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Abstract  

Extreme reduction refers to the phenomenon where intervocalic consonants are so 

severely reduced that two or more adjacent syllables appear to be merged into one. 

Such severe reduction is often considered a characteristic of natural speech and to 

be closely related to factors including lexical frequency, information load, social 

context and speaking style. This thesis takes a novel approach to investigating this 

phenomenon by testing the time pressure account of phonetic reduction, 

according to which time pressure is the direct cause of extreme reduction. The 

investigation was done with data from Taiwan Mandarin, a language where 

extreme reduction (referred to as contraction) has been reported to frequently 

occur.  

 

Three studies were conducted to test the main hypothesis. In Study 1, native 

Taiwan Mandarin speakers produced sentences containing nonsense disyllabic 

words with varying phonetic structures at differing speech rates. Spectral analysis 

showed that extreme reduction occurred frequently in nonsense words produced 

under high time pressure. In Study 2a, further examination of formant peak 

velocity as a function of formant movement amplitude in experimental data 

suggested that articulatory effort was not decreased during reduction, but in fact 

likely to be increased. Study 2b examined high frequency words from three 

spontaneous speech corpora for reduction variations. Results demonstrate that 

patterns of reduction in high frequency words in spontaneous speech (Study 2b) 

were similar to those in nonsense words spoken under experimental conditions 

(Study 2a). 

 

Study 3 investigated tonal reduction with varying tonal contexts and found that 

tonal reduction can also be explained in terms of time pressure. Analysis of F0 

trajectories demonstrates that speakers attempt to reach the original underlying 

tonal targets even in the case of extreme reduction and that there was no 

weakening of articulatory effort despite the severe reduction. To further test the 

main hypothesis, two computational modelling experiments were conducted. The 

first applied the quantitative Target Approximation model (qTA) for tone and 

intonation and the second applied the Functional Linear Model (FLM). Results 

showed that severely reduced F0 trajectories in tone dyads can be regenerated to a 

high accuracy by qTA using generalized canonical tonal targets with only the 

syllable duration modified. Additionally, it was shown that using FLM and 

adjusting duration alone can give a fairly good representation of contracted F0 

trajectory shapes. 

 

In summary, results suggest that target undershoot under time pressure is likely to 

be the direct mechanism of extreme reduction, and factors that have been 

commonly associated with reduction in previous research very likely have an 

impact on duration, which in turn determines the degree of target attainment 

through the time pressure mechanism. 
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Chapter 1 

 

Introduction 

 
The variability of speech is one of the most challenging aspects of speech science 

(Keating, 1997; Perkell and Klatt, 1986) and a common form in which this 

variability manifests itself is phonetic reduction (Engstrand and Krull, 2001; 

Johnson, 2004; Kohler, 1990 and 1998). Various accounts have been proposed to 

explain the discrepancy between canonical and reduced forms. Early accounts 

regarding the sources of phonetic reduction can be dated back to Karlgren (1962) 

who proposed, based on Information Theory (Shannon, 1948), that reduction 

should be understood in terms of the transmission rate of content underlying the 

phonemic message: “…there is an equilibrium between information value on one 

hand, and duration along with similar qualities of the realization on the other” 

(Karlgren, 1962, p. 676). Karlgren did not explain what he meant by other 

“similar qualities of the realization”, but focused mainly on duration and 
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postulated that reduction associated with more rapid speech is a measure of 

coding efficiency. Based on auditory transcriptions and a visual inspection of 

acoustic signals in six languages, Barry and Andreeva (2001) argued that variation 

in the time and effort invested in any given part of an utterance serves as a means 

to support the relative weight of elements within the information structure. They 

suggest that items containing a greater information load carry more weight and are 

therefore assigned greater effort and a longer duration in order to achieve better 

target attainment. Conversely, items with weak information loads are assigned a 

comparatively measly duration and effort, resulting in significant undershoot of 

these items. 

 

Also focusing on temporal change and phonetic realisation, Lindblom (1963) 

observed the interplay between duration and formant realisation in a CVC 

structure and proposed a duration-dependent undershoot model: When speech 

rate is increased and vowel duration shortened, the extent of movement towards 

the vowel target is reduced. Lindblom attributed such reduction to articulatory 

constraints on the limit of the maximum speed of articulatory movement. In this 

model, Lindblom introduced the notion of an acoustic target being approached 

asymptotically and proposed that the determinants of undershoot are duration and 

locus-target distance (i.e. the displacement required to achieve a desired target). 

Lindblom’s model was, however, questioned in subsequent studies (Engstrand, 

1988; Fourakis, 1991; Gay, 1978; van Son and Pols, 1990 and 1992) which failed 

to find significant duration-dependent formant displacement effects. As a response 

to the criticisms, Moon and Lindblom (1994) showed that in an English /w _ l/ 

frame, where the locus-target distance is large, duration dependency could clearly 
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be observed. On the other hand, they also observed that the duration-dependency 

of formant shift was more limited in clear speech. Based on this observation, they 

suggested that articulatory effort could reduce duration-dependency. In their 

revision of Lindblom’s (1963) original model, formant undershoot becomes a 

function of vowel duration, locus-target distance and rate of formant frequency 

change (which is used as an indicator of ‘articulatory effort’). Lindblom (1990) 

further hypothesized that speakers can adapt to different speaking situations and 

choose appropriate production strategies (i.e., by changing kinematic parameters) 

to avoid or to allow reduction. This is known as the Hyper- and Hypo-articulation 

(H&H) theory, which characterizes the trade-offs between articulatory economy 

and perceptual comprehension. Importantly, H&H theory hypothesizes that the 

mechanics of speech production are similar to those of non-speech motor 

behaviours, which are constrained by the principle of economy of effort (Nelson, 

1983).  

 

H&H theory has influenced a number of recent studies regarding speech 

communication and is among the most dominant theories of phonetic reduction. 

As an example, studies of reduction based on consistent communicative contexts, 

such as lexical frequency effect, usually show both temporal and spectral 

reduction in high-frequency items (Aylett and Turk, 2006; Fosler-Lussier and 

Morgan, 1999; Myers and Li, 2009). It has been suggested that information 

regarding language redundancy, either because of context or word frequency, can 

influence the amount of effort exerted in articulation (Pluymakers et al., 2005).  
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This interpretation would lead to the prediction that, if a low probability word 

(supposedly initially allocated a comparably high amount of effort and thus a clear 

pronunciation) were to be pronounced at a fast rate (owing to a certain 

communicative function) speakers could offset this high time pressure (and 

potential undershoot) with an increased articulatory effort. Indeed van Son 

(1993:13-14) has suggested that unfamiliar or unknown lexical items such as 

nonsense words may lead to a speaking style that is clearer than normal. If this is 

the case then nonsense words, which by definition have the lowest possible 

frequency of occurrence, should be influenced the least by this frequency effect.  

 

However, several perceptual studies have produced results that do not confirm the 

prediction that a very clear speech style (thus conceptually with more articulatory 

effort) can compensate for high time pressure. For example, Krause and Braida 

(2002) investigated alternative forms of clear speech by training professional 

speakers to produce clear and conversational speech at slow, normal and fast rates. 

The intelligibility advantage of clear speech was found at slow and normal rates. 

In particular, a form of clear speech was obtained at slow (approximately 0.5 

second per syllable) and normal (approximately 0.25 second per syllable). 

However, the intelligibility advantage of clear speech was lost at the fast speech 

rate, that is, clear speech does not maintain an intelligibility advantage above a 

certain ‘cut-off’ speaking rate. A possible reason for this cut-off threshold is that 

there is a physical limit on how fast articulatory movements can be made, as 

assumed by Lindblom (1963). Adank and Janse (2009) compared the perceptual 

word processing speed of Dutch sentences that had been accelerated in two ways: 

(1) by asking the speakers to speak faster, and (2) by linearly time-compressing 
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sentences originally produced at a normal rate. Intelligibility of natural-fast 

speech turned out to be far worse than that of the time-compressed speech in 

terms of listener recognition accuracy. It seems that the human perceptual system 

can handle the more rapid acoustic changes in the synthetically accelerated speech, 

but naturally produced fast speech may already contain too much undershoot 

owing to various speed limits of articulation being reached, therefore making it 

difficult for listeners to decode information.  

 

Support for the speed limit account can be found in studies of maximum speech 

rate. Sigurd (1973) examined the relationship between syllabic duration, syllabic 

structure and maximum speaking rate, and his data suggested that fast (or short) 

syllables are preferential in running text. That is, natural speech production tends 

to reorganize syllables with complex structures into simpler and thus articulatory 

faster ones. Further, Tiffany (1980) reported that for equivalent syllables, normal 

speech is no slower than the maximum rate of syllable articulation – both are 

approximately 13.5 phones per second. Tiffany’s results indicate that, in terms of 

articulatory rate, there appears to be some form of highly rigid ‘barrier’, beyond 

which fully formed articulations cannot be achieved. This barrier concept is 

consistent with the notion of minimum duration of segments, which, according to 

Klatt (1976, p. 1215), is “an absolute minimum duration Dmin that is required to 

execute a satisfactory articulatory gesture”. 
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1.1 Extreme phonetic reduction 

One way to examine if a ‘speed barrier’ is indeed a relevant mechanism in 

phonetic reduction is to look into cases where the barrier is most likely to be 

encountered. One such case is extreme phonetic reduction where an entire syllable 

is lost or merged into another syllable. An early observation of this phenomenon 

is seen in Stampe’s discussion (1973) regarding variants of divinity fudge being 

shortened from their canonical forms [dəv  nəti f   ] to severely reduced forms 

[dəv       f   ] (quoted by Johnson, 2004). Similar examples of a sequence of two or 

more syllables being reduced into one are common in many other languages and 

are not exclusive to the segmental level. For instance, in Taiwan Mandarin
1
, wo 

zhi dao [wo tʂɨ tau], ‘I know’ can be reduced into wo zhao [wo tʂau]. Figure 

1.1 illustrates the process, where the vowel /ɨ/ and the intervocalic consonant /t/ 

are omitted. The canonical tone shapes of H (55) in the syllable tʂɨ] and F 

(51) in the syllable [tau] are also realised as a slightly sloping contour. In more 

extreme cases, trisyllables can also be reduced to monosyllabic units, such as wo 

                                                 
1
 Taiwan Mandarin here refers to the standard Mandarin natively spoken by 

people in Taiwan. It has four lexical tones: High (55, ), Rising (35, ), Low (21 

or 214 if it occurs pre-pausally, ) and Falling (51, ). The digits in parenthesis 

are the conventional numeric notions for tonemes proposed by Chao (1930). Digit 

5 indicates the highest pitch value and 1 the lowest within a speaker’s normal 

pitch range. Owing to the constant influence of Southern Min, Taiwan Mandarin 

has developed its own stable linguistic system, which is distinct from the 

Mandarin spoken in Beijing. 
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Reduction 

0                                                0.4 (s)              0                            0.25 (s) 

bu zhi dao [wo pu tʂɨ tau], ‘I don’t know’ becoming wo bao [wo pwau The 

present thesis is an investigation of extreme reduction in Taiwan Mandarin with 

the goal to identify some of the basic mechanisms of phonetic reduction in general. 

 

       

          

Figure 1.1: Spectrographic representation of [tʂɨtau] (on the left), ‘(I) know’ 

being reduced to [tʂau] (on the right). Shorter duration and a reduced tonal range 

are also seen in the reduced token. Pitch values are shown as dots overlaid on the 

spectrograms.  

 

Several terms have been used to refer to this severe form of phonetic reduction, 

including ‘massive reduction’ (Johnson, 2004), ‘syllable fusion’ (Wong, 2004 and 

2006), ‘syllable merger’ (Duanmu, 2000) and ‘syllable contraction’
2

 or 

‘contraction’ for short (Cheng, 2004; Chung, 2006; Hsiao, C. 1986; Hsiao, Y. C. 

2002; Hsu, 2003; Kuo, 2010; Tseng, 2005a, b). Throughout this thesis, the term 

‘contraction’ will be used to refer to such reductions on the grounds that it has 

                                                 
2
 The term ‘syllable contraction’, however, has been used to refer to two different 

phenomena. One is the extreme phonetic reduction (Tseng, 2008) that this 

research is concerned with. The other is the morphophonological process 

involving combinatory phonetic modifications of adjacent morphemes, e.g. 

English contracted forms I’m or don’t, which might be arguably fossilized cases 

of phonetic reduction (Vance, 2008, p. 48; Suihkonen, 2005). 
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generally been used in research concerning severe forms of phonetic reduction in 

the Sinitic languages. More specifically, for the purpose of this study we define a 

‘contracted syllable’ as a unit merged from its two source syllables in which the 

original intervocalic element cannot be easily detected. A more technical 

definition will be given in Chapters 2 and 3.  

  

1.2 Main hypothesis and derived predictions  

Studies regarding maximum speaking rate and the notion of minimum duration 

would suggest that the assumed additional effort in clear speech styles may not 

guarantee a full pronunciation, especially when duration is extremely short (e.g. at 

fast speech rate). In view of this, the following hypothesis is proposed.  

 

Hypothesis: 

 Time pressure is the direct cause of extreme reduction such as 

contraction.  

 

Here, ‘direct cause’ implies two things. First, from a biomechanical perspective, 

(compared to an articulatory effort perspective) duration is more directly related to 

the occurrence and severity of extreme reduction. That is, if the duration is too 

short there is simply no way for speakers to realise a target fully despite the extra 

effort that might have been applied. Secondly, the commonly recognized factors 

associated with phonetic reduction such as lexical frequency, information load, 

social context and speaking style, are very likely to impact directly on duration, 
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which in turn determines the degree of target attainment through time pressure. 

Two predictions can be derived from this hypothesis, which will be tested in this 

thesis.  

 

Prediction 1: 

 Extreme reduction such as contraction can occur in nonsense words if 

time pressure is sufficiently high. 

 

As noted previously, nonsense words have the lowest possible lexical frequency 

and could therefore lead to a clearer speech style than real words due to a likely 

allocation of greater articulatory effort. If, however, time pressure is the direct 

cause of extreme reduction, extreme reduction would occur in nonsense words if 

speakers say them at a sufficiently high speed rate.  

 

Prediction 2: 

 When contraction occurs, articulatory effort is not decreased. 

 

Consistent with Prediction 1, high articulatory effort is assumed to be exerted 

when producing nonsense words. This would mean that, if phonetic reduction did 

occur in nonsense words under high time pressure, it could not have been due to 

reduced articulatory effort.  

 

Nevertheless, it is still possible that, due to some unknown mechanism, 

articulatory effort is indeed lowered under high time pressure as the reduced 
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intelligibility of fast speech seen by Krause and Braida (2002) and Adnak and 

Janse (2009) may suggest. There is therefore a need to have an assessment of 

articulatory effort that is independent of reduction itself. Such an assessment will 

be carried out in order to test the second prediction of this thesis.  

 

1.3 The challenge of measuring articulatory effort 

Currently, there is no standard accepted method of measuring articulatory effort. 

Malécot (1955, p. 36) described articulatory effort as “a kinaesthetically felt 

degree of force of articulation”. That is, there seems to be a psychological referent 

of articulatory effort that speakers can ‘feel in their head’. But this is not an 

objective measurement that directly corresponds to physiological reality (Parnell 

and Amerman, 1977; Tatham and Morton, 2006). Lindblom (1990) borrowed 

from Nelson (1983) the notion that ‘peak velocity’ is an indicator of ‘articulatory 

effort’. Nelson (1983) characterised skilled movements using basic mechanical 

principles, and proposed that the peak velocity of an articulatory movement can 

be equated to the impulse cost measure (time integral of the magnitude of the 

force per unit mass) when there is negligible friction, as shown in the following 

equation:   

   

 Impulse cost:    
 

 
∫ |    |  

 

 
,     (1.1) 

 

where u(t) is the applied force per unit mass (acceleration) and T is total 

movement time. In this equation, impulse cost (i.e. the equivalent of peak velocity) 

is proportional to movement time (duration), which means that the longer the 



Chapter 1: Introduction                                                                                         11 

 

 

 

movement the greater the effort. However, this is different from the notion of 

economy of effort envisioned in the H&H theory, according to which effort is 

relatively independent of duration. Thus the use of peak velocity as a direct 

indicator of effort carries an intrinsic amalgam between time and force (see 

Kirchner, 1998 for a similar argument).  

 

An empirical method used in a number of studies to assess articulatory effort is to 

examine the relation between peak movement velocity and movement amplitude 

(Kelso et al., 1985; Ostry et al., 1983; Ostry and Munhall, 1985; Perkell et al., 

2002; Xu and Wang, 2009). These studies have consistently found that peak 

velocity is quasi-linearly related to movement amplitude. Such a quasi-linear 

relation means that peak velocity cannot be taken as an indicator of articulatory 

effort without knowing movement amplitude. That is, values of peak velocity are 

comparable only if they are from the same movement amplitude. It also follows 

that a steeper slope of peak velocity over movement amplitude may indicate 

greater muscle stiffness (Perkell et al., 2002), which would be related to 

articulatory effort. Therefore, if peak movement velocity is regressed over 

movement amplitude, the contribution of the movement amplitude can be 

normalised, making it possible to compare relative articulatory effort in 

movements of different sizes. This has been done in a number of previous studies 

( i.e. Perkell et al., 2002; Xu and Wang, 2009, as mentioned earlier). 

 

In this thesis, the slope of regression of peak movement velocity over movement 

amplitude will be used to test the second prediction regarding articulatory effort. 
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To further justify the use of this measurement, it is necessary to show that a linear 

relationship between peak movement velocity and movement amplitude is present 

in the system of interest. This is shown in Sections 2.1.2 (Figure 2.9 for formant 

movement) and 3.1.1 (Figure 3.5 for F0 movement).  

 

Also, a critical issue concerning the methodology of the present study is the 

validity of using acoustic measurements to infer articulatory dynamics. This issue 

is addressed in some detail in the Appendix. 

 

1.4 Structure of this thesis    

This thesis is structured as follows: Chapter 2 reports on the analysis of extreme 

segmental reduction. Two specific predictions derived from the main hypothesis 

that time pressure is the direct cause of extreme reduction are tested. Study 1 

tested Prediction 1 to see whether extreme reduction could be elicited from 

nonsense words by simply increasing speech rate.  Study 2a tested Prediction 2 by 

assessing articulatory effort of various degrees of phonetic reduction. Following 

these laboratory experiments, in Study 2b two sets of high frequency words 

extracted from three spontaneous speech corpora were analysed for cases of 

extreme reduction. An analysis of spontaneous speech corpora was carried out to 

verify the ecological validity of the experimental results and to examine the 

applicability of the experimental finding to the high-end extrema of the lexical 

frequency scale. 
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Chapter 3 concerns the analysis of tones in contracted syllables. To examine 

whether the nature of tonal reduction can also be explained by time pressure, 

Study 3 again tested Predictions 1 and 2 in order to further scrutinize the findings 

of Chapter 2. Additionally, a third prediction was tested: When contraction occurs, 

speakers still attempt to approach each and every underlying tonal target. This 

additional prediction was tested against the Edge-in model (Yip, 1988) which 

models the underlying target formation when extreme reduction such as 

contraction occurs.  

 

Chapter 4 uses computational modelling to further test the time pressure account 

by checking whether extreme tone reduction can be reproduced by the 

computational model, and whether there is evidence that even under time pressure 

the canonical tonal targets are attempted. The main modelling method used is an 

articulatory-based model, the quantitative Target Approximation model (Xu and 

Wang, 2001; Prom-on et al., 2009). A supplementary method, Functional Linear 

Modelling (based on Functional Data Analysis) is also used to assess the nature of 

the durational effects on tonal variations.  

 

Finally, the conclusions of this thesis and some possibilities for further work are 

discussed in Chapter 5. Some of the work presented in this thesis has been 

presented and published previously (Cheng and Xu, 2008a, b; Cheng and Xu, 

2009; Cheng, Xu and Gubian, 2010; Cheng, Xu, Prom-on, 2011; Cheng and 

Gubian, 2011). 



 

14 

 

 

Chapter 2 

 

Segmental reduction 

 

In this chapter, two predictions based on the general hypothesis that time pressure 

is the direct cause of extreme reduction such as contraction are tested. As 

mentioned in the Introduction, in order to test this hypothesis data from two 

specifically designed experiments along with a corpus data set will be analysed. 

The methodology of both of these experiments (i.e. Study 1 and Study 2a) and 

discussion regarding the choice of data from the spontaneous speech corpora 

(Study 2b) will be presented first and then this is followed by their respective 

results and analyses. Following this the validity of the general hypothesis will be 

discussed.
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2.1 Methodology    

2.1.1 Study 1 

The first experiment was designed to test Prediction 1 that extreme reduction can 

occur in nonsense words if time pressure is sufficiently high. To accomplish this, 

our strategy was to simply ask subjects to speed up their articulation and observe 

whether extreme reduction occurred. If this prediction is met, we will then try to 

identify a particular duration below which extreme reduction is regularly observed.  

 

A. Stimuli 

Testing materials for the experiment were constructed of 32 nonsense disyllabic 

sequences. Details of these stimuli are shown in Table 2.1. The target sequences 

were divided into four groups according to level of obstruction by intervocalic 

consonant: 1) zero obstruction – CV+V; CV+VN; CV+VV, 2) nasal consonant – 

CVN+V; CV+NV, 3) non-nasal consonant – CV+CV, where C is a fricative (fr.), 

plosive (pl.) or affricate (af.), and 4) nasal + non-nasal consonant – CVN+CV. 

