0�0166 0�0142 −0�0053 0�0071 −0�0019 0�0040
3 −0�0427 0�0342 −0�0170 0�0142 −0�0053 0�0072 −0�0019 0�0040
4 −0�0450 0�0356 −0�0172 0�0144 −0�0053 0�0072 −0�0019 0�0040
5 −0�0461 0�0370 −0�0175 0�0146 −0�0053 0�0073 −0�0019 0�0041

N = 300
0 0�2291 0�0298 0�2299 0�0136 0�2306 0�0082 0�2307 0�0065
1 0�1054 0�0500 0�1159 0�0263 0�1193 0�0148 0�1203 0�0105
2 −0�0408 0�0237 −0�0172 0�0085 −0�0054 0�0041 −0�0018 0�0023
3 −0�0442 0�0244 −0�0175 0�0086 −0�0054 0�0041 −0�0018 0�0023
4 −0�0462 0�0258 −0�0179 0�0087 −0�0055 0�0041 −0�0018 0�0023
5 −0�0468 0�0275 −0�0182 0�0088 −0�0055 0�0041 −0�0018 0�0023

R>R0, can be quite different, but those differences vanish as T becomes large,
as predicted by our asymptotic theory. In general, we always expect some finite
sample inefficiency from overestimating the number of factors.

TABLE V

QUANTILES OF THE DISTRIBUTION OF
√

NT(β̂R −β0)a

R 2.5% 5% 10% 25% 50% 75% 90% 95% 97.5%

N = 100, T = 100
2 −1�95 −1�70 −1�44 −1�01 −0�52 −0�05 0�36 0�61 0�86
3 −1�94 −1�73 −1�47 −1�01 −0�52 −0�05 0�38 0�64 0�87
4 −1�97 −1�73 −1�47 −1�01 −0�52 −0�04 0�39 0�64 0�85
5 −1�97 −1�74 −1�48 −1�02 −0�52 −0�04 0�39 0�64 0�88

N = 300, T = 300
2 −1�91 −1�68 −1�43 −1�00 −0�54 −0�07 0�33 0�57 0�78
3 −1�91 −1�68 −1�44 −1�00 −0�55 −0�08 0�32 0�57 0�78
4 −1�92 −1�68 −1�44 −1�00 −0�55 −0�08 0�33 0�57 0�78
5 −1�91 −1�68 −1�44 −1�00 −0�54 −0�07 0�34 0�58 0�79

aReported for N = T = 100 and N = T = 300, with R = 2�3�4�5, based on simulations with 10�000 repetitions of
design (6.1), where the true number of factors is R0 = 2.
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TABLE VI

THE EMPIRICAL SIZE OF A t-TEST WITH 5% NOMINAL SIZEa

N = 100 N = 300

R T = 10 T = 30 T = 100 T = 300 T = 10 T = 30 T = 100 T = 300

2 0�252 0�084 0�057 0�051 0�535 0�146 0�055 0�051
3 0�327 0�111 0�062 0�050 0�643 0�209 0�062 0�056
4 0�358 0�141 0�067 0�054 0�672 0�280 0�070 0�057
5 0�349 0�170 0�074 0�056 0�664 0�348 0�078 0�058

aReported for different combinations of N , T , and R, based on 10�000 repetitions of design (6.1). A bias corrected
estimator β̂BC

R is used to calculate the test statistics, and we allow for heteroscedasticity and time-serial correlation
when estimating bias and standard deviation. Results for R = 0�1 are not reported since those have size = 1 due to
misspecification.

7. CONCLUSIONS

We show that under certain assumptions, the limiting distribution of the LS
estimator of a linear panel regression with interactive fixed effects does not
change when we include redundant factors in the estimation. The implication
of this is that one can use an upper bound of the number of factors R in the
estimation without asymptotic efficiency loss. However, some finite sample ef-
ficiency loss from overestimating R is likely, so that R should not be chosen too
large in actual applications. We impose i.i.d. normality of the regression errors
to derive the asymptotic result, because we require certain results on the eigen-
values and eigenvectors of random covariance matrices that are only known in
that case. We expect that progress in the literature on large dimensional ran-
dom covariance matrices will allow verification of our high-level assumptions
under more general error distributions, and our Monte Carlo simulations sug-
gest that the result also holds for nonnormal and correlated errors. We also
provide multiple intermediate asymptotic results under more general condi-
tions.

