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Abstract

Optical topography (OT) is an emerging neuroimaging technique utilising the tight

coupling between neural activity and regional cerebral blood flow to monitor relative

regional changes of haemoglobin concentration. OT systems are compact, low cost,

easily portable, and relatively tolerant of body movements enabling clinical diagnosis,

psychological experiments and even monitoring brain activities during daily living. There

is a requirement for such systems to present their output functional data in a brain

model based coordinate space in order to map to the signal source with brain anatomy.

However OT data are obtained from a network of OT sensing devices (optodes) placed

in contact with the head surface and cannot capture structural information of the

underlying brain which might otherwise be used for registration. An appropriate

registration method, widely used in Electroencephalography (EEG), is the 10-20 system

which utilises bony landmarks as common points to co-register locations on the scalp

with a brain model to a repeatability of a few millimetres in clinical applications to an MRI

set of reference points. Inheriting the low cost and portability of OT, this thesis develops

and validates a novel registration approach utilising off-the-shelf webcam technology in

combination with photogrammetric bundle adjustment techniques in order to reliably

coordinate targets on optodes and bony landmarks within the 10:20 reference frame to

an accuracy of better than 1mm.

Initial research includes an assessment of the 3D coordination accuracy, precision and

stability of a series of low cost webcams in order to prove their suitability for clinical

applications. Results demonstrate the capability of a system based on these cameras to

reliably coordinate 3D target locations to the order of 0.5mm and better. Difficulties in

automated clinical target image extraction due to poor image quality are circumvented

through the development of new target image detection methods. Incremental

improvements in image quality from successive webcam generations, up to and

including the latest HD systems, are shown to increase coordination accuracy by one

order of magnitude. The result is a novel webcam photogrammetric system that is able

to rapidly and consistently coordinate targets on optodes and bony landmarks to better

than 1mm in OT studies and is able to take advantage of the rapid advances being
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made in consumer webcam technology. The system is proven in pre-clinical studies to

evaluate its coordination accuracy and in simulated clinical OT studies with a

head-sized phantom conducted in collaboration with Department of Medical Physics

and Bioengineering. Clinical OT studies with human subjects, demonstrate the

capability of the system to continuously coordinate targets on optodes and scalp and

detect differential movement between optodes and scalp which would invalidate a static

registration procedure.
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1.1 Introduction

This chapter describes the aims of this research project and outlines its key aspects.

The work described in this thesis has two motivations. Can increasingly capable

consumer webcams be used for accurate, but low cost measurement and secondly can

a system comprised of such cameras contribute to a medical physics application where

an improvement in the spatial mapping of optical topography (OT) sensing systems is

required in order to spatially map haemoglobin changes to cerebral activity. The

research carried out involves designing experiments to: validate webcam

photogrammetric calibration; to design and implement new algorithms in order to

compensate for poor photogrammetric target image quality and; the implementation of a

robust rapid multi-camera tracking system which can accommodate variations in lighting

and background clutter to spatially reference optical topography sensing pads on the

human head. Based on a successful project from Mauren Abreu de Souza [Souza,

2009], the proposed work was initiated following discussions between the Geomatic

Research Laboratory and the Biomedical Optics Research Laboratory of UCL in 2007.

1.2 Background and motivation

Neuroimaging techniques to present brain activation data under a consistent coordinate

system have received a lot of attention in recent years [Mazziotta et al., 2000, 2001a,b;

Toga and Thompson, 2001]. The primary goal is to enhance the comparison between

intra- and inter- functional studies. For tomographic brain mapping techniques such as

functional magnetic resonance imaging (fMRI) and positron emission tomography (PET),

it has been very common to present functional data under either Talairach [Talairach

and Tournoux, 1988] or MNI [Collins et al., 1994] brain template. For transcranial brain

mapping techniques, however, such registration methods are still at an early stage

[Okamoto et al., 2004b; Okamoto and Dan, 2005].

Optical topography is an evolving non-invasive brain mapping technique which has

attracted a large amount of attention recently. Compared with many other mapping

techniques, optical topography offers much more flexibility in which functional studies
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can be performed at patients’ bedsides and more flexible experimental protocols can be

designed [Gibson et al., 2005]. However, similar to other transcranial mapping methods,

the functional data obtained from the scalp surface lacks the corresponding structural

information. To comply with the common practice for tomographic mapping techniques,

the first step is to register the functional data from the scalp surface onto the cortical

surface in order to identify where the activations are generated from an individual brain

anatomy.

Since the functional data is obtained from source-detector fibre bundle (optodes), in

order to accurately register the functional data from the scalp surface to the cortical

surface, accurate determination of optodes’ positions is essential. However, optodes’

positions are commonly measured manually with a 3D digitizer arm by taking the

average of three measurements for each optode. It is inevitable that the measurement

accuracy is significantly lowered by this manual process and therefore the accuracy of

optodes’ positions is no better than a few millimetres [Souza, 2009]. Considering

possible mis-registration between functional data and structural data caused by the

positional inaccuracy of optodes, it is necessary to increase the positioning accuracy of

optodes for optical topography studies, preferably with an automated measurement

method.

Moreover, Gibson et al. (2005) reported that light leakage resulted from differential

movement between the scalp surface and the optodes has been a recurring problem for

optical imaging studies. Artefacts in the reconstructed optical images can easily be

resulted by this effect. Conventionally tedious manual post-processing of optical signal

data is required to identify and eliminate this effect from image reconstruction. The

differential movement is likely to cause light leakage frin sources, instability of detectors

or even worse, the failure to collect useful data. For optical imaging studies, the only

changeable variable allowed is the optical property representing brain activities, but not

the scalp location in contact with an optode [Gibson et al., 2005].

Photogrammetrists have directed research efforts towards medical measurement since

the earliest days of photogrammetry, mainly because of the benefits that

photogrammetry can offer to humanity as a painless and non-invasive means of
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providing medical practitioners with spatial measurement relating to the human body.

Various techniques of body measurements (examples given in Section 3.6) have been

developed in response to the demands for specialized spatial measurement tools for a

wide variety of medical ends [Mitchell and Newton, 2002]. While Ahmad et al. (2004)

discussed the experience of calibrating a consumer digital camera using low-cost digital

close range photogrammetric software, the results showed that all the camera

calibration parameters could be recovered without difficulty and could be used to

capture images suited to medical photogrammetry applications. Ahmad et al. (2004)

suggested from their study that consumer digital cameras have the potential to be used

in many close range photogrammetric applications, particularly when the budget is

limited.

Consumer digital cameras are gaining in popularity and capability with increasing

numbers of pixels but reducing price. The speed, convenience and repeatability of

digital image access together with rapid image processing development by the

computer vision community, have attracted a lot of attention on the potential

applications of photogrammetry. There are three advantages of digital cameras over the

traditional optical cameras. First, digital cameras allow faster and repeatable image

access; second, there is no need for expensive and specific device and trained

professional technicians; third, the result of measurement is in form of digital data,

which simplifies processing and offers the potential for real time data analysis. However,

low cost digital cameras intended for use as webcams compromise on lens quality and

stability when compared to more expensive digital SLR models typically used for

photogrammetric measurement. The challenge is to deliver consistent photogrammetric

measurement accuracy with the much poorer image quality of low cost digital cameras

under natural lighting in environments where there is no control of lighting or image

content.



Chapter 1 – Introduction

27

1.3 Research aims

Motivated by the status (both optical imaging and photogrammetry) at the

commencement of this research, the research aims to develop and validate a novel

photogrammetric registration approach between a set of optical sensing optodes and

brain anatomy utilising off-the-shelf webcam technology. The primary aims are listed as

follows:

- To assess the suitability of low cost webcams for photogrammetric

measurement;

- To develop target image detection methods suited to relatively poor webcam

image quality for effective feature extraction against cluttered backgrounds;

- To accurately coordinate targets over a spherical head;

- To reliably coordinate targets on optodes and bony landmarks on a close to real

time basis;

- To detect differential movement between optodes and scalp during optical

studies.

1.4 Research objectives

The research objectives are formulated as follows:

1. Effective camera system calibration

3D measurements require at least two imaging devices. Accurate 3D

measurements rely on precise recovery of camera parameters from a calibration

process. Since individual camera calibration may represent overhead for each

optical imaging study, an efficient system calibration taking all available imaging

devices into account is considered to be necessary for clinical work;

2. Verification of webcam stability

Consistent coordination accuracy is required for continuous positioning of

optodes during optical studies. However, the stability of low cost imaging
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devices such as webcams remains unknown due to the compromise between

their built quality and their price range. Regarding this the variation of camera

parameters over different time intervals as well as the associated coordination

accuracy needs to be verified to ascertain that the coordination accuracies over

time are consistent and meanwhile within the accuracy requirement;

3. Minimisation of the infrastrature and cost for building a camera system

To inherit the advantage of low cost from optical topography, the goal of building

a camera system for future optical imaging studies is with a total cost under

£500. Meanwhile, considering the flexibility and portability of optical topography,

the infrastrature to construct such an imaging system needs to be light but rigid

enough to ascertain the stable imaging geometry for 3D measurements;

4. Target positioning accuracy

To increase the positioning accuracy of optodes previously measured with a

digitizer arm, the goal of this research is to coordinate targets better than 1mm

accuracy in 3D space. The 1mm positioning accuracy is considered to be

appropriate for optical topography. This is because the estimation error

introduced from the subsequent registration of optodes’ positions can be

minimised by increasing the initial surface measurement accuracy. To achieve

this, accurate target image extraction is required from webcam imageries, under

test scenes containing background clutters without lighting control;

5. Fast and automated target coordination

A fully automated 3D positioning of optodes is necessary to eliminate the

measurement error introduced from human interventions. This demands

automation for all processes including target image detection, target

correspondence mataching and 3D coordinate computation. The automation of

target image measurements demands effective method(s) to eliminate

background noises and meanwhile accurate recognition of true targets, in order

to minimise the target ambiguities for correspondence matching. In terms of

speed, the goal of the coordination frequency is ~1Hz so that any differential
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movement leading to image artefacts can be detected immediately during the

study. This level of frequency should also allow the reconstruction of target

movement for any selected period of time during an optical study.

1.5 Research methodologies

Research methodologies can be formulated based on three main chronological

experimental works for this research:

1. Assessment of webcam photogrammetric performance

 Two camera models representing the mainstream low cost webcams, Logitech

QuickCam Pro 4000 and Logitech C500, are selected for this research. Comparisons

can be made between the two generations of webcams to ascertain the

photogrammetric improvement in webcam technology during this three year project;

 A 6MP Nikon D100 camera fitted with a fixed focus 28mm Nikon lens is used as an

established comparative standard for the assessment of accuracy;

 For effective calibration method, results from individual webcam calibrations can

be compared with those from a self-calibrating bundle adjustment of all webcams;

 2D and 3D target coordinate uncertainties as well as 3D target coordinate accuracy

between data sets can be compared to derive the setting of image resolution with the

highest precision and accuracy.

2. Development of the fast tracking system

 Development of the multi-webcam tracking system should take convergent

network geometry and relative webcam positions into account to allow the key positions

(optodes) to be intersected by three or more camera rays;

 Difficulties in terms of feature extraction for webcam imageries should be identified;

 Relationship between USB connection and image qualities for webcams should

also be tested;

 Tests with a variety of scenes is necessary to derive efficient target image detection

methods for webcam images suited to optical imaging studies;

 Edge patterns of detected target images and the associated 3D coordinates (of the
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same target) from different detection methods should be compared to address the

characteristics of each method.

3. Applications of the camera system

 To coordinate optodes and bony landmarks, experiments can start with a minimum

of two webcams. Further studies are required to derive the number of webcams for

sufficient target coverage and coordination accuracy;

 Both absolute (independent of photogrammetric comparison) and indirect

photogrammetric assessment of positioning accuracy can be used to verify the

coordination accuracy of the camera system;

 The phantom optical imaging studies can be used to assess the 3D coordination

performance of the camera system, while the volunteer studies can be used to assess

the capability of the system in terms of differential movement detection;

 The 10-20 system bony landmarks can be utilised as control points to establish a

common 3D relationship between the optical sensing pad (optodes) and internal brain

structure;

 Different approaches should be used to co-register the positions of optodes with

the internal heating locations, based on the available structural information.

1.6 Research tools

A set of tools have been utilised throughout this research. Investigation of the suitability

of webcams in medical studies including image measurement and reference data

processing were implemented through the in-house photogrammetric tool VMS 8.0. The

fast multi-camera tracking system was developed and tested in Microsoft’s Visual

Studio 2005 Professional in C/C++ and a series of open source tools including Microsoft

DirectShow, OpenCV, OpenGL and VideoInput (Appendix 1, 2, 3) were also utilised.

For the assessment of the developed tracking system, a 3D similarity transform was

implemented in Visual Studio whilst the visualisation of the tracked targets and the

pattern of their coordinate discrepancies across video frames were performed in the

Mathworks Matlab environment [Mathworks, 2007].
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1.7 Thesis overview

This thesis is composed of six main chapters supported by references and appendices.

Chapter 2 forms the core medical background whilst Chapter 3 provides the core

photogrammetric background to this research work, Chapter 4 discusses the

development of the proposed fast multi-camera tracking system and its associated

target detection methodology for the purposes of this research work, Chapter 5 outputs

and analyses the results from both laboratory and optical imaging studies and finally

Chapter 6 concludes this research work and discusses directions for future research.

Chapter 2

This chapter comprises the medical background of this research. Fundamentals of

tissue optics in Near-Infrared Spectroscopy and the working principle as well as

applications of optical topography are first described, followed by the overview of

atlases in neuroimaging community which consists of image registration, overview of

functionality of human cerebral cortex, the international 10-20 system used in

Electroencephalography and the normalization methods in brain mapping. The last

section describes state of arts concerning registration techniques of functional

Near-Infrared Spectroscopy from the scalp surface into the cortical surface.

Chapter 3

This chapter reviews the photogrammetric and imaging principles. Fundamental

photogrammetric principles are first described, followed by comparisons between

conventional high cost cameras and webcams from different perspectives and the

associated calibration methods adopted for webcams in this research. Target properties

and lighting suited to clinical use are then discussed, followed by the fundamentals of

automated target image measurement suited to webcam photogrammetry. Following

the image based measurement is the 3D correspondence solution with its optimisation

in favour of a fast coordination application. This chapter finally considers the

development of a fast multi-webcam photogrammetric coordination system.
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Chapter 4

This chapter describes the research work. Accuracy and precision assessment of the

off-the-shelf low cost webcams is first reported, followed by a discussion comparing

webcam technology from different generations and outlining factors giving rise to target

measurement inaccuracy. Self-calibrating bundle adjustment experiments with a larger

calibration object are described and results are reported based on the findings. Studies

on webcam stability are then reported confirming the consistency of target coordination

over time. Research work towards a fast tracking system with low cost webcams, which

is composed of the design of the tracking system, proposed target detection method

and comprehensive comparison of target detection result, is then discussed.

Chapter 5

This chapter presents the validation of the developed fast multi-webcam tracking

system in a series of chronological experiments. First, an investigation on how many

cameras are sufficient in terms of tracking targets located on the scalp and on optical

topographic pads is given. Taking these minimum configurations into account, studies

with a polystyrene head, OT sensing pad and targeted calipers provide a proof of

concept together with an accuracy assessment. Drawing upon conclusions from

previous studies, optical imaging studies involving both a phantom head and volunteer

human subjects are reported, where both the accuracy assessment of the tracking

system and differential movement between the optical sensing pad and head surface

during the study are reported in detail.

Chapter 6

The final chapter of this thesis first summarises the research objectives and activities.

Research data analysis and conclusions are then presented, followed by suggestions of

future research directions. A final remark is presented at the end of this chapter to

conclude the entire thesis.
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Chapter 2 Optical Imaging and Brain Mapping
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2.1. Optical Topography

2.1.1 Overview of Near-Infrared Spectroscopy (NIRS)

The absorption of water and haemoglobin is relatively low in the near-infrared region of

the spectrum, 650–1050 nm, corresponding to the visible and mid-infrared regions. This

enables the light to travel deep into most tissues and therefore makes NIRS a suitable

tool for in vivo measurements.

A NIR imaging system is able to reveal information about the functional and metabolic

activity of tissues by providing maps of oxygenation status of tissue within a living brain

or other part of the body [Obrig and Villringer, 2003]. An advantage of using NIR light to

create an imaging system is that it is non-invasive, low cost and portable, and so the

data acquisition process can be performed repeatedly at the bedside. This makes NIR a

useful tool to monitor the progression of conditions and the response to treatment.

2.1.2 Fundamentals of tissue optics

2.1.2.1 Optical properties

The transmission of light (photons) through tissues can be modelled by both light

absorption and light scattering, where they affect the light intensity transmitted through

tissues.

2.1.2.1.1 Light absorption

Figure 2 - 1. Decrease of light intensity when light passes through a medium

where only absorption occurs.
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If a light source with intensity I0 and wavelength λ passes through a non-scattering 

medium, the intensity of the transmitted light I(d) will be:

  ( )

( ) 0
a d

dI I e 2 - 1

where μa(λ) is the absorption coefficient of the medium and d is the width of the medium

as illustrated in Figure 2 - 1. The aborption coefficient represents the probability in which

a photon is absorbed per unit length and may be due to a number of absorbing

substances (chromophores) mixed together. The individual extinction coefficients of

each chromophore represent their absorption at a particular concentration. Therefore

for a mixture of chromophores its absorption coefficient can be expressed as the sum of

the products of chromophore concentrations cn with their respective extinction

coefficients εn:

   ( ) ( )a n n
n

c 2 - 2

2.1.2.1.2 Light scattering

In a non-scattering medium, the travelling path of light is straight. However, this is no

longer the case in a scattering medium, where the light photons collides with the

particles in the medium and change their paths. The scattering coefficient represents

the probability in which a photon changes its travelling path per unit length.

Figure 2 - 2. Decrease of light intensity when light passes through a medium

where only scattering occurs.

Although there is no energy loss, elastic scattering can still cause attenuation of a light

beam by changing the initial path of photons. For a light source of intensity I0 passing

through a scattering medium, the intensity of transmitted light I(d) representing the

non-scattered component can be expressed as:

  ( )

( ) (0)
s d

dI I e 2 - 3
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where μs is the scattering coefficient of the medium and d is the width of the medium as

illustrated in Figure 2 - 2.

2.1.2.1.3 Anisotropy

In order to correctly define the directions of light scattering in tissue, the probability of a

photon being scattered in a given direction by a particular scatterer must be considered.

When light scatters off a particular scatterer, the light generally emerges in a

preferential direction, relative to its incident angle as shown in Figure 2 - 3:

Figure 2 - 3. The scattering phase function f(cos θ).

Such a preferential direction is dependent on a number of factors including the light

wavelength, the size of the particle it collides with as well as the refractive indices of

different media the photon is travelling through. The phase function can be represented

as a function of the cosine of the scattering angle θ between the incident light p and the

scattered light q under the assumption that the scatterer is random and non-structured,

as in the case of biological tissue. In general, the new direction does not occur with

equal probability i.e. anisotropic scattering. The degree of the anisotropy can be

characterized by the mean cosine of the scattering angle θ, commonly refer to the 

anisotropy factor g, which provides a measure of the mean direction of the scattering:

4
( ) cos( )g p dq


   2 - 4

where g=0 if scattering is equally distributed over all angles, i.e. perfectly isotropic

scattering.

The scattered intensity distribution increases in the forward direction as the particle size

increases, i.e. a small angle in θ will result in g moving towards unity, which indicates a 

more forward-peaked scattering of the incident wave. Although it is a fact that photons

predominantly scatter in a forward direction in biological tissue, typical values of

scattering coefficient ensure that photons travelling through a few millimeters of tissue
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lose all of their original directionality and become isotropically distributed. Therefore, it is

often appropriate to assume isotropic scattering where the scattering coefficient has

been reduced by the factor (1-g):

' (1 )s s g   2 - 5

where '
s represents the transport scattering coefficient or effective number of isotropic

scatters per unit length.

The attenuation of light as a result of absorption and scattering effects can then be

described as a function of
a and '

s . The diffusion equation is a good mathematical

model to describe the photon distribution since light propagates through layers of highly

scattering tissue and therefore it is possible to utilize this equation to calculate the

expected total attenuation due to
a and '

s [Arridge et al., 1993]. In the NIR region,

typical values for
a and '

s and in most tissues lie in the range of 0.005-0.02 -1mm

and 0.5-10 -1mm respectively [Cheong et al., 1990].

2.1.2.2 Absorption by tissue chromophores

Chromophores are tissue compounds with their own absorption spectra at different

wavelengths. The absorption spectra of some common chromophores are shown in

Figure 2 - 4. In the near-infrared range (700-900nm), water and haemoglobin are the

two main chromophores in soft tissues. Niemz (1999) reported that photons travel in

diffuse directions since the effect of scattering is much larger than that of absorption

within the near-infrared region (grey area in Figure 2 - 4).

Figure 2 - 4. Overview of the optical properties of tissues. (reproduced from Hillman (2002))
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While the concentration of water and melanin remains almost constant, the

concentrations of oxygenated and deoxygenated haemoglobin, which vary with time,

provide clinically useful physiological information.

2.1.2.2.1 Haemoglobin

The typical value for haemoglobin concentration in adult brain tissue is about 84 μmolar 

[Cope, 1991]. Oxygen molecules bind to the iron atoms in the haemoglobin to form

oxy-haemoglobin (HbO2) and deoxy-haemoglobin (HHb) is produced when the oxygen

molecules separate from the iron atom. Both HbO2 and HHb makes up the total

haemoglobin (HbT), which is approximately proportional to the blood volume. Figure 2 -

5 shows the absorption spectra of the two chromophores in the NIR region.

Figure 2 - 5. Absorption spectra for HbO2 and HHb. [Cope, 1991]

From the above figure, the absorption spectra of HbO2 and HHb are different

particularly in the NIR region (700-900 nm), with the absorptions crossing at about 800

nm [Cope, 1991]. Making simultaneous measurements at a minimum of two

wavelengths allows HbO2 and HHb to be monitored separately.
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2.1.3 Basics of Optical Topography

2.1.3.1 How Optical Topography works

2.1.3.1.1 Configuration

Optical topography is a functional Near-Infrared Spectroscopy (fNIS) technique which is

capable of measuring optical changes occurred below the tissue surface. The

measurement is made, either simultaneously or serially, through optical fibre bundle

(optodes) in contact with tissue surface, where each optode contains a pair of source

and detector. The smaller the distance between the source and detector, the higher the

measured signal can be obtained. Hebden (2003) reported that fast data acquisitions

between source-detector pair can be achieved in this way to a frequency of 10Hz.

Figure 2 - 6. Typical arrangement for arrays of sources and detectors for optical topography.

[Yamashita et al., 1996]

Figure 2 - 6 shows a typical source-detector arrangement for topography of the brain’s

cortex. The grid array allows measurement of changes of cortex close to the surface of

the tissue if close source-detector pairs are chosen.

2.1.3.1.2 Data acquisition

Data acquisition of optical topography can be either serial or parallel. While serial

acquisition uses all available detectors for one source at a time, parallel acquisition

utilises all sources modulated with different frequencies. Everdell et al. (2005)

developed an efficient method which demultiplexes the parallel sources by Fourier

transform, while Koizumi et al. (2003) used lock-in amplifiers.
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2.1.3.1.3 Image reconstruction of Optical Topography

By making multiple NIRS measurement simultaneously while ensuring that the

measurement areas overlap spatially, optical topography produces two-dimensional

maps of haemoglobin changes from specific regions of the cerebral cortex and adopts

linear image reconstruction.

Arridge et al (1993) proposed the finite element mesh as the numerical method to model

the complex geometries for optical imaging. Arridge and Schweiger (1995), Arridge

(1999) and Arridge et al (2000) explained this method in detail and subsequently refine

this modelling technique based on a finite element mesh built for the purpose of image

reconstruction. The forward problem can be formulated as

( )y F x 2 - 6

The forward problem involves in calculating simulated data y from the optical properties

x where the absorption and the scattering coefficients may be included [Gibson et al.,

2005]. Arridge (1999) proposed a novel approach by solving the inverse problem of

equation 2-6 in order to reconstruct an image representing the change of optical

properties. The inverse problem is formulated as:

1( )x F y 2 - 7

Since in optical topography studies, two optical measurements are acquired, one before

and one after a small change of optical properties, such data acquisition method

enables the linearization of the non-linear inverse problem, where the measurements

before the optical change can be effectively used as the approximated values for Taylor

series expansion. However, the linearization can be unreliable if the optical changes are

relatively large. Other error contributors include the selection of regularization

parameter [Gibson et al., 2005] and the quantization error from the assumption of

uniform optical properties (which is not in practice) [Hebden et al., 2008].

2.1.3.2 UCL Optical Topography System

The UCL optical topography system [Everdell et al., 2005] currently consists of 16 laser

diode sources (8 at 785 nm and 8 at 850 nm) and eight avalanche photodiode detectors.

The source and detector optodes are arranged to record simultaneously from 30
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channels (source–detector pairs). The depth from the surface interrogated is

approximately proportional to the source detector spacing. A 1 mm diameter multimode

optical fibre is used to couple each source and detector to the scalp. Parallel data

acquisition is used by modulating sources with frequencies ranged from 2 kHz to 4 kHz,

followed by demultiplexing signals received from detectors with Fourier transform at a

frequency of 10Hz.

Figure 2 - 7. UCL Optical Topography System.

2.1.3.3 Applications of Optical Topography

Optical topography creates a map of properties which demonstrates whether changes

are occurring in areas where activation is expected, by simultaneously monitoring areas

where no variation should be seen, as indicated by Figure 2 - 8:

Figure 2 - 8. The topographical map for total haemoglobin seen over the left central

sulcus (dotted line) for left and right finger tapping. [Yamashita et al., 1996]

The application of optical topography includes detections of functional activation on

cortical surface representing brain cognition (Table 2 - 1), as well as investigations of

blood supply on superficial tissues such as forearm muscles [Vaithianathan et al., 2004].

However, problems exist with the technique of optical topography. This includes the

calibration of individual detectors and variations in the coupling coefficients for each
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source and detector due to bad contact and hair on the head. Complete light scattering

resulting in no data often occurs especially for adults with thicker skulls as compared

with babies. Due to the nature of scattered light, the spatial resolution of optical imaging

usually decreases with the depth below the surface. A cylinder with 8mm diameter and

8mm height within a head-sized phantom (10mm below the surface) was reported as an

approximate spatial resolution for current optical imaging [Hebden et al., 2008].

2.2 Atlas

2.2.1 Overview of image registration

The movement of the subject during magnetic resonance (MR) imaging is one of the

fundamental issues in medical imaging research. Image registration is a technique

developed in order to register serially acquired MR images with each other, through

seeking the corresponding points across images and subsequently deriving the

appropriate transformation. Detailed review of image registration techniques can be

found in [Brown, 1992; Maintz, 1998]. Applications of image registration can be found in

many areas, such as motion correction in functional MR imaging [Jiang et al., 1995].

2.2.2 Human brain anatomy

2.2.2.1 Cerebral cortex

The cerebral cortex constitutes a superficial layer of grey matter and internally the white

matter, as shown in Figure 2 - 9. A high proportion of nerve bodies exist in the grey

matter, while white matter is composed of nerve fibres, or axons, transmitting signals

between the nerve cell nuclei that compose the grey matter. The axons scatter light so

that the white matter appears white.
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Figure 2 - 9. Illustration of cross section of the adult brain. (reproduced from Crossman (1995))

2.2.2.2 Division of brain lobes

During brain evolution, the volume of the cerebral cortex increased much faster than the

cranial volume resulting in convolution of the surface and the folding of the total

structure of the cortex. The grooves (sulci) are further separated by their magnitudes of

folding; the more elevated gyri (bumps) are separated by the deep sulci and these

landmarks are used to divide the cerebral cortex. Despite the same fundamental

features of gyri/sulci, there exists a large variation of their precise locations from one

person to another. Figure 2 - 10 shows four major lobes. The frontal lobe is located at

the anterior part of the brain. The parietal lobe is separated by the central sulcus. The

occipital lobe is separated from the parietal lobe by the parietal-occipital sulcus. The

lateral sulcus separates the frontal lobe from the temporal lobe.

Figure 2 - 10. The anatomical division of the brain. [Marieb and Hoehn, 2006]

2.2.2.3 Functionality of cerebral cortex

The cerebral cortex, which constitutes a 2-4 mm thick layer of grey matter, represents a

highly-developed structure concerned with the higher order functions associated with

the brain. A cortical mapping system produced by Brodmann defines the specific

regions of the cerebral cortex and their functionalities based on the cellular composition



Chapter 3 – Digital Photogrammetry

44

of structures within the brain [Brodmann, 1905]. Various function areas of the cerebral

cortex and their functionalities are shown in Figure 2 - 11 and Table 2 - 1 respectively.

Figure 2 - 11. Functional regions in cerebral cortex. (reproduced from Shier et al. (2001))

Cortex Areas Functionality

Frontal lobe Reasoning, planning, parts of speech, emotions, problem solving

Motor cortex
Co-ordination of complex movement,

initiation of voluntary movement

Somatosensory

cortex
Receives tactile information from the body

Parietal lobe
Perception of stimuli related to touch, pressure,

temperature and pain

Occipital lobe Visual processing

Temporal lobe Perception and recognition of auditory stimuli and memory

Cerebellum Learned processes, co-ordination

Table 2 - 1. Functionality of main cortex regions.

2.2.3 International 10-20 system

When cortical areas are active, potential differences are generated between electrodes

positioned on the scalp surface. Electroencephalography (EEG) records these potential

differences as a function of time. The electrodes are placed in standard positions.
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Figure 2 - 12 illustrates the 10-20 international system for electrode placement [Jasper,

1958], which we name 10-20 system here for simplicity. The electrode positions are

found by dividing the line between the nasion and inion, and the line between the

preauricular points, into intervals which are 10% or 20% of the original length.

Figure 2 - 12. The 10-20 international system electrode placement.

[Malmivuo and Plonsey, 1995]

Following its introduction 50 years ago [Jasper, 1958], the 10-20 system has become

the standard approach of electrode application in EEG research. Nineteen standard

electrode positions were defined in the original version. Since then, several

supplementary guidelines have been published by American EEG Society in 1991 and

1994 to allow for a standardized application of additional electrodes. One basic feature

of the 10-20 system is that its proportional measurement strategy, which is based on

individual measurements of head circumference, allows accommodating for

interindividual differences in head size and head shape, and thus yields electrode

locations which are standardized between and within subjects.

For EEG, the accuracy of source localization critically depends on an accurate and

reliable placement of the electrodes onto the 10-20 coordinates. Test-retest

measurement errors of up to 7 mm, and between subject variability of up to 7.7 mm

have been reported even when electrodes were applied by an experienced senior

registered EEG technologist [Towle et al., 1993]. In addition, the amount of placement

error was dependent on the position of the electrodes, with more lateral electrodes
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displaying more error than electrodes placed on the midline. Also, no anatomical

landmark could be determined with less than 5 mm of error. Additional within- and

across-subject error might result from the experience and reliability of the experimenter,

and the length and type of a subject's hair. To conclude, an average electrode

placement error of about 1 cm seems to be a realistic estimate [Kavanagh, 1978;

Böcker et al., 1994]. For EEG, this value is likely to increase with the use of electrode

caps. Although the arrangement of electrodes in such caps usually follows the rules of

the 10-20 system, the limited flexibility of the cap fabric and the inability to reposition

separate electrodes can result in considerable electrode misplacement. Head

movements of the subject during the experiment might also result in additional electrode

displacement.

2.2.4 Normalization methods in brain mapping

No two brains are physically identical, however the basic anatomy (topology) is identical,

and functions are tied to a particular gyrus (bumps). Since corresponding voxels in

images of two different subjects will not correspond to the same brain gyrus, some form

of anatomical normalization of brains into a unified coordinate system is necessary to

rectify this before analysis of images across subjects on a voxel-by-voxel basis can be

carried out. Currently, two kinds of normalization methods are available and they will be

discussed in the following sections.

2.2.4.1 Stereotactic atlas

2.2.4.1.1 Definition

To standardise the study of neuroanatomy, various brain atlas have been proposed.

Talairach and Tournoux (1988) dissected a human brain, photographing transverse

slices onto which a co-ordinate system was overlaid and the brain gyri and lobes

labelled. This brain defined the Talairach coordinate system which has become the

reference brain to describe brain anatomical locations. Hence, even with studies of an

individual, anatomical normalization is necessary to enable locations to be reported in

standard Talairach co-ordinates.
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Currently all spatially normalized images are transformed to align with the Talairach

system [Talairach and Szikla, 1967; Talairach and Tournoux, 1988]. The Talairach

space represents the human brain stereotactic atlas where its position is defined by

human anatomical landmarks [Brett et al., 2002].

Figure 2 - 13. The inter-commissural line [left], Talairach axes [middle] and brain schematic

showing the anterior commissure (red spot) and posterior commissure (yellow spot) [right].

The Talairach co-ordinate system is based on an imaginary line joining the centres of

the anterior and posterior fibre tracts connecting two brain hemispheres. The midpoint

of this line is the origin of the Talairach co-ordinate system (Figure 2 - 13). Co-ordinates

are given in millimetres from the origin in the axial directions. The Talairach coordinate

system is illustrated in Figure 2 - 14a. Talairach and Tournoux (1988) also compared

and numbered cortical areas with Brodmann areas [Brodmann, 1909], as shown in

Figure 2 - 14b, so that the stereotactic atlas of Talairach space can be mapped to the

corresponding Brodmann areas and the functional areas being activated can be found.

The contributions of building of the Talairach space can be summarized as follows:

1. Anatomical landmarks are associated to brain areas by the coordinate system;

2. Brains from different subjects can be mapped to the standard brain atlas through

spatial transformation;

3. Every anatomical position corresponds to specific Brodmann area so that

researchers can easily find out where the functional area(s) are in the brain through

the coordinate system.
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Figure 2 - 14 (a). Talairach coordinate system; (b). Brodmann areas. [Brett et al., 2002]

Compred with a single brain used for the Talairach atlas, 250 MRI scans were used to

define the MNI template. Two procedures were used in order to approximately match

the MNI brain with the Talairach brain:

1. Landmarks were manually defined for all 250 MRI scans in order to produce a

line similar to the imaginary line used for the Talairach brain (Figure 2 - 13). This

follows by scaling of each brain to align these landmarks defined in MNI brain

with those in the Talairach brain;

2. Evans et al. (1992) used a linear method to register an extra 55 images to the

database with the 250 scans. The first MNI template, called the MNI 305 atlas,

was made by averaging the automatic registered 55 brains with those manually

registered 250 brains.

The same averaging procedure was taken for an extra 152 MRI scans on top of the 305

scans to define the current MNI template called ICBM152, which is used by the

International Consortium for Brain Mapping as the standard template.

2.2.4.1.2 Difference between Talairach and MNI coordinates

The two 3D space coordinate systems for brain, defined by Talairach (Talairach

Deamon Database) and Montreal Neurological Institute (MNI) (The MNI brain and the

Talairach atlas), are currently the world wide recognized brain atlases. The Talairach

atlas is a coordinate system described by Talairach and Tournoux (1988) after a real

brain dissection while the MNI atlas is the coordinate system defined by Evans et al.

(1992) after they scanned a large number of subjects by Magnetic Resonance Imaging

(MRI), followed by superposing scanned images with different head shapes and
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smoothing them [Evans et al., 1992; 1993; 1994].

Figure 2 - 15. The difference between the Talairach and MNI coordinate systems.

[MNI brain and the Talairach atlas]

Figure 2 - 15 shows the difference between the two coordinate systems. In order to

make the two systems compatible, some transformations are needed. As we can see

from Figure 2 - 15, the Talairach coordinate system is smaller than the MNI system, plus

the distance between the centre and the top of the Talairach system is longer.

Regarding this, there are several approaches to convert the MNI coordinates to

Talairach coordinates. A common approach was proposed by Andreas

Meyer-Lindenberg (1998) to apply an affine transform to map the Talairach compatible

template onto the MNI compatible template. By assuming very small values of affine

transform parameters, the transformation can be formulated as:

X' = 0.88X-0.8

Y' = 0.97Y-3.32

Z' = 0.05Y+0.88Z-0.44 2 - 8

where X, Y, Z are the coordinates of the Talairach system, X’, Y’, Z’ are the MNI

coordinates after the transformation [MNI brain and the Talairach atlas].

However, this transformation with fixed parameters is not capable of matching every

part of the brain from one template to the other due to their different shapes. Regarding

this different approaches have been proposed to apply non-linear transformation where

different parameters were used for different parts of the brain. Examples of this can be

found in [Duncan et al., 2000; Calder et al., 2001].
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2.2.4.1.3 Problems of Talairach atlas

The most well known method, proposed by Talairach and Tournoux, normalizes

different brains to a standard brain template by translation, rotation, and scaling.

However, the problem of this method is that it does not consider individual differences in

detailed structures. Besides, the original template is based on an old European person.

Imagine there is a subject with a smaller head size than the brain template, after the

spatial normalization and transformation, the brain cortex of the subject will be enlarged

in order to accommodate the template and this may result in a decrease of the

activation on the cerebral cortex and an unnecessary increase of effects caused by

some voxels [Li et al., 2004].

2.2.4.2 Registration of EEG and MRI

In order to achieve higher mapping accuracy between the topographic EEG activity with

individual head, the techniques for combining EEG and MRI have received a lot of

attention. Compared with the conventional mapping methods between EEG induced

activities and a 2D scalp surface, mapping of brain activities onto a 3D structural head

image demands highly accurate transformation of the EEG electrodes’ positions into the

MRI coordinate system. Regarding this various approaches have been proposed for

accurate mapping such as matching of fiducials between EEG and MRI coordinate

systems [Towle et al., 1993], matching of electrodes visible in MR images [Gevins et al.,

1991, 1994; Lagerlund et al., 1993; Ives et al., 1993], and the usage of specifically

designed equipments to assist the landmark identification between the two systems

[Singh et al., 1997; Simpson et al., 1995; Barnett et al., 1993]. However, these

techniques generally lack practicability either because of variability in order of

millimetres existed in landmark digitization [Singh et al., 1997] or because additional

handware and software are required.

An alternative approach to reduce errors of digitization of individual fiducials is the

matching of head reconstruction between EEG and MRI [Brinkmann et al., 1998;

Huppertz et al., 1998; Wang et al., 1994], where the scalp surface reconstruction for

EEG is usually performed by digitization between 1000 and 2000 arbitrary points with
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equipments such as a sensor pen digitizer. Although additional time (10-20 minutes) are

usually required for such a digitization process, it is considered to be essential for

reliable and accurate determination of the electrodes’ positions to ascertain the mapping

accuracy.

One typical example was proposed by Lamm et al. (2001), where a spline interpolation

method [Perrin et al., 1987] was used to reconstruct the scalp surface from the 3D

digitized electrode positions. An iterative point matching method [Zhang, 1994] was

then used to match the interpolated scalp surface with the MRI segmented surface. This

approach simplified the surface matching in which no additional equipments or

digitization of the head surface were required, leaving the measurement of the 3D

electrodes’ positions as the only procedure for each subject. The additional electrode

coordinates was measured by a 3D photogrammetric head digitizer, which consisted of

twelve calibrated Olympus Camedia C-400 cameras mounted in a dome imaging active

targets (light emitting diode marking electrodes). Bauer et al. (2000) reported that this

head digitizer achieved an average measurement accuracy of 0.2mm and average

test-retest reliability of 0.18mm. A simulated co-registration following these procedures

demonstrated a registration accuracy of about 0.6mm. This accuracy is subject to

further increase if individual rather than standard electrodes are used for digitization

since they can better accommodate individual head shapes.
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2.3 State of the arts

2.3.1 3D anatomical cranial-cerebral correlation

While cortical projection points of the 10-20 standard positions were expressed in 2D

Brodmann’s coordinates [Brodmann, 1909, 1912] by Homan et al. (1987), Okamoto et

al. (2004a) projected and expressed the 10-20 positions on 3D space, in order to

enhance the comparison among different brain mapping methods. The work presented

by Okamoto et al. (2004a) can be divided into three steps:

1. Projection of 10-20 points onto the cortical surface

Using a structural MRI head data, manual projection was performed by

searching for the minimum distance between cortical surface and 10-20

positions on scalp surface. The depth of these 10-20 points from the skin surface

to cortical surface were also examined by Okamoto et al. (2004a) (Table 2 - 4);

2. Normalization of the projected points in standard brain atlas

10-20 points and their corresponding cortical projection points of seventeen

healthy adults were normalized by Okamoto et al. (2004a) to both the MRI and

Talairach coordinate systems, followed by deriving their individual positions and

uncertainties (Table 2 - 2);

3. Probabilistic anatomical description of the 10-20 points on cortical surface (Table

2 - 3).
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Furthermore, Okamoto et al. (2004a) reported that the uncertainty of projection

positions on cortical surface is mainly caused by the following three factors:

1. Measurement error on head surface

A mean displacement of 1.4mm/2.5mm of the 10-20 points in three

measurements on the same day/three different days [Towel et al., 1993] were

included in the position estimation by Okamoto et al. (2004a);

2. Variation of the gross structures of brain and scalp between subjects

The normalization does not perfectly match each individual brain with the

template brain. The positional discrepancy between each normalized brain and

the template brain contributed to the overall uncertainty [Okamoto et al., 2004a];

3. Variation of normalization methods

Okamoto et al. (2004a) reported that different magnitudes of uncertainty can be

resulted from different template atlases or even different programs used for

normalization.

(a) (b)

Table 2 - 2. Positions and their positional uncertainties of the standard 10-20 points on

(a) scalp surface and (b) cortical surface. (Reproduced from Okamoto et al. (2004a))
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Table 2 - 3. Anatomical expression of each 10-20 points after cortical projection.

(Reproduced from Okamoto et al. (2004a))

Table 2 - 4. Distance between scalp surface and cortical surface for each 10-20 points.

(Reproduced from Okamoto et al. (2004a))
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2.3.2 Automated cortical projection

Regarding the manual projection approach which is not practical, Okamoto and Dan

(2005) presented three automated projection methods:

1. Convex-hull projection (with MRI head data)

This method first created a convex hull on the cortical surface. The

corresponding projection point on cortical surface of a 10-20 point is found by

searching for a virtual point on the hull producing the minimum distance between

the scalp surface and the cortical surface;

2. Ballon-inflation projection (with MRI head data)

A group of points on the cortical surface which are the closest to each 10-20

point (to be projected) are first found, followed by deriving the centroid of these

points. The corresponding cortical projection point is then found by the

intersection between the line (formed from the 10-20 point on scalp surface and

the computed centroid) and the cortical surface. Compared with the convex-hull

method, the ballon-inflation method has a higher sensitivity to local cortical

structures;

3. Neighnour-reference projection (without MRI head data)

The location of a 10-20 point on scalp surface in MNI coordinate system is first

determined based on the closest four 10-20 standard points. The estimated

10-20 point is then projected into the cortical surface of a brain template by

either convex-hull or ballon-inflation method. The error is estimated based on the

positional uncertainty in MNI space presented in Table 2 - 2.

Okamoto and Dan (2005) reported that the convex-hull and ballon-inflation methods

achieved a spatial resolution of a few millimetres and the neighbour-referenece method

achieved a resolution of about 1cm in the absence of structural images. However, there

are some limitations regarding these automated projection methods. First, the 10-20

points to be projected need to be first transformed into the corresponding points in the

same coordinate system as the MRI head data; second, the nineteen standard 10-20

points with defined cranio-cerebral correlations appear not sufficient as reference points

for the projection; third, the data of the reference points presented in Section 2.3.1 is
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based on only seventeen subjects and therefore is unlikely to be reliable to represent

the population.

Regarding the neighnour-reference method, Singh et al. (2005) further validated this

registration method without MRI data by registering additional twelve subjects to the

original MRI data containing seventeen subjects’ MRI scans. Results indicated

positional uncertainties for this virtual projection method are between 4.7mm and

7.0mm. This level of uncertainties has demonstrated the capability of the virtual

registration method in multi-subject analysis when MRI dataset are not available. Singh

et al. (2005) further stressed the importance of taking the positional uncertainties into

account when mapping the 10-20 points onto the brain atlas, i.e. Talairach or MNI

coordinate system.

2.3.3 Virtual 10-20 measurement on MR images

To comply with the developed automated projection methods (Section 2.3.2), Jurcak et

al. (2005) developed a virtual measurement method to replace the conventional manual

measurement procedure. The validation of the vrtual measurement method was carried

out by normalizing the 10-20 points to the MNI atlas and comparing the normalized

positions with those obtained from manual measurement (Section 2.3.1), where the

positional discrepancies are presented in Table 2 - 5.

Table 2 - 5. Comparison of 10-20 positions between manual measurement and virtual

measurement in MNI coordinate system. (Reproduced from Jurcak et al. (2005))
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Although the virtual measurement may not produce the 10-20 positions as accurate as

these measured manually, the virtual method can be considered as an alternative to

manual measurement if a large amount of data is involved where 10-20 positions need

to be determined.

2.3.4 Virtual registration of NIRS to MNI space

In order to eliminate the need of structural MRI data and the manual measurement of

10-20 points using tools such as a 3D digitizer, Tsuzuki et al. (2007) proposed a virtual

registration method, provided with the locations and deformations of the optode holder.

Optode holders were virtually placed onto the head surface by running a simulation

using the virtual holder deformation algorithm, which produced average discrepancies

of less than 2cm as compared with the actual holder deformation, for all studies with

real heads and most studies with spherical phantoms. However, Tsuzuki et al. (2007)

reported that the stability of spatial estimations decreased from the most stable

frontopolar region, to temporal and parietal regions, and to the least stable occipital

region. Tsuzuki et al. (2007) further reported a mean discrepancy of about 1cm between

the virtual registration method and the registration method using a 3D digitizer. The

spatial errors were not equally distributed, where occipital region displayed larger

positional discrepancy between these two methods.

Despite the absence of MRI scans and 3D digitizer, there are some limitations regarding

this virtual registration method:

1. Many parameters are required from user input;

2. Small adjustments are required for each virtual holder registration;

3. The virtual holder deformation is sensitive to the type as well as the method of

the holder used;

4. The distance between optodes needs to be exactly the same.
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Chapter 3 Digital Photogrammetry



Chapter 3 – Digital Photogrammetry

59

3.1 Introduction

Digital camera technology has rapidly evolved in the last decade. Meanwhile the

advance of digital camera technology towards webcams has made the image

resolutions of current webcams comparable to those found in high end cameras. Please

note here that high end cameras still have many more physical pixels than webcams

which mainly adopt interpolation. The evolving software enhancement techniques on

webcam images have also compensated, to some extent, their disadvantages with

relatively low cost imaging components. The latest webcams delivering HD imagery has

even made their image quality apparently as good as that of those cameras which have

well established their use in photogrammetric measurement, such as Nikon D100.

However, the photogrammetric qualities of these evolving webcams have not been fully

assessed from a limited amount of information available regarding the metric use of

webcams. The limited reported research in this area leaves the possibility of adopting

low cost webcams in metric use uncertain.

On the other hand, as described in Section 2.1.3.3 and 2.2.3, close range

photogrammetric coordination of both optical sensing pads and a subject’s head during

optical imaging studies would support the use of optical imaging techniques for a better

localisation of brain activation area and meanwhile solve problems due to movement

artefacts. The optical topography system is highly portable and flexible allowing optical

imaging studies to be carried out from patient’s bedside to intensive care unit of

premature neonates. Therefore if a photogrammetric system is to be built to support this

emerging functional imaging technique, highly portable and flexible cameras providing

sufficiently accurate 3D coordination would be required.

Regarding the above factors, this research focuses on exploring the potential of these

highly portable webcams through investigations of their opportunities for close range

measurements in optical imaging studies. Since this research is directed towards

imaging heads, imaging distances will be similar to those found in video conferencing or

casual use of webcams so that this application is likely to be at the optimal range for

webcam photogrammetry. This chapter starts with the photogrammetric principles
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(Section 3.2), followed by comparisons between conventional high cost cameras and

webcams from different perspectives and the associated calibration methods adopted

for webcams (Section 3.3). Photogrammetry with targets (Section 3.4) discusses target

properties and lighting suited to clinical use and the fundamentals of automated target

image measurement suited to webcam photogrammetry. The well-established 3D

correspondence solution with its optimisation (Section 3.5) in favour of a fast

coordination application are then described, followed by the considerations and

underlying principles towards the development of a fast multi-webcam photogrammetric

coordination system (Section 3.6).
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3.2 Photogrammetric principles

Photogrammetry aims at obtaining precise and accurate 3D object information merely

from their image(s). Close range photogrammetry is used to distinguish its

measurement applications from aerial photogrammetry in that normally a measurement

distance within 100 meters can be treated as close range. Among different approaches

of close range photogrammetry, the method where images are obtained from camera

positions all around the object and camera axes are highly convergent, pointing towards

the middle of the object (convergent network of images) yields the most accurate results

when imaging features all around an object (head) and is commonly applied to capture

targeted objects (target points around the head and optical sensing pad of optical

topography) [Atkinson, 2001]. This section discusses the fundamentals of the

convergent network geometry in close range photogrammetry.

3.2.1 Collinearity for an ideal camera

Figure 3 - 1 shows the central perspective projection geometry which forms the basics

of photogrammetric measurements [Atkinson, 1996]:

Figure 3 - 1. Central perspective projection. (reproduced from Atkinson (2001))
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In central perspective projection model, a straight line is always assumed between a

point AX in object space and its associated projected point ax on image passing

through the perspective centre OX of the imaging system. In the imaging system, the

perpendicular distance between the perspective centre and the image plane is principal

distance c. In an ideal camera system, the optical axis formed between the perspective

centre and principal point will coincide with the centre of the image plane. However this

is rare in practical case. To establish a geometric relationship between an arbitrarily

located object space coordinate system  X,Y,Z and the image coordinate system

 x,y,z with origin situated in the perspective centre, their originas can be both express

as the perspective centre OX , e.g. the object point AX with its object space

coordinates  A A AX ,Y ,Z can be treated as the addition of the vector from the origin of

object coordinate system to perspective centre OX with its coordinates  O O OX ,Y ,Z

and the vector from OX to AX . While the image plane is parallel to the x and y axis of

the image coordinate system, the image point ax can be expressed as  a ax ,y ,-c

with a distance of c back from the image coordinate system.

However, the image coordinate system also needs rotation to fully align its three axises

with those of object coordinate system. Therefore under the assumption of an ideal

camera, the relationship between an object point and its image point can be

mathematically expressed by the collinearity equations [Atkinson, 2001]:

     
     
11 12 13

31 32 33

O A O A O A
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O A O A O A
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r X X r Y Y r Z Z
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3 - 1

where ijr are the elements of the rotation matrix.
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3.2.2 Departures from collinearity

When the central perspective projection is used in photogrammetry as the mathematical

standard for image formation in a camera, significant discrepancies leading to

systematic errors will occur. These errors can be caused by a number of factors such as

physical lens distortions, unflatness of the imaging sensor and orthogonality of the

optical axes. Departures from the central perspective projection due to imperfections of

imaging components in real camera design can be modeled as systematic errors in the

collinearity condition. The procedure of seeking how much the geometry of image

formation in a real camera differs from the geometry of a central perspective projection

is known as camera calibration [Atkinson, 2001].

