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On the Generalization of Soft Margin Algorithms

John Shawe-TayloMMember, IEEEand Nello Cristianini

Abstract—Generalization bounds depending on the marginofa  The key bounds on the generalization typically depend on
C||aSSitfief arfetﬁ relatifvely fecentfdet\/?opl[ntﬁm- Tthley provide atn ex- the minimal distance of the training points from the decision
planation of the performance of state-of-the-art learning systems ) ; i ;
sgqh as support vector machines (SVMs) [1] and Adaboost [2]. The ?OL:ndar.y [3]1’ the SIO C;’;\llled mar?r:n cgtheézl_assmer. I%norlln? I?ﬁ
difficulty with these bounds has been either their lack of robustness ac_ 0rs, In the realizable cas_e e_ oun_ IS proportional 1o the
or their looseness. The question of whether the generalization of a 'atio between the fat-shattering dimension measured at a scale
classifier can be more tightly bounded in terms of a robust mea- proportional to the margin and the size of the training set (see
sure of the distribution of margin values has remained open for Theorem I11.5). This raises concern that they are very brittle in
some time. The paper answers this open question in the affirma- 1 genge that a single training point can have a very significant

tive and, furthermore, the analysis leads to bounds that motivate . fl the b d bl dering the traini ti
the previously heuristic soft margin SVM algorithms as well asjus- 'M1UENCE on the bound, possibly rendering the training set in-

tifying the use of the quadratic loss in neural network training algo-  Separable.
rithms. The results are extended to give bounds for the probability Bartlett [6] extended the analysis to the case where a number

of faili_ng_ to achievg atarget accuracy_in regression p_rediction, with  of points closest to the boundary are treated as errors and the
a statistical analysis of ridge regression and Gaussian processes asyinimal margin of the remaining points is used. The bound ob-
a special case. The analysis presented in the paper has also lead tcfained has the disadvantage that now the ratio of the fat-shat-
new boosting algorithms described elsewhere. ; . - - )
tering dimension to training set size appears under a square root
; . significantly weakening the power of the result asymptotically.
neural networks, probably approximately correct (pac) leaming, A further problem with this approach is that there are no ef-
ridge regression, soft margin, statistical learning, support vector °* . - - .
machines (SVMs). ficient algorithms for even obtaining a fixed ratio between the
number of misclassified training points and the true minimum
for linear classifiers unles8 = NP [7], [8]. Hence, in SVM
practice, the so-called soft margin versions of the algorithms are
OTH theory and practice have pointed to the concept vfed, that attempt to achieve a (heuristic) compromise between
the margin of a classifier as being central to the successlafge margin and accuracy. Note, however, that &M im-
a new generation of learning algorithms. This is explicitly truplements a different parameterization of the soft margin algo-
of support vector machines (SVMs) [4], [1], which in their sim¥ithm that results in the parametemproviding an upper bound
plest form implement maximal margin hyperplanes in a high-ddn the fraction of margin errors [9].
mensional feature space, but has also been shown to be th&he question whether it is possible to construct more robust
case for boosting algorithms such as Adaboost [2]. Increasi@gtimators of the margin distribution that can be used to bound
the margin has been shown to implement a capacity cont@sineralization has remained open for some time [2]. The pos-
through data-dependent structural risk minimization [5], hené&dbility that optimizing the measure might lead to a polynomial
overcoming the apparent difficulties of using high-dimensiongime algorithm was hardly considered likely.
feature spaces. The current paper not only provides one possible answer to
In the case of SVMs, a further computational simplificatiothe open question by deriving a robust measure of the margin
is derived by never explicitly computing the feature vectors, bdistribution, but it also shows that the measure can indeed be op-
defining the space implicitly using a kernel function. In contrastimized efficiently for linear function classes—indeed, by mea-
Adaboost can be viewed as a sophisticated method of selectiging the margin distribution in two natural ways the two stan-
and explicitly computing a small number of features from a vagard SVM algorithms are derived. This derivation shows how
reservoir of possibilities. the NP-hard problem of approximate agnostic learning for linear
classifiers can be overcome by obtaining a more precise bound
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their technique was originally introduced by Klasner and Simon = Z o {(d(xs), p(x))
[11]. i

Furthermore, for neural networks the criterion derived cor- - Z k(i ).
responds exactly to that optimized by the back-propagation al- 7

gorithm using weight decay further clarifying why this algo-

rithm appears to generalize well when training is successfitovided the algorithms only make use of inner products be-
The bound suggests variations that might be used in the eriwgen feature vectors then there will be no need to explicitly
measure applied in the back-propagation algorithm. compute in the feature space.

More recent work [3] has derived a precise boosting algo- When used for classification, the real-valued function is
rithm directly from the error bounds obtained by the methodBresholded ai. The margin of a point is the product of its label
developed in this paper. This development parallels the mo¥ed the output of the underlying real-valued function. Detailed
from hard to soft margin in SVMs since the Adaboost algorithiéiefinitions are given in the next section. Thensensitive loss
places an exponentially growing penalty on the margin deficifunction measures the loss in the case of regression by ignoring

Finally, the results are also extended to the case of regresg#fors that are less thanand subtracting) from (the absolute
where they are shown to motivate SVM regression with linesglue of) larger errors.
and quadratie-insensitive loss functions, with ridge regression For the linear function case, consider a target margin
as the special case of quadratic loss ard0. Note that we will about the decision hyperplane and for training sSetlet
refer to this loss as theinsensitive loss to avoid confusion with(§(7)(z, y)) (=, y)es e the vector of the amounts by which the
the use ofe to denote the misclassification probability. Theyraining points fail to achieve the margin (these correspond
provide probabilistic bounds on the likelihood of large outpu® the slack variables in some formulations of the optimiza-
errors in terms of the least squares training error. tion problem—for this reason, we refer to them as the slack

The paper is organized as follows. After summarizing owariables). We bound the probabilityof misclassification of a
results in Section I, we introduce background material ifandomly chosen test point by (see Theorem V.2)

Section Il before giving the key construction in Section IV.

Section V derives the results for linear function classes using ~ ((R+[|€]|2)?

the 2-norm of the slack variables, which leads naturally into €<O <W>

a discussion of the algorithmic implications in Section VI.

Section VII extends the results to nonlinear function classeshereR is the radius of a ball about the origin which contains

while Section VIII addresses regression estimates. the support of the input probability distribution. This bound di-
rectly motivates the optimization of tleenorm of the slack vari-
Il. SUMMARY OF RESULTS ables originally proposed for SVMs by Cortes and Vapnik [12]

(see Section VI for details).
The results are generalized to nonlinear function classes using

dicating asymptotics ignoringpg factors. The aim is to give o . .
the flavor of the results obtained which might otherwise be Og_chara_lcten_zatmn_of their capac!ty at scalenown as the f‘."‘t'
Shattering dimensiofat (). In this case, the bound obtained

scured by the detailed technicalities of the proofs and prec o€ the form (see Theorem VII.11)
bounds obtained. We should also emphasize that as with almost '

all probably approximately correct (pac) style bounds, there is 5 o
considerable slackness in the constants. For this reason, they (<O <fat(’7/16) + [1€ll2/7 ) .
should be regarded as giving insight into the factors affecting |5

the generalization performance, rather than realistic estim
for the error. As such, they can be used to motivate algorith
and guide model selection.