Other combinations with non-nasal consonants as coda consonants (eg.  CVC+NV 

or CVC+CV) were not considered owing to their absence in Mandarin 

phonotactics. All intervocalic consonants had a similar place of articulation (i.e. 

alveolar) but different manners of articulation to allow us to focus on the effect of 

the obstruction level. The vowels in these sequences were /i/, /a/ and /u/ in order 

to maximize variability in the amplitude of formant movement. Not all possible 

sequences of the selected vowels in all obstruction conditions were tested. In 

obstruction level 3, only non-nasal consonant – CV+CV, a balanced vowel 



Chapter 2: Segmental reduction                                                                            16 

 

 

 

sequence, was used to examine articulatory demand and relative formant 

excursion size. All the disyllabic units had the same high-level tone in order to 

minimize potential tonal effects (Xu, 2001).
 3

   

 

Time pressure was controlled in two ways. The first was through the manipulation 

of durational variation related to position of the token in the sentence and in the 

phrase (Klatt, 1975) which has also been demonstrated for Chinese (Xu and Wang, 

2009). This was achieved by devising a carrier sentence consisting of three 

phrases, each having a slot for the same target sequence (see Table 2.2). The first 

phrase consisted of eight underlying syllables, the second 13 and the third 15, all 

of which included the disyllabic target words. The second method was to elicit 

different speaking rates through direct instruction to the subjects (as detailed 

below). 

                                                 
3
 For readers less familiar with the Chinese language: Each Chinese character 

represents a monosyllabic morpheme. A syllable, even if with the same tone, may 

correspond to different morphemes. For example, the syllable /an/ with a falling 

tone can correspond to morphemes written as 暗, 岸 or 按, meaning ‘dark’, ‘shore’ 

or ‘to press’. Another morpheme, written as 案, is of the same pronunciation and 

carries multiple meanings including ‘a project’, ‘a long table’ or ‘a legal case’. 

Which of the meanings it takes depends on its combination with other morphemes 

to form words or compounds and on the phrasal and sentential semantic context. 

With such semantic flexibility, disyllabic nonsense words used in this study were 

designed to be as semantically unexpected as possible.  
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Table 2.1: Stimuli used in Study 1. The shaded rows indicate the obstruction level 

of the intervocalic consonants from low to high. 

Disyllabic structure Phonetic presentation and characters 

1. Zero obstruction 

CV+V /ti/+/i/ 滴依 /ta/+/a/ 搭阿 /tu/+/u/ 督巫 

CV+VN /ti/+/in/ 滴因 /ta/+/an/ 搭安 /tu/+/un/ 督溫 

CV+VV /ti/+/ai/ 滴哀 /ti/+/au/ 滴凹 /tu/+/ai/ 督哀 

 /tu/+/au/督凹   

2. Nasal consonant 

CVN+V /tan/+/i/ 單依 /tan/+/u/ 單巫 

CV+NV /ta/+/ni/ 搭妮* /ta/+/nu/ 搭奴* 

3. Non-nasal consonant 

CV+CV  

where C is a 

fricative /ta/+/ɕi/ 搭悉 /ta/+/su/ 搭蘇 /ta/+/sa/ 搭撒 

plosive /ta/+/ti/ 搭滴 /ta/+/tu/ 搭督 /ta/+/ta/ 搭搭 

plosive
h /ta/+/tʰi/ 搭踢 /ta/+/tʰu/ 搭禿 /ta/+/tʰa/ 搭他 

affricate /ta/+/tɕi/ 搭激 /ta/+/tsu/ 搭租 /ta/+/tsa/ 搭紮 

affricate
h /ta/+/tɕʰi/ 搭戚 /ta/+/ tsʰu/ 搭粗 /ta/+/tsʰa/ 搭擦 

4. Nasal+ non-nasal consonant 

CVN+CV /ɕin/+/ti/ 新滴 /sun/+/ti/ 孫滴 /san/+/ti/ 三滴 

*Note that the characters in the second syllable of these two stimuli are indicative 

of an R tone. However, during the recording speakers were told to pronounce 

them as H tones (as with all other stimuli), so as to make up for the lack of actual 

morphemes.  
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Table 2.2: Carrier sentence used in Study 1. 

Pinyin 
ni shuo de shi ____ shi ba! wo dangran bu chi ____ shala nazhong 

dongxi, yinwei wo zui bu xihuan ta jia chu de ____ shala. 

Character 
你說的是_____是吧！我當然不吃_____沙拉那種東西，因為我最

不喜歡他家出的_____沙拉! 

English 
You meant ____ , didn’t you! Of course I won’t eat ____ salad that 

kinda stuff, because I dislike ____ salad made by his family the most! 

Note that in these carriers the nonsense words all occupy position of nouns, and 

are surrounded by high-frequency verbs, function words and nouns. This 

guarantees that not only lexically, but also semantically they are treated as high-

information-load words. 

 

B. Subjects and recording procedure 

Six male Taiwan Mandarin speakers were recorded. They were aged between 21 

and 28 and had no self-reported speech disorders or professional vocal training. 

The speakers were all postgraduate students studying in London whose prior 

education was in Taiwan. They had been in England for less than two years at the 

time of recording. Only male speakers were used because their formants are easier 

to track than those of female speakers. The recordings were conducted in an 

anechoic chamber at University College London. Speech was recorded with a 

Shure SM10A microphone placed approximately 30 centimeters from the subjects’ 

mouth. The speech signals were recorded to a computer using the software 

package Adobe Audition v.1.5 with a sampling rate of 44.1 kHz. All stimuli were 

presented to the subjects in traditional Chinese characters and carrier sentences 

with the embedded stimuli were shown one at a time on the screen in front of the 

seated subject. 
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Subjects were instructed to articulate the material at three speaking rates: (1) slow 

and clear as if reciting in class, (2) in a natural manner as if conversing with a 

friend, and (3) as fast as possible. During each trial the speaker read out the 

sentences at the three speeds in the above order. No explicit instructions were 

given as to whether syllables can or should be contracted. However, if a speaker’s 

pronunciation was too slurred, he was asked to repeat the entire trial (i.e., the 

carrier sentence displayed on the monitor at slow to fast speech rates). The exact 

speed of articulation was left to the subjects’ discretion. The mean speech rates of 

slow, natural and fast across the six subjects were 4.9, 6.8 and 9.3 underlying 

syllables per second, respectively. To increase the size of the data sets, three 

randomized blocks of the above 32 sentence sequences were used. In total, the 

number of target sequences produced was 32 (stimuli) × 3 (positions in the carrier) 

× 3 (speech rates) × 6 (subjects) × 3 (blocks) ＝ 5,184. Among these sequences, 

31 (6%) were discarded from further analysis due to inadequate voice quality such 

as creaky voice or speaker errors. 

 

C. Segmentation and measurements 

The segmental labelling and measurements were conducted in Praat (Boersma and 

Weenink, 2010). Figures 2.1-2.3 display example spectrograms of target 

sequences produced in Study 1. It can be seen that, as the duration of target 

sequence decreases, the spectrographic patterns become increasingly simplified 

until little or no trace of the intervocalic consonant is left when the duration is at 

its minimum. Such spectral reduction is apparently much more severe than the 

cases of moderate reduction considered in studies of undershoot such as Lindblom 
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(1963). As one of the measurements, target sequences were classified as non-

contracted (NC), semi-contracted (Semi) and contracted (Cntr) based on their 

degree of intervocalic segmental weakening or loss. Non-contracted units were 

those with clear interruption of formants by the intervocalic consonant, presence 

of nasal murmur or a clearly lowered F1. Contracted units were those with 

continuous F1, without interruption by either intervocalic consonants or nasal 

murmur. Units classified as semi-contracted were those for which the above 

segmentation criteria were difficult to apply and no straightforward delimitation 

of the spectrogram could be made.  

 

All sound files were segmented and labelled by the author, a native Taiwan 

Mandarin speaker. The consistency of contraction type labels was double checked 

one month following the initial labelling. Uncertainty in the labelling occurred 

only very occasionally, and in all such cases the uncertainty was related to semi-

contracted units. A handful of tokens were relabelled from non-contracted or 

contracted to semi-contracted upon rechecking. There were no tokens of non-

contracted relabelled as contracted or vice versa. It is important to note that in the 

zero obstruction level, according to the current labelling criteria, most tokens were 

marked as contracted because the disyllabic sequence consisted of an open CV 

syllable followed by a syllable with a vowel onset. Hence, unless there was a clear 

sign of glottal stop or glottalization between the two vowels, as shown in Figure 

2.1, they were marked as contracted.   
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Figure 2.1: Examples of labelling /ta/+/a/ (zero intervocalic obstruction). From top 

to bottom, non-contracted (realized with a full glottal stop), semi-contracted 

(realized with glottalization), and contracted (with continuous formants). The time 

domains are of similar window length from 0 to 1 second and formant frequency 

from 0 to 5000 Hz.  

 

 

Figure 2.2: Examples of labelling /tan/+/i/ (intervocalic nasal consonant). From 

top to bottom, non-contracted, semi-contracted, and contracted. The time domains 

are of similar window length from 0 to 1 second and formant frequency from 0 to 

5000 Hz.  
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Figure 2.3: Examples of labelling /ta/+/ta/ (non-nasal intervocalic consonant). 

From top to bottom, non-contracted, semi-contracted, and contracted. The time 

domains are of similar window length from 0 to 1 second and formant frequency 

from 0 to 5000 Hz.  

 

2.1.2 Study 2a – Laboratory data 

The second experiment was aimed at examining the continuous reduction process 

in greater detail than in Study 1 and testing whether articulatory effort was 

strengthened or weakened when contraction occurred. The method was to track 

the formant trajectories and velocity profiles of two near symmetric articulatory 

movements so as to determine the relative contributions of duration and 

articulatory effort.  

 

A. Stimuli 

Two nonsense disyllabic sequences, /ta/+/ja/ and /ta/+/wa/ with intervocalic glides 

/j/ and /w/, were devised to allow observation of formant trajectories without 
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interruption by obstruent intervocalic consonants (see Table 2.3). The use of 

glides also avoids the issue of articulatory overlap between C and V. This is due 

to the fact that glides, being semivowels, are specified for the entire shape of the 

vocal tract rather than predominantly at a particular place of articulation as in the 

case of obstruents (Moon and Lindblom, 1994; Xu and Liu, 2007). This would 

help make the interpretation of the relation between articulatory effort and 

duration more straightforward. The same carrier sentence as in Study 1 was used 

(see Table 2.2). 

 

Table 2.3: Stimuli used in Study 2a. 

Disyllabic structure Phonetic presentation and characters 

CV+GV /ta/+/ja/ 搭壓 /ta/+/wa/ 搭挖 

 

 

B. Subjects and recording procedure 

Four of the six subjects from Study 1 were re-recruited to participate in this 

experiment. Two other male subjects with very similar linguistic backgrounds to 

those of Study 1 were added. The same procedure as Study 1 was followed. The 

total number of target sequences produced in this experiment was 2 (stimuli) × 3 

(positions in the carrier) × 3 (speech rates) × 6 (subjects) × 3 (blocks) ＝ 324 

tokens.  
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C. Segmentation and measurements  

Segmental labelling was carried out in a manner similar to that of Study 1 but 

with some slight modifications. When producing /ta/+/ja/ and /ta/+/wa/ within a 

carrier sentence, the speaker’s vocal tract was always open for the semivowels /j/ 

and /w/. Thus there were few non-contracted cases going by the previous criteria, 

that is, a pause between the first and second vowels (as seen in Figure 2.1 for the 

zero-obstruction level in Study 1). Therefore, the labelling of degrees of reduction 

in Study 2a used F1 dip as a primary indicator and F2 peak or valley as a 

secondary indicator. In producing intervocalic glides /j/ and /w/ the articulators 

need to move to the position of the glide from the position of the preceding vowel 

/a/ and then to the position of the following vowel /a/. Since F1 was very low in 

both /j/ and /w/, cases with a fall followed by a rise in F1 were marked as non-

contracted. In contrast, cases in which both formants (F1, F2) were nearly flat 

(and no obvious curve could be seen) were marked as contracted. Units marked as 

semi-contracted were cases where the preceding two classifications were not 

straightforwardly applicable. Such cases commonly showed a slight F1 dip along 

with a slight F2 rise for /j/ and a slight F2 fall for /w/. Examples of the labelling 

are shown in Figures 2.4-2.5.  
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Figure 2.4: Examples of labelling /ta/+/ja/ (intervocalic glide /j/ in-between). 

From top to bottom, non-contracted, semi-contracted, and contracted. The time 

domains are of similar window length from 0 to 1 second and formant frequency 

from 0 to 5000 Hz.  

 

 

 

Figure 2.5: Examples of labelling /ta/+/wa/ (intervocalic glide /w/ in-between). 

From top to bottom, non-contracted, semi-contracted, and contracted. The time 

domains are of similar window length from 0 to 1 second and formant frequency 

from 0 to 5000 Hz.  
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In order to assess articulatory effort, a set of kinematic measurements, including 

movement duration (the elapsed time between two formant turning points), 

movement amplitude (difference in semitones between two turning points), and 

peak velocity (highest absolute value in the velocity profile corresponding to a 

movement), were taken using a Praat script specifically written for this 

experiment. The script uses the Berg algorithm to extract continuous formants and 

applies a trimming algorithm (originally designed for processing F0 contours, cf. 

Xu, 1999) to remove excessive and sudden bumps in the formant trajectories. It 

then computes the velocity (i.e., the first derivative) of the formants using a two-

point central differentiation algorithm (Bahill et al., 1982). To illustrate this 

process, Figure 2.6 shows the F1 movement of syllable /ta/+/ja/ and its velocity 

profile. The script first searched for the F1 minimum (point B in Figure 2.6) in the 

LPC formant track generated by Praat. It then finds peak velocities from within 

each of the two intervals (interval 1: from A to B and interval 2: from B to C). 

Similar procedures were applied to F2 movements. In cases where formant 

trajectories either became effectively flat (as illustrated in Figures 2.7-2.8, in 

particular for the contracted cases) or had a direction different to that of the 

canonical form, the kinematic measurements would become erroneous. Such 

cases (146 out of 324 for F1 and 112 out of 324 for F2) could not be used to 

generate valid measurements using this algorithm and thus were not processed to 

estimate articulatory effort.
4
   

                                                 
4
 Note that, had the algorithm in the script been written in such a way that all 

problem tokens were included, we would have greatly increased the number of 

data points clustered along the left extreme of the y-axis in Figure 2.9. This is 

because the problem tokens mostly had extremely small movement amplitudes but 
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Figure 2.6: F1 trajectory (solid line) and its velocity profile (dotted line): A, B and 

C mark the turning points of F1 trajectory and delineate two intervals (interval 1: 

A-B and interval 2: B-C). Two peak velocities were obtained, one within each 

interval. The x-axis is the time domain in seconds. The y-axis on the right hand 

side is in units of semitones for the F1 trajectory and the y-axis on the left is in the 

units of semitone per second for the F1 velocity.  

 

                                                                                                                                      

highly variable peak velocities. Such data would have been uninformative. Note 

also that such a high exclusion rate is due to the intrinsic characteristic of extreme 

reduction, which by its very nature, necessarily involves virtual destruction of the 

integrity of the underlying articulation. Thus there is an unavoidable trade-off 

between being able to simulate and systematically analyse extreme reduction in an 

experimental setting and not having to throw out a substantial amount of 

uninformative data (i.e., only examining cases well short of extreme reduction). 

The present study has given priority to the former in the interest of pushing the 

boundaries of our understanding of speech on this inherently difficult issue.  
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Figure 2.7: Formant trajectories (F1 in blue and F2 in red) of /ta/+/ja/ sequences 

averaged across all six subjects. The x-axis shows time-normalised 40 

measurement points and the y-axis is formant frequency in Hz. The legend 

indicates both formants of different contraction types. 

 

 

 

Figure 2.8: Formant trajectories (F1 in blue and F2 in red) of /ta/+/wa/ sequences 

averaged across all six subjects. The x-axis shows time-normalised 40 

measurement points and the y-axis is formant frequency in Hz. The legend 

indicates both formants of different contraction types. 

 

0

500

1000

1500

2000

0 10 20 30 40

Fr
e

q
u

e
n

cy
 (

H
z)

 

Normalised time (40 measurement points) 

taJa 

NC_F2

Semi_F2

Cntr_F2

NC_F1

Semi_F1

Cntr_F1

0

500

1000

1500

2000

0 10 20 30 40

Fr
e

q
u

e
n

cy
 (

H
z)

 

Normalised time (40 measurement points) 

taWa 

NC_F2

Semi_F2

Cntr_F2

NC_F1

Semi_F1

Cntr_F1



Chapter 2: Segmental reduction                                                                            29 

 

 

 

As mentioned in Chapter 1 and explained in detail in the Appendix, at least 

theoretically, acoustic measurements such as formant frequencies are not inferior 

to measurements of individual articulators. Further confirmation can be seen in 

Figure 2.9 where formant data show similar kinematic patterns to those of 

articulatory movement. The figure displays scatter plots of F1 peak velocity as a 

function of F1 movement amplitude computed with data from all six subjects at 

all three speech rates. The relation between F1 peak velocity and F1 movement 

amplitude was highly linear (r = .879, p = .001).  A similar linear relationship was 

also seen in F2 (r = .859, p < .001). Such linear relations are consistent with 

previous findings regarding articulatory movements, which have been considered 

to directly reflect the stiffness of the articulatory movements (Kelso et al., 1985; 

Ostry et al., 1983; Ostry and Munhall, 1985; Perkell et al., 2002). On this basis, 

the ratio of peak velocity and movement amplitude was used as an indicator of the 

articulatory effort applied. 
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Figure 2.9: Linear relation of F1 peak velocity (y-axis in semitones/seconds) to F1 movement amplitude (x-axis in semitones) across slow, 

natural and fast speech rates.  
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2.1.3 Study 2b – Corpus data 

Two sets of high frequency words from spontaneous speech corpora were 

examined for cases of extreme reduction. The goal of this study was to compare 

the kinematic measurements of nonsense words in Study 2a to those of high 

frequency words in spontaneous speech. Spontaneous speech materials were taken 

from three corpora provided by Academia Sinica. A brief summary of the corpora 

is given in Table 2.4, adapted from Tseng (2008, p. 3, Table 1). 

 

Table 2.4: Summary of Academia Sinica corpora. 

Corpus Mandarin 

Conversational 

Dialogue Corpus 

(MCDC) 

Mandarin Topic-

Oriented 

Conversation Corpus 

(MTCC) 

Mandarin Map 

Task Corpus 

(MMTC) 

Scenario Free conversation 

between strangers 

Subjects knew each 

other well 

Subjects knew 

each other well 

Purpose Disfluency Dialogue acts Phonetic variations 

Period 2001.03-2001.07 2002.01-2002.03 2002.01-2002.03 

Transcription All orthographically transcribed and annotated 

(Adapted from Tseng, 2008) 

 

From the three corpora, two sets of words were selected for analysis. Each set 

contained one stem form and one compound form as shown in Table 2.5. The 

stem syllables were zheyang ([tʃʰɤ jaŋ], ‘this’) and nayang ([na jaŋ], ‘that’) 

where all syllable sequences have the falling tone. The compound form was an 

added suffix zi ([tsɨ]) which has the neutral tone. These tokens were selected 
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because, firstly, they are of similar phonetic structure to the stimuli used in Study 

2a (VGV), and secondly, both the canonical and reduced forms of the four words 

were frequent and giving enough tokens to allow reliable comparisons. In terms of 

lexical frequency, zheyang, zheyangzi and nayang rank 48
th

, 66
th

 and 547
th

 out of 

the 11,728
th

 places in the Sinica corpus, respectively. (No ranking information of 

nayangzi was listed).
5
 A total of 262 tokens from 17 speakers (eight males and 

nine females) were extracted. These speakers were in their twenties and had 

similar language backgrounds to those in Studies 1 and 2a.  

 

Table 2.5: Selected units used in Study 2b. 

Phonetic structure Characters Pinyin Meaning Count 

1. 
tʃʰɤ jaŋ 這樣 zhe yang this 148 

tʃʰɤ jaŋ tsɨ 這樣子 zhe yang zi such this 103 

2. 
na jaŋ 那樣 na yang that 6 

na jaŋ tsɨ 那樣子 na yang zi such that 5 

 

All tokens extracted from the corpora were again labelled according to their 

degrees of reduction using the same criteria as in Study 2a. For each token, only 

the segments exhibiting relevant formant trajectories (for calculating articulatory 

effort, marked as underscored in Table 2.5) were subjected to further analysis. 

Three kinematic measurements (movement duration, movement amplitude and 

                                                 
5
 Other references regarding Chinese word statistics such as frequency rank and 

cumulative percentage can be found at 

http://elearning.ling.sinica.edu.tw/eng_teaching.html. 
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peak velocity) were obtained. As in Study 2a, erroneous measurements due to 

flattened or inaccurate formant trajectories were excluded (155 out of 262 for F1) 

and (136 out 262 for F2). Note that these corpus tokens were not as symmetric as 

those used in Study 2a in terms of their articulatory movements (i.e. they did not 

have the same vowels in both syllables), which lead to a smaller success rate in 

generating valid measurements (i.e., reducing from 55% for F1 and 65% for F2 in 

Study 2a to 41% for F1 and 48% for F2 in Study 2b, the corpus data). 

