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Abstract
This thesis investigates the flow of suspensions of solid spheres in a viscous

fluid. We look at a monolayer of particles in an unbounded fluid, and carry

out numerical simulations of its behaviour under a variety of linear flows.

In chapter 1 we review the field and discuss the different approaches to simu-

lating a suspension of solid spheres in a viscous fluid. We outline the case for

the method of Stokesian Dynamics, and explain its derivation.

In chapter 2 we introduce the concept of a spatially periodic lattice which

self-replicates in time under flow. We then go on to derive a suitable periodic

box for each possible two dimensional linear flow, from pure strain to pure

rotation, through simple shear and flows of intermediate type.

Using the numerical method of Stokesian Dynamics, in chapter 3 we proceed

to investigate the macroscopic properties of our two-dimensional suspension

in the various flows. The viscosity and normal stress difference are probed

at both short and long times. We find evidence of crystallisation, and our

major discovery is that crystallisation sets in earlier (in terms of increasing

concentration) for flows that are closer to shear flow than those with a larger

component of rotation or of strain. We also present results on the duration of

transients in start up flow.

In chapter 4 we consider the effects of surface roughness on viscosity. Two

different models for roughness are considered, the usual hard contact and a

new soft contact model first proposed by Wilson in [65]. A comparison of the

results of the two models is undertaken and we discuss about the effects of

lower viscosity occurring at low concentrations due to surface roughness.

In Appendix A we consider the method of Ewald summation which can be used

to properly account for far-field interactions in a lattice-periodic system, and

derive the relevant forms for a system which is periodic in only two dimensions.

Unfortunately we discover a problem with the Hankel transform but the real

space relations are still valid. This will have application both to monolayer

systems such as the one we have studied, and to confined suspensions in a

variety of applications where the relevant geometry has a large aspect ratio.
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Chapter 1

Introduction and Background

1.1 Introduction

In this thesis we shall be looking at the area of suspended particles in Stokes

flow. The subject area and history will be introduced in this chapter. Fol-

lowing on from that, numerical methods for studying these systems will be

discussed in section 1.3. We then present work on self-replicating lattices for

linear flows in chapter 2. Chapter 3 contains the main results of the thesis. In a

variety of two-dimensional linear flows, we present results on short-time rheol-

ogy, steady-state rheology and the transients between the two. The suspension

is considered to consist of hard spheres at various solids concentrations in a

viscous fluid. In chapter 4 we study the effect of surface roughness. Finally in

chapter 5 we summarise our work and consider future directions which may

be followed. The appendix A, looks at the extension of a monolayer Stoke-

sian dynamics to an infinite domain using Ewald summation and explains the

difficulties encountered in two dimensions.
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1.2 Background

1.2.1 Suspensions

Suspension flows are fluid flows in which particles are suspended within the

fluid. The fluid can be in the most general sense; Newtonion or non Newtonian;

the particle also be general; regular or irregular; homogeneous or inhomoge-

neous. The suspended particles may be individual particles or collections of

particles in linked chains. Suspension problems may be encountered in many

different forms and on different scales. Lava or pyroclastic flows in which the

suspended particles are rocks, trees and other types of debris are at one end of

the scale with drug delivery systems affected by Brownian motion at the other

end of the scale. With an area of study this wide it is clear that there will also

be a wide variety of industrial uses. The following are just a few examples.

• Integrated circuit boards

The production of integrated circuit boards uses screen printing of a

solder suspension to create the tracks of circuit. The geometry involved

in the printing is a confined monolayer, to which our work of appendix

A is applicable.

• Drug delivery

The delivery of some drugs within biological systems occurs through

dispersion of particles in, for instance, the bloodstream.

• Oil pumping

Efficient oil pumping is of course an important problem for rigs all over

the world. Particles suspended within the oil affect the fluid flow, hence

understanding how the system behaves is important for oil companies.

• Filled materials

The plastics industry increasingly uses solid filler particles in their prod-

ucts. The filler may provide extra strength (often through fibre-shaped
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inclusions), colour (e.g. carbon black) or simply be cheaper than the

plastic being used. These are suspension systems during processing,

when the polymer matrix is molten but the fillers remain solid.

The study of suspensions frequently encompasses rheological behaviour. Even

when the fluid in which the particles are suspended is Newtonian, the effect

of the particles can add a non-Newtonian aspect to the Cauchy stress tensor.

There has been much theoretical and experimental work done on this subject.

Suspensions are a well studied area from both a theoretical and experimental

standpoint. Experimental studies tend to concentrate on shear thinning and

thickening of suspensions in Newtonian and non-Newtonian fluids. In this the-

sis we shall be concentrating on theoretical modelling, so we shall concentrate

more on the history of the theoretical side of the subject, after a brief review

of experimental work.

1.2.2 Experimental work on suspensions

Real systems

Arp and Mason [5] showed that in the real world it is inevitable that even

smooth particles have some surface roughness, and (unlike the theoretical

picture for ideally smooth particles) if two particles pass close enough to each

other they may come into contact. Rampall’s 1977 paper [49] is relevant to

our two dimensional problem as they find that in a shear flow, particles whose

closed orbits (relative to one another) are in the same plane of shear have an

approach which is realistically close enough for interparticle contact to occur.

Much experimental work focusses on shear thickening or shear thinning near

the glass transition point. Experimental work also regularly considers sus-

pensions of polymers and non Newtonian fluids such as corn starch [25] and

gelatin [38]. These complex systems are very difficult to study theoretically,

and we will not address them further in this thesis.
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Idealised systems

As mentioned above the experimental work tends to concentrate on shear

thickening or shear thinning near the glass transition point, however there

does exist some experimental work on idealised systems. In an attempt to

create some data for idealised systems some experiments have been done with

glass spheres which are a good approximation to a hard smooth sphere.

Manley in 1954 [46] did some work on the particle interaction coefficient for

particles in the same plane of shear. These idealised systems yielded an em-

pirical equation in terms of concentration, building on previous work of Vand

[57, 58].

Two dimensional idealised systems

There is not a huge amount of experimental monolayer work. What is available

concentrates on shear flow and aggregate break up.

Vassileva [59] considers glass particles in a two dimensional shear flow. The

monolayer is created by an air-water interface containing glass particles. In-

vestigation of the shear rate for which the aggregates break up is undertaken

and the rate at which this happens appears to be largely independent of par-

ticle size. More recently, the same group [60] carried out a similar study

using a water–oil interface. They determined that there were two distinct

mechanisms for aggregate break-up: erosion, in which single particles became

separated from the bulk, and fragmentation, in which a large aggregate would

break into several smaller ones. Fragmentation was found to occur predomi-

nantly for larger particles (radius over 100 µm) whereas erosion happened to

aggregates of any size of particle.

1.2.3 Theoretical work on suspensions: History

Almost all the prior work on suspensions has considered particles suspended

in a Newtonian fluid, and this is also the scenario for which most numerical
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methods have been designed. This thesis is no exception: the suspending fluid

in our case will be assumed to be Newtonian, but of course the particles will

contribute to the total fluid stress. We are considering a system of identical

solid smooth spherical particles suspended in an unbounded Newtonian fluid

at low Reynolds number (Re≪ 1), such that the system may be considered a

Stokes flow.

The area of study of suspended particles in a Stokes flow has been considered

for many years and was until the 1970s mainly concerned with exact solutions.

This early work considered either a very dilute system or a small number of

particles immersed in a simple flow.

Einstein [22] considers a dilute suspension of solid spheres where each particle

is considered isolated. If c represents the solids volume fraction or concentra-

tion (and for a dilute system, c ≪ 1) the suspension is said to have viscosity

µ(1 + 5
2c) where µ is the viscosity of the fluid. In fact, using the minimum

dissipation theorem for Stokes flow, it is possible to show that this formula

gives us a lower bound for the stresses in any suspension at volume fraction c.

Flows containing just two spherical particles have been thoroughly studied,

from the isolated problems studied by O’Neill and coworkers (e.g. a sphere

rotating close to a wall [14], two spheres translating or rotating very close

together [48]) to the extensive study on the motion of two spheres by Jeffrey

& Onishi [34].

However, the problem of exact solutions to suspension flows soon becomes

very complicated for anything other than a very small number of particles or

a dilute suspension. As the suspension concentration increases many body

interactions become increasingly important and cannot be ignored. Compu-

tational methods start to become necessary at this point. In suspensions of

even moderate concentration, lubrication interactions also become necessary

and neglecting them misses key physical characteristics of the flow.
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1.2.4 Survey of Numerical Methods

In the seventies several new numerical methods arose that allowed some in-

roads to be made in to the subject:

• The boundary integral equation method.

• The multipole method.

• The multipole collocation method.

More recently we have seen the development of Stokesian Dynamics, lattice-

Boltzmann methods and Dissipative Particle Dynamics, amongst others. We

will give a brief overview of these methods before returning in section 1.3 to

a full description of Stokesian Dynamics, our method of choice.

Boundary integral equation method

The boundary integral equation method is a useful method for dealing with

particles with complex geometries. The boundary integral equation method

offers an advantage over the standard finite element or finite difference meth-

ods, because rather than solving a three dimensional PDE we are instead

solving a two dimensional integral equation discretised over the particle sur-

faces. This is still however computationally expensive, and for a large system

the expense is hard to overcome even with parallel computing. The boundary

integral method’s strength, its ability to deal with odd-shaped particles, be-

comes a weakness if the particles have some symmetry, as there is unneccessary

computational expense in integrating over the surface of the particles.

Multipole method

The multipole method is a prerequisite of the multipole collocation method,

as the name suggests. The method involves expanding the integral (equa-

tion (1.29) of section 1.3) used in the boundary integral method, and truncat-

ing the expansion at the desired accuracy. This method does offer a computa-
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tional advantage for low order expansions. Lubrication interactions, however,

are only included if all terms of the expansion are included. For low concentra-

tions, lubrication interactions are unimportant but for higher concentrations

they become important and this is the strongest limitation of the multipole

method.

Multipole collocation method: Stokesian Dynamics

We shall instead be using the multipole collocation method, or rather the

Stokesian Dynamics method derived from it.

Stokesian Dynamics (SD) [11] is a computational method specifically to model

suspensions of spheres in low Reynolds number flows developed by Durlof-

sky and Brady [50]. The motivation behind its development was to create a

method of modelling many-body suspensions that is computationally feasible

but still contains the lubrication interactions necessary for accurate rheolog-

ical behavior to be predicted. Stokesian Dynamics has become the standard

for simulating the flow of idealised spherical hard-sphere colloids. We will give

the full details of SD in section 1.3.

Lattice-Boltzmann methods

The main long-standing alternative to SD is that of the lattice-Boltzmann tech-

nique applied to particle suspensions developed by Ladd in [41] and [42] and

developed further by Sangani [51]. The lattice-Boltzmann technique, as the

name suggests, solves the Boltzmann equation, it does so by a statistical dis-

tribution of fluid particles within a fluid and extending this to a lattice, hence

allowing the consideration of an infinite domain. As the lattice-Boltzmann

method is not explicitly solving the Navier–Stokes equation, it is a compu-

tationally fast method. However, it does not contain the lubrication interac-

tions as standard and hence fails to compute many of the key macroscopic

behaviours of a suspension.
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Dissipative Particle Dynamics

Another alternative method is that of Dissipative Particle Dynamics (DPD).

Dissipative Particle Dynamics is a relatively new method which is based on

stochastic simulation. DPD was developed to avoid the lattice artifacts of Lat-

tice Gas Automata (cellular automaton), where isotropy and Galilean invari-

ance are broken. Developed by Hoogerbrugge [33] it is a popular method for

modelling macroscopic, non-Newtonian flow. DPD (like the lattice-Boltzmann

method described above) fails to capture the lubrication interaction, and hence

fails to compute many of the key macroscopic behaviours of a suspension.

Other alternatives

There are of course other alternatives, many of which are discussed in Brady’s

1987 paper [21], but we shall review them briefly here. Ganatos [30] uses a

collocation technique. For the use of a collocation technique, the problems

need to have a high order of symmetry in order to leave a sufficiently small

number of unknowns that these are practical to compute.

Another method suggested by Brady in [21] is to use the solution of the integral

equation for Stokes flow by Young [67]. This method is similar in form to the

boundary integral technique discussed above. Its strength is its ability to

calculate with general particle shapes. The use of finite difference and finite

element methods to solve the resulting discretised system could work well

for a small finite domain, but there is no easy way to extend the method to

an infinite domain; and since many body interactions in Stokes flow decay

relatively slowly (at a rate ∼ 1/r in particle separation r), we do require a

very large domain to gain accurate results.

A more in-depth review and summary of all the methods discussed here can

be read in the review paper by Weinbaum [61].

All of these methods have their own strengths and weaknesses; the biggest

weakness in many of them is that the lubrication forces are not explicitly
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included and hence are either added on “by hand” for lattice-Boltzmann and

DPD, or included approximately by increasing accuracy for methods such as

those used by Ganatos [30]. This greater accuracy is achieved by means of more

collocation points, hence increasing the number of unknowns and creating a

more computationally expensive problem. The big advantage of Stokesian

Dynamics is the explicit inclusion of the pairwise exact two body resistance

functions calculated by Arp [5].

1.3 Stokesian Dynamics

1.3.1 Introduction

The method of Stokesian Dynamics was first proposed by Durlofsky, Brady

and Bossis [21]. As described above, SD was developed to overcome many of

the shortcomings of other methods.

The primary problem in creating an accurate model for suspensions in a low

Reynolds number flow is the inclusion of lubrication forces while keeping the

computational expense affordable. Just like any computational model there is

a balancing act of speed vs. accuracy. The dominant hydrodynamic forces in-

volved are the many body interactions and the lubrication forces. Lubrication

forces become more important the higher the particle concentration / volume

fraction becomes: this is because the increased number of particles within the

given space results in a greater number of close interactions. Even at rela-

tively low concentrations, failure to include lubrication interactions results in

physically unrealistic models. Stokesian Dynamics uses the exact two-body

interactions calculated by Kim [36]; Arp [5]; and Jeffrey [34] to include the

lubrication interactions through the resistance matrix.

Hydrodynamic interactions in a many-body system are calculated by using the

method of reflections. Two-body interactions are considered to be the most

important as within the mobility matrix three-body interactions do not arise
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until O(1/r4) with interparticle separation r, and four-body interactions until

O(1/r7) (Kynch [40]). In contrast three-body interactions are said to arise at

O(1/r7) within the resistance matrix. Bossis and Brady [21] however continue

to neglect three-body and higher interactions in their formulation as it is felt

that at high concentrations (where many-body effects become important) these

interactions would be dominated by lubrication forces.

The SD model calculates an approximation for the many-body far field inter-

actions by truncation of an exact integral representation. The details of how

this is implemented are discussed in section 1.3.11. The lubrication forces are

then added later in the formulation via exact forms.

Stokesian Dynamics is well established for same sized particles, however, Jef-

frey [34] has extended the two-sphere mobility relations to allow for different

sized particles.

In the remainder of this section, we will show the derivation of Stokesian

Dynamics from the basics of Stokes flow, culminating in its full implementation

and a discussion of the method of Ewald summation for simulating infinite

systems.

1.3.2 Quasi-static Property of the Stokes equations

We are considering low-Reynolds number flow of an incompressible Newtonian

fluid, that is inertial forces are neglected. The governing equations for this

system are:

∇ · u = 0 ∇p = µ∇2u (1.1)

in which u is the fluid velocity, p its pressure, and µ is the viscosity of the

fluid. These are known as the Stokes equations.

An important property of these equations is that they are quasi-static, mean-

ing that there is no explicit time-dependence in the equations. The flow is

hence determined instantaneously by the boundary conditions (in our case on

the particles). In the case of a suspension the boundary conditions consist of
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the particle configuration, and the external forces and torques acting on them.

The SD method exploits this property, and depends only on the configuration

of the particles at any moment in time and not their velocities. The general

problem it considers is a system of N particles suspended in a Newtonian fluid

with a background flow u∞(x) and it calculates the translational and angular

velocity of each particle.

1.3.3 Derivation Overview

The Stokes equations are linear, they are amenable to solution by Green’s

function methods. Essentially, the concept is to represent all the boundary

conditions (in our case, external forces and torques on the surface of various

solid particles, plus the constraints that each particle must move as a rigid

body) through a distribution of point forces on the boundary of the fluid.

For a suspension of solid spheres, the point forces will be distributed over the

surfaces of the particles.

In the next few sections we will construct a multipole expansion based on the

Green’s function solution to the Stokes equations. In section 1.3.4 we begin

by deriving the Green’s function itself: that is, the response of a viscous fluid

to a point force. In section 1.3.5, we formulate the Green’s function form

of the solution for a system of many spherical particles, take an expansion

of the solution, valid for well-spaced particles, and show how this expansion

may logically be truncated. Then in section 1.3.6, as an illustration, we show

how this truncated expansion provides the correct solution for the fluid flow

around a solid sphere moving under a prescribed force through a quiescent

fluid (a problem which we had already solved in section 1.3.4). An overview

of Stokesian Dynamics derivation can be seen in figure 1.1.
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Figure 1.1: Map of Stokesian Dynamics derivation and relationship to other solutions of suspension dynamics.
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1.3.4 Green’s Function Derivation

To model a flow with many spherical particles we must first consider a single

particle’s effect on a fluid. We derive the Green’s function for Stokes flow,

that is, the response of the Stokes equations to a point force, which we will

calculate by looking first at a spherical particle with an external force applied

to it, and then taking the radius of the particle to zero.

We consider a sphere of radius a moving with speed U in the z direction,

shown in figure (1.2).

U

Figure 1.2: Translating Sphere

We expect the solution for the velocity and pressure everywhere in the fluid

to be axisymmetric about the z-axis, and we use the standard spherical polar

coordinates (r, θ, φ).

We shall use the Stokes stream function ψ(r, θ) such that

u = ∇∧
(
ψ eφ

r sin θ

)
, (1.2)

with eφ denoting the unit vector in the φ direction. If we take the curl of the

Stokes equation we have

∇2(∇∧ u) = 0, (1.3)

so we define ω = ∇∧ u and, taking the curl of u, obtain

ω = − 1

r sin θ
D2ψ eφ, (1.4)

where D2ψ is the Stokes operator:

D2ψ =
∂2ψ

∂r2
+

sin θ

r2
∂

∂θ

(
1

sin θ

∂ψ

∂θ

)
. (1.5)
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Since ∇2ω = 0, we may say

D2ψ = −Ω, (1.6)

D2Ω = 0, (1.7)

in r ≥ a, for some unknown function Ω(r, θ). The boundary conditions we

wish to apply are those of no slip at the surface of our sphere:

u = (U cos θ,−U sin θ, 0) on r = a (1.8)

and decay of the velocity in the far field, u → 0 as r → ∞. The no-slip

condition means that

1

a2 sin θ

∂ψ

∂θ
= U cos θ, − 1

a sin θ

∂ψ

∂r
= −U sin θ on r = a. (1.9)

Integrating the first equation results in

ψ =
1

2
U a2 sin2 θ + C,

∂ψ

∂r
= U a sin2 θ on r = a. (1.10)

The far-field boundary condition requires ψ = o(r2). The form of these bound-

ary conditions suggests that the constant C will lead only to an additional

constant in ψ, which may be neglected as the velocity depends only on deriva-

tives of ψ. Thus we set c = 0 and with our full set of boundary conditions we

can start to seek a full solution of the form

ψ = f(r) sin2 θ. (1.11)

Substituting this into D2ψ = −Ω gives

D2ψ = f ′′ sin2 θ − 2

r2
f sin2 θ ≡ F (r) sin2 θ = −Ω. (1.12)

We recall that

D2Ω = 0, (1.13)

hence

F ′′ − 2F

r2
= 0, (1.14)



Chapter 1: Introduction and Background 24

yielding

F = Ar2 +
B

r
, (1.15)

and furthermore

f(r) = C r2 +
D

r
+A′ r4 +B′ r. (1.16)

Using our boundary conditions this leads us to our final result of

ψ(r, θ) = a2 U sin2 θ

(
3 r

4 a
− a

4 r

)
. (1.17)

The next step is to find the pressure, which will then allow us to find the drag

and hence the relationship between velocity and force. Calculating u gives

u = U

(
2 cos θ

[
3a

4r
− a3

4r3

]
, − sin θ

[
3a

4r
+

a3

4r3

]
, 0

)
, (1.18)

and after substituting into the Stokes equations and integrating in r,

p− p∞ = −3

2

µU a

r2
cos θ (1.19)

where p∞ is the background (far-field) pressure. We can now calculate the

drag from

Di =

∫

S
σij njdS, (1.20)

where σij = −p δij +2µ eij and eij =
1
2(∇iuj +∇jui). This results in the well

known relationship

D = −6πaµUez. (1.21)

If we use this relationship to eliminate U from u, and denote the magnitude

of the drag force as |D| = D, we can arrive at

ur = −D cos θ

3πµ

[
3

4 r
− a2

4 r3

]
, (1.22)

uθ =
D sin θ

6πµ

[
3

4 r
+

a2

4 r3

]
. (1.23)

Now consider the case r ≫ a: either looking at points far from the particle,

or decreasing the particle radius a. In the limit a → 0 the particle (with the

drag force acting on it) looks like a point force, and the velocity field becomes

u =
D

3πµ

(
−3 cos θ

4 r
,
3 sin θ

8 r
, 0

)
. (1.24)
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We now change to Cartesian coordinates for convenience. In order to make

our particle move as described above, we need to apply an external force equal

and opposite to D: we will denote this point force as f . After the change of

coordinates we are left with

ui =
1

8πµ

(
δij
r

+
xixj
r3

)
fj, (1.25)

which we shall rewrite as

8πµui = Jijfj, (1.26)

with

Jij(r) =
δij
r

+
rirj
r3

, (1.27)

which is known as the stokeslet or Oseen tensor. This can be rewritten as

Jij =
(
δij∇2 −∇i∇j

)
r. (1.28)

Equation (1.25) gives the velocity field induced by a point force acting on the

fluid.

1.3.5 The Multipole Expansion

It has been shown that we can represent any particle by a series of point forces,

and the fluid’s response to each is given by equation (1.25). The linearity of

the Stokes equations allows us to superimpose these flows.

Now we will apply the Green’s function representation to the system we are

actually interested in. We want to investigate fluid flow past a collection

of spheres. To do so, we consider a boundary which is, in some sense, a

more general shape: N identical spherical particles within a three-dimensional

infinite domain, with in addition a linear background flow u∞. Equation (1.29)

gives the velocity field anywhere in the fluid: it is simply derived from equation

(1.25) integrated over every particle surface:

ui(x) = u∞i (x)− 1

8πµ

N∑

α=1

∫

Sα

Jij(x− y)fj(y)dSy. (1.29)
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Here Sα is the surface of the particle α, fj represents the force distribution

on the surface of each particle, and u∞i is the velocity of the fluid without

particles. We shall be considering only linear background flows of the form

u∞ = G · x. Jij is, of course, the Green’s function known as the stokeslet or

Oseen tensor, derived above in section 1.3.4:

Jij(r) =
δij
r

+
rirj
r3

, (1.30)

with r = x− y and r = |r|. The force at any surface point is expressed by

fj(y) = σjk(y)nk. (1.31)

where nk is the unit vector normal to the sphere’s surface. Note the change

of sign in equation (1.29) relative to equation (1.25). We are now using fj to

represent the force acting on the particle from the fluid: thus the force acting

on the fluid is −fj.
This integral formulation can of course be numerically solved on its own but

this would be computationally prohibitive. The surface of each particle could

be divided into M elements and the linear equations could be solved over

these elements. In a system with N particles the number of unknowns is

(3M + 6)N ; three force components for each element, and translational and

angular velocities for each particle. In two dimensions there are (2M + 3)N

unknowns. According to Brady in [21], M = 12 is the minimum number of

elements in three dimensions, and M = 6 in two dimensions. This is due to

the maximum possible number of nearest neighbours, and can be seen easily

in two dimensions in figure 1.3.

To simplify the integral equation (1.29) and the computations that follow

from it, we expand the Green’s function Jij as a Taylor series around xα.

This method is referred to as the multipole expansion, and will result in an

expansion in moments of the force distribution. We begin by introducing a

notation for these moments. The nth moment is given by

Qn
i...j = −

∫

Sα

n∏

i...

(yi − xαi )fj(y)dSy. (1.32)
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Figure 1.3: Nearest Neighbours in 2D

The nth moment is a tensor of order n + 1, and we will only be interested in

the first few. For example, the second moment is a third order tensor given

by

Q2
klj = −

∫

Sα

(yk − xαk )(yl − xαl )fj(y)dSy. (1.33)

The zeroth moment, a tensor of order one (i.e. a vector), is the total force

density

Q0
i = −Fα

i = −
∫

Sα

fi(y)dSy, (1.34)

the hydrodynamic force exerted by the fluid on particle α, that is, (−1) time

the force exerted by the particle on the fluid. The antisymmetric part of the

first moment is the torque exerted by the particle on the fluid:

ǫijkQ
1
jk = Lα

i = −
∫

Sα

ǫijk(yj − xαj )fk(y)dSy, (1.35)

and its symmetric, deviatoric part is the stresslet:

1

2
(Q1

ij +Q1
ji −

2

3
δijQ

1
kk) = Sα

ij =

− 1

2

∫

Sα

(yi − xαi )fj(y) + (yj − xαj )fi(y) −
2

3
δij(yk − xαk )fk(y)dSy. (1.36)
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The trace of the first moment is a pressure contribution:

Q1
ii = 3Pα = −

∫

Sα

(yi − xαi )fi(y)dSy, (1.37)

so that

Q1
ij = −

∫

Sα

(yi − xαi )fj(y)dSy = Pαδij + Sα
ij +

1

2
ǫijkL

α
k . (1.38)

We define the stresslet to have no trace, and will not calculate the quantity

Pα; the trace results in a particle contribution to the pressure which we shall

neglect as it has no effect on the flow of a homogeneous suspension, although

it would have importance if there were a concentration gradient. This is a

common convention which we shall follow.

The best way to demonstrate the force distribution corresponding to the force,

torque and stresslet is through figure 1.4. The arrows represent how the point

StressletTorqueForce

Figure 1.4: Force distributions corresponding to force, torque and stresslet on
a sphere

forces are acting on the particle. The hydrodynamic force and torque will be

zero for a particle with no external effects acting on it; the stresslet, on the

other hand, results from particle rigidity and is likely to be non-zero in most

flows.

Explicit expansion of the Oseen tensor

Equation (1.29) contains the quantity Jij(x − y) in an integral (with respect

to y) over the surface of a sphere whose centre is instantaneously at xα. We
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expand this in a Taylor series about the point y = xα:

Jij(x− y) = Jij(x− xα + xα − y)

= Jij(x− xα) + (xα − y) · ∇[Jij ] |(x−xα)

+
1

2
(xα − y)(xα − y) : ∇∇[Jij] |(x−xα)

+
1

6
(xα − y)(xα − y)(xα − y)...∇∇∇[Jij ] |(x−xα) + · · ·

(1.39)

Substituting this into the integral equation (1.29) and using the moments

expansion introduced above,

ui(x) = u∞i (x)− 1

8πµ

∑

α

[
Jij(x− xα)Q0

j

+∇kJij(x− xα)Q1
kj

+
1

2
∇k∇lJij(x− xα)Q

2
klj

+
1

6
∇k∇l∇mJij(x− xα)Q

3
klmj

+ · · · ]

(1.40)

in which fj(r) is the force distribution on the surface of the sphere.

The moment Q0
j is order O(f); Q1

kj is of order O(a∇f) where a is the radius

of the particle. Q2
klj is order O(a2∇2f) when k 6= l and O(f) when k = l,

and Q3
klmj is order O(a3∇3f) when all of k, l, m are different and O(a2∇2f)

when any two of them match. In fact, we can write

Q2
klj =

1

3
a2δklQ

0
j +O(a2∇2f), (1.41)

Q3
klmj =

1

10
a2
[
δklQ

1
mj + δkmQ

1
lj + δlmQ

1
kj

]
+O(a3∇3f). (1.42)

We truncate our expansion at order O(a∇f), the truncated expansion be-

comes:

ui(x) = u∞i (x)− 1

8πµ

∑

α

[
Jij(x− xα)Q0

j

+∇kJij(x− xα)Q1
kj

+
1

6
a2∇2Jij(x− xα)Q

0
j

+
1

10
a2∇2

[
∇mJijQ

1
mj +∇lJijQ

1
lj +∇kJijQ

1
kj

]
]

(1.43)
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Using the forms of the moment given in equations (1.34), (1.35) and (1.36) we

may re-write (1.43):

ui = u∞i (x)− 1

8πµ

∑

α

[
−
{
1 +

1

6
a2∇2

}
Jij(x− xα)Fα

j

+
1

2
ǫjkl∇kJil(x− xα)Lα

j +

{
1 +

1

10
a2∇2

}
∇kJij(x− xα)S

α
jk

]
.

(1.44)

in which we have used the facts that ∇jJij = 0, ∇2(∇kJij − ∇jJik) = 0 to

discard terms. The velocity is expressed linearly in terms of the forces, torques

and stresslets. This procedure will allow us to construct matrices relating flow

variables to force variables in section 1.3.9.

Equation (1.44) allows us to find the disturbance velocity caused by all of the

particles. The forces torques and stresslets felt by each sphere all depend on

every other sphere. The problem is still not solved, however if n = 1 equation

(1.44) will give the disturbance velocity created by a single particle, as we will

illustrate in the next section for one simple case.

1.3.6 Use of the Green’s function

We now consider again the situation in which a single sphere of radius a is

moving under the action of a force F in an otherwise quiescent viscous fluid

of viscosity µ. We locate the particle instantaneously at the origin. There is

no external torque on the sphere, and (for this simple flow) no stresslet. Then

the truncated expansion of equation (1.44) gives

u′i(x) =
1

8π µ

(
1 +

a2

6
∇2

)
Jij(x− xα)Fα

j . (1.45)

Let us consider the ∇2 term in (1.45).

∇kJij =
∂

∂xk

(
δij
r

+
xixj
r3

)

=
1

r3
[δikxj + δjkxi − δijxk]−

3xixjxk
r5

,

(1.46)
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leading to

∇2Jij =
2δij
r3

− 6xixj
r5

, (1.47)

and hence

(
1 +

a2

6
∇2

)
Jij = δij

(
1

r
+

a2

3r3

)
+ xixj

(
1

r3
− a2

r5

)
. (1.48)

Substituting this into (1.45), along with the force Fα = −Dez gives us

u′i(x) =
−D
8π µ

[
δij

(
1

r
+

a2

3r3

)
+ xixj

(
1

r3
− a2

r5

)]
δj3

= − D

8π µ

[
δi3

(
1

r
+

a2

3r3

)
+ xiz

(
1

r3
− a2

r5

)]
.

(1.49)

Let us compare this with the two equations (1.22–1.23) (which are in spherical

polar coordinates) and calculate ux, uy and uz from them using

u′ = urer + uθeθ. (1.50)

We obtain

uz = ur cos θ − uθ sin θ

=
D

6πµ

{−3

4 r

(
1 +

z2

r2

)
+

a2

4 r3

(
−1 +

3 z2

r2

)}
,

(1.51)

and

ux = (ur sin θ + uθ cos θ) cosφ

=
D

6πµ

{−3

4r

xz

r2
+

a2

4r3
3xz

r2

}
,

(1.52)

with uy the same as ux (but with each instance of x replaced with y) because

of the axisymmetry. Finally after some rearranging

ux =
D

6πµ
xz

[−3

4r3
+

3a2

4r5

]
, (1.53a)

uy =
D

6πµ
yz

[−3

4r3
+

3a2

4r5

]
, (1.53b)

uz =
D

6πµ

[
z2
(−3

4r3
+

3a2

4 r5

)
− 3

4r
− a2

4r3

]
, (1.53c)
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which we can write as

ui =
D

6πµ

{
zxi

(
− 3

4r3
+

3a2

4r5

)
+ δi3

(
− 3

4r
− a2

4r3

)}
. (1.54)

We can see (1.49) is equivalent to (1.54), this is just an example of an exact

solution and its equivalence to the well known solution shown in (1.45). Similar

expressions can be found for spheres immersed in different linear flows. These

simple expressions in terms of the Oseen tensor are the reason why we will

consider our particles to be spherical due to the simplifications which it affords

us.

1.3.7 Singularity Solution

We have expanded the integral representation for Stokes flow, equation (1.29),

using moments of the Green’s function Jij about each particle centre xα.

However, to completely describe the flow field generated by a particle and all

inter-particle interactions, all moments of the expansion would be necessary.

If we were only considering the far field, we could truncate the expansion early

as only the first few terms would be important. For the near field however,

all terms are of approximately the same order and it becomes a lot harder to

justify truncating the series.

Equally, even for an isolated particle, if the particle is of arbitrary shape then

all moment terms can in principle contribute to the flow field. For an isolated

sphere, the high degree of symmetry means the expansion terminates after

the terms given in equation (1.43): thus, neglecting interparticle interactions,

equation (1.44) is exact for a spherical particle.