The first case considered is that of classification using line

The results in this section will be given in tik&notation in-

S . . : .

e fat-shattering dimension has been estimated for many func-
tion classes including single hidden layer neural networks [13],
Fneral neural networks [6], and perceptron decision trees [14].

function classes. This therefore includes the use of kernel-basl'MPotant feature of the fat-shattering dimension for these

learning methods such as those used in the SVM [1]. The kerfi SS?S Is that Ilt doe; Q,:)t .depend 0? tht?NnulTbgrtof tpharame—
k provides a direct method of computing the inner product b £rs (pr example, WEIgs in a neural networ ). but rather on
tween the projection of two inputsandz’ into a high-dimen- their sizes. These measures, therefore, motivate a form of weight

sional feature space via a mapping deqay. Indeed, one consequence of the ab_ove result is a ju;tifi—
cation of the standard error function used in back-propagation
k(z, 2') = (¢(z), ¢p(z)). optimization incorporating weight decay, as well as suggesting
alternative error measures—see Section VII-B for details.
Many algorithms for linear function classes create weight vec- The preceding result depends on fheorm of the slack vari-
torsw that can be written as a linear combination of the trainingbles, while many optimization procedures useltmrm. We

feature inputsp(z1), ..., ¢(z.,) with coefficientse;. Hence, have, therefore, derived the following bound in terms of the
the evaluation of a new point can be obtained as 1-norm of the vecto€ (see Theorem VII.14):
(w, ¢(x)) = <Zaid)(azi), (/)(a:)> e<0O <fat(v/16|)5ﬁ|L ||£||1/fv>

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 13:22 from IEEE Xplore. Restrictions apply.



SHAWE-TAYLOR AND CRISTIANINI: ON THE GENERALIZATION OF SOFT MARGIN ALGORITHMS 2723

which can also be applied to the linear case using a bound explicit treatment of the threshold could be incorporated using

the fat-shattering dimension for this class, hence motivating ttiee techniques presented.

box constraint algorithm (see Section VI). Hence, if we are using a real-valued functignthe corre-
Finally, the problem of estimating errors of regressorsponding classification function isgn ( /), denoting the func-

is addressed with the techniques developed. We bound thm giving outputl if f has output greater than or equaltand

probability e that for a randomly chosen test point the absolutel otherwise. For a clasg of real-valued functions, the class

error is greater than a given valéeln this case, we define asign (F) is the set of derived classification functions.

vector(§(7)(z, y) ) (=, y)cs Of amounts by which the error on the  We first consider classical learning analysis which has been

training examples exceeds= # — v > 0. Note that||£(6)||3 shown to be characterized by the Vapnik—Chervonenkis (VC)

is simply the least squares error on the training set. We thédimension [15].

bound the probability by (see Theorem Vll.2) Definition 1ll.1: Let H be a set of binary-valued functions.

<o (B (v/16) + ||€(7)113/~* We say that a set of poinf§ is shattered byH if for all binary
€= El ) vectorsb indexed byX, there is a functiorf, € H realizingb
on X. TheVC dimensionVCdim (H ), of the setH is the size

These results can be used for support vector regression (SWRhe |argest shattered set, if this is finite or infinity otherwise.
[1] and give a criterion for choosing the optimal size- 86—~ of

the tube for thej-insensitive loss function. In addition, they can The following theorem is well known in a number of different
be applied to standard least square regression by setting forms. We quote the result here as a bound on the generalization

{0 obtain the bound (see Corollary VIIl.4) error rather than as a required sample size for given generaliza-
tion.
5 (fat (6/16) + [1€(0)113/6°
c<O < 5 2 . Theorem Il.2[5]: LetH;,7 =1, 2, ... beasequence of hy-

pothesis classes mappifagto {0, 1} such that VGlim (H;) =
For the case of linear functions (in a kernel-defined featugg, and letP be a probability distribution o’ x {1, 1}. Let
space) this reduces to a bound for (kernel) ridge regression.pi be any set of positive numbers satisfylif°, p; = 1. With
probabilityl —é overm independent examples drawn according
Ill. B ACKGROUND RESULTS to P, for any: for which a learner finds a consistent hypothesis

We consider learning from examples, initially of a binary: In Hi, the generalization error éfis bounded from above by

classification. We denote the domain of the problemibwand 4 2%m 1 4
a sequence of inputs by = (x4, ..., z,,) € X™. Atraining e(m, d, 8) = - <d1n < ) +1n <p—> +1n <5>>

sequence is typically denoted by

S =((z1, y1)s -5 (@, ¥m)) € (X x {=1, 1™ , . . L
This classical result only considers the classification func-
The performance of a classification function tions as binary valued. In many practical systems such as SVMs
or neural networks, the classification is obtained by thresholding
hi X — {-1,1} an underlying real-valued function. In such cases, the distance of

providedd = d; < m.

and the margin values of the training set can provide additional
Ers(h) = {(zi, y:) € S: h(x;) # v}l insight into the generalization performance of the resulting clas-

sifier.

We will say that a classification functialis consistent witht We first formalize the notion of the margin of an example and
if Erg(h) = 0, that is, correctly classifies all of the examples.trainmg set

in S. We adopt the pac style of analysis of generalization. This

model posits an underlying distributiaR generating labeled  Definition 111.3: For a real-valued function
examples. This distribution is used to generate training sets by
independent sampling. It is also used to measure the generaliza-
tion error of a classifier by

X —R

we define the margin of a training example, y) € X X
er (h) = P{(z, y): h(z) # y}. {-1, +1} to be

The thrust of the results in this paper relies on using real-valued m(f, (z, v)) = yf ().
functions for classification by thresholding at a fixed value. IRlote thatm,
some cases, it is useful algorithmically to set the threshold valﬂ
separately from the function selection. This approach can be
continued into the analysis of generalization, though both al- S =z, 51), - (Tms Ym))
gorithmically and theoretically it is possible to simply treat the

threshold as part of the function class and, therefore, fix thee define the (hard) margin ¢ to be
threshold at once and for all. We will follow this approach in .

order to simplify the presentation and form of the results, though m(f, §) = gﬁglm{m(fv (i, wi))}-

(f, (=, v)) > 0implies correct classification. For a
ining set
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Hence;m(f, S) > 0implies thatsign (f) is consistent withs. IV. CONSTRUCTING THEAUXILIARY FUNCTIONS

We now introduce the fat-shattering dimension, a generaliza-As we have seen in the last section, previous margin results
tion of the VC dimension that renders it sensitive to the size bbund the generalization error of a large margin classifier in
the margin. terms of the fat-shattering dimension measured at a scale pro-
ortional to the hard margin. These results can be used to moti-

D?:]m;tlon ”tl.4f: L.E'\tt‘]; I_oe a Sr?tt(t)f re;lk-)vaquetorl]functlons. Vlve\rjate the large margin algorithms which implement the so-called
say that a set of pointX’ s y-shattered hy* if there are rea hard margin optimization; in other words, maximize the min-

mjdmbecrjgggdtixed byx fe X,?UCh thz;f_fortgll b_mary vectors imum margin over all the points in the training set. Frequently,
indexed byX, there is a functiorf, € 7 satisfying the minimum margin can be greatly reduced by a small number

>ry 7, if b, = 1 of examples either corrupted by noise or simply representing
fo(z) { - ) atypical inputs. In such cases, the majority of the data still ex-
<r, —v,  otherwise. hibits a large margin, but the hard margin measure is small or

The fat-shattering dimensiofatz of the setF is a function even negative.