 

2.2 Analysis and results 

From Figures 2.1-2.3 we can see various effects of gradual reduction on the 

spectrographic integrity of the target sequences. In Figure 2.2, for example, /n/ in 

/ani/ gets weakened in semi-contracted tokens and virtually disappears as a 

separable segment in contracted tokens. Simultaneously, there is severe 

undershoot of the vowel /a/, as its F1 and F2 become more similar to those of the 

surrounding consonants. The same is true of the sequence /ata/ in Figure 2.3. Thus 

there seem to be two processes involved in continuous reduction: (1) 

disintegration of the intervocalic consonants and (2) undershoot of the flanking 

vowels. Study 1 is designed to mainly scrutinize process (1) by examining the 

conditions under which intervocalic consonants become severely reduced in a 

variety of VCV sequences. Process (2) will be more closely examined in Study 2a.  
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2.2.1 Study 1 

A. Contingency of contraction type 

Figure 2.10 shows the distribution of the three contraction types. Non-contracted 

and contracted occurred more frequently (43.63% and 47.04%, respectively) than 

semi-contracted (9.33%), leading to a binomial distribution of contraction types. 

 

Figure 2.10: Distribution of the three contraction types in Study 1. 

 

B. Speed and contraction type 

A multinomial logistic regression was performed with contraction type as the 

ordinal dependent variable, and speed, obstruction level and position in the carrier 

sentence as predictors. Results showed that speed was positively correlated to 

contraction type (Coef. = 1.59, S.E. = 0.05, p < .000). For a unit increase in speed, 
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the expected ordered log odds increased by 1.59 as one moved to the following 

higher category of contraction (i.e. from non-contracted, semi-contracted to 

contracted). On the other hand, obstruction level was negatively related to 

contraction type (Coef. = -1.86, S.E. = 0.05, p < .000). For a unit increase in 

obstruction level, the expected ordered log odds decreased by 1.86 as one moved 

to the following higher category of contraction. Position had no effect on 

contraction type (Coef. = 0.02, S.E. = 0.04, p = 0.58).  

 

Figure 2.11 shows the effect of speed on contraction type. In non-contracted types, 

a decline in frequency count is seen as speed increases. Conversely, in both the 

semi-contracted and the contracted, as speed increases frequency count also 

increases. The largest distributions in each contraction type are slow speed in non-

contracted (23.79%), fast speed in semi-contracted (4.42%) and fast speed in 

contracted (20.98%). This is in agreement with the above statistics (i.e. Ordinal 

Logistic Regression), that is, a significant positive relationship is seen between 

speed (from slow to fast) and contraction type (from non-contracted to contracted).  
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Figure 2.11: Contingency of contraction type at different speeds in Study 1. The 

x-axis shows three different contraction types and the y-axis shows frequency 

count. 

 

Note that 8.56% of the contracted cases occurred at slow speed. A major 

contributor here is the zero-obstruction group that involves vowels as syllable 

onset in the second syllable and was therefore often labelled as contracted.
 
To 

avoid this effect, a follow-up logistic regression was conducted with all zero-

obstruction cases removed. Results remained comparable to those of the OLR 

report, i.e. a positive relation was observed between contraction type and speed 

(Coef. = 1.62, S.E. = 0.06, p < .000), a negative relation between contraction type 

and obstruction level (Coef. = -0.93, S.E. = 0.07, p < .000), and position had no 

effect on the contraction type (Coef. = -0.02, S.E. = 0.05, p = .71).  
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C. Phonetic structure and extreme reduction 

Table 2.6 summarizes rates of extreme reduction (i.e. contracted cases) in 

different phonetic structures in terms of percentage of occurrences. (Semi-

contracted items were not included owing to their ambiguous status as extreme 

reduction). In the zero-obstruction level, the rate of contracted cases was nearly 

90%. This is a natural consequence of the lack of canonical consonantal 

obstruction to interrupt the vowel-to-vowel formant movements as mentioned 

earlier in section 2.1.1.C. A mean rate of 42.04% was seen in the nasal consonant 

level. It appears that it is easier to lose coda nasals (62.35%) than initial nasals 

(21.67%) under time pressure. As for the non-nasal consonant level, rates of 

contracted cases varied with manner of consonant articulation. Unaspirated 

obstruents (plosive and affricate) had higher rates of extreme reduction (mean: 

22.42%) than their aspirated counterparts (mean: 17.72%). In the nasal + non-

nasal consonant level, the highest intervocalic obstruction yielded the lowest rate 

of extreme reduction (10.54%). 
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Table 2.6: Contracted cases (%) at different levels of intervocalic obstruction. The 

left column indicates the obstruction level of the intervocalic consonants from low 

to high. The middle column shows percentage of contracted cases occurred in 

respect to each phonetic structure, and the rightmost column the means of 

contraction rates for different levels of obstruction. 

Disyllabic structure Contracted cases (%) Mean (%) 

1. Zero obstruction  

CV+V 88.41% 

89.77% CV+VN 93.15% 

CV+VV 88.27% 

2. Nasal consonant  

CVN+V 62.35% 
42.04% 

CV+NV 21.67% 

3. Non-nasal consonant   

CV+CV where C is a 

fricative 18.71% 

19.80% 

plosive 20.87% 

plosive
h
 19.21% 

affricate 23.97% 

affricate
h
 16.22% 

4. Nasal+ non-nasal consonant  

CVN+CV 10.54% 10.54% 

 

Table 2.6 demonstrates that as the level of obstruction increases, the rate of 

contracted cases decreases. This inverse relation implies that contracted cases are 

dependent on the level of articulatory demand, but time pressure may actually be a 

more likely determining factor. As the CVN+CV group indicates, reduction rate is 

related to the time allocated to the consonant: When there are two adjacent 

consonants (of similar articulatory demands, i.e. /n/ and /t/), presumably twice as 

much time is allocated to the closing gesture. When duration is shortened 
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proportionally under time pressure, these two consecutive obstruents are the last 

ones whose combined allocated time is reduced to the point when no closure of 

the vocal tract is possible. 

 

D. Minimum duration 

The above interpretation is further supported by Figure 2.12 which shows mean 

segmental duration of the non-contracted items in the /ta/+CV sequences. As can 

be seen, in the non-contracted units, the duration of the intervocalic consonants 

varies with their level of obstruction. Moreover, the duration of the second vowel 

varies compensatorily with the onset duration (r = -0.97, p < .01).  

 

Figure 2.12: Varying segmental durations of the non-contracted /ta/+CV 

sequences. The x-axis indicates the consecutive durations of the preceding /a/, the 

intervocalic consonant and the following vowel. The y-axis shows the different 

intervocalic consonants in terms of manner of articulation, from top to bottom, fr: 

fricatives, pl: plosives, pl
h
: aspirated plosives, af: affricates, and af

h
: aspirated 

affricates. 
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To see the time demand of varying articulatory functions in a more 

straightforward manner, mean consecutive segmental durations of all three 

contraction types in the /ta/+CV sequences are plotted in Figure 2.13. Here the 

durations of non-contracted units may reflect the amount of time used in canonical 

articulations. In semi-contracted units, the duration of all segments is reduced 

with the most severe reduction in the intervocalic obstruents (44.4 ms). In 

contracted units, the overall duration of disyllabic words is compressed to the 

point where no intervocalic consonantal closure is possible. Therefore, 44.4 ms in 

the semi-contracted case appears to be the mean minimum duration below which 

intervocalic consonants are virtually ‘lost’.  

 

 

Figure 2.13: Segmental durations at different contraction types in all /ta/+CV 

sequences. 
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E. Duration and excursion size 

As the degree of vocal tract constriction is reduced, the magnitude of formant 

displacement in the vowels is also reduced. It is therefore possible to further 

examine the effect of duration on phonetic reduction by observing the relationship 

between duration and formant excursion size as shown in Figure 2.14: A scatter 

plot of all items in the /ta/+CV sequences.  

 

 

 

Figure 2.14: Scatter plot of formant excursion size over formant duration: /ta/+CV. 

The x-axis represents the combined duration of /a/ and the second syllable in 

/ta/+CV sequences. The y-axis represents the sum of F1 and F2 displacements 

within this interval.  

 

The scatter plot demonstrates a positive relation between duration and formant 

displacement in /ta/+CV sequences: the longer the duration, the larger the 

displacement (R
2 

= 0.41, p < .001). The plot also shows an orderly distribution of 
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the reduction levels as a function of duration, that is, most non-contracted cases 

had relatively long durations; when the duration became extremely short (less 

than about 200 ms) extreme reduction occurred. Note that there are also some 

cases with a duration of 200 ms labelled as non-contracted (as indicated within a 

triangle). This might suggest that extra effort was exerted by the speakers to avoid 

undershoot, as it will be examined further in Study 2a and 2b. In general, it is 

interesting to note that the boundary between non-contracted and contracted was 

approximately 200 ms, suggesting that the mean duration for the integrity of 

disyllables is around 200 ms (without the duration of the onset consonant /t/ in 

/ta/+CV).  

 

2.2.2 Study 2a – Laboratory data 

A. Contingency of contraction type 

Figure 2.15 displays the distribution of the three contraction types in Study 2a. 

Contracted and semi-contracted cases occurred with similar frequencies (27.27% 

and 19.48%, respectively) and non-contracted occurred most frequently (53.25%).  
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Figure 2.15: Distribution of the three contraction types in Study 2a. 

 

B. Speed and contraction type 

A multinomial logistic regression was performed with contraction type as the 

ordinal dependent variable and speed as well as position in the carrier sentence as 

the predictor variables. Results showed that speed was positively related to 

contraction type (Coef. = 2.51, S.E. = 0.23, p < .000). For a unit increase in speed, 

the expected ordered log odds increased by 2.51 as one moved to the adjacent 

higher category of contraction (i.e. from non- to semi- to contracted). Position had 

no effect on contraction type (Coef . = -0.002, S.E. = 0.16, p = 0.99). Thus the 

statistical results of Studies 1 and 2a both showed similar patterns of dominant 

speed effect on the occurrences of contraction. 

 

C. Duration and excursion size 

In Figure 2.16 a scatter plot displaying the relationship between duration and 

formant excursion size for all tokens of /ta/+/ja/ and /ta/+/wa/ is shown. Similarly 

to Figure 2.14, Figure 2.16 also shows a positive relation between duration and 
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excursion size (R
2 

= 0.67, p < .001) indicating that the two measurements are 

strongly related. A mean duration for the integrity of disyllables was again 

observed: Semi-contracted units of /ta/+/ja/ and /ta/+/wa/ sequences cluster 

around 200 ms (without the duration of the onset consonant /t/ in /ta/+GV). It 

should be noted that in Figure 2.14, the data points lying within the highlighted 

triangle are largely absent of which points in Figure 2.16. A possible explanation 

could be a phonetic structure (V.GV) that is less conducive to coarticulation (i.e. 

speakers need to implement segments one after another) than that of V.CV 

structure, for which the data in Figure 2.14 is shown, (where speakers can raise 

their tongue tip while moving the tongue body for the vowel sequence) when time 

pressure is high.  

 

 

Figure 2.16: Scatter plot of formant excursion size over formant duration: /ta/+/ja/ 

and /ta/+/wa/.  
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D. Articulatory effort 

The design of Study 2a allowed us to further examine the relationship between 

duration, formant displacement and articulatory effort for the three contraction 

types. Table 2.7 shows a set of one-way ANOVAs performed with contraction 

type as the independent variable and duration, formant displacement and slope of 

the regression line (peak velocity over movement amplitude) as dependent 

variables. All dependent variables were averaged with respect to /ta/+/ja/ and 

/ta/+/wa/ items. 

Table 2.7: Mean duration (ms), formant displacement size (st) and slope of the 

regression line of formant peak velocity over formant movement amplitude of the 

three contraction types – Study 2a, laboratory data. 

Type Duration  F1 size F1 slope F2 size F2 slope 

Non- 313.8 20.31. 21.28 15.21 19.00 

Semi- 199.0 8.86 26.95 8.82 23.95 

Contracted 160.7 8.14 32.82 6.40 27.25 

F value F(2,3) = 360.7 F(2,3) = 29.7 F(2,3) = 167.7 F(2,3)  = 1.9 F(2,3) = .31 

p value p < .001* p < .05* p < .001* p = .289 p = .756 

 

The ANOVAs showed that contraction type had significant effects on duration, F1 

size and F1 slope. Post hoc (LSD) analysis of duration showed that all three 

contraction types were significantly different from each other ([NC > Semi, Sig. 

= .000; [NC > Cntr], Sig. = .000; [Semi > Cntr], Sig. = .008). Post hoc (LSD) 

analysis of formant displacement size showed that F1 size of the non-contracted 

units was significantly larger than that of semi-contracted and contracted units but 

the difference was insignificant between semi-contracted and contracted (F1 size: 
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[NC > Semi], Sig. = .008; [NC > Cntr], Sig. = .006). Post hoc (LSD) analysis of 

regression slope indicated that F1 slopes increased along with the degree of 

reduction (F1 slope: [NC < Semi], Sig. = .003; [NC < Cntr], Sig. = .000; [Semi < 

Cntr], Sig. = .003). The same kind of variation was not significant for F2 in terms 

of its formant displacement size and regression slope.  

 

In summary, the above results show that for F1, the displacement of both semi-

contracted and contracted units was smaller than that of the non-contracted units. 

However, the slope of regression of peak velocity over amplitude was greater in 

contracted than in non-contracted units, indicating that articulatory effort is at 

least not reduced as the level of contraction increases. For F2, although the 

difference followed the same trend as F1, no difference was statistically 

significant across the different contraction types, again indicating no reduction in 

articulatory effort for increased levels of contraction. 

 

2.2.3 Study 2b – Corpus data 

As with Table 2.7 for Study 2a, Table 2.8 lists a set of ANOVA results for corpus 

data – contraction type as the independent variable and duration, displacement and 

slope of the regression line (peak velocity over movement amplitude) as 

dependent variables. All the dependent variables were averaged in respect to four 

selected high frequency words, namely zheyang, zheyangzi, nayang, nayangzi. 
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Table 2.8: Mean duration (ms), formant displacement size (st) and slope of the 

regression line of peak formant velocity over formant movement amplitude of the 

three contraction types – Study 2b, corpus data. 

Type Duration  F1 size F1 slope F2 size F2 slope 

Non- 359.1 31.15 20.568 15.32 23.04 

Semi- 230.8 23.00 25.99 8.99 23.37 

Contracted 221.2 23.22 33.44 11.27 25.58 

F value F(2,8) = 11.31 F(2,4) = 1.45 F(2,7) = 3.03 F(2,1) = .68 F(2,7) = .21 

p value p = .005* p = .336 p = .113 p = .651 p = .819 

 

Only the difference in duration was significant, showing a progressive decrease 

from non-contracted to contracted units. Post hoc (LSD) analysis of duration 

showed that non-contracted units were significantly different from both semi-

contracted and contracted units (Duration: [NC > Semi], Sig. = .006; [NC > C], 

Sig. = .002). Planned comparisons of slope and displacement size indicated that 

only F1 slope of contracted was marginally steeper than that of non-contracted 

(F1 slope: [NC < C], Sig. = .043). F2 slope and F2 displacement showed no 

significant difference across contraction types.  

 

Comparing these results to those of Study 2a (cf. Table 2.7 and its respective post 

hoc analysis results), similar patterns can be seen, in particular duration is 

significantly different across contraction levels, and the slope of regression of 

peak velocity over amplitude is either similar across contraction levels, or steeper 

in the contracted tokens than in the non-contracted ones in both nonsense (Study 

2a) and high frequency words (Study 2b).  
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2.3 General discussion and conclusions 

In this chapter, we tested two predictions based on the general hypothesis that the 

direct cause of extreme reduction is time pressure. The first prediction tested was 

that extreme reduction such as contraction can occur in nonsense words if time 

pressure is sufficiently high. This prediction was strongly supported through 

analyses of experimental data. It transpired that, eliciting contraction from 

nonsense words from all subjects was easily achieved by having them speak at a 

fast rate. A highly consistent relationship between contraction rate and speech rate 

was found (Figure 2.11). Further analyses showed that contraction rate was 

closely related to time pressure: The shorter the duration, the more likely extreme 

reduction was to occur. In other words, a very short duration constitutes a 

sufficient condition for extreme reduction to occur. The positive relation between 

reduction and time pressure is seen more clearly in Figures 2.14 and 2.16. 

Additionally, a critical duration of approximately 200 ms (without the duration of 

C1) was found for disyllables to virtually lose their intervocalic consonants. 

 

The second prediction, that articulatory effort is not decreased when contraction 

of nonsense words occurs, was also supported. Data suggested that contraction 

was not accompanied by a decrease in articulatory effort because the slope of the 

regression line between peak velocity and movement amplitude was no shallower, 

in fact the slope was often steeper in tokens labelled as contracted compared to 

those labelled as semi- or non-contracted. That articulatory effort seems to be 

increased in reduced nonsense words is in partial support of H&H theory’s 
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prediction that greater peak velocity may be applied so as to offset the effect of 

time pressure. But the fact that clear duration dependency was observed suggests 

that the effect of the compensation is sometimes not sufficient and thus 

Lindblom’s (1963) earlier and simpler duration-dependent undershoot model 

seems to be largely supported. What is shown more clearly by the data presented 

here than that presented in Lindblom (1963) is that when duration is severely 

shortened, e.g., by half, as seen in Table 2.7, there is simply no way for speakers 

to maintain the integrity of a segment or a syllable. As a result, the intervocalic 

consonants are not just reduced, but shortened to the point when no vocal tract 

closure can be achieved. Target undershoot due to time pressure is thus inevitable 

when the time allocated to a segment is less than its minimum duration, as 

predicted by Klatt (1973, 1976).  

 

2.3.1 Structural complexity and contraction rate 

The examination of syllable sequences with different intervocalic obstruents in 

Study 1 allowed us to make observations regarding the minimum time required to 

execute articulatory gestures. In general, when greater time pressure is present, 

sequences in which the intervocalic consonants are allocated more time in their 

canonical forms are less likely to exhibit extreme reduction. For example, 

aspirated obstruents are less frequently reduced than their unaspirated counterparts. 

This could be attributed to the greater articulatory complexity of aspirated sounds 

in comparison to unaspirated ones (Tseng, 2005a). However, this is also 

consistent with a time pressure account: Segments with greater allocated duration 
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in their canonical forms, e.g., aspirated stops, are less likely to be severely 

reduced because their allocated duration is less likely to be shortened to the point 

where no closure of any kind is possible. This account is supported by the fact that 

semi-contracted units exhibit a constant duration at which intervocalic consonants 

start to get ‘lost’ (Figure 2.13). Further evidence in support of this is seen in the 

case of CVN+CV, where N and second C are both alveolar and hence involve 

minimum articulatory movements as far as the tongue is concerned. These 

sequences nevertheless exhibited the smallest degrees of reduction. An even more 

direct test would be to look at geminates, which were not included in the present 

study (e.g. /an/+/na/). Geminates would double the allocated articulation time 

without doubling articulatory demand. This is a possible topic for future research. 

 

In Table 2.6, for the nasal-consonant group, the onset vs. coda asymmetry in 

reduction rates for CVN+V (62.35%) vs. CV+NV (21.67%) is noticeable. This 

agrees with the well-known fact that languages prefer CV structures more than 

VC structures (Levelt et al., 1999, McCarthy, 2007; Hall, 2010). Additionally, in 

several reduced cases of the nasal-consonant group, some remaining nasal features 

are still detectable (as can be seen in Figure 2.2). This observation is also related 

to the description in Cheng (2004) that nasality becomes an overlay of vowels in 

contracted syllables in rapid speech. This indicates that phonetic reduction is 

irrespective of segmentability, a dynamic articulatory process (Niebuhr and 

Kohler, 2011). 
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2.3.2 Direct versus indirect mechanisms of extreme reduction 

The present finding that time pressure has a clear role in reduction does of course 

not rule out the possible contributions of other factors; such as lexical frequency 

(Bybee, 2002; Myers and Li, 2009), information load (Karlgren, 1962), listener 

considerations (Lindblom, 1990), speech style (Dankovicŏvá and Nolan, 1999), 

semantic relatedness to the discourse topic (Gregory et al., 1999) and repetition 

time in the same discourse (ibid, see also Fowler and Housum, 1987), etc. Instead, 

what the present results demonstrate is that time pressure is likely to be the most 

direct cause of reduction. This is supported by the close relation between duration 

and formant displacement shown in Figures 2.14 and 2.16, which is in sharp 

contrast to the slightly positive relation between lexical frequency and spectral 

reduction found by Myers and Li (2009, Figures 3 and 5) for Taiwanese Southern 

Min. Further evidence is seen in studies that have found clear effects of lexical 

frequency when duration itself is used as a measure of reduction (Jurafsky et al., 

2001; Pluymaekers et al., 2005). 

 

Segmental duration, however, is not controlled only by the factors mentioned 

above. Many other factors have been identified to have significant duration effects, 

including phrase boundary, stress, within-syllable location, within-word location, 

within-phrase location, lexical tone, focus and syllable structure (Berkovits, 1994; 

Dankovičová, 1997; Gahl and Garnsey, 2004; Klatt, 1975, 1976; van Santen, 1994; 

van Santen and Shih, 2000; Xu, 2009, to cite only a few). A case in point is the 

contraction of the Mandarin word jiao ta che [tɕiao ta tʃʰɤ] ‘bicycle’ into [tɕiao a 



Chapter 2: Segmental reduction                                                                            52 

 

 

 

 

C
h
a
p
ter 2

: S
eg

m
en

ta
l red

u
ctio

n
                                                                            5

2
 

 

 

tʃʰɤ] despite the fact that it is a noun and is not particularly high frequency (Chung, 

2006). Chung (2006) points out that the second syllable is easily elided in tri- or 

tetra syllabic items. Additionally, Chen (2006) shows that the middle syllables of 

four-syllable words in Mandarin are drastically shortened. Xu and Wang (2009) 

further demonstrated that tonal reduction in these syllables is directly attributable 

to shortened duration. These findings may explain why listeners have the 

impression of reduction in the medial position of tri- or tetra syllabic items. 