Camera calibration is used to estimate a number of parameters which describe the

internal imaging geometry of a camera. The most fundamental parameter is the

principal distance which changes with focus. Principal distance must be known

approximately and subsequently estimated [Fryer, 1988; Clarke and Fryer, 1998].

Suitable starting values of the principal distance might come from the manufacturer’s

data [Fryer, 1988]. Fraser and Al-Ajlouni (2006) utilised a series of magnifications from

a zoom lens expressed as a function of principal distance and subsequently wrote them

to the image EXIF header in order to model radian distortion. Fryer (1988) found

discrepancies up to 1.5mm in a metric camera of stated principal distance 99.60mm and

up to 2.5mm for lenses in non-metric cameras addressing the need to subsequently

estimate the principal distance from the starting values. While the computer vision

community often estimate principal distance on a frame by frame basis, there is an

understanding in the photogrammetric community that reliable metric results can only

be achieved with a calibration process considering a number of views within which

physical variations in the imaging system are kept to a minimum. Camera calibration

accounting for the physical variations as well as understanding the optical/electronic

and compression based effects on image geometry become very important for

non-metric cameras especially for webcams so that they can be utilised effectively and

reliably for photogrammetry [Mcnamee et al., 2001].
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Real lenses have lens distortions accounting for the departures from collinearity (for an

ideal camera with perfect lens), where the degree of lens distortion relies on the

individual lens design. In general the less the lens distortion, the higher the cost the lens

has. Brown (1976) stated that ‘since radial and tangential distortion could be effectively

modelled, there was no impediment to using any well-regarded commercial lens of

suitable principal distance, aperture and angular field…for it is image quality throughout

the format that now becomes the overriding factor in the ultimate determination of metric

potential’. The comment from Brown has lead to a rigirous exploration of the potential of

non-metric cameras with focusable lens in terms of photogrammetric measurements,

where these cameras have been proved to be capable of providing comparable results

to metric cameras if their lens distortions can be effectively modelled [Clarke and Fryer,

1998]. Although it is possible but costly to produce a ‘distortion free’ lens, for this

research work a lens (camera system) with constant geometric distortions is considered

to be sufficient since the distortions can then be modelled from the camera calibration

process.

3.2.2.1 Radial lens distortion

Variations in angular magnification with angle of incidence are usually expressed as

radial lens distortion [Atkinson, 2001]. Radial distortion is usually expressed as a

polynomial function of the radial distance from the point of symmetry, which usually

coincides with the principal point:

3 5 7
1 2 3r K r K r K r    3 - 2

where

r is the radial displacement of an image point;

   
2 22

o or x x y y    ;

 ,x y are the coordinates of the image point;

 ,o ox y are the coordinates of the point of symmetry, commonly the principal point;

1K , 2K and 3K are coefficients who values depend on the camera focus setting.

The distortion r can be resolved into two components:
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  /x or r x x r  

  /y or r y y r   3 - 3

Figure 3 - 2. Radial distortion.

left: Original grid; middle: Barrel distortion; right: Pincushion distortion.

While radial distortion for modern film cameras is normally 1-2 µm, for an inexpensive

CCD camera lens the maximum radial distortion can be as much as 300µm [Atkinson,

2001]. Since this book was published there has been a major consumer orientated

development in low cost webcam technology. For example, the analysis carried out by

Page et al. (2008) demonstrated a very small distortion (<0.5 pixels within area of image

centre and up to 3.5 pixels towards image corner) using a single Logitech QuickCam

Pro 4000 webcam with a resolution of 640×480 representing the new low cost end of

the market. These results well agree with that found in this research (Section 4.4.2.2.3).

However, a distortion model is necessary to correct this error if accurate measurement

is demanded [Page et al., 2008].

3.2.2.2 Tangential distortion

Tangential distortion is caused by the misalignment between the lens components

during the manufacturing process. Such displacement can be modelled in both x and y

directions on an image place [Atkinson, 2001]:

    
22

1 2 02 2o ox P r x x P x x y y       
 

    
22

2 1 02 2o oy P r y y P x x y y       
 

3 - 4

where

1P and 2P are coefficients who values depend on the camera focal setting;

   
2 22

o or x x y y    ;
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 ,x y are the coordinates of the image point;

 ,o ox y are the coordinates of the point of symmetry, commonly the principal point;

 ,o ox x y y  represents the coordinates of image relative to the principal point.

Figure 3 - 3. Tangential distortion.

Fryer et al. (1994) stressed the importance of lens distortion correction in

photogrammetric applications. While Curry et al. (1986), Gulch (1986), and Beyer

(1993) gave detailed methodologies to calibrate video cameras, Brown (1971) has a

significant contribution of calibration of lens distortions under a specific focus setting.

The underlying principle of these calibration techniques is always based on a straight

line from an object point through the lens perspective centre to its associated point on

the image plane.

3.2.2.3 Image plane flatness correction

Figure 3 - 4. Ideal surface model (left) and actual surface model (right).

Since the actual image plane is not flat, as shown in Figure 3 - 4, there will be a

difference between the actual and the ideal image coordinates, as mentioned earlier in

Section 3.2.2, which needs to be corrected. The actual image location relative to the

ideal one can be derived by [Atkinson, 2001]:
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where

 ,o ox x y y  represents the coordinates of image relative to the principal point;

r represents radial displacement from the principal point, i.e.

   
2 22

o or x x y y    ;

r represents the radial displacement of an image point;

x and y are defined in equations 3 - 4;

1a and 2a represent orthogonality and affinity of image coordinate system shown in

Figure 3 - 5.

Figure 3 - 5. Affinity and Orthogonality.

3.2.2.4 Camera calibration parameter summary

The model used in this thesis is defined by the common set of parameters, where the

first eight parameters are the ‘physical’ model originally formulated by Brown (1971),

and the last two represent the extended model to correct the image plane flatness

[Beyer, 1993]. Remondino and Fraser (2006) reported that this model can be treated as

the optimal calibration set for digital cameras, based on numerical investigations of

different sets of calibration parameters such as those carried out by Abraham and Hau

(1997). However, the model needs to be refined during the calibration process so that

only significant terms are included.
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1. xPP - X image coordinate of the principal point;

2. yPP - Y image coordinate of the principal point;

3. PD - Principal distance of the camera;

4. 1K - 3rd power term of radial lens distortion;

5. 2K - 5th power term of radial lens distortion;

6. 3K - 7th power term of radial lens distortion;

7. 1P – 1st term of tangential (decentring) lens distortion;

8. 2P – 2nd term of tangential (decentring) lens distortion;

9. 1a - Orthogonality of the image coordinate system;

10. 2a - Affinity of the image coordinate system.

3.2.3 Photogrammetric bundle adjustment

One of the main tasks of photogrammetry is to compute the precise 3D positions on an

object given a set of images. Recently with the increasing use of digital cameras,

features like points and lines are observed in the images and their 3D coordinates are

determined in a given coordinate system under the perspective projection model,

followed by running the bundle adjustment [Brown, 1976]. The bundle adjustment is a

global minimization of the re-projection error based on the collinearity equation (Section

3.2.1). It was developed in the 50's and since then extended [Granshaw, 1980; Triggs et

al., 2000] to model possible sensor and lens systematic errors. A key advantage of the

bundle adjustment is its flexibility in allowing the user control of the imaging geometry

whilst accurately deriving interior and exterior orientation parameters. A strong

convergent network design is particularly important for calibration of cameras with

relatively poor imagery such as webcams.

Photogrammetry aims to get the best possible accuracy with a certain system and

image network, which is required by many applications such as industrial

measurements, deformation or movement analysis. Pre-calibrated cameras (cameras

with laboratory determined calibration parameters) are often used, not only to avoid

deficiencies since each camera may contribute only a single image to the network

(Section 3.2.3.1), but also to speed up the measurement process. In order to use
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consumer digital cameras for such applications, such as the off-the-shelf webcams

used in this research, calibration must be carried out and the stability of the estimated

parameters ensured. Where more images are taken per camera, a self-calibrating

bundle adjustment can effectively recover all the camera parameters under particular

network conditions [Remondino and Fraser, 2006]. In most photogrammetric

applications, the uncertainty of the measurements is taken into account and a final

statistical analysis is performed. In close-range photogrammetry several commercial

packages can automatically recover the orientation and calibration parameters of a

network of images, using retro-reflective or colour coded targets [VMS, iWitnessTM] or

exterior orientation devices [V-StarTM, DPA-ProTM, AustralisTM]. For this research

camera calibration was processed in VMS (Geometric Software).

3.2.3.1 Image networks

A set of cameras viewing an object is termed a network, the geometry of which is a key

consideration for accurate measurement. Camera placement must be carried out with a

careful design in order to cover the area of interest with a minimum number of cameras.

The network geometry can be negatively affected if the relationship between an object

point and its associated image point cannot be visually established. Automatic sensor

planning in the computer vision community can be found from [Tarabanis et al., 1995;

Triggs et al., 1995; Yi et al., 1995], while motion planning [Latombe, 1991], and

image-based modelling [Fleishman et al., 2000] have also received a lot attention. The

common goal of these tecniques is to derive features of a target object, usually static

with known 3D coordinates, with a minimum number of imaging sensors. Mason (1995)

proposed that the construction of a quality metric should be seen as an important step

for automatic 3D photogrammetric measurements, where a quality metric includes the

target geometry explicitly to evaluate various camera configurations. For example,

Mason and Gruen (1995) developed a work called CONSENS which consisted of

multiple cameras used for optical triangulation. The method describes an ideal

configuration of four camera stations. Some research works in terms of uncertainty

analysis for camera placement have also been reported. For example, a scalar function

of the covariance matric was used by Olague et al. (1998) as the uncertainty measure.

An ellipsoid fitted to the projected error pyramids was proposed by Wu (1998) in order to
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estimate the 3D volume undertainty. These works of uncertainty analysis stressed that

limited image resolution is the primary factor leading to 3D coordination uncertainty.

However, occlusion has also been frequently reported as another source of error in

featured-based multiple camera measurements.

Various studies in close-range photogrammetry [Fraser, 1997; Clarke et al., 1994;

Gruen and Beyer, 2001; El-Hakim et al., 2003] have suggested the following factors

which affect the accuracy of measurement:

1. Base-to-depth ratio

Normally the higher the ratio, the higher measurement accuracy the network can

achieve;

2. Convergent image network

A convergent network increases the overlapping area between images, as

compared with parallel images. Therefore object occlusion can be minimised;

3. Number of images of a target

Measurement accuracy of point normally increases significantly with the number

of images containing this point. However, such increase usually becomes less

significant when the number exceeds four;

4. Number of measured points per image

For a relatively weak imaging network containing targets which are not well

distributed within the field of view, the measurement accuracy normally

increases with the number of measured points in each image;

5. Image resolution

The accuracy of 3D coordination is closely related to the image resolution,

especially for natural featured targets.
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Factors which affect camera calibrations are:

1. Imaging network

Self-calibration is reliable only provided with a strong network geometry, i.e.

each camera contributes multiple images in the network but not just one and the

imaging network contains multiple convergent images;

2. Object point array

A large number of target points which are spatially well distributed through

image formats are normally desired. Moreover, a 3D point array is normally

much more preferred than a flat 2D array since the 3D distribution is able to give

a maximum variation of image scales on image plane and therefore likely to

correctly recover the principal distance;

3. Image rotations

To prevent the shifting of errors from interior (principal point) to exterior

(perspective centre) orientation parameters, at least two images per camera in

the network should be rotated by 90 degrees;

4. Datum definition

The datum of a photogrammetric bundle adjustment can be defined by the point

arrays with know coordinates (externally constrained). However, any errors from

the determination of these coordinates will propagate into datum definition and

therefore the imaging network.

Network design plays an important role to increase the accuracy and reliability of

photogrammetric measurement. This involves deciding how many cameras are needed,

where the cameras should be located to have a good imaging geometry. The network

configuration defines the imaging geometry and determines the calibration quality.

Detailed discussions of the network design and configuration in this research will be

given in Section 4.5.2.
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3.2.3.2 Self-calibrating bundle adjustment

The collinearity equations, described in Equation 3-1, can be simplified as:

0 ( , )xx x c f x y   

0 ( , )yy y c f x y    3 - 6

where  0 0,x x y y  represents the coordinates of image relative to the principal

point.

The above collinearity equations extended to include any possible systematic errors are

called a self-calibrating bundle adjustment [Gruen and Beyer, 2001], where systematic

errors are usually described by corrections of the image coordinates expressed as a

function of additional parameters. The additional parameters used in this research have

been described in Section 3.2.2.4.

The extended collinearity equations can be expressed as:

 0 ,xx x c f x y x    

 0 ,yy y c f x y y      3 - 7

A self-calibrating bundle adjustment is a statistically rigorous process to estimate all the

interior, exterior orientations as well as target coordinates, as compared with only

exterior orientation and target coordinates estimated by the conventional bundle

adjustment. The self-calibration bundle adjustment usually demands a strong image

network. Equations 3-7 are the observation equations estimating the unknown

parameters and can be described as:

( )l f x 3 - 8

which relates the image observations l to the parameters x .
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Since the number of observations is much more than the number of parameters to be

estimated, these equations are usually non-linear. Initial approximated values to

unknown paramters are therefore necessary in order to linearise these equations

[Luhmann et al., 2006]. After the first order Taylor expansion, Equation 3-8 can be

expressed as:

l e Ax  3 - 9

where:

l represents the observations/measurements;

e is the residual between the measured and computed values;

A is a n u design matrix (where n represents the number of observations and u

represents the number of unknowns).

The estimation of the vector of unknowns x


is usually performed iteratively with

minimum variance estimation of least squares [Luhmann et al., 2006], leading to a

system of normal equations:

   
1T Tx A PA A Pl

 

 3 - 10

where P is the weight matrix of the observations. For most practical applications P

has the form 2I where 2 is the variance of image coordinate measurements. The

non-linear bundle problem is therefore solved as a sequence of linear problems: at each

iteration, a correction vector x


is first estimated and added, and the process is

repeated until the solution is converged. The internal adjustment accuracy is given by

computing the residuals v of the observations and the variance factor 0


as shown

in Equation 3-11 and Equation 3-12:

v A x l


  3 - 11

0

Tv Pv

n u






3 - 12

Moreover, let
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 
1T

xxQ A PA


 3 - 13

where 3-13 is the inverse of the normal equation matrix. The symmetric covariance

matrix xxK can be derived by:

2

0xx xxK Q


 3 - 14

Precision measures are computed from the covariance matrix which takes every

change in the network configuration and every model variation into account [Gruen,

1978]. The function of the diagonal elements of xxK is:

0kk kkq 
 

 3 - 15

which represents the standard deviation of each adjustment unknown while elements in

position ij ( i j ) represent the covariances between the unknown ix and jx . A

precision evaluation of the estimated 3D coordinates can then be derived from the

traces of the corresponding covariance matrices. The xxQ matrix also gives information

about the correlations among the unknown parameters from the correlation

coefficient ij [Luhmann et al., 2006]:

ij

ij

ii jj

q

q q
 


3 - 16

If the absolute values of the correlation coefficient ij is close to 1, there is high

correlations between ix and jx . And if highly correlated parameters exist, one of the

two must be removed from the bundle adjustment.
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3.2.3.3 Further considerations on the additional parameters

In a self-calibrating bundle adjustment, the additional parameters can be introduced as:

1. Camera-invariant

One set of additional parameters are used for all images, independent of camera focus

settings and number of cameras used;

2. Frame-invariant

One set of additional parameters are used for each image. This method is usually used

by a network with different cameras or a network with individual images acquired with

different focus settings, in applications such as robotics, machine vision inspections;

Case 2 is usually considered [Tecklenburg et al., 2001] as it is not realistic to assume

that the camera parameters are the same for all cameras, especially for consumer

digital cameras where such variations across cameras might arise from the

manufacturing process. This approach also allows the derived lens distortion

parameters suited to the particular focus setting of each individual image to be used for

multi-camera 3D coordination. Therefore this approach is adopted in this research.

However, non-determinable parameters (over-parameterisation) can lead to network

adjustment singularities caused by parameter correlations. Regarding this, a 3D object

point array with control points in place is used in this research to avoid

over-parameterisation [Remondino and Fraser, 2006]. Tests on additional parameters

are always necessary if the imaging network is not strong [Gruen, 1976; Gruen, 1981].

Inclusion of insignificant additional parameters is likely to increase the possibility of error

shifting between parameters resulting in instability of the entire bundle adjustment

estimations. Therefore the camera model needs to be refined during the calibration

process to include only significant parameters (Section 3.2.2.4).
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Usually the determinability and the significance are tested on the additional parameters:

1. Correlation among the parameters (Equation 3-16)

This is the most common approach. The additional parameters usually have high

correlations among themselves or with the camera parameters. Since the principal point

offset is correlated to projection centre  0 0 0, ,X Y Z while lens distortion is correlated to

the principal distance and rotation elements, the system errors might not be well

reflected from these additional parameters if the errors are transferred to those exterior

orientation elements. Therefore statistics analysis is necessary to find out any highly

correlated parameters. Generally any correlation higher than 0.95 should be eliminated

[Remondino and Börlin, 2004];

2. Statistical testss

Normally the Student’s test is applied, with the null-hypothesis that “the additional

parameter x is not significant” compared to the alternative hypothesis “the additional

parameter x is significant”:

0

i i

i ii

g g
t

q 

 

 
  3 - 17

where ig


is the estimated value of parameter i ; i


is the standard deviation of the

parameter i .

Student’s test is a one dimensional test valid only if the tested parameters are

independent. Gruen (1981) presented a stepwise procedure to check the determinability

and significance of the additional parameters during different stages of the least

squares adjustment. Covariance matrix is checked to determine if any additional

parameter(s) are undeterminable so that subsequent elimination can be performed on

such parameters.
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3.3 Consumer grade cameras and their calibration

Based on Brown’s report in 1976 (Section 3.2.2), non-metric cameras have received

significant attention in terms of their photogrammetric applications in the last three

decades. The evolution of digital cameras has also provided these cameras with higher

image resolution but lower price. However, since these cameras are not primarily design

for metric use [Fryer et al., 2007], their stability in terms of photogrammetric

measurements might not be as high as those metric cameras due to features such as

autofocus [Rieke-Zapp and Peipe, 2006].

Camera stability has been extensively investigated in the last two decades. For

example, Physical behaviour of the principal point location was studied and different

calibration parameters for Kodak DCS420 and DCS460 digital cameras were compared

with each other [Shortis et al., 1998]. These investigations led to a conclusion that

systematic error introduced by principal point offset can be easily caused by the

physical movement of the camera. This result has been well supported by

Sanz-Ablanedo et al. (2010) where non-negligible systematic variations of the internal

geometry were found when cameras are rotated. Similar studies can also be found such

as from Shortis et al. (2001) where the stability of principal point location was

determined, Mills et al. (2003) where the principal point location, principal distance and

distortion parameters were analysed. Results from studies by Shortis et al. (2006) with

different digital SLR cameras demonstrated that a fixed lens is able to provide a much

more rigid internal imaging geometry and therefore much better results in terms of the

accuracy, precision and stability of photogrammetric measurements, as compared with

zoom lens. The geometric stability of seven Nikon Coolpix 5400 cameras was studied

by Wackrow et al. (2007) over a time interval of one year, where results demonstrated

that this camera model is able to achieve 3D coordination accuracy of 1.4mm within a

measurement distance of 1.5m.

In particular, the geometric stability of six Pentax Optio A40 cameras was investigated

by Sanz-Ablanedo et al. (2010). Results demonstrated that the variations of internal

imaging geometry of these cameras during or between usages are in the similar order of
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magnitude compared with cameras of medium or low accuracy in photogrammetric

applications, such as the 3μm variation of principal distance in a D7 Rollei metric 

camera with a 7mm lens [Peipe and Stephani, 2003] and in a Kodak DCS 460 with a

24mm lens [Läbe and Förstner, 2004]. Similar to the results presented by Shortis et al.

(2006), Sanz-Ablanedo et al. (2010) reported a major systematic change of ~3.6% of

the principal distance after zooming was applied. Regarding these findings,

Sanz-Ablanedo et al. (2010) stressed the necessity of re-calibration if there is any

change of the zoom lens. However, such necessity is dependent on the accuracy

requirement of a particular photogrammetric measurement application.

For close range photogrammetry, a "camera" is any imaging device that generates a

central perspective and has a consistent internal geometry [Atkinson, 2001]. The

internal geometry of a camera is defined by the camera calibration, which is only

consistent if the camera is at the same focus and zoom settings. The camera is

effectively a different imaging device defined by a new calibration if its focus or zoom

changes. Therefore for continuous coordination purpose, cameras are required to be

either manual focus or fixed focus and the zoom settings should be turned off to ensure

the camera parameters from the calibration process are suited to the cameras

subsequently used for 3D coordination.

3.3.1 Considerations of off-the-shelf low cost webcams

Off-the-shelf camera systems incorporate low cost components, shown for example by

a comparison of internal components from a Kodak DCS420 SLR camera and a

Logitech C500 webcam (Figure 3 - 6). For the Logitech C500 webcam which was used

in this research, the internal components except its logic board comprise of a case

made from two half sphere-shaped pieces of plastic with four holes with screws for

connection. Three triangle-shaped plastic rods are used to fix the logic board in position.

The image sensor is soldered onto the C500 webcam logic board and its lens and

colour filter are fixed in position in front of the sensor by two screws.
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Figure 3 - 6. Internal structure of Kodak DCS420 (upper, reproduced from Shortis and Beyer

(1997)) and Logitech C500 webcam (lower).

The simple construction of low cost webcams, such as the C500, could be an

advantage as the sensor and lens are physically connected when compared with other

digital cameras such as Kodak DCS420 which use a combination of springs and hinges.

This might mean that the internal geometry of the webcam sensor is good whilst the

exterior orientation of the webcam is less stable due to the physical stability of its

housing. If this is the case, maximising its exterior orientation stability is critical in order

to deliver 3D coordination with acceptable level of accuracy. To do so no handling or

rolling of the camera should be allowed by mounting the camera on a tripod or similar

support [Shortis and Beyer, 1997]. This concept has been followed in our hardware
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design of the multi-webcam coordination system where we have re-engineered the

mechanical mounting.

Shortis and Beyer (1997) also stressed that the more important issue for continuous use

of cameras is that the calibration is consistent over the short to medium term. Following

this concept, the testing and analysis of the developed system (Chapter 4) will

emphasise the significance of variations of calibration parameters (with respect to 3D

coordination accuracy) over periods of days and months, rather than individual

exposures, since such quantification of the level of variation would define guidelines for

the frequency with which online systems must be re-calibrated [Shortis and Beyer,

1997].

The discovery of digital sensor technologies has allowed the microscopes to function as

quantitative measurement tools for applications from life sciences [Koenig, 2001] to

engineering studies [Jordan et al., 1998]. Pollak and Hutter (1998) reported their

method for mounting a digital webcam on an optical microscope, effectively providing a

low-cost version of digital microscopy. Recently, webcam-based microscopes, where

webcams are directly turned into digital microscopes, have been developed and a

systematic explanation and quantitative assessment of the imaging performances of

webcams have been provided by Parikesit et al. (2010). In particular, Parikesit et al.

(2010) compared the imaging performance of a US$30 Prolink webcam (sensor:

CMOS; 1280×1024 pixels; interface: USB 2.0; maximum frame rate: 30 fps; lens focal

length: 2.8mm), which has similar specifications with the Logitech C500 webcams used

in this research, with a US$100 QX5 computer microscope (640×480 pixels) which has

been previously employed in a scientific investigation [Chen and Ugaz, 2006]. Parikesit

et al. (2010) concluded that the reproduction of the inverted lens microscope from the

webcam provided the best performance, where the spatial resolution (6.9µm) is twice

better than the QX5 microscope (12.4µm, at 200× magnification). This spatial resolution

also allowed the inverted-lens microscope to resolve translucent objects with a

translucent background, for a spatial periodicity of up to 10µm, which could be relevant

for life sciences investigations on unstained biological cells. Also highlighted in this work

are two webcam limitations. First, there is no diffuser in webcams resulting in

non-uniform illumination intensity across the whole field of view; second, optical
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aberrations (both chromatic and radial distortions) have been found in the webcam

because of the lens quality, which is inferior to the lens used in the QX5 microscope

which did not display such aberrations. Where the first problem can be solved by using

a well-positioned diffuser, the second problem can be solved using digital image

processing such as [Kozubek and Matula, 2001; Yu, 2003].

Experiments with a Creative II webcam by McNamee et al. (2001) addressed the

convenience of non-metric cameras in photogrammetry applications due to the

evolution of digital cameras nowadays has brought higher performance but lower price

for these cameras. However, similar to the report from Brown (1976), McNamee et al.

(2001) also stated that accurate recovery of camera parameters is required in order to

achieve accurate photogrammetric measurements. Page et al. (2008) addressed that

errors existed in 2D coordinate measurements (Logitech Pro 4000 USB webcam) are

essentially systematic caused by lens distortion. Lens distortion modelling due to the

lens quality of an ordinary USB (TerraCAM Pro) webcam has also been address by

Pervölz et al. (2004). A small random error of locating an object point on image was also

reported, where these errors are very small and are of the order of 0.1 pixel when

markers are used [Page et al., 2008]. In particular, Page et al. (2008) suggested it is

possible to have coordination accuracy of 0.3mm with a measurement distance of about

300mm, provided that all sources of error have been considered. This result is well

supported by the result in this research with the same (Logitech Pro 4000 USB)

webcam (Section 4.2.3.4).

Within computer vision, most webcam research is based upon a single webcam with a

simple calibration method. 2D/3D coordination precision and accuracy, as well as

stability and reliability of a system of webcams in terms of continuous 3D measurement

have not been fully investigated and reported to the author’s best knowledge within the

computer vision domain.

Sources of error regarding image measurement precision are not easy to identify from

acquired images since there can be various causes such as noise generated from

electric voltage in individual sensor pixel. Several authors [Dahler, 1987; Burner et al.,

1990; Beyer, 1993; Robson et al., 1993] discussed limitations to target measurement
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precision. Therefore in order to reliably deliver 3D coordination with acceptable

accuracy and precision from webcams, critical factors including the imaging sensor,

image compression, software image interpolation, chromatic aberrations and frame rate

adopted in current webcams are necessary to be taken into account and discussed. In

particular, the current techniques of image noise reduction for CMOS sensor used in

high end digital cameras, where these techniques might be broadly applied to webcams

in future, are presented as well.

3.3.1.1 Electronic sensor

The electronic sensors used in consumer grade digital cameras are either Charge

Coupled Device (CCD) or Complementary Metal-Oxide Semiconductor (CMOS). While

because of the semiconductor, the manufacturing process, energy consumption and

cost for CMOS are all lower than for CCD sensors of equivalent resolution, CCD is

better than CMOS in terms of noise depression and colorization. There has been

on-going research recently on CMOS conducted by Canon which has effectively

reduced noises in CMOS. One typical example is Canon EOS-1D Mark IV [Canon,

2009]. Different approaches, both hardware and software, have been simultaneously

implemented by Canon in order to increase the signal-to-noise ratio. First, image

processing functions were implemented on electric voltage data (analog) to reduce the

noise prior to the analog-to-digital conversion. This method has an advantage that the

noise existed in analog data should be more preditable and therefore easier to correct

since it has not been propagated through the conversion process. Second, Canon

completely separated the digital and analog circuitries in their manufacturing process so

eliminate the possibility of coupling of the current spikes from digital circuitry back to the

analog one, where both fixed and random pattern of noise can be generated by this

effect. Third, Canon largely increased the light gathering area of each individual pixel to

compensate the conventional disadvantage of CMOS sensor with relatively smaller light

gathering area as compared with CCD sensor. The signal-to-noise ratio under such

change can be largely increased. Finally, Canon increased the light convergence

capability by increasing both the size and the number of microlens used to direct light to

the light sensitive area within each pixel. Though such change of microlens would

greatly increase the image quality, the cost behind it is believed to be high.
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Compared to Canon’s digital SLR cameras, webcams are capable of containing

electronics which can support image compression, sharpening and resizing. However in

the absence of manufactures data it is only possible to guess at embedded capabilities

from the resultant images.

3.3.1.2 Image compression

Logitech officially stated that the compression format for C500 webcams is

M-JPEG/YUY2, where these compression techniques are summarised as follows:

M-JPEG

M-JPEG stands for Motion JPEG and is used by many digital cameras which are able to

capture videos. Each video frame is individually compressed as a JPEG image by

discrete cosine transform (DCT). Such a lossy form of transformation from the time

doman to the frequency doman would therefore loose some image details due to the

quantization of DCT transformation. Furthermore, image information with low frequency

tends to be filtered out with increasing compression. One typical example of such effect

can be found from image areas with smooth intensity changes, where these areas

usually appear ‘blocky’ after such compression is applied. However, the advantage of

this compression scheme is its high speed of processing and low hardware

requirements, which has a potential for the photogrammetric measurement based on

each video frame.

YUY2 (Y’UV422)

YUY2 is developed based on the higher sensitivity to luminance than to colour from the

visual perception of human. Y' represents the brightness; U and V represent the colour.

The difference between Y and Y’ is that gamma compression is applied to change Y

from the brightness perceptually to Y’ which represents brightness by is an electronic

voltage. YUY2 implements chroma subsampling where the colour (U and V) resolution

is only half of that of brightness (Y). 4:2:2 has become the most common ratio for Y, U

and V under such compression scheme.
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RGB24

RGB24 is a device-dependent colour model and it is mainly for image representation

and display. The number ‘24’ implies that there are a total of 8 bits of information for

each colour component in each pixel. Since there are three colour components, there

are a total of 16,777,216 ( 8 32  ) combinations of R, G and B values for each image.

Take video streaming from a digital webcam as an example, suppose YUY2 is used for

video compression (encoding). Such compressed video data needs to be decoded to

RGB model for displaying of video frame on the monitor. Such a decoding process is

performed by the electronic board of the webcam itself. Computer CPU then writes

bytes into the frame buffer inside the video memory to represent the RGB value of each

pixel. These RGB signal values are finally converted to pixel intensity values on

computer monitor through gamma correction performed by the electronic video

generator. Equations 3-18 and 3-19 are the common formulae for encoding/decoding

between YUV and RGB [Keith Jack, 2007]:

RGB to YUV:

     0.257 0.504 0.098 16Y R G B      

     0.439 0.368 0.071 128rC V R G B       

     0.148 0.291 0.439 128bC U R G B         3 - 18

YUV to RGB:

   1.164 16 2.018 128B Y U   

     1.164 16 0.813 128 0.391 128G Y V U     

   1.164 16 1.596 128R Y V    3 - 19

Different RGB colour models are usually used for CMOS and CCD image sensors. The

camera driver for Logitech QuickCam Pro 4000 webcams is PWC (Philips USB webcam)

while the driver for Logitech C500 webcams is Logitech's UVC (USB Video Class).

According to Logitech official documentation, the UVC in C500 webcams support Bayer
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mode (both colour processing and format conversion are disabled resulting raw output)

with some widescreen resolutions not supported.

The above compression techniques used in webcams are closely related to the issues

discovered in this research, where attaching multiple cameras to a system would result

in automated changes in compression (Section 4.4.3.3 and 4.5.5.3).

3.3.1.3 Image interpolation

Image interpolation happens when an image is resized or remapped from one pixel to

another. Such interpolation is usually performaed to estimate the intensity value of a

pixel (unknown) from intensity values of its surrounding pixels (known). Image

interpolation generally can be divided into non-adaptive and adaptive interpolations.

For non-adaptive interpolation, all pixels are equally important and such interpolation

method is independent of edge or texture. Among non-adaptive algorithms, nearest

neightbour interpolation is the simplest since the estimation of a pixel is purely based on

its closest pixel. Bilinear interpolation uses information from a total of four surrounding

pixels to estimate the interpolated pixel, where a weighted average is usually used to

derive the estimated value since the distance between any surrounding pixel and the

interpolated pixel is the same for all surrounding pixels. Similarly bicubic interpolation

uses a total of sixteen surrounding pixels, together with different weight based on

relative distance between the surrounding pixel and the interpolated one. Among these

three algorithms, bicubic method is able to produce the sharpest image because it takes

the most information available into its estimation process.

Adaptive interpolations are usually found in licensed softwares such as PhotoZoom Pro.

The underlying principle of these interpolations is minimising artefact details (such as

sharp edges) while maximising artefact-free details when an image is enlarged.
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3.3.1.4 Chromatic aberration

Camera lenses consist of several dispersive glasses which do not refract all constituent

colours of incident light at equal angles [Sidney, 2002]. Chromatic aberrations describe

such departures from perfect imaging due to dispersion in glass. While longitudinal

chromatic aberration (axial colour) describes the change of the lens's point of focus for

different wavelengths (left, Figure 3 - 7), transverse chromatic aberration (lateral colour)

describes the change in a lens's magnification for different wavelengths (right, Figure 3 -

7) [Woodlief and Whiley, 1973].

Figure 3 - 7. Longitudinal (left) and transverse (right) chromatic aberrations.

Table 3 - 1 compares the two chromatic aberrations:

Longitudinal chromatic aberration Transverse chromatic aberration

Only observed in places with high contrast

Causes fringes all around objects Only affects tangential details

Occur at any position in image Absent in image centre and progressively

worsens towards image corners

Yield fringes of a single colour Yield two differently coloured fringes at

either side of the tangential structure

Table 3 - 1. Features of longitudinal and transverse chromatic aberration.

Fringes due to axial colour are particularly visible in objects which are just out of focus,

e.g. green in front of the object and purple behind it (Figure 3 - 8). For lateral colour,

colour components with different wavelengths are focused onto different positions along

the image plane (Figure 3 - 8). Both axial and lateral colours degrade the overall

resolution of a lens [Bruce, 1978].
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Figure 3 - 8. Chromatic aberrations observed in webcam (Logitech C500) images.

The shape of a blurred circle is defined by the shape and number of a lens’ diaphragm

blades [Zeiss, 2010]. When targets are not exactly focused on the image plane, these

image spots are no longer circles but appear as shapes with as many sides as blades.

The more blades, the better since they will give a closer approximation of a circle. While

35mm SLR lenses usually have six blades, seven blades are equipped in most Nikkor

SLR lenses and nine blades can be found in Lenses for Nikkor telephotos. However, for

consumer grade digital cameras such as webcams, low cost lenses with only a few

blades are used, where a lens with four blades for Logitech C500 webcams can be

observed from blurred circles (Figure 3 - 8) appearing as squares.

Nowadays a monochrome off-the-shelf digital camera rarely exists and therefore new

calibration issues arise with colour cameras in terms of higher-accuracy

photogrammetric measurement. While it is difficult to reduce the blur effect caused by

axial colour, a degree of misregistration of the colour channels caused by lateral colour

can be corrected from post-processing steps [Cronk et al., 2006].
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Figure 3 - 9. Radial distortion of 3 colour channels and their associated B/W image.

[Remondino and Fraser, 2006]

The effect of chromatic aberration was investigated by Remondino and Fraser (2006),

with a SONY DSC F828 digital camera (8 Mega pixels and a focal length of 10mm). The

distortion profiles (Figure 3 - 9) demonstrates that while green colour has the smallest

discrepancy as compared with the B?W image, the discrepancy from blue colour can be

as large as ten pixels towards the sensor edges.

3.3.1.5 Frame rate

Although Logitech states on its official website that the frame rates for both Pro 4000

and C500 webcams are up to 30 FPS (frames per second). In its official documentation,

however, Logitech states that for one C500 webcam, the maximum frame rate with

maximum hardware (video) resolution (1280×1024) in M-JPEG format is 15 FPS, while

the maximum frame rate with maximum hardware resolution in YUY2 format is only 7.5

FPS. Considering the extremely high cost needed for high resolution M-JPEG

compression, whereas for low cost webcams like the Logitech C500 model, it is likely

that the maximum hardware resolution of 1280×1024 uses YUY2 compression. It is also

worth to note that due to the manufacturing cost, it is very unlikely for these webcams to

have a very fast sensor to quickly update video frames.
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3.3.2 Calibration methods

Appropriate methods such as targets are required to recover camera parameters. In this

research a calibration frame with evenly distributed 3D object point array (Figure 3 - 10)

is used to comply with the calibration guidelines outlined in Section 3.2.3.1.

Figure 3 - 10. Target test field used for camera calibration.

Self-calibrating bundle adjustment (Section 3.2.3.2) is used to simultaneously estimate

the locations and orientations of each image as well as a common set of camera

calibration parameters. Robson et al. (1993) reported that the principal point offsets

associated with their uncertainties can be determined easily and used as the initial

approximate values for the subsequent bundle adjustment process. An efficient method

to recover the principal point offset and principal distance is to establish a strong

imaging network from a multiple camera convergent geometry around a calibration

object such as that shown in Figure 3 - 10. Clarke et al. (1994) reported that in a single

convergent network around the test field, unreliable or inaccurate estimates of some or

all of the interior orientation parameters are likely to occur due to the fact that each

camera contributes only one image in the network. This issue can be solved by multiple

views of the test field produced by each camera. In this research 10 sets of views of the

test field was achieved by rotating the test field each time a set of photos was taken by a

series of cameras, i.e. a 4-camera setup produced 4×10=40 views.
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3.4 Photogrammetry with targets

Although there have been a number of advances in the efficiency and effectiveness of

image-based metrology systems in the last three decades, the most important factor

has been the automatic detection, recognition, identification and measurement of

artificial targets used to signalise points of interest [Shortis et al., 2003]. Without the

ability to recognise and measure targets automatically, the efficiency and response

times of metrology systems are severely limited by the necessity of manual

measurement of target images.

An efficient strategy for taget image detection is simply making targets either the

brightest or darkest objects in the image [Shortis et al., 1994]. Brown (1984) reported

that good results were obtained with a combination of retro-reflective targets and lighting

control in applications of industrial metrology. Shortis et al. (1994) stressed that since

background information can be effectively minimised by under-exposure since it is

normally out of interest in terms of photogrammetric target measurements. However,

retro-reflective targets with controlled lighting conditions become impractical for most

clinical studies, where either there exist various light sources such as those found in

patient’s bedside (left, Figure 3 - 11) or lighting needs to be minimised such as those

found in optical topography studies (right, Figure 3 - 11 and also Figure 3 - 17).

Figure 3 - 11. Typical clinical environment. Left: Various light sources around patient’s bedside;

Right: Dim to no light required for clinical optical topography studies.
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Shortis et al. (1994) reported that due to the fact that the photogrammetric target

measurements usually demand subpixel positioning accuracy, the natural features on

the object to be measured as well as the limitation of pixel resolution of imaging sensor

has made precise measurement of natural features rather difficult. The positioning

accuracy can be further decreased if there is a slight difference of feature positions

between the fields of view of different cameras in the network, or even worse when

there is no feature being identified [Clarke, 1994]. For example, there are no identifiable

features on the optical sensing pad which is made of black coloured plastic (left, Figure

3 - 12), while light coloured targets form a relatively high contrast with the sensing pad

(right, Figure 3 - 12) making each target an individual distinguishable feature.

Figure 3 - 12. Features on an optical sensing pad without targets (left) and with targets (right).

3.4.1 Target requirements for digital photogrammetry

Accuracy is the comparison of a measurement against a standard. It indicates how

close a measurement is to the standard value. On the other hand, precision (or

uncertainty) indicates the repeatability of measurements [Atkinson, 2001]. A small

precision value suggests a small volume containing the actual point location.

Photogrammetric target coordinate precision values are least squares estimates

computed from the imaging geometry of the photogrammetric network in combination

with the uncertainty of the target image measurements. Such information is internal to

the network and hence the computed precisions do not reflect the accuracy of

measurements [Robson et al., 1993]. When precision is high but accuracy is low, it is

highly possible that the fault lies with un-modelled characteristics of the camera or an

incorrect definition of object scale. Therefore accuracy and precision are equally
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important to access the capabilities of camera(s) in terms of photogrammetric

measurements.

Since the target coordination uncertainty (in 3D space) is directly propagated from the

uncertainty of target image positioning (in 2D image plane), the primary requirement for

accurate measurement is the accurate target image measurement. The fact that a

target image usually occupies between 25 and 100 pixels within an imaging sensor of a

low pixel resolution has made such requirement difficult to fulfil. The precisions of the

estimated target coordinates rely on many factors including the geometry of intersection

(narrow intersection angles to targets should be avoided with angles closer to 90

degrees being preferred), the principal distance of the camera, the camera-to-target

range and the number of images of each target (lines of sight). However, a

well-designed target intersection should realise precisions which are predictable based

on the following formula [Wang et al., 2008]:

R si
st

PD n
  3 - 20

where

st = predicted precision of the target coordinates;

PD = principal distance of the camera;

R = camera to target distance;

si = precision of the target image measurements;

n = average number of images for each target.

The subpixel precision of target image measurement has been extensively investigated

in the last three decades. Clarke (1994) reported a precision level between 0.1 and 0.01

pixel by using bundle adjustment; Trinder (1989) and West and Clarke (1990) studied

the precision of centroiding method while Förstner and Gülch (1987) and Gruen and

Baltsavias (1988) studied the least squares method. All these studies led to a

conclusion of a precision level between 0.2 and 0.005 pixels in terms of target image

measurement, where such precision can be affected by size, shape and intensity

distribution of the target (Figure 3 - 13). Brown (1984) recommended that the

background should have at least five times radius than that of target itself in order to

achieve a high target measurement precision. Brown (1984) also addressed that target
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image diameters should be large enough in the images to optimise the target image

measurement, where practical target image diameters can be computed using:

PD
d D

R
  3 - 21

where

d = target diameter in the image;

D = target diameter in the object space;

PD = principal distance of the camera;

R = camera to target distance.

Figure 3 - 13. 3D view of a typical target image. [Clarke, 1994]

3.4.2 Types of Target

Targets can be active or passive. Active targets are usually those with projected light

spots, where passive targets are usually manually attached to the object to be

measured [Clarke, 1994]. Retro-reflective targets have been widely used in

photogrammetric applications for decades due to its high returned light intensity in

favour of target identification. The advantage of retro-reflective targets includes high

target contrast and much less influence of intensity variation from background in terms

of target positioning. However, retro-reflective targets do have a limitation of axial

illumination, where Clarke (1994) recommended a light radiation within 0.5 degree from

camera axis and an angle within 45 degree between target and camera in order to

achieve sufficient and consistent light return. Tests conducted by Clarke et al. (1995)

confirmed this recommendation in which the returned light intensity can be largely

decreased once the angles exceed the range stated above. However, target coverage
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of the upper sphere of human scalp, plus that lighting conditions in many clinical studies

(Figure 3 - 11), have rejected retro-reflective targets as an appropriate choice for targets

used in this research.

Huang and Trinder (1993) discussed the advantage of spherical balls as being

imni-directional, i.e. the target is a circle independent of viewing directions. Such

advantage is confirmed by Aw and Koo (1993) in their photogrammetric measurement

of a satellite dish. Moreover, the use of coloured targets can offer the advantage of

unique identification by their spectral characteristics [Clarke, 1994].

Considering the target coverage on human scalp for clinical studies such as optical

topography, planar circular targets can be attached onto locations which can readily be

seen by multiple cameras overhead while spherical targets can be attached to places

where occlusions can easily occur such as places inside hair or the horizontal level to

ears provided that cameras are located above the head. Figure 3 - 14 shows a

combination of planar and spherical targets used in optical topography studies in this

research.

Figure 3 - 14. Spherical targets (left) and a mixture of planar and spherical targets attached on

human head (right).
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3.4.3 Target thresholding techniques

In order to extract target information from their background, thresholding is necessary

not only to make targets more identifiable but also remove unnecessary image noises.

For digital cameras especially those with relatively low sensor resolution, thresholding is

usually considered as the first step to measure target images since in many cases

target images are practically immeasurable due to a large amount of image noises

resulted from background illumination, analog-to-digital quantization errors [Beyer,

1993], chroma subsampling of Bayer filtering process [Shortis et al., 1993] etc.

Conventional thresholding techniques used in photogrammetry include both manual

jusgement and automatic thresholding within a window containing a target. There are a

number of window based thresholding techniques developed over the last two decades.

The simplest approach is proposed by Snow et al. (1993) to add an arbitrary constant to

the maximum intensity identified at the window edge. Wong and Ho (1986) achieved an

efficient thresholding with passive targets in ambient lighting by setting the threshold

value based on the average of the minimum and mean intensities of pixels contained in

the window. A more complex but accurate method is based on the statistical analysis of

intensity distribution for all the edge pixels of the window containing the target. Take the

thresholding method used in VMS [VMS, 1999] as an example. Assuming the

background noise in the image is random distributed, the mean and the standard

deviation of the edge pixel intensities can be computed. Please note that in order to

prevent the window’s edge from containing target image pixels, if the mean computed is

larger than a preset value, the window will automatically shift slightly until the mean

computed falls within the tolerance. The threshold value is then set based on the

maximum expected intensity value, e.g. 3×standard values+ the mean value. However,

these statistical methods require either iterations of computation to derive the threshold

or adjustment of window’s position to prevent target intrusion into window’s edges.

Each of the above techniques has its own characteristics, advantages and

disadvantages. When considering a proper thresholding method suited to

webcam-based fast coordination under complex scenes without the assumption of
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appropriate lighting in this research, disadvantages of the above techniques such as the

complexity of computation and high possiblity of a target image intrusion into the

window edge make these techniques difficult to apply.

3.4.4 Practical target image measurement

In practice using prior knowledge of both the targets and the structure being measured

can assist in the choice of detection algorithms [Chen and Clarke, 1992].

Conventionally in photogrammetric 3D measurement there are many equal sized

targets and the background intensity changes slowly providing good contrast between

targets and background (Figure 3 - 15).

Figure 3 - 15. Targets and background usually found in photogrammetric 3D measurement

application (reproduced from Chen and Clarke (1992)).

However, in this research two problems have been raised. First, in order to include the

object within the views of all cameras so that a strong convergent geometry can be

formed, the targets to be detected normally occupy only a small portion of each image

from each camera. This has resulted in a scene containing a lot of background clutters

where under-exposure is very easy to occur under this particular lighting requirement.

Second, the sensitivity provided by low cost sensor embedded in these off-the-shelf

webcams is much lower than those found in high-end digital cameras such as Nikon

D100 SLR camera. These problems can be seen in Figure 3 - 16 and Figure 3 - 17,

where most pixels are located in the dark area (left of the histogram) and some pixels

located in the booming area (right of the histogram) indicating over-exposure.

Background noise can also be seen in the large number of pixels situated in the

low-intensity area. In contrast, little useful information is present in the middle of the

histogram. Extremely uneven distribution of light intensities among image pixels

delivered from these low cost webcams has demonstrated a very poor image quality.
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Figure 3 - 16. Comparison of target image quality of Nikon D100 camera (left) and Logitech

C500 webcam (right).

Figure 3 - 17. Cluttered background in volunteer studies using off-the-shelf webcams.
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In this application low cost cameras are used with minimal lighting control to match

clinical room lighting conditions. Retro-targets have been avoided to keep the equipment

simple as no axial illumination is built into the cameras. As a result the combination of

natural targets and the camera’s inbuilt image compression poor image quality is the

main obstacle for target detection.

Established photogrammetric targeting methods use thresholds to separate brighter

targets from a dark background prior to subpixel target location computation using either

a centroid or ellipse fit [Robson et al., 1998]. However such detection methods are not

only inappropriate when isolating target perimeters from complex background images

such as those that might be found in this research, but also too much information from

the images needs to be processed, i.e. all pixels with different intensity values within an

image needs to be considered and processed for target recognition, tracing and feature

extraction prior to target location computation. This is impractical for this application

where 3D target coordinates need to be computed per frame and therefore the target

recognition and location process here need to be as computationally simple and

meanwhile effective as possible to allow enough time to be dedicated to the subsequent

target correspondence matching and 3D space intersection method which derive 3D

target coordination. Therefore target segmentation aims at rapidly extracting only useful

information for target location calculation from sequences of images by discarding all

unnecessary image information at this early stage in favour of a fast coordination

application.

3.4.4.1 Target recognition - RGB to Grey scale Conversion

When a colour image comprising Red, Green and Blue channels is extracted from video

stream (YUY2 to RGB24 conversion applies), every light element is represented from

value 0 to 255 based on its light intensity and there are a total of 256 distinct colours for

each light element. Therefore, a total of 256×256×256=16777216= 242 colours can be

represented by these 3 light elements. Since every pixel is composed of a combination

of the 3 light elements, every colour image is stored as 3×2D arrays, with each 2D array

represents one light element, and the value of each 2D array represents the light

intensity of each light element.
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Consider the complexity and processing time for all 3 arrays, a simpler but accurate

method is required for fast processing. Therefore the target measurement part of the

system utilized grey scale images, in which the images captured from the webcams

were transformed to grey scale first. The digital colour image is represented as RGB

values, with a particular combination of proportions of red, green and blue colours.

When a colour image is transformed into a grey scale image, normally the RGB values

are transformed into the YIQ model, with Y representing luma information, I and Q

representing chrominance information [Buchsbaum, 1975]. The transformation between

YIQ and RGB is defined as:

0.299 0.587 0.114

0.596 0.275 0.321

0.212 0.523 0.311

Y R

I G

Q B

     
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     
          
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Since the Y component and I, Q components are processed separately in YIQ, the Y

value is the grey value in an 8 bit grey scale image (0 to 255), as indicated by Figure 3 -

18. The bigger the grey value, the higher the light intensity of the pixel will be. However,

here we should note that some camera systems have 10, 12 or even 16 bit grey scales

where the number of bits depends on the signal to noise ratio and dynamic range

capabilities of camera’s sensor.

Figure 3 - 18. The distribution of grey scale values. (Reproduced from Efford (2000))

3.4.4.2 Target recognition - Segmentation

Given the imaging environment in this research, the acquired image is always

accompanied by the complicated background which should be removed. For example in

the experiment with a polystyrene head (Figure 3 - 19) carried out in the laboratory

environment, of the background was not masked out with a sheet of background

material. In this way the background complication is similar to the clinical environment. It

must be emphasized that lighting control, for example the mains frequency related

flicker of some lighting components, and other unstable factors caused by the dynamic

capturing condition will increase the difficulty of background removal.
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Figure 3 - 19. Sample image (640×480) acquired by Logitech Pro 4000 in laboratory.

Many systems use image thresholding to isolate targets from the background, however

in the cluttered case, compounded by areas of high brightness such techniques do not

perform well. In this research, reliability, effectiveness and speed are the most important

criteria for target image segmentation from the background. An important function of the

segmentation process is to act as the first operator to remove most noise in the images,

which can speed up subsequent processes, for example by reducing ambiguities in the

target image correspondence process.

One way of detecting features that could be target images is to use an edge detector.