from the positive-real numbers to the integers which mapssﬁ?;thtiigesvr\;gfr?g:ﬂgzrvg? 'n:;?dl;;iﬂ;r;;]s slgrctlornmazlilroviv;uussi,r;to
value~ to the size of the largest-shattered set, if this is finite points clarge 9 9

o infinity otherwise. an auxili_ary fu_nction space. The cost Qf performing t_his shift
is seen in an increase in the complexity of the function class
We will make use of the following result contained in Shaweaised for the classification. Hence, we are able to restore a large
Taylor et al. [5] which involves the fat-shattering dimension othard margin at the expense of additional complexity and we can
the space of functions. therefore apply the hard margin generalization results, using al-
beit more sophisticated tools for measuring the increased com-
xity of the function class.
he idea of performing this shift was used by Freund and
Schapire [10] for the case of on-line learning algorithms. For
this application, it is possible to add an extra coordinate for each
training example, which makes the presentation easier. Since we
are undertaking a pac analysis, we cannot use a data-dependent
construction, but must ensure that the input space is defined be-
9 Semn S fore learning begins. This fact forces us to construct an auxiliary
e(m,d,6) = — <d108‘2 <T) log,(32m) + log, <7>> function class that will enable us to increase the margin of indi-
vidual training examples. LeX be the input space. We define
whered = fat z(v/8) < em. the following inner product space derived frakh

Theorem II.5 [5]: Consider a real-valued function clags
having fat-shattering function bounded above by the dimensiB
fatz: R — AN which is continuous from the right. Then with
probability at leasi — 6 over randomly drawn training sefs
of sizem, a functionh = sign (f) € sign (F) consistent with
S such thaty = m(f, S) > 0 will have generalization error
bounded from above by

Note how the fat-shattering dimension at sca/& plays the Definitiqn IV.1: Let L(X) be the set of real—yalued fgnctipns
role of the VC dimension in this bound. This result motivate ©N X with countable supportupp (f) (that is, functions in
the use of the term effective VC dimension for this value. () are nonzero for only countably many points). We consider
order to make use of this theorem, we must have a bound on t#@ norms, the2-norm | || is defined by
fat-shattering dimension and then calculate the margin of the 1712 = Z Fla)?
classifier. We begin by considering bounds on the fat-shattering
dimension. The first bound on the fat-shattering dimension of o
bounded linear functions in a finite-dimensional space was of§hile thel-norm is given by
tained by Shawe-Taylat al. [5]. Gurvits [16] generalized this £l = Z 1f(2)-
to infinite-dimensional Banach spaces. We will quote an im-

proved version of this bound for inner product spaces which is

contained in [17] (slightly adapted here for an arbitrary bount?® Subclass of functions withnorm bounded by is denoted
i LB(X), while L;(X) is the class of functions for which the
on the linear operators). i , i

i-norm is finite. We define the inner product of two functions
Theorem I11.6 [17]: Consider an inner product space and thﬁ g € Ly(X) by

class of linear functiong€ of norm less than or equal 18 re-

zEsupp( f)

zEsupp (f)

stricted to the sphere of radiug about the origin. Then the (f9)= Z f(@)g(x).
fat-shattering dimension df can be bounded by zEsupp (f)
) Clearly, the spaces;(X) are closed under addition and multi-
fate (7) < <%> _ plication by scalars.
AN/

Definition IV.2: Now for any fixedA > 0, we define an

embedding ofX into the inner product spac¥ x L(X) as
In order to apply Theorems I11.5 and 1.6, we need to boungy;ows:

the radius of the sphere containing the points and the norm of
the linear functionals involved. Tar & = Xa = (z, Ab,)
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whereé,, € L(X) is defined by

52t = {

We denote byra (S) the image ofS underr . For the special
case ofA = 1 we denoter; by 7.

1, ify==x

0, otherwise.

We have defined the augmented input space, but must ni
describe the auxiliary functions. For a general real-valued fun
tion classF of functions with domainX, we defineF + Ly (X)
to be the class

F+ LX) ={(f, 9): f € F, g € Lry(X)}.

The domain of these functionsJ§ x Ly(X), with their action

defined by Fg. 1.

Two slack variablest; =

5(('7:_7'7 yj)7 f A/)

E{(we, yi), £, 7) and & =

(f, o)z, h) = f(z) + (g, ).
Hence, we see that the off-training set performancéfoly;)

Definition IV.3: For a real-valued functiofi on X we define Satisfies

E((z, y), f,v) = max{0, v — yf(x)}.

This quantity is the amount by whighfails to reach the margin
~ onthe poin{z, y) or0 if its margin is larger thary. Similarly,
for a training setS, we define

(fs 9p)7alz) = f(=).

We have, therefore, shown the following lemma.

)

Lemma IV.4: For any training sef, real-valued functiory,
and target margiry the function(f, g) satisfies the properties

1) m((f, g5), 7a(5)) > 7.
2) For(z, y) € S (f, g5)(7a(z), y) = f(=).

Proof: The properties 1) and 2) are a direct consequence

If we fix a target margin~, the points with nonzero of (1) and (2). =
¢((z,y), f,~v) are those which fail to achieve a positive The construction we have established in this section enables
margin of v (see Fig. 1). Given a real-valued functigh us to force a target margin at the cost of reinforcing the
and a training sef, we now construct an auxiliary functionfunction class with the auxiliary functions if(X). The
gy € L(X), which will ensure that f, g;) achieves a margin second property demonstrated in Lemma [V.4 shows that the
~ on S. Note that we assume throughout the paper that ther#-training set performance of the augmented classifier exactly
are no duplicates in the training set. The functigndepends matches the original function. Hence, we can analyze the
on+~ and the training sef, but we suppress this dependency tgeneralization off by considering how(f, g,) performs on
simplify the notation the training set. In the next section, we first consider the case

1 where the class of functions is linear.

Qf:Z

D(S’ fa 7) Z 5((37’ y)’ fa 7)2 = ”5”2

(z,y)CS

> vk, v), £, 7)8a

(@ v)es V. SOFT MARGINS FORLINEAR FUNCTION CLASSES

If we now consider the margin of the functidif, ¢;) applied
to a training point7a(z), ¥) € 7a(S5), we have

y(f, gf)malz) = yf(z)
LY

The construction of the previous section shows how the mar-
gins can be forced to a target valueyoét the expense of addi-
tional complexity. We consider here how that complexity can be
assessed in the case of a linear function class. We first treat the
case where the parameti&rcontrolling the embedding is fixed.

In fact, we wish to choose this parameter in response to the data.
In order to obtain a bound over different valuesxfit will be
necessary to apply the following theorem several times.

In applying the theorems, a problem can arise if the clas-

>

(z’,y")ES
Z yf(x) +v - vf(x)

ylg((w,/’ y/)v f7 7)(639'7 A6$>

1)

Furthermore, if we apply the functioif, g;) to a point

(talz), y) & 7a(S) we observe that foz’, ¢/) € S,
(647, 6y = 0, and so
(95, 82y = > Y€ o) o6, 6:) = 0.

(', y')CS

sification given by the underlying function disagrees with the
augmented function and there is a nontrivial measure on the
points of disagreement. Since this can only occur on the subset
of points in the training set for whick((z, v), f, v) # 0, we
always assume that the test function first checks if a test point
is one of these points and if so makes appropriate adjustments
to the classification given by the underlying (in this case linear)

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 13:22 from IEEE Xplore. Restrictions apply.