 

The time pressure account also does not rule out the effect of fossilized lexicon. It 

is unquestionable that contracted forms such as don’t, aren’t and isn’t in English 

are fossilized. In Mandarin beng [pɤŋ] as a contracted form of bu yong [pu jioŋ] 

‘no need to’ is even written as a single character (‘甭’), indicating that it is 

supposed to be spoken as a monosyllabic rather than disyllabic word (‘不用’). 

These fossilized forms can remain monosyllabic even when spoken slowly, which 

is in contrast with the nonsense words examined in this study (which show clear 

variability with duration). Therefore, there is a need to test each suspected case of 

fossilized reduction by directly controlling duration in future research.  

 

Finally, given the present finding that the slope of peak velocity over movement 

amplitude is often negatively rather than positively related to duration, it is 

difficult to maintain that (non-fossilized) reduction is related to weakened 

articulatory effort. Instead, the strong duration dependency of reduction found in 

the present study actually suggests that it is more likely that duration is used to 

control the level of target attainment. That is, items that need to be uttered clearly 
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are given more time, so that their targets are more fully attained; those that do not 

need to be uttered clearly are given less time, often to the extent of being allowed 

to go below the minimum duration, resulting in severe reduction. The indirect 

relationship between information load and reduction can be further seen in the 

similarity of the results of Study1, 2a and 2b. The target sequences in Studies 1 

and 2a are nonsense words (and thus of high information load), while the target 

words in the corpus data (Study 2b) are highly frequency words (and thus of low 

information load). Despite this, very similar reduction patterns are seen between 

these data sets when duration is used as the control factor. Therefore, the results 

with respect to the durational account are very much the same, giving more 

weight to the evidence in support of our main hypothesis. 

 

2.3.3 Conclusion 

To the best of our knowledge, no prior research has systematically examined 

variations in spectral patterns in relation to possible articulatory mechanisms 

underlying extreme reduction in any language. In the present study, contraction 

was successfully elicited from speakers in the laboratory reciting nonsense 

disyllabic words at high speech rates, and the rate of contraction as a function of 

time pressure was found to be similar to that of high frequency words in a number 

of spontaneous speech corpora. This indicates that extreme reduction is neither a 

characteristic of only casual speech nor directly related to lexical frequency. For 

both experimental and spontaneous data, spectral analyses show that extreme 

reduction regularly occurs when segmental duration is shortened beyond a certain 
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threshold, and regression analyses of peak velocity of formant movement as a 

function of formant movement amplitude suggest that articulatory effort is not 

weakened when contraction occurs. We thus interpret our results as evidence that 

the direct cause of extreme reduction is target undershoot under time pressure 

(Lindblom, 1963), while other factors mainly contribute through their effects on 

duration.  
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Chapter 3 

 

Tonal reduction 

 

In Chapter 2 it was shown that a severe form of segmental reduction, known as 

syllable contraction, can occur with nonsense words in Taiwan Mandarin if 

sufficient time pressure is exerted. It was also shown that time pressure is a direct 

cause of syllable contraction. The present chapter investigates tonal reductions 

that occur together with syllable contraction in Taiwan Mandarin. The hypothesis 

tested is that the nature of the tonal reduction can also be explained by time 

pressure. In addition to the two predictions tested in Chapter 2, a third prediction 

is also tested: Speakers still attempt to approach each and every underlying tonal 

target under high time pressure. For this third prediction, tone shapes of 

contracted syllables are also checked against the Edge-in model (Yip, 1988), 

which concerns the underlying target formation when extreme reduction such as 

contraction occurs. 
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3.1 Methodology 

3.1.1 Study 3 

The method used in Studies 1 and 2a was again employed to elicit syllable 

contraction, that is, subjects were asked to produce the target sentences at three 

speech rates, slow, normal and fast. Similarly to Studies 2a and 2b (Chapter 2), 

articulatory effort was assessed by measuring the slope of the regression line of F0 

peak velocity over movement amplitude.  

 

A. Stimuli 

Disyllabic /ma/+/ma/ nonsense sequences with a total of 16 tone dyads (4 tones x 

4 tones) embedded in two carrier sentences were constructed as testing materials. 

To observe continuous F0 contours and facilitate segmentation, the target tone-

bearing syllables were /ma/+/ma/, written as ‘媽’, ‘麻’, ‘馬’, ‘罵’ in traditional 

Chinese characters for High (H), Rising (R), Low (L), and Falling (F) tone 

carriers respectively. To create different tonal contexts for the target sequences, 

two carrier sentences with an H or an L tone preceding the target sequence were 

composed (see Table 3.1). The tone following the target sequence is always H. 

The reason for not varying this following tone is that previous research has shown 

that contextual tonal variations are predominantly due to carryover effects 

(Gandour et al., 1994; Xu, 1997). Each carrier sentence consists of three phrases. 

The first phrase contains 9 underlying syllables, the second 13, and the third 17. 

The same target sequence was embedded in each phrase and thus was produced 

three times within each carrier sentence. 
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Table 3.1: Carrier sentences used in Study 3. 

Carrier sentences with a High/Low preceding tone 

Characters  
你想吃/買_____沙拉是吧！我當然不吃/買_____沙拉那種東西，

因為我不喜歡 /欣賞_____沙拉那種酸酸的醬料！ 

Pinyin  

ni xiang chiH/maiL _____ shaHla shi ba! wo dangran bu chiH/maiL 

_____ shaHla nazhong dongxi, yinwei wo bu xihuanH/xinshangL 

_____ shaHla nazhong suansuande jiangliao! 

English 

You want to eat/buy _____ salad, didn’t you! Of course I won’t 

eat/buy _____ salad that kinda stuff, because I dislike the sour 

source of _____ salad. 

 

B. Subjects and recording procedure 

The same subjects from Study 2a were recruited to participate in this experiment. 

The same procedure was followed, that is, six subjects were instructed to recite 

the sentences at three speaking rates, slow and clear as if reciting in class, in a 

natural manner as if conversing with a friend, and as fast as possible. The mean 

speech rates of the slow, natural and fast conditions across the six subjects were 

4.5, 6.1 and 9.3 underlying syllables per second, respectively. Three repetitions of 

the entire block were recorded, each with a different randomization order. In total, 

the number of target sequences produced in this experiment was 16 (tone dyads) × 

2 (preceding tones) × 3 (positions in the carrier) × 6 (subjects) × 3 (speech rates) × 

3 (blocks) ＝5,184. Out of these, 14 (0.2 %) were discarded from further analysis 

due to inadequate voice quality such as creaky voice or speaker errors.  
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C. Segmentation and measurements 

All sound files were manually segmented by the author. First, all tokens of the 

target sequence /ma/+/ma/ were isolated and then a boundary between the two 

syllables was marked whenever a clear second nasal was identified and the token 

was labelled as non-contracted. When the second nasal was absent, no boundary 

was marked and the token was labelled as contracted. Intermediate cases were 

labelled as semi-contracted with two intervals. Examples of this labelling are 

shown in Figures 3.1-3.4. Consistency of the labelling was double checked one 

month following the initial labelling. A small amount of tokens were relabelled 

from non-contracted or contracted to semi-contracted upon rechecking, but no 

non-contracted tokens were relabelled as contracted or vice versa. 

 

Extraction of the F0 contours was carried out using a modified version of 

ProsodyPro, a general purpose Praat script for large scale F0 analysis (Xu, 2005-

2011). The script extracts F0 by displaying the vocal cycle marking generated by 

the Praat programme (Boersma and Weenink, 2010) and allowing users to 

perform manual rectifications through adding missing vocal pulse marks and 

removing redundant marks. The script then converts the vocal periods into F0 

values and applies a trimming algorithm (Xu, 1999) to remove sudden jumps and 

dips. It then generates various output data for further analysis. One output the 

script produces is time-normalized F0 contours which are then analysed 

graphically (see Figures 3.10-3.13 for example). In order to compare contracted or 

non-contracted tokens, time-normalisation was conducted as follows. For tokens 

marked with two intervals, that is, classified as non-contracted and semi-
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contracted where the intervocalic nasal was present, each interval was discretised 

into 20 evenly spaced points. For contracted tokens where the intervocalic nasal 

was absent, 40 evenly spaced points were taken within the single interval. This 

process allows for averaging across repetitions and speakers and allows direct 

comparisons of different contraction types.   

 

To assess articulatory effort, measurements were taken from two unidirectional F0 

movements (rising and falling). Because increased speech rate could lead to 

‘flattened’ F0 contours, making the detection of F0 turning points impossible, 

measurements were taken from only tone dyads where a unidirectional rising or 

falling movement could be guaranteed. Tonal contexts (H)#RF and (H)#RL 

(where # delimits a preceding H tone and the target tone dyads) were cases where 

a unidirectional rising movement could be identified. In (H)#RF (see Figure 3.1), 

the trajectory of F0 needs to first move down from the preceding H ending tone 

(toward the minimum) in order to realise a rising movement for the R tone in the 

first syllable. The presence of a maximum could be further guaranteed by the 

required falling movement of the F tone in the second syllable. The modified 

ProsodyPro script automatically located the key measurement points. It first 

located the F0 minimum (‘min’) in the early part of /mama/. It then searched for 

the F0 maximum (‘max’) between the ‘min’ point and the end of /mama/. In-

between ‘min’ and ‘max’, the velocity of this rising movement was calculated and 

the location of peak velocity was identified (‘v’). Figures 3.1 and 3.2 show the 

measurement points for a rising movement of the R tone in (H)#RF and (H)#RL, 

respectively. Similar measurements were also taken from the (L)#FR and (L)#FH 
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sequences for a unidirectional falling movement (see Figures 3.3 and 3.4). In total, 

383 out of 648 tokens from the four selected tone sets were found to be valid for 

assessing articulatory effort (a success rate of 59.1%). This low success rate is 

indication that the rate of articulation of the speakers had indeed been pushed to 

the limit, as will be seen more clearly in Sec. 3.2.1.E. 

 

Other possible tonal contexts such as (H)#RR for a rising movement and (L)#FF 

for a falling movement were also considered but later excluded from the analysis. 

This is because in cases of severe reduction a maximum in the second R in an 

(H)#RR sequence was less guaranteed, and neither was a minimum in the second 

F in an (L)#FF sequence. This is owing to the high articulatory demand resulting 

from consecutive dynamic tones, i.e. RR or FF, in an incompatible tonal 

environment (Kuo et al., 2007; Xu and Wang, 2009). 
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Figure 3.1: Rising movement and labelling examples in cases of H#RF. The time 

domains are of similar window length from 0 to 1 second and formant frequency 

from 0 to 5000 Hz. F0 values are shown as dots overlaid on the spectrograms, 

scaling from 50 to 300 Hz. 

 

 

Figure 3.2: Rising movement and labelling examples in cases of H#RL. The time 

domains are of similar window length from 0 to 1 second and formant frequency 

from 0 to 5000 Hz. F0 values are shown as dots overlaid on the spectrograms, 

scaling from 50 to 300 Hz. 
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Figure 3.3: Falling movement and labelling examples in cases of L#FR. The time 

domains are of similar window length from 0 to 1 second and formant frequency 

from 0 to 5000 Hz. F0 values are shown as dots overlaid on the spectrograms, 

scaling from 50 to 300 Hz. 

 

 

Figure 3.4: Falling movement and labelling examples in cases of L#FH. The time 

domains are of similar window length from 0 to 1 second and formant frequency 

from 0 to 5000 Hz. F0 values are shown as dots overlaid on the spectrograms, 

scaling from 50 to 300 Hz. 
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To assess articulatory effort, a similar approach to the analysis in Chapter 2 was 

followed. That is, three kinematic measurements were taken for each 

unidirectional movement: (1) F0 movement duration – time difference between 

adjacent max F0 and min F0 in seconds, (2) F0 movement amplitude – F0 

difference between adjacent max F0 and min F0 in semitones, and (3) F0 peak 

velocity – maximum absolute value in the first derivative of a unidirectional F0 

movement, in semitones/second.  Figure 3.5 displays an overall scatter plot of F0 

peak velocity as a function of F0 movement amplitude for all selected rising and 

falling movements. The relationship between F0 peak velocity and F0 movement 

amplitude was highly linear (r = .743, p < .001), which is consistent with the 

formant analyses in Chapter 2 and movement analyses of previous studies 

(acoustic movements: Xu and Su, 2002; Xu and Wang, 2009; articulatory 

movements: Hertich and Ackermann, 1997; Kelso et al., 1985; Ostry and Munhall, 

1985; Vatikiotis-Bateson and Kelso, 1993). Given the highly linear relationship 

between F0 peak velocity and F0 movement amplitude; this experiment also used 

the slope (i.e. gradient) of their regression line to assess articulatory effort. 
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Figure 3.5: Linear regressions of F0 peak velocity (y-axis in semitones/seconds) 

over F0 movement amplitude (x-axis in semitones) for both rising and falling 

movements (in absolute values of peak velocity). In total, 216 data points were 

valid for a rising movement of the R tone in (H)#RF and (H)#RL and 167 data 

points for a falling movement of the F tone in (L)#FR and (L)#FH. The valid data 

points were distributed across all subjects and conditions.  

 

3.1.2. Edge-in model 

To explain the mechanism of tonal contraction, a phonological account known as 

the Edge-in model has been proposed (Yip, 1988). The model, which presupposes 

two successive pitch targets for each tone, hypothesises a phonological process 

that operates in an outside-in fashion during tonal contraction in a manner such 

that the two adjacent targets in a disyllabic sequence are suppressed, leaving only 

the two targets on the outer edges intact. Figure 3.6 shows an example of the 

proposed Edge-in process. 
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Figure 3.6: An Edge-in model for deriving the output tone 54 from two source 

syllables, [kn55] + [pn214]  [km54], meaning ‘basically’. The bilabial 

plosive /p/ gives rise to a realisation of coda /m/. 

 

This model offers a simple and efficient mechanism of generating possible 

patterns of phonetic reduction. However, given that it is based mostly on 

transcribed data and a somewhat ad-hoc formalisation, one may wonder whether a 

phonological grammar such as this truly reflects what happens in contraction. 

Recent experimental studies have shown that exceptions to this formal 

generalisation are not uncommon and that traditional phonology cannot 

straightforwardly account for the graded nature of reduction (Cheng, 2004; Myers 

and Li, 2009; Zhang and Lai, 2010). In the analysis that follows, the Edge-in 

model will be tested against the third prediction of this thesis, namely, speakers 

still attempt to approach each and every underlying tonal target when contraction 

occurs.  

 

5 5 21 4 

Edge-in Edge-in 
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3.2 Analysis and results 

3.2.1 Time pressure and articulatory effort – Predictions 1 and 2 

Two predictions were tested to see whether tonal reduction can also be explained 

by time pressure. These two predictions are parallel to those tested in Chapter 2: 

(1) extreme reduction such as contraction can occur in nonsense words if time 

pressure is sufficiently high; and (2) when contraction occurs, articulatory effort 

is not decreased.  

 

A. Contingency of contraction type 

Figure 3.7 displays distributions of the three contraction types obtained in Study 3. 

Non-contracted occurred most frequently, taking up more than half the cases of 

this experiment (66.98%), followed by contracted (21.53%). The semi-contracted 

showed the least frequency of 11.49%. 

 

 

Figure 3.7: Distribution of the three contraction types in Study 3. 
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Table 3.2 shows the percentage of each contraction type for different tone 

combinations. Tone dyads preceded by an L tone generally showed a greater 

percentage of the contracted type (than those preceded by an H tone), on average 

from 28.07% (L#) to 16.05% (H#). 
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Table 3.2: Percentage of each contraction type occurred across different tone combinations. Column represents the tones (H, R, L, F) in the 

first syllable and row the second syllable.  

      2
nd

 sylb.  

1
st
 sylb.   

H R L F 

(H)# (L)# (H)# (L)# (H)# (L)# (H)# (L)# 

H 

NC 73.46% 62.11% 78.62% 62.35% 76.54% 63.58% 80.86% 63.52% 

Semi 10.49% 11.80% 8.18% 12.35% 11.11% 12.96% 7.41% 15.72% 

Cntr 16.05% 26.09% 13.21% 25.31% 12.35% 23.46% 11.73% 20.75% 

R 

NC 66.67% 60.49% 64.42% 56.17% 73.46% 56.79% 75.31% 56.79% 

Semi 11.73% 11.73% 10.43% 10.49% 9.26% 10.49% 12.35% 14.81% 

Cntr 21.60% 27.78% 25.15% 33.33% 17.28% 32.72% 12.35% 28.40% 

L 

NC 77.78% 55.26% 74.07% 57.55% 63.29% 50.70% 75.31% 57.98% 

Semi 8.64% 14.04% 12.96% 10.38% 14.56% 12.68% 6.17% 13.45% 

Cntr 13.58% 30.70% 12.96% 32.08% 22.15% 36.62% 18.52% 28.57% 

F 

NC 75.93% 67.90% 67.28% 58.39% 63.58% 62.96% 75.31% 57.41% 

Semi 9.88% 7.41% 17.28% 15.53% 19.75% 12.96% 11.11% 14.20% 

Cntr 14.20% 24.69% 15.43% 26.09% 16.67% 24.07% 13.58% 28.40% 
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B. Speed and contraction type 

A multinomial logistic regression was performed with contraction type as the 

ordinal dependent variable and position in the carrier sentence, as well as speed, 

as predictor variables. Position in the carrier sentence displayed no relation to 

contraction type (Coef = -0.010, S.E. = 0.041, p = .802). However, speed was 

positively related to contraction type (Coef = 1.961, S.E. = 0.053, p < .0001). For 

a unit increase in speed, the expected ordered log odds increased by 1.96 as one 

moved to the adjacent higher category of contraction type (i.e. from non- to semi- 

to contracted). To better display this effect, Figure 3.8 shows frequency of 

occurrence of contraction type according to speaking rate.  
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Figure 3.8: Contingency of contraction type at different speeds obtained in Study 

3. The x-axis shows three different contraction types and the y-axis shows 

frequency count. 

 

The frequency of occurrence of non-contracted units decreased as speaking rate 

increased. Conversely, for both semi-contracted and contracted types, frequency 

increased with speaking rate. For each contraction type, the highest percentage 

observed was: 32.79% non-contracted at slow speech rate, 5.57% semi-contracted 

at fast speech rate, and 16.52% contracted at fast speech rate. This is in agreement 

with the statistics that also show a positive relationship between speed (from slow 

to fast) and contraction type (from non-contracted to contracted). The distribution 

of contraction types shown here are consistent with the results of Study 1 (Chapter 

2).  



Chapter 3: Tonal reduction                                                                                    71 

  

 

 

C
h
a
p
ter 3

: T
o
n
a
l red

u
ctio

n
                                                                                    7

1
 

 

C. Duration and excursion size 

To examine the relationship between duration and excursion size, a Pearson 

correlation test (2-tailed) was carried out between duration and F0 excursion size. 

The correlation was significant (r = .464, p < .001). Further, two one-way 

ANOVAs were conducted using contraction type as independent variable and 

duration and F0 as dependent variables. Table 3.3 shows the results of the 

statistical analysis. 

 

Table 3.3: Mean duration (ms) and F0 excursion size (st) of the three contraction 

types – All tone dyads. 

Contraction type Duration F0 size 

Non-contracted 372.6 41.7 

Semi-contracted 276.3 31.6 

Contracted 236.0 28.6 

F value F(2,93) = 694.6 F(2,93) = 11.3 

p value p = .000* p = .000* 

 

Contraction type had significant effect on both duration and F0 excursion size. 

Post hoc (LSD) analysis of duration showed that all three contraction types were 

significantly different from each other (all Sigs. < .001). Post hoc (LSD) analysis 

of F0 excursion size indicated that the non-contracted type had significantly larger 

movement amplitude in comparison to both semi-contracted and contracted (both 

Sigs. < .001), whereas no significant difference was found between the semi-

contracted and contracted types (Sig. = .295).   
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D. Articulatory effort 

Similar to the design of Study 2a, the two unidirectional pitch movements (rising 

and falling) selected from the four tone combinations allowed us to further 

examine the relationship between duration, F0 displacement and articulatory effort 

for the three contraction types. Table 3.4 shows a set of one-way ANOVAs 

performed with contraction type (non-contracted, semi-contracted and contracted) 

as the independent variable and duration, F0 excursion size and slope of the 

regression line of F0 peak velocity over F0 movement amplitude as dependent 

variables. All dependent variables were averaged with respect to the selected 

(H)#RF, (H)#RL, (L)#FR and (L)#FH items. 

 

Table 3.4: Mean duration (ms), F0 excursion size (st) and slope of the regression 

line of F0 peak velocity over F0 movement amplitude of the three contraction types 

– Study 3. 