The terms we have kept are the force (the zeroth moment), the torque and

stresslet (the first moment or dipole term) and the dominant parts of the

the third and fourth moment, which are known as the irreducible tripole and

irreducible quadrupole respectively. The first of these reduces to another con-

tribution involving the force, and the quadrupole term to another contribution

using the stresslet.
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A relationship of similar form to equation (1.44) appears in the Fáxen rela-

tions which we will see later in section 1.3.8. We will then use these relations

to formulate mobility and resistance matrices in section 1.3.9. These relations

all have a strong analogy with electrostatics (indeed a one-to-one correspon-

dence), which is because the biharmonic equation arises in both fields. We

shall use the Faxén Laws to introduce the mobility matrix, and later intro-

duce the lubrication interactions via the resistance matrix.

1.3.8 Faxén Laws

The multipole expansion gives us a method for finding the disturbance flow

caused by a set of spheres given the moments of the force distribution on

each. Our truncation gives the disturbance flow field from the force, torque

and stresslet on each sphere: but how do we find these quantities? This is

where the Faxén Laws are used.

The Faxén laws are given in equation (1.55) for well-separated spheres (taken

from Batchelor and Green [6]):

Uα
i − u∞i (xα) =

Fα
i

6πµa
+ (1 +

1

6
a2∇2)u′i(x

α), (1.55a)

Ωα
i − Ω∞

i =
Lα
i

8πµa3
+

1

2
εijk∇ju

′
k(x

α), (1.55b)

− E∞
ij =

Sα
ij

20πµa3/3
+

(
1 +

a2

10
∇2

)
e′ij(x

α), (1.55c)

with u′i being the induced velocity field from other particles (i.e. everything

that is not u∞i or the particle velocity Uα
i ), U

α
i is the velocity of particle α,

Ωα
i is the rotational velocity of particle α. Fα

i is the external force imposed

on particle α, Lα
i the external torque and Sα

ij the stresslet. The perturbation

rate-of-strain tensor is

eij =
1

2
(∇ju

′
i +∇iu

′
j). (1.56)

E∞
ij is the rate of strain tensor corresponding to the background flow u∞i , and

Ω∞
i is its angular velocity.
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The Faxén relations were derived from Lamb’s general solution however this

is not a pleasant task best left as historical route. Here we derive the force /

translational velocity relationship 1.55a as an example.

The occurrence of the (1 + a2

6 ∇2) should ring bells from the discussion in

section 1.3.5; this is in fact a direct consequence of the Lorentz reciprocal

theorem (1.57.)

∫

S
v1.(σ2.n)dS−

∫

V
v1.(∇.σ2)dV =

∫

S
v2.(σ1.n)dS−

∫

V
v2.(∇.σ1)dV (1.57)

where V is a fluid volume with bounding surface S, and v1,2 are two solutions

to the Stokes equations valid throughout V . σ1,2 are the stresses corresponding

to the flows v1,2:

σ = −pI+ µ(∇v+∇vT ). (1.58)

In our use of this theorem we will take V to be the fluid exterior to a spherical

particle of radius a having surface Sp, bounded by a large sphere S∞. We

will choose flows such that all contributions v1,2 and σ1,2 decay away from

the particle such that any contributions from the surface integral on the large

sphere vanish as this large sphere tends to infinity. The result of this is that we

only consider the contributions from the surface Sp, the surface of the particle.

Now equation (1.57) can be rewritten as

∫

Sp

v1.(σ2.n)dS −
∫

V
v1.(∇.σ2)dV =

∫

Sp

v2.(σ1.n)dS −
∫

V
v2.(∇.σ1)dV.

(1.59)

Now we fix our two solutions to the Stokes equations:

• v1 is the velocity field generated by a particle translating with velocity

U in a quiescent fluid. This requires an external force 6πµaU to be

imposed on the sphere.

• v2 is the velocity field generated by a point force F outside the particle
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at a point y, but with the particle held stationary by a force −F2. This

means that the hydrodynamic force acting on the particle is F2.

The stresses we need for the reciprocal theorem are

∇ · σ1 = 0

∇ · σ2 = Fδ(x − y)
(1.60)

within the volume V ; we also know that v1 = U and v2 = 0 on the particle

surface Sp. The reciprocal theorem becomes
∫

Sp

U.σ2.ndS −
∫

V
v1.Fδ(x − y)dV = 0

U.F2 − v1(y).F = 0.

(1.61)

We know, from the singularity solution for a sphere, that

(v1(y))j = 6πµaUi

(
1 +

a2

6
∇2

)
Jji(y − xα)/8πµ (1.62)

which allows us to rewrite equation (1.61) as

Ui(F2)i −
(
3

4

)
aUi

(
1 +

a2

6
∇2

)
Jji(y − xα)Fj = 0. (1.63)

Now this relation must be true for all possible velocity vectors U, so we must

have

(F2)i =

(
3

4

)
a(1+

a2

6
∇2)Jji(y−xα)Fj =

(
3

4

)
a

(
1 +

a2

6
∇2

)
Jij (xα − y)Fj

(1.64)

using the symmetries of the Oseen tensor. This (or rather (-1) times it) gives

us the force required to hold the particle fixed at xα in the presence of a point

force F located at position y in a quiescent fluid.

Now we note that in the absence of the particle, the velocity field at a point ξ

due to that point force would have been (from the Green’s function solution)

v′i(ξ) = Jij(ξ − y)Fj/8πµ (1.65)

so in the presence of a velocity field v′(ξ) caused by a point force, the force

required on our particle to hold it fixed would be

− (F2)i = −6πµa(1 + a2/6∇2)v′i(xα). (1.66)
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The linearity of Stokes flow then allows us to deduce the same result for any

flow field v′ created by a collection of point forces: in particular, for the flow

field u′ caused by the point forces on the surfaces of all the other particles in

the ensemble. Thus, in the absence of any background flow, we have shown

that if the external force acting on our particle is

Fi = −6πµa

(
1 +

a2

6
∇2

)
u′i(xα) (1.67)

then Uα
i = 0.

Now let us move to the situation we need. To this result, using again the

linearity of the Stokes equations, we add the following known solutions to the

Stokes equations:

• A background flow u∞i , with which a force-free sphere will advect with

velocity Uα
i = u∞i (xα)

• A particle velocity V α
i , caused by an external force 6πµaV α

i

We now have a particle moving under the influence of a background flow

u∞, a fluid velocity u′ caused by the presence of the other particles, and

a total force 6πµaV α
i − 6πµa(1 + a2

6 ∇2)u′i(xα), which moves with velocity

Uα = u∞(xα) +Vα. Thus:

Uα
i = u∞i x(α) + V α

i (1.68)

Fi = 6πµa

[
V α
i −

(
1 +

a2

6
∇2

)
u′i(xα)

]
(1.69)

and eliminating V α between the two equations gives the required form, 1.55a:

Uα
i − u∞i (xα) =

Fi

6πµa
+

(
1 +

a2

6
∇2

)
u′i(xα). (1.70)

1.3.9 Mobility and Resistance Matrices

There is one final step in our model, this pulls together all of the previous

work into a more usable form. We can now calculate:
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• The velocity field generated by a single particle using singularity solu-

tions.

• The force felt by a particle for a given induced velocity field as calculated

above via the Faxén law.

We have two more hurdles to over come.

1. Inclusion of lubrication interactions.

2. Organising relations of the Faxén relations and the singularity solutions.

Both of these problems are solved via formulation of the resistance and mobil-

ity tensors. By the linearity of Stokes flow we know that the true extra velocity

field u′ must depend linearly on the forces, torques and stresslets applied to

all spheres. Combining this observation with the Faxén relation of equation

(1.55), we can deduce the the existence of a matrix called the grand mobility

matrix M which relates the particle velocities and stresslets to the forces and

torques applied to them and the background flow. In its full form the grand

mobility matrix M is defined by


 U− u∞

−E∞


 = M·


 F

S


 . (1.71)

Where vector U contains both the translational and rotational velocities of

the particles and hence has dimension 6n (where n is the number of particles),

and similarly F is the force / torque vector exerted by the particles on the

fluid and also has dimension 6n. We can think of the grand mobility matrix

as

M =


 MUF MUS

MEF MES


 . (1.72)

Where for example, we can form MUF , the small mobility matrix such that

in the absence of stresslets,

U− u∞ = MUF · F, (1.73)
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and its reverse RFU

F = RFU · (U− u∞), (1.74)

where RFU is the resistance matrix. Our discussion in section 1.3.5 relate the

force, torque and stresslets to u′ through equation (1.44), which is a trun-

cated expansion for many particles) only accurate for well spaced particles.

Combining this with the Faxén relations (1.55) we can calculate a far-field

approximation to the grand mobility matrix, which we denote as M∞. This

is a far-field approximation to the true grand mobility matrix because of the

truncation of equation (1.44) at O(r−5), but it does include the irreducible

quadrupole term (which can be expressed in terms of S).

Method of Reflections

The mobility or resistance relations can be calculated in two ways,

1. from a combination of the singularity solutions and the Faxén laws, as

above but if the singularity solutions are truncated the relations are only

valid for well spaced particles.

2. using the method of reflections.

We will outline the method of reflections to show why we cannot solely con-

sider well spaced spheres. We shall then continue to show the equivalence of

inverting the mobility relations and the method of reflections.

To introduce the method of reflections two particles are considered and their

effect on each other is reflected backwards and forwards resulting in the various

relations in figure 1.5.

Consider two particles centred at x1 and x2 respectively. We define the back-

ground velocity as u∞, the velocity induced by particle 1 as u1 and similarly

the velocity induced by particle 2 as u2. Now consider the velocities on the

particle surfaces S1 and S2. In order for each particle to be in solid body
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u∞

u1 u2

u12

u121

u21

u212

Particle 1 Particle 2

Figure 1.5: A pictorial representation of the method of reflections

motion, on S1 we must have an induced velocity u1:

u1 = U1 + ω1 × (x− x1)− u∞ (1.75a)

and on S2,

u2 = U2 + ω2 × (x− x2)− u∞ (1.75b)

with Un and ωn being the particle velocity and angular velocity respectively.

However the fluid velocity depends on the the background flow U∞ and the

disturbance velocity of the two spheres,

u = u∞ + u1 + u2. (1.76)

Looking at this overall velocity, it is clear that there is a error in (1.75) on

particle 1 from u2 and vice versa. The next reflection correction to adjust the

boundary condition, i.e

u12 = −u1 on S2 (1.77a)

u21 = −u2 on S1. (1.77b)
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As ever a picture paints a thousand words and the idea is presented in figure

1.5. In general these corrections continue indefinitely; however just as with

the singularity solutions and multi-pole solutions due to the fact that we are

dealing with spheres, for the two body problem we are able to derive an an-

alytical form. The method of reflections can be applied to multiple particles,

but it becomes much more demanding, requiring n2−n velocity fields at each

reflection step.

1.3.10 Equivalence of Inverting the Mobility Matrix

and Summing Reflections

When we considered the multi-pole expansion we decided on an order to trun-

cate the expansion; in an ideal world we would include all moments as this

would include the lubrication interactions. Similarly when we are considering

the method of reflections we also have to consider a point at which we should

truncate our expansion. We wish to include all of the many body interactions

and include all of the screening effects created by having the large number

of particles, but we can not have an indefinite function considering all reflec-

tions. This equivalence is also shown in [21] from where the inspiration for

this explanation was taken.

We wish to calculate the forces acting on the particles for a given flow for which

we require the resistance matrix. We shall show that calculating the mobility

matrix and inverting is equivalent to summing all of the reflected interactions.

To achieve this, for simplicity instead of considering the singularity solutions

as our mobility relations for a sphere, we shall consider the problem as point

forces; the results still hold but it makes the algebra easier.

Consider two spheres 1 and 2 with sphere 2 moving towards number 1. We

wish to calculate the force required to keep sphere 1 still. The disturbance

velocity created by sphere 2 is

ui =
3

4
Jij(x− x2)U

2
j . (1.78)



Chapter 1: Introduction and Background 41

The force felt by sphere 1 is

F 1
i = −3

4
Jij(x1 − x2)U

2
j , (1.79)

which is then itself reflected back through the fluid (as sphere 1 is fixed)

producing the velocity field

ui =
3

4
Jij(x− x!2)F

1
j = −3

4
Jij(x− x12)

3

4
Jjk(x1 − x2)U

2
k . (1.80)

sphere 2 then exerts an extra force on the fluid due to the fluid velocity from

sphere 1:

F 2
i =

3

4
Jij(x2 − x1)Jjk(x1 − x2)U

2
k (1.81)

causing the next disturbance flow

Ui =
3

4
Jij(x− x2)

3

4
Jij(x2 − x1)Jjk(x1 − x2)U

2
k (1.82)

such that the force required on sphere 1, including both the first two reflections,

is

F 1
i = −3

4
Jij(x1 − x2)U

2
j − 3

4
Jij(x1 − x2)

3

4
Jjk(x2 − x1)

3

4
Jkl(x1 − x2)U

2
l − ...

(1.83)

If we align our particle centres along an axis Jij(x1 − x2) simplifies to 2
r ,

meaning that as we repeat the process we have a geometric series. Denoting

the resistance function for sphere 1 to sphere 2 as XA
12 with a212 being the

corresponding mobility relation, we have

F 1 = XA
12U

2 (1.84)

and

XA
12 =−

∞∑

n=1

(
3

2r

)2n−1

=−
3
2r(

1−
(

3
2r

)2)

=− 8r2

8r2 − 9

(1.85)
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Taking the singularity mobility functions from [21], namely xa11 = xa22 and

xa12 = xa21 =
3
2r and using the relationship shown in [34]


 XA

11 XA
12

XA
21 XA

22


 =


 xA11 xA12

xA21 xA22


 (1.86)

we have 
 1 3/2r

3/2r 1




−1

=
r

8r2 − 9


 8r −6

−6 4r


 . (1.87)

So despite the fact that our mobility relations are calculated via the well

spaced singularity solutions the inversion of the mobilities is equivalent to the

summation of the infinite series of reflection.

1.3.11 Formulation of Stokesian Dynamics

When we use our far-field grand mobility matrix to simulate real flows, we

will invert the matrix to form a far-field approximation to the grand resistance

matrix, R∞. Because M∞ is approximate, lubrication interactions will not

appear in R∞. The lubrication interactions would only be included if all

terms of the multipole expansion were included in M∞. We shall explain how

the lubrication interactions are included by considering the simpler model of

equation (1.73) which does not include stresslets, then show how in the full

model the stresslets are calculated in terms of given forces and imposed flow.

The simpler method of equation (1.73) only considers the forces and torques,

and is only valid in the absence of any imposed flow. The first step to include

lubrication interactions is to invert M∞
UF , the far-field approximation to MUF ,

the matrix which contains all force-velocity interactions. We invert the matrix

M∞
UF to form a far-field approximation to the resistance matrix RFU , which

we denote R∞
FU . We now have an approximation to many-body interactions.

In particular, the “screening” effects of large numbers of particles, to hide

one another’s effects, are well captured by this new resistance matrix. This
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inversion is equivalent to the summing of all of the reflected interactions, as

demonstrated in section 1.3.10.

To include the lubrication interactions, we add on the known two sphere resis-

tance interactions R2B to the far-field resistance matrix R∞
FU . It is effectively

the sum of several sparse matrices, each describing the interaction between

one pair of spheres. The far field part of the two body resistance matrix has

already been included into the inversion of M∞
UF , so we must subtract these

interactions to avoid counting them twice. This is simply done by creating sev-

eral sparse two body mobility matrices to the same order as M∞
UF . Inverting

these matrices individually and summing them forms R∞
2B . The composition

of our resistance matrix for the forces and torques model is shown in equation

(1.88):

RFU = (M∞
UF )

−1 +R2B −R∞
2B . (1.88)

The same method is used for the complete model which includes stresslets.

The full resistance matrix R is again simply the inverse of the grand mobility

matrix M defined in equation (1.71), and this is shown in equation (1.89).


 F

S


 = R ·


 U−U∞

−E∞


 , (1.89)

with

R =


 RFU RFE

RSU RSE


 . (1.90)

The construction of R is done in just the same way as in (1.88):

R = (M∞)−1 +R2B −R∞
2B . (1.91)

Here M∞ is the approximation of the grand mobility matrix truncated at

O(r−5) as constructed in equation (1.71). The second and third terms add

the lubrication interactions to R. The second term R2B contains the known

exact interactions between any two spheres, while the third term is present

only to avoid double-counting.
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In a simulation, typically the stresslets S and particle velocities U are un-

known, while the external forces F and background flow field E∞ are known.

Having constructedR, we can then express the velocities in terms of the known

forces, torques and imposed linear flow field (by manipulation of the top row

of equation (1.89)):

U−U∞ = R−1
FU · [F+RFE : E∞] , (1.92)

This in turn allows us to express the stresslets in terms of the given forces and

torques and the imposed flow (using the bottom row of equation (1.89)):

S = RSU ·R−1
FU · F+

[
RSU ·R−1

FU ·RFE −RSE

]
: E∞. (1.93)

The Stokesian Dynamics algorithm is, in basic terms:

1. Construct the far-field approximation M∞ to the mobility matrix from

equation (1.55).

2. Invert M∞ and construct R∞ and hence R as in equation (1.91).

3. Find U −U∞ from equation (1.92) and the stresslets S from equation

(1.93).

4. Move all of the particles according to our new U; compute the total fluid

stress (if needed) from S.

Ideally we should reconstruct and invert M∞ after each time step as the

particles will have moved. This matrix inversion, however, is one of the most

computationally expensive steps of the whole process and to do it every step is

not necessary for accuracy. Instead a condition may be set such that, as soon

as a particle has moved out of its shadow, the mobility matrix is recalculated,

or recalculated every m time steps.

This model now includes the many body interactions and lubrication interac-

tions without having to resort to an infinite series. We have used the properties

of a sphere to produce a singularity solution, the Faxén Laws, and finally the
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known interbody interactions in a two body resistance matrix to construct the

model that we shall be using for the rest of our work.

As with any model there are various assumptions. We are assuming that the

domain is infinite, the fluid is incompressible and that the inertia is negligible

and hence that every particle reacts instantly to the actions of the others.

The instant reaction to any change in conditions is clearly unphysical but

is probably not an issue. We are assuming that our particles are perfectly

spherical, of equal radius, and of course non-deformable. As a consequence of

the Stokes equations the particles are never allowed to touch (under the action

of finite forces) due to the lubrication force which exists when the distance

between any two approaching particles is very small. We will neglect gravity

in our computations (though this is not a limitation of Stokesian Dynamics

itself) so that we may study the effect of the particles alone on the flow and

stresses. We are also, as previously stated, ignoring any particle contributions

to the pressure.

1.3.12 Validation of Stokesian Dynamics

The validation of Stokesian Dynamics in Dratler’s 1996 paper [20] compares

with established experimental data, and the results are deemed to be within

accepted limits of error. However the paper does warn of the problem of over-

lapping particles when simulating densely packed systems on models without

stochastic or repulsive forces, i.e. purely hydrodynamic models, with no Brow-

nian motion. It is possible to overcome this problem by reducing the timestep,

but this becomes too computationally expensive to be realistic. The solution

to this problem is suggested in [9]. It involves calculating the interactions as

if the distances between the particles are small when overlapping of particle

boundaries occurs, this is the solution we use when implementing SD.
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1.3.13 Ewald Summation

Stokesian Dynamics works well and captures the key rheological features; how-

ever, it does not cope with an infinite population of particles (as we would need

for an infinite suspension) without modification. Brady and coworkers [13] ex-

tended Stokesian Dynamics to infinite suspensions, further extending the work

of O’Brien [47] using a periodic lattice and Ewald sums. Ewald summation is

widely used in systems with periodic boundary conditions. The trick in any

system which flows is to find a lattice which is self-replicating in time under

the transform of the imposed flow. We will return to that issue in chapter 2.

The aim of our work there is to develop a self-replicating lattice for all two-

dimensional linear flow fields. The essence is to find a periodic lattice which

will repeat under a general linear flow, one which contains a combination of

shear, strain, and rotation. This covers all linear two-dimensional flows. In

three dimensions a periodic lattice cannot be found for all flows: for example

a self-replicating lattice under uniaxial strain does not exist; this is proved by

Sami in his MSc thesis [50].

The Ewald summation technique works by using a box with a limited number

of particles within it. The box is tessellated over the entire domain to create a

lattice. The effects of the periodic lattice are summed to imitate the effect of

a much larger domain. Ewald summation then allows this lattice summation

to be done efficiently over an infinite domain. The summation is split into

near field and far field parts, the near field being summed in real space and

the far-field being summed in a reciprocal space; the space after a Fourier

transform. This allows the summation in both spaces to be truncated as they

both work “from opposite ends” of the space and converge quickly in their

respective domains. An Ewald sum for the Stokes Oseen tensor Jij was first

carried out by Beenakker [7], who refers to it as the Rotne-Prager tensor. This

carries roughly the same computational cost as doing the contour integral 1.29

over all particles within the periodic box.
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1.3.14 Two-dimensional systems

In this thesis we consider a variety of linear flows which have never been

studied before for suspensions, ranging from planar straining flow, through

shear flow to pure solid-body rotation. Of course, each of these examples is

well-known; but the intermediate cases are new. To investigate the dynamics

of the suspension under the action of these two-dimensional flows, we know

that the interesting behaviour will occur within the plane of the flow, so we

can save computational expense by simulating a monolayer of particles. These

are, nonetheless, spherical particles in a three-dimensional domain of fluid.

Monolayers are also used as a testing ground for for new numerical regimes

before time-consuming fully three-dimensional calculations are commenced.

Monolayers were considered by Wilson and Davis [64] where they consider the

shear stress in a monolayer of rough spheres, both considering dilute concen-

trations analytically and using Stokesian Dynamics for higher concentrations.

Another motivation for considering systems which are periodic in only two di-

mensions is when considering suspensions in a confined geometry (for instance,

to study jamming phenomena). In such a geometry it does not make sense to

tessellate space isotropically in all three dimensions. Rather, we need to be

able to use a simulation cell which replicates periodically in two dimensions

but not in the third (in which it is bounded by, for instance, solid walls or a

free surface). For this reason, in Appendix A of this thesis we will develop

the theory of Ewald summation applied to hydrodynamic mobility functions,

but in this case working in only two spatial dimensions rather than the three

dimensions of Brady [13].

1.3.15 Latest developments in Stokesian Dynamics

The latest extension to Stokesian Dynamics is by Brady [52], where he puts

forward the idea of a fast Fourier transform method. This method, known as

Accelerated Stokesian Dynamics (ASD) is a fast method with calculations of



Chapter 1: Introduction and Background 48

the order 0(N(N)) (where N is the number of particles in the periodic box).

The downside is a small loss in accuracy. ASD is very powerful but has only

been implemented for shear flows.

The computationally costly part of Stokesian dynamics is the construction

and inversion of the far field mobility matrix. ASD works by considering the

Ewald sum for the far-field many body interactions. The difference here is

that the Ewald sum is discretised. It uses a summing method described by

Darden in [16] which is based on particle mesh Ewald (PME) as outlined by

Hockney in [32]. There is some loss of accuracy by using the PME but it is

acceptable given the speed increase. ASD may initially seem unnecessary as

a self replicating basis can surely just be reduced in size such that a given

concentration can be achieved by having a sufficiently small size of the lattice.

However some phenomena cannot be observed using a periodic cell with too

few particles, so efficient computation with large numbers of particles is still

important. For example, in three dimensions volume fractions above 0.49

cause crystallisation and glassing, and with a simulation box which is too

small, crystals can easily span the periodic box. Due to the fact that we are

dealing with a two dimensional flow however, crystallisation occurs at higher

area concentrations than the critical volume fractions in three dimensions.

Problems containing fibre suspensions (which can be imitated with chains of

spheres) also require large lattices due to the length of fibres.

Blanc, Peters and Lemaire [8] conducted experiments on the shear viscosity of

a concentrated non-Brownian suspension. The shear flow is created by means

of two concentric cylinders once stationary and one rotating. They consider a

shear flow which is then reverse and this effect of shear viscosity. This results

an initial drop in viscosity followed by a rise to a plateaux. Higher concentra-

tions resulted in a more pronounced step between low viscosity value and high

plateaux. It is hypothesised that at the viscosity minimum the suspension is

isotropic and anisotropic upon reaching it’s viscosity plateaux. Results are

considered to be in agreement with stokesian dynamics experiments.
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1.3.16 Latest developments in suspension mechan-

ics

In some of the most recent numerical work on suspensions, Sandeep [39] con-

siders the particle volume fractions around which crystallisation and glassing

occur in shear flow. They then seek to determine whether ordering and other

responses are a feature of near hard sphere dispersions, by using Accelerated

Stokesian Dynamics with the addition of Brownian motion.

Ahamadi in [45] uses a finite element method and a self replicating lattice with

shear flow and planar extension with no Brownian motion, for a suspension in

which the particles are deformable and the surrounding fluid viscoelastic. The

complication of the viscoelastic fluid, in particular, means that methods such

as SD and ASD which exploit the properties of Stokes flow cannot be used.

The particles contribute to the elastic-like non-Newtonian aspect of the rate

of strain tensor.

1.4 Brady Team’s latest developments

Brady and co-workers have extended the method of Stokesian Dynamics in sev-

eral different directions away from the original simulation of force-free identical

spheres in shear flow with Ewald summation for the far-field terms. We give a

brief section over to Brady’s team latest developments in the area of suspen-

sion dynamics due to his positions in the field. In more recent years the Brady

team have considered some different problems in the area of suspensions.

Brady in 2006 [55] considered the case of a compressible flow and developed a

new resistance function for two rigid spheres in a low-Reynolds-number flow.

This was done using the method of reflections and also considered different

sized spheres.

In [35] Brady considers a model with Brownian motion. Two particles are

considered to be moving through a colloidal dispersion one behind another.
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He found that fore-aft symmetry was broken at a sufficiently small separation

when Pe > 1, (i.e. advection > diffusion), and observed a bulldozer effect,

where the first particle clears a path for the second particle, when separation

is larger. For large Pe ≫ 1 the entropic (thermal) force disappears on then

on trailing probe.

In 2007 [55] an expansion is considered to be the driving force with retarded

by the thermal motion of the particles. This is done by considering the sus-

pension to be macroscopically compressible. Bulk viscosity is the calculated

quantity and G. I Taylor’s results for expanding bubbles are shown to be re-

covered. A dissipation of energy in the fluid occurs due to differing expansion

rates between fluid and particles resulting in a higher bulk viscosity. A hard

sphere inter-particle interaction is considered and is shown to reduce bulk vis-

cosity consistent with the findings for sheet viscosity of many papers on rough

spheres. The study was for small Pe number (our study is in the limit as Pe

→ ∞) the authors mention the possibility that a high Pe bulk viscosity may

not exist.

1.5 Content of this thesis

The aim of this thesis is to study the response of hard-sphere suspensions to

a variety of linear flows in two dimensions.

Chapter 2 begins by introducing the concept of a self-replicating lattice. The

concept of a minimal basis is introduced, and illustration is made with the

simple example of a repeating box for a shear flow and the more complicated

known repeating box for a plane strain flow. We then derive a self-replicating

basis for a mixed flow between strain and shear, and secondly for a mixed flow

between shear and rotation. Finally, proof is given that the velocity gradient

tensors we have considered cover all two-dimensional linear flows.

The following chapter, chapter 3 shows results from Stokesian Dynamics simu-

lations of the mixed shear / strain / rotation flows for various particle concen-
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trations and flow combinations. Initial results are shown for the instantaneous

viscosity of a random configuration of particles, with further results from dy-

namic runs to ascertain the long-time dependence and transient behaviour of

the viscosity and normal stress on flow type and particle concentration.

Chapter 4 considers rough spheres and the effect of surface roughness on sus-

pension rheology. Two models for surface roughness are considered, a hard

contact model and a soft contact model.

Finally, chapter 5 recaps on the results of the thesis and also considers what

future research may be undertaken.

Appendix A introduces Ewald summation and attempts to derive a two-

dimensional form of the Ewald sums. The modified real space mobility re-

lations are derived and listed to allow the modelling of a infinite two dimen-

sional system and the difficulties of deriving the reciprocal space summations

are discussed.



Chapter 2

Periodic Basis for Linear

Flows

When considering a large domain, the computational cost of simulating a sys-

tem clearly becomes larger as the number of bodies being simulated increases.

If it is possible to replace a large, roughly homogeneous system with a smaller

cell repeated periodically throughout space, the computational cost can be

greatly reduced. We are considering a situation where the flow is spatially

homogeneous, which naturally lends itself to this sort of treatment. We need

to find a lattice of cells for each flow, which can be repeated throughout space,

and where the basis is temporally periodic: that is, after some time T the lat-

tice points (though not necessarily the cells themselves) have moved so that

each of the original lattice points now lies on a lattice point again. We can

then use the lattice to create a tessellated structure throughout space; each

particle is then repeated within every cell, keeping the same relative position

within each cell.

The problem to be considered in this chapter is that of implementing such a

self-replicating periodic box within a flow. This will allow us to consider an

infinite domain by only modelling one box or cell within a lattice. This has

been shown to work for a shear flow by Adler and Brenner [3]. This work

52
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was extended and shown to work for plane strain flow in an M.Sc. thesis by

Sami [50]. In the same work it was also shown that there is no self-replicating

lattice for either a uniaxial or biaxial straining flow. In this section we shall

extend this method to work for a two dimensional linear flow which linearly

combines shear, rotation and plane strain flow. Much of the general setup of

the problem is based on the M.Sc. work of Sami in [50].

2.1 Lattice and its Basis

We consider a linear flow of the form

U(x) = G · x, (2.1)

whereG is traceless for an incompressible flow, and we will consider the motion

of the lattice points

x = B · Z, Z ∈ Zn. (2.2)

Here U is the flow velocity vector, G is the rate of strain tensor and x is the

position vector in Cartesian coordinates. B is a basis spanning Rn, n ∈ {2, 3},
written as a matrix of column vectors. The vector Z has integer components

so equation (2.2) defines a lattice; an example of this is shown in figure 2.1

with a strain flow imposed. A basis for a given lattice is any set of spanning

vectors b1, b2 (b3 in three dimensions) such that every lattice point can be

expressed as a linear integer combination of bi, i.e.
∑n

i=1 αibi where αi ∈ Z.

For a given set of lattice points, however, the spanning basis is not unique,

we shall consider a linear combinations of elements within B with the aim of

creating a minimal basis.

2.1.1 Properties of a minimal basis

A minimal set of basis vectors is the set of basis vectors bi that satisfy equation

(2.2) for each lattice point such that the quantity

Σi |bi| , (2.3)
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Figure 2.1: Example of a lattice with strain flow

is minimised over all possible bases satisfying (2.2).

The concept of a minimal basis is slightly confusing as if we imagine a lattice

of nodes and choose a combination of basis vectors to span the lattice our

natural inclination will be to create a minimal basis. Intuitively the minimal

basis is the “best” basis, most “natural” basis as it were.

In chapter five of his M.Sc. thesis [50], Sami states that the conditions for a

basis to be minimal are

|cos θij| ≤
1

2
min

( |bj|
|bi|

,
|bi|
|bj |

)
(2.4)

where θij is the angle between the basis vectors bi and bj, for each pair of basis

vectors. However while condition (2.4) is sufficient in two dimensions it proves

to be insufficient in three dimensions. This can be proved by counterexample.
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Consider the three-dimensional basis:

B =




1 −1/2 −1/2

0
√
3/2 −

√
3/2

ε ε ε




b1 =




1

0

ε


 b2 =




−1/2
√
3/2

ε


 b3 =




−1/2

−
√
3/2

ε




(2.5)

where ε ≪ 1 is a real non zero parameter. This example basis satisfies the

minimal condition given by equation (2.4) but there exists a linear combination

which is shorter than any of the basis lengths, namely

b1 + b2 + b3 =




0

0

3ε


 , (2.6)

which is obviously a linear combination of the original basis vectors whose

length can be made smaller than any of |bi| by setting ε < 1
3 . The new basis

B′ = {b1,b2,b1 + b2 + b3} (2.7)

has a lower total length than our original basis B and spans the same lattice.

For a minimal constraint that is valid in three dimensions it is necessary to

check for a shorter vector that could replace one of vectors: that is, seek b′
i

such that

|b′
i| < |bi| (2.8)

with

b′
i = bi +mbj + nbk, (2.9)

for some integers m and n. If the basis is minimal, no such vector exists, and

instead
∣∣b′

i

∣∣ ≥ |bi| , (2.10)
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for all m,n. We can easily construct such a condition if we restrict ourselves

to the case where all of the original basis vectors are the same length, and

consider only the cases m = ±1, n = ±1. Consider

|b′
i|2 = |bi|2 + |bj |2 + |bk|2 ± 2bi · bj ± 2bi · bk ± 2bj · bk. (2.11)

We are looking for

|b′
i| < |bi|

⇒ 0 < b2j + b2k ± 2bi · bk ± 2bi · bj ± 2bj · bk.
(2.12)

Assuming all of the vectors are the same length, this yields

0 < b2 + b2 ± 2b2 cos θ13 ± 2b2 cos θ12 ± 2b2 cos θ23

⇒
3∑

i=1

| cos θi| < 1.
(2.13)

The case where all of the vectors are the same length is very specialised and

needs to be generalised.

The condition (2.13) is necessary but perhaps not sufficient in cases where

the basis lengths are not equal. This represents the same idea as condition

(2.4) but taken between each pair of bases rather than each pair of vectors.

However our bases will all be two dimensional in this thesis and therefore this

condition is superfluous to our needs but useful to help with understanding of

the model.

2.2 The Flow

Returning to equation (2.1) we seek the appropriate repeating basis for a flow.