2726 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 10, OCTOBER 2002

function. We use the phraseining set filteredto refer to this Proof: Consider a fixed set of values fak,

procedure. These same observations apply throughout the paB?r.: R\/Q(m—l)o'%, A1 = Ai/\@, fori=1,...,¢

Theorem V.1:Fix A > 0. Consider a fixed but unknownyhere+ satisfies
probability distribution on the spac¥ x {-1, 1} with sup-
port in the ball of radiusk about the origin inX. Then with
probability1 — § over randomly drawn training sefsof sizem  Hence,
for all v > 0, the generalization of a training set filtered linear + < 9 1og. (128m023) = 0.5(28 .
. . : =0. +1 .
classifieru on X with ||u|| = 1, thresholded & is bounded by < 2 log, (128m™) = 0.5( o8z (m)

V2R/64 > A, > R/64.

9 8 8 We apply Theorem V.1 for each of these values/gfusing
e(m,d,6)=— <dlog2 <%) log,(32m) + log, <Tm>> ¢’ = 6/t in each application. For a given valueplandD =
m D(S, u, v), itis easy to check that the valuefs minimal for

where A = v/ RD and is monotonically decreasing for smaller values
Je {64.5(}22 + A?)(1 + D(S,u, fy)?/A?)J of A and monotonically increasing for larger values. Note that
- 2
~

providedm > 2/¢, d < em. VRD < R\/Q— vVm—1= R\/Q(m —1)0%

Proof: Consider the fixed mapping and the augmented @s the largest absolute difference in the values of the linear func-

linear function over the spack x L(X) tion on two training points i2 2 and sincel((z, y), u, v) = 0,
;L for some(z, y) € S, we must have((z’', ¥/'), u, v) < 2R, for
w = (U gu)- all («’, /) € S. Hence, we can find a value d; satisfying
By Lemma IV.4,% has margirny on the training seta(S), \/ﬁ/\/ﬁ <A, <VED

while its action on new examples matches thakoObserve ] )
that since we are dealing with a class of linear functionston ProvidedvRD > /2R/64. In this case, the value of the ex-

W' is a linear function on the spacé x L(X). It follows that Pression
we can form the functlonA y (RQ +A2) (1 +D(S, u, ) /AQ)
U= m at the valueA; vv_iII be upper—boundgd by its valug a =
. - VRD/+/2. A routine calculation confirms that for this value of
which has norm andrysatlsfles . A, the expression is equal (& + D)? +0.5RD. Now suppose
m(t, S) > Wi~ /DG e A VRD < +/2R/64. In this case,lg)e will show that
and also mimics the classification affor (x, y) & S. We (R*+ A7) (1+D?/A7) < 1ag WE+ D)*+0.5RD}
can, therefore, apply Theorems IIl.5 and 1116 to the trainingg that the application of Theorem V.1 with = A, covers
set filtered function. Note that the support for the distributiofhis case once the constaht.5 is replaced by5. Recall that
of 7a(x) is contained within a ball of radiug'k? + A%. The /AR /64 > A, > R/64 and note that/D/R < v/2/64. We,

theorem follows. O therefore, have
We now apply this theorem several times to allow a choice of (R2 + Af) (1+ DQ/Af)
A which approximately minimizes the expression fmote < R%(1+2/642) (1 + 642D2/R2)
that the minimum of the expression (ignoring the constant and - 5
suppressing the denominatet) is (R + D)?, attained when < R? <1 + L) <1 + %)
A = VRD. - 2048 644
Theorem V.2:Consider a fixed but unknown probability dis- < R? <1 + L) <1 + L)
L . . 2048 1024
tribution on the spac&’ x {—1, 1} with support in the ball of 130 130
radiusR about the origin inY . Then with probabilityl — & over < — R*< —{(R+D)*+0.5RD}
randomly drawn training sets of sizem for all ¥ > 0 such that . 129 129
&(z, v), uw, v) = 0, for some(zx, y) € S, the generalization of as required. The result follows. =
a unit norm training set filtered linear classifieion X thresh-
olded at0 is bounded by V1. ALGORITHMICS
9 Rem The theory developed in the last two sections provides a way
e(m,d,6) = — <d10g2 <T) log,(32m) to transform a nonlinearly separable problem into a separable
<4m(28 +log,(m)) )) one by mapping the_ datatoa higher dimensi_onal space, a tech-
+log, nigue that can be viewed as using a kernel in a similar way to
J SVMs.
where Is it possible to give an effective algorithm for learning a large
65[(R + D)? + 0.5RD] margin hyperplane in this augmented space? This would auto-
d= { 2 J matically give an algorithm for optimizing the margin distribu-
i tion in the original space. It turns out that not only is the answer
for D = D(S, u, v), and providedn > 2/¢,d < em. yes, but also that such an algorithm already exists.
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The mappingra defined in Section IV when applied to aNote that this approach to handling nonseparability goes back

linear space implicitly defines a kernel as follows: to Smith [21], with Bennett and Mangasarian [22] giving essen-
, tially the same formulation as Cortes and Vapnik [12], but with
ka(z, &) = (ra(@), 7az’) a different optimization of the function class.
={(z, Abz), (&, Ab)) The expression also shows how moving to the soft margin en-
=(z, ') + A2<6m7 Sar) sures separability of the data, since both primal and dual prob-
—(z, &) + A28, (). lems are feasible. The soft margin has introduced a type of

weight decay factor on the dual variables.

Note that for the analysis of the algorithms we are allowing a The analysis we have performed so far is applicable to the
variable threshold in order to match more closely the defini-case ofc = 2 in the terminology of Cortes and Vapnik [12].
tions in standard usage. By using this kernel, the decision furijrough this approach has been extensively used, Cortes and

tion of the SVM becomes Vapnik favored settingg = 1 arguing that it is closer to the
m minimization of the training error that results from taking= 0.
z) = Z agyikalz, 1) + b This leads to the so-calleidnorm optimization problem
i=1 ¢
m ) minimize (u, u) +C Y _¢;
= ; oy [(m, @) + A6, ()] + b &ub ~ 3)
= subjectto w;((w, z;) +0) > 1— &, i=1,..., ¥,
If we begin with a kernek(z, ') that defines an implicit fea- ¢ >0, i=1.....1.

ture mape satisfyingk(z, ') = (¢(z), ¢(z’)), we need only
consider applying the magx to ¢(x) to obtain the new kernel The dual of this problem is maximization of the Lagrangian

ka(x, ) = (1a(p(2)), Talp(@))) L= Z o — — Z Yily 0G0, T5)
=((¢(2), Ab,), (¢(z'), Ady)) i 4=1
=k(z, 2') + A*(8z, 62) subject to the constraints
=k(z, ') + A8, (a").
_ > iy =0
Hence, to optimize the new bound, we need only replace the —
kernel matrixX with the matrixK’ — K + AZ2I, which has 0<a; <C, i=1,..., ¢

a heavier diagonal, which is equivalent to applying the hard
margin algorithm after addind 2! to the covariance matrix. ~ 1he second set of constraints has resulted in the method being

This technique is well known in classical statistics, where it h0wn as the box constraint algorithm. It again shows how non-
sometimes called the “shrinkage method” (see Ripley [18]). fgparability has been overcome since the dual feasible region is
the context of regression with squared loss, it is better known2@w bounded ensuring the existence of an optimal solution. In
ridge regression (see [19] for an exposition of dual ridge regregntrast to the weight decay style of constraint introduced by
sion), and in this case, leads to a form of weight decay. It ist@e 2-norm criterion, the dual variables are now restricted to a
regularization technique in the sense of Tikhonov [20]. Anoth&hite region.
way to describe it is that it reduces the number of effective free Viewing the two primal objective functions, the change in the
parameters, as measured by the trac&oNote, finally, that l0ss function is evident. The tradeoff parametecontrols the
from an algorithmic point of view these kernels still give a poge€lative importance given to controlling the loss as opposed to
itive-definite matrix, in fact, a better conditioned one, thougfegularizing the function. The cases considered so far have all
one that may lead to less sparse solutions. been linear function classes usi&ignorm regularization giving