The Canny edge detector has been widely used since it was first introduced by Canny

(1986). For these edge detection methods with fixed thresholds, the intensity variation

across edge pixels can easily leave those edge pixels with relatively low intensity

filtered causing edge disconnection. This drawback is effectively compensated by the

Canny detector due to its fundamental difference from the conventional edge detection

algorithms in that its hysteresis hypothesis is capable of reconnecting those

disconnected edge pixels after the initial edge detection process. Luo and Duraiswami

(2008) investigated the Canny detection optimised by the Open Computer Vision library

[OpenCV] and reported that the processing speed of the operator making full use of the

multiple cores and threads is much faster than any other implementation on a modern

computer. The Canny edge detection process can be classified into four steps:

smoothing, gradient derivation, non-maxima suppression, and hysteresis thresholding,

as shown in Flowchart 3 - 1.
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I

Flowchart 3 - 1. Canny edge detector.

1. Smoothing

Discrete representation and quantization errors (Section 3.3.1.2) can introduce false or

noisy pixels in an image. A Gaussian filter mask can be used to remove noisy pixels.

The Gaussian filter mask with a 3×3 kernel is defined by

1 2 1
1

2 4 2
16

1 2 1

 
 
 
  

3 - 23

2. Gradient derivation

A 2D convolution is performed on the image to determine the first derivative of each

pixel gradient. Regions with sharp intensity changes are represented by higher gradient

values. Sobel or Prewitte operators can be used to calculate the gradient of an image.

The magnitude and direction of the gradient at each pixel of an image is calculated in

this step:
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3. Non-maxima suppression

The wide ridges are then trimmed around local maximum in gradient magnitude down to

edges of single pixel width. In step 2 (gradient derivation), we have already computed

the gradient magnitude and direction, then stored them in images g and θ, respectively.  

We obtain a thinning output from g and θ, where the thinning is sg . The algorithm

proceeds as follows:

For all (x,y):

Step 1. Approximate θ(x,y) by
3ˆ 0, , ,

4 2 4

  


 
 
 

;

Step 2. if g(x,y)<g at neighbour in direction ̂ or ̂  , then g(x,y)=0.

The gradient magnitude of each pixel (computed from step 2) is then compared with its

neiboughhood pixels along the derived gradient direction (step 2). Only the pixels with

higher gradient magnitude remain and those pixels with lower magnitude are

subsequently supressed. In this way the search process is able to derive the ridge

pixels representing potential edges.

4. Hysteresis thresholding

It is this step making the Canny detector achieve a better detection result as compared

with those edge detection methods using fixed thresholds. For the ridge pixels (potential

edges) derived from non-maximum suppression, a two-thresholding method is applied.

Any ridge pixels with intensity higher than the higher threshold are immediately

accepted as the permanent edge pixels and any ridge pixels with intensity lower than

the lower threshold are immediately accepted as non-edge pixels. At this stage those

ridge pixels with intensity between the higher and lower threshold are accepted as the

potential edge pixels and therefore further judgement needs to be made to categorise

these pixels. If any neighbourhood pixel(s) of a potential pixel are already defined as

permanent edge pixels, this potential pixel is finally accepted as permanent edge pixel.
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Otherwise it is defined as a non-edge pixel. This step gives the broken edge pixels a

range, defined as the difference between the lower and higher thresholds, to be

reconnected back to its neighbourhood edge pixels. This connected-component

analysis is particularly important for edge detection of images with relatively poor quality,

such as those delivered by low cost webcams, where edge discontinuity often occurs.

With the two-threshold technique, the true edges which have been weakened are able

to be re-defined from the potential edge group back to the definite edge group.

Recently Luo and Duraiswami (2008) have implemented the Canny algorithm within the

CUDA framework [CUDA, 2007] making use of the parallel computing from the graphic

processing unit (GPU). This implementation has been compared with the assembly

optimised CPU implementation of Canny in OpenCV library. Luo and Duraiswami (2008)

reported that provided with an image within 1024×992 size, CUDA demonstrated a

speedup of processing with image size. However, such speedup becomes less

apparent when the image size is over 1024×992. This is mainly because the edge

number within image of this size usually causes a large number of hysteresis

thresholding operations exceeding the parallel pipelines available on the architecture of

the graphics processing unit. Serial processing is therefore resulted lowering the overall

processing speed. Luo and Duraiswami (2008) concluded his study by stating that “the

CUDA function performed better for low edge count images in terms of both absolute

runtimes and relative speedup with its CPU counterpart”.

Considering that the image size used in this research is larger than that of 1024×992

with a fair amount of edge counts per image, plus the fact that to allow slight target

movements in the fast tracking application, completely fresh image data is required to

compute the 3D target coordinates per camera frame. While Luo and Duraiswami (2008)

reported a substantially high cost is needed for data loading from the GPU main memory,

the loading of fresh data from multi-camera to GPU per frame would be impractical to

implement and therefore CUDA was not implemented in this research. However, with

the increasing number of multiprocessors in GPU nowadays, CUDA implementation for

speedup can be an interesting future research direction.
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3.4.4.3 Target recognition - Morphological operations

Normally an image after edge detection processing contains some disconnected edges.

In the worst case, the object(s) of interest cannot be recognized since the shape(s) are

greatly affected by this disconnection. This could produce a large variation across

image frames in terms of the number of targets being detected for fast tracking.

Considering the target detection consistency across frame sequences as a critical factor

to achieve fast and meanwhile reliable photogrammetric target measurements,

morphological operations are necessary to be introduced into the edge image. The

functions of morphological operation include image smoothing, noise removal and

connecting disconnected edges.

The most common methodology of morphological operations contains dilation and

erosion, which is called mathematical morphology in digital image processing [Gonzalez

and Woods, 1992]. Dilation followed by erosion is called closing, whereas erosion

followed by dilation is called opening. Normally closing is applied in order to connect

disconnected edges. Suppose an image A has been processed to a binary or edge

image so that the intensity values are either 1 or 0. Here we define a matrix B with

elements 1, the closing of image A by B is as follows:

       nA B c E c a b for some a A and b B

      nA B x E x b A for every b B 3 - 25

where A and B contain  1 2, ,..., na a a a and  1 2, ,..., nb b b b respectively and they

are both n dimensional ( nE ). Figure 3 - 20 and Figure 3 - 21 show examples of dilation

and erosion.
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Figure 3 - 20. Dilation.

Figure 3 - 21. Erosion.

3.4.4.4 Target recognition - Edge tracing

After segmentation is applied, only the object’s boundary pixels which form a certain

degree of contrast with its surrounding image pixels are assigned 1 (intensity value) and

all the other pixels (including those inside the target boundary) are set to 0. The next

step is edge tracing, which aims at finding true targets from all edged objects by

applying more target selection criteria and meanwhile storing information for target

location calculation. Edge tracing consists of two steps: (i) contour tracing of target

edges on binary images output from image segmentation, and (ii) extraction of structure

parameters from RGB images, which include area, perimeter and circularity, in order to

validate targets.

It is necessary to trace the contours of all potential objects which appear in the binary

Image. Various methods have been proposed such as the chain code method [Pavlidis,

1982]. A scan-line filling method is chosen in this research since it is more efficient for

the larger sections of images that must be recognised as not being targets [Shortis et

al., 1994], which is particularly the case in this research.
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1. Trace the outline of any object (object edge) based on the binary image

determined through the target segmentation (Section 3.4.4.2 and 3.4.4.3), as

opposed to established photogrammetric targeting methods where the threshold

is usually determined at this stage interactively from a visual segmentation

[Shortis et al., 1994]. Since the aim of tracing here is only to check if any

connected components can form a complete shape (potential targets),

compared with the conventional methods, not only no human intervention such

as visual segmentation is needed, a simpler and quicker search is achieved by

the binary image containing only edge pixels;

2. When the intensity value of a pixel is found to be 1 tracing is performed by an

eight-directional search so that all the neiboughood pixels of this recognised

image pixel (with 1 as the intensity values) can be included. The entire image is

searched in this way from left to right and top to bottom. The search process is

completed when all the candidate target image pixels are found;

3. A candidate target image is said to be found if the eight-way search is

completed, i.e. the starting pixel has been visited twice. These image pixels are

then temporarily removed from the search process with their image coordinates

stored in computer memory. At this point the perimeter length and maximum x

and maximum y dimensions are computed, where these data are stored in a

structure and passed to the next part of the program.

When the tracing process finishes a list of co-ordinates representing target images are

then used in the next step to calculate target image centroids.

3.4.4.5 Target recognition - Target structure parameters

Even after image segmentation and edge tracing it is likely that there are still some

objects falsely recognised as true (legitimate) targets, so that it is necessary to

distinguish between targets and non-targets. Typical features used contain perimeter

length, size and circularity. The perimeter length of the subject can be calculated using

the traced contour X,Y coordinates. The area can be calculated by counting all of the

pixels inside and on the perimeter of the subject. A shape factor is used to express the

differences between circular and non-circular subjects. The definition is given in

Equation 3-26 [VMS, 1999].
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where A is the object area, L is the longest distance across the object. The equation

gives the ratio of the subject area to the area of the circle circumscribing the subject.

The nearer to a circle the object is, the closer to 1 the ratio is.

When all the three conditions are met with some predetermined bounds it is very likely

that this object is a true target and therefore its coordinates are stored, otherwise the

object is rejected. This process is repeated for the whole image until all target objects

recognised from edge tracing have been tested.

3.4.4.6 Target location

Once target images have been identified, it is then necessary to refine the precision with

which they are located in the image. However, target positioning accuracy can easily

biased by a number of factors such as low target contrast, distance between the camera

and the target, target occlusion resulted from narrow lines of sight [Clarke et al., 1993].

A survey of subpixel techniques using grey scale images indicates that high location

accuracies have been reported by a number of authors for objects such as edges,

Gaussian blobs, patterns, etc. [West and Clarke, 1990]. Wong and Ho (1986) and

Trinder (1989) demonstrated that the target centre used in photogrammetry is no

exceptions. The subpixel accuracy with which a target can be located using these

methods has been reported as high as 0.01 pixel, though accuracy can be heavily

limited by noise [Deng, 1987]. In this research the target recognition was performed on

binary images and the identified true targets and their associated edge coordinates

(from Section 3.4.4.1 to 3.4.4.5) can then be used for the target location calculation

performed on grey scale images.

Many methods have been used for subpixel location of targets. Examples include

interpolation, correlation, centroiding, differential, and shape fitting. In this research the

centroiding method is selected because the computation will give consistent results on

small circular shaped targets even when viewed from different angles [Chen and Clarke,
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1992]. Shortis et al. (1994) conducted simulations to study the effects of quantization,

threshold variations, target size on target location, sensor saturation and DC offset on

target location accuracy of six common target location methods (average of perimeter,

binary centroid, grey scale centroid, squared grey scale centroid, ellipse fitting and

Gaussian distribution fitting), where squared centroid performed most accurately in 4

out of 5 simulations. Shortis et al. (1994) further pointed out that centroiding

performance can be negatively affected after thresholding is applied to remove noices,

where this effect is smaller for the squared centroid method.

Combining all the above factors, the centroiding adopted in this research is squared

centroiding on grey scale images:
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where

n is the total number of pixels contained in the target blob;

i is the grey scale intensity value of the pixel;

,i ix y are the x-coordinate and y-coordinate of the pixel.

3.4.4.7 Summary flowchart

The procedures described in Section 3.4.4.4 (edge tracing), Section 3.4.4.5 (extraction

of target structure parameters) and Section 3.4.4.6 (target location), adapted in this

research are summarised in Flowchart 3 - 2:
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Flowchart 3 - 2. Target image detection consisting of three parts:

1. Image scan; 2. Target tracing; 3. Centroid computation.

Target image centroids of each image are then stored for subsequent 3D

correspondence (Section 3.5) to compute target 3D coordinates.
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3.5 Correspondence and epipolar geometry

Having measured target image locations, or more generally image feature locations,

finding the correct correspondence is critical since 3D data completely relies on the

correct match of the corresponding points between multiple images. Some research

uses block matching to find correspondence without camera calibration [Li et al., 1996].

However, the block matching requires a large amount of computation which is

impractical to apply to fast 3D coordination. In order to increase the efficiency of finding

correspondence, the relative geometry among cameras can be used to minimize the

search space. In this section, fundamental knowledge of epipolar geometry will first be

given, followed by the overview of correspondence matching techniques and finally the

3D space intersection matching with optimisation methods which has been applied in

this research.

When both cameras see a point X in 3D space, the three points, X , C and

'C forms a plane, which is called the epipolar plane (Figure 3 - 22). The line between C

and 'C are called the baseline. The intersected points between the baseline and the

left and right image, e and 'e , are called the epipoles, where e is the projection of

'C observed by the first camera and 'e is the projection of C observed by the second

camera. The two lines, l and 'l , which intersect the epipolar plane with the left and

right images respectively, are called epipolar lines. A new epipolar line will form

whenever X moves and all these epipolar lines will pass e on the left image and 'e

on the right image.

Figure 3 - 22. Epipolar geometry [Sonka, 1998].

Let u and 'u be the projected points of X on the left image and the right image

respectively. Then the ray CX contains all possible 3D locations which can be
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projected onto the point u on the left image. The projected line of the ray CX on the

right image becomes the corresponding epipolar line 'l with respect to l . That means,

the corresponding point 'u on the right image of a point u from the left image must lie

on epipolar line 'l . This geometric relationship, which is called epipolar constraint,

reduces the original 2D correspondence search to the 1D line search, which largely

increases the search efficiency.

3.5.1 Overview of correspondence techniques

The automation of the correspondence is important in digital photogrammetry and

computer vision. The matching of target images from one image plane with the

corresponding target images in other image planes is an important step to make

photogrammetric system automatic. A good review of target matching can be found in

the thesis of Baltsavias, 1991. Since this research only concerns the correspondence of

close range ordered images, correspondence dealing with wide baseline and unordered

images will not be discussed and can be found in [Roth, 2004]. In UCL, a 3D target

matching method (Section 3.5.2) has been previously developed based on a 3D

intersection, as compared with the method using 2D epipolar line search. A space tree

search process is adopted as opposed to the common random search matching

process. The matching reliability is improved by utilising multiple camera views and

appropriate multiple constraints based on groups of target images.

3.5.2 3D correspondence solution

The introduction of correspondence establishment by considering the intersection

between camera rays in object space can be attributable to Chen et al. (1993, 1995)

and Clarke et al. (1995). The underlying principle is based on the collinearity, where the

camera ray formed from the image point through the perspective centre of the optical

system to the object point is a straight line. In an ideal imaging system a corresponding

point on the image plane from the right camera should produce a camera ray which

intersects with the camera ray from the left camera (Figure 3 - 23). However, a

combination of factors including image measurement uncertainty, principal point offset

uncertainty, lens distortion uncertainty cause these camra rays not able to intersect with

each other. However, the useful information is that the corresponding points should
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produce rays which intersect with a minimum perpendicular distance (Figure 3 - 23), as

compared with rays formed by other points. Chen et al. (1993) and Sabel et al. (1993)

proposed algebraic and vector based methods respectively to compute the minimum

distance. Since it is possible for a non-corresponding image point from the right image

to form a camera ray intersecting the camera ray from the left camera with the same

minimum distance, solution is necessary to minimise such ambiguities and this is

usually solved by increasing the number of cameras in the imaging network. The

correspondence approach based on 3D intersection has been proven to work reliably

for more than twenty camera views [Chen et al., 1993].

Figure 3 - 23. 3D intersection.

The geometry of epipolar line has been given prior to Section 3.5.1. In practice, the 3D

coordinates of a target could be either poorly estimated or unknown. The epipolar line of

the target image in another image plane can be determined by the following method:

For each target image within the image plane 1V four linear equations can be defined.

The first two can be obtained from the collinearity equations whilst the second two can

be obtained by projecting the target object (X,Y,Z) to the other image plane. Combining

the equations and eliminating the common variables X, Y, and Z, the 2D epipolar line

equation can be obtained. Figure 3 - 24 illustrates an epipolar line from another image

plane which has been projected onto the current image plane. Two image planes will not

always provide a unique correspondence solution and therefore more camera views are

usually necessary to disambiguate targets. There are some further points to note

regarding this technique:
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(i) Accurate estimation of camera orientation parameters is necessary as their poor

estimation will produce an error in image location and cause correspondence

problems;

(ii) A straight line is assumed for the epipolar line search method. However, in general

case the epipolar line can be distorted by systematic errors in the imaging system

such as lens distortion and image plane unflatness;

(iii) A tolerance band will often be used. The size is related to the precision of the

estimated camera orientation and the target image measurement method.

Figure 3 - 24. An epipolar line from another viewpoint projected onto the current viewpoint.

Collinearity equations and a functional model which describes distortion of the imaging

system are included for target matching in 3D space. A tolerance value can also be

closely related to errors in 3D coordinate estimation. If additional parameters are taken

into account the collinearity equations can be expressed as [Methley, 1986]:
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The above equations satisfy a 3D line equation in vector form:

0 0 0a a aX X Y Y Z Z

p q r

  
  3 - 29

where
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Equation 3-29 describes a line in 3D space. If a target lies on the surface of a 3D object,

the 3D line equation describes a ray projected from this target through the perspective

centre of the lens. If all of the targets from another image are projected through its own

perspective centre, provided with appropriate exterior orientation parameters, the ray

from the corresponding target will pass closest to the single projected 3D line (Figure 3 -

23), with the minimum distance between projected rays (equation 3-30):
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where 1 1 1, ,p q r and 2 2 2, ,p q r are vectors of equation 3-29 for two viewpoints.

Similarly, target image candidates corresponding to other targets can be matched in this

way. The 3D space matching method is illustrated in Figure 3 - 25 for the two projected

rays of a matching target using two camera viewpoints as an example.

Figure 3 - 25. Minimum distance searching between two projected rays.
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There are two basic differences between the 3D space method and the conventional 2D

epipolar line method:

1. The epipolar line method is a 2D projection of a space ray, which passes close to

a point in another view, while the 3D space method is the space intersection of

rays through image points from two or more views;

2. The threshold values for correspondence matching are different. The epipolar

method uses the target image coordinate residuals whilst the 3D space method

uses the computed RMS standard deviations of the target 3D coordinates.

3.5.3 Correspondence optimisation

Although the matching reliability is improved with the 3D space method, the number of

target image matching can be significantly increased with the number of projected rays

and number of target images existed within camera views. Therefore it is necessary to

optimise the 3D space method in terms of its efficiency in multi-camera as well as

multi-target photogrammetric measurements.

Hierarchical approaches has been a popular approach to accelerate the matching

process [Zhang, 1994; Turk and Levoy, 1994; Neugebauer, 1997]. The underlying

principle of these methods is to reduce the number of points in the matching process.

Methods using sub-sample of image data have also been proposed by many authors,

such as considering only points in smooth surface areas [Chen and Medioni, 1992],

only points with high intensity gradients [Weik, 1997] and selecting points based on the

surface normal distribution [Rusinkiewicz and Levoy, 2001]. However, these methods

are highly dependent on the content of point clouds selected and therefore sensitive to

factors such as target contrast and image noise.

An effective solution to accelerate the matching process is by considering the search

structure, where the complete search space can be refined to a small group to establish

the target matching group. This optimisation method was first developed by Bentley

(1975) as a k-dimentional binary search tree (K-D tree). The complete search space is

represented by the tree root while its mutually exclusive subsets are represented by the
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leaves extended from the root. The space partitioning method for 3D point matching

(Figure 3 - 26) first introduced by Chetverikov (1991) was since then extended by Gruen

and Akca (2005) to image space. The underlying principle of this space partitioning

method is to first perform hierarchically adaptive nearest neighbourhood search,

followed by a matching process where only those relevant subsets representing the

potentialmatching group were matched with each other simultaneously.

Figure 3 - 26. 3D boxing.

To find a potential corresponding point in image space, back projection can be used to

project the 3D object point initially estimated from at least two camera views back to

image planes of other camera views (Figure 3 - 27). The corresponding point from each

camera view can then be found by searching for the closest target image point around

the projected point within a (usually subpixel) tolerance value. This approach has been

successfully used to solve the correspondence problems in many close range

photogrammetric measurements [Fraser, 1997]. However, the assumption of this

approach is the existence of all camera views including an object point, i.e. a matching

group may not be reliably established if target occlusion occurs for one or more camera

views. Further optimisation methods are therefore needed to include target occlusion in

the matching process.
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Figure 3 - 27. Back projection.

In order to reliably establish the correspondence for all image points in all camera views,

each point in one camera view is necessary to be compared with all points from all the

other camera views. Regarding this technique, Chen et al. (1995) proposed an

optimisation method utilising a tree search structure so that each comparison and

judgement can be made for a group of points rather than individual points.

3.5.3.1 Optimisation of the 3D intersection matching method

Section 3.5.2 describes the 3D intersection matching method developed in UCL using

object space constraints, which is equivalent to the epipolar line method performed in

image space. Additional parameters such as lens distortion are included for the

minimum distance computation and a tolerance value directly related to the

measurement process can be selected. The advantage of this method is its capability of

solving correspondences between large numbers of viewpoints which are not required

to overlap [Chen et al., 1993]. However, as previously mentioned, this method must be

optimised so that the matching process can be completed within a reasonable time in

favour of photogrammetric automation.

3.5.3.1.1 Matching tree search process

In order to match the targets imaged in multiple camera views all possibilities are

required to be considered and tested. Consider an example where there are a number

of possible combinations (Figure 3 - 28):
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Figure 3 - 28. An example of combinations.

A simple search method is described as follows:

1. choose a target image from 1V ;

2. choose any target image from 2V ;

3. choose any target image from 3V ;

4. using the three target images selected, calculate the distance between any two

target images out of the three combinations. The target image group where all

the measured distances between rays satisfy the distance tolerance is

temporarily accepted as a corresponding target image group. The group is later

accepted permanently as a corresponding target image group if none of its

target images are candidates in any other group;

5. choose another target image from 1V and repeat the previous three steps (2-4).

For 3 viewpoints and 6 targets (Figure 3 - 28), there are 216 (6 x 6 x 6) combinations of

target image groups. For each group two target images need to be chosen (out of three)

for distance computation, so there are 3 such computations (e.g. ab, bc, ac). Therefore,

a total of 648 (3 x 6 x 6 x 6) distance computations are needed. Generally, assuming the

number of targets is the same in each viewpoint and there are m viewpoints and n target

images in each viewpoint, then the total number of distance computations taking

account of all possibilities is:

   2 1 1
1

2

m m
m nN C C m m n

 
       

 
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However, in practice there are usually more than 50 targets and more than 5 views

making this method rapidly become computationally impractical. Regarding this this

search method is required to be optimised by narrowing the scope of search and one

way to achieve this is to only search for the group being matched. For example, the
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previous method (Figure 3 - 28) can be rearranged into a matching tree (Figure 3 - 29)

where each level represents a viewpoint and the nodes are the target images within that

viewpoint. The search will continue only if a node corresponds with the node from its

upper level, otherwise the node and all nodes below it will be removed from the search

tree. This method, called a “matching tree search process”, was first applied in pattern

recognition by Grimson (1990), where a matching judgement is made at each node of

the tree.

Figure 3 - 29. A tree of searching structure with levels and nodes.

Finding correct target matches using this approach can be treated as a search within

multiple dimensional spaces. Each viewpoint (level) represents a coordinate axis and

the target images in each viewpoint (nodes) are expressed by discrete coordinate labels

on each axis. The place of any two axes represents a possible match between two

target images and testing all nodes ensures that all possible matches are found.

However, the problem with this approach is that the matching space can be too large in

practice. For example, if there are m viewpoints and each viewpoint has n target images,

then there are mn points in discrete 3D space and 2 2
mC n points in discrete 2D

planes. Therefore alternative methods are necessary to minimise the number of

searches without missing any valid targets. In the following section, one of the artificial

intelligence and model-based recognition methods which have been developed and

optimised is discussed in favour of target matching.
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3.5.3.1.2 Global consistency width-first search

To illustrate this search method, 3 viewpoints and 6 target images in each viewpoint are

selected as an example (Figure 3 - 30). A target image from 1V is held fixed. A

judgement is made between this target image and one of target images from 2V (as

root). If the matching candidate is not satisfied another target image from 2V is

selected. No judgement involving 3V will be made until a match has been found

between 1V and 2V . For example, the matching pair  1 3,i kP P between 1V and 3V

is searched only after a matching pair  1 2,i jP P has been found. This search process,

called the width-first tree backtracking, will terminate at root level if there is no matched

target image from 2V with the fixed target image from 1V . That is, the search will

progress to the leaf node only after the root has been satisfied. This method is

considered to be efficient since the computation time can be substantially saved by

eliminating unnecessary searches. On reaching leaf pairs  1 2,i jP P and  1 3,i kP P may

have been found to be matching pairs. However an additional judgement is needed for

 2 3,j kP P to ensure the global consistency. The advantage of the width-first search

method is that the software implementation requires only a single loop process to

realise the search. This is critical in terms of applications demanding fast

photogrammetric 3D measurements as an example in this research. Optimisation is

achieved by this method in which a possible matching group can be formed when the

search reaches any target image in 3V and it is consistent with the node of 2V .
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Figure 3 - 30. Illustration of width-first tree search.

3.5.3.1.3 Introduction of pseudo-target images to account for occlusion

The 3D space matching method assumes that all targets are imaged in every viewpoint.

However, if some targets are occluded, a condition with no leaf of the tree producing a

consistent matching group will then occur. Therefore the constrained search method

might terminate before reaching a leaf and will finish prematurely. A solution to this

problem is to extend the search method to allow for occlusions by introducing an

imaginary or pseudo target image.

Figure 3 - 31. Addition of pseudo-target image to account for occlusion.
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At each node of the matching tree, an extra branch corresponding to the pseudo-target

image, denoted by a “ ”, is added (Figure 3 - 31). An extra target is needed in the

correspondence space on all viewpoint axes but this addition is made without the need

for any extra matching judgements since the pseudo-target is excluded from the final

object space match computation. To add this to the matching scheme, relationships

between the group of matching target images and the pseudo-target image must be

defined. Since the pseudo-target image is excluded from the match computation, it will

not affect the match algorithm itself and therefore any search constraint linking the

matched target image to the pseudo-target image will be consistent. With the addition of

pseudo-targets it is possible for the constrained search method to overcome problems

caused by target occlusions, which might frequently happen in multi-camera

photogrammetric measurements especially for those cameras with relatively poor image

quality such as webcams used in this research.

Figure 3 - 32. Addition of pseudo-target in width-first tree.

As an example, given five viewpoints and a target which appears in every viewpoint

except viewpoint 3, the correct match group should be  11 24 43 51, , ,M P P P P . With the

introduction of pseudo-target image, one valid matching group through the width-first

search tree is shown in Figure 3 - 32, which passes all the viewpoints by including both

real target images and a pseudo-target image. A hypothetical match group is then

obtained:  11 24 43 51, , , ,P P P P P  . To allow fewer target images than the total number of

viewpoints to be used as a correct matching group, a viewpoint threshold is defined by

tm where 1 tm m  . By this definition, a matching group of target images accounting

for occlusion can be obtained provided that the target is imaged in tm or more

viewpoints.
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3.5.3.1.4. Hypothesis-testing and heuristic methods

When searching through the matching tree, a possible matching group is produced

each time a leaf is reached. However, not all matching groups are correct. For example,

it cannot be guaranteed that the group  1 2 3, ,i j kP P P P is a matching group and any

extra groups, for example,  1 3,i kP P or  2 3,j kP P must be checked. Therefore if m

viewpoints are used (m-1)(m-2)/2 extra checks are necessary. In this way the extra

computation required increases with the number of viewpoints according to a square

relation. Regarding this a more efficient method should be used to verify the matching

group.

A hypothesis-testing method can be used to optimise the search. When the search

reaches a leaf, the group of target images found is considered as a hypothetical

matching group. Using this group of target images, a least squares technique can be

used to estimate the 3D coordinates of the corresponding target, followed by a cross

checking among all the target images in the group to ensure they are the actual target

images (image plane projections) of the computed target. This check is carried out by

using the spatial target position to verify the correctness of the match. A description of

the hypothesis-testing method is as follows:

 Hypothesise the existence of a matching group

Using the width-first search method (Section 3.5.3.1.2), a group of target images, called

a hypothetical matching group, consisting of target images from the top level (root) to

bottom level (leaf) can be obtained.

 Refine the spatial position of the hypothetical matching group

Using the hypothetical matching group, i.e.  1 1 2 2 min, ,...,i iP P P P where

 1 1 1 2 2 min, 2,...,i i mP V P V P V   , the 3D coordinates  , ,a a aX Y Z of the

corresponding target can be estimated by 3D space intersection method using least

squares estimation (Section 3.5.2).
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 Test the hypothetical matching group

Given the estimated 3D target coordinates, the testing process can be specified. Let the

set of pairings  1 2 3, , ,..., mP P P P P  1 1 2 2 3 3, , ,..., m mP V P V P V P V    denote the

hypothetical matching group. For each target image in each viewpoint iP , the ray i iPO

passing through the camera perspective centre iO and the ray iTO between the

estimated space target and camera perspective centre iO are computed. The

minimum spatial distance between the two rays i iPO and iTO is then computed

followed by testing to check if it is within pre-selected error tolerance. If all target images

in the group satisfy the test, the matching set is taken as being globally correct and

therefore accepted as a final correct matching group. If any of the target images do not

satisfy the test, the matching group will be discarded to ensure global consistency in the

search. Such an approach is particularly appropriate when the matching group consists

of many viewpoints (a multi-camera photogrammetric system).

 Iterative 3D target matching

The epipolar method to match the corresponding target images generally requires the

camera orientation parameters to be accurately defined. However, these parameters

are difficult to obtain with suitable precisions prior to solving the correspondence. This

problem can be overcome by iteratively combining the 3D matching method with a

bundle adjustment. In this way the bundle adjustment can be used not only to iteratively

calculate the 3D coordinates of matched targets but also to iteratively refine camera

orientation parameters. First the initial camera exterior orientation parameters are only

estimated. These initially estimated parameters together with an initial 3D tolerance are

then used to match a few target images for the first iteration, followed by a bundle

adjustment which is able to refine these parameters and update the tolerance value.

These updated parameters from the bundle adjustment are then used for the next

matching process. The network becomes gradually strengthened by repeating the

above process until all target correspondences are found. The 3D tolerance band of the

space distance between two rays can be obtained and updated from the RMS target

coordinate standard deviation derived from the bundle adjustment. Therefore the

tolerance is directly related to the strength of the network solution.
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However, the matching result can be significantly affected if the target matching process

is unreliable, i.e. non-corresponding points are accepted as the final matching group.

Regarding this target ambiguities and occlusion should be minimised. The bundle

adjustment gives a lot of flexibity of introducing additional targets into the network. Only

targets appearing on all camera views are initially introduced to the network to ascertain

the stability of the network adjustment. As the network strength increases, more targets

(targets only appearing on a subset of views) can be introduced. The occlusion problem

can be effectively overcome by increasing the number of camera views in the network.

As the network strength increases, the refined tolerance becomes more capable of

rejecting those targets where ambiguities arise. This method has been found to be valid

in the general case, and appears particularly suited to accurate industrial measurement

where highly complex objects requiring multiple views must be measured reliably [Chen

et al., 1993].
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3.5.4 Summary

In this section a method of 3D target matching using an optimised constrained search,

originally developed at City University, but subsequently refined and re-coded at UCL is

discussed. A tree search method is used to minimise the computation time. Provided

that camera orientation parameters are not accurately known, they can be iteratively

updated using an integrated bundle adjustment technique. The use of multiple viewpoint

constraints, together with the gradual introduction of targets, is used to improve the

robustness of the matching process. Pseudo-target images are defined in the search

process to overcome occlusion problems and make the matching strategy flexible.

Hypothesis-testing and heuristic processes are used to make the matching computation

more efficient. The benefits of the method when compared to the conventional epipolar

line method, provided that camera calibration parameters and viewpoint orientations are

known are:

1. The method is extended to deal with multiple viewpoints in a flexible manner;

2. Any ambiguities caused by occlusions can be resolved;

3. The method is optimised to work efficiently with a large number of targets and many

viewpoints;

4. The estimation of any additional parameters can easily be included because of the

close connection with the bundle adjustment.

Additional benefits of the iterative use of the optimised 3D matching method are:

1. High accuracy is not required for the initial estimation of camera parameters. The

initially estimated values can be iteratively refined from the bundle adjustments;

2. Tolerance values for target matching are continuously updated from the bundle

adjustment;

3. Targets can be added to or removed from the network to make the matching process

more robust and controllable;

4. Target images can be arranged in an arbitrary order to build up the matching tree.

While this bundle adjustment based method is particularly suited to accurate

measurement (1mm coordination accuracy for clinical use, Section 2.2.3) where highly

complex objects, such as the spherical shape of human head partially covered with
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optical topographic sensing pad are to be measured. This application requires multiple

(webcam) views which must be reliably measured since consistent coordination is

needed for clinical studies where each study lasts for at least five minutes.

A calibration object with coded targets particularly suited to webcam imagery has not

been built during the time of this research making a fully automated iterative bundle

adjustment refinement procedure difficult to implement, provided with the relatively poor

webcam image quality.

A webcam calibration based on bundle adjustment is performed (using VMS (Geometric

Software)) independently prior to optical topography coordination applications so that

target ambiguities and occlusions can be avoided through manual inspections and

corrections and a strong (webcam) network configuration can be ascertained, in order to

accurately define the camera parameters for each webcam in the system.

Once up and running with such a parameter model, the epipolar search method and 3D

space intersection (Section 3.5.2) with its optimisation (Section 3.5.3.1.1-3.5.3.1.4) can

be used to match the corresponding target images in optical topographic studies. To

achieve this, the background assumption is that the camera exterior orientations are

fixed during these studies and that the camera interior orientations are stable enough to

hold the defined parameter set. The elimination of the bundle adjustment process not

only increases the efficiency of the coordination performance, i.e. increase the frame

refresh rate, but also allows a fully automated multi-webcam photogrammetric

coordination system to operate without any control or reference targets in favour of

clinical studies.
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3.6 Multi-camera tracking system

Since this research aims at developing a tracking (coordination) system built with

multiple low cost cameras in order to support optical topography, reported research

involving motion tracking and target coordination from multi-camera systems (in both

photogrammetry and computer vision communities) would be precious in terms of the

considerations and precautions for system development. This section gives an overview

of multi-camera tracking techniques, with special focus on the state of art of human

shape and motion tracking. The scope of discussion then focuses on the multi-camera

image based 3D measurement (mainly from the photogrammetry community), where

measurement automation is addressed. Considerations of the development of a fast low

cost multi-camera tracking system in this research are finally discussed, where the

platform architecture and working principles underneath such a system are particularly

analysed (See Appendix 1, 2 and 3).

3.6.1 Overview

Multi-camera tracking techniques have rapidly evolved during last two decades. The

experience that the researchers obtained and reported has provided useful insights of

building a system with multiple cameras. Generally the more cameras involved, the

better the tracking results in terms of shape recovery and tracking accuracy. However,

the cost of building such a system could significantly increase with the number of

cameras used.

One research system which employs many synchronous cameras is the Virtualized

Reality system developed at Carnegie Mellon University [Narayanan et al., 1998;

Kanade et al., 1997; Rander et al., 1997; Kanade et al., 1998; Saito et al., 1999]. In that

system more than 30 cameras are mounted in a room and are synchronized to record

what is happening in the work volume. Target information such as shape, motion, etc. is

then estimated through post-analysis of the recorded data from cameras.

One issue specifically reported is the significant amount of effort and cost required to

synchronize cameras [Kanade et al., 1998]. A tracking system that does address
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asynchronous input is the head tracker developed at the University of North Carolina

[Welch et al., 1996, 1999, 2001; Azuma et al., 1995; Azuma et al., 1994; Gottschalk et

al., 1993]. In this system the sensors (photodiodes) are mounted on the target and

observe outward infrared light-emitting diodes (beacons) mounted on the ceiling. During

the tracking only one beacon is seen at any time, and therefore only partial information

about the target position is received. There are some commercial systems developed

for motion capture [Motion Analysis Cooperation; Vicon Motion Systems], where Vicon

provides an impressive level of automation in its use in UCL Department of Computer

Science and NASA. These systems require active or passive markers being mounted

on the target to provide fast and robust 2D feature extraction, with a small increase of

the system’s intrusiveness. Many (10s or 20s of) cameras are usually employed to

obtain a large working volume and to reduce occlusion. However, cameras are still

required to be synchronised, and not much effort has been reported in addressing

asynchronous and usage of a mixture of different cameras. These systems also provide

a limited tracking support of multiple points because point features are simple and it is

difficult to distinguish one from another.

3.6.2 Tracking of human

3.6.2.1 Static 3D shape modeling

The 3D modeling of human subjects using image data has been deeply studied in the

last decade. Nowadays requirements for 3D human models have increased for

applications such as medicine and virtual environments, most notably in the television

and film industries. For such applications, a human model is usually composed of the

3D body shape as well as the body movement. Laser scanning has been recognised as

a common technique to capture the static 3D body shape and texture. For example,

Cyberware's [Cyberware] new Head & Face Colour 3D Scanner (Model PX, Figure 3 -

33) provides a maximum scanning coverage of human head. Hundreads of thousands

of measurements can be taken by Cyberware's Whole Body Colour 3D Scanner (Model

WBX containing four scanners, Figure 3 - 33) under 17 seconds to generate an

accurate 3D data set. According to Cyberware, the Head & Face Colour 3D Scanner

can be useful in medical applications, such as plastic surgery. Similarly, it is useful for
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designing helmets closely fitited with head. However, the Head & Face Colour 3D

Scanner costs $67,000 while the Whole Body Colour 3D Scanner costs $200,000. Such

systems also provide a very limited portability in terms of flexible diagnosis in clinics.

Figure 3 - 33. Left: Cyberware's new Head & Face Colour 3D Scanner;

Right: Cyberware's new Whole Body Colour 3D Scanner.

3.6.2.2 Motion tracking

The main idea for applications such as video-surveillance, identification, authentication

and monitoring of human activities is to detect and track moving targets. Motion capture

techniques with sensor-based hardware, e.g. AscensionTM, Motion AnalysisTM and

ViconTM are used to acquire the movement information. Regions of moving targets

should be separated from the static environment and the methods should cope with

occlusions, changes in illuminations and different types of motions. To identify and

separate the moving targets, different approaches have been proposed such as

background subtraction [McKenna et al., 2000; Rosales and Sclaroff, 2000],

combination of motion, skin colour and face detection [Gavrila and Davis, 1996] and

spatio-temporal learning [Dimitrijevic et al., 2006].

Most approaches require data to be acquired from a stationary camera because the

camera movement cannot be distinguished from the moving targets. For a stationary

camera, the most simple but quite efficient approach is the subtraction between two

consecutive frames, where the generated image has much larger values for the moving

components. More robust approaches are based on background learning and
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subtraction [Haritaoglu et al., 1998; Stauffer and Grimson, 1999; McKenna et al., 2000;

Kim et al., 2004]. For example, moving people in video sequences are identified by

distinguishing between moving foreground and static background from RGB information

in the images [Kim et al., 2004]. As the fixed camera is imaging the same static scene,

each frame is analysed to create a background model which is then used in the

subtraction process. The detected moving areas (in the form of white pixels) are used to

extract the foreground.

A lot of work has also been devoted to the segmentation of useful features from the

background solely based on the natural appearance of the target and how to represent

the segmented features. For example, the extracted features can range from edges

[Hogg, 1984] to blobs that are regions of coherent colour [Darrell et al., 1994; Iwai et al.,

1999; Hilton, 1999]. One example is the P finder system developed by Wren et al. (1997

and 2000), in which the human body is tracked using statistical models to segment the

image into blobs. The advantages of using these natural and complex features include

the reduction of the system intrusiveness and a higher ability to distinguish multiple

features because they are described by more parameters.

Considering this thesis is aimed at target coordination located on optical sensing pads

and the scalp, it would be impractical to implement methods such as frame subtraction

to only detect the moving targets while leaving most of the moving components (e.g.

face, upper body) useless for data acquisition. Plus factors such as electronic

compression and CMOS sensor used in low cost cameras cause a fair amount of

random image noises (differ from frame to frame). The noise level in the resulting image

(from subtraction) can be higher than in either of the two original images because of the

random distribution of the noise within each image [Sprawls, 2000]. Approaches using

background learning always require a time consuming training phase in which the video

sequence is analysed and a reference background image is established. Since the

portability, flexibility and robustness are considered as the most critical factors

regarding the system development (to comply with the properties of optical imaging

techniques, Section 2.1) in this research, techniques based on background learning

become impractical to implement for clinical studies, which are always carried out at

different places, e.g. patient’s bedsides or clinical testing rooms. Moreover, since
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segmentation techniques involves features which are more complex than target points,

the segmentation and extraction steps take significant processing and usually do not

provide the frame rate for a fast tracking application. Meanwhile because these features

are usually coarse and imprecise, they are less suitable for applications demanding a

higher accuracy on positioned data.

Combining the above factors, a process including noise removal, target image detection

and subsequent 3D target coordination performed on per frame basis appears to be a

more practical and robust solution for the webcam-based coordination suited to optical

imaging studies, provided with an acceptable time delay between frames. While

expensive hardware is required for capturing human 3D static shape to a high accuracy,

the current motion capture techniques mainly focus on the motion tracking while the

precision and accuracy are not the major concern. There is also a strong need to fill the

gap between these two apparently independent techniques, i.e. to obtain 3D locations

with an acceptable accuracy level while allowing a certain degree of body movement

during the capturing process, preferred with a low cost designed system.

3.6.3 Examples of image based 3D measurements

3D target coordination is a process from the data acquisition to the output of 3D target

coordinates. The requirements specified by many applications such as medical

photogrammetry are the high geometric accuracy, the automation, the low cost and the

flexibility of the technique. Among various 3D object measurement techniques, image

based measurement using correspondence matching to derive 3D object information

has been widely applied in various applications such as geometric surface

measurement of architectural objects [Van den Heuvel, 1999; El-Hakim, 2002].

Image based techniques usually acquire 3D measurements from multi-stations often

with low cost sensors, using the perspective camera model, making the image based

measurement very portable. However, in most of the cases human interactions are still

required for accurate results. Accurate 3D coordination from image measurements can

be very difficult if uncalibrated cameras are used since the wrong parameter recovery

could lead to result inaccuracy. Various commercial packages [CanomaTM,



Chapter 3 – Digital Photogrammetry

133

ImageModelerTM, iWitnessTM, PhotoGenesisTM, PhotoModelerTM,

ShapeCaptureTM], based on manual or semi-automated measurements, are available

to calibrate cameras and coordinate 3D object points from a multi-image network after

the bundle adjustment process. The research based on multiple image based

measurement can be divided into three types:

 Automatic 3D measurement from uncalibrated images

Many researches have been conducted in order to fully automate the entire 3D

measurement process, from camera calibration to computation of 3D coordinates of

points of interest, though without much success. Nister (2004) proposed a fully

automated measurement process, where an uncalibrated camera was first used to take

a sequence of images under very small baselines, followed by automatically extracting

interest points and sequentially matching them across views. Camera parameters are

recovered in the next step and finally 3D coordinates of the matched points are

computed. This automatic procedure relies on a large portion of verlapping between

images. The sequence is usually initialised from the first two images and subsequently

iterated through the bundle adjustment. A self-calibrating bundle adjustment is often

used to recover the camera interior orientation parameters. The 3D surface model is

then automatically generated by dense depth maps.

For complex objects, a detailed 3D model is normally obtained with more matching

procedures [Scharstein and Szeliski, 2002]. Features first identified from the scene and

then automatically matched are the key towards the automation of image-based

measurements. Therefore factors causing variation of image measurements such as

object occlusion and light variation could significantly affect the result. The network

configurations leading to feature ambiguity have been identified by Hartley (2000) and

Kahl et al. (2001).

 Semi-automatic 3D measurement from calibrated images

Semi-automated approaches are much more common for complex geometric objects.

Liebowitz et al. (1999) presented a method of obtaining 3D object information from a

small number of images. Following manual measurements of points of interest, the
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method constraints the network using the geometric configuration and the camera

parameters. Images can be calibrated without any assumption of object shapes

[El-Hakim, 2002] or using known object shapes [Lee and Nevatia, 2003]. For calibration

without information from object shapes, El-Hakim (2002) measured some seed points

manually and then fitted a quadratic or cylindrical surface in multiple images, followed

by using the photogrammetric bundle adjustment to achieve a higher geometric

accuracy in terms of parameter recovery. For calibration based on object shapes, Lee

and Nevatia (2003) adapted an interactive approach where it was the user who

provided the shape information such as height and width.

 Automatic 3D measurement from calibrated images

For automatic 3D measurement techniques, camera calibration is usually performed as

an independent process prior to the 3D measurement. The automation is highly

dependent on the automation of feature detection, the automated establishment of the

correspondence across different camera views as well as a strong imaging geometry.

One example is the geometrically constrained matching approach proposed by Gruen

et al. (2001) to obtain 3D information of dense points of a complex object, following a

semi-automated calibration process with a Minolta Dynax 500si analogue SLR camera.

To conclude, there is no single 3D solution which is able to work across different scenes

and meanwhile is fully automated satisfying requirements of every application [El-Hakim,

2001]. This is because an automated method usually requires good features in multiple

images with a well convergent network configuration [Fitzgibbon and Zisserman, 1998;

Pollefeys et al., 1999; Nister, 2004], which is difficult to satisfy in practice due to

limitations such as occlusions, illumination changes and background noises. Automated

coordination often ends up with data containing too many targets that are wrongly

recognised due to such limitations. User interaction is still needed in most applications,

where good results have been reported [Debevec et al., 1996; Gruen, 2000; El-Hakim,

2002; Gerth et al., 2005].

In terms of the webcam-based application developed in this research, accurate

recovery of camera orientation parameters accounting for the highly possible
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manufacturing variations across webcams is critical in order to have an accurate

coordination performance from webcam imagery. Moreover, considering the optical

imaging studies where human subjects move unconsciously, rapid 3D coordination

without human interaction would be highly desired. Therefore camera calibration for the

multi-webcam system in this research should be performed separately prior to the target

tracking process (Section 3.5.4).

3.6.4 Automated fast 3D measurements with webcams

El Hakim (1986) defined real-time as: "a system without interruptions, or appreciable

time lags, between acquiring the image and the final results that are the three

dimensional co-ordinates", where automated could also be used instead of real-time. A

fast 3D measuring process implies that its major components, feature extraction, feature

matching and 3D computation needs to be completely fast enough without loosing

efficiency. Such measurements require at least two camera views to intersect features

in object space. Ariyawansa and Clarke (1997) intensively investigated the matching

problem for stereo imagery and reported that a stereo pair of cameras is likely to be not

sufficient in most circumstances and therefore extension to more camera views in the

imaging geometry is always desirable. Chen et al. (1995) and Faugeras and Mourrain

(1995) studied imaging geometries consisting of multiple cameras and derived general

solutions for m cameras. Ariyawansa and Clarke (1997) concluded that “Although it is

true that four cameras are adequate for most measurement tasks, future tasks will most

likely benefit from additional views solving the problem of many occluded objects in

complex manufacturing situations with background clutter”.

3D measurements with consumer grade cameras have become an interesting topic in

the photogrammetric research community [Remondino and Fraser, 2006]. Among these

cameras, webcams has become the most popular tool available on marketplace for

video conferencing nowadays. Its inbuilt USB interface allows video frames being

captured and transmitted to the host computer in nearly real time, and then further

transmitted through internet connection to the other computer. Inheriting this advantage

of direct image data accessibility of webcams, if a suitable software platform can be

established in the host computer to directly access and process the image data
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captured from webcam hardware, the first component to achieve fast 3D measurement,

i.e. fast image data processing, is very likely to be attainable, in contrast to the

conventional photogrammetric post data processing after inputting static images

captured by digital cameras.

As previously mentioned (Section 3.3.1), the simple construction of hardware

components (simple connection between lens and sensor in webcam) might offer

webcams an advantage with a relatively stable internal geometry as compared with the

much more complex digital SLR cameras with interchangeable lens. Combining with the

direct image data accessibility, a potential to shift the role of webcams from video

conferencing (or casual use) to low cost but fast close range photogrammetric

measurements can be foreseen, noting that provided with an acceptable camera

stability, defects from low cost manufacturing process such as a much larger lens

distortion (of webcams as compared with high cost digital SLR cameras) can be

recovered from the well-established iterative photogrammetric bundle adjustment

process (Section 3.5.3.1.4).

To reliably set up and control a webcam based coordination system, the internal

platform architectures has to be thoroughly investigated first. Appendix 1, 2 and 3 detail

various software development kits (SDKs) towards direct user control over webcams

adopted in this research and in particular, issues such as how the application software

communicates with webcams (hardware) through the host computer hardware.
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3.7 Chapter summary

This chapter has reviewed the photogrammetric and imaging principles necessary to

develop a low cost webcam target based measurement system which could be

deployed along with optical topography under clinical conditions.

Photogrammetric principles start with the collinearity equations and factors causing

departures from collinearity in reality, followed by fundamentals of photogrammetric

self-calibrating bundle adjustment. Accuracy and precision of target measurements

have been addressed for photogrammetric target based measurement. Target

thresholding techniques have also been reviewed, where difficulties of practical target

image measurement with webcams in this research have been explored and discussed,

followed by associated methods of target recognition and target location adopted in this

research with respect to webcam imagery.

Following the 2D target measurements, 3D target measurements require

correspondence matching and 3D location computation. Regarding this, principles of

the epipolar geometry, the 3D space intersection method to compute the 3D

coordinates, together with its correspondence matching optimisations have been

reviewed.

In particular, different aspects of off-the-shelf webcams have been addressed, from its

simple hardware construction to its internal components such as sensors and optics, as

well as the image processing techniques used by these devices and underlying

principles of software platforms in order to build such a system (Appendix 1-3).
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Design of a Low Cost Photogrammetric System
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4.1 Introduction

This thesis investigates the photogrammetry with low cost webcams where

compromises in camera design, particularly the image quality and stability must be

mitigated to achieve accurate measurement. This chapter starts by considering each of

the key features of these webcams in terms of ideal metric performance, followed by the

hardware and software development towards an automated system of accurate 3D

measurements with these low cost webcams.

4.2 Accuracy and Precision of Webcams

4.2.1 Introduction

One of the goals in this research is to investigate the suitability of current webcam

technology for an accurate 3D coordination of targets located on a medical device

(optical topography sensor). Both the accuracy and the precision of target measurement

delivered by these low cost webcams are critical in determining if they can be used for

optical topography studies. In this study, we are interested in what level of accuracy the

webcams can intersect targets and the result will be used as a reference as the

accuracy of surface measurement.