If we solve equation (2.1) for lattice points advecting with the flow (for which

ẋ = U(x)) we get

x(t) = exp (Gt) · x(0). (2.14)

G is traceless due to incompressibility and the trace is an invariant so exp (Gt)

is also traceless. If our lattice is self replicating the vertices of the lattice must
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all map onto vertices for some time T (discussed in sections 2.3.2 and 2.2.2).

The consequence of this is that if we consider a vertex of the lattice it must

be mapped in time T onto a linear integer combination of the basis vectors:

exp (GT )B = BM, M ∈ Zn × Zn. (2.15)

We consider G to only have real eigenvalues values for now. We shall restrict

ourselves to matrices which we are diagonalisable (and revisit this assumption

in section 2.3.1). We will return to the case with complex eigenvalues in section

2.3.4. We take

G = VΛV−1, (2.16)

so by standard diagonalisation methods columns of V are right eigenvectors

of G and Λ is a diagonal matrix with the corresponding eigenvalues of G. As

G is traceless and the trace is invariant we can say,

Λ =




λ1 0 0

0 λ2 0

0 0 −λ1 − λ2


 . (2.17)

We shall ignore the case λ1 = λ2, as this corresponds to uniaxial and biaxial

strain, and it is proven in [50] that uniaxial and biaxial strain do not have a

self replicating basis. We have also eliminated the case of shear flow, in which

G does not diagonalise. As we shall see later in section 2.3.1, shear flow has

a very simple basis and so this analysis is not needed in that particular case.

We order the three eigenvalues so that λ1 > λ2 > −(λ1+λ2) and thus λ1 > 0.

From equation (2.14)

exp (GT ) = V exp (ΛT )V−1, (2.18)
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and also

exp (ΛT ) =




eλ1T 0 0

0 eλ2T 0

0 0 e−(λ1+λ2)T




=




S 0 0

0 Sν 0

0 0 S−(1+ν)


 = S,

with S = exp (λ1T ) > 1 and ν = λ2/λ1 ∈ (−1/2, 1). Now using this informa-

tion we can use equation (2.15) to state that finding the basis is equivalent to

solving 


S 0 0

0 Sν 0

0 0 S−(1+ν)


B = BM. (2.19)

Due to the fact that exp (ΛT ) is diagonal, the eigenvalues of M are µi =

exp (λiT ) and the the rows of B are the left eigenvectors of M.

2.2.1 Example: Basis Vectors for Plane Strain

If we consider a plane strain flow, i.e. ν = 0, our problem is



eλT 0 0

0 0 0

0 0 e−λT


B = BM. (2.20)

This can easily be reduced to

 S 0

0 S−1


B = BM, (2.21)

by neglecting the third dimension, in which nothing moves, and this is equiv-

alent to the strain flow,

U =


 λ 0

0 −λ


 · x. (2.22)

There are two invariants between S and M:
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1. Tr(M) = Tr(S),

2. det(M) = det(S) = 1.

Since Tr(S) = S + S−1 and S ≥ 1 we have Tr(S) ≥ 2, but if Tr(S) = 2 then

S = 1 which represents no motion, so we can say Tr(S) > 2. Then Tr(M) > 2

and as Mij ∈ Z, we can say Tr(M) ≥ 3.

Without loss of generality, let

B =


 A cos θ1 cos θ2

A sin θ1 sin θ2


 . (2.23)

If we substitute this into equation (2.21) we can show that

cos θ1
cos θ2

=
S −M22

AM12
=

M21

A(S −M11)
, (2.24)

and
sin θ1
sin θ2

=
S−1 −M22

AM12
=

M21

A(S−1 −M11)
. (2.25)

Using the trace invariant, we can write S−1 = Tr−S =M11+M22−S, giving:

sin θ1
sin θ2

=
M11 − S

AM12
=

M21

A(M22 − S)
. (2.26)

There are many possible solutions; however any self replicating lattice in two

dimensions will have orthogonal basis vectors at some point during its period

of repetition so for convenience we choose θ1 = θ2 + (π/2) to obtain

tan θ1 =
AM12

S −M22
=
A(S −M11)

M21
=
S −M11

AM12
=

M21

A(S −M22)
. (2.27)

This gives M21 = A2M12 and

tan θ1 =
AM12

S −M22
=
S −M11

AM12
. (2.28)

If we additionally take A = 1 and hence M12 =M21 we obtain

tan θ1 =
M12

S −M22
=
S −M11

M12
, (2.29)

and using the trace invariant, we obtain

M11M22 − 1 =M2
12. (2.30)
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If we choose M12 = 0 this would give the solution of S = 1, i.e. stationary

flow, which is of no interest to us. So we take M11 = M12 = M21 = 1 and

M22 = 2. Substituting into equation (2.29) gives us S = (3±
√
5)/2 (or, since

we specified S > 1, in fact S = (3 +
√
5)/2) and hence the basis

B = k


 1 (1 +

√
5)/2

(1 +
√
5)/2 −1


 , (2.31)

where k is just a normalising constant.

The self-replication time is given by

S =
3 +

√
5

2
= eλ1T , (2.32)

T =
1

λ1
ln

(
3 +

√
5

2

)
. (2.33)

We could find other bases which would repeat in the same repeat time T and

with the same matrix M, simply by removing the restriction θ1 = θ2 + (π/2).

One example is the basis derived in [50] for plane strain flow:

B =


 1 (1 +

√
5)/2

1 (1−
√
5)/2


 , (2.34)

which it is straightforward to show also satisfies equation (2.21), SB = BM:

SB =




3+
√
5

2 0

0 3−
√
5

2




 1 1+

√
5

2

1 1−
√
5

2


 =




3+
√
5

2 2 +
√
5

3−
√
5

2 2−
√
5


 ;

BM =


 1 1+

√
5

2

1 1−
√
5

2




 1 1

1 2


 =




3+
√
5

2 2 +
√
5

3−
√
5

2 2−
√
5


 .

2.2.2 Independence of Relative Particle Velocity

on Box Choice

This is the underlying concept on which the idea of a self replicating basis

rests: the fact that the evolution of the position of a given point relative to

its lattice box is independent of which lattice box it is in. If we consider a
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Figure 2.2: A generic box

generic lattice box we can show that the evolution of the relative position of

a test point is independent of the choice of box.

We shall consider one box from our lattice, shown in figure 2.2. Any box in

the lattice is created by the basis matrix B. We shall label the corners of our

box xr, r = 1–4 in a clockwise direction, generated by

xr = B · Zr, r = 1 . . . 4, (2.35)

where the integer vectors Zr are shown on figure 2.2. For instance, the position

of the corner shown at bottom left is

x1 = B · Z1 = B ·


 a

b


 = ab1 + bb2.

We shall denote the relative position within the box in terms of the basis

vectors: i.e. by the local coordinates x′, y′ ∈ [0, 1]. A particle lying between

corners 1 and 4 has y′ = 0; one lying between corners 1 and 2 would have

x′ = 0. Thus the absolute position of the point would be

x = (a+ x′)b1 + (b+ y′)b2 = x1 +B ·


 x′

y′


 . (2.36)

The flow is governed by equation (2.14):

 x

y


 = exp (Gt) ·


 x0

y0


 (2.37)
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where G is the rate of strain tensor.

Consider a point somewhere in a box, whose position vector x(t) is governed by

equation (2.37). The relative position within that box x′(t) can be expressed

in terms of the absolute position by

x′(t) =


 x′

y′


 = B−1 · (x(t)−O(t)) , (2.38)

where O(t) represents the origin of the box at time t, shown in figure 2.2 as

O(t) = x1.

The evolving basis vectors can be written as b1(t) = exp (Gt)B · (Z4 − Z1),

b2(t) = exp (Gt)B · (Z2 − Z1). These give

b1(t) = exp (G t)B ·


 0

1




b2(t) = exp (G t)B ·


 1

0




both of which are obviously independent of the box choice {a, b}. Hence the

definition of relative coordinates given in (2.38) is independent of box choice

as (x(t)−O(t)) is simply a shift of the box origin (or of the choice of box).

2.3 General linear flows

In this section we shall detail the bases for the different types of flows. The

basis for shear flow is well known and the basis for two dimensional strain flow,

which we have just demonstrated, is detailed in [50]. The basis for combination

flow between shear and strain and the combination flow of shear / strain and

rotation are new work.

2.3.1 Shear Flow Repeating Basis

Here we shall show the simple case of a repeating basis for a shear flow. This

is a simple case which is relatively easy to imagine and quite intuitive, and is
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illustrated in figure 2.3.

Figure 2.3: Evolution and repetition of box under shear flow

For a shear flow our rate of strain tensor is

G =


 0 β

0 0


 , (2.39)

where β is the shear rate. As previously stated for a basis B to self-replicate

under flow,

B · Z1 = exp[GT ]B · Z0, (2.40)

where Zi are integer vectors at i = 0 corresponding to t = 0 and i = 1 for the

value of Z at a t = T . There is an obvious solution to this problem given by

B =


 a 0

0 b


 , (2.41)

where a, b ∈ R. In practice it is more convenient to consider a square lattice

B =


 a 0

0 a


 . (2.42)

and the period for self-replication is

T =
1

β
, (2.43)

so that

exp[GT ]B · Z0 =


 1 βT

0 1




 a 0

0 a


 · Z0

=


 a a

0 a


 · Z0

=


 a 0

0 a


 ·


 1 1

0 1


 · Z0,

(2.44)
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and

Z1 =


 1 1

0 1


 · Z0. (2.45)

Now that we are equipped with the knowledge that both shear and strain flows

have a basis which repeats we can start to consider the possibility of a linear

combination of shear and strain flow.

2.3.2 Strain Flow

In this section we give a brief example of how one box evolves under a strain

flow and the lattice points repeat, as shown in figure 2.4. In this figure we are

using the second basis (and lattice) for plane strain from section 2.2.1:

B =


 1 (1 +

√
5)/2

1 (1−
√
5)/2


 . (2.46)

Figure 2.4: Evolution of box and replication of lattice under strain flow

The way in which the lattice repeats itself in this case is less intuitive and

certainly hard to imagine without figure 2.4. The curved lines show the evo-

lution of the vertices. The lattice shows the cells or boxes at time t = 0. We
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are looking at the the box whose left corner is at the origin, filled with narrow

horizontal lines, and whose corners are marked by large crosses. The vertices

follow the flow lines until they all cross a new set of vertices of the lattice.

This is when the basis lattice is said to replicate. The new locations of our

four corner vertices are represented by dots, and the stretched box is filled

with wide slanted stripes.

Let us label each point of the first basis square 1–4, starting with the corner at

the origin and continuing round in a clockwise direction, and follow the path

of each vertex. The coordinates of each of these initial points are given by

xr = B · Zr, with r ∈ {1, 2, 3, 4} (2.47)

and

Z1 =


 0

0


 Z2 =


 1

0


 Z3 =


 1

1


 Z4 =


 0

1


 (2.48)

From figure 2.4 we can see where our vertices repeat but we do need to confirm

that each point repeats in the same time T . The evolution of the points is

governed by equation (2.14), x(t) = exp (Gt) · x(0), and hence this is simply

a case of solving the four equations (r = 1 . . . 4)

B · Z′
r = exp (GT )B · Zr, (2.49)

for T , where Z′
r refers to the repeated integer coordinates (at time T ) of the

point which originated at Zr at time t = 0.

If we consider the original box in figure 2.4 and suppose that each of the

vertices is transformed to the corresponding corner of the new box in that

figure, we are considering

Z′
1 =


 0

0


 Z′

2 =


 1

1


 Z′

3 =


 2

3


 Z′

4 =


 1

2


 . (2.50)

These coordinates all agree with the matrix form derived in section 2.2.1:

Z′
r = M · Zr where M =


 1 1

1 2


 . (2.51)
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It only remains to check the four times at which these vertices reach their

destination lattice points. Clearly since

Z′
1 = Z1 =


 0

0


 (2.52)

the first point is always at its destination; we only need to check the other

three. Indeed, since Z3 = Z2+Z4 and Z′
3 = Z′

2+Z′
4 and the problem is entirely

linear, it is enough to check that vertices 2 and 4 reach their destinations at

the same time T .

If we consider the transformation of vertex 2, whose edge from the origin is

represented by b1, then according to equation (2.49) we can arrive at,

B ·


 1

1


 = exp (GT )B ·


 1

0


 , (2.53)

and for vertex 4, represented by b2,

B ·


 1

2


 = exp (GT )B ·


 0

1


 . (2.54)

Since

G =


 λ 0

0 −λ


 and exp (GT ) =


 eλT 0

0 e−λT


 , (2.55)

for a given basis

B =


 b1,1 b2,1

b1,2 b2,2


 (2.56)

equations (2.53) and (2.54) give

λT = ln

(
b1,1 + b2,1

b1,1

)
, (2.57a)

λT = ln

(
b1,2

b1,2 + b2,2

)
, (2.57b)

λT = ln

(
b1,1 + 2b2,1

b2,1

)
, (2.57c)
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λT = ln

(
b2,2

b1,2 + 2b2,2

)
. (2.57d)

So for the box edges to reproduce (i.e the lattice points to map onto new

vertices) in the same time, we have the condition

b1,1 + b2,1
b1,1

=
b1,2

b1,2 + b2,2
=
b1,1 + 2b2,1

b2,1
=

b2,2
b1,2 + 2b2,2

= eλT . (2.58)

For our basis

B =


 1 1+

√
5

2

1 1−
√
5

2


 , (2.59)

this is satisfied with a value of eλT = 3+
√
5

2 , which was our value of S when

we were deriving our basis vectors. This gives us a repeat time of

λT = ln

(
3 +

√
5

2

)
(2.60)

as shown in section 2.2.1.

2.3.3 Conditions For a Repeating Basis With a Com-

bination of Shear and Strain Flow

In section 2.2.1 we derived a self-replicating basis for a strain flow. We have

also showed the more trivial solution of a repeating basis for a shear flow. Here

we will consider the combination of a strain and shear flow.

The method used in section 2.2.1 is repeated to derive the repeating basis.

Let us consider the velocity to be given by

U = G · x, (2.61)

with

G = (1− γ)


 α 0

0 −α


+ γ


 0 β

0 0


 , (2.62)

with γ, α and β all real variables.
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We can set α = β = 1 without loss of generality, since these two variables only

affect the flow strength, not the flow type. Integrating this yields,

x = exp




 (1− γ) γ

0 −(1− γ)


 t


 · x0. (2.63)

The exponential above can be calculated: setting

G1 =


 1 0

0 −1


 G2 =


 0 1

0 0


 (2.64)

we have

G =


 (1− γ) γ

0 −(1− γ)


 = (1− γ)G1 + γG2. (2.65)

Noting that

Gm
1 =


 1 0

0 (−1)m


 G2

2 =


 0 0

0 0


 , (2.66)

we can deduce

Gn =

n∑

j=0


n
j


 [(1− γ)G1]

n−j [γG2]
j

= (1− γ)nGn
1 + n(1− γ)n−1Gn−1

1 γG2 for n ≥ 1

(2.67)
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exp [Gt] =
∞∑

n=0

Gntn

n!

= I+

∞∑

n=1

[(1− γ)nGn
1 + n(1− γ)n−1Gn−1

1 γG2]t
n

n!

=
∞∑

n=0

(1− γ)nGn
1 t

n

n!
+

∞∑

n=1

(1− γ)n−1Gn−1
1 tn−1

(n− 1)!
γtG2

=


 exp [(1− γ)t] 0

0 exp [−(1− γ)t]




+


 exp [(1− γ)t] 0

0 exp [−(1− γ)t]




 0 γt

0 0




=


 exp [(1− γ)t] γt exp [(1− γ)t]

0 exp [−(1− γ)t]




(2.68)

Then equation (2.63) can be rewritten as

x = S · x0 =


 S n

0 S−1


 · x0, (2.69)

with S = exp [(1− γ)t] and n = Sγt.

We have to construct a basis such that at some time t = T

SB = BM, (2.70)

where M has solely integer components,

which yields:


 S n

0 S−1


 B = BM. (2.71)

The basis matrix B can be written as

B =


 A cos θ1 cos θ2

A sin θ1 sin θ2


 , (2.72)
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and at some point of the evolution of the basis under the flow, the basis vectors

will be perpendicular to each other which allows us to say θ1 = θ2+
π
2 resulting

in the simpler

B =


 −A sin θ2 cos θ2

A cos θ2 sin θ2


 =


 −A a b

A b a


 , (2.73)

in which we have defined a = sin θ2 and b = cos θ2 for conciseness. The

equality shown in equation (2.71) has two invariants,

1. det(M) =M11M22 −M12M21 = det(S) = 1

2. Tr(M) =M11 +M22 = S + S−1 = Tr(S).

The problem of finding a basis has several steps, the first being relating S and

n to M in equation (2.71). Simply multiplying our matrices together gives us


 A(nb− Sa) Sb+ na

AS−1b S−1a


 =


 −AaM11 + bM21 −AaM12 + bM22

AbM11 + aM21 AbM12 + aM22


 . (2.74)

We can easily rearrange the four component equations of (2.74) to give,

a

b
=

M21 −An

A (M11 − S)

a

b
=

M22 − S

n+AM12
(2.75)

a

b
=
A (S−1 −M11)

M21

a

b
=

AM12

S−1 −M22
. (2.76)

If we add the two equations of (2.75) we get

2
(a
b

)
=

(M21 −An)(n+AM12) +A (M11 − S)(M22 − S)

A(M11 − S)(n +AM12)
, (2.77)

which by use of both invariants gives

2
(a
b

)
=

(M21 −An)(n +AM12) +AM12M21

A(M11 − S)(n+AM12)
. (2.78)

Using the same method with the two equations of (2.76) we get
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2
(a
b

)
=
A(S−1 −M11)(S

−1 −M22) +AM12M21

M12(S−1 −M22)
=

2AM12

(M11 − S)
. (2.79)

Finally, eliminating a/b from equations (2.78) and (2.79) and simplifying gives

us

− 2M2
12 A

3 − 3nM12A
2 + (2M12M21 − n2)A+ nM21 = 0. (2.80)

Solving this equation for A yields the solutions

A1 = − n

2M12
A2,3 =

−n±
√
4M12M21 + n2

2M12
. (2.81)

The second invariant (the trace) gives us the quadratic equation S2 − (M11 +

M22)S + 1 = 0 resulting in the solution

S =
(M11 +M22)±

√
(M11 +M22)2 − 4

2
. (2.82)

Now that we know A and S, from any one of the equations in equations (2.75)

and (2.76) we have an expression for tan θ2 and hence can find an expression

for sin θ2 and cos θ2 in terms of Mij and n.

This leaves us only with the problem of finding a matrix M that satisfies our

equations. As long as we can satisfy all four of the equations (2.75)–(2.76),

with an A and S that depend on M and n, we shall have a valid solution.

We have already shown that when we calculated a basis for a strain flow the

matrix

M =


 1 1

1 2


 (2.83)

was a valid choice: we shall use this again. Substituting these values into

equations (2.81) and (2.82) we arrive at the values for S and A being (taking

the second solution for A and the positive square root for S)

S =
3 +

√
5

2
, (2.84)
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and

A =
−n+

√
n2 + 4

2
. (2.85)

Equations (2.75)–(2.76) are then satisfied providing

a

b
=

(1−
√
5)(−n+

√
n2 + 4)

4
. (2.86)

This then allows us to find our general basis B for a combined shear and strain

flow:

B = k


 (

√
5− 1)(−n+

√
n2 + 4) −2(n+

√
n2 + 4)

4 2(1 −
√
5)


 , (2.87)

for some normalisation constant k (for which any real value is allowed).

We could have chosen any of the solutions of S and A and still had a valid

solution but choosing positive results helps to avoid confusion by keeping basis

vectors pointing in their expected directions. If we take the example of n = 1

this results in A =
√
5−1
2 and a basis

B = 2k


 3−

√
5 −(1 +

√
5)

2 (1−
√
5)


 . (2.88)

This method is valid for a pure strain flow, and any combination of shear and

strain flow. However, it is not valid for a shear flow, because in the shear case

G does not diagonalise. In the case of a pure shear flow n→ ∞. This in turn

implies that

[b2]1 = −2k(n+
√
n2 + 4) ∼ −2k

[
2n+

2

n
+O

(
n−3

)]
→ ∞ (2.89)

and hence our basis no longer consists of finite vectors.
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Figure 2.5: Strain flow

2.3.4 A Repeating Basis with a Combination of Strain

Flow and Rotation

The addition of rotation to our combination of flows means that we are now

considering all possible linear two dimensional flows.

In this next section we will concentrate on finding a basis which is periodic

under a flow between strain and rotation. The method used to find this truly

general repeating basis can be easily simplified for finding a specific solution

such as a pure strain basis.

Any two-dimensional linear flow can be split into a combination of strain and

rotation. This is fully explained and proved in section 2.3.5. The matrix which

describes this is:

G =


 (1− β) β

−β −(1− β)


 , (2.90)

with β ∈ [0, 1]. A few sample values:

β = 0 Strain Figure 2.5
β = 1

2 Shear parallel to the y = −x line Figure 2.6
β = 1 Pure rotation. Figure 2.7.

The problem of finding the repeating basis, as before in equation (2.70), is

that of constructing a basis such that

SB = BM, (2.91)
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Figure 2.6: Shear flow

Figure 2.7: Rotation flow

where M has solely integer components and B is the basis matrix. The S

matrix is defined as being

S = exp (GT ) (2.92)

where T is the time at which the lattice self-replicates and G is the rate of

strain tensor which causes the background flow

U = G · x. (2.93)

In section 2.3.5 we will show that this matrix G is sufficiently general to

capture the dynamics of all two-dimensional linear flows that satisfy mass

conservation. With previous flow combinations we diagonalised G by saying

G = VΛV−1, (2.94)

where the columns of V are the right eigenvectors of G, and effectively rotated
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the underlying axes so that we could say

S = exp [ΛT ]. (2.95)

With the addition of rotation the eigenvalues and eigenvectors become com-

plex. This means that we cannot just rotate our axes and remove the V

matrices. Hence our new form of S becomes

S = V exp [ΛT ]V−1. (2.96)

The problem of solving equation (2.91) is the same but has increased in com-

plexity because S is no longer diagonal. We can rearrange the equality to

exp [ΛT ] [V−1 B] = [V−1 B]M, (2.97)

with

exp [ΛT ] =


 eαT 0

0 e−αT


 , (2.98)

V =


 −1 + β − α −1 + β + α

β β


 , (2.99)

V−1 =
−1

2αβ


 β 1− β − α

−β −1 + β − α


 , (2.100)

and α =
√
1− 2β, which will be imaginary if β > 1/2.

In considering the problem of solving

exp[ΛT ] [V−1 B] = [V−1 B]M, (2.101)

we shall look at each matrix element in turn. Letting

W = V−1 B, B =


 −As c

Ac s


 , (2.102)

s = sin θ and c = cos θ allows our problem to be written

exp [ΛT ]W = WM (2.103)
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with

W =
1

2αβ


 A[c(α − 1 + β) + sβ] s(α− 1 + β)− cβ

A[c(α + 1− β)− sβ] s(α+ 1− β) + cβ


 . (2.104)

Substituting into the left hand side of equation (2.103)

exp [ΛT ]W =


 W11e

αT W12e
αT

W21e
−αT W22e

−αT


 , (2.105)

and right hand side

WM =


 W11M11 +W12M21 W11M12 +W12M22

W21M11 +W22M21 W21M12 +W22M22


 . (2.106)

Now equating components

[11]: W11(e
αT −M11) =W12M21

[12]: W12(e
αT −M22) =W11M12

[21]: W21(e
−αT −M11) =W22M21

[22]: W22(e
−αT −M22) =W21M12

(2.107)

where [11], [12] etc. refer to the matrix components of WM. We find

W11

W12
=
eαT −M22

M12
=

M21

eαT −M11
= K, (2.108)

and
W21

W22
=
e−αT −M22

M12
=

M21

e−αT −M11
= K ′, (2.109)

where K ′ = K̄, the complex conjugate of K, if β > 1/2 so that α is imaginary.

Now since det(exp [ΛT ]) = 1, equation (2.103) implies det(M) = 1. If we

substitute x = eαT into either of equations (2.108) or (2.109) and use this

fact, we have the quadratic equation

x2 − (M11 +M22)x+ 1 = 0, (2.110)

with solution

eαT =
(M11 +M22)±

√
(M11 +M22)2 − 4

2
. (2.111)
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We now specify to the case where β > 1
2 in equation (2.90), in which case α is

imaginary. The simplest solution is for M = −I, giving

T =
iπ

α
. (2.112)

Having an expression for T and a value for M makes finding the repeating

basis a lot easier. For the case where 1
2 < β ≤ 1, equation (2.103) becomes

simply −W = −W and our choice of basis is free. We shall therefore choose

B = I. (2.113)

For the case where 0 ≤ β < 1
2 , α is real and the calculation needs to be con-

tinued. Substituting the form of W into the components of equation (2.107):

[11]: A[c(α − 1 + β) + sβ](eαT −M11) = [s(α− 1 + β)− cβ]M21,
[12]: [s(α− 1 + β)− cβ](eαT −M22) = A[c(α − 1 + β) + sβ]M12,
[21]: A[c(α + 1− β)− sβ](e−αT −M11) = [s(α+ 1− β) + cβ]M21,
[22]: [s(α+ 1− β) + cβ](e−αT −M22) = A[c(α+ 1− β)− sβ]M12.

(2.114)

Taking the components of equation (2.114) in turn,

tan θ =
A(α− 1 + β)(eαT −M11) + βM21

−Aβ(eαT −M11) + (α− 1 + β)M21
, (2.115)

tan θ =
A(α− 1 + β)M12 + β(eαT −M22)

(α− 1 + β)(eαT −M22)−AβM12
, (2.116)

tan θ =
A(α+ 1− β)(e−αT −M11)− βM21

Aβ(e−αT −M11) + (α+ 1− β)M21
, (2.117)

tan θ =
A(α+ 1− β)M12 − β(e−αT −M22)

(α+ 1− β)(e−αT −M22) +AβM12
. (2.118)

Using equations (2.108) and (2.109) to re-express eαT and e−αT , these four

equations become

tan θ =
A(α− 1 + β) + βK

(α− 1 + β)K −Aβ
=
A(α+ 1− β)− βK ′

(α+ 1− β)K ′ +Aβ
. (2.119)

Equation (2.119) results in

αA2 + β(K −K ′)A+ αKK ′ = 0. (2.120)
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Solving for A gives

A =
−β(K −K ′)±

√
β2(K −K ′)2 − 4α2KK ′

2α
. (2.121)

The case β ∈ [0, 12 ) is equivalent to the one we solved in section 2.3.3, so we

can allow M to be of its previous form

M =


 1 1

1 2


 . (2.122)

Substituting this value of M into equations (2.108), (2.109) and (2.111) gives

eαT =
3 +

√
5

2
, e−αT =

3−
√
5

2
, (2.123)

in which we have taken (conventionally) the positive square root in solving for

eαT so that T > 0, and

K =

√
5− 1

2
, K ′ =

−
√
5− 1

2
. (2.124)

Substituting these values into equation (2.121),

A =
−
√
5β ±

√
5β2 + 4α2

2α
=

−
√
5β ±

√
5β2 − 8β + 4

2α
. (2.125)

and, in turn,

tan θ =
(−

√
5β ±

√
5β2 − 8β + 4)(α − 1 + β)(1 +

√
5) + 4αβ

−(−
√
5β ±

√
5β2 − 8β + 4)β(1 +

√
5) + 4α(α − 1 + β)

, (2.126)

with α =
√
1− 2β.

We have found one basis for 0 ≤ β < 1
2 and one for 1

2 < β ≤ 1. The only

remaining case is shear flow, β = 1
2 , for which a suitable basis is

B =


 1 1

1 −1


 . (2.127)

This is equivalent to the basis given in section 2.3.1, with a rotated frame of

reference.

In table 2.1 we resent a table of the aspect ratios and repeat time periods of

basis for various flows.
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β Aspect ratio Tepeat time T

0.1 1.13 1.076
0.3 1.66 1.52
0.45 3.47 3.04
0.55 1.0 9.93
0.7 1.0 4.97

Table 2.1: Aspect ratio (at the moment where the basis vectors are at right
angles) and repeat time for our basis at different values of β. For β < 0.5, the

resetting matrix is M =

(
1 1
1 2

)
; for β > 0.5, M = I.

2.3.5 Completeness of Basis for All Flows

In section 2.3.4 it was shown that a basis could be found for any combination

of shear, strain and rotation. We claimed that the matrix G given in equation

(2.90) covers all linear incompressible two dimensional flows. In the following

section we shall prove that equation (2.90) is indeed sufficient with β ∈ [0, 1].

If we consider a completely general incompressible flow we have the velocity

gradient matrix

G =


 a b

c −a


 , (2.128)

which has zero trace due to the ∇ · U = 0 mass conservation condition. We

shall first show that under a rotation θ of the underlying axes we can produce

a matrix of the form,

G =


 P Q

−Q −P


 , (2.129)

and eventually of the form

G =


 (1− β) β

−β −(1− β)


 . (2.130)

We will use the rotation matrices

R =


 cos θ sin θ

− sin θ cos θ,


 (2.131)
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R−1 =


 cos θ − sin θ

sin θ cos θ.


 . (2.132)

Rotating the underlying axes on which we view the velocity gradient matrix

(2.128) by using the rotation matrices (2.131) and (2.132) gives us a new G,

given by

Grotated = R−1 GR

=


 a(2C2 − 1)− (b+ c)SC (b+ c)C2 − c+ 2aSC

(b+ c)C2 − b+ 2aSC a(1− 2C2) + (b+ c)SC


 ,

(2.133)

in which we have written S = sin θ and C = cos θ for conciseness.

The mass conservation condition requires that G has zero trace; this condition

still holds true in equation (2.133) which is a good quick check.

We wish to makeGrotated antisymmetric to attain the form of equation (2.129),

so we set

(b+ c)C2 − c+ 2aSC = −[(b+ c)C2 − b+ 2aSC] (2.134)

and solve for θ. This rapidly gives

(b+ c)(2C2 − 1) + 4aSC = 0 (b+ c) cos 2θ + 2a sin 2θ = 0 (2.135)

Solving for θ:

tan 2θ = −b+ c

2a
, (2.136)

proving that it is possible to take any flow and by a rotation of axes have a

flow of the form (2.129):

Grotated =


 P Q

−Q −P


 , (2.137)

where in this case

P =
cos 2θ

4a
(4a2 + (b+ c)2) and Q =

1

2
(b− c). (2.138)

Defining β = Q/(P +Q), equation (2.129) becomes

G = (P +Q)


 1− β β

−β −(1− β)


 , (2.139)
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which is the same as equation (2.90) with a multiplying factor. The multiply-

ing factor does not affect the type of flow but merely its speed. Hence we can

say that (2.90) encompasses all linear two dimensional incompressible flows.

Sufficiency of the Case β ∈ [0, 1] to Cover All Flows

So far in this section we have shown that equation (2.90) represents all possible

linear two dimensional incompressible flows, provided we allow the parameter

β to take any value. In section 2.3.3 we showed that a repeating basis exists

for any combination of shear, strain and rotation, i.e. any value β ∈ [0, 1]. The

following section shows that when we consider flows where β < 0 or β > 1,

this is also covered by equation (2.90) with 0 ≤ β ≤ 1.

Take the flow gradient matrix of equation (2.130):

G =


 (1− β) β

−β −(1− β)


 , (2.140)

and the rotation of axes matrix of equation (2.131)

R =


 cos θ sin θ

− sin θ cos θ


 . (2.141)

Letting θ = −π
2 and rotating the underlying axes,

Grotated =R−1 GR

=


 −(1− β) β

−β (1− β)


 .

(2.142)

Removing a factor of 2β − 1 gives

Grotated = (2β − 1)


 −(1− β)/(2β − 1) β/(2β − 1)

−β/(2β − 1) (1− β)/(2β − 1)


 , (2.143)

and letting α = β/(2β − 1),

Grotated = (2β − 1)


 (1− α) α

−α −(1− α)


 . (2.144)
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This fits the flow we have already studied in equation (2.90), apart from a

factor 2β − 1 which merely changes the flow strength, provided α ∈ [0, 1]. If

β > 1 then 1
2 < α < 1, which is between shear and rotation; if β < 0 then

0 < α < 1
2 , lying between strain and shear.

It follows that linear incompressible flows described by equation (2.90) with

β outside the range [0, 1] are also described by β ∈ [0, 1] after rotation of the

axes and removal of a multiplicative factor (2β − 1) which does not affect the

type of flow but only its speed. Hence we can say that equation (2.90) with

β ∈ [0, 1] encompasses all linear incompressible two-dimensional flows.



Chapter 3

Computational Results for

Smooth Spheres

3.1 Introduction

In section 1.3 we introduced the numerical method of Stokesian Dynamics for

simulating a system of solid spheres immersed in a viscous Newtonian fluid.

In chapter 2 we showed how to implement a self-replicating lattice for any

two-dimensional linear flow field. In this chapter we draw the two together,

and carry out simulations of a suspension moving under the action of a variety

of linear flow fields.