APPENDIX

A.1. Spectral Norm of Random Matrices

Consider an N × T matrix u whose entries uit have uniformly bounded sec-
ond moments. Then we have ‖u‖ ≤ ‖u‖HS =

√∑
i�t u

2
it = OP(

√
NT). However,

in Assumptions LL(i)(b), DX-1(i), and DX-2(i), we impose ‖X̃str
k ‖ =OP(N

3/4)

and ‖X̃k‖ = OP(N
3/4), respectively, as N and T grow at the same rate, and

in Assumption SN(ii), we impose ‖e‖ = OP(
√

max(N�T)) under an arbitrary
asymptotic N�T → ∞. Those smaller asymptotic rates for the spectral norms
of X̃str

k , X̃k, and e can be justified by first assuming that the entries of these
matrices are mean zero and have certain bounded moments, and, second, im-
posing weak cross-sectional and time-serial correlation. The purpose of this
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appendix section is to provide some examples of matrix distributions that make
the last statement more precise. We consider the N × T matrix u, which can
represent either e, X̃str

k , or X̃k.

EXAMPLE 1: If we assume that Euit = 0, that Eu4
it is uniformly bounded, and

that the uit are independently distributed across i and over t, then the results
in Latala (2005) show that ‖u‖ =OP(

√
max(N�T)).

EXAMPLE 2: Onatski (2013) provides the following example, which allows
for both cross-sectional and time-serial dependence: Let ε be an N × T ma-
trix with mean zero, independent entries that have uniformly bounded fourth
moment, let εt denote the columns of ε, and also define past εt , t ≤ 0, sat-
isfying the same distributional assumptions. Let ut = ∑m

j=0 ΨN�jεt−j , where m
is a fixed integer, and ΨN�j are N × N matrices such that maxj ‖ΨN�j‖ is uni-
formly bounded. Then the N × T matrix u with columns ut satisfies ‖u‖ =
OP(

√
max(N�T)).

More examples of matrix distributions that satisfy ‖u‖ = OP(
√

max(N�T))
are discussed in Onatski (2013) and Moon and Weidner (2014). Theorem 5.48
and Remark 5.49 in Vershynin (2012) can also be used to obtain a slightly
weaker bound on ‖u‖ under very general correlation of u in one of its dimen-
sions.

Note that the random matrix theory literature often only discusses limits
where N and T grow at the same rate and shows ‖u‖ = OP(

√
N) under that

asymptotic. Those results can easily be extended to more general asymptotics
with N�T → ∞ by considering u as a submatrix of a max(N�T)× max(N�T)
matrix ubig and using that ‖u‖ ≤ ‖ubig‖.

EXAMPLE 3: The following lemma provides a justification for the bounds on
‖X̃ str

k ‖ and ‖X̃k‖, allowing for a quite general type of correlation in both panel
dimensions.

LEMMA A.1: Let u be an N × T matrix with entries uit . Let Σij =
1
T

∑T

t=1 E(uitujt) and let Σ be the N × N matrix with entries Σij . Let ηij =
1√
T

∑T

t=1[uitujt − E(uitujt)], Ψij = 1
N

∑N

k=1 E(ηikηjk), and χij = 1√
N

×∑N

k=1[ηikηjk − E(ηikηjk)]. Consider N�T → ∞ such that N/T converges to
a finite positive constant, and assume that

(i) ‖Σ‖ =O(1),
(ii) 1

N2

∑N

i�j=1 E(η
2
ij)=O(1),

(iii) 1
N

∑N

i�j=1 Ψ
2
ij =O(1),

(iv) 1
N2

∑N

i�j=1 E(χ
2
ij)=O(1).