Two typical consumer level low cost webcams were selected for this study which

commenced in 2009. The first is the Logitech QuickCam Pro 4000 series webcam which

is representative of webcams from 2007-2008. The second is the Logitech C500 series

webcam which represent a next generation released in 2008-2009. Figure 4 - 1 and

Table 4 - 1 compare the two camera models used in the thesis:
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Figure 4 - 1. Logitech Quickcam Pro 4000 (left) and C500 (right) webcams.
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Image sensor 1: VGA CCD (*SONY ICX098BQ diagonal 4.5mm (type ¼));

2: CMOS (*Model: unknown)

*number of effective pixels: 1: 659×494; 2: unknown

*total number of pixels: 1: 692×504; 2: unknown

Lens Glass lens 1: (4.5mm f/2.2) 2: unknown

Still image-capture

resolution

1: 1.3 megapixels;

2: 5 megapixels

Still image-capture

format

JPEG

Video-capture

resolution

1: Up to 640 x 480 pixels;

2: Up to 1280x1024 pixels

Video-capture format AVI

Compression M-JPEG/YUY2

Frame rate Up to 30 frames per second

Focus adjustment 1: Manual; 2: Fixed focus

Lighting 1: Ambient indoor incandescent, fluorescent

(50 or 60 Hz flicker-free), daylight;

2: RightLight technology

Controls Digital zoom

Built-in flash No

Driver 1: PWC (Philips USB webcam driver);

2: Logitech UVC (USB Video Class)

Interface 1: USB 1.1; 2: USB 2.0

Power Powered through USB

Table 4 - 1. Logitech Quickcam Pro 4000 (1) and C500 (2) Webcam Specification.

* 1: (Sony datasheet of CCD image sensor ICX098BQ, 2003);

*2: Remain unknown after disassembly of webcam.

In this study the focus on two webcam models was to investigate accuracy and

precision delivered in order to find out if these systems are suitable for accurate

photogrammetric measurement in optical topography studies. The C500 webcams,

besides accuracy and precision validation, were investigated to verify if there are any

significant changes in terms of photogrammetric target image quality, stability and
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reliability compared to earlier generations. Images necessary for detecting relative

motion between head and sensing pads during optical topography studies require

nearly real time video stream collection. Work therefore focussed on this capture mode

since it is highly reliant on camera hardware. Results are presented as a comparison

between hardware images (extracted video frames) and software images (still images)

for C500 webcams used in subsequent OT tests.

4.2.2 Method

4.2.2.1 Experimental Setup

As a first experiment to study accuracy and precision, webcams were arbitrarily located

in a half circle shape. This imaging geometry provides convergent photogrammetric

recovery of target coordinates and provides some tolerance to occlusion given small

rotations of the subject. Imaging of a calibration object was carried out at a range of

approximately 300 mm (Figure 4 - 2). In the test situation the webcams were located on

tripod heads positioned around 250mm higher than the calibration object so that each

webcam could see as many targets as possible. The manual focus of each webcam

was adjusted to provide a sharp image of the targets on the target array.

Figure 4 - 2. Sample image showing webcam locations with respect to the calibration object.
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4.2.2.2 Accuracy and precision validation

Accuracy validation of the selected webcams was performed by comparing target

intersection results from webcams with a standard. For both Pro 4000 and C500

webcams the 3D target positions computed from a convergent image network

consisting of 10 images made with a high resolution (6MP) Nikon D100 camera fitted

with a fixed focus 28mm Nikon lens, supported with inter-target distances measured

with calipers, were used as a standard result. These data were then compared against

target coordination results from webcam images at two still image settings: lower

resolution (pixel size: 8m; image size: 640, 480) and: higher resolution (pixel size: 4m;

image size: 1280, 960 for the Pro 4000 model and 1280, 1024 for the newer C500

model). Whilst the number of pixels for each webcam was known, the actual pixel size

was unknown at this point (Section 3.3.1.1). Since the camera is only determining

directions, provided that the pixels are square only the ratio between the principal

distance and the pixel dimensions need be estimated. Since the principal distance can

be estimated from the self-calibrating bundle adjustment, an arbitrary pixel size can be

chosen accounting for the selected pixel size(s) above.

4.2.2.3 Camera calibration

Webcams are designed for low cost imaging rather than accurate measurement. Each

camera will depart from the ideal perspective projection (Section 3.2.2) and must be

calibrated in order to correct for systematic errors which would otherwise propagate into

the estimated target coordinates. Furthermore, whilst they are manufactured on a

production line, small variations in the optics, sensor surface flatness and alignment in

each webcam will give rise to small differences in imaging geometry from one sensor to

the next. Each camera should therefore be calibrated to determine its own individual set

of correction parameters (Section 3.2.2.4). To generate an image network suited to

calibration, the calibration object was rotated to provide 10 convergent images for each

camera.



Chapter 4 – Design of a Low Cost Photogrammetric System

144

Reliable camera calibration requires that a convergent network of images of a rigid

object are taken from each camera, the assumption being that the internal imaging

geometry of the camera remains constant. Since the camera orientation parameters

from calibration will be used for 3D target coordination in clinic, the ideal case is to

calibrate these cameras prior to each optical topography study to make sure the internal

imaging geometry of each camera is constant between each calibration and target

coordination. However, individual calibration represents a significant overhead for an

optical topography system so an experiment comparing the suitability of one common

calibration for all cameras in the network vs. individual calibrations (Section 4.3) was

designed. Meanwhile, this early study also simulated the optical topography application

by implementing target intersection right after the calibration data from camera

calibration had been obtained. A total of four data sets were generated for target

intersection for Pro 4000 webcams:

1. 640*480 with uniform calibration parameters for each camera;

2. 1280*960 with uniform calibration parameters for each camera;

3. 640*480 with individually calibrated parameters for each camera;

4. 1280*960 with individually calibrated parameters for each camera.

For the study of C500 webcams, the same calibration object was used and individual

camera calibration was performed, where the setup and image generation for the

network are similar to those for Pro 4000 webcams but not acquired at the same time.

The C500 webcam has a fixed focus which is not adjustable as compared to the

adjustable focus for the Pro 4000 webcam. Four calibrations were carried out using one

C500 webcam but with the following four different imageries:

1. 640*480 software resolution (pixel size: 8m);

2. 640*480 hardware resolution (pixel size: 8m);

3. 1280*1024 software resolution (pixel size: 4m);

4. 1280*1024 hardware resolution (pixel size: 4m, the highest hardware resolution).
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4.2.3 Results

4.2.3.1 Bundle adjustment data

Table 4 - 2 summarises the calibration variables from the Nikon D100 network:

Program Control Variables

Network datum definition type

Maximum iterations for a solution

Default target image precision by camera (m)

Minimum images for a network target

Rejection criterion for image errors

Generalised internal constraints

10

4.55

4

5.0m

Input Summary

Number of camera calibration sets

Number of target image observations

Total number of exposures

Number of exposures in the network

Total number of targets

Number of targets in the network

1

479

7

7

94

70

Results for the calibration solution

Unit weight estimate (sigma zero)

RMS image residual (m)

Number of observables in the network

Number of unknowns in the network

Number of redundancies in the network

Mean number of images per target

0.95

3.88

909

269

640

6.4

Target Precision Summary

Mean precision of target coordinates (m)

Relative precision for the network (1: X)

59.43

5000

Table 4 - 2. Summary of camera calibration for Nikon D100 network.
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Table 4 - 3 summarises the variables for each of the four Pro 4000 webcams at two

image resolutions (640×480 and 1280×960), where relative precision for the network

represents the maximum dimension in the photogrammetric targets divided by the mean

3D target precision/uncertainty. In the table “L” denotes the low resolution setting and

“H” the high setting.

Program Control Variables Camera 1/2/3/4 L: 640×480; H: 1280×960

Network datum definition type

Maximum iterations for a solution

Default target image precision by camera (m)

Minimum images for a network target

Rejection criterion for image errors

Generalised internal constraints

10

L: 0.5/0.5/0.5/1.12; H: 0.73/0.63/0.5/0.45

4

2.5m

Input Summary Camera 1/2/3/4 L: 640×480; H: 1280×960

Number of camera calibration sets

Number of target image observations

Total number of exposures

Number of exposures in the network

Total number of targets

Number of targets in the network

1

L: 127/128/127/78; H: 277/288/281/273

10

10

33

L: 13/13/13/9; H: 31/32/32/32

Results for the calibration solution Camera 1/2/3/4 L: 640×480; H: 1280×960

Unit weight estimate (sigma zero)

RMS image residual (m)

Number of observables in the network

Number of unknowns in the network

Number of redundancies in the network

Mean number of images per target

1

L: 1.12/0.98/1.03/0.71; H: 0.42/0.54/0.43/0.37

L: 266/266/264/164; H: 562/588/566/538

L: 111/111/111/99; H:165/168/168/168

L: 155/155/153/65; H: 397/420/398/370

L: 9.8/9.8/9.8/8.4; H: 8.9/9.0/8.7/8.2

Target Precision Summary Camera 1/2/3/4 L: 640×480; H: 1280×960

Mean precision of target coordinates (m)

Relative precision for the network (1:X)

L: 33.11/28.31/30.29/43.26;

H: 12.76/16.10/13.55/14.29

L: 6000/7000/7000/4000;

H: 17000/13000/16000/15000

Table 4 - 3. Summary of individual camera calibration for the 4 Pro 4000 webcams.
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Table 4 - 4 summarises the variables from calibration with the four different settings

described in Section 4.2.2.3 (denoted 1/2/3/4) for the C500 webcams:

Program Control Variables 1/2/3/4

Network datum definition type

Maximum iterations for a solution

Default target image precision by camera (m)

Minimum images for a network target

Rejection criterion for image errors

Generalised internal constraints

10

0.51/0.41/0.23/0.36

4

2.5m

Input Summary 1/2/3/4

Number of camera calibration sets

Number of target image observations

Total number of exposures

Number of exposures in the network

Total number of targets

Number of targets in the network

1

182/177/166/208

10

10

33

25/25/21/26

Results for the calibration solution 1/2/3/4

Unit weight estimate (sigma zero)

RMS image residual (m)

Number of observables in the network

Number of unknowns in the network

Number of redundancies in the network

Mean number of images per target

1

1.04/1.04/0.86/0.8

344/338/284/402

147/147/135/150

197/191/149/252

6.6/6.5/6.5/7.5

Target Precision Summary 1/2/3/4

Mean precision of target coordinates (m)

Relative precision for the network (1: X)

32.31/32.33/32.54/24.39

7000/6000/5000/7000

Table 4 - 4. Summary of camera calibration for one C500 webcam at four different settings.
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4.2.3.2 Image quality

Figure 4 - 3 compares the image quality delivered by the older Pro 4000 (2007) and the

newer C500 (2009) webcams:

Figure 4 - 3. Comparison of image quality between Pro 4000 (upper row: 1280×960) and C500

(lower row: 1280×1024) webcams.

(Left: original target image; Right: Window Size (pixels): 32, 32)

4.2.3.3 Target coordinate uncertainty

The uncertainty of the 3D target measurement can be expressed through the mean

precision values of intersected targets, as shown in Figure 4 - 4 (information

corresponding to each data set is described in Section 4.2.2.3):

Figure 4 - 4. Comparison of 3D target precisions of Pro 4000 (left) and C500 (right) webcams.
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Mean absolute target image residuals of the four data sets are shown in Figure 4 - 5:

Figure 4 - 5. Comparison of target image residuals of Pro 4000 (left) and C500 (right) webcams.

4.2.3.4 Accuracy

To compare the accuracy among different data sets for each webcam model, summary

statistics of the difference computed between each of the data sets and the standard

values generated from the Nikon D100 reference photogrammetric survey are

presented in Figure 4 - 6. Since all these data are on the same coordinate datum as that

of Nikon D100, a check of the discrepancy values here is a valid method to compare the

accuracy levels among different data sets.

Figure 4 - 6. Accuracy of target locations of Pro 4000 (left) and C500 (right) webcams.
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4.2.4 Discussion

In this research only the principal point of offset in x and y, principal distance and 3rd

power term of radial lens distortion were considered due to the fact that only these

parameters are significant (Section 3.2.3.3). Table 4 - 5 gives a sample output from one

of the bundle adjustments:

Camera parameters Value (mm) Precision (mm)

Principal point offset in x 0.1104 0.0095

Principal point offset in y 0.0056 0.0115

Principal distance 6.5313 0.0143

3rd power term of radial lens distortion -1.6741e-003 5.7467e-004

5
th

power term of radial lens distortion 6.4072e-004 3.3451e-004

7
th

power term of radial lens distortion -9.0793e-005 6.4431e-005

1
st

term of tangential lens distortion -2.4851e-004 8.8672e-005

2
nd

term of tangential lens distortion -1.3493e-004 1.2445e-004

Orthogonality of image coordinate system -3.9444e-004 1.1778e-004

Affinity of image coordinate system -6.9066e-004 2.6284e-004

Table 4 - 5. Sample output from bundle adjustment for Pro 4000 webcam.

Logitech QuickCam Pro 4000 webcams

Figure 4 - 6 suggests that a network with individually calibrated webcams (4) has

achieved higher accuracy compared with the network of webcams with uniform

parameters (2). This is because the imperfection from the manufacturing process of

these low cost consumer cameras has caused a variation of internal parameters across

cameras even if they belong to the same model. Individual calibration enables individual

precision for each of these parameters which can better constraint the network by

reducing the ambiguity for target intersection and therefore achieve a higher accuracy

level of target coordination.

In terms of precision, Figure 4 - 5 suggests that the higher resolution imagery (2, 4) has

produced much smaller image residuals than the lower resolution imagery (1, 3). Image
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resolution only describes how many samples are captured but not necessarily their

quality being captured. Consequently it is possible for an image with higher resolution to

deliver a poorer target image quality. Such a decrease in quality has a direct impact on

target centroid location. One possibility for the decreased image quality could be the

inability for its lens to preserve target contrast as resolution increases [McHugh, 2005].

Figure 4 - 5 shows that for the Logitech QuickCam Pro 4000 webcams, the uncertainty

in the target image coordinates at a resolution of 1280×960 (2, 4) is about half that

achieved with a resolution of 640×480 (1, 3). This suggests that the lens in this webcam

has preserved the image contrast at the higher resolution of 1280×960. Moreover, for

this camera any still images with more than its maximum hardware resolution (640×480)

have software interpolation, which estimates pixel values at new pixel centres based on

the values at surrounding pixels. For webcams, most probably bicubic interpolation

algorithm (Section 3.3.1.3) is used. Although there could be a loss of overall image

quality when performing such an interpolation, results from Figure 4 - 5 suggests that

there is some benefit in the resampling process used within the Logitech Pro 4000

webcams.

Logitech C500 webcams

In terms of 3D target coordinate uncertainty, Figure 4 - 4 suggests that there is no

difference between lower (1, 2) and higher (3, 4) resolutions. For target image

coordinate uncertainty, Figure 4 - 5 suggests that there is no difference between the

software (1 and 3) and hardware (2 and 4, respectively) images. That is for C500

webcams, there is no difference of image quality between software and hardware

images in terms of photogrammetric target image measurement. However, when the

resolution increases from 640×480 (1, 2) to 1280×1024 (3, 4), there is an average

decrease of about 0.1 µm in target image coordinate uncertainty. In terms of 3D target

coordination accuracy, Figure 4 - 6 again suggests that there is no difference between

software (1 and 3) and hardware (2 and 4, respectively) images in terms of

measurement accuracy. However, when the resolution increases from 640×480 to

1280×1024, there is an increase of about 0.05 mm for target coordinate accuracy. This

has agreed with the conclusion drawn from Pro 4000 results that a higher resolution is



Chapter 4 – Design of a Low Cost Photogrammetric System

152

able to deliver a higher target 3D coordinate accuracy.

Comparison between Pro 4000 and C500 webcams

One of the most noticeable differences between the Pro 4000 and C500 webcams is the

image quality. As shown from Figure 4 - 3, the boundary between target image and its

background delivered by C500 is much clearer than those delivered by the Pro 4000

model, provided with the same relative distance between the webcam and the object.

Further evidence is that when image resolution is 640×480, target image coordinate

uncertainty for C500 is one third as that for Pro 4000 (Figure 4 - 5). The clearer images

delivered by C500 in terms of boundary between targets and their background have

made C500 model a better choice for target recognition for rapid target tracking

applications.

Looking inside the webcams (Figure 4 - 1) suggests that the sensors used in both

models have similar imaging areas, which should give the CCD sensor (Pro 4000)

larger pixels and therefore a better light gathering potential as well as a higher

signal-to-noise ratio, compared with the CMOS sensor in the C500. However, as

technology for consumer level cameras has evolved rapidly, the maximum resolution of

still image has increased from 1.3 megapixels (Pro 4000) to 5 megapixels (C500) (Table

4 - 1). The clearer images (Figure 4 - 3) suggest that the software enhancement on

images from C500 has compensated the potential disadvantages of its CMOS sensor.

Unfortunately how these images are enhanced for C500 model remains confidential to

Logitech, as noted earlier there are many possible techniques used with cameras

equipped with CMOS sensor for enhancing image quality and reducing noise (Section

3.3.1.1).

In terms of target image coordinate uncertainty for both camera models, Figure 4 - 5

suggests that when image resolution is 640×480, 2D uncertainty of target images with

the C500 is one third that of the Pro 4000. When the resolution is higher (1280×960 for

the Pro 4000 and 1280×1024 for the C500), the difference between the two models

decreases, but the uncertainty of the C500 is still 0.2 µm less than that of Pro 4000. Also,

Figure 4 - 6 suggests that the 3D target coordination accuracies for both models are
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within 0.2 mm for lower image resolution and within 0.1mm for higher image resolution.

This has agreed with the results (the same Logitech Pro 4000 webcam and 640×480

resolution setting) presented by Page et al. (2008) that it is possible to achieve

measurement accuracy of 0.3mm with measurement distance of 300mm (Section 3.3.1).

All these have demonstrated that for both webcam models, a higher image resolution is

able to deliver target coordinates with lower uncertainty and higher accuracy.

Factors contributing to target measurement inaccuracy

There are some factors which can cause the discrepancy of target coordination:

1. Low spatial resolution

In the visual perception of the real world, contrast is determined by the difference in the

colour and brightness of the object and other objects within the same field of view

[Travnikova, 1985]. Image intensity variation of background is clearly shown for the Pro

4000 webcams (upper row of Figure 4 - 3), which has directly caused the confusion

between the actual target and its background.

The lightness of an image captured by a camera is determined by the exposure of the

image, which is determined by aperture, shutter speed, sensor sensitivity and any

subsequent image compression (Section 3.3.1.2). When targets are over-exposed

saturating the sensor, array read-out effects or even ‘blooming’ caused by the pixels in

the sensor array exceeding their charge capacity will occur. As shown from upper row of

Figure 4 - 3, both of the enlarged images are effectively “immeasurable” by standard

centroiding techniques since the central dot and the code are joined and therefore many

targets were manually measured rather than automatic centroiding in which the

measurement error propagated to target 3D coordinates resulting a certain amount of

inaccuracy.
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2. Lens quality

When comparing different lenses the apparent quality of the image will be mostly

determined by how well each lens preserves contrast as line pair frequency (the number

of lines which fit within a given unit length) increases. Resolution limited by diffraction

does not apply to this case due to the fact that resolution can only be limited by

diffraction when the aperture is small, e.g. f/22. The 4.5mm f/2.2 glass lens [CNN review,

2011] for the Logitech QuickCam Pro 4000 model for example, notes that the spatial

resolution directly links to the lens quality.

3. Image Measurement Residuals

Image residuals indicates the difference between measured and computed image

locations. Acceptable image residual magnitudes are normally determined by the size of

the pixels of the imaging sensor, the image measurement method and the target image

quality. In this experiment some target images were manually measured and can

therefore expect to realize RMS residuals of no better than 1/2 to 2/3 of a pixel. Figure 4

- 7 gives some examples of target images with large image residuals:

Figure 4 - 7. Examples of target points with large residual values from Pro 4000 webcam.

Mean image residuals: Left: (4.54µm, 3.3µm); Right: (4.39µm, 3.37µm);

(Target Image Window Size (pixels): 32, 32)

In the above cases the dark band on either side of the target is likely to be due to

“ringing” where the high intensity signal influences the electronic readout of the

surrounding pixels. The jpeg blocking is also very evident in the left target image. This

increases the difficulty for the centroiding process to predict the target location and
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therefore it is likely to produce a large image residual. Furthermore, this internal

measure suggests that the imaging geometry and relatively small calibration object with

a small number of targets on it (Figure 4 - 2) may not support the larger number of

calibration parameters to be estimated in the full case as well as a much reduced set.

Further investigation with a calibration object which more closely fills the field of view of

the webcam images and has targets that are comparable with their optical quality is

required (Section 4.3).
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4.2.5 Summary

Although a higher accuracy level of target coordination can be achieved by individual

calibration, individual camera calibration prior to each optical topography study for a

system containing multiple cameras becomes impractical. This impracticality is due to

the fact that manual cost is involved to measure the target images since the poor image

quality delivered from this range of cameras has made fully automatic target centroiding

measurement impossible. Regarding this an efficient calibration method will be to first

create an image network of all the cameras with an initial uniform parameter set.

Camera parameters will then be iteratively optimised through a self-calibrating bundle

adjustment performed on the data processing of all cameras within the same

adjustment (Section 3.2.3.2). However, given the significant improvement of image

quality seen in the C500 webcam over the earlier Pro 4000 webcam, completely

automation of target centroiding measurement should be possible with new generations

of webcams. As a result the time required for camera calibration should not be

considered as an issue for optical topography studies.

To summarise the study in this section:

1. The data are considered to be accurate enough for optical topographic medical

tracking applications being better than the 1mm tolerance for topographic

reconstruction (Section 2.2.3);

2. A significant improvement of image quality in terms of target recognition has been

found between different generations of webcams. This demonstrates a substantial

potential for future applications of automatic photogrammetric target measurements

with low cost webcams;

3. The higher image resolution from webcams is able to deliver target measurements

with better than 0.1mm accuracy for all X, Y and Z coordinates. Again this

demonstrates a significant reduction in the gap between high end digital cameras

and low cost consumer level webcams in terms of many photogrammetric

applications requiring millimeter or even sub-millimeter accuracy level.
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4.3 Self-calibrating bundle adjustment with a

larger calibration object

4.3.1 Method

For practical imaging where multiple cameras are required, the accuracy and precision

of the estimated coordinates will rely heavily on the stability of the cameras. As

mentioned in Section 4.2.4, an imaging geometry of a relatively small calibration object

with a small number of targets on it may not support the full image area to be used in the

practical case. This section describes the capabilities of the C500 system in terms of 3D

target measurement precision with a calibration object which more closely fills the field

of view of the webcam images, under the maximum hardware resolution of C500

webcams (1280×1024).

Figure 4 - 8. A network of 8 Logitech C500 webcams (left) and

a calibration object with larger volume (right).

In order to study the precision of an eight camera C500 network, which has been

designed for fast tracking of a target pad on a human head, the webcams were rigidly

mounted in a circle with diameter of about 0.7m (Figure 4 - 8 left) at a range of 700mm.

Such an imaging geometry provides convergent photogrammetric estimation of target

coordinates and provides some tolerance to occlusion given small rotations of the

subject. Imaging of a new calibration object (Figure 4 - 8 right) of similar dimensions to a

human head was carried out at a range of approximately 600-800 mm providing a

maximum target coverage within all camera viewpoints. A key advantage of the C500

webcam is that it is fixed focus and should be physically more stable than the focusable
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Pro 4000 webcams. To calibrate the eight cameras, the calibration object was rotated

into eight sequential positions. For each position images were taken with all eight

webcams to provide a network of 64 images. A self-calibrating bundle adjustment was

performed on the data processing of all eight cameras within the same adjustment.

4.3.2 Results

Table 4 - 6 summarises the calibration variables from the Nikon D100 network:

Program Control Variables

Network datum definition type

Maximum iterations for a solution

Default target image precision by camera (m)

Minimum images for a network target

Rejection criterion for image errors

Generalised internal constraints

10

2.43

4

5.0m

Input Summary

Number of camera calibration sets

Number of target image observations

Total number of exposures

Number of exposures in the network

Total number of targets

Number of targets in the network

1

777

14

14

61

61

Results for the calibration solution

Unit weight estimate (sigma zero)

RMS image residual (m)

Number of observables in the network

Number of unknowns in the network

Number of redundancies in the network

Mean number of images per target

1.00

1.95

1568

281

1287

12.7

Target Precision Summary

Mean precision of target coordinates (m)

Relative precision for the network (1: X)

51.32

8000

Table 4 - 6. Summary of camera calibration for Nikon D100 network.
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Table 4 - 7 summarises the variables from the self-calibrating bundle adjustment:

Program Control Variables Values

Network datum definition type

Maximum iterations for a solution

Default target image precision by camera (m)

Minimum images for a network target

Rejection criterion for image errors

Generalised internal constraints

10

0.34

4

2.5m

Input Summary Values

Number of camera calibration sets

Number of target image observations

Total number of exposures

Number of exposures in the network

Total number of targets

Number of targets in the network

8

2367

64

64

61

61

Results for the calibration solution Values

Unit weight estimate (sigma zero)

RMS image residual (m)

Number of observables in the network

Number of unknowns in the network

Number of redundancies in the network

Mean number of images per target

1

1.05

4719

614

4105

38.3

Target Precision Summary Values

Mean precision of target coordinates (m)

Relative precision for the network (1:X)

31.12

13,000

Table 4 - 7. Summary of self-calibrating camera calibration for eight Logitech C500 webcams.
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The uncertainties of 3D and 2D target positions are shown in Figure 4 - 9:

Figure 4 - 9. Mean values of 3D target precisions (left) and target image residuals (right).

4.3.3 Discussion

Compared with Figure 4 - 9 which has the same resolution setting ((4) on the right

images of Figure 4 - 4, Figure 4 - 5 and Figure 4 - 6), a self-calibrating bundle

adjustment containing all the imagery from all cameras is able to achieve a similar level

of 2D and 3D target measurement uncertainty and target coordinate accuracy ((2) in

Figure 4 - 18) as compared with results generated from individual camera calibrations.

The imaging distance between each camera and calibration object has been doubled

from 300mm to 600-800mm in this self-calibrating bundle adjustment in order to

represent the most likely OT imaging case. The number of targets has also been

increased from 32 (small calibration object, Figure 4 - 2) to 61 (large calibration object,

Figure 4 - 8). Furthermore, the redundancies in the self-calibrating network with all the

eight webcams have increased to 4105 (Table 4 - 7), as compared with a redundancies

of 252 ((4) from Table 4 - 4) for the individual calibration. This level of redundancy in the

network has allowed a better estimation of camera parameters as well as target

coordinates in the self-calibrating bundle adjustment.
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Figure 4 - 10. Individual calibration network of 1 C500 webcam (left) Vs.

Self-calibrating bundle adjustment network of eight C500 webcams (right).

Upper left: A total of 10 images and the smaller calibration object in the network;

Upper right: A total of 64 images and the larger calibration object in the network;

Lower left: Mean number of images per target = 7.5;

Lower left: Mean number of images per target = 38.3.

4.3.4 Summary

This section has demonstrated that even at a longer range of between 600mm and

800mm, a network of eight Logitech C500 webcams, at their maximum hardware

resolution of 1280×1024, is able to achieve an average precision of about 30µm in

terms of 3D target coordination. The system has been calibrated under a self-calibrating

bundle adjustment containing all the images from all webcams to achieve image

residuals of about 1µm. This level of precision has saved the effort needed for individual

camera calibrations prior to each optical topography study. Therefore a simpler and

quicker set up of the system for optical topography studies can be achieved in this way.

Further assessment of reliability (Section 4.4) for these webcams over a period of time

is required in order to prove the camera stability in terms of target coordination accuracy.

If stability can be proven and the tracking system is proven to be reliable over a

relatively long period of time such as month(s), no calibration will be required between

optical topography studies, greatly simplifying system use.
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4.4 Camera Stability

4.4.1 Introduction

The interior orientation parameters of a camera are the prerequisite of target positioning.

The simple construction of low cost webcams could be an advantage as the sensor and

lens are physically connected when compared with high end digital cameras which use

a combination of springs and hinges (Section 3.3.1). One interesting question is – how

stable are the interior orientation parameters of these low cost webcams in terms of

meeting the OT requirement for fast tracking? In this study, the stability of a number of

interior orientation parameters were determined when camera calibrations were carried

over a period of time. If the parameters are stable (i.e. the effect of differences are of the

order of a few m on the image plane), target coordination with networks of these

cameras can be carried out without the need to recalibrate cameras prior to each optical

topography study.

4.4.2 Logitech QuickCam Pro 4000 Webcams

4.4.2.1 Method

This work is confined to Logitech QuickCam Pro webcams, where the interest is to see

how the parameters vary on day-to-day basis. To achieve this aim, similar repetitive

camera calibrations were carried out on different days. The procedure used copied that

in Section 4.2.2.3. For Set 1 (individual calibration), the calibration object was rotated

each time a convergent image was taken by a webcam. Ten images were taken with

each webcam. Individual calibrations for the four webcams were repeated on three

consecutive days. For Set 2 (calibration of all six webcams together carried out in one

day), the calibration object was rotated each time a total of six images were taken by the

six webcams and there were twelve images for each webcam. Table 4 - 8 gives the

details for this study:
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Set 1 (Fixed Focus 1) Set 2 (Fixed Focus 2)

Same

camera

used?
Number of webcams 4 Number of webcams 6

No Cam 0 Trust WB-5600R

Cam 1
Logitech Quickcam

Pro 4000
Yes Cam 1

Logitech Quickcam

Pro 4000

Cam 2
Logitech Quickcam

Pro 4000
Yes Cam 2

Logitech Quickcam

Pro 4000

Cam 3
Logitech Quickcam

Pro 4000
Yes Cam 3

Logitech Quickcam

Pro 4000

Cam 4
Logitech Quickcam

Pro 5000
No Cam 4

Logitech Quickcam

Pro 4000

No Cam 5 Trust WB-5600R

Calibration Method
Individual calibration,

3 consecutive days
Calibration Method

Calibration of all

cameras together,

1 day

Table 4 - 8. Experiment details for camera stability study.

The parameters to be studied include the image coordinates of principal point, the

principal distance and radial distortion. In all cases calibration of the cameras was

carried out using a self-calibrating bundle adjustment procedure with a coordinate

datum based upon prior measurement of the smaller calibration object (Figure 4 - 2)

with a Nikon D100 camera.
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4.4.2.2 Results

Table 4 - 9 summarises the parameters from calibrations for Set 1 and Set 2:

Program Control Variables Set 1: Cam 1/2/3/4; Set 2

Network datum definition type

Maximum iterations for a solution

Default target image precision by camera (m)

Minimum images for a network target

Rejection criterion for image errors

Generalised internal constraints

10

Set 1: Day 1: 0.73/0.63/0.5/0.45; Day 2: 0.54/0.86/0.63/0.52;

Day 3: 0.59/0.84/0.53/0.44; Set 2: 1.88

4

2.5m

Input Summary Set 1: Cam 1/2/3/4; Set 2

Number of camera calibration sets

Number of target image observations

Total number of exposures

Number of exposures in the network

Total number of targets

Number of targets in the network

Set 1: 1; Set 2: 6

Set 1: Day 1: 277/288/281/273; Day 2: 110/121/116/116;

Day 3: 124/119/118/117; Set 2: 1906

Set 1: 10; Set 2: 72

Set 1: 10; Set 2: 72

33

Set 1: Day 1: 32; Day 2: 13; Day 3: 13; Set 2: 31

Results for the calibration solution Set 1: Cam 1/2/3/4; Set 2

Unit weight estimate (sigma zero)

RMS image residual (m)

Number of observables in the network

Number of unknowns in the network

Number of redundancies in the network

Mean number of images per target

1

Set 1: Day 1: 0.42/0.54/0.43/0.37; Day 2: 0.34/0.57/0.33/0.31;

Day 3: 0.45/0.6/0.39/0.3; Set 2: 1.72

Set 1: Day 1: 562/588/566/538; Day 2: 232/254/244/244;

Day 3: 260/250/248/246; Set 2: 3723

Set 1: Day 1: 165/168/168/168; Day 2: 111/111/111/111;

Day 3: 111/111/111/111; Set 2: 562

Set 1: Day 1: 397/420/398/370; Day 2: 121/143/133/133;

Day 3: 149/139/137/135; Set 2: 3161

Set 1: Day 1: 8.9/9/8.7/8.2; Day 2: 8.5/9.3/8.9/8.9;

Day 3: 9.5/9.2/9.1/9; Set 2: 59.5

Target Precision Summary Set 1: Cam 1/2/3/4; Set 2

Mean precision of target coordinates (m) Set 1: Day 1: 12.76/16.1/13.55/14.29; Day 2:
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Relative precision for the network (1:X)

12.66/19.91/12.6/13.43;

Day 3: 15.32/19.7/13.45/12.68; Set 2: 16.54

Set 1: Day 1: 17000/13000/16000/15000;

Day 2: 17000/11000/17000/16000;

Day 3: 14000/11000/16000/17000; Set 2: 15000

Table 4 - 9. Summary of calibration parameters for Set 1 (individual calibration of 4 cameras over

3 days) and Set 2 (self-calibrating bundle adjustment of 6 cameras together in 1 day).

4.4.2.2.1 Principal point offsets

Figure 4 - 11 presents the difference in the estimated principal point offset in the x

direction for webcams 1 through 4 of Set 1 and webcams 0 through 5 of Set 2. Similarly

Figure 4 - 12 presents differences in y for both sets. Since all webcams in Set 2 were

calibrated at a different time (about one year later) from webcams in Set 1, the manual

focus setting between the two sets is regarded as being independent.

Figure 4 - 11. Principal point offset in x for Set 1 over 3 consecutive days and Set 2 in 1 day.
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Figure 4 - 12. Principal point offset in y for Set 1 over 3 consecutive days and Set 2 in 1 day.

4.4.2.2.2 Principal distance

Figure 4 - 13 presents the difference of principal distances for webcams 1-4 of Set 1 and

the difference of principal distances for webcams 0-5 for Set 2.

Figure 4 - 13. Principal distance for Set 1 over 3 consecutive days and Set 2 in 1 day.
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4.4.2.2.3 Radial distortion

A typical result of radial distortion for Logitech QuickCam Pro 4000 cameras was

selected to present in Figure 4 - 14:

Figure 4 - 14. Radial distortion of one Logitech Quickcam Pro 4000 camera

(Day 5 is approximately 1 year after Day 1, 2 and 3 with different focus setting).

4.4.2.2.4 Target coordinate accuracy

To compare the accuracy of output target coordinates among data sets from different

days, summary statistics of the computed difference between each of the data sets

(Table 4 - 9) and the standard values generated from the Nikon D100 photogrammetric

survey (Table 4 - 2) are presented in Figure 4 - 15:

Figure 4 - 15. Accuracy of output target coordinates (left to right: Day 1, 2, 3, 5).
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4.4.2.3 Discussion

Since this study is looking into how stable the camera interior orientation is over time,

data from some typical interior orientation parameters are selected for analysis. For

principal point coordinates, the difference in x and y directions was found to be within a

range of 0.01 mm (Figure 4 - 11 and Figure 4 - 12). The difference in principal distance

for each webcam was within a range of 0.05 mm (Figure 4 - 13). The difference in radial

distortion for each webcam was within 0.6 µm at a maximum radius of 2mm (Figure 4 -

14). The magnitude of radial distortion, i.e. ~0.5 pixel at the radial distance of 2mm, has

also agreed with the results presented by Page et al. (2008) (Section 3.2.2.1). These

results suggest that the camera parameters for Pro 4000 webcams can be considered

to be stable on a day-to-day basis since 3D target computation checks using the slightly

different camera parameters result in almost the same target coordinate accuracies,

where all coordinates are within 0.1mm accuracy level (Figure 4 - 15).

4.4.2.4 Summary

The data from this study has provided a reference for future optical topography study,

where target coordination can also be carried out with parameters obtained from a

calibration conducted several days or several weeks ago (provided that the relative

positions among cameras remain unchanged during this time). Optical topography

studies require better than 1mm 3D target coordination accuracy, which has been

achieved in the presence of small variations in camera parameters on day-to-day basis.

This suggests that future optical topography studies with these cameras can be much

more flexible and time which would otherwise be spent on camera calibration can be

saved.
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4.4.3 Logitech C500 Webcams

4.4.3.1 Method

For the newer Logitech C500 webcams which will be used in optical topography fast

tracking process, the interest is to see if the camera parameters vary significantly over a

longer period and therefore the camera calibrations were carried out on two different

dates with about one and half month's interval (08/06/2010 and 20/07/2010

respectively). The imaging geometry and the simultaneous processing is the same as

described in Section 4.3.1. Table 4 - 10 gives the details for this study:

Logitech C500 Webcams

(Fixed Camera Focus)

Logitech C500 Webcams

(Fixed Camera Focus)

Calibration data: 08/06/2010
Same camera used?

Calibration data: 20/07/2010

Number of webcams: 8 Number of webcams: 8

Cam 1 Yes Cam 1

Cam 2 Yes Cam 2

Cam 3 Yes Cam 3

Cam 4 Yes Cam 4

Cam 5 Yes Cam 5

Cam 6 Yes Cam 6

Cam 7 Yes Cam 7

Cam 8 Yes Cam 8

Calibration Method

A network geometry of 8 webcams

Calibration Method

A network geometry of 8 webcams

Table 4 - 10. Experiment details for camera stability study for Logitech C500 webcams.

As noted in Section 4.2.4 for webcams in this thesis only the basic calibration set (the

principal point, the principal distance and 3rd power term (K1) of radial distortion) are

considered since only these parameters have a significant effect (Table 4 - 5). As before,

calibration of the eight cameras was carried out using a self-calibrating bundle

adjustment procedure with a coordinate datum based upon prior measurement of the

larger calibration object (Figure 4 - 8) with a Nikon D100 photogrammetric survey.
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4.4.3.2 Results

Table 4 - 11 summarises the calibration parameters for two self-calibrating bundle

adjustments of all eight cameras conducted on two different days (denoted by A and B):

Program Control Variables A: 08/06/2010 B: 20/07/2010

Network datum definition type

Maximum iterations for a solution

Default target image precision by camera (m)

Minimum images for a network target

Rejection criterion for image errors

Generalised internal constraints

10

A: 0.51; B: 0.34

4

2.5m

Input Summary A: 08/06/2010 B: 20/07/2010

Number of camera calibration sets

Number of target image observations

Total number of exposures

Number of exposures in the network

Total number of targets

Number of targets in the network

8

A: 1056; B: 2367

64

64

61

A: 55; B: 61

Results for the calibration solution A: 08/06/2010 B: 20/07/2010

Unit weight estimate (sigma zero)

RMS image residual (m)

Number of observables in the network

Number of unknowns in the network

Number of redundancies in the network

Mean number of images per target

1

A: 0.75; B: 1.05

A: 2135; B: 4719

A: 588; B: 614

A: 1547; B: 4105

A: 19.1; B: 38.3

Target Precision Summary A: 08/06/2010 B: 20/07/2010

Mean precision of target coordinates (m)

Relative precision for the network (1:X)

A: 64.78; B: 31.12

A: 6000; B: 13000

Table 4 - 11. Summary of calibration parameters for self-calibrating bundle adjustments of eight

cameras together carried out on 08/06/2010 (A) and 20/07/2010 (B).
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4.4.3.2.1 Coordinates of principal point

Table 4 - 12 presents the difference in the output principal point offset in the x and the y

directions for eight webcams over 42 days:

Table 4 - 12. Principal offset in x (left) and y (right) directions for eight C500 webcams.

4.4.3.2.2 Principal distance

Figure 4 - 16 presents the difference of principal distances for all eight webcams:

Figure 4 - 16. Principal distance for eight C500 webcams.
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4.4.3.2.3 Radial distortion

Figure 4 - 17 presents the absolute discrepancies of radial distortions for eight C500

webcams over 42 days:

Figure 4 - 17. Discrepancies of radial distortions of eight C500 webcams.

4.4.3.2.4 Target coordinate accuracy

To compare the accuracy of output target coordinates among two data sets, summary

statistics of the mean absolute discrepancies computed between each of the data sets

(Table 4 - 11) and the standard values generated from the Nikon D100 photogrammetric

survey (Table 4 - 6) are presented in (1) and (2) from Figure 4 - 18. In terms of reliability

of the tracking system, estimated target coordinates of the large calibration object

carried out on 21/05/2011 (about 10 months later, (3) from Figure 4 - 18) are compared

with Nikon network, where the wheel supporting the cameras has been knocked by

different researchers and the entire tracking system has been moved around into

different places on the optical table during this period. The camera parameters used for

21/05/2011 were directly extracted from those derived from the self-calibrating bundle

adjustment carried out on 20/07/2010, i.e. without any calibration on 21/05/2011.
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Figure 4 - 18. Accuracy of output target coordinates

(left: 08/06/2010; middle: 20/07/2010; right: 21/05/2011).

4.4.3.3 Discussion

This study is looking into how stable the C500 webcam internal camera parameters are

over a relative longer period (42 days), as compared with the study carried out for Pro

4000 webcams (3 days). For the principal point, differences in x image coordinates for

each webcam are within 0.02mm while differences in y are within 0.01mm (Table 4 - 12)

over the 42 day period, where this magnitude of difference is of the same order as those

for the Pro 4000 webcams observed over three days (0.01mm range, Figure 4 - 11 and

Figure 4 - 12). The difference in principal distance over 42 days for each C500 webcam

was within 0.01mm, as compared with the 0.1mm of Pro 4000 webcams over 3 days

(Figure 4 - 16). This difference of an order of magnitude could be due to the fact that the

C500 webcams do not focus and therefore have a more rigid physical relationship

between the lens and the sensors, as compared with the adjustable focus for the Pro

4000 webcams (Table 4 - 1). These results demonstrate that the simple construction is

able to offer webcams an advantage over other digital cameras using a combination of

springs and hinges in terms of the internal geometry of sensor (Section 3.3.1).

However, interestingly principal distances can be separated into two clear groups with

C500 webcams 1, 2, 3, 8 roughly 0.35mm greater than Cam 4, 5, 6, 7. However, Cam 1

to Cam 8 are all the same webcam models (Logitech C500) with fixed focus. The only
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difference between Cam 1, 2, 3, 8 and Cam 4, 5, 6, 7 is that Cam 1, 2, 3, 8 are plugged

into USB 2.0 slots, while Cam 4, 5, 6, 7 are plugged into PCI express USB 3.0 ports

(Figure 4 - 23). To further verify this difference on principal distance, two individual

calibrations were carried out independently where the same webcam was attached to

each port in turn to eliminate any possible camera variations. Table 4 - 13 summarises

the parameters from these two self-calibrating bundle adjustments:

Program Control Variables A: USB 2.0 B: USB 3.0

Network datum definition type

Maximum iterations for a solution

Default target image precision by camera (m)

Minimum images for a network target

Rejection criterion for image errors

Generalised internal constraints

10

A: 1.70; B: 1.42

4

2.5m

Input Summary A: USB 2.0 B: USB 3.0

Number of camera calibration sets

Number of target image observations

Total number of exposures

Number of exposures in the network

Total number of targets

Number of targets in the network

1

A: 282; B: 322

10

10

61

A: 42; B: 44

Results for the calibration solution A: USB 2.0 B: USB 3.0

Unit weight estimate (sigma zero)

RMS image residual (m)

Number of observables in the network

Number of unknowns in the network

Number of redundancies in the network

Mean number of images per target

1

A: 1.25; B: 1.16

A: 507; B: 605

A: 195; B: 201

A: 312; B: 404

A: 5.9; B: 6.8

Target Precision Summary A: USB 2.0 B: USB 3.0

Mean precision of target coordinates (m)

Relative precision for the network (1:X)

A: 139.75; B: 113.74

A: 2000; B: 3000

Table 4 - 13. Summary of calibration parameters for two individual calibrations with the same

webcam.
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Figure 4 - 19 shows the principal distances from these two calibrations:

Figure 4 - 19. Principal distance of a C500 webcam connected to USB 2.0 and USB 3.0 ports.

Similar to Figure 4 - 16, there exists a difference of about 0.35mm of the principal

distances even with the same camera, which has confirmed that the variations of

principal distance between different connection ports are not related to the camera

internal variations. The reason accounting for this change in principal distance goes to

an image scaling occurred in the capture system which is linked to the change of image

quality and automatic camera driver parameter settings managed by the DirectShow

API. Furthermore comparison was made between the images captured from a webcam

connected to PCI express board and a webcam connected to a normal USB 2.0 board

(Figure 4 - 20). Although both images have the same resolutions (1280×1024), the

image from a C500 webcam connected to a normal USB slot contains less details than

the image when it is connected to PCI USB 3.0 slot:

Figure 4 - 20. Comparison of images extracted from image sequence.

Upper left and upper right: An image with hardware resolution of 1280×1024;

Lower left and lower right: A portion of the image with 3 times enlargement (3840×3072).
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Moreover, every time a webcam was connected to a USB 2.0 port in this single desktop,

a warning message was shown on screen by the camera software as follows:

Figure 4 - 21. Warning message when webcam is connected to a USB 2.0 port.

This is because Logitech C500 webcam is designed with USB 2.0 interface, which

means its maximum video transfer rate is not more than 480MB/s. Therefore even if it is

connected to a USB 3.0 port, the camera driver still recognises it as a USB 2.0 port.

When the webcam driver for C500 models detects different webcams being connected

to USB 3.0 and USB 2.0 ports, due to different internal universal serial bus controllers

between these two types of connections, the driver recognises the controller for those

webcams connected to USB 3.0 ports as its native support connection type (USB 2.0)

while recognises those USB 2.0 controllers as a lower level of connection it supports, i.e.

USB 1.1. And therefore the above warning message shows whenever a C500 webcam

is connected to a USB 2.0 port in this desktop. The C500 webcam driver recognises the

connection type in such a way that the above warning message shows even if there is

only one C500 webcam plugged into the desktop through any USB 2.0 port.

When an application tries to connect to the C500 webcams through DirectShow

(Appendix 1), KsProxy, a wrapper filter provided by DirectShow to allow webcams to join

DirectShow, is instantiated to send query to camera driver, which returns two different

property sets which the camera driver support: one for USB 2.0 and one for USB 1.1.

KsProxy is then configured to expose COM interfaces that correspond to these two

property sets, which are then translated to camera driver in order to start video

streaming from webcams. In this case the property sets received from the camera driver

which controls Cam 1, 2, 3, 8 correspond to USB 1.1 while those controlling Cam 4, 5, 6,

7 correspond to USB 2.0.
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Figure 4 - 22. Difference of buffer sizes delivered from a C500 webcam connected to USB 2.0

port (left) and PCI express USB 3.0 port (right).

While the data rates (dwBitRate which specifies the video stream’s approximate data

rate in bits per second [dwBitRate definition, 2011]) between USB 2.0 and USB 1.1

shows little difference, the size of each buffer (cbBuffer) set through USB 2.0 is nearly

twice as that as in the USB 1.1 case (Figure 4 - 22). When video streaming reaches the

video card, streamed video data is transferred from the output pin (the connection point

between filters, Appendix 1) of one filter to the input pin of the next filter (e.g. image

grabber filter). The two pins must agree on the number and the size of the buffers

created by the allocator. Figure 4 - 22 shows the same number of buffers (i.e.

cBuffers=10) created but completely different buffer sizes, while the buffer size from

webcam connected to USB 3.0 port is nearly as twice as that connected to USB 2.0 port,

which implies:

1. DirectShow assigns the pin from the raw video to provide the allocator, where the

pin fills each buffer for USB 1.1 with nearly half of data as compared with that for USB

2.0, which account for the difference of image details shown in Figure 4 - 20;

2. The property set from camera driver has a direct impact on the determination of

buffer size when two pins are connected. That is, the driver returns property sets for

USB 1.1 connection for Cam 1, 2, 3, 8 while it returns property sets for USB 2.0

connection for Cam 4, 5, 6, 7, in which this difference between two property sets directly

determine the buffer size to be retrieved by next filter.

Due to the differences in buffer sizes, it is very likely that the image grabber samples

images with two slightly different scales (about 4.45/4.8=93%), which accounts for the
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0.35mm change in principal distance (Figure 4 - 19). This provides an important

conclusion that for a multi-camera system, it is critical to calibrate the cameras as a

system but not as individual sensors.

For the desktop computer (Dell Precision 490) used in this research, each USB 2.0

board is able to support only one C500 webcam video stream and each PCI express

USB 3.0 board (2 port USB 3.0 hub to PCI-E express card adaptor) is able to support

two C500 webcam video streams. Therefore to set up an 8-camera tracking system,

Cam 1, 2, and 3 are individually connected to three USB 2.0 boards and Cam 8 is

connected to a USB port which comes with the desktop computer itself. On the other

hand, each PCI express board contains 2 USB ports and tests have shown that 2

webcams can be used with 1 single PCI express board. As shown in Figure 4 - 23, Cam

4 and 5 were connected to a PCI express board while Cam 6 and 7 were connected to

the other PCI express board. It is worth to note that each of the boards that had been

added has multiple USB ports but common interface hardware between all ports

through which the data must pass. This configuration has resulted in the four cameras

connected to USB 2.0 ports not able to deliver the image quality as they should (left

images of Figure 4 - 20) but imagery filled with nearly half of the original details (right

images of Figure 4 - 20).

Figure 4 - 23. 8-USB Connection to Dell Precision 490 (Intel Quad Core 2.0GHz, 4GB Ram).



Chapter 4 – Design of a Low Cost Photogrammetric System

179

The difference in radial distortion over 42 days for each C500 webcam was within 0.1µm,

as compared with 0.6 µm at a radius of 2mm for the Pro 4000 models (Figure 4 - 14).

However, Figure 4 - 17 suggests that the lens distortion varies between the different

C500 webcams (from -5µm to -30µm at a radius of 2mm). This is despite the fact that

Logitech officially declared that C500 webcams use a precision engineered glass lens.

Despite this, lens distortion for each individual C500 webcam (Figure 4 - 17) can be

corrected by the self-calibrating bundle adjustment.

Output 3D target coordinates generated from the self-calibrating bundle adjustments

from 08/06/2010 and 20/07/2010 respectively are presented in (1) and (2) of Figure 4 -

18. Once again results suggest that the small variation in camera parameters between

the two data sets have no effect on the target coordination accuracy of the tracking

system. While output target coordinates of data set (3) were generated ten months after

the self-calibrating bundle adjustment (20/07/2010), accuracy levels within 0.25mm for

all coordinates was still achieved. This magnitude is still well below the accuracy level

required for optical topography tracking. The slightly larger discrepancy for 21/05/2011

is caused by two factors. First, webcams and the wheel have been knocked during their

use by different researchers over a ten month period of time. Secondly, there is a

possibility that the physical shape of the steel rod mounting these webcams had slightly

changed due to a large difference of temperature across summer and winter seasons so

that there have been a slight difference of bending angles. All these could have resulted

in a slight change of the relative positions among the eight webcams which accounts for

the small decrease in accuracy level ((3) in Figure 4 - 18). Nonetheless, these results

have demonstrated that provided with good internal sensor geometry of webcams

(Section 4.4.3.3), maximising their exterior orientation stability by re-engineering the

mechanical mounting has enabled webcams to deliver consistent 3D coordination

accuracy (Section 3.3.1).
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4.4.3.4 Summary

The main obstacle for bundle adjustment with these low cost webcams is the manual

measurement of target images since the poor image quality delivered by these

webcams has currently made a fully automated target image measurement process

difficult with existing target image measurement software. In particular target image

quality for coded target recognition was found to be insufficient and that an appropriate

set of coded targets suited to webcam work is required for full automation. For a

self-calibrating bundle adjustment where eight images are taken for each webcam and

there are a total of eight webcam, about one minute is needed to measure target images

for each individual image and therefore about one hour is needed to generate sufficient

target images for the bundle adjustment. However, the automation of the calibration

process for webcams would be possible given merger of the target detection techniques

developed later on in this thesis (Section 4.5.4). The continuous enhancement of image

quality in webcam technology will also have an influence.