We will restrict our attention to a monolayer of spheres: that is, all the centres

of our spheres lie in a single plane, which is the plane of the two-dimensional

linear flow field. This simplification greatly reduces the computational cost

of the simulations, but since the flow acts within the plane it is not expected

to make a big difference to the physics of the flow. Because our spheres are

a single layer in an infinite volume of fluid, the total volume concentration

is essentially zero; we use instead the area concentration c in the plane of

the sphere centres. This should not be confused with a truly two-dimensional

simulation of circles in a plane; these are real, physical spheres which just lie

83
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in one plane of our volume of fluid, and their hydrodynamic interactions are

those of spheres not cylinders.

When normalising the extra stress caused by the particles to extract the sus-

pension’s rheology, again it does not make sense to use the whole volume of

space (we would simply regain the viscosity of the suspending fluid). Instead

we normalise over a volume consisting of the area within our plane, and a

perpendicular distance 2a out of plane (where the particles have radius a).

This follows the convention used by Brady & Bossis [10], and has the effect

that the Einstein viscosity for dilute suspensions becomes µ(1 + 5
3)c.

We use a lattice of cells, repeated periodically throughout space. For ease

of implementation, we do not account properly for all two-body interactions

through all of space; instead when consider the interaction between particle α

and particle β we look for the image of particle β which is closest to particle

α (looking only in the same repeating cell and the eight which surround it)

and use all pairwise interactions based on that image. We will return to this

simplification in appendix A and discuss how it may be avoided through Ewald

summation.

Our lattice is defined using the self-replicating basis we derived for each flow

in chapter 2, and we place n identical spherical particles of radius a in each

lattice cell. To achieve the desired area concentration, we simply scale up the

lengths of the two basis vectors.

Within this chapter, we will first describe the procedure for arranging the

particles randomly within the periodic cell (section 3.2). We then discuss how

to extract the rheology of the system from the total stress tensor in section

3.3.2, before beginning to report our numerical results.

In the numerical study, we will report first on the short-time rheology of the

system; that is, the stress response to an instantaneous imposition of flow,

under which the particles have no time to evolve a microstructure. For these

runs, which are not computationally intensive, we use n = 300 particles. We

will show these short-time results in section 3.4. Next, in section 3.5, we show
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the evolution of the system rheology as the particles build up microstructure

under flow, using a much smaller system of n = 30 particles. In section 3.6.1

we study a single set of physical parameters, for various different values of n

in order to assess the severity of this reduction of box size.

3.1.1 Validation

There are several levels of validation of the Stokesian Dynamics code. The

original code I inherited was tested against Brady’s original 1987 paper [21]

via replication of figure 5, see figure 3.1.

The core code has been validated however the addition of different background

flows can not be validated as it has not been done before. There are however

many checks in the code some of which are mentioned in section 3.2.1.

3.2 Random Seeding of Boxes

In order to simulate a disordered suspension, we need to seed the particles ran-

domly within our starting box. Starting with different random initial positions

allows several runs to be done, and averaged, to achieve a more representa-

tive value of any output quantity. We have at our disposal three methods of

randomly filling our boxes, which are valid in different cases depending on the

packing density. All methods take as input one random number (the seed),

the lengths of the basis vectors, L1 = |b1| and L2 = |b2| and the number

of particles n. We make all lengths dimensionless using the particle radius

a. The scaling factor to determine the area created by the basis vectors is

initially determined to give a desired area concentration with a set number of

particles n of unit radius. These methods are,

Zinchenko method. A method that works for all concentrations of particles.

The method is to produce a roughly square grid within the cell (whose

sides are of length L1 and L2). Particles are placed on each node of
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(a) Original plot from [21]
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Validation of code via replication of three body particle path

(b) Replicated plot using model

Figure 3.1: Three spheres falling under gravity, validation of core Stokesian
Dynamics code comparison to Brady’s paper [21]

the grid. Then some particles are removed, at random, until the correct

number are present. Finally the particles are then thermally “jiggled”

to move them off the grid-like pattern they still hold. For this to work

well, the grid should not be full just before the “jiggling” stage: that is,

the number of particles n 6= m× int(mL2/L1) for any integer m, where
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n is the number of particles.

Brady low density method. This method is closer to being truly random.

The routine randomly places a particle within the box then places an-

other and checks that they do not overlap: if they do, it replaces the

particle. This process repeats until sufficient particles have been placed.

If, before this happens, a place for a particle cannot be found, the seed-

ing fails. The method works well for low values of c but for high values

of c it is more likely to fail. Unfortunately this makes it an unreliable

method for all but low concentrations.

Brady high density method. This method is more reliable at high area

concentrations than the Brady low density method, as it randomly seeds

the box with points to start with and then expands the radius of the

particles to the desired size whilst using a thermal jiggling algorithm to

nudge particles out of the way if they start to overlap. This routine also

informs the user if the concentration is such that crystallization occurs.

It does however still have reliability problems, like the Brady low density

method. These made it impractical for our purposes.

All three of these routines produce a random set of particle positions in a

rectangular box lined up with the Cartesian axes. In order to use these position

sets we must re-position the particles in our slanted lattice cell. The easiest

way of doing this is to find the relative coordinates of each particle within the

rectangular box and then convert those relative coordinates back to Cartesian

coordinates using our basis. We must, however, make sure that our box is at

the stage in its evolution where the angle between the basis vectors is π
2 .

The method that we have settled on is the Zinchenko method. This because

of its reliability and ease of use. We run the simulations for many repetitions

(each with a different random seed) meaning that the signal to noise ratio is

improved. This makes it easier to pick out general trends in the results.
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3.2.1 Programming the Stokesian Dynamics Pro-

gram and Technical Issues

The program that was used for all of the calculations was an implementation

of the Stokesian Dynamics method outlined earlier in this thesis. A basic

implementation of this code was inherited from Helen Wilson and extensive

alterations, data management and error checking were bolted on. In the next

section I will outline the the alterations in a brief manner.

The code was altered to allow the reading in of particle positions which had

been calculated by a separate program (discussed in section 3.2). Checks are

undertaken during the reading in of the particles to make sure that the same

basis and calculations were used.

Implementation of Periodic basis and resetting

This is the very essence of the alterations to the Stokesian Dynamics (SD)

program. The M matrix is chosen and the basis calculated. Which M matrix

is chosen depends on various parameters and logical flags. There are also a

series of simple routines which find the relative particle positions within a box

and the real position given a relative particle position. The simulation starts

by calculating the basis at right angles to one another, these are then taken

as the positions at time T/2, with T being the time to repeat. The basis at

time 0 is then calculated. The simulations run with the basis being evolved

under the same background flow as the particles.

At the end of each time step the particles are placed back into the box if they

have moved outside. This may be needed as during the simulation the flow

may cause a particle to move outside of the box we are interested in. In this

situation a corresponding particle from a neighbouring box would pop into our

central box, i.e. if a particle pops out of the top of the box a particle will pop

into our box from the neighbouring bottom box. Considering the box to be

like a torus is the easiest way to consider the box. Every time the particles are
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moved, we check if a particle has moved outside the box; if it has its relative

position is used to place it back in the box.

The mobility relations and data outputs happen not at every time step but at

set intervals so as to save on calculation time. The mobility relations rely on

the distance between particles. Due to our lattice, each of our n particles has

an image in all of the surrounding boxes. Because of the infinitely repeating

periodic lattice, this means there is actually an infinite population of particles

to consider. One option would be to include all particles within a given large

radius. To save on computational time it was decided that for every pair of

particle interaction only the closest image pair would be considered. Some

accuracy is lost by this approximation, but the lubrication interactions (which

are included in full) are expected to dominate over the lost terms. Ewald

summation is the primary method for summing the interactions over multiple

boxes and is a method we will give further consideration to later. In a very

small box for a given concentration the effect of only considering the nearest

neighbour may be more significant but our choice of a mid sized box should

lessen this problem.

Once the basis vectors reach a repeating point they are double checked against

what they should be accounting to the predetermined repeating basis. This

check is to make sure no errors have been made in calculating the repeating

basis and no errors have been made in the background flow of the particles.

Resetting is the final stage to take place. This is a simple affair but during

development took a lot of time to get it to work correctly. The basis is simply

reset back to its starting point 0 then the particles are put back into the box via

their relative particle position. Before the simulation proceeds the mobility

matrix must be recalculated to make sure any moved particles contribute

correctly to the mobility relations.

The relative particle positions represent the positions of the particles in terms

of a the normalised basis vectors of the lattice. This way if the relative particle

position xp /∈ [0, 1] then we know that the particle has moved outside the box.
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At the beginning of the simulation the position of the box at the start and the

finish of the simulation is calculated, however the box is evolved with the flow

and checked at the point of resetting as a method to confirm that no errors

have crept into that part of the code.

Management of Runs and Data

The management of runs and data was arguably at times a bigger task than

some of the scientific coding. The management and automation of dealing

with multiple runs with multiple combinations is what pulls together all of

the individual tasks of the computation, data processing and production of

results in terms of graphs. Due to the many parameter combinations plus the

multiple runs along with the long run time this was a task that needed to

be automated. The static flow results were quick and only required approx-

imately 90 runs. The dynamic results required a little less at approximately

75 runs. However with some parameter combinations taking multiple days to

complete and errors, computer crashes, power failures all causing havoc and

hence management of runs was key. The rough sphere calculations which we

will see in chapter 4 had even greater management requirements which I shall

elaborate on later.

To cope with all of these runs and data a series of BASH shell scripts were used.

All runs are initially seeded and input files placed into separate directories

for each run and parameter combination. Then each simulation is run using

the appropriately compiled program with results being placed into named

directories. Standard outputs and standard error from each run are diverted

to a file and deleted in the event of a successful run, in the event of a failed

run the standard output and standard error are renamed and saved to aid

debugging. A list of failed and completed runs is also kept so that they both

can be quickly found and the outputs examined, errors corrected and the runs

resubmitted.

The BASH shell scripts also organise and rename all files during the post run
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data processing described in section 3.5.4 and the gnuplots scripts described

in section 3.2.1.

Data Processing

Data processing was a relatively quick process which had two main stages.

The first was to calculate the Rheology from the data output from each run.

This was done via the methods outlined in section 3.3. The second is taking

the different runs and averaging the Rheological output over all of these runs.

Another data processing task was to calculate lines of best fit on averaged

runs so that comparisons could be made between different parameters runs in

a quantitative manner.

Gnuplot scripts

The gnuplot scripts produce a series of different plots for all of the different

individual and averaged runs. All titles, keys and legends are automatically

altered via the BASH scripts in section 3.2.1. This production of a massive

amount of plots allows for scanning through results in an more convenient

fashion.

Ewald

The Ewald summation was one initial aim of this Thesis, unfortunately an

error in the choice of the switching function resulted in the coding not being

fully implemented. The code framework however was fully built and only very

small alterations are required for completion. For that reason I shall describe

the framework.

A logical flag, switched on the Ewald summation rather than using the nearest

neighbour image as used in previous runs. Ewald summation consists of a

sum in real space and a sum in reciprocal space. To alleviate this problem the

Ewald summations would be tabulated. A lattice box was discretised under

the relative coordinate allowed by the basis vectors, i.e (0.5, 0.5) would be half
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way along each basis vector. The variety of different pairings combinations

were calculated with care taken not to duplicate. For example looking at figure

(3.2) we can see that the pairing between p1 and p2 would be duplicated by

p3 to p4. For each of these individual possible particle combinations a Ewald

summation was calculated.

P_4

P_2

P_1

P_3b1

b2

Figure 3.2: Basis vectors and subgrid of Ewald summation tabulation

Both the real and the reciprocal summation is infinite, however they are

strongly convergent. Hence during the tabulation, the summation was stopped

when the addition of a new round of summation contributed less than 1% to

the mobility relation.

This process of special discretisation and tabulation of mobility relations was

then repeated for a discrete time ranging from the start of the basis evolution

at −T/2 to its completion at T/2. All of these tabulated mobility relations

were then saved to text files.

During runtime, whenever a mobility value is required the nearest tabulated

mobility value is used. By nearest in this case we mean that each of the

tabulation parameters (simulation time, and the two relative coordinates of

the particle-pair’s relative position vector) is as close as possible to the actual
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point required. Given this information (the three parameter values) it is then

possible to choose the correct value of our mobility relationship directly from

the tabulated values.

This method relied on a long set up time for any run but once tabulation had

occurred, (which was then saved to text files) multiple rounds would have been

achieved very quickly. This code is very close to complete and had already

experienced a large amount of debugging, so given the correct sigmoidal func-

tion that still decays as required in reciprocal space results should be readily

achieved.

Use of the Legion cluster

The runs of the dynamic rheology took considerable computational time. The

only reason many of the runs were completed was due to generosity of friends

who allowed me use of their personal computers for weeks at a time. When

computational runs of rough spheres were undertaken it was necessary to ac-

quire some more computational power. This came in the form of the Legion

cluster at UCL [1]. Legion is a distributed memory computing cluster, its

primary role is to run parallel code but series code can be run on it.

Legion uses MOAB and qsub to manage the submitted jobs. These queuing

systems submit jobs according the the time booked to run and the number

of cores required. Short serial jobs can be submitted to fill in gaps while the

queuing system waits for multiple cores to become available for larger jobs, by

splitting the runs up into a series of fifteen minute sections the queue manger

will fit the subsections of runs into many of the small gaps created by larger

waiting jobs. For any one run, the number of fifteen minute segments needed

to be submitted with dependencies and the number of fifteen minute segments

needed to be known prior to submissions.

Unfortunately after completion of some test runs the Legion cluster changed

to the Sun Grid Engine queuing system. This allows some advantages in terms

of the possibility to run array jobs. The advantage of array jobs is that more
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runs can be submitted without overloading the queuing node, although placing

of dependencies is still necessary.

To achieve the multiple submissions significant changes needed to be made to

the code and more BASH scripts developed to submit the code in the correct

manner. FORTRAN does not have a wall clock timing mechanism, to measure

the running of a program for fifteen minutes, therefore a BASH script was used

to keep track of time and send a variable to a .dat file when fifteen minutes

had elapsed. The SD program would check this file and stop if the value was

1.

The required changes to the SD program were to make sure all data required

at runtime would be output to .dat files and read back in to the SD program

as the run was restarted. It was essential that run continued from the same

place it had started. Just as with the dynamic rheology of the smooth runs

any failed runs were logged and standard output and standard error saved so

that problems could be resolved and runs be resubmitted. Initial runs also had

to be done so that estimations could be calculated of the run time for each

parameter combination before all of the submissions could be made. This was

written to be done automatically to streamline the process.

Creating a reliable system for the submission of runs using qsub submission

system and modifying the SD program to work within the system was not as

simple as it may initially seem and took a considerable amount of time.

Conclusion

Computational aspects of the code contained many parts and managing the

combinations of parameters and multiple runs was non-trivial. There were

three main sections.

1. Scientific code,

2. Data management,

3. Post-processing.



Chapter 3: Computational Results for Smooth Spheres 95

each one being a significant task in its own right.

In hindsight and with greater programming knowledge, I would do many

things differently in this program. Many of the multiple compilations could

be avoided by extending the number parameters listed in text files, many of

the shell scripts would be improved, tidied and possibly written from scratch.

Despite many parameters being input via text files many were left out due to

a seemingly ever increasingly complicated organisation system that had ex-

panded far beyond its original intention. A few problems were also caused

by the limitations of the FORTRAN language. The lack of proper wall time

function, lack of structure e.t.c.

There are many difficulties, the management of the data and runs was a task

in itself equal in magnitude to the scientific programming, at times in-fact it

was a greater task than the scientific part of the programming. For all its

inelegance the program performed well creating a large amount of data in well

organised clear directories producing many results and graphics automatically.

For the computation of the rough sphere results it also took advantage of the

Legions cluster free node time created by parallel programs waiting for tasks.

However, there are many points which could be improved upon.

3.3 Calculating Rheology from Stresslets

The Stokesian Dynamics method allows us to calculate the particle velocities

and angular velocities, which we then use to move the particles in space under

the action of flow; but it also allows us to calculate the stresslet Sα generated

by each particle α. These stresslets can be used to determine the total stress

in the fluid-particle system, from which we can deduce the effective properties

of the whole system. In section 3.3.1 we discuss the extraction of short-time

viscosities from the stresslet data; and in section 3.3.2 we will explain how

the long-time rheology can be expressed in terms of a viscosity and a normal

stress difference.



Chapter 3: Computational Results for Smooth Spheres 96

3.3.1 The Short-Time Viscosity: Analysis of Stresslets

in Static Runs

In our static runs, the particles are arranged at random (using the method of

Zinchenko described in section 3.2). We measure the system’s stress before

any particle has the chance to move: so this random arrangement is the only

position the particles take. This means that on average the system is isotropic,

and has no microstructure.

Because of the reversibility of Stokes flow, and this isotropic underlying struc-

ture, the effect of the stress is (on average) purely scalar: that is, we expect

the total system stress tensor to be a simple scalar multiple of the background

rate-of-strain tensor. However, we will not assume this directly but verify it

through our numerical results.

Consider the mixture of shear and strain flow discussed in section 2.3.3. This

results in the background flow described by equation (2.61):

u∞ = G · x, G =


 −γ 1− γ

0 γ


 . (3.1)

We know from our work in section 2.3.5 that this flow could (by rotation of

the underlying axes) be put in the standard form of equation (2.90), but for

the purpose of the static simulations (for which there is no motion, so a self-

replicating lattice is not important) the above form is more directly useful.

The case γ = 0 is a pure shear flow, while γ = 1 gives a planar straining flow,

also known as extensional flow.

The property of interest to us is that of viscosity. We shall split the viscosity

up into what we shall call the effective shear viscosity and the effective strain

viscosity. We shall now explain what we mean by these two terms. The

local stress at any point in a Newtonian fluid of viscosity µ undergoing our

background flow (3.1) is

σij = −pδij + µ

(
∂uj
∂xi

+
∂ui
∂xj

)
= −pδij + 2µE∞

ij , (3.2)
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in which we have defined

E∞
ij =

1

2
(Gij +Gji) . (3.3)

The total stress (per unit monolayer volume) from a Newtonian fluid with

suspended particles is

Σij = −pδij + 2µE∞
ij +

c

2πa3n

∑

α

Sα
ij , (3.4)

where Sα
ij are the stresslets, c is the area concentration and n is the number

of particles, each having radius a. A fuller explanation of the derivation of

equation (3.4) is given by and Wilson Davis in [64].

We introduce the average of the stresslets over all of the particles:

Sij =
1

n

∑

α

Sα
ij (3.5)

with which equation (3.4) becomes

Σij = −pδij + 2µE∞
ij +

c

2πa3
Sij = σij +

c

2πa3
Sij. (3.6)

Within the code, the stresslets are stored in dimensionless form, and in the

form of a vector: in two dimensions this is a two element vector S = (S1, S2)

and the true stresslet tensor can then be expressed as

Strue = 6πµa3




1
2S1 − q 1

2S2

1
2S2 −1

2S1 − q


 . (3.7)

If we define a dimensionless symmetric traceless tensor s from our vector via

the two equations S1 = s11 − s22 and S2 = 2s12, we have

Strue = 6πµa3(s− qI). (3.8)

The q term here comes from the extra contribution to the pressure in the fluid

from the particles themselves, whose effects we neglect as it never affects the

dynamics of flow if the concentration and flow field are homogeneous. Our

total stress per unit monolayer volume is

Σ = σ +
c

2πa3
S
true

= −[p+ 3cµq]I+ 2µ

[
E∞ +

3c

2
s

]
(3.9)
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in which we have used the obvious notation S = (S1, S2). The matrix which

interests us is the deviatoric stress:

Σ′ = 2µ

[
E∞ +

3c

2
s

]
=


 −µγ + 3

2cµ(s11 − s22)
1
2µ(1− γ) + 3cµs12

1
2µ(1− γ) + 3cµs12 µγ − 3

2cµ(s11 − s22)


 .

(3.10)

Now, for a Newtonian fluid with no particles in our flow field the deviatoric

stress tensor would be

σ + pI =


 −µγ 1

2µ(1− γ)

1
2µ(1− γ) µγ


 ; (3.11)

so guided by this we write our deviatoric stress from equation (3.10) as

Σ′ =


 −ηeγ 1

2ηs(1− γ)

1
2ηs(1− γ) ηeγ


 . (3.12)

with

ηe = µ

(
1− 3c

2γ
(s11 − s22)

)
, ηs = µ

(
1 +

6c

1− γ
s12

)
. (3.13)

Here ηe is the effective strain (or extensional) viscosity and ηs is the effective

shear viscosity. These can be written in terms of the original vector from the

code as

ηe = µ

(
1− 3c

2γ
S1

)
, ηs = µ

(
1 +

3c

1− γ
S2

)
. (3.14)

We calculate these effective shear and strain viscosities after one timestep, just

before the particles are moved. For a random suspension, we expect ηe = ηs

and both values to be independent of the flow type parameter γ; we will verify

this as a check on our code.

3.3.2 Calculating Viscosity and Normal Stress for

Long-Time Simulations

Crossover linear flows between planar strain, simple shear and rotation were

first studied experimentally by Giesekus in 1962 [31] and Fuller & Leal al-

most 20 years later [27, 28] in a four-roll mill apparatus. The earlier paper
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was largely concerned with the accurate replication of these flows for a simple

Newtonian fluid with tracer particles; the latter two looked at stress birefrin-

gence for a polymer solution. In neither case was there any discussion of the

form of the resultant two-dimensional stress tensor.

When analysing the output of the short-time simulations of a shear–strain

combination flow, as outlined in section 3.3.1 above, we simply split the raw

stresslet output into a shear component and a strain component. This was

possible because at that point the system is an isotropic system (plus noise),

and has had no chance to build up a microstructure. This means we expect the

relationship between the total stress and the background rate-of-strain tensor

to be a purely scalar response: a single viscosity. The dynamic runs however

are different: the motion of the particles means that a microstructure evolves

during flow. This microstructure can cause a truly tensorial dependence of the

total stress on the background flow rate-of-strain tensor – a non-Newtonian

component – which means that we need to analyse the output in a different

way.

We write the general linear two dimensional flow for our long-time runs as

u∞ = U∞


 1− β β

−β −(1− β)


 · x (3.15)

for 0 ≤ β ≤ 1. Any linear 2D flow may be written in this form, as we showed

in section 2.3.5. The rate-of-strain tensor is

E∞ = U∞


 1− β 0

0 −(1− β)


 . (3.16)

The resultant deviatoric stress tensor, being symmetric and traceless, may be

written as

Σ′ =


 2U∞(1− β)K 2βL

2βL −2U∞(1− β)K


 (3.17)

for some constants K and L. Note that this is possible even in the extreme

cases β = 0 (pure strain, in which symmetry arguments can be used to show
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that the off-diagonal elements of Σ′ must be zero) and β = 1 (rigid body

rotation, in which the total stress is zero). K represents the total Newtonian

viscosity of the suspension. L represents a cross-stress difference term: in the

case of simple shear, β = 1/2, the first normal stress difference N1 is −L/2 so

for the sake of convention, we will set

N1 = −βL = −Σ12/2 (3.18)

in all flow types, and report our results in terms of viscosity and first normal

stress difference, as is conventional for two dimensional simple shear flows.

3.4 Static Simulation Results

The following results show the effective strain and effective shear viscosity

as defined in section 3.3.1, calculated after one time step before the particles

are moved. 300 particles were randomly seeded into the lattice box by one

of the methods described in section 3.2, and a single calculation of Stokesian

Dynamics for force-free, torque-free particles was carried out. To do this, all

the mobility relations were calculated and summed, the resistance matrices

were inverted, and the velocities, angular velocities and stresslets calculated

ready to move the particles. Before any particles were moved, the stresslets

were output and processed. The shear / strain ratio γ described in section

3.3.1 was varied from pure strain to just off pure shear, and a separate run

with the standard pure shear basis was run to include this flow. We expect

the only differences between the shear and strain viscosities to be down to

statistical noise, as discussed in section 3.3.1.

As more particles are introduced (in the same area), increasing the area frac-

tion c we would expect the viscosity to rise due to the increased contribution

from the stresslets, and hence the viscosities will be a function of concen-

tration; however, we do not expect them to depend on flow type. Therefore,

where in general we could expect to see ηs(γ, c) and ηe(γ, c), for this short-time
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Figure 3.3: Results from Zinchenko’s random seeding method.

situation in Stokes flow we expect a single viscosity value η(c).

In section 3.2 we discussed the different methods of randomly seeding the

particles in our lattice cell. We concluded that Zinchenko’s random seeding

method is the one that we shall use. To ascertain if there was any difference

in the output between the Zinchenko and Brady methods of random seeding,

for these static results we have made calculations using both the Zinchenko

method and the Brady low concentration method.

In figures 3.3 and 3.4 we present the results from the two random seeding

methods, Zinchenko’s method and Brady’s low density method, respectively.

Zinchenko’s method works for area concentrations up to 0.7 and Brady’s low

density method works for area concentrations up to 0.5.

We averaged the stresslets over all 300 particles, before calculating the viscosi-

ties as in equation (3.14). We found, as expected, that changing the type of

flow had no effect on the viscosity at this stage, and that the two viscosities

did not differ significantly. The flow had not yet moved the particles, so there

has been no build-up of microstructure and the system acts as a Newtonian

fluid with an increased viscosity η.
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Figure 3.4: Results from Brady’s low density random seeding method.

The graphs in figures 3.3 and 3.4 are created by averaging the effective vis-

cosities over the different values of the shear ratio γ; as the effective viscosities

for a given concentration did not vary significantly with γ, averaging is appro-

priate here. As expected, the effective shear and strain viscosities match each

other closely, and the viscosities increase with increasing concentration c. In-

tuitively the viscosity rises with the concentration as the particle interactions

operate over a shorter distance. All of the viscosity results lie above the lower

limit from Einstein [22] of η = µ(1 + 5
3c).

Our results are fully consistent with the hypothesis that viscosity is a function

of concentration only and that the viscosity is the same whether effective shear

or effective strain viscosity.

The differences between the Zinchenko method and the Brady low density

method are not significant. This shows that Zinchenko’s method is a valid

choice for further computations.
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3.5 Dynamic Simulation Results

A series of runs was undertaken at different values of the area concentration c

and the flow-type parameter β. We chose representative concentration values

of 0.1, 0.3, 0.4, 0.5 and 0.7, and β values of 0.1, 0.2, 0.3, 0.4, 0.45, 0.55, 0.65

and 0.75. These runs each lasted for a time of fifty repetitions of the lattice,

with thirty particles within each lattice box. The initial random positioning

of the particles within the lattice box was carried out using the Zinchenko

method, because of its reliability over a wide range of concentrations. The

resultant stresslets are averaged over all particles. This allows us to see how

the viscosity and normal stress evolve with time.

The number of runs for each parameter combination ranged from one to three.

Where there is more than one run, we have averaged the viscosity and normal

stress at each time over the different runs. It would have been preferable to

have more runs of each combination, but the total stress is already produced

from an averaging of the stresslets over all particles, which does mean that

the viscosity and normal stress at each time step is already averaged to some

extent. Examples of the effective noise reduction form using multiple runs can

be seen in the difference between figure 3.5(a) (the viscosity over time for a

single run at c = 0.4 and β = 0.1) and figure 3.5(b) (averages over three runs

for the same parameters).

In section 3.5.1 we explain the method used to extract information from the

runs, and we then present the results of this analysis in section 3.5.4. The

principal quantities we will investigate are the long-term viscosity, shown in

tables 3.1 and 3.2 and the long-term first normal stress difference, shown in

tables 3.3 and 3.4. However, we will also look at the transient build-up of

microstructure (through the lens of the viscosity) and show results on the

relevant rate parameter in tables 3.5 and 3.6.

In figure 3.5 we plot the first normal stress differenceN1 against time (averaged

over three runs) for a concentration c = 0.1 and flow parameter β = 0.1 (close



Chapter 3: Computational Results for Smooth Spheres 104

 0

 1

 2

 3

 4

 5

 6

 7

 0  10  20  30  40  50  60

V
is

co
si

ty

Time

Viscosity vs Time, c = 0.4, beta = 0.1

Viscosity

(a) Viscosity, Concentration c = 0.4, β = 0.1. Single

run

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  10  20  30  40  50  60

V
is

co
si

ty

Time

Viscosity vs Time, c = 0.4, beta = 0.1

Viscosity

(b) Averaged viscosity c = 0.4, β = 0.1. Averaged

over three runs.



Chapter 3: Computational Results for Smooth Spheres 105

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0  10  20  30  40  50  60

N
or

m
al

 s
tr

es
s

Time

Normal stress vs Time, c = 0.1, beta = 0.1

Stress

Figure 3.5: Normal stress (averaged over three runs) Concentration c = 0.1,
β = 0.1.
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to pure strain flow). Comparison with any of our viscosity plots shows that

the signal-to-noise ratio is much lower for the normal stress than it is for

the viscosity. This is not surprising, particularly at low concentrations, when

the extra viscosity due to the particles is 5µc/3 (the Einstein result) and the

total viscosity is order 1, whereas the first normal stress difference is entirely

caused by the particles and is first seen at order c2. This is the reason why

our transient calculations will be based on the viscosity data, and we use

the normal stress data simply to extract long-term average values without

assessing transients.

3.5.1 Curve fitting

Data from the dynamic runs is output as two variables, the first normal stress

difference and the viscosity, as described in section 3.3.2. As an example,

figure 3.6 shows the evolution of the viscosity with time for a concentration of

c = 0.4 and a flow type parameter of β = 0.1. The viscosity starts at a low

value that corresponds to the random-suspension results of section 3.4, and

increases over time to a steady final value (plus noise). We hypothesise an

underlying curve of the form

V (t) = A(1− e−αt) +B, (3.19)

where t is the time and A, B and α are real parameters. This smooth curve

is also shown on figure 3.6.

A short FORTRAN program was written to fit the values of each of the un-

known constants in equation (3.19).

The viscosity and normal stress should both follow the same form, and since

the rate parameter α actually represents the rate at which a microstructure

is built up, it should be common between the two curves for any pair of pa-

rameters {c, β}. At low concentrations the particle interactions are relatively

weak so the microstructure will be limited, resulting in the trend of equation

(3.19) being less obvious. This will be especially true for the normal stress,
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Figure 3.6: Viscosity with curve of best fit. Concentration c = 0.4, β = 0.1.

as discussed above: the viscosity will always be greater than one so due to

the range of the graph any noise will seem comparatively less than that on

the normal stress, which starts off hovering around zero. Hence in any low

concentration graph the form of trend will be less obvious with normal stress

due to the lower signal to noise ratio.

The parameter B represents the initial, static viscosity of the system, for which

we take the results from our static simulations of figure 3.3 in section 3.4.

It would also be possible to calculate the value of B by considering say the

first 5% of values from a run, however this would not be as accurate as taking

the values from figure 3.3. This is because the curve which we are fitting here

is only averaged over three runs at most, and has only 30 particles per lattice

box, whereas the data of figure 3.3 was averaged over at least 10 runs of 300

particles per box. These clearly give a much more robust estimate of the true

average value of B over many runs and many particles. Any difference in the

graphs between a B value taken from the static results and the initial value

in the data we are trying to fit is within the magnitude of the noise on the

current data.
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The second parameter A can also be easily calculated, as A + B is simply

the long-term value about which the viscosity stabilises. This is calculated

by averaging the last 25% of values from the viscosity data file. By using the

calculated value of A+B and our known B value we can calculate A; in fact

the quantity A+B, the terminal viscosity, is the one we are interested in and

this is the quantity we will present in tables 3.1 and 3.2.

The final parameter α represents the speed at which the microstructure is

formed within the fluid. The parameter α is calculated by an iterative method,

once A and B have been determined for a given dataset. We start with an

initial search interval of α ∈ [0, 10], and we define αmin as the the lower limit

of the interval and αmax as the upper limit of the interval. The initial interval

is established with αmin = 0 and αmax = 10. A step size of S is defined:

S =
αmax − αmin

10
, (3.20)

and we iterate through the interval looking at the mean square error. Suppose

the value of the viscosity from the data file is ηi at time ti = i ∗ timestep:

using the formula from equation (3.19) and the parameters A and B previously

calculated, for each α we calculate the error sum

∑

i

[
(ηi − V (ti))

2
]
. (3.21)

The α which gives the minimum sum is selected. If this α is neither αmin nor

αmax then the new interval limits are given by

αmin = α− S

2
αmax = α+

S

2
. (3.22)

If the α was either of the interval limits then the new interval limit is defined

as

αmin = α− S αmax = α, (3.23)

if we had the lower limit, α = αmin, and similarly

αmin = α αmax = α+ S (3.24)
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if we had the upper limit, α = αmax. This entire process is repeated for ten

iterations, after which α is known to a high accuracy. From the data collected

we never see α > 10 so the limit on α is of no concern.

In the next sections we show the results of our dynamic runs, both as plots

of viscosity (section 3.5.2) and normal stress (section 3.5.3) against time, and

through tabulation of the parameters A, B and α extracted from the data as

described above, in section 3.5.4.

3.5.2 Plots against time: Viscosity

We begin with plots of individual runs or small averaged sets of runs, which

show the curve fitting results in context and from which all our conclusions

will follow.
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Figure 3.7: Viscosity, against time. Concentration c = 0.1, β = 0.1.

We look first at the viscosity. We have already seen the viscosity as a function

of time, averaged over three runs, for c = 0.4 and β = 0.1 in figure 3.5(b).

Here we start with the same flow, β = 0.1, which is close to plane strain

flow, and look at the way the viscosity evolves with time at several different

concentrations c. The results for c = 0.1 are shown in figure 3.7; those for
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c = 0.7 in figure 3.8.
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Figure 3.8: Viscosity against time. Concentration c = 0.7, β = 0.1.