Using the kernelK + A2] is equivalent to solving the rise to the2-norm of the weight vector in the primal objective.
soft margin pr0b|em for the case = 2, as stated by Cortes The next section will further develop the techniques we have
and Vapnik [12], minimize(u, u) + C3 1", ¢? subject to introduced in order to bound the generalization in terms of quan-
y;[(u, z;) — b] > 1 — & and¢; > 0. The solution obtained is tities optimized by the box constraint algorithm as well as ex-

tending the results beyorginorm regularization and beyond
Z o X Z v (@, T3 Z o2 linear function classgs. .
! 500 (T3 ) O An example applying the approach when usingtherm of

b=t the dual variables as a regularize is given in [23].

subject to the constraint

2 &y =0 VII. NONLINEAR FUNCTION SPACES
A. Further Background Results
which makes clear how the tradeoff paraméten theirformu- |y order to develop the theory for the case of nonlinear func-
lation is related to the kernel parameter namely, tion classes we must introduce some of the details of the large
1 margin proof techniques. The first we need is the concept of
C= Az covering numbers—this is used to replace an infinite function
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class by a finite set of functions characterizing its performanceWe will make use of the following lemma, which in the form
to a given accuracy. below is due to Vapnik [26, p. 168].

Definition VII.1: Let(X, d) be a (pseudo-) metric space, let Lemma VII.5: Let X be a set and a system of sets of,
Abeasubsetak ande > 0. AsetB C X is ane-coverfor A and P a probability measure oX. Forz € X™ andA € S,
if, for everya € A, there exist$ € Bsuchthati(a, b) < ¢.The definer,(A) := |z N A|/m. If m > 2/¢, then
e-covering numbeof A, Ny(e, A), is the minimal cardinality
of an e-cover for A (if there is no such finite cover then it is <’ {"’35 i‘ég [re(A) — P(A)] > C}
defined to bex). We will say the cover is proper iB C A. ’

. - < 2p?m : , -, .
Note that we have used less than or equal to in the definition of s 2P {wy j‘;f;"w(“‘) v(A) > 6/2}

a cover. This is somewhat unconventional, but will not change ) ]

the bounds we use. It does, however, prove technically usefull N€ following two results are essentially quoted from [S] but
in the proofs. The idea is tha® should be finite but approx- they have been refor_mulated hgre in terms of t.he covering num-
imate all of A with respect to the pseudometdc The pseu- bers involved. The difference will be apparent if Theorem VII.7

dometric we consider is this® distance over a finite sample!S compared with Theorem 115 quoted in Section Iil.

z = (21, ..., ) in the space of functions Lemma VI1.6: SupposeF is a sturdy set of functions that
de(f, g) = max |f(z;) — g(z:)|. map fromX to R. Then for any distribution”? on X, and any
1<i<m

= ke Nandanyd € R
We write N (e, F, z) for Ny, (¢, F). For a training set

S = ((371, yl)’ RS (xma ym)) per {wy: AfeF r= In]aX {f(xj)}v

we will also denote the covering numbers for the sequence of 2y <6 —r, [logogN (v, F, ay))] < k,
inputsz = (1, ..., xm) by N(e, F, S) = N(e, F, x). We 1,
will consider the covers to be chosen from the set of all functions E|{L|f(yi) 2 0 2 e(m, b, 6)p <&

with the same domain g& and range the reals. _ __wheree(m, k, §) = L(k +1log, 2).
We now quote a lemma from [5] which follows immediately  proof; We have omitted the detailed proof since it is es-
from a result of Aloret al. [24]. sentially the same as the corresponding proofin [5] with the sim-
Corollary VII.2 [5]: Let F be a class of function& — Pplification that Corollary VII.2 is not required and that Lemma
[a, b] and P a distribution overX. Choose0 < ¢ < 1 and VIl.4 ensures we can find 4. cover where
letd = fat(e/4). Then v = inf{y|N (v, F, zy) < 2*}
<4m(b - a)2)dl"gzeem(b_“)/(de)) which can be used for all satisfying[log, (N (v, F,zy))] < k.

sup (e, 7, 2) < 2 2 Note also that an inequality is requirgq < 8 — r, as we have

zCX™ <

For a monotonic functiorf(y) we define coverings using closed rather than open balls. O
f(y)= lim f(y—«a) The nextresultis couched in terms of a bound on the covering
. o a—0+ numbers in order to make explicit the fact that all applications
that is, the left limit of f at-y. of these results make use of such bounds and to avoid using

Note that the minimal cardinality of ancover is a monotoni- the limits implicit in the argument™. This does not have any
cally decreasing function ef as is the fat-shattering dimensiorimplications for the tightness of the result.

as a function ofy. Hence, we can writd/(y~, 7, ) forthe  Theorem VII.7: Consider a sturdy real-valued function class
limit of the covering number ag tends t07 from below. F having a uniform bound on the Covering numbers

Definition VII.3: We say that a class of functiotiis sturdy N(—, F,2) < B, )

if for all sequences of inpute = (z1, ..., =) itsimage under o 51 & ¢ X for all £. Consider a fixed but unknown prob-
the multiple evaluation map ability distribution ? on X x {—1, 1}. Then with probability
zr: F— R™, definedbyzz: f — (f(z1), ..., f(zm)) 1 — 6 over randomly drawn training sefs of sizem, a func-
tion h = sign(f) € sign(F) consistent withS such that

~=m(f, S) > 0, will have generalization error bounded from
Note that this definition differs slightly from that introducedabove by

in [25]. The current definition is more general, but at the same
time simplifies the proof of the required properties. e(m, k, 6) = — </% + log, <7>>

is a compact subset &™.

Lemma VII.4: Let F be a sturdy class of functions. Then fowherek = [log, B(2m, v/2)].
eachN € N and any fixed sequenaee X, the infimum Proof: Making use of Lemma VII.5, we will move to the
vy = inf{y|N(y, F, z) < N} double sample and stratQify by. By the union bound, it thus
is attained suffices to show thaEZ”:/1 P?™(.J,) < §/2, where

Proof: The straightforward proof follows exactly the/r = {853 f € F,y =m(f,5) >0,
proof of [25, Lemma 2.6]. O k > [log, B(2m, ~v/2)], Ers (sign(f)) > me(m, k, 6)/2}.
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(The largest value df we need consider is /2, since for larger the d, metric. Consider the set of functiod$ + C. For any
values the bound will in any case be trivial.) It is sufficient iff + g € F+ G, there is arf; € B within n of f in thed, metric

P < % = &". We will. in fact. work with the set and ag; € C within v — n; of g in the same metric. For € x
e =185 3f e F o' <m(f,9), |(f +9)(@) = (fi + ;) ()]
k> [logy N(v'/2, F, SS)], < (@) = filw)] + |g(z) — g;(x)] 4)
Erg (sign(f)) > me(m, k, 6)/2}. <n+y-n=7. (5)

We will show thatP?™(J;) < &. The result will then follow as Hence,B + C forms avy cover of F + G. Since

Jr C J;.. To show this consider aryS’ € Ji.. Therefored f €

F, such thaty = m(f, S) > 0, k > [log, B(2m, v/2)], |B+Cl <N, F, &)N (v =0, G, =),

and Erg (sign(f)) > me(m, k, 6)/2. By the bound on he result follows by setting = /2. O