In terms of reliability of the tracking system for optical topography applications, results

have demonstrated that the camera parameters are stable and the system is reliable

over a long period of time to the required 1mm level of accuracy. As a result the need to

repeat self-calibrating bundle adjustments for each use of the system can be eliminated

over a long period of time. This reliability has made the multi-camera tracking system

almost immediately ready for optical topography application. The camera parameters

used for the phantom and human studies performed on 03/08/2010 and 04/08/2010

(Section 5.2 and 5.3) were directly extracted from those obtained from the

self-calibrating bundle adjustment on 20/07/2010.
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4.5 Fast Tracking System

4.5.1 Introduction

One of the advantages of optical topography over conventional tomographic functional

mapping methods such as fMRI is that slight movement is allowed during imaging.

Combined with the highly portable imaging equipment and the non-invasive imaging

technique, more flexible functional studies can be designed for optical topography

(Section 2.1). However, although the optical sensing pad is usually firmly attached to

subject’s head during optical topography study, relative movement between pad and

head can still happen with the result that study data are invalidated. For example, in a

topography study in the Baby Laboratory at Birkbeck College of London, we found that

sometimes the baby touches their mother who usually sits behind the baby. This could

cause the dislocation of the optical sensing pad and therefore the functional study has

to be terminated. This limitation has leaded to the fact that many repetitive topography

studies have to be conducted (without knowing if dislocation actually happens) before

useful data can be extracted for analysis.

(a) (b)

Figure 4 - 24. Optical sensing pad used in the Baby Lab, Birkbeck College of London.

(a). Inside look of the optical sensing pad; (b) The sensing pad is attached on the baby’s head.

Regarding this issue, if the operator can be informed if differential movement is detected

during the topography study, the operator can either decide to abort or continue the

study. Provided that the following requirements are fulfilled, optical topography

experiment time can be saved whilst obtaining useful data:
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1. 2D and 3D target positions (coordinates) on the head and optical sensing pad

should be computed in nearly real time. The relative positions on the pad and

head can then be compared with the previous positions to see if there is any

differential change;

2. Coordinate update should be quick enough to suit the fast monitoring purpose.

Before going into the details of the system design, some factors to determine the

characteristics of a multi-camera tracking system suited to clinical conditions need to be

considered first:

1. For portability of the system in future use, the materials used to build the system

need to be light but rigid as well, leaving aluminum as the best choice;

2. Since the camera parameters and the orientations for target tracking need to be

extracted from the associated self-calibrating bundle adjustment, the accuracy of

target coordination heavily relies on fixed relative positions among these cameras

during the tracking. Therefore webcams need to be firmly attached onto the system;

3. A convergent multi-camera network is required to deliver strong network geometry in

terms of target coordination (Section 3.2.3). This implies that an object with circle

shape (wheel) should be used to mount the webcams;

4. Given the wheel based camera mounting used to deliver a multi-camera convergent

geometry, to prevent occlusion of targets by the wheel itself, all the webcams need

to be situated underneath the wheel;

5. The height of the wheel needs to be adjustable in favour of positions of test subjects;

6. The wheel size should allow enough length for the USB cable of every mounted

webcam to connect to the USB port of the desktop.

In the following sections key components of the tracking system are described.

4.5.2 Design of the tracking system

Taking advantage of the clip underneath the C500 webcam, shells of C500 webcams

were opened to replace the original clip with a steel rod so that webcams can be rigidly

fixed in positions around the edge of a bicycle wheel ring, as shown in Figure 4 - 25. The

rigidity of the webcam mounting on the wheel ring is critical since the relative positions

among webcams should theoretically be unchanged after camera calibration to ensure
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consistent camera orientations between calibration and tracking. The supporting rods

were further bent outwards to increase the overlapping area being viewed by all eight

webcams due to the limiting size of the wheel ring (622mm internal diameter). A flexible

screw was designed to keep each camera’s position fixed after their relative positions

had been adjusted to provide a convergent geometry in favour of 3D target coordination.

Figure 4 - 25. Workflow of the initial setup of the tracking system.
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The fast tracking system is composed of eight Logitech C500 webcams (£44 each)

mounted upside down at the edge of an alloy bicycle wheel rim (£40). The wheel can be

adjusted on a supporting stand for height to achieve a suitable tracking distance

between webcams and subject. The cameras are positioned so that four webcams are

close to each other to ensure the most important targets around the sensing pad can be

tracked. The remaining four webcams are positioned more sparsely around the ring to

ensure less important targets facing these directions can be intersected from at least

two images (Figure 4 - 26). For example, in order to localise brain activation area, target

locations on an optical sensing pad positioned on the upper left area of a head in order

to study left temporal brain activation are the most important. Conversely the system

can be adjusted, or simply rotated so that target locations on an optical sensing pad at

the back of the head to study human visual cortex activation can be observed.

Figure 4 - 26. Experimental setup and convergent geometry of the 8-camera tracking system.
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Given the convenience of the wheel rim, but its limited diameter, the maximum bending

range of webcams on the wheel and the approximate size of human head, a distance of

0.6 to 0.8m between webcams and targets was found to provide the maximum number

of targets (situated over human scalp) viewed by all the webcams (Section 4.3.1).

During these studies image quality was found to be more consistent when the white

balance is switched off with software control to ensure the same settings across all

webcams. The system design (Figure 4 - 26) is a prototype with a total cost of less than

£400. The design also offers the possibility to mount the ring of cameras on a stand

fixed to the back of a clinic chair in future so that tracking can be done anywhere in clinic,

at the patient’s bedside or inside a testing room.

4.5.3 Synchronization of webcams

The goal of the fast tracking system is to perform 3D target coordination as fast as

possible to allow tracking of any movement of the human head during the study. Any

time delay between image frames captured by different webcams could directly cause

an inaccuracy in the 3D coordinates being intersected if the subject’s movement velocity

becomes comparable to the time delay.

The images captured by USB webcams are executed in series and there exists a time

delay between different frames. In order to minimize the time gap, the frame capture

process was implemented independently of camera initialization and image processing.

This ensures that image capture starts only after all connected webcams have been

initialized and set up and the image processing starts only after all connected webcams

have grabbed new image frames and saved them into a buffer.

A time counter was used to record and calculate the time difference between successive

image frames being captured by different webcams. Test and retest results have shown

that the average time delay between image frames captured by different webcams in

one set (all images in one set are used for 3D coordination) is between 0.005s and

0.007s. Provided that the movement of the test subject is small compared to those

doing sports such as running, the time synchronization issue can be ignored in the

study.
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Methods do exist to synchronize different cameras, but these are not generally available

on webcams. In hardware, genlock can be used to connect different cameras, whilst in

software, parallel computing using the parallel pipelines of a computer’s graphics card

as a trigger might also be implemented. Since the research focus is not about the

synchronization and the time difference in order of millisecond is considered to be small

enough to be ignored in this application, and will not be discussed in the following

sections. However, research to completely synchronize webcams is an interesting topic

for the future.

4.5.4 Target detection

After the image capture environment has been established, useful information needs to

be extracted from the complex scene for 3D target coordination. In order to achieve this,

two methods have been developed. The first is a target detection method which can be

applied in a broad sense whilst the second is specially designed to tackle target

detection under dim environments with insufficient lighting such as that often found

during optical topography studies where normal lighting could seriously diminish the

infrared signal emitted from the optical fibres. Details regarding the first method have

been given in Section 3.4.4, the second method, which is built on top of the first, is

described in the following section with example images.

4.5.4.1 Background

Tests [Wong et al., 2009] demonstrated that the edge image from a Canny edge detector

[Canny, 1986] as a mask is capable of defining the target image boundary for a

subsequent centroiding process. The Canny method was found to work well when

targets of interest constitute the majority of the image grey values of interest within an

image (e.g. 90%). However the method is quite sensitive to background noise if the

background scene is also included in the image (Figure 4 - 27).

The target detection method described in Section 3.4.4 applied a morphological

operation prior to Canny edge detection in order to filter background features. However,

when the earlier study in Section 3.4.4 was extended to more complex environments,

although the erosion operation was able to eliminate some image noise, objects which
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are similarly sized to target images and form an obvious contrast against the background

passed the criteria set by the Canny edge detector and were recognised as targets giving

false positives [Wong et al., 2010].

Figure 4 - 27. Target detection in simulated clinic-environment [Wong et al., 2010].

In more extreme cases, such as Figure 4 - 28 where a human head model with an OT

optode pad was imaged in a clinic-simulated laboratory environment, the contrast

formed by the depth difference between the dark holes in the brighter optical table

surface allowed the Canny edge detector to extract the edges of these holes. Due to the

similar size and shape of the holes and the target dots, the edge information further

passed the blob detection algorithm (Flowchart 3 - 2), even though it incorporated

circularity criteria for target shape and size. Finally these holes were all recognised as

targets and their individual centroids were computed. In the next stage the coordinates of

both real and incorrectly recognised targets were input into our subsequent 3D

correspondence computation process and must be filtered in 3D space in a

computationally more expensive process [Atkinson, 1996; Luhmann et al., 2006].

Figure 4 - 28. Holes on an optical table were false recognised as targets [Wong et al., 2010].
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Incorrectly recognised targets are an obstacle to our goal of localising OT optodes and

incorrect measurements must be rejected before 3D correspondence. This elimination

simplifies the correspondence computation as each measured target needs to potentially

be compared with every measured target in all the other images. Minimising the required

correspondence search space is very important for fast processing (Section 3.5.3).

4.5.4.2 Method

Regarding the drawbacks of the target detection method, further steps are necessary on

top of the morphological filter and Canny edge detector so that new criteria can be used

to distinguish between the real and unwanted targets. However any new steps need to

be as computationally simple and efficient as possible in order to minimise the time

delay for rapid processing.

As a first step, coloured targets that will be predominantly imaged by a single colour

channel can provide a first pass filter for target detection. One impact is that less clinical

lighting control is required than for multi-channel imaging as specular patches which

might be incorrectly identified as targets are usually imaged in all three colour channels

and can be quickly filtered out. This is considered to be crucial for in-clinic work since

optical topography studies are usually carried out in locations such as at the patient

bedside where lighting conditions are wide ranging. In terms of channel selection, green

is allocated by the Bayer filter with twice as many detectors as the other channels (ratio

1:2:1 for R, G, B respectively) for human visual purpose (Section 3.3.1.2). The missing

pixels from each channel are then interpolated from neighbourhood pixel(s) in the

demosaicing process (Section 3.3.1.4) to build up the complete image. To minimize the

possible incorrect image information introduced by interpolation, the colour channel with

the least interpolation should be selected, which is green. Flowchart 4 - 1 shows the

logic of the colour solution.
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Flowchart 4 - 1. Colour solution logic [Wong et al., 2010].
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4.5.5 Results

Although the default setting for the tracking system is able to effectively detect targets in

most environments, several parameters need to be tuned to allow target detection

suited to a specific testing environment:

Hardware

resolution

Canny upper

threshold

Canny lower

threshold

Tuning

threshold

Normal targets   

Coloured tuning targets    

Table 4 - 14. Adjustable parameters in two target detection methods.

Discussion of the results found in fast tracking systems are divided into two sections. In

the first section results of target detection for normal targets are presented while in the

second section, the comparison of target detection results between the normal-target

method and the tuning-target method is given. Moreover, since the tuning-target method

was used for optical topography study, more results regarding this specific method will

also be given in the second section as a reference for future study.

4.5.5.1 Target detection with normal targets

In this section target detection results after applying the Canny edge detector are given.

Results reveal the drawbacks regarding this edge detection technique. Since the Canny

edge detector is very sensitive to background scene, adjustment of its threshold is the

key to achieve an acceptable separation between foreground and background. Figure 4

- 29 shows some typical results with different threshold settings for the Canny edge

detector used in this study:
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Figure 4 - 29. Results of Canny edge detection with different thresholds on the targets

located on an optical topography pad positioned on a polystyrene head.

Although the Canny edge detector is able to isolate required targets from a complex

background as shown above, under- or over- threshold settings could easily lead to

undesired target detection results. For example, from Figure 4 - 29 it can be seen that

the first three images with thresholds of less than 300 have left unwanted scene

information even after filtering. As a result unwanted targets are highly likely to be found.

The smaller the threshold value, the more unwanted targets detected. However, all 15

targets located on the sensing pad were detected and meanwhile most of the

background information was filtered when the threshold value is 300, which was

considered to be the suitable detection threshold value, as shown in the fourth image of

Figure 4 - 29. Any threshold values higher than 300 were able to better filter the
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background/unnecessary information, but the cost is the filtering of edges of the real

targets at the same time. As shown in the last image in Figure 4 - 29, edges of the two

targets on the bottom of the pad (with less contrast compared with other targets) were

completely filtered out when the threshold value reached 400. Therefore care needs to

be taken when choosing the appropriate threshold value with regard to a particular

testing environment. In practice the threshold adjustment process typically took less

than five minutes in order to reach the suitable setting and therefore applying the Canny

edge detector rather than the conventional threshold method is considered to be

beneficial.

The larger the threshold value, i.e. the difference between threshold 1 and threshold 2 in

the Canny edge detector, the more likely edge disconnection will occur (Section 3.4.4.2).

However, the cost of reducing the difference between the two thresholds is an increase

of unnecessary background information including noise. Introducing the dilation and

erosion (Section 3.4.4.3) not only reduced the noise from the shrinking effect of erosion,

but also connected gaps (broken edges) between disconnected edges to enhance the

shape of the objects of interest. A comparison between results of the conventional

Canny edge detector and the same edge detector but with dilation and erosion added is

shown in Figure 4 - 31. Results are illustrated after introducing a blob detection

algorithm on the edge detection result (Flowchart 3 - 2), as this enables a better

comparison of the difference.

(a) (b)

Figure 4 - 30. Edge of a blob detected by the Canny edge detection.
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Figure 4 - 31. Comparison of Canny only (left) and morphological operations + Canny (Right).
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In Figure 4 - 30 and Figure 4 - 31, the blob area limits were set between 10 and 80

pixels. Canny thresholds one and two were set to be 200 and 400 respectively. Figure 4

- 30(a) shows a frame captured by the webcam and Figure 4 - 30(b) is a screenshot of

the detection result. The result shows that one target was consistently found in every

frame. Figure 4 - 31(a) also shows a frame captured by the webcam. For Figure 4 -

31(b)-(d), the left hand side shows screenshots of the blob detection results after the

Canny operation whilst the right hand side shows the blob detection results after the

morphological operations (dilation and erosion) followed by the Canny edge operation.

We can observe image noise, which was wrongly detected as target blobs (white dots at

the top of the image) on the left hand side, had been successfully filtered out so that the

right hand side correctly recognized a total of nine blobs. The two blobs in front were not

recognized as blobs since their areas are over the limits, i.e. 10 to 80 pixels.

In order to be a potential target, one of the criteria set by the blob detection algorithm is

that the blob needs to be in a complete shape. Any incomplete shape such as a circle

with broken edge(s) could terminate the edge tracing process (Section 3.4.4.4) and will

not be recognised as a target. The morphological operators (Section 3.4.4.3) can

effectively compensate the high noise sensitivity of the Canny detector by promoting the

reconnection of broken edges (Figure 4 - 31). Tests have shown that broken edges are

very common after an edge detection process, for example the biggest blob had a

disconnected edge after Canny (second last image, Figure 4 - 31). Therefore

morphological operation is considered as necessary as a companion to the Canny

detector to reconnect those broken edges, as shown in the last image that the

disconnected edge has been reconnected.
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4.5.5.2 Target detection with coloured tuning targets

In Section 4.5.4.1 the drawbacks of the normal-target detection method, which was

discovered by accident when the polystyrene head was tested on an optical table with

many circular threaded holes, were discussed. Regarding the drawbacks, the

tuning-target method was developed (Section 4.5.4.2) in order to better isolate targets to

be detected from complex background, even if objects with similar size forming similarly

sharp contrast with background exist within the view of webcams. In the following

comparison of the two methods with the same object and under the same testing

environment will first be given, followed by the appropriate setting for this method.

Comparison of normal-target and colour tuning-target methods

For better comparison of the two methods, 7 out of 15 targets on an optical sensing pad

were painted to green in colour by a common highlighter, as shown in Figure 4 - 32.

Since the tuning (green) targets also formed a sharp contrast with the black background

of the optical sensing pad, they should theoretically be detected as targets by Canny

edge detector in the same way as white targets. However, only the coloured tuning

targets should be detected as targets when the tuning-target method is applied,

provided the green component of the coloured tuning targets is higher than the colour

comparison threshold that has been set.

Figure 4 - 32. White targets (left) and 7 coloured tuning targets (right) on a sensing pad.

Figure 4 - 33 compares the difference between the two methods in terms of target

detection. For target detection with normal targets, background edges normally exist (1st

row and 3rd row of Figure 4 - 33) and therefore the chance to recognise unnecessary

targets is high since the target detection for normal targets relied on the object size as

well as the contrast formed between the object and its background. It can be seen that
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with the normal targets there are seven and five unnecessary targets being recognised

at image resolutions of 640×480 (1st row of Figure 4 - 33) and 1280×1024 (3rd row of

Figure 4 - 33), respectively. Compared with the normal target detection, the colour

tuning-target method produced a much cleaner image prior to target detection because

the criteria for an object to be recognised as a target consist of three information

sources: the particular colour (green in this case), the target image diameter and area

and; the sharp contrast formed between the object and its background. As can be seen

from Figure 4 - 33, all eight coloured tuning targets were recognised by the C500

webcams at both resolutions because the background information could be completely

filtered out before target detection algorithm started.

The advantage of using a higher hardware resolution is again illustrated by comparing

the 2nd and 4th rows of Figure 4 - 33. The four close coloured tuning targets on the

sensing pad were recognised as targets by both resolutions. However, the chance for

edges from neighbouring targets to be mixed with each other is much lower with a

higher resolution. This is because with a higher resolution setting, there are more pixels

representing the gap between two neighbouring targets.
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Figure 4 - 33. Target detection comparison.

Left: Original scene; Right: Target detection results.

Resolution of 640*480: Target detection of normal (1
st

row) and coloured tuning targets (2
nd

row);

1280*1024: Target detection of normal (3
rd

row) and coloured tuning targets (4
th

row).
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Setting for colour tuning-target method

A. Dilation operation

While target detection tests were carried out with the colour tuning-target method, it was

also important to find out if this detection method could benefit from the morphological

operation in the same way as normal target detection. Figure 4 - 34 shows a typical

sample result when the tuning threshold (Flowchart 4 - 1) was set to 45:

Figure 4 - 34. Tuning target detections without (left) and with (right) closing operation,

tuning threshold = 45.

The threshold was set to 45 based on the lighting and background clutter in laboratory

environment in order to completely filter out background noise. However, the complete

filtering out of background noise overlaps with the beginning of losing detected targets.

This is because whilst the green component for each pixel inside the coloured tuning

target has a higher intensity than the other two components, it varies on a pixel-to-pixel

basis. A high tuning threshold such as 45 (0-255 range, 8 bit per component for RGB)

could filter out pixels with less green component and cause target edge disconnection.

Such a case is shown in the left image of Figure 4 - 34, where 4 out of 7 were not

recognised as targets. Lowering the tuning threshold enables all the coloured tuning

targets being detected. However, the lower the tuning threshold, the more unwanted

targets are detected.

Moreover, tests have shown that applying morphological (both dilation and erosion)

operation did not produce a significant improvement in terms of target detection (shown

on the right image of Figure 4 - 34), as compared with the significant improvement for

normal-target detection. This raised a question of interest – Why does the

morphological operation improve target detection results after Canny with white targets

but not with coloured tuning targets? This question required an analysis of the difference

between edge detection effects, if any, between the normal white-colour targets and the
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green-colour tuning targets. By enlarging the edges of those non-recognised targets

(not detected by blob detection), it was discovered that there is a pattern difference

between the detected edges between the two approaches. As shown from Figure 4 - 35,

although disconnection occurs for both edges, the edge after Canny operation for

normal targets is an incomplete circle shape (or ellipse when the planar targets were

viewed by camera from certain angles, e.g. 45 degree). In the case of the coloured

targets, irregular shapes were observed in the edge data after the Canny operation was

applied. Furthermore, the irregularity of edge shape for one particular coloured tuning

target varied on a frame-to-frame basis making the edge shape after edge detection

unpredictable though the physical coloured tuning target itself was a planar circle.

By assuming all the other processes exactly the same for these two approaches, the

only difference falls on the target colour, which again led us to refer back to the colour

sensitivities of the camera image sensor to different colours. Green has twice as many

detectors as red and blue (ratio 1:2:1 for RGB) in a Bayer filter arrangement (Section

3.3.1.2). This colour filter arrangement makes the sensor respond with the highest

sensitivity to the green component of each pixel inside the coloured tuning target, as

compared with the other two colour components. Although the tuning-target method was

mainly designed for target image detection under dim environments, both the

white-colour and green-colour targets absorbed a certain amount of light (mainly the

room light in the laboratory environment), therefore a re-distribution of all colour

components for each target pixel occurs. However, a difference in the filtering process is

present. For normal targets filtering criteria depends on the average pixel intensity value.

In the case of the coloured tuning targets filtering criteria build upon the

green-component intensity value. The re-distribution of all colour components with the

Bayer algorithm can reduce the intensity value of the green component against the

other two components. In such a case this pixel would be judged as background and

assigned with an intensity value of 0 within the tuning filtering process. The result is the

unpredictable edge shape following the Canny detector, as shown on the right image

from Figure 4 - 35:
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Figure 4 - 35. Comparison of edge disconnections after Canny detector for white-colour targets

(left) and tuning threshold filtering followed by Canny detector for green-colour targets (right).

On the other hand, the closing morphological operation, including dilation followed by

erosion, is applied as a structuring element to each image pixel. Small broken edges

(left image in Figure 4 - 35) are usually reconnected after dilation is applied. When the

erosion was operated after the dilation, only those isolated pixel(s) (usually for random

background noise) which had been recognised as foreground are removed leaving the

reconnected edge unchanged. However, due to the variation in edge shape and gap

size for the coloured tuning targets, a cancelling effect can occur for the edge(s). As an

example (Figure 4 - 34), the same number of targets were detected (three out of seven)

before and after applying the closing operation.

In order to minimise this cancelling effect, one solution would be to eliminate erosion

from the morphological operation by leaving the reconnecting effect after dilation intact.

Results, shown in Figure 4 - 36, demonstrate that by applying the dilation operation

alone, this detection method was able to allow more coloured tuning targets to be

detected and meanwhile achieve a more consistent tracking across image frames

[Wong et al., 2010].

Figure 4 - 36. Target detection without (left) and with (right) dilation, tuning threshold = 45.

A larger structuring element mask for dilation has a higher capability to connect edges

since the pixel neighbourhood search scope of is increased. However, a mask that is

too large, e.g. 5×5 pixels, could easily mix the edge from one target with another,
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resulting in two close-by targets being detected as one. Mask size for dilation therefore

needs to be carefully chosen. Tests have shown that a 3×3 structuring mask for dilation

enabled better target detection results without causing mixing of edges, provided that

the target diameter was 4mm and the target-to-camera distance was about 700mm. The

dilation process can therefore be used as a tool to compensate the drawbacks (removal

of some edges of real targets) brought from a higher tuning threshold (in order to

completely remove background noise).

The dilation operation compensated, though not 100%, the shrinking effect of the tuning

target edge being detected by enlarging the overall edge (the shrinking effect occurred

for most coloured tuning targets since there were always not 100% pixels within a

coloured tuning target being recognised as target pixels after the tuning threshold

filtering). However, since the detected edge was not exactly the same as the original

tuning target edge, especially the non-circle/irregular edge shape, there would be a

certain degree of error introduced into the target centroid. The effects of these operators

on the actual measured locations of detected targets are reported in Section 4.5.6.2.

Also, the small difference in edge shape from one image to another due to the

unpreventable light change over time can result in slightly different 3D centroid locations

being computed on a frame-to-frame basis. Further investigations will be reported in the

accuracy assessment section of the tracking system in Chapter 5.

To summarise, due to the high sensitivity to green, it is desirable to remove as much

background noise as possible before the edge detection. A high tuning threshold has

been used to achieve that goal. However, edge disconnection and shrinking occurred as

a side effect of applying a high tuning threshold. In order to minimise these side effects,

dilation operation with an appropriate mask was used. Results have shown a higher

consistency in terms of target detection across image sequences after the dilation was

applied. A further advantage of using dilation is the reduced time used to process each

image compared with both dilation and erosion.
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B. Tuning threshold

After dilation was introduced into the image processing for coloured tuning targets, the

next is to compare target detection results with different tuning thresholds. Figure 4 - 37

shows typical results:

Figure 4 - 37. Live target detection results from different tuning thresholds.

It can be seen from Figure 4 - 37 that whilst a low tuning threshold setting allowed all

targets (provided that there was no strong light absorption or light reflection on targets)

to be detected, a lot of background noise was introduced to the edge detection process

causing many unnecessary targets being recognised. There are two disadvantages
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from this result. First, the processing time for target matching to compute 3D target

locations increases since each detected target from one camera must be compared with

each detected target from all the other cameras in the 3D correspondence solution;

secondly, intersection ambiguities could easily result from close together targets. For

example, if target A and B were close to each other where B was actually image noise,

while target C is the target recognised by the other camera, provided that the distance

between A and B is within the 3D ambiguity threshold set, then instead of correctly

matching target A with target C, target B could possibly be used together with target C to

compute a false correspondence. Furthermore, if a non-target object was recognised by

two or more cameras simultaneously, 3D locations of this object would be intersected

and computed. This would again not only increase the processing time but also result in

incorrect and unnecessary 3D locations being output from the system.

Increasing the tuning threshold allows more background noise to be filtered out.

However when the tuning threshold was increased to 75, some real targets were lost

from the system (Figure 4 - 37 with T=75). Investigation of the missing targets from the

second and third camera frames shows that they were located at either corner or edge

on the sensing pad and at viewing angles of much less than 45 degrees. The spherical

shape of human head and the curved shape of the sensing pad (in order to firmly attach

to the head surface) increase the possibility of target occlusions provided with a

circle-shape convergent geometry. For example, the second and the third cameras from

Figure 4 - 37 had much better views of targets than those for the first (lower left) and the

fourth (upper right) cameras. The more acute viewing angle between the real target and

the camera, the fewer image pixels present in the image. This decrease in the number

of target image pixels has increased the possibility for the target to be completely

filtered out prior to edge detection.

While the issue of viewing angle could not be improved without adding more cameras,

the tuning threshold can be adjusted to compensate as much as possible the drawback

brought by the viewing angle. The solution found was to lower the tuning threshold

without increasing the background noise. An example is shown from the middle row of

Figure 4 - 37. When the tuning threshold was adjusted to 45, the missing targets from

the first and fourth cameras (T=75) were recovered. The recovery of missing targets
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from some cameras with acute viewing angles was critical because for a convergent

geometry, the more cameras simultaneously intersect a target, the higher accuracy of

the target’s 3D locations can be computed (Section 3.2.3.1).

The proper settings for coloured tuning targets together with the corresponding effects

are summarised in Figure 4 - 38. By utilising the dilation operation with a proper tuning

threshold which needed to be slightly adjusted from scene to scene, the multi-camera

tracking system was able to achieve better consistency in terms of target detection

across image sequences, when the same tuning threshold was used without dilation.

This consistency ensured the output of 3D target locations throughout the image

sequences since for each set of image frames from all cameras, one set of 3D target

locations were computed based on the targets being detected from that particular set of

image frames. Experiments with a 2008 model Dell Precision 490 desktop, fitted with

Intel quad core 2.0GHz Xeon processors and 4GB memory, delivered sets of 3D target

coordinates at two FPS with a four camera tracking system.

Figure 4 - 38. Results of tuning-target methods without and with dilation.
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4.5.5.3 Consideration of eight webcam tracking system

While the initial tests with a four webcam configuration showed a consistent 3D

coordination, the next step would be extending the system to eight cameras (Figure 4 -

25 and Figure 4 - 26) in order to have a better target coverage in 3D space. However, as

shown in Figure 4 - 20 and Figure 4 - 22 in Section 4.4.3.3, an eight camera system with

C500 webcams connected to USB 2.0 ports suffers from automatic video streaming

buffer size limitations. As a result target image quality is much reduced as shown in

Figure 4 - 40, where no targets were detected by Cam 1, 2, 3 and 8 despite being

connected to USB 2.0 ports.

Figure 4 - 39. Green coloured planar targets used on an optical sensing pad.

Figure 4 - 40. Live target detection results with 8-camera configuration.

(Lowest left: Cam 1; Highest right: Cam 8.)
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Similar to Figure 4 - 20 in Section 4.4.3.3, a comparison was made between the images

extracted from sequences captured by Cam 7 (USB 3.0 port) and Cam 8 (USB 2.0 port).

The image from USB 2.0 port appeared much more blurred than the image from USB

3.0 port, with square grids resulting from high compression clearly visible. The observed

effect is illustrated by magnifying a target image captured by Cam 8, as shown in Figure

4 - 41. Cameras connected to the PC with the same settings deliver different image

qualities. Those images of higher quality pass the target detection criteria, while those of

lower quality fail the same criteria. In such a case no targets can be reliably detected for

Cam 1, 2, 3, and 8.

Figure 4 - 41. Comparison of image qualities captured by Cam 7 (left) and Cam 8 (right).

Images have been enhanced for visual purpose of grids.

Since the image quality of the image sequences varied with the USB configuration set

by camera driver, which is highly device dependent, adjustment for each individual

connected camera is impractical without a detailed re-write of the camera drivers.

However experiments were carried out to determine if software-control of the Logitech

camera driver could compensate, to some extent.
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Figure 4 - 42. Adjustments made for webcams connected to USB 2.0 ports (left) and

default setting for webcams connected to USB 3.0 ports (right).

Figure 4 - 42 shows the adjustments made for Cam 1, 2, 3 and 8, as compared to the

default setting for Cam 4, 5, 6 and 7, provided all other settings exactly the same.

Lowering the image brightness and meanwhile increasing the contrast allowed a

sharper boundary between the foreground targets and the background sensing pad.

These settings favoured edge detection and thereafter the edge searching process,

while increasing the colour intensity ensured better colour filtering results, by leaving

objects with strong green component even in a darker view after the tuning threshold

filtering. Figure 4 - 43 shows the coloured tuning targets located on the optical sensing

pad, which was firmly attached to the phantom for human brain activation simulation,

and Figure 4 - 44 shows the live target detection results in the phantom optical

topography study after the adjustments through camera drivers had been made:

Figure 4 - 43. Coloured tuning targets on optical sensing pad for phantom study.
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Figure 4 - 44. Live target detection for phantom study with 8-camera configuration (T=35),

after slight adjustments has been made through camera drivers for Cam 1, 2, 3 and 8.

By comparing the target detection results seen in Figure 4 - 40 and Figure 4 - 44, Cam 1,

2, 3 and 8 demonstrate a significant target detection improvement after camera driver

adjustment. In order to allow for the four webcams connected to USB 2.0 ports, the

tuning threshold for all eight webcams was lowered to 35 in the phantom study. As

expected, some unnecessary targets existed for Cam 4, 5, 6 and 7 (the tuning threshold

of 45 shown in Figure 4 - 37 is for the four webcams connected to USB 3.0 ports). Given

careful setting (contrast, brightness and colour intensity) and different tuning thresholds

applied to each connected webcam individually taking both the connection types and

the individual scene into consideration, better target detection results can be obtained.

Specifically more detected targets for webcams connected to USB 2.0 ports and no

unnecessary targets for webcams connected to USB 3.0 ports can be achieved for this

eight-camera tracking system. However, since the possible time used for individual

camera adjustment contradicts the goal of easy and quick system setup for clinical use

as well as the robustness of the system, the above mentioned approach was not

implemented further.
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4.5.6 Discussion

4.5.6.1 Target detection with normal targets

The results in Section 4.5.5.1 have demonstrated that the Canny edge detector can

effectively extract useful information from a relatively noisy background. Experiments

show that for normal targets such as white targets or retro-reflective targets, the

threshold adjustment to a particular range suitable for the testing environment is crucial

for good edge detection. In the laboratory lighting environment where the images were

captured, a lower threshold ranged between 250 and 350 would optimize the edge

extraction. Either too low or too high settings for both thresholds decrease the efficiency

of edge detection. A Canny edge detector with too low thresholds maintains a

substantial amount of background noise, whilst too high thresholds easily hide the

useful edge information. Combining all these factors, in future where possible,

retro-reflective targets should be used with a proper light control so that targets can be

better distinguished from the background as compared with usage of white targets.

However this would require each camera to be fitted with a lighting system.

The Canny edge detection combined with the blob detection algorithm can effectively

detect normal targets in the scene in most cases. However, experiments have shown

that the following factors may lower the blob detection performance:

Noise

Since the edge detector is sensitive to object boundaries in the scene, any unnecessary

objects appearing as dots inside the detected scene can easily bias the target detection

result. These can arise from scratches on a desk surface, or even a hand moving

across the image. As shown from Figure 4 - 45, the number of detected targets varied

from 1 to 3 in consecutive image frames. This is due to the two small dots near the real

target which are capable of forming a complete shape fulfilling the blob detection

algorithm and appear as two individual blobs.
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Figure 4 - 45. Scenario of inconsistent target detection across image sequence due to noise.

Light reflection

In the real world, such as the laboratory environment, certain degree of light reflection

on objects is unpreventable. A target could easily disappear from the scene due to light

reflection hiding boundary information. For example in Figure 4 - 46, the blob was

intermittently detected because the blob edge was not in a complete shape when light

reflection caused a substantial decrease in contrast between the blob and its

surrounding background. In more extreme cases, blooming due to too many photons

hitting individual photosites in the sensor is apparent and the threshold is unable to

distinguish between edge pixels and the background.

Figure 4 - 46. Situation when light reflection occurs.

For the Canny edge detector, the larger the difference between the lower and upper

thresholds, the more noise eliminated from the scene. However, the connectivity of the

extracted target edges is also reduced resulting in missed targets. Morphological

operations enable noise reduction (noise pixels tend to be shrunk/filtered by erosion

operations) whilst keeping the target edges connected (pixels tend to be added to the

broken edge by the dilation operation). However, experiments demonstrate that the

morphological operation with a large structuring element mask easily links targets

located close to each other (upper row, Figure 4 - 47). Same effect can also be caused

by unnecessary iterations of morphological operation (lower row, Figure 4 - 47).
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Figure 4 - 47. Comparison of different morphological operations.

(target diameter: ~8mm; target separation: ~2.5mm; target-to-camera distance: ~600mm)

Upper row (from left to right, 1 iteration): mask size of 3×3; 5×5; 7×7; 9×9;

Lower row (from left to right, mask size 3×3): iteration of 1; 2; 3; 4.

Combining all these factors, making use of the robustness in terms of edge detection

from the Canny edge detector, retro-reflective targets with an appropriate illumination

as well as a suitable setting of morphological operations should allow an effective target

detection, not only in the clinical environment but for most cluttered scenes.

4.5.6.2 Target detection with coloured tuning targets

Lighting

Results from Section 4.5.5.2 have demonstrated the colour tuning-target detection

method is capable of overcoming the drawbacks from normal-target detection method.

This advantage is particularly visible for similar sized objects forming sharp contrast

against the background, where these objects can easily be recognised as targets with

the normal-target detection method. Furthermore, the green-colour tuning-target

method has a far better performance in dim environment because of the highest sensor

sensitivity to green. This is beneficial for many clinical studies, such as optical

topography since dim environment is required to minimise the interference with the

infra-red light source emitted from the topographic sensors. Despite the above

advantages, tuning-target detection can still be influenced by the lighting in extreme

cases. If targets are facing a strong light source such as a window with sunshine outside,

as shown in (b) from Figure 4 - 48, a lot of photons fall on the sensor area which covers

both the targets and the background. This phenomenon will result in no targets being
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detected, either for normal targets or for coloured tuning targets. The other extreme

case is when targets are facing a dark area with no light source, as shown in (c) from

Figure 4 - 48, as we can observe live images from the left hand side that, targets are not

able to absorb even minimum amount of light and therefore will be judged as

background.

Figure 4 - 48. Extreme cases of lighting for tuning target detection.

For optical topography studies involving human subjects, targets are usually distributed

around the human scalp, where each target in 3D space is subject to a different amount

of light from different angles. Therefore it is difficult to achieve a scenario in reality

where each target is seen and meanwhile recognised as a target by at least two

cameras. Such a situation makes a 100% successful rapid tracking system for human

studies very challenging. Details about the target tracking performance for both the

phantom and human studies will be reported in Chapter 5.
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Target centroid accuracy

The fact that detected edge for coloured tuning targets was not exactly the same as the

original target edge (Figure 4 - 35) would cause a small shift of target centroids

computed (Table 4 - 15). Similarly the slight different edge shape being detected from

one image frame to another (Figure 4 - 49) due to variation in ambient light reaching

each photosite on the imaging sensor for each frame will give rise to error. Such small

variations in lighting are at a level which cannot be readily detected by the human eyes.

Figure 4 - 49. Slightly different edge shapes of a target across image sequence.

To quantify the magnitude in terms of 3D accuracy, tests (Figure 4 - 50) were performed

to find out the mean 3D target coordination discrepancies over fifty frames caused by

different patterns of target edge detected by the two target detection methods, i.e.

normal-target detection and colour target-tuning detection.
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Figure 4 - 50. Target detections at target-to-camera distances of

900mm (left column) and 600mm (right column).

1
st

row: original scene; 2
nd

row: detection result from colour tuning-target method;

3
rd

row: detection result from normal-target method.

Table 4 - 15 summarises the results. Method A represents the tuning-target detection

method whilst method B represents the normal-target detection method. T represents

the coloured tuning threshold whilst T1 and T2 represent the lower and higher threshold

for the Canny edge detection respectively.

Table 4 - 15. Comparison of 3D target coordination discrepancies between the colour

tuning-target detection (Method A) and normal-target detection (Method B).
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4.5.7 Summary

A new rapid tracking system has been built based on a platform of eight Logitech C500

webcams implementing Videoinput library, Intel OpenCV and OpenGL libraries as well

as Microsoft Directshow (Appendix 1, 2, 3). A four camera tracking system is able to

produce 2-FPS 3D target coordination while the eight camera system produces 0.5-FPS

3D target coordination prior to the code being optimised. For example text concerning

every intermediate result was printed on screen for checking and all live images from all

webcams were rendered onto the screen during the tracking process. A comparison

showing the speedup of the tracking process when development information was

eliminated from the tracking process is given in Section 5.3.4.4.

The normal-target detection method has subsequently been applied in several

applications, for example at Airbus where targets on a rotating carbon fibre beam were

tracked. The colour tuning-target detection has also been successfully applied in both

phantom and human volunteer optical topography studies. Detailed accuracy

assessment and validation of the tracking system from both the phantom and human

subject studies are reported in Chapter 5. The robustness of the tracking system has

allowed users to adjust the minimum number of parameters (Table 4 - 14), normally

within five minutes requiring no knowledge of the programs inside, to an acceptable

level for the tracking performance under a particular scene. Where these parameters

were manually adjusted in this research, they can be automatically adjusted by the

computer itself in future. For example, a quick learning time can be allowed for the

computer to compare the target detection results with different thresholds it selects and

threshold parameters which fulfil criteria set by the computer are considered as suited to

that specific test scene.
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4.6 Conclusion

The following summarises the key results drawn from this chapter:

 Studies to compare both hardware (video mode) and software (still mode) images

have confirmed that there is no difference between these two types of images in

terms of photogrammetric measurement. Therefore any conclusion drawn from

software images in future directly applies to hardware images. Please note that the

internal camera parameters may change between these methods and that a

calibration under one set of capture parameters will not necessarily be valid for

another situation. This leads to the need for a system calibration;

 Internal parameters of webcams are demonstrated to be stable over time, where

tests have been performed in daily, monthly and even yearly basis leading to a

conclusion that webcams are able to deliver consistent and reliable 3D coordinate

measurements;

 Webcam technology continues to evolve demonstrating significant improvement in

image quality and stability even over the short duration of this research. The study

of webcams of different generations demonstrates great potential for these

systems to meet the demands of a wide range of future measurement applications;

 Although not a key aspect of this research, the improving image quality delivered

from webcams and a design of coded targets suited to webcams, probably based

on an enlargement of existing designs should allow a fully automatic

self-calibrating bundle adjustment to be achieved. The key benefit would be a

removal of the need for preparation work prior to target measurement in clinic and

therefore allow even more flexibility for webcam photogrammetric measurements

in medical community;

 Conventionally fixed image thresholds are used to separate foreground target

image information from the background in order to identify candidate target images

prior to photogrammetric image measurement. However, the conventional method

cannot effectively isolate targets in the presence of a relatively high intensity or

variable intensity background. The developed edge detection methods have

proven an effective filter in many environments, from a dim testing room where
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lighting needs to be minimised to bedside with light sources from different

directions. The developed methods have made target extraction more robust and

much faster than before since only useful data will be passed to a subsequent blob

collection function;

 A rigid multi-webcam tracking system has been built with a total cost under £400

and proved to be reliable in terms of delivering a consistent target tracking

accuracy over time. Where a four-webcam system is sufficient to coordinate most

targets located on a surface, an eight-webcam system has been built to cover

targets in 3D space with occlusion. The tracking system has been proved to work

in both general environments and particularly well in more cluttered environments

such as those that might be found in during an optical topography test;

 Currently with the maximum hardware resolutions from mainstream webcams

(1280×1024), the developed rapid tracking system is able to deliver 3D target

coordination at 2 FPS for a four-camera system and 0.5FPS for an eight-camera

system with a single desktop computer (Intel Xeon 2.0GHz, 4GB Ram).

Furthermore the tracking rate can be significantly increased (roughly 4×) with a

lower resolution (640×480) while a 0.2mm accuracy (compared with Nikon network)

can still be maintained. Although general movement can be tracked at the current

stage, there is still capability for speedup of 3D target coordination for the

automated tracking system with coding optimization. Plus, automatic target

tracking process without any human interaction should be available in near future

with a careful design of programming protocols.

In summary, it has been demonstrated that current webcam technology has made

consumer level webcams a good choice for 3D coordination of targets located on a

medical device (optical topography sensor) within sub millimetre accuracy for volumes

similar in size to the human head. This has opened a new opportunity for

photogrammetric measurements with much lower cost while high accuracy is

maintained at the same time.
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Chapter 5 Practical Application and Validation
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5.1 Introduction

This Chapter discusses the practical application of the developed fast multi-webcam

tracking system. It is presented as a series of short chronological experiments, each

with its own discussion and summary. An overall chapter conclusion places the results

in the context of a solution for optical topographic pad tracking. The studies discussed in

this chapter, each with their own focus and inter-relationship with each other, are briefly

described as follows:

1. Coordination of head targets (Section 5.1)

The main focus in this study is to investigate how many cameras are necessary for

optical topographic pad tracking. In particular, a minimal two-camera setup is selected

to compute 3D target coordinates by intersection and compare their discrepancies

against a six-camera setup which represents the systems available at the

commencement of this research. A reference object which had been previously

coordinated with an established Nikon D100 photogrammetric network allowed an

accuracy check to be performed for the six-camera system.

2. Study with a polystyrene head and calipers (Section 5.2)

Image quality optimization and object coverage led to a four-camera setup being

selected to perform fast tracking of a targeted topographic pad on a polystyrene

phantom head. Discrepancies between the live tracked coordinates and those

computed with VMS intersection are presented. An accuracy assessment, independent

of photogrammetric comparison was performed by comparing the separation between

targets located on caliper jaws orientated in different directions within the measurement

volume.

3. Optical topographic study with a phantom head and volunteerss (Section 5.3)

This section describes an eight-camera setup and its practical use for a phantom study

and a study of two human subjects in collaboration with Department of Medical Physics

and Bioengineering of UCL. The phantom study compares the tracked coordinates from
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the system with those computed from post processed VMS intersection. Internal

phantom anatomy was co-registered with optodes utilising 10-20 bony landmarks as

common points. These co-registered anatomical positions estimated from

photogrammetric bundle adjustment were compared with those estimated from optical

image reconstruction. The human study looks into the differential movements between

the topographic pad and head by co-registration of targets over a time series of

continuously tracking images, where this technique allows optical topography clinicians

to validate optical imaging studies in nearly real time sense.
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5.2 Coordination of head targets

5.2.1 Introduction

Low cost webcams have a USB interface which imposes limitations on data transfer

speed and camera connectivity. Therefore it is desirable to minimise the load on the

USB bus and subsequently on the computer for processing where possible. A key

question prior to developing a fast optical topographic pad tracking system is “How

many cameras are necessary to give a maximum coverage of key targets and

accommodate occlusion whilst delivering 3D coordinates with an acceptable accuracy?”

In order to experimentally assess this question for optical topography tracking,

photogrammetric target intersections were computed in VMS (Geometric Software) to

explore the differences in 3D target coordination between a minimal two-camera stereo

setup and a more comprehensive six-camera setup which contains the maximal number

of available webcams at the commencement of this research. 3D target coordinate

discrepancies between both two and six-camera setups and a reference Nikon D100

network was used to assess performance.

5.2.2 Method

5.2.2.1 Experiment setup

This experiment was carried out in the formative stages of this project as practical

imaging geometries were being worked out prior to designing and building the camera

framework used for the clinical trials. Figure 5 - 1(a) shows the overall experimental

setup and Figure 5 - 1(b) shows the objects used in the experiment. Six webcams were

positioned in a crown shape around the testing object to provide the convergent

geometry. The distance between cameras and testing objects ranged between 300mm

and 500mm. The cameras used in the experiment were two Trust WB-5600R webcams

and four Logitech Quickcam Pro 4000 webcams representing the systems available at

the commencement of this research. Noting that both sensors have a 4× image
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interpolation (actual pixels on sensor: 692×504 for Logitech cameras (Table 4 - 1);

1280×1024 for Trust cameras according to manufacturer sheet), where the single shot

image resolution of Trust and Logitech cameras is 2560×2048 and 1280×960 (4m)

pixels respectively.

(a) (b)

Figure 5 - 1. (a) Experimental setup; (b) Objects used in the experiment.

5.2.2.2 Target intersection

The polystyrene head with a sensing pad on it is representative of the volume and

configuration of a typical adult subject (Figure 5 - 1(b)). Provided with geometrically

stable cameras and camera fixture, the unknown target positions on the head surface

and the pad can be intersected with the camera orientation parameters derived from a

self-calibrating bundle adjustment (Section 4.4.2), where the parameter uncertainties

were propagated into the least squares intersection. An alternative is to run the bundle

adjustment, i.e. having some coded targets and correcting for orientation changes

during tracking. However, this method was not implemented in this research because

the targets would add an extra dimension to the clinical work.

Figure 5 - 2. (a) Front view of the network configuration; (b) Back view of the configuration;

(c) Relative positions between intersected targets on the pad/head and six webcams.
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5.2.3 Results

The 3D positions of the targets were intersected first using all six cameras and then a

subset of two which were located in the middle of the camera crown and providing the

most complete target coverage on the sensing pad. These data allowed a comparison

of the intersected target coordinates on the sensing pad (most important in terms of

source localisation) between a six-webcam setup and a selected stereo pair of

webcams (Table 5 - 1). As a reference, the discrepancies between 3D target

coordinates located on a stable reference object introduced into the field of view and

imaged by the six webcam configurations (Set 2 of Table 4 - 9) were compared (Table 5

- 2). The 3D target coordinates of the reference object had been previously computed

using a photogrammetric network taken with a Nikon D100 camera with inter-target

distances provided by a pair of digital calipers (Table 4 - 2).
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Discrepancy (mm)

Target Id X Y Z 3D

Targets on head 603 -0.68 1.06 0.07 1.27

604 -0.14 0.06 -0.44 0.46

613 -0.01 0.36 -1.31 1.36

614 -0.06 0.55 -0.25 0.61

615 -0.23 1.06 0.14 1.09

616 2.11 2.36 4.34 5.37

Mean (absolute) 0.54 0.91 1.09 1.70

Standard Deviation 0.98 0.81 1.99 1.84

Targets on pad 501 -0.09 0.14 -0.18 0.25

503 -0.04 -0.03 -0.16 0.17

504 -0.07 0.89 -0.57 1.06

505 -0.93 0.95 -1.16 1.76

507 -0.20 0.58 -0.50 0.79

508 -0.17 0.41 -0.48 0.65

509 -0.30 0.08 -0.48 0.58

510 -0.07 0.30 -0.22 0.38

523 0.01 0.47 -0.39 0.61

531 -0.20 0.01 -0.37 0.42

532 -0.20 -0.04 -0.66 0.69

Mean (absolute) 0.21 0.35 0.47 0.67

Standard Deviation 0.26 0.35 0.28 0.44

Table 5 - 1. Target coordinate discrepancy between the six- and two-webcam intersection data.

Discrepancy in mm

X Y Z 3D

Mean (absolute) 0.08 0.07 0.08 0.15

Standard Deviation 0.11 0.10 0.09 0.07

Table 5 - 2. Target coordinate discrepancy between the reference object and the six-camera

network.
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5.2.4 Discussion

Regarding the global registration of target positions to the head, most 3D coordinate

discrepancies in target position between the six-camera and two-camera solutions are

within 1mm. A single large 5.4mm discrepancy (Target 616 in Figure 5 - 3) is included in

the mean and standard deviation figures. The cause of this discrepancy is due to partial

occlusion and low contrast as discussed below.

Figure 5 - 3. Images captured by a stereo pair of Logitech Quickcam Pro 4000 webcams.

The accuracy of 3D coordination is not only dependant on the imaging geometry in

relation to the spatial positions between optodes and occlusion, but also on target image

contrast. These factors are particularly important given unavoidable variations in lighting

and background image content under clinical conditions.

1. Target Image Contrast

The contrast between the target image and its background affects how effectively the

target boundary can be automatically identified and hence the image measurement

used to compute the centroid. The white dots attached to the grey polystyrene head do

not produce strong contrast with the result that target location is affected (Figure 5 - 4).

Figure 5 - 4. Examples of target images with low contrast.

(manual target centroid measurements were applied for all the above target images since none

are readily capable of being automatically measured by the centroiding algorithm from VMS)
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Target image quality accounts for the fact that targets on the head have a larger range of

coordinate discrepancies when compared with the targets on the pad (Table 5 - 1). High

contrast against the background is a critical factor for target positioning accuracy

[Darrell et al., 1994; Iwai et al., 1999; Hilton, 1999].

2. Partial occlusion

Partial occlusion of a target in an image will introduce a bias in the computed 3D target

coordinates if the image measurement is not rejected. As an example, target 616

(Figure 5 - 3, also highlighted in Table 5 - 1) where the right image only contains a small

portion of the target image. The incomplete target measured by the stereo pair of

cameras increases the difficulty and error in determining the 3D target position as there

is no effective redundancy in the measurements. However at least two images from the

six-camera geometry contain the complete shape of target 616 and therefore the

intersection on this target is possible. Existing software considers the circularity of the

target images, but this is not robust with web-cam images as partially occluded targets

can appear as smaller circles due to image blur and compression. Such target images

could be eliminated by checking predicted image dimensions as a function of range

from the camera given knowledge of the expected target location, but this is not

currently implemented in either VMS or the implementation of fast tracking developed

here. The large discrepancy in 3D coordination of target 616 between the two sets of

cameras is attributable to both contrast and occlusion. Another example of occlusion is

indicated by target 505 where partial occlusion occurred in the left image of Figure 5 - 3.