Contraction type Duration F0 size Slope of F0 peak velocity over amplitude 

Non- 383.3 42.6 8.5 

Semi- 278.1 32.8 12.2 

Contracted 239.7 28.1 12.4 

F value F(2,9) = 73.5 F(2,9) = 8.5 F(2,9) = 6.1 

p value p = .000* p = .008* p = .021* 

 

The ANOVAs showed that contraction type had significant effects on all three 

dependent variables. Post hoc (LSD) analysis of duration again showed that all 

contraction types were significantly different from each other (Duration: [NC > 

Semi], Sig. = .000; [NC > C], Sig. = .000; [Semi > Cntr], Sig. = .012). Post hoc 

(LSD) analyses of F0 excursion size and regression slope indicated that significant 
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differences existed between all but the semi- and contracted types (F0 size: [NC > 

Semi], Sig. = .023; [NC > C], Sig. = .003; [Semi > Cntr], Sig. = .221; F0 slope: 

[NC > Semi], Sig. = .033; [NC > C], Sig. = .027; [Semi > Cntr], Sig. = .899).  

 

In summary, the degree of reduction, as reflected by contraction type, was 

negatively related to duration and F0 excursion size but positively related to the 

slope of the regression line, indicating that there is an increase in effort from non-

contracted to semi-contracted to contracted. The higher level of contraction with 

an increased regression slope suggests that the duration-dependent undershoot 

cannot be fully offset by effort. The results of Study 3 have thus far largely been 

in agreement with those presented in Chapter 2. 

 

E. Maximum speed of pitch change 

In view of the insufficient compensation from an increased articulatory effort for 

items of limited duration (Table 3.4), it appears that the speakers may have 

reached their physiological limit for changing pitch within a reduced duration, in 

particular when duration was as short as that of contracted syllables. Therefore, it 

may also be helpful to assess whether speakers do indeed approach their 

maximum speed of pitch change. According to Xu and Sun (2002), the minimum 

amount of time required to raise or lower pitch at the maximum speed of 

voluntary pitch change obeys a quasi-linear relationship with the amplitude of F0 

movement, which can be approximated by the following two formulae:  
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T = 100.4 + 5.8 d (pitch lowering),     (3.1) 

T = 89.6 + 8.7 d (pitch raising),     (3.2) 

 

where T is the minimum movement time in milliseconds and d is the F0 movement 

amplitude in semitones. Equations 3.1 and 3.2 were applied to the current data. 

Figure 3.9 shows the observed duration and the theoretical minimum time needed 

to generate the same F0 movement amplitude together with their time differences.  

 

 

 

Figure 3.9: Measured time (blue) at different contraction types and movement 

directions compared to the minimum time (red) required for the same amount of 

F0 movement amplitude computed by Equations 3.1 and 3.2. The green bars 

indicate the differences between these two time intervals. The red asterisks and p 

values indicate the statistical significance as described in the text. 
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As can be seen in Figure 3.9, the measured time of non-contracted and semi-

contracted units were both significantly longer than the corresponding minimum 

duration according to Welch two sample t-test, indicating that the time interval 

was ample and that speakers were not required to reach their maximum speed 

(Falling NC: t = 8.64, df = 136.6, Falling Semi: t = 2.67, df= 23.1, Rising NC: t = 

8.39, df = 232.6, and Rising Semi; t = 3.93, df = 47.4). However, in the most 

severely reduced cases, the times observed were virtually the same as the 

minimum time needed to execute both the falling and rising movements. This may 

indicate that speakers had reached their physiological limit of pitch change 

(Falling Cntr: t = 0.92, df = 17.2 and Rising Cntr: t = 0.09, df= 24.3) and extreme 

reduction was therefore inevitable.  

 

3.2.2 Evidence of underlying targets in contracted tones – Prediction 3 

A. Tonal contours of different contraction types 

To see the tone shapes in a straightforward manner, mean F0 contours of the 

sixteen tone dyads in different contraction regimes are first displayed in Figures 

3.10-3.13. F0 contours were averaged across three positions within the same 

sentence and across the three repetitions of the same sentence. These values were 

then converted to semitones and averaged across the speakers. Note that the tone 

dyad LL (Figure 3.12c) was always realized as RL due to an obligatory tone 

sandhi rule in Mandarin Chinese that modifies the first L in a LL sequence to R 

(Chao, 1968).  
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Figure 3.10: F0 contours of tone dyads HH (a), HR(b), HL(c) and HF(d). Tones preceding the tone dyads are indicated by line thickness 

and contraction types line style, as shown in the legend. The x-axis is 40 evenly spaced measurement points and the y-axis is in semitones. 
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Figure 3.11: F0 contours of tone dyads RH (a), RR(b), RL(c) and RF(d). Tones preceding the tone dyads are indicated by line thickness and 

contraction types line style, as shown in the legend. The x-axis is 40 evenly spaced measurement points and the y-axis is in semitones. 
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Figure 3.12: F0 contours of tone dyads LH (a), LR(b), LL -> RL(c) and LF(d). Tones preceding the tone dyads are indicated by line 

thickness and contraction types line style, as shown in the legend. The x-axis is 40 evenly spaced measurement points and the y-axis is in 

semitones. 
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Figure 3.13: F0 contours of tone dyads FH (a), FR(b), FL(c) and FF(d). Tones preceding the tone dyads are indicated by line thickness and 

contraction types line style, as shown in the legend. The x-axis is 40 evenly spaced measurement points and the y-axis is in semitones. 
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Three direct observations can be made from the mean F0 contours of Figures 3.10-

3.13. First, as expected, non-contracted contours have larger pitch ranges than 

semi-contracted and contracted contours (e.g. RF in Figure 3.11d, among others). 

Secondly, there is a robust carry-over effect in all sixteen tone dyads. This can be 

seen by comparing the onset F0 values of contours with different preceding tones. 

Those with a preceding H tone were generally higher than those with a preceding 

L tone (e.g. Figure 3.11). Thirdly, contracted contours display a higher overall F0 

in comparison to non-contracted and semi-contracted contours (e.g. contracted 

(H)#HR and (L)#HR in Figure 3.10b, contracted (H)#FL and (L)#FL contours in 

Figure 3.13c). The only three exceptions were (H)#HF (Figure 3.10d), (H)#RR 

(Figure 3.11b) and (H)#LF (Figure 3.12d), where the semi-contracted F0 contours 

were higher than the contracted contours.  

 

In addition to the higher overall F0, contracted contours are also flatter and more 

deviant than their non-contracted counterparts. In particular, for the dynamic tone 

R the critical rising patterns were often absent in contracted conditions. Note that 

also being a dynamic tone, the falling pattern in F was not as susceptible as the 

rising pattern in R to reduction. That is, most falling movements in F were still 

present across different contraction types and tonal environments. Take (H)#HR 

in Figure 3.10b as an example, the final rise in the R tone is missing from the 

contracted contours. Similarly, in Figure 3.11c little rising movement can be seen 

in the R tone in (H)#RL. In these cases, it is reasonable to ask whether the tonal 

targets are deleted or modified (as predicted by phonological theories such as the 
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Edge-in model), or the underlying targets remain unchanged but were not fully 

realized due to the time constraint. This issue will be examined in the next section. 

 

B. Incompatibility with the predictions of Edge-in model 

To investigate whether, during contraction, tonal targets of the corresponding non-

contracted units are preserved or whether they are modified via a phonological 

process as predicted by the Edge-in Model (Yip, 1988), we further examine the F0 

velocity profiles. Such profiles can give a good indication of articulatory 

movements toward the underlying tonal targets (Gauthier et al., 2007). For 

simplicity, the analysis presented here was carried out on the tone dyad (H)#HR 

(see Figure 3.14) and (H)#FF (see Figure 3.15). Other tone dyad combinations 

were also analysed and the results were in line with those presented here.
6
 

 

                                                 
6
 The plots of F0 velocity profiles of all tone dyads and contraction types are 

provided in Figures 3.16-3.19. Note that in these figures a consistent ‘jerk’ is seen 

towards the end of the second interval. This small sudden fluctuation is probably 

due to the fact the following syllable in the carrier sentence begins with a 

voiceless consonant (i.e. /th
/) that interrupts the continuous F0 and affects the 

smoothness of the velocity profiles.  
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Figure 3.14: Mean F0 velocity contours of (H#)HR of three contraction types and 

that of contracted (H#)HH (cf. Figure 3.10a&b, p. 75).   

 

Figure 3.14 shows the aforementioned F0 velocity contours along with a 

contracted (H)#HH F0 velocity contour. As mentioned previously (see Figure 

3.10b), during the execution of a canonical HR in the (H)#HR context, the F0 

velocity remains positive and only undergoes comparatively small variations 

during the production of the first syllable. In the second syllable the velocity then 

decreases and becomes negative prior to a final rise. The semi-contracted and 

contracted F0 velocity contours shown in Figure 3.14 both exhibit this general 

behaviour but with slightly less variation in the first syllable and a shallower 

trough in the second. Importantly, the F0 contour rise towards the end of the 

second syllable is present in all cases. This trend is interpreted as revealing the 

underlying intentions of the speakers to target the R tone by approaching the zero-

velocity line. 

 

-80

-60

-40

-20

0

20

40

60

80

1 11 21 31

F0
 v

e
lo

ci
ty

 (
se

m
it

o
n

e
/s

e
co

n
d

) 

Measurement points 

NC_(H#)HR

Semi_(H#)HR

Cntr_(H#)HR

Cntr_(H#)HH



Chapter 3: Tonal reduction                                                                                    83 

  

 

 

C
h
a
p
ter 3

: T
o
n
a
l red

u
ctio

n
                                                                                    8

3
 

 

It is also informative to compare a contracted (H)#HR to a contracted (H)#HH 

tone dyad. For both these tone dyads, the Edge-in model predicts similar surface 

forms when contraction occurs. That is, when a HR sequence is reduced to a 

single syllable, the Edge-in model predicts a resulting surface form of (553555), 

which is the same as that of a contracted HH sequence (555555). However, 

Figure 3.14 shows that a clear difference is present between the contracted forms 

of (H)#HR and (H)#HH. In contrast to the contracted (H)#HR F0 contour, during 

the second interval the contracted (H)#HH contour does not exhibit the ‘falling 

and rising’ pattern, but instead displays a small oscillation around the zero 

velocity level. This again demonstrates that speaker’s still attempt to achieve the 

underlying targets of the non-contracted forms even within a limited duration and 

that no targets are deleted as proposed by the Edge-in model.  

 

Figure 3.15 shows another example of predictions made based on the Edge-in 

model being incompatible with the observed results for tone dyads (H)#FF and 

(H)#FL. Based on the Edge-in model, both contracted tone dyads should be 

realised as similar falling forms, that is (H)#FF (515151) and (H)#FL 

(512151), i.e. a falling movement from the top to the bottom of a speaker’s 

pitch range. In Figure 3.15, three varying F0 velocity contours of (H)#FF along 

with a contracted  (H)#FL F0 velocity contour are shown. In the initial period of 

the first interval, all F0 contours further increase their velocity from the previous 

high-ending H tone and thus they form a preparatory rise for the target F in the 

first interval. This preparatory rise for a target F is seen again for non-contracted 

and semi-contracted (H)#FF at around the 21
st
 measurement point. At a similar 
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point in time, the F0 velocity of the contracted (H)#FF remains negative following 

the first F. The velocity hovers around -20 semitones/second while the contracted 

(H)#FL continues to decrease to a minimum of roughly -70 semitones/second. 

This stagnant velocity in the contracted (H)#FF may be explained by the fact there 

is no time for many ‘meaningful’ oscillations to occur. But it also suggests that 

the target of the second syllable did not change into that of a L tone. This can be 

seen more clearly in comparison with the true (H)#FL cases (yellow line), in 

which the velocity trajectory becomes very negative due to steep fall into the L 

tone target. This is contrary to the prediction of the Edge-in model that both 

contracted (H)#FF and (H)#FL should exhibit similar ‘falling’ F0 trajectories.  

 

 

Figure 3.15: Mean F0 velocity contours of (H#)FF of three contraction types and 

that of contracted (H#)FL (cf. Figure 3.13c&d, p. 78).   
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3.3 General discussion and conclusions 

In this chapter we tested whether tonal reduction in contracted syllables can also 

be accounted for by time pressure. The three predictions were all confirmed, 

providing further evidence for the general hypothesis that time pressure is the 

direct cause of extreme reduction. Firstly, that tonal contraction can occur in 

nonsense words if time pressure is sufficiently high was supported. Ordinal 

logistic regression analysis (see Sec. 3.2.1.B) suggested that speech rate has a 

significant effect on the type of contraction that occurs (also see Figure 3.8). 

Further analyses also indicated a close relation between duration and F0 excursion 

size (Tables 3.3 and 3.4).  

 

Secondly, the slope of the regression line of F0 peak velocity over F0 movement 

amplitude supports the prediction that articulatory effort is not decreased when 

contraction occurs. Similarly to the segmental data reported in Studies 2a and 2b 

(Chapter 2), the tonal data labelled as semi-contracted or contracted often 

exhibited a decreased duration and excursion size but not a decreased articulatory 

effort (Table 3.4). Furthermore, when the maximum rate of pitch change was 

computed, it appears that speakers had already reached their physiological limit, 

particularly in cases when duration was comparable to that of a contracted syllable 

(Figure 3.9). That is, speakers could not change pitch at a rate faster than this 

physiological limit and thus inevitably had to undershoot the desired tonal targets.   

 

Despite the high time pressure placed on the majority of tokens that were reduced, 

the third prediction that speakers still attempt to approach each and every 
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underlying tonal target was supported through examining F0 velocity profiles 

across different contraction types. Take for example tone dyad (H)#HR, evidence 

displaying speakers’ attempts to reach the R tone under varying time pressures are 

shown in Figure 3.14. Unlike the mechanism suggested by the Edge-in model, the 

absence of a final rise in contracted HR (Figure 3.10b) can be better explained by 

the time pressure account. That is, the shorter duration in contracted syllables 

prevents the velocity change from being translated into substantial changes in the 

overall F0 counter as is also seen in contracted FF (Figure 3.15). This analysis of 

F0 velocity profiles in contrast with the predictions made by the Edge-in model 

not only strengthens the validity of the time pressure account for extreme  

reduction, but also brings out the continuous nature of the effect of duration on 

target realisation.  

 

3.3.1 The properties of tones in connected speech  

The results presented in this chapter display two typical properties of tones in 

connected speech: (a) reduced pitch range as exhibited by a small F0 excursion 

size and (b) simplified F0 contours which are seen as general sloping contours 

shown in particular by the absence of a final rise for the R tones. Shrunken tonal 

space is similar to that observed for vowel space in unstressed syllables or at fast 

speech rate, which as noted above, can be comparably explained by time pressure. 

Regarding the tonal shapes of a contracted syllable, previous research has found 

that at fast speed, syllable duration can be so short that the dynamic tone R is 

realised with a virtually flat F0 contour (Xu and Wang, 2005; Kuo et al., 2007). It 
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has also been argued above that even though the original tonal elements are 

attempted briefly in velocity profile, there is not enough time for the effort to 

result in large F0 movements.  

 

Tseng (2005b) analysed spontaneous speech in Taiwan Mandarin and reported 

that the most frequent tone combinations for tonal merger all contain an F tone, 

especially for disyllabic contractions with an F tone in the second syllable. She 

suspected that a falling movement may be relatively easier for speakers to execute 

when duration is as limited as in a contracted syllable and therefore being retained 

more frequently. An increased rate of contraction in tone dyads with a falling tone 

in the second syllable was not found in this experiment (Table 3.2), but it is 

shown in Figures 3.10-3.13 that an F tone is generally less susceptible to the loss 

of its dynamic features (i.e. a falling movement) than that of an R tone (i.e. a 

rising movement). This may help explain why a majority of (near or already) 

fossilised words often carry an F tone, as observed in Tseng (2005b). Furthermore, 

as a side note, this high dependency of duration on target realisation seems to 

further agree with the evidence found in Xu (1998) and Xu and Wang (2001) that 

R and F tones in Mandarin Chinese have dynamic phonetic targets. 

 

Therefore, the residual tonal variants in contracted syllables are not necessarily 

generated by rule (i.e., retaining only the edge portions of tonal contours like the 

initial part of the first tone and final part of the second tone), but are in fact rather 

mechanical – as duration is shortened, the movement toward the desired targets is 

gradually curtailed. Moreover, observations of F0 contours and their velocity 
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profiles allowed us to see even further evidence of articulatory movements toward 

the underlying targets of the four tones, as has previously been demonstrated by 

Gauthier et al. (2007).  

 

3.3.2 Conclusion 

In this chapter, an experiment was designed to evaluate the nature of tonal 

reduction. It involved the examination of tonal variations recited under varying 

timing pressures and in systematically varied tonal environments. To summarise, 

we have demonstrated that tonal reduction is largely dependent on duration and 

that speakers still attempt to reach each underlying tonal target within the limited 

duration. Moreover, there appears to be a physiological limit to the ‘extra’ effort a 

speaker can apply when producing a tone, and when under extreme time pressure 

this extra effort may not be sufficient to fully offset the effect of time pressure, 

thus resulting in reduction. That is, it is the speed limit of articulation together 

with the fast speaking rate that leads to contraction as well as reductions that are 

less severe. Having satisfied all three predictions, the hypothesis that time 

pressure is the direct cause of tonal reduction is largely supported.  
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Figure 3.16: F0 velocity profiles of tone dyad HH, HR, HL and HF. The x-axis is normalised 40 measurement points and the y-axis is in 

unit of semitone per second. Note that the F0 velocity profiles were calculated before the time normalisation so the original velocity values 

were preserved. 
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Figure 3.17: F0 velocity profiles of tone dyad RH, RR, RL and RF. The x-axis is normalised 40 measurement points and the y-axis is in unit 

of semitone per second.  
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Figure 3.18: F0 velocity profiles of tone dyad LH, LR, LL -> RL and LF. The x-axis is normalised 40 measurement points and the y-axis is 

in unit of semitone per second.  
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Figure 3.19: F0 velocity profiles of tone dyad FH, FR, FL and FF. The x-axis is normalised 40 measurement points and the y-axis is in unit 

of semitone per second.  
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Chapter 4 

 

Modelling tonal reduction 

 

In Chapter 2, evidence that extreme segmental reduction is the direct result of 

time pressure was presented. It was also shown that during extreme reduction 

articulatory effort is likely to be increased rather than decreased. The same 

conclusions can also be drawn from the results regarding tonal reduction 

presented in Chapter 3. Additionally, evidence was shown that when two syllables 

are merged into one, within the resulting contracted syllable speakers still attempt 

to reach the original tones. In this chapter, the time pressure account will be 

further tested by making use of quantitative modelling, which attempts to simulate 

contracted F0 contours given some model parameters extracted from non-

contracted tones. The main model used for this purpose is the articulatory-based 

quantitative Target Approximation model (qTA; Prom-on et al., 2009) designed to 

simulate the articulatory dynamics of F0 production. The supplementary modelling 



Chapter 4 Modelling tonal reduction                                                                   94 

 

 

 

method used is Functional Linear Model (FLM), based on Functional Data 

Analysis (FDA; Ramsay and Silverman, 2005; Ramsay et al., 2009). 

 

The chapter will consist of two parts. Within each part, the specific modelling 

methods used will be introduced along with the procedures required to simulate or 

predict tonal contours with varying durations. Following this, results are evaluated 

to determine whether the corresponding synthesis (qTA) or prediction (FLM) 

provides a close match to recorded data.  

 

4.1 The qTA model  

The quantitative target approximation model (qTA; Prom-on et al., 2009) is an 

implementation of the theoretical target approximation model (TA; Xu and Wang, 

2001). The qTA model specifies a continuous link between articulatory 

mechanisms of F0 contour generation and the functional components of speech 

melody, which in our case is distinguishing words through lexical tones. The qTA 

model represents F0 as a response of a pitch target approximation process (Prom-

on et al., 2009; Xu, 2005; Xu and Wang, 2001). A schematic outlining the TA 

process is shown in Figure 4.1. 
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Figure 4.1: Target approximation model, adapted from Xu and Wang (2001). 

 

A pitch target is defined as the underlying goal of the local prosodic event (Prom-

on et al., 2009). It can be represented by a simple linear equation: 

 

          ,       (4.1) 

 

where x(t) is the pitch target. The parameters m and b are the slope and height of 

the pitch target, respectively. Based on the assumption that target approximation 

is synchronized with the host syllable (Xu and Wang, 2001), the time t is relative 

to the onset of the syllable.  

 

Now, let the F0 response of the vocal fold tension control mechanism driven by 

the pitch target (Prom-on et al., 2009) be labelled y. The core mechanism of the 

model is represented as a third-order critically damped linear system, expressed 

mathematically as: 

  

                       
      ,   (4.2) 
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where x(t) is given in (4.1) and the constants c1, c2, c3 and λ are described below. 

The polynomial and exponential multiplier represent the natural response of the 

tension control system, where λ is the rate of target approximation, which controls 

how fast a target is approximated. The transient coefficients c1, c2 and c3 are 

determined by the initial conditions and other syllable dependent model 

parameters. The initial conditions of the articulatory process include initial F0 

level, y(0), initial velocity, y’(0), and initial acceleration, y”(0). By solving the 

system of linear equations resulting from applying the initial conditions, the 

transient coefficients can be calculated using the following formulae: 

 

          ,       (4.3) 

               ,      (4.4) 

                  
    ,     (4.5) 

 

According to TA (target approximation), the degree to which a tonal target is 

realised depends on: (1) the distance between initial F0 and the target, (2) the rate 

of target approximation and (3) the duration of the syllable. Thus, when (1) and (2) 

remain constant, shortening the syllable duration alone can lead to undershoot of 

the tonal target. As shown in Figure 4.2, qTA (quantitative target approximation) 

can simulate increased flattening of F0 contours in two consecutive rising tones by 

simply shortening the duration of the syllables. Such flattening is similar to that 

seen in Xu and Wang (2009). 
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   Duration ratio: 1:1                          1:0.75                               1:0.5 

            

Figure 4.2: Effect of syllable shortening on two consecutive rising tones preceded 

by a high tone (not shown here) simulated by an interactive demonstration of qTA 

that can be found at http://www.phon.ucl.ac.uk/home/yi/qTA/. 