B(2m, v/2), there existsy’ < ~ such that
) ) Before proceeding, we need a further technical lemma to
N /2, F, SS") < B(2m, v/2) show that the property of sturdiness is preserved under the
so that we have addition operator.
Lemma VII.9: Let 7 and G be sturdy real-valued function
> > > > / !
k2 [logy B(2m, 7/2)] 2 [log, N(+'/2, F, S57] classes. ThetF + G is also sturdy.

implying thatSS’ € J;, as asserted. It, therefore, remains to  Proof: Consider ¢ X™. By the sturdiness of, . (F)

show thatP?™(J}) < §&'. X X is a compact subset 8" as is@g(G). Note that
Consider the function class actingonX = X x {—1, 1 . . .
defined by t f Trig(F +0) = &7 (F) + 25(9)
F=1{f fery, wheref: (z, y) — —yf(x). where the addition of two set$and B of real vectors is defined
Hence, we have A+B={a+blac A be B}
R S ; . Sincez #(F) x x;(G) is a compact set dk? and+ is a con-
J, €388 3 f e F,r=nma ,y): (z,y) €Sy, X z 7 g c
k= { ! e {f(x v): (@, v) } tinuous function fronR? to R, we have thatz=(F) + &5(G)
N < —r k> Pog/\/ (7//27 F, 55’)1 , is the image of a compact set underand is, therefore, also
compact. |

S fla, y) 2 0 ‘> k, 6)/2
H(x’ y) €5 flz,y) = } z me(m, k, 8)/ } Recall the definition of the auxiliary function space given in

using the fact thatv'(+//2 F S8y = N'(+'/2, F, S5'). Re- Definition IV.1 and the mapping = 71 given in Definition
placing by ' /2 and setgingé — 0'in Lemma VIL6. we obtain !V.2- We make use of this same construction in the following

P2 (]l < § for proposition. Hence, fof € F, gy € L(X) is defined with
M= A=1.
2 2 -
e(m, k, 6) = - </f + log <§>> ) Proposition VII.10: Let F be a sturdy class of real-valued

. - ~functions having a uniform bound on the covering numbers
as required. Note that the condition of Lemma VII.5 are satisfied

by(: al’ldm. O N(777 f‘v 1‘) S B(Ev 7)

forallz € X*, for all £. LetG be a sturdy subset df( X) with

) ] ] ) . the uniform bound on the covering numbers
In this subsection, we will generalize the results of Section IV

to function classes for which a bound on their fat-shattering di- NH™, 6, 2) < AW, v)
mension is known. The basic trick is to bound the covering num- p _ . . i
bers of the sum of two function classes in terms of the coverirr}:k fzel ’bwg.?.:el(;._t .{bé”’tlx € ‘Xt]lil. Cor(:ger a fl'xeid b‘lyt: un-
numbers of the individual classes./ff andG are real-valued own probabiiity distribution on the sp x{~1,1}.Then

function classes defined on a domahwe denote by + G W'th probability 1 — ¢ over rand_oml_y drawn trqlr_ung se&of
the function class sizem for all v > 0, the generalization of a training set filtered

functionsign( f) € sign(F) satisfyinggs € G is bounded by

F+G={f+glfeF.geg} 2 2m
e(m, k, 6) = - <k+10g2 <T))

Lemma VII.8: Let F and G be two real valued function
classes both defined on a domaih Then we can bound the where
cardinality of a minimaly cover of 7 + G by

N(y. F+G. 2) S N(v/2, F. )N (7/2, G, z). providedm > 2/e.

Proof: Fix n € (0, ~) and letB (respectively,C) be a Proof: Consider the fixed mapping = 7. By Lem-
minimal»n (respectively;y — ) cover of F (respectivelyG) in  ma IV.4, we have

B. Margin Distribution and Fat Shattering

k = [log, B(2m, v/4) + logy, A(2m, v/4)]
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1) m((f, g7), 7(S)) > ; of the component function classes using Corollary VII.2 and
2) for (z, y) & S, (f. g;)(r(x), y) = f(=). Theorem III.6. In this case, we obtain the following bounds on

Hence, the off training set behavior of the classiffecan be the covering numbers:

characterized by the behavior pf- g, while f + ¢, is a large lim log, (N((v — «)/4, F, x))

margin classifier in the spac€ x L(X). In order to bound the a—07 _ )

generalization error, we will apply Theorem VII.7 f& + G, <1+ d;log, <2067;1a ) log, <166ma>
which gives a bound in terms of the covering numbers. These Y d1y
we will bound using Lemma VI1.8. The spade+ G is sturdy =: log, (B(2m, v/4))

by Lemma VII.9, since bottF andg are. In this case, we obtain
the following bound on the covering numbers:

1in(r)1+ logy N ((y — a)/2, F+ G, SS")) ali_l)gl+ logy (M ((v — @) /4, Gj, x))
o < 2
s Jlim logy (W((y - )/4, F, 557)) 1+ dy log, <206ﬂ;Bj ) log, <16§mBj>
; . _ 1 v 27
+ J, Jogy W((7 = )/d. G, 557) —: log, (A(2m, 7/4)

<log, (B(2m, v/4)) + log, (A(2m, v/4 L
< log, (B(2m. 7/4)) + log, (A(2m. 7/4)) whered, = (16B;/v)?. Hence, in this case we can bound

whered; = fatz(~v~/16), and

IA

as required. L [logy B(2m, v/4) + log, A(2m, v/4)] by
Proposition VI1.10 gives a general framework for deriving [logy B(2m, v/4) +logy A(2m, v/4)]
margin distribution generalization bounds for general function 168\ 2
classes using different bounds on the slack variables. The next < 2+ |fatr(y7/16) + < J)
theorem considers a function class with bounded fat-shattering v
dimension, and combines this with tBenorm bound on the x log, (256m(b/~)?)log, (16emb/~)

slack variables. We will see that this combination is applicable ) ]
to the back-propagation algorithm training of neural networkVing the result where the contributes a factor of into the
when the quadratic loss is used for the error function. argument of the final log term. -

Theorem VII.11: Let  be a sturdy class of real-valued func- The theorem can be applied to a wide range of function
tions with rangd—a, a] and fat-shattering dimension boundeglasses for which bounds on their fat-shattering dimensions
by fat (7). Fix a scaling of the output range € R*. Con- &€ known. For example Gurvits [16] bounds the fat-shattering
sider a fixed but unknown probability distribution on the spacdimension of single hidden layer neural networks. Bartlett
X x {—1, 1}. Then with probabilityl — § over randomly drawn extends these results to multilayer sigmoidal neural networks
training setsS of sizem for all a > ~ > 0, the generalization of [6]. Bartlett argues that neural network training algorithms are

a training set filtered functiorign (f) € sign (F) is bounded designed to enlarge the margin of the classifier and hence gives
algorithms such as back-propagation a theoretical justification.

b
y The back-propagation algorithm performs gradient descent
e(m, d, §) = 2 <d10g2 (256m(c/,y)2) over _the wgightm of the quadratic loss of the neural network
m function f,,: X — (-1, 1) given by
16mi-3a m
x log,(16emc/v) + log, S B(w) = Z (o) — )",
i=1

wherec = max{a, D(S, f, v) + «} and
If we consider a target margin af this is precisely the square

16(D(S, f, v) + ﬁ))j of the 2-norm of the slack variables

7 D(S, fur 1) = [|€ll2 = VE(w).

Hence, Theorem VII.11 provides a direct motivation for the
back-propagation algorithm and, in particular, the quadratic loss
function with a weight decay term to control the growth of the
fat-shattering dimension. Since the bound is not proven to be
tight, the algorithm is still only optimizing a heuristic, but one
that has been proven to upper-bound the error. It also suggests
GRSE different target margins could be considered. For example.
if we take~y = 0.5 training points with margin already greater
than0.5 will be ignored, while the loss for those with smaller
margins will be evaluated as

d= [fat;(fy_/m) + <

providedm > 2/e.