Then we have ‖u‖ =OP(N
5/8).
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The lemma does not impose Euit = 0 explicitly, but justification of assump-
tion (i) in the lemma usually requires Euit = 0. The assumptions (ii), (iii), and
(iv) in the lemma can, for example, be justified by assuming appropriate mixing
conditions in both panel dimensions; see, for example, Cox and Kim (1995) for
the time-series case.

As pointed out above, our results in Section 4.2 can be obtained under the
weaker condition ‖e‖ = oP(N

2/3), and then Lemma A.1 can also be applied
with u = e. In that case, the assumptions in Lemma A.1 are not the same, but
are similar to those imposed in Bai (2009a).

A.2. Expansion of the Objective Function When R =R0

Here we provide a heuristic derivation of the expansion of L0
NT(β) in Theo-

rem 4.2. We expand the profile objective function L0
NT(β) simultaneously in β

and in the spectral norm of e. Let the K + 1 expansion parameters be defined
by ε0 = ‖e‖/√NT and εk = β0

k −βk, k = 1� � � � �K, and define the N×T matrix
X0 = (

√
NT/‖e‖)e. With these definitions, we obtain

1√
NT

(Y −β ·X) = 1√
NT

[
λ0f 0′ + (

β0 −β
) ·X + e

]
(A.1)

= λ0f 0′
√

NT
+

K∑
k=0

εk
Xk√
NT

�

According to equation (3.3) the profile objective function L0
NT(β) can be writ-

ten as the sum over the T − R0 smallest eigenvalues of the matrix in (A.1)
multiplied by its transposed. We consider

∑K

k=0 εkXk/
√

NT as a small pertur-
bation of the unperturbed matrix λ0f 0′/

√
NT, and thus expand L0

NT(β) in the
perturbation parameters ε= (ε0� � � � � εK) around ε = 0, namely

L0
NT(β)(A.2)

= 1
NT

∞∑
g=0

K∑
k1�����kg=0

εk1εk2 · · ·εkgL(g)
(
λ0� f 0�Xk1�Xk2� � � � �Xkg

)
�

where L(g) =L(g)(λ0� f 0�Xk1�Xk2� � � � �Xkg) are the expansion coefficients.
The unperturbed matrix λ0f 0′/

√
NT has rank R0, so that the T − R0 small-

est eigenvalues of the unperturbed T × T matrix f 0λ0′λ0f 0′/(NT) are all zero,
that is, L0

NT(β) = 0 for ε= 0 and thus L(0)(λ0� f 0)= 0. Due to Assumption SF,
the R0 nonzero eigenvalues of the unperturbed T × T matrix f 0λ0′λ0f 0′/(NT)
converge to positive constants as N�T → ∞. This means that the “separat-
ing distance” of the T − R0 zero eigenvalues of the unperturbed T × T ma-
trix f 0λ0′λ0f 0′/(NT) converges to a positive constant, that is, the next largest
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eigenvalue is well separated. This is exactly the technical condition under which
the perturbation theory of linear operators guarantees that the above expan-
sion of L0

NT in ε exists and is convergent as long as the spectral norm of the
perturbation

∑K

k=0 εkXk/
√

NT is smaller than a particular convergence radius
r0(λ

0� f 0), which is closely related to the separating distance of the zero eigen-
values. For details on that, see Kato (1980) and Section S.2 of the Supplemen-
tal Material, where we define r0(λ

0� f 0) and show that it converges to a posi-
tive constant as N�T → ∞. Note that for the expansion (A.2), it is crucial that
we have R = R0, since the perturbation theory of linear operators describes
the perturbation of the sum of all zero eigenvalues of the unperturbed matrix
f 0λ0′λ0f 0′/(NT). For R>R0, the sum in LR

NT(β) leaves out the R−R0 largest
of these perturbed zero eigenvalues, which results in a much more complicated
mathematical problem, since the structure and ranking among these perturbed
zero eigenvalues need to be discussed.