The most noticeable feature of figure 3.8 is the spike in effective viscosity at a

time of about 22, at which the suspension as a whole seems to have a viscosity

over 150 times that of the suspending fluid. This is our first indication that

some sort of jamming or crystallisation phenomenon may be occurring. There

are no such extreme spikes at c = 0.1 (figure 3.7) or c = 0.4 (figure 3.5(b)).

We now move on to another representative flow type: in this case β = 0.45

which is close to shear flow (but just on the strain side rather than the rotation

side). Here we plot the viscosity for moderate and high concentrations: figure

3.9 is at c = 0.4 and figure 3.10 at c = 0.7.

In figure 3.9 we begin to see the viscosity spikes characteristic of crystallisation;

comparing with the same concentration at a lower value of β (figure 3.5(b)) we

see that the spikes are much stronger at β = 0.45 than they were at β = 0.1.

This leads us to the tentative idea that changing the flow type from strain

towards shear or rotation may enhance crystallisation.

In figure 3.10 we see the same flow type again, β = 0.45, but at a much

higher concentration c = 0.7, a concentration at which we would expect to see
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Figure 3.9: Viscosity, averaged over three runs. Concentration c = 0.4, β =
0.45.
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some crystallisation in any flow. Again, we see that the viscosity spikes are

much larger here than they were for the same concentration at lower β (figure

3.8): at β = 0.1 the maximum viscosity we saw was around 200µ, whereas at

β = 0.45 we are seeing values up to 1.5× 107µ.
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Figure 3.11: Viscosity vs time c = 0.7, β = 0.75.

Finally for this section, in figure 3.11 we show one graph for a flow type

between shear and rotation: β = 0.75. Here, again, we are at a very high

concentration c = 0.7, at which we would expect some crystallisation to occur

within the flow.

As expected, we see the characteristic viscosity spikes we associate with jam-

ming or crystallisation: and here, the maximum viscosity is over 3× 107µ, an-

other factor of 2 larger than that seen at the same concentration for β = 0.45.

This corroborates our idea that changing the flow towards rotation enhances

the crystallisation.

3.5.3 Plots against time: Normal stress

Earlier, in figure 3.5 we saw the evolution of normal stress against time for

a low concentration c = 0.1 and a flow close to strain, β = 0.1. The noise
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had a typical magnitude around 0.03 — not large, but at least an order of

magnitude larger than the mean normal stress in this case.
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Figure 3.12: Normal stress (averaged over three runs). Concentration c = 0.4,
β = 0.1.

In figure 3.12 we show the equivalent plot for a higher concentration c = 0.4.

We can see that the noise level has increased, whereas the average value of

the first normal stress is still so small as to be indistinguishable from zero on

the scale of the graph. When we plotted the viscosity at these parameters we

did not see the characteristic spikes of jamming or crystallisation; however,

the increased inter-particle interactions at the higher concentration are clearly

causing some increased noise here.

Because of the magnitude of the noise in these data, we cannot extract tran-

sients from our normal stress results. The zero-time results for normal stresses

are all zero because of the isotropy of the random system, and so we would be

looking for a transient from zero to a very small value through relatively large

noise. Instead, we will simply report the average normal stress for each set of

parameters, in tables 3.3 and 3.4.
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3.5.4 Tabulated Results

In this section we show the results of the curve fitting described in section

3.5.1. For each pair of parameters {c, β} we have calculated the terminal

viscosity (shown in tables 3.1 and 3.2) and the average normal stress (shown

in tables 3.3 and 3.4). We have also calculated the rate constant α which

governs the evolution of the microstructure build-up, from the viscosity data,

and we report these results in tables 3.5 and 3.6. We do not report the short-

time viscosities here as these have already been discussed in section 3.4.

c β = 0.1 β = 0.2 β = 0.3 β = 0.4

0.1 1.37 1.34 1.41 1.37
0.3 2.46 2.27 2.36 2.27
0.4 3.09 2.9 2.89 3.10
0.5 4.62 4.70 4.89 4.71
0.7 11.01 16.73 2.88 × 105 9.85 × 105

Table 3.1: Terminal viscosity, β = 0.1− 0.4.

c β = 0.45 β = 0.55 β = 0.65 β = 0.75

0.1 1.35 1.28 1.26 2.97
0.3 2.00 1.915 2.35 1.82
0.4 3.15 3.15 2.86 2.18
0.5 4.41 × 105 7.70 × 105 70.56 4.20
0.7 2.61 × 106 1.18 × 106 7.46 × 105 2.92 × 106

Table 3.2: Terminal viscosity, β = 0.45 − 0.75.

We begin with the terminal viscosity, shown in tables 3.1 and 3.2. There is

a clear and marked increase in viscosity as concentration increases, for any

fixed value of β. This is to be expected: a more dense suspension offers higher

resistance to flow and so has a higher viscosity. We also saw this phenomenon

in the short-time viscosity results of section 3.4.

For moderate concentrations up to c = 0.4, there seems to be little dependence

of the viscosity on the flow parameter β. As an instance of this, in figure 3.13
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Figure 3.13: Concentration vs. viscosity at β = 0.2 and β = 0.45.

we show the terminal viscosities at both β = 0.2 and β = 0.45, plotted against

concentration. The values are virtually indistinguishable.

However, there are some extreme values in tables 3.1 and 3.2, which allow us

to see at a glance where our freely-flowing simulation breaks down and crys-

tallisation or jamming occurs. It is clear for example that with a concentration

of c = 0.7 any β > 0.2 results in a massive viscosity and breakdown of the

model. What is surprising is how low the concentration can be when under

some flows crystallisation occurs: for instance at a concentration of c = 0.5

and β = 0.45; for the same concentration, crystallisation ceases as we approach

pure rotation. These large viscosity increases coincide with an increase in the

noise on our data (which can’t be seen in the tables of this section).

We now move on to the normal stress results. Because the initial normal stress

is zero and the signal-to-noise ratio so low for these results, we cannot assess

transients with them, and instead simply present the average normal stress

over the whole run in each case. Table 3.3 shows the results for β up to 0.4,

and table 3.4 those for β ≥ 0.45.

For moderate concentrations (c up to around 0.4) the results listed in tables
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c β = 0.1 β = 0.2 β = 0.3 β = 0.4

0.1 −0.97 × 10−3 −0.19 × 10−2 −0.29× 10−2 −0.41 × 10−2

0.3 −0.41 × 10−3 −0.11 × 10−1 −0.20× 10−1 −0.171 × 10−1

0.4 −0.70 × 10−2 −0.86 × 10−2 −0.35× 10−1 −0.36 × 10−1

0.5 0.22 × 10−1 −0.19 × 10−1 −0.23× 10−1 −0.30 × 10−1

0.7 0.25 × 10−1 0.15 × 10−1 −0.94× 103 0.17 × 104

Table 3.3: Average normal stress, β = 0.1, . . . , 0.4.

c β = 0.45 β = 0.55 β = 0.65 β = 0.75

0.1 −0.27× 10−2 0.52 × 10−5 0.66 × 10−4 −0.24× 10−2

0.3 −0.17× 10−1 −0.63 × 10−3 −0.21 × 10−3 −0.13× 10−4

0.4 −0.26× 10−1 −0.26 × 10−1 −0.15 × 10−2 −0.72× 10−4

0.5 −0.262 × 102 0.37 × 101 0.85 × 10−1 −0.58× 10−3

0.7 0.14 × 104 0.89 × 103 −0.12 × 102 0.27 × 103

Table 3.4: Average normal stress, β = 0.45, . . . , 0.75.
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3.3–3.4 are broadly level, showing little effect of either β the flow type, or the

concentration c on the normal stress. Indeed, the values are so small that

it is not even possible to be certain of the average sign of the normal stress

difference.

At higher concentrations there is a marked increase in the magnitude of the

normal stress values: but still no consistent trend for the sign of the normal

stress. If we return to the raw data we see that this is because the noise has

become orders of magnitude larger at these higher concentrations; in all cases

the normal stress appears to be oscillating around a small or zero value. Thus

all we can say from our normal stress study is that the first normal stress

difference is not significant enough to be measured with a small system such

as ours, and appears to be largely independent of flow type.
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3.5.5 Crystallisation

From our viscosity results we hypothesised that some form of jamming or

crystallisation event was taking place during the flow. In this section we look

at snapshots of the particle positions to attempt to confirm this theory.

Our idea is that higher concentrations cause crystallisation — which is hardly

controversial — but also that flows close to shear, having β close to 0.5, trigger

crystallisation at lower concentrations than those close to pure strain or pure

rotation.

At high concentrations there is a rapid build up in microstructure, shown by

both the increased viscosities and the increased noise level. We believe that

the build up of microstructure causes the increase in noise most probably

because of crystallisation forming in chunks causing massive viscosity and

normal stresses. There will, however, still exist some areas of free flowing

particles: but when a formed crystal becomes aligned so that it spans our

lattice box, we see a large spike in the total viscosity.

This jamming effect, when a single crystalline structure spans our periodic

box, is partly caused by the small number of particles in our simulations (only

30 per box), so we cannot expect to quantitatively predict real suspension

viscosities with these simulations; however, the trends for when crystallisation

occurs are expected to be robust.

Looking at an instantaneous plot of the particle positions we should be able

to see whether or not crystallisation is occurring. In the graphs that follow,

each cross represents the centre of a particle of radius 1, and the borders of

the periodic lattice box are drawn around our particles. Initially we consider

β = 0.1, a flow close to strain flow, and vary the concentration from c = 0.1

in figure 3.14(a) through c = 0.3 (figure 3.14(b)) and c = 0.5 (figure 3.14(c))

to c = 0.7 in figure 3.14(d). Regions of crystallisation have a characteristic

regular triangular pattern, with series of particle centres lying in straight lines:

we can see that as c increases, more of the particles become part of crystalline
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structures until at c = 0.7 we almost have a solid mass of particles.

Let us look in more detail at the runs pertaining to β = 0.1. We have seen from

the particle positions that when c = 0.1 there are only very isolated regions of

crystallinity, whereas with increasing c, even at moderate values c = 0.3 and

c = 0.5 a much higher proportion of the particles are involved in crystal-like

regions. When the viscosity and normal stress are averaged over all particles,

if the proportion of particles involved in crystals is small, the resultant noise

is only moderate, as for instance at c = 0.1 in figure 3.7. However, as the

proportion of the particles involved in crystallisation increases, the extreme

viscosity and normal stress values become more prevalent and do not average

out, as at c = 0.4 in figure 3.6. This continues to happen as c increases until

we are at a point where all the particles are part of a crystalline mass resulting

in the extremely noisy data, as at c = 0.7 in figure 3.8.

The flow parameter β also has an effect on crystallisation. The mechanism

behind this appears to depend on how unidirectional the flow is. We know

that the amount of crystallisation increases with the concentration for any

given value of β, however the effect on the viscosity and normal stress is not

uniform for a given concentration: variation in β affects the viscosity results

and the level of noise (indicating jamming events) in both the viscosity and

the normal stress.

In figures 3.14(e)–3.14(g) we show snapshots of particle positions for c = 0.4

and β varying between β = 0.1 in figure 3.14(e), close to strain flow, β = 0.45

in figure 3.14(f), close to shear flow, and finally β = 0.75 in figure 3.14(g), a

rotational flow with an element of shear. Although there are crystalline regions

in all three plots, we see a much stronger crystal formation at β = 0.45.

We can explain this effect in terms of the multi-directional nature of the flow

field. At β = 0.1 (figure 3.14(e)) the flow is very similar to plane strain,

which pulls particles apart along the extensional axis while pushing them

together on the compressional axis. Crystals are formed by the compression

but immediately broken by the extensional flow, allowing particles to pass one
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another unrestricted. For this flow the viscosity noise is reasonable, as shown

in figure 3.5(b).

Considering β = 0.45, with particle positions shown in figure 3.14(f), the flow

is very close to a shear flow corresponding to β = 1
2 . We can see that the

particles are lined up along the line y = −x of the shear flow; the noise in

this case is very large for such a moderate concentration, as seen in figure 3.9.

Because the flow is almost unidirectional, it is insufficiently violent to break up

crystalline regions, resulting in the short-term jamming events and the spikes

in the viscosity. These have only a moderate effect on the average viscosity,

but are locally very large.

When we approach a more rotational flow such as β = 0.75 the noise decreases

again, and indeed the average viscosity (table 3.2) falls from 3.15µ at β = 0.45

to 2.18µ at c = 0.75. The particle arrangements, shown in figure 3.14(g), are

similar to that of β = 0.1.

This effect, as with any jamming phenomenon, is more prevalent at higher

concentrations as it does require some initial crystallisation to start off with.

Finally, in figure 3.14 we show the particle positions for our most crystalline

system: c = 0.7, an area concentration at which we expect high levels of

crystallisation regardless of the flow, and for one of the most unidirectional

flows, β = 0.45. We can see that all the particles seem to be involved in a

single large crystal structure: all the centres lie on straight lines. It is no

surprise that this is the pair of parameters {c, β} at which our viscosity peaks:

we calculate a viscosity value of 0.26 × 107µ for this suspension.
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Figure 3.14: Particle positions. Concentration c = 0.7, β = 0.45.
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3.5.6 Rate of Build-up of Microstructure

We described in section 3.5.1 the procedure for fitting a decaying exponential

transient to our viscosity results. Since both the normal stress and the viscosity

are functions of the microstructure built up within the flow, we expect them

to have transients with the same rate constant α; however, the normal stress

data are too noisy for this to be confirmed.

By this fitting process, we have determined a rate constant for the evolution

of the microstructure within the flow, at each set of flow conditions {c, β}.
These results are given in tables 3.5 and 3.6.

β 0.1 0.2 0.3 0.4
Concentration

0.1 0.33 0.49 0.058 0.20
0.3 0.53 0.99 0.26 0.32
0.4 0.70 0.50 0.57 0.46
0.5 0.84 0.66 0.31 0.53
0.7 1.0 2.85 0.073 0.063

Table 3.5: Rate constant α for viscosity evolution, β = 0.1, . . . , 0.4.

β 0.45 0.55 0.65 0.75
Concentration

0.1 0.30 1.00 × 10−2 2.56 × 10−2 0.61
0.3 0.32 0.44 7.28 × 10−3 9.13 × 10−3

0.4 0.47 0.47 8.39 × 10−3 4.69 × 10−2

0.5 1.15 × 10−2 4.37 × 10−3 2.84 × 10−3 2.48 × 10−2

0.7 2.48 × 10−2 5.34 × 10−2 4.91 × 10−3 5.68 × 10−3

Table 3.6: Rate constant α for viscosity evolution, β = 0.45, . . . , 0.75.

We might expect the rate at which the microstructure forms increases with

concentration, due to particle interactions become more frequent as the con-

centration increases, allowing the system to reach its equilibrium microstruc-

ture faster. At low concentrations, particles rarely interact so the microstruc-

ture takes longer to form. However, this trend is not a clear trend in the

tables, this could potentially be because the rates at the higher concentrations
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are not reliable due to the viscosity spikes resulting in whole curve not fitting

well by our transient exponential.

The flow parameter β seems to have little effect on the rate of evolution of

the microstructure. In a sense, this is also unsurprising: the rate of particle

interactions depends on the flow strength rather than the flow type, and so

we do not necessarily expect the flow type to affect the rate of microstructure

build-up.

3.5.7 Conclusions

We have been unable to draw conclusions about the behaviour of the normal

stresses from our small runs with only 30 particles; to fully investigate the non-

Newtonian behaviour of such a suspension would require larger simulations.

The viscosity results, on the other hand, have been very informative. Mov-

ing from static to dynamic runs made little difference to the overall picture

regarding the dependence of viscosity on concentration, c: as expected, the

viscosity increases with increasing concentration, as does the rate of build-up

of viscosity (and of the underlying microstructure).

However the dynamic runs do allow us to see when crystallisation occurs,

and how serious it is. There is, of course, a dependence of crystallisation

on concentration; but crystallisation also depends on β, the flow parameter.

Crystallisation occurs most seriously at flows closest to shear flow β = 1
2 . This

appears to be because the flow is approximately unidirectional for these flows

and so flow has no mechanism to pull apart incipient crystals.

Our results are inevitably limited by the number of particles in our simulations

(only 30 in each repeating box) which means a spanning crystal may form

earlier in our work than a true jamming structure would in practice. However

we expect our conclusions about the effect of flow type on jamming to be

robust. It is also possible that these jamming results may be less pronounced

with the addition of Brownian motion to the system, as the small random
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motions may allow the particle to move past each other more easily.

3.6 Effect of Number of Particles

The high viscosity spikes we have seen occurring in the simulations of section

3.5 are believed to be because of the onset of crystallization. The surprising

result is the early onset of crystallization. This early crystallization onset could

be due to clusters of particles forming that span our tessellated box, which in

turn due to its torus nature would result in an infinite band of crystallization.

To investigate this possibility two extra scenarios were run.

1. A series of extended larger box runs.

2. A extend larger box run.

We chose two set of parameters where we see viscosity spikes, and carried out

a series of simulations with different numbers of particles.

The extended run uses a series of concentrations and flows to compare the

viscosity results to those given in 3.5. The difference from our earlier work is

that in each box there are 300 particles rather than 30 so for each concentration

the box is appropriately scaled.

The runs where the numbers of particles is varied with consistent flow to see

the effect of the box size across one flow which is know to cause viscosity

spikes. Wilson Davis 2001 [64] used 25 particle in their simulations so our

choice of 30 is also consistent with others in the literature.

3.6.1 Varying n

The variation of N was done for a flow of β = 0.45 and concentration 0.4 and

0.7. The number of particles varied from n = 10, 30, 100, 300 and 1000. The

flow of β = 0.45, a shear flow with some strain was chosen because it is a flow

which causes crystallisation to occur.
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Figure 3.15: Viscosity vs number of particles. c = 0.4,β = 0.45.

Unfortunately after doing an initial trial run for n = 1000 the estimations were

coming through that it would take something of the order of 400 days worth

of computation for 1 run. Figure 3.15 shows that the number of particles is

shown to have little effect on the viscosity. There apart to be a slightly higher

viscosity for the very small n example of n = 10 but by n = 30 the viscosity

has levelled off. This also supports our choice of 30 particles per box used in

the runs.

3.6.2 Extended run

The parameter combinations for the extended runs are shown in table 3.7.

Three runs of each combination were done with n = 300 particles in a box for

30 repetitions of the box.

Figure (3.16) is a good example of the close matching of viscosities of a lattice

with 300 particles per box vs 30 particles per box. The larger number of

particles shows much the same viscosities with only a slightly higher viscosity

reading at high concentrations. This is consistent with the data found in the

previous section with a varying number of particles n. Similar results can be
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Figure 3.16: Viscosity for n = 300, β = 0.1.
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seen in figures (3.17) and (3.18) where we have fully completed runs. This

gives further confidence in the opinion that a lattice with n = 300 particles

per box offers little advantage over a lattice with n = 30 particles per box.

The only significant difference occurs at high concentrations such as c = 0.7.

At these very high concentrations there does appear to be a lower although

still high viscosity in the runs with 300 particles. This is no doubt due to

clusters of particles forming that span the box at n = 30 but not at n =

300. The computational time over head however for running boxed with 300

particles is too great for the extra information gained. It is clear that at higher

concentrations large clustering does form however this information does places

question on how large these clusters are and if the result in full crystallization

of the domain.

Parameter Values

Concentration 0.3 0.5 0.7
Shear ratio β 0.1 0.3 0.7

Table 3.7: Combinations of extended smooth runs
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Rough Spheres

In the following section we will consider the effect of small irregularities or

roughness on the surface of the particles. The issue of surface roughness

was first considered to explain experimental observations in which particle

trajectories were not reversible, as would be expected for Stokes flow.

4.1 Literature Review

4.1.1 Experimental Studies

Lubrication theory predicts that two perfectly smooth particles in a viscous

fluid will never actually touch under the action of finite forces due to lubrica-

tion resistance. Also, as a consequence of the reversibility of Stokes flow, there

are many theoretical symmetries in the flow of two spheres. For example, two

particles passing each other as shown in figure 4.1 should follow a path which

has reflective up-down symmetry.

However, there is a lot of experimental evidence to suggest that real particles

do come into contact in flow, due to the presence of surface roughness. This

is typically observed by the breaking of some expected symmetry of Stokes

flow. Probably the first such observation was by Arp & Mason in 1977 [4],

131
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Theory Reality

Figure 4.1: A heavy particle falling past a neutrally-buoyant or fixed particle
in Stokes flow. On the left: theory predicts that the initial horizontal offset
between the particles is the same as the final horizontal offset. On the right:
experiments sometimes show a different result, that the final offset is larger
than the initial offset.

who carried out experiments on two spheres close together in a shearing flow.

They observed, using rough particles with very small surface roughness, that

two particles close together in a shearing slow rotated as a pair when in con-

tact, and then separated, which broke the closed orbits predicted for smooth

particles at low Reynolds number. Contact between the particles due to the

surface roughness was suggested as a mechanism to explain this phenomenon.

Smart 1989 [54] performed experiments to determine the roughness heights of

microscopically rough particles. This was done by allowing a sphere to settle

for a long time on a smooth horizontal surface, then inverting the container

and measuring the time taken for a sphere to fall one particle diameter away

from the surface. The known lubrication interactions between a smooth sphere

and a plane wall were then used to deduce the height at which the sphere had

halted above the plane. This nominal surface roughness was of the order

10−2 − 10−3. Measurements of the particle surface roughness were also taken

by electron microscope and shown to be in quantitative agreement.

Tabatabaian and Cox (1991) [56] undertook experiments with real particles
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and showed that the symmetry required by the reversibility of a Stokes flow

was broken in shear flow and also in sedimentation. Smooth and rough sphere

models were compared. Contact via surface roughness was shown to predict

the same breakdown in reversibility.

Smart et al 1993 [53] measured the translational and rotational velocity of a

rough sphere falling down an inclined plane using digitized video. Rolling and

slipping were both observed. A model was proposed which allowed contact

between the surface roughness (small half spheres) and the plane taking into

account both roll and slip.

Galvin (2001) [29] extended the work Smart [53] and previous work of by

including two roughness scales on the same sphere and considering the sphere

falling down a plane with different levels of inclination. We will refer back to

some of the data from this paper later.

Zhao, Galvin and Davis 2002 [69] considered a sphere rolling down a plane

but considered the roughness to be on the plane. Two roughness heights were

placed on the plane resulting in the sphere only coming into contact with large

asperities at higher angles of inclination.

Yang et al 2006 [66] conducted experiments of smooth and rough heavy spheres

in a rotating cylinder. Contact with the cylinder wall only occurred with arti-

ficially roughened spheres. They postulated that cavitation in the lubrication

boundary layer breaks the symmetry of the flow.

4.1.2 Contact Models and The Effects of Contact

Davis 1992 [17] proposes both a stick rotate and a slip rotate model. The paper

considers a heavy sphere falling though a field of smaller neutrally buoyant

spheres, Brownian motion is ignored. Results concluded that the roll slip

model gave better agreement to experimental data than roll stick. Zeng et

al. (1996) [68] conducted some experiments with a heavy sphere falling past

a neutrally buoyant sphere of the same size. The results verified the roll slip
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model of Davis [17]. This showed the breaking of symmetry caused by surface

roughness.

Rampall, Smart and Leighton 1993 [49] carried out experiments in which a

dilute suspension of identical spheres was sheared and the pair distribution

function in the plane of shear measured as directly as possible by optical means.

They observed that the distribution function is modified in the downstream

(extensional) quadrant behind a sphere centred at the origin, with closed orbits

being eliminated in the plane of shear, and an exclusion zone behind the

particle, and they were able to reproduce this behaviour using a very simple

contact force law (hard-sphere repulsion). They did discuss, however, the fact

that the pair distribution function is likely to be a rather insensitive function

of the roughness interaction: any contact law that breaks the closed orbits

and forces particles apart is expected to produce a qualitatively similar PDF.

Davis and Hill 1992 [18] consider a heavy sphere falling though a field of

smaller neutrally buoyant spheres. A high Pe number was considered so that

hydrodynamic diffusivity could be considered rather than thermal diffusivity.

Diffusivity was shown to increase dramatically as the size ratio is increased.

For large size ratios lubrication forces are dominant resulting in a high sensi-

tivity to transverse movement; because of this Davis and Hill hypothesise that

surface roughness or weak Brownian motion may be a very important feature

and its effect on breaking of symmetry is discussed.

Da Cunha and Hinch 1996 [15] consider the effect of surface roughness on

diffusivity following on from Davis and Hill [18]. The model used considers

no effect of the roughness on tangential motion or rotational motion. Larger

asperities are shown to produce more diffusion.

Dratler and Schowalter 1996 [20] implemented non-Brownian Stokesian Dy-

namics in a monolayer under a simple shear flow. Smooth and rough spheres

were considered and short range repulsive forces are concluded to be essential

to produce realistic micro-structures and to reduce the particle overlap which

can result from numerical errors.
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Brady and Morris [12] 1997 consider the symmetry of flows around spheres.

Low and high Pe numbers are considered. A simple hard contact model is

used to introduce macroscopic stress to the system. The model is a very simple

Heaviside step function which applies a force related to the hydrodynamic force

which the sphere feels, i.e. 6πµaU. The initial model derivation considers a

general linear flow, but detailed analysis was only carried out on simple shear

and planar two dimensional extensional flow but the conclusions for other

flows were expected to be the same. Among their many conclusions, high Pe

numbers experience shear thickening, this was increased with inter-particle

forces but the magnitude created with particle pair interactions may not be

enough to explain the levels seen experimentally.

Ekiel-Jeżewska 1999 [23] considers rough spheres and introduces, another hard

contact model which includes roll and roll slip with good agreement to exper-

imental data. This works on the same idea as Davis & Hill 1992 [18] but for

the different system of two spheres of equal radii rather than differing radii

and weights. The contact model is more complicated than any that precede it.

The model uses two different friction coefficients so that it satisfies Amontonss

law.

Galvin (2001) [29] created a model for a sphere with two different roughness

heights falling down an inclined plane. Three scenarios were considered: con-

tact with large asperities, contact with small asperities and no contact (particle

falling freely after a large asperity). Experimental and theoretical predictions

showed good agreement. Galvin concludes that the angle of inclination of the

plane affects the level of hydrodynamic roughness felt by the particles. Low

angles resulted in the particles falling towards the plane and the small asper-

ities contacting the plane whereas higher angles of inclination resulted in the

large asperities being the dominant roughness height.

Zhao, Galvin, Davis 2002 [69] considered a sphere rolling down a plane but

considered the roughness to be on the plane rather than on the sphere as

in Galvin (2001) [29]. Rotational velocity was roughly constant with varied
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separation but the translational velocity decreased weakly as the particle fell

towards the plane. It was shown that separation is affected by the size of the

asperities on the spheres and a coefficient of friction. A roll-slip model was

show to be more accurate than other hypotheses, in agreement with Zeng et

al. (1996) [68]. Experimental and theoretical results showed good agreement.

Wilson and Davis, 2000 [63], consider a dilute solution of equally sized spheres.

Shearing and straining motions are considered. They use the roll slip model

introduced by Davis in [17], and Brownian motion is neglected. They calcu-

lated the pair distribution function. In axisymmetric straining flows, surface

roughness and increasing the coefficient of friction between particle are both

show to decrease viscosity (although the latter result is an error, corrected in

[64]). It was found that larger roughness heights caused a decrease in viscos-

ity in dilute suspensions, this is thought to be because the spheres can’t get

arbitrarily close together, limiting any lubrication stresses. In shear flow the

two normal stress differences are considered and nonzero values of both may

be caused by particle contact.

Wilson and Davis, 2002 [64], consider a shear flow in a monolayer and the

effect of particle roughness on stress. The same model roll slip model was

used as in [63]. For non dilute systems viscosity was shown to be dependent

on the frictional coefficient. Viscosity was shown to decrease with increasing

roughness height, results which are consistent with 3D dilute calculations in

[63]. Frictional coefficients was found to have a limited effect on viscosity but

a small increase was shown at higher concentration due to particles being in

contact with more than one other particle at any time. The first normal stress

difference N1 was shown not to be dependent on frictional coefficient but was

dependant on roughness, becoming more negative with increased roughness

height. The trend was reversed for more concentrated systems.

Wilson 2003 [62] considers the effect of rough spheres on pair distribution

functions in a dilute suspension undergoing a plane strain flow. Viscosity is

shown to decrease with roughness height as found in previous calculations
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[63],[64]. The observation of a more negative normal stress with increased

roughness height was also consistent for a dilute system. The effect of small

Brownian motion is also considered giving agreement with Brady and Morris

[12].

A review of work by Davis, Galvin, Zhao and Wilson was undertaken in 2005

[19] summarising the results.

4.2 Hard Contact Model

In our work, two models are considered for interparticle contact. One is a

soft contact model whereby we imagine the spheres being covered in squishy

asperities, discussed in section 4.3; in the other, hard contact model, the

surface has hard asperities: see figure 4.2. In each case the asperities are

considered sufficiently sparse as not to affect the hydrodynamic interaction

between the spheres.

The different existing models of contact, which all use some form of hard

contact, are discussed by Davis [17] and da Cunha [15]: pure hard sphere

repulsion, roll-slip, and stick-rotate. As mentioned in the literature survey,

Zeng et al. [68] found roll-slip to be a more realistic model than stick-rotate.

The model we will use is the pure hard-sphere repulsion, which is a special case

of the roll-slip model with no friction coefficient. The contacts produce only

a force normal to the particle surfaces. In shear flow Wilson and Davis [63]

and Davis, Zhao and Wilson [19] predicted that the details of the normal force

have a more dramatic effect on rheology than the tangential friction force,

when in a hydrodynamically driven flow.

We are neglecting tangential forces, which means neglecting any torque exerted

by the contact forces. This clearly reduces complexity from a computational

point of view; physically, little is lost in terms of accuracy. Figure 4 on page

353 of Wilson and Davis 2000 [63] shows the effect of including torques into one

contact model: it makes little difference to the suspension rheology. Although
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the model used in that paper is for hard contact we shall also only use a line of

centres force for soft contact too. This allows us to compare the two models in

a clearer fashion as well as test the soft contact model as it is a newer model.

Hard Contact Compressible Asperities Contact

ξξ

Figure 4.2: Hard and soft contact with ξ roughness height

4.3 Compressible Asperities

4.3.1 Background Theory

In 1989, Smart [54] introduced a new experiment to determine the separa-

tion between a sphere and a horizontal plane by measuring the time taken

for the sphere to leave the plane when the container is inverted. Galvin et

al [29] adapted this technique in 2001 to study a sphere travelling down an

inclined plane. They observed a larger effective roughness height when the

plane was inclined further from the horizontal, and use a model of differing

length asperities to explain this phenomenon.

Galvin’s model was that of a sphere with two sets of different length asperities,

small and large. The larger asperities were widely spaced such that on an

inclined plane, the sphere could rest solely on the small asperities but would

then roll onto the larger asperities. Tangential friction was also included in

their model. The steeper the plane, the less normal force was created, but

the larger the effect of tangential friction. They compared their model with
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experiments, and extracted fit values for four parameters: the two roughness

heights, the separation between large asperities, and the friction coefficient.

During a conference in Warsaw in 2004 [65] Wilson proposed an alternative

mechanism to describe this behaviour. Instead of relying on contact with

different length asperities it was proposed that the surface asperities might be

considered as small springs. We extend that work here.

4.3.2 Force Law

We describe the contact model in terms of a nominal surface roughness height

ξ and the particle surface separation ζ. The roughness height acts such that

the first contact of a particle surface with a roughness asperity is when ζ = ξ.

Thus if ζ > ξ no contact force acts.

Wilson [65] used the data from figures 10 and 11 of Galvin et al [29], which

plot measured average separation between the sphere and the plane, ζ, against

the inclination angle, θ, and attempted to fit them with a nonlinear spring

law F (ζ) for the force exerted by the compressible asperities. This can be

seen in figure 4.3. The data are reformulated as F = m∗g cos θ, the effective

normal force acting on the sphere (where m∗ is the particle’s mass adjusted

for buoyancy). Since F = 0 at θ = π/2, a fit to the data is expected to yield

a value ζ = ξ at which F = 0, giving the length of asperities or roughness

height.

The presentation in Warsaw suggested a simple Hooke’s law, but this was

found to be too weak at close separations. In more recent work (unpublished),

Wilson found that a cubic function produced the best fit:

G(F ) = log(ζ) = aF 3 + bF 2 + cF + d. (4.1)

where ζ is the separation. Since we need the repulsive spring force to be a

monotonic decreasing function of separation for ζ ≤ ξ, we have the requirement
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G′(F ) < 0, ∀ F > 0, (4.2)

This quadratic condition (3aF 2 + 2bF + c < 0 in F > 0) implies

a < 0 and either {b < 0 and c < 0} or
{
b > 0 and c < b2/(3a)

}
.

(4.3)

This is a spring law but obviously more complicated than the simple Hooke’s

law proposed in Warsaw [65] . An optimisation routine was used to ascertain

the parameter values. This three step process involved:

1. First optimise without constraint.

2. If any of the constraints is violated, Lagrange’s method is used to solve

for equality on that constraint.

3. Re-check that the other constraints are still satisfied and repeat if nec-

essary.