Proof: Consider the sequence of function clasggs=
LQBJ'(X), whereB; = jr,forj =1,..., ¢ = 2\/ma/k (see
Definition 1V.1) where we assumeis chosen to makéa whole
number. We will apply Proposition VII.10 witg = G; for
each clasg7;. Note that the image of; under any multiple
evaluation map is a closed bounded subset of the reals and h
is compact. It follows that?; is sturdy. It has range-B;, B;]
on the spacé’. We haveB; = 2\/ma > D(S, f, v), for all
f € Fand ally < a. Hence, for any value ab = D(S, f, v)
obtained there is a value &; satisfyingD < B; < D + k.
Substituting the upper bount! + « for this B; will give the E(w) = Z (fu(z:) — 0.5y;)%
result, when we us& = 6/¢ and bound the covering numbers i | fu(2:)]<0.5
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The theorem can, of course, be applied for linear functiomith a, > 0 andz(% nes Go < B, and chooseé, as
classes, using the bound on the fat-shattering dimension given . ) .
in Theorem 111.6. The bound obtained is worse since separately te = arginin (262 + 1)y — azl.
estimating the covering numbers for function class and slack )
variables incurs extra factors when compared to Theorem V.5i€nce,|a, — (2i, + 1)7| < v and so

C. 1-Norm Bounds on the Margin Distribution kg, 7(2)) = {gir (@) < .

We now consider altering the measure used to assess the shicthe same time(2i,, + 1)y < a, + v, implying that
variables. As previously mentioned, the box constraint algo- )
rithm optimizes the -norm of the slacks. We will therefore con- Z 22y < Z ax < B
centrate on deriving a bound in terms of this norm, though there (=, y)€S R
is no reason why other norms could not be considered. The mgstnat, taking into account that € N, we have
appropriate norm will depend on the type of noise that is af-
fecting the data. For example, thenorm will be more appro- 3 i< {EJ

T 2’7 -

priate if the noise distribution has a longer tail. (o p7eS

Definition VII.12: For a training s, we define It remains to estimati|. Consider first those elements Bffor
D'(S, f,~) = e y), fo ) = ) which} (. ,yes ix = k. There is a one to one correspondence
(5. £:7) Z & v) £, ) €1l between thé allocations to thgand the choice af. — 1 distinct

boundaries between elements in a sequengeiok 1's (so as to

The following lemma bounds the covering numbers of the reff—)rm a subsequence for eath, y) € 5). The correspondence

evant subset of.(X') when bounding thé-norm of the slacks. Is made withi,, being one fewer than the number$ in ’s

The result is a special case of a more general developmentgi9§ﬁt't'on' Since we must choose the — 1 boundaries from

by Carl and Stephani [27]. amongm + k — 1 positions, the number of allocations is

(z,y)ES

Lemma VI1.13: Consider the function class m+k—1 _[(m +k—-1 ]
m—1 k
LB = Z ya.6,: 5" any finite set of labeled examples, Hence, ifwe sefl = | 7 | we can bound the number of elements
(=, y)Es’ in |B| by
d
a, > 0and ay < B % C LB(X). < m+k—1
> Z ax S B C LX) B <3 < .
(z,y)ES k=0
d
There exists &-covering of £ in the£Z, metric with respect Z m+d-—1
to 7(9) for any set of labeled pointS with |S| = m that has T = k
size bounded by . d
< <c(m +d-— 1))
—1 — - 3
log, [B| < dlog, <e(m+%‘ld)> d

where the last inequality follows from a similar bound to that
whered = L%J- used in the application of Sauer’'s lemma. The result foll@ws.

Proof. Firstnote thatany points ifi"\ S have no effecton  pyting together the result of Lemma VI1.13 with Proposition
the value of the function on points #i Hence, we can constructy| 10 gives the following generalization bound in terms of the

the cover from the points of provided we allow)_, \cs @=  fat-shattering dimension of the function class anditm®rm of
to take any value in the intervl), B]. We explicitly construct ihe sjack variables.

the covering3 by choosing the functions
Theorem VII.14: Let F be a sturdy class of real-valued func-

gi = Z (24, + 1)v6, tions with rangg—a, «] and fat-shattering dimension bounded
(z,1)ES by fat (). Fix a scaling of the output rangee R*. Consider
) . 6 o a fixed but unknown probability distribution on the input space
wherei = (iz)(, yes € N7 satisfies X. Then, with probabilityl — § over randomly drawn training
B setsS of sizem for all a > v > 0, the generalization of a
Z ip < {2—J . training set filtered functiorign () € sign (F) is bounded by
(res ! 2 g 16
a cma
To see thaB3 does indeed form a cover, consider any e(m, du, dy, 6)=— <d1 log, <256m <§> >1Og2< 5 )
2
(o g)eS +dz log, (2em) + log, o
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where VIIl. REGRESSION
B 2D'(S, £, ) + k) In order to apply the results of the last section to the regres-
dy = fatz(y~/16), and dy = { 5 J sion case we formulate the error estimation as a classification
problem. Consider a real-valued function clasvith domain
providedm > 2/e. X.Forf € Fwe define the function( /) on the domain{ x R
Proof: Consider the sequence of function clasggs= and hence the clasg?)
éB;.(‘X.)’ v:/\r;elreth = jr, forj = 1,h..., { = 2%//«; Elsele e(f)(z, v) = |f(z) — vy
efinition IV.1) where we assumeis chosen to makéa whole o(F) ={e()If € F).

number. We will apply Proposition VI1.10 wit§i = G; for each )
classG;. Note that the image af; under any multiple evalu- Note that we could use any loss function and apply the subse-

ation map is a closed bounded subset of the reals and hencduent analysis to the loss function clasghe size of Fhe slack.
compact. It follows tha; is sturdy. It has range-B;, B;] on variables Wou_ld change as Would_the_ cor_respondlng covering
the spacd’. We haveB, = 2ma > D'(S, f, ), forall f € F ngmb_ers at different scales resulting in different optimization
and ally < a. Hence, for any value ab’ = D/(S, f, ~) ob- Critéria and bounds. o _
tained there is a value dB; satisfyingD < B; < D + k. We now fix a target_accurac& > 0. For a training point
Substituting the upper bourfd + « for this B; will give the re- (x, y) € X x R we define

sult, when we usé’ = §/¢ and bound the covering numbers of &z, y), f, v) =max{0, |f(z) —y| — (6 —7)}.

the component function cIassgs using Corollary VIl.2, Theqrefrhis quantity is the amount by whighexceeds the error margin
[11.6, and Lemma VII.13. In this case, we obtain the following, _ ~ on the point(z, ) or 0 if f is within & — ~ of the target

bounds on the covering numbers: value. Hence, this is thg-insensitive loss measure considered

by Druckeret al. [28] with = 6 — ~. Let gy € L¢(X) be the

(yli_%g log, (N((’Y —a)/4, F, SS/)) function
256ma? 16
S 1+ dl 1Og2 <077;1a> 1Og2 < Gma> gr = — Z 5((‘%'7 y)7 f7 ,7)639
v dl’y (z,y)ES
=:log, (B(2m, v/4)) . I . :
As in the classification case, when evaluating a function on a
whered; = fat+(y~/16), and test point, a disagreement between the underlying function and
the augmented function ((x, v), f, v) # 0 is possisble. We
lim logy (M((v — a)/4, G;, S§5")) again use the phragmining set filteredo refer to the procedure
a—0t that first checks if the test point is one of these training points
< dylog e(2m —ds — 1) and if so makes an appropriate adjustment to the underlying
= 2 ds function.
=:log, (A(2m, v/4)) Proposition VIIL.1: Fix § € R, § > 0. Let F be a sturdy
. . . lass of real-valued functions having a uniform bound on the
where d, = LEJ_ Hence, in this case we can bouncgovering num\éetjs Hnet ving a uni N