The above expansion of L0
NT(β) is applicable whenever the operator norm of

the perturbation matrix
∑K

k=0 εkXk/
√

NT is smaller than r0(λ
0� f 0). Since our

assumptions guarantee that ‖Xk/
√

NT‖ = OP(1) for k = 0� � � � �K and ε0 =
OP(min(N�T)−1/2) = oP(1), we have ‖∑K

k=0 εkXk/
√

NT‖ = OP(‖β − β0‖) +
oP(1), that is, the above expansion is always applicable asymptotically within a
shrinking neighborhood of β0, which is sufficient since we already know that
β̂R is consistent for R ≥R0.

In addition, to guarantee convergence of the series expansion, the pertur-
bation theory of linear operators also provides explicit formulas for the ex-
pansion coefficients L(g), namely for g = 1�2�3, we have L(1)(λ0� f 0�Xk) = 0,
L(2)(λ0� f 0�Xk1�Xk2) = Tr(Mλ0Xk1Mf 0X ′

k2
), and L(3)(λ0� f 0�Xk1�Xk2�Xk3) =

− 1
3 [Tr(Mλ0Xk1MfX

′
k2
λ0(λ0′λ0)−1(f 0′f 0)−1f 0′X ′

k3
)+· · ·], where the dots refer to

five additional terms obtained from the first one term by permutation of k1,
k2, and k3, so that the expression becomes totally symmetric in these in-
dices. A general expression for the coefficients for all orders in g is given in
Lemma S.1 in the Supplemental Material. One can show that for g ≥ 3, the
coefficients L(g) are bounded as

1
NT

∣∣L(g)
(
λ0� f 0�Xk1�Xk2� � � � �Xkg

)∣∣(A.3)

≤ aNT(bNT)
g ‖Xk1‖√

NT

‖Xk2‖√
NT

· · · ‖Xkg‖√
NT

�

where aNT and bNT are functions of λ0 and f 0 that converge to finite pos-
itive constants in probability. This bound on the coefficients L(g) allows us
to derive a bound on the remainder term when the profile objective expan-
sion is truncated at a particular order. The expansion can be applied under
more general asymptotics, but here we only consider the limit N�T → ∞
with N/T → κ2, 0 < κ < ∞, that is, N and T grow at the same rate. Then,
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apart from the constant L0
NT(β

0), the relevant coefficients of the expansion,
which are not treated as part of the remainder term, turn out to be Wk1k2 =

1
NTL

(2)(λ0� f 0�Xk1�Xk2), C
(1)
k = 1√

NT
L(2)(λ0� f 0�Xk� e) = 1√

NT
Tr(Mλ0XkMf 0e′),

and C(2)
k = 3

2
√

NT
L(3)(λ0� f 0�Xk� e� e), which corresponds exactly to the defini-

tions in the main text. From the expansion (A.2) and the bound (A.3), we ob-
tain Theorem 4.2. For a more rigorous derivation, we refer to Section S.2 in
the Supplemental Material.

A.3. N3/4 Convergence Rate of β̂R for R>R0

The discussion at the end of Section 3 reveals that showing faster than
√
N

convergence of β̂R is a very important step on the way to the main result. For
purely technical reasons, we show N3/4 convergence first, but it will often be
the case that if β̂R is N3/4 consistent, then it is also

√
NT consistent, as N

and T grow at the same rate. We require one of the following two alternative
assumptions.

ASSUMPTION DX-1—Decomposition of Xk and Distribution of e, Version 1:
(i) For k = 1� � � � �K, we have Xk = Xk + X̃k, where rank(Xk) is bounded as

N�T → ∞, and ‖Xk‖ =OP(
√

NT) and ‖X̃k‖ =OP(N
3/4).

(ii) Let u be an N × T matrix whose elements are distributed as i�i�d�N (0�1),
independent of λ0, f 0, and Xk, k= 1� � � � �K, and let one of the following alterna-
tives hold:

(a) We have e = Σ1/2u, where Σ is an N × N covariance matrix, independent
of u, that satisfies ‖Σ‖ = OP(1). In that case, define g to be an N × Q ma-
trix, independent of u, for some Q ≤ ∑K

k=1 rank(Xk), such that g′g = 1Q and
span(Mλ0Xk)⊂ span(g) for all k= 1� � � � �K.41

(b) We have e = uΣ1/2, where Σ is a T × T covariance matrix, independent
of u, that satisfies ‖Σ‖ = OP(1). In that case, define g to be a T × Q ma-
trix, independent of u, for some Q ≤ ∑K

k=1 rank(Xk), such that g′g = 1Q and
span(Mf 0X

′
k)⊂ span(g) for all k= 1� � � � �K.