The problem of occlusion usually becomes more significant as more targets are

involved and therefore, where possible, more than two cameras are desirable for a

more complete coverage of targets at various 3D locations.

Considering if these data will be fit for purpose requires an understanding of the ability

to repeatable place markers on the human head in order to define the 10-20 coordinate

system. It was noted that for EEG, the accuracy of source localization critically depends

on the accurate and reliable placement of the electrodes onto the 10-20 coordinate

system (Section 2.2.3). Test-retest measurements following the repeated establishment

of physical locations for 10:20 points exhibit errors of up to 7mm, and inter-subject

variability of up to 7.7 mm have been reported even when electrodes were applied by an

experienced senior registered EEG technologist [Towle et al., 1993]. In addition, the
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amount of placement error was dependent on the electrode positions, with more lateral

electrodes displaying more uncertainty than electrodes placed on the midline. A major

part of this problem is that no anatomical landmark could be determined with less than 5

mm of uncertainty. Additional within- and across-subject error can also result from the

experience of the experimenter, and the length and type of a subject's hair. Regarding

the accuracy of source localization (position of optodes) and determination of

anatomical landmarks such as nasion and inion, a 1mm level of fitting should be

sufficient for the optical topography application of this research.

5.2.5 Summary

Laboratory experiments have demonstrated that whilst a stereo pair of low cost Logitech

QuickCam Pro 4000 webcams were able to intersect targets to within 1mm of that

possible with an image network of six similar webcams, partial target image occlusions

occurred more frequently and are therefore considered to be an issue for the stereo

case. This problem can be largely reduced by a convergent imaging geometry

containing more cameras directed towards the sensing pad location.
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5.3 Study with a polystyrene head and calipers

5.3.1 Introduction

Section 5.1determined that a stereo pair of cameras are not able to reliably coordinate

targets situated on both optical sensing pad and human head. However there is a trade

off since the more USB cameras that are connected into the same PC, the lower the

frame refresh rate of the tracking system. In order to check and enhance performance, a

study prior to the practical optical topography studies was conducted. The aim of this

test was to determine accuracy and speed in terms of rapid target positioning with a

four-camera setup. As such the test is divided into two, firstly a check against a model

head and optical sensing pad and secondly comparisons against 3D target positions

made with a pair of digital calipers. This investigation provides a reference for the

accessibility, portability and accuracy of such a four-camera tracking system.

5.3.2 Method

5.3.2.1 Experimental setup

Experiments have been carried out to find out the consistency and accuracy with which

a set of four Logitech C500 webcams can intersect 3D targets in locations

representative of an optical topography experiment. Table 5 - 3 details key parameters

for this study. Note that the Logitech C500 webcams and USB3.0 cards represent the

technology level available towards the end of this research project.
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Cameras used 4 Logitech C500 webcams

with PCI USB 3.0 slots

Interior/exterior orientation parameters 20/07/2010 (Section 4.4.3.2)

Wheel ring (for mounting webcams, Figure 4 - 25) diameter 600 mm

Vertical distance between ring and tested object (top head) ~370 mm

Distance between camera and tested object (top head) ~550 mm

Planar target diameter 4mm

Target detection tuning threshold 45

Frame refresh rate (FPS) 2

Table 5 - 3. Key parameters to set up a four-camera C500 tracking system.

The four webcams were positioned in a half circle shape above the testing object to

optimise the convergent geometry. The hardware image resolution provided by the

Logitech C500 cameras is 1280 by 1024 (4µm square pixels).

5.3.2.2 Phantom test

In this study 10 coloured targets on a small sized sensing pad, designed in 2008 by the

Biomedical Optics Research Laboratory at UCL, were attached to the back of the

polystyrene head. The experimental setup is identical to that given in Table 5 - 3. Figure

5 - 5 shows a screenshot of targets coordinated with the tracking system utilising the

target detection method with coloured tuning targets (Section 4.5.4.2).

Figure 5 - 5. Views (left) and targets detected on the sensing pad (right) in a four-camera

tracking system.
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To assess the accuracy of 3D coordination with the tracking system, tracked target

coordinates were compared with those intersected from VMS (Geometric Software),

where the same set of camera parameters (20/07/2010 from Section 4.4.3.2) were used

and the four images (one per webcam) were hardware images (Section 4.2.2.3)

extracted from video streams. Object positions were assumed to be fixed during this

study. Note that not all target images were readily capable of being automatically

measured by the centroiding algorithm from VMS and therefore manual target centroid

measurements were applied for some of the target images.

5.3.2.3 Caliper test

Besides the simulated study with the optical sensing pad, direct accuracy assessment

with a caliper was also conducted. The information for this study is shown in Table 5 - 3.

One coloured target was attached to each side of the caliper and the target detection

method used was the same as above (Section 4.5.4.2). Whilst the absolute distance

between the centres of the two attached targets was hard to measure to high accuracy,

changes in target separation, obtained by opening the caliper jaws were used instead to

access the target coordination capability of the four-camera tracking system. Change in

target separation was simply measured with the in-built electronic meter to a high

accuracy with a standard deviation of 20m according to the caliper manufacturer’s

calibration data. While the distance between the two sides was adjusted, slopes

between the two coordinated targets tracked were compared with the adjustment made.

Figure 5 - 6. Views (left) and targets detected on caliper (right) in a four-camera tracking system.
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5.3.3 Results

In both the phantom and caliper tests, all rays from all four cameras were used in the 3D

target coordinate intersection computation. Table 5 - 4 presents a summary of target

coordination comparison between the automated four-camera tracking system and

established intersection processing with VMS:

Table 5 - 4. Target coordinate discrepancies between the live tracking system and VMS

intersections. Left: A camera view of the 10 targets on optical sensing pad.

Table 5 - 5 gives a summary of relative separations between targets on the opening

caliper measured between the tracking system and the in-built electronic caliper:

Table 5 - 5. 3D discrepancies between the electronic meter and the live tracking system.

Left: A camera view of the opening caliper.
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5.3.4 Discussion

In this study, coloured tuning targets (Section 4.5.4.2) have enabled a consistent target

tracking across image frames (as previously illustrated in Figure 4 - 38). This method

has proven reliable even if the target image contrast is low, for example even in the

presence of bright reflections in close proximity to the target image (Figure 5 - 7). Under

such circumstances the white target detection process will fail whereas the colour

tuning-target detection method is still able to detect the colour component and filter out

the surrounding area in order to provide a more reliable target image detection. Note

however that as described in Section 4.5.6.2, this higher reliability of the colour

tuning-target detection method might come with the cost of slightly lower accuracy

compared with the normal target detection method.

Figure 5 - 7. Specular reflection on the metal caliper jaws (left) and a better viewing angle under

the same lighting conditions where the green targets can be clearly observed (right).

In cluttered environments with multiple views it is nearly unpreventable that view(s) from

one or more cameras will contain target images with a certain amount of light reflection.

A suitable method to tackle this problem is necessary for tracking consistency across

frames. In the clinical environment, the scene is usually composed of more than one

light source such as computer monitor (Figure 3 - 13). In such cases the colour

tuning-target detection method developed in this research can largely eliminate the

concern of different light sources and has proven particularly useful for target detection.



Chapter 5 – Practical Application and Validation

233

Furthermore, as mentioned in Section 5.1.4, the contrast between the target image and

its background directly influences the successful rate of target detection. Coloured

targets are easier to distinguish from their background with various types/colours when

compared with normal white targets, which will not be detected under the circumstance

as shown on the left image of Figure 5 - 6. The exception is provided by retro-reflective

targets, however these require appropriate axial lighting adding to system cost and

typically have a useful light return that is limited by acceptance angles of +/- 50 degrees

(Section 3.4.2).

In terms of target coordination accuracy, although the mean discrepancy is 0.18mm for

the caliper test with each target intersected by all four rays, there are maximum

variations in the computed discrepancies of 0.3mm across measurements where the

minimum discrepancy is 0.02mm and the maximum discrepancy is 0.32mm (Table 5 - 5).

Figure 5 - 8 compares the images associated with this difference from the same camera.

The green channel histograms of the selected targets shown below explain this

variation.

For the caliper test with the maximum discrepancy, a white box was placed under the

caliper in order to roughly match the relative distance between the targets and all

cameras (Table 5 - 3). The white surface gave rise to strong light reflection in close

proximity to the target (highlighted on the upper right image of Figure 5 - 8). Although

the targets could be detected under these circumstances, the number of pixels

containing green component inside the target is significantly less in the presence of a

bright surrounding surface (lower row of Figure 5 - 8). In this way, edges of the target

image recognised by the tuning method were different from the true/original edges.

Furthermore the squared centroid computed based on this edge information is

considered to be unreliable and therefore there is a discrepancy of 0.32 mm compared

with the caliper measurement. Although such a discrepancy is still within the level of

acceptance for the topographic reconstruction, for the best tracking accuracy,

over-exposure objects in the proximity of targets should be avoided. As shown in Figure

5 - 8, the light reflection from the metal table in such a range of distance (>500mm) is

considered to be acceptable, while the light reflection from the white box underneath

(<100mm) will result in less accurate target coordination.
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Figure 5 - 8. Upper: Views of Camera 3 with minimum (left) and maximum discrepancy (right)

during live tracking and their associated green channel histograms of selected targets.

Lower: Target image taken with Casio Exilim EX-Z500 (resolution: 2304×1728 pixels) in the

absence (left) and in the presence (right) of a bright surrounding surface and their associated

green channel histograms.
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For target coordination on the phantom, static images from the tracking system were

captured during the tracking process for intersection post-processing in VMS. This VMS

intersection provides a reference to assess the accuracy of the output 3D coordinates

from the live tracking system. Results have demonstrated 3D discrepancy better than

0.4mm. While this discrepancy does not represent the absolute accuracy assessment,

3D discrepancy better than 0.2mm between the VMS intersection and the standard

Nikon D100 photogrammetry survey (Table 5 - 2) is provided as a reference.

The larger 3D discrepancies for the phantom test (0.35mm) compared to the caliper

(0.18mm) are attributable to the target orientation with respect to the cameras. In the

phantom study, the circular targets had a diameter of 4mm and were attached to the

optical sensing pad, which was then bent to match the shape on the scalp (Figure 5 - 5),

whilst the two circular targets on the caliper were on the same 2D plane. Caliper targets

are pointing directly at the tracking cameras resulting in their imaging as nearly a full

circle. However, whilst targets on the curved sensing pad, especially those on an edge

or corner, could be recognised as targets by the coloured target detection method, they

may not be detected as a complete circle. In this case, the squared centroiding for

subpixel target location (discussed in Chapter 3) did not include all pixels in the target

but a portion of pixels inside the target resulting in a target centroid bias which accounts

for the higher discrepancy in the phantom study compared with the caliper study.

As shown in Figure 5 - 5, a four-camera tracking system where the cameras are placed

in a crown shape enabled full target coverage. For both the phantom and caliper test,

every target was seen and detected by at least two images from the four-camera

geometry and therefore the four-camera fast tracking system was able to provide a

reliable target intersection solution. Another point to note is that all the four Logitech

C500 webcams were connected to four PCI express slots for this study (the maximum

number of PCI express slots the desktop used in this research can accept) and

therefore the four-camera tracking system delivered 3D target coordination at a rate of 2

frames per second, i.e. a full image processing (Section 3.4.4 and 3.5) leading to 3D

target coordinates being output completed every half a second. Taking both processing

speed and occlusions into account, a four-camera tracking system is a good choice to

deliver 3D target coordinates without too much time delay. However, as shown in Figure
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5 - 5, only the back of the scalp in the phantom study can be covered by the

four-camera geometry. Therefore if targets are distributed over a 3D object such as a full

human scalp, four cameras are still not enough to fully cover all targets. In that case

more cameras located in a full circle are considered to be appropriate for overcoming

(not eliminate) the occlusion problem by enabling target intersections from at least more

than two cameras.

5.3.5 Summary

The experiments discussed in this section are considered as the pre-study for target

coordination in the clinic like environment. Both the phantom and caliper studies

demonstrate that a tracking system with coloured target detection built from four

off-the-shelf low cost Logitech C500 webcams is able to overcome difficult target

illumination conditions particularly close to image saturation, to a certain extent and

meanwhile deliver 3D coordination accuracies better than 0.4mm discrepancy, with

VMS intersection results and caliper measurements as the reference. The coordination

inaccuracy is mainly caused by a strong light reflection onto targets and the flatness of

surface where targets are attached. Therefore it is suggested that where possible,

highly light-reflective objects should be kept far away from targets being tracked and

more cameras should be used to enable detection of a target from more directions.

However, whilst the increase of equipment cost will be marginal, a lower refresh rate of

the tracking system will result.
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5.4 Optical topography studies

5.4.1 Introduction

Section 5.2 demonstrated that a setup of four cameras is not able to fully cover targets

distributed over a human scalp. Therefore in the optical topography studies the tracking

system was extended to include eight Logitech C500 webcams. This section discusses

the target coordination of such a system for both the phantom and volunteer studies.

The problems encountered for the optical topography applications together with the

suggested solutions will also be delivered.

5.4.2 Method

The main focus of the phantom study was to investigate target coordination accuracy of

the eight-camera tracking system assuming the phantom was fixed in position

throughout the tracking process. The main focus of the volunteer studies were to detect

any differential movements between the optical sensing pad and head by registering the

continuously changing positions of pad and head during the study to their starting

positions. Both the phantom and human studies were based on the camera calibration

made three weeks prior to the optical topography study (Section 4.4.3), in order to

provide a reference of time needed for recalibration of an on-going 3D measurement

system (Section 3.3). The secondary focus of the optical topography study is to

investigate the robustness in terms of target tracking of the developed method in the

clinic like environment under no specific light control, where the light source was mainly

from room light and sunlight through windows.
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5.4.2.1 Experiment setup

Parameters of tracking system for optical topography studies are shown in Table 5 - 6.

Cameras used 4 Logitech C500 webcams

with(PCI express) USB 3.0 ports +

4 Logitech C500 webcams with

USB 2.0 ports

Interior/exterior orientation parameters Obtained from camera calibration

in Chapter 4

Wheel ring diameter 600mm

Vertical distance between ring and

tested object (top head)

~370mm

Distance between camera and tested

object (top head)

~550mm

Planar target diameter 4mm

Spherical ball bearing diameter 4.76mm

Frame refresh rate (FPS) 0.5 (potential to be higher)

Coloured target-tuning threshold 35

Light control No

Light source Room light + sun light

Human interaction during tracking No

Table 5 - 6. Parameters of the eight-camera tracking system for optical topography studies.

The eight webcams were positioned in a full circle shape above the testing object for

better target coverage in 3D space. The hardware image resolution provided by the

Logitech C500 cameras is 1280 by 1024 (4µm square pixels). Software adjustments

were made to these webcams (Cam 1, 2, 3, 8) through camera drivers to enhance the
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target contrast while default settings were applied for those (Cam 4, 5, 6, 7) connected

to USB 3.0 ports (Section 4.5.5.3).

Since the cameras had been pre-calibrated, the tracking process started immediately

after the targets were attached to appropriate positions on the tested objects. The

slowest part of the setup process was the ten minutes required to attach targets onto the

subject at corresponding 10-20 positions (Section 2.2.3) after measuring the

circumference of the head. Targets were also attached on top of optodes to provide

features for optical sensing pad for tracking. Since the optical topography studies

carried out in this research were mainly for verification of the tracking system, many

more targets than required were used for 3D coordination accuracy assessment for the

tracking system. As a result the setup for future optical topography studies should be

much quicker.

The live views from all cameras were monitored during each functional study through a

single PC monitor on a frame-by-frame basis. Every result including the 2D image

coordinates of detected targets for each camera was displayed on the monitor. Output

2D correspondence matching data was also displayed on the monitor as a check to

make sure the tracking system was acquiring the right data to compute the target 3D

coordinates. These overlays have resulted in a lower refresh rate of the 3D coordination

from the tracking system. A comparison of the tracking system used for this optical

topography study with the one where unnecessary components were removed is

provided in Figure 5 - 77 to give an idea how much acceleration the tracking system can

have without a large amount of data printed out on screen.

Static images from the tracking system were captured during the tracking process for

intersection post-processing in VMS in order to provide a reference to assess the

accuracy of the output target 3D coordinates. However, one criterion for this accuracy

assessment is that the images captured for VMS intersection processing were the same

as the images used for target 3D coordinate computation by the tracking system, i.e. the

targets need to be in the same 3D positions. Studies with the phantom provided an

improved and more independent assessment of the 3D coordination accuracy of the

developed system as compared with those with volunteers, in which there existed a
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continuous head movement. Under these circumstances, the focus of volunteer studies

was the investigation of differential movement between scalp and optical sensing pad

during the study.

5.4.2.1.1 Phantom

A solid phantom (Figure 5 - 10) which is able to reliably provide optical change

simulating brain activation (developed and built by Biomedical Optics Research

Laboratory of UCL) was used in this study [Hebden et al., 2008]. The simulation of the

optical absorption changes from brain activities is made of thermochromic pigments

containing both colorant and organic acid within a low melting point solvent. These

materials are then mixed with the polyester resin within a plastic cylindrical tube (Figure

5 - 9). Since the thermochromic pigments undergo an optical change when its nominal

activation temperature is reached, a heating power of about 1.2W is provided with a

small 11Ω resister while the temperature can be simutaneously monitored by measuring 

the resistance of an embedded pre-calibrated 4.7kΩ bead thermistor (Figure 5 - 9).

When the activation temperature is reached, the switch of the resister is opened a few

seconds to prevent the damage which might be caused because of overheating. Each

target containing such pigments was a cylinder with 8mm diameter and 8mm height

which was designed to produce a signal of the minimum spatial dimensions that the OT

system can detect [Hebden et al., 2008].

Figure 5 - 9. Materials used to generate optical change within a solid phantom.

(reproduced from Hebden et al. (2008))
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Tests have shown that the transmittance decreases, i.e. undertaking optical absorption,

at near-infrared wavelengths when the activation temperature of the thermochromic

pigments is reached. However, it should be noted that the temperature distribution is

unlikely to be even across the entire tube containing these pigments. Such distribution

can also be different between heating and cooling under the same temperature [Hebden

et al., 2008].

The experimental setup used for the phantom study is shown in Figure 5 - 10. The

monitor above the optical topography signal generator (Figure 5 - 10) was used to

monitor the wavelength of each channel during the study. The monitor on the left was

used to monitor the live tracking process. The phantom head was adjusted to match the

height parameter from Table 5 - 6. A total of fifty two green coloured targets were used to

deliver features of the head surface and the optical sensing pad.

Figure 5 - 10. Tracking system setup for the functional study of phantom.

Three studies of regions representing the temporal left, temporal right and visual cortex

were performed individually, where each of these areas is shown in Figure 5 –11. One

target was attached on top of each optode for better characterisation of the sensing pad.

There were eleven sensors on the sensing pad for both temporal left and right studies

and thirteen sensors for the visual cortex study. Bony landmarks corresponding to

human subjects were marked with spherical metal ball bearings (Figure 5 –11) in order

to provide omni-directional targets.

Since the area of interest for each individual study is the most important part for 3D
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coordination, these areas were oriented towards the four cameras connected to USB

3.0 ports (Figure 5 –11). Please note that the C500 webcams were not USB 3.0 systems

but that the USB 3.0 bus allowed the cameras to perform much more reliably (Figure 4 –

20 and Figure 4 - 22) given the six independent USB chipsets connected to the desktop

computer (Figure 4 – 23). Other targets were tracked by the other four cameras which

were more sparsely distributed and connected through USB 2.0 ports.

The design of the tracking system can be referred back to Section 4.5.2. However,

please note that important targets oriented towards Cam 4, 5, 6 and 7 (connected to

USB 3.0 ports) were oriented directly towards the windows of the room. These targets

were therefore subject to larger lighting variations due to sunlight changes compared to

those oriented towards Cam 1, 2, 3 and 8 which were illuminated by the room lights.

The visual cortex study was performed between 2-2:15pm while a temporal left study

and temporal right study were performed between 4:40-4:55pm and 5:15-5:30pm,

respectively. One set of eight static images were captured by the tracking system at the

beginning of each study (2:04pm for visual cortex; 4:42pm for temporal left and 5:17pm

for temporal right) for comparative intersection post-processing in VMS. The ambient

lighting varied significantly among three studies as well as within each study due to

unstable summer weather (02/08/2010) where strong sunlight appeared and

disappeared through the window from time to time. Variation of lighting conditions

across studies is shown in Figure 5 –11.

Figure 5 –11. Areas of interest for three functional phantom studies.
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5.4.2.1.2 Human Subjects

The targets on both the optical sensing pad and the scalp of human subject one are

shown in Figure 5 - 12. The areas of interest for this study were the temporal regions

located on the upper left and right area on the head. As before, one target was attached

on top of each optode (Figure 5 –11) for better characterisation of the sensing pad. Each

sensing pad contains eleven such targeted sensors. As shown in Figure 5 - 12, bony

landmarks were marked with spherical metal ball bearings painted in green to provide

omni-directional targets and minimise view blockage by human hair.

Figure 5 - 12. Planar and spherical targets used for human subject one.

Figure 5 - 13 is a screenshot from the tracking system during the functional studies of

both subjects. As mentioned in Section 4.5.5.3, appropriate adjustments had been

made for cameras 1, 2, 3 and 8 connected to USB 2.0 ports prior to the study through

camera driver, while no changes had been made for cameras 4 to 7 connected to USB

3.0 ports. Study of subject one was performed around 11:55am-12:15pm on 04/08/2010

and study of subject two was performed around 3:17-3:37pm on 05/08/2010.



Chapter 5 – Practical Application and Validation

244

Figure 5 - 13. Screenshots of views by all eight C500 webcams during the tracking process.

(Upper left: Cam 1; Lower right: Cam 8).

5.4.3 Results

5.4.3.1 Phantom

3D target coordinates for a particular set of frames were regularly output as text files

during the tracking process. The only requirement for the operator to perform such task

was to press a particular button on the keyboard. Since it was assumed that there was

no movement for the phantom study, one set of eight static images with 1280×1024

resolution setting were captured by the system at the beginning of the study. These

images were later loaded into VMS software for target intersection processing in order

to provide comparative 3D target locations with independent software. All quoted 3D

coordinate discrepancies for the phantom studies (temporal left, temporal right and

visual area) are between VMS and the tracking solution using the same sets of camera

orientation parameters (Table 5 - 6) and target intersection algorithm (Section 3.5.2).
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The only difference between these data sets is the image measurements. It should be

note that the VMS processing was only based on the eight static images (from eight

webcams) extracted from video at the beginning of each study. On the other hand,

every set of image measurements of the tracking solution was based on the eight

images (from eight webcams) captured at a particular time. The target positions were

assumed to be static during the entire tracking process. However the lighting varied

continuously such that the lighting condition for image measurements was different from

frame to frame. The following 3D coordinate discrepancies compare the fast (fully

automatic) image measurement against the off-line (both automatic and manual) image

measurement.

5.4.3.1.1 Temporal left

The two different software solutions labeled targets with different ID numbers. In order to

be able to compare which targets were measured during the rapid tracking process,

target image measurements by each camera from a random frame set were selected

and mapped onto the associated images captured at the beginning of the study for VMS

processing (Figure 5 - 14 to Figure 5 - 21). It should be noted that while the target

positions are assumed to be fixed between the following images and the selected

frames, the lighting might vary significantly between these two sets of images.

Figure 5 - 14. Target image measurements by camera one based on a random frame during the

live tracking process of temporal left study.
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Figure 5 - 15. Target image measurements by camera two based on a random frame during the

live tracking process of temporal left study.

Figure 5 - 16. Target image measurements by camera three based on a random frame during

the live tracking process of temporal left study.
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Figure 5 - 17. Target image measurements by camera four based on a random frame during the

live tracking process of temporal left study.

Figure 5 - 18. Target image measurements by camera five based on a random frame during the

live tracking process of temporal left study.
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Figure 5 - 19. Target image measurements by camera six based on a random frame during the

live tracking process of temporal left study.

Figure 5 - 20. Target image measurements by camera seven based on a random frame during

the live tracking process of temporal left study.
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Figure 5 - 21. Target image measurements by camera eight based on a random frame during

the live tracking process of temporal left study.

Five image sets were randomly selected out of a total of seventeen captured from the

live tracking process. Table 5 - 7 summarizes the 3D coordinate discrepancies of all

targets computed between data captured with the live system and single sets of

snapshot images processed in VMS. The discrepancies are attributable to both target

image detection and variations in illumination since the images used in VMS were

collected only at the beginning of the study:

Frame no. 1 4 9 13 17

Total no. of targets 52 52 52 52 52

No. of targets coordinated by tracking system 30 31 29 31 28

Absolute mean discrepancies

of coordinated targets (mm) between VMS

processing and tracking solution

X: 0.20

Y: 0.31

Z: 0.48

X: 0.31

Y: 0.43

Z: 0.58

X: 0.31

Y: 0.39

Z: 0.53

X: 0.27

Y: 0.41

Z: 0.56

X: 0.29

Y: 0.40

Z: 0.49

Mean 3D discrepancies (mm) 0.60 0.78 0.73 0.74 0.70

Table 5 - 7. Target 3D coordinate discrepancies of all targets between the live tracking system

and fixed individual images with VMS intersection.

Table 5 - 8 compares number of target image measurements from each individual

camera between VMS processing and those successfully used for correspondence
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captured from the running tracking system.

Table 5 - 8. Target image measurements for temporal left study.

Left: fixed individual images processed with VMS;

Right: those successfully used for correspondence from the live tracking system.

Due to the poor and unreliable image qualities from those cameras connected to USB

2.0 ports, target rejection, controlled by the colour tuning threshold, was lowered from

45 to 35 (Table 5 - 6, together with software enhancement at the time of optical

topography tests) to allow target image measurements from all eight cameras rather

than just the four connected to USB 3.0 ports (Section 4.5.5.3). A number of image

measurements not used in the correspondence from the running tracking system are

categorised in Table 5 - 9.

Table 5 - 9. Target image measurements not used in the correspondence from the live tracking

frames. A: Correspondence failure; B: Insufficient measurements; C: Not a target.

For the temporal left study, the targets on the sensing pad covering this area are

considered to be the most important in terms of image registration and thereafter

functional localisation. As previously described, the pad above the temporal left area
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was oriented towards those cameras connected to the USB 3.0 ports for reliable image

quality in terms of target detection. Table 5 - 10 summarizes the 3D coordinate

discrepancies of these targets computed between data captured with the live system

and single sets of snapshot images processed in VMS:

Frame no. 1 4 9 13 17

Total no. of targets on pad 11 11 11 11 11

No. of targets coordinated by tracking system 11 10 9 10 10

Absolute mean discrepancies

of coordinated targets (mm) between VMS

processing and tracking solution

X: 0.16

Y: 0.30

Z: 0.35

X: 0.18

Y: 0.44

Z: 0.45

X: 0.23

Y: 0.42

Z: 0.39

X: 0.14

Y: 0.43

Z: 0.40

X: 0.22

Y: 0.43

Z: 0.30

Mean 3D discrepancies (mm) 0.48 0.65 0.62 0.60 0.57

Table 5 - 10. 3D coordinate discrepancies of targets on sensing pad above temporal left area

between the live tracking system and fixed individual images with VMS intersection.

Image enhancement through driver was applied for the four webcams connected to

USB 2.0 ports in order to compensate their less reliable image qualities (section 4.5.5.3).

The 3D mean discrepancies for the targets on the sensing pad above the temporal left

area are compared with the 3D mean discrepancies for all targets (Figure 5 - 22).

Figure 5 - 22. Coordination discrepancies between all targets and targets on temporal left pad

from the live tracking system.

In terms of target tracking consistency across frames, Figure 5 - 23 compares the

tracking results between more reliable image qualities (delivered from Cam 4, 5, 6, 7

connected to USB 3.0 ports) and those less reliable ones (delivered by Cam 1, 2, 3, 8

connected to USB 2.0 ports).
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Figure 5 - 23. Target tracking consistency for temporal left study.

Left: Targets on phantom; Right: Relative positions of targets and cameras for tracking solution.

(Blue dots: Targets consistently coordinated by the tracking system; Green dots: Targets

sometimes disappeared from the coordination; Pink dots: Targets consistently not coordinated by

the tracking system)

For those consistently coordinated targets from the tracking solution (blue dots in Figure

5 - 23), Figure 5 - 24 further compares the number of camera rays used to intersect

these targets between VMS processing and the selected frames from tracking solution.

Figure 5 - 24. Comparison of number of camera rays used to intersect those consistently tracked

targets between fixed individual images with VMS intersection and the live tracking frames.

Since most of the targets coordinated by the tracking system were intersected by either
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three or four camera rays, it is worth checking if there are any systematic errors in 3D

target coordination by looking into the discrepancies caused by each combination of

rays. Figure 5 - 25 shows a typical result of 3D target location discrepancies between

the tracking system intersected by three camera rays and VMS intersection while Figure

5 - 26 shows those intersected by four camera rays. In these tests the mean 3D

discrepancy for three rays was 0.90mm whilst that for four rays was 0.57mm

representing a less extreme example of the 3D discrepancy between using two and six

cameras described in Section 5.1.

Figure 5 - 25. Target 3D location discrepancies between tracking system (intersected by three

camera rays of the 9
th

frame) and VMS intersection for temporal left study.

(Mean discrepancies: X: 0.36mm; Y: 0.43mm; Z: 0.71mm; discrepancy vectors × 50 for

visualisation)

Figure 5 - 26. Target 3D location discrepancies between tracking system (intersected by four

camera rays of the 9
th

frame) and VMS intersection for temporal left study.

(Mean discrepancies: X: 0.25mm; Y: 0.36mm; Z: 0.36mm; discrepancy vectors × 50 for

visualisation)
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5.4.3.1.2 Temporal right

As before, target image measurements from a random frame set captured by each

camera during the sequential tracking process were selected. These data were mapped

onto the associated images captured at the beginning of the study and used for VMS

processing (Figure 5 - 27 to Figure 5 - 34).

Figure 5 - 27. Target image measurements by camera one based on a random frame during the

live tracking process of temporal right study.

Figure 5 - 28. Target image measurements by camera two based on a random frame during the

live tracking process of temporal right study.
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Figure 5 - 29. Target image measurements by camera three based on a random frame during

the live tracking process of temporal right study.

Figure 5 - 30. Target image measurements by camera four based on a random frame during the

live tracking process of temporal right study.
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Figure 5 - 31. Target image measurements by camera five based on a random frame during the

live tracking process of temporal right study.

Figure 5 - 32. Target image measurements by camera six based on a random frame during the

live tracking process of temporal right study.
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Figure 5 - 33. Target image measurements by camera seven based on a random frame during

the live tracking process of temporal right study.

Figure 5 - 34. Target image measurements by camera eight based on a random frame during

the live tracking process of temporal right study.
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As for the temporal right study, five sets of frames were randomly selected out of a total

of twelve frames captured from the live tracking process. Table 5 - 11 summarizes the

3D coordinate discrepancies of all targets computed between data captured with the live

system and single sets of snapshot images processed in VMS. Note that the

discrepancies are attributable to both target image detection and variations in

illumination since the images used in VMS were collected only at the beginning of the

study:

Frame no. 1 3 6 9 12

Total no. of targets 52 52 52 52 52

No. of targets coordinated by tracking system 29 29 25 32 28

Absolute mean discrepancies

of coordinated targets (mm) between VMS

processing and tracking solution

X: 0.29

Y: 0.36

Z: 0.79

X: 0.29

Y: 0.32

Z: 0.69

X: 0.23

Y: 0.33

Z: 0.51

X: 0.25

Y: 0.32

Z: 0.56

X: 0.26

Y: 0.30

Z: 0.60

Mean 3D discrepancies (mm) 0.91 0.81 0.65 0.69 0.72

Table 5 - 11. Target 3D coordinate discrepancies of all targets between the live tracking system

and fixed individual images with VMS intersection.

To account for the target coordinate discrepancy between VMS processing and the

tracking solution, Table 5 - 12 compares number of target image measurements from

each individual camera between VMS processing and those successfully used for

correspondence captured from the running tracking system.

Table 5 - 12. Target image measurements for temporal right study.

Left: fixed individual images processed with VMS;

Right: those successfully used for correspondence from the live tracking system.
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Table 5 - 13 categorises image measurements not used in the correspondence from the

running tracking system.

Table 5 - 13. Target image measurements not used in the correspondence from the live tracking

frames. A: Correspondence failure; B: Insufficient measurements; C: Not a target.

As previously described, the pad above the temporal right area was oriented towards

those cameras connected to the USB 3.0 ports. Table 5 - 14 summarizes the 3D

coordinate discrepancies of these targets computed between data captured with the live

system and single sets of snapshot images processed in VMS:

Frame no. 1 3 6 9 12

Total no. of targets on pad 11 11 11 11 11

No. of targets coordinated by tracking system 9 9 10 9 11

Absolute mean discrepancies

of coordinated targets (mm) between VMS

processing and tracking solution

X: 0.24

Y: 0.46

Z: 0.63

X: 0.15

Y: 0.26

Z: 0.54

X: 0.19

Y: 0.18

Z: 0.40

X: 0.16

Y: 0.16

Z: 0.47

X: 0.13

Y: 0.16

Z: 0.42

Mean 3D discrepancies (mm) 0.82 0.61 0.48 0.52 0.47

Table 5 - 14. 3D coordinate discrepancies of targets on sensing pad above temporal right area

between the live tracking system and fixed individual images with VMS intersection.
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The discrepancies for those targets on the sensing pad above the temporal right area

are compared with which for all targets, as shown in Figure 5 - 35.

Figure 5 - 35. Coordination discrepancies of all targets and targets on temporal right pad from

the live tracking system.

In terms of target tracking consistency across frames, Figure 5 - 36 compares the

tracking results from the more reliable image quality delivered from Cam 4, 5, 6, 7

connected to USB 3.0 ports, and those less reliable ones delivered by Cam 1, 2, 3, 8

connected to USB 2.0 ports.

Figure 5 - 36. Target tracking consistency for temporal right study.

Left: Targets on phantom; Right: Relative positions of targets and cameras for tracking solution.

(Blue dots: Targets consistently coordinated by the tracking system; Green dots: Targets

sometimes disappeared from the coordination; Pink dots: Targets consistently not coordinated by

the tracking system)
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For targets consistently coordinated with the tracking solution (blue dots in Figure 5 - 36),

Figure 5 - 37 further compares the number of camera rays used to intersect these

targets between VMS processing and the selected frames from tracking solution.

Figure 5 - 37. Comparison of number of camera rays used to intersect those consistently tracked

targets between fixed individual images with VMS intersection and the live tracking frames.

Figure 5 - 38 shows a typical set of 3D target location discrepancies between the

tracking system intersected by three camera rays and VMS intersection. Figure 5 - 39

shows a similar set of data, but for those intersected by four camera rays. In these tests

the mean 3D discrepancy for three rays was 0.68mm whilst that for four rays was

0.50mm representing a less extreme example of the 3D discrepancy between using two

and six cameras described in Section 5.1.
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Figure 5 - 38. Target 3D location discrepancies between tracking system (intersected by three

camera rays of the 6
th

frame) and VMS intersection for temporal right study

(Mean discrepancies: X: 0.18mm; Y: 0.35mm; Z: 0.55mm; discrepancy vectors × 50 for

visualisation).

Figure 5 - 39. Target 3D location discrepancies between tracking system (intersected by four

camera rays of the 6
th

frame) and VMS intersection for temporal right study

(Mean discrepancies: X: 0.20mm; Y: 0.20mm; Z: 0.41mm; discrepancy vectors × 50 for

visualisation).

5.4.3.1.3 Visual cortex

As before, target image measurements by each camera from a random frame set during

the entire tracking process were selected and mapped onto the associated images

captured at the beginning of the study and used for VMS processing (Figure 5 - 40 to

Figure 5 - 47).
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Figure 5 - 40. Target image measurements by camera one based on a random frame during the

live tracking process of visual cortex study.

Figure 5 - 41. Target image measurements by camera two based on a random frame during the

live tracking process of visual cortex study.
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Figure 5 - 42. Target image measurements by camera three based on a random frame during

the live tracking process of visual cortex study.

Figure 5 - 43. Target image measurements by camera four based on a random frame during the

live tracking process of visual cortex study.
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Figure 5 - 44. Target image measurements by camera five based on a random frame during the

live tracking process of visual cortex study.

Figure 5 - 45. Target image measurements by camera six based on a random frame during the

live tracking process of visual cortex study.



Chapter 5 – Practical Application and Validation

266

Figure 5 - 46. Target image measurements by camera seven based on a random frame during

the live tracking process of visual cortex study.

Figure 5 - 47. Target image measurements by camera eight based on a random frame during

the live tracking process of visual cortex study.
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Five frames were also randomly selected out of the total of eight frames captured from

the live tracking process. Table 5 - 15 summarizes the 3D coordinate discrepancies of

all targets computed between data captured with the live system and single sets of

snapshot images processed in VMS:

Frame no. 1 3 4 7 8

Total no. of targets 39 39 39 39 39

No. of targets coordinated by tracking system 24 18 22 19 24

Absolute mean discrepancies

of coordinated targets (mm) between VMS

processing and tracking solution

X: 0.19

Y: 0.29

Z: 0.50

X: 0.19

Y: 0.35

Z: 0.37

X: 0.15

Y: 0.22

Z: 0.54

X: 0.19

Y: 0.27

Z: 0.46

X: 0.19

Y: 0.31

Z: 0.52

Mean 3D discrepancies (mm) 0.61 0.54 0.60 0.57 0.63

Table 5 - 15. Target 3D coordinate discrepancies of all targets between the live tracking system

and fixed individual images with VMS intersection.

To account for the target coordinate discrepancy between VMS processing and the

tracking solution, Table 5 - 16 compares number of target image measurements from

each individual camera between VMS processing and those successfully used for

correspondence captured from the running tracking system.

Table 5 - 16. Target image measurements for visual cortex study.

Left: fixed individual images processed with VMS;

Right: those successfully used for correspondence from the live tracking system.
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Table 5 - 17 categorises image measurements not used in the correspondence from the

running tracking system.

Table 5 - 17. Target image measurements not used in the correspondence from the live tracking

frames. A: Correspondence failure; B: Insufficient measurements; C: Not a target.

For this test, the pad above the visual area was oriented towards those cameras

connected to the USB 3.0 ports. Table 5 - 18 summarizes the 3D coordinate

discrepancies of these targets computed between data captured with the live system

and single sets of snapshot images processed in VMS:

Frame no. 1 3 4 7 8

Total no. of targets on pad 13 13 13 13 13

No. of targets coordinated by tracking system 13 8 10 10 12

Absolute mean discrepancies

of coordinated targets (mm) between VMS

processing and tracking solution

X: 0.16

Y: 0.27

Z: 0.45

X: 0.17

Y: 0.29

Z: 0.39

X: 0.08

Y: 0.11

Z: 0.51

X: 0.16

Y: 0.23

Z: 0.47

X: 0.14

Y: 0.17

Z: 0.31

Mean 3D discrepancies (mm) 0.55 0.52 0.53 0.54 0.38

Table 5 - 18. 3D coordinate discrepancies of targets on sensing pad above visual cortex area

between the live tracking system and fixed individual images with VMS intersection.
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The discrepancies for those targets on the sensing pad above the visual cortex area are

compared with which for all targets, as shown in Figure 5 - 48.

Figure 5 - 48. Coordination discrepancies of all targets and targets on visual cortex pad from the

live tracking system.

In terms of target tracking consistency across frames, Figure 5 - 49 compares the

tracking results between more reliable image qualities delivered from Cam 4, 5, 6, 7

connected to USB 3.0 ports and those less reliable ones delivered by Cam 1, 2, 3, 8

connected to USB 2.0 ports.

Figure 5 - 49. Target tracking consistency for visual cortex study.

Left: Targets on phantom; Right: Relative positions of targets and cameras for tracking solution.

(Blue dots: Targets consistently coordinated by the tracking system; Green dots: Targets

sometimes disappeared from the coordination; Pink dots: Targets consistently not coordinated by

the tracking system)
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For targets consistently coordinated with the tracking solution (blue dots in Figure 5 - 49),

Figure 5 - 50 further compares the number of camera rays used to intersect these

targets between VMS processing and the selected frames from tracking solution.

Figure 5 - 50. Comparison of number of camera rays used to intersect those consistently tracked

targets between fixed individual images with VMS intersection and the live tracking frames.

Figure 5 - 51 shows a typical set of 3D target coordinate discrepancies between the

tracking system intersected by three camera rays and VMS intersection while Figure 5 -

52 shows those intersected by four camera rays. In these tests the mean 3D

discrepancy for three rays was 0.77mm whilst that for four rays was 0.40mm

representing a less extreme example of the 3D discrepancy between using two and six

cameras described in Section 5.1.
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Figure 5 - 51. Target 3D location discrepancies between tracking system (intersected by three

camera rays of the 5
th

frame) and VMS intersection for visual cortex study

(Mean discrepancies: X: 0.22mm; Y: 0.45mm; Z: 0.58mm; discrepancy vectors × 50 for

visualisation).

Figure 5 - 52. Target 3D location discrepancies between tracking system (intersected by four

camera rays of the 5
th

frame) and VMS intersection for visual cortex study

(Mean discrepancies: X: 0.14mm; Y: 0.25mm; Z: 0.29mm; discrepancy vectors × 50 for

visualisation).
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5.4.3.1.4 Image reconstruction

Gibson et al. (2005) presents detailed methodology of image reconstruction for optical

topography. The diffusion of light across the head was modelled by Arridge et al. (2000)

using a finite element method, which requires a head surface mesh which matches the

optodes’ positions and meanwhile align with the pad contours.

Figure 5 - 53. Scanned data (left) and head mesh generated for image reconstruction (right).

Left: 669379 surface cloud points; Right: 64952 volume cloud points.

Conventionally optodes’ positions were first measured by manually pointing a 3D

digitizing arm (Microscribe 3D, Immersion Co., USA) to each optode in contact with the

scalp. A few more positions of the optical sensing pad were then taken with the same

device to generate the pad contours. This follows by warping a generic head surface

mesh using NETGEN (an automatic 3D mesh generator) to align the mesh with the

measured positions to generate a individual finite element mesh [Gibson et al., 2003].

However, such positioning method is subject to manual measurement errors. Therefore

in this phantom study, the phantom head was scanned with an Arius3D foundation

system 3D scanner and the head mesh was then generated directly from the scanned

point cloud (Figure 5 - 53) by Department of Medical Physics and Bioengineering of UCL.

Since the light field was very even, the mesh density did not need to be high and

therefore the cloud points were reduced from the original scanned data for

reconstruction purpose (Figure 5 - 53). This low mesh density requirement is also in

agreement with the relatively low spatial resolution of the optical imaging (Section

2.1.3.3). Rather than aligning the mesh to match the optode's position, a project method

based on triangle normal in close proximity to the surface mesh (search for a surface

normal coincided with the 3D optode point) was used to shift the optode's positions

derived from the fast tracking system onto the surface of the head mesh (Figure 5 - 54).
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The finite element generation and the optode reprojection process were carried out as

part of the optical topography reconstruction by the Department of Medical Physics.

Figure 5 - 54. Alignment of the optodes’ positions with the head mesh.

A three dimensional (3D) image representing the absorption change below the optical

sensing pad has been reconstructed for each study (Figure 5 - 55), with a limited spatial

resolution (Section 2.1.3.3). Details regarding the image reconstruction procedures were

described in [Hebden et al., 2008].

Figure 5 - 55. Image reconstruction of temporal left (1
st

row), right (2
nd

row) and visual (3
rd

row).
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5.4.3.1.5 Co-registration between optodes and anatomy

Three X-ray images of the phantom were taken in order to coordinate the active

locations within the phantom in co-registration with the surface mesh. Common to the

two data sets are five ball bearings representing five bony landmarks on the head which

were fixed in position on the surface of the phantom before X-ray and laser scanning.

Since the five ball bearings could be identified in both the 3D scanning through sphere

fitting and the X-ray images of the phantom by centroiding, they could be used as

common points for co-registration of the three heating locations (temporal left, temporal

right and visual) inside the phantom.

Figure 5 - 56. Scale factors computed for three X-ray images.
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Since no information about the X-ray system (e.g. principal distance and aperture) were

known at the time when this experiment was conducted, a physically based

photogrammetric model could not be established to derive parameters for the X-ray

camera(s). Under these circumstances a first trial would be to assume that the X-ray

approximated a parallel projection. One way to test this is to compute scale factors of

various distances for the X-ray images (Figure 5 - 56) and to compare them with the

known separations between spheres from the laser scanned data. The scale factor is

defined as:

(pixel/mm) 5 - 1

Figure 5 - 56 suggests that scale factor varies across landmarks for each X-ray image. If

parallel projection was used for x-ray images, the worst case uncertainty in 3D

coordination can be considered to be represented by the longest inter-sphere

separation (1003 to 1004). In this case the variation in scale factor yields a maximum

discrepancy of 176.5mm compared to the 3D separation measured from the 3D

scanned data of the phantom, which is much larger than the 1mm tolerance (Section

2.2.3).

Scale factor (pixel/mm) 3D discrepancy(mm)

Average (8.001) 42.7

Minimum (5.256) 170.4

Maximum (9.994) -6.1

Maximum discrepancy 176.5

Table 5 - 19. Largest 3D discrepancy resulted from variation of scale factors.

Distance of 1003-1004: X-Ray image measurement: 1956.7 pixel;

Actual 3D distance: 201.8mm.

The above results demonstrate that parallel projection is unsuitable for estimation of

sphere coordinates from the X-ray images. As an alternative Goktepe and Kocaman

(2011) describe the collinearity based Direct Linear Transformation (DLT) to calculate

camera parameters belonging to a picture pair of X-ray images. The main advantage of

DLT method is that it does not require a calibrated camera. Mathematical model of DLT

method is determined by calculation of image coordinates ( , )u v of any point by using
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object coordinates ( , , )X Y Z of that point:

1 2 3 4

9 10 11 1

L X L Y L Z L
u

L X L Y L Z

  


  

5 6 7 8

9 10 11 1

L X L Y L Z L
v

L X L Y L Z

  


  
5 - 2

Transformation parameters 1 2 11( , ,..., )L L L used in (5-2) can be calculated by means of

at least six points at both image and object coordinate systems where individual

coordinates are known [Abdel-Aziz and Karara, 1971]. Since only five ball bearings are

available, electrical connectors located on the edge of the phantom and visible in the

x-ray images and in the surface scan were selected as additional control points, where

their 3D and 2D coordinates were obtained by manually measuring the centres of holes

of these connectors from the 3D scanned data and X-ray images respectively noting

that these manual measurements will be significantly less accurate than the sphere

measurements. The DLT solution was implemented using DGAP [DGAP, 2005]. Table 5

- 20 shows the parameters for the DLT solution:

Table 5 - 20. Parameters for DLT solution.
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However, the derived positions of the three heating locations from DLT iterations are

unreliable, where these positions were significantly different from those expected

(Figure 5 - 57):

Figure 5 - 57. 3D positions of heating locations derived from DLT solution (red) and their

expected positions (blue) below the OT optode’s array. (green dots represent optode positions)

One criterion for reliably estimating the eleven parameters for each image is that the

distribution of control points needs to be homogenous, i.e. control points need to be

placed on different planes [Abdel-Aziz and Karara, 1971]. In this study, the common

feature points which can be distinguished in three X-ray images are the five ball

bearings and the eight connectors (four on left and four on back side), as indicated by

pink dots in Figure 5 - 58. By formulating equations in (5-2) as linear equations with the

DLT coefficients as unknowns we get:

1 2 3 4 9 10 11

5 6 7 8 9 10 11

- - - - 0

- - - - 0

X L Y L Z L L u X L u Y L u Z L u

X L Y L Z L L v X L v Y L v Z L v

            

            
5 - 3

When control points are coplanar, the computation of the DLT coefficients becomes

impossible since Z becomes a linear function of X and Y, i.e. for each control point:

Z aX bY c   5 - 4

where a, b and c are arbitrary variables. Under this circumstance, the system of

equations of (5-3) will only solve eight independent coefficients out of a total of eleven

no matter how many coplanar control points are used. This is because the rank of

matrix containing a collection of equations of (5-3) will be at most 11-3=8, where this

loss of rank is caused by columns corresponding to the unknowns 3L , 7L and 11L
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with coefficients containing Z. Therefore the 11×11 matrix containing the system of

normal equations will be singular. If there is one control point outside the common plane

of the others (such as the top pink dot shown in Figure 5 - 58), the rank can be

increased from eight to ten making it still a singular normal matrix.

Figure 5 - 58. Back view of phantom head showing the control points used for DLT (pink) and the

expected heating locations (blue) to be estimated.

As shown in Figure 5 - 58, the control points are nearly coplanar resulting in an ill-posed

system. As a consequence small errors in control point coordinates (or their image

measurements) can cause large variations in the DLT coefficients. These in turn will

propagate to the positions of projection centre, which will be used in inverse DLT (from

2D to 3D). Even if the control points were error free, DLT is still unreliable for points

(blue dots in Figure 5 - 58) away from the control points (pink dots) in case of near

coplanarity [Kwon, 1989]. Kwon (1989) further suggested using control points which

convex hull cover the complete region (also with respect to Z coordinates (heights)) if

one wants to make sure that DLT is reliable for the whole region of interest.

Based on the geometry of the feature (control) points located on the phantom in this

study, DLT is not an appropriate solution to estimate the 3D coordinates of the heating

blobs inside. Compared to DLT which estimates eleven parameters for each image,

VMS (Geometric Software) estimates six parameters (three for position and three for

rotation) allowing a more stable estimation of the entire network geometry. Note that

VMS based on collinearity requires estimation for principal distance and principal point.

Table 5 - 21 shows the input parameters for VMS to estimate the orientations of three

X-ray images and then intersect to estimate the 3D heating positions:
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Program Control Variables Values

Network datum definition type

Maximum iterations for a solution

Default target image precision by camera (m)

Minimum images for a network target

Rejection criterion for image errors

External constraints on targets

10

80.00

2

50m

Input Summary Values

Number of camera calibration sets

Number of target image observations

Total number of exposures

Number of exposures in the network

Total number of targets

Number of targets in the network

1

37

3

3

16

16

Results for the calibration solution Values

Unit weight estimate (sigma zero)

RMS image residual (m)

Number of observables in the network

Number of unknowns in the network

Number of redundancies in the network

Mean number of images per target

1.29

81.40

117

70

47

2.3

Target Precision Summary Values

Mean precision of target coordinates (m)

Relative precision for the network (1:X)

292.03

1000

Table 5 - 21. Summary of parameters of estimating 3D positions of heating blobs.