 

4.1.1 Methodology 

A. Corpus 

The corpus was taken from the speech materials recorded in Study 3 (Chapter 3). 

Considering individual variability and a carry-over effect resulting from tonal 

context, the corpus was divided into 12 subsets with respect to individual speakers 

(C, K, H, S, A and W) as well as tonal contexts (preceding tones H# and L#). Of 

the 12 subsets, six had a relatively balanced count of both non-contracted and 

contracted items in all 16 tone dyads. These were subsets C_H#, C_L#, K_H#, 

K_L#, H_L# and S_L# and were used for qTA modelling and simulation.  

 

B. Modelling and simulation procedure 

To investigate whether adjusting duration alone can simulate tonal reduction, our 

basic modelling strategies were as follows. First, to obtain raw target parameters 

we trained the qTA model on each of the non-contracted items in the 

aforementioned six subsets. These raw parameters were then averaged with 
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respect to tone dyad (i.e. HH, HR, …, FL and FF) to produce representative tonal 

target parameters (m, b, λ). Further details of this procedure are given in Sec. 

4.1.2.  

 

For each selected subset, three subsequent simulations were conducted. 

Simulation 1 was to simulate F0 contours of each of the individual non-contracted 

bi-tonal sequences using respective canonical target parameters (Tables 4.2-4.7) 

along with their own duration and initial F0 (Sec. 4.1.3.A). Simulation 2 was to 

simulate the reduced tones, again using the canonical parameters (Tables 4.2-4.7), 

but now with the duration and initial F0 of the contracted items as input to the 

model (Sec. 4.1.3.B). A schematic of the simulation procedure is shown in Figure 

4.3 below. 

 

 

Figure 4.3: A schematic representing the procedure of Simulation 2. 

 

 Parameter values trained from non-contracted contours. 

 

 

 

 Reduce the duration to the same length as the contracted 

units (steps to shorten duration are detailed in Sec. 4.1.3. B). 

 

 Synthesised contracted contours (resulting from the 

application of the non-contracted m, b and λ with initial F0 

and duration of the contracted contours). 

 Compared the results with the recorded contracted 

contours. 
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In Simulation 3, the duration of the contracted tones was again used, but the target 

values applied were randomly selected from the canonical target sets. This was to 

test the possibility that reduced F0 contours were simply flattened (Sec. 4.1.3.C). 

The performance of the simulations (i.e. the results of comparison between the 

synthesized and natural curves) was evaluated in terms of goodness-of-fit to the 

original F0 contours, measured in Root Mean Squared Error (RMSE, defined in 

Eq. 4.6 below) and Pearson’s correlation coefficient (defined in Eq. 4.7 below).  

 

       √
 

 
∑ (             )

  
   ,   (4.6) 

 

              
 ∑      
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√ ∑      
  (∑      
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√ ∑       
  

    (∑       
 
   )

 
, (4.7) 

 

where f0 represents the value of the recorded pitch contours and y is the value of 

the predicted contour given by equation (4.2). N is the number of points used to 

approximate the contours. 

 

4.1.2 Extracting qTA parameters from non-contracted bi-tonal sequences 

Modelling was carried out using a Praat script that implements the qTA model 

(Xu and Prom-on, 2010). The script is a modified version of the publicly released 

PENTAtrainer (Xu and Prom-on, 2010-2011). It simulates the F0 contours of an 

utterance by applying qTA through automatic analysis-by-synthesis. For each 

interval to be simulated, the script extracts the target approximation parameters 
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introduced in (4.2), m, b and λ. Parameter estimation was done automatically in 

the script by minimizing the sum of squared errors between the simulated and 

original F0 contours. The Praat script was applied to all non-contracted bi-tonal 

sequences in order to extract the target parameters (m, b and λ) from each syllable 

in a disyllabic word. Averaged across all six subsets, a mean RMSE of 0.32 

semitones was obtained in the first syllable and 0.47 semitones in the second.
7
 

The overall correlation is 0.97 and the average RMSE of the two syllables and 

correlation values are shown as the leftmost points in Figure 4.6. These low 

RMSE and high correlation values indicate that the qTA model, when using the 

extracted target parameters, accurately resynthesized each of the individual natural 

F0 contours.  

 

The parameters extracted from each individual contour were averaged with 

respect to tone type (H, R, L and F) to reflect the general properties of the pitch 

targets for each of the tones as shown in Figure 4.4, which displays boxplots of 

mean qTA parameters and duration of each tone type (obtained from both 

syllables). A logistic regression test also indicated that overall a significant 

relationship between the dependent (i.e. tone type, H, R, L and F) and independent 

variables (parameter triplet m, b and λ) existed (p < .0001). Tone sandhi effect was 

considered in the significance test for the logistic regression, i.e. in an LL 

                                                 
7
 The mean target parameters, duration and the RMSE and correlation values from 

comparison with the original F0 contours are provided in Table 4.1, and the six 

subset’s respective canonical parameters in Tables 4.2-4.7. 
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sequence the first L was assigned to the R category. Overall, to predict the tone 

type, 48 parameter triplets were trained for tone H, 54 for R, 42 for L and 48 for F, 

irrespective of whether the tone occurred in the first or second syllable.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Boxplots of qTA parameters and duration for each tone type. 
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Figure 4.5 shows lexical tone functions in both syllables, similarly indicating that 

the four tones are distributed into four distinct clusters. It is interesting to note that 

the target values of the parameters in the second syllable (i.e. _H, _R, L and _F) 

cluster more toward the centre (indicated by the oval shaded region) while the 

first syllable’s tones (i.e. H_, R_, L_ and F_) are distributed away from the centre. 

That is, in comparison to the first syllable, the second syllable exhibits a reduced 

pitch range. Additionally, the derived R (LL -> RL) clusters closely to the 

underlying R, indicating a virtual merger of the L and R tones under sandhi, 

which is consistent with previous studies (Peng, 2000 for Taiwan Mandarin, and 

Xu, 1997 for Beijing Mandarin). 

 

 

Figure 4.5: Distribution of the lexical tone function, with respect to parameters b 

(Height; the x-axis) and m (Slope; the y-axis), of both syllables. The oval shape 

signifies the centralised cluster of parameter values m and b in the second 

syllables (_H, _R, _L and _F) in comparison to the first syllable (H_, R_, L_ and 

F_). 

 

-80

-60

-40

-20

0

20

40

60

80

-10 -5 0 5 10
Height 

Slope 

H_

R_

L_

F_

_H

_R

_L

_F

L_-> R_



Chapter 4 Modelling tonal reduction                                                                   103 

 

 

 

After obtaining the canonical target parameters for each tone dyad, a series of 

simulations (i.e. Simulations 1-3, as described earlier in Sec. 4.1.1.B) testing the 

proposed time pressure account were conducted, the results of which are 

presented in the next section. 

 

4.1.3 Simulation results 

A. Simulation 1: Using canonical parameters to simulate non-contracted bi-

tonal sequences 

The canonical parameters of the six subsets (shown in Tables 4.2-4.7) were used 

to simulate F0 curves of corresponding individual non-contracted bi-tonal 

sequences using a customised Praat script that performs qTA synthesis. This script 

resynthesizes non-contracted F0 curves by applying the canonical parameters with 

each individual curve’s initial F0 and duration. Results indicate a high correlation 

of 0.86. RMSE values between predicted and actual F0 contours are also fairly 

low (1
st
 syll.: 1.53, 2

nd
 syll.: 2.15). Mean RMSE of the two syllables and 

correlation values are shown as the second points from left in Figure 4.6. As this 

figure shows, in comparison to the parameter training reported in Sec. 4.1.2, the 

decreased goodness-of-fit is expected since here, all individual contours of a 

particular bi-tonal sequence of each subset were simulated with the same set of 

mean target values from the respective tone dyads.  
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Figure 4.6: RMSE and correlation values from parameter training and those from 

the three subsequent simulations. The blue line indicates mean RMSE values and 

the green line indicates correlation values. On the x-axis, NC_training (Sec. 

4.1.2):  Parameter training on non-contracted items (the extracted values were 

averaged based on the 16 types of tone dyads and used as canonical target 

parameters); Simulation 1: Non-contracted tonal simulation (synthesized using 

canonical target parameters with original, i.e. non-contracted duration, 1153 

items in total); Simulation 2: Contracted tonal simulation (synthesized using 

canonical target parameters with duration of the contracted items, 1010 items in 

total); Simulation 3: Contracted tonal simulation with random target assignment 

(synthesized with duration of the contracted items but random assignment of 

canonical target parameters, 1010 items in total). The red asterisks indicate the 

statistical significance of tests conducted in Sec. 4.1.3.C. 
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B. Simulation 2: Simulating F0 contours of contracted tonal sequences with 

canonical parameters 

In this simulation the proposed time pressure account is tested. We applied the 

canonical target parameters obtained in Sec. 4.1.2 to the contracted tonal 

sequences. This required several steps. First, a mean ratio of the relative duration 

of the two syllables in a bi-tonal sequence was computed from the non-contracted 

tokens, which were averaged with respect to each subset and its 16 tone dyads. 

Secondly, each contracted bi-tonal sequence, which consisted of only a single 

interval due to the loss of the intervocalic consonant, was divided into two 

intervals, each having the same relative duration as the mean relative duration of 

the corresponding canonical sequence. In the third step, each subset’s respective 

canonical parameters from non-contracted tone dyads were applied to each of the 

individual contracted tonal sequences, interval by interval. Figure 4.7 shows an 

example simulation. 

 

 

Figure 4.7: Simulation of a contracted bi-tonal sequence using the canonical 

parameters of the tone sequence RF (preceded by a High tone, not shown here) 

and contracted duration. The figure indicates the pitch targets (grey dashed lines), 

synthesized F0 (red dotted curve) against the original F0 (blue curve). 
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The mean RMSE and correlation results are shown as the third points from left in 

Figure 4.6. The evaluation of goodness-of-fit gives a correlation of 0.72, a RMSE 

of 1.23 (interval 1) and 2.23 (interval 2). The mean RMSE value is actually 

slightly lower than that of Simulation 1 (Point 2 in Figure 4.6), which is likely due 

to a smaller pitch range of contracted curves resulting in smaller errors. The 

correlation value is not as good as that of Simulation 1, but this could be due to 

the intrinsic uncertainty introduced in the simulation process. Unlike in 

Simulation 1, where syllable duration values were those of the original individual 

tokens, duration values in the current simulation were the estimated averages of 

the non-contracted tokens. Thus the proportional durations of syllable 1 and 

syllable 2 and variations of individual tokens were estimated because neither was 

recoverable. Taking this factor into consideration, a correlation of 0.72 is still 

satisfactory, and is only slightly lower than the 0.74 obtained in Prom-on et al. 

(2009, p. 418, Table X) for tone-only simulations.  

 

C. Simulation 3: Simply flattened? Random target application 

The results of Simulation 2, despite seemingly agreeing well with our hypothesis, 

could be due to the fact that tones are simply flattened such that all tone dyads 

become similar to each other. To examine this possibility, the canonical targets 

were randomly assigned to contracted tone sequences in another simulation. The 

tone types for the random pairings are shown in the last column of Table 4.1 (p. 

119). If the reduced tone sequences are no longer related to the canonical 

sequences, results from this simulation should be little different from those of 

Simulation 2. 
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As shown in Figure 4.6, in comparison to Simulation 2, the correlation value 

decreased to 0.61, and RMSE increased to 2.17 for interval 1 and 3.24 for interval 

2. A multivariate analysis of variance (MANOVA) on correlation and RMSE 

values showed significant differences across the four sections (Correlation: F(3,764) 

= 233.2, p < .000; RMSE: F(3,764) = 140.9, p < .000). Post hoc analysis (Tukey 

HSD) on correlation further indicated that results from all sections differed 

significantly from each other. Another post hoc analysis (Tukey HSD) on RMSE 

showed no significant difference between Simulations 1 and 2 (p = .745). Thus, 

the result of simulation 3 (i.e. random target application with shortened duration) 

is significantly worse than that of Simulation 2 (i.e. matching the correct target 

parameters with the shortened duration). This means that the correlations seen in 

Simulation 2 are unlikely due to simple F0 flattening.  

 

D. Summary of qTA modelling 

So far in this chapter further evidence in support of the time pressure account has 

been presented through the use of qTA modelling. Detailed F0 contours of 

contracted tokens were constructed by assuming tonal target approximation under 

time pressure, revealing an explicit link between duration and F0 realisation 

(Simulations 1 and 2). Additionally, it is shown in Simulation 3 that the same 

underlying tonal targets are attempted by the speakers even when severe tonal 

reduction occurs. It is therefore concluded that an articulatory-based model such 

as the qTA model adequately reflects the articulatory mechanism of speakers 

when generating F0 contours under varying degrees of time pressure.  
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4.2 Functional linear modelling 

The second examination of the effect of varying duration on tonal realisation is 

through Functional Linear Modelling (FLM), which is one of the techniques 

available in the family of advanced statistical techniques called Functional Data 

Analysis (FDA), introduced in the late 90’s by J. Ramsay and colleagues (Ramsay 

and Silverman, 2005; Ramsay et al., 2009). FDA techniques allow one to conduct 

statistical analysis on a set of contours (F0 in our case) using only the information 

contained in their shape. Quantitative analysis of F0 contours and other time-

varying quantities (e.g. formants) is usually carried out by selecting a few shape 

features such as minimum and maximum coordinates, slopes etc., and then using 

standard statistical analysis on the derived fixed-length feature vectors (e.g. 

Morén and Zsiga, 2011). This approach forces one to choose in advance which 

shape features are relevant and which are not. In the majority of cases, feature 

extraction is carried out by hand. Another approach is to use a model such as the 

Fujisaki model (Fujisaki et al., 2005) or the aforementioned qTA model (Prom-on 

et al., 2009). These models attempt to take into account the physiology of 

phonation. Their performance depends on how faithfully the larynx or the vocal 

tract is modelled and how well the parameter tuning is carried out. In contrast, 

FDA is a flexible platform that allows one to: (1) use sampled contour values 

directly as input to the statistical analysis; and (2) refrain from introducing 

hypotheses on the nature of the analysed signal. The output of FDA is based 

solely on the regularities found within the set of input contour shapes. In view of 

FDA’s flexibility in handling analysis of curves, we will investigate the time 
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pressure account by using duration alone to predict tone shapes of varying degrees 

of realisation. 

 

4.2.1 Methodology 

Functional Linear Models (FLMs) extend ordinary linear models to accept 

functions (of time) as input and/or output. The FLM model applied here takes a 

real number as an independent variable (predictor) and predicts a whole contour 

shape expressed as a function of time. In our case, the predictor d is a convenient 

transformation of the duration D of a disyllabic unit, while the output y(t) is the 

predicted F0 contour shape defined on a fixed time interval. In this way, the shape 

and duration d are decoupled. Formally we have:  

 

                  ,      (4.8) 

 

where d is the logarithm of the normalised duration D, that is, d = log(D ∕ D̄ ) 

where D̄ is the average duration measured across all tokens in the model. β0(t) and 

β1(t) are the functional parameters to be estimated and are analogous to the scalar 

parameters estimated in ordinary linear regression. The training of equation (4.8) 

is assembled in a similar manner to that in which ordinary linear regression 

models are trained (see Ramsay et al., 2009 for details). The main difference for 

the user is that each training element is a (d, F0(t)) pair, while the original F0 

contours are sampled. Hence the sampled F0 contours must be represented by 

continuous functions in time before training can take place. Moreover, they have 
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to be modified such that they span the same time interval as the functions y(t), β0(t) 

and β1(t) must be defined on a common interval (Gubian et al., 2011).  

 

A. Corpus 

The acoustic data used to construct FLM was from subsets C_H#, C_L#, K_H#, 

K_L#. The other two subsets, H_L# and S_L#, used in the qTA modelling were 

not included in view of a need for balanced datasets, i.e. same speakers with 

compatible tonal contexts. Extraction of F0 contours was first carried out with the 

vocal cycle marking of the Praat program and then with manual repair of octave 

jumps and other distinct irregularities using a Praat script (Xu, 2005-2011). For 

each target curve, 20 measurement points were generated, 10 equidistant points 

per syllable for non-contracted tokens (hence 20 in total) and 20 equidistant 

points for contracted tokens. F0 values were converted to semitones and the 

average of the 20 samples was subtracted from all contours. This helped to reduce 

the variability owing to individual differences and made the estimation of 

functional linear modelling more straightforward. 

 

B. Data preparation 

The problem of choosing a function y(t) that best fits a set of samples is solved by 

applying standard smoothing techniques. The user must choose a basis function, 

which for non-periodic signals is typically a B-spline. The internal parameters of 

the B-spline basis and the degree of smoothing imposed on the curve fitting were 

empirically determined by generalized cross-validation (Ramsay and Silverman, 
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2005; Ramsay et al., 2009). Examples of the quality of the smoothing process can 

be seen in Figures 4.11 and 4.12: Dots indicate the original F0 samples and dashed 

lines indicate their respective functional representation. To obtain an (apparent) 

constant duration for each curve, a fictitious [0, 1] normalised time interval is 

simply divided into 20 constant intervals (i.e. one per sample point). In this way, 

the functions y(t) will be scaled so that the half curves spanning each syllable (in 

the non-contracted case) will be aligned with the centre of the interval. This 

improves the analysis quality in that it takes away variability due to random 

misalignment of syllables. All FDA operations were carried out using the freely 

available fda R package (R Development Core Team, 2011). 

 

In order to test the effect of duration on tonal reduction, a model like equation (4.8) 

was built for each tone combination. The rationale is that once the tone sequence 

is known, (4.8) is a simple yet adequate description of a gradual shape adjustment 

rule controlled by the amount of time available for production. In practice, models 

had to be further specialised by building separate models for different preceding 

tones (L or H) and also for the two selected speakers (C and K) since the simple 

structure of (4.8) cannot accommodate the influence of such factors. Regarding 

speaker dependency, recall that equation (4.8) is trained on the surface realisation 

of a number of F0 contours, while no physiological parameter estimation takes 

place. In total, 16 (tone dyads) x 2 (preceding tones) x 2 (speakers) = 64 FLMs 

were produced. Each model was trained using approximately 25 (log duration, 

smoothed F0 curve) pairs with a nearly even proportion of non-contracted, semi-

contracted, contracted samples.  
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The 64 models were evaluated in terms of goodness-of-fit on their training set. 

For each model we computed the root mean squared error (RMSE) and the R
2
 

coefficient of determination averaged on their training set. R
2
 is defined as: 

 

                    ,       (4.9) 

 

where SSE is the sum of squared errors resulting from approximating the sampled 

F0 values with y(t) in (4.8), SSY the sum of squared errors from fitting a 

horizontal line at a height corresponding to the average F0 value (i.e. fitting a 

horizontal line is taken as a baseline goodness-of-fit) (Motulsky and 

Christopoulos, 2003), as schematized in Figure 4.8 below.  Note that R
2
 is not the 

square of anything and takes a negative value when the predicted curve y(t) makes 

a squared error larger than that of fitting a horizontal line (i.e. when SSE > SSY). 

 

 

Figure 4.8: A schematic representing SSEFIT and SSYHORIZ in generating 

coefficient of determination (R
2
) as one measurement of goodness-of-fit in Sec. 

4.2. 
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4.2.2 Results 

A. Evaluation 

Figures 4.9 and 4.10 contain boxplots displaying the R
2
 and RMSE value 

distributions across the 64 models. The leftmost columns show R
2
 and RMSE 

values measured when predicting all the contours belonging to a specific tone-

speaker combination. The two middle columns display the same data, but 

separately for non-contracted and contracted contours, respectively (results for 

semi-contracted contours are not shown separately but are included in the first 

column). At least half of the models exhibit an acceptable goodness-of-fit, which 

is remarkable if we consider the simplicity of (4.8) and the small number of 

training contours per model. The small differences between goodness-of-fit for 

non-contracted and contracted contours can be explained by the fact that 

contracted curves are flatter than non-contracted ones, thus the gain of fitting (4.8) 

relative to fitting a horizontal line (i.e. the baseline error considered in R
2
) tends to 

be smaller for contracted contours, hence a smaller R
2
 value in contracted cases. 

On the other hand, RMSE tends to be smaller (i.e. better) in the contracted case 

because contracted curves have smaller amplitude oscillations and therefore errors 

tend to have smaller absolute values.  
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Figure 4.9: R
2 

values from comparing observation and prediction. From left to 

right, the data are displayed for all contours, non-contracted contours, contracted 

contours and contracted contours with mismatched models. 