[logy B(2m, v/4) +log, A(2m, v/4)] by Ny, F, z) < B(m, ~)

[log, B(2m, v/4) + log, A(2m, ~v/4)] forallz € X™. Let G be a sturdy subset df(X) with the

2B; _ uniform bound on the covering numbers
<14 | —2|log, (2em) + fatz (v~ /16) _
" N(O™, 6, 2) < Alm, 7),
x logy (256m(a/v)?) log, (16ema/y) for z € I'™, wherel' = {6,|z € X}. Consider a fixed but
o ) ] unknown probability distribution on the spa&ex R. Then with
argument of the final log term. U forall v > 0 the probability that a training set filtered function

If we use Theorem 111.6 to bound the fat-shattering dimensioh € 7 has error greater thahon ¢ on a randomly chosen input
of the underlying linear classifier, Theorem VII.14 is directlys bounded by
applicable to the box constraint algorithm for SVMs [1]. Note e(m, k, §) = 2 ko log 8m
that in this case the target marginligind the fat-shattering di- s 22\ 75
mension is given bylw||2R2. Hence, ignoring the logarithmic where
Iie:)cr:oigs, the quantity to be minimized to improve the generaliza- k = [log, B(2m, v/4) + logy A(2m, v/4)]
providedm > 2/¢ andg.¢y) € G.
l[w||? + C|I€|Ix Proof: The result follows from an application of Proposi-
tion VI1.10 to the function class(F)— 6, noting that we treat all

precisely the quantity optimized by the box constraint algo- 1we are grateful to an anonymous referee for pointing out this natural gener-
rithm. alization.
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training examples as negative, and hence correct classificatwinerec = max{BR, D(S, f, v) + «} and

corresponds to having error less tHarFinally, we can bound y y
the covering numbers de <16BR> 4 <16(D(S, L)+ /«3)) ]
Y Y

Ny, e(F), ) < N(v, F, z) < B(m, 7).
providedm > 2/e.

The result follows. Proof: The range of linear functions with weight vectors

For a training sefs, we define bounded byB when restricted to the ball of radiug is
[-BR, BR]. Their fat-shattering dimension is bounded by

D(S, f, ) = Z &((z, v). f. )2 Theorem lII.6. The result follows. O
(z,y)Cs This theorem is directly applicable to SVR[28], [1]. Again

The above result can be used to obtain a bound in terms of (Re> /» 7) is the sum of the slack variables using the- § —

observed value ab($, f, v) and the fat-shattering dimension’V'inse”Sitive loss function. The SVR algorithm minimizes the
of the function class. quantity B2 + CD?, hence optimizing the bound of Theorem

VIII.3.
Theorem VII1.2: Let F be a sturdy class of real-valued func-  Note that we obtain a generalization bound for standard least
tions with rangg—a, o] and fat-shattering dimension boundegquares regression by taking= # in Theorem VIII.2. In this
by fat =(7). Fix ¢ € R, & > 0, and a scaling of the output rangecase,D(S, f, 6) is the least squares error on the training set,
% € RT. Consider a fixed but unknown probability distributionyhile the bound gives the probability of a randomly chosen

on the spaceX’ x R. Then with probabilityl — ¢ over randomly input having error greater thah This is summarized in the fol-
drawn training sets' of sizem for all v with & > v > 0 the |owing corollary.

probability that a training set filtered functigh e F has error

larger thard on a randomly chosen input is bounded by Corollary VIIl.4: Let F be a sturdy class of real-valued func-

tions with rangd—a, o] and fat-shattering dimension bounded
2 e\? by fat = (). Fix 8 € R, 6 > 0, and a scaling of the output range
e(m, d, §) = m dlog, | 256m <_> % € RT. Consider a fixed but unknown probability distribution
} on the spaceX x {—1, 1}. Then with probabilityl — & over
% log <166m <£)) log <16m1'°a) ) randomly drawn training set$ of sizem, the probability that a
2 ~y 2 o training set filtered functiorf € F has error larger thaéon a
randomly chosen input is bounded by

wherec = max{a, D(S, f, v) + «x} and

2 c 2
16(D(S 2 e(m, d, §) = — | dlog, | 256m <—>
d= lfatf(’Y_/16)+< (@ ’fﬁ)—i_l{)) ] m 2 v
’7 -

loe { 16em.E log. 16m'°BR

providedm > 2/e. x log, @m; + logy —n

Proof: This follows from a direct application of The-
orem VII.11. O wherec = max{a, D(S, f, v) + x} and

A special case of this theorem is when the function classes are 2
linear. We present this case as a special theorem. Again, by using 16 <\/ > (flz)— y)2+m>
the techniques of Section V, we could improve the constantg,: (6 /16)+ (zy)es
but because the norm is no longetthe results are not directly 0
applicable. We, therefore, present a weaker version.

fat F

Theorem VIII.3: Let F be a the set of linear functions with
norm at mostB restricted to inputs in a ball of radiu$ about providedm > 2/e.
the origin. Fixf € R, # > 0, and a scaling of the output range
x € RT. Consider a fixed but unknown probability distribution,

on the spaceX’ x {—1, 1}. Then with probabilityl — & over |, yhis case, the algorithm to optimize the bound reduces to

randomly drawn t_rf';\ining sets _Of sizem_for all -, Wi_th 0 > Ridge Regression or kernel ridge regression [19], [1] for a kernel
~ > 0, the probability that a training set filtered functigrne F defined feature space.

has error larger thai on a randomly chosen input is bounded  Ag mentioned in the section dealing with classification, we

For the case of linear functions this is a special case of The-
em VIII.3, namely, that obtained by takifginsensitive loss.

by could bound the generalization in terms of other norms of the
5 e\ 2 vector of slack variables

e(m, d, §) = — | dlog, | 256m <—> )
m < < Y (5((1’7 y)7 f7 7))(7‘,;})65 .

x log, <16@m£> + log, <16m1~5BR> _The aim of th!s paper, however, is not to list all possi_ble results,
oK it is rather to illustrate how such results can be obtained.
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Another application of these results is to choose the hesbptimizing the soft margin bound. This seems very unlikely but
for the n-insensitive loss function for SVR [1]. This problemhardness results have always considered minimizing classifica-
has usually been solved by using a validation set, but Corollaign error as in the case of linear classifiers, so the possibility is
VIII.3 could be used by choosing the valuerpivhich gives the not as yet excluded.
best bound on the generalization. We assume here that a targérom a theoretical point of view, the bounds are only as tight
accuracy has been set and we wish to minimize the probabilitys the results on which they depend. There has been a significant
that the error exceeds this value. The optimum will be 4hetightening of the covering number bounds for linear classifiers

which minimizes taking into account the structure of the training data itself [32],
R24D(S, f,, 60— n)? [33], [25] and all of these results could be combined with the
@ — 1) techniques described here to give equivalent soft margin bounds.

where f,, is the solution obtained when using thénsensitive
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