Optimising without constraint works well with the data from figure 11 of

Galvin et al [29], giving the following parameters:

a = −0.556, b = 0.594, c = −0.678, d = −5.672. (4.4)

A naive optimisation using the data from figure 10, however, produces coeffi-

cients with b > 0 which violate the constraint c < b2/3a.

To illustrate the method we will do an example of the Lagrange’s multiplier

method for the constraint c < b2/(3a) for b > 0. We aim to minimise

f(a, b, c, d) =

n∑

i

(
aF 3 + bF 2 + cF + d− log [ζ(F )]

)2
, (4.5)

the sum is over all of the data points of ζ and the square is to make all

differences positive. The relevant constraint is rewritten

g(a, b, c, d) = b2 − 3ac ≤ 0 (4.6)
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Taking gradients of each function in the vector space of coefficient sets (a, b, c, d),

we set

∇f = λ∇g and g = 0, (4.7)

resulting in the system

n∑

i

2
(
aF 3 + bF 2 + cF + d− log ζ(F )

)
F 3 = −3λc

n∑

i

2
(
aF 3 + bF 2 + cF + d− log ζ(F )

)
F 2 = 2λb

n∑

i

2
(
aF 3 + bF 2 + cF + d− log ζ(F )

)
F = −3λa

n∑

i

2
(
aF 3 + bF 2 + cF + d− log ζ(F )

)
= 0

b2 − 3ac = 0.

(4.8)

Letting

lj =

n∑

i

F j log ξ(F ) (4.9)

and

mj =

n∑

i

F j , (4.10)

then we can write

am6 + bm5 + cm4 + dm3 − l3 = −3λc/2

am5 + bm4 + cm3 + dm2 − l2 = λb

am4 + bm3 + cm2 + dm1 − l1 = −3λa/2

am3 + bm2 + cm1 + dm0 − l0 = 0

b2 − 3ac = 0.

(4.11)

Then using the data we can solve for a, b, c and d. For figure 10 of Galvin [29],

this results in

a = −12.754, b = 14.909, c = −5.809, d = −5.419. (4.12)
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The form of the function that has been calculated is

G(F ) = log ζ = aF 3 + bF 2 + cF + d (4.13)

which requires inverting to obtain the quantity we want of the retardation

force. This is done simply by using the cubic formula and choosing the real

solution. There is only one real solution due to the parameter choices of

b > 0, b2−3ac ≤ 0. These results are show in (4.12) and (4.4). The d parameter

is related to the roughness height we are modelling: when the particles are

just touching due to surface roughness, at ζ = ξ, the force F = 0, so at that

point we have

log(ξ) = d ξ = ed (4.14)

which gives us roughness height ξr = 0.0044 for figure 10 of Galvin [29] and

ξr = 0.0034 for figure 11. These roughness heights do not match Galvin’s fits

exactly; they are however of the correct order of magnitude.

Force Factor

The force law outlined in section 4.3.2 gives as a function for the force which

matches Galvin’s force data in terms of the angle of inclination of the plane.

The angle can be converted into a force via

F = mg cos θ (4.15)

where m is the difference in mass between the fluid and particle of the same

volume. If we look at the fit of the force law using the results calculated in

section 4.3.2 shown in table 4.1 we can see that the fit for figures 10 and 11

4.3 of Galvin’s data is very good.

The results compare well with Galvin’s own fit shown in figure 4.3 but they

were constrained by their assumptions about the physics such as the different

length asperities.

However these results are a real, fully dimensioned quantity. Our model is

non-dimensionalised using the fluid viscosity µ, the particle radius a, and a
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typical rate of strain γ̇. Thus a dimensionless force F is given by

F =
m∗g

µγ̇a2
C ≡ ffC (4.16)

where ff is a dimensionless variable, the force factor and C is cos θ. Small

values of ff are applicable to strong flows or weak interparticle forces: thus,

using small values allows us to look at situations where the particles are close

to smooth.

Considering three different ff values our spring law graphs appear as in figure

4.4.
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Figure 4.4: Graph of force function for two different asperity heights. Top
ξ = 0.0034, (Galvin figure 11), bottom graph ξ = 0.0044, (Galvin figure 10).

In figure 4.4 we show the spring law graphs (force plotted against surface

separation) for three different values of ff . The two graphs are from the
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parameters we derived above, to match the data from figures 10 (with ζ =

0.0044) and 11 (with ζ = 0.0034) of [29]. The full list of parameters is shown in

table 4.1. In each case the graph is monotonic decreasing from an asymptote

at small separations (given by F ∼ (log ζ/a)1/3) to zero at the nominal surface

roughness height ζ = ξ = ed. For most separations the effect of changing ff

is more dramatic than changing the particle separation.

Parameter Values matching figure 10 Values matching figure 11

a -12.754 -0.556
b 14.909 0.594
c -5.809 -0.678
d -5.419 -5.672
ξ = ed 0.0044 0.0034

Table 4.1: Parameter values for compressible asperities model matching Galvin
[29] figure 10 and 11 found via Lagrange’s Method

4.4 Rough Sphere Programming Alterations

The alterations for rough spheres were relatively minor. The main contribution

was to a force vector.

Soft contact simply involved a small subroutine which calculated the force

vector from the separation. Hard contact was a little more complicated. This

required on setting the force vector but also tracking particles when nearly

touching. The vector is non-zero only when particles would move towards each

other under purely hydrodynamic forces, and the force would depend on this

approach velocity. The hard contact model implemented in this simulation was

a fuller model with contact force depending on the relative approach vectors,

this was the same as being used in and Wilson Davis [63],[64], rather than

being a simple step function as used in Brady Morris [12] (which also includes

Brownian motion).

During the simulation a simple contact algorithm could be

if particles are just touching then
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contact force is applied

end if

move particles according to all hydrodynamic and contact forces.

Ideally the contact force will result in a zero normal velocity, however due to

the discrete nature of a computer program the normal approach velocity is

never quite exactly zero at contact. If the normal velocity is slightly positive

the particles will still stay in contact but overlap slightly and their position

will be corrected at the next time step. If the velocity is slightly negative,

though, the particles will drift apart, no longer being in contact at the next

time step. The following time step will see them move closer again due to the

fluid flow that previously pushed the two particles into contact. The result

will be a particle that keeps on ‘bumping’ in and out of contacts only due to

numerical noise rather than a mathematical reason. Instead a more complex

algorithm is used.

if (separation < 1.01 roughness height) && (normal approach velocity is >

0) then

contact force is applied

end if

move particles according to all hydrodynamic and contact forces.

set positions so that distance between particle = 1 roughness height.

This numerical fudge helps ensure that the false separation and ‘bouncing’

does not occur.
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4.5 Rough sphere parameter values

The concentration values were c = 0.1, 0.3, 0.5, 0.6 and 0.7 and the flow

parameters, β = 0.1, 0.3, 0.45, 0.55 and 0.7. For hard contact we used rough-

ness heights ξ = 10−2 and 10−3; for soft contact we used the parameters we

extracted in section 4.3.2, which are shown in table 4.1.

4.6 Hard Contact

We first look at the hard contact model. We seeded with n = 30 particles and

ran for 30 repetitions of the periodic box in each case.

4.6.1 Validation

There have been two main groups who have run hard contact simulation mod-

els. Brady and Morris [12] used a hard contact model but also included Brow-

nian motion in their system. The hard contact model utilized by their sim-

ulation was a simple Heaviside step function of constant magnitude. The

magnitude of the contact force on our model is related to the approaching

velocity vector between the two particles. Validation of our implementation

of the hard contact model comes via reproducing figure 4(a) on page 438 of

Wilson and Davis 2002 [64], which is shown in figure 4.5. Their computations

are carried out in shear flow, which would be represented by β = 0.5 in our

formulation, however our basis fails at this point so we have done a flow very

close to this with a hint of strain with β = 0.55.

Comparing figure 4.5 to fig 4 in Wilson 2001 [64] we can see a relatively good

agreement in our results. There is some deviation at the higher concentration

of c = 0.6 where higher viscosities are found with the small addition of the

rotation accounting for the slightly larger viscosity.

We can also validate against our own earlier work for smooth spheres by a

direct comparison of the results at β = 0.55, as shown in figure 4.6. For high



Chapter 4: Rough Spheres 148

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

V
is

co
si

ty

Concenetration

Viscosity Vs Concentration, beta = 0.55, Xi = 1.d-2

Our calculation, beta = 0.55
fig 4a of [63], beta = 0.5

Figure 4.5: Viscosity vs Concentration, β = 0.55, ξ = 10−2



Chapter 4: Rough Spheres 149

concentrations the smooth sphere runs experienced crystallisation problems,

so we plot those results for concentrations up to 0.4 only. We see that, at low

concentrations, the roughness (with a roughness height of ξ = 10−2) has a very

weak effect on the overall viscosity, but it does lower the viscosity (as predicted

in Wilson and Davis, 2000 [63] and others). At a crossover concentration of

0.4 the roughness appears to slightly increase the viscosity, also in agreement

with the literature.
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4.6.2 Runtime issues

A series of runs for hard contact were undertaken at various concentrations

and for various flows. Unfortunately the vast majority of these runs failed in

part of the code that takes care of the bouncing of the spheres. This could

possibly be solved with a smaller time step although it may also just result in

the same jamming but at a later date. The code fails to complete because it

gets stuck in a particle position correction routine called correct particles.

The problem arise when the particles positions are adjusted. The positions

are adjusted on a pair wise method iterating between every pair combination
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repeating until there are no overlaps. This works well at low concentrations

but if particles cluster due to either the flow or just high concentrations then

the algorithm gets stuck in an infinite loop.

During many of the runs we experienced freezing of the code where corrections

to any overlapping particle could not be achieved. We will now consider what

cases failed and what cases ran to completion. Following on from this we

shall consider draw conclusions from the completed runs as to the nature of

the numerical fail and comment on any possible micro structure which have

formed. There tended to be more completed from the smaller roughness

Concentration

c = 0.1 All runs completed
c = 0.3 β = 0.1 and β > 0.5 completed.
c = 0.5 β = 0.7 completed.

Table 4.2: Completed hard contact runs, ξ = 10−3

Concentration

c = 0.1 All runs completed
c = 0.3 β < 0.5 failed. β > 0.5 completed.
c = 0.5 β = 0.7 completed.

Table 4.3: Completed hard contact runs, ξ = 10−2

height ξ = 10−3 too, is probably due to the reduced size felt by the fluid and

hence a smaller effective concentration.

4.6.3 Discussion of Results

Low Concentrations

The smooth sphere results detailed in chapter 3 showed an exponential type

relationship between concentration and viscosity. Crystallization and the re-

sultant velocity spikes occurred at higher concentrations. This phenomenon



Chapter 4: Rough Spheres 151

was more noticeable at flows approaching shear, β = 0.5, with strain and

rotational flows showing a lower viscosity for the same concentration.

Recalling that β = 0 strain flow, β = 1 solid body, rotation it is clear that

the hard contact code does not like flows with a strain component, this is

somewhat different than the case for smooth spheres. This could be because

fluid exerting a force pushing the particle together rather than just sliding

past each other in bands or rotating in some sort of near solid body rotation.

We can not use the parameter values for the best fit to analyse the data as

we have done in the smooth sphere case as the form of the results is not the

same.

This can be seen by looking at 4.7 where we can see that the viscosity does

not begin to converge within 30 box repetitions which is at stark contrast to

smooth results which centred around a level value.

In figure 4.7(b) we see the transient viscosity for hard spheres with a roughness

height of 10−2 at a concentration of 0.1 and in a flow close to strain at β = 0.1.

The viscosity rises throughout the plot, reaching a value of around 2.1 at time

30. By contrast, in figure 4.8, which is for the same parameters as figure 4.7(b)

except for the roughness height of 10−3, the viscosity rises more slowly and

reaches only 1.7 in the same time. If we view figure (the same parameters,

but for smooth spheres, where the viscosity rises only briefly and stabilises

around 1.3) as the extension of these results to zero roughness height, we

are extrapolating a trend of increasing roughness height causing an increase in

viscosity. This is in contrast to Wilson and Davis [63], who showed a reduction

in viscosity due to surface roughness at low concentrations.

Looking at flows closer to shear, β = 0.45 the viscosity take on a more normal

shape, figures 4.9 and 4.10. The larger asperities here giving rise to a slightly

lower viscosity but not significantly. A terminal viscosity of 1.37 for ξ = 10−2

with a standard deviation of 0.79 and 1.39 with a standard deviation of 0.80

for ξ = 10−3 was recorded. This result is slightly higher than that recorded for

smooth spheres, 1.35. Considering a fluid flow closer to rotation, β = 0.7 for
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ξ = 10−3 gave a terminal viscosity of 1.33 with a standard deviation of 0.77.

Comparing to the static results we have β = 0.65 gave a terminal viscosity

of 1.26 and for β = 0.75 gave a terminal viscosity of 2.97; interpolating these

results gives us a viscosity of 2.115 for β = 0.7. This lower viscosity in com-

parison to the smooth particles as lower concentration is in agreement with

the literature. This lower viscosity exists in a flow approaching solid body

rotation due to the lesser amount of movement of adjacent particle within the

fluid and consistant with our earlier results. The effect of concentration can

be seen in figure 4.11.

High Concentrations

Considering higher concentrations we are more restricted due to the failings

of many of the simulations outlined in table 4.2. It is clear from table 4.2 that

the simulation does no cope well with flows near strain. Indeed, even at very
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low concentrations (as seen in figure 4.8, c = 0.1) we saw that the viscosity

climbs sharply and does not converge for these straining flows. This can be

seen again on some partial data for c = 0.3, figure 4.12.



Chapter 4: Rough Spheres 156

First Normal Stress Difference

In simple shear u∞ = (γ̇y, 0), the first normal stress difference N1 is the

difference between the two diagonal fluid stresses σ11−σ22. A positive normal

stress results in the Weissenberg effect where by a fluid climbs a rotating rod.

The results for the first normal stress difference were noisy just as they had

been in the smooth sphere case. The results hovered around N1 = 0 ± 1.97×
Sd, (standard deviation), meaning that they were within a 95% confidence

interval of zero. Considering this it it hard to draw any real conclusion from

the first normal stress difference results for hard contact. This is actually

true across both true across both hard contact and the compressible asperities

contact model.



Chapter 4: Rough Spheres 157

4.6.4 Tabulated rough sphere results

Tabulated results of the runs for terminal viscosity, and their respective stan-

dard deviations. Results in bold represent runs that did not reach a stable

viscosity such those shown in figure 4.12.

c β = 0.1 β = 0.3 β = 0.45 β = 0.55 β = 0.7

0.1 2.05248 1.69418 1.37266 1.25370 1.28909
0.3 − − − 1.83276 1.69175
0.5 − − − − 2.88504

Table 4.4: Terminal viscosity, β = 0.1 − 0.7, ξ = 10−2

c β = 0.1 β = 0.3 β = 0.45 β = 0.55 β = 0.7

0.1 1.18476 0.977921 0.792478 0.723824 0.744257
0.3 − − − 1.05812 0.976688
0.5 − − − − 1.66560

Table 4.5: Terminal viscosity standard deviation, β = 0.1− 0.7, ξ = 10−2.

c β = 0.1 β = 0.3 β = 0.45 β = 0.55 β = 0.7

0.1 1.66685 1.62768 1.39468 1.26904 1.33247
0.3 3.74617 − − 1.74062 1.86567
0.5 − − − − 3.06010

Table 4.6: Terminal viscosity, β = 0.1 − 0.7, ξ = 10−3

c β = 0.1 β = 0.3 β = 0.45 β = 0.55 β = 0.7

0.1 0.962358 0.939674 0.805131 0.732664 0.769268
0.3 2.16233 − − 1.00493 1.07710
0.5 − − − − 1.76667

Table 4.7: Terminal viscosity standard deviation, β = 0.1− 0.7, ξ = 10−3.
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4.7 Rough Spheres, Compressible Asperi-

ties

4.7.1 Compressible Asperities

Considering compressible asperities, as described in section 4.3.2, where we

derived our force law from a fit to published experimental data (two data

sets yielding two separate fits) and were left with one additional dimensionless

parameter to describe the strength of the interparticle force relative to hy-

drodynamic forces, which we denote as ff . Because of numerical difficulties

(described later in this section) we were restricted to rather weak forces (or

strong flows), with a maximum force factor of 0.003.

For each of the parameter combinations given in table 4.8 (and the correspond-

ing force law parameters from table 4.1) three runs were done with n = 30

particles in a box, for 30 repetitions of the box.

Parameter Values

Concentration c 0.1, 0.3, 0.5, 0.7
Surface roughness ξ 0.0034, 0.0044
Shear ratio β 0.1, 0.3, 0.45, 0.55, 0.7
Force factor ff 0.001, 0.002, 0.003

Table 4.8: Combinations of squishy runs

Surface roughness shows a limited but still significant effect on terminal vis-

cosity, this effect is most pronounced at high concentrations.

Viscosity

When we compare our terminal viscosity results with the equivalent results for

smooth spheres, the results are consistent with the literature. We see higher

viscosities at higher concentrations (where the particles seem larger than if

they were smooth). This can be seen in figure 4.13. The cross over point

appears to be at approximately c = 0.6. This can be seen again on figure
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4.20, but with the crossing over appearing at slightly lower concentration,

the highest valid concentration this set of run ran for was c = 0.6 hence the

still visible but less pronounced higher viscosities than show in figure 4.13.

The literature also shows slightly lower viscosities due to roughness at low

concentrations (because of the reduction in lubrication stresses), however this

is less apparent in the close to straining flow of β = 0.1 but more so for β = 0.3

shown in figure 4.20 except for the case where ff = 0.003. This may be due to

the fact that as we approach shear, viscosities overall become greater, therefore

the the rough contact force becomes less significant.

The different roughness heights seemed to show little effect to the overall

viscosity except for at the highest concentrations. The differences at the higher

concentrations can be seen in figure 4.14.

During the computation, many of the runs, particularly those at the rotation

end of the strain–shear–rotation spectrum, produced data that were not suit-

able to be analysed using our curve fitting (or in some cases were unphysical).

The two situations occurring were,

1. crystallization

2. Viscosities less than the Einstein value of 1 + 5
3c.

The first situation is one that also occurred in the smooth sphere runs. Jam-

ming occurs because of the higher viscosities at non-dilute concentrations.

This obviously is a sign of crystallization to occurring earlier on rough sphere

than smooth spheres as higher concentrations. The crystallization results in

extremely large viscosity values, this is a physical situation which occurs in

suspensions.

The second, unphysical, situation is a problem where the viscosities are less

than the Einstein value. This occurs due to the extra force felt on the particle

due to the inter-particle contact the particle moves too much during a time

step. This results in a particle overlap. This overlap produces garbage when

input into the hydrodynamic functions. The particle overlap, in turn, may be



Chapter 4: Rough Spheres 160

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

V
is

co
si

ty

Concenetration

Viscosity Vs Concentration, beta = 0.1. Xi = 0.00044

Rough sphere ff = 0.0001
Rough sphere ff = 0.0002
Rough sphere ff = 0.0003

Smooth sphere

Figure 4.13: Graph of Viscosity against concentration, β = 0.1
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avoided by taking smaller timesteps: it is a symptom of particles moving from

separated to overlapping without feeling the lubrication forces associated with

very close pairs. However, our timestep is already 5 × 10−4, and to reduce

it further would be prohibitive in terms of computational time needed to see

meaningful results.
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Figure 4.15: Graph of Viscosity against time ff = 0.0001, c = 0.5, β = 0.1

Both of these problems can be seen in figure 4.15. At time T ≈ 90 there is

a clear viscosity spike indicating the jamming occurring. Although hard to

make out from this graph it is also possible to see the occurrence of a negative

viscosity around T ≈ 140.

Physically, we expect that this problem is also restricted to scenarios very

close to jamming: indeed, this phenomenon has been observed by Melrose

et al 1997 [26] and Dratler and Schowalter 1996 [20] for concentrated suspen-

sions. So, unsatisfactory as it may be, we have two numerical difficulties which

both suggest that the physical system we are studying is close to jamming, or

crystallising. Despite this there are still further conclusions that can be made

from the remaining results.

The effect of flow type on viscosity of smooth particle compared to particles
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with surface roughness is minimal in absolute terms, but the flow does af-

fect the onset of crystallisation. This is consistent with the results found in

section 3.5. The hard contact model showed greater rates of failure for flow

with large amounts of strain, resulting in the program getting stuck due to

overlapping particles. The smooth sphere results produced results with very

high viscosity spikes as flow closer to shear suggesting crystallization; the com-

pressible asperities model results were similar with the volatility and order of

the viscosity increasing with flows approaching shear. We can see this in-

creased volatility in 4.18 in comparison with 4.19. The peak viscosities are

however somewhat lower than that of the smooth sphere case, figure 3.9; this

is consistent with the hypnosis that the surface roughness produces slightly

lower viscosities at lower concentrations. However before crystallization oc-

curs the viscosities on the rough sphere model appear to be slightly lower

the onset of crystallisation occurs at approximately the same point. Taking

c = 0.4 as an example the progression from β = 0.45 to β = 0.55 result in

extreme spike viscosities suggestion crystallization in both smooth sphere re-

sults and the compressible asperities model. Further mirroring the smooth

sphere results the viscosity drops back again for flow approaching rotation.

Without further research using finer parameter spread it is impossible to say

if compressible asperities result in later onset of crystallization; even though

pre-crystallization viscosities at lower concentrations are slightly lower when

surface roughness is taken into account. A possible hypothesis is that dur-

ing flows which cause crystallization areas occur where local concentration is

higher than global concentration; therefore any viscosity reduction that found

be felt at lower concentrations are mitigated by the local higher concentrations

at which point the asperities become a hindrance in terms of particles passing.

In figure 4.20 we show the graphs of viscosity against concentration for both

smooth spheres and rough spheres with a force factor of ff = 0.001, 0.002 and

0.003 for a flow parameter β = 0.3 and for the fit parameters for Galvin’s sep-

aration vs angle of inclination with ξ = 0.0044. All four graphs are remarkably
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Figure 4.18: Graph of Viscosity vs time, ff = 0.0001, β = 0.45, ξ = 0.0044
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similar, indicating that (at least at these strengths) the contact force does not

have a dramatic effect on the fluid rheology. In all viscosity vs concentration
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Figure 4.20: Graph of Viscosity vs Concentration all ff , β = 0.3, ξ = 0.0044

graphs runs which led to exceptionally high viscosities due to crystallization

results have been removed. This is why some graphs only run for concentra-

tions up to c = 0.5 as for c > 0.5 crystallisation occurred making viewing the

graph unproductive.



Chapter 4: Rough Spheres 166

4.7.2 Tabulated Rough Sphere Results Compress-

ible Asperities

Tabulated results of the runs for terminal viscosity, first normal stress differ-

ence and their respective standard deviations.

c β = 0.1 β = 0.3 β = 0.45 β = 0.55 β = 0.7

0.1 1.29563 1.39426 1.36642 1.25018 1.31048
0.3 2.08152 2.80898 2.55698 3899.35 2.11899
0.5 4.26295 5.38853 232662 714807 2.64894
0.6 6.32645 7.08151 633132 2.35324E+6 10.1175
0.7 13.6585 829761 2.63461E+6 3.69309E+6 2.431E+6

Table 4.9: Terminal viscosity, β = 0.1− 0.7, ξ = 0.0034,ff = 0.0001

c β = 0.1 β = 0.3 β = 0.45 β = 0.55 β = 0.7

0.1 0.748032 0.804915 0.788819 0.721778 0.756572
0.3 1.20177 1.62165 1.47611 2251.24 1.22335
0.5 2.46121 3.11084 134313 412685 1.5293
0.6 3.65258 4.08822 365499 1.35861E+6 5.84106
0.7 7.88571 479028 1.52093E+6 2.13216E+6 1.40348E+6

Table 4.10: Terminal viscosity standard deviation, β = 0.1 − 0.7, ξ =
0.0034,ff = 0.0001

c β = 0.1 β = 0.3 β = 0.45 β = 0.55 β = 0.7

0.1 1.36924 1.46107 1.34769 1.27018 1.3036
0.3 2.4029 2.27113 2.46801 2.63528 1.81245
0.5 4.33539 4.8901 492821 747108 5.79634
0.6 6.91858 7.02623 1.64245E+6 933165 100586
0.7 15.606 809131 3.06597E+6 1.38609E+6 2.15905E+6

Table 4.11: Terminal viscosity, β = 0.1− 0.7, ξ = 0.0044,ff = 0.0001
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c β = 0.1 β = 0.3 β = 0.45 β = 0.55 β = 0.7

0.1 0.79029 0.843488 0.778006 0.733321 0.752601
0.3 1.38731 1.31114 1.42475 1.52145 1.04637
0.5 2.50304 2.8231 284499 431333 3.34637
0.6 3.99444 4.0563 948163 538751 58071
0.7 9.01015 467118 1.76995E+6 800243 1.24647E+6

Table 4.12: Terminal viscosity standard deviation, β = 0.1 − 0.7, ξ =
0.0044,ff = 0.0001

c β = 0.1 β = 0.3 β = 0.45 β = 0.55 β = 0.7

0.1 1.37495 1.54566 1.25099 1.32534 1.28675
0.3 2.50604 2.68653 4.78497 2081.59 2.09312
0.5 3.04573 5.16663 234851 995791 -0.974666
0.6 4.51059 4.98904 894024 1.51612E+6 -13.0934
0.7 15.4149 1.06219E+6 2.58271E+6 2.13944E+6 1.87496E+6

Table 4.13: Terminal viscosity, β = 0.1− 0.7, ξ = 0.0034,ff = 0.0002

c β = 0.1 β = 0.3 β = 0.45 β = 0.55 β = 0.7

0.1 0.793664 0.892194 0.722233 0.765188 0.742908
0.3 1.44656 1.55073 2.7625 1201.8 1.20846
0.5 1.75809 2.9823 135586 5.7492E+5 0.562724
0.6 2.60366 2.88042 516127 875324 7.55932
0.7 8.89705 613258 1.49102E+6 1.23519E+6 1.08248E+6

Table 4.14: Terminal viscosity standard deviation, β = 0.1 − 0.7, ξ =
0.0034,ff = 0.0002

c β = 0.1 β = 0.3 β = 0.45 β = 0.55 β = 0.7

0.1 1.30743 1.26019 1.29148 1.4247 1.30804
0.3 2.45391 2.0628 2.84091 61412.8 1.91817
0.5 4.51104 4.5319 1.09132E+6 755085 34934.6
0.6 6.49928 7.45554 1.81909E+6 1.09115E+6 30.0422
0.7 14.228 3.7027E+5 1.814E+6 1.28317E+6 1.14664E+6

Table 4.15: Terminal viscosity, β = 0.1− 0.7, ξ = 0.0044,ff = 0.0002
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c β = 0.1 β = 0.3 β = 0.45 β = 0.55 β = 0.7

0.1 0.754769 0.727414 0.74561 0.822551 0.755196
0.3 1.41633 1.19096 1.64008 35456.3 1.10743
0.5 2.60365 2.6165 630029 435944 20169.1
0.6 3.7512 4.30446 1.05017E+6 629971 17.3445
0.7 8.21203 213775 1.04724E+6 740829 661999

Table 4.16: Terminal viscosity standard deviation, β = 0.1 − 0.7, ξ =
0.0044,ff = 0.0001

c β = 0.1 β = 0.3 β = 0.45 β = 0.55 β = 0.7

0.1 1.36619 1.43832 1.36732 -0.188881 1.41015
0.3 2.25925 2.55995 -0.330288 39369.2 3.27281
0.5 4.32165 4.35588 184838 240371 -10.3984
0.6 5.43974 0.0756197 654342 841296 -29.6799
0.7 12.8114 589425 2.66882E+6 2.12867E+6 2.15205E+6

Table 4.17: Terminal viscosity, β = 0.1− 0.7, ξ = 0.0034,ff = 0.0003

c β = 0.1 β = 0.3 β = 0.45 β = 0.55 β = 0.7

0.1 0.788772 0.830357 0.789337 0.109048 0.814113
0.3 1.30438 1.47788 0.190671 22729.3 1.88947
0.5 2.49511 2.51469 106705 138775 6.00323
0.6 3.14064 0.0436559 377744 485712 17.135
0.7 7.39669 3.4028E+5 1.54067E+6 1.22896E+6 1.24243E+6

Table 4.18: Terminal viscosity standard deviation, β = 0.1 − 0.7, ξ =
0.0034,ff = 0.0003

c β = 0.1 β = 0.3 β = 0.45 β = 0.55 β = 0.7

0.1 1.40121 1.34539 1.6346 2.00899 1.30462
0.3 2.38904 2.52707 1.72569 5.24292 2.66492
0.5 4.79341 4.94784 193424 514094 4.95241
0.6 5.89018 7.10316 2.07725E+6 2.09969E+6 19.6956
0.7 14.5243 3.2778E+5 1.5924E+6 862952 3.00169E+6

Table 4.19: Terminal viscosity, β = 0.1− 0.7, ξ = 0.0044,ff = 0.0003
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c β = 0.1 β = 0.3 β = 0.45 β = 0.55 β = 0.7

0.1 0.808992 0.776703 0.943631 1.15987 0.753187
0.3 1.37931 1.4589 0.996216 3.02694 1.53853
0.5 2.76748 2.85643 111661 296806 2.85915
0.6 3.4007 4.10071 1.19917E+6 1.21223E+6 11.3708
0.7 8.38562 1.8923E+5 919274 498215 1.73295E+6

Table 4.20: Terminal viscosity standard deviation, β = 0.1 − 0.7, ξ =
0.0044,ff = 0.0003
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4.8 Conclusion

The model for compressible asperities was a more stable code than the hard

contact model producing a wider range and more reliable results. Both models

were sensitive to time step however with a already small time step further

reduction would be at considerable computational cost.

Hard contact runs agreed well with the literature of Wilson and Davis [63],[64]

but due the unsuccessful nature of the runs limited conclusions were possible.

Compressible asperities led to more robust results and clearer conclusions.

General trends fit with the literature showing a lower viscosity due to particle

roughness at low concentration and a higher viscosity and jamming occurrence

at high concentration. However the lower viscosity effect at low concentrations

was less pronounced was the flow moved towards shear. Normal stress contin-

ued to be a noisy data source with standard deviation frequently of the same

order as the signal.

The onset of crystallisation was shown to occur earlier as flows moved from

strain to shear, just as it did in the smooth sphere case. In the literature

for shear flows, the crossover concentration between the dilute regime, where

roughness lowers the viscosity, and the concentrated regime, where viscosity

is raised, was shown to be around c=0.4. We confirm this with a flow close to

shear at β = 0.45, but for a straining flow we observe the crossover at a much

higher concentration c = 0.6. We hypothesise that this is due to the near-

parallel flows close to shear (for which crystallisation occurs earlier even for

smooth spheres) causing areas where the local concentration is much higher

than the global concentration. Thus, if a global concentration of c = 0.6 (say)

is the true crossover into the concentrated regime, there may well be regions in

our shear flow in which the local concentration does exceed c = 0.6. Further

investigation with a tighter parameter space around the c = 0.3 . . . 0.5 and

β = 0.45 . . . 0.55 may be able to give more accurate results along with some

sort of measure on local clustering.
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Surprising results were the lack of effect of force factor factor compared to

roughness height, although once the compressible asperities force function is

plotted the effect is clear.

The compressible asperities produces good results consistent with other even

though the curve fitting method for Galvin [29] figure 10 and 11 resulted in

different values for roughness height.
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Conclusions and Future Work

5.1 Summary of the Thesis

Throughout this thesis we have investigated the flow of suspensions of solid

spheres in a viscous fluid. We considered a monolayer of particles in an un-

bounded fluid, and carried out numerical simulations of its behaviour under a

variety of linear flows. We used the numerical technique of Stokesian Dynam-

ics, and considered cases of smooth and rough spheres.

The first research task was to implement a self-replicating lattice basis for

general two-dimensional flows. Self-replicating bases already existed for shear

and plain strain; we introduced first a basis for mixed shear and strain flow,

and then a more general basis for any linear two dimensional flow. To achieve

this, we defined a generic flow form that covers all linear two-dimensional flows:

that is, any flow on the spectrum from pure rotation to plane strain, including

shear flow as the midpoint of that spectrum. Later in the chapter, we proved

that this generic flow covers all linear two-dimensional incompressible flows,

by considering various rotations of the underlying axes to convert any given

flow into the generic flow form.

The derivation of a self-replicating basis under this flow was then split into two

parts: flows having more rotation than strain, and those having less rotation

172
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than strain. (If the strain and rotation parts are equally strong we have a

shear flow, which fits into neither formalism and has been extensively studied

in the literature, so we did not study the shear case.) The split is needed

because the former flow has complex eigenvalues and eigenvectors for one of

the key matrices. The bases for both classes of flows were derived and linked.

At this stage we also had to make a choice of convention for the definition of

first normal stress difference under flows other than shear. Previous literature

studies had only considered shear and strain flow: the first normal stress

difference N1 is well known under shear and must (for symmetry reasons) be

zero under pure strain. We made the simplest choice which was consistent

with these two fixed points, defining a normal stress based on the off-diagonal

terms of the stress tensor under our flow form.

As a test of the correct implementation of different aspect ratios and rotations

of lattice basis, we carried out static simulations of these flows for various

concentration suspensions of smooth spheres. These static simulations are

essentially the first timestep of a dynamic simulation: the spheres are placed

at random in their periodically replicating box, the flow is imposed, and the

resultant stresses calculated, but the particles never move from their initial

positions so the system does not build up any flow-induced microstructure.