 

 

Figure 4.10: RMSE
 
values from comparing observation and prediction. From left 

to right, the data is displayed for all contours, non-contracted contours, contracted 

contours and contracted contours with mismatched models. 
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Similarly to Simulation 3 which used the qTA model, at this point we wish to test 

whether it is in fact easy to predict the shape of a contracted tone combination 

because tones may simply be flattened and all tone combinations become similar 

to each other. To verify this we tried to predict contracted contours using 

mismatched models. The rightmost columns in Figures 4.9 and 4.10 display 

goodness-of-fit when predicting contracted contours using a model randomly 

picked from among the 31 models trained on the same speaker but on another tone 

combination/context. The large absolute and relative performance deterioration 

shows that contracted F0 contours still preserve information in their shape and 

they are not simply flat. This confirms that the performance of the linear model 

(4.8) in predicting contracted contours is not due to F0 flattening occurring 

uniformly across the board. In particular, comparing the 3
rd

 and the 4
th

 columns of 

Figure 4.9, we see that fitting a matched model (4.8) to predict a contracted 

contour is better than a flat line (R
2
 > 0) in 75% of the cases (i.e. from the lowest 

line of the box to the top), while the converse is true when fitting a mismatched 

model (4.8).  

 

B. Specific fitting examples 

We now show some specific examples in order to gain further insight into the 

feasibility of using a simple model as (4.8).  Figures 4.11 and 4.12 show some 

selected contours from the model constructed for speaker K in the tonal context 

L#RH, which globally scored RMSE = 0.35 and R
2
 = 0.80.  Figure 4.11 shows 

cases where a good fit was seen whereas Figure 4.12 shows cases where a poor fit 

was seen.  
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Figure 4.11: Cases where the model exhibited a good fit for Subject K and tone 

set L#RH. Measurement points are shown as dots and the smoothed y(t) contours 

shown as dashed curves. Solid curves are the respective predictions: Thin black 

line represents non-contracted token and thick orange line contracted token. The 

x-axis represents the normalized time from 0 to 1 (so it is not in seconds) and the 

y-axis is measured semitones (note the mean F0 has been removed from each 

curve).  

 

In Figure 4.11 (cases where a good fit was observed), we see an adequate 

approximation when the predictor of duration changes from long (D = 0.402s, d = 

0.109, black solid) to short (D = 0.212s, d = -0.169, orange solid). This provides 

evidence for the continuous nature of durational effects on phonetic realisation 

since the contracted F0 contour seems to preserve some traits of the non-

contracted one. This is in support of the time pressure account on the nature of 

extreme reduction and this in turn is nicely captured by the FLM (4.8). 
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Figure 4.12: Cases of the model exhibited a poor fit for Subject K and tone set 

L#RH. Measurement points are shown as dots and the smoothed y(t) contours 

shown as dashed curves. Solid curves are the respective predictions: Thin black 

line represents non-contracted token and thick orange line contracted token. The 

x-axis represents the normalized time from 0 to 1 (so it is not in seconds) and the 

y-axis is measured semitones (note the mean F0 has been removed from each 

curve). 

 

In Figure 4.12 (cases where a poor fit was observed), we see that the chosen non-

contracted curve (black dashed) has a greater amplitude than its prediction (D = 

0.300s, d = -0.017, black solid) but is still of a similar shape (i.e. rising from low 

to high). On the other hand, the predicted contracted curve (orange solid line) 

shows a general mismatch in terms of shape and range. We attribute this to the 

limited predicting power of (4.8), which uses only one predictor, d. When time 

pressure is as high as in our cases of contracted syllables (D = 0.131s in the 

example), speakers simply cannot realise each target fully in time (though they 
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still attempted to), and thus produce a seemingly ‘flattened’ contour. By visually 

inspecting several other cases, patterns similar to those exemplified above were 

seen. 

 

C. Summary of functional linear modelling 

A data-driven approach was adopted to investigate the close link between duration 

and tonal reduction. With the support of functional linear modelling applied to an 

experimentally-controlled acoustic database, we found evidence in favour of the 

continuous nature of the durational effects on phonetic reduction. It should be 

noted that in this supplementary modelling method, both contracted and non-

contracted tokens were used in the training and in the evaluation, which is 

different from the qTA modelling in Sec. 4.1. In the qTA modelling, after 

extracting the target parameters of the non-contracted tokens, detailed F0 contours 

of the contracted tokens were generated by applying respective canonical targets 

and shortened durations. Owing to such training discrepancies as well as their 

different evaluation methods, the performance of both modelling methods cannot 

be directly compared. However, it is recognised that a model as simple as the one 

used in the functional linear model demonstrates that duration alone is capable of 

capturing varying degrees of F0 realisation. This further supports the time pressure 

account regarding phonetic reduction. On the other hand, cases in which a poor fit 

is seen also indicate that the speakers’ inherent physiological limit needs to be 

considered when modelling extreme reduction, as shown in the examples 

presented here. 
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4.3 Conclusion 

Computational modelling is an empirical method to test the validity of a particular 

hypothesis with respect to empirical data/observations. In this chapter, two 

different models were adopted to further test the experimental findings reported in 

Chapter 3: Time pressure is the direct cause of tonal reduction in Taiwan 

Mandarin and that speakers still attempt to realise the same underlying tonal target 

within a reduced duration. The success of both modelling approaches strengthens 

the account regarding the effect of time pressure on phonetic reduction, providing 

more evidence for Lindblom’s (1963) model of durational undershoot. Moreover, 

the qTA modelling carried out further demonstrates that detailed F0 contours of 

contracted tokens can be generated by an articulatory-based computational model. 

This provides a strong predicative tool for modelling contraction and will help aid 

future investigations into the mechanisms governed by articulatory process. 
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Table 4.1: Canonical qTA target parameters m, b and λ (m and b define the slope and height of a linear target, and λ, the rate of target 

approximation), extracted from all non-contracted bi-tonal sequences, shown together with mean duration in seconds and local RMSE in 

semitones of each syllable, and their overall correlation values. Note that each subset has its own canonical parameters (see Tables 4.2 – 4.7) 

and Table 4.1 presents the average. The last column is the random tone dyads for Simulation 3 detailed in Sec. 4.1.3.C.  

1
st 

syllable m b λ Duration (s) RMSE (st) 2
nd

 syllable m b λ Duration (s) RMSE (st) Correlation Random 

H -4 4 41 0.185 0.21 H 2 3 30 0.187 0.30 0.94 RF 

H 2 5 41 0.228 0.28 R 19 -2 37 0.214 0.45 0.98 FH 

H 3 5 42 0.226 0.30 L -3 -5 35 0.201 0.72 0.97 LR 

H 12 4 47 0.213 0.27 F -44 0 45 0.200 0.30 0.98 RL 

R 26 -1 24 0.223 0.27 H 10 4 47 0.199 0.36 0.98 LF 

R 31 1 24 0.211 0.28 R 28 -1 33 0.202 0.39 0.96 FL 

R 56 3 23 0.231 0.31 L -27 -4 42 0.205 0.57 0.98 FR 

R 42 -1 25 0.224 0.30 F -40 2 56 0.209 0.39 0.98 HH 

L 12 -9 25 0.223 0.42 H 15 1 64 0.212 0.47 0.98 LL 

L -10 -8 27 0.224 0.42 R 27 -3 50 0.208 0.57 0.96 HL 

L 43 3 31 0.210 0.35 L -25 -4 42 0.197 0.55 0.97 FF 

L 14 -10 27 0.207 0.50 F -22 -1 55 0.210 0.59 0.96 HR 

F -46 1 41 0.224 0.29 H -3 2 50 0.202 0.35 0.98 RR 

F -65 0 38 0.230 0.31 R 6 -1 42 0.214 0.48 0.99 LH 

F -67 1 36 0.223 0.35 L -5 -2 41 0.193 0.67 0.98 RH 

F -35 3 46 0.191 0.29 F -23 0 52 0.193 0.35 0.97 HF 
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Table 4.2: Subset C_H# (speaker C, preceding tone H) with qTA parameters (m, b and λ) and mean evaluation values (RMSE and 

Correlation) from parameter training. Duration_ratio is used for Simulation 2 in shortening duration of the non-contracted to that of the 

contracted. The last column is the random tone dyads for Simulation 3 detailed in Sec. 4.1.3.C.  

1
st 

syllable m b λ RMSE (st) Duration_ratio 2
nd

 syllable m b λ RMSE (st) Correlation Random 

H -23 5 22 0.29 0.5024 H 4 2 28 0.43 0.91 RF 

H -15 5 31 0.27 0.5042 R 28 -5 31 0.42 0.99 FH 

H -5 5 36 0.26 0.5481 L -12 -10 27 0.88 0.98 LR 

H 15 2 38 0.29 0.4959 F -65 -6 25 0.48 0.98 RL 

R 46 -3 21 0.34 0.5289 H 7 2 44 0.41 0.98 LF 

R 63 -1 19 0.45 0.4953 R 37 -2 30 0.70 0.94 FL 

R 73 1 18 0.41 0.5373 L -30 -7 35 0.64 0.95 FR 

R 54 -5 18 0.34 0.5084 F -53 -1 53 0.58 0.98 HH 

L 12 -12 15 0.49 0.5298 H 21 1 68 0.57 0.98 LL 

L -25 -9 22 0.45 0.5216 R 24 -3 55 0.58 0.98 HL 

L 65 2 26 0.45 0.5276 L -31 -9 37 0.82 0.98 FF 

L 12 -12 23 0.56 0.5221 F -47 -1 48 0.90 0.98 HR 

F -67 -4 36 0.44 0.5071 H -9 -1 57 0.51 0.98 RR 

F -80 -4 35 0.43 0.5055 R 1 -5 38 0.56 0.99 LH 

F -75 -1 30 0.43 0.5551 L -6 -7 33 0.74 0.99 RH 

F -51 0 40 0.30 0.4941 F -37 -5 57 0.38 0.99 HF 
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Table 4.3: Subset C_L# (speaker C, preceding tone L) with qTA parameters (m, b and λ) and mean evaluation values (RMSE and 

Correlation) from parameter training. Duration_ratio is used for Simulation 2 in shortening duration of the non-contracted to that of the 

contracted. The last column is the random tone dyads for Simulation 3 detailed in Sec. 4.1.3.C.  

1
st 

syllable m b λ RMSE (st) Duration_ratio 2
nd

 syllable m b λ RMSE (st) Correlation Random 

H 12 7 48 0.23 0.4987 H 14 6 30 0.26 0.99 RF 

H 8 6 41 0.36 0.4874 R 4 -1 44 0.42 0.98 FH 

H 17 9 55 0.37 0.4902 L -10 -3 37 0.81 0.98 LR 

H 21 7 51 0.37 0.4926 F -46 -1 35 0.37 0.97 RL 

R 48 0 20 0.47 0.5044 H 9 9 55 0.48 0.98 LF 

R 42 4 19 0.42 0.5041 R 53 0 19 0.55 0.98 FL 

R 63 11 14 0.53 0.5084 L -51 -4 38 0.81 0.99 FR 

R 52 4 26 0.52 0.5005 F -62 4 45 0.60 0.98 HH 

L 12 -9 21 0.46 0.4936 H 17 4 49 0.77 0.97 LL 

L -7 -10 23 0.63 0.5094 R 40 -3 46 1.19 0.91 HL 

L 66 13 15 0.75 0.5050 L -54 -1 45 0.81 0.98 FF 

L -10 -9 20 0.89 0.4857 F -32 -4 47 1.03 0.93 HR 

F -56 0 38 0.48 0.5118 H 0 2 56 0.42 0.97 RR 

F -67 4 34 0.46 0.5002 R 17 0 32 0.61 0.99 LH 

F -76 2 35 0.62 0.5227 L 14 0 36 1.05 0.98 RH 

F -27 8 49 0.54 0.4949 F -26 3 53 0.32 0.98 HF 
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Table 4.4: Subset K_H# ((speaker K, preceding tone H) with qTA parameters (m, b and λ) and mean evaluation values (RMSE and 

Correlation) from parameter training. Duration_ratio is used for Simulation 2 in shortening duration of the non-contracted to that of the 

contracted. The last column is the random tone dyads for Simulation 3 detailed in Sec. 4.1.3.C.  

1
st 

syllable m b λ RMSE (st) Duration_ratio 2
nd

 syllable m b λ RMSE (st) Correlation Random 

H -20 2 20 0.14 0.4813 H 13 -1 28 0.23 0.81 RF 

H 4 3 27 0.25 0.5194 R 28 -6 36 0.46 0.99 FH 

H 16 1 25 0.26 0.5416 L -16 -8 42 0.59 0.99 LR 

H 5 1 29 0.38 0.5268 F -42 -2 54 0.31 0.94 RL 

R 25 -7 27 0.36 0.5078 H 18 -1 52 0.35 0.97 LF 

R 22 -2 26 0.31 0.4878 R 4 -5 33 0.32 0.93 FL 

R 55 -1 28 0.30 0.5210 L -26 -8 44 0.55 0.98 FR 

R 37 -6 25 0.37 0.4840 F -32 -2 66 0.40 0.98 HH 

L 2 -10 25 0.56 0.4871 H 18 -2 72 0.41 0.98 LL 

L -6 -9 28 0.46 0.5187 R 11 -6 51 0.55 0.98 HL 

L 24 -1 37 0.29 0.4919 L -7 -7 40 0.48 0.94 FF 

L 29 -14 17 0.58 0.4747 F -12 -3 61 0.60 0.95 HR 

F -46 -2 46 0.23 0.5037 H -2 -1 55 0.33 0.98 RR 

F -69 -3 40 0.18 0.4991 R 5 -6 40 0.48 0.99 LH 

F -51 -3 37 0.32 0.5057 L -7 -5 41 0.69 0.99 RH 

F -44 0 50 0.21 0.4800 F -25 -3 44 0.33 0.99 HF 
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Table 4.5: Subset K_L# (speaker K, preceding tone L) with qTA parameters (m, b and λ) and mean evaluation values (RMSE and 

Correlation) from parameter training. Duration_ratio is used for Simulation 2 in shortening duration of the non-contracted to that of the 

contracted. The last column is the random tone dyads for Simulation 3 detailed in Sec. 4.1.3.C.  

1
st 

syllable m b λ RMSE (st) Duration_ratio 2
nd

 syllable m b λ RMSE (st) Correlation Random 

H 0 3 46 0.20 0.4658 H -10 5 33 0.24 0.98 RF 

H 13 7 43 0.31 0.5120 R 17 1 39 0.58 0.98 FH 

H -9 6 27 0.42 0.5196 L 28 -4 30 1.29 0.93 LR 

H 16 5 53 0.26 0.5129 F -42 2 55 0.23 0.99 RL 

R 12 2 33 0.19 0.5204 H 7 5 56 0.25 0.99 LF 

R 9 2 21 0.20 0.5011 R 34 0 26 0.28 0.96 FL 

R 82 3 19 0.24 0.5194 L -15 -3 36 0.64 0.98 FR 

R 58 -2 21 0.21 0.4924 F -39 2 56 0.26 0.99 HH 

L 32 -11 21 0.46 0.5080 H 11 -1 67 0.38 0.98 LL 

L -9 -10 29 0.46 0.4978 R 30 -6 54 0.49 0.98 HL 

L 54 2 29 0.28 0.4998 L 2 -3 34 0.55 0.97 FF 

L 23 -10 28 0.44 0.4825 F -20 -2 61 0.39 0.98 HR 

F -43 2 41 0.21 0.5081 H -4 3 46 0.32 0.98 RR 

F -68 2 35 0.20 0.5082 R 5 1 42 0.46 0.99 LH 

F -79 1 33 0.26 0.5122 L 6 -1 42 0.79 0.96 RH 

F -49 4 37 0.23 0.4839 F -7 1 48 0.46 0.96 HF 
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Table 4.6: Subset H_L# ((speaker H, preceding tone L) with qTA parameters (m, b and λ) and mean evaluation values (RMSE and 

Correlation) from parameter training. Duration_ratio is used for Simulation 2 in shortening duration of the non-contracted to that of the 

contracted. The last column is the random tone dyads for Simulation 3 detailed in Sec. 4.1.3.C.  

1
st 

syllable m b λ RMSE (st) Duration_ratio 2
nd

 syllable m b λ RMSE (st) Correlation Random 

H -3 4 52 0.20 0.4965 H -13 4 35 0.24 0.98 RF 

H -2 5 44 0.31 0.5098 R 17 0 37 0.43 0.98 FH 

H -9 5 51 0.26 0.5118 L 14 -2 39 0.36 0.99 LR 

H 7 4 53 0.16 0.5118 F -35 5 38 0.19 0.99 RL 

R 20 1 17 0.16 0.5192 H 6 5 39 0.30 0.98 LF 

R 29 4 32 0.21 0.5071 R -4 2 56 0.22 0.98 FL 

R 39 2 24 0.15 0.5259 L -11 0 52 0.30 0.98 FR 

R 31 0 26 0.25 0.5159 F -29 3 52 0.24 0.98 HH 

L 5 -4 44 0.28 0.4887 H 12 2 59 0.30 0.98 LL 

L -3 -5 31 0.30 0.4995 R 36 -2 39 0.34 0.97 HL 

L 38 2 41 0.15 0.5300 L -28 -1 60 0.21 0.98 FF 

L 2 -4 47 0.26 0.4930 F -6 0 47 0.22 0.92 HR 

F -29 5 40 0.20 0.5031 H -5 4 40 0.17 0.97 RR 

F -46 0 43 0.35 0.5079 R 8 0 55 0.45 0.98 LH 

F -62 3 37 0.23 0.5322 L -14 0 50 0.37 0.99 RH 

F -9 3 47 0.22 0.4946 F -20 3 47 0.29 0.94 HF 
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Table 4.7: Subset S_L# (speaker S, preceding tone L) with qTA parameters (m, b and λ) and mean evaluation values (RMSE and 

Correlation) from parameter training. Duration_ratio is used for Simulation 2 in shortening duration of the non-contracted to that of the 

contracted. The last column is the random tone dyads for Simulation 3 detailed in Sec. 4.1.3.C.  

1
st 

syllable m b λ RMSE (st) Duration_ratio 2
nd

 syllable m b λ RMSE (st) Correlation Random 

H 7 3 60 0.18 0.4715 H 0 2 25 0.39 0.96 RF 

H 7 5 60 0.21 0.4957 R 22 0 33 0.38 0.98 FH 

H 10 5 57 0.22 0.4809 L -19 -3 35 0.37 0.99 LR 

H 7 5 59 0.17 0.4951 F -30 3 63 0.24 0.99 RL 

R 7 2 28 0.13 0.4785 H 11 2 36 0.38 0.98 LF 

R 22 0 26 0.12 0.4918 R 45 -2 31 0.30 0.97 FL 

R 24 3 39 0.20 0.4984 L -27 -3 48 0.49 0.98 FR 

R 18 1 34 0.15 0.4982 F -24 3 62 0.26 0.98 HH 

L 13 -6 27 0.26 0.4786 H 13 3 68 0.37 0.98 LL 

L -7 -4 30 0.21 0.4722 R 21 0 59 0.29 0.97 HL 

L 12 2 40 0.18 0.4741 L -29 -3 38 0.41 0.98 FF 

L 30 -8 26 0.29 0.4709 F -13 2 68 0.38 0.98 HR 

F -37 4 47 0.20 0.4964 H -2 4 46 0.36 0.98 RR 

F -59 4 41 0.20 0.5069 R 3 2 45 0.35 0.98 LH 

F -58 4 44 0.27 0.5222 L -21 1 46 0.40 0.99 RH 

F -29 4 53 0.25 0.4701 F -24 2 63 0.30 0.97 HF 
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Chapter 5 

 

General conclusion 

 

Phonetic variability is known to be ubiquitous in natural speech, and much of this 

variability is related to phonetic reduction. Without understanding the 

mechanisms underlying phonetic reduction, the fundamental issue of invariance 

and variability cannot be resolved. In this thesis, experimental and corpus data 

sets were analysed and computation modelling was performed to explore the 

underlying mechanisms of one form of extreme reduction, known as contraction, 

in Taiwan Mandarin. Analysis was conducted first on segmental reduction and 

then on tonal reduction. The focus of the analysis was to evaluate the general 

hypothesis that time pressure is the direct cause of extreme reduction. Based on 

this hypothesis a number of predictions regarding the effect of time pressure on 

contraction were made and then tested in Chapters 2 and 3. Many of the 

predictions were confirmed, thus providing support for the main hypothesis stated 
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above. In Chapter 4 the effects of durational changes on the degree of tonal 

reduction were further demonstrated through computational modelling. Results of 

this thesis help elucidate certain issues faced by theories of phonetic variation, 

including popular proposals such as 1) exemplar-based models and 2) the H&H 

theory.  

 

5.1 Existing accounts  

5.1.1 Exemplar-based models 

To explain the discrepancy between canonical forms and their varied forms of 

phonetic realisation, the simplest explanation can be offered by an exemplar-based 

account (Bybee, 2002; Goldinger, 1998, 2007; Hawkins, 2003; Johnson, 1997a, b 

and 2007; Pierrehumbert, 2001). In an exemplar-based model of speech 

production/perception, all variant forms are stored in the lexicon, and variations 

are an integral part of lexical representation. Therefore, in principle, there is no 

issue of variability in these models. However, as suggested by Plug (2005), there 

is still a need to find a level of phonetics at which perceptual representations can 

be translated into motor commands. Regarding phonetic implementation, in a 

comprehensive review of the roles of abstractions and exemplars in speech 

processing, Ernestus (in press) advocates a hybrid model and suggests that 

duration variants are also stored as exemplars and speakers make choices in terms 

of the type of articulatory gestures depending on the time available for the 

articulation of the word. Such a suggestion not only lays the burden of 

maintaining the highly gradient articulatory variations to the memory, but also 
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leaves no room for possible direct mechanical relation between duration and 

phonetic reduction. 