In addition, we assume that there exists a (potentially random) integer sequence
n = nNT > 0 with 1/n = OP(1/N) such that μn(Σ) ≥ ‖g′Σg‖. Finally, assume
that either R ≥Q or g′Σg = ‖g′Σg‖1Q +OP(N

−1/2).

ASSUMPTION DX-2—Decomposition of Xk and Distribution of e, Version 2:
(i) For k = 1� � � � �K, we have Xk = Xk + X̃k, such that Mλ0XkMf 0 = 0, and

‖Xk‖ =OP(
√

NT) and ‖X̃k‖ =OP(N
3/4).

(ii) We have ‖e‖ =OP(
√

max(N�T)) (same as Assumption SN(ii)).

41The column space of g thus contains the column space of all Mλ0Xk. The equality g′g = 1Q

is just a normalization.
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THEOREM A.2: Let R > R0. Let Assumptions SF, NC, and EX hold, and let
either Assumption DX-1 or Assumption DX-2 be satisfied. Consider N�T → ∞
with N/T → κ2, 0 < κ< ∞. Then we have N3/4(β̂R −β0)=OP(1).

REMARKS: (i) Assumption SN is not explicitly imposed in Theorem A.2,
because it is already implied by both Assumption DX-1 and Assumption DX-2;
see also Lemma A.4 below.

(ii) The restrictions that Assumption DX-1 imposes on Xk are weaker than
those imposed in Assumption LL above. The regressors are decomposed into
a low-rank strictly exogenous part Xk and a term X̃k, which can be both strictly
or weakly exogenous. The spectral norm bound ‖X̃k‖ = OP(N

3/4) is satisfied
as long as X̃k�it is mean zero and weakly correlated across i and over t; see Ap-
pendix A.1. We can always write Xk = �h′ for some appropriate � ∈ RN×rank(Xk)

and h ∈ RT×rank(Xk). Thus, the decomposition Xk = Xk + X̃k = �h′ + X̃k es-
sentially imposes an approximate factor structure on Xk, with factor part Xk

and idiosyncratic part X̃k. In addition to those conditions, we need sufficient
variation in Xk, as formalized by the noncollinarity Assumption NC.

(iii) The restrictions that Assumption DX-1 imposes on e are also weaker
than those imposed in Assumption LL above. Normality is imposed, but either
cross-sectional correlation and heteroscedasticity (case (a)) or time-serial cor-
relation and heteroscedasticity (case (b)), described by Σ, are still allowed. The
condition ‖Σ‖ =OP(1) requires the correlation of eit to be weak.42

(iv) The additional restrictions on Σ in Assumption DX-1 rule out the type
of correlation of the low-rank regressor part Xk with the second moment struc-
ture of eit that was the key feature of the counterexample in Section 4.3.43 First,
the condition μn(Σ) ≥ ‖g′Σg‖ guarantees that the eigenvectors corresponding
to the largest few eigenvectors of Σ (the eigenvectors νr of Σ when normal-
ized satisfy μr(Σ) = ν′

rΣνr) are not strongly correlated with g (and thus with
Xk). Second, the condition g′Σg = ‖g′Σg‖1Q + OP(N

−1/2) guarantees that Σ
behaves almost as an identity matrix when projected with g, thus not possess-
ing special structure in the “direction of Xk.” Both of these assumption are
obviously satisfied when Σ is proportional to the identity matrix.

(v) Instead of Assumption DX-1, we can also impose Assumption DX-2
to obtain N3/4 consistency in Theorem A.2. The assumption on e imposed in
Assumption DX-2 is the same as in Assumption SN and, as already discussed
above, this assumption is quite weak (see also Appendix A.1). However, As-
sumption DX-2 imposes a much stronger assumption on the regressors by re-
quiring that Mλ0XkMf 0 = 0. This condition implies that Xk = λ0h′ + �f 0′ for

42A sufficient condition for ‖Σ‖ = OP(1) is, for example, maxi
∑

j |Σij| = OP(1), formulated
here for case (a). Note that Σ is symmetric.