The resultant stresses are called the short-time rheology of the system.

We found, as expected, that the short-time stresses were isotropic (i.e. Newto-

nian: the stress tensor, on average, was a scalar multiple of the rate-of-strain

tensor). This is a direct result of the random placement of the particles. We

also found that the viscosity – the scalar multiple relating stress to rate of

strain – was independent of which flow and which lattice basis we were using,

as expected. Finally (also as expected), the viscosity increases with increas-

ing concentration. This numerical study was more of a sanity check than a

serious piece of research; however, while short-time viscosities have been pub-

lished before for 3D systems (from both numerical and experimental studies)

our graph is the first such calculation for 2D systems.
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We then moved onto the more interesting problem of dynamical simulations:

simulations in which we moved beyond the initial timestep and evolve the

positions of the particles according to the flow and the hydrodynamic stresses

it causes. At this point, because the simulations became much more time-

consuming, we had to make a reduction in the number of particles in each

replicating lattice box, down to 30 particles per box. This reduction increased

the statistical noise on the data, but when we later compared our viscosity

results with a few choice runs with many more particles, we found that the

average stresses were largely unaffected by the system size as long as the

systems were at least as large as those we chose: 30 particles is enough for a

good measure of viscosity.

As expected, the initial stresses recorded in the dynamic simulations match

those from our earlier static calculations (subject to the higher values of noise

commented on above). As the flow continues, a microstructure forms which

results (at least at low to moderate concentrations) in the viscosities initially

rising and then plateauing once the microstructure has formed.

As the concentration was increased we saw characteristic ”spikes” in the plots

of viscosity against time – events which were short in duration, during which

the viscosity could increase by many orders of magnitude, and which therefore

had a measurable effect on the time-averaged viscosity measure. These spikes

were taken to be indicative of crystallisation or jamming: moments when a

cluster of closely-spaced particles spanned the periodic box.

As expected, these crystal regions formed more strongly as the area concen-

tration was increased; but we also presented results on the effect of the flow

type parameter (which ranges from 0 for strain flow, through 1/2 for shear

flow, to 1 for pure rotation) on the onset of crystallisation. This effect is quite

marked, with flows that are close to shear flow ( close to 1/2) showing the on-

set of crystallisation at much lower concentrations than other flow types. We

hypothesised that this may be because of the unidirectional nature of shear

flow: because flows close to shear flow are almost unidirectional, any crys-
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talline regions which build up along the principal flow direction are likely to

remain as there is little flow out of that line to break them up. Flows with

a larger strain or rotation component are more multi-directional, and so al-

though small crystals can form, they are then more likely to be broken up by

the flow.

Of course, once a microstructure is allowed to form under the action of flow,

the macroscopic fluid is no longer isotropic, and so the rheological response to

flow does not have to be purely Newtonian. This means that, in addition to the

viscosity as discussed above, we were able to investigate the first normal stress

difference generated by the flow. Since at low concentrations the viscosity

is finite but the normal stress zero, these data show a much lower magnitude

relative to the noise in the signal. We found that the noise – which is part of the

physical response of the system to flow – was correlated between the viscosity

and normal stress signals: when the viscosity showed a spike, there would be

a large (positive or negative) deviation in the normal stress signal, although

not at the same order of magnitude as in the viscosity. There was no clear

trend on the normal stress results (even the sign of the long-term averaged

first normal stress difference is unclear) except that the noise, and the average

magnitude of the normal stress signal, is larger at higher concentrations.

The final investigation of chapter 3 was a study of the rate at which the mi-

crostructure was formed by the flow. This was accessed through a curve-fitting

program which assumed an exponential rate of build-up of microstructure with

rate constant α, starting from the short-time value of the static simulations

and ending with the long-time average rheology. Because of the low signal-to-

noise ratio in the first normal stress data, these results were not suitable for

the curve fitting; but since the same microstructure causes changes in both

the viscosity and normal stress (as evidenced by the coincident spikes), it is

reasonable to take these rate values from the viscosity time series alone. We

found (unsurprisingly) that the microstructure forms more quickly at higher

concentrations; there is little dependence on flow type.
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As a final illustration of our results on smooth spheres, we showed some indica-

tive snapshots of the particle positions during flows where some crystallisation

had occurred. Some regions of regular particle arrangement, consistent with

crystallisation, could be seen, and we proposed these crystallisation clusters as

the mechanism of the spikes in the viscosity profile and the large short-lived

deviations in the normal stress created by the flow.

In chapter 4 we considered the effects of surface roughness on a suspension of

spheres. Guided by existing results in the literature (almost all of which were

either for shear flow or for just two interacting particles), we used two differ-

ent models for the inter-particle interaction caused by roughness. Both models

treat the roughness as being able to cause some form of contact between two

spheres when their nominal surfaces are still separated: in the ”hard contact”

model, the contact acts (via a purely repulsive force) to keep the spheres at a

certain minimum separation, whereas in the ”compressible asperities” model,

the contact force is again purely repulsive but depends on the separation be-

tween the spheres. We chose to neglect tangential forces even though they

are known to be necessary to accurately reproduce two-sphere experiments, as

studies in shear flow have shown that the tangential part of the contact force

is much less important to the rheology than the repulsive normal force.

The hard contact model we used is fairly widely used (though with variations

in the detail of implementation in the literature) because it is a limiting case

of many different contact models. The compressible asperities model was new

in this work, so we began by deriving the form of the force law to reproduce

some key experimental observations [29]. We fitted the experimental data

(two distinct sets) with a non-linear spring law with four free parameters,

and left ourselves with a single dimensionless parameter, which we called the

force factor ff , a measure of the strength of the spring force relative to the

hydrodynamic forces generated by the flow. We used three different values of

ff (along with our two spring laws) to assess the effects of the soft-contact

model; for hard contact, in which the only physical parameter is the roughness
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height, we used two different heights.

In all the runs we carried out for rough spheres (using either model), the

normal stress signal was extremely noisy: indeed, in every case the computed

long-term average normal stress was within 1.96 standard deviations of zero,

which means that we cannot detect an average normal stress different from

zero at the 95% confidence level. Indeed, there is no consistent trend in our

long-term average results for the sign of N1: so we can only conclude that

normal stresses are highly variable in these systems, and draw the rest of our

conclusions from consideration of the viscosity alone.

We now move on to considering the two roughness models separately. When

we implemented the hard contact model, we attempted to calculate the cor-

rect contact force for each pair of particles, such that their approach velocity

was reduced to zero by the contact. This is in contrast to some of the lit-

erature work, in which a simple (large) Heaviside function was used for the

force potential (in the presence of Brownian motion); this formalism does not

reduce to the correct contact force in the limit of no Brownian motion. In-

stead, we calculated the contact force based on the relative approach velocity

of the two spheres in the absence of any contact forces. Because of the ap-

proximations inherent in this pair-based approach (and because of numerical

noise) we then needed to correct the positions of some particles to keep their

separation close to the contact separation. Unfortunately, the result of this

was a simulation that was very sensitive to timestep, requiring an unfeasibly

small timestep to avoid an infinite loop in the position correction routine. This

looping behaviour was taken to be indicative of the physical system coming

close to crystallisation or jamming, in which many pairs of particles are in

contact and the correction algorithm becomes difficult to use. The runs which

had greatest success were those closer to pure strain or rotational flow; prob-

lems occurred more with flows closer to shear. This agrees with our results

for smooth spheres, in which we concluded that unidirectional flows are more

susceptible to crystallisation and jamming than other flows. At lower con-
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centrations, where jamming is unlikely, our runs did complete, and we found

some interesting results.

For flows close to shear flow, our results agreed with the conclusions of Wilson

and Davis [63]: the addition of roughness to the particles lowers viscosities

at low to moderate concentrations. However, for some flows close to strain

flow in particular, we found that the viscosity climbed slowly over time, with

no apparent stabilisation to a long-term value. However, after only 30 box

repetitions we cannot hypothesis about the true long-term viscosity; we can,

however, predict that if the viscosity does plateau (as we would expect, as

a stable microstructure eventually builds up) its value for these parameters

would be higher than for the equivalent smooth-sphere system. Flow type has

an important effect on viscosity, even for low concentrations: in flows close to

strain, the viscosity is raised by inter-particle roughness; close to shear flow,

it is lowered.

The mechanism for the lowering of viscosity is well understood. This is be-

cause the repulsive forces cause the particles to spend less time in very close

configurations than they would in the absence of roughness. Configurations

where two sphere surfaces are very close together cause much of the dissipation

(and hence viscosity) in the system, because these close zones produce large

lubrication stresses: so reducing the time the particles spend close together is

a mechanism to reduce the overall viscosity.

In flows close to strain, our results are surprising: a calculation in plane strain

flow by Wilson [62] showed that, in an asymptotically dilute system, viscosity

is reduced by exactly the hard contact model we have implemented here. The

concentrations at which we see the rise in viscosity are as low as c = 0.1, which

should fall within the asymptotically dilute regime. As yet we have found no

explanation for these counter-intuitive results.

The argument explaining the expected lowering of viscosity by roughness is

only valid for relatively dilute systems: systems, roughly, where (on average)

the act of the contact force pushing two close particles apart does not result
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in either of them coming into close contact with a third particle. At higher

concentrations, only numerical investigation can provide information on the

effects of roughness.

The final piece of research in this thesis was the investigation into roughness

modelled with compressible asperities. In this case, independent of flow type

(and according to expectation), at low concentrations we found a slightly

lower viscosity due to the contact forces between the particles. At higher

concentrations, we found that once crystallisation starts to occur its onset is

more rapid than for smooth spheres, resulting in a higher viscosity at high

concentrations. There was little difference between the results for our two

different spring laws, which is not very surprising: although they were fit to

different experimental data sets, the two spring laws have similar asymptotes

for very close particles, and similar values of the cut off separation beyond

which no contact force applies. Perhaps more surprisingly, the force factor ff

had little effect on the viscosity results other than causing a small increase in

viscosity at high concentrations. However, this was perhaps because we were

limited to rather small values of ff by numerical difficulties. Similar to the

hard-contact model, we found a high sensitivity to timestep, particularly if ff

was not very small, and some runs could not be completed.

The effect of the flow type was similar to the smooth sphere case, with flows

nearer shear showing a higher viscosity and more crystallization occurring.

Despite the slightly lower viscosities at low concentrations with rough spheres

compared to smooth spheres, the onset of crystallisation was unaffected by

roughness in terms of both flow type and concentration. This suggests that

the details of the roughness model used, and indeed of any inter-particle forces,

may be unimportant for determining the onset of crystallisation: the two basic

parameters of area concentration and the unidirectional nature of the flow are

the most critical.
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5.1.1 Ewald summation

In Appendix A we looked again at the problem of simulating systems in an in-

finite domain, and investigated the potential solution of the Ewald summation

method. This method is now fairly standard in three-dimensional simulations,

but has never been implemented for a purely two-dimensional system. The

reason to use it is the problems of convergence in accounting for long-ranging

mobility interactions over very large domains; Ewald summation deals with

this problem by considering a Fourier transform of part of the function to be

summed and carrying out the summation of that contribution in the resulting

reciprocal space.

In order to use a purely two-dimensional periodic lattice, the formulae govern-

ing Ewald summation in Stokesian Dynamics need to be re-derived. We began

by stating the mobility relations for both inter-particle interactions and self

interactions in terms of derivatives of the Oseen tensor Jij . We then presented

the derivation of the standard three-dimensional Ewald summation, explain-

ing the use of the Poisson summation formula. We were then able to present

the required modifications to the derivation to take it from three dimensions

to two dimensions.

In order to use Ewald summation in two dimensions, several specific mobility

relations need to be derived. One ingredient of this calculation is the Fourier

transform of the Oseen tensor J. We derived this Fourier transform in some

detail, using the conversion of the two-dimensional Fourier transform of an

axisymmetric function into a Hankel transform. The derivation of the Hankel

transform of the function r erf (λr) was the most difficult task in the appendix.

To carry it out, we used the theory of generalised functions [44] to justify

the methods we used; derived a rule for calculating the Hankel transform of

r2f(r) when we know the transform of f(r), and then worked up from the

Hankel transform of r1 to the required transform of r erf (λr). Along with

the relationship of the Fourier transform of a derivative of a function to the
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Hankel transform of the same function, this allowed us to calculate all the

reciprocal-space mobility relations.

Unfortunately at this stage we encountered a problem with the form of the

Hankel transform in terms of how it decays in reciprocal space: i.e. only alge-

braically. This left us with the difficult problem of finding another sigmoidal

curve to try and transform to obtain the required convergent reciprocal space

summation.

Despite this setback, we presented a full list of all the real space mobility rela-

tions as these are still valid in three dimensions and provide minor corrections

to those available in the literature.

5.2 Outlook

The work we have presented in this thesis opens up many possibilities for

further study. There are several immediate questions raised from the thesis. In

chapter 3 (using smooth spheres) we saw that a more unidirectional flow causes

crystallisation to occur at a lower concentration than for multi-directional flows

like strain and near-rotation flows. However, we are using a box containing

only 30 particles. At the moment, when a moderate-sized crystal forms the

clustering described in section 3.5.5 it can span our periodic box and cause a

very large viscosity spike. It is quite likely that true crystallisation – in which

a macroscopic system would jam – occurs at a higher concentration than the

one we predict. A series of runs around the onset of crystallisation would

help to ascertain more accurately at which β value flow, and at which area

concentration, crystallisation begins to form. Additionally, a selection of runs

with a larger number of particles per box might allow us to see a situation

where there are clusters of crystallisation and areas of free flowing particles co-

existing. This would allow us to more quantitatively predict real suspension

viscosities. Studying the formation of these clusters would also help with

determining the approximate number of particles needed per box to generate
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reliable simulations for a given concentration. This could be studied for both

smooth and rough spheres. It might be interesting to develop some kind of

measure of local vs global concentration, to give insight into the development of

the clusters; this value could then be tracked near the point of crystallisation.

A complete formulation for Ewald summation in two dimensions would be an

ideal area for further study and was one original aim of this thesis. The nature

of the issues we had, make it clear that any sigmoidal curve will not do for

the decaying function in real space. The problem is to find a function which

decays appropriately (exponentially or better) in real space, and whose Hankel

transform decays exponentially in reciprocal space. This is a case where the

three dimensional case seems to work more straightforwardly than the two

dimensional case.

Another major undertaking would be to implement a form of Brownian mo-

tion. This has been done elsewhere in the literature, but always in a shear

flow. It would be a improvement in realism and as mentioned in section 1.3.12,

Dratler [20] talks of the problem of overlapping particles in Stokesian Dynam-

ics and how Brownian motion can solve this problem. Because of the extra

motion in the system, an expected result of this would be to slightly delay the

onset of crystallisation, although numerical experiments are clearly necessary

to see whether this would be universal or whether the flow type has a critical

effect.

Finally, another area of interest is the counter-intuitive results we saw at

low concentrations in straining flow with rough spheres (e.g. figure 4.10), in

which the viscosity grows, apparently indefinitely, with time, well beyond the

equivalent smooth sphere viscosity, although theory predicts the long-term

average viscosity to be lower than that for smooth spheres. Some longer runs

for these situations would be of interest, to see whether the viscosity does

plateau in the long term, and at what value. Equally, it would be nice to

carry out a detailed comparison with a system of smooth spheres starting

from the same initial conditions, to see where the two systems deviate from
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one another and where the extra stresses originate.



Appendix A

Ewald Summation

A.1 Introduction

So far in this thesis we have used an imperfect extension of Stokesian Dynamics

to suspensions which are infinite in extent in two spatial dimensions. As

is usual in simulating large systems, we have taken a moderate number of

particles in a tessellating box, and replicated that box throughout space.

In the resultant system, there is an infinite family of copies of each of our num-

bered particles. When calculating particle-pair interactions, we have simply

used the closest copy of the particle in question – always taken from within

the tessellating box or one of the eight lattice boxes surrounding it. We never

consider the interaction of a particle with a more distant copy, nor with any

of its own copies.

This means of course that we are neglecting the effects on the flow of all

far field particles. This has no great implications for the two-body resistance

forms, which decay quickly in space; but the mobility expressions decay rather

slowly in space and so our approximation is rather poor. To rectify this we

need to recalculate the far-field mobility matrix, taking account of particle

images in many different replicating periodic boxes. The far-field mobility

matrix describes the relationship between the forces, torques and stresslets,

184
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and the velocities, rotations and background flow. A full description of the

mobility matrix can be found in section 1.3.9. The problem with increasing

the distances over which we sum our known two body far-field interactions is

the poor convergence for large r, the distance between particle centres.

To overcome this problem we shall use Ewald summation [24] that is also used

in electrostatics and can be used on many periodic systems. Ewald summation

overcomes the problem by splitting it into two, transforming one sum into

Fourier space performing the long range summation in Fourier space where

there is good convergence and then transforming back into regular space and

adding the result on to the other, real space summation.

Ewald summation is now a standard technique of Stokesian Dynamics (and

indeed electromagnetism) for accelerating the calculation of pairwise relations

across many particles in periodic boxes. However, for obvious physical reasons,

the technique has been thoroughly developed in three dimensions.

Ewald summation was first applied to hydrodynamic problems by Beenakker [7].

Its essence lies in separating the function to be calculated into two parts, one of

which may be summed quickly in real space and the other converging quickly

when summed in reciprocal space. This theory is explained in more detail in

section A.1.2.

Brady et al. in [13] extended Stokesian Dynamics to infinite suspensions. This

itself was an extension of O’Brien’s work [47] using a periodic lattice and Ewald

sums to extend Stokesian Dynamics to an infinite three dimensional domain.

In this chapter, we shall present the derivation of the necessary components

to implement two dimensional Ewald summation on Stokesian Dynamics.

Unfortunately, after much work we discovered that one of our calculated func-

tions did not converge rapidly as required (or indeed at all), as explained in

section A.4.6 Nonetheless, we present the calculations of the mobility forms

here for completeness
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A.1.1 Mobility matrix entries in terms of J

In this section we give for reference the explicit forms of the individual mobility

tensors used in M∞ in terms of the Stokes–Oseen tensor J. We are using here

the notational convention of Kim & Karrila [37]:




U∞ −U

Ω∞ −Ω

E∞


 =




a b̃ g̃

b c h̃

g h m







F

T

S


 , (A.1)

to label the sub-matrices of the mobility matrix M∞.

The elements of of the mobility matrix satisfy symmetry relations:

aij = aji cij = cji mijkl = mklij

bij = b̃ji gijk = −g̃kij hijk = −h̃kij,
(A.2)

and the two tensors b and h are in fact pseudo-tensors. Because of the sym-

metry, we will not explicitly write out the tilde forms b̃, g̃ and h̃. Throughout

this section we use ri to represent the vector joining sphere center α to sphere

center β, r its length and ei = ri/r the unit vector in the same direction. All

lengths are made dimensionless using the particle radius a, and all mobility
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tensors with 6πµan for whichever value of n is appropriate.

aαβij =
3

4
Jij +

1

4
∇2Jij (A.3)

=

[
3

4
+

1

4
∇2

]
Jij (A.4)

bαβij = − 3

16
ǫlkj[∇kJil −∇lJik] (A.5)

= − 3

16
ǫlkj [δlp∇k − δkp∇l]Jip (A.6)

cαβij = − 3

16
∇2Jij (A.7)

gαβijk = −3

8
[∇iJjk +∇jJik]−

1

10
∇2 [∇iJjk +∇jJik] (A.8)

= −
[
3

8
+

1

10
∇2

]
[δjl∇i + δil∇j] Jlk (A.9)

hαβijk =
3

16
∇2[ǫjklJil + ǫiklJjl] (A.10)

=
3

16
∇2[δilǫjkm + δjlǫikm]Jlm (A.11)

mαβ
ijkl = − 3

16
[∇j∇lJik +∇j∇kJil +∇i∇lJjk +∇i∇kJjl]

− 3

80
∇2[∇j∇lJik +∇j∇kJil +∇i∇lJjk +∇i∇kJjl]. (A.12)

= −
[
3

16
+

3

80
∇2

]
[δipδkq∇j∇l

+ δipδlq∇j∇k + δjpδkq∇i∇l + δjpδlq∇i∇k]Jpq. (A.13)

We can use these forms to define a linear differential operator Lw for each

mobility tensor w, such that

w = LwJ wij(kl) = Lw
ij(kl)pqJpq : (A.14)
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La
ijpq =

[
3

4
+

1

4
∇2

]
δipδjq (A.15)

Lb
ijpq = − 3

16
ǫlkj [δlq∇k − δkq∇l] δip (A.16)

Lc
ijpq = − 3

16
∇2δipδjq (A.17)

Lg
ijkpq = −

[
3

8
+

1

10
∇2

]
[δjp∇i + δip∇j ] δkq (A.18)

Lh
ijkpq =

3

16
∇2[δipǫjkq + δjpǫikq] (A.19)

Lm
ijklpq = −

[
3

16
+

3

80
∇2

]
[δipδkq∇j∇l

+ δipδlq∇j∇k + δjpδkq∇i∇l + δjpδlq∇i∇k]. (A.20)

We also have the Stokes Oseen tensor in terms of derivatives of r from equation

(1.28) of section 1.3.4:

Jij =
(
δij∇2 −∇i∇j

)
r. (A.21)

This in turn allows us to represent the mobility relations in terms of derivatives

of r. We shall use this fact later.

We also need the self-interaction terms, which are only nonzero for the tensors

a, c and m:

aααij = δij (A.22)

cααij =
3

4
δij (A.23)

mαα
ijkl =

3

20
(3δikδjl + 3δilδjk − 2δijδkl). (A.24)

A.1.2 Ewald Summation

The first thing we must do is define the lattice. The lattice is constructed

with basis B consisting of our basis vectors b1, . . . ,bn, where n is the number

of dimensions. We will present the working in two dimensions but we shall

first show a summary of the standard method of Ewald summation in three

dimensions.

Considering the three dimensional case, if we consider a point x in one of our

boxes, as our lattice is periodic a particle placed at x has images of itself at
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positions x+ xlmn where

xlmn = lb1 +mb2 + nb3 (A.25)

and l,m, n ∈ Z. This image particle experiences the same flow conditions

(except for a solid-body motion) as the particle at x. The effect of that

particle and all its images on the other particles within the central box is

what is calculated by the Ewald summation. In section (1.1) we derived the

Stokes Oseen tensor which defines the fluid velocity produced by a point force.

This can rewritten using matrix notation:

J(x) =

(
I

r
+

x · x
r3

)
. (A.26)

The velocity relationship is

u =
1

8πµ
J(x) · F. (A.27)

The tensor J is used in the derivation of all the key formulae of Stokesian

Dynamics, as we calculate the flow resulting from a distribution of forces on

the surface of each particle.

Now suppose each particle and all the forces on its surface is replicated peri-

odically in space using our lattice. Clearly we must take these multiple copies

into account. We can define our new relationship as

Jrep(x) = J(x) + Jextra(x)

= J(x) + Σ′
l,m,nJ(x+ xlmn)− L−3

∫
J(x+ x′)dV′

(A.28)

where Σ′ refers to the sum over all l,m, n except l = m = n = 0 and the

integral is taken over all space. The first term is the contribution of the particle

within the first lattice box that we are considering. The second term is the

contribution from the particle images in the other lattice boxes. The third

term represents a balancing of the forces applied to a particle in the fluid to

stop the system having unbounded acceleration. If we simply apply a force to

particle α in each box, the whole system will accelerate: instead, we must also
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apply an equal and opposite force to each periodic box, distributed through

the space in the box. This is equivalent to the background flow u∞ in equation

(1.29) in section 1.3.5, the difference is in section 1.3.5 we are considering an

infinite unbounded domain were as here the domain has a bound in a sense of

a very distant bounding surface. In this case equation (1.29) is written as

ui(x) =− 1

8πµ

N∑

α=1

∫

Sα

Jij(x− y)fj(y)dSy

.− 1

8πµ

N∑

α=1

∫

SΓ

Jij(x− y)fj(y)dSy

(A.29)

where Γ is the outward bounding surface, more in Brady 1988 [13] and La-

dyzhenskaya 1963 [43]. Finally L3 = |(b1 ∧ b2) · b3| is the volume of the

cell.

The theory and method used for the two dimensional case is of course similar

but with only two basis vectors; we will see the full two dimensional calculation

in section A.3. The main differences will be the conversion of the Fourier

transform to two dimensions (which involves the Hankel transform) and the

resulting different mobility formulas.

Equivalent forms to the equation (A.28) can be written for each of the mobility

tensors given in section A.1.1. We replace the mobility tensors wαα and wαβ

with their versions appropriate for a repeating cell of particles, wαα;rep and

wαβ;rep . This is essentially accomplished by replacing the Stokes–Oseen tensor

J in each mobility tensor w by Jrep .

For a particle’s self-interactions, we must also include its interactions with

other images of it: so a similar modification is made, by adding a contribution

given by the form wαβ and the modified Stokes Oseen tensor Jextra(0) to the

original mobility tensor wαα.

Clearly, the difficult task here is the computation of Jextra(x) and the mobility

matrices derived from it. Both the sum and the integral in equation (A.28)

converge very slowly as the outer boundary is taken to infinity. It is this

computation that is made possible by the method of Ewald summation.
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A.2 Ewald summation and Poisson sum-

mation

To tackle the poorly-converging sum in equation (A.28), we use the Poisson

summation formula:

Σl,m,ng(xlmn) = L−3Σl,m,ng̃(klmn), (A.30)

with

klmn = 2π(lb1 ∧ b3 +mb3 ∧ b2 + nb1 ∧ b2)/L
3, (A.31)

We arbiterally choose this form for k. We have defined the Fourier transform

as

g̃(k) =

∫
exp(−ik.x)g(x)dV (A.32)

and inverse

g(x) =
1

(2π)3

∫
exp(ik.x)g̃(k)dVk (A.33)

By applying this to Jrep and then inverting back to real space we obtain

Jrep(x) = L−3Σ′
l,m,ne

−iklmn.xJ̃(klmn), (A.34)

for x 6= 0. Upon analysing this, it is clear that this sum does not converge very

well for large k, which corresponds to small r; but the problem for the original

summation was the convergence for large r. This leads to the approach of

splitting the summation into near and far field parts, nearfield to be summed

in real space r, and farfield to be summed in reciprocal space, k. To do this

we shall rewrite J in an alternative form for convenience,

J(x) = (I∇2 −∇∇)r. (A.35)

This is equivalent to our form of the Stokes Oseen tensor. Consider

∂2

∂xi∂xj
r =

δij
r

− xixj
r3

,
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if we let i = j we get
∂2

∂xi∂xi
r =

2

r
,

adding gives us

δij∇2r − ∂2

∂xi∂xj
r =

δij
r

+
xixj
r3

= Jij .

We define

Jr = (I∇2 −∇∇)[r erfc(λr)], (A.36)

Jk = (I∇2 −∇∇)[r erf(λr)], (A.37)

so that

J = Jr + Jk. (A.38)

Here erf and erfc are the error function and complementary error function,

respectively:

erf(y) =
2√
π

∫ y

0
e−t2 dt erfc(y) = 1− erf(y). (A.39)

The parameter λ effectively determines the radius at which the major con-

tribution switches from Jr to Jk: if λ is very large J ≈ Jk for moderate r,

whereas for very small λ, J ≈ Jr over most values of r. A suggested value by

Beenakker [7] is λ =
√
π/L.

Now splitting Jextra in a similar way to J, we find that for Jr both the sum

and the integral converge quickly in the far-field because of the strong decay

of the complementary error function erfc(λr):

Jr;extra(x) = Σ′
l,m,nJ

r(x+ xlmn)− L−3

∫
Jr(x+ x′) d3x′. (A.40)

Indeed, the integral can easily be shown to be identically zero for λ 6= 0.
∫

Jr
ij(x+ x′) d3x′ =

∫
Jr
ij(x) d

3x

=

∫
(δij∇2 −∇i∇j)[r erfc(λr)] d

3x

=(δijδpq − δipδjq)

∫
∇p∇q[r erfc(λr)] d

3x,

(A.41)
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and an isotropy condition gives

∫
∇p∇q[r erfc(λr)] d

3x = Aδpq. (A.42)

Now putting p = q

3A =

∫
∇2[r erfc(λr)] d3x,

=

∫ π

θ=0

∫ 2π

φ=0

∫ ∞

r=0

1

r2
∂

∂r

(
r2
∂

∂r
(r erfc(λr))

)
r2 sin θdrdφdθ,

=

∫ π

θ=0

∫ 2π

φ=0

[
r2
∂

∂r
(r erfc(λr))

]∞

r=0

dφdθ = 0.

(A.43)

The contributions of this part of J to the mobility tensors can be deduced:

wr;extra(x) = Σ′
l,m,nLwJr(x+ xlmn)− L−3

∫
LwJr(x+ x′) d3x′, (A.44)

where Lw are the linear differential operators defined in section A.1.1 to express

the mobility matrices in terms of J.

There remains the k part of the Stokes–Oseen tensor, Jk, the far field part

of the summation done in reciprocal space. The sum and integral associated

with this part suffer from the same convergence issues as the original tensor

did; and this is where Fourier transforms and the Poisson summation formula

come in.

A.2.1 Sums and the Fourier Transform

In this section we will show how the calculation of Jk;extra and its contributions

to the mobility tensors can be made into a rapidly-converging sum using the

Fourier transform. The key definitions are (for each mobility tensor w):

Jk;extra(x) = Σ′
l,m,nJ

k(x+ xlmn)− L−3

∫
Jk(x+ x′) d3x′ (A.45)

wk;extra(x) = Σ′
l,m,nLwJk(x+ xlmn) (A.46)

− L−3

∫
LwJk(x+ x′) d3x′, (A.47)

in which

Jk(x) = (I∇2 −∇∇)[r erf(λr)]. (A.48)
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The erf(λr) and erfc(λr) act as slow switches between the real and reciprocal

space summation. The entire summation involved in Jextra could be done in

either real or reciprocal space, however the two sums converge well at opposite

ends of the summation. The real space part Jr converges well in real space, but

the reciprocal space part Jk does not. The results we stated earlier about the

Poisson summation can now be used on Jk to convert it to a reciprocal space

sum which converges well in k. It is in this way that we use the properties of

each summation to our advantage. To see the details, we need to take Fourier

transforms of the Stokes Oseen relationship and the mobility relationships.

We defined the Fourier transform in equations (A.32) and (A.33). Substituting

those definitions into the sum:

∑

l,m,n

g(x0 + lb1 +mb2 + nb3)

= (2π)−3

∫ ∑

l

∑

m

∑

n

eik·(x0+lb1+mb2+nb3)g̃(k) d3k

= (2π)−3

∫ ∑

l

exp [ilk · b1]
∑

m

exp [imk · b2]

×
∑

n

exp [ink · b3] exp [ik · x0]g̃(k) d
3k.

(A.49)

Now if we write k = 2π(ub1 ∧ b3 + vb3 ∧ b2 + wb1 ∧ b2)/L
3 we can change

the integral to

∑

l,m,n

g(x0 + lb1 +mb2 + nb3)

= L−3

∫

w

∫

v

∫

u

∑

l

exp [2πilv]
∑

m

exp [2πimu]
∑

n

exp [2πinw]

× exp [2πi(ub1 ∧ b3 + vb3 ∧ b2 + wb1 ∧ b2) · x0/L
3]

× g̃(2π(ub1 ∧ b3 + vb3 ∧ b2 + wb1 ∧ b2)/L
3) dudv dw.

(A.50)

Now we use the Fourier series

∑

n

δ(v − n) =
∑

m

exp [2πimv], (A.51)
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to get
∑

l,m,n

g(x0 + lb1 +mb2 + nb3)

= L−3

∫

w

∫

v

∫

u

∑

l

δ(v − l)
∑

m

δ(u −m)
∑

n

δ(w − n)

× exp [2πi(ub1 ∧ b3 + vb3 ∧ b2 + wb1 ∧ b2) · x0/L
3]

× g̃(2π(ub1 ∧ b3 + vb3 ∧ b2 + wb1 ∧ b2)/L
3) dudv dw.

= L−3
∑

l,m,n

exp [2πi(mb1 ∧ b3 + lb3 ∧ b2 + nb1 ∧ b2) · x0/L
3]

× g̃(2π(mb1 ∧ b3 + lb3 ∧ b2 + nb1 ∧ b2)/L
3).