 

5.1.2 H&H theory 

Alternatively, there could exist a more causal relationship between invariance and 

variability as suggested by the H&H theory (Lindblom, 1990), which is based on 

the principle of economy of effort and has been applied by various frequency 

accounts and social and speaking style accounts. Before discussing the findings 

reported in this thesis, first recall Lindblom’s key characterization of the principle 

(1990, p. 417): “……within limits speakers appear to have a choice whether to 

undershoot or not to undershoot. We also noted that avoiding undershoot at short 

segment durations entails a higher biomechanical cost”. To a certain degree, this 

thesis is in accordance with this statement, that is, speakers aim to achieve targets 

within a limited duration by increasing effort so as to avoid undershoot. However, 

two things should be noted. First, what the present thesis has observed is a form of 

reduction that is more severe than that reported in Lindblom’s studies, and it has 

been found that when duration is extremely short, there appears to be a barrier 

beyond which speakers simply have no choices but to undershoot, sometimes 

severely, the desired targets. This constraint may be related to what Lindblom 

meant by “within limits”, but what exactly what those limits are requires 

clarification. 
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Secondly, it should be noted that H&H is based on Moon and Lindblom (1994), 

which did not calculate peak velocity over movement amplitude as a measure of 

articulatory effort and there was confounded assessment of articulatory effort (as 

mentioned in Sec. 1.3). Therefore, it is uncertain whether an increased effort was 

actually observed when speakers produced reduced items in Moon and Lindblom 

(1994). Instead, they only observed that the relation between duration and 

phonetic reduction is less linear in clear than in normal speech, which could 

actually be the result of reduced effort when speech rate is lowered in clear speech. 

On the other hand, the finding presented in the present thesis that articulatory 

effort cannot offset the effect of duration-dependency suggests that a non-

dominant role is played by articulatory effort when it comes to selecting phonetic 

target or determining the range of variations, as implied by the predictions of the 

exemplar-based models (Plug, 2005). That is to say, speech communication is 

conducted in a goal-orientated manner within a social framework rather than by 

an intentional motor behaviour (Rischel, 1991). 

 

5.1.3 Are we really concerned with saving effort while talking? 

Furthermore, one potential difficulty of the effort account of phonetic reduction is 

that it seems to be inconsistent with the ease with which we keep talking 

continuously in our everyday life. More often than not, the reason we talk is not 

for the sake of conveying a message, but often we simply enjoy talking or feel 

comforted by the process of conversing with someone. As Levelt (1989, p. xiii) 

observed, “Talking is one of our dearest occupations. We spend hours a day 
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conversing, telling stories, teaching, quarrelling… and, of course, speaking to 

ourselves”. It is probably true that some physical activities, such as running or 

climbing hills, are constrained by ‘economy of effort’, but this is because they are 

high energy-consuming activities. That speech production is also a strenuous 

activity for human beings just like running has never been clearly demonstrated.  

 

There have been, however, some rather indirect investigations. For example, 

Parnell and Amerman (1977) consulted subjects’ subjective judgements of 

articulatory effort in producing pairs of CV syllables and found that voicing and 

fricatives were judged to require greater articulatory effort. Also, with the 

assumption that less strenuous articulations are induced when speakers are tired or 

impaired, Kaplan (2010) compared the speech of subjects who were intoxicated 

with the speech of the same subjects when they were sober. His results suggested 

a compression of the articulatory space in the intoxicated condition, thus linking 

weakened articulatory effort (under intoxication) to phonological patterns 

observed in an Optimality Theory framework. These efforts, being indirect and 

non-quantitative, also have not provided clear answers to the question of whether 

articulatory effort is the key to understanding phonetic reduction. 

 

5.1.4 Duration and articulatory effort 

The key, in our view, probably lies in the recognition that Nelson’s definition of 

impulse cost (Eq. 1.1, p. 10), which has been used as an indicator of articulatory 

effort, actually consists of two components, namely, force and duration. Adopting 
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this notion as the basis of judging articulatory effort is actually incompatible with 

Lindblom’s own proposal regarding articulatory effort in H&H theory. That is, 

duration and articulatory effort are two separate and mutually independent 

variables. Also, most effort-oriented accounts do not separate the contribution of 

duration and articulatory effort. To exacerbate the confusion, duration is 

sometimes used as a measure of speech ‘effort’. For example, van Son and Pols 

(1999) measured duration as an indicator of speech effort in the production of 

consonants in a VCV structure in recited and spontaneous speech. They concluded 

that ‘speech effort’ (which is dependent on duration along with other factors) of 

the intervocalic consonant was weaker in spontaneous speech than in recited 

speech. But if force and duration are independent factors, their findings actually 

provide evidence only for a close correlation between duration and phonetic 

reduction, because they had obtained no independent measurements of 

articulatory force. The close correlation between duration and phonetic reduction 

is also seen in many other studies (e.g. vowel reduction: de Jong et al., 1993; 

Lindblom, 1963, 1990; Moon and Lindblom, 1994; consonant reduction: de Jong 

et al., 1993; Fougeron and Keating, 1997; van Son and Pols, 1999; Warner and 

Tucker, 2007; tonal reduction: Myers and Li, 2009; Berry, 2009).  

 

In a recent attempt to improve the computational model of Articulatory 

Phonology (Browman and Goldstein, 1990 and 1992), Simko and Cummins (2009) 

report that a cost function with only two cost components, one representing 

production cost and the other parsing cost (i.e. to replicate the trade-off between 

articulatory effort minimization and perceptual parsing cost suggested by the 
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H&H theory), is not sufficient to simulate variations along a hyper-hypo 

continuum. They found that a third cost component – duration, is an imperative 

element that needs to be included in the model. Additionally, in Simko and 

Cummins (2011), a premium is placed on the duration of an utterance in 

sequencing articulatory gestures due to the fact that duration cost “represents a 

global constraint imposed on the manner of speech production reflecting an 

intentional choice of the speaker with respect to speaking rate” (p. 547).  

 

Furthermore, our measurements of articulatory effort suggest that the role of effort 

is not as clear as duration in realizing varying degrees of phonetic realisation. This 

result somewhat echoes the suspicion of Bauer (2008) and Simpson (2001) 

regarding the articulatory explanation of phonetic reduction. Research on phonetic 

reduction often reports a lenition process such as plosive > affricative > fricative > 

approximant > elision, where it is assumed that a segment in connected speech is 

degraded on a strength hierarchy from stronger to weaker. However, it is known 

that, in comparison to a plosive, a fricative is actually a more demanding muscular 

movement for a speaker owing to the subtle aerodynamic effects required 

(Ladefoged and Maddieson, 1996, p. 137; Perkell, 1997, p. 352). This 

‘degradation process’ of a strength hierarchy, to some extent, also challenges the 

account of articulatory economy in phonetic reduction. Bauer (2008) thus re-

defines lenition as the failure to reach a phonetically specified target (i.e. 

articulatory undershoot or underachievement). This suggests that the reduced 

forms, e.g. a realisation of fricatives or approximants, are not intended as such but 

are rather byproducts in connected speech. Interestingly, Bauer (2008, p. 165) also 
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proposes that “changes of duration should still continue to be counted as matters 

involving lenition/fortition”. 

 

5.2 Current results  

The current results are from experimental, corpus and modelling data. In Chapter 

2, three studies (i.e. Study 1, Study 2a and Study 2b) were conducted to 

investigate the time pressure account of phonetic variation in reduced speech. In 

Study 1, native Taiwan Mandarin speakers produced sentences containing 

nonsense disyllabic words with varying phonetic structures at differing speech 

rates. Spectral analysis showed that extreme reduction occurred frequently in 

nonsense words produced under high time pressure. In Study 2a, further 

examination of formant peak velocity as a function of formant movement 

amplitude in experimental data suggested that articulatory effort was not 

decreased during reduction, but in fact likely to be increased. Study 2b examined 

high frequency words from three spontaneous speech corpora for reduction 

variations. Results demonstrate that patterns of reduction in high frequency words 

in spontaneous speech (Study 2b) were similar to those in nonsense words spoken 

under experimental conditions (Study 2a). That is, duration is the direct cause of 

extreme phonetic reduction, which can be observed in both nonsense and high-

frequency words.  

 

In Chapter 3, Study 3 investigated tonal reduction with varying tonal contexts and 

found that tonal reduction can also be explained in terms of time pressure. 
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Analysis of F0 trajectories demonstrates that speakers attempt to reach the original 

underlying tonal targets even in cases of extreme reduction and that there was no 

weakening of articulatory effort despite the severe reduction. To further test the 

time pressure account, in Chapter 4 two computational modelling experiments 

were presented. The first applied the quantitative Target Approximation model 

(qTA) for tone and intonation and the second applied the Functional Linear Model 

(FLM). Results showed that severely reduced F0 trajectories in tone dyads can be 

simulated to a high accuracy by qTA using generalized canonical tonal targets 

with only modification of syllable duration. Additionally, it was shown using 

FLM, adjusting duration alone can give a fairly good representation of contracted 

F0 trajectory shapes. 

 

Overall, current results suggest that target undershoot under time pressure is likely 

to be the direct cause of extreme reduction, whereas factors that have been 

commonly associated with reduction in previous research are very likely to have 

impacts on duration, which in turn determines the degree of target attainment 

through the time pressure mechanism.  

 

5.3 Evidence of direct duration control for encoding information and its 

consequence for target attainment 

As it happens, variability in duration is not only due to factors often discussed in 

the reduction literature, such as word frequency, speaking style and social factors. 

Rather, duration is also extensively used, according to the findings of many 
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empirical studies, to encode different kinds of linguistic information, as will be 

briefly reviewed below. 

 

5.3.1 Syllable grouping and final lengthening  

Studies of prosody and intonation have shown that speakers adjust the local 

duration of each element within a basic prosodic unit so as to demarcate different 

levels of prosodic components as well as to encode inter-constituent affinity. For 

example, from an aspect of lower-level prosody, the duration of a syllable varies 

according to the syllable’s position in a prosodic unit and relative location to a 

prosodic boundary. Research has indicated that phrase-medial segments are 

shorter than those in phrase-initial and phrase-final positions (e.g. Lindblom and 

Rapp, 1973). In an analysis of French vowel reduction in conversational speech, 

Meunier and Espesser (2011) reported a strong correlation between durational and 

spectral reduction. Their results show that vowels in the final syllables of words 

were less often reduced while the preceding ones show reduced durations and 

centralized formant values. Research by Xu and Wang (2009) on tonal reduction 

as a function of syllable grouping shows that in comparison to other acoustic 

correlates such as F0 displacement, vp/d ratio (ratio of peak velocity to F0 

displacement) and the parameter C (shape of F0 velocity profile), syllable duration 

exhibits the most consistent grouping-related patterns. That is, in a short phrase of 

1-4 syllables, duration is shortest in the medial positions, longest in the final 

position and the second longest in the initial position, which exactly parallels the 

pattern of tonal reduction. The finding of Xu and Wang (2009) is in line with 
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Klatt (1975) who proposed that increasing the duration of terminal segments 

enables a more effective manifestation of F0 movements signalling terminal or 

non-terminal breaks.  

 

5.3.2 Focus, new topic and second mention  

It is well known that many languages use F0 as a prominent cue in signalling a 

focus function in an utterance (English: Cooper et al., 1985; Mandarin: Xu and Xu, 

2005; Arabic: Yeou, 2004; Dutch: Ladd et al., 2000). It has also been found that 

focus encoding involves duration expansions of the focused component. In fact, 

some research has disentangled the role of F0 and duration as phonetic correlates 

of focus prominence (Kügler, 2008) indicating that duration alone can be a 

functionally relevant prosodic cue. Furthermore, the understanding that adjusting 

duration can jointly signal certain pragmatic functions is also seen in the study of 

Wang and Xu (in press) on prosodic encoding of topic and focus in Mandarin. In 

addition to the main findings that focus and topic can be encoded simultaneously 

(i.e. focus is encoded with an expanded pitch range and new topic a raised pitch 

range), they found that a newly raised topic involves a slightly longer duration in 

comparison to an established one. Similar cases in which duration is used to 

encode linguistic information can also be found in research regarding word 

probability (i.e. frequency and number of mention). For example, in addition to 

the expected word frequency effect that words of higher frequency are 

significantly shorter than those of lower frequency words, Baker and Bradlow 

(2009) showed that a speaker tends to reduce the second mention of a word in 



Chapter 5 General conclusion                                                                             138 

 

 

 

both clear and plain speech styles. They conclude that this is indication of a direct 

link between duration and probability, rather than a relationship solely mediated 

by prosodic prominence.    

 

Given the apparently heavy information load of duration, it is unlikely that 

speakers have much room for making free choices in duration just for the sake of 

controlling the amount of phonetic reduction. It is more likely that local durations 

are mostly determined by the informational factors mentioned above, and 

speakers at most have the choice of globally slowing down if it is necessary to 

reduce the amount of phonetic reduction, as in the case of clear speech. The 

validity of this assumption, of course, awaits evidence from future research. 

 

5.4 Concluding remarks 

In summary, this thesis has provided evidence in support of the hypothesis that 

time pressure is the direct cause of extreme phonetic reduction. It has also 

provided evidence that an increased articulatory effort (measured as slope of peak 

velocity of unidirectional movement against movement amplitude) is insufficient 

to compensate for duration-dependent undershoot (in particular, when time 

pressure exceeds certain thresholds). We conclude that these results support the 

idea that time pressure is the most critical factor determining the occurrence of 

extreme phonetic reduction such as contraction. The explanation that less 

articulatory effort is involved in reduced items was not compatible with the 

current results. 
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Recently, more attention has been drawn to socially-constrained variations with 

particular attention being given to recognizing that speakers use phonetic variation 

as a resource to achieve a range of social goals (Byrd, 1994; Hawkins, 2003 and 

2010, Labov, 2006; Local, 2003, Foulkes et al., 2010). That is, in addition to 

accounting for systematic variations from a ‘purely linguistic’ point of view 

(Foulkes and Docherty, 2006), a more complete model would also need to 

consider variations arising from a sociolinguistic perspective since the crucial 

factors determining intelligibility are the quality of the linguistic model driving 

the system (Ogden et al., 2000). Warner (2011) adeptly points out that there is no 

definitive explanation regarding the driving force behind reduction but suggests 

that: “It seems very likely that articulatory factors (e.g. task dynamic stiffness, 

articulatory movement rate), information structure (greater reduction where 

information is less important), and intentional use of reduction as a feature that 

conveys information in itself all contribute to how much reduction a given 

utterance contains” (p. 1881). Investigating a problem with such a large 

parameter space is difficult and poses many challenges, but it is hoped that the 

research presented here will help elucidate the relative importance of certain 

factors controlling phonetic reduction from a mechanical perspective. As 

mentioned in parts of this chapter, a great deal of research originating from 

differing perspectives has pointed towards the importance of duration in phonetic 

reduction.  Continued effort and research in this subject area will help improve 

our understanding of this perennial problem in speech science. 
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Appendix 

Validity of acoustic measurements to infer articulatory dynamics  

The research by Lindblom (1963 and 1990; Moon and Lindblom, 1994), based on 

which his theories regarding articulatory effort were developed, mostly involved 

acoustic measurements, such as formant frequencies. Gay (1978) and van Son and 

Pols (1990 and 1992), who countered Lindblom’s findings, also used acoustic 

evidence. However, most other studies attempting to examine articulatory effort 

have been based primarily on kinematic measurements of individual articulators 

(e.g. tongue dorsum/body: Ostry and Munhall, 1985; Perkell et al., 2002, Perkell 

and Zandipour, 2002; tongue blade: Perkell et al., 2002, Perkell and Zandipour, 

2002; tongue tip: Adams et al., 1993; lips/jaw: Kelso et al., 1985; Adams et al., 

1993; Harrington et al., 1995; Hertrich and Ackermann, 1997; Perkell et al., 2002, 

Perkell and Zandipour, 2002). By now, there seems to be a consensus that it is 

inappropriate to link formant movements to articulatory movements owing to a 

lack of a one-to-one relation between articulation and acoustics. Moreover, it 

seems that a tacit assumption behind this consensus is that articulatory 

measurements do have a one-to-one relation with phonetically relevant 

articulation because they directly measure movements of specific articulators. 

This assumption requires careful scrutiny, especially in light of what speech 

production is about. 
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There is little doubt that a major goal of speech production is to generate acoustic 

patterns that can be recognized as phonetic categories such as vowels and 

consonants. It is well established that vowel identity can be adequately 

represented by formant patterns (Chiba and Kajiyama, 1941; Fant, 1960; 

Hillenbrand et al., 1995; Ladefoged et al., 1987; Peterson and Barney, 1952; 

Stevens, 1998), which is further attested by the success (albeit partial) of formant 

synthesizers (Klatt, 1987). Furthermore, it is also known that vowel formants are 

determined by the shape of the entire vocal tract rather than by the shape of only a 

particular location of the vocal tract. For example, according to the perturbation 

theory (Chiba and Kajiyama 1941; Stevens, 1998), for the vowel [i] the narrow 

constriction between the front of the tongue and the hard palate, where there is an 

antinode for F2, must also be accompanied by the widening of the pharynx where 

there is a node for F2. Otherwise F2 would not have been as high as it is usually 

observed for [i] (Hillenbrand et al., 1995; Peterson and Barney, 1952). In fact, it 

has been shown that F2 is more sensitive to pharyngeal width than to constriction 

at the tongue blade (Fant and Pauli, 1974; Wood, 1986). Thus the high F2 of [i] is 

the result of at least two articulatory manoeuvres: tongue-blade raising and 

tongue-root fronting. It has also been shown that even the vertical position of the 

larynx differs across vowels in a manner that would enhance their formant 

differences (Demolin et al., 2000; Hoole and Kroos, 1998; Wood, 1986). For 

consonants, the phonetically relevant articulation should also take aerodynamics 

into consideration. To produce a [t] for example, not only the tip of the tongue 

should be raised against the alveolar ridge, but also the sides of the tongue need to 

be elevated to guarantee an airtight closure. 
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Thus to capture the phonetically relevant articulatory configurations and 

movements, it is necessary to have measurements that can indicate the shape of 

the entire vocal tract. In this sense, measurements of individual articulators, such 

as tongue tip, tongue blade, tongue dorsum, the lips and the jaw, etc., do not really 

have a one-to-one relation to the phonetically relevant articulation as a whole. 

Instead, the movement of any particular articulator is not for its own sake, but to 

serve as part of a collective functional manoeuvre that can be described as a task-

specific ‘coordinative structure’ (Saltzman and Kelso, 1987). As a whole, such a 

functional unit achieves overall aerodynamic and acoustic effects (Mattingly, 

1990; Hanson and Stevens, 2002) which constitute the phonetic category jointly. 

As a result, specific articulatory kinematic measurements can provide only a 

partial approximation of the ensemble underlying goal-oriented articulatory 

movements. That is, they may not fully reflect the dynamic constraint required in 

achieving a functional articulatory goal. 

 

Similarly, acoustic measurements such as formant trajectories also provide only a 

partial approximation of the underlying goal-oriented movements. However, any 

phonetically relevant articulatory movements necessarily have to be reflected in 

the acoustics, as otherwise they would not have been audible. More importantly, 

the perturbation theory (Fant, 1960; Stevens, 1998) would predict that only the 

lower formants (up to F3) are individually controllable, since direct control of the 

higher formants would require separate manoeuvres of too many parts of the vocal 

tract simultaneously. As a result, little critical information is missing if only the 

first few formants are measured. In general, the dynamics of the first three 
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formants do reflect a significant portion of the phonetically relevant articulatory 

movement. Interestingly, Hertrich and Ackermann (1997) and Perkell et al. (2002), 

after careful examinations of articulatory dynamics, both suggested that the 

phonetically most relevant information may be found in the acoustic signal.  

 

The lack of a one-to-one relation between any measurements and actual 

articulation can also be seen in the fact that measurements are often necessarily 

sparse. When measuring tongue movement with the magnetometer system such as 

EMMA and x-ray microbeam technologies, only a limited number of sensors or 

pellets can be placed on the tongue surface (Byrd et al., 1995). Yet the assumption 

is that, unless the sensors are too far apart, it is safe to assume that no sudden 

deformation would occur in between. The same is true with formant movements. 

Unless there is a sudden shift of the resonant cavity, as occurs during the oral to 

nasal shift, or sudden shift of formant affiliation with a particular resonator 

(Stevens, 1998), or an interruption due to the closure and frication of obstruent 

consonants, formants movements are largely smooth because the corresponding 

articulatory movement is largely smooth. 

 

The comparability of articulatory and acoustic measurements can be empirically 

attested by examining whether similar dynamic patterns can be seen in acoustic 

and articulatory movements. At least for fundamental frequency, highly linear 

relations between F0 velocity and F0 movement amplitude have been found (Xu 

and Sun, 2002; Xu and Wang, 2009), which resemble the linear relations in 

articulatory or limb movement (Hertrich and Ackermann, 1997; Kelso et al., 1985; 
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Ostry and Munhall, 1985; Vatikiotis-Bateson and Kelso, 1993). This is despite the 

fact that F0 is the output of a highly complex laryngeal system (Honda, 1995; 

Zemlin, 1988). It will therefore also be an empirical question as to whether 

formant kinematics also exhibit similar linear relations to warrant dynamic 

analyses that have been applied to limb and F0 movements, which is addressed in 

Chapter 2 of this thesis. 
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