43However, in the example in Section 4.3, we have both time-serial and cross-sectional corre-
lation in eit , one of which is already ruled out by Assumption DX-1.
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some � ∈ RN×R0 and h ∈ RT×R0 , that is, the factor structure of the regressors
is severely restricted. The AR(1) model discussed in Remark (v) in Section 3
does satisfy Mλ0Xk = 0, and the same is true for a stationary AR(p) model
without additional regressors, that is, for such AR(p) models with factors, we
obtain N3/4 consistency of β̂R without imposing strong assumptions (like nor-
mality) of eit . Assumption DX-2(i) is furthermore satisfied if Xk = 0, that is, if
the regressors Xk = X̃k satisfy ‖Xk‖ = OP(N

3/4), which is true for zero mean
weakly correlated processes (see Appendix A.1).

(vi) Theorem S.5 in the Supplemental Material provides an alternative N3/4

consistency result, in which Assumptions DX-1 and DX-2 are replaced by a
high-level condition, which is more general, but not easy to verify in terms of
low-level assumptions.

A.4. Asymptotic Equivalence of β̂R0 and β̂R for R>R0

Here, we provide high-level conditions on the singular values and singular
vectors of the error matrix (or, equivalently, on the eigenvalues and eigenvec-
tors of the corresponding random covariance matrix). Under those assump-
tions, we then establish the main result of the paper that β̂R0 and β̂R with
R>R0 are asymptotically equivalent, that is,

√
NT(β̂R − β̂R0)= oP(1).

ASSUMPTION EV—Eigenvalues and Eigenvectors of a Random Cov Ma-
trix: Let the singular value decomposition of Mλ0eMf 0 be given by Mλ0eMf 0 =∑Q

r=1
√
ρrvrw

′
r , where Q = min(N�T) − R0,

√
ρr are the singular values, and

vr and wr are normalized N- and T -vectors, respectively.44 Let ρ1 ≥ ρ2 ≥ · · · ≥
ρQ ≥ 0. We assume that there exists a constant c > 0 and a series of integers
qNT >R−R0 with qNT = o(N1/4) such that as N�T → ∞, we have

(i)
ρ
R−R0

N
> c w.p.a.1,

(ii) 1
qNT

∑Q

r=qNT
(ρR−R0 − ρr)

−1 =OP(1),
(iii)

max
r

∥∥v′
rePf 0

∥∥ = oP

(
N1/4q−1

NT

)
� max

r

∥∥w′
re

′Pλ0

∥∥ = oP

(
N1/4q−1

NT

)
�

max
r

∥∥v′
rXkPf 0

∥∥ = oP

(
Nq−1

NT

)
� max

r

∥∥w′
rX

′
kPλ0

∥∥ = oP

(
Nq−1

NT

)
�

max
r�s�k

∣∣v′
rXkws

∣∣ = oP

(
N1/4q−1

NT

)
�

where r� s = 1� � � � �Q, and k= 1� � � � �K.

44Thus, wr is the normalized eigenvector corresponding to the eigenvalue ρr of Mf 0e′Mλ0eMf 0 ,
while vr is the normalized eigenvector corresponding to the eigenvalue ρr of Mλ0eMf 0e′Mλ0 . We
use a convention where eigenvalues with nontrivial multiplicity appear multiple times in the list
of eigenvalues ρr , but under standard distributional assumptions on e all eigenvalues are simple
with probability 1 anyway.
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THEOREM A.3: Let R > R0. Let Assumptions SF, NC, EX, and EV hold,
let either Assumption DX-1 or Assumption DX-2 hold, and assume that C(1) =
OP(1). In the limit N�T → ∞ with N/T → κ2, 0 < κ< ∞, we then have

√
NT

(
β̂R −β0

) = √
NT

(
β̂R0 −β0

) + oP(1)=OP(1)�

REMARKS: (i) Theorem A.3 also holds if we replace Assumptions EX,
DX-1, and DX-2 by any other condition that guarantees that Assumption SN
holds and that N3/4(β̂R −β0)=OP(1).