In order to use a conventional bundle adjustment to achieve a best fit, the X-ray imagery

was taken to be close to a parallel projection by setting the principal distance of the

X-ray camera to 500mm. The principal distance was constrained along with the principal

point coordinates with a standard deviation of 0.1mm so that the adjustment solution

would converge. The RMS image residual of 81.4m is equivalent to 8 pixels provided

with the difficulty in manually measuring the locations of the X-ray image features,

noting that the perimeter of a ball bearing in X-ray images is ~60 pixels. A radial and an

affine distortion parameter were included in the adjustment as unknowns (Figure 5 - 59).
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Figure 5 - 59. Relative positions between X-ray cameras and phantom (left) and

parameters for bundle adjustment (right).

The above setting allowed VMS to use the best fit from bundle adjustment to estimate

the 3D coordinates of the three heating blobs (Table 5 - 22). In the results, the larger

uncertainty for the right blob was due to the fact that the right blob can only be

measured in two out of three X-ray images (Figure 5 - 56).

Blobs X (mm) Y (mm) Z (mm) sX (m) sY (m) sZ (m) #Images

left -454.7 -117.3 -35.6 704.9 739.8 695.8 3

right -449.6 -215.8 -40.3 1113.4 748.6 1012.6 2

back -493.5 -169.8 -40.4 756.4 702.6 702.2 3

Table 5 - 22. 3D coordinates estimated for the heating blobs.

Figure 5 - 60 illustrates the methodology used to co-register the optodes from optical

topography with the functional activated area (heating blobs) inside brain (within the

same coordinate system) utilising the bony landmarks (defined by the international

10-20 system, Section 2.2.3) as common points.

Figure 5 - 60. Co-registration of heating blobs inside phantom (green) and OT optodes (blue).
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A peak position (Table 5 - 23) representing the highest optical change for each area

(Figure 5 - 55), was manually searched through the reconstruction by the Department of

Medical Physics. Since the image reconstruction was based on the surface mesh, these

peak positions were under the same coordinate system as the optodes allowing a direct

comparison of the three peak positions estimated between optical imaging and

photogrammetric co-registration (Table 5 - 22) without the need of further coordinate

transformations (Table 5 - 23).

Peak in mesh grid X (mm) Y (mm) Z (mm) 3D discrepancy (mm)

Left -459 -91 -53 31.9

Right -452 -229 -40 13.5

back -502 -177 -35 12.4

Table 5 - 23. Peak positions from reconstructed optical images and 3D coordinate discrepancy

from the coordinates estimated from bundle adjustment (Table 5 - 22).

Peak positions from optical images (pink dots in Figure 5 - 61) appeared more closer to

the phantom surface (or optodes) for both temporal right and visual area, with respect to

the positions derived from bundle adjustment (blue dots in Figure 5 - 61). Y-coordinate

of the peak position from optical image data for temporal left was beyond those of

optodes (pointed by arrows in Figure 5 - 61).

Figure 5 - 61. Visual comparison of three heating locations estimated between bundle

adjustment and optical imaging. Upper left: top view; Upper right: bottom view; Lower left:

left-sided view; Lower right: right-sided view. Green dots: Optode positions; Blue dots: Heating

centre locations estimated by bundle adjustment; Pink dots: Peak positions from optical images.
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5.4.3.2 Human subject one

During the optical topography study, 3D target coordinates computed from sequential

sets of frames were regularly output to a text files during the tracking process in order to

reconstruct the overall target movement. Five frames were randomly selected from the

twenty-minute tracking sequence captured during the functional study. These data

represented approximately equal time intervals along the sequence, i.e. the locations of

the head and the pad every four minutes. The task for this functional study was

repeating of finger tapping to see if a particular temporal area would be activated.

However, it was observed that subject one fell asleep after a while since the study

began and this can be clearly reflected from the reconstructed target movement during

the study as shown in Figure 5 - 62.

Figure 5 - 62. Front (left) and top (right) views of target movement of subject one during the

20-minute study.

The newly designed optical sensing pad was firmly attached onto the scalp by several

stickers (right picture of Figure 5 - 63). Please note that this is an advance on the

original pad design which used a bandage to attach the pad onto the scalp (left picture

of Figure 5 - 63). Despite the change in design, position misalignment between the

sensing pad and the scalp underneath can still make the optical topography data invalid.
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Figure 5 - 63. Old design with bandage (left) and new design with stickers (right) of optical

sensing pad.

To investigate the presence of differential movement, centroids computed from the four

bony landmarks (Section 2.2.3) represented the head position, while centroids

computed from the eleven targets on the left (right) pad represented the position of the

left (right) pad. Sequential centroids from frames 2, 3, 4 and 5 were then co-registered

to their associated centroids computed from frame 1 by 3D similarity transformation

[Dewitt, 1996]. Coordinate discrepancies of these centroids after transformation from

the reference are shown in Table 5 - 24.

Centroid (mm) Head Left pad Right pad

Frame x y z x y z x y z

1 0 0 0 0 0 0 0 0 0

2 0 0 0 0.02 0.21 0.03 0.06 0.30 -0.84

3 0 0 0 0.04 0.02 -0.31 -0.20 0.26 -0.26

4 0 0 0 -0.35 0.55 0.27 -0.27 -0.30 -0.44

5 0 0 0 0.16 1.04 0.23 -0.72 0.44 -2.32

Table 5 - 24. Discrepancies of centroid coordinates of head, left and right pads

after co-registration to coordinate system of the 1
st

frame.

The co-registered 3D discrepancies of these centroids across frames (Figure 5 - 64)

demonstrated how the head and sensing pad had moved differentially during the 20

minute study period. Clearly identifiable are a movement up to 2.5mm in the case of the

right pad. In this case it is clear that the pads and head had moved with respect to each

other making optical imaging reconstruction invalid since the reconstruction is based on

the difference between two sets of data where the only change allowed is the optical

change (brain activity).
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Figure 5 - 64. Differential movement between the sensing pad and scalp during the study of

subject one.

5.4.3.3 Human subject two

The method used for investigation of differential movement for subject two is the same

as that for the first subject. It was observed that subject two did not fall asleep during the

study such that the head movements are significantly smaller (Figure 5 - 65).

Figure 5 - 65. Front (left) and top (right) views of target movement of subject two during the

20-minute study.

Again sequential centroids from frames 2, 3, 4 and 5 were co-registered to their

associated centroids computed from frame 1 by 3D similarity transformation [Dewitt,

1996]. Coordinate discrepancies of the targets located on the head and pads after

transformation from the reference are shown in Table 5 - 25.
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Centroid (mm) Head Left pad Right pad

Frame x y z x y z x y z

1 0 0 0 0 0 0 0 0 0

2 -0.07 0.03 -0.03 0.06 0.03 0.01 0.01 -0.06 0.02

3 -0.03 0.07 -0.02 0.06 -0.02 0.02 -0.03 -0.05 0.01

4 -0.07 0.00 -0.02 0.04 0.05 0.00 0.04 -0.05 0.02

5 -0.14 0.03 -0.04 0.09 0.07 0.01 0.05 -0.10 0.03

Table 5 - 25. Discrepancies of centroid coordinates of head, left and right pads

after co-registration to coordinate system of the 1
st

frame.

The co-registered 3D discrepancies between these target centroids across frames

(Figure 5 - 66) demonstrated how the head and sensing pad move differentially during

the 20 minute study period. In this case the developed system confirmed that the pad

and head had moved together such that the topography can be effectively computed.

Figure 5 - 66. Differential movement between the sensing pad and scalp during the study of

subject two.
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5.4.4 Discussion

5.4.4.1 3D coordination – targets used for correspondence

Compared with the results of 0.35mm (ten targets on the polystyrene head in Section

5.2.2.2) and that of 0.18mm (two targets on the caliper in Section 5.2.2.3), the 3D mean

target coordinate discrepancies for all phantom studies (with VMS intersection results

as the reference) are somewhat higher (between 0.54mm and 0.91mm) though still well

below the 1mm accuracy required for reliable reconstruction (Section 2.2.3). The

difference was mainly caused by the variation of both target locations and target

orientations on the phantom. The targets on the polystyrene head and caliper were

situated on nearly 2D planes which were almost perpendicular to the camera rays

(Figure 5 - 5 and Figure 5 - 6). In case of phantom the curvature of upper sphere

increases the difficulty of 3D target intersection. The lower the horizontal level, the more

difficult cameras can gain a clear view of the entire target. Such a situation needs to be

identified automatically if the tracking process is going to function without any human

interaction.

The target coordinate discrepancies for temporal left, right and visual cortex (Section

5.3.3.1) reveal that for the coordinated targets, the Z-coordinate generally shows a

larger discrepancy than X- and Y-coordinates accounting for most of the 3D target

coordinate discrepancy. Discrepancy dominated by the Z-axis is clearly shown from 3D

plots of target 3D location discrepancies for all three area studies (maximum

Z-discrepancy of 0.58mm/0.79mm/0.54mm for temporal left/right/visual cortex) on the

phantom (Figure 5 - 25, Figure 5 - 26, Figure 5 - 38, Figure 5 - 39, Figure 5 - 51 and

Figure 5 - 52). This phenomenon is attributable to the network geometry with the

mounting of all eight cameras on the same horizontal level producing lines of sight that

converge more narrowly in the direction of the Z-axis. Figure 5 - 67 shows a typical

example, where this target had the largest coordinate discrepancies among all

coordinated targets from a worse case set of frames. The lowest horizontal level of

target location has resulted in the Z-coordinate discrepancy nearly eight times as big as

the X- or Y-coordinate discrepancy.
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Figure 5 - 67. The target with the largest discrepancy on Frame 1 of temporal right.

(with the largest discrepancy of 0.8mm)

(Target coordinate discrepancies: x: 0.46mm; y: 0.344mm; z: 2.268mm)

The above factors have some photogrammetric implications in terms of the future

design of the tracking system:

1. A stronger multi-camera convergent geometry can be achieved with cameras

located at different horizontal levels for a better determination of target

Z-coordinates (Section 3.2.3.1). For example a two-level wheel ring system

where each ring contains eight cameras would be needed to make sure that

each target on a head sized object can be seen by at least four camera rays (two

per level);

2. The camera-to-camera separation should be reduced if accuracies for all targets

on the tested object are equally important;

3. The standard 60cm wheel diameter, whilst convenient, is too small for an

eight-camera system in terms of tracking targets distributed over a head sized

object. The issue of target occlusion/ambiguity can be largely improved if the

wheel diameter were increased to allow cameras to simultaneously have a

better view of targets on lower horizontal levels of a curved object (Section

3.2.3.1).
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5.4.4.2 3D coordination – targets not used for correspondence

Some of the measured target images were not used for 3D correspondence in the

running camera system. Causes of this were insufficient target image measurements,

incorrectly recognized targets and target images failing correspondence. Each of these

issues is discussed as follows:

Insufficient target image measurements

Those image measurements not used for correspondence are identified in Table 5 - 9

for temporal left, Table 5 - 13 for temporal right and Table 5 - 17 for visual cortex.

Insufficient measurements imply that there was only one line of sight to the target.

Missing lines of sight are attributable to physical target occlusions and target detection

inconsistencies due to the unreliable image quality of the cameras connected to the

USB 2.0 ports.

In terms of physical target occlusion, there were some targets which only visible to one

camera and meanwhile were oriented towards cameras sparsely mounted on the wheel

ring (Figure 5 - 68). Moreover, the inconsistency of target image detection by Cam 1, 2,

3 and 8 left some targets (oriented towards these cameras) only detectable by one

camera within one frame set again causing insufficient measurements. Regarding this

the target detection consistency across frames is considered to be critical to make sure

that sufficient camera rays can intersect targets (Section 3.2.3.1) for every single frame

in terms of optical topography applications requiring continuous 3D coordination.
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Figure 5 - 68. Views of Cam 8, 1, 2, 3 (from upper left to lower right) demonstrating some targets

(with arrows) only visible by one camera causing insufficient measurement for correspondence.

Incorrectly recognized targets

Incorrectly recognized targets are highlighted in Table 5 - 9 for temporal left, Table 5 - 13

for temporal right and Table 5 - 17 for visual cortex. These data are the result of

adjusting colour tuning thresholds to permit the four cameras connected to USB 2.0

ports to detect some target images. The selected colour tuning threshold was lowered

from 45 to 35 for all eight cameras ensuring uniform parameter setting for the system,

but resulting in a significant increase in the number of unnecessary/incorrectly

recognized targets. Incorrect recognition is particularly obvious in over-exposed image

areas especially for Cam 4, 5, 6, 7 which effectively eliminated unnecessary

background information with the threshold of 45. Figure 5 - 14 to Figure 5 - 21, Figure 5

- 27 to Figure 5 - 34 and Figure 5 - 40 to Figure 5 - 47 in Section 5.2 highlights some

examples of the live target image measurements by each camera in each study. In the

worst case where targets were oriented towards the direct sunlight, up to eighteen

incorrectly recognized target images (Table 5 - 9) were found (Figure 5 - 69). Even

under this circumstance, most of actual (real) targets were correctly recognized and

used for correspondence demonstrating the robustness of the correspondence solution

in cluttered environments.
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Figure 5 - 69. 18 incorrectly recognized target images (not used for correspondence) by Cam 7

(upper image), and 13 incorrectly recognized target images (not used for correspondence) by

Cam 8 (lower image) in Frame 1 of temporal left study.

Note that the lighting of Frame 1 might be significantly different from that shown from the above

images (static images captured at the beginning of the study).

Regarding target image ambiguity for correspondence, it is suggested that incorrectly

recognized target images should be minimised in future tests. Whilst incorrectly

recognized targets outside the area of interest should not be a concern, targets
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incorrectly recognized within the area of interest are important. As an example

incorrectly recognized targets on both the sensing pad and the phantom can be seen in

Figure 5 - 69 and will increase the possibility of 3D correspondence errors. Both reliable

image qualities across all the cameras in the tracking system and an appropriate

rejection tuning threshold are required in order to minimize incorrectly recognized target

images within all camera views in future studies.

Target images failing correspondence

Target images failing the 3D correspondence solution are identified in Table 5 - 9 for

temporal left, Table 5 - 13 for temporal right and Table 5 - 17 for visual cortex. These

represent target images corresponding to the same target that are present in two or

more images but are not used for correspondence. The main cause of those failing the

test appear linked to the different extents of chromatic aberration (Section 3.3.1.4) of

one target on different camera viewpoints. Since the phantom was located at different

positions within the eight viewpoints in the tracking system, the extent of transverse

chromatic aberration around a target image for one image can be different from the

transverse chromatic aberration in a second image. Transverse chromatic aberration

progressively worsens towards image corners (Section 3.3.1.4). Therefore the

displacement among the three colour channels observed for target images towards

image corners was much larger as compared with which of target images towards the

image centre (Figure 5 - 70). How much the aberration distorts the imaged position in

the two images will give rise to reprojection error and hence correspondence failure.
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Figure 5 - 70. Transverse chromatic aberration progressively worsened towards image corners.

The lens in the C500 webcams has a simple four blade aperture, in combination with

fixed focus the result is that many of the target images were not actually in sharp focus

(Section 3.3.1.4). At the worst case target images appear as squares giving rise to

errors in the colour target image detection capability to search for centroids of these

squares (Figure 5 - 70).

Since a calibration object with coloured targets was not available during this research,

the self-calibrating bundle adjustment for the camera system (Section 4.3) used a

calibration object with retro-reflective targets and a different target image measurement

method (in VMS). As a result the calibration might not hold for largely distorted coloured

target images towards image corners giving rise to reprojection errors larger than those

permitted for a successful correspondence (Section 3.5.3). An example is given in

Figure 5 - 71, which also demonstrates, along with Figure 5 - 23, Figure 5 - 36 and

Figure 5 - 49, that most targets consistently not coordinated by the running system were

located mostly towards image corners. Note that for webcams (1, 2, 3, 8) delivering less

reliable images, image compression is also a factor accounting for correspondence

failure (Figure 5 - 71).
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Figure 5 - 71. Example of target images detected but not used for correspondence.

Left: Cam 8; Right: Cam 1.

The size of the phantom is much larger than that of the small sensing pad and calipers

used in studies in Section 5.2 (Figure 5 - 72). As a result targets on the phantom extend

into the image corners compared with target images on the small pad and calipers

which are more central. The larger target image distortion towards image corners also

explains the overall larger discrepancy compared to auto-centroiding with the window

based threshold target image detection method and manual centroid used within VMS.

As a result in the phantom studies discrepancies of the order of ~0.6-0.8mm are seen,

compared to results of 0.35mm for ten targets on the polystyrene head in Section

5.2.2.2 and; that of 0.18mm for two targets on the caliper in Section 5.2.2.3.

Figure 5 - 72. Relatively small distortion occurred for target images in studies of Section 5.2.
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Chromatic aberrations were also observed on target images from the optical sensing

pad, although these targets were oriented towards Cam 4, 5, 6 and 7 delivering reliable

image qualities. The smaller image distortion accounts for the slightly lower 3D

discrepancies of these targets as compared with those of all targets (over phantom and

pad) where the data includes target images in the image corners (Figure 5 - 22, Figure 5

- 35 and Figure 5 - 48). Interestingly it was also observed that target images close to

saturating caused by direct sunlight, were much more distorted as compared with those

without saturating sensors (Figure 5 - 73).

Figure 5 - 73. More distortion of target image was caused by strong sunlight.

In order to include chromatic target image distortions in the error budget, a head-sized

calibration object equipped with coloured targets suited to the developed colour

target-tuning detection method is necessary. Such an object would support calibration of

the complete camera system ensuring the full validity of calibration parameters for the

target coordination applications. The corrected lens distortion parameters in this way

should account for the chromatic aberration in images which will allow more target

images to pass 3D correspondence and increase the overall coordination accuracy.

Another approach is to increase the tolerance for target image matching so that targets

between images can be matched with each other even if they are slightly distorted.

However such an approach would increase the possibility of target mismatches and

result in lower 3D coordination accuracy as compared with the previous approach

where the computed lens distortion would include the chromatic error.
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5.4.4.3 Consistency

As described in Chapter 2, the coordinates of optodes need to be registered onto the

brain anatomy for brain functional localisation, which means these locations need to be

accurately coordinated in optical topography studies. Results have demonstrated that

most of these key targets were consistently detected and coordinated across image

frames during the optical topography studies. However, there are one or two targets

which were not coordinated in some frames (Table 5 - 10, Table 5 - 14 and Table 5 - 18).

By tracing back the actual images during the studies it is found that since there was no

light control for optical topography studies in this research and these studies were all

conducted in the noon or afternoon during summer, there were inevitably some targets

facing directly into the strong sunlight entering from the windows of the testing room.

These targets were imaged at near sensor saturation resulting in the green colour no

longer standing out against the other colour components, i.e. the difference in intensity

between green and red, and between green and blue, are lower than the target

detection tuning threshold, i.e. 35 (Table 5 - 6).

Figure 5 - 74. Full target detection with no lighting control and no interference from strong

sunlight. (Left: actual camera views; Right: corresponding target tracking)

Figure 5 - 74 shows a scenario of full target detection while Figure 5 - 75 gives an

example of large lighting variation (caused by strong sunlight) during a study. The

influence from strong sunlight from time to time during the fifteen-minute period within a

study not only caused loss of track of one or two targets on optodes across different

frame sequences within a study (Table 5 - 10, Table 5 - 14 and Table 5 - 18), but also

partly accounted for the variation in terms of the total number of targets being



Chapter 5 – Practical Application and Validation

296

coordinated by the camera system across a study (Table 5 - 7, Table 5 - 11 and Table 5 -

15). Such variations were also caused by the inconsistency of target detection resulting

from the lower image quality attainable from Cam 1, 2, 3 and 8.

Figure 5 - 75. Large variation of lighting occurred during the visual cortex study.

Arrows between images represent the time sequence of the study.

Where sunlight caused an overexposure of a large area in the image (Figure 5 - 75), the

colour target detection method can be particularly advantageous in comparison to the

normal target detection method. This advantage is due to the fact that the image pixel

values in the over-exposed area could be treated as irrelevant and therefore filtered out

prior to target image detection even if they have high intensities.

Figure 5 - 76. Effect of strong sunlight on targets.

(those recognized as targets are marked with white circles)

(Left: actual camera views; Right: corresponding target tracking)
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The imaged colour distribution inside the real targets altered due to strong sunlight, as

shown in the left image in Figure 5 - 76, and has resulted in the green component being

less apparent. It is apparent from the right image in Figure 5 - 76 that some of the pixels

inside these target images were recognised as target pixels. However, valid target

image pixels with less apparent green component had been filtered out as background

giving rise to edge disconnections. Since more than 50% of these pixels were under the

influence of strong sunlight, the morphological operation (Section 3.4.4.3) was unable to

fully reconnect the disconnected edges. These disconnected edges failed the edge

tracing process (Section 3.4.4.4) and therefore the target image detection.

Despite this issue, target tracking consistency was found to remain consistent under

room lighting provided that the target image distortion due to chromatic aberration is

within tolerance of correspondence matching. This situation held even under high light

intensities provided that a specular light reflection did not occur close to or at a target

surface. Since most clinical environments contain room light whereas sunlight does not

normally appear in such environments, the effect from sunlight should not be a concern

for future studies.

As expected Cam 4, 5, 6 and 7 delivered much more reliable image qualities as

compared with those from Cam 1, 2, 3 and 8. Image measurements processed with

VMS represent the maximum number of target image measurements within each

viewpoint, based on the lighting condition of the first set of static images captured.

Image measurements successfully used for correspondence from the running camera

tracking system for all temporal left (Table 5 - 8), temporal right (Table 5 - 12) and visual

cortex (Table 5 - 16) studies are based on the lighting conditions at different moments

during the studies. Results from these tables demonstrate that the reliable image

qualities delivered by Cam 4, 5, 6 and 7 enabled these cameras to measure nearly all

target images within viewpoints for correspondence. However, even under the tuning

threshold adjustment and software image enhancement, the less reliable image

qualities delivered by Cam 1, 2, 3, and 8 only allowed about half or less of the total

number of target images being measurable within viewpoints for correspondence

(highlighted as red in Table 5 - 8, Table 5 - 12 and Table 5 - 16).
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Not only did unreliable image quality result in poor target image measurement

performance, the target tracking consistency from these images was also much lower.

Most targets oriented towards Cam 4, 5, 6 and 7 were consistently coordinated across

frames (blue dots). However, most targets including those which sometimes were not

coordinated (green dots) and those consistently not coordinated (pink dots) were

oriented towards Cam 1, 2, 3 and 8 (Figure 5 - 23, Figure 5 - 36 and Figure 5 - 49).

Furthermore, while some targets could be intersected with up to eight camera rays from

VMS processing, the fact that all the consistently tracked targets could only be

intersected with up to four camera rays (mainly from Cam 4, 5, 6 and 7) from the

running tracking system (Figure 5 - 24, Figure 5 - 37 and Figure 5 - 50) once again

demonstrates the inconsistency and unreliability in terms of target detection from Cam 1,

2, 3 and 8. For detailed explanations regarding the generation of these less reliable

images, please refer to Section 4.4.3.3.

In contrast some targets were only measurable by a maximum of two camera rays from

VMS processing based on the first set of images captured at the beginning of each

study, whilst the same targets were measurable from more than two rays in certain

frames from the running tracking system (Figure 5 - 24, Figure 5 - 37 and Figure 5 - 50).

This situation once again demonstrates the large variation of lighting within these

studies.

5.4.4.4 Speed

During this research, the developed system included descriptive text giving on-screen

feedback during processing as well as OpenGL frame by frame rendering of the

captured images frames to the computer screen. The resulting refresh rate of the

tracking system (Section 4.6) was two FPS for a four-camera system and a half FPS for

the eight-camera system. A test with four Logitech C500 webcams, where two were

connected to USB 2.0 ports and the other two connected to USB 3.0 ports, was

performed after the phantom and volunteer studies. The aim is to roughly demonstrate

the speedup of the system by eliminating the output of unnecessary information on

screen, as shown in Figure 5 - 77.
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Figure 5 - 77. Speedup of the live tracking after eliminating unnecessary screen output.

Results demonstrate that about 25% of the processing time was dedicated to the

on-screen output of results. After eliminating this information from the screen, about

1.5-second’s time can be saved for every 10 consecutive frames, provided that in this

independent test, 3D target coordinates were output to a text file for every single frame.

By further eliminating the OpenGL graphic rendering of each frame from each camera

onto the screen, the tracking system is able to perform even faster with a single desktop

computer (Dell Precision 490 ~2008). With the current Intel Core i7 CPU technology, the

tracking system can be easily brought to a single laptop making it more flexible and

portable.

Another test with four Logitech C500 webcams, where two were connected to USB 2.0

ports and the other two connected to USB 3.0 ports, was also performed after the

phantom and volunteer studies. In order to find out the percentage of time occupied by

each main process for one 3D coordination loop, system counters were placed before

and after each main process. Different number of targets was then used to find out the

change of time percentage with the target number for each process (Figure 5 - 78). In

terms of percentage of the total time elapsed for one loop, it was observed that the

percentage for correspondence matching increased with the number of targets whilst

slight decreases were observed for other processes. This latency should provide a

reference for the future design and the associated coding optimization in terms of

delivering faster 3D coordination for optical topography studies.
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Figure 5 - 78. Latency of the 4-Cam tracking system.

5.4.4.5 Optical topography activation and localisation

Blasi et al. (2007) and Correia et al. (2009) emphasised that the low spatial accuracy is

the main obstacle for the current state of the optical topography, i.e. poor ability to

accurately locate the optical absoption change occurred, particularly in the depth

direction. This agreed with all three positions (Figure 5 - 61) where the peak positions

from the phantom activation map were found to be shallower (closer to the pad surface)

than the positions estimated from photogrammetric co-registration. Results from optical

topographic experiments with 4 month old infants showed that the activation occurred in

the pad surface but without depth discrimination [Blasi et al., 2007]. Changes in optical

absorption over the left motor cortex at a depth averaged between 10 and 15mm was

reported by Cooper et al. (2009). A quantitative assessment of the depth sensitivity of

the same optical topography system carried out by Correia et al. (2009) using a solid

dynamic tissue phantom containing seven discrete targets (similar to the phantom used

in this research but with 4.5mm diameter and 41mm length) demonstrated that the

spatial resolution (contrast) of the reconstructed image decreased almost linearly

(exponentially) with depth, i.e. the distance from scalp surface. The sensitivity to depth

is considered to be reasonably accurate within the 20mm depth range. The

reconstructed image can easily loose its depth sensitivity if the activation occurs at a

depth more than 20mm, in which this fact takes account of the lower image quality with

depth [Correia et al., 2009]. Moreover, the simultaneous use (i.e. near-infrared light
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illumination) of multiple sources (modulated at different frequencies, Section 2.1.3.2)

causes noise in the detected signal, where the larger the source-detector separation,

the worse the signal [Blasi et al., 2007]. Depth sensitivity of optical topography systems

will continuously improve in near future with optimizing source-detector separations and

sequentially illuminating sources [Blasi et al., 2007]. Where further comparisons and

verifications of activation localisation between optical imaging and photogrammetric

approaches are necessary as future work, photogrammetric approaches will

continuously support optical imaging to localize the activation area.

Unfortunately in the volunteer studies conducted for this thesis no useful optical data

were collected for either subject. Movement artefacts (Figure 5 - 64) were reported as

being a main cause for the high drop-out rate of optical topography studies [Blasi et al.,

2007]. The drop-out rate could be very high as reflected from the 60% drop-out rate

reported by Taga et al. (2003), where they examined 20 infants foor visual activation,

where 12 out of 20 were rejected because of either movement artefacts or poor contact

due to hair. Therefore the invalid optical topography result from the two human studies

in this research might also be attributable to the hair thickness of adults, which is much

higher than that of infants. Besides the movement artefacts and contact issue due to

hair thickness, other factors such as physiological noise from heart rate, respiration or

vasomotion (the spontaneous oscillation in tone of blood vessels, independent of heart

beat or respiration [Haddock and Hill, 2005]) can also interfere with the optical

topography signals. These effects become more evident with higher skin thickness for

adults as compared with infants [Goodwin et al., 2004]. Moreover, the protocol used in

human studies in this research was finger-tapping. Although activations on

sensor-motor cortex from finger-tapping were reported by several researchers [Maki et

al., 1995; Boas et al., 2001; Zhao et al., 2006], optical imaging techniques are

particularly well suited to imaging infants as demonstrated from the first report of optical

topography on premature babies [Chance et al., 1998]. Optical topography studies

carried out by Kusaka et al. (2004) demonstrated different responses between adults

and infants. While the optical sensing pad used in this research was primarily designed

and optimized for infants by the Department of Medical Physics, the source-detector

separation might not be well comparable for adults, with thicker skull and scalp.
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5.4.4.6 Differential movement

For human subject studies, target coordinates derived from VMS intersection with an

accuracy level of better than 0.2mm (Table 5 - 2) were used to better demonstrate the

differential movement between the sensing pad and head.

For subject one, whilst the sequence of head centroids were co-registered onto the

original position of the reference coordinate system (blue line), the left (red line) and

right (green line) pad show different amounts of movement relative to the head after

co-registration (Figure 5 - 64). The relative distance between the right pad and head

increased to about 2.5mm towards the end of the study when subject one completely

fell asleep (Figure 5 - 62). This differential movement of 2.5mm has exceeded the

acceptable ~1mm accuracy for an optical topography study. As shown in Figure 5 - 64,

the relative distance between the right pad and the head was over 1mm after the 4th

frame, and therefore for this study any data collected after this time interval must be

disregarded since the assumption of OT is based on the temporal difference being due

to brain activity alone.

For subject two, the maximum relative distance between head and left/right pad is below

0.04mm after co-registration (Figure 5 - 66). Since it was observed that subject two did

not fall asleep at all during the whole study, the overall head movement of subject two is

forward, right followed by backwards all with a small amount of distance by tracing back

to the overall motion reconstruction (Figure 5 - 65). Theoretically all the centroid

coordinates should have no discrepancies compared with those initial positions (as

reference) after co-registration. However, a maximum discrepancy of 0.15mm away

from origin was observed (Figure 5 - 66) and this magnitude of discrepancy in 3D space

matches with that of VMS intersection shown in Table 5 - 2. Since the curves of all head

centroid, left and right pads show the same shape across frames, it can be concluded

that there is no differential movement between the pad and head for subject two during

the functional study. Although the discrepancy away from the origin is attributable to the

discrepancy of target 3D coordination from VMS intersection, this level of disagreement

is well within the comparison data achieved with the phantom.
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Blasi et al. (2007) addressed that the high drop-out rate due to movement artefacts is a

major concern for optical topography experiments, where results became invalid due to

the movement artefacts present in the OT signals. Moreover, the new design of optical

sensing pad has made the optical fibres (optodes) approach the head at a 90 angle

(Figure 5 –11), making the area of contact between the fibre pad and scalp small [Blasi

et al., 2007]. The susceptibility to movement artefacts of this design also addresses the

need of live movement detection for future optical topography experiments.

5.4.5 Summary

In summary, the developed tracking system with a total imaging component cost of less

than 400GBP has been successfully applied in optical topography studies. The following

points can be made:

1. 3D target coordination accuracy delivered by the fast tracking system is much

better than 1mm. If required 3D coordination capability could be further improved

by adding additional cameras at different horizontal levels to have a more

accurate coordination on Z-axis and fewer occlusions;

2. Important targets for optical topography studies have been consistently tracked

and coordinated to sub-millimetre accuracy across image frames with no specific

lighting control making the system highly suitable for the clinic;

3. Due to the necessity of checking of results and image frames during the optical

topography studies performed in this research, a lot of CPU workload was

dedicated to the output of results and image rendering onto the computer screen.

As the system matures its speed can be enhanced by a better-written program

as well as eliminating unnecessary display and checking;

4. In the optical topography studies carried out for this research, surface differential

movement to sub-millimetre sensitivity has been detected. When this work was

conducted the 3D similarity transformation between pad and head was

performed after the tracking has completed. In future, this part of co-registration

can be included in the automated tracking system making the detection of any

differential movement between surfaces nearly real time. A warning could

therefore be generated whenever the detected differential movement exceeds
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the maximum range allowed. Not only this can provide a continuous validation

for medical studies, since to the author’s best knowledge there is currently no

equipment to validate medical studies at patient’s bedside such as optical

topography, but it can also perform a high-accuracy monitoring for industrial

manufacturing process making the production more efficient since any

over-ranged movement can be immediately reported and corrected.

5. The allowance of free movement together with the live detection of differential

movement between medical devices and underneath area, are advantageous

over the MRI which strictly requires the tested subject to remain still during the

study. Compared with the conventional brain functional studies such as watching

a screen inside the MRI scanner, this has explored a new direction for the study

design since brain functional studies involving body movements will not be

limited any more.
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This chapter first presents key results from experimental work which explicitly satisfy the

research goals (Section 6.1), followed by a critical assessment of the limitations of the

experimental method (Section 6.2) and discussions of possible future research

directions resulting from this work (Section 6.3). Section 6.4 concludes this thesis.

6.1 Research results and conclusions

This section is divided into eight areas that address the key results from this research in

response to the research aims (section 1.3) and objectives (Section 1.4) outlined at the

commencement of this research.

1. Suitability of webcams for optical topography

Webcam imagery from both webcam models (Logitech QuickCam Pro 4000 and

C500) are capable of coordinating well defined targets to significantly better than

the 1mm accuracy requirement. The advances of webcam technology have

enabled clearer boundary between target image and background in favour of

target image detection and measurement.

2. Webcam stability

Webcam internal calibration parameters are sufficiently stable to reliably deliver

3D coordination over an extended period of time. Efforts regarding individual

camera calibrations for each optical imaging study can therefore be minimised.

Such stability has also demonstrated the consistency of target coordination

accuracy for continuous 3D measurement during optical studies.

3. Effective camera system calibration

It has been demonstrated that a self-calibrating bundle adjustment process is

capable of effectively calibrating a system of multiple webcams, where only

principal point, principal distance and 3rd power term of radial distortion are

considered significant and therefore need to be included in the adjustment

process. Taking the automatic changes of image quality (hidden from user

resulting from different USB connections) into consideration, webcams should

be calibrated as a system but not as individual sensors.
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4. Minimisation of infrastrature and cost

A camera system has been built under a total cost of £500 (excluding the host

computer), which consists of eight Logitech C500 webcams, a bicycle wheel rim

for mounting webcams, in-house built aluminium stand and rods ensuring

lightness but stable exterior orientations of the camera system. Experimental

results have demonstrated the construction is capable of rigidly defining the

imaging geometry for an extended period of time.

5. Target image detection

Recognition and measurement of target images have been proven as the key

process for accurate 3D measurements. Two target image detection methods

have been developed aiming at effectively extracting features from webcam

imagery, under testing scenes with background clutter without specific lighting

control. It has been demonstrated that both detection methods allow 3D target

coordination significantly better than 1mm requirement. However a

sub-millimetre (<0.2mm) 3D discrepancy between the two detection methods,

resulted from a slightly different definition of the target centroid locations was

found. Both calibration and measurement should therefore use a common target

image measurement process.

6. Target coordination accuracy

It has been demonstrated that for webcam imagery, that higher accuracy

photogrammetric measurements can be attained with a better hardware

resolution setting. Most important is to use a resolution that most closely

matches the number of pixels on the image sensor. Studies have also

demonstrated that with appropriate parameter recovery from a photogrammetric

bundle adjustment process, a system of webcams is capable of 3D

measurements with an absolute accuracy significantly better than 1mm. In

particular, 3D measurements made between the webcam system and a

calibrated pair of electronic calipers (standard deviation of 20µm) demonstrate

an absolute 3D measurement accuracy of 0.18mm. Coordination results of

phantom studies, as compared with VMS processing based on the static image

set captured at the beginning of each study, are presented in Table 6 - 1.
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Mean 3D coordinate discrepancy Temporal left Temporal right Visual cortex

All coordinated targets (mm) 0.6 ~ 0.8 0.6 ~ 0.9 0.5 ~ 0.6

Key targets on optodes (mm) 0.4 ~ 0.6 0.5 ~ 0.8 0.4 ~ 0.5

Table 6 - 1. Mean absolute 3D coordinate discrepancy for phantom studies.

Factors affecting coordination accuracy have also been identified, including

camera geometry, target locations on the spherical object, uncorrected target

distortion and image compression. Following 3D measurements of optode

positions and head surface landmarks, the individual optode positions can be

effectively co-registered with the internal anatomical positions representing

activation area by using 10-20 landmarks as common points.

7. Coordinating speed and automation

Results have demonstrated that given appropriate threshold settings for target

image detection, a fully automated 3D target coordination process is achievable

with webcams. The multi-webcam system delivered 3D target coordination on

per frame basis at 2FPS with 4 webcams (~0.5FPS with 8 webcams), provided

with ~50 targets and a single host computer. With code optimisation and

hardware advances, a faster coordination can be expected in near future.

8. Detection of differential movement

Differential movements of 2.5mm and 0.15mm between optodes and scalp

during optical imaging studies have been detected for two volunteer studies.

These results demonstrate the capability of the camera system in terms of

continuous target coordination and detection of differential movement which,

undetected, would invalidate the topography experiments.

6.2 Critical assessment

Following the research conclusions presented in Section 6.1, a critical evaluation of the

limitations of the experimental methods is demonstrated as follows:

 Automated webcam calibration: The main obstacle in bundle adjustment with

low cost webcams in this research is the target image qualities for commonly
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used photogrammetric coded targets, which are unreliable or must be made

disproportionally large. With the implementation of the target image detection

methods developed in this research into a static image measurement process,

the VStars type codes (spatially distributed circular targets) should work

automatically with webcam imagery.

 Accuracy of 3D target coordination: The developed multi-webcam tracking

system successfully delivers fast 3D coordination to better than 1mm accuracy.

However, webcams in the developed system were all mounted at the same

horizontal level. As expected Z-coordinates, corresponding to depth, have a

higher discrepancy compared with X- and Y-coordinates. To achieve higher 3D

coordination accuracies, webcams would need to be located at two horizontal

levels providing a stronger convergent geometry as well as increasing the

number of camera rays intersecting targets (distributed over spherical objects).

Please note that with the PCI express interface card (Figure 6 - 1) released

towards the end of this research, tests have confirmed that all eight C500

webcams are able to deliver the same reliable image qualities solving problems

with image qualities at the time of this research. With 4 such cards in a single

host computer, a system consisting of 16 webcams (8 per horizontal level) can

be built to achieve full target coverage and higher coordination accuracies.

Figure 6 - 1. Logilink PCI Express to USB2.0 host controller card [Logilink].

(4 individual controllers per card)

Moreover, calibration of Logitech C510 webcam (released 2010) has

demonstrated promising results of the current webcam technology. The C510

series delivers HD imagery at the same price as C500 series used in this

research and delivers RMS Image Residuals of 1/13th pixel (240nm) to a

retro-reflective target. While comparing to Nikon D100 measurement of the
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calibration object, it achieves mean absolute discrepancies of 0.014mm (X),

0.014mm (Y) and 0.019mm (Z), with a discrepancy standard deviation of

0.019mm (X), 0.019mm (Y) and 0.023mm (Z), which demonstrates a nearly 10

times higher accuracy of 3D coordination than C500 webcams. Eight images of

calibrated C510 webcam are able to reconstruct a head mesh with 27040 point

clouds (Figure 6 - 2) under ~15 minutes with MeshLab [MeshLab] utilising PMVS

[Furukawa and Ponce, 2010], Bundler [Snavely, 2006] and CMVS [Furukawa et

al., 2010] from computer vision community. However, the accuracy of image

measurements and 3D coordinates of the generated point clouds has not been

fully assessed and verified. Therefore future research investigating the 3D

accuracy of these methods is necessary in order to reliably reconstruct a head

surface mesh for optical topographic image reconstruction.

Figure 6 - 2. 27040 mesh points reconstructed from 8 images Logitech C510 webcams.

(image resolution: 1600×1200, pixel size: 3.2µm) White dots show 8 positions where images

were taken.

 Movement of tracked object: In this research it is assumed that movement of

the coordinated object is small compared to the averaged time delay

(~0.005-0.007s) between image frames (captured by different webcams) within

one frame set. However, completely synchronised camera images would be

necessary if its application is extended to coordinate a fast moving object in

future. Such a system would require a gunlock signal which is not possible on

webcam systems, but is available on board level camera modules.
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 Range of webcams: This research mainly investigated two generations of

Logitech webcams representing the mainstream webcam technologies at the

commencement and towards the end of this research respectively. Therefore

results should only apply for the webcams investigated in this research, with

either manual focus or fixed focus. Please note that results from this research do

not apply for other webcams especially those with automated zoom and

autofocus which are unlikely to be stable. In the reverse, the results and

conclusions drawn from this research could probably be extended to board

cameras which are similar in construction to the investigated webcams. Full

tests and comparisons of accuracy, precision and reliability across different

webcam brands/models (with manual or fixed focus) should be conducted

drawing a more representing conclusion about the webcam suitability for

accurate close range photogrammetric measurements.

6.3 Future research

This thesis has presented an investigation of the suitability of webcam photogrammetry

for optical topography studies followed by the system development of multiple webcams

and its associated applications in optical topography studies. The presented webcam

photogrammetric system can be extended to any close range measurement tasks

without specific lighting control demanding sub-millimetre accuracy. Slow object motion

is allowed and any target(s) can be removed and added from the continuous

coordination process (such as industrial manufacturing process, continuous monitoring

of cracks inside pipes, continuous medical monitoring at patient’s bedside). Suggestions

for future research in terms of optimisation of the current method that would improve the

performance as well as extend the current framework in the context of method

application are presented as follows:

6.3.1 Method extension

 Featurization of object: Different coloured targets can be used together with

the developed tuning target detection method (subject to correction of chromatic

distortion). This can be implemented through either passive targets (used in this
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research) or active targets (e.g. illuminated diodes manufactured by NDI [NDI]).

For example, green dots can be used for optodes and red dots can be used for

bony landmarks in which their computed 3D coordinates can be distinguished

from each other during the continuous coordination. Centroids of optodes and

scalp can be computed and transformed running each frame set during the

monitoring process. This would eliminate any post-processing work by

technicians dedicated to find out any differential movement between medical

device and human skin, or any kinds of movement which should be prevented or

minimised.

 Auto-tuning process: An automated tuning process for target image detection

can be designed and implemented in the coordination system. This is done by

gradually adjusting the tuning parameters (thresholds for target image detection

based on specific light condition and background clutter) until an optimal number

of targets are found within camera views. Though the coordination process

might not be able to start immediately with this auto-tuning process, the target

coordination can however work in different environments with much more

flexibility.

 Intersection of only new or moved targets: It has been shown that the

percentage time for 3D correspondence increases with the number of

coordinated targets. The correspondence solution can be extended so that the

tracking system only intersects targets which are newly added or moved (larger

than a pre-set threshold). This includes the correspondence solution for all

detected target images for the first frame set, followed by back drive of 3D

positions derived from previous frame (temporarily stored in memory) to 2D

image coordinates of the following frame set to check if there are any newly

detected target images. While newly coordinated targets are added to and those

failing the back drive are removed from the memory (which stores the most

updated 3D target coordinates), 3D correspondence will only be computed for

those newly detected target images after the first frame set. The frame rate of

the tracking system in this way might be significantly increased subject to further

tests and verification.

 Functional localisation for human subjects: The newly generated Logitech

C510 webcams demonstrates a nearly 10 times higher accuracy of 3D
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coordination as compared with the C500 webcams. Such a significant increase

should allow even higher webcam-based coordination accuracy in optical

topography studies. Co-registration accuracies between the optodes and the

internal anatomical locations representing brain activation areas should also

benefit from such a big jump. Furthermore, since optical topographic

reconstruction is based on optodes’ positions relative to head mesh, accuracy of

functional localisation with the mesh generated with webcams (Figure 6 - 2)

could be compared with the current technique used, where a generic head mesh

is wrapped to align the optodes in order to create an individual head mesh.

The above considerations are critical in terms of the implementation, robustness,

efficiency and practical usability of the low cost webcam photogrammetry.

6.3.2 Application extension

Following the results presented in Section 6.2, 3D coordination to sub-millimetre from a

system built with multiple low cost webcams is appropriate for applications as follows:

 Removal of movement restrictions in medical studies: Taking advantage of

the compactness, portability of low cost webcams, the multi-webcam system can

easily be transported and fitted to any medical environment. Where promising

improvements are shown over webcam generations, coordination discrepancies

in microns (or tens of microns) between webcams and high end cameras such

as the D100 is achievable in near future with the same or lower price point.

Allowing movement in medical studies should allow the development of more

robust medical devices (e.g. mobile optical topographic sensing pad) and more

experiment protocols to be designed. For example, a brain functional study can

be designed in the sense that a mobile pad is placed on various scalp locations

to examine if more than one region of cerebral cortex are simultaneously

activated by certain stimulation(s). Different pad positions coordinated by the

system during the study can directly be used for the following registration

process. It is also possible to build a low cost tracking system for MRI imaging

solving the movement problem during MRI scans.

 Pattern recognition: It is expected that a multi-layer webcam-based
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coordination system can be built to cover targets distributed all over a head

shaped object. The fast and accurate coordination all around the head would

support pattern recognition applications such as facial expression categorization,

in which the movements of scalp and/or neck (besides face) can all be taken into

account for analysis.

 Long-term monitoring: Provided with the webcam stability lasting for an

extended period, a multi-webcam system can be used for studies such as the

growth rate of flowers or certain species (biology field) in which object features

can be coordinated in certain time interval, e.g. once per week. Data collected at

the end of studies should directly draw a conclusion of the growth rate. The

continuous monitoring should allow the system to be used in studies such as

object deformation over time or under a certain temperature (engineering field),

where deformation curves over time can be constituted in a similar sense.

6.4 A final point

At the outset of this research it was unknown whether low cost cameras would offer

accurate 3D measurements suited to optical topography studies. This research has

successfully proven the suitability of webcams for optical topography studies in the

sense that a series of webcams are able to deliver 3D coordination of locations on the

skin and optical sensing pads to better than 1mm accuracy and maintain calibration for

extended periods. A fast multi-webcam photogrammetric coordination system which

works in cluttered environments and without specific light control has been developed.

In terms of medical applications, the system allows a low cost and simple setup within

minimal infrastructure, operates in room light without interfering with laser/infrared

illumination, and delivers a fast process to monitor initial pad locations, any differential

movement (between skin and pad) and in future tracking of a mobile sensing pad.

Where image quality combined with robust target detection methods are key to the

coordination performance, low cost cameras are capable of providing a suitable

platform for fast photogrammetric coordination given attention to camera and host

computer design. Initial tests with the next generation C510 webcams delivering HD

imagery are extremely promising and more applications of low cost webcam

photogrammetry can be foreseen in the research community.



References

315

References

Abdel-Aziz, Y.I. & Karara, H.M., 1971. Direct linear transformation from comparator

coordinates into object space coordinates in close-range photogrammetry. Proceedings

of the Symposium on Close-Range Photogrammetry. Falls Church, VA: American

Society of Photogrammetry, pp. 1-18.

Abraham, S. & Hau, T., 1997. Towards autonomous high precision calibration of digital

cameras. Proceedings of SPIE Videometrics V, El-Hakim (Ed.), Vol. 3174, pp. 82-93.

Ahmad, Anuar, Setan, Halim, Majid, Zulkepli, Chong & Albert, 2004. Calibration of digital

camera for medical photogrammetry. In: International Symposium and Exhibition on

Geoinformation (ISG), Kuala Lumpur, Malaysia, pp. 21-23.

Ariyawansa, D.D.A.P. & Clarke, T.A., 1997. High speed correspondence for object

recognition and tracking. Videometrics V, San Diego, USA, 30-31 July, Proc. SPIE 3174,

pp. 70-79.

Arridge, S.R., 1999. Optical tomography in medical imaging. Inverse Problems 15

R41–R93.

Arridge, S.R., Dehghani, H., Schweiger, M. & Okada, E., 2000. The finite element model

for the propagation of light in scattering media: a direct method for domains with

nonscattering regions. Med. Phys. 27, pp. 252–64.

Arridge, S.R. & Schweiger, M., 1995. Photon measurement density functions: II. Finite

element method calculations. Appl. Opt. 3480, pp. 26–37.

Arridge, S.R., Schweiger, M., Hiraoka, M. & Delpy, D.T., 1993. Finite element approach

for modeling photon transport in tissue. Med. Phys. 20, pp. 299–309.



References

316

Atkinson, K.B., 1996. Close range photogrammetry and machine vision. Whittles

Publishing, Caithness, Scotland, UK.

Atkinson, K.B., 2001. Close Range Photogrammetry and Machine Vision. Whittles

Publishing, ISBN: 1-870325-73-7.

Aw, Y.B. & Koo, T.B., 1993. Phototriangulation using CCD Camera in Close-range

Environment. Jounal of Surveying Engineering. Vol. 119. No 2., pp. 52-57.

Azuma, R. & Bishop, G., 1994. Improving static and dynamic registration in an optical

see-through hmd. 21st International SIGGRAPH Conference, 24-29 July, Orlando, FL,

USA, pp.197–204.

Azuma, R. & Bishop, G., 1995. A frequency-domain analysis of head-motion prediction.

In R. Cook, editor, SIGGRAPH ’95, 6-11 Aug., Los Angeles, CA, USA, pp. 401–408.

Baltsavias, E.P., 1991. Multiphoto geometrically constrained matching. PhD Thesis, pp.

1-40.

Barnett, G.H., Kormos, D.W., Steiner, C.P. & Morris, H., 1993. Registration of EEG

electrodes with three-dimensional neuroimaging using a frameless, armless stereotactic

wand. Stereotactic and Functional Neurosurgery 61, pp. 32-38.

Bauer, H., Lamm, C., Holzreiter, S., Holländer, I., Leodolter, U. & Leodolter, M., 2000.

Measurement of 3D electrode coordinates by means of a 3D photogrammetric head

digitizer. Neuroimage 11: S461.

Bentley, J.L., 1975. Multidimensional binary search trees used for associative searching.

Communication of the ACM 18 (9), pp. 509-517.

Beyer, H., 1993. Determination of Radiometric and Geometric Characterisitics of Frame

Grabbers. SPIE Vol. 2067. Videometrics II., pp. 93-103.



References

317

Blasi, A., Fox, S., Everdell, N., Volein, A., Tucker, L., Csibra, G., Gibson, A.P., Hebden,

J.C., Johnson, M.H. & Elwell, C.E., 2007. Investigation of depth dependent changes in

cerebral haemodynamics during face perception in infants. Physics in Medicine and

Biology 52, pp. 6849-6864.

Boas, D.A., Gaudette, T., Strangman, G., Cheng, X., Marota, J.J.A. & Mandeville, J.B.,

2001. The Accuracy of Near Infrared Spectroscopy and Imaging during Focal Changes

in Cerebral Hemodynamic. NeuroImage 13, pp. 76-90.

Böcker, K.B.E., van Avermaete, J.A.G. & van den Berg-Lennsen, M.M.C., 1994. The

international 10-20 system revisited: cartesian and spherical co-ordinates. Brain

Topography 6, pp. 231-235.