(A.52)

We have derived the Poisson summation formula:
∑

l,m,n

g(x0 + lb1 +mb2 + nb3)

= L−3
∑

l,m,n

exp [2πi(mb1 ∧ b3 + lb3 ∧ b2 + nb1 ∧ b2) · x0/L
3]

× g̃(2π(mb1 ∧ b3 + lb3 ∧ b2 + nb1 ∧ b2)/L
3)

(A.53)

(note that in this case the sums are over all values of l, m and n). If we define

klmn = 2π[lb3 ∧ b2 +mb1 ∧ b3 + nb1 ∧ b2]/L
3, (A.54)

we obtain

∑

l,m,n

g(x0 + xlmn) = L−3
∑

l,m,n

exp [iklmn · x0]g̃(klmn) (A.55)

and hence

Σ′
l,m,ng(x0 + xlmn) = L−3

∑

l,m,n

exp [iklmn · x0]g̃(klmn)− g(x0). (A.56)

The quantity we wanted to calculate from equation (A.47) was

wk;extra(x) = Σ′
l,m,nLwJk(x+ xlmn)− L−3

∫
LwJk(x+ x′) d3x′, (A.57)

and we can now use equation (A.56) to rewrite this as

wk;extra(x) = L−3
∑

l,m,n

exp [iklmn · x]L̃wJk(klmn)

−LwJk(x) − L−3

∫
LwJk(x+ x′) d3x′. (A.58)
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Since

g̃(0) =

∫
g(x′) d3x′ =

∫
g(x+ x′) d3x′, (A.59)

the integral contribution cancels with the summation term from k = 0 (or

l = m = n = 0) and we can deduce for each mobility function:

wk;extra(x) = L−3Σ′
l,m,n exp [iklmn · x]L̃wJk(klmn)− LwJk(x). (A.60)

Unlike the real-space summation of Jk which did not converge in the far field,

the terms L̃wJk(klmn) decay rapidly as |klmn| → ∞, and this sum can be

truncated without great loss of accuracy.

A.2.2 Constructing the mobility tensors for a peri-

odic system

For a given tensor w, we construct its periodic equivalent using contributions

derived from Jr and Jk. For the self-interaction, we must include the original

self-interaction and the summed interactions of our particle with its images in

other periodic boxes:

wαα;rep = wαα +Σ′
l,m,nLwJ(xlmn)− L−3

∫
LwJ(x′) d3x′ (A.61)

= wαα +wr;extra(x) +wk;extra(0), (A.62)

Using our derived result (A.60):

wαα;rep =wαα +Σ′
l,m,nLwJr(xlmn)− L−3

∫
LwJr(x′) d3x′

+ L−3Σ′
l,m,nL̃wJk(klmn)−LwJk(0).

(A.63)

In a similar way,

wαβ;rep(x) = wαβ(x) + Σ′
lmnLwJ(x+ xlmn)

− L−3

∫
LwJ(x+ x′) d3x′ (A.64)

= wαβ(x) +wr;extra(x) +wk;extra(x) (A.65)

= Σl,m,nLwJr(x+ xlmn)− L−3

∫
LwJr(x+ x′) d3x′

+ L−3Σ′
l,m,n exp [iklmn · x]L̃wJk(klmn). (A.66)
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For the Stokes Oseen tensor alone, we note that

Jk
ij(0) = (δijδkl − δikδjl) [∇k∇l[r erf(λr)]]r=0

. (A.67)

Letting

Aδkl = [∇k∇l[r erf(λr)]]r=0
(A.68)

3A =
[
∇2[r erf(λr)]

]
r=0

(A.69)

=

[
1

r

d

dr

(
r
d

dr
[r erf(λr)]

)]

r=0

(A.70)

=

[
1

r

d

dr

(
r

[
erf(λr) + r

2λ√
π
exp [−(λr)2]

])]

r=0

(A.71)

=

[
1

r

d

dr

(
r erf(λr) + r2

2λ√
π
exp [−(λr)2]

)]

r=0

(A.72)

=

[
1

r

(
erf(λr) + (3− 2λ2r2)

2λr√
π
exp [−(λr)2]

)]

r=0

(A.73)

=

[
1

r
erf(λr) + (3− 2λ2r2)

2λ√
π
exp [−(λr)2]

]

r=0

(A.74)

=

[
1

r

2√
π

∫ λr

0
e−t2 dt+

6λ√
π

]

r=0

(A.75)

=

[
1

r

2√
π

∫ λr

0
(1− t2 + t4/2− · · · ) dt+ 6λ√

π

]

r=0

(A.76)

=

[
1

r

2√
π

[
t− t3

3
+
t5

10
− · · ·

]λr

0

+
6λ√
π

]

r=0

(A.77)

=

[
1

r

2√
π

(
λr − λ3r3

3
+ · · ·

)
+

6λ√
π

]

r=0

=
8λ√
π
, (A.78)

finally giving,

A =
8λ

3
√
π
, (A.79)

which allows us to say

[∇k∇l[r erf(λr)]]r=0
=

8λ

3
√
π
δkl (A.80)

Jk
ij(0) =

16λ

3
√
π
δij , (A.81)

hence

Jk(0) =
16λ

3
√
π
I. (A.82)
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A.3 Modified calculation for a two-dimensional

lattice

We have reviewed the theory of Ewald summation in three dimensions. Now we

present the modifications which must be made, in order to carry out the same

summations for a system which replicates periodically in just two dimensions.

Listing the changes which must be made in moving from three dimensions to

two dimensions:

Fourier Transform definition

We define the two dimensional Fourier transform of any function g(x)

as

g̃(k) =

∫
exp [−ik · x]g(x) d2x, (A.83)

with the integral taken over two-dimensional space. The inverse Fourier

transform is then given by

g(x) = (2π)−2

∫
eik·xg̃(k) d2k. (A.84)

Box volume

The volume of the box becomes an area

L2 = |b1 ∧ b2| (A.85)

Summations

Summations are only over m and n; not the triplet {l,m, n}. The lattice
vector xlmn becomes xmn:

xmn = mb1 + nb2. (A.86)

Reciprocal space basis vectors

In three dimensions we were able to define

klmn = 2π(lb1 ∧ b3 +mb3 ∧ b2 + nb1 ∧ b2)/L
3, (A.87)
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without defining any new vectors. In two dimensions we first define a

unit vector out of the plane of our system, ez = (b1 ∧ b2)/L
2, and then

use it to define the two dimensional reciprocal basis vectors:

ka = 2πez ∧ b1/L
2, kb = 2πb2 ∧ ez/L

2. (A.88)

We can then define

kmn = mka + nkb. (A.89)

Dimensionality of space

All integration only occurs over two dimensions of space; and each in-

stance of L3 or (2π)3 is replaced by L2 or (2π)2 respectively.

Taking all of these changes into account the important results are as follows.

The Poisson summation formula becomes

∑

m,n

g(x0 + xmn) = L−2
∑

m,n

exp [ikmn · x0]g̃(kmn) (A.90)

For each mobility function the extra contribution due to the summation in

reciprocal space becomes

wk;extra(x) = L−2
∑

m,n 6=0

exp [ikmn · x]L̃wJk(kmn)− LwJk(x). (A.91)

The two key results of equations (A.63) and (A.66) become

wαα;rep =wαα +Σ′
m,nLwJr(xmn)− L−2

∫
LwJr(x′) d2x′

+ L−2Σ′
m,nL̃wJk(kmn)− LwJk(0)

(A.92)

and

wαβ;rep(x) = Σm,nLwJr(x+ xmn)− L−2

∫
LwJr(x+ x′) d2x′

+ L−2Σ′
m,n exp [ikmn · x]L̃wJk(kmn). (A.93)

When calculating explicit formulae to be summed in the real and reciprocal

space, we also need to calculate the new, two-dimensional Fourier transform

of r erf (λr) and its derivatives; these will be different from their three dimen-

sional forms, as we will see in section A.4.
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A.4 Fourier transform of Jk.

The relationship between real and reciprocal space has been explained in A.2.

The Fourier transforms of all our mobility relationships need to be calculated.

This is done by first considering the Fourier transform of the far-field contri-

bution to the Stokes Oseen tensor J, and then calculating the transform of all

the derivatives of Jk. However, because we are now in two dimensions, our

Fourier transform becomes a Hankel transform. Once we understand what

a Hankel transform is we can start to calculate the Hankel transform of our

relationships. The mobility relations in Stokesian Dynamics are expressed in

terms of linear differential operators acting on the Stokes Oseen tensor, so

to calculate the Hankel transforms of the mobility relations we will need the

transforms of derivatives of Jk.

To calculate the Hankel transforms Jk and the reciprocal space part of our

mobility relations we will build up through six stages:

1. Hankel function definition;

2. The derivative rule;

3. Rule for multiplication by r2;

4. Generalised functions;

5. Hankel transform of r−1;

6. Hankel transform of r erf(λr).

A.4.1 Fourier transform to Hankel transform

The 2D Fourier transform of a function f(x) = f(x, y) was defined in equation

(A.83) as

F (k1, k2) :=f̃(k)

=

∫
exp [−ik · x]f(x) d2x.

(A.94)
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If the function to be transformed is axisymmetric about the origin, i.e. f(x, y) =

g(r) with r2 = x2 + y2, then the 2D Fourier transform of f becomes

F (k1, k2) =

∫ ∞

x=−∞

∫ ∞

y=−∞
f(x, y)e−i(k1x+k2y) dy dx (A.95)

and if we denote k2 = k21 + k22 then F (k1, k2) = G(k) where

G(k) =

∫ ∞

r=0

∫ 2π

θ=0
rg(r)e−ikr cos θ dθ dr = 2π

∫ ∞

r=0
rg(r)J0(kr) dr (A.96)

where J0 is the Bessel function of the first kind, zeroth order, which means it

is the function satisfying

x2
d2(J0(x))

dx2
+ x

d(J0(x))

dx
+ x2J0(x) = 0 (A.97)

with J0(0) = 1.

Thus the Fourier transform of a radially symmetric function g(r) is its Hankel

transform:

H[g(r)] := G(k) = 2π

∫ ∞

r=0
rg(r)J0(kr) dr. (A.98)

A.4.2 Derivative rule

The 2D Fourier transform of a derivative of a radially symmetric function

can be expressed in terms of the Fourier transform of the original function,

and hence of its Hankel transform. It is calculated from equation (A.83) by

integration by parts, and yields:

∇̃if(r) = ikiH [f(r)] . (A.99)

A.4.3 Rule for multiplication by r
2

Recall the definition of the Hankel transform:

F (k) = 2π

∫ ∞

0
f(r)rJ0(kr)dr. (A.100)

Now let us consider a function g(r) = r2f(r) where we already know the

Hankel transform of f , denoted F (k). We have

G(k) = 2π

∫ ∞

0
g(r)rJ0(kr)dr = 2π

∫ ∞

0
f(r)r3J0(kr)dr. (A.101)
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If we briefly change variables to x = kr we can write this as

G(k) = 2πk−4

∫ ∞

0
f(x/k)x3J0(x)dx. (A.102)

Since J0 satisfies Bessel’s equation (A.97), this can also be written as

G(k) = −2πk−4

∫ ∞

0
f(x/k)x2

[
x
d2(J0(x))

dx2
+
d(J0(x))

dx

]
dx. (A.103)

Changing variables back to r gives

G(k) = −2π

∫ ∞

0
r2
[
rJ ′′

0 (kr) + k−1J ′
0(kr)

]
f(r)dr. (A.104)

Finally, noting that
d

dk
J0(kr) = rJ ′

0(kr) (A.105)

gives

G(k) = −2π

∫ ∞

0

[
d2

dk2
J0(kr) + k−1 d

dk
J0(kr)

]
rf(r)dr

= −2π

[
d2

dk2
+ k−1 d

dk

] ∫ ∞

0
J0(kr)rf(r)dr

= −
[
d2

dk2
+ k−1 d

dk

]
F (k).

(A.106)

This gives us a straightforward method to calculate the Hankel transform of

r2f(r) where we already know F (k).

A.4.4 Good functions and Generalised functions

The theory we use to take the Hankel transform is that of the “good functions”

described in chapter 2 of Lighthill’s book on Generalised Function Theory

[44]. All of the definitions, theorems and examples can be found there. What

is done below is to try and highlight the key definitions and theorems used

in our derivation of the Hankel transforms of r−1 and r erf(λr), needed to

calculate the mobility relations.

The definitions needed are those of good functions, fairly good functions, and

the relations between them; and the definition of generalised functions and a

theorem about their convergence.
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Definition 1 A good function is one which is everywhere differentiable any

number of times and such that it and all its derivatives are O(|x|−N ) as |x| →
∞, for all N .

Example: e−x2

Definition 2 A fairly good function is one which is everywhere differentiable

any number of times and such that it and all its derivatives are O(|x|N ) as

|x| → ∞ for some N .

Example: Any polynomial.

Theorem 1 The derivative of a good function is a good function. The sum

of two good functions is a good function. The product of a fairly good function

and a good function is a good function.

The important bit of this theorem is the last sentence, “The product of a fairly

good function and a good function is a good function”. We will rely on this

in many steps of the derivation of the Hankel transform of r erf(λr).

Definition 3 A sequence fn(x) of good functions is called regular if, for any

good function F (x) whatever, the limit

lim
n→∞

∫ ∞

−∞
fn(x)F (x)dx, (A.107)

exists.

Example: The sequence fn(x) = e−x2/n is regular.

Definition 4 Two regular sequences of good functions are called equivalent if,

for any good function F (x) whatever, the limit (A.107) is the same for each

sequence.

Example: The sequences fn(x) = e−x2/n and fn(x) = e−x2/n2

are equivalent.
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Definition 5 A generalised function f(x) is defined as a regular sequence

fn(x) of good functions, but two generalised functions are said to be equal if the

corresponding regular sequences are equivalent. Thus each generalised function

is really the class of all regular sequences equivalent to a given sequence. The

integral ∫ ∞

−∞
f(x)F (x)dx (A.108)

of the product of a generalised function f(x) and a good function F (x) is

defined as

lim
n→∞

=

∫ ∞

−∞
fn(x)F (x)dx. (A.109)

This is permissible because the limit is the same for all equivalent sequences

fn(x).

Example: The sequence fn(x) = e−x2/n and all its equivalent sequences define

a generalised function I(x) such that.

∫ ∞

−∞
I(x)F (x)dx =

∫ ∞

−∞
F (x)dx. (A.110)

This last definition is also very important and we will use it repeatedly in the

rest of this section. The key points to note are Theorem (1) and Definition (5).

They work by allowing us to neglect parts of the calculation which otherwise

would not converge without using generalised functions.

A.4.5 Hankel Transform of r−1

Equipped with the knowledge of generalised functions and the derivative rule

we can begin to calculate the Hankel transforms needed for the mobility rela-

tionships. We start by calculating the Hankel transform of r−1 and deriving

from it the Hankel transform of r, and then move on to our target of the

Hankel transform of r erf(λr).

The Hankel transform of f(r) is defined as

H(k) = 2π

∫ ∞

0
f(r)rJ0(kr)dr (A.111)
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as in equation (Hankeldef). An alternative form for J0 is given in equation

(9.1.18) of Abramowitz and Stegun [2] as

J0(kr) =
1

π

∫ π

0
cos(kr cos θ)dθ. (A.112)

Considering the transform of f(r) = r−1 means that we will have to treat f(r)

as a generalised function: that is, as a regular sequence of good functions. The

good functions which we shall be using are r−1 exp [−r/n]: as the product of

the fairly good function r−1 and the good function exp [−r/n] we know that

each of these is a good function. This results in the integral

H[r−1] = H(k) = lim
n→∞

2π

∫ ∞

0
exp [−r/n]J0(kr)dr, (A.113)

and substituting in our integral representation of the Bessel function we get

H(k) = lim
n→∞

2

∫ ∞

0
exp [−r/n]

∫ π

0
cos(kr cos(θ))dθdr. (A.114)

This where the convergence properties of good functions are used, as if we take

the limit n → ∞ first the r-integral would not converge uniformly. Swapping

the order of integration and writing cos(kr cos θ) = R [exp(irk cos(θ))], we

carry out the r integration:

H(k) = lim
n→∞

2

∫ π

0

∫ ∞

0
exp [−r/n]R [exp(ikr cos(θ))] drdθ

= lim
n→∞

2

∫ π

0

∫ ∞

0
R [exp(ikr cos(θ)− r/n)] drdθ

= lim
n→∞

2

∫ π

0

[
R

{
exp(ikr cos(θ)− r/n)

ik cos(θ)− 1/n

}]∞

r=0

dθ

= lim
n→∞

2

∫ π

0
R

[ −1

ik cos(θ)− 1/n

]
dθ

= lim
n→∞

2

∫ π

0
R

[
n+ ikn2 cos(θ)

1 + k2n2 cos2(θ)

]
dθ

= lim
n→∞

2

∫ π

0

n

1 + k2n2 cos2(θ)
dθ.

(A.115)

Due to the symmetry of cos2 θ over [0, π] we can say

H(k) = lim
n→∞

4

∫ π/2

0

n

1 + k2n2 cos2 θ
dθ. (A.116)
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Using the substitution y = tan(θ)/
√
1 + n2k2 this becomes

H(k) = lim
n→∞

4

∫ ∞

0

n

(1 + n2k2)(1 + y2)

√
1 + n2k2dy

=
4

k

∫ ∞

0

1

(1 + y2)
dy.

(A.117)

Now taking the substitution y = tan(θ) again,

H[r−1] =
4

k

∫ π/2

0
dθ =

2π

k
. (A.118)

A.4.6 Hankel transform of r erf(λr)

The final quantity whose Hankel transform we need is r erf(λr). To do this

we first transform the generalised function defined by the sequence fn(r) =

r−1 erf(λr)e−r/n and then use our rule for multiplication by r2 to deduce the

transform of the generalised function defined by gn(r) = r erf(λr)e−r/n.

We start, as in section A.4.5, from the definition of the Hankel transform, and

substitute the definition of the error function erf and Parseval’s form for the

Bessel function, equation (A.112):

H[r−1 erf(λr)] = F (k) = 2π

∫ ∞

0
erf(λr)J0(kr)dr

= lim
n→∞

∫ ∞

0
erf(λr)J0(kr)e

−r/ndr

=
1

π

2√
π

lim
n→∞

∫ π

θ=0

∫ ∞

r=0

∫ λr

t=0
e−t2dt cos(kr cos θ)e−r/ndr dθ

=
1

π

2√
π

lim
n→∞

∫ π

θ=0

∫ ∞

r=0

∫ λr

t=0
e−t2dtR {exp [ikr cos θ − r/n]} dr dθ

=
1

π

2√
π

lim
n→∞

∫ π

θ=0
R

{∫ ∞

r=0

∫ λr

t=0
e−t2dt exp [ikr cos θ − r/n]dr

}
dθ.

(A.119)

Now we integrate by parts over r, differentiating the error function and inte-
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grating the rest:

F (k) =
1

π

2√
π

lim
n→∞

∫ π

θ=0
R

{[∫ λr

t=0
e−t2dt

exp(ikr cos θ − r/n)

ik cos θ − 1/n

]∞

r=0

−
∫ ∞

r=0
λ exp[−λ2r2]exp(ikr cos θ − r/n)

ik cos θ − 1/n
dr

}
dθ

=
λ

π

2√
π

lim
n→∞

∫ π

θ=0
R

{
n(ink cos θ + 1)

(n2k2 cos2 θ + 1)

×
∫ ∞

r=0
exp

[
−λ2r2 − r

n
+ ikr cos θ

]
dr

}
dθ

=
λ

π

2√
π

∫ π

θ=0
R

{
i

k cos θ

∫ ∞

r=0
exp

[
−λ2r2 + ikr cos θ

]
dr

}
dθ

=− λ

π

2√
π

∫ π

θ=0

∫ ∞

r=0
exp

[
−λ2r2

] sin(kr cos θ)
k cos θ

drdθ

=− λ

π

4√
π

∫ π/2

θ=0

∫ ∞

r=0
exp

[
−λ2r2

] sin(kr cos θ)
kr cos θ

rdrdθ.

(A.120)

Returning to Cartesian coordinates:

F (k) =− λ

π

4√
π

∫ ∞

x=0

∫ ∞

y=0
exp

[
−λ2(x2 + y2)

] sin(kx)
kx

dydx

=− λ

π

4√
π

∫ ∞

x=0
exp

[
−λ2x2

] sin(kx)
kx

dx

∫ ∞

y=0
exp

[
−λ2y2

]
dy

=− λ

π

4√
π

∫ ∞

x=0
exp

[
−λ2x2

] sin(kx)
kx

dx

√
π

2λ

=− 2

π

∫ ∞

x=0
exp

[
−λ2x2

] sin(kx)
kx

dx.

(A.121)

We now use the power series expansion of sin(kx):

F (k) =− 2

π

∫ ∞

x=0
exp

[
−λ2x2

] 1

kx

∞∑

n=0

(−1)n

(2n + 1)!
(kx)2n+1dx

=− 2

π

∞∑

n=0

(−1)nk2n

(2n+ 1)!

∫ ∞

x=0
x2n exp

[
−λ2x2

]
dx.

(A.122)

We shall calculate the integral by iteration: define

Pn =

∫ ∞

x=0
x2n exp

[
−λ2x2

]
dx, (A.123)
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and we have (for n ≥ 1)

Pn =
−1

2λ2

∫ ∞

x=0
x2n−1(−2λ2x)e−λ2x2

dx

=
−1

2λ2

{[
x2n−1e−λ2x2

]∞
x=0

−
∫ ∞

x=0
(2n− 1)x2n−2e−λ2x2

dx

}

=
(2n − 1)

2λ2

∫ ∞

x=0
x2n−2e−λ2x2

dx =
(2n− 1)

2λ2
Pn−1

P0 =

∫ ∞

x=0
e−λ2x2

dx =

√
π

2λ

(A.124)

and so we deduce that

Pn =
(2n − 1)!!

2nλ2n

√
π

2λ
=

√
π(2n − 1)!

2n+1λ2n+12n−1(n− 1)!
=

√
π(2n − 1)!

22nλ2n+1(n− 1)!
(A.125)

(where !! denotes the odd factorial operation) and hence

F (k) =− 2

π

∞∑

n=0

(−1)nk2n

(2n + 1)!
Pn

=− 2√
π

∞∑

n=0

(2n − 1)!

(2n + 1)!

(−1)nk2n

22nλ2n+1(n− 1)!

=− 2

k
√
π

∞∑

n=0

1

2n(2n + 1)

(−1)nk2n+1

22nλ2n+1(n− 1)!

=− 2

k
√
π

∞∑

n=0

(−1)n

n!

1

(2n + 1)

(
k

2λ

)2n+1

.

(A.126)

We now note that

∞∑

n=0

(−1)n

n!

y2n+1

(2n+ 1)
=

∫ y

t=0

∞∑

n=0

(−1)n

n!
t2ndt

=

∫ y

t=0

∞∑

n=0

(−t2)n
n!

dt

=

∫ y

t=0
exp[−t2]dt =

√
π

2
erf(y),

(A.127)

so

H[r−1 erf(λr)] = F (k) = − 2

k
√
π

√
π

2
erf

(
k

2λ

)
= −1

k
erf

(
k

2λ

)
(A.128)

Now we can use our rule for multiplication by r2, equation (A.106), to deduce
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the Hankel transform of r erf(λr), which is the result we will need:

H[r erf(λr)] = −
(
d2

dk2
+

1

k

d

dk

)
H[r−1 erf(λr)]

=−
(
d2

dk2
+

1

k

d

dk

)[
−1

k
erf

(
k

2λ

)]

=

(
d

dk
+

1

k

)
d

dk

[
1

k
erf

(
k

2λ

)]

=

(
d

dk
+

1

k

)[
− 1

k2
erf

(
k

2λ

)
+

1

kλ
√
π
exp

[
−
(
k

2λ

)2
]]

=
1

k3
erf

(
k

2λ

)
− 1

λ
√
π

(
1

k2
+

1

2λ2

)
exp

[
−
(
k

2λ

)2
]
.

(A.129)

This gives us the Hankel transform, and hence the Fourier transform, of the

scalar function r erf(λr). Along with the derivatives rule for Fourier trans-

forms, this will allow us to calculate both J̃k and the transforms of the mobility

relations, L̃wJk.

This however shows any problem with our choice of sigmoidal curve. We

multiply our mobility relation by the Hankel transform of r erf(λr) but the

relation does not decay after a the Hankel transform as it does in the three

dimensional case of the Fourier transform used by Brady et el [13]. The

problem occurs with any mobility relation containing a term of order ≥ k3

which we multiply by the Hankel transform of r erfc(λr). Looking at the first

term of the transform we have 1/k3 erf(k/2λ) → 0 which is O(1/k3) as k → ∞.

As previously stated the problem occurs if whatever is multiplyingH[r erf(λr)]

has order greater than of equal to k3. Let’s take aij as an example,

aij =

(
3

4
+

1

4
∇2

)
Jij (A.130)

with

Jij = (δij∇3 −∇i∇j)r (A.131)

Using the derivative rule the reciprocal space relation is

akij = 1/4(δijk
4 − kikjk

2 − 3δijk
2 + 3kikj)H[r erf(λr)] (A.132)
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This is O(k4) hence when summation of the reciprocal space occurs and k →
∞ the contribution from the reciprocal space to Ewald summation is non

convergent.

To solve this problem we would need to find another sigmoidal function, try

the Hankel transform and see if the function still decays. Determing an ap-

propriate plan of attack is beyond this thesis.

We shall still list include the real mobility relations as they are still correct

and useful (subject to change of sigmoidal curve) and they make some minor

corrections to some of Brady’s mobility relations [21]. Due to the problem

with the Hankel transform we will not list the reciprocal space relations.

A.5 Real and Reciprocal Space Mobility

Relations

There are six mobility relations, which we will consider in turn, giving ex-

pressions for their summed forms in real and reciprocal space. As discussed

in section A.1.1, these tensors and pseudo-tensors relate the velocities and

background flow gradient to the forces, torques and stresslets acting on the

particles.

Within this section we will repeatedly use derivatives of the error function

erf (λr), so for convenience we introduce the notation

E =
2√
π
exp(−λ2r2). (A.133)

for the quantity which will appear regularly.

In equations (A.92) and (A.93) we found

wαα;rep =wαα +Σ′
m,nLwJr(xmn)− L−2

∫
LwJr(x′) d2x′

+ L−2Σ′
m,nL̃wJk(kmn)− LwJk(0)

(A.134)
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and

wαβ;rep(x) = Σm,nLwJr(x+ xmn)− L−2

∫
LwJr(x+ x′) d2x′

+ L−2Σ′
m,n exp [ikmn · x]L̃wJk(kmn).

(A.135)

Let us consider first the second-rank tensor a. This gives the relationship

between the translational velocity and the force. In its standard form it is

aij =
1

4
(3 +∇2∇2 −∇i∇j∇2 + 3δij∇2 − 3∇i∇j) r. (A.136)

When used in the Ewald summation and split into real and reciprocal space

parts it becomes

arij =
1

4
(3 +∇2∇2 −∇i∇j∇2 + 3δij∇2 − 3∇i∇j) (r erfc(λ r)), (A.137)

akij =
1

4
(3 +∇2∇2 −∇i∇j∇2 + 3δij∇2 − 3∇i∇j) (r erf(λ r)). (A.138)

Using this notation, we can write the summed contributions as

aαα;rep = aαα +Σ′
m,na

r(xmn)− L−2

∫
ar(x′) d2x′

+ L−2Σ′
m,nã

k(kmn)− ak(0) (A.139)

aαβ;rep(x) = Σm,na
r(x+ xmn)− L−2

∫
ar(x+ x′) d2x′

+ L−2Σ′
m,n exp [ikmn · x]ãk(kmn). (A.140)

The quantities we need to know are aαα, which was given in equation (A.22),

and the new quantities ar, ãk and ak(0). We will show these, and their

equivalents for the other five mobility tensors, in the following sections.

A.5.1 Tensor a

The real space contribution ar is simply an expansion of equation (A.137):
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arij = δij

{(
3

4r
+

1

2r3

)
erfc(λ r)

+
1

2

(
4λ7r4 + 3λ3r2 − 20λ5r2 − 9

2
λ+ 14λ3 + λ r−2

)
E
}

+ eiej

{(
3

4r
− 3

2r3

)
erfc(λ r)

+
1

2

(
−4λ7r4 − 3λ3r2 + 16λ5r2 +

3

2
λ− 2λ3 − 3λr−2

)
E
}

(A.141)

in which the vector ei = ri/r is the unit vector of r.

The rest of the mobility relations follow on in much the same vein and are

given from here on without any further explanation.

A.5.2 Pseudo-Tensor b

The bij relation in its lone form is

bij = −3

4
ǫijk

ek
r2

=
3

8
ǫijk∇2∇kr (A.142)

The real space contribution is

brij =
3

8
ǫijk∇2∇k (r erfc(λ r)) (A.143)

which expands to become

brij = −3

4
ǫijkek

[{
1

r2
erfc(λ r) +

λ

r

(
1− 6λ2r2 + 2λ4 r4

)
E
}]

(A.144)

A.5.3 Tensor c

The real-space contribution to cij is

crij = − 3

16

(
δij∇2 −∇i∇j

)
∇2 (r erfc(r λ)) (A.145)

which expands to become
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crij =− 3

8
δij

[
erfc(λ r)

r3
+
λ

r2
(1 + 14λ2r2 − 20λ4r4 + 4λ6r6)E

]

+
3

8
eiej

[
3

r3
erfc(λ r) +

λ

r2
(3 + 2λ2r2 − 16λ4r4 + 4λ6r6)E

] (A.146)

A.5.4 Tensor g

The gijk relation in its lone form is

gijk = −
(
3

8
+

1

10
∇2

)
(δjk∇i∇2 + δik∇j∇2 − 2∇i∇j∇k)r. (A.147)

In real space the contribution is given by

grijk = −
(
3

8
+

1

10
∇2

)
(δjk∇i∇2+ δik∇j∇2 − 2∇i∇j∇k)(r erfc(λ r)) (A.148)

which expands to become

grijk =
3

8

{
−X1 [eiδjk + ejδik]− 2

(
1

r2
erfc(λ r) +X2

)
ekδij

+ 2

(
3

r2
erfc(λr)−X3

)
eiejek

+
4

15

[(
12

r4
erfc(λ r)−X4

)
[eiδjk + ejδik] +

(
12

r4
erfc(λ r)−X5

)
ekδij

−
(
60

r4
erfc(λ r) +X6

)
eiejek

]}

(A.149)

with
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X1 =
2λ

r
(4λ2r2 − 2λ4r4)E

X2 =
λ

r
(1− 2λ2r2)E

X3 = −λ
r
(3 + 2λ2r2 − 4λ4r4)E

X4 = −4
λ

r3
(3 + 2λ2r2 + 26λ4r4 − 26λ6r6 + 4λ8r8)E

X5 = −4
λ

r3
(3 + 2λ2r2 − 16λ4r4 + 4λ6r6)E

X6 = 4
λ

r3
(15 + 10λ2r2 + 4λ4r4 − 40λ6r6 + 8λ8r8)E .

A.5.5 Pseudo-tensor h

The hijk relation in its lone form is

hijk = − 3

16

(
ǫikl∇2∇j∇l + ǫjkl∇2∇i∇l

)
r (A.150)

The real space contribution is

hrijk = − 3

16

(
ǫikl∇2∇j∇l + ǫjkl∇2∇i∇l

)
(r erfc(λ r)) (A.151)

which expands to become

hrijk =− 3

16

{
6

r3
erfc(λ r) + 2

λ

r2
(3 + 2λ2r2

−16λ4r4 + 4λ6r6)E
}
[ǫiklejel + ǫjkleiel] .

(A.152)

A.5.6 The tensor m

The mijkl relation in its lone form is

mijkl =
3

4
∇i∇j∇k∇lr +

3

20
∇2∇i∇j∇k∇lr

− 3

16
[δik∇j∇l + δil∇j∇k + δjk∇i∇l + δjl∇i∇k]∇2r

− 3

80
∇2∇2(δik∇j∇l + δil∇j∇k + δjk∇i∇l + δjl∇i∇k)r

(A.153)
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in which we have kept some terms involving ∇2∇2r because of their physical

derivation from equation (A.13) in terms of the Stokes Oseen tensor.

The real space contribution expands to become

mr
ijkl = −3

4
[eiejekel]{15r−3 erfcλr + Y1E}

+
3

8
[δikejel + δilejek + δjkeiel + δjleiek]{3r−3 erfcλr + Y2E}

+
3

4
[δijekel + δkleiej ]{3r−3 erfcλr + Y3E}

+
3

4
[δikδjl + δilδjk]{Y4E} −

3

4
[δklδij ]{r−3 erfcλr + Y5E}

+
3

20
[eiejekel]{210r−5 erfcλr + Y6E}

− 3

20
[δikejel + δilejek + δjkeiel + δjleiek]{30r−5 erfcλr + Y7E}

− 3

20
[δijekel + δkleiej ]{30r−5 erfcλr + Y8E}

+
3

20
[δikδjl + δilδjk]{6r−5 erfcλr + Y9E}

+
3

20
[δklδij ]{6r−5 erfcλr + Y10E}

(A.154)

with

Y1 =λr
−2(15 + 10λ2r2 + 4λ4r4 − 8λ6r6)

Y2 =λr
−2(3 + 2λ2r2 + 8λ4r4 − 4λ6r6)

Y3 =λr
−2(3 + 2λ2r2 − 4λ4r4)

Y4 =λr
−2(−4λ2r2 + 2λ4r4)

Y5 =λr
−2(1− 2λ2r2)

Y6 =2λr−4(105 + 70λ2r2 + 28λ4r4 + 8λ6r6 − 96λ8r8 + 16λ10r10)

Y7 =2λr−4(15 + 10λ2r2 + 4λ4r4 + 32λ6r6 − 30λ8r8 + 4λ10r10)

Y8 =2λr−4(15 + 10λ2r2 + 4λ4r4 − 40λ6r6 + 8λ8r8)

Y9 =2λr−4(3 + 2λ2r2 + 26λ4r4 − 26λ6r6 + 4λ8r8)

Y10 =2λr−4(3 + 2λ2r2 − 16λ4r4 + 4λ6r6).

(A.155)

test [29]
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