(ii) Consider Assumption EV(iii). Since vr and wr are the normalized
singular vectors of Mλ0eMf 0 , we expect them to be essentially uncorrelated
with Xk and ePf 0 , and, therefore, we expect v′

rXkws = OP(1), ‖v′
rePf 0‖ =

OP(1), and ‖w′
re

′Pλ0‖ = OP(1). We also expect ‖v′
rXkPf 0‖ = OP(

√
T) and

‖w′
rX

′
kPλ0‖ = OP(

√
N), which is different from the analogous expressions

with e, since Xk may be strongly correlated with f 0 and λ0. The key to making
this discussion rigorous is a good knowledge of the properties of the eigenvec-
tors vr and wr . If the entries eit are i.i.d. normal, then the distribution of vr and
wr can be characterized as follows: Let ṽ be an N-vector with i�i�d�N (0�1)
entries and let w̃ be an T -vector with i�i�d�N (0�1) entries. Then we have
vr =d ‖Mλ0 ṽ‖−1Mλ0 ṽ and wr =d ‖Mf 0w̃‖−1Mf 0w̃; see also Lemma S.13 in the
Supplemental Material. Here =d refers to “equal in distribution.” Thus, if
R0 = 0, then vr and wr are distributed as i�i�d�N (0�1) vectors, normalized
to satisfy ‖vr‖ = ‖wr‖ = 1. This follows from the rotational invariance of the
distribution of e when eit is i.i.d. normally distributed. Using this characteriza-
tion of vr and wr , one can formally show that Assumption EV(iii) holds; see
Lemma A.4 below. The conjecture in the random matrix theory literature is
that the limiting distribution of the eigenvectors of a random covariance ma-
trix is “distribution-free,” that is, is independent of the particular distribution
of eit (see, e.g., Silverstein (1990), Bai (1999)). However, we are not aware of
a formulation and corresponding proof of this conjecture that is sufficient for
our purposes, which is one reason why we have to impose i.i.d. normality of eit .

(iii) Assumption EV(ii) imposes a condition on the eigenvalues ρr of the
random covariance matrix Mf 0e′Mλ0eMf 0 . Eigenvalues are studied more in-
tensely than eigenvectors in the random matrix theory literature, and it is well
known that the properly normalized empirical distribution of the eigenvalues
(the so-called empirical spectral distribution) of an i.i.d. sample covariance
matrix converges to the Marčenko–Pastur law (Marčenko and Pastur (1967))
for asymptotics, where N and T grow at the same rate. This means that the
sum over the function of the eigenvalues ρs in Assumption EV(ii) can be ap-
proximated by an integral over the Marčenko–Pastur limiting spectral distri-
bution. To bound the asymptotic error of this approximation, one needs to
know the convergence rate of the empirical spectral distribution to its limit law,
which is an ongoing research subject in the literature, for example, Bai (1993),
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Bai, Miao, and Yao (2003), and Götze and Tikhomirov (2010). This literature
usually considers either i.i.d. or i.i.d. normal distributions of eit .

(iv) For random covariance matrices from i.i.d. normal errors, it is known
from Johnstone (2001) and Soshnikov (2002) that the properly normalized few
largest eigenvalues converge to the Tracy–Widom law.45 This result can be used
to verify Assumption EV(i) in the case of i.i.d. normal eit .

(v) Details on how to derive Theorem A.3 are given in Section S.4 of the
Supplemental Material.

The following lemma provides the connection between Theorem A.3 and
our main result, Theorem 3.1. The proof is given in the Supplemental Material.

LEMMA A.4: Let Assumption LL hold, let R0 = rank(λ0) = rank(f 0), and
consider a limit N�T → ∞ with N/T → κ2, 0 < κ< ∞. Then Assumptions SN,
EX, DX-1, and EV are satisfied, and we have C(1) =OP(1).
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