Brett, M., Johnsrude, I.S. & Owen, A.M., 2002. The problem of functional localization in

the human brain. Nat. Rev., Neurosci. 3, pp. 243–249.

Brinkmann, B.H., O'Brien, T.J., Dresner, M.A., Lagerlund, T.D., Sharbrough, F.W. &

Robb, R.A., 1998. Scalp-recorded EEG localization in MRI volume data. Brain

Topography 10, pp. 245-253.

Brodmann, K., 1905. Beiträge zur histologischen Lokalisation der Grosshirnrinde: dritte

Mitteilung: Die Rindenfelder der niederen Affen. Journal für Psychologie und Neurologie

4, pp. 177-226.

Brodmann, K., 1909. Vergleichende Lokalisationslehre der Grosshirnrinde in ihren

Prinzipien dargestellt auf Grund des Zellenbaues. J.A. Barth, Leipzig (In German).

Brodmann, K., 1912. Neue Ergebnisse u¨ber die vergleichende histologische

Lokalisation der Grosshirnrinde. Anat. Anz. 41, pp. 157– 216 (In German).

Brown, D., 1984. Tools of the trade. Close range photogrammetry and surveying - state

of the art. Pub. The American Society of Photogrammetry. 941 pages, pp. 83-252.



References

318

Brown, L.G., 1992. A survey of image registration techniques. ACM Computing Surveys,

24(4), pp. 325-376.

Brown, D., 1971. Close-Range Camera Calibration. Photogrammetric Engineering,

37(8), pp. 855-866.

Brown, D., 1976. The bundle adjustment - progress and prospects. Invited paper,

Commission III, Proc. Of XIIIth ISP Congress. International Archives of Photogrammetry

21(3), 33 p.

Bruce, H.W., 1978. Understanding secondary color. Optical Spectra 12, pp.44-46.

Buchsbaum, W.H., 1975. Color TV Servicing, third edition. Englewood Cliffs, NJ:

Prentice Hall.

Burner, A.W., Snow, W.L., Shortis, M.R. & Goad, W.K., 1990. Laboratory calibration and

characterization of video cameras. SPIE. Vol. 1395. Close Range Photogrammetry

Meets Machine Vision. pp. 664-671.

Calder, A.J., Lawrence, A.D. & Young, A.W., 2001. Neuropsychology of Fear and

Loathing. Nature Reviews Neuroscience, Vol.2 No.5, pp. 352-363.

Canny, J.F., 1986. A computational approach to edge detection. IEEE Trans pattern

Analysis and machine Intelligence, 8, pp. 679-698.

Canon, 2009. Technology explained - digital SLR:

http://www.canon.co.uk/Images/EOS-1D_Mark_IV_Technologies_Explained_tcm14-68

7344.pdf

Chance, B., Anday, E., Nioka, S., Zhou, S., Hong, L., Worden, K., Li, C., Murray, T.,

Ovetsky, Y., Pidikiti, D. & Thomas, R., 1998. A novel method for fast imaging of brain

function, non-invasively, with light. Optics Express 2, pp. 411-423.



References

319

Chen, J. & Clarke, T.A., 1992. The automatic location and identification of targets in

digital photogrammetric engineering measurement. Int. Archives of Photogrammetry

and Remote Sensing, XVII(5), pp. 686-693.

Chen, J., Clarke, T.A., Cooper, M.A.R. & Grattan, K.T.V.G., 1995. An optimised target

matching based on a 3-D space intersection and a constrained search for multiple

camera views, Videometrics III. SPIE Vol. 2350, pp. 324 - 335.

Chen, J., Clarke, T.A. & Robson, S., 1993. An alternative to the epipolar method for

automatic target matching matching in multiple images for 3-D measurement. Optical

3-D measurements techniques II, Pub. Wichmann, Karlsruhe, pp. 197-204.

Chen, Y. & Medioni, G., 1992. Object modelling by registration of multiple range images.

Image and Vision Computing 10(3), pp. 145-155.

Cheong, W.F., Prahl, S.A. & Welch, A.J., 1990. A review of the optical properties of

biological tissues. IEEE Journal of Quantum Electron. 26, pp. 2166-2185.

Chetverikov, D., 1991. Fast neighborhood search in planar point sets. Pattern

Recognition Letters 12(7), pp. 409-412.

Clarke, T.A., Cooper, M.A.R. & Fryer, J.C., 1993. An estimator for the random error in

subpixel target location and its use in the bundle adjustment. Optical 3-D Measurement

Techniques II, Ed. A. Gruen & H. Kahmen, Pub. Wichmann, Karlsruhe, pp. 161-168.

Clarke, T.A., 1994. An analysis of the properties of targets uses in digital close

range photogrammetric measurement. Videometrics III. Boston. SPIE Vol. 2350, pp.

251- 262.

Clarke, T.A., Cooper, M.A.R., Chen, J. & Robson, S. 1994. Automated 3-D

measurement using multiple CCD camera views. Photogrammetric Record. Vol. XV. No

86, pp. 315-322.



References

320

Clarke, T.A. & Fryer, J.G., 1998. The development of camera calibration methods and

models. The Photogrammetric Record, Vol. 16(91), pp. 51-66.

Clarke, T.A., Robson, S., Qu, D.N., Wang, X., Cooper, M.A.R. & Taylor, R.N., 1995. The

sequential tracking of targets in a remote experimental environment. International

Archives of Photogrammetry and Remote Sensing, 30(5W1), pp. 80–85.

CNN review, 2011:

http://reviews.cnet.com/webcams/logitech-quickcam-pro-4000/4505-6502_7-20276742.

html?tag=rnav#reviewPage1

Collins, D.L., Neelin, P., Peters, T.M. & Evans, A.C., 1994. Automatic 3D intersubject

registration of MR volumetric data in standardized Talairach space. J. Comput. Assist.

Tomogr. 18, pp. 192–205.

Cooper, R.J., Everdell, N.L., Enfield, L.C., Gibson, A.P., Worley, A. & Hebden, J.C.,

2009. Design and evaluation of a probe for simultaneous EEG and near-infrared

imaging of cortical activation. Physics in Medicine and Biology 54, pp. 2093-2102.

Cope, M., 1991. The application of near-infrared spectroscopy to non-invasive

monitoring of cerebral oxygenation in the newborn infant. PhD thesis. University College

London.

Correia, T., Banga, A., Everdell, N.L., Gibson, A.P. & Hebden, J.C., 2009. A quantitative

assessment of the depth sensitivity of an optical topography system using a solid

dynamic tissue-phantom. Phys. Med. Biol. 54, pp. 6277-6286.

Cronk, S., Fraser, C.S. & Hanley, H.B., 2006. Automatic Calibration of Colour Digital

Cameras. Photogammetric Record. Vol. 21, Issue 116, pp. 355–372.

Crossman, A.R. & Neary, D., 1995. Neuroanatomy an illustrated colour text. 1st ed.

Edinburgh: Churchill Livingstone.



References

321

CUDA, 2007. NVIDIA CUDA Compute Unified Device Architecture Programming Guide,

V. 1.0.

Curry, S., Baumrind, S. & Anderson, J., 1986. Calibration of an Array Camera.

Photogrammetry Engineering & Remote Sensing, 52(5), pp.627-636.

Cyberware: http://www.cyberware.com/.

Dahler, J., 1987. Problems in Digital Image Acquisition with CCD cameras.

Intercommission Conference on Fast Processing of Photogrammetric Data, pp. 48-59.

Darrell, T., Maes, P., Blumberg, B. & Pentland, A.P., 1994. A novel environment for

situated vision and behavior. In Workshop on Visual Behaviors, 19 June, Seattle, WA,

USA, pp.68–72.

Debevec, P., Taylor, C.J. & Malik, J., 1996. Modeling and rendering architecture from

photographs: A hybrid geometry and image-based approach. SIGGRAPH’96, pp.

11–20.

Deng, T., 1987. Accuracy of position estimation by centroid. Intelligent Robots and

Computer Vision, SPIE Vol. 848, pp. 141-150.

Dewitt, B.A., 1996. Initial approximations for the three-dimensional conformal coordinate

transformation. Photogrammetric Engineering & Remote Sensing, 62(1), pp. 79-83.

DGAP, 2005:

http://www.ifp.uni-stuttgart.de/publications/software/openbundle/index.en.html.

Dimitrijevic, M., Lepetit, V., Fua, P., 2006. Human Body Pose Detection Using Bayesian

Spatio-Temporal Templates. Computer Vision and Image Understanding, 104(2-3),

pp.127–139.

DirectShow: http://msdn.microsoft.com/en-us/library/dd375454%28v=vs.85%29.aspx.



References

322

Duncan, J., Seitz, R.J., Kolodny, J., Bor, D., Herzog, H., Ahmed, A., Newell, F.N. &

Emslie, H., 2000. A neural basis for General Intelligence. Science 289 (5478), pp.

457-460.

dwBitRate definition, 2011:

http://msdn.microsoft.com/en-us/library/dd407325%28v=vs.85%29.aspx.

Efford, N., 2000. Digital Image Processing - a practical introduction using Java, Addison

Wesley.

El-Hakim, S.F., Beraldin, J.A. & Blais, F., 2003. Critical factors and configurations for

practical image-based 3D modeling. Proceedings of 6th Conference Optical 3D

Measurements Techniques. Zurich, Switzerland. Vol. II, pp. 159-167.

El-Hakim, S.F., 1986. Real-time image metrology with CCD cameras. Photogrammetric

Engineering and Remote Sensing, 52(11), pp. 1757-1766.

El-Hakim, S.F., 2001. A flexible approach to 3D reconstruction from single images. ACM

Proceedings of SIGGRAPH, Technical Sketches, Los Angeles, California, pp. 186.

El-Hakim, S.F., 2002. Semi-automatic 3D reconstruction of occluded and unmarked

surfaces from widely separated views. International Archives of Photogrammetry,

Remote Sensing and Spatial Information Sciences, Vol. 34, Part 5, pp. 143-148.

Evans, A.C., Collins, D.L. & Milner, B., 1992. An MRI-based stereotactic atlas from 250

young normal subjects. Journal Soc. Neurosci. Abstr. 18, pp. 408.

Evans, A.C., Collines, D.L., Mills, S.R., Brown, E.D., Kelly, R.L. & Peters, T.M., 1993.

3D statistical neuroanatomical models from 305 MRI volumes. Proc. IEEE-Nuclear

Science Symposium and Medical Imaging Conference, pp. 1813-1817.



References

323

Evans, A.C., Kamber, M., Collins, D.L. & Macdonald, D., 1994. An MRI-based

probabilistic atlas of neuroanatomy. Magnetic Resonance Scanning and Epilepsy

(NATO ASI Series A, Life Sciences), volume 264, Edited by Shorvon, S., Fish, D.,

Andermann, F., Bydder, G.M. & Stefan, H., Plenum Press, pp. 263-274.

Everdell, N.L., Gibson, A.P., Tullis, I.D.C., Vaithianathan, T., Hebden, J.C. & Delpy, D.T.,

2005. A frequency multiplexed near-infrared topography system for imaging functional

activation in the brain. Review of Scientific Instruments 76, 093705.

Faugeras, O. & Mourrain, B., 1995. On the geometry and algebra of the point and line

correspondences between N images. Research Report No-2665, INRIA

Sophia-Antipolis, BP 93 Sophia-Antipolis, Cedex, France.

Fischl, B., Sereno, M., Tootell, R. & Dale, A., 1999. High-resolution intersubject

averaging and a coordinate system for the cortical surface. Human Brain Mapping, 8, pp.

272-284.

Fitzgibbon, A.W. & Zisserman, A., 1998. Automatic 3D Model Acquisition and

Generation of New Images from Video Sequences. European Signal Processing

Conference, pp. 1261-1269.

Fleishman, S., Cohen-Or, D. & Lischinski, D., 2000. Automatic camera placement for

image-based modeling. Computer Graphics Forum, 19(2), pp.101 - 110.

Förstner, W., Gülch, E., 1987. A Fast Operator for Detection and Precise Location of

Distinct Points, Corners and Centres of Cicular Features. Intercommission Conference

on Fast Processing of Photogrammetric Data, Interlaken, Switzerland. pp. 281-305.

Fraser, C.S. & Al-Ajlouni, S., 2006. Zoom-dependent camera calibration in digital

close-range photogrammetry. Photogramm. Eng. Remote Sensing 72, pp. 1017–1026.

Fraser, C.S., 1980. Multiple Focal Setting Self-Calibration of Close Range Cameras.

Photogrammetric Engeering & Remote Sensing, 46(11), pp.1439-1445.



References

324

Fraser, C.S., 1997. Digital camera self-calibration. ISPRS, Journal of Photogrammetric

& Remote Sensing, 52, pp. 149-159.

Fryer, J.G., 1988. Lens Distortion and Film Flattening: their Effect on Small Format

Photogrammetry. International Archives of Photogrammetry and Remote Sensing 27(5),

pp. 194-202.

Fryer, J.G., Clarke, T.A. & Chen, J., 1994. Lens distortion for simple 'C' mount lenses".

International Archives of Photogrammetry and Remote Sensing, 30(5), pp. 97-101.

Fryer, J.G., Mitchell, H. & Chandler, J., 2007. Applications of 3D Measurement from

Images. Whittles Publishing: Scotland, UK.

Furukawa, Y., Curless, B., Seitz, S.M. & Szeliski, R., 2010. Towards Internet-scale

Multi-view Stereo. Computer Vision and Pattern Recognition, pp. 1434-1441.

Furukawa, Y. & Ponce, J., 2010. Accurate, Dense, and Robust Multi-View Stereopsis.

IEEE Trans. on Pattern Analysis and Machine Intelligence, 32(8).

Gavrila, D.M. & Davis, L.S., 1996. 3D Model-Based Tracking of Humans in Action: A

Multi-View Approach. IEEE Conf on Computer Vision and Pattern Recognition, pp.

73-80.

Gerth, B., Berndt, R., Havemann, S. & Fellner, D.W., 2005. 3D modeling for non-expert

users with the castle construction Kit v0.5t. 6th International Symposium on Virtual

Reality, Archaeology and Cultural Heritage - VAST, Mudge/Ryan/Scopigno (Eds), pp.

1-9.

Gevins, A., Le, J., Brickett, P., Reutter, B. & Desmond, J.E., 1991. Seeing through the

skull: advanced EEGs use MRIs to accurately measure cortical activity from the scalp.

Brain Topography 4, pp. 125-131.



References

325

Gevins, A., Le, J., Martin, N.K., Brickett, P., Desmond, J. & Reutter, B., 1994. High

resolution EEG: 124-channel recording, spatial deblurring and MRI integration methods.

Electroencephalography and Clinical Neurophysiology 90, pp. 337-358.

Gibson, A.P., Hebden, J.C. & Arridge, S.R., 2005. Recent advances in diffuse optical

imaging. Physics in Medicine and Biology 50, R1-R43.

Gibson, A.P., Riley, J., Schweiger, M., Hebden, J.C., Arridge, S.R. & Delpy, D.T., 2003.

A method for generating patient-specific finite element meshes for head modeling. Phys.

Med. Biol. 48, pp. 481– 495.

Goktepe, A. & Kocaman, E., 2011. Using Direct Linear Transformation Method in X-Ray

Photogrammetry and an Illustrative Study. Experimental Techniques.

doi: 10.1111/j.1747-1567.2011.00740.x.

Gonzalez, R.C. & Woods, R.E., 1992. Digital Image Processing. Addison Wesley

Publishing Co.

Goodwin, J.A., van Meurs, W.L., Sa Couto, C.D., Beneken, J.E.W & Graves, S.A., 2004.

A model for educational simulation of infant cardiovascular physiology. Anesth. Analg.

99, pp. 1655–1664.

Gottschalk, S. & Hughes, J.F., 1993. Autocalibration for virtual environments tracking

hardware. In ACM SIGGRAPH 1993, pp. 65–72.

Granshaw, S.I., 1980. Bundle adjustment methods in engineering photogrammetry.

Photogramm. Rec. 10, pp. 181–208.

Grimson, W.E.L., 1990. The combinatorics of object recognition in cluttered

environments using constrained search. Artificial Intelligence Journal 44(1-2), pp.

121–166.



References

326

Gruen, A., 1976. Die simultane Kompensation systematischer Fehler mit dem

Münchner Bündelprogramm MBOP. International Archives of Photogrammetry and

Remote Sensing, Vol. 21, Part 3, Presented Paper, Commission III/1, ISP Congress,

Helsinki.

Gruen, A., 1978. Accuracy, Reliability and Statistics in Close-Range Photogrammetry.

In: Symposium of ISP, Commission V, Stockholm, Sweden.

Gruen, A., 1981. Precision and reliability aspects in close-range photogrammetry.

Photogrammetric Journal of Finland, Vol. 8(2), pp. 117-132.

Gruen, A., 2000. Semi-automated approaches to site recording and modeling.

International Archives of Photogrammetry, Remote Sensing and Spatial Information

Sciences, Vol. 33, Part 5/1, pp. 309-318.

Gruen, A. & Akca, D., 2005. Least squares 3D surface and curve matching. ISPRS

Journal of Photogrammetry and Remote Sensing 59 (3), pp. 151-174.

Gruen, A. & Baltsavias, E., 1988. Geometrically constrained multiphoto matching.

Photogrammetric Engineering and Remote Sensing, 54(5), pp.633-641.

Gruen, A. & Beyer, H.A., 2001. System calibration through self-calibration. In

‘Calibration and Orientation of Cameras in Computer Vision’ Gruen and Huang (Eds.),

Springer Series in Information Sciences 34, pp. 163-194.

Gruen, A., Zhang, L. & Visnovcova, J., 2001. Automatic reconstruction and visualization

of a complex Buddha Tower of Bayon, Angkor, Cambodia. Proceedings 21.

Wissenschaftlich-Technische Jahrestagung der DGPF, pp. 289-301.

Gulch, E., 1986. Calibration of CCD Video Cameras. Proceedings of ISPRS

Symposium on Progress in Imaging Sensors, Stuttgart, pp. 391-403.



References

327

Haddock, R.E. & Hill, C.E., 2005. Rhythmicity in arterial smooth muscle. J Physiol

(Lond)., 566: 645-656.

Haritaoglu, I., Harwood, D. & Davis, L.S., 1998. W4: Who, when, where, what: a real

time system for detecting and tracking people. 3rd IEEE Int. Conf. Automatic Face and

Gesture Recognition, Nara, Japan.

Hartley, R., 2000. Ambiguous configurations for 3-view projective reconstruction.

European Conference of Computer Vision, Dublin, Ireland, Springer-Verlag, pp.

922-935.

Hebden, J.C. 2003. Advances in optical imaging of the newborn infant brain.

Psychophysiology 40, pp. 501–10.

Hebden, J.C., Brunker, J., Correia, T., Price, B.D., Gibson, A.P. & Everdell, N.,

2008. An electrically-activated dynamic tissue-equivalent phantom for assessment of

diffuse optical imaging systems. Physics in Medicine and Biology 53, pp. 329-337.

Hillman, E., 2002. Experimental and theoretical investigations of near infrared

tomographic imaging methods and clinical applications. PhD thesis. University College

London.

Hilton, A., 1999. Towards model-based capture of a persons shape appearance and

motion. In IEEE International Workshop on Modelling People, 20 Sept., Kerkyra,

Greece, pp.37–44.

Hogg, D.C., 1984. Interpreting Images of a Known Moving Object. PhD thesis,

University of Sussex, UK.

Homan, R.W., Herman, J. & Purdy, P., 1987. Cerebral location of international 10 – 20

system electrode placement. Electroencephalogr. Clin. Neurophysiol. 66, pp. 376– 382.



References

328

Huang, Y. & Trinder, J.C., 1993. A procedure for fully automated orientation of camera in

digital close range photogrammetry. Optical 3-D Measurement Techniques II, Ed. A.

Gruen & H. Kahmen, Pub. Wichmann, Karlsruhe, pp. 339-346.

Huppertz, H.J., Otte, M., Grimm, C., Kristeva-Feige, R., Mergner, T. & Lücking, C.H.,

1998. Estimation of the accuracy of a surface matching technique for registration of

EEG and MRI data. Electroencephalography and Clinical Neurophysiology 106, pp.

409-415.

Ives, J.R., Warach, S., Schmitt, F., Edelman, R.R. & Schomer, D.L., 1993. Monitoring

the patient's EEG during echo planar MRI. Electroencephalography and Clinical

Neurophysiology 87: 417-420.

Iwai, Y., Ogaki, K. & Yachida, M., 1999. Posture estimation using structure and motion

models. In Seventh IEEE International Conference on Computer Vision, 20-27 Sept.,

Kerkyra, Greece, Vol. 1, pp. 214–19.

Jiang, A., Kennedy, D.N., Baker, J.R., Weisskoff, R.M., Tootel, R.B.H. & Woods, R.P.,

1995. Motion detection and correction in functional MR imaging. Human Brain Mapping,

3, pp. 1-12.

Jordan, H.J., Wegner, M. & Tiziani, H., 1998. Highly accurate non-contact

characterization of engineering surfaces using confocal microscopy. Meas. Sci. Technol.

9, pp. 1142–1151.

Jurcak, V., Okamoto, M., Singh, A.K. & Dan, I., 2005. Virtual 10-20 measurement on

MR images for inter-modal linking of transcranial and tomographic neuroimaging

methods. Neuroimage, vol. 26, pp. 1184-1192.

Jurcak, V., Tsuzuki, D. & Dan, I., 2007. 10/20, 10/10, and 10/5 systems revisited: their

validity as relative head-surface-based positioning systems. NeuroImage 34, pp.

1600–1611.



References

329

Kahl, F., Hartley, H. & Åström, K., 2001. Critical configurations for N-views projective

reconstruction. IEEE Computer Vision and Pattern Recognition, Vol. 2, pp. 158-163.

Kanade, T., Rander, P. & Narayanan, P.J., 1997. Virtualized reality: Constructing virtual

worlds from real scenes. IEEE Multimedia, Immersive Telepresence, 4(1), pp. 34–47.

Kanade, T. & Saito, H., 1998. The 3D room: Digitizing time-varying 3d events by

synchronized multiple video streams. Technical Report CMU-RI-TR-98-34, Robotics

Institute, Carnegie-Mellon University.

Kavanagh, R.H., Darcey, T.M., Lehmann, D. & Fender, D.H., 1978. Evaluation of

methods for three-dimensional localization of electrical sources in the human brain.

IEEE-Biomedical Engineering 25.

Keith Jack, 2007. Video Demystified, 5th Edition, Publisher: Newnes.

Kim, K., Chalidabhongse, T.H., Harwood, D. & Davis, L., 2004. Background modeling

and subtraction by codebook construction. IEEE International Conference on Image

Processing.

Koenig, K., 2001. Multiphoton microscopy in life sciences. J. Microsc. 200, pp. 83-104.

Koizumi, H., Yamamoto, T., Maki, A., Yamashita, Y., Sato, H., Kawaguchi, H. &

Ichikawa, N., 2003. Optical topography: practical problems and new applications.

Applied Optics, Vol. 42, pp. 3054-3062.

Kosar, V., Gomzi, Z. & Antunovi´c, S., 2005. Cure of polyester resin in a cylindrical

mould heated by air. Thermochimica Acta., pp. 134-141.

Kozubek, M. & Matula, P., 2001. An efficient algorithm for measurement and correction

of chromatic aberrations in fluorescence microscopy. J. Microsc. 200, pp. 206–221.



References

330

Kusaka, T., Kawada, K., Okubo, K., Nagano, K., Namba, M., Okada, H., Imai, T., Isobe,

K. & Itoh, S., 2004. Noninvasive optical imaging in the visual cortex in young infants.

Human Brain Mapping 22, pp. 122-132.

Kwon, Y.H., 1989. The effects of different control point conditions on the DLT calibration

accuracy. Unpublished class project report, Pennsylvania State University.

Läbe, T. & Förstner, W., 2004. Geometric Stability of Low-Cost Digital Consumer

Cameras. In Proceedings of the ISPRS Congress, pp. 528-535.

Lagerlund, T.D., Sharbrough, F.W., Jack, C.R., Bradley, J.E., Strelow, D.C., Cicora, K.M.

& Busacker, N.E., 1993. Determination of 10-20 system electrode locations using

magnetic resonance imaging scanning with markers. Electro-encephalography and

Clinical Neurophysiology 86, pp. 7-14.

Lamm, C., Windischberger, C., Ledolter, U., Moser, E. & Bauer, H., 2001.

Co-registration of EEG and MRI data using matching of spline interpolated and

MRI-segmented reconstruction's of the scalp surface, Brain Topography 14, pp. 93-100.

Latombe, J.C., 1991. Robot Motion Planning. Kluwer Academic Publishers.

Lee, S.C. & Nevatia, R., 2003. Interactive 3D building modeling using a hierarchical

representation. International Workshop on Higher-Level Knowledge in 3D Modeling and

Motion Analysis, IEEE Computer Society, pp. 58–65.

Li, Z.J., Hiroshi, M., Takashi, A. & Takashi, O., 2004. Gender difference in brain

perfusion 99mTc-ECD SPECT in aged healthy volunteers after correction for partial

volume effects. Nuclear Medicine Communication. 25(10), pp. 999-1005.

Li, F., Brady, M. & Wiles, C., 1996. Fast computation of the fundamental matrix for an

active stereo vision system. In Proceeding of ICCV’96 International Conference on

Computer Vision, pp. 157-166.



References

331

Liebowitz, D., Criminisi, A. & Zisserman, A., 1999. Creating Architectural Models from

Images. EUROGRAPHICS, 18(3).

Logilink: http://www.logilink.eu/PCI%20express.htm.

Luhmann, T., Robson, S., Kyle, S. & Harley, I., 2006. Close range photogrammetry

principles, methods, and applications. Whittles Publishing, Dunbeath, Scotland, UK.

Luo, Y.C. & Duraiswami, R., 2008. Canny edge detection on NVIDIA CUDA. IEEE

Computer Society Conference on Computer Vision and Pattern Recognition

Workshops.

Maintz, J.B.A. & Viergever, M.A., 1998. A survey of medical image registration. Medical

Image Analysis, 2(1), pp. 1-36.

Maki, A., Yamashita, Y., Ito, Y., Watanable, E., Mayanagi, Y. & Koizumi, H., 1995.

Spatial and temporal analysis of human motor activity using noninvasive NIR

topography. Med. Phys. 22, pp. 1997-2005.

Malmivuo, J. & Plonsey, R., 1995. Bioelectromagnetism: Principles and Applications of

Bioelectric and Biomagnetic Fields. Oxford University Press, New York.

Marieb, E.N. & Hoehn, K., 2006. Human Anatomy & Physiology. Seventh edition. New

York: Pearson International Edition.

Mason, S. & Gruen, A., 1995. Automatic sensor placement for accurate dimensional

inspection. Comput. Vision Image Understanding 61 3, pp. 454–467.

Mason, S., 1995. Conceptual model of the convergent multistation network

configuration task. Photogrammetric Record 15 86, pp. 227–299.



References

332

Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., Woods, R., Paus, T.,

Simpson, G., Pike, B., Holmes, C., Collins, L., Thompson, P., MacDonald, D., Iacoboni,

M., Schormann, T., Amunts, K., Palomero-Gallagher, N., Geyer, S., Parsons, L., Narr,

K., Kabani, N., Le Goualher, G., Boomsma, D., Cannon, T., Kawashima, R. & Mazoyer,

B., 2001a. A probabilistic atlas and reference system for the human brain: International

Consortium for Brain Mapping (ICBM). Philos. Trans. R. Soc. London, Ser. B Biol. Sci.

356, pp. 1293–1322.

Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., Woods, R., Paus, T.,

Simpson, G., Pike, B., Holmes, C., Collins, L., Thompson, P., MacDonald, D., Iacoboni,

M., Schormann, T., Amunts, K., Palomero-Gallagher, N., Geyer, S., Parsons, L., Narr,

K., Kabani, N., Le Goualher, G., Feidler, J., Smith, K., Boomsma, D., Hulshoff Pol, H.,

Cannon, T., Kawashima, R. & Mazoyer, B., 2001b. A four-dimensional probabilistic

atlas of the human brain. J. Am. Med. Inform. Assoc. 8, pp. 401–430.

Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J. & Woods, R., 2000. A

probabilistic approach for mapping the human brain. In: Toga, A.W., Mazzoiotta, J.C.

(Eds.), Brain Mapping: The Systems. Academic Press, San Diego, pp. 141–156.

McHugh, S., 2005.

http://www.cambridgeincolour.com/tutorials/lens-quality-mtf-resolution.htm.

McKenna, S., Jabri, S., Duric, Z., Rosenfeld, A. & Wechsler, H., 2000. Tracking groups

of people. Computer Vision: Image Understanding, Vol. 80, No. 1, pp. 42–56.

McNamee, L.P., Petriu, E.M. & Spoelder, H.J.W., 2001. Photogrammetry calibration of a

mobile robot model. IEEE Instrumentation and Measurement Technology Conference:

Vol. 1, pp. 245-250.

MeshLab: http://meshlab.sourceforge.net/.

Methley, B.D.F., 1986. Computational Models in Surveying and Photogrammetry.

Thomson Press Limited, 346 pages.



References

333

Mills, J.P., Schneider, D., Barber, D.M. & Bryan, P.G., 2003. Geometric assessment of

the kodak DCS Pro back. Photogram. Rec. 18, pp. 193-208.

Mitchell, H.L. & Newton, I., 2002. Medical photogrammetric measurement: overview

and prospects. ISPRS Journal of Photogrammetry and Remote Sensing, Volume

56, Number 5, pp. 286-294(9).

MNI brain and the Talairach atlas:

http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach.

Motion Analysis Cooperation: http://www.motionanalysis.com/.

Narayanan, P.J., Rander, P.W. & Kanade, T., 1998. Constructing virtual worlds using

dense stereo. In IEEE 6th International Conference on Computer Vision, 4-7 Jan,

Bombay, India, pp. 3–10.

NDI: http://www.ndigital.com/.

Neugebauer, P.J., 1997. Reconstruction of real-world objects via simultaneous

registration and robust combination of multiple range images. International Journal of

Shape Modeling, Vol. 3 (1&2), pp. 71-90.

Niemz, M.H., 1999. Laser-Tissue Interactions. Springer-Verlag.

Nister, D., 2004. Automatic passive recovery of 3D from images and video. IEEE

Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization,

and Transmission, pp. 438-445.

Obrig, H. & Villringer, A., 2003. Beyond the visible-imaging the human brain with light. J

Cereb. Blood Flow Metab., Vol. 23, pp. 1-18.



References

334

Okamoto, M., Dan, H., Sakamoto, K., Takeo, K., Shimizu, K., Kohno, S., Oda, I., Isobe,

S., Suzuki, T., Kohyama, K. & Dan, I., 2004a. Three-dimensional probabilistic

anatomical cranio-cerebral correlation via the international 10-20 system oriented for

transcranial functional brain mapping. Neuroimage, vol. 21, pp. 99-111.

Okamoto, M., Dan, H., Shimizu, K., Takeo, K., Amita, T., Oda, I., Konishi, I., Sakamoto,

K., Isobe, S., Suzuki, T., Kohyama, K. & Dan, I., 2004b. Multimodal assessment of

cortical activation during apple peeling by NIRS and fMRI. Neuroimage, vol. 21, pp.

1275-1288.

Okamoto, M. & Dan, I., 2005. Automated cortical projection of head-surface locations

for transcranial functional brain mapping. Neuroimage, vol. 26, pp. 18-28.

Olague, G. & Mohr, R., 1998. Optimal camera placement to obtain accurate 3d point

positions. In Fourteenth International Conference on Pattern Recognition, Vol. 1, pp.

8–10.

OpenCV – Open Computer Vision library:

http://www.intel.com/research/mrl/research/opencv/.

Page, A., Moreno, R., Candelas, P. & Belmar, F., 2008. The accuracy of webcams in 2D

motion analysis: sources of error and their control. European Journal of Physics: Vol. 29,

No. 4.

Parikesit, G.O.F., Darmawan, M. & Faisal, A., 2010. Quantitative low-cost

webcam-based microscopy. Optical Engineering, Vol. 49, Issue 11, pp. 113205.

Pavlidis, T., 1982. Algorithms for graphics and image processing. Published by

Springer-Verlag, Berlin, 416 pages.

Peipe, J. & Stephani, M., 2003. Performance evaluation of a 5 megapixel digital metric

camera for use in architectural photogrammetry. In Proceedings of the XX International

Congress for Photogrammetry and Remote Sensing, Ancona, Italy, pp. 259-262.



References

335

Perrin, F., Pernier, J., Bertrand, O., Giard, M.H. & Echallier, J.F., 1987. Mapping of

scalp potentials by surface spline interpolation. Electroencephalography and Clinical

Neurophysiology 66, pp. 75-81.

Pervölz, K., Nüchter, A., Surmann, H. & Hertzberg, J., 2004. Automatic reconstruction

of colored 3D models. Proc Robotik, Vol. 1841, pp. 215-222.

Pollak, C. & Hutter, H., 1998. A webcam as recording device for light microscopes. J.

Comput. Assist. Microsc. 10, pp. 179–183.

Pollefeys, M., Koch, R., Vergauwen, M. & Van Gool, L., 1999. An Automatic Method for

Acquiring 3D Models from Photographs: applications to an Archaeological Site.

International Archive of Photogrammetry and Remote Sensing, Vol. XXXII, Part 5W11,

pp.76-80.

Rander, P., Narayanan, P.J. & Kanade, T., 1997. Virtualized reality: Constructing

time-varying virtual worlds from real events. In Proceedings of IEEE Visualization 1997,

pp. 277–283.

Remondino, F. & Börlin, N., 2004. Photogrammetric Calibration of Image Sequences

Acquired with Rotating Camera. International Archives of Photogrammetry, Remote

Sensing and Spatial Information Sciences, Vol. XXXIV, Part 5/W16.

Remondino, F. & Fraser, C., 2006. Digital camera calibration methods: considerations

and comparisons. Int. Soc. Photogramm. Remote Sens., XXXVI, pp. 266-272.

Rieke-Zapp, D.H. & Peipe, J., 2006. Performance evaluation of a 33 megapixel alpa 12

medium format camera for digital close range photogrammetry. In Proceedings of the

ISPRS Commission V Symposium of Image Engineering and Vision Metrology,

Dresden, Germany.

Robson, S., Clarke, T.A. & Chen, J., 1993. The suitability of the Pulnix TM6CN CCD

camera for photogrammetric measurment. SPIE Vol. 2067, Videometrics II, pp. 66-77.



References

336

Robson, S. & Shortis, M.R., 1998. Practical influences of geometric and radiometric

image quality provided by different digital camera systems. Photogrammetric Record,

16(92), pp. 225-248.

Rosales, R. & Sclaroff, S., 2000. Inferring Body Pose without Tracking Body Parts, IEEE

Conf on Computer Vision and Pattern Recognition, pp.II, pp. 721-727.

Roth, D.G., 2004. Automatic correspondences for photogrammetric model building.

Proceedings of the XXth ISPRS Congress, Istanbul, Turkey.

Rusinkiewicz, S. & Levoy, M., 2001. Efficient variants of the ICP algorithm. IEEE

International Conference on 3D Digital Imaging and Modeling, pp. 145-152.

Sabel, J.C., van Veenendaal, H.L.J. & Furnee, 1993. PRIMAS, a real time 3D motion

analysis system. Optical 3-D Measurement Techniques II. Published by Wichmann,

Karlsruhe, pp. 530-537.

Saito, H. & Kanade, T., 1999. Shape reconstruction in projective grid space from large

number of images. In 1999 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, Vol. 2, pp.49–54.

Sanz-Ablanedo, E., Rodríguez-Pérez, J.R., Armesto, J. & Taboada, M.F.A., 2010.

Geometric Stability and Lens Decentering in Compact Digital Cameras. Sensors 10, pp.

1553-1572.

Scharstein, D. & Szeliski, R., 2002. A Taxonomy and Evaluation of Dense Two-Frame

Stereo Correspondence Algorithms. International Journal of Computer Vision, Vol.

47(1/2/3), pp. 7–42.

Schoberl, J., 1997. NETGEN—An advancing front 2D/3D-mesh generator based on

abstract rules. Comput. Vis. Sci. 1, pp. 41–52.



References

337

Shier, D., Butler, J. & Lewis, R., 2001. Hole's human anatomy and physiology, 9th.

McGraw-Hill.

Shortis, M.R., Ogleby, C.L., Robson, S., Karalis, E.M. & Beyer, H.A., 2001. Calibration

modelling and stability testing for the Kodak DC200 series digital still camera. In

Proceedings of SPIE Videometrics and Optical Methods for 3D Shape Measurement, pp.

148-153.

Shortis, M.R., Robson, S. & Beyer, H.A., 1998. Principal point behaviour and calibration

parameter models for Kodak DCS cameras. Photogram. Rec., 16, pp. 165-186.

Shortis, M.R., Seager, J.W., Robson, S., Harvey, E.S., 2003. Automatic recognition of

coded targets based on a Hough transform and segment matching. SPIE Proceedings

Series Vol. 5013, pp. 202-208.

Shortis, M.R., Snow, W.L., Childers, B.A. & Goad, W.K., 1993. The influence of storage

media on the accuracy and repeatability of photogrammetric measurements using CCD

cameras. Proceedings, SPIE Vol. 2067 Videometrics II, pp. 80-92.

Shortis, M.R., Clarke, T.A. & Short, T., 1994. A comparison of some techniques for the

subpixel location of discrete target images, Videometrics III. SPIE Vol. 2350, pp.

239-250.

Sidney, F.R., 2002. Applied photographic optics, 3rd ed., Focal Press.

Simpson, G.V., Pflieger, M.E., Foxe, J.J., Ahlfors, S.P., Vaughan, H.G.J., Hrabe, J.,

Ilmoniemi, R.J. & Lantos, G., 1995. Dynamic neuroimaging of brain function. Journal of

Clinical Neurophysiology 12, pp. 432-449.

Singh, A.K., Okamoto, M., Dan H., Jurcak, V. & Dan I., 2005. Spatial registration of

multichannel multi-subject fNIRS data to MNI space without MRI. Neuroimage, vol. 27,

pp. 842-851.



References

338

Singh, K.D., Holliday, I.E., Furlong, P.L. & Harding, G.F., 1997. Evaluation of

MRIMEG/EEG co-registration strategies using Monte Carlo simulation.

Electro-encephalography and clinical Neurophysiology 102, pp. 81-85.

Snavely, N., Seitz, S.M. & Szeliski, R., 2006. Photo tourism: Exploring photo collections

in 3D. ACM Transactions on Graphics (SIGGRAPH Proceedings), 25(3), pp. 835-846.

Snow, W.L., Childers, B.A. & Shortis, M.R., 1993. The calibration of video cameras for

quantitative measurements. Presented paper, 39th International Instrumentation

Symposium, Albuquerque, New Mexico, 28 pages.

Sony datasheet of CCD image sensor ICX098BQ, 2003:

http://www.sony.net/Products/SC-HP/datasheet/90203/data/a6809927.pdf.

Souza, M.A.de, 2009. Acquiring accurate head surfaces of newborn infants for optical

tomography using digital photogrammetry. PhD Thesis.

Sprawls, P., 2000. The Physical Principles of Medical Imaging, 2nd Edition. Medical

Physics Publishing, Madison, WI.

Stauffer, C. & Grimson, W.E.L., 1999. Adaptive background mixture modelsfor real-time

tracking. Proceeding of Computer Vision and Pattern Recognition, pp. 246-252.

Taga, G., Asakawa, K., Maki, A., Konishi, Y. & Koizumi, H., 2003. Brain imaging in

awake infants by near-infrared optical topography. Proc. Nat. Acad. Sci. 100(19), pp.

10722-10727.

Talairach, J. & Szikla, G., 1967. Atlas d’anatomie stereotaxique du telencephale: etudes

anatomo-radiologiques. Masson and Cie, Paris.

Talairach, J. & Tournoux, P., 1988. Co-planar Stereotaxic Atlas of the Human Brain.

Thieme, New York.



References

339

Tarabanis, K.A., Allen, P.K. & Tsai, R.Y., 1995. A survey of sensor planning in computer

vision. IEEE Transactions on Robotics and Automation, 11(1), pp. 86 – 104.

Tecklenburg, W., Luhmann, T. & Hastedt, H., 2001. Camera modelling with

image-variant parameters and finite elements. Optical 3-D Measurement Techniques V,

Gruen, A., Kahmen, H. (Eds.), pp. 328-335.

Toga, A.W. & Thompson, P.M., 2001. Maps of the brain. Anat. Rec. 265, pp. 37–53.

Towle, V.L., Balanos, J., Suarez, D., Tan, K., Grzeszczuk, R., Levin, D.N., Cakmur, R.,

Frank, S.A. & Spire, J.P., 1993. The spatial location of EEG electrodes: locating the best

fitting sphere relative to cortical anatomy. Electroencephalography and Clinical

Neurophysiology 86, pp. 1-6.

Triggs, B. & Laugier, C., 1995. Automatic camera placement for robot vision tasks. In

Proceedings of 1995 IEEE International Conference on Robotics and Automation, pp.

1732–1737.

Triggs, B., McLauchlan, P., Hartley, R. & Fitzgibbon, A., 1999. Bundle Adjustment - A

Modern Synthesis. ICCV '99: Proceedings of the International Workshop on Vision

Algorithms. Springer-Verlag, pp. 298–372.

Trinder, J.C., 1989. Precision of digital target location. Photogrammetric Engineering &

Remote Sensing, Vol. 55, No 6, pp. 883-886.

Tsuzuki, D., Jurcak, V., Singh, A.K., Okamoto, M., Watanabe, E. & Dan, I., 2007. Virtual

spatial registration of stand-alone functional NIRS data to MNI space. Neuroimage, Vol.

34, pp. 1506-1518.

Turk, G. & Levoy, M., 1994. Zippered polygon meshes from range images. Proceedings

of the Annual Conference Series on Computer Graphics, pp. 311-318.



References

340

Vaithianathan, T., Tullis, I.D.C., Everdell, N., Leung, T., Gibson, A.P. & Delpy, D.T.,

2004. The Design of a portable infrared mapping system for functional imaging on

babies. Review of Scientific Instruments, 75(10), pp. 3276-3283.

Van den Heuvel, F.A., 1999. A line-photogrammetric mathematical model for the

reconstruction of polyhedral objects. In El-Hakim, Gruen (eds.), SPIE Proceedings,

Videometrics VI, Vol. 3641, pp. 60-71.

Vicon Motion Systems: http://www.vicon.com/.

VideoInput library: http://muonics.net/school/spring05/videoInput/.

VMS, 1999: Vision Metrology System. Developed by Robson, S. & Shortis, M..

http://www.geomsoft.com/VMS/index.shtml.

Wackrow, R., Chandler, J.H. & Bryan, P., 2007. Geometric consistency and stability of

consumer-grade digital cameras for accurate spatial measurement. Photogram. Rec. 22,

pp. 121-134.

Wang, L.W., Zhang, L., Yu, Z.J., Chen, F., Si, X.Y. & He, D.R., 2008. Precision circular

target location in vision coordinate measurement system. Advanced Materials and

Devices for Sensing and Imaging III. Proceedings of the SPIE, Volume 6829, pp.

68290J.

Wang, B., Toro, C., Zeffiro, T.A. & Hallet, M., 1994. Head surface digitization and

registration: a method for mapping positions on the head onto magnetic resonance

images. Brain Topography 6, pp. 185-192.

Weik, S., 1997. Registration of 3-D partial surface models using luminance and depth

information. IEEE International Conference on Recent Advances in 3D Digital Imaging

and Modeling, pp. 93-100.



References

341

Welch, G., 1996. SCAAT: Incremental Tracking with Incomplete Information. Ph.D.

thesis, TR96-051, University of North Carolina – Chapel Hill.

Welch, G., Bishop, G., Vicci, L., Brumback, S., Keller, K. & Colucci, D., 1999. The hiball

tracker: high-performance wide-area tracking for virtual and augmented environments.

In M. Slater, editor, VRST’99. Proceedings of the ACM Symposium on Virtual Reality

Software and Technology, 20-22 Dec., London, UK, pp.1–188.

Welch, G., Bishop, G., Vicci, L., Brumback, S., Keller, K. & Colucci, D., 2001. High

performance wide-area optical tracking - the hiball tracking system. Presence, 10(1), pp.

1– 21.

West, G.A.W. & Clarke, T.A., 1990. A survey and examination of subpixel measurement

techniques, Close range photogrammetry meets machine vision. SPIE Vol. 1395, pp.

456-463.

Wong, K.W. & Ho, W., 1986. Close range mapping with a solid state camera.

Photogrammetric engineering and remote sensing, Vol. 52, No 1, pp. 67-74.

Wong, S., Robson, S., Gibson, A. & Hebden, J., 2009. Low cost real-time web-cam

photogrammetry to determine the locations of optical topography sensors located on the

human head. Proceedings of RSPSoc 2009 Annual Conference, 8-11th September,

Leicester, UK. pp. 463-470.

Wong, S., Robson, S., Gibson, A. & Hebden, J., 2010. Real-time close range webcam

photogrammetry suited to the coordination of optical topography sensors located on the

human head. International Archives of Photogrammetry, Remote Sensing and Spatial

Information Sciences, Vol. XXXVIII, pp. 608-612.

Woodlief, T. & Whiley, J., 1973. SPSE handbook of photographic science and

engineering. pp.204.



References

342

Wren, C.R., Azarbayejani, A., Darrell, T. & Pentland, A.P., 1997. Pfinder: real-time

tracking of the human body. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 19(7), pp. 780-785.

Wren, C.R., Clarkson, B.P. & Pentland, A.P., 2000. Understanding purposeful human

motion. In Fourth International Conference on Automatic Face and Gesture Recognition,

28-30 March, Grenoble, France, pp.378-383.

Wu, J.J., Sharma, R. & Huang, T.S., 1998. Analysis of uncertainty bounds due to

quantization for three-dimensional position estimation using multiple cameras. Optical

Engineering, 37(1), pp. 280-292.

Yamashita, Y., Maki, A. & Koizumi, H., 1996. Near-infra-red topographic measurement

system: Imaging of absorbers localized in a scattering medium. Rev. Sci. Instrum. 67 (3),

pp. 730-732.

Yi, S., Haralick, R.M. & Shapiro, L.G., 1995. Optimal sensor and light source positioning

for machine vision. Computer Vision and Image Understanding, 61(1), pp. 122-137.

Yu, W., 2003. An embedded camera lens distortion correction method for mobile

computing applications. IEEE Trans. Consumer Electron. 49, pp. 894-901.

Zeiss, C. 2010. Depth of Field and Bokeh:

http://www.zeiss.com/C12567A8003B8B6F/EmbedTitelIntern/CLN_35_Bokeh_EN/$Fil

e/CLN35_Bokeh_en.pdf

Zhang, Z., 1994. Iterative point matching for registration of free-form curves and

surfaces. In: International Journal of Computer Vision, Vol. 13, No.2, pp. 119-152.

Zhao, Q., Ji, L.J., Shi, F. & Jiang, T.Z., 2006. Distinguish activations on sensorimotor

cortex using high-resolution diffuse optical tomography. 5th International Conference on

Photonics and Imaging in Biology and Medicine (PIBM’06), September 1-3, Wuhan,

China.



Appendix 1

343

Appendix 1 - DirectShow

DirectShow [DirectShow] is a professional tool kit optimised for video collection,

processing and display. It is used in this research to capture live video frames and

implement webcam control functions, where the utilised features are described below.

DirectShow is composed of COM (Component Object Model) objects. A chain of

selected objects is usually required to build a filter graph in order to accomplish a task

such as live video capture. Each individual processing is performed by a COM object

called filter, and data is transferred between filters by a COM object called pin. Common

types of filters for video streaming include the source filter (loading video data), the

transform filter (encoding or decoding the stream data) and the render filter (drawing

video data on monitor).

Filters within a filter graph are coordinated by a COM object called filter graph manager,

which not only decides when a specific data should be passed from one filter to the next

filter but also communicates with applications to build a specific filter graph for each

application. To transfer data from one filter to another, a common format of media type

has to be agreed first. The media type defines the overall data types (e.g. video) in a

structure called major type as well as more specific types (e.g. RGB24) in a structure

called subtype. The detailed physical layout of the data (e.g. image size and frame rate)

is defined in a structure called format block, where VIDEOINFOHEADER is an example

of format block used for video data. Therefore it is possible for two media files with the

same major type (e.g. MEDIATYPE_Video) and subtype (e.g.

MEDIASUBTYPE_RGB24) but completely different image sizes and frame rates

specified in the VIDEOINFOHEADER structure. Appendix 1 - Flowchart 1 summarises

the procedures in order to set up a video streaming in DirectShow:
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Appendix 1 - Flowchart 1. Setup of video streaming in DirectShow.

The communication between applications and hardware device (webcam) is

summarised in Appendix 1 - Flowchart 2.

Kernel mode device
e.g. webcam

Application

Camera
driver

KsProxy
instantiated

Query

Property set the driver support

KsProxy configured to expose
COM interfaces that

correspond to the property set

COM method calls

Translated property sets

Video graphics card

Video streaming

Rendered video
frames

Computer monitor

File source filter

Raw data

Decoder filter

Video render filter

Uncompressed data

Drawn video frames

Appendix 1 - Flowchart 2. Communication between application and webcam.

KsProxy: a wrapper filter provided by DirectShow representing the capabilities of Windows Driver

Model (WDM) streaming devices.
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Appendix 2 - OpenCV

OpenCV [OpenCV] is a cross-platform middle-to-high level API (Application

Programming Interface) library consisting of C/C++ functions which allow users to

implement, test or modify various image processing algorithms. OpenCV uses Intel IPL

(Image Processing Library) for its lower level image processing calls and also uses

COM to create filter-like functions which combine with DirectShow to perform several

synthetic functions.
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Appendix 3 - Videoinput library

Although OpenCV contains a lot of image processing functions, its library is rather

limited in that it supports only a few models of webcams/cameras. On the other hand,

DirectShow supports a large number of cameras and meanwhile a large number of

cameras support DirectShow. Videoinput [VideoInput library] is a library utilising

DirectShow to import images into OpenCV for image processing. The following SDKs

are used in this research to implement videoinput library:

1. Microsoft Platform SDK for Windows Server 2003 R2;

2. The DirectX SDK;

3. The DirectShow SDK.

Videoinput works by first identifying the number of connected and recognised cameras,

followed by camera setups to start streaming. During the setup process, it identifies the

model and connection type for each camera (Logitech C500 webcam and USB in this

research), and also allows users to set hardware resolution and the colour model for

each camera. Appendix 3 - Figure 1 is a screenshot of an eight-camera setup in this

research:

Appendix 3 - Figure 1. Screenshot of initial setup of 8 Logitech C500 webcams.

Videoinput uses a method built on the COM concept to control video-acquiring devices.

Therefore, the complete camera control and acquisition chain can be established on the

DirectShow architecture (Appendix 1). The library is also very flexible in terms of

modifications and method extensions suited to particular applications, in which image

processing functions (Section 3.4.4.1 - 3.4.4.6) and 3D correspondence solutions

(Section 3.5.2 - 3.5.3) can be appropriately embedded and implemented.


